

FINAL PHOSter[™] SYSTEM SOIL SAMPLING REPORT (September 2009 Sampling Event)

Site: SMS Instruments Site, Site # 1-52-026

Deer Park, Suffolk County, NY Multi Site G Operation, Maintenance & Monitoring Work Assignment D004445-14.2A

Submitted to:

New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233

Prepared for:

New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 300 Broadacres Drive, Bloomfield, New Jersey 07003

January 20, 2010

AECOM Project No. 60135736.20

FINAL PHOSter[™] SYSTEM SOIL SAMPLING REPORT (September 2009 Sampling Event)

Site: 1-52-026	Author:
SMS Instruments Site Deer Park, Suffolk County, NY	Title:
Submitted to: New York State Department of Environmental Conservation 625 Broadway,	Date:
Albany, New York 12233 Prepared for:	Reviewer:
New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233	Title:
Prepared by: AECOM Technical Services Northeast, Inc. 300 Broadacres Drive, Bloomfield, New Jersey 07003	Date:
January 20, 2010	

AECOM Project No. 60135736.20

Table of Contents

1.0	INTRODUCTION	1
1.1	Background Information and Site Chronology	1
1.1.1	USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well Installation	
	Activities (August 2004)	2
1.1.2	USEPA/Earth Tech Groundwater Pump And Treat System Evaluation Sampling	
	(August 31, 2005)	3
1.1.3	Groundwater Pump and Treat System Shutdown and Dismantlement	4
2.0	PHOSTER™ SYSTEM	5
2.1	Technology Description Selection Rationale	5
2.2	PHOSter™ System Overview	5
2.3	Remedial System Monitoring and Sampling	6
2.4	PHOSter™ System Sampling and Effectiveness Evaluation	7
2.5	Technology and Process Optimization	8
3.0	BIOSPARGE PERFORMANACE EVALUATION	9
3.1	Sample Numbers and Collection Points	9
3.2	Data Interpretation and Evaluation	9
3.2.1	Bioremediation Process Description	9
3.2.2	Microbial Data Results	9
3.2.3	VOC Data Results	10
3.3	Comparsion of Data from the Five Sampling Events	11
4.0	CONCLUSIONS AND RECOMMENDATIONS	12
4.1	Conclusions	12
4.2	Recommendations	12

Figures

- Figure 2 Boring Location Map
- Figure 3 Summary of Total VOCs in Soil
- Figure 4 Summary of BTEX in Soil
- Figure 5 Total VOCs Isopleth Map, 22.5 25 ft Interval, March 2006, June 2007, January 2008, November 2008 & September 2009
- Figure 6 Total VOC Concentrations in Soil (22 25 ft Depth Interval)

i.

Tables

- Table 1Summary of Methanotrophs Data (September 2009)
- Table 2Summary of Methanotrophs Data (2006, 2007, 2008 and 2009)
- Table 3Summary of Phospholipid Fatty Acid Data (2006, 2007, 2009 and 2009)
- Table 4
 Summary of Volatile Organic Compounds in Soil, Detections Only (September 2009)
- Table 5Volatile Organic Compounds, Detections Only, Comparison of June 2006, March 2007,
January 2008, November 2008 and September 2009 Data

Appendices

- Appendix A Soil Boring Logs, September 2009 Event
- Appendix B Laboratory Data Package (Form 1s), September 2009 Sampling Event
- Appendix C Microbial Insights data Package, September 2009 Sampling Event

1.0 INTRODUCTION

AECOM Technical Services Northeast, Inc (AECOM) has prepared this PHOSter[™] System Soil Sampling Report for the SMS Instruments Inc., Site (Site) in the City of Deer Park, Suffolk County, New York. This work was performed for the New York State Department of Environmental Conservation (NYSDEC) under Work Assignment D004445-14.2A of the Superfund Standby Contract. The NYSDEC has determined that SMS Instruments, ID No. 1-52-026, is a Class 2 site that has been substantially remediated but requires continued operation, maintenance and monitoring (OM&M). A bioremediation system is the only remedial system that remains in operation at the site. This sampling report summarizes the SMS Instruments Site soil sampling activities that occurred since the transfer of the Site from the US Environmental Protection Agency (USEPA) to the NYSDEC in 2005.

1.1 Background Information and Site Chronology

The SMS Instruments Superfund site is located at 120 Marcus Boulevard in Deer Park, Suffolk County, New York (Figure 1). The site was listed on the National Priority List (NPL) in 1986. The Site consists of a 34,000 square foot building located on a 1.5-acre lot that is surrounded by other light industrial facilities. A recharge basin is located adjacent to the Site to the east. Facility operations occurred between 1967 and 1990 and primarily involved overhauling of military aircraft components. These activities consisted of cleaning, painting, degreasing, refurbishing, metal machining, and testing components. Other historic uses, under different tenants, included the manufacturing of wooden kitchen utensils. The building was unoccupied for the past several years but as of January 2, 2008, the building is used to store furniture.

Site contamination was first discovered in 1980 when the Suffolk County Department of Health Services sampled a leaching pool on the southern side of the facility. USEPA completed a remedial investigation/feasibility study (RI/FS) in 1989. Groundwater contaminants included volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) and metals. The primary VOC contaminants in groundwater consisted of tetrachloroethene (PCE), trichloroethene (TCE), trans-1,2-dichloroethane, chlorobenzene, total xylenes, ethylbenzene, and 1,1-dichloroethane. SVOCs included naphthalene, 1,4-dichlorobenzene, 1,3-dichlorobenzene, and 1,2-dichlorobenzene. Two metals, chromium and lead, were also a concern for groundwater. Soil contaminants of concern included ethylbenzene, total xylenes, chlorobenzene, trans-1,2-dichloroethene, and PCE. Investigative and remedial activities at the Site have included pumping out the leaching pond and backfilling it, removal of an underground storage tank (which was used to store jet fuel), and operation of a soil vapor extraction system (SVE). The SVE system was operated from 1992 to 1994, near the former leaching pool and the former UST areas to remediate residual VOCs in soils. Wastewater was historically discharged into a leaching pool at the site, which, subsequently contaminated soils and groundwater beneath the site. In addition, the leaking UST also contaminated soils and groundwater beneath the site. A groundwater pump and treat (GW P&T) system, which included an air stripper to treat contaminated groundwater, was constructed and began operation in 1994.

Soil sampling conducted after the operation of the SVE system indicated that the soil remedy reduced VOC contamination and therefore reduced potential exposure to contaminated soil vapor. The groundwater contamination had decreased substantially since activation of the GW P&T system, and as a direct result of the successful SVE remedial action. After several years of operation, the influent

concentrations had decreased substantially and the GW P&T system was no longer seen as accelerating site cleanup. Furthermore, the GW P&T system was failing to achieve the ultimate groundwater cleanup goals (e.g., the maximum contaminant levels [MCLs]). Therefore, in July 2003, GeoTrans, on behalf of the USEPA, conducted a site visit to perform an evaluation of the active GW P&T system. The results of the evaluation were included in a Remedial System Evaluation (RSE) report (GeoTrans, 2003). The RSE report recommended conducting a pilot study on alternative technologies and to determine if an alternative technology should replace the GW P&T system. The RSE report indicated various alternative technologies were available for reducing mass of VOCs, including air sparging, bioaugmentation, and chemical oxidation.

Following acceptance of the RSE report, in May of 2004, the USEPA Remedial Action Branch sent a request for field support at the SMS Instruments Site. The request involved two phases: additional field characterization of a former UST area through use of a Geoprobe down to the water table, and a second phase to assess and implement additional remedial technologies to address remaining source areas, such as air sparging with SVE and/or bioremedial-enhancing injections. In an effort to field characterize the former UST area and obtain data needed for the selection of a pilot alternative approach, 25 soil borings were advanced and sampled, and SVE and air sparge wells were installed in August 2004 by ERT and the Response Engineering and Analytical Contract (REAC) contractor (Lockheed Martin Technology Services [Lockheed Martin]).

Based on an evaluation of the data generated by ERT/REAC, the USEPA Remedial Project Manager (RPM) and the USEPA Removal On-Scene Coordinator (OSC) concluded that a bioremedial – enhancing approach via gaseous injection to facilitate cometabolic degradation of the residual chlorinated chemicals of concern (COCs) contamination in groundwater would be the most appropriate and cost effective technology for the time frame of operation. In April of 2005, under the Emergency and Rapid Response Services (ERRS) contract, Earth Tech Northeast, Inc. (Earth Tech) procured a PHOSter[™] system and the system was later installed and activated on site in May 2005. Further details of the PHOSter[™] system are included in Section 2.1 of this report.

The USEPA operated the GW P&T system at the Site until July 15, 2005 when the Site was turned over to NYSDEC. Based on sampling conducted by CDM for the USEPA in June 2005 and effluent samples collected by Earth Tech in August 2005, Earth Tech determined that the GW P&T system was no longer removing significant quantities of contaminants, and VOC concentrations in the influent were below laboratory reporting limits (5 μ g/L). In a letter to NYSDEC dated October 6, 2005, Earth Tech recommended that the GW P&T system be de-activated. NYSDEC concurred with this recommendation in a letter dated October 21, 2005.

1.1.1 USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well Installation Activities (August 2004)

In July 2004, EPA-ERT/REAC provided the necessary field support to characterize the remaining source area located off the southeast corner of the SMS Building, and preliminary cost projections to implement sparging/bioremediation operations. A Geoprobe was used to advance 25 soil borings to collect 46 subsurface soil samples, which were analyzed with a field gas chromatograph (GC) for benzene, toluene, ethylbenzene, and xylenes (BTEX). Three samples were also analyzed for total VOCs (method 8260B).

The highest BTEX/VOC concentrations were detected in samples collected in the vicinity of the drywell and groundwater extraction well EW-3. These soil samples were collected in the saturated zone (between 24 and 28 feet below ground surface [ft bgs]). The focus of the current remedial action is on this submerged contaminant zone. The highest concentrations of BTEX were found in the drywell sample collected at 24 ft bgs with a total concentration of 170,580 micrograms per kilogram (μ g/kg). The highest VOC results were obtained from the drywell location at 24 feet bgs with a total VOC concentration of 408,100 μ g/kg. Vadose zone and saturated zone soil sample data indicated that contamination was contained within the shallow saturated zone. Complete details of the soil boring event are included in the Site Investigation Report (Technical Memorandum, REAC / Lockheed Martin, August, 2005).

Following a review of these results, it was determined that bioremedial enhancement required further evaluation beyond the USEPA's Remedial Action Branch's required timeframe for transfer of the site to the NYSDEC. Therefore, in November 2004, USEPA's Removal Action Branch along with ERT/REAC were able to provide continual field support to install the necessary piping for the bioremediation system. However, it was determined that purchasing or rental of the bioremediation system was beyond the scope of their existing contract. Therefore, in May 2005, Earth Tech, EPA Region II ERRS contractor, procured and installed a PHOSter[™] bioremediation system at the Site. Further details of the bioremediation system are included in Section 2.3 of this report.

The PHOSter[™] system performance was evaluated in June 2006 with a soil sampling program designed to collect subsurface soil samples for chemical testing and methanotrophs. The results of this evaluation were presented in the Final PHOSter[™] System Soil Sampling Report (June 2006 Sampling Event) (Earth Tech, October 2006). The report concluded that the PHOSter[™] system was removing VOCs from the soil column; however, pockets of contamination still remained. The report recommended that the PHOSter[™] system continue to operate for another six months at which time the performance would again be evaluated. A second system performance evaluation was performed in March 2007. These results documented a significant reduction in contaminant concentrations. The report recommended that the PHOSter[™] system continue to operate for at least an additional six months. Modifications were made to the PHOSter[™] system to focus the bioremediation amendment injections on the limited areas where soils had not met the cleanup objectives.

1.1.2 USEPA/Earth Tech Groundwater Pump And Treat System Evaluation Sampling (August 31, 2005)

In an effort to evaluate the current status of the GW P&T system, on August 31, 2005, three groundwater samples (including one field duplicate) were shipped to Mitkem Corporation for VOC analysis by USEPA Method 624, along with three air samples (also including one field duplicate), which were shipped to Con-Test Analytical Laboratory for total organic analysis.

Results of the GW P&T system evaluation sampling performed on August 31, 2005 indicated no contamination was being treated by the system, as no contaminants were detected in the influent. Therefore, on October 6, 2005 Earth Tech recommended the shut-down of the SMS groundwater pump and treatment plant. In a letter dated October 21, 2005, the NYSDEC approved the temporary shutdown of the groundwater treatment plant. The NYSDEC letter also indicated that groundwater sampling would

continue to determine if any significant rebound occurs. If no rebound was observed after a reasonable period of time, the treatment GW P&T system would be permanently shut down and dismantled.

1.1.3 Groundwater Pump and Treat System Shutdown and Dismantlement

Following the temporary shutdown of the GW P&T system in August 2005, two rounds of groundwater samples were collected: February 2006 and September 2006. These results were summarized in the Final Groundwater Sampling Report (Earth Tech, December 2006). No apparent rebound was noted in the monitoring well groundwater samples. One of the recommendations of this report was the demolition of the GW P&T system building. This report also recommended that the PHOSter[™] system continue operations for a minimum of six additional months. A third groundwater sampling event was conducted in August 2007 after the decision was made to demolish the building.

A Dismantlement Plan was prepared and finalized in April 2007 (Earth Tech, 2007), which detailed the demolition of the treatment building. Several tasks were required to obtain the demolition permit from the City of Babylon, New York. These tasks included the termination of electrical and water service to the building. The electrical main to the treatment building was terminated on July 16, 2007 by a licensed electrical contractor, ADB Electric and Sons. The service was moved to a new "H" frame service to continue the PHOSter™ system operations. The potable water line to the building was capped on November 20, 2007 by a licensed plumber, Pro Mechanical. On November 2, 2007, Veolia ES Technical Solutions removed all waste from the treatment building including water treatment chemicals, test meter solutions and other wastes. The building was demolished in two phases. All piping and carbon units were dismantled in June 2007. Final building demolition and concrete foundation removal occurred in late December 2007.

2.0 PHOSter[™] SYSTEM

2.1 Technology Description Selection Rationale

The Enhanced In-Situ Bioremediation Process is a biostimulation technology developed by the US Department of Energy (DOE) at the Westinghouse Savannah River Plant site in Aiken, S.C. DOE refers to their phosphate injection technology as PHOSter[™]. The process delivers a gaseous phase mixture of air, nutrients (triethylphosphate [TEP]), and methane (an alternative carbon source) to contaminated soils at the SMS site. These enhancements are delivered to groundwater via injection wells to stimulate and accelerate the growth of existing microbial populations, specifically methanotrophs. These methanotrophs are capable of direct aerobic and aerobic cometabolic bioremediation. The advantage of aerobic cometabolic bioremediation is that at low VOC concentrations (as at this site) there may not be an adequate carbon source available to support bacterial growth for direct aerobic biodegradation. This type of aerobic bacteria has the ability to metabolize methane and produce enzymes (soluble methane monooxygenase [sMMO]) capable of degrading chlorinated solvents and their degradation products to nonhazardous constituents. Furthermore, these methanotrophs typically adhere to soil grain surfaces and would be ideally located for the degradation of the remaining residual adsorbed contaminants. The primary components of the treatment system consist of injection wells, air injection equipment, groundwater monitoring wells, and soil vapor monitoring points. Figure 2 shows a plan view of the treatment area, the injection wells, and monitoring points. The injection wells are designed to deliver air, gaseous-phase nutrients, and methane to groundwater and the vadose zone in the underlying soils.

The PHOSter[™] technology was chosen for this site for a number of reasons. Contaminant concentrations in the groundwater are at very low asymptotic levels and demonstrating that the GW P&T system was no longer capable of removing a sufficient mass of contamination to justify operation. A system of groundwater and vadose zone wells were already in place that would be suitable for economically installing this technology. Soil and groundwater sampling results indicated existing biological activity was slowly degrading the primary contaminants (chlorinated VOCs). The site geology and hydrogeology was also ideal for this technology. The PHOSter[™] technology has demonstrated ability to stimulate bacterial activity, promote the destruction of the primary site COCs (chlorinated VOCs - PCE, TCE and dichlorobenzenes), provide a means to focus remediation on the submerged zone of residual contamination, and act as a polishing technology for the removal of low level contamination often encountered in the final stages of site remediation.

2.2 PHOSter[™] System Overview

The initial SMS system consisted of two compressors capable of delivering 10 to 20 pounds per square inch (psi) and approximately 10 to 200 standard cubic feet per hour (scfh) to a pressure rated steel tank. Air from the main line is diverted to the injection wells. The monitoring wells and soil vapor monitoring points were installed as part of a proposed air sparging and vacuum extraction system that was never completed since the PHOSter[™] injection system was subsequently implemented.

The SMS injection system consists of air, nutrient, and methane injection equipment, all housed in a mobile trailer. A compressor system provides the air source, and includes a condensate tank with a drain, an air line, coalescing filters and pressure regulators and valves. Methane and nitrous oxide provide the source of carbon and nitrogen, respectively. Both are provided in standard gas cylinders and

are piped into the main air line using regulators and flow meters. TEP, the phosphorus source, is stored as a liquid in a pressure-rated steel tank. Air from the main line is diverted through the tank to volatilize the TEP for subsurface delivery. The air, nitrous oxide, and TEP are injected continuously while the methane is injected on a pulsed schedule. The methane is closely monitored just prior to injecting into subsurface wells to ensure that the injection concentration does not exceed 4% by volume, thus avoiding the methane lower explosive limit (LEL) of 5%.

The gaseous phase bioremediation amendments will stimulate bacterial populations capable of direct aerobic and aerobic cometabolic bioremediation. The advantage of the aerobic cometabolic bioremediation is that at low VOC concentrations (as at this site) there may not be an adequate carbon source available to support bacterial growth for direct aerobic biodegradation. With the addition of an alternative carbon source (methane), the microbial population (methanotrophs) can multiply and produce an enzyme sMMO that degrades a number of VOCs to non-toxic end products. Furthermore, these methanotrophs typically adhere to soil grain surfaces and would be ideally located for the degradation of the remaining residual adsorbed contaminants.

2.3 Remedial System Monitoring and Sampling

Following the implementation of the PHOSter[™] technology in May of 2005, several sampling events have been conducted at the SMS site. Sampling has included air, groundwater, and discrete saturated soil sampling to evaluate performance and overall remedial effectiveness. As previously discussed, soil and groundwater concentrations had reached an asymptotic condition under the ongoing GWP&T remedial action, so implementation of the PHOSter[™] system was designed to continue the positive contaminant reduction trend that had been achieved to date.

Air samples are tested from on-site monitoring wells two times per month by Earth Tech staff scientists. The air is monitored for methane and CO_2 in percent with a CES-LANDTEC GEMTM 500 portable gas analyzer. A MultiRAE meter is used to analyze for CO, O_2 , and H_2S . A MultiRAE PID is used to monitor for VOCs.

Soil samples were collected from varying depths and locations within the water-bearing zone and analyzed for the presence of methanotrophs. Methanotrophs are a group of bacteria that are considered ubiquitous in the environment (Hanson and Hanson, 1996), but are often a minor group within the natural subsurface bacterial populations. Table 1 presents the methanotrophs data for the soil samples: total methanotrophs; Type I methanotrophs; and Type II methanotrophs. The Type I methanotrophs appear best adapted to grow at low methane concentrations. The growth of some Type II methanotrophs is favored when methane levels are high, when combined nitrogen and oxygen levels are low, and when copper is substantially depleted in the growth media. The conditions in groundwater appear to favor the growth of the Type II methanotrophs and the synthesis of sMMO that is essential for the rapid degradation of TCE and some other low molecular-weight halogenated hydrocarbons (Hanson and Hanson, 1996). However, Type I methanotrophs can also produce sMMO. The expression of the sMMO enzyme is the important mechanism of methanotrophs. The enzyme breaks down a number of VOCs including the targeted compounds at this site.

As expected, methanotrophs were detected in all six soil samples. An abundant methanotrophs population (10⁵ to 10⁸ cells per gram) was reported for soil samples collected at the targeted shallower AECOM Technical Services Northeast Inc.

depths (23.5 to 24.5 ft bgs). This methanotrophs population size is consistent with a successfully stimulated subsurface in the range that is conducive for VOC degradation. This coincides with the targeted amendment injection that was implemented after the June 2006 results were evaluated. After the June 2006 results were evaluated, several injection points were turned off and the remaining injection points were directed to focus on the three remaining hot spots: DW, SMS-12, and SMS-16. These microbial results indicate the successful stimulation of the methanotrophs in these targeted areas as indicated on Table 2 which shows all five methanotrophs data sets from June 2006, March 2007, January 2008, November 2008 and September 2009.

2.4 PHOSter[™] System Sampling and Effectiveness Evaluation

Four soil sampling events have been conducted to evaluate the PHOSter[™] system since 2005: June 2006, March 2007, January 2008, and November 2008. In June 2006, six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, SVOCs, phospholipid fatty acids (PLFA) and methanotrophs. The results were presented in the Final PHOSter[™] System Soil Sampling Report dated October 2006. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the former dry well had contaminant concentrations exceeding applicable cleanup criteria. Based on the analytical results, a recommendation was made to continue the operation of the PHOSter[™] system for an additional six months, at which time another round of soil samples would be collected and evaluated.

The second evaluation occurred in March 2007, when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results were presented in the Final PHOSter[™] System Soil Sampling Report dated June 2007. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the former dry well had contaminant concentrations that continued to exceed applicable cleanup criteria. Based on the analytical results, a recommendation was made to continue the operation of the PHOSter[™] system for an additional six months, at which time another round of soil samples would be collected and evaluated.

The third evaluation occurred in January 2008, when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results were presented in the Final PHOSter[™] System Soil Sampling Report dated May 2008. When comparing the January 2008 data with the March 2007 data, the data indicated that total VOC contaminant concentrations increased significantly at borings SMS-12, SMS-16, SMS-16B and DW, while at borings SMS-12B and DWB there were significant decreases. The total VOC concentration exceeded the criterion at SMS-12, SMS-12B, SMS-16 and SMS-16B. The variation in concentrations between sampling rounds was attributed to the heterogeneous nature of the soil contaminant distribution.

The fourth evaluation occurred in November 2008, when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results were presented in the Final PHOSter[™] System Soil Sampling Report dated April 2009. When comparing the November 2008 data with the January 2008 data, the data indicated significant decreases in total VOC contaminant concentrations at borings SMS-12, SMS-12B, SMS-16 and SMS-16B. A minor decrease in concentration was noted at boring DWB while a slight increase was noted at boring DW. The total VOC concentration continued to exceed the criterion at SMS-12 and SMS-16.

2.5 Technology and Process Optimization

Based on the analytical results collected over the last four sampling events, the existing system was modified to better focus on the existing COCs and to optimize the system performance. Along with the modifications, continued operation of the system for an additional six month period was also recommended. System modifications included the replacement of the two old compressor units with a new rotary screw compressor and the elimination of the PHOSter[™] aspect of the sparge technology. As previously discussed, the PHOSter[™] technology was selected as an ideal technology for the remediation of chlorinated VOCs. However, based on the data collected over the last three sampling events, chlorinated VOCs are no longer an issue at this site, indicating that the PHOSter[™] application effectively achieved its goal. The existing data from the site indicates that the primary COCs are now limited to aromatic hydrocarbons (BTEX and TMB compounds), which are readily biodegradable under standard aerobic conditions.

In consideration of this positive change in site conditions, remediation over the last operational period focused on dissolved oxygen enrichment through biosparging to drive the aerobic degradation process. This was accomplished through the controlled injection of ambient air into select wells using the same base equipment established for the PHOSter[™] application. The primary technological change was the elimination of the gaseous nutrients (nitrous oxide, TEP and methane) that drove the cometabolic degradation process.

In addition to the technology modification, remediation during this most recent period focused strictly on the saturated zone (22-25 ft bgs) using select injection wells and biosparging to optimize dissolved oxygen concentrations in groundwater and facilitate aerobic biodegradation of the residual organic compounds. After the system modifications were completed, the system was operated with six sparge points: AS-2, AS-4, AS-5, AS-7, AS-8 and AS-10. The flow rate at each sparge point was set at 180 cubic feet per hours (CFH). Performance of this optimization process was evaluated as part of the fifth monitoring event, which occurred in September 2009 and is the subject of this report.

3.0 BIOSPARGE PERFORMANACE EVALUATION

Through the course of the six month biosparge operation period, routine monitoring was conducted to ensure continual system operation and to optimize performance. Routine monitoring included the evaluation of system and well head pressures and the periodic collection of field data to evaluate DO and ORP conditions.

Following six additional months of active biosparge remediation, the same six sampling locations were targeted to evaluate the current conditions regarding the residual VOCs located in the shallow saturated zone. A total of six soil borings were advanced over a two day period (September 15 and 16, 2009) to collect soil samples from varying depths for laboratory analyses. A total of six soil borings were advanced and sampled for evaluation purposes (SMS-12, SMS-12B, SMS-16, SMS-16B, DW and DWB). Samples were collected from depths ranging from 16 to 31 feet, with specific focus on the 22 – 25 ft bgs saturated zone. All six saturated soil samples were shipped to Mitkem Corporation for VOC analysis and Microbial Insights, Inc. for analysis of PLFA and methanotrophs. Although the PHOSter[™] technology was no longer being utilized, the PLFA and methanotrophs analyses were continued to evaluate the relative change in biological characteristics.

3.1 Sample Numbers and Collection Points

Figure 2 is a site map of SMS Instruments which shows the locations of the soil sampling locations. Boring logs are in Appendix A. The Form 1s from the Mitkem Laboratory data package are included in Appendix B. The Microbial Insights laboratory data package is included in Appendix C. Every effort was made to collect soil samples from the same intervals from which samples were collected during the previous sampling efforts. Samples were usually collected at the capillary fringe/water table (19-20 feet below ground surface [ft bgs]), the targeted zone containing elevated residual VOCs (22-25 ft bgs), and at the bottom of the soil boring (29-30 ft bgs), below the targeted treatment zone.

3.2 Data Interpretation and Evaluation

3.2.1 Bioremediation Process Description

As previously indicated, biosparging is designed to maximize oxygen transfer to groundwater, while minimizing contaminant volatilization, which is a primary focus of a standard air sparge application. The goal of biosparging is to optimize aerobic biodegradation conditions through the controlled injection of air into groundwater. For this site, the transfer of the adsorbed contaminants to the dissolved phase appears to be a slow process based on the low VOC concentrations in groundwater. Therefore, the most effective cleanup technology at this stage in the site cleanup continues to be *in situ* bioremediation. Several types of data are used to evaluate biodegradation with the two primary data results being the microbial population and contaminant concentration, which are discussed in the following sections.

3.2.2 Microbial Data Results

Total biomass (PLFA) in soil was measured during each sampling event. The results are presented in Table 3. During the previous four sampling events, the samples were collected from the shallow saturated zone (22-25 ft bgs). As shown on Table 3, there has not been a significant change in total

biomass at any location (a significant change is defined as an order of magnitude increase or decrease in total biomass). During the five sampling events, the samples from the shallow saturated zone have all exhibited high biomass concentrations (greater than 10⁷ cells per gram). The data also indicates that the change from PHOSter[™] to biosparging had little effect on the existing biomass.

As shown on Table 2, the methanotrophs data indicate a significant change in population size from November 2008 to September 2009. The population size increased by one to two orders of magnitude in all six samples to 10^8 to 10^9 from 10^5 to 10^7 cells per gram over the previous two sampling events. The increase in methanotrophs is counter intuitive since methane is no longer being injected into the subsurface. The increase in population may be a result of anaerobic conditions existing below the water table despite the air injection.

3.2.3 VOC Data Results

Groundwater

The laboratory results from the November 2008 groundwater sampling event had indicated an overall decreasing trend in total VOC concentrations when compared to previous events. In all cases, VOC concentrations had been reduced to below detection or below the cleanup goals. The exception was at monitoring well MW-6S where concentrations of chlorinated and non-chlorinated benzene related aromatics were present at concentrations ranging from slightly below to slightly above the cleanup criteria. The details of the groundwater sampling event were documented in the Round 4 Groundwater Sampling Report, March 2009.

<u>Soil</u>

Eighteen saturated soil samples were collected and analyzed for VOCs during the September 2009 sampling event from locations and depths at which elevated concentrations of VOCs concentrations had been reported during the previous soil sampling events. Table 4 presents a summary of the detected VOCs results for the September 2009 soil sampling event along with the NYSDEC unrestricted use Soil Cleanup Objectives (SCOs) (6 NYCRR Part 375 Table 375-6.8a). The unrestricted use criteria are the most stringent of the residential, protection of groundwater, and ecological SCOs as identified in Table 375-6.8(b). The majority of the compounds detected are aromatics. These results are also summarized on Figure 3 (Summary of Total VOCs) and Figure 4 (Summary of Total BTEX). All VOCs were at concentrations below the NYSDEC SCOs.

The total VOC concentration SCO of 10,000 μ g/kg was not exceeded in any of the 18 soil samples collected during the September 2009 sampling event. This follows the November 2008 event, where only two samples slightly exceeded the 10,000 μ g/kg criterion. Total VOC concentrations for these two samples were 11,207 μ g/kg (SMS-12, 23.5-24.5 ft bgs), and 10,338 μ g/kg (SMS-16B, 23.5-24.5 ft bgs) and were collected from the soil borings in the area of the former underground storage tank (UST) shown on Figure 2. In both cases, the primary COCs were 1,2,4- and 1,3,5-trimethylbenzene. During the September 2009 sampling event, the total VOC concentrations at these two locations decreased by more than 50 percent to 5,740 μ g/kg and 4,390 μ g/kg, respectively. The total VOC concentration at SMS-12B have shown a consistent decrease in concentration during the past four sampling event. The total VOC

concentration at SMS-16B has also shown a consistent decrease over the last three sampling events from a high of 13,900 μ g/kg in January 2008 to 4,390 μ g/kg in September 2009.

At location DWB, the total VOC concentration was 8,880 μ g/kg (23.5 – 24.5 ft bgs) during the September 2009 sampling event; slightly lower than the 9,640 μ g/kg (23.5 – 24.5 ft bgs) in November 2008. These concentrations are significantly lower than reported during March 2007 sampling event from this location (181,540 μ g/kg). The total VOC concentration at location DW has been below the criterion for the past four sampling events.

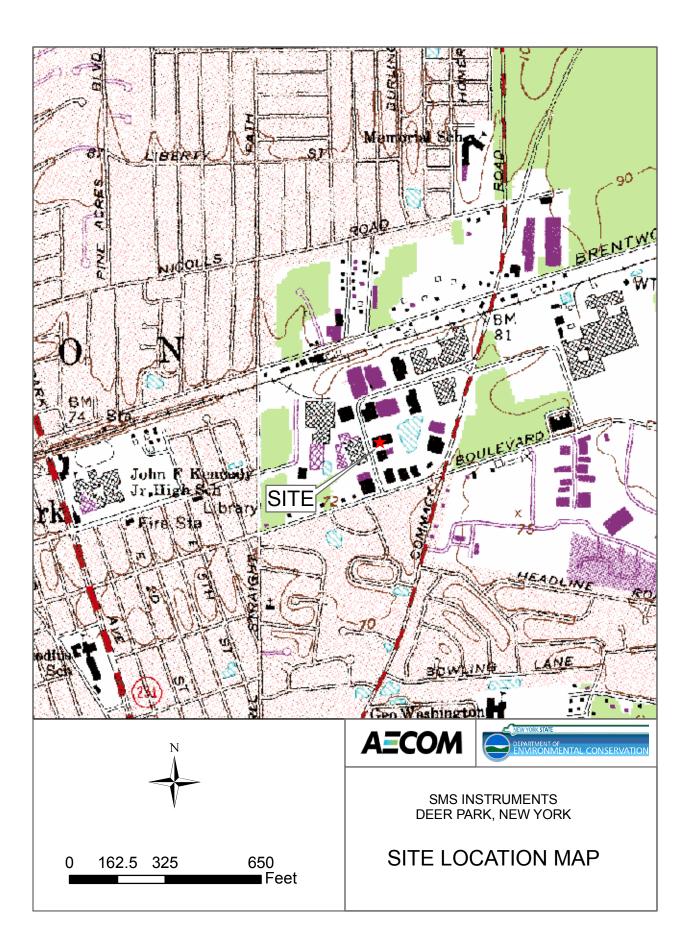
BTEX compounds were not detected in any of the September 2009 samples. This continues the trend noted during previous sampling events of decreasing BTEX concentrations.

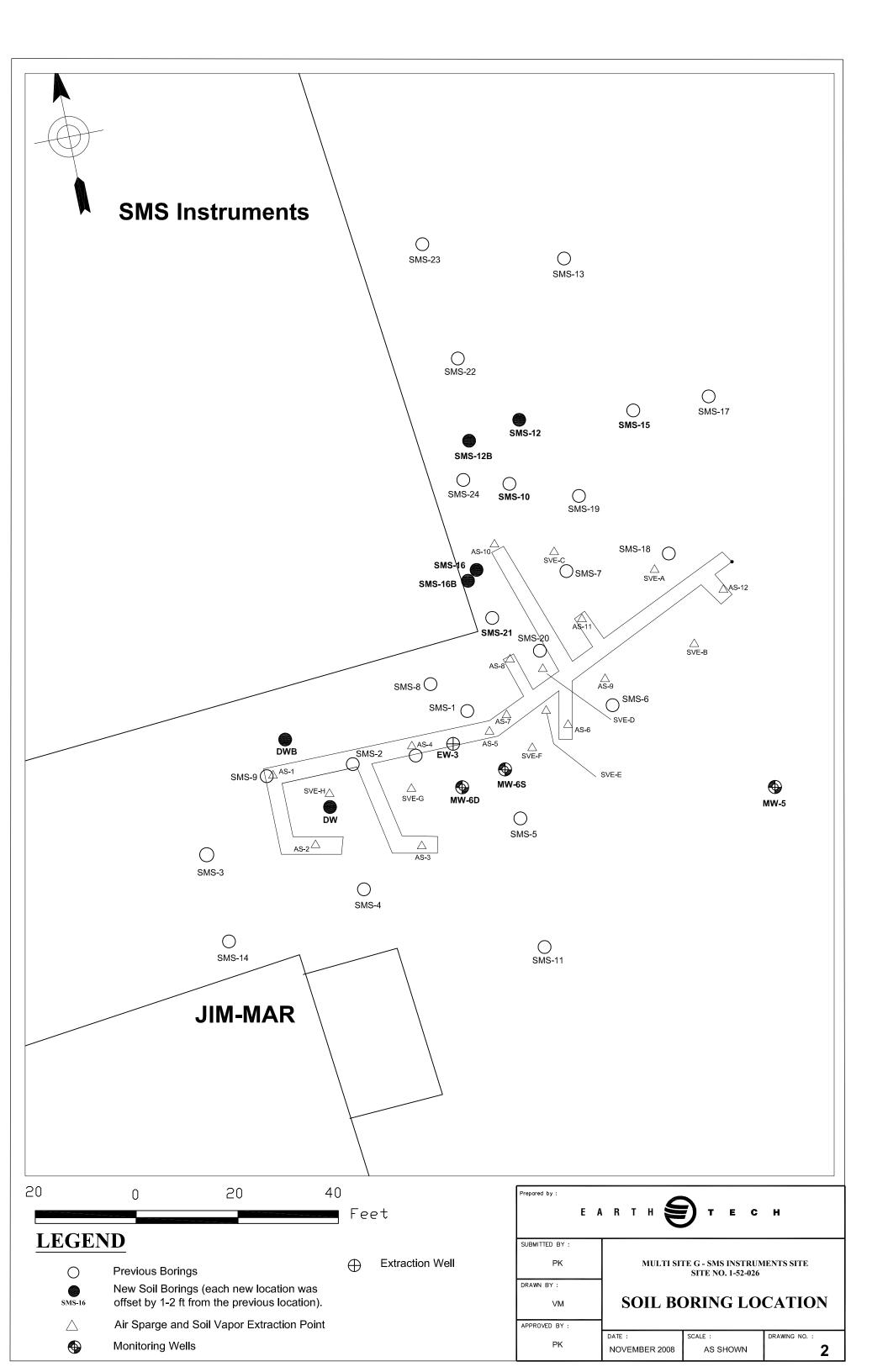
3.3 Comparsion of Data from the Five Sampling Events

Table 5 presents a comparison of the VOCs results for the five sampling events (June 2006, March 2007, January 2008, November 2008 and September 2009). The data is also summarized on Figure 3 (total VOCs) and Figure 4 (total BTEX). These data indicate a decreasing trend in the total VOCs concentrations in the soil at three locations as a result of ongoing remedial actions at the Site: SMS-12/SMS-12B, SMS-16/SMS-16B and DW/DWB. None of the samples collected during the September 2009 sampling event reported either individual compound exceedances or total VOC exceedances.

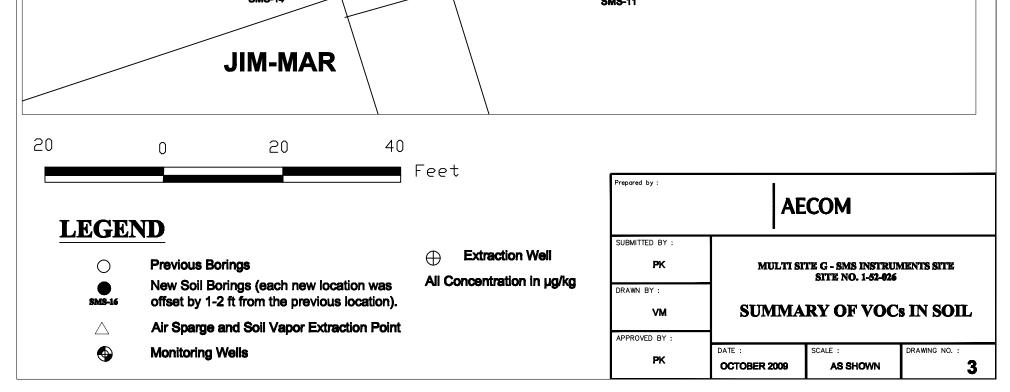
During previous sampling rounds, contamination has been limited to the 22 to 25 ft bgs interval. The data indicated that residual soil contamination was limited to three isolated pockets as shown on Figures 5 and 6. The general trend during the past five sampling rounds has indicated decreasing total VOC concentrations in soil as a results of the remedial actions undertaken at the Site. In the southern most area of DW/DWB, the total VOC concentration was as high as 181,540 µg/kg in March 2007. The total VOC concentration has been below the criterion during the last three sampling events, indicating a 95 percent decrease in concentration. In the area of SMS-16/SMS-16B, the concentrations have been trending down for the past three sampling events and were below the criterion during the September 2009 sampling event. The northernmost area near SMS-12/SMS-12B has also exhibited a downward trend in total VOC concentration for the last few sampling rounds. By November 2008 the concentration at SMS-12 was only slightly above the criterion while the concentration at SMS-12B was slightly below the criterion. The concentration at both locations was below the criterion during the September 2009 sampling event.

4.0 CONCLUSIONS AND RECOMMENDATIONS

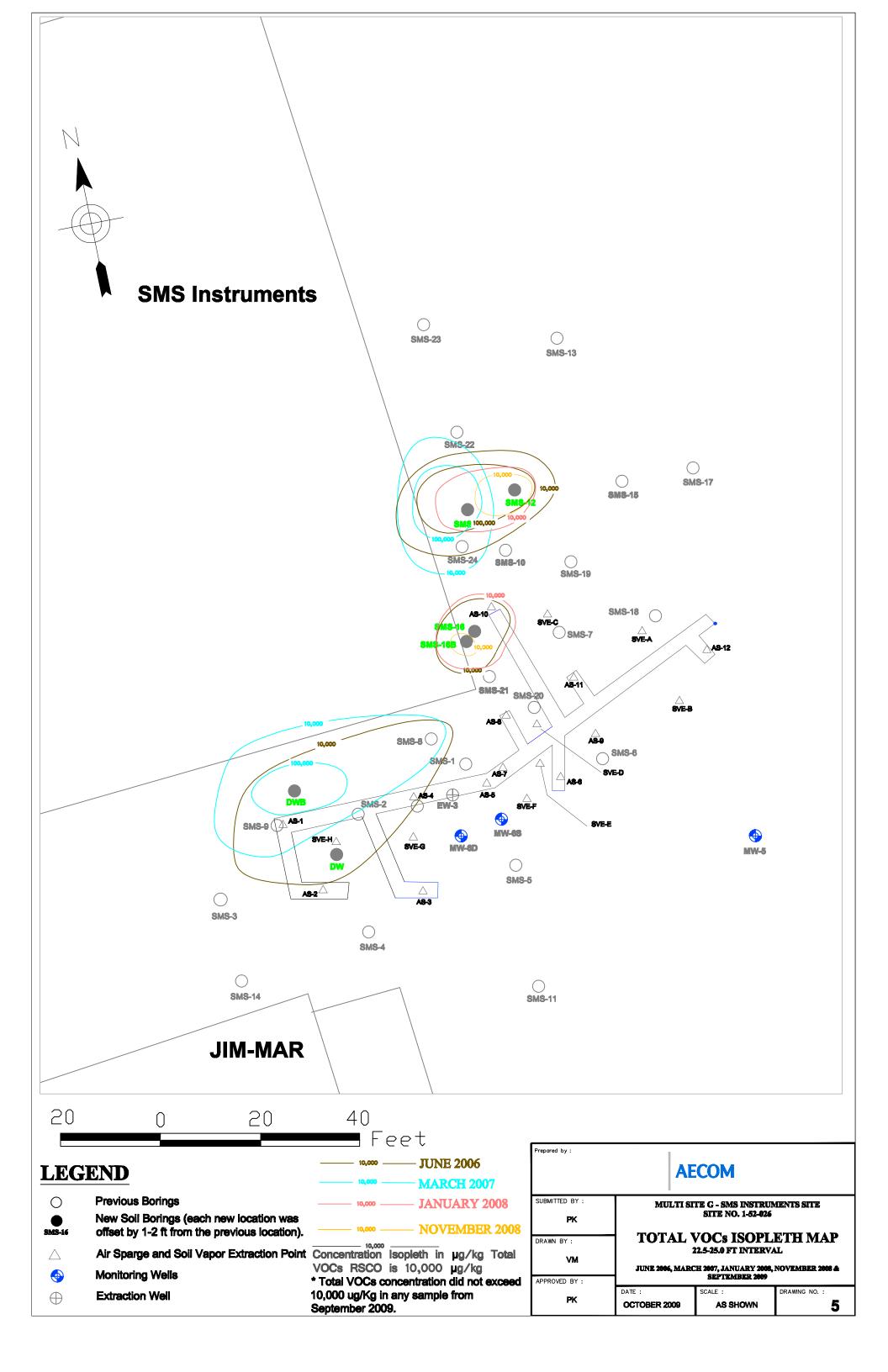

4.1 Conclusions

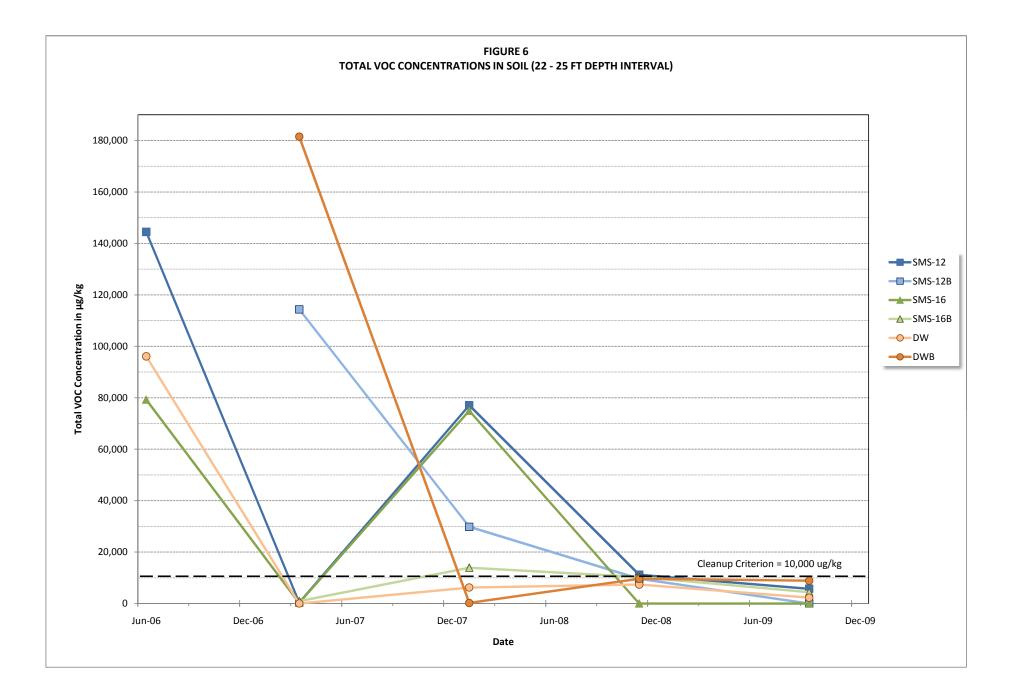

As presented in this report, the conversion from a PHOSter[™] application to a biosparge application, and the focused approach using select injection wells, has resulted in the continual reduction in contaminant mass associated within the shallow saturated zone. The September 2009 results from all six sample locations showed no SCO exceedances. Specifically, no BTEX compounds were detected and total VOC concentrations were all below 10,000 µg/kg. Overall reductions of greater than 95 percent have been realized over the past five soil sampling events.

4.2 Recommendations


Based on the soil and groundwater results discussed above, AECOM recommend that biosparging be discontinued. Unless the biosparge system is reactivated, AECOM recommends no further soil sampling associated with the treatment system. The system will be left in place for the time being. The next five quarter groundwater monitoring and sampling event is currently scheduled for February 2010. If the groundwater sampling results for MW-6S indicates any rebound, the use of the biosparge system will be re-evaluated in the groundwater sampling report. If the results suggest no evidence of increased groundwater contamination, a recommendation to demobilize the existing system will be made.

FIGURES





					SMS-12	Jun 2006 ND	Mar 2007	Jan 20	008 No	ov 2008	Sep 2009			
(A)					16-17 19-20	-	- ND	7		- ND	ND			
(\oplus)	F				23.5-24.5	144,493	344	77,0		1,207	5,740			
T					29-30	406	ND	30		11	ND			
	_			nents							SMS	-15	Jun 2006]
MS-12B	Mar 20	107 Jan	2008 No	ov 2008 S	Sep 2009	SMS-2	3		\bigcirc		16.5-	17.5	4	
1 9-2 0	ND		ID	ND	ND				SMS-13		22-2		3	4
3.5-24.5	114,30			9,640	ND	\backslash					27-2	28	ND	
29-30	ND	1	3	13	ND									
SMS-16	Jun 2	006 Mar	2007 Jar	1 2008 Nov	/ 2008 Se	ep 2009	\sim							
16.5-17.5	19		_	-	_	-	SMS-22				/			
19-20	N	D 14	47	8	4.3	ND	\backslash			/	($\mathbf{)}$		
2.5-23.5	79,2	90	-	-	-	ND				Ó		MS-17		
3.5-24.5		2:	22 74	1,943	5.5	ND		8M8-12		8M8- 15	\$			
29-30	NE	D N	ID	16	7.8		SM8-12B				SMS-10	Jun 2	2006	
SWS	6-16B	Mar 2007	Jan 2008	Nov 2008	Sep 2009		0	0 —			18-19	3,96		
	-20	ND	12	ND	ND	-		5 M8-1 0	\bigcirc	_	24-25	2,70		
	-23.5	950	13,900		-				SMS-19		28.5-29.5	9		
	-24.5	_	-	10,338	4,390		\mathcal{N}							
29	-30	ND	20	9.4	ND	_	AS-10	\ s		SMS-18	0	\frown		
							SM8-16 -16B	$\langle \rangle$, S/	∆ ve-a	<		
	WB	Mar 2007	Jan 2008	Nov 2008	Sep 2009					,		AS-12		
19	9-20	ND	3	ND	ND	_	$\setminus O$	$\overline{1}$	AS-11					
	5-24.5	-	-	9,640	8,880		SM8-	-21 SMS-20		\checkmark				
	+-ZO	181,540 ND	229 4	- 12	- ND		ASH	~ ()	$\setminus \bigvee$		SVE-E	1		
24		שאי	–	12		SMS-8 (C				 \S-9		SMS-21	Jun 200	6
24	-30								\land \land	SMS-6		19-20	8	
24						S	MS-1 (<u> </u>	$\langle \rangle$					
24						S	MS-1	\$-7		SVE-D		22-23	1,766	
24					014			S-7	AS-6	Ú		22-23 29-30	1,766 ND	
24				DWB	SM		AS-5 EW-3	8-7 SVE-F	A\$-6	Sve-D				
24			SMS	-9 AS-1	E-HA		AS-5 EW-3	\$-7 \$VE-F \$ AW-68	A\$-6	Ú				
24			SMS	-9 AS-1	9	8-2 A3-4	AS AS5 EW-3 EW-3	57 SVE-F 9 NW-68	A\$-6	Sve-D			ND	Sep 20
24			~	-9 AS-1	E-HA DW	8-2 AS-4 SVE-G	AS AS5 EW-3 EW-3	\$-7 \$VE-F \$ AW-68	AS-6	SVE-E		29-30	ND	Sep 20
24			\bigcirc	-9 AS-1	E-HA DW	S-2 SVE-G	AS AS5 EW-3 EW-3	57 SVE-F 9 NW-68	DW	sve-e Jun 2006	Mar 2007	29-30 Jan 2008	ND	
24			~	-9 AS-1	E-HA DW	8-2 AS-4 SVE-G AS-3	AS AS5 EW-3 EW-3	57 SVE-F 9 NW-68	DW 19-20	SVE-E Jun 2006 140,241	Mar 2007	29-30 Jan 2008 ND	ND ₩₩-5 Nov 2008 ND	
24			\bigcirc	-9 AS-1	E-HA DW	SVE-G	AS AS5 EW-3 EW-3	57 SVE-F 9 NW-68	AS-6 DW 19-20 21.5-22.5	SVE-D SVE-E Jun 2006 140,241 26,284	Mar 2007 18 –	29-30 Jan 2008 ND	ND ₩¥-5 Nov 2008 ND 	ND _
24			\bigcirc	-9 (AS-1 SV		SVE-G	AS AS5 EW-3 EW-3	57 SVE-F 9 NW-68	DW 19-20 21.5-22.5 23.5-24.5	SVE-E Jun 2006 140,241 26,284	Mar 2007 18 	29-30 Jan 2008 ND –	ND Nov 2008 ND 7,384	ND

			N									
					_							
	SMS-12	2006 200										
	16-17 19-20	ND - - NI	D ND	ND	ND							
	23.5-24.5 29-30	3,800 NI ND NI		19 ND	ND ND							
S S	MS In	strume	ents									
			550 2000		() SMS-23	\backslash) SMS-1:	3				
SMS-12B 2007 19-20 ND	ND	NDV 2008	SEP 2009 ND				[0000			
23.5-24.5 1,200 29-30 ND	52 ND	ND ND	ND ND				SMS- 18-1	.9	2006 ND			006 ND
					SMS-22		24-2 28.5-2		154 ND			ND ND
SMS-16 2006 16.5-17.5 ND	-	AN 2008 NO -	-	- 2009	\bigwedge		/) 18-15	SMS-	17	
19-20 - 22.5-23.5 15,10	ND 0 –	ND -	ND –	ND -	SMS-	8M8-1 12B	12	31	NG-10			
23.5-24.5 - 29-30 ND	ND ND	5,070 ND	ND ND	ND ND		SM8-10	C)				006
SMS-16B 200	7 JAN 20(18 N⊡√ 500	08 SEP 2009					S-19		22	-23	6
19-20 NI 23.5-24.5 50		ND 378.9	ND ND		SM3-16	8-10	SVE-C	810 MS-7		0 🦳	→ >	ID
29-30 NI) ND	ND	ND		SMS-168			mc=1	SVE-		A8-12	
DWB 2007		N⊡V 2008				SM8-21 SM8	3-20 AB	+11		Δ		
19-20 ND 23.5-24.5 -	ND -	ND 22	ND ND			A8-8		A3-9		∆ \$ve-8		
24-25 26,100 29-30 ND	9 ND	- ND	ND	S	5MS-8 () SMS-1 ()	A\$7	4		MS-6			
			DWB	SMS-2	∆ A\$4 ₩-3	A8-5 5VE		B-6	•			
		SMS-9	AS-1 \$VE-H	9		● MW-68		SVE-E			٩	
					8VE-G MW-6	\bigcirc	_				MW-5	
	(0	A\$2]		SMS-(5					
	5	SMS-3		O SMS-4			DW	2006	2007	JAN 2008	NDV 2008	SEP 2009
		0				\searrow	.9-20	20,400	ND -	ND -	ND -	ND -
		SMS-14				23	.5-24.5 24-25	- 36,700	– ND	- 686	27	ND -
		JIM-M/				ā	29-30	_	ND	ND	ND	ND
			\				30-31	ND	-	_	_	_
20 0)	20	4	0	· · · · ·							
				F eet			Prepared by	:	1			
LEGEND	1									AECOM		
O Pr	evious Boring	-	100-4-1	Ψ	Extraction We		SUBMITTED	вү: ?К			E G - SMS INSTRU SITE NO. 1-52-026	
SMS-16 Of	fset by 1-2 ft	from the prev	v location was vious location)	•	oncentration in	µg/kg	DRAWN BY	: /M	s		RY OF BTE	
	r Sparge and onitoring Wel	-	Extraction Poin	n			APPROVED	BY : *K	DATE :		SCALE :	DRAWING NO. :
							<u> </u>	~	ОСТО	BER 2009	AS SHOWN	4

TABLES

TABLE 1 MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING, SEPTEMBER 2009 SUMMARY OF METHANOTROPHS DATA

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5
Sample Date	9/15/09	9/15/09	9/15/09	9/15/09	9/16/09	9/16/09
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5
Methanotrophs (total)	9.04E+08	8.43E+08	1.28E+09	8.49E+08	1.29E+09	1.20E+09

All sample units in cells/gram

Type I and II MOB data was not determined for the September 2009 data set.

TABLE 2MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)PHOSTER SYSTEM SOIL SAMPLINGSUMMARY OF METHANOTROPHS DATA (2006, 2007 2008 AND 2009)

Boring Location	SMS-12	SMS-12	SMS-16	DW	DW	SMS-10
Sample ID	SMS-SB12-16-17	SMS-SB12-29-30	SMS-SB16-19-20	SMS-DW-19-20	SMS-DW-30-31	SMS-SB10-18-19
Sample Date	6/28/06	6/28/06	6/29/06	6/28/06	June 2006	6/28/06
Sample Depth (ft bgs)	16 - 17	29 - 30	19 - 20	19 - 20	30 - 31	18 - 19
Methanotrophs (total)	3.20E+07	7.37E+06	5.07E+06	2.90E+08	8.49E+05	3.77E+08
Type I MOB	1.56E+07	7.45E+05	1.46E+05	7.28E+07	2.52E+05	2.07E+08
Type II MOB	1.65E+07	6.62E+06	4.92E+05	2.17E+08	2.52E+05 5.97E+05	1.70E+08
			4.921+00	2.17 L + 00	J.97L+0J	1.702+00
Boring Location	SMS-15	SMS-21				
Sample ID	SMS-SB15-27-28	SMS-SB21-22-23				
Sample Date	6/29/06	6/28/06				
Sample Depth (ft bgs)	27 - 28	22 - 23				
Methanotrophs (total)	7.27E+04	2.31E+08				
Type I MOB	1.27E+04	1.26E+08				
Type II MOB	6.00E+04	1.05E+08				
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425
Sample Date	3/22/07	3/22/07	3/22/07	3/22/07	3/23/07	3/23/07
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5 - 23.5	24 - 25	24 - 25
Methanotrophs (total)	2.65E+10	1.56E+10	4.67E+10	9.16E+10	7.57E+10	3.41E+10
Type I MOB	7.55E+08	8.91E+08	1.17E+10	6.20E+09	5.95E+09	3.31E+09
Type II MOB	2.58E+10	1.47E+10	4.55E+10	5.84E+10	6.97E+10	3.08E+10
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425
Sample ID Sample Date	SMS12235245 1/16/08	SMS12B235245 1/16/08	SMSSB16225235 1/16/08	SMSSB16B225235 1/16/08	SMSDW2425 1/17/08	SMSDWB2425 1/17/08
Sample ID Sample Date Sample Depth (ft bgs)	SMS12235245 1/16/08 23.5 - 24.5	SMS12B235245 1/16/08 23.5 - 24.5	SMSSB16225235 1/16/08 22.5 - 23.5	SMSSB16B225235 1/16/08 22.5-23.5	SMSDW2425 1/17/08 24 - 25	SMSDWB2425 1/17/08 24 - 25
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total)	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06	SMSDW2425 1/17/08 24 - 25 1.28E+08	SMSDWB2425 1/17/08 24 - 25 1.06E+08
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total)	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06	SMSDW2425 1/17/08 24 - 25 1.28E+08	SMSDWB2425 1/17/08 24 - 25 1.06E+08
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB DWB 23.5-24.5
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5 11/18/08	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB DWB 23.5-24.5 1/17/08
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date Sample Depth (ft bgs)	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5 11/18/08 23.5 - 24.5	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB DWB 23.5-24.5 1/17/08 23.5 - 24.5
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total)	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5 11/18/08 23.5 - 24.5 3.51E+06	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5 5.51E+07	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5 11/18/08 23.5 - 24.5 3.51E+06 7.85E+05	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06 9.00E+05	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06 6.14E+05	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07 7.09E+06	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5 5.51E+07 9.52E+06	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08 3.77E+07
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total)	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5 11/18/08 23.5 - 24.5 3.51E+06	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5 5.51E+07	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5 11/18/08 23.5 - 24.5 3.51E+06 7.85E+05 2.72E+06	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06 9.00E+05 5.05E+06	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06 6.14E+05 8.95E+06	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07 7.09E+06 9.55E+06	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5 5.51E+07 9.52E+06 4.55E+07	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08 3.77E+07 8.83E+07
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 SMS-12 12 23.5-24.5 3.51E+06 7.85E+05 2.72E+06 SMS-12	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06 9.00E+05 5.05E+06 SMS-12B	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06 6.14E+05 8.95E+06 SMS-16	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07 7.09E+06 9.55E+06 SMS-16B	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5 5.51E+07 9.52E+06 4.55E+07 DW	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08 3.77E+07 8.83E+07 DWB
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 1.15E+05 3.512 12 23.5-24.5 3.51E+06 7.85E+05 2.72E+06 SMS-12 12 23.5-24.5	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06 9.00E+05 5.05E+06 SMS-12B 12B 23.5-24.5	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06 6.14E+05 8.95E+06 6.14E+05 8.95E+06	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07 7.09E+06 9.55E+06 9.55E+06 SMS-16B 16B 23.5-24.5	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5 5.51E+07 9.52E+06 4.55E+07 DW DW 23.5-24.5	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08 3.77E+07 8.83E+07 DWB DWB 23.5-24.5
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID Sample Date	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 3.512 12 23.5-24.5 3.51E+06 7.85E+05 2.72E+06 SMS-12 12 23.5-24.5 9/15/09	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06 9.00E+05 5.05E+06 SMS-12B 12B 23.5-24.5 9/15/09	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06 6.14E+05 8.95E+06 6.14E+05 8.95E+06	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07 7.09E+06 9.55E+06 SMS-16B 16B 23.5-24.5 9/15/09	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW 23.5-24.5 5.51E+07 9.52E+06 4.55E+07 DW DW 23.5-24.5 9/16/09	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08 3.77E+07 8.83E+07 DWB DWB 23.5-24.5 9/16/09
Sample ID Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample Date Sample Depth (ft bgs) Methanotrophs (total) Type I MOB Type II MOB Boring Location Sample ID	SMS12235245 1/16/08 23.5 - 24.5 2.31E+05 1.15E+05 1.15E+05 1.15E+05 3.512 12 23.5-24.5 3.51E+06 7.85E+05 2.72E+06 SMS-12 12 23.5-24.5	SMS12B235245 1/16/08 23.5 - 24.5 2.95E+07 1.59E+06 2.79E+07 SMS-12B 12B 23.5-24.5 11/18/08 23.5 - 24.5 5.95E+06 9.00E+05 5.05E+06 SMS-12B 12B 23.5-24.5	SMSSB16225235 1/16/08 22.5 - 23.5 2.65E+07 1.11E+06 2.54E+07 SMS-16 16 23.5-24.5 11/18/08 23.5 - 24.5 9.56E+06 6.14E+05 8.95E+06 6.14E+05 8.95E+06	SMSSB16B225235 1/16/08 22.5-23.5 8.57E+06 6.88E+05 7.88E+06 SMS-16B 16B 23.5-24.5 11/18/08 23.5 - 24.5 1.66E+07 7.09E+06 9.55E+06 9.55E+06 SMS-16B 16B 23.5-24.5	SMSDW2425 1/17/08 24 - 25 1.28E+08 2.60E+06 1.26E+08 DW DW 23.5-24.5 11/19/08 23.5 - 24.5 5.51E+07 9.52E+06 4.55E+07 DW DW 23.5-24.5	SMSDWB2425 1/17/08 24 - 25 1.06E+08 2.75E+06 1.03E+08 DWB 23.5-24.5 1/17/08 23.5 - 24.5 1.27E+08 3.77E+07 8.83E+07 DWB DWB 23.5-24.5

All sample units in cells/gram

Type I and II MOB data was not determined for the September 2009 data set.

TABLE 3MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)PHOSTER SYSTEM SOIL SAMPLINGSUMMARY OF PHOSPHOLIPID FATTY ACID DATA (2006, 2007 2008 AND 2009)

Boring Location	SMS-12	SMS-12	SMS-16	DW	DW	SMS-10
Sample ID	SMS-SB12-16-17	SMS-SB12-29-30	SMS-SB16-19-20	SMS-DW-19-20	SMS-DW-30-31	SMS-SB10-18-19
Sample Date	6/28/06	6/28/06	6/29/06	6/28/06	June 2006	6/28/06
Sample Depth (ft bgs)	16 - 17	29 - 30	19 - 20	19 - 20	30 - 31	18 - 19
Total biomass	3.30E+07	3.93E+06	3.12E+07	1.76E+08	2.17E+06	1.47E+08

Boring Location	SMS-15	SMS-21
Sample ID	SMS-SB15-27-28	SMS-SB21-22-23
Sample Date	6/29/06	6/28/06
Sample Depth (ft bgs)	27 - 28	22 - 23
Total biomass	2.44E+06	7.41E+07

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425
Sample Date	3/22/07	3/22/07	3/22/07	3/22/07	3/23/07	3/23/07
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5 - 23.5	24 - 25	24 - 25
Total biomass	9.92E+07	4.05E+07	1.26E+08	1.35E+08	1.12E+08	1.33E+08

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425
Sample Date	1/16/08	1/16/08	1/16/08	1/16/08	1/17/08	1/17/08
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5-23.5	24 - 25	24 - 25
Total biomass	5.58E+07	8.42E+07	1.58E+08	1.32E+08	1.12E+08	1.18E+08

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5
Sample Date	11/18/08	11/18/08	11/18/08	11/18/08	11/19/08	1/17/08
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5
Total biomass	1.16E+08	1.19E+08	4.33E+07	1.61E+08	1.62E+08	1.63E+08

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5
Sample Date	9/15/09	9/15/09	9/15/09	9/15/09	9/16/09	9/16/09
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5
Total biomass	1.00E+08	1.54E+08	1.93E+08	1.72E+08	2.46E+08	1.49E+08

All sample units in cells/gram

TABLE 4 MULTI SITE G - SMS INSTRUMENTS (SITE# 1-52-026) PHOSTER SYSTEM SOIL SAMPLING

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL, DETECTIONS ONLY (SEPTEMBER 2009)

Sample Location	NYSDEC	SMS-12	SMS-12	SMS-12	SMS-12B	SMS-12B	SMS-12B	SMS-16	SMS-16	SMS-16
Sample ID	Soil	SMS-12 19-20	SMS 12 23.5-24.5	SMS 12 29-30	SMS-12B 19-20	SMS12B 23.5-24.5	SMS12B 29-30	SMS-16 19-20	16 23.5-24.5	16 29-30
Lab ID	Cleanup	H1787-11	H1787-12	H1787-10	H1787-08	H1787-09	H1787-10	H1787-04	H1787-05	H1787-07
Sample Depth (ft bgs)	Objectives	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30
Sample Date		9/15/09	9/15/09	9/15/09	9/15/09	9/15/09	9/15/09	9/15/09	9/15/09	9/15/09
1,1,2-Trichloroethane	NC	ND	3,700	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	310 J	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	150 J	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	1,100	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	220 J	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	260 J	ND	ND	ND	ND	ND	ND	ND
Total BTEX		0	0	0	0	0	0	0	0	0
Total VOCs	<10,000	0	5,740	0	0	0	0	0	0	0
Total VOC TICs		0	189,000 NJ	315 J	0	222,000 NJ	0	0	254,900 NJ	12.5 NJ

NC - No official NYSDEC Remedial Program Soil Cleanup Objective Notes:

BOLD / Italics - exceeds the NYSDEC Remedial Program Soil Cleanup Objective

J - Estimated value

D - Diluted sample

ND - Not detected

All results in µg/kg

Data validation has NOT been performed on this data

TABLE 4 MULTI SITE G - SMS INSTRUMENTS (SITE# 1-52-026) PHOSTER SYSTEM SOIL SAMPLING

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL, DETECTIONS ONLY (SEPTEMBER 2009)

Sample Location	NYSDEC	SMS-16B	SMS-16B	SMS-16B	DW	DW	DW	DWB	DWB	DWB
Sample ID	Soil	SMS-16B 19-20	16B 23.5-24.5	16B 29-30	DW 19-20	DW 23.5-24.5	DW 29-30	DWB 19-20	DWB 23.5-24.5	DWB 29-30
Lab ID	Cleanup	H1787-01	H1787-02	H1787-03	H1787-15	H1787-16	H1787-17	H1787-18	H1787-19	H1787-20
Sample Depth (ft bgs)	Objectives	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30
Sample Date		9/15/09	9/15/09	9/15/09	9/16/09	9/16/09	9/16/09	9/16/09	9/16/09	9/16/09
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	160 J	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	1,300	ND	ND	150 J	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	140 J	ND	ND	2,400	ND
n-Butylbenzene	12,000	ND	3,700	ND	ND	670	ND	ND	4,400	ND
sec-Butylbenzene	11,000	ND	690 J	ND	ND	ND	ND	ND	1,600	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND	ND	330 J	ND
Total BTEX		0	0	0	0	0	0	0	0	0
Total VOCs	<10,000	0	4,390	0	0	2,270	0	0	8,880	0
Total VOC TICs		3,130 J	745,000 NJ	149.8 NJ	348.8 J	203,300 NJ	0	0	458,000 NJ	0

Notes: NC - No official NYSDEC Remedial Program Soil Cleanup Objective

BOLD / Italics - exceeds the NYSDEC Remedial Program Soil Cleanup Objective

J - Estimated value

D - Diluted sample

ND - Not detected

All results in µg/kg

Data validation has NOT been performed on this data

Sample Location	NYSDEC	SMS-10	SMS-10	SMS-10	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SB101819	SB102425	SB285295	B121617	B121920	SB121920
Laboratory ID	strictive	E0901-10B	E0901-11B	E0901-12B	E0901-13B	F0378-01A	G0076-07A
Sample Date	Soil	6/28/06	6/28/06	6/28/06	6/28/06	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective	18-19	24-25	28.5-29.5	16-17	19-20	19-20
Acetone	50	320 E	230	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	7
Chloroform	370	ND	ND	2 J	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	4 J	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	4 J	ND	ND	ND	ND
Xylenes (total)	260	ND	150	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	2,500 D	750 D	4 J	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	180	72	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	51	420 D	3 J	ND	ND	ND
sec-Butylbenzene	11,000	72	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	93	450 E	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	270 E	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	330 DJ	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	140	620 D	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	4 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	154	0	0	0	0
Total VOCs	<10,000	3,960	2,700	9	0	0	7
Total VOC TICs	NC	27,430 J	19,190 J	7,369 J	64 J	28,400 J	62 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 1 of 16

Sample Location	NYSDEC	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SMS121920	SMS-12 19-20	B12235245	B12235245	SB12235245	SMS12235245
Laboratory ID	strictive	G2173-03A	H1787-11	E0901-14B	F0378-02A	G0076-08A	G2173-11A
Sample Date	Soil	11/18/08	9/15/09	6/28/06	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)	Objective	19-20	19-20	23.5-24.5	23.5-24.5	23.5-24.5	23.5-24.5
Acetone	50	ND	ND	3,500 E	ND	20 J	58
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	93	11
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	550	ND
Xylenes (total)	260	ND	ND	3,800 D	ND	3,600	8
Isopropylbenzene	NC	ND	ND	ND	ND	2,100	200
n-Propylbenzene	3,900	ND	ND	7,000 D	ND	2,800 D	400 D
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	50,000 D	260	19,000 D	3,200 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	1,800 DJ		610	130
1,2,4-Trimethylbenzene	3,600	ND	ND	55,000 D	ND	30,000 D	4,400 D
sec-Butylbenzene	11,000	ND	ND	4,400 D	ND	1,600	330 JD
4-Isopropyltoluene	NC	ND	ND	360 E	84	3,400 D	780 D
1,3-Dichlorobenzene	2,400	ND	ND	210	ND	1100	190
1,4-Dichlorobenzene	1,800	ND	ND	320 E	ND	2,000	300 JD
n-Butylbenzene	12,000	ND	ND	18,000 D	ND	9,000 D	1,200 D
1,2 Dichlorobenzene	1,100	ND	ND	98	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	450	ND
1,2,4-Trichlorobenzene	NC	ND	ND	2 J	ND	20 J	ND
Naphthalene	12,000	ND	ND	3 J	ND	720	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	3,800	0	4,243	19
Total VOCs	<10,000	0	0	144,493	344	77,063	11,207
Total VOC TICs	NC	1,076 NJ	0	24,647 J	11,180 J	122,200 J	74,700 NJ

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 2 of 16

Sample Location	NYSDEC	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SMS 12 23.5-24.5	SB122930	B122930	SB122930	SMS122930	SMS 12 29-30
Laboratory ID	strictive	H1787-12	E0901-15B	F0378-03A	G0076-09A	G2173-12A	H1787-10
Sample Date	Soil	9/15/09	6/28/06	3/22/07	1/16/08	11/18/08	9/15/09
Sample Depth (ft bgs)	Objective	23.5-24.5	29-30	29-30	29-30	29-30	29-30
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	11	ND
2-Butanone	120	ND	ND	ND	25	ND	ND
Chloroform	370	ND	3 J	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	4 J	ND	ND
1,1,2-Trichloroethane	NC	3,700	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	3 J	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	44	ND	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	260 J	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	310 J	72	ND	1 J	ND	ND
sec-Butylbenzene	11,000	220 J	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	40	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	150 J	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	1,100	240	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	4 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	4	0	0
Total VOCs	<10,000	5,740	406	0	30	11	0
Total VOC TICs	NC	189,000 NJ	1,182 J	ND	7 J	0	315 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

 $\ensuremath{\textit{BOLD/ITALICS}}$ - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 3 of 16

Sample Location	NYSDEC	SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B
Sample ID	Unre-	B12B1920	SB12B1920	SMS12B1920	SMS-12B 19-20	B12B235245	SB12B235245
Laboratory ID	strictive	F0378-04A	G0076-10A	G2173-04A	H1787-08	F0378-05A	G0076-11A
Sample Date	Soil	3/22/07	1/16/08	11/18/08	9/15/09	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective	19-20	19-20	19-20	19-20	23.5-24.5	23.5-24.5
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	77
Bromodichloromethane	NC	ND	ND	ND	ND	ND	250
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	16,000 E
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	1,200	52 J
Isopropylbenzene	NC	ND	ND	ND	ND	2,300 D	300
n-Propylbenzene	3,900	ND	ND	ND	ND	4,600 D	720
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	32,000 D	3,100 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	21 J
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	360
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	51,000 D	3,300 D
sec-Butylbenzene	11,000	ND	ND	ND	ND	3,400 D	900
4-Isopropyltoluene	NC	ND	ND	ND	ND	4,700 D	1,600
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	120
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	100
n-Butylbenzene	12,000	ND	ND	ND	ND	15,000 D	2,400 D
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	460
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	160	71
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	1,200	52
Total VOCs	<10,000	0	0	0	0	114,360	29,831
Total VOC TICs	NC	ND	8 J	44.1	0	37,700 J	20,000 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 4 of 16

Sample Location		SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B
Sample ID	Unre-	SMS12B235245	SMS12B 23.5-24.5	B12B2930	SB12B2930	SMS12B2930	SMS12B 29-30
Laboratory ID	strictive	G2173-13A	H1787-09	F0378-06A	G0076-12A	G2173-14A	H1787-10
Sample Date	Soil	11/18/08	9/15/09	3/22/07	1/16/08	11/18/08	9/15/09
Sample Depth (ft bgs)	Objective	23.5-24.5	23.5-24.5	29-30	29-30	29-30	29-30
Acetone	50	81	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	4.9	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	13	ND
2-Butanone	120	ND	ND	ND	8	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	2 J	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	32	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	130	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	4,300 D	ND	ND	2 J	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	120	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	2,200 D	ND	ND	1 J	ND	ND
sec-Butylbenzene	11,000	170	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	900 D	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	1,700 D	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	1.9 J	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	2	0	0
Total VOCs	<10,000	9,639.8	0	0	13	13	0
Total VOC TICs	NC	73,900 NJ	222,000 NJ	ND	346 J	0	0

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 5 of 16

Sample Location	NYSDEC	SMS-15	SMS-15	SMS-15	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	B15165175	B152223	B152728	B16165175	SB161920	B161920
Laboratory ID	strictive	E0901-19B	E0901-20B	E0901-22B	E0901-16B	E0901-21B	F0378-11A
Sample Date	Soil	6/28/06	6/28/06	6/28/06	6/29/06	6/29/06	3/22/07
Sample Depth (ft bgs)	Objective	16.5-17.5	22-23	27-28	16.5-17.5	19-20	19-20
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	2 J	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	26 J
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	4 J	ND	70
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	6	ND	51 J
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	7	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	4 JB	3 JB		ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	0
Total VOCs	<10,000	4	3	0	19	0	147
Total VOC TICs	NC	ND	ND	ND	163 J	ND	42,000 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 6 of 16

Sample Location	NYSDEC	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	SB161920	SMS-16 19-20	SMS-16 19-20	SB1622.523.5	B16235245	SB16235245
Laboratory ID	strictive	G0076-04A	G2173-05A	H1787-04	E0901-17B	F0378-12A	G0076-05A
Sample Date	Soil	1/16/08	11/18/08	9/15/09	6/29/06	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective	19-20	19-20	19-20	22.5-23.5	23.5-24.5	23.5-24.5
Acetone	50	ND	4.3 J	ND	960	47	690
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	7	ND	ND	ND	ND	370
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	300 J
Toluene	700	1 J	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	20,000 E
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	2,100 E	ND	570
Xylenes (total)	260	ND	ND	ND	13,000 D	ND	4,500
Isopropylbenzene	NC	ND	ND	ND	1,400 DJ	ND	660
n-Propylbenzene	3,900	ND	ND	ND	1,200 E	ND	1,200
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	93 J
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	24,000 D	120	17,000 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	660
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	32,000 D	55	15,000 D
sec-Butylbenzene	11,000	ND	ND	ND	1,000	ND	1,300
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	2,200
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	1,800 E	ND	2,600
n-Butylbenzene	12,000	ND	ND	ND	1,700 E	ND	5,700
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	130	ND	2,100
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	1	0	0	15,100	0	5,070
Total VOCs	<10,000	8	4.3	0	79,290	222	74,943
Total VOC TICs	NC	7 J	276 J	0	35,950 J	33,300 J	171,200 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 7 of 16

Sample Location	NYSDEC	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	16 23.5-24.5	16 23.5-24.5	SB162930	B162930	SB162930	16 29-30
Laboratory ID	strictive	G2173-16A	H1787-05	E0901-18B	F0378-13A	G0076-06A	G2173-17A
Sample Date	Soil	11/18/08	9/15/09	6/29/06	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)	Objective	23.5-24.5	23.5-24.5	29-30	29-30	29-30	29-30
Acetone	50	ND	ND	ND	ND	ND	7.8
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	16	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	3.3 J	ND	ND	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	2.2 J	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	0
Total VOCs	<10,000	5.5	0	0	0	16	7.8
Total VOC TICs	NC	472 NJ	254,900 NJ	ND	ND	114 J	264 NJ

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

All units in µg/kg

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 8 of 16

Sample Location	NYSDEC	SMS-16	SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-16B
Sample ID	Unre-	16 29-30	B16B1920	SB16B1920	SMS16B19-20	SMS16B19-20	B16B225235
Laboratory ID	strictive	H1787-07	F0378-07A	G0076-01A	G2173-06A	H1787-01	F0378-08A
Sample Date	Soil	9/15/09	3/22/07	1/16/08	11/18/08	9/15/09	3/22/07
Sample Depth (ft bgs)	Objective	29-30	19-20	19-20	19-20	19-20	22.5-23.5
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	12	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	50 J
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	ND	480
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	ND	300
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	120
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	50
Total VOCs	<10,000	0	0	12	0	0	950
Total VOC TICs	NC	12.5 NJ	8,120 J	5 J	0	3,130 J	104,500 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 9 of 16

Sample Location	NYSDEC	SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-16B
Sample ID	Unre-	SB16B225235	16B 23.5-24.5	16B 23.5-24.5	B16B2930	SB16B2930	16B 29-30
Laboratory ID	strictive	G0076-02A	G2173-18A	H1787-02	F0378-09A	G0076-03A	G2173-19A
Sample Date	Soil	1/16/08	11/18/08	9/15/09	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)	Objective	22.5-23.5	23.5-24.5	23.5-24.5	29-30	29-30	29-30
Acetone	50	ND	78	ND	ND	ND	2.9 J
Carbon Disulfide*	NC	ND	3.8 J	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	33 J	ND	ND	ND	18	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	30 J	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	27 J	9.9	ND	ND	2 J	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	45 J	59	ND	ND	ND	ND
Xylenes (total)	260	380	310	ND	ND	ND	ND
Isopropylbenzene	NC	85	110	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	190	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	8,700 D	4,700 D	ND	ND	ND	3.6 J
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	240	90	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	1,100	3,400 D	ND	ND	ND	2.9 J
sec-Butylbenzene	11,000	250	71	690 J	ND	ND	ND
4-Isopropyltoluene	NC	750	190	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	300	380 D	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	680	570 D	ND	ND	ND	ND
n-Butylbenzene	12,000	1,200	170	3,700	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	110	6.3 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	452	379	0	0	2	0
Total VOCs	<10,000	13,930	10,338	4,390	0	20	9.4
Total VOC TICs	NC	195,000 J	5,780 NJ	745,000 NJ	ND	857 J	321

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 10 of 16

Sample Location	NYSDEC	SMS-16B	SMS-21	SMS-21	SMS-21	DW	DW
Sample ID	Unre-	16B 29-30	B211920	B212223	B212930	DW-1920	DW-1920
Laboratory ID	strictive	H1787-03	E0901-06B	E0901-07B	E0901-09B	E0901-01B	F0378-15A
Sample Date	Soil	9/15/09	6/28/06	6/28/06	6/28/06	6/28/06	3/23/07
Sample Depth (ft bgs)	Objective	29-30	19-20	22-23	29-30	19-20	19-20
Acetone	50	ND	ND	110	ND	66	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	2 J	ND	ND	18 J	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	6	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	37	ND
Ethylbenzene	1,000	ND	ND	ND	ND	400	ND
Xylenes (total)	260	ND	3 J	ND	ND	20,000 D	ND
Isopropylbenzene	NC	ND	ND	ND	ND	210	ND
n-Propylbenzene	3,900	ND	ND	140	ND	280	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	300 DJ	ND	34,000 D	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	170 DJ	ND	22,000 D	ND
sec-Butylbenzene	11,000	ND	ND	190	ND	300	ND
4-Isopropyltoluene	NC	ND	ND	360 E	ND	1,000	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	8,700 D	ND
1,4-Dichlorobenzene	1,800	ND	3 J	ND	ND	41,000 D	ND
n-Butylbenzene	12,000	ND	ND	490 D	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	10,000 D	ND
Naphthalene	12,000	ND	ND	ND	ND	1,900 D	18 J
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	330	ND
Total BTEX	NC	0	3	6	0	20,400	0
Total VOCs	<10,000	0	8	1,766	0	140,241	18
Total VOC TICs	NC	149.8 NJ	ND	21,130 J	ND	63,300 J	2,270 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 11 of 16

Sample Location	NYSDEC	DW	DW	DW	DW	DW	DW
Sample ID	Unre-	DW-1920	DW 19-20	DW 19-20	DW215225	DW-2425	DW-2425
Laboratory ID	strictive	G0076-17A	G2173-01A	H1787-15	E0901-03B	E0901-04B	F0378-16A
Sample Date	Soil	1/17/08	11/19/08	9/16/09	6/28/06	6/28/06	3/23/07
Sample Depth (ft bgs)	Objective	19-20	19-20	19-20	21.5-22.5	24-25	24-25
Acetone	50	ND	ND	ND	70	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	2 J	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	8	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	130	3,700	ND
Xylenes (total)	260	ND	ND	ND	3400 D	33,000	ND
Isopropylbenzene	NC	ND	ND	ND	130	1,900	ND
n-Propylbenzene	3,900	ND	ND	ND	93	2,400	ND
2-Chlorotoluene	NC	ND	ND	ND	72	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	9700 D	17,000	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	600 J	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	7800 D	30,000	ND
sec-Butylbenzene	11,000	ND	ND	ND	100	1,800	ND
4-Isopropyltoluene	NC	ND	ND	ND	170	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	140	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	4600 D	3,900	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	69	1,800	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	3,538	36,700	0
Total VOCs	<10,000	0	0	0	26,484	96,100	0
Total VOC TICs	NC	83 J	0	348.8 J	17,426 J	950,800 J	474 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 12 of 16

Sample Location	NYSDEC	DW	DW	DW	DW	DW	DW
Sample ID	Unre-	DW-2425	DW-23.5-24.5	DW-23.5-24.5	DW-2930	DW-2930	DW 29-30
Laboratory ID	strictive	G0076-18A	G2173-07A	H1787-16	F0378-17A	G0076-19A	G2173-08A
Sample Date	Soil	1/17/08	11/19/08	9/16/09	3/23/07	1/17/08	11/19/08
Sample Depth (ft bgs)	Objective	24-25	23.5-24.5	23.5-24.5	29-30	29-30	29-30
Acetone	50	ND	30	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	13
2-Butanone	120	ND	ND	ND	ND	8	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	2 J	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	56 J	ND	ND	ND	ND	ND
Xylenes (total)	260	630	27	ND	ND	ND	ND
Isopropylbenzene	NC	60	15 J	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	2,000	4,500 D	1,300	ND	ND	ND
4-Chlorotoluene	NC	94	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	100	240	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	1,100	130	160 J	2 J	ND	ND
sec-Butylbenzene	11,000	200	52	ND	ND	ND	ND
4-Isopropyltoluene	NC	410	220	140 J	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	270	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	440	1,900 D	ND	ND	ND	ND
n-Butylbenzene	12,000	990	ND	670	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	86	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	71 B	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	686	27	0	0	2	0
Total VOCs	<10,000	6,237	7,384	2,270	2	10	13
Total VOC TICs	NC	96,300 J	83,500 NJ	203,300 NJ	159 J	ND	ND

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 13 of 16

Sample Location	NYSDEC	DW	DW	DWB	DWB	DWB	DWB
Sample ID	Unre-	DW 29-30	DW-3031	DWB-1920	DWB-1920	DWB 19-20	DWB 19-20
Laboratory ID	strictive	H1787-17	E0901-05B	F0378-18A	G0076-14A	G2137-02A	H1787-18
Sample Date	Soil	9/16/09	6/28/06	3/23/07	1/17/08	11/19/08	9/16/09
Sample Depth (ft bgs)	Objective	29-30	30-31	19-20	19-20	19-20	19-20
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	3 J	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	0
Total VOCs	<10,000	0	0	0	3	0	0
Total VOC TICs	NC	ND	ND	1,179 J	39 J	0	0

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 14 of 16

Sample Location	NYSDEC	DWB	DWB	DWB	DWB	DWB	DWB
Sample ID	Unre-	DWB-2425	DWB-2425	DWB 23.5-24.5	DWB 23.5-24.5	DWB-2930	DWB-2930
Laboratory ID	strictive	F0378-19A	G0076-15A	G2173-09A	H1787-19	F0378-20A	G0076-16A
Sample Date	Soil	3/23/07	1/17/08	11/19/08	9/16/09	3/23/07	1/17/08
Sample Depth (ft bgs)	Objective	24-25	24-25	23.5 - 24.5	23.5 - 24.5	29-30	29-30
Acetone	50	ND	3 J	67	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	6	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	1 J	ND	ND	ND	4 J
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	3,100 D	ND	ND	ND	ND	ND
Xylenes (total)	260	23,000 D	9	22	ND	ND	ND
Isopropylbenzene	NC	5,200 D	1 J	33	ND	ND	ND
n-Propylbenzene	3,900	10,000 D	ND	48	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	41,000 D	75	4,400 D	150 J	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	3 J	54	330 J	ND	ND
1,2,4-Trimethylbenzene	3,600	73,000 D	76	4,300 D	ND	ND	ND
sec-Butylbenzene	11,000	2,200 E	5 J	83	1,600	ND	ND
4-Isopropyltoluene	NC	4,700 D	13	240	2,400	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	33	ND	ND	ND
1,4-Dichlorobenzene	1,800	1,400	5 J	90	ND	ND	ND
n-Butylbenzene	12,000	17,000 D	29	270	4,400	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	940	3 JB	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	26,100	9	22	0	0	0
Total VOCs	<10,000	181,540	229	9,640	8,880	0	4
Total VOC TICs	NC	9,660 J	7,080 J	9,430 NJ	458,000 NJ	51 J	7 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

Page 15 of 16

TABLE 5

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and SEPTEMBER 2009 DATA

Sample Location	NYSDEC	DWB	DWB
Sample ID	Unre-	DWB 29-30	DWB 29-30
Laboratory ID	strictive	G2173-10A	H1787-20
Sample Date	Soil	11/19/08	9/16/09
Sample Depth (ft bgs)	Objective	29-30	29-30
Acetone	50	ND	ND
Carbon Disulfide*	NC	ND	ND
Methylene Chloride	50	12	ND
2-Butanone	120	ND	ND
Chloroform	370	ND	ND
1,1,1-Trichloroethane	680	ND	ND
Trichloroethene	470	ND	ND
1,2-Dichloropropane	NC	ND	ND
Bromodichloromethane	NC	ND	ND
Toluene	700	ND	ND
1,1,2-Trichloroethane	NC	ND	ND
Chlorobenzene	1,100	ND	ND
Ethylbenzene	1,000	ND	ND
Xylenes (total)	260	ND	ND
Isopropylbenzene	NC	ND	ND
n-Propylbenzene	3,900	ND	ND
2-Chlorotoluene	NC	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND
4-Chlorotoluene	NC	ND	ND
tert-Butylbenzene	5,900	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND
sec-Butylbenzene	11,000	ND	ND
4-Isopropyltoluene	NC	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND
n-Butylbenzene	12,000	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND
Naphthalene	12,000	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND
Total BTEX	NC	0	0
Total VOCs	<10,000	12	0
			_
Total VOC TICs	NC	0	0

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (S Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a) NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

Data validation has NOT been performed on this data

APPENDIX A

SOIL BORING LOGS SEPTEMBER 2009 SOIL BORING EVENT

PROJECT: SMS instruments PAGE 1 0 2 DATE: 91000 DONTRACTOR: LAWES DATE: 91000 LOCATION: Dev Park, MY DRILLERS NAME: Ernesta ET REP: SC DATE TIME DEPTH 3025 AND TYPE OF EQUIPATION DEPTH 0F BOREHOLE: 30 DATE THEOKNESS OF OVERBURDEN: DISPOSITION OF BOREHOLE: 30 LABORATIORY: ANATE Resc. Readings SAMPLE DESTINO FOR DOREHOLE: 30 LABORATIORY: MATENE LESS DESTINON OF BOREHOLE: 30 LABORATIORY: MANTENE SETORO PEDUPATION DEPTH 0F DOREHOLE: 30 LABORATIORY: MATENE AND STRATUM CHANGES MOD Asphalt, coarse gravel with coarse brown red sand - 1 4 0 Coarse brown sand with gravel - - 3 0 0 Coarse light tan brown sand with gravel - - 11 0.0 0 Coarse light tan brown sand with gravel - -	Earth	Tech	AECOM		DIRECT PUSH BOI	RING LOG	Boring No.	: DW
DICATION Deer Park, NY DRILLERS NAME: Emersion ET REP: SC WATER LEVELS DEDETH Size AND TYPE OF EQUIPMENT: Geopoble 60 DT 30 LABORATORY ANALYSES: VOCs, methanotrophs DISPOSITION OF BOREHOLE: 30 LABORATORY ANALYSES: VOCs, methanotrophs DISPOSITION OF BOREHOLE: 30 LABORATORY ANALYSES: VOCs, methanotrophs DISPOSITION OF BOREHOLE: graved 1 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand - 2 0 - 0 - - 3 - 0 - - - 4 0 - - - - 4 0 - - - - 5 0 - - - - 6 0 Coarse brown sand with gravel - - 10 0.0 Coarse light tan brown sand with gravel - - 11 0.0 - - -	PROJEC	T: SMS Ins	struments				PAGE 1 OF	2
WATER LEVELS DESIGNATION OF DRILL RIG: Gappobe 66 DT DATE TIME DEPTH STE AND TYPE OF EQUIPMENT: DEPTH OF BOREHOLE: 30 Image: Construction of a construction o							DATE:	
DATE TIME DEPTH Size AND TYPE OF EQUIPMENT: LABORATORY ANALYSES: VOCs, methanotrophs DISPOSITION OF BOREHOLE: 30 LABORATORY ANALYSES: VOCs, methanotrophs DISPOSITION OF BOREHOLE: grouted LABORATORY ANALYSES: VOCs, methanotrophs DISPOSITION OF BOREHOLE: grouted Depth Number Recedings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (if) 1 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand - 2 0 0 - - - 3 0 0 - - - 4 0 0 - - - 5 0 0 Coarse brown sand with gravel - - 7 0 0 Coarse light tan brown sand with gravel - - 11 0.0 0 - - - - 12 3.0 0.0 - - - - 14 0 <td></td> <td></td> <td></td> <td></td> <td>DRILLERS NAME:</td> <td>Ernesto</td> <td>ET REP.:</td> <td>SC</td>					DRILLERS NAME:	Ernesto	ET REP.:	SC
REFERENCE DEPTH OF BOREHOLE: 30 Intrickness of OverBuilder: DISPOSITION OF BOREHOLE: 30 LABORATORY ANALYSES: VOCs, mehandrophs DISPOSITION OF BOREHOLE: grouted Depth Number Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand - 2 0 0 - - - 4 0 0 - - - 5 0 0 - - - 6 0 0 - - - 7 0 0 - - - 8 0 0 Coarse brown sand with gravel - - 10 - 0.0 - - - - 11 0.0 - - - - - - 12 3.0 0.0 - - - - - - <t< td=""><td>W</td><td>ATER LEV</td><td>ELS</td><td>DESIGNAT</td><td>ION OF DRILL RIG:</td><td>Geoprobe 66 DT</td><td></td><td></td></t<>	W	ATER LEV	ELS	DESIGNAT	ION OF DRILL RIG:	Geoprobe 66 DT		
Image: Constraint of the second sec	DATE	TIME	DEPTH	SIZE AND T	TYPE OF EQUIPMENT:			
LABORATORY ANALYSES VOCs, methanotrophs Depth Number Rec. PPD 1 4.0 0.0 Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand - 2 0 0 - - - 3 0 0 - - - 4 0 0 Coarse brown sand with gravel - - 7 0 0 Coarse brown sand with gravel - - 10 0 Coarse light tan brown sand with gravel - - - 11 0.0 0.0 - - - - 12 3.0 0.0 - - - - 13 0 0.0 - - - - - 14 0 0 - - - - - - - - - - - - - - - - - - - <td></td> <td></td> <td></td> <td>REFERENC</td> <td>E ELEVATION:</td> <td>DEPTH OF BOREHOLE</td> <td>: 30</td> <td></td>				REFERENC	E ELEVATION:	DEPTH OF BOREHOLE	: 30	
Sample Number Rec. PID Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand - 2 0 0 - - 3 0 0 - - 4 0 0 - - 5 0 0 - - 6 0 0 - - 7 0 0 - - 8 0 0 - - 9 0 Coarse brown sand with gravel - 11 0.0 0 - - 12 3.0 0.0 - - 13 0 0 - - 14 0 0.0 - - 15 0 - - - 16 0 - - - 17 2.0 3.2 Light tan sand with rounded gravel 18 2.0 3.2 Dark grey coarse sand, slightly moist				THICKNES	S OF OVERBURDEN:	DISPOSITION OF BOR	EHOLE: grouted	
Depth (th) Number & Time Rec. (text) Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand - 2 - 0 - - - - 4 - 0 - - - - 5 0 0 - - - - 6 0 0 - - - - 7 0 0 - - - - - 9 0 0 - <td>LABORA</td> <td>TORY ANA</td> <td>LYSES: V</td> <td>OCs, methan</td> <td>otrophs</td> <td></td> <td></td> <td></td>	LABORA	TORY ANA	LYSES: V	OCs, methan	otrophs			
(ii)& Time(feet)(ppm)14.00.0Asphalt, coarse gravel with coarse brown red sand20030040050060070080090Coarse brown sand with gravel1000110.00123.00.0130.00.0140015001600172.03.2182.03.2190.02.0190.0100.0100.0110.0120.0130.0140150160172.0182.0190.2190.2190.2190.2100.2100.2110.0120.0130.0140150160172.0182.0190.2190.2100.2100.2100.2110.2120.2130.2140150.2 <t< td=""><td></td><td>Sample</td><td></td><td>PID</td><td></td><td></td><td></td><td></td></t<>		Sample		PID				
1 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 Coarse brown sand with gravel 0 10 0 0 Coarse light tan brown sand with gravel 10 0.0 0.0 0.0 11 0.0 0.0 Medium, coarse sand with black/grey mottles with round gravel 14 0 0 Coarse light tan sand 0 15 0 Coarse light tan sand 0 0 17 2.0 3.2 Light tan sand with rounded gravel 0 18 2.0 3.2 Dark grey coarse sand, slightly moist Collect coarsel DM 40 20	Depth	Number	Rec.	Readings	SAMPLE DESC	RIPTION, REMARKS, AN	ID STRATUM CHANG	ES
1 4.0 0.0 Asphalt, coarse gravel with coarse brown red sand 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 Coarse brown sand with gravel 0 10 0 0 Coarse light tan brown sand with gravel 10 0.0 0.0 0.0 11 0.0 0.0 Medium, coarse sand with black/grey mottles with round gravel 14 0 0 Coarse light tan sand 0 15 0 Coarse light tan sand 0 0 17 2.0 3.2 Light tan sand with rounded gravel 0 18 2.0 3.2 Dark grey coarse sand, slightly moist Collect coarsel DM 40 20		& Time	(feet)	-				
4.0 0.0 Asphalt, coarse gravel with coarse brown red sand								
4.0 0.0 Asphalt, coarse gravel with coarse brown red sand	-							-
2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 Coarse brown sand with gravel 10 0 0 11 0.0 0.0 12 3.0 0.0 13 0 0.0 14 0 0 15 0 0 16 0 0 17 2.0 3.2 18 2.0 3.2 19 0.0 2.0 19 0.0 2.0 100 1.00 1.00	1 —	4	4.0					
3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 Coarse brown sand with gravel 10 0 0 11 0.0 0.0 12 3.0 0.0 13 0.0 0.0 14 0 0 15 0 0 16 0 0 17 2.0 3.2 18 2.0 3.2 19 0.00 0.0 19 0.00 0.0	_		4.0	0.0	Asphait, coarse gravel v	with coarse brown re	d sand	-
3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 Coarse brown sand with gravel 10 0 0 11 0.0 0.0 12 3.0 0.0 13 0.0 0.0 14 0 0 15 0 0 16 0 0 17 2.0 3.2 18 2.0 3.2 19 0.00 0.0 19 0.00 0.0	2							_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1						-
5 0 0 6 0 0 7 0 0 8 0 0 9 0 Coarse brown sand with gravel 10 0 Coarse light tan brown sand with gravel 11 0.0 0.0 12 3.0 0.0 13 0.0 0.0 14 0 0.0 15 0 0 16 0 Coarse light tan sand with black/grey mottles with round gravel 17 0 Coarse light tan sand 18 2.0 3.2 Light tan sand with rounded gravel 19 0.00 0.0 0.00 18 2.0 3.2 Dark grey coarse sand, slightly moist	3 —	1						_
5 0 0 6 0 0 7 0 0 8 0 0 9 0 Coarse brown sand with gravel 10 0 Coarse light tan brown sand with gravel 11 0.0 0.0 12 3.0 0.0 13 0.0 0.0 14 0 0.0 15 0 0 16 0 Coarse light tan sand with black/grey mottles with round gravel 17 0 Coarse light tan sand 18 2.0 3.2 Light tan sand with rounded gravel 19 0.00 0.0 0.00 18 2.0 3.2 Dark grey coarse sand, slightly moist	-	4						-
5 0 0 6 0 0 7 0 0 8 0 0 9 0 Coarse brown sand with gravel 10 0 Coarse light tan brown sand with gravel 11 0.0 0.0 12 3.0 0.0 13 0.0 0.0 14 0 0.0 15 0 0 16 0 Coarse light tan sand with black/grey mottles with round gravel 17 0 Coarse light tan sand 18 2.0 3.2 Light tan sand with rounded gravel 19 0.00 0.0 0.00 18 2.0 3.2 Dark grey coarse sand, slightly moist	4 —	4						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0				_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 —		0					
7 - 0 0 $8 0$ 0 $9 0$ 0 $10 0$ 0 $11 0.0$ 0.0 $12 3.0$ 0.0 $13 0.0$ 0.0 $13 0.0$ 0.0 $14 0$ $15 0$ $16 0$ $17 2.0$ 3.2 $18 2.0$ 3.2 $19 0$ $0000 0$ $12 0$ $12 0$ $13 0$ $14 0$ $16 0$ $16 0$ $16 0$ $18 2.0$ 3.2 10 $19 0$ $10 0$	-	1	Ŭ					-
7 - 0 0 $8 0$ 0 $9 0$ 0 $10 0$ 0 $11 0.0$ 0.0 $12 3.0$ 0.0 $13 0.0$ 0.0 $13 0.0$ 0.0 $14 0$ $15 0$ $16 0$ $17 2.0$ 3.2 $18 2.0$ 3.2 $19 0$ $0000 0$ $12 0$ $12 0$ $13 0$ $14 0$ $16 0$ $16 0$ $16 0$ $18 2.0$ 3.2 10 $19 0$ $10 0$	6 —	4		<u> </u>				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	1			Coarse brown sand with	gravel		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7			0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	1		0				-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 —	1		Ŭ				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	4						-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 —							_
11 - 0.0 = 0.0 = 0.0 $12 - 3.0 = 0.0$ $13 - 0.0 = 0.0$ $13 - 0.0 = 0.0$ $14 - 0 = 0$ $15 - 0 = 0$ $16 - 0 = 0$ $17 - 0 = 0$ $18 - 2.0 = 3.2$ $18 - 2.0 = 3.2$ $19 - 0.00 = 0$ $3.2 = 10$ $10 - 0$ 10	Ũ			0	Coarse light tan brown	sand with gravel		_
11 - 0.0 = 0.0 = 0.0 $12 - 3.0 = 0.0$ $13 - 0.0 = 0.0$ $13 - 0.0 = 0.0$ $14 - 0 = 0$ $15 - 0 = 0$ $16 - 0 = 0$ $17 - 0 = 0$ $18 - 2.0 = 3.2$ $18 - 2.0 = 3.2$ $19 - 0.00 = 0$ $3.2 = 10$ $10 - 0$ 10	40							_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 —							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	1		0.0				-
12 3.0 0.0 13 0 0.0 14 0 Medium, coarse sand with black/grey mottles with round gravel 14 0 - 15 0 - 16 0 - 17 - Coarse light tan sand 18 2.0 3.2 Light tan sand with rounded gravel 19 8.2 Dark grey coarse sand, slightly moist	11 —	-		0.0				_
13 3.0 0.0 14 0 14 0 15 0 16 0 17 Coarse light tan sand 18 2.0 19 8.2 00x00 100	_	1	0.0					-
13 3.0 0.0 14 0 14 0 15 0 16 0 17 Coarse light tan sand 18 2.0 19 8.2 00x00 100	12 -							
13 0.0 Medium, coarse sand with black/grey mottles with round gravel 14 0 0 15 0 0 16 0 0 17 0 0 18 2.0 3.2 19 0 0 19 0 0 10 0 0 0 0 0 0 0 0 0 0 0 18 2.0 3.2 Light tan sand with rounded gravel 0 19 0 0 0 0 0 0 0 0 0 0 0	12		3.0					
13 Medium, coarse sand with black/grey mottles with round gravel 14 15 16 17 Coarse light tan sand 18 2.0 3.2 19 Bark grey coarse sand, slightly moist Collect comple DW 10.20	Ι	1		0.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 —	1		0.0	Medium, coorco cond w	ith black/grov mottle	e with round arou	<u> </u>
15 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-	4			weatum, coarse sand w	in black/grey mottle	s with round grav	-
15 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	14 —	1						_
16 0 Coarse light tan sand 17 2.0 3.2 18 2.0 3.2 19 8.2 Dark grey coarse sand, slightly moist				0				
16 0 Coarse light tan sand 17 2.0 3.2 18 2.0 3.2 19 8.2 Dark grey coarse sand, slightly moist]						-
16	15 —	1		1				
16	-	1	0					-
17	16 —	4	0					—
17 18 2.0 3.2 Light tan sand with rounded gravel 19 8.2 Dark grey coarse sand, slightly moist -	_	1						-
18 2.0 3.2 Light tan sand with rounded gravel 19 8.2 Dark grey coarse sand, slightly moist	17 _				Coarse light tan sand			
19 - 2.0 3.2 Light tan sand with rounded gravel 19 - 8.2 Dark grey coarse sand, slightly moist]						
19 - 2.0 3.2 Light tan sand with rounded gravel 19 - 8.2 Dark grey coarse sand, slightly moist	-	1						
19 – 8.2 Dark grey coarse sand, slightly moist	18 —	1	2.0	2.0	light top cond with race	dod grovel		
8.2 Dark grey coarse sand, slightly moist	-		2.0	J.Z	Light tan sanu with rour	ided glavel		-
8.2 Dark grey coarse sand, slightly moist	19 —	1						_
20 09:00 100 Collect sample DW-19-20				8.2	Dark grey coarse sand,	slightly moist		
	20	09:00		100			Collect same	le DW-19-20
	20 —	1		-				

Boring No.:

DW

PROJEC	T: SMS Inst	ruments		
PROJEC [.]	T No.: 9590	0		PAGE 2 OF 2
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20 —				
- 21 —				-
22 —			141	Light grey coarse sand with some rounded gravel with slight odor
23 — -			05	Fine rounded gravel with light tan coarse sand
24 — -	09:10		95 312	Collect sample DW-23.5-24.5
25 —			1.2	Coarse light tan sand with some rounded gravel
26 —				
27 —			1.7	
28 —			1.6	
29 — -	09:15		1.6	Coarse reddish brown/grey gravel with coarse sand Collect sample DW-29-30
30 —	03.15			End of boring
31 —				
42 —				
33 —				
34 —				
35 —				
36 — -				
37 — -				
38 — -				
39 — -				
40 —				

Earth	Tech /	AECOM		DIRECT PUSH BORING	G LOG	Boring No.	: DW B	3
	T: SMS Ins			-		PAGE 1 OF	2	
	T No.: 9590			CONTRACTOR: LAWES		DATE:	9/16/2009	
	DN: Deer Pa			DRILLERS NAME: Erne		ET REP.:	SC	
	ATER LEV				probe 66 DT			
DATE	TIME	DEPTH		YPE OF EQUIPMENT:				
			-		TH OF BOREHOLE:	30		
					POSITION OF BOREHO	DLE:		
LABORA	1	LYSES: V	OCs, methan	otrophs				
Danth	Sample	Dee	PID				50	
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION	ON, REMARKS, AND S		ES	
(ft)	& Time	(feet)	(ppm)					
_								
1 —								_
			0	Dark brown/black coarse sar	nd			
2 —								
2 —	1		0	Light brown medium sand wi	ith rounded gravel			
-	1				Ŭ			
3 —	1			Light tan medium sand with	rounded aravel			-
-	1				Sandou gravor			
4 —	4		_					
-	4		0					
5 —								
Ŭ _								
6			0					
6 —								-
-	1							•
7 —	1							-
-				Coarse pale tan sand with ro	unded group			
8 —			0	Coarse pale tan sand with ro	bunded gravel			_
_								-
9 —			0					_
Ū				Reddish coarse sand with re	ddish rounded grav	vel		_
10			1					
10 —								
-	1	0						-
11 —	1	Ŭ	0	Coarse tan sand with angula	r aravel			
-	4	л	0		giavoi			-
12 —	4	4				J		-
_	ł			Light rounded gravel with tra	ices of coarse sand	ג		-
13 —	l							
				Coarse tan sand with rounde	ed and angular grav	vel		-
14 —			0					_
14]							
	1		0.0					-
15 —								
-	1	0						-
16 —	4	0						_
-	4							
17 —	l		0	Light grey saturated coarse s	sand with rounded	gravel with rec	a mottles	_
								_
40]		0					-
18 —	1							_
-	1		0					•
19 —	1		Ŭ	Saturated rounded gravel wi	th coarse cand			
-	00:45			Saturateu roundeu graver wi		a all a at a survey		. ·
20	09:45		0			collect sampl	e DWB19-20	<u>ر</u>
				l				

DIRECT PUSH BORING LOG

Boring No.: DW B

PROJEC	T: SMS Inst	truments		
PROJEC	T No.: 9590	0		PAGE 2 OF 2
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20 —				
_ 21 —		0		Saturated dark grey coarse sand with gravel
22 —		4.0	115	Gravel with coarse and medium grey sand
23 —			321	Light grey coarse sand with gravel
24 —	09:55		500 623	collect sample DWB 23.5-24.5
25 —			023	
26 —			0 1.7	
27 —			0	Coarse tan sand with rounded and angular gravel
28 —			1	
29 — -	10:05		0	Coarse tan sand with large rounded gravel
30 —	10100			End of boring
31 —				
42 —				
33 —				
34 —				
35 —				
36 —				
37 —				
38 —				
39 —				
40 —				_

DIRFCT PUSH BORING LOG

Earth	Tech /	AECOM		DIRECT PUSH BOR	ING LOG	Boring No.:	SB-12
	T: SMS Ins					PAGE 1 OF 2	
	T No.: 9590			CONTRACTOR: LAWES			5/09
	ON: Deer Pa				Ernesto	ET REP.: SC	,
W	ATER LEV	ELS	DESIGNAT	ION OF DRILL RIG:	Geoprobe 66 DT		
DATE	TIME	DEPTH	SIZE AND 1	YPE OF EQUIPMENT:			
			REFERENC	E ELEVATION:	DEPTH OF BOREHOLE:	30	
			THICKNES	S OF OVERBURDEN:	DISPOSITION OF BOREH	OLE:	
LABORA	TORY ANA	LYSES: V	OCs, methan	otrophs			
	Sample		PID	· ·			
Depth	Number	Rec.	Readings	SAMPLE DESCR	PTION, REMARKS, AND	STRATUM CHANGES	
(ft)	& Time	(feet)	(ppm)				
()		((PP)	Asphalt angular large gra	vel coarse medium	hrown sand	
-			0	Asphalt angular large gra		STOWIT Sand	
1 —							_
• _			0				
_							
2 —			0	Medium and coarse tan s	and		—
-			Ŭ				
3 —	-						_
_	1						
Λ							
4 —	1			Medium reddish brown sa	and and rounded aray	/el	-
-							
5 —		<u> </u>					<u> </u>
_		0					
6 —							_
0			0	Medium, coarse tan sand	I with rounded angula	r gravel	
-					Ŭ	0	
7 —							
-	-						
8 —							
Ŭ							
9 —			0				-
-			0				
10 —							
		0					
11 —			0.0				
-	1						
12 —	4					1	-1
_	1		0.0	Pale tan/white medium a	nd fine sand with me	aium rounded grave	E
13 —							
13 -]		0				_
-	1						
14 —	-						_
-	4						
15 —			1.8				
10							
l	1	0					
16 —	1	Ĭ					_
-	-		_			1.10.1	
17 —]		0	Pale tan coarse sand with	n rounded gravel with	reddish mottles	_
17							_
-	1		2.7				
18 —	1		<u> </u>				_
-	-						
19 —							
15			12	Saturated grey coarse sa			
20	13:20					Collect sample SB	12-19-20
20							

Boring No.: SB-12

PROJEC	T: SMS Inst	truments		
PROJEC	T No.: 9590	0		PAGE 2 OF 2
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20 —			34.0	
_ 21 —		0	34.0	-
- 22 —			131	Medium coarse grey sand with gravel, saturated, black stain
_ 23 —			151	Strong odor
24 —			210.0	Large grey gravel with coarse sand
_ 25 —	13:35			Collect sample SB12-23.5-24.5
_			45.0	Saturated mixed sand with large angular gravel, light tan
26 — -				-
27 — -			1.9	
28 — _			0	
29 — _	40.45		0.0	Collect sample SB12-29-30
30 —	13:45			Collect sample MS/MSD End of boring
- 31 —				
- 42 —				-
42 -				-
33 —				
34 —				
- 35 —				-
_				-
36 —				
37 —				
38 —				
- 39 —				
- 40 —				-

DIRECT PUSH BORING LOG

Bor	in	g No	.:	SB-12 B
	1		2	

	-			DIRECT FUSH BC		Boring No.:	30-12 D
	T: SMS Ins						2
	T No.: 9590			CONTRACTOR: LAWES		DATE:	9/15/09
	DN: Deer Pa		DEDIGNIA	DRILLERS NAME:	Ernesto	ET REP.:	SC
				ON OF DRILL RIG:	Geoprobe 66 DT		
DATE	TIME	DEPTH		YPE OF EQUIPMENT:		30	
					DEPTH OF BOREHOLE:		
				S OF OVERBURDEN:	DISPOSITION OF BOREHO		
LADUKA	Sample	LISES: V	OCs, methan PID				
Depth	Number	Rec.	Readings		CRIPTION, REMARKS, AND ST		c
(ft)	& Time	(feet)	(ppm)	SAMPLE DES	CRIFTION, REMARKS, AND S	RATOW CHANGE	3
(11)	arime	(IEEL)	(ppiii)				
_							
1 —							_
_		5.0	0	Asphalt, large gravel w	ith coarse dark brown sa	nd	
2 —							
2 -							
	1						-
3 —	1						—
-	1						•
4 —	4						_
_	4						
5 —							
]		0				-
6							
6 —]						
	1			Medium and coarse ta	n sand with large rounded	d gravel	•
7 —	1		0			- g. a. r e.	<u> </u>
-	1		Ŭ				-
8 —	4		0				_
_	-		0				-
9 —							_
	l		0.0				-
10 —							
10 -							
]						-
11 —	1		2.2				
-	1						-
12 —	1		11	Coarse nale tan condu	with rounded aroual and r	oddish arov	-
-	4			louarse pare lan sanu v	with rounded gravel and r	edulari grey	-
13 —	4						_
_	4		25	Light tan coarse sand	with rounded gravel		-
14 —]						
							-
15]						-
15 —	1						
-	1						-
16 —	1	0	12.0	Coarse tan gravel with	coarse sand		
-	4	0	12.0	Soarse lan graver with	Source Sand		-
17 —	4	<u> </u>					_
_	4	3.5					-
18 —]						
10			7.5				
	1						•
19 —	1		10.0	Gravel with coarse tan	sand, saturated		_
	11:50					ect sample SE	-12B-19-20
20	11.00				COII	cor sample SE	-120-13-20
l	1	1	1	l			

DIRECT PUSH BORING LOG

Boring No.: SB-12 B

PROJEC	T: SMS Inst	ruments		
PROJEC	T No.: 9590	0		PAGE 2 OF 2
	Sample	_	PID	
Depth (ft)	Number & Time	Rec. (feet)	Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
	d Time	(1001)	(ppiii)	
20 —				
21 —		0		1
22 —			112.0	Coarse grey fine sand with rounded gravel, with black stain and odor
23 —			004	
			201	Bounded groups conductoined with oder
24 —			421.0	Rounded gravel, coarse sand, stained with odor
	12:05		421.0	collect sample SB-12B-23.5-24.5
25 —	12.00		77	Saturated coarse tan sand with gravel
-				
26 —			23.0	
27 —				1
21			1.5	
28 —				
			0	_
29 —				
	12:10			collect sample SB-12B-29-30
30 —	12.10			End of boring
-				
31 —				
42 —				
42 -				
33 —				-
_				_
34 —				
-				-
35 —				-
_				-
36 —				-
				-
37 —				
20	1			1
38 —				1
39 —				
40 —				

Earth	Tech /	AECON	Λ	DIRECT PUSH BC	DRING LOG	Boring No.	SB-16
	T: SMS Ins					PAGE 1 OF	2
	T No.: 9590			CONTRACTOR: LAWES		DATE:	9/15/09
	DN: Deer Pa			DRILLERS NAME:	Ernesto	ET REP.:	SC
	ATER LEVE			ION OF DRILL RIG:	Geoprobe 66 DT		
DATE	TIME	DEPTH		TYPE OF EQUIPMENT:			
				CE ELEVATION:	DEPTH OF BOREHOLE:	30	
				S OF OVERBURDEN:	DISPOSITION OF BORE	HOLE:	
LABORA		LYSES: \	/OCs, metha	notrophs			
Denth	Sample	Du	PID				-0
Depth	Number & Time	Rec.	Readings	SAMPLE DES	CRIPTION, REMARKS, AND	STRATUM CHANG	E5
(ft)	& Time	(feet)	(ppm)				
_							-
1 —			_				_
_			0	Asphalt, gravel and da	ark brown coarse sand		-
2 —							
]						-
3 —	1						_
-	1						-
4 —							
-	1						-
5 —		0					
-		0					-
6 —							
<u> </u>			0	Coarse light tan sand	with angular gravel		_
7 —							_
/			0				
				Reddish brown coarse	sand with large angula	ar and rounded g	ravel
8 —			5			Ū.	
							_
9 —			1	Light grey coarse sand	with angular gravel		
				Light grey coarse same			_
10 —							
_							-
11 —							
_		ļ		-			
12 —			8	Coarse pale tan sand	with large rounded grav	/el	_
							_
12			5				—
13 —	1		2				_
	1						-
14 —	1		0.0				_
			0.0				
15 —		0					
-		0					_
16 —							
_							_
17 —							
			2	Coarse pale tan sand	with large rounded grav	/el	
18 —	1				0		
-	1		1.0	Coarse grey sand with	large rounded gravel		-
19 —	1		1.0				
-	11.00		4			a allo at commun	CD 46 40 00 -
20	11:00		1			collect sample	38-10-19-20
		I					

DIRECT PUSH BORING LOG

Boring No.: SB-16

PROJEC	T: SMS Inst	truments		
PROJEC	T No.: 9590	0		PAGE 2 OF 2
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20 —				
21 —			100	-
22 —		0.0		Stain and strong odor observed
23 —			78	Coarse light tan sand with small angular rounded gravel
24 —	44.40	1.5	55	Collect sample SB-16-23.5-24.5
25 —	11:10			Collect duplicate sample SB-56 Coarse light tan sand with small angular rounded gravel
 26				
27 —			7	-
28 —			8.0	
29 —				collect sample SB-16-29-30
	11:30	0.5	0.0	Large to medium rounded gravel with some coarse tan sand
- 30				End of boring
31 —				—
42 —				-
33 —				
34 —				
35 —				
36 —				
37 —				
38 —				
39 — -				
40 —				

Earth	Tech	AECON	Λ	DIRECT PUSH BOR	NG LOG	Boring No.	: SB-16 B
PROJEC	T: SMS In	struments				PAGE 1 OF	3
	T No.: 959			CONTRACTOR: LAWES		DATE:	9/15/09
LOCATIO	DN: Deer P	ark, NY			rnesto	ET REP.:	SC
W	ATER LEV	ELS	DESIGNAT	ION OF DRILL RIG: G	eoprobe 66DT DT		
DATE	TIME	DEPTH	SIZE AND 1	TYPE OF EQUIPMENT:			
			REFERENC	CE ELEVATION: D	EPTH OF BOREHOLE:	30	
			THICKNES	S OF OVERBURDEN: D	ISPOSITION OF BOREHO	DLE:	
LABORA	TORY ANA	ALYSES: \	/OCs, metha	notrophs			
	Sample		PID				
Depth	Number	Rec.	Readings	SAMPLE DESCRI	PTION, REMARKS, AND S	TRATUM CHANG	ES
(ft)	& Time	(feet)	(ppm)				
-							-
1 —	-						. —
_				Asphalt, angular gravel w	ith dark brown mediu	m and coarse s	sand
2 —							
2]		0				
-	1		-				-
3 —	1						_
-			_				_
4 —			0				
	1						
5 —			0	Coarse grey light tan sand	with some rounded	aravel	
-	-		0	Coarse grey light tan sand		giavei	-
6 —							
			0				_
-							
7 —			0				
-	•		Ũ				_
8 —							_
_							_
0							
9 —	1		0	Rounded/angular gravel v	vith coarse tan sand		
-			_	<u> </u>			_
10 —							
-							_
11 —			0.7				
	1			Angular coarse gravel wit	h coarse tan sand		1
12 —	1						F
-							F
13 —							_
<u> </u>			0				
4.4				Area of reddish grey with	tan coarse sand and	gravel	٦
14 —	1		0			-	_
-	1		Ĭ				-
15 —							
_							
16 —							
10 -]			Coarse tan sand with ang	ular gravel		
-	1	0.0			0		-
17 —	1	0.0					—
-							
18 —			1.7	Mottled reddish and black	coarse sand and gra	vel	_
-	1		0	Greyish tan sand with larg	e gravel, saturated		1
19 —	1				,- <u></u> , satalatou		—
-	00.20		0			loot comple C	B-16D 10 20
20	09:30		0		COI	lect sample S	D-10D-19-20
	I		1	1			

DIRECT PUSH BORING LOG

Boring No.: SB-16 B

PROJEC	T: SMS Ins	truments		
PROJEC	T No.: 9590	00		PAGE 2 OF 2
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20 —		0		
		Ũ	000	
- 22 —			329	Coarse black sand, saturated, with black stains
-			675	Coarse dark grey sand, with stains and strong odor
23 —	09:45		235	
24 —			150	collect sample SB-16B-23.5-24.5
25 —			78	Coarse rounded gravel tan with some coarse tan gravel
				_
_ 27 —			2	
-			1.7	Coarse tan gravel
28 — -			0.6	Coarse tan saturated sand with some rounded gravel
29 —				
30 —	10:00		0.3	collect sample SB-16B-29-30 End of boring
				-
-				-
33 — -				-
34 —				
35 —				_
- 36 —				-
- 37 —				-
-				-
38 — -				-
39 —				
40 —				_

APPENDIX B

LABORATORY DATA PACKAGE (FORM 1s) SEPTEMBER 2009 SAMPLING EVENT

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

September 30, 2009

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

RE: Client Project: SMS Instruments Lab Work Order #: H1787

Dear Mr. Kareth:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Shirley Ng **Project Manager**

* Data Summary Pack *

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : SMS Instruments, 152026

SDG : <u>H1787</u>

			Anal	ytical Requirements		
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other
SB16B19-20	H1787-01	SW8260_LOW_S	ivictiou #			
SB16B23.5-24.5	H1787-02	SW8260_MED_S				
SB16B29-30	H1787-03	SW8260_LOW_S				
SB16 19-20	H1787-04	SW8260_LOW_S				
SB16 23.5-24.5	H1787-05	SW8260_MED_S				
SB56	H1787-06	SW8260_MED_S		· · · · · · · · · · · · · · · · · · ·		
SB16 29-30	H1787-07	SW8260_LOW_S				
SB12B19-20	H1787-08	SW8260_LOW_S				
SB12B23.5-24.5	H1787-09	SW8260_MED_S			· ·	
SB12B29-30	H1787-10	SW8260_LOW_S				
SB12-19-20	H1787-11	SW8260_LOW_S			· · · · · · · · · · · · · · · · · · ·	
SB12-23.5-24.5	H1787-12	SW8260_MED_S				
SB12-29-30	H1787-13	SW8260_LOW_S				
FB091609	H1787-14	SW8260_W				
DW19-20	H1787-15	SW8260_LOW_S				
DW23.5-24.5	H1787-16	SW8260_MED_S				
DW29-30	H1787-17	SW8260_LOW_S				
DWB19-20	H1787-18	SW8260_LOW_S				
DWB23.5-24.5	H1787-19	SW8260_MED_S				
DWB-29-30	H1787-20	SW8260_LOW_S				

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : SMS Instruments, 152026

SDG: <u>H1787</u>

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260_LOW_S					<u> </u>
H1787-01A	SL	9/15/2009	9/17/2009	NA	9/22/2009
H1787-03A	SL	9/15/2009	9/17/2009	NA	9/20/2009
H1787-04A	SL	9/15/2009	9/17/2009	NA	9/20/2009
H1787-07A	SL	9/15/2009	9/17/2009	NA	9/20/2009
H1787-08A	SL	9/15/2009	9/17/2009	NA	9/20/2009
H1787-10A	SL	9/15/2009	9/17/2009	NA	9/20/2009
H1787-11A	SL	9/15/2009	9/17/2009	NA	9/20/2009
H1787-13A	SL	9/15/2009	9/17/2009	NA	9/22/2009
H1787-13AMS	SL	9/15/2009	9/17/2009	NA	9/29/2009
H1787-13AMSD	SL	9/15/2009	9/17/2009	NA	9/29/2009
H1787-15A	SL	9/16/2009	9/17/2009	NA	9/20/2009
H1787-17A	SL	9/16/2009	9/17/2009	NA	9/20/2009
H1787-18A	SL	9/16/2009	9/17/2009	NA	9/20/2009
H1787-20A	SL	9/16/2009	9/17/2009	NA	9/20/2009
SW8260_MED_S		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
H1787-02A	SL	9/15/2009	9/17/2009	9/24/2009	9/24/2009
H1787-05A	SL	9/15/2009	9/17/2009	9/24/2009	9/24/2009
H1787-06A	SL	9/15/2009	9/17/2009	9/24/2009	9/24/2009
H1787-09A	SL	9/15/2009	9/17/2009	9/24/2009	9/24/2009
H1787-12A	SL.	9/15/2009	9/17/2009	9/24/2009	9/24/2009
H1787-16A	SL	9/16/2009	9/17/2009	9/24/2009	9/24/2009
H1787-19A	SL	9/16/2009	9/17/2009	9/26/2009	9/26/2009
SW8260_W	· · · · · · · · · · · · · · · · · · ·				
H1787-14A	AQ	9/16/2009	9/17/2009	NA	9/25/2009

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : SMS Instruments, 152026

SDG : H1787

Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc
Sample ID	Matrix	Protocol	Method	Level	Factor
SW8260_LOW_S				L	
H1787-01A	SL	SW8260_LOW_S	NA	LOW	1
H1787-03A	SL	SW8260_LOW_S	NA	LOW	1
H1787-04A	SL	SW8260_LOW_S	NA	LOW	1
H1787-07A	SL	SW8260_LOW_S	NA	LOW	1
H1787-08A	SL	SW8260_LOW_S	NA	LOW	1
H1787-10A	SL	SW8260_LOW_S	NA	LOW	1
H1787-11A	SL	SW8260_LOW_S	NA	LOW	1
H1787-13A	SL	SW8260_LOW_S	NA	LOW	1
H1787-13AMS	SL	SW8260_LOW_S	NA	LOW	1
H1787-13AMSD	SL	SW8260_LOW_S	NA	LOW	1
H1787-15A	SL	SW8260_LOW_S	NA	LOW	1
H1787-17A	SL	SW8260_LOW_S	NA	LOW	1
H1787-18A	SL	SW8260_LOW_S	NA	LOW	1
H1787-20A	SL	SW8260_LOW_S	NA	LOW	1
SW8260_MED_S	<u> </u>	•	**************************************		· · · .
H1787-02A	SL	SW8260_MED_S	SW5035_MED_PR	MED	5
H1787-05A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
H1787-06A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
H1787-09A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
H1787-12A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
H1787-16A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
H1787-19A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
SW8260_W			· · · · · · · · · · · · · · · · · · ·		
H1787-14A	AQ	SW8260_W	NA	LOW	1

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: SMS Instruments

SDG# SH1787

Mitkem Work Order ID: H1787

September 30, 2009

Prepared For:

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to Earth Tech Northeast, Inc.'s SMS Instruments project. Under this deliverable, analysis results are presented for nineteen soil and one aqueous samples that were received on September 17, 2009. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits with the exception of elevated recoveries of bromofluorobenzene in samples SB56, SB12-23.5-24.5 and DWB23.5-24.5. The spike recovery of toluene-d8 was also outside the QC limits in sample DWB23.5-24.5. Please note sample DWB23.5-24.5 is reported with medium level approach. The chromatogram for the low level analysis for this sample is included as supporting data at the end of the data package. The low level analysis result also had two surrogate recoveries outside the QC limits.

Lab control sample: spike recoveries were within the QC limits with the exception of slightly low recovery of total xylene in V6YLCSD. Please note due to analyst oversight, incorrect spike amount (5ppb) was used for V6YLCS and V6YLCSD. These two lab control samples had good recoveries.

Matrix spike/ matrix spike duplicate: duplicate analysis was performed on sample SB12-29-30. Spike recoveries were within the QC limits with the exception of acetone in both matrix spike and matrix spike duplicate. Replicate RPDs were within the QC limits.

Sample analysis: due to high concentration of target analytes, sample SB16B23.5-24.5 was initially analyzed by 5x dilution with medium level approach. Samples SB16 23.5-24.5, SB56, SB12B23.5-24.5, SB12-23.5-24.5, DW23.5-24.5 and DWB23.5-24.5 were all initially analyzed by medium level approach. No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Shirley Ng NS

Project Manager 09/30/09

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB16B19-20

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL			Lab Sample ID:	H1787-01A
Sample wt/vol: 5.	10 (g/mL)	G		Lab File ID:	V6G9560.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	09/17/2009
% Moisture: not dec.	15			Date Analyzed:	09/22/2009
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	5.8	U
74-87-3	Chloromethane	5.8	U
75-01-4	Vinyl chloride	5.8	U
74-83-9	Bromomethane	5.8	U
75-00-3	Chloroethane	5.8	U
75-69-4	Trichlorofluoromethane	5.8	U
75-35-4	1,1-Dichloroethene	5.8	U
67-64-1	Acetone	5.8	U
74-88-4	Iodomethane	5.8	U
75-15-0	Carbon disulfide	5.8	U
75-09-2	Methylene chloride	5.8	U
156-60-5	trans-1,2-Dichloroethene	5.8	U
1634-04-4	Methyl tert-butyl ether	5.8	U
	1,1-Dichloroethane	5.8	U
108-05-4	Vinyl acetate	5.8	U
	2-Butanone	5.8	U
156-59-2	cis-1,2-Dichloroethene	5.8	U
594-20-7	2,2-Dichloropropane	5.8	U
74-97-5	Bromochloromethane	5.8	U
67-66-3	Chloroform	5.8	U
71-55-6	1,1,1-Trichloroethane	5.8	U
563-58-6	1,1-Dichloropropene	5.8	U
56-23-5	Carbon tetrachloride	5.8	U
107-06-2	1,2-Dichloroethane	5.8	U
71-43-2	Benzene	5.8	U
79-01-6	Trichloroethene	5.8	U
78-87-5	1,2-Dichloropropane	5.8	U
74-95-3	Dibromomethane	5.8	U
75-27-4	Bromodichloromethane	5.8	U
10061-01-5	cis-1,3-Dichloropropene	5.8	U
	4-Methyl-2-pentanone	5.8	U
108-88-3		5.8	U
	trans-1,3-Dichloropropene	5.8	U
79-00-5	1,1,2-Trichloroethane	5.8	U
	1,3-Dichloropropane	5.8	U

SW846

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB1	6B19	-20	

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: <u>H1787</u>	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE	R) SOIL	Lab Sample ID:	H1787-01A
Sample wt/vol: 5.	.10 (g/mL) G	Lab File ID:	V6G9560.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	09/17/2009
% Moisture: not dec.	15	Date Analyzed:	09/22/2009
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume: _		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 10.0		(mL)	

· · · · · · · · · · · · · · · · · · ·	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.8	U
591-78-6	2-Hexanone	5.8	U
124-48-1	Dibromochloromethane	5.8	U
106-93-4	1,2-Dibromoethane	5.8	U
108-90-7	Chlorobenzene	5.8	U
630-20-6	1,1,1,2-Tetrachloroethane	5.8	U
100-41-4	Ethylbenzene	5.8	U
1330-20-7	m,p-Xylene	5.8	U
95-47-6	o-Xylene	5.8	U
1330-20-7	Xylene (Total)	5.8	U
100-42-5	Styrene	5.8	U
75-25-2	Bromoform	5.8	U
98-82-8	Isopropylbenzene	5.8	U
	1,1,2,2-Tetrachloroethane	5.8	U
108-86-1	Bromobenzene	5.8	U
96-18-4	1,2,3-Trichloropropane	5.8	U
103-65-1	n-Propylbenzene	5.8	U
95-49-8	2-Chlorotoluene	5.8	U
108-67-8	1,3,5-Trimethylbenzene	5.8	U
106-43-4	4-Chlorotoluene	5.8	U
98-06-6	tert-Butylbenzene	5.8	U
95-63-6	1,2,4-Trimethylbenzene	5.8	U
135-98-8	sec-Butylbenzene	5.8	U
99-87-6	4-Isopropyltoluene	5.8	U
541-73-1	1,3-Dichlorobenzene	5.8	U
106-46-7	1,4-Dichlorobenzene	5.8	U
104-51-8	n-Butylbenzene	5.8	U
95-50-1	1,2-Dichlorobenzene	5.8	U
96-12-8	1,2-Dibromo-3-chloropropane	5.8	U
	1,2,4-Trichlorobenzene	5.8	U
87-68-3	Hexachlorobutadiene	5.8	U
87-61-6	1,2,3-Trichlorobenzene	5.8	U
91-20-3	Naphthalene	5.8	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SB16B19-20

2800

J

Lab Name:	MITKEM LAE	ORATORIES		Contract:		
Lab Code:	MITKEM	Case No.: H178	7	Mod. Ref No.:	SDG No.:	SH1787
Matrix: (S	OIL/SED/WAT	CER) SOIL		Lab Sample ID:	H1787-01A	
Sample wt/	vol:	5.10 (g/mL) G		Lab File ID:	V6G9560.D	
Level: (TR	ACE or LOW,	MED) LOW		Date Received:	09/17/2009	
% Moisture	: not dec.	15		Date Analyzed:	09/22/2009	
GC Column:	DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:		(uL)	Soil Aliquot Vol	.ume:	(uL)
CONCENTRAT	ION UNITS:	(ug/L or ug/Kg)	UG/KG	Purge Volume: 1	0.0	(mL)
CAS NUN	IBER	COMPOUND NAME		RT	EST. CONC.	Q
01	Unkno	wn-01		15.324	330	J

16.626

N/A

E9667961 Total Alkanes 1 EPA-designated Registry Number.

Unknown-02

SW846

02

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB16B	23.5	-24	.5

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE	R) SOIL		Lab Sample ID:	H1787-02A
Sample wt/vol: 6	.60 (g/mL)	G	Lab File ID:	V6G9660.D
Level: (TRACE/LOW/MED)	MED	·····	Date Received:	09/17/2009
% Moisture: not dec.	19		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm) Dilution Factor:	5.0
Soil Extract Volume: 5	000	(uL)) Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL))	

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane	1	.500	U
74-87-3 Chloromethane		1	.500	U
75-01-4	Vinyl chloride	1	500	U
	Bromomethane	1	500	U
75-00-3	Chloroethane	1	500	U
75-69-4	Trichlorofluoromethane	1	500	U
75-35-4	1,1-Dichloroethene	1	500	U
67-64-1	Acetone	1	500	U
74-88-4	Iodomethane	1	500	U
75-15-0	Carbon disulfide	1	500	U
75-09-2	Methylene chloride	1	500	U
156-60-5	trans-1,2-Dichloroethene	1	.500	U
1634-04-4	Methyl tert-butyl ether	1	500	U .
75-34-3	1,1-Dichloroethane	1	500	U
108-05-4	Vinyl acetate	1	500	U
78-93-3	2-Butanone	1	500	U
156-59-2	cis-1,2-Dichloroethene	1	.500	U
594-20-7	2,2-Dichloropropane	1	500	U
74-97-5	Bromochloromethane	1	500	U
67-66-3	Chloroform	1	500	U
71-55-6	1,1,1-Trichloroethane	1	500	U
563-58-6	1,1-Dichloropropene	1	500	U
56-23-5	Carbon tetrachloride	1	500	U
107-06-2	1,2-Dichloroethane	1	500	U
71-43-2	Benzene			U
	Trichloroethene	1	500	U
	1,2-Dichloropropane			U
74-95-3	Dibromomethane			U
75-27-4	Bromodichloromethane			U
10061-01-5	cis-1,3-Dichloropropene			U
108-10-1	4-Methyl-2-pentanone			U
108-88-3				U
	trans-1,3-Dichloropropene	1	500	U
	1,1,2-Trichloroethane	1	500	U
142-28-9	1,3-Dichloropropane	1	500	U

SOM_002

SW846

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB16B23.5-	24	.5	
------------	----	----	--

Lab Name:	MITKEM LABOR	ATORIES		Contract:	······································
Lab Code:	MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SC	DIL/SED/WATER	a) SOIL		Lab Sample ID:	H1787-02A
Sample wt/v	701: <u>6</u> .	60 (g/mL)	G	Lab File ID:	V6G9660.D
Level: (TRA	ACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture:	not dec.	19		Date Analyzed:	09/24/2009
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	5.0
Soil Extrac	ct Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volum	ne: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS:		
		(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		1500	U
591-78-6	2-Hexanone		1500	U
124-48-1	Dibromochloromethane		1500	U
106-93-4	1,2-Dibromoethane		1500	U
108-90-7	Chlorobenzene		1500	U
630-20-6	1,1,1,2-Tetrachloroethane		1500	U
100-41-4	Ethylbenzene		1500	U
1330-20-7	m,p-Xylene		1500	U
95-47-6	o-Xylene		1500	U
	Xylene (Total)		1500	U
100-42-5	Styrene		1500	U
75-25-2	Bromoform		1500	U
98-82-8	Isopropylbenzene		1500	U
79-34-5	1,1,2,2-Tetrachloroethane		1500	U
108-86-1	Bromobenzene		1500	U
96-18-4	1,2,3-Trichloropropane		1500	U
103-65-1	n-Propylbenzene		1500	U
95-49-8	2-Chlorotoluene		1500	U
108-67-8	1,3,5-Trimethylbenzene		1500	U
106-43-4	4-Chlorotoluene		1500	U
98-06-6	tert-Butylbenzene		1500	U
95-63-6	1,2,4-Trimethylbenzene		1500	U
135-98-8	sec-Butylbenzene		690	J
	4-Isopropyltoluene		1500	U
541-73-1	1,3-Dichlorobenzene		1500	U
106-46-7	1,4-Dichlorobenzene		1500	U
104-51-8	n-Butylbenzene		3700	
95-50-1	1,2-Dichlorobenzene		1500	U
96-12-8	1,2-Dibromo-3-chloropropane		1500	U
120-82-1	1,2,4-Trichlorobenzene		1500	U
87-68-3	Hexachlorobutadiene		1500	U
87-61-6	1,2,3-Trichlorobenzene		1500	U
91-20-3	Naphthalene		1500	U

EPA SAMPLE NO.

SB16B23.5-24.5

Lab Nar	me: MITK	EM LABORATORIES		Contract:		
Lab Coo	de: MITK	EM Case No.:	H1787	Mod. Ref No.:	SDG No.:	SH1787
Matrix	: (SOIL/S	ED/WATER) SOIL		Lab Sample ID:	H1787-02A	
Sample	wt/vol:	6.60 (g/mL)	G	Lab File ID:	V6G9660.D	
Level:	(TRACE c	r LOW/MED) MED		Date Received:	09/17/2009	
8 Moist	ture: not	dec. 19		Date Analyzed:	09/24/2009	
GC Colu	umn: DB-	624 ID:	0.25 (mm)	Dilution Factor	: 5.0	
Soil Ex	xtract Vo	lume: 5000	(uL)	Soil Aliquot Vol	lume: 100.00	(uL)
CONCENT	TRATION U	NITS: (ug/L or ug/K	G) UG/KG	Purge Volume: 5	.0	(mL)
CAS	S NUMBER	COMPOUND	NAME	RT	EST. CONC.	Q
01		Unknown-01		8.711	70000	J
02				11.236	33000	J
03		Unknown-03		11.668	32000	J
04	17302-28-2	Nonane, 2,6-dimeth	yl-	12.027	40000	NJ
05	934-74-7	Benzene, 1-ethyl-3	,5-dimethy	12.903	65000	NJ

13.316

13.979

14.308

14.959

15.111

15.598

16.175

N/A

E9667961 Total Alkanes 1 EPA-designated Registry Number.

Unknown-04

1002-43-3 Undecane, 3-methyl-

Unknown-05

Unknown-06

Unknown-07

Unknown-08

Unknown-09

SW846

28000

27000

35000

75000

100000

110000

130000

J

NJ

J

J

J

J

J

06

07

80

09

10

11

12

EPA SAMPLE NO.

SB16B29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.: H17	787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	H1787-03A
Sample wt/vol: 4.	80 (g/mL) G		Lab File ID:	V6G9517.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	15		Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.2	25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: _		(uL)	Soil Aliquot Volu	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNIT	'S:	· · · ·
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		6.1	U
74-87-3	Chloromethane		6.1	U
75-01-4	Vinyl chloride		6.1	U
74-83-9	Bromomethane		6.1	U
75-00-3	Chloroethane		6.1	U
75-69-4	Trichlorofluoromethane		6.1	U
75-35-4	1,1-Dichloroethene	· · ·	6.1	U
67-64-1	Acetone		6.1	U
74-88-4	Iodomethane		6.1	U
75-15-0	Carbon disulfide		6.1	U
75-09-2	Methylene chloride		6.1	U
	trans-1,2-Dichloroethene		6.1	U
1634-04-4	Methyl tert-butyl ether	······································	6.1	U
75-34-3	1,1-Dichloroethane		6.1	U
108-05-4	Vinyl acetate		6.1	U
	2-Butanone	· · · · · · · · · · · · · · · · · · ·	6.1	U
156-59-2	cis-1,2-Dichloroethene		6.1	U
	2,2-Dichloropropane		6.1	U
	Bromochloromethane		6.1	U
67-66-3	Chloroform		6.1	U
71-55-6	1,1,1-Trichloroethane		6.1	U
	1,1-Dichloropropene		6.1	U
56-23-5	Carbon tetrachloride		6.1	U
107-06-2	1,2-Dichloroethane		6.1	U
71-43-2	Benzene	······································	6.1	U
79-01-6	Trichloroethene		6.1	U
78-87-5	1,2-Dichloropropane		6.1	U
	Dibromomethane		6.1	U
75-27-4	Bromodichloromethane		6.1	U
10061-01-5	cis-1,3-Dichloropropene		6.1	U
108-10-1	4-Methyl-2-pentanone		6.1	U
	Toluene		6.1	U
10061-02-6	trans-1,3-Dichloropropene		6.1	U
	1,1,2-Trichloroethane		6.1	U
	1,3-Dichloropropane		6.1	U

SOM_002

EPA SAMPLE NO.

SB16B29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	Н1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	H1787-03A
Sample wt/vol: 4.	80 (g/mL)	G	Lab File ID:	V6G9517.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	15	, 	Date Analyzed:	09/20/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

[T	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	6.1	U
591-78-6	2-Hexanone	6.1	U
124-48-1	Dibromochloromethane	6.1	U
106-93-4	1,2-Dibromoethane	6.1	U
108-90-7	Chlorobenzene	6.1	U
630-20-6	1,1,1,2-Tetrachloroethane	6.1	U
100-41-4	Ethylbenzene	6.1	U
1330-20-7	m,p-Xylene	6.1	U
95-47-6	o-Xylene	6.1	U
1330-20-7	Xylene (Total)	6.1	U
100-42-5	Styrene	6.1	U
75-25-2	Bromoform	6.1	U
98-82-8	Isopropylbenzene	6.1	U
79-34-5	1,1,2,2-Tetrachloroethane	6.1	U
	Bromobenzene	6.1	U
96-18-4	1,2,3-Trichloropropane	6.1	U
	n-Propylbenzene	6.1	U
95-49-8	2-Chlorotoluene	6.1	U
108-67-8	1,3,5-Trimethylbenzene	6.1	U
106-43-4	4-Chlorotoluene	6.1	U
98-06-6	tert-Butylbenzene	6.1	U
95-63-6	1,2,4-Trimethylbenzene	6.1	U
135-98-8	sec-Butylbenzene	6.1	U
99-87-6	4-Isopropyltoluene	6.1	U
541-73-1	1,3-Dichlorobenzene	6.1	U
106-46-7	1,4-Dichlorobenzene	6.1	U
104-51-8	n-Butylbenzene	6.1	U
95-50-1	1,2-Dichlorobenzene	6.1	U
96-12-8	1,2-Dibromo-3-chloropropane	6.1	U
120-82-1	1,2,4-Trichlorobenzene	6.1	U
87-68-3	Hexachlorobutadiene	6.1	U
87-61-6	1,2,3-Trichlorobenzene	6.1	U
91-20-3	Naphthalene	6.1	U

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB16B29-30

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.: H17	87	Mod. Ref No.:	SDG No.:	SH1787
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	H1787-03A	
Sample wt/vol: 4.80 (g/mL) G		Lab File ID:	V6G9517.D	
Level: (TRACE or LOW/MED) LOW		Date Received:	09/17/2009	
% Moisture: not dec. 15		Date Analyzed: 09/20/2009		
GC Column: DB-624 ID: 0.2	25 (mm)	Dilution Factor:	: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	lume:	(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg)	UG/KG	Purge Volume: 1	0.0	(mL)
CAS NUMBER COMPOUND NAM	1E	RT	EST. CONC.	Q
01 592-27-8 Heptane, 2-methyl-		7.267	9.1	NJ
02 111-65-9 Octane		7.967	7.0	NJ
03 Unknown-01		8.709	15	J

04 3073-66-3 Cyclohexane, 1,1,3-trimethyl 8.916 05 Unknown-02 9.214 06 111-65-9 Octane 9.269		
06 111-65-9 Octane 9.269	11	NJ
	7.0	J
	11	NJ
07 Unknown-03 11.228	6.9	J
08 Unknown-04 12.025	8.8	J
09 Unknown-05 15.510	25	J
10 Unknown-06 16.173	49	J
E9667961 Total Alkanes N/A		

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB16 19-20

Lab Name: MITKEM LABOR	ATORIES	Сс	ontract:	
Lab Code: MITKEM	Case No.: H1787	Мс	od. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL	La	ab Sample ID:	H1787-04A
Sample wt/vol: 5.	40 (g/mL) G	La	b File ID:	V6G9518.D
Level: (TRACE/LOW/MED)	LOW	Da	te Received:	09/17/2009
% Moisture: not dec.	19	Da	te Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25	(mm) Di	lution Factor:	1.0
Soil Extract Volume:		(uL) So	il Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	5.7	U
74-87-3	Chloromethane	5.7	U
75-01-4	Vinyl chloride	5.7	U
74-83-9	Bromomethane	5.7	U
75-00-3	Chloroethane	5.7	U
75-69-4	Trichlorofluoromethane	5.7	U
75-35-4	1,1-Dichloroethene	5.7	U
67-64-1	Acetone	5.7	U
74-88-4	Iodomethane	5.7	U
75-15-0	Carbon disulfide	5.7	U
75-09-2	Methylene chloride	5.7	U
156-60-5	trans-1,2-Dichloroethene	5.7	U
1634-04-4	Methyl tert-butyl ether	5.7	U
75-34-3	1,1-Dichloroethane	5.7	U
108-05-4	Vinyl acetate	5.7	U
78-93-3	2-Butanone	5.7	U
156-59-2	cis-1,2-Dichloroethene	5.7	U
594-20-7	2,2-Dichloropropane	5.7	U
	Bromochloromethane	5.7	U
	Chloroform	5.7	U
	1,1,1-Trichloroethane	5.7	U
	1,1-Dichloropropene	5.7	U
56-23-5	Carbon tetrachloride	5.7	U
107-06-2	1,2-Dichloroethane	5.7	U
71-43-2	Benzene	5.7	U
79-01-6	Trichloroethene	5.7	U
	1,2-Dichloropropane	5.7	U
74-95-3	Dibromomethane	5.7	U
	Bromodichloromethane	5.7	U
	cis-1,3-Dichloropropene	5.7	U
	4-Methyl-2-pentanone	5.7	U
	Toluene	5.7	U
	trans-1,3-Dichloropropene	5.7	U
	1,1,2-Trichloroethane	5.7	U
142-28-9	1,3-Dichloropropane	5.7	U

EPA SAMPLE NO.

SB16 19-20

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.: H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE	R) SOIL		Lab Sample ID:	H1787-04A
Sample wt/vol: 5.	.40 (g/mL) G		Lab File ID:	V6G9518.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	19		Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:		1
CAS NO.	COMPOUND	(ug/L or ug/Kg) U	G/KG	Q
127-18-4	Tetrachloroethene		5.7	U
591-78-6	2-Hexanone		5.7	U
124-48-1	Dibromochloromethane		5.7	U
106-93-4	1,2-Dibromoethane		5.7	U
108-90-7	Chlorobenzene		5.7	U
630-20-6	1,1,1,2-Tetrachloroethane		5.7	U
100-41-4	Ethylbenzene		5.7	U
1330-20-7	m,p-Xylene		5.7	Ŭ
95-47-6	o-Xylene		5.7	U
1330-20-7	Xylene (Total)		5.7	U
100-42-5	Styrene		5.7	U
75-25-2	Bromoform		5.7	U
98-82-8	Isopropylbenzene		5.7	U
79-34-5	1,1,2,2-Tetrachloroethane		5.7	U
108-86-1	Bromobenzene		5.7	U
96-18-4	1,2,3-Trichloropropane		5.7	U
103-65-1	n-Propylbenzene		5.7	U
95-49-8	2-Chlorotoluene		5.7 .	U
108-67-8	1,3,5-Trimethylbenzene		5.7	U
106-43-4	4-Chlorotoluene		5.7	U
98-06-6	tert-Butylbenzene		5.7	U
95-63-6	1,2,4-Trimethylbenzene		5.7	U
135-98-8	sec-Butylbenzene		5.7	U
99-87-6	4-Isopropyltoluene		5.7	U
541-73-1	1,3-Dichlorobenzene		5.7	U
106-46-7	1,4-Dichlorobenzene		5.7	U
104-51-8	n-Butylbenzene		5.7	U
95-50-1	1,2-Dichlorobenzene		5.7	U
96-12-8	1,2-Dibromo-3-chloropropane	······································	5.7	U
120-82-1	1,2,4-Trichlorobenzene		5.7	U
87-68-3	Hexachlorobutadiene		5.7	U
87-61-6	1,2,3-Trichlorobenzene		5.7	U
91-20-3	Naphthalene		5.7	U

1J - FORM I VOA-TIC

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB16 19-20

Lab Name:	MITKEM LAB	BORATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.:	SH1787
Matrix: (S	OIL/SED/WAT	TER) SOIL			Lab Sample ID:	H1787-04A	
Sample wt/	vol:	5.40 (g/mL)	G		Lab File ID:	V6G9518.D	
Level: (TR	ACE or LOW/	MED) LOW			Date Received:	09/17/2009	
% Moisture	: not dec.	19			Date Analyzed:	09/20/2009	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRAT	ION UNITS:	(ug/L or ug/k	(g) U(G/KG	Purge Volume: 10	0.0	(mL)
CAS NU	MBER	COMPOUND	NAME		RT	EST. CONC.	Q
E	9667961 Total	Alkanes			N/A		

E9667961 Total Alkanes

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB16	23.	5-24	.5

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	H1787-05A
Sample wt/vol: 5.	10 (g/mL)	G	Lab File ID:	V6G9656.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	18	<u> </u>	Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:		······································		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q		
75-71-	B Dichlorodifluoromethane		350	U		
74-87-3	3 Chloromethane		350 .	U		
75-01-	4 Vinyl chloride	······································	350	U		
	9 Bromomethane		350	U		
75-00-3	3 Chloroethane		350	U		
75-69-	4 Trichlorofluoromethane		350	U		
75-35-	4 1,1-Dichloroethene		350	U		
67-64-	1 Acetone		350	U		
74-88-4	4 Iodomethane		350	U		
75-15-0) Carbon disulfide		350	U		
75-09-2	2 Methylene chloride		350	U		
156-60-	5 trans-1,2-Dichloroethene	***************************************	350	υ		
1634-04-	4 Methyl tert-butyl ether		350	υ		
75-34-3	3 1,1-Dichloroethane		350	U		
108-05-	4 Vinyl acetate		350	U		
78-93-	3 2-Butanone		350	U		
156-59-	2 cis-1,2-Dichloroethene	ene 350				
594-20-	7 2,2-Dichloropropane					
74-97-	5 Bromochloromethane					
67-66-	3 Chloroform		350	U		
71-55-	6 1,1,1-Trichloroethane		350	U		
563-58-	6 1,1-Dichloropropene		350	U		
56-23-	5 Carbon tetrachloride		350	U		
107-06-2	2 1,2-Dichloroethane		350	U		
71-43-	2 Benzene		350	U		
79-01-	6 Trichloroethene		350	U		
78-87-	5 1,2-Dichloropropane		350	U		
74-95-	3 Dibromomethane		350	U		
75-27-	4 Bromodichloromethane		350	U		
10061-01-	5 cis-1,3-Dichloropropene		350	U		
108-10-1	1 4-Methyl-2-pentanone		350	U		
	3 Toluene					
	6 trans-1,3-Dichloropropene		350	U		
	5 1,1,2-Trichloroethane		350	Ū		
142-28-	9 1,3-Dichloropropane		350	Ū		

EPA SAMPLE NO.

SB16 23.5-24.5

Lab Name: MITKEM LABOF	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	H1787-05A
Sample wt/vol: 5.	10 (g/mL)	G	Lab File ID:	V6G9656.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	18		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:			
CAS NO.	COMPOUND		G/KG Q		
127-18-4	Tetrachloroethene	35	50 U		
591-78-6	2-Hexanone	35	0 U		
124-48-1	Dibromochloromethane	35	0 U		
106-93-4	1,2-Dibromoethane	35	0 U		
108-90-7	Chlorobenzene	35	0 U		
630-20-6	1,1,1,2-Tetrachloroethane	35	0 U		
100-41-4	Ethylbenzene	35	0 U		
1330-20-7	m,p-Xylene	35	0 U		
95-47-6	o-Xylene	35	0 U		
	Xylene (Total)	35	0 U		
100-42-5	Styrene	35	0 U		
	Bromoform	35	0 U		
98-82-8	Isopropylbenzene	35	0 U		
	1,1,2,2-Tetrachloroethane	35	0 U		
108-86-1	Bromobenzene	35	0 U		
96-18-4	1,2,3-Trichloropropane	35	U U		
	n-Propylbenzene	35	0 U		
95-49-8	2-Chlorotoluene	35	0 U		
108-67-8	1,3,5-Trimethylbenzene	35	0 U		
	4-Chlorotoluene	35	0 U		
98-06-6	tert-Butylbenzene	35	0 U		
	1,2,4-Trimethylbenzene	35	0 U		
135-98-8	sec-Butylbenzene	35	0 U		
99-87-6	4-Isopropyltoluene	35	0 U		
541-73-1	1,3-Dichlorobenzene	35	0 U		
	1,4-Dichlorobenzene	35	0 U		
	n-Butylbenzene	35	0 U		
	1,2-Dichlorobenzene	35	U U		
	1,2-Dibromo-3-chloropropane	35	0 U		
	1,2,4-Trichlorobenzene	35	0 U		
	Hexachlorobutadiene 350				
87-61-6	Hexachlorobutadiene3501,2,3-Trichlorobenzene350				
	Naphthalene	35	0 U		

EPA SAMPLE NO.

SB16 23.5-24.5

Lab Name: M	IITKEM LABORA	FORIES		Contract:	
Lab Code: M	IITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOI	L/SED/WATER)	SOIL		Lab Sample ID:	H1787-05A
Sample wt/vc	5.1	0 (g/mL)	G	Lab File ID:	V6G9656.D
Level: (TRAC	CE or LOW/MED) MED		Date Received:	09/17/2009
<pre>% Moisture:</pre>	not dec.	18		Date Analyzed:	09/24/2009
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract	Volume: 500	0	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
CONCENTRATIC	N UNITS: (ug	/L or ug/k	(g) UG/KG	Purge Volume: 5.	.0 (mL)
CAS NUMB	ĒR	COMPOUND	NAME	RT	EST. CONC. Q

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	÷ Q
	Unknown-01	11.670	7900	J
17302-28-2	Nonane, 2,6-dimethyl-	12.029	11000	NJ
	Unknown-02	12.291	7700	J
	Unknown-03	13.130	18000	J
	Unknown-04	13.319	9600	J
	Unknown-05	13.465	16000	J
	Unknown-06	13.781	9700	J
	Unknown-07	13.879	11000	J
	Unknown-08	13.982	15000	J
	Unknown-09	14.335	13000	J
17301-23-4	Undecane, 2,6-dimethyl-	14.475	47000	NJ
	Unknown-10	15.114	89000	J
E96679€1	Total Alkanes	N/A		
	17302-28-2	Unknown-01 17302-28-2 Nonane, 2,6-dimethyl- Unknown-02 Unknown-03 Unknown-04 Unknown-05 Unknown-06 Unknown-07 Unknown-08 Unknown-09 17301-23-4 Undecane, 2,6-dimethyl-	Unknown-01 11.670 17302-28-2 Nonane, 2,6-dimethyl- 12.029 Unknown-02 12.291 Unknown-03 13.130 Unknown-04 13.319 Unknown-05 13.465 Unknown-06 13.781 Unknown-07 13.879 Unknown-08 13.982 Unknown-09 14.335 17301-23-4 Undecane, 2,6-dimethyl- Unknown-10 15.114	Unknown-01 11.670 7900 17302-28-2 Nonane, 2,6-dimethyl- 12.029 11000 Unknown-02 12.291 7700 Unknown-03 13.130 18000 Unknown-04 13.319 9600 Unknown-05 13.465 16000 Unknown-06 13.781 9700 Unknown-07 13.879 11000 Unknown-08 13.982 15000 Unknown-09 14.335 13000 17301-23-4 Undecane, 2, 6-dimethyl- 14.475 47000 Unknown-10 15.114 89000 1000

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB56

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER)) SOIL		Lab Sample ID:	H1787-06A
Sample wt/vol: 6.2	10 (g/mL)	G	Lab File ID:	V6G9657.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	16		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume: 50	00	(uL) Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNITS:			
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q	
75-71-8	Dichlorodifluoromethane		290	U	
74-87-3	Chloromethane		290	U	
75-01-4	Vinyl chloride		290	U	
74-83-9	Bromomethane		290	U	
75-00-3	Chloroethane	The second s	290	U	
75-69-4	Trichlorofluoromethane		290	U	
75-35-4	1,1-Dichloroethene		290	U	
67-64-1	Acetone		290	U	
74-88-4	Iodomethane		290	U	
75-15-0	Carbon disulfide		290	U	
75-09-2	Methylene chloride		290	Ū	
156-60-5	trans-1,2-Dichloroethene		290	U	
	Methyl tert-butyl ether		290	U	
75-34-3	1,1-Dichloroethane		290	U	
	Vinyl acetate		290		
78-93-3	2-Butanone		290	U	
	cis-1,2-Dichloroethene 290				
594-20-7	2,2-Dichloropropane		290	U	
74-97-5	Bromochloromethane		290	U	
	Chloroform		290	U	
	1,1,1-Trichloroethane		290	U	
563-58-6	1,1-Dichloropropene		290	U	
56-23-5	Carbon tetrachloride		290	U	
107-06-2	1,2-Dichloroethane		290	U	
71-43-2	Benzene	· · · · · · · · · · · · · · · · · · ·	290	U	
79-01-6	Trichloroethene		290	U	
78-87-5	1,2-Dichloropropane		290	U	
74-95-3	Dibromomethane		290	U	
75-27-4	Bromodichloromethane		290	U	
10061-01-5	cis-1,3-Dichloropropene		290	U	
	4-Methyl-2-pentanone		290	U	
108-88-3					
	trans-1,3-Dichloropropene		290	U	
	1,1,2-Trichloroethane 290				
142-28-9	1,3-Dichloropropane		290	U	

EPA SAMPLE NO.

SB56

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (S	OIL/SED/WATER	a) SOIL			Lab Sample ID:	H1787-06A
Sample wt/	vol: 6.	10 (g/mL)	G		Lab File ID:	V6G9657.D
Level: (TR	ACE/LOW/MED)	MED			Date Received:	09/17/2009
% Moisture	: not dec.	16			Date Analyzed:	09/24/2009
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume: 5	000		(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volu	me: 5.0			(mL)		

·····		CONCENTRATION UNIT	5:	<u> </u>		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q		
127-18-4	Tetrachloroethene		290	U		
591-78-6	2-Hexanone		290	U		
124-48-1	Dibromochloromethane		290	U		
106-93-4	1,2-Dibromoethane		290	U		
108-90-7	Chlorobenzene		290	U		
630-20-6	1,1,1,2-Tetrachloroethane		290	U		
100-41-4	Ethylbenzene		290	U		
1330-20-7	m,p-Xylene		290	U		
95-47-6	o-Xylene		290	U		
1330-20-7	Xylene (Total)		290	U		
100-42-5	Styrene		290	U		
	Bromoform	······································	290	U		
98-82-8	Isopropylbenzene		290	U		
	1,1,2,2-Tetrachloroethane		290	U		
108-86-1	Bromobenzene		U			
96-18-4	1,2,3-Trichloropropane		U			
	n-Propylbenzene		U			
95-49-8	2-Chlorotoluene		U			
108-67-8	1,3,5-Trimethylbenzene					
	4-Chlorotoluene	······································	290	U		
98-06-6	tert-Butylbenzene		290			
95-63-6	1,2,4-Trimethylbenzene		1700			
135-98-8	sec-Butylbenzene		230	J		
99-87-6	4-Isopropyltoluene		290	U		
	1,3-Dichlorobenzene		290	U		
106-46-7	1,4-Dichlorobenzene		290	U		
104-51-8	n-Butylbenzene		1300			
	1,2-Dichlorobenzene		290	U		
96-12-8	1,2-Dibromo-3-chloropropane		290	Ü		
	1,2,4-Trichlorobenzene		290	U		
	Hexachlorobutadiene	, ,				
87-61-6	1,2,3-Trichlorobenzene 290					
91-20-3	Naphthalene		290	U		

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB56

Lab Name: MI		ODIEC		Contract:	
Tab Mame. MI	IKEM LADOKAI			contract.	
Lab Code: MI	IKEM C	ase No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL	/SED/WATER)	SOIL		Lab Sample ID:	H1787-06A
Sample wt/vol	: 6.10	(g/mL)	G	Lab File ID:	V6G9657.D
Level: (TRACE	or LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: n	ot dec. 1	6		Date Analyzed:	09/24/2009
GC Column: D	B-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract	Volume: 5000)	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
CONCENTRATION	UNITS: (ug/	L or ug/K	(g) UG/KG	Purge Volume: 5	.0 (mL)
CAS NUMBER	२	COMPOUND	NAME	RT	EST. CONC. Q

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01	· · · · · · · · · · · · · · · · · · ·	Unknown-01	10.728	9100	J
02		Unknown-02	11.074	11000	J
03		Unknown-03	11.287	9600	J
04		Unknown-04	11.671	13000	J
05		Unknown-05	12.036	12000	J
06		Unknown-06	13.325	31000	J
07	1000152-47-3	trans-Decalin, 2~methyl-	13.636	14000	NJ
08	2958-76-1	Naphthalene, decahydro-2-met	13.879	24000	NJ
09		Unknown-07	14.311	8700	J
10		Unknown-08	14.475	9000	J
11		Unknown-09	14.962	15000	J
12		Unknown-10	15.029	21000	J
	E9667961	Total Alkanes	N/A		

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB16 29-30

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.: H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE	R) SOIL		Lab Sample ID:	H1787-07A
Sample wt/vol: 5.	.60 (g/mL) G		Lab File ID:	V6G9519.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	20		Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume: _		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		5.6	U
74-87-3	Chloromethane		5.6	U
75-01-4	Vinyl chloride		5.6	U
	Bromomethane		5.6	U
75-00-3	Chloroethane		5.6	U
75-69-4	Trichlorofluoromethane		5.6	U
75-35-4	1,1-Dichloroethene		5.6	U
67-64-1	Acetone		5.6	Ū
74-88-4	Iodomethane		5.6	U
75-15-0	Carbon disulfide		5.6	U
75-09-2	Methylene chloride		5.6	U
156-60-5	trans-1,2-Dichloroethene		5.6	U
1634-04-4	Methyl tert-butyl ether		5.6	U
75-34-3	1,1-Dichloroethane		5.6	U
108-05-4	Vinyl acetate		5.6	U
78-93-3	2-Butanone		5.6	υ
156-59-2	cis-1,2-Dichloroethene		5.6	υ
594-20-7	2,2-Dichloropropane		5.6	U
74-97-5	Bromochloromethane		5.6	U
67-66-3	Chloroform		5.6	υ
71-55-6	1,1,1-Trichloroethane		5.6	U
563-58-6	1,1-Dichloropropene		5.6	U
56-23-5	Carbon tetrachloride		5.6	U
107-06-2	1,2-Dichloroethane		5.6	U
71-43-2	Benzene		5.6	U
79-01-6	Trichloroethene		5.6	U
78-87-5	1,2-Dichloropropane		5.6	υ
74-95-3	Dibromomethane		5.6	U
75-27-4	Bromodichloromethane		5.6	U
10061-01-5	cis-1,3-Dichloropropene		5.6	U
	4-Methyl-2-pentanone		5.6	U
	Toluene		5.6	U
10061-02-6	trans-1,3-Dichloropropene		5.6	U
79-00-5	1,1,2-Trichloroethane		5.6	U
	1,3-Dichloropropane	······	5.6	U

1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB16 29-30

Lab Name: MITKEM LABOF	ATORIES		Contract:	
Lab Code: MITKEM	Case No.: H17	87	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL	•	Lab Sample ID:	H1787-07A
Sample wt/vol: 5.	60 (g/mL) G		Lab File ID:	V6G9519.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	20		Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.2	5 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

	· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:	<u> </u>
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.6	Ū
591-78-6	2-Hexanone	5.6	U
124-48-1	Dibromochloromethane	5.6	U
106-93-4	1,2-Dibromoethane	5.6	U
108-90-7	Chlorobenzene	5.6	U
630-20-6	1,1,1,2-Tetrachloroethane	5.6	U
100-41-4	Ethylbenzene	5.6	U
1330-20-7	m,p-Xylene	5.6	U
95-47-6	o-Xylene	5.6	U
1330-20-7	Xylene (Total)	5.6	U
100-42-5	Styrene	5.6	U
75-25-2	Bromoform	5.6	U
98-82-8	Isopropylbenzene	5.6	U
79-34-5	1,1,2,2-Tetrachloroethane	5.6	U
108-86-1	Bromobenzene	5.6	U
96-18-4	1,2,3-Trichloropropane	5.6	U
	n-Propylbenzene	5.6	U
95-49-8	2-Chlorotoluene	5.6	U
108-67-8	1,3,5-Trimethylbenzene	5.6	U
106-43-4	4-Chlorotoluene	5.6	U
98-06-6	tert-Butylbenzene	5.6	U
95-63-6	1,2,4-Trimethylbenzene	5.6	U
135-98-8	sec-Butylbenzene	5.6	U
99-87-6	4-Isopropyltoluene	5.6	U
541-73-1	1,3-Dichlorobenzene	5.6	U
106-46-7	1,4-Dichlorobenzene	5.6	U
	n-Butylbenzene	5.6	U
95-50-1	1,2-Dichlorobenzene	5.6	U
96-12-8	1,2-Dibromo-3-chloropropane	5.6	U
120-82-1	1,2,4-Trichlorobenzene	5.6	U
87-68-3	Hexachlorobutadiene	5.6	U
87-61-6	1,2,3-Trichlorobenzene	5.6	U
91-20-3	Naphthalene	5.6	U

EPA SAMPLE NO.

à.

SB16 29-30

5.9

NJ

Lab Name:	MITKEM LABO	DRATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.:	SH1787
Matrix: (S	OIL/SED/WATH	ER) SOIL			Lab Sample ID:	H1787-07A	
Sample wt/	vol: 5	5.60 (g/mL)	G		Lab File ID:	V6G9519.D	
Level: (TR	ACE or LOW/N	MED) LOW			Date Received:	09/17/2009	
% Moisture	: not dec.	20			Date Analyzed:	09/20/2009	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	STR
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRAT	ION UNITS:	(ug/L or ug/K	ig) UG,	/KG	Purge Volume: 10).0	(mL)
CAS NUI	MBER	COMPOUND	NAME		RT	EST. CONC.	Q
01	Unknow	n-01			12.026	6.6	J

12.890

N/A

1636-39-1 1,1'-Bicyclopentyl E9667961 Total Alkanes 1 EPA-designated Registry Number.

SW846

02

EPA SAMPLE NO.

SB12B19-20

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	H1787-08A
Sample wt/vol: 5.	60 (g/mL)	G	Lab File ID:	V6G9520.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	14		Date Analyzed:	09/20/2009
GC Column: DB-624	ID:	0.25 (mm)) Dilution Factor:	1.0
Soil Extract Volume:		(uL)) Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	G Q
75-71-8	Dichlorodifluoromethane	5.2	2 U
74-87-3	Chloromethane	5.2	2 U
75-01-4	Vinyl chloride	5.2	2 U
	Bromomethane	5.2	2 U
75-00-3	Chloroethane	5.2	2 U
75-69-4	Trichlorofluoromethane	5.2	2 U
75-35-4	1,1-Dichloroethene	5.2	2 0
67-64-1	Acetone	5.2	2 U
74-88-4	Iodomethane	5.2	2 U
• 75-15-0	Carbon disulfide	5.2	2 U
75-09-2	Methylene chloride	5.2	2 U
156-60-5	trans-1,2-Dichloroethene	5.2	2 U
	Methyl tert-butyl ether	5.2	2 U
75-34-3	1,1-Dichloroethane	5.2	2 U
108-05-4	Vinyl acetate	5.2	2 U
	2-Butanone	5.2	2 U
156-59-2	cis-1,2-Dichloroethene	5.2	2 U
594-20-7	2,2-Dichloropropane	5.2	2 U
	Bromochloromethane	5.2	2 U
67-66-3	3 Chloroform	.5.2	2 U
71-55-6	1,1,1-Trichloroethane	5.2	2 U
563-58-6	5 1,1-Dichloropropene	5.2	2 U
	Carbon tetrachloride	5.2	2 U
107-06-2	2 1,2-Dichloroethane	5.2	2 U
71-43-2	Benzene	5.2	2 U
79-01-6	Trichloroethene	5.2	2 U
78-87-5	1,2-Dichloropropane	5.2	2 U .
	B Dibromomethane	5.2	2 U
75-27-4	Bromodichloromethane	5.2	2 U
10061-01-5	cis-1,3-Dichloropropene	5.2	
108-10-1	4-Methyl-2-pentanone	5.2	2 U
	3 Toluene	5.2	2 U
	5 trans-1,3-Dichloropropene	5.2	
	1,1,2-Trichloroethane	5.2	2 U
) 1,3-Dichloropropane	5.2	2 U

EPA SAMPLE NO.

Lab Name:	MITKEM LABOR	ATORIES		Contract:	
Lab Code:	MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SC	DIL/SED/WATER	SOIL		Lab Sample ID:	H1787-08A
Sample wt/v	vol: 5.	60 (g/mL)	G	Lab File ID:	V6G9520.D
Level: (TRA	ACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture:	not dec.	14		Date Analyzed:	09/20/2009
GC Column:	DB-624	ID:	0.25 (m	n) Dilution Factor:	1.0
Soil Extrac	ct Volume:		(u]	L) Soil Aliquot Vol	ume: (uL)
Purge Volum	ne: 10.0		(m]	_)	

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.2	U
591-78-6	2-Hexanone	5.2	U
124-48-1	Dibromochloromethane	5.2	U
106-93-4	1,2-Dibromoethane	5.2	U
108-90-7	Chlorobenzene	5.2	U
630-20-6	1,1,1,2-Tetrachloroethane	5.2	U
100-41-4	Ethylbenzene	5.2	U
1330-20-7	m,p-Xylene	5.2	U
95-47-6	o-Xylene	5.2	U
1330-20-7	Xylene (Total)	5.2	U
100-42-5	Styrene	5.2	U
75-25-2	Bromoform	5.2	U
98-82-8	Isopropylbenzene	5.2	U
79-34-5	1,1,2,2-Tetrachloroethane	5.2	U
108-86-1	Bromobenzene	5.2	Ŭ
96-18-4	1,2,3-Trichloropropane	5.2	U
103-65-1	n-Propylbenzene	5.2	U
95-49-8	2-Chlorotoluene	5.2	U
108-67-8	1,3,5-Trimethylbenzene	5.2	U
106-43-4	4-Chlorotoluene	5.2	U
98-06-6	tert-Butylbenzene	5.2	U
95-63-6	1,2,4-Trimethylbenzene	5.2	U
135-98-8	sec-Butylbenzene	5.2	U
99-87-6	4-Isopropyltoluene	5.2	U
541-73-1	1,3-Dichlorobenzene	5.2	U
106-46-7	1,4-Dichlorobenzene	5.2	U
104-51-8	n-Butylbenzene	5.2	U
95-50-1	1,2-Dichlorobenzene	5.2	U
96-12-8	1,2-Dibromo-3-chloropropane	5.2	U
120-82-1	1,2,4-Trichlorobenzene	5.2	U
87-68-3	Hexachlorobutadiene	5.2	U
87-61-6	1,2,3-Trichlorobenzene	5.2	U
91-20-3	Naphthalene	5.2	U

EPA SAMPLE NO.

SB12B19-20

Lab Name:	MITKEM LAB	ORATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.:	SH1787
Matrix: (S	OIL/SED/WAT	TER) SOIL			Lab Sample ID:	H1787-08A	
Sample wt/	vol:	5.60 (g/mL)	G		Lab File ID:	V6G9520.D	
Level: (TR	ACE or LOW/	MED) LOW			Date Received:	09/17/2009	
% Moisture	: not dec.	14			Date Analyzed:	09/20/2009	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRAT	ION UNITS:	(ug/L or ug/k	(g) U(G/KG	Purge Volume: 10).0	(mL)
CAS NUN	MBER	COMPOUND	NAME		RT	EST. CONC.	Q
ES	9667961Total	Alkanes			N/A		

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB12B23.5-24.5

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER)	SOIL		Lab Sample ID:	H1787-09A
Sample wt/vol: 5.1	0 (g/mL)	G	Lab File ID:	V6G9658.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	17		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 50	00	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

······································		CONCENTRATION UNIT	CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q	
75-71-8	Dichlorodifluoromethane		U		
74-87-3	Chloromethane		350	U	
75-01-4	Vinyl chloride		350	U	
74-83-9	Bromomethane		350	U	
75-00-3	Chloroethane		350	U	
75-69-4	Trichlorofluoromethane		350	U	
75-35-4	1,1-Dichloroethene		350	U	
67-64-1	Acetone	······································	350	U	
74-88-4	Iodomethane		350	U	
75-15-0	Carbon disulfide	· · · · · · · · · · · · · · · · · · ·	350	U	
75-09-2	Methylene chloride		350	U	
	trans-1,2-Dichloroethene		350	U	
1634-04-4	Methyl tert-butyl ether		350	U	
	1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	350	U	
108-05-4	Vinyl acetate		U		
	2-Butanone		U		
156-59-2	cis-1,2-Dichloroethene		350	U	
594-20-7	2,2-Dichloropropane		350	U	
74-97-5	Bromochloromethane		350	U	
67-66-3	Chloroform		350	U	
71-55-6	1,1,1-Trichloroethane		350	U	
563-58-6	1,1-Dichloropropene		350	U	
56-23-5	Carbon tetrachloride		350	U	
107-06-2	1,2-Dichloroethane		350	U	
71-43-2	Benzene		350	U	
79-01-6	Trichloroethene		350	U	
78-87-5	1,2-Dichloropropane		350	U	
	Dibromomethane	· · · · · · · · · · · · · · · · · · ·	350	Ŭ	
75-27-4	Bromodichloromethane		350	U	
10061-01-5	cis-1,3-Dichloropropene	·····	350	U	
	4-Methyl-2-pentanone		350	U	
	Toluene		U		
10061-02-6	trans-1,3-Dichloropropene		350	U	
79-00-5	1,1,2-Trichloroethane		350	U	
142-28-9	1,3-Dichloropropane		350	U	

1B - FORM I VOA-2

EPA SAMPLE NO.

SB12B23.5-24.5

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABOF	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE	R) SOIL		Lab Sample ID:	H1787-09A
Sample wt/vol: 5.	10 (g/mL)	G	Lab File ID:	V6G9658.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	17		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL) Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND		/KG Q
127-18-4	Tetrachloroethene	350	U
591-78-6	2-Hexanone	350	U
124-48-1	Dibromochloromethane	350	U
106-93-4	1,2-Dibromoethane	350	U
108-90-7	Chlorobenzene	350	U
630-20-6	1,1,1,2-Tetrachloroethane	350	U
100-41-4	Ethylbenzene	350	U
1330-20-7	m,p-Xylene	350	U
95-47-6	o-Xylene	350	U
1330-20-7	Xylene (Total)	350	U
100-42-5	Styrene	350	U
75-25-2	Bromoform	350	U
98-82-8	Isopropylbenzene	350	U
79-34-5	1,1,2,2-Tetrachloroethane	350	U
108-86-1	Bromobenzene	350	U
96-18-4	1,2,3-Trichloropropane	350	U
103-65-1	n-Propylbenzene	350	U
95-49-8	2-Chlorotoluene	350	U
108-67-8	1,3,5-Trimethylbenzene	350	U
106-43-4	4-Chlorotoluene	350	U
98-06-6	tert-Butylbenzene	350	U
95-63-6	1,2,4-Trimethylbenzene	350	U
135-98-8	sec-Butylbenzene	350	U
99-87-6	4-Isopropyltoluene	350	U
541-73-1	1,3-Dichlorobenzene	350	U
106-46-7	1,4-Dichlorobenzene	350	U
104-51-8	n-Butylbenzene	350	U
95-50-1	1,2-Dichlorobenzene	350	U
96-12-8	1,2-Dibromo-3-chloropropane	350	Ŭ
	1,2,4-Trichlorobenzene	350	U
87-68-3	Hexachlorobutadiene	350	U
87-61-6	1,2,3-Trichlorobenzene	350	U
	Naphthalene	350	U

EPA SAMPLE NO.

SB12B23.5-24.5

Lab Name: MITKEM LABORATORIES	Contract:		
Lab Code: MITKEM Case No.: H1787	Mod. Ref No.: SDG No.: SH1787		
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: H1787-09A		
Sample wt/vol: 5.10 (g/mL) G	Lab File ID: V6G9658.D		
Level: (TRACE or LOW/MED) MED	Date Received: 09/17/2009		
% Moisture: not dec. 17	Date Analyzed: 09/24/2009		
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0		
Soil Extract Volume: 5000 (uL)	Soil Aliquot Volume: 100.00 (uL)		
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 5.0 (mL)		
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q		
01 Unknown-01	11.667 7800 J		
02 17302-28-2 Nonane, 2,6-dimethyl-	12.032 10000 NJ		
03 Unknown-02	13.261 21000 J		
04 Unknown-03	13.316 8100 J		
05 Unknown-04	13.462 14000 J		
06 Unknown-05	13.778 8300 J		
07 Unknown-06	13.881 10000 J		
08 Unknown-07	14.040 7800 J		

14.332

14.472

14.903

15.116

N/A

E9667961 Total Alkanes 1 EPA-designated Registry Number.

Unknown-08

Unknown-09

Unknown-10

1000245-49-5 3-Heptafluorobutyroxytrideca

SW846

11000

31000

11000

82000

J

J

NJ

J

09

10

11

12

EPA SAMPLE NO.

SB12B29-30

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SC)IL/SED/WATER	R) SOIL		<u>.</u>	Lab Sample ID:	H1787-10A
Sample wt/v	rol: <u>4</u> .	80 (g/mL)	G		Lab File ID:	V6G9521.D
Level: (TRA	CE/LOW/MED)	LOW			Date Received:	09/17/2009
% Moisture:	not dec.	16			Date Analyzed:	09/20/2009
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	t Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volum	ne: 10.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	6.2	U
74-87-3	Chloromethane	6.2	U
75-01-4	Vinyl chloride	6.2	U
74-83-9	Bromomethane	6.2	U
75-00-3	Chloroethane	6.2	U
75-69-4	Trichlorofluoromethane	6.2	ט
75-35-4	1,1-Dichloroethene	6.2	U
67-64-1	Acetone	6.2	U
74-88-4	Iodomethane	6.2	U
75-15-0	Carbon disulfide	6.2	U
75-09-2	Methylene chloride	6.2	U
156-60-5	trans-1,2-Dichloroethene	6.2	U
1634-04-4	Methyl tert-butyl ether	6.2	U
75-34-3	1,1-Dichloroethane	6.2	U
108-05-4	Vinyl acetate	6.2	Ú
78-93-3	2-Butanone	6.2	U
156-59-2	cis-1,2-Dichloroethene	6.2	U
594-20-7	2,2-Dichloropropane	6.2	U
74-97-5	Bromochloromethane	6.2	U
67-66-3	Chloroform	6.2	U
71-55-6	1,1,1-Trichloroethane	6.2	U
563-58-6	1,1-Dichloropropene	6.2	U
56-23-5	Carbon tetrachloride	6.2	U
107-06-2	2 1,2-Dichloroethane	6.2	U
71-43-2	Benzene	6.2	U
79-01-6	5 Trichloroethene	6.2	U
78-87-5	1,2-Dichloropropane	6.2	U
	B Dibromomethane	6.2	U
75-27-4	Bromodichloromethane	6.2	U
10061-01-5	cis-1,3-Dichloropropene	6.2	U
108-10-1	4-Methyl-2-pentanone	6.2	U
	3 Toluene	6.2	Ŭ
10061-02-6	trans-1,3-Dichloropropene	6.2	U
	1,1,2-Trichloroethane	6.2	U
142-28-9	1,3-Dichloropropane	6.2	U

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SB12B29-30

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: <u>H1787</u>	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL	Lab Sample ID:	H1787-10A
Sample wt/vol: 4.	80 (g/mL) G	Lab File ID:	V6G9521.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	09/17/2009
% Moisture: not dec.	16	Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25 (1	mm) Dilution Factor:	1.0
Soil Extract Volume:	. (uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0	(:	nL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	6.2	U
591-78-6	2-Hexanone	6.2	υ
124-48-1	Dibromochloromethane	6.2	U
106-93-4	1,2-Dibromoethane	6.2	U
108-90-7	Chlorobenzene	6.2	U
630-20-6	1,1,1,2-Tetrachloroethane	6.2	U
100-41-4	Ethylbenzene	6.2	U
1330-20-7	m,p-Xylene	6.2	U
95-47-6	o-Xylene	6.2	U
1330-20-7	Xylene (Total)	6.2	U
100-42-5	Styrene	6.2	U
75-25-2	Bromoform	6.2	U
98-82-8	Isopropylbenzene	6.2	U
79-34-5	1,1,2,2-Tetrachloroethane	6.2	υ
108-86-1	Bromobenzene	6.2	U
96-18-4	1,2,3-Trichloropropane	6.2	U
103-65-1	n-Propylbenzene	6.2	U
95-49-8	2-Chlorotoluene	6.2	U
108-67-8	1,3,5-Trimethylbenzene	6.2	U
106-43-4	4-Chlorotoluene	6.2	U
98-06-6	tert-Butylbenzene	6.2	U
95-63-6	1,2,4-Trimethylbenzene	6.2	U
135-98-8	sec-Butylbenzene	6.2	U
99-87-6	4-Isopropyltoluene	6.2	U
541-73-1	1,3-Dichlorobenzene	6.2	U
106-46-7	1,4-Dichlorobenzene	6.2	U
104-51-8	n-Butylbenzene	6.2	U
95-50-1	1,2-Dichlorobenzene	6.2	U
96-12-8	1,2-Dibromo-3-chloropropane	6.2	U
120-82-1	1,2,4-Trichlorobenzene	6.2	U
87-68-3	Hexachlorobutadiene	6.2	U
87-61-6	1,2,3-Trichlorobenzene	6.2	U
	Naphthalene	6.2	U

EPA SAMPLE NO.

SB12B29-30

Lab Name:	MITKEM LAB	DRATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.:	SH1787
Matrix: (S	OIL/SED/WAT	ER) SOIL			Lab Sample ID:	H1787-10A	
Sample wt/	vol:	4.80 (g/mL)	G		Lab File ID:	V6G9521.D	
Level: (TR	ACE or LOW/	MED) LOW			Date Received:	09/17/2009	
% Moisture	: not dec.	16			Date Analyzed:	09/20/2009	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	· .
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRAT	ION UNITS:	(ug/L or ug/k	(g) U(G/KG	Purge Volume: 10).0	(mL)
CAS NUN	MBER	COMPOUND	NAME		RT	EST. CONC.	Q
ES	9667961 Total	Alkanes			N/A		

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB12-19-20

Lab Name:	MITKEM LABOR	ATORIES		Contract:	
Lab Code:	MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (So	OIL/SED/WATER	SOIL		Lab Sample ID:	H1787-11A
Sample wt/	vol: 5.	00 (g/mL)	G	Lab File ID:	V6G9522.D
Level: (TR	ACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture	: not dec.	14		Date Analyzed:	09/20/2009
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/H	KG Q
75-71-8	Dichlorodifluoromethane	5.	8 U
74-87-3	Chloromethane	5.	8 U
75-01-4	Vinyl chloride	5.	8 U
74-83-9	Bromomethane	5.	8 U
75-00-3	Chloroethane	5.	8 U
75-69-4	Trichlorofluoromethane	5.	8 U
75-35-4	1,1-Dichloroethene	5.	8 U
67-64-1	Acetone	5.	8 U
74-88-4	Iodomethane	5.	8 U
75-15-0	Carbon disulfide	5.	8 U
75-09-2	Methylene chloride	5.	8 U
156-60-5	trans-1,2-Dichloroethene	5.	8 U
1634-04-4	Methyl tert-butyl ether	5.	8 U
75-34-3	1,1-Dichloroethane	5.	8 U
108-05-4	Vinyl acetate	5.	8 U
78-93-3	2-Butanone	5.	8 U
156-59-2	cis-1,2-Dichloroethene	5.	8 U
594-20-7	2,2-Dichloropropane	5.	8 U
74-97-5	Bromochloromethane	5.	8 U
67-66-3	Chloroform	5.	8 U
71-55-6	1,1,1-Trichloroethane	5.	8 U
563-58-6	1,1-Dichloropropene	5.	8 U
56-23-5	Carbon tetrachloride	5.	8 U
107-06-2	1,2-Dichloroethane	5.	8 U
71-43-2	Benzene	5.	8 U
79-01-6	Trichloroethene	5.	8 U
78-87-5	1,2-Dichloropropane	5.	
	Dibromomethane	5.	8 U
	Bromodichloromethane	5.	8 U
10061-01-5	cis-1,3-Dichloropropene	5.	8 U
	4-Methyl-2-pentanone	5.	8 U
	Toluene	5.	8 U
	trans-1,3-Dichloropropene	5.	8 U
	1,1,2-Trichloroethane	5.	8 U
142-28-9	1,3-Dichloropropane	5.	8 U

EPA SAMPLE NO.

SB12-19-20

Lab Name: MITKE	M LABOR	ATORIES			Contract:	
Lab Code: MITKE	M	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SH	D/WATER) SOIL			Lab Sample ID:	H1787-11A
Sample wt/vol:	5.	00 (g/mL)	G		Lab File ID:	V6G9522.D
Level: (TRACE/LO	W/MED)	LOW			Date Received:	09/17/2009
% Moisture: not	dec.	14			Date Analyzed:	09/20/2009
GC Column: DB-6	524	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Vol	.ume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 1	.0.0			(mL)		

		CONCENTRATION UNIT:	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		5.8	U.
591-78-6	2-Hexanone		5.8	U
124-48-1	Dibromochloromethane	· · · · · · · · · · · · · · · · · · ·	5.8	U
106-93-4	1,2-Dibromoethane		5.8	U
108-90-7	Chlorobenzene		5.8	U
630-20-6	1,1,1,2-Tetrachloroethane		5.8	U
100-41-4	Ethylbenzene		5.8	U
1330-20-7	m,p-Xylene	······	5.8	U
95-47-6	o-Xylene		5.8	U
1330-20-7	Xylene (Total)		5.8	U
100-42-5	Styrene		5.8	U
75-25-2	Bromoform		5.8	U
98-82-8	Isopropylbenzene		5.8	U
79-34-5	1,1,2,2-Tetrachloroethane		5.8	U
108-86-1	Bromobenzene		5.8	U
96-18-4	1,2,3-Trichloropropane		5.8	U
103-65-1	n-Propylbenzene		5.8	U
	2-Chlorotoluene		5.8	U
108-67-8	1,3,5-Trimethylbenzene		5.8	U
106-43-4	4-Chlorotoluene		5.8	U
98-06-6	tert-Butylbenzene		5.8	U
95-63-6	1,2,4-Trimethylbenzene		5.8	U
135-98-8	sec-Butylbenzene		5.8	U
99-87-6	4-Isopropyltoluene		5.8	U
541-73-1	1,3-Dichlorobenzene		5.8	U
106-46-7	1,4-Dichlorobenzene		5.8	U
104-51-8	n-Butylbenzene		5.8	U
95-50-1	1,2-Dichlorobenzene		5.8	U
96-12-8	1,2-Dibromo-3-chloropropane		5.8	U
120-82-1	1,2,4-Trichlorobenzene		5.8	U
87-68-3	Hexachlorobutadiene		5.8	U
87-61-6	1,2,3-Trichlorobenzene		5.8	U
91-20-3	Naphthalene		5.8	U

EPA SAMPLE NO. SB12-19-20

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Name: MILLEM LABORATORIES		Concract.		
Lab Code: MITKEM Case No	D.: H1787	Mod. Ref No.:	SDG No.:	SH1787
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	H1787-11A	
Sample wt/vol: 5.00 (g/m	L) G	Lab File ID:	V6G9522.D	
Level: (TRACE or LOW/MED) LOW	1	Date Received:	09/17/2009	
% Moisture: not dec. 14		Date Analyzed:	09/20/2009	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRATION UNITS: (ug/L or)	ıg/Kg) UG/KG	Purge Volume: 1	0.0	(mL)
CAS NUMBER COMPO	DUND NAME	RT	EST. CONC.	Q
E9667961 Total Alkanes		N/A		

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB12-	23.	5-24	.5

Lab Name: MITKEM LA	BORATORIES	Contract:	
Lab Code: MITKEM	Case No.: H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WA	TER) SOIL	Lab Sample ID:	H1787-12A
Sample wt/vol:	5.60 (g/mL) G	Lab File ID:	V6G9659.D
Level: (TRACE/LOW/ME	D) MED	Date Received:	09/17/2009
% Moisture: not dec.	17	Date Analyzed:	09/24/2009
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:	5000	(uL) Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNIT	S:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	Dichlorodifluoromethane		320	U
74-87-3	Chloromethane		320	U
75-01-4	Vinyl chloride		320	U
74-83-9	Bromomethane		320	U
75-00-3	Chloroethane		320	U
75-69-4	Trichlorofluoromethane		320	U
75-35-4	1,1-Dichloroethene		320	U
67-64-1	Acetone		320	U
74-88-4	Iodomethane		320	U
75-15-0	Carbon disulfide		320	U
75-09-2	Methylene chloride		320	U
156-60-5	trans-1,2-Dichloroethene		320	U
1634-04-4	Methyl tert-butyl ether		320	U
75-34-3	1,1-Dichloroethane		320	U
108-05-4	Vinyl acetate	· · · · · · · · · · · · · · · · · · ·	320	U
78-93-3	2-Butanone		320	U
156-59-2	cis-1,2-Dichloroethene		320	U
594-20-7	2,2-Dichloropropane		320	U
74-97-5	Bromochloromethane		320	U
67-66-3	Chloroform		320	U
71-55-6	1,1,1-Trichloroethane		320	U
	1,1-Dichloropropene		320	U
56-23-5	Carbon tetrachloride		320	U
107-06-2	1,2-Dichloroethane		320	U
71-43-2	Benzene		320	U
79-01-6	Trichloroethene		320	U
78-87-5	1,2-Dichloropropane		320	U
74-95-3	Dibromomethane		320	U
75-27-4	Bromodichloromethane		320	U
10061-01-5	cis-1,3-Dichloropropene		320	U
	4-Methyl-2-pentanone		320	U
108-88-3			320	U
10061-02-6	trans-1,3-Dichloropropene		320	U
79-00-5	1,1,2-Trichloroethane		3700	
142-28-9	1,3-Dichloropropane		320	U

SOM_002

EPA SAMPLE NO.

Т	SB12-23.5-24	. 5

Lab Name: MITKEM LABO	RATORIES		Contract:	B
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE	R) SOIL		Lab Sample ID:	H1787-12A
Sample wt/vol: 5	.60 (g/mL)	G	Lab File ID:	V6G9659.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	17		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	5000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		320	U
591-78-6	2-Hexanone		320	U
124-48-1	Dibromochloromethane		320	U
106-93-4	1,2-Dibromoethane		320	U
108-90-7	Chlorobenzene		320	U
630-20-6	1,1,1,2-Tetrachloroethane		320	U
100-41-4	Ethylbenzene		320	U
1330-20-7	m,p-Xylene		320	U
95-47-6	o-Xylene	· · · · · · · · · · · · · · · · · · ·	320	U
1330-20-7	Xylene (Total)		320	U
100-42-5	Styrene		320	U
75-25-2	Bromoform		320	U
98-82-8	Isopropylbenzene		320	U
79-34-5	1,1,2,2-Tetrachloroethane		320	U
108-86-1	Bromobenzene		320	U
96-18-4	1,2,3-Trichloropropane		320	U
	n-Propylbenzene		320	U
95-49-8	2-Chlorotoluene		320	U
108-67-8	1,3,5-Trimethylbenzene		320	U
106-43-4	4-Chlorotoluene		320	U
98-06-6	tert-Butylbenzene		260	J
95-63-6	1,2,4-Trimethylbenzene		310	J
135-98-8	sec-Butylbenzene		220	J
99-87-6	4-Isopropyltoluene		320	U
541-73-1	1,3-Dichlorobenzene		150	J
106-46-7	1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	320	U
104-51-8	n-Butylbenzene	· ·	1100	
	1,2-Dichlorobenzene		320	U
96-12-8	1,2-Dibromo-3-chloropropane		320	U
	1,2,4-Trichlorobenzene		320	U
87-68-3	Hexachlorobutadiene		320	U
87-61-6	1,2,3-Trichlorobenzene	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	320	U
91-20-3	Naphthalene		320	U

EPA SAMPLE NO.

SB12-23.5-24.5

Lab Name: MITK	EM LABORATORIES	Contract:		
Lab Code: MITK	EM Case No.: H1787	Mod. Ref No.:	SDG No.:	SH1787
Matrix: (SOIL/S	ED/WATER) SOIL	Lab Sample ID:	H1787-12A	
Sample wt/vol:	5.60 (g/mL) G	Lab File ID:	V6G9659.D	
Level: (TRACE o	r LOW/MED) MED	Date Received:	09/17/2009	
% Moisture: not	dec. 17	Date Analyzed:	09/24/2009	
GC Column: DB-	624 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Vo	lume: 5000 (uL)	Soil Aliquot Vol	ume: 100.00	(uL)
CONCENTRATION U	NITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 5.	.0	(mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01	Unknown-01	10.991	13000	J
02	Unknown-02	11.283	11000	J
03	Unknown-03	11.909	17000	J
04 17302-28-2	Nonane, 2,6-dimethyl-	12.037	14000	NJ
05	Unknown-04	12.298	10000	J
06	Unknown-05	13.320	39000	J
07	Unknown-06	13,467	10000	.т

06		Unknown-05	13.320	39000	J
07 [Unknown-06	13.467	10000	J
08	1002-43-3	Undecane, 3-methyl-	13.984	15000	NJ
29		Unknown-07	14.318	10000	J
10	17301-23-4	Undecane, 2,6-dimethyl-	14.476	11000	NJ
.1		Unknown-08	14.963	19000	J
2		Unknown-09	15.115	20000	J
	E9667961	Total Alkanes	N/A		
1		atad Daviature Numbau		· · · · · · · · · · · · · · · · · · ·	

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB12-29-30

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE)	R) SOIL		Lab Sample ID:	H1787-13A
Sample wt/vol: 4	.60 (g/mL)	G	Lab File ID:	V6G9561.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	15		Date Analyzed:	09/22/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	·	(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

······································	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	6.4	U
74-87-3	Chloromethane	6.4	U
75-01-4	Vinyl chloride	6.4	U
74-83-9	Bromomethane	6.4	U
75-00-3	Chloroethane	6.4	U
75-69-4	Trichlorofluoromethane	6.4	U
75-35-4	1,1-Dichloroethene	6.4	U
67-64-1	Acetone	6.4	U
74-88-4	Iodomethane	6.4	U
75-15-0	Carbon disulfide	6.4	U
	Methylene chloride	6.4	U
156-60-5	trans-1,2-Dichloroethene	6.4	U
1634-04-4	Methyl tert-butyl ether	6.4	U
75-34-3	1,1-Dichloroethane	6.4	U
108-05-4	Vinyl acetate	6.4	U
78-93-3	2-Butanone	6.4	U
156-59-2	cis-1,2-Dichloroethene	6.4	U
594-20-7	2,2-Dichloropropane	6.4	U
74-97-5	Bromochloromethane	6.4	U
67-66-3	Chloroform	6.4	U
71-55-6	1,1,1-Trichloroethane	6.4	U
563-58-6	1,1-Dichloropropene	6.4	U
56-23-5	Carbon tetrachloride	6.4	U
107-06-2	1,2-Dichloroethane	6.4	U
71-43-2	Benzene	6.4	U .
79-01-6	Trichloroethene	6.4	U
78-87-5	1,2-Dichloropropane	6.4	U
74-95-3	Dibromomethane	6.4	U
	Bromodichloromethane	6.4	U
10061-01-5	cis-1,3-Dichloropropene	6.4	U
108-10-1	4-Methyl-2-pentanone	6.4	U
	Toluene	6.4	U
	trans-1,3-Dichloropropene	6.4	υ
	1,1,2-Trichloroethane	6.4	U
142-28-9	1,3-Dichloropropane	6.4	U

EPA SAMPLE NO.

SB12-29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.: H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	H1787-13A
Sample wt/vol: 4.	60 (g/mL) G		Lab File ID:	V6G9561.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	15		Date Analyzed:	09/22/2009
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	6.4	U
591-78-6	2-Hexanone	6.4	U
124-48-1	Dibromochloromethane	6.4	U
106-93-4	1,2-Dibromoethane	6.4	U
108-90-7	Chlorobenzene	6.4	U
630-20-6	1,1,1,2-Tetrachloroethane	6.4	U
100-41-4	Ethylbenzene	6.4	U
1330-20-7	m,p-Xylene	6.4	U
95-47-6	o-Xylene	6.4	U ·
1330-20-7	Xylene (Total)	6.4	U
100-42-5	Styrene	6.4	U
75-25-2	Bromoform	6.4	U
98-82-8	Isopropylbenzene	6.4	U
79-34-5	1,1,2,2-Tetrachloroethane	6.4	U
108-86-1	Bromobenzene	6.4	U
96-18-4	1,2,3-Trichloropropane	6.4	U
103-65-1	n-Propylbenzene	6.4	U
95-49-8	2-Chlorotoluene	6.4	U
108-67-8	1,3,5-Trimethylbenzene	6.4	U
106-43-4	4-Chlorotoluene	6.4	U
98-06-6	tert-Butylbenzene	6.4	U
95-63-6	1,2,4-Trimethylbenzene	6.4	U
	sec-Butylbenzene	6.4	U
99-87-6	4-Isopropyltoluene	6.4	U
541-73-1	1,3-Dichlorobenzene	6.4	U
106-46-7	1,4-Dichlorobenzene	6.4	U
104-51-8	n-Butylbenzene	6.4	U
95-50-1	1,2-Dichlorobenzene	6.4	U
	1,2-Dibromo-3-chloropropane	6.4	U
120-82-1	1,2,4-Trichlorobenzene	6.4	U
	Hexachlorobutadiene	6.4	U
	1,2,3-Trichlorobenzene	6.4	U
91-20-3	Naphthalene	6.4	U

EPA SAMPLE NO.

SB12-29-30

Lab Name: MITKE	M LABORATORIES			Contract:		
Lab Code: MITKE	M Case N	o.: H1787		Mod. Ref No.:	SDG No.:	SH1787
Matrix: (SOIL/SE	D/WATER) SOII	L		Lab Sample ID:	H1787-13A	
Sample wt/vol:	4.60 (g/m	nL) G		Lab File ID:	V6G9561.D	
Level: (TRACE or	LOW/MED) LOW	J		Date Received:	09/17/2009	
% Moisture: not	dec. 15			Date Analyzed:	09/22/2009	
GC Column: DB-6	24	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Vol	ume:		(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRATION UN	ITS: (ug/L or	ug/Kg) U	G/KG	Purge Volume: 10).0	(mL)
CAS NUMBER	COMPO	OUND NAME		RT	EST. CONC.	Q

	CAS NUMBER	COMPOUND NAME	RI	EST. CONC.		Q
01		Unknown-01	15.322	15	J	
02		Unknown-02	16.624	300	J	
	E96679€1	Total Alkanes	N/A			
		L D D L D L D L D L D L D L D L D L D L				

¹EPA-designated Registry Number.

EPA SAMPLE NO.

SB12-29-30MS

Lab Name: MITKEM LAB	ORATO	RIES			Contract:	
Lab Code: MITKEM	Ca	se No.:	Н1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WAT	ER)	SOIL			Lab Sample ID:	H1787-13AMS
Sample wt/vol:	5.20	(g/mL)	G		Lab File ID:	V6G9784.D
Level: (TRACE/LOW/MED) LO	W			Date Received:	09/17/2009
% Moisture: not dec.	15				Date Analyzed:	09/29/2009
GC Column: DB-624		ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:				(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0				(mL)		

	1	CONCENTRATION UNIT	'S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
	Dichlorodifluoromethane		46	
	Chloromethane		52	
75-01-4	Vinyl chloride		51	
	Bromomethane		57	
75-00-3	Chloroethane		56	
75-69-4	Trichlorofluoromethane	······································	66	
75-35-4	1,1-Dichloroethene	······································	51	
67-64-1	Acetone		96	
74-88-4	Iodomethane		53	
75-15-0	Carbon disulfide		51	
75-09-2	Methylene chloride		48	
156-60-5	trans-1,2-Dichloroethene		51	
1634-04-4	Methyl tert-butyl ether		48	
75-34-3	1,1-Dichloroethane		50	
108-05-4	Vinyl acetate		46	
78-93-3	2-Butanone		64	
156-59-2	cis-1,2-Dichloroethene		49	
594-20-7	2,2-Dichloropropane		52	
74-97-5	Bromochloromethane		51	
67-66-3	Chloroform		50	
71-55-6	1,1,1-Trichloroethane		52	
563-58-6	1,1-Dichloropropene		52	
56-23-5	Carbon tetrachloride		55	
107-06-2	1,2-Dichloroethane		51	
71-43-2	Benzene		49	
79-01-6	Trichloroethene		51	
78-87-5	1,2-Dichloropropane		49	
	Dibromomethane		50	
75-27-4	Bromodichloromethane		50	· ·
10061-01-5	cis-1,3-Dichloropropene		50	
108-10-1	4-Methyl-2-pentanone		50	
108-88-3		· · · · · · · · · · · · · · · · · · ·	50	
10061-02-6	trans-1,3-Dichloropropene	·······	50	
	1,1,2-Trichloroethane		50	
142-28-9	1,3-Dichloropropane		52	

SOM_002

EPA SAMPLE NO.

SB12-29-30MS

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATEF	R) SOIL			Lab Sample ID:	H1787-13AMS
Sample wt/vol: 5.	20 (g/mL)	G		Lab File ID:	V6G9784.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	09/17/2009
% Moisture: not dec.	15			Date Analyzed:	09/29/2009
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0			(mL)		

	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	51	
591-78-6	2-Hexanone	65	
124-48-1	Dibromochloromethane	53	
106-93-4	1,2-Dibromoethane	53	
108-90-7	Chlorobenzene	49	
630-20-6	1,1,1,2-Tetrachloroethane	52	
100-41-4	Ethylbenzene	51	
1330-20-7	m,p-Xylene	100	
95-47-6	o-Xylene	52	·····
	Xylene (Total)	150	
100-42-5	Styrene	52	
75-25-2	Bromoform	54	
98-82-8	Isopropylbenzene	49	
	1,1,2,2-Tetrachloroethane	51	
	Bromobenzene	51	
96-18-4	1,2,3-Trichloropropane	56	
	n-Propylbenzene	. 49	
	2-Chlorotoluene	50	
108-67-8	1,3,5-Trimethylbenzene	47	
	4-Chlorotoluene	49	
98-06-6	tert-Butylbenzene	47	
95-63-6	1,2,4-Trimethylbenzene	48	
135-98-8	sec-Butylbenzene	45	
99-87-6	4-Isopropyltoluene	45	
541-73-1	1,3-Dichlorobenzene	49	
106-46-7	1,4-Dichlorobenzene	47	
104-51-8	n-Butylbenzene	44	
95-50-1	1,2-Dichlorobenzene	48	
96-12-8	1,2-Dibromo-3-chloropropane	51	
	1,2,4-Trichlorobenzene	45	
87-68-3	Hexachlorobutadiene	33	
87-61-6	1,2,3-Trichlorobenzene	45	
	Naphthalene	49	

oouu

1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB1	2-1	29-	30MSD
-----	-----	-----	-------

Lab Name: MITKEM LABC	RATORIES	Contract:	
Lab Code: MITKEM	Case No.: <u>H1787</u>	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE	CR) SOIL	Lab Sample ID:	H1787-13AMSD
Sample wt/vol: 4	.90 (g/mL) G	Lab File ID:	V6G9785.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	09/17/2009
% Moisture: not dec.	15	Date Analyzed:	09/29/2009
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 10.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/	/KG Q
75-71-8	B Dichlorodifluoromethane	51	
74-87-3	Chloromethane	55	
75-01-4	Vinyl chloride	51	
74-83-9	Bromomethane	63	
75-00-3	Chloroethane	59	
75-69-4	Trichlorofluoromethane	61	
75-35-4	1,1-Dichloroethene	57	
67-64-1	Acetone	100	
74-88-4	Iodomethane	57	
75-15-0) Carbon disulfide	56	
75-09-2	2 Methylene chloride	52	·····
	trans-1,2-Dichloroethene	54	
1634-04-4	Methyl tert-butyl ether	52	· · · · ·
75-34-3	3 1,1-Dichloroethane	55	
108-05-4	Vinyl acetate	50	
	3 2-Butanone	66	
156-59-2	cis-1,2-Dichloroethene	55	
594-20-7	2,2-Dichloropropane	58	
74-97-5	Bromochloromethane	55	
67-66-3	Chloroform	55	
71-55-6	5 1,1,1-Trichloroethane	59	
563-58-6	5 1,1-Dichloropropene	58	
56-23-5	Carbon tetrachloride	62	
107-06-2	2 1,2-Dichloroethane	54	
71-43-2	Benzene	54	
79-01-6	5 Trichloroethene	56	
78-87-5	1,2-Dichloropropane	53	
74-95-3	B Dibromomethane	55	
75-27-4	Bromodichloromethane	54	
10061-01-5	cis-1,3-Dichloropropene	54	
108-10-1	4-Methyl-2-pentanone	54	
108-88-3	70luene	55	
	5 trans-1,3-Dichloropropene	54	
	1,1,2-Trichloroethane	54	
142-28-9	1,3-Dichloropropane	57	

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB12-29-30MSD

Lab Name: 1	MITKEM LABOR	ATORIES			Contract:	·	
Lab Code: 1	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787	
Matrix: (SO	IL/SED/WATER	.) SOIL			Lab Sample ID:	H1787-13AMSD	
Sample wt/v	ol: <u>4</u> .	90 (g/mL)	G		Lab File ID:	V6G9785.D	
Level: (TRA	CE/LOW/MED)	LOW			Date Received:	09/17/2009	
<pre>% Moisture:</pre>	not dec.	15			Date Analyzed:	09/29/2009	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extrac	t Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volum	e: 10.0	,		(mL)			

	Τ	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) U	g/kg Q
127-18-4	Tetrachloroethene		57
591-78-6	2-Hexanone		59
124-48-1	Dibromochloromethane		59
106-93-4	1,2-Dibromoethane	1	56
108-90-7	Chlorobenzene]	55
630-20-6	1,1,1,2-Tetrachloroethane		57
100-41-4	Ethylbenzene	Ę	57
1330-20-7	m,p-Xylene	12	L O
95-47-6	o-Xylene		56
	Xylene (Total)	1	70
100-42-5		Ę	57
75-25-2	Bromoform	3	58
98-82-8	Isopropylbenzene		56
79-34-5	1,1,2,2-Tetrachloroethane		56
108-86-1	Bromobenzene	2	56
96-18-4	1,2,3-Trichloropropane		50
	n-Propylbenzene	3	55
95-49-8	2-Chlorotoluene	1	56
108-67-8	1,3,5-Trimethylbenzene		54
106-43-4	4-Chlorotoluene	1	54
98-06-6	tert-Butylbenzene	5	54
95-63-6	1,2,4-Trimethylbenzene		54
135-98-8	sec-Butylbenzene		52
99-87-6	4-Isopropyltoluene		52
541-73-1	1,3-Dichlorobenzene		54
106-46-7	1,4-Dichlorobenzene	1	54
104-51-8	n-Butylbenzene		51.
	1,2-Dichlorobenzene		53
	1,2-Dibromo-3-chloropropane		57
	1,2,4-Trichlorobenzene		51
87-68-3	Hexachlorobutadiene		38
87-61-6	1,2,3-Trichlorobenzene		52
91-20-3	Naphthalene		55

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FB091609

Lab Name: MITKEM LABOF	ATORIES		Contract:	
Lab Code: MITKEM	Case No.: H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	H1787-14A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V2L2639.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.		<u>, </u>	Date Analyzed:	09/25/2009
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	. 5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U .
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

SOM_002

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

FB091609

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (So	OIL/SED/WATER	WATER			Lab Sample ID:	H1787-14A
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L2639.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	09/17/2009
% Moisture	: not dec.				Date Analyzed:	09/25/2009
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0) U
591-78-6	2-Hexanone	5.0) U
124-48-1	Dibromochloromethane	5.0) U
106-93-4	1,2-Dibromoethane	5.0) U
108-90-7	Chlorobenzene	5.0	U U
630-20-6	1,1,1,2-Tetrachloroethane	5.0) U
100-41-4	Ethylbenzene	5.0) U
1330-20-7	m,p-Xylene	5.0) U
95-47-6	o-Xylene	5.0) U
1330-20-7	Xylene (Total)	5.0) U
100-42-5	Styrene	5.0) U
	Bromoform	5.0) Ū
98-82-8	Isopropylbenzene	5.0) U
	1,1,2,2-Tetrachloroethane	5.0) U
	Bromobenzene	5.0) U
96-18-4	1,2,3-Trichloropropane	5.0) U
	n-Propylbenzene	5.0) U .
	2-Chlorotoluene	5.0) U
108-67-8	1,3,5-Trimethylbenzene	5.0) U
106-43-4	4-Chlorotoluene	5.0) U
	tert-Butylbenzene	5.0) U
	1,2,4-Trimethylbenzene	5.0) U
135-98-8	sec-Butylbenzene	5.0) U
99-87-6	4-Isopropyltoluene	5.0) U .
541-73-1	1,3-Dichlorobenzene	5.0) U
	1,4-Dichlorobenzene	5.0) Ū
	n-Butylbenzene	5.0) U
	1,2-Dichlorobenzene	5.0) U
	1,2-Dibromo-3-chloropropane	5.0	U U
	1,2,4-Trichlorobenzene	5.0) U
	Hexachlorobutadiene	5.0) U
	1,2,3-Trichlorobenzene	5.0) U
	Naphthalene	5.0	

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

FB091609

Lab Nam	Ne: MITKEM L	ABORATORIES		Contract:		
Lab Cod	le: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787	
Matrix:	(SOIL/SED/W	MATER) WATER		Lab Sample ID:	H1787-14A	
Sample	wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V2L2639.D	
Level:	(TRACE or LC	W/MED) LOW		Date Received:	09/17/2009	
% Moist	ure: not dec	· .		Date Analyzed:	09/25/2009	
GC Colu	mn: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0	
Soil Ex	tract Volume	•:	(uL)	Soil Aliquot Vol	ume:(u	L)
CONCENT	RATION UNITS	: (ug/L or ug/	Kg) UG/L	Purge Volume: 5.	0 (m	L)
CAS	NUMBER	COMPOUNI	NAME	RT	EST. CONC. Q	
	E9667961 Tota	al Alkanes		N/A		

E9667961 Total Alkanes 1 EPA-designated Registry Number.

SW846

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DW19-20

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (S	OIL/SED/WATER	() SOIL			Lab Sample ID:	H1787-15A
Sample wt/	vol: 5.	40 (g/mL)	G		Lab File ID:	V6G9523.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	09/17/2009
% Moisture	: not dec.	16			Date Analyzed:	09/20/2009
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volu	me: 10.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	5.5	U
74-87-3	Chloromethane	5.5	U
75-01-4	Vinyl chloride	5.5	U
74-83-9	Bromomethane	5.5	U
75-00-3	Chloroethane	5.5	U
75-69-4	Trichlorofluoromethane	5.5	U
75-35-4	1,1-Dichloroethene	5.5	U
67-64-1	Acetone	5.5	U
74-88-4	Iodomethane	5.5	U
75-15-0	Carbon disulfide	5.5	U
75-09-2	Methylene chloride	5.5	U
156-60-5	trans-1,2-Dichloroethene	5.5	U
1634-04-4	Methyl tert-butyl ether	5.5	U
75-34-3	1,1-Dichloroethane	5.5	U
108-05-4	Vinyl acetate	5.5	U
	2-Butanone	5.5	U
156-59-2	cis-1,2-Dichloroethene	5.5	U
594-20-7	2,2-Dichloropropane	5.5	U .
	Bromochloromethane	5.5	U
67-66-3	Chloroform	5.5	U
71-55-6	1,1,1-Trichloroethane	5.5	U
563-58-6	1,1-Dichloropropene	5.5	U
56-23-5	Carbon tetrachloride	5.5	U
107-06-2	1,2-Dichloroethane	5.5	U
71-43-2	Benzene	5.5	U
79-01-6	Trichloroethene	5.5	U
78-87-5	1,2-Dichloropropane	5.5	U
	Dibromomethane	5.5	U
75-27-4	Bromodichloromethane	5.5	U
10061-01-5	cis-1,3-Dichloropropene	5.5	U
108-10-1	4-Methyl-2-pentanone	5.5	U
108-88-3		5.5	U
10061-02-6	trans-1,3-Dichloropropene	5.5	U
	1,1,2-Trichloroethane	5.5	Ŭ
142-28-9	1,3-Dichloropropane	5.5	U

SOM_002

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DW19-20

Lab Name: MITKEM LABOF	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	H1787-15A
Sample wt/vol: 5.	40 (g/mL)	G	Lab File ID:	V6G9523.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	16		Date Analyzed:	09/20/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.5	U
591-78-6	2-Hexanone	5.5	U
124-48-1	Dibromochloromethane	5.5	U
106-93-4	1,2-Dibromoethane	5.5	U
108-90-7	Chlorobenzene	5.5	U
630-20-6	1,1,1,2-Tetrachloroethane	5.5	U
100-41-4	Ethylbenzene	5.5	U
1330-20-7	m,p-Xylene	5.5	U
95-47-6	o-Xylene	5.5	U
1330-20-7	Xylene (Total)	5.5	U
100-42-5	Styrene	5.5	U
75-25-2	Bromoform	5.5	U
98-82-8	Isopropylbenzene	5.5	U
	1,1,2,2-Tetrachloroethane	5.5	U
	Bromobenzene	5.5	U
96-18-4	1,2,3-Trichloropropane	5.5	U
	n-Propylbenzene	5.5	U
	2-Chlorotoluene	5.5	U
108-67-8	1,3,5-Trimethylbenzene	5.5	U
	4-Chlorotoluene	5.5	U
98-06-6	tert-Butylbenzene	5.5	U
	1,2,4-Trimethylbenzene	5.5	Ū
	sec-Butylbenzene	5.5	U
	4-Isopropyltoluene	5.5	U
	1,3-Dichlorobenzene	5.5	U
	1,4-Dichlorobenzene	5.5	U
	n-Butylbenzene	5.5	U
	1,2-Dichlorobenzene	5.5	U
	1,2-Dibromo-3-chloropropane	5.5	U
	1,2,4-Trichlorobenzene	5.5	U
	Hexachlorobutadiene	5.5	U
	1,2,3-Trichlorobenzene	5.5	U
	Naphthalene	5.5	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DW19-20

Lab Name:	MITKEM LABO	RATORIES		Contract:	
Lab Code:	MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (S	OIL/SED/WATE	R) SOIL		Lab Sample ID:	H1787-15A
Sample wt/	vol: 5	.40 (g/mL)	G	Lab File ID:	V6G9523.D
Level: (TR	ACE or LOW/M	IED) LOW		Date Received:	09/17/2009
% Moisture	: not dec.	16		Date Analyzed:	09/20/2009
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	: 1.0
Soil Extra	ct Volume:		(uL)	Soil Aliquot Vol	lume:(uL)
CONCENTRAT	ION UNITS: (ug/L or ug/K	g) UG/KG	Purge Volume: 1	0.0 (mL)
CAS NUN	MBER	COMPOUND	NAME	RT	EST. CONC. Q

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	- V
)1	Unknown-01	15.318	28	J
2	Unknown-02	15.379	7.8	J
3	Unknown-03	15.707	33	J
4	Unknown-04	15.902	280	J
E96679	<pre> {1 Total Alkanes </pre>	N/A		

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DW23.5-24.5

Lab Name: MITKEM LABC	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATH	ER) SOIL		Lab Sample ID:	H1787-16A
Sample wt/vol: 5	5.60 (g/mL)	G	Lab File ID:	V6G9655.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	13		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	5000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	290	U
74-87-3	Chloromethane	290	U
75-01-4	Vinyl chloride	290	U
74-83-9	Bromomethane	290	U
75-00-3	Chloroethane	290	U
75-69-4	Trichlorofluoromethane	290	U
75-35-4	1,1-Dichloroethene	290	U
67-64-1	Acetone	290	U
74-88-4	Iodomethane	290	U
75-15-0	Carbon disulfide	290	U
75-09-2	Methylene chloride	290	U
	trans-1,2-Dichloroethene	290	U
1634-04-4	Methyl tert-butyl ether	290	U
75-34-3	1,1-Dichloroethane	290	U
108-05-4	Vinyl acetate	290	U
78-93-3	2-Butanone	290	U
156-59-2	cis-1,2-Dichloroethene	290	U
594-20-7	2,2-Dichloropropane	290	U
	Bromochloromethane	290	U
67-66-3	Chloroform	290	U
71-55-6	1,1,1-Trichloroethane	290	U
563-58-6	1,1-Dichloropropene	290	U
56-23-5	Carbon tetrachloride	290	U
107-06-2	1,2-Dichloroethane	290	U
71-43-2	Benzene	290	U
79-01-6	Trichloroethene	290	U
78-87-5	1,2-Dichloropropane	290	U
74-95-3	Dibromomethane	290	U
75-27-4	Bromodichloromethane	290	U
	cis-1,3-Dichloropropene	290	U
	4-Methyl-2-pentanone	290	U
	Toluene	290	U
	trans-1,3-Dichloropropene	290	U
	1,1,2-Trichloroethane	290	U
142-28-9	1,3-Dichloropropane	290	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DW23.5-24.5

Lab Name: MITKEM LABOF	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.; SH1787
Matrix: (SOIL/SED/WATE	R) SOIL		Lab Sample ID:	H1787-16A
Sample wt/vol: 5.	60 (g/mL)	G	Lab File ID:	V6G9655.D
Level: (TRACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture: not dec.	13		Date Analyzed:	09/24/2009
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene	······	290	U
591-78-6	2-Hexanone		290	U
124-48-1	Dibromochloromethane		290	U
106-93-4	1,2-Dibromoethane		290	U
108-90-7	Chlorobenzene		290	U
630-20-6	1,1,1,2-Tetrachloroethane		290	U
100-41-4	Ethylbenzene		290	U
1330-20-7	m,p-Xylene		290	U
95-47-6	o-Xylene		290	U
1330-20-7	Xylene (Total)		290	U
100-42-5	Styrene		290	U
	Bromoform		290	U
98-82-8	Isopropylbenzene		290	U
	1,1,2,2-Tetrachloroethane		290	U
	Bromobenzene		290	Ū
96-18-4	1,2,3-Trichloropropane		290	U
	n-Propylbenzene		290	U
	2-Chlorotoluene		290	U
108-67-8	1,3,5-Trimethylbenzene		1300	
106-43-4	4-Chlorotoluene	· · · · · · · · · · · · · · · · · · ·	290	U
98-06-6	tert-Butylbenzene		290	U
	1,2,4-Trimethylbenzene		160	J
135-98-8	sec-Butylbenzene		290	U
99-87-6	4-Isopropyltoluene		140	J
	1,3-Dichlorobenzene		290	U
	1,4-Dichlorobenzene		290	U
	n-Butylbenzene		670	
	1,2-Dichlorobenzene		290	U
	1,2-Dibromo-3-chloropropane	· · · · · · · · · · · · · · · · · · ·	290	U
	1,2,4-Trichlorobenzene		290	U
	Hexachlorobutadiene		290	U
87-61-6	1,2,3-Trichlorobenzene		290	U
	Naphthalene		290	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DW23.5-24.5

Lab Name: MITKEM	LABORATORIES	Contract:		
Lab Code: MITKEM	Case No.: H1787	Mod. Ref No.:	SDG No.:	SH1787
Matrix: (SOIL/SEE	/WATER) SOIL	Lab Sample ID:	H1787-16A	
Sample wt/vol:	5.60 (g/mL) G	Lab File ID:	V6G9655.D	
Level: (TRACE or	LOW/MED) MED	Date Received:	09/17/2009	
% Moisture: not c	lec. 13	Date Analyzed:	09/24/2009	
GC Column: DB-62	4 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Volu	me: 5000 (uL)	Soil Aliquot Vol	ume: 100.00	(uL)
CONCENTRATION UNI	TS: (ug/L or ug/Kg) UG/KG	Purge Volume: 5.	.0	(mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01 2216-30-0 H	eptane, 2,5-dimethyl-	8.717	19000	NJ
	nknown-01	11.236	9100	J
03 U	nknown-02	11.668	9300	J
04 2884-06-2 N	onane, 2,3-dimethyl-	12.033	12000	NJ
05 U:	nknown-03	13.262	15000	J
06 U:	nknown-04	13.322	9000	J
07 U:	nknown-05	13.785	8900	J
08 U	nknown-06	13.888	11000	J
09 1002-43-3 U	ndecane, 3-methyl-	13.979	12000	NJ
10 U	nknown-07	14.308	12000	J
11 U:	nknown-08	14.472	36000	J
	nknown-09	15.117	50000	J
E9667961 T	otal Alkanes	N/A		

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOI

EPA SAMPLE NO.

DW29-30

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL	Lab Sample ID:	H1787-17A
Sample wt/vol: 4.	80 (g/mL) G	Lab File ID:	V6G9524.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	09/17/2009
% Moisture: not dec.	17	Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)	

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	6.3	U
74-87-3	Chloromethane	6.3	U
75-01-4	Vinyl chloride	6.3	U
74-83-9	Bromomethane	6.3	U
75-00-3	Chloroethane	6.3	U
75-69-4	Trichlorofluoromethane	6.3	U
75-35-4	1,1-Dichloroethene	6.3	U
67-64-1	Acetone	6.3	U
74-88-4	Iodomethane	6.3	U
75-15-0	Carbon disulfide	6.3	U
75-09-2	Methylene chloride	6.3	U
156-60-5	trans-1,2-Dichloroethene	6.3	U
1634-04-4	Methyl tert-butyl ether	6.3	U
75-34-3	1,1-Dichloroethane	6.3	U
108-05-4	Vinyl acetate	6.3	U
	2-Butanone	6.3	U
156-59-2	cis-1,2-Dichloroethene	6.3	U
594-20-7	2,2-Dichloropropane	6.3	U
74-97-5	Bromochloromethane	6.3	U
67-66-3	Chloroform	6.3	U
71-55-6	1,1,1-Trichloroethane	6.3	U
563-58-6	1,1-Dichloropropene	6.3	U
56-23-5	Carbon tetrachloride	6.3	U
107-06-2	1,2-Dichloroethane	6.3	U
71-43-2	Benzene	6.3	U
79-01-6	Trichloroethene	6.3	U
78-87-5	1,2-Dichloropropane	6.3	U
74-95-3	Dibromomethane	6.3	U
75-27-4	Bromodichloromethane	6.3	U
10061-01-5	cis-1,3-Dichloropropene	6.3	U
	4-Methyl-2-pentanone	6.3	U
108-88-3	Toluene	6.3	U
	trans-1,3-Dichloropropene	6.3	U
	1,1,2-Trichloroethane	6.3	U
142-28-9	1,3-Dichloropropane	6.3	U

1B - FORM I VOA-2 VOLATILE

EPA SAMPLE NO.

ЪЕ	ORGANICS	ANALYSIS	DATA	SHEET	

DW29-30

Lab Name: MITKEM	I LABORA	TORIES			Contract:	
Lab Code: MITKEM	[Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SEE	/WATER)	SOIL			Lab Sample ID:	H1787-17A
Sample wt/vol:	4.8	0 (g/mL)	G		Lab File ID:	V6G9524.D
Level: (TRACE/LOW	/MED)	LOW			Date Received:	09/17/2009
% Moisture: not c	lec.	17			Date Analyzed:	09/20/2009
GC Column: DB-62	24	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volu	ume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10	.0			(mL)		

[·		CONCENTRATION UNITS:	<u> </u>
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	6.3	U
591-78-6	2-Hexanone	6.3	U
124-48-1	Dibromochloromethane	6.3	U
106-93-4	1,2-Dibromoethane	6.3	U
108-90-7	Chlorobenzene	6.3	U
630-20-6	1,1,1,2-Tetrachloroethane	6.3	U.
100-41-4	Ethylbenzene	6.3	U
1330-20-7	m,p-Xylene	6.3	U
95-47-6	o-Xylene	6.3	U
1330-20-7	Xylene (Total)	6.3	U
100-42-5	Styrene	6.3	U
75-25-2	Bromoform	6.3	U
98-82-8	Isopropylbenzene	6.3	U
79-34-5	1,1,2,2-Tetrachloroethane	6.3	U
108-86-1	Bromobenzene	6.3	U
96-18-4	1,2,3-Trichloropropane	6.3	U
103-65-1	n-Propylbenzene	6.3	U
95-49-8	2-Chlorotoluene	6.3	U
108-67-8	1,3,5-Trimethylbenzene	6.3	U
106-43-4	4-Chlorotoluene	6.3	U
98-06-6	tert-Butylbenzene	6.3	U
95-63-6	1,2,4-Trimethylbenzene	6.3	U
135-98-8	sec-Butylbenzene	6.3	U
	4-Isopropyltoluene	6.3	U
541-73-1	1,3-Dichlorobenzene	6.3	U
	1,4-Dichlorobenzene	6.3	U
	n-Butylbenzene	6.3	U
	1,2-Dichlorobenzene	6.3	U
96-12-8	1,2-Dibromo-3-chloropropane	6.3	U
	1,2,4-Trichlorobenzene	6.3	U
87-68-3	Hexachlorobutadiene	6.3	U
87-61-6	1,2,3-Trichlorobenzene	6.3	U
91-20-3	Naphthalene	6.3	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DW29-30

Lab Name: MIT	KEM LABORATORIES		Contract:	
Lab Code: MIT	KEM Case No	.: <u>H1787</u>	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/	SED/WATER) SOIL		Lab Sample ID:	H1787-17A
Sample wt/vol:	4.80 (g/m	L) G	Lab File ID:	V6G9524.D
Level: (TRACE	or LOW/MED) LOW	r	Date Received:	09/17/2009
% Moisture: no	ot dec. 17		Date Analyzed:	09/20/2009
GC Column: DB	3-624	ED: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract V	Volume:	(uL)	Soil Aliquot Vol	ume:(uL)
CONCENTRATION	UNITS: (ug/L or u	ıg/Kg) UG/KG	Purge Volume: 10).0 (mL)
CAS NUMBER	COMPO	UND NAME	RT	EST. CONC. Q
E96679	(ITotal Alkanes		N/A	

¹EPA-designated Registry Number.

SW846

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DWB19-20

Lab Name: MITKEM LABOR	RATORIES	Contract:	
Lab Code: MITKEM	Case No.: H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE)	R)	Lab Sample ID:	H1787-18A
Sample wt/vol: 4	.60 (g/mL) G	Lab File ID:	V6G9525.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	09/17/2009
% Moisture: not dec.	13	Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 10.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	_ Q
75-71-8	Dichlorodifluoromethane	6.2	U
74-87-3	Chloromethane	6.2	U
75-01-4	Vinyl chloride	6.2	U
74-83-9	Bromomethane	6.2	U
75-00-3	Chloroethane	6.2	U
75-69-4	Trichlorofluoromethane	6.2	U
75-35-4	1,1-Dichloroethene	6.2	U
67-64-1	Acetone	6.2	U
74-88-4	Iodomethane	6.2	U
75-15-0	Carbon disulfide	6.2	U
75-09-2	Methylene chloride	6.2	U
156-60-5	trans-1,2-Dichloroethene	6.2	U
1634-04-4	Methyl tert-butyl ether	6.2	U
75-34-3	1,1-Dichloroethane	6.2	U
108-05-4	Vinyl acetate	6.2	U
78-93-3	2-Butanone	6.2	U
156-59-2	cis-1,2-Dichloroethene	6.2	U
594-20-7	2,2-Dichloropropane	6.2	U
74-97-5	Bromochloromethane	6.2	U
67-66-3	Chloroform	6.2	U
71-55-6	1,1,1-Trichloroethane	6.2	U
	1,1-Dichloropropene	6.2	U
	Carbon tetrachloride	6.2	U
107-06-2	1,2-Dichloroethane	6.2	U
71-43-2	Benzene	6.2	U
79-01-6	Trichloroethene	6.2	U
78-87-5	1,2-Dichloropropane	6.2	U
	Dibromomethane	6.2	U
75-27-4	Bromodichloromethane	6.2	υ
10061-01-5	cis-1,3-Dichloropropene	6.2	U
	4-Methyl-2-pentanone	6.2	U
	Toluene	6.2	U
	trans-1,3-Dichloropropene	6.2	U
	1,1,2-Trichloroethane	6.2	U
	1,3-Dichloropropane	6.2	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DWB1		

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	H1787		Mod. Ref No.:	SDG No.: SH1787
Matrix: (SC	DIL/SED/WATER	.) SOIL			Lab Sample ID:	H1787-18A
Sample wt/v	vol: 4.	60 (g/mL)	G		Lab File ID:	V6G9525.D
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	09/17/2009
% Moisture:	not dec.	13			Date Analyzed:	09/20/2009
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	ct Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volum	ne: 10.0		I	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
	Tetrachloroethene	6.2	U
591-78-6	2-Hexanone	6.2	U
124-48-1	Dibromochloromethane	6.2	U
106-93-4	1,2-Dibromoethane	6.2	U
108-90-7	Chlorobenzene	6.2	U
	1,1,1,2-Tetrachloroethane	6.2	U
100-41-4	Ethylbenzene	6.2	U
	m,p-Xylene	6.2	U
	o-Xylene	6.2	U
	Xylene (Total)	6.2	U
100-42-5		6.2	U
	Bromoform	6.2	U
	Isopropylbenzene	6.2	U
	1,1,2,2-Tetrachloroethane	6.2	U
	Bromobenzene	6.2	U
96-18-4	1,2,3-Trichloropropane	6.2	U
	n-Propylbenzene	6.2	U
95-49-8	2-Chlorotoluene	6.2	U
	1,3,5-Trimethylbenzene	6.2	U
106-43-4	4-Chlorotoluene	6.2	U
	tert-Butylbenzene	6.2	U
	1,2,4-Trimethylbenzene	6.2	U
	sec-Butylbenzene	6.2	U
	4-Isopropyltoluene	6.2	U
	1,3-Dichlorobenzene	6.2	U
	1,4-Dichlorobenzene	6.2	U
	n-Butylbenzene	6.2	U
	1,2-Dichlorobenzene	6.2	U
	1,2-Dibromo-3-chloropropane	6.2	U
	1,2,4-Trichlorobenzene	6.2	U
	Hexachlorobutadiene	6.2	U
	1,2,3-Trichlorobenzene	6.2	U
91-20-3	Naphthalene	6.2	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DWB19-20

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: H1787	Mod. Ref No.: SDG No.:
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: H1787-18A
Sample wt/vol: 4.60 (g/mL) G	Lab File ID: V6G9525.D
Level: (TRACE or LOW/MED) LOW	Date Received: 09/17/2009
% Moisture: not dec. 13	Date Analyzed: 09/20/2009
GC Column: DB-624 ID: 0.25 (m	n) Dilution Factor: 1.0
Soil Extract Volume:(u	L) Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E9667961 Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DWB23.5-24.5

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL	Lab Sample ID:	H1787-19A
Sample wt/vol: 4.	60 (g/mL) G	Lab File ID:	V6G9730.D
Level: (TRACE/LOW/MED)	MED	Date Received:	09/17/2009
% Moisture: not dec.	16	Date Analyzed:	09/26/2009
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL) Soil Aliquot Volu	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNI	TS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		370	U
74-87-3	Chloromethane		370	U
75-01-4	Vinyl chloride	······································	370	U
74-83-9	Bromomethane		370	U
75-00-3	Chloroethane		370	U
75-69-4	Trichlorofluoromethane		370	U
75-35-4	1,1-Dichloroethene		370	U
67-64-1	Acetone		370	U
74-88-4	Iodomethane	······································	370	U
75-15-0	Carbon disulfide		370	U
75-09-2	Methylene chloride		370	U
	trans-1,2-Dichloroethene		370	U
1634-04-4	Methyl tert-butyl ether		370	U
	1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	370	U
108-05-4	Vinyl acetate		370	U
	2-Butanone		370	U
156-59-2	cis-1,2-Dichloroethene	· · · · · · · · · · · · · · · · · · ·	370	U
594-20-7	2,2-Dichloropropane		370	U
74-97-5	Bromochloromethane		370	U
67-66-3	Chloroform		370	υ
71-55-6	1,1,1-Trichloroethane		370	U
563-58-6	1,1-Dichloropropene		370	U
56-23-5	Carbon tetrachloride		370	Ú
107-06-2	1,2-Dichloroethane		370	U
71-43-2	Benzene		370	U
79-01-6	Trichloroethene		370	U
78-87-5	1,2-Dichloropropane		370	U
	Dibromomethane		370	U.
75-27-4	Bromodichloromethane		370	U
10061-01-5	cis-1,3-Dichloropropene		370	U
108-10-1	4-Methyl-2-pentanone		370	σ
	Toluene		370	U
10061-02-6	trans-1,3-Dichloropropene		370	U
	1,1,2-Trichloroethane		370	U
142-28-9	1,3-Dichloropropane		370	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DWB23.5-24.5

Lab Name:	MITKEM LABOR	ATORIES		Contract:	
Lab Code:	MITKEM	Case No.:	H1787	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SC	OIL/SED/WATER	R) SOIL		Lab Sample ID:	H1787-19A
Sample wt/v	vol: 4.	60 (g/mL)	G	Lab File ID:	V6G9730.D
Level: (TRA	ACE/LOW/MED)	MED		Date Received:	09/17/2009
% Moisture:	: not dec.	16		Date Analyzed:	09/26/2009
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extra	ct Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volur	me: 5.0		(mL)		

		CONCENTRATION UNIT	S:	<u> </u>
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		370	U
591-78-6	2-Hexanone	· · · · · · · · · · · · · · · · · · ·	370	U
124-48-1	Dibromochloromethane		370	U
106-93-4	1,2-Dibromoethane	· · · · · · · · · · · · · · · · · · ·	370	U
108-90-7	Chlorobenzene		370	U
630-20-6	1,1,1,2-Tetrachloroethane		370	U
100-41-4	Ethylbenzene		370	U
1330-20-7	m,p-Xylene		370	U
95-47-6	o-Xylene		370	U
1330-20-7	Xylene (Total)	· · · · · · · · · · · · · · · · · · ·	370	U
100-42-5	Styrene		370	U
75-25-2	Bromoform		370	U
98-82-8	Isopropylbenzene		370	U
79-34-5	1,1,2,2-Tetrachloroethane		370	U
108-86-1	Bromobenzene		370	U
96-18-4	1,2,3-Trichloropropane		370	U
103-65-1	n-Propylbenzene		370	U
95-49-8	2-Chlorotoluene		370	U
108-67-8	1,3,5-Trimethylbenzene		150 .	J
106-43-4	4-Chlorotoluene		370	U
98-06-6	tert-Butylbenzene	*************	330	J
95-63-6	1,2,4-Trimethylbenzene		370	U
135-98-8	sec-Butylbenzene		1600	
99-87-6	4-Isopropyltoluene		2400	
541-73-1	1,3-Dichlorobenzene		370	U
106-46-7	1,4-Dichlorobenzene		370	U
104-51-8	n-Butylbenzene		4400	
95-50-1	1,2-Dichlorobenzene		370	U
96-12-8	1,2-Dibromo-3-chloropropane		370	U
	1,2,4-Trichlorobenzene	//////////////////////////////////////	370	U
87-68-3	Hexachlorobutadiene		370	U
87-61-6	1,2,3-Trichlorobenzene		370	U
	Naphthalene		370	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DWB23.5-24.5

Lab	Name: MITK	EM LABORATORIES	Contract:	L			
Lab	Code: MITK	EM Case No.: H1787	Mod. Ref No.:	SDG No.: 5	SH1787		
Mati	rix: (SOIL/S	ED/WATER) SOIL	Lab Sample ID:	Lab Sample ID: H1787-19A			
Sample wt/vol: 4.60 (g/mL) G			Lab File ID: V6G9730.D				
Level: (TRACE or LOW/MED) MED			Date Received:	09/17/2009			
<pre>% Moisture: not dec. 16</pre>			Date Analyzed:	Date Analyzed: 09/26/2009			
GC (Column: DB-	624 ID: 0.25 (mm)	Dilution Factor: 1.0				
Soi	l Extract Vo	lume: 5000 (uL)	Soil Aliquot Vo	lume: 100.00	(uL)		
CON	CENTRATION U	NITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 5	.0	(mL)		
	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q		
01	638-04-0	Cyclohexane, 1,3-dimethyl-,	7.689	100000	NJ		
02	1678-91-7	Cyclohexane, ethyl-	8.863	180000	NJ		
03	2216-34-4	Octane, 4-methyl-	9.276	25000	NJ		
04	2216-33-3	Octane, 3-methyl-	9.441	17000	NJ		
05		Unknown-01	9.921	18000	J		
06		Unknown-02	10.317	17000	J		
07		Unknown-03	10.730	21000	J		
08		Unknown-04	11.077	20000	J		
09		Unknown-05	11.667	19000	J		
10	493-02-7	Naphthalene, decahydro-, tra	12.902	23000	NJ		

15.025

N/A

E9667961 Total Alkanes 1 EPA-designated Registry Number.

Unknown-06

SW846

18000

J

11

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DWB-29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	N
Lab Code: MITKEM	Case No.: H178	7	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	H1787-20A
Sample wt/vol: 4.	30 (g/mL) G		Lab File ID:	V6G9526.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	09/17/2009
% Moisture: not dec.	14		Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	• • • • • • • • • • • • • • • • • • • •
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Ç Q
75-71-8	Dichlorodifluoromethane	6.8	B U
74-87-3	Chloromethane	6.8	3 U
75-01-4	Vinyl chloride	6.8	B U
74-83-9	Bromomethane	6.8	U U
75-00-3	Chloroethane	6.8	U
75-69-4	Trichlorofluoromethane	6.8	U
75-35-4	1,1-Dichloroethene	6.8	U
67-64-1	Acetone	6.8	U
74-88-4	Iodomethane	6.8	U
75-15-0	Carbon disulfide	6.8	U
75-09-2	Methylene chloride	6.8	U
156-60-5	trans-1,2-Dichloroethene	6.8	U
1634-04-4	Methyl tert-butyl ether	6.8	U
75-34-3	1,1-Dichloroethane	6.8	U
108-05-4	Vinyl acetate	6.8	U
	2-Butanone	6.8	U
156-59-2	cis-1,2-Dichloroethene	6.8	U
594-20-7	2,2-Dichloropropane	6.8	U
74-97-5	Bromochloromethane	6.8	U
67-66-3	Chloroform	6.8	Ŭ
71-55-6	1,1,1-Trichloroethane	6.8	U
563-58-6	1,1-Dichloropropene	6.8	U
56-23-5	Carbon tetrachloride	6.8	U
107-06-2	1,2-Dichloroethane	6.8	U
71-43-2	Benzene	6.8	U
79-01-6	Trichloroethene	6.8	U
78-87-5	1,2-Dichloropropane	6.8	U
	Dibromomethane	6.8	U
75-27-4	Bromodichloromethane	6.8	U
10061-01-5	cis-1,3-Dichloropropene	6.8	U
	4-Methyl-2-pentanone	6.8	U
108-88-3	Toluene	6.8	U
10061-02-6	trans-1,3-Dichloropropene	6.8	U
	1,1,2-Trichloroethane	6.8	U
142-28-9	1,3-Dichloropropane	6.8	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DWB-29-30

Lab Name: MITKEM LABOR	RATORIES	Contract:	••••••••••••••••••••••••••••••••••••••
Lab Code: MITKEM	Case No.: <u>H1787</u>	Mod. Ref No.:	SDG No.: SH1787
Matrix: (SOIL/SED/WATE)	R) SOIL	Lab Sample ID:	H1787-20A
Sample wt/vol: 4	.30 (g/mL) G	Lab File ID:	V6G9526.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	09/17/2009
% Moisture: not dec.	14	Date Analyzed:	09/20/2009
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)	

<u> </u>		CONCENTRATION UNIT	'S:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		6.8	U
591-78-6	2-Hexanone	· · · · · · · · · · · · · · · · · · ·	6.8	U
124-48-1	Dibromochloromethane		6.8	U
106-93-4	1,2-Dibromoethane		6.8	U
108-90-7	Chlorobenzene		6.8	U
630-20-6	1,1,1,2-Tetrachloroethane		6.8	U
100-41-4	Ethylbenzene		6.8	U
	m,p-Xylene		6.8	U
95-47-6	o-Xylene		6.8	U
	Xylene (Total)		6.8	U
100-42-5	Styrene		6.8	U
75-25-2	Bromoform		6.8	U
98-82-8	Isopropylbenzene	· · · · · · · · · · · · · · · · · · ·	6.8	U
79-34-5	1,1,2,2-Tetrachloroethane		6.8	U
108-86-1	Bromobenzene		6.8	U
96-18-4	1,2,3-Trichloropropane		6.8	U
103-65-1	n-Propylbenzene		6.8	U
95-49-8	2-Chlorotoluene	· · ·	6.8	U
108-67-8	1,3,5-Trimethylbenzene		6.8	U
106-43-4	4-Chlorotoluene		6.8	U
98-06-6	tert-Butylbenzene		6.8	U
95-63-6	1,2,4-Trimethylbenzene		6.8	U
135-98-8	sec-Butylbenzene		6.8	U
99-87-6	4-Isopropyltoluene		6.8	U .
541-73-1	1,3-Dichlorobenzene		6.8	U
	1,4-Dichlorobenzene		6.8	U
	n-Butylbenzene		6.8	U
	1,2-Dichlorobenzene		6.8	U
	1,2-Dibromo-3-chloropropane		6.8	U
120-82-1	1,2,4-Trichlorobenzene		6.8	U
87-68-3	Hexachlorobutadiene		6.8	U
87-61-6	1,2,3-Trichlorobenzene		6.8	U
91-20-3	Naphthalene		6.8	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DWB-29-30

Lab Name: MITKEN	I LABORATO	DRIES			Contract:		
Lab Code: MITKEN	1 Ca	ase No.:	H1787		Mod. Ref No.:	SDG No.:	SH1787
Matrix: (SOIL/SE)/WATER)	SOIL			Lab Sample ID:	H1787-20A	
Sample wt/vol:	4.30	(g/mL)	G		Lab File ID:	V6G9526.D	
Level: (TRACE or	LOW/MED)	LOW			Date Received:	09/17/2009	
% Moisture: not a	dec. 14	1			Date Analyzed:	09/20/2009	
GC Column: DB-62	24	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volu				(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRATION UNI	ITS: (ug/]	l or ug/K	g) UG.	/KG	Purge Volume: 10	.0	(mL)
CAS NUMBER		COMPOUND	NAME		RT	EST. CONC.	Q
E9667961 T	otal Alka	nes			N/A		

¹EPA-designated Registry Number.

APPENDIX C

MICROBIAL INSIGHTS DATA PACKAGE SEPTEMBER 2009 SAMPLING EVENT

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Client:	Paul Kareth AECOM Tech Ser 300 Broad Acres Bloomfield, NJ 07	2	Phone: Fax:	(973) 338-6680 (973) 338-1052		
Identifier:	037GI	Date Rec: 09/17/2009	Rep	ort Date: 09/23/2009		
Client Proj	ect #: 95900	Client Project Name: SMS				
Purchase (Order #:					
Analysis R	equested:	CENSUS, PLFA				
Comments	:					

Reviewed By:

Dora M aglis

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

C	lier	nt:
Б	roid	<u>.</u>

AECOM Tech Services (Earth Tech)

roject: SMS				MI Project Number:037GIDate Received:09/17/2009		
nation						
nple ID:		SB 16B 23.5-24.5	SB 16 23.5-24.5	SB 12B 23.5-24.5	SB 12 23.5-24.5	DW 23.5-24.5
ate:		09/15/2009	09/15/2009	09/15/2009	09/15/2009	09/16/2009
		cells/g	cells/g	cells/g	cells/g	cells/g
		ab	ab	ab	ab	ab
Group						
Oxidizing Bacteria	МОВ	8.49E+08	1.28E+09	8.43E+08	9.04E+08	1.29E+09
	nation nple ID: ate: Group	nation nple ID: ate: Group	nation nple ID: SB 16B 23.5-24.5 ate: 09/15/2009 cells/g ab Group	SMS [nation nple ID: SB 16B SB 16 23.5-24.5 23.5-24.5 ate: 09/15/2009 09/15/2009 cells/g cells/g ab ab Group	SMS Date Received: nation SB 16B SB 16 23.5-24.5 SB 12B nple ID: SB 16B SB 16 23.5-24.5 SB 12B 23.5-24.5 09/15/2009 09/15/2009 09/15/2009 cells/g cells/g cells/g cells/g ab ab ab ab	SMS Date Received: 09/17/2009 nation SB 16B SB 16 23.5-24.5 SB 12B SB 12 23.5-24.5 ate: 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 cells/g cells/g cells/g cells/g cells/g cells/g cells/g cells/g ab ab

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited

< = Result not detected

Client:	
Project:	

AECOM Tech Services (Earth Tech) SMS

Sample Information

MI Project Number:	0370
Date Received:	09/1

037GI 09/17/2009

Client Sample ID:		DWB 23.5-24.5	
Sample Date:		09/16/2009	
Units:		cells/g	
Analyst:		ab	
ogenetic Group			
Methane Oxidizing Bacteria	MOB	1.20E+09	

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited < = Result not detected

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Client:	Paul Kareth AECOM Tech Se 300 Broad Acres	rvices (Earth Tech) Drive	Phone:	(973) 338-6680
	Bloomfield, NJ 07		Fax:	(973) 338-1052
Identifier:	037GI	Date Rec: 09/17/2009	Repo	ort Date: 09/29/2009
Client Proj	ect #: 95900	Client Proje	ect Name: SM	IS
Purchase (Order #:			
Analysis R	equested:	CENSUS, PLFA		

Reviewed By:

Swaw & Seuris

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

C	lier	nt:
Б	roid	<u>.</u>

AECOM Tech Services (Earth Tech)

SMS	rvices (Earth	Tech		WI Project Number: Date Received:	037GI 09/17/2009	
nation						
nple ID:		SB 16B 23.5-24.5	SB 16 23.5-24.5	SB 12B 23.5-24.5	SB 12 23.5-24.5	DW 23.5-24.5
ate:		09/15/2009	09/15/2009	09/15/2009	09/15/2009	09/16/2009
		cells/g	cells/g	cells/g	cells/g	cells/g
		ab	ab	ab	ab	ab
Group						
Oxidizing Bacteria	МОВ	8.49E+08	1.28E+09	8.43E+08	9.04E+08	1.29E+09
	nation nple ID: ate: Group	nation nple ID: ate: Group	nation nple ID: SB 16B 23.5-24.5 ate: 09/15/2009 cells/g ab Group	SMS [nation nple ID: SB 16B SB 16 23.5-24.5 23.5-24.5 ate: 09/15/2009 09/15/2009 cells/g cells/g ab ab Group	SMS Date Received: nation SB 16B SB 16 23.5-24.5 SB 12B nple ID: SB 16B SB 16 23.5-24.5 SB 12B 23.5-24.5 09/15/2009 09/15/2009 09/15/2009 cells/g cells/g cells/g cells/g ab ab ab ab	SMS Date Received: 09/17/2009 nation SB 16B SB 16 23.5-24.5 SB 12B SB 12 23.5-24.5 ate: 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 09/15/2009 cells/g cells/g cells/g cells/g cells/g cells/g cells/g cells/g ab ab

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited

< = Result not detected

Client:	
Project:	

AECOM Tech Services (Earth Tech) SMS

Sample Information

MI Project Number:	0370
Date Received:	09/1

037GI 09/17/2009

Client Sample ID:		DWB 23.5-24.5	
Sample Date:		09/16/2009	
Units:		cells/g	
Analyst:		ab	
ogenetic Group			
Methane Oxidizing Bacteria	MOB	1.20E+09	

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited < = Result not detected

Client: Project:	AECOM Tech Services (E SMS	arth Tech)		MI Project Number: Date Received:	037GI 09/17/2009	
ample Infor	mation					
ample Name:		SB 16B 23.5-24.5	SB 16 23.5-24.5	SB 12B 23.5-24.5	SB 12 23.5-24.5	DW 23.5-24.
ample Date:		09/15/2009	09/15/2009	09/15/2009	09/15/2009	09/16/2009
ample Matrix:		Soil	Soil	Soil	Soil	Soil
nalyst:		MG	MG	MG	MG	MG
Biomass						
			4 005 000	4 545 - 00	4 005 000	2.46E+08
Total Bioma	ass (cells/g)	1.72E+08	1.93E+08	1.54E+08	1.00E+08	2.402+00
Community	Structure (% total PLFA)					
	Structure (% total PLFA)	1.72E+08 12.92	1.93E+08 13.69	1.54E+08	1.00±+08	13.26
Community	Structure (% total PLFA)					
Community Firmicutes (Proteobacte	Structure (% total PLFA) TerBrSats)	12.92	13.69	13.52	12.35	13.26
Community Firmicutes (Proteobacte Anaerobic r	Structure (% total PLFA) (TerBrSats) eria (Monos)	12.92 61.74	13.69 59.66	13.52 59.96	12.35 59.24	13.26 59.56
Community Firmicutes (Proteobacte Anaerobic r	Structure (% total PLFA) TerBrSats) eria (Monos) netal reducers (BrMonos) mycetes (MidBrSats)	12.92 61.74 1.63	13.69 59.66 1.89	13.52 59.96 1.61	12.35 59.24 1.40	13.26 59.56 1.79
Community Firmicutes (Proteobacte Anaerobic r SRB/Actino General (Ne	Structure (% total PLFA) TerBrSats) eria (Monos) netal reducers (BrMonos) mycetes (MidBrSats)	12.92 61.74 1.63 1.62	13.69 59.66 1.89 1.59	13.52 59.96 1.61 2.03	12.35 59.24 1.40 1.97	13.26 59.56 1.79 2.25
Community Firmicutes (Proteobacte Anaerobic r SRB/Actino General (Ns Eukaryotes	Structure (% total PLFA) (TerBrSats) eria (Monos) metal reducers (BrMonos) mycetes (MidBrSats) sats)	12.92 61.74 1.63 1.62 21.33 0.78	13.69 59.66 1.89 1.59 22.33	13.52 59.96 1.61 2.03 22.00	12.35 59.24 1.40 1.97 24.35	13.26 59.56 1.79 2.25 22.34
Community Firmicutes (Proteobacte Anaerobic r SRB/Actino General (Ns Eukaryotes	Structure (% total PLFA) (TerBrSats) eria (Monos) metal reducers (BrMonos) mycetes (MidBrSats) sats) (polyenoics) al Status (Proteobacteria onl	12.92 61.74 1.63 1.62 21.33 0.78	13.69 59.66 1.89 1.59 22.33	13.52 59.96 1.61 2.03 22.00	12.35 59.24 1.40 1.97 24.35	13.26 59.56 1.79 2.25 22.34

Legend: NA = Not Analyzed NS = Not Sampled

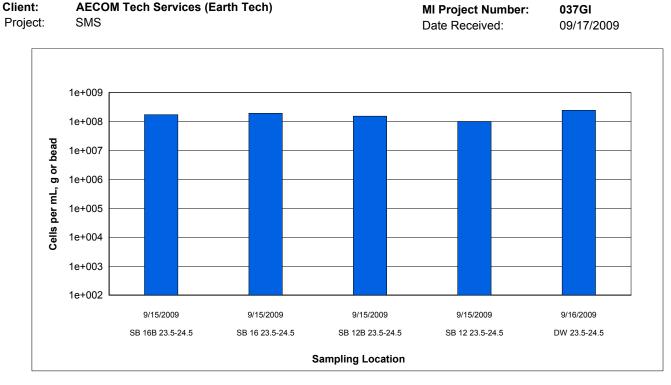
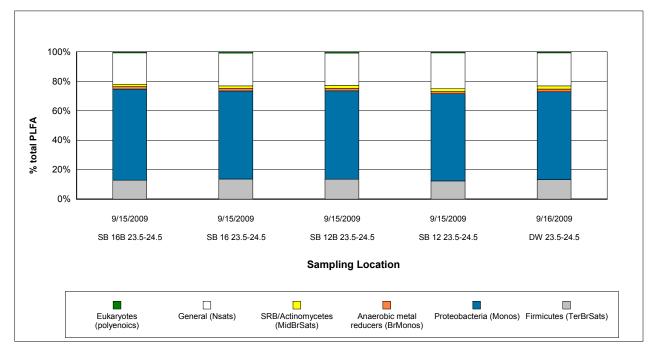



Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

Project:	AECOM Tech Services (I SMS	Earth Tech)	MI Project Number: Date Received:	037GI 09/17/2009
Sample Infor	mation			
Sample Name:		DWB 23.5-24.5		
Sample Date:		09/16/2009		
Sample Matrix:		Soil MG		
Analyst:		WO		
Biomass				
Total Bioma	ss (cells/g)	1.49E+08		
Community S	Structure (% total PLFA) TerBrSats)	12.89		
	TerBrSats)	12.89 62.10		
Firmicutes (Proteobacte	TerBrSats)			
Firmicutes (Proteobacte Anaerobic m	TerBrSats) ria (Monos)	62.10		
Firmicutes (Proteobacte Anaerobic m	TerBrSats) ria (Monos) netal reducers (BrMonos) mycetes (MidBrSats)	62.10 2.06		
Firmicutes (Proteobacte Anaerobic m SRB/Actinor	TerBrSats) ria (Monos) netal reducers (BrMonos) nycetes (MidBrSats) ats)	62.10 2.06 2.93		
Firmicutes (Proteobacte Anaerobic m SRB/Actinor General (Ns Eukaryotes (TerBrSats) ria (Monos) netal reducers (BrMonos) nycetes (MidBrSats) ats)	62.10 2.06 2.93 18.77 1.26		
Firmicutes (Proteobacte Anaerobic m SRB/Actinor General (Ns Eukaryotes (TerBrSats) ria (Monos) netal reducers (BrMonos) nycetes (MidBrSats) ats) (polyenoics) I I Status (Proteobacteria on	62.10 2.06 2.93 18.77 1.26		

Legend: NA = Not Analyzed NS = Not Sampled

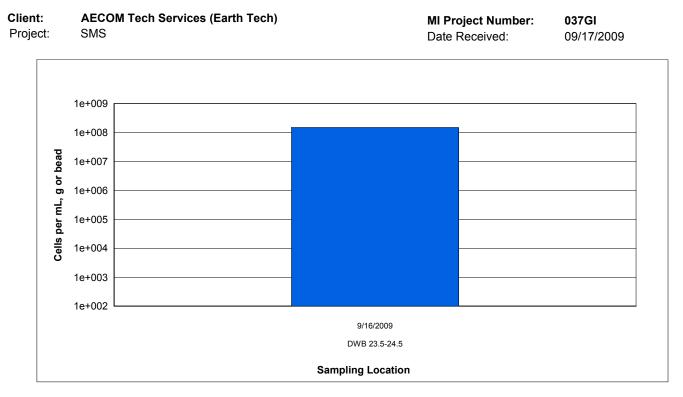
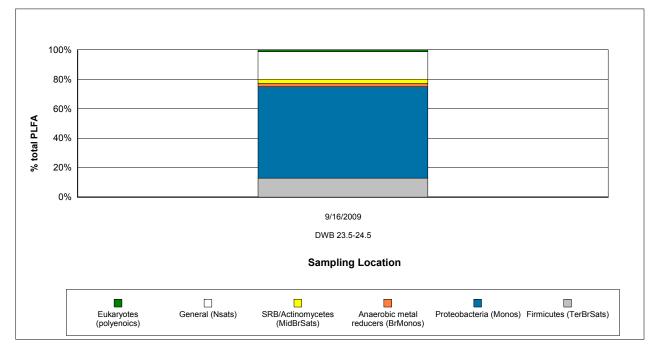



Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass

Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Identifier: 037GI

Date Rec: 09/17/2009

Report Date: 09/29/2009

Client Project #: 95900

Client Project Name: SMS

Purchase Order #:

Comments:

REPORT TO:

Report Type:

Reports will be provided to the contact(s) listed below. Parties other than the contact(s) listed below will require prior approval.

X Standard (default)

Name:	Paul Kareth AECOM	Name:
Company:	AECOM	Company:
Address:	300 Broadacres Drive	Address:
	Bloomfield, NJ 07003	
email:	Paul Karets Qacom. Om	email:
Phone:	(973) 338 - 6680	Phone:
Fax:	(973) 338-1052	Fax:
Project Manager:	Paul Kareth	Purchase Order
Project Name:	SMS	Subcontract No.
Project No.:	95900	

INVOICE TO:

For Invoices **paid by a third party** it is imperative that contact information & corresponding reference No. be provided.

	Broadacres	Dwin
Bio	omfield NJ o	7003
1		1
	338-6680	Section 1
(973)	338-1052	

2340 Stock Creek Blvd. Rockford, TN 37853-3044 phone (865) 573-8188 fax: (865) 573-8133 email: info@microbe.com www.microbe.com

Please Check One:

More samples to follow
 No Additional Samples

Saturday Delivery

Please see sampling protocol for instructions

Please contact us prior to submitting samples regarding questions about the analyses you are requesting at (865) 573-8188 (8:00 am to 4:00 pm M-F). After these hours please call (865) 300-8053.

□ Comprehensive (15% surcharge)

Sample Information							CENSUS: Please select the target organism/gene																												
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	PLFA	VFA .	M/E/E	DGGE+3ID	0GGE+5ID			DHC Functional genes	qDHB (Dehalobacter)	qDSM (Desulturomonas)	qDSB (Desulfitobacterium)	qEBAC (Total)	qDSR (SRBs only)	gSRB/IRB	qMGN (methanogens)	qMOB (methanotrophs)	qDNF (Dentrifying)	qAOB (ammonia oxidizing)	qPM1 (MTBE aerobic)	qTOD (Intial PAHs aerobic)	qCAT (Intermediate PAHs aerobic)	qBSS (Toluen/Xylene Anaerobic)	qNAH (Napthalene aerobic)	add. qPCR:	add. qPCR:	add. qPCR:	RNA (Expression Option)*	Other:	Other:	Other:	Other:
03161 I	58 16323.5-24.5			Soil	X	-	-													X			1.1					-				Ĩ	0	Ŭ	
2	5B16235-245	9/ 15/09	1110	1	×		1					1						2		X	518				a bi							1	~ K	ple	d
3	SB 12B 23.5-24.5				X		15.7	12							-					X									101 -			Pa	:0	00	1
4	5B 12 23.5-24.5	9/15/07	1335	1	X					1				6						X												MG		2	
5	DW 23.5-24.5	9/16/09	0910		X													- 4	and a	X.		19						123	1			2.	1	er	5
6	DWB 23.5-24.5	9/16/09	0955	1	×							-								X.	1		17		2 ini			A BOL				0	0.		
	e data situ			1 通知						1.1						129		Jel.				140										1			
		X	and same	197														1					144												
all the strength of		S. Andrews	See 2 Ca	1. 16	1			13	1				1			13				1			al.	1			14								
The first of the		1 Salation		Contraction of the			12					0			2.1		l. al			1			1												
Relinquished by:	by cettin	Date: 9/1	6/09					Rece	ived t	by:	11	b	n	y	ev	J	Date	9	1	1/0	9	(Ð	9.	30)		t.				周			

□ Historical (30% surcharge)

In order for analysis to be completed correctly, it is vital that chain of custody is filled out correctly & that all relative information is provided. Earliure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable. * additional cost and sample preservation are associated with RNA samples.