

FINAL PERIODIC REVIEW REPORT

Site: SMS Instruments Inc.

Site 1-52-026

Deer Park, Suffolk County, NY Multi Site G Operation, Maintenance & Monitoring Work Assignment D004445-14.3

Submitted to:

SUPERFUND STANDBY PROGRAM
New York State Department of Environmental Conservation
625 Broadway
Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. Rusten Corporate Park 100 Red Schoolhouse Road Chestnut Ridge, New York 10977

February 2011

AECOM Project Number 60135736

lable	of Conte	ents	Page
EXEC	JTIVE S	UMMARY	1
1.0	SITE C	OVERVIEW	3
1.0	1.1	OBJECTIVES OF THE PERIODIC REVIEW	3
2.0	Ε\/ΔΙΙ	JATE REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS	7
2.0	2.1	EVALUATION OF BIOREMEDIATION SYSTEM	
	2.2	OPERATION AND MAINTENANCE PLAN COMPLIANCE REPORT	8
		2.2.1 O&M Plan Compliance Report	
		2.2.2 Evaluation of O&M Activities	9
	2.3	MONITORING PLAN COMPLIANCE REPORT	10
		2.3.1 Confirm Compliance with Monitoring Plan	
		2.3.2 Confirm That Performance Standards Are Being Met	11
	2.3	IC / EC CERTIFICATION PLAN REPORT	
		2.3.1 IC / EC Requirements and Compliance	
		2.3.2 IC / EC Certification Forms	14
3.0	EVALU	JATE COSTS	15
	3.1	SUMMARY OF COSTS	
4.0	CONC	LUSIONS AND RECOMMENDATIONS	16
4.0	4.1	CONCLUSIONS	
	4.1	RECOMMENDATIONS	_
5.0	REFE	RENCES	17
Figure	ie.		
ı ıgure	. <u>. </u>		
Figure	1	Site Location Map	
Figure		Location of Air Sparge and Soil Vapor Extraction Wells	
Figure		Summary of VOCs in Soil	
Figure	4	Total VOCs Isopleth Map, 22.5-25.0 Ft Interval	
Figure		Treatment Area Generalized Geologic Cross Section, SW to NE	
Figure		Groundwater Contour Map, March 8, 2010	
Figure		VOCs and SVOCs Exceedances in Groundwater	
Figure		Total VOCs in Monitoring Well MW-6S	
Figure		Total VOCs in Monitoring Wells	
Figure	10	Metals Exceedance in Groundwater	

Tables	
Table 1	Summary of Soil and Groundwater Cleanup Criteria
Table 2	PHOSter System Soil Sampling, Summary of Phospholipid Fatty Acid Data (2006, 2007, 2008 and 2009
Table 3	PHOSter System Soil Sampling, Volatile Organic Compounds, detections Only, Comparison of June 2006, March 2007, January 2008, November 2008 and September 2009 data
Table 4	Groundwater Elevations
Table 5	February 2006, September 2006, August 2007, November 2008 and March 2010 Groundwater Sampling, Volatile Organic Compounds, Detections Only
Table 6	February 2006, September 2006, August 2007, November 2008 and March 2010 Groundwater Sampling, Semivolatile Organic Compounds, Detections Only
Table 7	February 2006, September 2006, August 2007, November 2008 and March 2010 Groundwater Sampling, Target Analyte List Metals, Detections Only

Appendices

APPENDIX A	Groundwater Analytical Data
APPENDIX B	IC/EC Certification Forms
APPENDIX C	Outline and Checklist for PRR

EXECUTIVE SUMMARY

AECOM Technical Services Northeast, Inc (AECOM) has prepared this Periodic Review Report (PRR) for the SMS Instruments Site (the Site) in Deer Park, Suffolk County, NY (Figure 1). The SMS Instruments facility operated from 1967 to 1990. Plant operations included the overhauling of military aircraft components. Site contamination was discovered in 1980 when Suffolk County conducted sampling in a leach pool at the facility. The leaching pool was pumped out, backfilled with clean sand in 1983. The USEPA added the site to the National Priority List (Superfund Sites List) in 1986. The former jet fuel underground storage tank (UST) was removed in 1988.

A Remedial Investigation/Feasibility Study (RI/FS) was conducted by EPA and completed in 1989. The RI/FS found soil and groundwater to be contaminated with xylenes, benzene derivative compounds, and trichloroethene (TCE). A Record Of Decision (ROD) was issued for Operable Unit 1 (OU-1, on-site soil and groundwater) in June 1989. The components of the ROD included installation and operation of a soil vapor extraction (SVE) system to remediate soil contamination, and a groundwater pump and treat system to treat groundwater. A second ROD for OU-2 (upgradient contamination) was issued in September 1993. The 1993 ROD found no evidence of contamination upgradient of the Site that was contributing to the contamination on-site; therefore, the conclusion of the OU-2 ROD was no further action.

The periodic review (PR) process is used for determining if a remedy continues to be properly managed, as set forth in the ROD and continues to be protective of human health and the environment. The results of PR have lead to the determination that the site is in general compliance with the applicable requirements as presented in the ROD.

REMEDY EVALUATION

The primary contaminants of concern as defined in the ROD are volatile organic compounds (VOCs). Overall, concentrations of total VOCs have significantly decreased since monitoring began in April 1994. The groundwater data collected between 1994 and 2010 show that remedial activities conducted to date have reduced the total VOC concentration in groundwater at the site by more than two orders of magnitude from a high of approximately 6,200 µg/L in September 1995 to 45.6 µg/L in March 2010; no compound exceeded its Class GA criteria during the March 2010 groundwater sampling event. Since the operation of the bioremediation system began in 2005, total VOC concentrations in soil have decreased by an order of magnitude from over 100,000 µg/kg to less than 10,000 µg/kg. All soil samples collected during the September 2009 PHOSter™ system performance evaluation were below the NYCRR Part 375-6.8(a) Unrestricted Use Soil Cleanup Objectives.

Five rounds of groundwater samples have been collected since the groundwater pump and treat system was turned off in October 2005. Twenty monitoring wells were included in the long term monitoring program. One well, MW-11, was destroyed during construction at this off-site location and is no longer included in the sampling.

Total annual costs for operation of the treatment system and completion of all the required monitoring is approximately \$153,800, based on costs incurred in calendar year 2008.

Remedial systems have been in place at the Site since 1992 and have effectively treated contaminated soil and groundwater as stated below:

- 1994-2005 Groundwater Pump and Treat System effectively removed free product and significantly reduced dissolved-phase concentrations.
- 1992-1994 Soil Vapor Extraction System effectively removed contamination from the vadose zone (down to a depth of 21-ft bgs due to the operation of the groundwater extraction system).
- 2005-2008 PHOSter™ System effectively removed remaining chlorinated hydrocarbons and reduced dissolved phase aromatic hydrocarbons.
- 2008-2010 Biosparge System effectively removed residual aromatic hydrocarbons in the groundwater and absorbed to the soil in the smear zone (22-ft to 25-ft bgs).

Soils

The remediation of soils has effectively reduced the amount of soil contamination at the Site. Based on the latest round of soil results, total VOC concentrations in the previously identified hot-spots are below the SCOs.

Groundwater

The remediation of groundwater has effectively reduced the amount of groundwater contamination at the Site. Based on the latest round of groundwater results, there were no exceedances of VOCs noted in any of the monitoring wells sampled as part of the long-term monitoring program.

The following recommendations have been developed for the Site based on this PRR:

Well MW-11 should be located and either rehabilitated or decommissioned, depending on the condition when identified.

Collect one final round of soil samples to verify the PHOSter™ system can be permanently shut down. Decommission and remove the treatment trailer from the Site.

Collect one final round of groundwater samples to verify that the groundwater remediation is complete.

- An annual field oversight PRR is recommended based on the required verification of site conditions and the possibility of permanent site closure.
- An annual desktop PRR should be performed due to the frequency of required OM&M activities.

1.0 SITE OVERVIEW

The Site is located at 120 Marcus Boulevard in Deer Park, Suffolk County, New York (Figure 1). The Site consists of a 34,000 square foot building located on a 1.5-acre lot surrounded by other light industrial facilities. A groundwater recharge basin is located adjacent to the Site to the east. The Facility was operational between 1967 and 1990; activities consisted primarily of overhauling military aircraft components. These activities included cleaning, painting, degreasing, refurbishing, metal machining, and testing of components. The activities conducted during this time are believed to have caused the contamination present at the Site. The Site was utilized by other tenants for manufacturing activities not believed to contribute to the contamination. The building was unoccupied for the past several years; as of January 2, 2008, the building is used to store furniture.

Remedial activities conducted at the site include: removal of the leaching pond, removal of a jet fuel underground storage tank (UST), operation of a soil vapor extraction system (SVE), and operation of a groundwater pump and treat system (GW P&T). The SVE system was operated from 1992 to 1994 to remediate soil near the leaching pond and UST areas. A GW P&T system was operated from 1994 to 2005 to remove contaminants from the groundwater near the leaching pond and UST areas. A bioremediation system was put in place in May of 2005 to remove residual soil impacts. The system was initially a PHOSter™ system (amendment injections) but subsequently has been modified to a biosparge system. The treatment system is currently operated and maintained by AECOM.

AECOM Technical Services Northeast, Inc (AECOM) has prepared this Periodic Review Report (PRR) for the Site. The NYSDEC has determined that SMS Instruments, ID No. 1-52-026, is a Class 2 site that has been substantially remediated but requires continued operation, maintenance and monitoring (OM&M).

1.1 OBJECTIVES OF THE PERIODIC REVIEW

The periodic review process is used for determining if a remedy continues to be properly managed, as set forth in the ROD, and continues to be protective of human health and the environment. The objectives of the periodic review for sites in the State Superfund Program (SSF) are as follows:

- Evaluate compliance with the decision document(s) and, if available, the SMP.
- Evaluate all treatment units, and recommend repairs or changes, if necessary.
- Evaluate the condition of the remedy.
- Certify, if appropriate, that the intent of institutional controls (IC) continues to be met, and that engineering controls (EC) remain in place, and are effective.
- Evaluate costs.

1.2 REMEDIAL HISTORY

Site contamination was discovered in 1980 when the Suffolk County Department of Health Services collected samples from an industrial leaching pool on the southern side of the facility, and analytical results indicated that contamination was present. The Site was listed on the National Priority List (NPL) in 1986. The USEPA completed a remedial investigation/feasibility study (RI/FS) in 1989. Groundwater

contaminants of concern (COCs) identified in sample results included VOCs and metals. The primary VOC contaminants consisted of tetrachloroethene (PCE), trichloroethene (TCE), trans-1,2-dichloroethane, chlorobenzene, total xylenes, ethylbenzene, and 1,1-dichloroethane. The USEPA concluded that the metals present in Site groundwater sample results (primarily chromium and lead) were the result of background conditions. Site Cleanup Goals (SCGs) for metals were set to the upgradient or background concentrations determined to be entering the Site. Soil COCs were similar to those found in groundwater and also included SVOCs. Table 1 lists the COCs for soil and groundwater and their site-specific cleanup criteria.

A ROD was issued by the NYSDEC in 1993 covering the contamination determined to have been from an on-site source. As stated in the ROD, groundwater quality was to be restored to its intended use (Class GA-potential source of drinking water) by reducing contaminant levels to below state and federal drinking water standards. In the case where contamination present onsite has been determined to be from an offsite source, the prescribed SCGs were set to the concentrations identified in the upgradient sample locations.

Wastewater from facility operations was discharged into a leaching pool adjacent to the building along the south wall which, subsequently contaminated soil and groundwater beneath the site. A 6,000 gallon jet fuel UST, and leaking drums located along the east wall of the building contributed to contaminated soils and groundwater beneath the site. Source removal remedial activities at the Site have included pumping out the leaching pond fluids and backfilling the depression with clean sand, removal of the UST, and removal of the drums stored outdoors in an unprotected area.

Remedial activities conducted to remove contamination present in the subsurface began with the operation of a soil vapor extraction system (SVE). The locations of the SVE extraction wells are shown on Figure 2. The SVE system was operated from 1992 to 1994, near the area formerly utilized as a leaching pond and the area which formerly contained a UST to remediate soil contamination. A groundwater pump and treat (GW P&T) system, equipped with an air stripper to remediate groundwater contamination was constructed and began operation in 1994. The location of the recovery well and the groundwater treatment system is shown on Figure 2.

The results of soil sample analysis conducted after the operation of the SVE system indicate that the soil remedy had reduced contamination substantially. The USEPA had considered the potential for exposure to contaminated soil vapor, and concluded that vapor intrusion into the building was unlikely to cause a serious threat based on the contaminant concentrations identified, and the thickness of the vadose zone present below the building. Influent sample results indicated that groundwater contamination had decreased substantially since activation of the GW P&T system. After several years of operation, the influent concentrations had decreased to concentrations that indicated the GW P&T system was no longer accelerating site cleanup. Furthermore, the GW P&T system was unable to achieve the ultimate groundwater cleanup goals (e.g., the maximum contaminant levels [MCLs]).

The USEPA had evaluated the GW P&T systems ability to provide the necessary capture of site contaminants in groundwater. The determination was that the system adequately captured the contaminated groundwater despite the lack of an apparent cone of depression. The determination was based on water balance calculations demonstrating that groundwater was being extracted from the site at

rates much higher than groundwater entering the site. In July 2003, GeoTrans, Inc. (GeoTrans) conducted an optimization evaluation of the GW P&T system on behalf of the USEPA. The results of the evaluation were included in a RSE (GeoTrans, 2003). The RSE report recommended conducting a pilot study to determine if an alternative technology should replace the GW P&T system. The RSE report indicated various alternative technologies were available for reducing the mass of VOCs, including air sparging, bioaugmentation, and chemical oxidation.

Following acceptance of the RSE report (May, 2004) the USEPA Remedial Action Branch sent a request for field support at the Site. The request involved two phases: additional field characterization of the UST area utilizing a Geoprobe® to collect soil samples at various depths from the ground surface to the water table. The second phase included assessment and implementation of alternative remedial technologies to address remaining source areas. In an effort to characterize the UST area and obtain data required for the selection of an alternative technology, 25 soil borings were advanced for sample collection. In preparation for implementation of an alternative remedial technology, SVE and air sparge wells were installed (August 2004) by Earth Resources Technology (ERT) and the Response Engineering and Analytical Contract (REAC) contractor Lockheed Martin Technology Services.

Based on an evaluation of the data generated by ERT/REAC, the USEPA Remedial Project Manager (RPM) and the USEPA Removal On-Scene Coordinator (OSC) concluded the installation of a PHOSter™ bioremediation system would be the most appropriate and cost effective technology to address the VOC contamination remaining in soils at the Site. In April of 2005, under the Emergency and Rapid Response Services (ERRS) contract, AECOM (formerly Earth Tech) procured a PHOSter™ system to be utilized at the Site. The system was installed and activated in May 2005. The PHOSter™ system utilized the sparge wells that had been installed for the SVE system as injection points (Figure 2).

The USEPA operated the GW P&T system at the Site until July 15, 2005 when the Site responsibility was transferred to the NYSDEC. Utilizing available sample results AECOM determined that the GW P&T system was no longer removing significant quantities of contaminants, and that VOC concentrations in the influent were below laboratory reporting limits (5 μ g/L). In a letter to the NYSDEC dated October 6, 2005, AECOM recommended that the GW P&T system be de-activated. NYSDEC concurred with this recommendation in a letter dated October 21, 2005.

Following the temporary shutdown of the GW P&T system two rounds of groundwater samples were collected, and analyzed: February 2006 and September 2006. These results were summarized in the Final Groundwater Sampling Report (Earth Tech, December 2006). The concentrations of contaminants in the groundwater monitoring network remained in steady state, or continued to decline in all wells except for MW-6S. The reported total VOC contaminant concentrations for MW-6S have shown an increase over the reported results from sampling events conducted immediately prior to the system shutdown, (19 μg/L in September 2006, and 46.9 μg/L in November 2008) but the most recent sampling event (March 2010) indicated a decrease to 6.8 μg/L with no exceedances of the Class GA criteria. The results indicated that this was an isolated area of rebound requiring continued remediation (e.g., the PHOSterTM system), supporting the conclusion to dismantle the GW P&T system. One recommendation of this report was the demolition of the GW P&T system building. A third groundwater sampling event was conducted in August 2007.

A Dismantlement Plan was finalized in April 2007 (Earth Tech, 2007), which detailed the plan for demolition of the treatment building. A demolition permit from the City of Babylon, New York was issued after completion of several requirements. These requirements included the termination of electrical and water service to the building. The electrical main to the treatment building was terminated on July 16, 2007 by ADB Electric and Sons, a licensed electrical contractor. The service was moved to a new "H" frame to continue the PHOSter™ system operations. The potable water line to the building was capped on November 20, 2007 by Pro Mechanical, a licensed plumber. On November 2, 2007, Veolia ES Technical Solutions removed all waste from the treatment building including water treatment chemicals, test meter solutions and other wastes. The building was demolished in two phases. All piping and carbon units were dismantled in June 2007. Final building demolition and removal of the concrete foundation occurred in late December 2007.

Five sampling events have been conducted to evaluate the biosparge system since 2005: June 2006, March 2007, January 2008, November 2008 and September 2009. In 2008, adjustments to the amendments and application via the PHOSter™ system were completed, in response to the changing contaminant types and concentrations. Concentrations of contaminants had been effectively reduced in some areas allowing the injection wells to be shut in. CVOC contaminants were no longer identified in sampling results leading to the conclusion that methane and phosphorous were no longer necessary as they had been used to stimulate reductive dechlorination. The PHOSter™ system was effectively transitioned to a biosparge system. The PHOSter™ system was temporarily shut down in January 2010 in anticipation of the groundwater sampling event scheduled for March 2010 to look for contaminant rebound in monitoring well MW-6S. The system remains off.

2.0 EVALUATE REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

2.1 EVALUATION OF BIOREMEDIATION SYSTEM

Five sampling events have been conducted to evaluate the biosparge system since 2005: June 2006, March 2007, January 2008, November 2008 and September 2009.

In June 2006, six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, SVOCs, phospholipid fatty acids (PLFA) and methanotrophs. The results are presented in the Final PHOSter™ System Soil Sampling Report dated October 2006. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the former dry well had contaminant concentrations exceeding applicable cleanup criteria. Based on the analytical results, Earth Tech recommended that the PHOSter™ system continue to operate for an additional six months, at which time another round of soil samples would be collected and evaluated.

The second evaluation occurred in March 2007, when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results are presented in the Final PHOSter™ System Soil Sampling Report dated June 2007. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the leaching pond and UST area had contaminant concentrations that continued to exceed applicable cleanup criteria. Based on the analytical results, AECOM again recommended that the PHOSter™ system continue to operate for an additional six months, at which time another round of soil samples would be collected and evaluated.

The third evaluation occurred in January 2008, when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results are presented in the Final PHOSter™ System Soil Sampling Report dated May 2008. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the leaching pond and UST area had contaminant concentrations exceeding applicable cleanup criteria. Based on the analytical results, AECOM recommended modifying the system to better focus on the existing contaminants of concern (COCs) and optimize system performance. Along with the modifications, continued operation of the system for an additional six month period was recommended.

System modifications included the replacement of the two old compressor units with a new rotary screw compressor and the elimination of the PHOSter[™] aspect of the sparge technology in an effort to optimize system performance.

The fourth evaluation occurred in November 2008 when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results are presented in the Final PHOSter™ System Soil Sampling Report dated February 2009. The results indicated that contaminant concentrations were decreasing and that the areal extent of contamination is shrinking; however, soil samples collected near the leaching pond and UST area had contaminant concentrations exceeding applicable cleanup criteria. Based on the analytical results, continued operation of the system in the optimized configuration for an additional six month period was recommended.

Data collected over the first four sampling events lead to the determination that the PHOSter™ application effectively achieved its goal of chlorinated volatile organic compound (CVOC) remediation. Data from the site indicated that the remaining COCs were limited to aromatic hydrocarbons (BTEX [benzene, toluene, ethylbenzene and total xylenes] and trimethylbenzene [TMB] compounds) which are readily biodegradable under standard aerobic conditions. In response to this positive change in site conditions, remediation over the 2009 operational period focused on dissolved oxygen enrichment through biosparging to stimulate the aerobic degradation process. Enrichment was initiated through the controlled injection of ambient air into select wells using the equipment established for the PHOSter™ application. The primary technological change was the elimination of the amendments (nitrous oxide, triethylphosphate and methane) that stimulated the cometabolic degradation process.

In addition to the amendment modification, remediation during the 2009 period focused strictly on the remnant smear zone using select injection wells and biosparging to optimize dissolved oxygen concentrations in groundwater and facilitate aerobic biodegradation of the residual organic compounds. Following system modifications, operation continued with six sparge points being utilized: AS-2, AS-4, AS-5, AS-7, AS-8 and AS-10. The flow rate at each sparge point was set at three cubic feet per minute (cfm). Performance of this optimized process was evaluated as part of the fourth monitoring event, November 2008.

The fifth sampling event occurred in September 2009 when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results are presented in the Final PHOSter™ System Soil Sampling Report dated January 2010. The results indicated that contaminant concentrations were all less than the 10,000 µg/kg soil cleanup criterion was not exceeded in any of the 18 soil samples collected. Based on the analytical results, AECOM recommended that the system be turned off in anticipation of the March 2010 groundwater sampling event to evaluate potential rebound of groundwater contaminants in monitoring well MW-6S.

2.2 OPERATION AND MAINTENANCE PLAN COMPLIANCE REPORT

The following summarizes the current O&M program:

- The bioremediation treatment system is currently operated and maintained by AECOM. The system was temporarily turned off in January 2010 to evaluate current conditions and remains shut down as of this report;
- Gas cylinders making up the bioremediation amendment are replaced as needed to maintain the system operation (note that amendment use was discontinued in 2009);and
- Maintenance is performed on the system, as required.

2.2.1 O&M Plan Compliance Report

The SVE system, the groundwater pump and treat system, and the PHOSter™/biosparge treatment system were generally in compliance with discharge requirements during their respective operational timeframes. No treatment systems are currently active at the Site.

2.2.2 Evaluation of O&M Activities

Bioremediation System Air Sampling

The results of the bi-monthly sampling data collected during system operation indicated that organic vapors in the monitoring wells had in general been decreasing steadily since the installation of the bioremediation system through system shutdown in January 2010. Methane concentrations were variable since methane had been added in pulse doses to stimulate biological activity in the soil. The presence of methane in variable concentrations depending upon the timing of sampling events was expected and is an indication of the proper function of the system. Other parameters, such as O₂ and CO₂, indicate that biological activity has increased. The O₂ levels have decreased, indicating increased oxygen consumption by aerobic microorganisms, and CO₂ levels have increased, providing a second line of evidence indicating stimulated biological activity.

Bioremediation System Soil Sampling

A summary of the phospholipid fatty acid data is presented in Table 2. As shown on this table, all the samples exhibited high biomass concentrations (defined as greater than 10⁷ cells per gram). Table 3 presents the VOCs results for the five round of soil sampling collected to evaluate the effectiveness of the bioremediation system. A summary of total VOC concentrations is shown on Figure 2 and an isopleth map of the total VOCs concentrations is shown on Figure 3. As shown Figure 3, the soil contamination roughly fell into three areas: an area south of the SMS building (borings DW and DWB; an area near the southeast corner of the SMS building (borings SMS-16 and SMS-16B); and a northern area (borings SMS-12 and SMS-12B). During the June 2006 sampling effort, all three areas exceeded the 10,000 µg/kg soil criterion for total VOCs. Soil contamination appeared to be limited to the 22-25 ft bgs interval in all three areas. During the second sampling event in March 2007, only the southern area and the northern area exceeded the criterion. During the third sampling event in January 2008, the area near the southeast corner of the building and the northern area exceeded the criterion. It was also apparent that the soil contamination in the 22-25 ft bgs interval was not homogenous, but was present in isolated pockets with significant variability in concentration as evidenced by the sharp decrease followed by a sharp increase at borings SMS-12, SMS-16 and DW. A geologic cross-section and generalized SVE influence diagram are presented as Figure 4. During the fourth sampling event in November 2008, the area near the southeast corner of the building and the northern area again were above criterion, but the concentrations were significantly lower compared to the third round. During the fifth sampling event in September 2009 all three areas were below the criterion.

System Maintenance

Activity	Red	Compliance Dates		
Activity	Bimonthly	Five-Quarter	As Needed	Compliance Dates
Routine Maintenance				
of PHOSter™ /	X			2005-2010
Bioremediation System				
Replace Gas Cylinders				
for PHOSter™ System			X	2005-2008
Operation				
Well Repair			X	1994-2011

There are currently no active treatment systems in operation at the Site.

2.3 MONITORING PLAN COMPLIANCE REPORT

The SAP and the Final Project Management Plan Multi-Site G Operation, Maintenance & Monitoring (Earth Tech, February 2007) are referenced for monitoring compliance. A Site Management Plan was never prepared for the SMS Instruments Site. The initial ROD for the Site addressed the GWP&T system which was dismantled in 2007. Therefore this PRR assesses whether the site has been managed in accordance with the SAP and the Final Project Management Plan Multi-Site G Operation, Maintenance & Monitoring (Earth Tech, 2007).

The following summarizes the current monitoring program:

- Air samples are tested from on-site monitoring wells twice a month during operation of the PHOSter™ system (note that the system is currently off);
- Groundwater samples are collected on a five-quarter basis from 20 monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6S, MW-6D, MW-7, MW-8, MW-9, MW-11, MW-12, MW-13, MW-13D, MW-14, MW-15, MW-16S, MW-16M, MW-16D, and MW-17);
- Six to twelve month reviews of the bioremediation system, including the collection of subsurface soil samples for analysis VOCs and methanotrophs; and,
- Preparation of progress reports for the bioremediation system at the site.

2.3.1 Confirm Compliance with Monitoring Plan

A ativity	Required Frequency (X)	Compliance Dates	
Activity	Five Quarter	Compliance Dates	
Groundwater Sampling	X	2006-2011	

Groundwater Elevation Measurements

At the start of each sampling event, the depth to groundwater is measured in each well and a groundwater elevation is then calculated. A summary of groundwater elevation data is presented in

Table 4. A groundwater contour map is presented as Figure 6. The direction of groundwater flow at the Site is generally to the south-southwest. The groundwater surface gradient is approximately 0.0024.

Groundwater Analytical

The laboratory analytical results for VOCs, SVOCs and metals analyses are included as Appendix A of this report. Extraction wells EW-1 and EW-2 were only sampled during the February 2006 event due to inoperable pumps. The electric lines for these two extraction wells were cut during the GW P&T building demolition in December 2007). Construction activities at the Citi Bank building on the corner of Grand Boulevard and Commack Road in the early part of 2007 either covered or destroyed monitoring well MW-11 as the field crew could not locate the well during the August 2007 sampling event; the well has not been sampled since.

2.3.2 Confirm That Performance Standards Are Being Met

The sections below discuss the results of the groundwater sampling conducted in accordance with the site Sampling and Analysis Plan, and provide analysis of the results in the context of performance standards established for the site.

Volatile Organic Compounds

The VOCs results from the five sampling rounds are summarized on Table 5 of this report. The VOC results are also summarized on Figure 7.

No VOCs were detected in monitoring wells MW-5, MW-11, and MW-12 during sampling Rounds 1 through 5. A few VOCs have been sporadically detected in monitoring wells MW-2, MW-4, MW-8, MW-9, MW-13, MW-13D, MW-14, MW-15, MW-16M, and MW-16S at concentrations below NYSDEC Ambient Class GA Groundwater Criteria during Rounds 1 through 5. Five monitoring wells had one exceedance noted during Rounds 1 through 5 including MW-1, MW-6D, MW-7, MW-16D, and MW-17. The sporadic Round 5 reported low-concentration detections of chloromethane are not included in the discussion below; see note at the end of this section and Section 4.4.1 of this report. No VOCs were detected in these wells in Round 5.

During Round 2, hexachlorobutadiene was detected in three monitoring wells at concentrations that exceeded the Class GA criterion of 0.5 μ g/L. These wells include MW-6D (2 μ g/L), MW-16D (1 μ g/L) and MW-17 (2 μ g/L). Hexachlorobutadiene was not detected in any other sample during the five sampling events.

In monitoring well MW-1, 1,1-dichloroethane was detected at a concentration of 14 μ g/L during the February 2006 sampling which exceeded the Class GA criterion of 5 μ g/L. During the September 2006 sampling event, 1,1-dichloroethane was detected at an estimated 4 μ g/L. 1,1-Dichloroethane was not detected during the August 2007, November 2008, and March 2010 sampling events. No other VOCs (other than chloromethane in Round 5) have been detected at MW-1.

Two exceedances have been noted at MW-3. Vinyl chloride was detected at a concentration of 8 μ g/L which exceeded the Class GA criterion of 2 μ g/L during the Round 3 sampling event but was not detected during Rounds 1, 2, 4 and 5. cis-1,2-Dichloroethene was detected at a concentration of 8 μ /L during the Round 3 sampling event which exceeded the criterion of 5 μ g/L but was not detected during any other sampling round. Tetrachloroethene (PCE) was detected below the criterion only during Round 4. No VOCs (other than chloromethane) were detected at MW-3 in Round 5. No other VOCs were detected at MW-3 during any of the five sampling events.

At MW-6S, four compounds have exceeded the Class GA criterion during the five sampling rounds. Total xylenes were detected in three of five rounds at concentrations ranging from an estimated 4 μ g/L to 5 μ g/L (Class GA criterion 0f 5 μ g/L). 1,3,5-Trimethylbenzene was detected in four of five rounds at concentrations ranging from an estimated 1.7 μ g/L to 11 μ g/L, two of which exceeded the Class GA criterion of 5 μ g/L. 1,2,4-Trimethylbenzene was detected in three of five rounds at concentrations raging from 6 μ g/L to 21 μ g/L, all of which exceeded the Class GA criterion of 5 μ g/L. 1,4-Dichlorobenzene was detected in three of five sampling rounds at concentrations ranging from an estimated 2 μ g/L to 4 μ g/L, two of which exceeded the Class GA criterion of 3 μ g/L. Six other VOCs were detected at various times at concentrations below their respective criterion during the five rounds. There were no VOCs exceedances during Round 5. A graph of total VOCs in MW-6S that includes all sampling data since 1994 (the startup of the GW P&T system) is shown in Figure 8. As shown on this graph, the total VOC concentrations were significantly reduced during the first few years of operation.

At MW-7, the concentration of 1,1-dichloroethane (Class GA criterion of 5 μ g/L) had increased during each of the first three sampling events: 1 μ g/L, 3 μ g/L and 13 μ g/L, respectively. During the November 2008 sampling event, the concentration decreased to an estimated 2.3 μ g/L and was not detected during the March 2010 sampling event. 1,1,1-Trichloroethane had been detected below the criterion during the two of five sampling events. None of these VOCs were detected in the Round 5 sample; however, tetrachloroethene (PCE) was detected at an estimated concentration of 1.6 μ g/L (less than the Class GA criterion of 5 μ g/L as a 'principal organic contaminant').

In round 5, low-concentration detections (2.9 to 5.9 µg/L) of chloromethane were reported sporadically (nine of seventeen samples) in the SDG J0398 groundwater samples analyzed by Mitkem. (Chloromethane was not detected in the three groundwater samples in the later SDG J0445.) This compound was detected infrequently in previous rounds; its presence in Round 5 data may be an artifact (not representative of actual groundwater conditions), as discussed in Section 4.4.1, below.

A summary of total VOCs is depicted on Figure 9. Each groundwater sampling event since 1994 is included in the figure. For each sampling event, the total VOC concentration in each monitoring well is graphically represented in the bars. The concentration for MW-1 is shown at the base of the bar; the concentration for MW-2 is then added to the bar, then MW-3 and so on until all 20 monitoring wells are shown with each well depicted by a different color. Each bar represents the total VOC concentration for the sampling event. As shown on the figure, the majority of the groundwater contamination at the Site has historically been present in MW-6S. The trendline depicts the overall decreasing concentrations of VOCs through time from the start of the GW P&T system to the most recent sampling event in March 2010.

Semivolatile Organic Compounds

SVOC results are shown on Table 6 of this report. The SVOC results are also summarized on Figure 7.

No SVOCs have been detected in monitoring wells MW-4, MW-11, MW-13, and MW-16S during any of the five sampling events. A few SVOCs have been sporadically detected in monitoring wells MW-2, MW-3, MW-4, MW-8, MW-9, MW-12, MW-13D, MW-14, MW-15 MW-16M, and MW-17 at concentrations below their respective Class GA criteria during the five sampling events.

Bis(2-ethylhexyl)phthalate (BEHP) was detected above the Class GA criterion of 5 μ g/L in five wells (MW-1, MW-6S, MW-6D, MW-7 and MW-16D) during Round 1 (February 2006). With the exception of MW-6S, BEHP concentrations have not exceeded the criterion during the last four sampling events.

Several polynuclear aromatic hydrocarbons (PAHs) were detected in monitoring wells MW-6S and MW-6D during Round 1 (February 2006) at concentrations above their respective Class GA criteria. Both of these wells are within the PHOSter™ treatment system area of influence. There have been no exceedances in MW-6D during the last four sampling rounds, although there were sporadic hits of several phthalates at concentrations below their respective criteria. The concentrations of several PAHs and phthalates continued to exceed their respective criteria at MW-6S through Rounds 2, 3 and 4. However, there were no exceedances of any SVOCs in MW-6S during Round 5.

Metals

Results for all five rounds of target analyte list (TAL) metals data are shown on Table 7 of this report. The metals data is also summarized on Figure 10. Exceedances of the Class GA criterion were noted for antimony, beryllium, cadmium, chromium, iron, lead, manganese, selenium, sodium, and zinc; however, only chromium and lead will be discussed in this PRR as these two metals are listed as COCs in the ROD.

Chromium has been detected in every sample during all five sampling events. There were no exceedances of chromium during Round 1. During Round 2, chromium exceeded the criterion of 50 μ g/L at two wells (maximum concentration of 275 μ g/L at MW-15). During Round 3, chromium exceeded the criterion at two wells (maximum concentration of 111 μ g/L at MW-6S). During the November 2008 sampling event, chromium exceeded the criterion at these same two wells (maximum concentration of 68.2 μ g/L at MW-6S). In the March 2010 sampling event, chromium exceedance occurred at four wells including MW-6S and MW-15 again, but the maximum concentration was reported at MW-17 (160 μ g/L).

Lead was detected in 21 of 22 samples during Round 1 but only one sample (135 μ g/L at MW-2) exceeded the criterion of 25 μ g/L. Lead was detected in 14 of 20 samples during Round 2 with one exceedance (128 μ g/L at MW-2). Lead was detected in 14 of 19 samples during Round 3 with two exceedances (maximum concentration of 197 μ g/L at MW-2). Lead was detected in 17 of 19 samples during Round 4 with two exceedances (maximum concentration of 271 μ g/L at MW-2). In Round 5, lead was detected in 16 of 19 samples, with three exceedances (maximum concentration of 350 μ g/L again occurring at MW-2).

2.3 IC / EC CERTIFICATION PLAN REPORT

According to the USEPA five-year review of the site prepared in 2006, institutional controls are not required by the remedy decision documents. The remedy is protective of human health and the environment. Potential impacts of contaminated soil on groundwater are being addressed through removal of the contaminated source. Furthermore, onsite remedial actions are addressing the groundwater contaminants. The public living in the area are on public water that meets appropriate state and federal standards. Currently, the site is controlled by existing access and institutional controls under local and New York State authority. The following institutional control equivalents are recognized as providing additional protection:

Institutional control equivalents:

The site property is located in the middle of a multi-block area of active light industrial properties. This part of Deer Park, New York is zoned for light industry; there are no properties zoned for residential usage in the immediate area. Therefore, the site property is likely to remain zoned for light industrial use in the future (USEPA, 2006).

Suffolk County Department of Health restricts the future use of groundwater at this site. Based on these statutory controls and the existing public water supply, it is unlikely that potable uses of the site groundwater would be permitted in the future (USEPA, 2006).

Engineering controls at the site currently consist of:

Operation and maintenance of the PHOSter™ system.

2.3.1 IC / EC Requirements and Compliance

Determination of compliance with the IC/EC at the site is made based on the following criteria:

- The IC/EC(s) applied at the site are in place and unchanged from the previous EPA 5-year review:
- Nothing has occurred that would impair the ability of such controls to protect the public health and the environment, or constitute a violation or failure to comply with any element of the SMP for such controls, and
- Subslab soil vapor intrusion has not been addressed by USEPA.

2.3.2 IC / EC Certification Forms

An Action Plan is needed to address the following items:

- Operate the PHOSter[™] system
- Evaluate subsurface soil vapor and indoor air quality through further testing
- 12 month re-certification upon completion of the Action Plan

3.0 EVALUATE COSTS

3.1 SUMMARY OF COSTS

Total annual costs for operation of the treatment system and completion of all the required monitoring is approximately \$153,800, based on costs incurred in calendar year 2008. Major cost components are allocated as follows:

Calendar year 2007

•	PHOSter ™ O&M	.\$107,000
•	Long-term monitoring	.\$26,800
•	Analytical (also included in above figures)	.\$6,800
•	O&M reporting	.\$20,000
Calend	lar year 2008	
•	PHOSter™ O&M	\$110,000
•	Long-term monitoring	\$28,000
•	GW P&T dismantlement	\$147,000
•	O&M reporting	\$16,000
Calend	lar year 2009	
•	PHOSter™ O&M	\$112,000
•	PHOSter™ system upgrades	\$15,000
•	Long-term monitoring	\$0
•	O&M reporting	\$17,000

The figures include all costs associated with the completion of monitoring and system maintenance/upgrades including subcontractor costs, field and reporting cost, and laboratory fees.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Remedial systems have been in place at the Site since 1992 and have effectively treated contaminated soil and groundwater as stated below:

- 1994-2005 Groundwater Pump and Treat System effectively removed free product and significantly reduced dissolved-phase concentrations.
- 1992-1994 Soil Vapor Extraction System effectively removed contamination from the vadose zone (down to a depth of 21-ft bgs due to the operation of the groundwater extraction system).
- 2005-2008 PHOSter™ System effectively removed remaining chlorinated hydrocarbons and reduced dissolved phase aromatic hydrocarbons.
- 2008-2010 Biosparge System effectively removed residual aromatic hydrocarbons in the groundwater and absorbed to the soil in the smear zone (22-ft to 25-ft bgs).

Soils

The remediation of soils has effectively reduced the amount of soil contamination at the Site. Based on the latest round of soil results, total VOC concentrations in the previously identified hot-spots are below the SCOs.

Groundwater

The remediation of groundwater has effectively reduced the amount of groundwater contamination at the Site. Based on the latest round of groundwater results, there are no exceedances of VOCs or SVOCs COCs for the Class GA criteria in any of the monitoring wells sampled at the Site; however exceedances exists for chromium and lead.

4.2 RECOMMENDATIONS

The following recommendations are provided for the Site:

- Well MW-11 should be located and either rehabilitated or decommissioned, depending on the condition when identified.
- Collect one final round of soil samples to verify the PHOSter™ system can be permanently shut down in the Spring of 2011.
- Decommission and remove the PHOSter™ treatment trailer from the Site.
- Collect one final round of groundwater samples to verify that the groundwater remediation is complete in the Spring of 2011.
- A PRR will be completed on one year.

5.0 REFERENCES

AECOM Technical Services Northeast, Inc., 2010a. Final PHOSter™ System Soil Sampling Report (September 2009 Sampling Event). January 2010.

AECOM Technical Services Northeast, Inc., 2010b. Final Groundwater Sampling Report (March 2010 Sampling Event). August 2010.

CDM Federal, 2005. Monitoring Reports for the SMS Instruments Superfund Site.

Earth Tech Northeast, Inc., 2006a. Final Semiannual Sampling Report (February 2006 Sampling Event). October 2006.

Earth Tech Northeast, Inc., 2006b. Final PHOSter System Soil Sampling Report (June 2006 Sampling Event). October 2006.

Earth Tech Northeast, Inc., 2006c. Final Semiannual Sampling Report (September 2006 Sampling Event). December 2006.

Earth Tech Northeast Inc. 2007. Project Management Plan (Multi-Site G Operations Maintenance and Monitoring). February GeoTrans, Inc., 2005. Remediation System Evaluation (RSE) Report for the SMS Instruments Superfund Site. February.

Earth Tech Northeast, Inc., 2007. Final PHOSter System Soil Sampling Report (March 2007 Sampling Event). June 2007.

Earth Tech Northeast, Inc., 2008a. Final Groundwater Sampling Report (August 2007 Sampling Event). February 2008.

Earth Tech Northeast, Inc., 2008b. Final PHOSter™ System Soil Sampling Report (January 2008 Sampling Event). May 2008.

Earth Tech Northeast, Inc., 2008c. Final Pump and Treat System Dismantlement Report. May 2008.

Earth Tech Northeast, Inc., 2009. Final Groundwater Sampling Report (November 2008 Sampling Event). March 2009.

Earth Tech Northeast, Inc., 2009. Final PHOSter™ System Soil Sampling Report (November 2008 Sampling Event). April 2009.

U.S. Environmental Protection Agency (USEPA), 1989. Record of Decision for the SMS Instruments Superfund Site, OU-1. September 29, 1989.

USEPA, 1993. Record of Decision for the SMS Instruments Superfund Site, OU-2. September 27, 1993.

USEPA, 1996. Five-Year Review Report for the SMS Instruments Superfund Site. January 22.

USEPA, 2006. Five-Year Review Report for the SMS Instruments Superfund Site. May.

N	Periodic Review Report – SMS Instruments Inc. lew York State Department of Environmental Conservation
	FIGURES

Periodic Review Report – SMS Instruments Inc. New York State Department of Environmental Conservation
TABLES

TABLE 1
SMS INSTRUMENTS SITE (#1-52-026)
SUMMARY OF SOIL AND GROUNDWATER CLEANUP CRITERIA

Soil Contaminants	Soil Cleanup Level (mg/kg)	Ambient Air Guideline Concentration (µg/m³) (SVE system operation)
Volatiles		
trans-1,2-Dichloroethene	0.5	Not identified
2-Butanone	0.5	Not identified
2-Hexanone	0.7	Not identified
Tetrachloroethene	1.5	1,116
Toluene	1.5	7,500
Trichloroethene	1	900
Total Xylene	1.2	1,450
Ethylbenzene	5.5	1,450
Chlorobenzene	1	1,167
Semivolatiles		
1,4-Dichlorobenzene	1	Not identified
1,3-Dichlorobenzene	1.5	Not identified
1,2-Dichlorobenzene	1	1,000
Naphthalene	1	167
1,2,4-Trichlorobenzene	2.3	133
2-Methylnaphthalene	2	Not identified
Phenol	0.33	10
2-Methylphenol	2.6	Not identified
Bis(2-ethylhexyl)phthalate	4.5	Not identified

Note - Data taken from the Cost and Performance Report: Soil Vapor Extraction at the SMS Instruments Superfund Site, Deer Park, NY (EPA, March 1995).

Groundwater Contaminants	Chemical Specific ARARs (µg/L)		
Volatiles			
trans-1,2-Dichloroethane	5		
Tetrachloroethene	0.7		
Trichloroethene	5		
Total Xylene	5		
Ethylbenzene	5		
Chlorobenzene	5		
1,1-Dichloroethane	5		
Semivolatiles			
1,4-Dichlorobenzene	4.7		
1,3-Dichlorobenzene	5		
1,2-Dichlorobenzene	4.7		
Naphthalene	5		
Metals	•		
Chromium	50		
Lead	25		

Note: Data taken from EPA ROD for OU-1, 1989.

TABLE 2 MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING SUMMARY OF PHOSPHOLIPID FATTY ACID DATA (2006, 2007, 2008 AND 2009)

JUNE 2006

Boring Location	SMS-12	SMS-12	SMS-16	DW	DW	SMS-10
Sample ID	SMS-SB12-16-17	SMS-SB12-29-30	SMS-SB16-19-20	SMS-DW-19-20	SMS-DW-30-31	SMS-SB10-18-19
Sample Date	6/28/06	6/28/06	6/29/06	6/28/06	6/28/06	6/28/06
Sample Depth (ft bgs)	16 - 17	29 - 30	19 - 20	19 - 20	30 - 31	18 - 19
Total biomass	3.30E+07	3.93E+06	3.12E+07	1.76E+08	2.17E+06	1.47E+08

Boring Location	SMS-15	SMS-21	
Sample ID	SMS-SB15-27-28	SMS-SB21-22-23	
Sample Date	6/29/06	6/28/06	
Sample Depth (ft bgs)	27 - 28	22 - 23	
Total biomass	2.44E+06	7.41E+07	

MARCH 2007

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425
Sample Date	3/22/07	3/22/07	3/22/07	3/22/07	3/23/07	3/23/07
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5 - 23.5	24 - 25	24 - 25
Total biomass	9.92E+07	4.05E+07	1.26E+08	1.35E+08	1.12E+08	1.33E+08

JANUARY 2008

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425
Sample Date	1/16/08	1/16/08	1/16/08	1/16/08	1/17/08	1/17/08
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5-23.5	24 - 25	24 - 25
Total biomass	5.58E+07	8.42E+07	1.58E+08	1.32E+08	1.12E+08	1.18E+08

NOVEMBER 2008

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5
Sample Date	11/18/08	11/18/08	11/18/08	11/18/08	11/19/08	1/17/08
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5
Total biomass	1.16E+08	1.19E+08	4.33E+07	1.61E+08	1.62E+08	1.63E+08

SEPTEMBER 2009

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5
Sample Date	9/15/09	9/15/09	9/15/09	9/15/09	9/16/09	9/16/09
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5
Total biomass	1.00E+08	1.54E+08	1.93E+08	1.72E+08	2.46E+08	1.49E+08

All sample units in cells/gram

TABLE 3

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and SEPTEMBER 2009 DATA

Sample Location	NYSDEC	SMS-10	SMS-10	SMS-10	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SB101819	SB102425	SB285295	B121617	B121920	SB121920
Laboratory ID	strictive	E0901-10B	E0901-11B	E0901-12B	E0901-13B	F0378-01A	G0076-07A
Sample Date	Soil	6/28/06	6/28/06	6/28/06	6/28/06	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective	18-19	24-25	28.5-29.5	16-17	19-20	19-20
Acetone	50	320 E	230	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	7
Chloroform	370	ND	ND	2 J	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	4 J	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	4 J	ND	ND	ND	ND
Xylenes (total)	260	ND	150	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	2,500 D	750 D	4 J	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	180	72	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	51	420 D	3 J	ND	ND	ND
sec-Butylbenzene	11,000	72	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	93	450 E	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	270 E	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	330 DJ	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	140	620 D	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	4 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	154	0	0	0	0
Total VOCs	<10,000	3,960	2,700	9	0	0	7
Total VOC TICs	NC	27,430 J	19,190 J	7,369 J	64 J	28,400 J	62 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

Data validation has NOT been performed on this data

TABLE 3

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SMS121920	SMS-12 19-20	B12235245	B12235245	SB12235245	SMS12235245
Laboratory ID	strictive	G2173-03A	H1787-11	E0901-14B	F0378-02A	G0076-08A	G2173-11A
Sample Date	Soil	11/18/08	9/15/09	6/28/06	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)	Objective	19-20	19-20	23.5-24.5	23.5-24.5	23.5-24.5	23.5-24.5
Acetone	50	ND	ND	3,500 E	ND	20 J	58
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	93	11
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	550	ND
Xylenes (total)	260	ND	ND	3,800 D	ND	3,600	8
Isopropylbenzene	NC	ND	ND	ND	ND	2,100	200
n-Propylbenzene	3,900	ND	ND	7,000 D	ND	2,800 D	400 D
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	50,000 D	260	19,000 D	3,200 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	1,800 DJ	ND	610	130
1,2,4-Trimethylbenzene	3,600	ND	ND	55,000 D	ND	30,000 D	4,400 D
sec-Butylbenzene	11,000	ND	ND	4,400 D	ND	1,600	330 JD
4-Isopropyltoluene	NC	ND	ND	360 E	84	3,400 D	780 D
1,3-Dichlorobenzene	2,400	ND	ND	210	ND	1100	190
1,4-Dichlorobenzene	1,800	ND	ND	320 E	ND	2,000	300 JD
n-Butylbenzene	12,000	ND	ND	18,000 D	ND	9,000 D	1,200 D
1,2 Dichlorobenzene	1,100	ND	ND	98	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	450	ND
1,2,4-Trichlorobenzene	NC	ND	ND	2 J	ND	20 J	ND
Naphthalene	12,000	ND	ND	3 J	ND	720	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	3,800	0	4,243	19
Total VOCs	<10,000	0	0	1 44,493	344	77,063	11,207
Total VOC TICs	NC	1,076 NJ	0	24,647 J	11,180 J	122,200 J	74,700 NJ

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

Data validation has NOT been performed on this data

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SMS 12 23.5-24.5	SB122930	B122930	SB122930	SMS122930	SMS 12 29-30
Laboratory ID		H1787-12	E0901-15B	F0378-03A	G0076-09A	G2173-12A	H1787-10
Sample Date		9/15/09	6/28/06	3/22/07	1/16/08	11/18/08	9/15/09
Sample Depth (ft bgs)	Objective	23.5-24.5	29-30	29-30	29-30	29-30	29-30
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	11	ND
2-Butanone	120	ND	ND	ND	25	ND	ND
Chloroform	370	ND	3 J	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	4 J	ND	ND
1,1,2-Trichloroethane	NC	3,700	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	3 J	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	44	ND	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	260 J	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	310 J	72	ND	1 J	ND	ND
sec-Butylbenzene	11,000	220 J	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	40	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	150 J	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	1,100	240	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	4 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	4	0	0
Total VOCs	<10,000	5,740	406	0	30	11	0
Total VOC TICs	NC	189,000 NJ	1,182 J	ND	7 J	0	315 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B
Sample ID	Unre-	B12B1920	SB12B1920	SMS12B1920	SMS-12B 19-20	B12B235245	SB12B235245
Laboratory ID	strictive	F0378-04A	G0076-10A	G2173-04A	H1787-08	F0378-05A	G0076-11A
Sample Date	Soil	3/22/07	1/16/08	11/18/08	9/15/09	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective	19-20	19-20	19-20	19-20	23.5-24.5	23.5-24.5
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	77
Bromodichloromethane	NC	ND	ND	ND	ND	ND	250
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	16,000 E
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	1,200	52 J
Isopropylbenzene	NC	ND	ND	ND	ND	2,300 D	300
n-Propylbenzene	3,900	ND	ND	ND	ND	4,600 D	720
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	32,000 D	3,100 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	21 J
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	360
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	51,000 D	3,300 D
sec-Butylbenzene	11,000	ND	ND	ND	ND	3,400 D	900
4-Isopropyltoluene	NC	ND	ND	ND	ND	4,700 D	1,600
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	120
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	100
n-Butylbenzene	12,000	ND	ND	ND	ND	15,000 D	2,400 D
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ND	ND	ND	ND	ND	460
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	160	71
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	1,200	52
Total VOCs	<10,000	0	0	0	0	114,360	29,831
Total VOC TICs	NC	ND	8 J	44.1	0	37,700 J	20,000 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and SEPTEMBER 2009 DATA

Sample Location	NYSDEC	SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B
Sample ID	Unre-	SMS12B235245	SMS12B 23.5-24.5	B12B2930	SB12B2930	SMS12B2930	SMS12B 29-30
Laboratory ID	strictive	G2173-13A	H1787-09	F0378-06A	G0076-12A	G2173-14A	H1787-10
Sample Date	Soil	11/18/08	9/15/09	3/22/07	1/16/08	11/18/08	9/15/09
Sample Depth (ft bgs)	Objective	23.5-24.5	23.5-24.5	29-30	29-30	29-30	29-30
Acetone	50	81	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	4.9	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	13	ND
2-Butanone	120	ND	ND	ND	8	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	2 J	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	32	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	130	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	4,300 D	ND	ND	2 J	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	120	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	2,200 D	ND	ND	1 J	ND	ND
sec-Butylbenzene	11,000	170	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	900 D	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	1,700 D	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	1.9 J	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	2	0	0
Total VOCs	<10,000	9,639.8	0	0	13	13	0
Total VOC TICs	NC	73,900 NJ	222,000 NJ	ND	346 J	0	0

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and SEPTEMBER 2009 DATA

Sample Location	NYSDEC	SMS-15	SMS-15	SMS-15	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	B15165175	B152223	B152728	B16165175	SB161920	B161920
Laboratory ID	strictive	E0901-19B	E0901-20B	E0901-22B	E0901-16B	E0901-21B	F0378-11A
Sample Date	Soil	6/28/06	6/28/06	6/28/06	6/29/06	6/29/06	3/22/07
Sample Depth (ft bgs)	Objective	16.5-17.5	22-23	27-28	16.5-17.5	19-20	19-20
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	2 J	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	26 J
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	4 J	ND	70
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	6	ND	51 J
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	7	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	4 JB	3 JB	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	0
Total VOCs	<10,000	4	3	0	19	0	147
Total VOC TICs	NC	ND	ND	ND ND	163 J	ND	42,000 J
Total VOC TICS	INC	ואט	שויו	שוו	100 0	שוו	72,000 3

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	SB161920	SMS-16 19-20	SMS-16 19-20	SB1622.523.5	B16235245	SB16235245
Laboratory ID	strictive	G0076-04A	G2173-05A	H1787-04	E0901-17B	F0378-12A	G0076-05A
Sample Date	Soil	1/16/08	11/18/08	9/15/09	6/29/06	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective	19-20	19-20	19-20	22.5-23.5	23.5-24.5	23.5-24.5
Acetone	50	ND	4.3 J	ND	960	47	690
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	7	ND	ND	ND	ND	370
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	300 J
Toluene	700	1 J	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	20,000 E
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	2,100 E	ND	570
Xylenes (total)	260	ND	ND	ND	13,000 D	ND	4,500
Isopropylbenzene	NC	ND	ND	ND	1,400 DJ	ND	660
n-Propylbenzene	3,900	ND	ND	ND	1,200 E	ND	1,200
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	93 J
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	24,000 D	120	17,000 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	660
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	32,000 D	55	15,000 D
sec-Butylbenzene	11,000	ND	ND	ND	1,000	ND	1,300
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	2,200
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	1,800 E	ND	2,600
n-Butylbenzene	12,000	ND	ND	ND	1,700 E	ND	5,700
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	130	ND	2,100
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	1	0	0	15,100	0	5,070
Total VOCs	<10,000	8	4.3	0	79,290	222	<i>74,943</i>
Total VOC TICs	NC	7 J	276 J	0	35,950 J	33,300 J	171,200 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	16 23.5-24.5	16 23.5-24.5	SB162930	B162930	SB162930	16 29-30
Laboratory ID	strictive	G2173-16A	H1787-05	E0901-18B	F0378-13A	G0076-06A	G2173-17A
Sample Date	Soil	11/18/08	9/15/09	6/29/06	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)	Objective	23.5-24.5	23.5-24.5	29-30	29-30	29-30	29-30
Acetone	50	ND	ND	ND	ND	ND	7.8
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	16	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	3.3 J	ND	ND	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	2.2 J	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	0
Total VOCs	<10,000	5.5	Ö	0	0	16	7.8
Total VOC TICs	NC	472 NJ	254,900 NJ	ND	ND	114 J	264 NJ

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

All units in µg/kg

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and SEPTEMBER 2009 DATA

Sample Location	NYSDEC	SMS-16	SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-16B
Sample ID	Unre-	16 29-30	B16B1920	SB16B1920	SMS16B19-20	SMS16B19-20	B16B225235
Laboratory ID	strictive	H1787-07	F0378-07A	G0076-01A	G2173-06A	H1787-01	F0378-08A
Sample Date	Soil	9/15/09	3/22/07	1/16/08	11/18/08	9/15/09	3/22/07
Sample Depth (ft bgs)	Objective	29-30	19-20	19-20	19-20	19-20	22.5-23.5
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	12	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	50 J
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	ND	480
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	ND	300
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	120
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	50
Total VOCs	<10,000	0	0	12	0	0	950
Total VOC TICs	NC	12.5 NJ	8,120 J	5 J	0	3,130 J	104,500 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-16B
Sample ID	Unre-	SB16B225235	16B 23.5-24.5	16B 23.5-24.5	B16B2930	SB16B2930	16B 29-30
Laboratory ID	strictive	G0076-02A	G2173-18A	H1787-02	F0378-09A	G0076-03A	G2173-19A
Sample Date	Soil	1/16/08	11/18/08	9/15/09	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)	Objective	22.5-23.5	23.5-24.5	23.5-24.5	29-30	29-30	29-30
Acetone	50	ND	<i>7</i> 8	ND	ND	ND	2.9 J
Carbon Disulfide*	NC	ND	3.8 J	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	33 J	ND	ND	ND	18	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	30 J	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	27 J	9.9	ND	ND	2 J	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	45 J	59	ND	ND	ND	ND
Xylenes (total)	260	380	310	ND	ND	ND	ND
Isopropylbenzene	NC	85	110	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	190	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	8,700 D	4,700 D	ND	ND	ND	3.6 J
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	240	90	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	1,100	3,400 D	ND	ND	ND	2.9 J
sec-Butylbenzene	11,000	250	71	690 J	ND	ND	ND
4-Isopropyltoluene	NC	750	190	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	300	380 D	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	680	570 D	ND	ND	ND	ND
n-Butylbenzene	12,000	1,200	170	3,700	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	110	6.3 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	452	379	0	0	2	0
Total VOCs	<10,000	13,930	10,338	4,390	0	20	9.4
Total VOC TICs	NC	195,000 J	5,780 NJ	745,000 NJ	ND	857 J	321

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	SMS-16B	SMS-21	SMS-21	SMS-21	DW	DW
Sample ID	Unre-	16B 29-30	B211920	B212223	B212930	DW-1920	DW-1920
Laboratory ID	strictive	H1787-03	E0901-06B	E0901-07B	E0901-09B	E0901-01B	F0378-15A
Sample Date	Soil	9/15/09	6/28/06	6/28/06	6/28/06	6/28/06	3/23/07
Sample Depth (ft bgs)	Objective	29-30	19-20	22-23	29-30	19-20	19-20
Acetone	50	ND	ND	110	ND	66	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	2 J	ND	ND	18 J	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	6	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	37	ND
Ethylbenzene	1,000	ND	ND	ND	ND	400	ND
Xylenes (total)	260	ND	3 J	ND	ND	20,000 D	ND
Isopropylbenzene	NC	ND	ND	ND	ND	210	ND
n-Propylbenzene	3,900	ND	ND	140	ND	280	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	300 DJ	ND	34,000 D	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	170 DJ	ND	22,000 D	ND
sec-Butylbenzene	11,000	ND	ND	190	ND	300	ND
4-Isopropyltoluene	NC	ND	ND	360 E	ND	1,000	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	8,700 D	ND
1,4-Dichlorobenzene	1,800	ND	3 J	ND	ND	41,000 D	ND
n-Butylbenzene	12,000	ND	ND	490 D	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	10,000 D	ND
Naphthalene	12,000	ND	ND	ND	ND	1,900 D	18 J
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	330	ND
Total BTEX	NC	0	3	6	0	20,400	0
Total VOCs	<10,000	0	8	1,766	0	140,241	18
Total VOC TICs	NC	149.8 NJ	ND	21,130 J	ND	63,300 J	2,270 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and SEPTEMBER 2009 DATA

Sample Location	NYSDEC	DW	DW	DW	DW	DW	DW
Sample ID	Unre-	DW-1920	DW 19-20	DW 19-20	DW215225	DW-2425	DW-2425
Laboratory ID	strictive	G0076-17A	G2173-01A	H1787-15	E0901-03B	E0901-04B	F0378-16A
Sample Date	Soil	1/17/08	11/19/08	9/16/09	6/28/06	6/28/06	3/23/07
Sample Depth (ft bgs)	Objective	19-20	19-20	19-20	21.5-22.5	24-25	24-25
Acetone	50	ND	ND	ND	70	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	2 J	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	8	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	130	3,700	ND
Xylenes (total)	260	ND	ND	ND	3400 D	33,000	ND
Isopropylbenzene	NC	ND	ND	ND	130	1,900	ND
n-Propylbenzene	3,900	ND	ND	ND	93	2,400	ND
2-Chlorotoluene	NC	ND	ND	ND	72	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	9700 D	17,000	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	600 J	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	7800 D	30,000	ND
sec-Butylbenzene	11,000	ND	ND	ND	100	1,800	ND
4-Isopropyltoluene	NC	ND	ND	ND	170	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	140	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	4600 D	3,900	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	69	1,800	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	3,538	36,700	0
Total VOCs	<10,000	0	0	0	26,484	96,100	0
Total VOC TICs	NC	83 J	0	348.8 J	17,426 J	950,800 J	474 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	DW	DW	DW	DW	DW	DW
Sample ID	Unre-	DW-2425	DW-23.5-24.5	DW-23.5-24.5	DW-2930	DW-2930	DW 29-30
Laboratory ID	strictive	G0076-18A	G2173-07A	H1787-16	F0378-17A	G0076-19A	G2173-08A
Sample Date	Soil	1/17/08	11/19/08	9/16/09	3/23/07	1/17/08	11/19/08
Sample Depth (ft bgs)	Objective	24-25	23.5-24.5	23.5-24.5	29-30	29-30	29-30
Acetone	50	ND	30	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	13
2-Butanone	120	ND	ND	ND	ND	8	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	2 J	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	56 J	ND	ND	ND	ND	ND
Xylenes (total)	260	630	27	ND	ND	ND	ND
Isopropylbenzene	NC	60	15 J	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	2,000	4,500 D	1,300	ND	ND	ND
4-Chlorotoluene	NC	94	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	100	240	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	1,100	130	160 J	2 J	ND	ND
sec-Butylbenzene	11,000	200	52	ND	ND	ND	ND
4-Isopropyltoluene	NC	410	220	140 J	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	270	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	440	1,900 D	ND	ND	ND	ND
n-Butylbenzene	12,000	990	ND	670	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	86	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	71 B	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	686	27	0	0	2	0
Total VOCs	<10,000	6,237	7,384	2,270	2	10	13
Total VOC TICs	NC	96,300 J	83,500 NJ	203,300 NJ	159 J	ND	ND

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	DW	DW	DWB	DWB	DWB	DWB
Sample ID	Unre-	DW 29-30	DW-3031	DWB-1920	DWB-1920	DWB 19-20	DWB 19-20
Laboratory ID	strictive	H1787-17	E0901-05B	F0378-18A	G0076-14A	G2137-02A	H1787-18
Sample Date	Soil	9/16/09	6/28/06	3/23/07	1/17/08	11/19/08	9/16/09
Sample Depth (ft bgs)	Objective	29-30	30-31	19-20	19-20	19-20	19-20
Acetone	50	ND	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	3 J	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0	0
Total VOCs	<10,000	0	0	0	3	0	0
Total VOC TICs	NC	ND	ND	1,179 J	39 J	0	0

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)

PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and **SEPTEMBER 2009 DATA**

Sample Location	NYSDEC	DWB	DWB	DWB	DWB	DWB	DWB
Sample ID	Unre-	DWB-2425	DWB-2425	DWB 23.5-24.5	DWB 23.5-24.5	DWB-2930	DWB-2930
Laboratory ID	strictive	F0378-19A	G0076-15A	G2173-09A	H1787-19	F0378-20A	G0076-16A
Sample Date	Soil	3/23/07	1/17/08	11/19/08	9/16/09	3/23/07	1/17/08
Sample Depth (ft bgs)	Objective	24-25	24-25	23.5 - 24.5	23.5 - 24.5	29-30	29-30
Acetone	50	ND	3 J	67	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND	ND
2-Butanone	120	ND	6	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	1 J	ND	ND	ND	4 J
Bromodichloromethane	NC	ND	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	3,100 D	ND	ND	ND	ND	ND
Xylenes (total)	260	23,000 D	9	22	ND	ND	ND
Isopropylbenzene	NC	5,200 D	1 J	33	ND	ND	ND
n-Propylbenzene	3,900	10,000 D	ND	48	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	41,000 D	75	4,400 D	150 J	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	3 J	54	330 J	ND	ND
1,2,4-Trimethylbenzene	3,600	73,000 D	76	4,300 D	ND	ND	ND
sec-Butylbenzene	11,000	2,200 E	5 J	83	1,600	ND	ND
4-Isopropyltoluene	NC	4,700 D	13	240	2,400	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	33	ND	ND	ND
1,4-Dichlorobenzene	1,800	1,400	5 J	90	ND	ND	ND
n-Butylbenzene	12,000	17,000 D	29	270	4,400	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Naphthalene	12,000	940	3 JB	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND
Total BTEX	NC	26,100	9	22	0	0	0
Total VOCs	<10,000	181,540	229	9,640	8,880	0	4
Total VOC TICs	NC	9,660 J	7,080 J	9,430 NJ	458,000 NJ	51 J	7 J

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (Sept 2009)

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

- J Estimated value
- E Result exceeds the calibration range, estimated value
- D Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008, NOVEMBER 2008 and SEPTEMBER 2009 DATA

Sample ID Laboratory ID Sample Date Sample Depth (ft bgs)	Unre- strictive Soil Objective	DWB 29-30 G2173-10A 11/19/08 29-30	DWB 29-30 H1787-20 9/16/09
Sample Date	Soil Objective	11/19/08	9/16/09
	Objective	,	
Sample Depth (ft bgs)	,	29-30	00.00
	50		29-30
Acetone		ND	ND
Carbon Disulfide*	NC	ND	ND
Methylene Chloride	50	12	ND
2-Butanone	120	ND	ND
Chloroform	370	ND	ND
1,1,1-Trichloroethane	680	ND	ND
Trichloroethene	470	ND	ND
1,2-Dichloropropane	NC	ND	ND
Bromodichloromethane	NC	ND	ND
Toluene	700	ND	ND
1,1,2-Trichloroethane	NC	ND	ND
Chlorobenzene	1,100	ND	ND
Ethylbenzene	1,000	ND	ND
Xylenes (total)	260	ND	ND
Isopropylbenzene	NC	ND	ND
n-Propylbenzene	3,900	ND	ND
2-Chlorotoluene	NC	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND
4-Chlorotoluene	NC	ND	ND
tert-Butylbenzene	5,900	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND
sec-Butylbenzene	11,000	ND	ND
4-Isopropyltoluene	NC	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND
n-Butylbenzene	12,000	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND
Naphthalene	12,000	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND
Total BTEX	NC	0	0
Total VOCs	<10,000	12	0
Total VOC TICs	NC	0	0

Notes:

All units in µg/kg

Shaded columns are the latest sampling sampling data (S

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

TABLE 4 SMS INSTRUMENTS SITE (1-52-026) GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
 	Licvation		10 Water	Licvation	
MW-1	73.18	0/12/07	17.00	55.20	
10100-1	73.10	8/13/07	17.98		
		11/5/08	19.25	53.93	
		3/8/10	18.37	54.81	
		_ , ,			
MW-2	72.34	8/13/07	16.91	55.43	
		11/5/08	18.19	54.15	
		3/8/10	17.36	54.98	
	- 4.40	0/40/07	4= 0=		
MW-3	71.40	8/13/07	15.95	55.45	
		11/5/08	17.22	54.18	
		3/8/10	16.41	54.99	
NAVA / 4	70.04	0/40/07	40.00	55.00	
MW-4	72.04	8/13/07	16.68	55.36	
		11/5/08	17.99	54.05	
		3/8/10	17.18	54.86	
N 4\A/ F	70.07	0/40/07	45.70	FF 4F	
MW-5	70.87	8/13/07	15.72	55.15	
		11/5/08	16.99	53.88	
		3/8/10	16.16	54.71	
MW-6S	70.64	8/13/07	15.15	55.49	
10100-63	70.04				
		11/5/08	16.73	53.91	
		3/8/10	15.94	54.70	
MW-6D	70.70	8/13/07	15.59	55.11	
I WW OB	70.70	11/5/08	16.75	53.95	
		3/8/10	16.73	54.68	
		3/0/10	10.02	34.00	
MW-7	72.09	8/13/07	17.06	55.03	
'''' /	72.00	11/5/08	18.28	53.81	
		3/8/10	17.41	54.68	
		0,0,10	17.71	O-7.00	
MW-8	71.22	8/13/07	15.54	55.68	
,	, <u>_</u>	11/5/08	16.85	54.37	
		3/8/10	16.02	55.20	
		3,3,10	10.02	00.20	
MW-9	70.58	8/13/07	14.87	55.71	
'*''	, 5.55	11/5/08	16.24	54.34	
		3/8/10	15.35	55.23	
		0,0,10	10.00	00.20	
MW-11	67.54	8/13/07			could not locate
'*'**	57.0 - 7	11/5/08			could not locate
		3/8/10			could not locate
		0,0,10			Today not room o
<u> </u>					

TABLE 4
SMS INSTRUMENTS SITE (1-52-026)
GROUNDWATER ELEVATIONS

MW-12 69.82 8/13/07 15.57 54.25 11/5/08 16.78 53.04 3/8/10 15.85 53.97	Well #	Reference	Date	Depth	Water Table	Comments
MW-13 71.16 8/13/07 17.08 18.19 52.97 11/5/08 18.19 52.97 11/5/08 18.24 52.96 3/8/10 17.28 53.92 MW-13D 71.20 8/13/07 17.01 54.19 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 3/8/10 17.10 54.46 MW-16M 71.59 8/13/07 16.75 54.46 MW-16D 71.62 8/13/07 16.79 54.83 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68						
MW-13 71.16 8/13/07 17.08 18.19 52.97 11/5/08 18.19 52.97 11/5/08 18.24 52.96 3/8/10 17.28 53.92 MW-13D 71.20 8/13/07 17.01 54.19 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 3/8/10 17.10 54.46 MW-16M 71.59 8/13/07 16.75 54.46 MW-16D 71.62 8/13/07 16.79 54.83 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68						
MW-13 71.16 8/13/07 17.08 54.08 11/5/08 18.19 52.97 3/8/10 17.24 53.92 MW-13D 71.20 8/13/07 17.01 54.19 11/5/08 18.24 52.96 3/8/10 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 MW-16D 71.62 8/13/07 16.79 54.83 3/8/10 17.14 54.45 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 11/5/08 17.15 53.68	MW-12	69.82				
MW-13 71.16 8/13/07 17.08 18.19 52.97 3/8/10 17.24 53.92 MW-13D 71.20 8/13/07 17.01 54.19 52.96 3/8/10 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 53.52 3/8/10 17.10 54.45 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 3/8/10 17.01 54.46 MW-16D 71.62 8/13/07 16.79 54.83 18.05 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68			11/5/08	16.78	53.04	
MW-13D 71.20 8/13/07 17.01 54.19 11/5/08 18.24 52.96 3/8/10 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 53.92 MW-15 71.55 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 53.96 53.52 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 54.83 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 53.58 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68			3/8/10	15.85	53.97	
MW-13D 71.20 8/13/07 17.01 54.19 11/5/08 18.24 52.96 3/8/10 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 53.92 MW-15 71.55 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 53.96 53.52 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 54.83 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 53.58 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68						
MW-13D 71.20 8/13/07 17.24 53.92 MW-13D 71.20 8/13/07 17.01 54.19 52.96 3/8/10 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.46 MW-16D 71.62 8/13/07 16.79 54.83 18.01 53.58 3/8/10 17.14 54.45 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68	MW-13	71.16				
MW-13D 71.20 8/13/07 11/5/08 18.24 52.96 33/8/10 17.28 53.92 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 33/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.45 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.45 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 18.01 53.58 3/8/10 17.14 54.45 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68						
MW-14 71.29 8/13/07 17.24 54.05 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68			3/8/10	17.24	53.92	
MW-14 71.29 8/13/07 17.24 54.05 MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68						
MW-14 71.29 8/13/07 17.24 54.05 11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68	MW-13D	71.20				
MW-14 71.29 8/13/07 17.24 18.33 52.96 18.33 52.96 MW-15 71.55 8/13/07 16.78 54.45 MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 18.01 53.57 3/8/10 17.14 54.45 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68						
11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68			3/8/10	17.28	53.92	
11/5/08 18.33 52.96 3/8/10 17.33 53.96 MW-15 71.55 8/13/07 16.78 54.77 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68						
MW-15 71.55 8/13/07 16.78 11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 17.15/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68	MW-14	71.29				
MW-15 71.55 8/13/07 16.78 18.03 53.52 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68						
11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68			3/8/10	17.33	53.96	
11/5/08 18.03 53.52 3/8/10 17.10 54.45 MW-16S 71.47 8/13/07 16.64 54.83 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68		_,	0/40/07	40 =0		
MW-16S 71.47 8/13/07 16.64 54.83 17.90 53.57 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 54.84 11/5/08 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 54.83 18.05 33.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68	MW-15	71.55				
MW-16S 71.47 8/13/07 16.64 17.90 53.57 11/5/08 17.90 53.57 3/8/10 17.01 54.46 MW-16M 71.59 8/13/07 16.75 18.01 53.58 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68						
MW-16M 71.59 8/13/07 16.75 54.84 53.58 17.14 MW-16D 71.62 8/13/07 16.79 18.05 53.57 11/5/08 18.05 3/8/10 17.15 54.83 53.57 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68 53.68			3/8/10	17.10	54.45	
MW-16M 71.59 8/13/07 16.75 54.84 53.58 17.90 17.14 MW-16D 71.62 8/13/07 16.79 18.05 18.05 17.15 18.05 17.15 18.05 17.15 18.05 17.15 18.05 17.15 18.05 17.51 17.51 54.83 53.57 53.68	NAVA 466	74 47	0/40/07	10.01	E4 00	
MW-16M 71.59 8/13/07 16.75 17.14 54.46 MW-16M 71.59 8/13/07 16.75 18.01 53.58 18.01 53.58 18.01 54.45 MW-16D 71.62 8/13/07 16.79 18.05 53.57 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68	10100-165	71.47				
MW-16M 71.59 8/13/07 16.75 18.01 53.58 18.01 53.58 3/8/10 17.14 54.45 MW-16D 71.62 8/13/07 16.79 17.15 54.47 MW-17 71.19 8/13/07 16.26 17.51 53.68						
MW-16D 71.62 8/13/07 16.79 54.83 17.15 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68			3/8/10	17.01	54.46	
MW-16D 71.62 8/13/07 16.79 54.83 17.15 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 17.51 53.68	NANA/-16NA	71 50	8/13/07	16.75	5/1 8/1	
MW-16D 71.62 8/13/07 16.79 54.83 11/5/08 18.05 53.57 3/8/10 17.15 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68	14144-10141	11.55				
MW-16D 71.62 8/13/07 16.79 16.79 54.83 53.57 11/5/08 18.05 53.57 54.47 MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68						
MW-17 71.19 8/13/07 16.26 53.68 53.68 53.57 54.47			3/0/10	17.14	J T.4 J	
MW-17 71.19 8/13/07 16.26 53.68 53.68 53.57 54.47	MW-16D	71 62	8/13/07	16 79	54.83	
MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68	100	71.02				
MW-17 71.19 8/13/07 16.26 54.93 11/5/08 17.51 53.68						
11/5/08 17.51 53.68			3,0,10	17.10	0 1. 17	
11/5/08 17.51 53.68	MW-17	71.19	8/13/07	16.26	54.93	
3/8/10 16.66 54.53						
			-			

All readings are from top of PVC casing. All measurements are in feet.

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Ground	E0136-20A					E0203-03C				
Sample Date	Water	2/9/06	9/12/06	08/14/07	11/5/08		2/23/06	9/12/06	08/14/07	11/5/08	
	Criteria	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
1,1,1-Trichloroethane	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,1-Dichloroethane	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,2,3-Trichlorobenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,2,4-Trimethylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,2-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,3,5-Trimethylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,3-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,4-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Acetone	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Chlorobenzene	5	32.0	NA	NA	NA	NA	ND	NA	NA	NA	NA
Chloroform	7	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Chloromethane	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
cis-1,2-Dichloroethene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Ethylbenzene	5	1.0 J	NA	NA	NA	NA	ND	NA	NA	NA	NA
Hexachlorobutadiene	0.5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Isopropylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Methyl tert-butyl ether	10	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Naphthalene	10	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
n-Propylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Tetrachloroethene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Toluene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Trichloroethene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Vinyl Chloride	2	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Xylene (Total)	5	5.0	NA	NA	NA	NA	ND	NA	NA	NA	NA
Number of TICs		0	NA	NA	NA	NA	0	0	0	0	0
Total TICs		ND	NA	NA	NA	NA	ND	NA	NA	NA	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion

J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Ground	E0153-03A	E1376-16A	F1135-05A	G2029-10C	J0398-04A	E0136-03A	E1376-17A	F1135-13A	G2029-02C	J0398-05A
Sample Date	Water	2/10/06	9/12/06	8/14/07	11/5/08	3/09/10	2/7/06	9/12/06	8/15/07	11/4/08	3/9/10
	Criteria	conc Q									
1,1,1-Trichloroethane	5	ND									
1,1-Dichloroethane	5	14.0	4 J	ND							
1,2,3-Trichlorobenzene	5	ND									
1,2,4-Trichlorobenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,2-Dichlorobenzene	3	ND	1 J	ND	ND						
1,3,5-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Acetone	50	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	ND	ND	ND	3.3 J	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND									
Ethylbenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Isopropylbenzene	5	ND									
Methyl tert-butyl ether	10	ND									
Naphthalene	10	ND									
n-Propylbenzene	5	ND									
Tetrachloroethene	5	ND									
Toluene	5	ND									
Trichloroethene	5	ND									
Vinyl Chloride	2	ND									
Xylene (Total)	5	ND									
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	ND	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion

J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Ground	E0153-05A	E1376-12A	F1135-11A	G2029-03C	J0398-06A	E0153-01A	E1376-14A	F1135-14A	G2029-04C	J0398-14A
Sample Date		2/10/06	9/12/06	8/15/07	11/4/08	3/9/10	2/9/06	9/12/06	8/15/07	11/4/08	3/11/10
	Criteria	conc Q									
1,1,1-Trichloroethane	5	ND									
1,1-Dichloroethane	5	ND									
1,2,3-Trichlorobenzene	5	ND									
1,2,4-Trichlorobenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,2-Dichlorobenzene	3	ND									
1,3,5-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Acetone	50	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	ND	ND	ND	4.2 J	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	8	ND						
Ethylbenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Isopropylbenzene	5	ND									
Methyl tert-butyl ether	10	ND									
Naphthalene	10	ND									
n-Propylbenzene	5	ND									
Tetrachloroethene	5	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND
Toluene	5	ND									
Trichloroethene	5	ND	1.4 J	ND							
Vinyl Chloride	2	ND	ND	8	ND						
Xylene (Total)	5	ND									
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	0	NA	ND	ND	ND	ND	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion

J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Ground	E0136-19A	E1376-03A	F1135-03A	G2029-05C	J0398-11A	E0136-17A	E1376-05A	F1135-02A	G2029-07C	J0398-10A
Sample Date	Water	2/9/06	9/11/06	8/14/07	11/4/08	3/10/10	2/9/06	9/11/06	8/14/07	11/5/08	3/10/10
	Criteria	conc Q									
1,1,1-Trichloroethane	5	ND									
1,1-Dichloroethane	5	ND									
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND									
1,2-Dichlorobenzene	3	ND									
1,3,5-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Acetone	50	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	5.9								
cis-1,2-Dichloroethene	5	ND									
Ethylbenzene	5	ND									
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Isopropylbenzene	5	ND									
Methyl tert-butyl ether	10	ND									
Naphthalene	10	ND									
n-Propylbenzene	5	ND									
Tetrachloroethene	5	ND									
Toluene	5	ND									
Trichloroethene	5	ND									
Vinyl Chloride	2	ND									
Xylene (Total)	5	ND									
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	ND	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion

J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Ground	E0136-13A	E1376-01A	F1135-01A	G2029-08C	J0398-9A	E0153-07A	E1376-07A	F1135-04A	G2029-09C	J0398-08A
Sample Date		2/8/06	9/11/06	8/14/07	11/5/08	3/10/10	2/10/06	9/11/06	8/14/07	11/5/08	3/10/10
	Criteria	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	1 J	4 J	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	1.0 J	3 J	13 J	2.3 J	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	6	11	21	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	3 J	5	11	1.7 J	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	2 J	1.7 J	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	2 J	4 J	3.2 J	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	1.0 J	ND	2 J	1.1 J	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	2 J	ND	1.2 J	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	1 J	1.6 J	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	5	4 J	4.1 J	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	0	0	0
Total TICs		ND	ND	ND	0 NJ	NA	ND	ND	ND	ND	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Ground	E0136-01A	E1376-02A	F1135-07A	G2029-01C	J0398-03A	E0136-02A	E1376-15A	F1135-06A	G2029-16C	J0398-01A
Sample Date		2/7/06	9/11/06	8/14/07	11/4/08	3/9/10	2/7/06	9/12/06	8/14/07	11/6/08	3/9/10
	Criteria	conc Q									
1,1,1-Trichloroethane	5	ND									
1,1-Dichloroethane	5	ND									
1,2,3-Trichlorobenzene	5	ND									
1,2,4-Trichlorobenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,2-Dichlorobenzene	3	ND									
1,3,5-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND	1.3 J								
Acetone	50	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	ND	ND	3.5 J	ND	ND	ND	ND	ND	4.6 J
cis-1,2-Dichloroethene	5	ND									
Ethylbenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Isopropylbenzene	5	ND									
Methyl tert-butyl ether	10	ND									
Naphthalene	10	ND									
n-Propylbenzene	5	ND									
Tetrachloroethene	5	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND
Toluene	5	ND									
Trichloroethene	5	ND									
Vinyl Chloride	2	ND									
Xylene (Total)	5	ND									
Number of TICs		0	0	0	0	0	0	0	0	1	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	28 J	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion

J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Ground	E0136-05A	E1400-06A			NA	E0136-06A	E1400-05A	F1159-04A	G2029-23C	J0445-03A
Sample Date	Water	2/8/06	9/13/06	8/14/07	11/7/08	3/10/10	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10
	Criteria	conc Q									
1,1,1-Trichloroethane	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Acetone	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Toluene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Number of TICs		0	0	0	0	0	0	0	0	1	0
Total TICs		ND	ND	NA	NA	NA	ND	ND	ND	31 J	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13S	SMS-MW-13S	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Ground	E0136-07A	E1400-01A	F1159-03A	G2029-21C	J0445-02A	E0136-09A	E1400-02A	F1135-19A	G2029-22C	J0398-19A
Sample Date	Water	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10	2/8/06	9/13/06	8/16/07	11/7/08	3/11/10
	Criteria	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.9 J
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	1.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	0	1	0
Total TICs		ND	ND	ND	34 J	NA	ND	ND	ND	36 J	NA

ND - Not Detected

Bold/Italics - Exceeds criterion

NC - No criterion J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING

VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Ground	E0136-08A	E1400-07A	F1135-18A	G2029-19C	J0445-01A	E0136-11A	E1376-11A	F1135-17A	G2029-15C	J0398-15A
Sample Date	Water	2/8/06	9/13/06	8/16/07	11/7/08	3/12/10	2/8/06	9/12/06	8/16/07	11/6/08	3/11/10
	Criteria	conc Q									
1,1,1-Trichloroethane	5	ND									
1,1-Dichloroethane	5	ND									
1,2,3-Trichlorobenzene	5	ND									
1,2,4-Trichlorobenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,2-Dichlorobenzene	3	ND									
1,3,5-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Acetone	50	ND	ND	6	ND						
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	4.1 J								
cis-1,2-Dichloroethene	5	ND									
Ethylbenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Isopropylbenzene	5	ND									
Methyl tert-butyl ether	10	ND									
Naphthalene	10	ND									
n-Propylbenzene	5	ND									
Tetrachloroethene	5	ND									
Toluene	5	ND									
Trichloroethene	5	ND									
Vinyl Chloride	2	ND									
Xylene (Total)	5	ND									
Number of TICs		0	0	0	1	0	0	0	0	1	0
Total TICs		ND	ND	ND	30 J	NA	ND	ND	ND	33 J	NA

Notes: All values in µg/L NC - No criterion

ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Ground	E0136-16A	E1400-03A	F1135-09A	G2029-14C	J0398-17A	E0136-15A	E1376-10A	F1135-10A	G2029-13C	J0398-18A
Sample Date		2/9/06	9/13/06	8/13/07	11/6/08	3/11/10	2/9/06	9/12/06	8/13/07	11/6/08	3/11/10
	Criteria	conc Q									
1,1,1-Trichloroethane	5	ND									
1,1-Dichloroethane	5	ND									
1,2,3-Trichlorobenzene	5	ND									
1,2,4-Trichlorobenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,2-Dichlorobenzene	3	ND									
1,3,5-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Acetone	50	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND	1.3 J	ND							
Chloromethane	NC	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND									
Ethylbenzene	5	ND									
Hexachlorobutadiene	0.5	ND	1 J	ND							
Isopropylbenzene	5	ND									
Methyl tert-butyl ether	10	ND	1 J	1 J	ND	ND	ND	2 J	ND	ND	ND
Naphthalene	10	ND									
n-Propylbenzene	5	ND									
Tetrachloroethene	5	ND									
Toluene	5	ND									
Trichloroethene	5	ND									
Vinyl Chloride	2	ND									
Xylene (Total)	5	ND									
Number of TICs		0	0	0	1	0	0	0	0	1	0
Total TICs		ND	ND	ND	29 J	NA	ND	ND	ND	36 J	NA

Notes: All values in µg/L NC - No criterion

ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Ground			F1135-16A	G2029-12C	J0398-16A	E0136-18A	E1376-04A	F1135-15A	G2029-11C	J0398-12A
Sample Date	Water	2/8/06		8/16/07	11/6/08	3/11/10	2/9/06	9/11/06	8/16/07	11/6/08	3/10/10
	Criteria	conc Q		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2 J
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 J
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	ND	NA

Notes: All values in µg/L NC - No criterion

ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value

TABLE 6
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Ground	E0136-20B					E0203-03C				
Sample Date	Water	2/9/06	9/12/06	08/14/07	11/5/08		2/23/06	9/12/06	08/14/07	11/5/08	
	Criteria	conc Q	conc Q	conc Q	conc Q	conc Q					
1,3-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,4-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
2,4-Dimethylphenol	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
2-Methylphenol	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
4-Methylphenol	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(a)anthracene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(a)pyrene	ND	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(b)fluoranthene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(g,h,i)perylene	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(k)fluoranthene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	5	83 B	NA	NA	NA	NA	1.0 J	NA	NA	NA	NA
Butylbenzyl phthalate	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Chrysene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Dibenzo(a,h)anthracene	NC	ND	NA	NA	NA	NA	ND	NA	ND	NA	NA
Dimethylphthalate	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Di-n-butyl phthalate	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Fluoranthene	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Isophorone	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Naphthalene	10	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Phenanthrene	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Phenol	1	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Pyrene	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Number of TICs		2	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total TICs		322 J	NA	NA	NA	NA	ND	NA	NA	NA	NA

NA - Not analyzed

J - Estimated value

B - Possible laboratory contamination

Bold/Italics - Exceeds criterion

NC - No criterion

ND - Not Detected

TABLE 6
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Ground	E0153-03B	E1376-16B	F1135-05B	G2029-10C	J0398-04C	E0136-03C	E1376-17B	F1135-13B	G2029-02C	J0398-05C
Sample Date	Water	2/10/06	9/12/06	8/14/07	11/5/08	3/09/10	2/7/06	9/12/06	8/15/07	11/4/08	3/9/10
	Criteria	conc Q									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
2,4-Dimethylphenol	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
Benzo(a)anthracene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Benzo(k)fluoranthene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	21.0	1 J	ND	ND	ND	2.0 J	2 J	ND	ND	ND
Butylbenzyl phthalate	50	ND									
Chrysene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Dimethylphthalate	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Indeno(1,2,3-cd)pyrene	0.002	ND									
Isophorone	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Phenol	1	ND									
Pyrene	50	ND									
Number of TICs		3	3	3	1	NA	2	0	9	0	NA
Total TICs		111 J	32 J	28 J	4.1 NJ	NA	634 J	ND	34 J	ND	NA

NA - Not analyzed

J - Estimated value

tion B - Possible laboratory contamination

Bold/Italics - Exceeds criterion

NC - No criterion

ND - Not Detected

TABLE 6 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Ground	E0153-05B	E1376-12B	F1135-12B	G2029-03C	J0398-06C	E0153-01B	E1376-14B	F1135-14B	G2029-04C	J0398-14C
Sample Date	Water	2/10/06	9/12/06	8/15/07	11/4/08	3/9/10	2/9/06	9/12/06	8/15/07	11/4/08	3/11/10
	Criteria	conc Q									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
2,4-Dimethylphenol	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
Benzo(a)anthracene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Benzo(k)fluoranthene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	2.0 J	2 J	1 J	ND						
Butylbenzyl phthalate	50	ND									
Chrysene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Dimethylphthalate	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Indeno(1,2,3-cd)pyrene	0.002	ND									
Isophorone	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Phenol	1	ND									
Pyrene	50	ND									
Number of TICs		3	1	4.0	0.0	NA	1	0	7	0	NA
Total TICs		323 J	7 J	49 J	ND	NA	9 J	ND	79 J	ND	NA

NA - Not analyzed

J - Estimated value

Bold/Italics - Exceeds criterion B - Possible laboratory contamination

NC - No criterion

ND - Not Detected

TABLE 6 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Ground	E0136-19B	E1376-03B	F1135-03B	G2029-05C	J03898-11C	E0136-17B	E1376-05B	F1135-02B	G2029-07C	J0398-10C
Sample Date	Water	2/9/06	9/11/06	8/14/07	11/4/08	3/10/10	2/9/06	9/11/06	8/14/07	11/5/08	3/10/10
	Criteria	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q				
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	1.0 J	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	1.0 J	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	1 J	ND	ND	ND	5.0 JB	3 J	4 J	3 J	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	2.0 J	2 J	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	1.0 J	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	2.0 J	2 J	ND	ND	ND
Number of TICs		2	0	3	0	NA	10	0	3	6	NA
Total TICs		353 J	ND	28 J	ND	NA	963 J	ND	29 J	177.5 NJ	NA

NA - Not analyzed

J - Estimated value

Bold/Italics - Exceeds criterion

NC - No criterion

ND - Not Detected

D - Dilution

B - Possible laboratory contamination

TABLE 6
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Ground	E0136-13C	E1376-01B	F1135-01B	G2029-08C	J0398-09C	E0203-01A	E1376-07B	F1135-04B	G2029-09C	J0398-08C
Sample Date	Water	2/8/06	9/11/06	8/14/07	11/5/08	3/10/10	2/10/06	9/11/06	8/14/07	11/5/08	3/10/10
	Criteria	conc Q									
1,3-Dichlorobenzene	3	1.0 J	ND								
1,4-Dichlorobenzene	3	2.0 J	1 J	ND	1.3 J	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	1.0 J	ND								
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	1 J	1.2 J	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	2 J	3.1 J	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	1.0 J	1 J	3 J	8.4 J	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	1.0 J	ND	3 J	6.4 J	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	1 J	6.5 J	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	6.0 JB	4 J	6 J	12	2.6 J	11.0	ND	ND	ND	ND
Butylbenzyl phthalate	50	5.0 J	ND								
Chrysene	0.002	1.0 J	ND	2 J	2.2 J	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	1.1 J	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	1.0 J	ND	2 J	3 J	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	2 J	4.9 J	ND	ND	ND	ND	ND	ND
Isophorone	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Phenol	1	ND	ND	ND	1.2 J	ND	ND	ND	1 J	ND	ND
Pyrene	50	1.0 J	ND	1 J	2 J	ND	ND	ND	ND	ND	ND
Number of TICs		19	11	8	17	NA	6.0	0	3	0	NA
Total TICs		845 J	57 J	57 J	114 NJ	NA	53 J	ND	27 J	ND	NA

NA - Not analyzed

J - Estimated value

B - Possible laboratory contamination

Bold/Italics - Exceeds criterion

NC - No criterion

ND - Not Detected

TABLE 6 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Ground	E0136-01C	E1376-02B	F1135-07B	G2029-01C	J0398-03C	E0136-02C	E1376-15B	F1135-06B	G2029-16C	J0398-01C
Sample Date	Water	2/7/06	9/11/06	8/14/07	11/4/08	3/9/10	2/7/06	9/12/06	8/14/07	11/6/08	3/9/10
	Criteria	conc Q									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
2,4-Dimethylphenol	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
Benzo(a)anthracene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Benzo(k)fluoranthene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	2.0 J	ND	ND	ND	ND	2.0 J	3 J	ND	ND	ND
Butylbenzyl phthalate	50	ND									
Chrysene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Dimethylphthalate	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Indeno(1,2,3-cd)pyrene	0.002	ND									
Isophorone	50	ND									
Naphthalene	10	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
Phenanthrene	50	ND									
Phenol	1	ND									
Pyrene	50	ND									
Number of TICs		9	0	3	0	NA	8	4	2	9	NA
Total TICs		53 J	ND	25 J	ND	NA	198 J	26 J	19 J	111.3 NJ	NA

AECOM Technical Services Northeast, Inc.

NA - Not analyzed

J - Estimated value

B - Possible laboratory contamination

Bold/Italics - Exceeds criterion

NC - No criterion

ND - Not Detected

TABLE 6
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Ground	E0136-05C	E1400-06B	NA	NA	NA	E0136-06C	E1400-05B	F1159-04B	G2029-23C	J0445-03C
Sample Date	Water	2/8/06	9/13/06	8/14/07	11/7/08	3/10/10	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10
	Criteria	conc Q									
1,3-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	NA	NA	NA	ND	1 J	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Phenol	1	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Number of TICs		3	0				NA	0	3	0	NA
Total TICs		552 J	ND	NA	NA	NA	NA	ND	32 J	ND	NA

NA - Not analyzed

J - Estimated value

Bold/Italics - Exceeds criterion B - Possible laboratory contamination

NC - No criterion

ND - Not Detected

TABLE 6
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13S	SMS-MW-13S	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Ground	E0136-07C	E1400-01B	F1159-03B	G2029-21C	J0445-02C	E0136-09C	E1400-02B	F1159-02A	G2029-22C	J0398-19C
Sample Date	Water	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10	2/8/06	9/13/06	8/16/07	11/7/08	3/11/10
	Criteria	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		4	1	7	3	NA	3	0	4	5	NA
Total TICs		290 J	8 J	51 J	50.6 NJ	NA	256 J	ND	35 J	45.2 NJ	NA

NA - Not analyzed

J - Estimated value

Bold/Italics - Exceeds criterion B - Possible laboratory contamination

NC - No criterion ND - N

ND - Not Detected

TABLE 6 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Ground	E0136-08C	E1400-07B	F1135-18B	G2029-19C	J0445-01C	E0136-11C	E1376-11B	F1135-17B	G2029-15C	J0398-15C
Sample Date	Water	2/8/06	9/13/06	8/16/07	11/7/08	3/12/10	2/8/06	9/12/06	8/16/07	11/6/08	3/11/10
	Criteria	conc Q									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
2,4-Dimethylphenol	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
Benzo(a)anthracene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Benzo(k)fluoranthene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	ND	2 J	ND							
Butylbenzyl phthalate	50	ND									
Chrysene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Dimethylphthalate	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Indeno(1,2,3-cd)pyrene	0.002	ND									
Isophorone	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Phenol	1	ND									
Pyrene	50	ND									
Number of TICs		2	0	4	0	NA	1	0	3	1	NA
Total TICs		171 J	ND	31 J	ND	NA	7 J	ND	27 J	4.2 J	NA

NA - Not analyzed

J - Estimated value

Bold/Italics - Exceeds criterion B - Possible laboratory contamination

NC - No criterion

ND - Not Detected

TABLE 6
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Ground	E0136-16B	E1400-03B	F1135-09B	G2029-14C	J0398-17C	E0136-15B	E1376-10B	F1135-10B	G2029-13C	J0398-18C
Sample Date	Water	2/9/06	9/13/06	8/13/07	11/6/08	3/11/10	2/9/06	9/12/06	8/13/07	11/6/08	3/11/10
	Criteria	conc Q									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
2,4-Dimethylphenol	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
Benzo(a)anthracene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Benzo(k)fluoranthene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	190 DB	ND	2 J	ND	ND	2.0 JB	ND	1.0 J	ND	ND
Butylbenzyl phthalate	50	ND									
Chrysene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Dimethylphthalate	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Indeno(1,2,3-cd)pyrene	0.002	ND									
Isophorone	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Phenol	1	ND									
Pyrene	50	ND									
Number of TICs		2	0	4	1	NA	4	0	3	1	NA
Total TICs		140 J	ND	31 J	4.2 J	NA	329 J	ND	28 J	9 NJ	NA

NA - Not analyzed

J - Estimated value

B - Possible laboratory contamination

Bold/Italics - Exceeds criterion

NC - No criterion

ND - Not Detected

D - Dilution

TABLE 6
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Ground	E0136-12C	E1376-09B	F1135-16B	G2029-12C	J0398-16C	E0136-18B	E1453-01A	F1135-15B	G2029-11C	J0398-12C
Sample Date	Water	2/8/06	9/12/06	8/16/07	11/6/08	3/11/10	2/9/06	9/11/06	8/16/07	11/6/08	3/10/10
	Criteria	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q				
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		3	1	3	3	NA	2	5	3	0	NA
Total TICs		188 J	23 J	27 J	111.8 J	NA	102 J	30 J	28 J	ND	NA

NA - Not analyzed

J - Estimated value

B - Possible laboratory contamination

Bold/Italics - Exceeds criterion

NC - No criterion

ND - Not Detected

D - Dilution

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Ground	E0136-20B					E0203-03				
Sample Date	Water	2/9/06	9/12/06	08/14/07	11/5/08		2/23/06	9/12/06	08/14/07	11/5/08	
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	28.8 BE	NA	NA	NA	NA	77.2 B	NA	NA	NA	NA
Antimony	3	ND	NA	NA	NA	NA	4.0 B	NA	NA	NA	NA
Arsenic	25	ND	NA	NA	NA	NA	1.6 B	NA	NA	NA	NA
Barium	1,000	34.1 B	NA	NA	NA	NA	88.3 B	NA	NA	NA	NA
Beryllium	3	ND	NA	NA	NA	NA	0.15 B	NA	NA	NA	NA
Cadmium	5	0.97 B	NA	NA	NA	NA	ND	NA	NA	NA	NA
Calcium	NC	13,300 E	NA	NA	NA	NA	22,400	NA	NA	NA	NA
Chromium	50	3.4 B	NA	NA	NA	NA	8.3 B	NA	NA	NA	NA
Cobalt	NC	4.4 BE	NA	NA	NA	NA	1.3 B	NA	NA	NA	NA
Copper	200	8.9 B	NA	NA	NA	NA	4.6 B	NA	NA	NA	NA
Iron	300	3,650 NE	NA	NA	NA	NA	2,670	NA	NA	NA	NA
Lead	25	0.93 B	NA	NA	NA	NA	3.6 B	NA	NA	NA	NA
Magnesium	35,000	2,000 E	NA	NA	NA	NA	3,780	NA	NA	NA	NA
Manganese	300	684 E	NA	NA	NA	NA	200	NA	NA	NA	NA
Mercury	0.7	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Nickel	100	4.3 B	NA	NA	NA	NA	9.4 B	NA	NA	NA	NA
Potassium	NC	2,810	NA	NA	NA	NA	9,610	NA	NA	NA	NA
Selenium	10	3.3 B	NA	NA	NA	NA	2.0 B	NA	NA	NA	NA
Silver	50	ND	NA	NA	NA	NA	1.8 B	NA	NA	NA	NA
Sodium	20,000	17,300 E	NA	NA	NA	NA	18,400	NA	NA	NA	NA
Thallium	0.5	4.3 B	NA	NA	NA	NA	2.6 B	NA	NA	NA	NA
Vanadium	NC	0.92 B	NA	NA	NA	NA	ND	NA	NA	NA	NA
Zinc	2,000	52.7 E	NA	NA	NA	NA	126	NA	NA	NA	NA

Notes: All values in μg/L B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected NA - Not Analyzed

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Ground	E0153-03C	E1376-16C	F1135-05C	G2029-10C	J0398-04C	E0136-03B	E1376-17C	F1135-13C	G2029-02C	J0398-05C
Sample Date	Water	2/10/06	9/12/06	8/14/07	11/5/08	3/09/10	2/7/06	9/12/06	8/15/07	11/4/08	3/9/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	236 E	319	4,360	705	604	1,930 E	6,060	3,440	929	2480
Antimony	3	3.3 B	ND	12.6 B	ND	ND	2.2 B	ND	8.9 B	ND	9.4 B
Arsenic	25	3.5 B	ND	ND	ND	7.5 B	2.6 B	4.4 B	ND	ND	5.9 B
Barium	1,000	48.7 B	71.5 B	91 B	76.7 B	85.9 B	28.2 B	63.2 B	78.9 B	64.5 B	75.2 B
Beryllium	3	ND	ND	0.48 B	0.19 B	0.17 B	ND	0.27 B	0.30 B	0.17 B	0.34 B
Cadmium	5	0.67 B	0.19 B	0.39 B	0.6 B	ND	4.1 B	3.2 B	3.9 B	9.2	29.1
Calcium	NC	24,000	19,500	20,100	38,600	33,600	13,100 E	18,300	19,700	24,700	26,200
Chromium	50	9.6 B	2.7 B	18 B	12.3 B	10.5 B	12.1 B	16.9 B	12.6 B	6.5 B	6.8 B
Cobalt	NC	2.5 B	1.2 B	9.3 B	4.0 B	2.3 B	2.4 BE	3.7 B	4.4 B	1.3 B	2.5 B
Copper	200	16.8 B	ND	33.8	41.3	30.8	43.0	35.6	37.0	37.5	40.6
Iron	300	30,000 E	12,500	110,000	50,300	96,300	28,100 NE	25,100	40,400	20,500	166,000
Lead	25	3.2 B	0.95 B	17.3	6.5 B	31.2	135	128	197	271	347
Magnesium	35,000	4,610 E	3,370	4,230	6,880	5,160	3,380 E	4,660	4590	5,950	6,960
Manganese	300	226 E	126	585	724	310	221 E	715	1,080	295	422
Mercury	0.7	ND	ND	0.066 B	ND	ND	ND	ND	0.055 B	ND	ND
Nickel	100	13.9 B	4.8 B	19.8 B	16.7 B	11.2 B	13.6 B	14.0 B	10.9 B	5.6 B	10.3 B
Potassium	NC	7,940	9,380	4,450	9,970	16,700	4,210	6,750	14,100	11,100	5,440
Selenium	10	ND	ND	29.5 B	ND	17 B	5.1 B	ND	14.5 B	ND	23.4 B
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	1.2 B	ND
Sodium	20,000	28,400	27,200	73,900	32,200	35,100	8,240 E	16,500	20,100	25,900	28,700
Thallium	0.5	ND	ND	18.5 B	ND	ND	1.2 B	ND	2.5 B	ND	ND
Vanadium	NC	1.3 B	0.85 B	9.3 B	2.0 B	0.94 B	11.1 B	18.8 B	14.6 B	6.0 B	8.8 B
Zinc	2,000	55.1	87.1	234	128	142	<i>4,620</i> E	2,720	3,360	4,230	11,800

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected NA - Not Analyzed

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Ground	E0153-05C	E1376-12C	F1135-12C	G2029-03C	J0398-06C	E0153-01C	E1376-14C	F1135-14C	G2029-04C	J0398-14C
Sample Date	Water	2/10/06	9/12/06	8/15/07	11/4/08	3/9/10	2/9/06	9/12/06	8/15/07	11/4/08	3/11/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	886 E	1,860	1,860	184 B	428	139 BE	114 B	876	208	644
Antimony	3	2.3 B	ND	8.6 B	ND	4.5 B	4.7 B	2.5 B	11.2 B	ND	6.4 B
Arsenic	25	2.2 B	3.0 B	ND	ND	6.1 B	ND	ND	ND	ND	7.8 B
Barium	1,000	72.7 B	49.8 B	56.9 B	49.8 B	39.6 B	31.8 B	26 B	64 B	53.8 B	47.6 B
Beryllium	3	ND	ND	0.16 B	ND	0.16 B	ND	ND	ND	0.15 B	0.14 B
Cadmium	5	1.6 B	1.0 B	1.3 B	0.24 B	ND	0.51 B	ND	ND	0.4 B	ND
Calcium	NC	32,500	25,000	23,000	25,200	29,500	16,300	25,400	21,400	12,800	22,500
Chromium	50	15.4 B	10.6 B	12.6 B	3.5 B	6.8 B	2.4 B	2.3 B	5.7 B	5.0 B	7 B
Cobalt	NC	3.6 B	2.2 B	4.4 B	ND	1.9 B	2.1 B	0.79 B	3.2 B	3.0 B	0.67 B
Copper	200	29.8 B	21.6 B	27.1 B	14.4 B	13.1 B	ND	ND	ND	12.0 B	10.1 B
Iron	300	26,700 E	20,400	46,400	12,600	43,100	<i>47,800</i> E	23,800	78,200	20,800	52,200
Lead	25	6.8 B	4.3 B	9.5 B	4.8 B	4.9 B	1.5 B	ND	4.5 B	5.5 B	5 B
Magnesium	35,000	4,790 E	3,630	3,550	3,950	4,320	3,020 E	1,500	1,470	1,110	3,210
Manganese	300	399 E	502	910	499	566	<i>544</i> E	210	686	541	216
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	18.5 B	8.5 B	12.3 B	2.2 B	7.4 B	6.6 B	2.1 B	5.3 B	3.7 B	1.8 B
Potassium	NC	10,300	7,410	9,170	6,830	7,750	2,370	5,600	5,690	1,790	2,880
Selenium	10	ND	ND	15.2 B	ND	11.9 B	3.5 B	ND	14.1 B	ND	ND
Silver	50	1.6 B	ND	ND	0.99 B	ND	ND	ND	ND	1.5 B	ND
Sodium	20,000	16,900	20,000	12,700	17,600	16,700	6,310	3,990	3,600	3,030	13,100
Thallium	0.5	ND	ND	4.7 B	ND	ND	ND	ND	9.7 B	ND	ND
Vanadium	NC	3.5 B	5.2 B	4.6 B	1.2 B	1.0 B	2.1 B	2.5 B	5.1 B	3.0 B	3.4 B
Zinc	2,000	66.1	52.6	59.8	47.7 B	62.2	35.2 B	32.4 B	42.5 B	51.2	31.4 B

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected NA - Not Analyzed

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Ground	E0136-19C	E1376-03C	F1135-03C	G2029-05C	J0398-11C	E0136-17C	E1376-05C	F1135-02C	G2029-07C	J0398-10C
Sample Date	Water	2/9/06	9/11/06	8/14/07	11/4/08	3/10/10	2/9/06	9/11/06	8/14/07	11/5/08	3/10/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	284 E	1140	583	130 B	289	2,340 E	197 B	416	254	931
Antimony	3	1.7 B	2.0 B	8.8 B	ND	ND	2.3 B	2.3 B	6.2 B	ND	ND
Arsenic	25	6.9 B	5.5 B	2.0 B	ND	12.7 B	5.1 B	1.7 B	ND	ND	3.3 B
Barium	1,000	22.3 B	39.2 B	199 B	190 B	95.4 B	52.1 B	60 B	16.5 B	24.4 B	25 B
Beryllium	3	ND	ND	0.16 B	0.14 B	0.14 B	ND	ND	ND	ND	0.1 B
Cadmium	5	5.8	3.4 B	8.4	5.0 B	3.4 B	4.1 B	0.37 B	0.76 B	1.4 B	0.86 B
Calcium	NC	10,500 E	15,100	21,600	13,400	20,400	24,000 E	22,400	13,700	18,800	16,700
Chromium	50	8.8 B	18.1 B	17.5 B	3.5 B	10.3 B	16.7 B	6.7 B	4.9 B	4.0 B	5.6 B
Cobalt	NC	2.3 BE	2.4 B	5.0 B	4.8 B	5.4 B	28.2 BE	54.1	10.8 B	6.5 B	7.2 B
Copper	200	30.9	30.0 B	24.5 B	35.5	20.5 B	74.5	9.3 B	20.7 B	27.9 B	17.6 B
Iron	300	44,700 NE	23,400	61,000	8,990	49,300	72,300 NE	,	39,300	5,350	26,000
Lead	25	4.2 B	7.9 B	8.4 B	4.0 B	5.5 B	21.7	ND	4.7 B	5.5 B	10
Magnesium	35,000	1,560 E	2,500	3,570	2,150	1,790	5,140 E	5,780	1,210	2,320	2,200
Manganese	300	291 E	<i>551</i>	548	777	760	593 E	276	256	281	294
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11 B
Nickel	100	13.4 B	12.8 B	13.7 B	6.7 B	7.9 B	25.8 B	12.9 B	12.7 B	5.2 B	6.9 B
Potassium	NC	2,240	3,100	3050	2,360	2,290	3,180	3,480	2,790	1,720	6,930
Selenium	10	6.3 B	ND	13.4 B	ND	11.9 B	12.5 B	ND	3.9 B	ND	11.9 B
Silver	50	ND	ND	ND	1.1 B	ND	ND	ND	ND	0.75 B	ND
Sodium	20,000	3,670 E	5,230	12,600	3,690	7,350	13,100 E	31,100	16,000	3,380	16,600
Thallium	0.5	ND	ND	9.4 B	ND	ND	ND	ND	10.6 B	ND	ND
Vanadium	NC	4.3 B	7.3 B	8.1 B	1.1 B	5.1 B	9.8 B	1.1 B	1.5 B	1.2 B	2.7 B
Zinc	2,000	44.3 BE	40.2 B	40.6 B	39.6 B	25.6 B	225 E	113	76.2	76.8	63.9

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Ground	E0136-13B	E1376-01C	F1135-01C	G2029-08C	J0398-09C	E0153-07C	E1376-07C	F1135-04C	G2029-09C	J0398-08C
Sample Date	Water	2/8/06	9/11/06	8/14/07	11/5/08	3/10/10	2/10/06	9/11/06	8/14/07	11/5/08	3/10/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	2,740 E	2790	8,920	21,400	8,700	161 BE	816	410	106 B	207
Antimony	3	2.0 B	ND	6.2 B	ND	ND	3.5 B	ND	8.0 B	ND	ND
Arsenic	25	8.1 B	5.8 B	12.1 B	13.7 B	17.5 B	4.0 B	3.3 B	ND	ND	5 B
Barium	1,000	44.2 B	52.4 B	86.7 B	96.1 B	87 B	30.2 B	39.3 B	62.6 B	56.7 B	59.6 B
Beryllium	3	0.24 B	0.45 B	1.0 B	9.8	3.7 B	0.19 B	0.16 B	0.22 B	0.23 B	0.22 B
Cadmium	5	3.3 B	1.4 B	2.6 B	9.7	3.7 B	2.2 B	1.7 B	2.2 B	2.1 B	1.2 B
Calcium	NC	54,000 E	27,300	30,300	40,300	47,200	20,400	21,800	26,200	32,400	30,100
Chromium	50	15.0 B	16.4 B	111	68.2	66.5	10.1 B	12.6 B	7.7 B	6.6 B	6.4 B
Cobalt	NC	21.2 BE	10.8 B	22 B	56.9	20.6 B	2.8 B	2.0 B	4.8 B	2.6 B	4.4 B
Copper	200	70.4	45.8	135	156	84.9	19.6 B	14.3 B	ND	14.7 B	27 B
Iron	300	<i>17,700</i> NE	8,790	40,400	42,000	46,700	72,000 E	60,300	96,100	34,700	99,500
Lead	25	20.5	12.1	58.1	81.1	37	1.4 B	2.9 B	4.6 B	4.4 B	3.8 B
Magnesium	35,000	13,700 E	8,340	9,290	9,060	8,100	3,910 E	4,380	3,900	4,690	5,910
Manganese	300	869 E	223	732	1,800	308	<i>445</i> E	592	696	683	890
Mercury	0.7	ND	ND	0.3	ND	0.2	ND	ND	ND	ND	ND
Nickel	100	21.1 B	9.6 B	24.8 B	55.9	23.2 B	15.4 B	9.7 B	9.0 B	3.9 B	10.2 B
Potassium	NC	4,710	2,720	3,530	3,500	2,910	3,230	3,900	6,600	5,690	7,900
Selenium	10	5.9 B	ND	24.5 B	ND	ND	3.9 B	ND	17.9 B	ND	ND
Silver	50	ND	ND	ND	ND	3.5 B	ND	ND	ND	1.5 B	ND
Sodium	20,000	16,800 E	8,450	5,530	6,050	9,140	10,200	15,400	16,800	14,500	16,400
Thallium	0.5	6.4 B	1.8 B	7.9 B	ND	ND	ND	ND	17.6 B	ND	ND
Vanadium	NC	13.5 B	14.2 B	41.1 B	40 B	53.3	3.6 B	8.2 B	5.6 B	2.1 B	1.1 B
Zinc	2,000	3,28 0 E	608	1,390	1,570	487	35.9 B	47.4 B	39.0 B	51.1	51.7

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected NA - Not Analyzed

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Ground	E0136-01B	E1376-02C	F1135-07C	G2029-01C	J0398-03C	E0136-02C	E1376-15C	F1135-06C	G2029-16C	J0398-01C
Sample Date	Water	2/7/06	9/11/06	8/14/07	11/4/08	3/9/10	2/7/06	9/12/06	8/14/07	11/6/08	3/9/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	194 BE	161 B	120 B	69.8 B	384	50.6 BE	21.9 B	40.8 B	ND	92.1 B
Antimony	3	2.8 B	ND	8.9 B	ND	ND	2.3 B	ND	6.7 B	ND	8.2 B
Arsenic	25	5.6 B	ND	ND	ND	ND	3.0 B	2.1 B	2.5 B	ND	4.3 B
Barium	1,000	43.4 B	39.6 B	61.3 B	119 B	103 B	35.1 B	25.7 B	34.4 B	50.3 B	45.1 B
Beryllium	3	ND	ND	ND	ND	0.27 B	ND	ND	ND	0.19 B	0.3 B
Cadmium	5	1.2 B	0.11 B	ND	ND	0.54 B	0.65 B	0.12 B	ND	0.30 B	ND
Calcium	NC	24,500 E	27,200	25,000	35,700	30,300	9,130 E	16,400	29,200	23,300	23,700
Chromium	50	31.7	9.9 B	26.1	6.7 B	15.5 B	38.5	6.3 B	5.4 B	2.8 B	12.6 B
Cobalt	NC	3.4 BE	1.1 B	7.3 B	2.1 B	9 B	2.0 BE	0.66 B	4.4 B	4.6 B	5.5 B
Copper	200	72.7	9.6 B	18.4 B	37.9	67.2	34.7	ND	ND	14.7 B	37.2
Iron	300	107,000 NE	15,900	71,400	27,600	236,000	78,300 NE	21,700	57,100	29,600	115,000
Lead	25	7.0 B	ND	3.0 B	4.5 B	6.3 B	3.9 B	ND	2.9 B	4.7 B	15.5
Magnesium	35,000	3,870 E	3,520	4,960	5,300	3,610	1,530 E	2,560	4,860	3,770	3,620
Manganese	300	<i>45</i> 6 ⊟	82.1	236	279	1,020	339 E	82.2	520	1,060	954
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	40.3 B	9.8 B	26.3 B	4.6 B	24.8 B	35.3 B	4.8 B	8.4 B	5.9 B	14.5 B
Potassium	NC	6,370	6,970	13,400	21,500	16,200	5,400	3,990	4,540	3,540	2,800
Selenium	10	9.9 B	ND	20.6 B	ND	22.9 B	7.1 B	ND	14.2 B	ND	23.5 B
Silver	50	ND	ND	ND	1.5 B	ND	ND	ND	ND	1.9 B	ND
Sodium	20,000	23,400 E	26,000	26,400	29,800	25,200	11,400 E	11,400	12,000	13,600	17,700
Thallium	0.5	ND	ND	13.5 B	ND	ND	ND	ND	9.2 B	ND	ND
Vanadium	NC	2.5 B	1.0 B	0.51 B	1.8 B	0.69 B	1.7 B	1.7 B	1.6 B	1.4 B	2.5 B
Zinc	2,000	95.5 E	31.0 B	68.6	72.0	123	33.9 BE	22.2 B	18.1 B	36.4 B	28.4 B

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected NA - Not Analyzed

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Ground	E0136-05C	E1400-06C				E0136-06B	E1400-05C	F1159-04C	G2029-23C	J0445-03C
Sample Date	Water	2/8/06	9/13/06	8/14/07	11/7/08	3/10/10	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	44.9 BE	159 B	NA	NA	NA	48.8 BE	55.8 B	165 B	101 B	211
Antimony	3	ND	ND	NA	NA	NA	ND	ND	2.5 B	ND	ND
Arsenic	25	ND	ND	NA	NA	NA	ND	3.5 B	ND	ND	3.3 B
Barium	1,000	19.8 B	25.6 B	NA	NA	NA	9.2 B	29.7 B	36.9 B	27.4 B	29.2 B
Beryllium	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Cadmium	5	0.16 B	0.23 BE	NA	NA	NA	0.32 B	0.4 BE	1.3 B	1.8 B	0.63 B
Calcium	NC	13,200 E	14,400	NA	NA	NA	8,410 E	16,700	16,000	13,100	12,500
Chromium	50	1.5 B	0.99 BE	NA	NA	NA	2.1 B	2.1 BE	0.86 B	2.7 B	1.2 B
Cobalt	NC	1.4 BE	0.57 B	NA	NA	NA	1.4 BE	1.0 B	3.7 B	ND	1.4 B
Copper	200	9.9 B	ND	NA	NA	NA	10.2 B	6.4 B	6.4 B	19 B	10.9 B
Iron	300	12,000 NE	11,800	NA	NA	NA	6,600 NE	19,700	23,000	3,810	35,100
Lead	25	ND	3.5 B	NA	NA	NA	1.0 B	3.2 B	1.8 B	7.2 B	ND
Magnesium	35,000	1,800 E	2,030 E	NA	NA	NA	1,210 E	2,190 E	2,180	1,700	848
Manganese	300	177 E	201 *E	NA	NA	NA	249 E	956 *E	854	<i>50</i> 3	468
Mercury	0.7	ND	ND	NA	NA	NA	ND	ND	ND	0.020 B	ND
Nickel	100	4.2 B	3.3 B	NA	NA	NA	5.0 B	3.6 B	4.5 B	5.1 B	3.4 B
Potassium	NC	3,730	3,040	NA	NA	NA	7,140	2,970	3,330	6,340	4,760
Selenium	10	1.6 B	1.7 B	NA	NA	NA	1.3 B	ND	8.3 B	ND	12 B
Silver	50	ND	ND	NA	NA	NA	ND	1.8 B	ND	6.5 B	ND
Sodium	20,000	14,800 E	9,370	NA	NA	NA	10,100 E	5,050	4,120	7,390	5,970
Thallium	0.5	1.5 B	2.9 B	NA	NA	NA	2.0 B	2.4 B	ND	ND	ND
Vanadium	NC	ND	3.2 B	NA	NA	NA	ND	4.2 B	ND	ND	0.76 B
Zinc	2,000	56.4 E	21.2 B	NA	NA	NA	44.5 BE	22.6 B	37.4 B	99.2	26.8 B

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Ground	E0136-07B	E1400-01C	F1159-03C	G2029-21C	J0445-02C	E0136-09C	E1400-02C	F1135-19C	G2029-22C	J0398-19C
Sample Date	Water	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10	2/8/06	9/13/06	8/16/07	11/7/08	3/11/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	82.6 BE	84 B	66.4 B	120 B	145 B	53.0 BE	82.0 B	24.5 B	63.7 B	86.0 B
Antimony	3	ND	ND	4.7 B	ND	ND	ND	ND	8.3 B	ND	8.0 B
Arsenic	25	3.2 B	3.3 B	ND	ND	7.6 B	ND	ND	ND	ND	ND
Barium	1,000	103 B	39.4 B	29.2 B	20.8 B	16.3 B	67.2 B	69.6 B	76.9 B	66.8 B	75.4 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.064 B
Cadmium	5	1.4 B	0.89 BE	1.7 B	1.6 B	1.1 B	72.8	72.8 E	65.5	79	57.6
Calcium	NC	30,200 E	11,500	6,280	5,350	5,260	12,900 E	13,300	13,100	13,000	13,100
Chromium	50	3.1 B	1.9 BE	3.4 B	3.2 B	3.3 B	7.8 B	5.0 BE	1.7 B	5.8 B	20 B
Cobalt	NC	5.6 BE	2.3 B	5.3 B	3.5 B	3.8 B	1.1 BE	0.81 B	0.87 B	ND	ND
Copper	200	11.5 B	9.3 B	ND	8.7 B	11 B	32.9	19.6 B	15.3 B	28.4 B	19.5 B
Iron	300	52,600 NE	15,400	40,200	25,800	28,600	746 NE	210	241	383	515
Lead	25	1.0 B	2.3 B	0.84 B	2.4 B	ND	0.83 B	1.7 B	ND	2.4 B	4.2 B
Magnesium	35,000	3,260 E	1,230 E	1,020	902	677	7,790 E	8,300 E	8,340	7,990	7,390
Manganese	300	867 E	186 *E	401	413	434	12.3 BE	5.9 B*E	6.3 B	25.2 B	18.5 B
Mercury	0.7	ND	ND	ND	0.095 B	ND	ND	ND	ND	ND	ND
Nickel	100	9.3 B	3.6 B	6.0 B	4.9 B	5.5 B	15.1 B	11.2 B	9.2 B	18.5 B	139
Potassium	NC	11,200	14,600	15,800	17,200	18,300	2,430	2,440	2,960	3,030	3,470
Selenium	10	2.2 B	1.9 B	3.3 B	ND	ND	3.3 B	2.2 B	10.7 B	7.0 B	15.6 B
Silver	50	ND	1.8 B	ND	0.89 B	ND	ND	ND	1.4 B	1.9 B	ND
Sodium	20,000	19,900 E	15,000	12,400	12,000	12,400	27,500 E	28,700	31,800	28,700	26,100
Thallium	0.5	4.4 B	4.0 B	7.8 B	ND	9.7 B	ND	ND	ND	ND	ND
Vanadium	NC	0.79 B	3.4 B	ND	ND	1.1 B	ND	1.1 B	ND	ND	0.44 B
Zinc	2,000	88.0 E	37.7 B	85.7	301	68	72.4 E	74.2	67.2	84.3	60.4

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Ground	E0136-08B	E1400-07C	F1135-18C	G2029-19C	J0445-01C	E0136-11B	E1376-11C	F1135-17C	G2029-15C	J0398-15C
Sample Date	Water	2/8/06	9/13/06	8/16/07	11/7/08	3/12/10	2/8/06	9/12/06	8/16/07	11/6/08	3/11/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	334 E	154 B	1,040	161 B	229	43.2 BE	199 B	37.9 B	122 B	132 B
Antimony	3	ND	ND	15.7 B	ND	8.5 B	ND	ND	9.6 B	ND	5.0 B
Arsenic	25	ND	11.4 B	ND	ND	5.3 B	ND	2.0 B	1.6 B	ND	3.3 B
Barium	1,000	15.9 B	35.1 B	78.7 B	40.6 B	31 B	12.4 B	19.4 B	24.8 B	19.6 B	42.4 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.097 B
Cadmium	5	0.86 B	0.21 BE	2.7 B	0.68 B	ND	4.1 B	0.85 B	ND	4.1 B	1.4 B
Calcium	NC	12,100 E	21,800	16,500	26,000	16,100	13,800 E	12,800	20,100	4,990	17,600
Chromium	50	1.7 B	1.4 BE	2.9 B	2.5 B	1.2 B	9.8 B	275	18.1 B	12.8 B	125
Cobalt	NC	1.0 BE	ND	4.6 B	ND	0.72 B	1.1 BE	2.6 B	1.3 B	1.9 B	7.5 B
Copper	200	12.8 B	ND	ND	10.7 B	9.1 B	9.5 B	10.5 B	ND	9.0 B	ND
Iron	300	27,100 NE	48,000	296,000	65,100	63,000	276 NE	1,730	228	661	2,150
Lead	25	2.6 B	4.3 B	12.7	5.8 B	ND	2.3 B	2.6 B	ND	4.1 B	6.9 B
Magnesium	35,000	1,610 E	2,520 E	2,470	2,990	1,810	2,260 E	2320	4,210	1,480	4,030
Manganese	300	287 E	910 *E	1,290	508	350	27.9 BE	175	19.3 B	188	457
Mercury	0.7	ND	ND	0.052 B	ND	ND	ND	ND	ND	0.15 B	ND
Nickel	100	6.1 B	3.0 B	13.3 B	3.3 B	2.7 B	6.9 B	24.9 B	3.0 B	12.9 B	59
Potassium	NC	2,460	4,990	8,340	13,200	9,900	3,330	3470	6,850	2,680	12,300
Selenium	10	ND	ND	41.2	ND	13 B	ND	ND	19.6 B	ND	ND
Silver	50	ND	3.5 B	ND	1.4 B	ND	ND	ND	1.6 B	5.6 B	ND
Sodium	20,000	2,230 E	8,710	6,000	22,900	9,680	9,790 E	11,000	15,600	4,880	20,600
Thallium	0.5	ND	2.6 B	64.8	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	2.2 B	9.8 B	4.5 B	3.1 B	0.38 B	ND	1.2 B	ND	1.7 B	1.5 B
Zinc	2,000	29.2 BE	41.6 B	60.8	57.0	17.7 B	19.8 BE	29.8 B	20.1 B	56.0	23.2 B

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected NA - Not Analyzed

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Ground	E0136-16C	E1400-03C	F1135-09C	G2029-14C	J0398-17C	E0136-15C	E1376-10C	F1135-10C	G2029-13C	J0398-18C
Sample Date	Water	2/9/06	9/13/06	8/13/07	11/6/08	3/11/10	2/9/06	9/12/06	8/13/07	11/6/08	3/11/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q				
Aluminum	NC	29.0 BE	97.3 B	45.2 B	104 B	200	203 E	94.2 B	55.0 B	91.6 B	176 B
Antimony	3	ND	ND	2.5 B	ND	ND	1.3 B	ND	4.5 B	ND	ND
Arsenic	25	ND	ND	1.6 B	ND	ND	ND	2.2 B	4.7 B	ND	5.6 B
Barium	1,000	51.9 B	48.3 B	45.6 B	43.8 B	44.6 B	97.9 B	93.6 B	97.5 B	91.6 B	83.6 B
Beryllium	3	ND	ND	ND	ND	0.05 B	ND	ND	ND	ND	0.078 B
Cadmium	5	23.4	11.8 E	5.1	35.3	24.9	4.0 B	2.3 B	0.22 B	2.2 B	0.84 B
Calcium	NC	18,200 E	18,500	19,100	18,500	19,000	23,900 E	19,200	21,900	17,600	23,600
Chromium	50	34.6	41.6 E	44.9	48.7	39.7	25.4	45.9	10.3 B	9.6 B	8.7 B
Cobalt	NC	1.3 BE	0.87 B	1.4 B	ND	ND	2.5 BE	8.0 B	2.6 B	5.4 B	2.6 B
Copper	200	17.0 B	ND	ND	12.8 B	6.2 B	26.6 B	ND	ND	13.2 B	5.3 B
Iron	300	262 NE	232	234	420	516	458 NE	814	375	822	571
Lead	25	2.5 B	1.2 B	0.88 B	3.3 B	4.2 B	1.5 B	0.58 B	ND	4.4 B	6 B
Magnesium	35,000	3,250 E	3,430 E	3,530	3,690	3,610	2,650 E	2,950	2,940	2,380	3,200
Manganese	300	60.7 E	196 *E	51.6	53.2	36.5 B	34.0 BE	536	29.0 B	125	107
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	0.038 B	0.057 B
Nickel	100	10.6 B	11.3 B	6.7 B	9.0 B	8.0 B	12.4 B	46.9 B	27.9 B	31.7 B	5.3 B
Potassium	NC	5,280	5,040	5,260	5,990	5,720	12,300	9,340	10,000	13,400	8,360
Selenium	10	ND	ND	9.5 B	ND	14.7 B	ND	ND	13.2 B	ND	ND
Silver	50	ND	ND	1.8 B	1.6 B	ND	ND	ND	2.1 B	ND	ND
Sodium	20,000	15,600 E	16,000	16,700	15,100	14,700	17,500 E	15,300	17,900	12,000	31,600
Thallium	0.5	ND	ND	ND	ND	ND	2.1 B	1.5 B	ND	ND	ND
Vanadium	NC	ND	0.89 B	ND	ND	0.66 B	0.59 B	0.71 B	ND	ND	0.76 B
Zinc	2,000	61.4 E	40.2 B	20.5 B	39.1 B	30.5 B	106 E	30.8 B	31.7 B	107	24.3 B

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected NA - Not Analyzed

TABLE 7
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Ground	E0136-12B	E1376-09C	F1135-16C	G2029-12C	J0398-16C	E0136-18C	E1376-04C	F1135-15C	G2029-11C	J0398-12C
Sample Date	Water	2/8/06	9/12/06	8/16/07	11/6/08	3/11/10	2/9/06	9/11/06	8/16/07	11/6/08	3/10/10
	Criteria	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	135 BE	69.2 B	51.6 B	73.2 B	114 B	72.0 BE	34.3 B	19.6 B	57.7 B	530
Antimony	3	ND	ND	1.2 B	ND	4.5 B	2.6 B	2.3 B	10.0 B	ND	11.1 B
Arsenic	25	ND	ND	ND	ND	3.4 B	ND	ND	3.7 B	ND	ND
Barium	1,000	46.1 B	18.7 B	18.2 B	38.1 B	36.7 B	22.8 B	28.4 B	29.1 B	72.7 B	69.9 B
Beryllium	3	ND	ND	ND	ND	0.051 B	ND	ND	ND	ND	0.093 B
Cadmium	5	17.4	3.0 B	0.47 B	33.4	5.1	3.1 B	0.65 B	0.16 B	3.1 B	3.1 B
Calcium	NC	27,900 E	17,800	25,200	25,300	29,200	13,900 E	17,200	24,800	12,600	14,100
Chromium	50	31.3	117	95.7	54.2	59.8	14.8 B	11.3 B	9.0 B	6.9 B	161
Cobalt	NC	2.3 BE	2.1 B	3.6 B	4.0 B	4.1 B	1.6 BE	1.1 B	2.0 B	3.6 B	8.5 B
Copper	200	17.6 B	ND	ND	11.9 B	11.6 B	12.7 B	7.1 B	ND	9.9 B	11.2 B
Iron	300	480 NE	433	587	626	1,200	645 NE	284	220	145 B	3,940
Lead	25	2.0 B	ND	ND	ND	ND	1.3 B	ND	ND	ND	9.5 B
Magnesium	35,000	4,920 E	3,270	3,920	3,290	4,970	1,930 E	1,160	1,830	1,100	985
Manganese	300	251 E	108	173	394	443	77.9 E	109	113	1,940	2,640
Mercury	0.7	ND	0.1 B	ND	ND	0.067 B	0.14 B	ND	ND	ND	ND
Nickel	100	28.6 B	47.7 B	37.9 B	65.3	20.2 B	15.6 B	5.7 B	2.8 B	7.1 B	14.8 B
Potassium	NC	5,460	5,630	4,870	6,720	4,930	2,760	3,960	3,220	3,110	2,410
Selenium	10	ND	ND	12.7 B	ND	ND	ND	ND	13.6 B	ND	ND
Silver	50	ND	ND	1.8 B	ND	ND	ND	ND	2.1 B	0.73 B	ND
Sodium	20,000	12,100 E	14,100	17,300	12,800	19,500	5,940 E	2,690	6,680	3,060	3,560
Thallium	0.5	2.2 B	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	0.52 B	0.80 B	1.0 B	1.7 B	1.2 B	2.1 B	2.4 B	1.7 B	3.4 B	4.9 B
Zinc	2,000	66.8 E	18.4 B	17.4 B	42.7 B	28.3 B	43.4 BE	18.6 B	18.8 B	36.6 B	30.2 B

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected

Periodic Review Report – SMS Ins New York State Department of Environmental (truments Inc Conservation
APP	ENDIX A
Groundwater Analyt	ical Dat

Sample Date	NYSAGWQS ¹	4/19/94	9/8/	94	12/5/94	3/10/9	5 9	9/29/95	5 1	12/5/95	7/11/	96	10/21/	96	1/16/9	7	5/29/9	97	7/16/9	7	10/8/	97	1/15/9	98	4/9/9	8	7/16/98
VOC ppb or μg/L																											
1,1,1-Trichloroethane	5	2.0	1.0		2.0	2.0		3.0		2.0	2.1		1.3		4.0		3.0		1.4		1.9		6.4		20.0		2.1
1,1,2-Trichloroethane	1													ш				Ш						Ш			
1,1-Dichloroethane	5	3.0			0.9	1.0		1.0		1.0	1.3		1.7		11.0		4.0		1.7		1.3		6.3		36.0		4.3
1,1-Dichloroethene	5														0.6	J									0.3	JQM	
1,2,4-Trimethylbenzene	5																										
2-Butanone	NL										0.4	JQM	0.6	JQM													
Acetone	50																				0.8	JMQ					
Bromoform	50																								0.4	JQM	
Bromomethane	5																						1.1				
Carbon Disulfide	NL							0.7		0.8																	
Chlorobenzene	5														0.4	J											
Chloroform	7																								0.2	JQM	
cis-1,2-Dichloroethene	5																						1.5		4.8		0.8
Ethylbenzene	5														0.2	J	0.3	J									
Methyl tert-butyl ether	NL																										
Methylene Chloride	5																										
Tetrachloroethene	5														0.6	J	0.2	J							0.6	JQM	
Toluene	5										0.3	JQM			2.0												
Trichloroethene	5										1.4		2.3		1.0												
Xylene (Total)	5														2.0		1.0										
Total VOCs		5.0	1.0		2.9	3.0		4.7		3.8	5.5		5.9		21.8		8.5		3.1		4.0		15.3		62.3		7.2
SVOC ppb or μg/L															•												
Benzo(g,h,i)perylene	5			Т	П		$\overline{}$	-	Т			Т		П		т		П				Т		П			
bis(2-Ethylhexyl)phthalate	50								1							1		m				1		H			-
Butylbenzyl phthalate	50						_		1					П		_		П						H			
Di-n-butyl phthalate	50								1							1		m				1		H			0.5 J
Di-n-octyl Phthalate	50			+		1	_	- t	+			+-		т		_		\vdash						H			
Fluoranthene	50								1						1	J		m				1		H			-
Indeno(1,2,3-cd)pyrene	0.002			1			_		1			1		H		Ť		Ħ						H			-
Phenol	1			1			_		1			1		H		1		Ħ						H			-
Total SVOCs		0	0	1	0	0	_	0	1	0	0	1	0	H	1	1	0	Ħ	0		0		0	H	0		0.5
Metals ppb or μg/L				_			_		_		_					_		_			_	_	_				
Aluminum	NL		7390	_	1 1	360	1 2	2590	$\overline{}$		T	_	126	ΙвΙ	147	в	_	$\overline{}$			73.5	В	46.1	В			
Antimony	3	-	7390	+	 	300	+	390	+		-	+	120	P	147	-		\vdash			13.3	В	40.1	P			-+
	25		6	+			+		+			+		H		-		\vdash				-		H			
Arsenic Barium	1,000			+		+ +	-		+		41.1	В	34.1	В	53.2	В	43.8	В	30.7	В	26.1	В	46	В	70.9	В	25.2 B
Beryllium	3		-	+-		+	+		+		41.1	В	34.1	В	33.Z	-	43.0	-	30.1	ь	20.1	В	40	Р	70.9	ь	23.2 B
Cadmium	5		+	+		+ +	-		+			+		H		-		H			0.38	В		H			+
Chromium	5 50		36	+	 	1	+	-	+		1.6	В	2.9	В		+	-	H		Н	0.38	В		Н	1	В	-++
Cobalt	NL		36	+-		+	+		+		1.0	В	1.4	В		-		H	1.5	В	2.6	В		H		В	-++
	200		64	+		35	-	21	+		3.2	В	5	В	32.4	-	3.7	В	1.5	ь	8.6	В	6.9	В	4	В	+
Copper		53	1430		- CO		_	_		020	1280	В	1430	EJ				В	153			В	341	J	2660	В	2240
Iron	300	2			63	3670 5	_	750		939	1260			B	1300 3.2	J	249	\vdash	103	Н	1450	-	1.3	В	2000		3.2
Lead	25		52					_	+		10.5	+	1.1	В.		+		⊣		R	10.5	+		В	404	Н	
Manganese	300	30	843	F	5	39	+	2	+	22	19.8	4-	24.7	J	25.5	+	14.4	В	4.2	В	19.9	1-	18.5	Н	104	\vdash	40.5
Mercury	2	\vdash	-	+	 	+ +			+		-	+-	L	ᄂ		+		\vdash				+	.	닌			-+
Nickel	NL 10	.	29	+	-	+ +		14	+		2.3	В	3.6	В		-		\vdash	1.1	В		+	1.3	В	3.1	В	-+
Selenium	10	-	_	+	 	1	+		+		-	4-		H	-	+		\vdash		Н		1-		Н		\vdash	-+
Silver	50	.		1	-	1	_		_		-	1	-	H		_		\vdash				1		H			$-\!+\!1$
Thallium	0.5	$\vdash \!$		4	├	+	_	_	_		 	4		Н		_		\vdash		Щ		4—		\vdash		щ	-+
Vanadium	NL	$\vdash \!$		_	├	+	_	_	_		 	4		Н		_		\vdash		Щ		4—		\vdash		щ	
Zinc	300	38	489		19				_			1		Н	30.3	_	25.7	ш	9.4	В		1	24.6	J			15.1 B
Total Metals		123	10339		89	4109	1	0385		961	1348		1628.8		1591.6		336.6	Ш	199.9		1581.98		485.7		2843		2324
NOTES:																											

NOTES:

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

NA - Not Analyzed

1

Sample Date	NYSAGWQS1	10/22	/98	1/3/9	99	11/18	/99	8/10/	00	3/21/	01	6/25/	01	10/18/	01	12/13/	01	4/4/02	2	12/4/0	2	3/24/03	3	8/7/03	1	11/10/0)4	6/23/0	5	2/10/0	06	9/12/	06	8/14/07
VOC ppb or µg/L																																		
1,1,1-Trichloroethane	5	0.7	П	2.4	1 1	0.6	JQM		П		П	0.3	JQM		П		П		П		Т		Т	Т	T	$\overline{}$	Т	$\overline{}$	Т		П		П	
1,1,2-Trichloroethane	1														П		Ħ					0.4 J	QM		T		T		7		П			
1,1-Dichloroethane	5	0.7		3.3		0.8	JQM																							14.0		4.0	J	
1,1-Dichloroethene	5																																	
1,2,4-Trimethylbenzene	5					0.3	JQM								П		Ħ						+		T		T		7		П			
2-Butanone	NL																						T								П			
Acetone	50																											2.5	ĸ					
Bromoform	50																						T								П			
Bromomethane	5																						T								П			
Carbon Disulfide	NL													0.4	JQM								T								П			
Chlorobenzene	5																						T								П			
Chloroform	7													0.4	JQM			0.3	JQM															
cis-1,2-Dichloroethene	5																						T								П			
Ethylbenzene	5																										T							
Methyl tert-butyl ether	NL		П		П		П	0.5	JQM	0.9	JQM		П		П	1.6	П	2.0	T		寸		T		T	İ	T	i	T		П		П	
Methylene Chloride	5											0.4	JQM													i		i						
Tetrachloroethene	5					0.2	JQM																											
Toluene	5																						T								П			
Trichloroethene	5																						T								П			
Xylene (Total)	5																																	
Total VOCs		1.4		5.7		1.9		0.5		0.9		0.7		0.8		1.6		2.3		0.0		0.4	T	0.0		0.0		2.5		14.0	П	4.0		0.0
SVOC ppb or µg/L																																		
Benzo(g,h,i)perylene	5		П		1 1		П		П		П				П	11	J		П		Т		Т	Т	T	NA	Т	$\overline{}$	Т		П		П	П
bis(2-Ethylhexyl)phthalate	50		\Box		T				T		\top			37	\Box		\neg						\top			NA	1		\dashv	21.0	H	1.0	J	
Butylbenzyl phthalate	50		T											0.9	J		Ħ						+		T	NA	T		7		П			
Di-n-butyl phthalate	50		\Box		T				T		\top						\Box						\top			NA	1		\dashv		H			
Di-n-octyl Phthalate	50										t		1		H							10	R	t	+	NA	7		T		H			
Fluoranthene	50		\Box		T				T		\top				\Box		\Box						\top			NA	1		\dashv		H			
Indeno(1,2,3-cd)pyrene	0.002		\Box		T				T		\top				\Box	11	J						\top			NA	1		\dashv		H			
Phenol	1		T	0.8	J										П								+		T	NA	T		7		П			
Total SVOCs		0		0.8	Ť	0		0		0	t	0	1	37.9	H	22		0		0		10		0	+		7		T	21.0	H	1		0
Metals ppb or μg/L							_		_																_								_	
Aluminum	NL	70.7	П	883	В	141	В	11	В	16.5	В	115	В	30.3	В	306	П	931	П	392	т	Т	T	т	Т	NA	Т	Т	T	236	ЕΪ	319	П	4,360
Antimony	3		+	4.3	В		Ť	2.2		10.0	Ť		Ť	00.0	Ť	000	\vdash		-	002	_		+	- t	+	NA	_			3.3	В	0.0	\vdash	12.6 B
Arsenic	25		Ħ						Ė		T			5.7	В						_		+		_	NA	7		_	3.5	В			ND
Barium	1,000	23.2	В	38.1	В	27.9	В	35.1	В	19.6	В	26.2	В	19.1	В	139	В	24	В	21.4	В	18	+	18	+	NA	_		\dashv	48.7	В	71.5	В	91 B
Beryllium	3		Ħ		+		一		Ħ		一	0.29	В	1.2	В		H		-		-		+		-	NA	_		\dashv		Ħ		1	0.48 B
Cadmium	5		t		+		\vdash	1	В		+	0.20	Ť		Ť		\vdash		-		_		+	- t	+	NA	_		\dashv	0.7	В	0.19	В	0.39 B
Chromium	50		H		+	0.8	В	1.7		2.6	В	9.8	В	0.68	В	3	В	5.6	В	11.8	_	-	+	- t	\dashv	NA	+		+	9.6	В	2.7	В	18 B
Cobalt	NL NL		H		+	3.2	В	1.7	-	2.0	۲	3.0	-	0.00	۲	,	_	1.3	В	0.82	В	-	+	- t	\dashv	NA	+		+	2.5	В	1.2	В	9.3 B
Copper	200	14.3	В	46.7	+	2.8	В	1	В	2	В	11.6	В	9.1	В	6.4	В	9.1	В	9.5	В	-	+	- t	\dashv	NA	+		+	16.8	В	ND	-	33.8
Iron	300	14.5	۲	697		798	ŭ	1990	Ľ	214	۳	1270	Ľ	1920	Ľ	8980	Ď	9600	_	12600		7100		100	_	NA				30,000	E	12,500		110,000
Lead	25		H	3.1		730	ŭ	1330		214	+	1270		1320	т		В	3.1		2.7	В	7100		100	+	NA	_			3.2	В	0.95	В	17.3
Manganese	300	4.4	В	11.7	В	1330		22.3	+	2.6	В	14.2	В	13.2	В	53.5	_	97.4	\dashv	79	-	48	+	48	+	NA	_		+	226	F	126	-	585
Mercury	2		r"	11.7	Ь	1330		22.3	+	2.0	-	14.2	۳	13.2	Р	33.3	H	31.4	+	19	\dashv	40	+	70	+	NA	+		+	220	+	120	Н	0.066 B
Nickel	NL NL	-	+	1.2	В	3	В		+	3.3	В	9.6	В	2.5	В		\vdash	5	В	9	В		+		+	NA	\dashv	1	\dashv	13.9	В	4.8	В	19.8 B
Selenium	10	1	+	1.2	Ь	3.5	В		+	3.3	-	9.0	۳	2.0	Р	4.7	J	J	В	3	-	-+	+	-+	+	NA	+		+	13.3	Р	4.0	Р	29.5 B
Silver	50	-	+		H	0.4	В		+		+		H	1.8	В	4.7	H		\vdash		+		+		+	NA	\dashv	1	\dashv		\vdash		H	23.0 E
Thallium	0.5		+		+	2.7	В	5.3	В		+		+	1.0	В		\vdash		\vdash		+		+		+	NA	+	- 1	+		\vdash		+	18.5 E
Vanadium	0.5 NL	1	+	1.1	В	2.1	В	5.3	В		Н	1	Н	2.1	В		Н	1.9	B	1.1	В	-+	+	-+	+	NA NA	+		+	1.3	В	0.85	B	9.3 B
Zinc Zinc	300		+	1.1	-		+		+	4.4	В	70.6	+	2.1	В		\vdash	1.9	В	31	-	18	+	18	+	NA	+	- 1	+	55	Р	87	В	234
Zinc Total Metals	300	112.6	+	1686.2	H	2313.3	Н	2069.6	Н	265	ь	1527.29	Н	2005.68	Н	9495	Н	10678.4	Н	31 13158.3	+	7184		184	+	INA	+		-	55 30,621	\vdash	13,114	Н	115439
NOTES:		112.6		1000.2		2313.3		∠009.6		200	ш	1521.29		2005.68		9490	Ш	100/0.4		13130.3		1104		104			_	l	;	00,021	ш	13,114		110439

NOTES:
Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

- Shading and Italics Result is above the NYSDEC AWQS.
- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations
- NA Not Analyzed

Sample Date VOC ppb or µg/L	NYSAGWQS1	4/19/94	9/8/9	и I	12/5/94	0/40/																					
VOC ppb or µg/L		4/19/94)E	12/5/95	7/11/	(O.C.	10/21/	OC.	1/16/9	7	5/29/97	7	7/16/97		10/8/9	7	1/15/9	20	4/9/98	0	7/16/98
			0,0,0	,4	12/3/34	3/10/9	90	9/29/9	າວ	12/5/95	//11/	90	10/21/	90	1/10/9	/	3/29/9/		7/10/97	_	10/6/8) (1/13/8	10	4/9/90	0	7/10/90
	-		4.0	1	3.0	1.0		15.0		4.0	1 04	_	0.4		- 1	_	0.8	J	1.0	_	0.7					_	-
1,1-Trichloroethane 1,1-Dichloroethane	5	6.0 2.0	2.0	+	3.0	1.0	Н	9.0	Н	2.0	3.1	+-	0.4	JQM	0.2	-+	3.0	J	1.8	+	2.0	Н	1.1	Н		Н	2.8
	5	2.0	2.0	+	_	1.0	Н	9.0	Н	2.0	3.6	+-	0.2	JQM	0.2	JQM	3.0	+	1.8	+	2.0	Н	1.1	Н		Н	2.1
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	0.04	2.0		+			Н		Н		1	+				+		+		+		Н		Н		Н	2.1
1,2-Dichlorobenzene	3	2.0		+			Н		Н		1	+				+		+		+		Н		Н		Н	
1,3,5-Trimethylbenzene	5		+	+		-	Н		Н	_	1	+-		Н		\dashv	-	+		+		Н		Н		\vdash	0.6
1,3,5-1 rimetryloenzene 2-Butanone	NL			+			Н		Н		0.4	JQM	0.6			+		+		+		Н		Н		Н	0.6
Acetone	50			+			Н		Н		0.4	JQM	0.6	JQM		+		+		+	0.7	-		Н		Н	
Bromodichloromethane	50		+	+	_		Н		Н	-	1	+-		Н		-+		+		+	0.7	JQM		Н		Н	
Carbon Disulfide	NL NL			+			Н	1.0	В		0.2	JOM				+		+		+		Н		Н		Н	
	NL 5		+	+	_		Н	1.0	В	-	0.2	JQM		Н		-+		+		+		Н		Н		Н	0.5
Chloroethane Chloroform	7		+	+	_		Н		Н	-	1	+-		Н		-+		+		+		Н		Н		Н	0.5
	, NL		+	+		-	Н		Н	_	1	+-		Н		\dashv	-	+		+		Н		Н		\vdash	
Chloromethane	NL 5	-+	+	+	-+		Н		Н		 	+		Н	-	\dashv	-+	+		+		Н		Н		H	
cis-1,2-Dichloroethene	5		-	+		1	Н		Н	-	+	+		Н		+	-	+		+		Н		Н		Н	
Isopropylbenzene Methyl tert-butyl ether	NL	-	+	+	-	+	Н		Н		1	+		Н		+		+		+		Н		Н		Н	0.8 J
	NL 5			+			Н		Н		-	+		Н		-		+		+		Н		Н		Н	U.8 J
Methylene Chloride	5		+	+	_		Н		Н	-	1	+-		Н		-+		+		+		Н		Н		Н	0.6
n-propylbenzene Tetrachloroethene	5		+	+	_		Н	0.6	В	-	0.3	+		Н		-+		+		+		Н		Н		Н	0.6
				+			Н	0.6	ь		0.3	JQM		Н		-		+		+		Н		Н		Н	
Toluene	5	1.0	+	+	_		Н		Н	-	0.8	+	1.4	Н	0.8	-		+		+		Н	1.2	Н		Н	
Trichloroethene		1.0		+			Н		Н		0.8	JQM	1.4	Н	0.8	J		+		+		Н		Н		Н	
Vinyl Acetate Total VOCs	NL	11.0	6.0	+	9.0	2.0	Н	25.6	Н		8.4	+-	2.6		4.0	-	2.0	+	0.0	+			2.3	Н	0.0	Н	
		11.0	6.0		12.0	2.0	ш	25.6	ш	6.0	8.4	_	2.6		1.0	_	3.8	_	2.8	_	6.4	ш	2.3	ш	0.0	ш	7.4
SVOC ppb or μg/L	_		_			_					_	_	_	_		_		_		_					_		
Benzo(g,h,i)perylene	5		-	+			Н		Н		1	_		Н		_		+		+		Н		Н		Н	
bis(2-Ethylhexyl)phthalate	50		-	+			Н		Н		1	_		Н		_		+		+		Н		Н		Н	
Di-n-octyl phthalate			-	+			Н		Н		1	+-		ш		_		-		+		Н		Н		Н	
Indeno(1,2,3-cd)pyrene	0.002		-	+			Н		Н		1	_		Н		_		+		+		Н		Н		Н	
Phenol	1		_	+			Н		Н		-	+-		ш		_		-		+		Н		Н		Н	
Total SVOCs		0	0	Ш	0	0	Ш	0	Ш	0	0		0	ш	0		0	_	0	_	0	Ш	0	Ш	0	ш	0
Metals ppb or μg/L							_		_			_		_		_		_		_		_		_			
Aluminum	NL		75	\perp	121	820	Ш	113	Ш	1740			254	ш	73.2	В	28.2	В	289	4	164		384	Ш	15.4	В	
Antimony	3															_			2.3	В			3.1	В		ш	
Arsenic	25															_		В		_						ш	
Barium	1,000										26.8	В	19.8	В	8.2	В	13.4	В	28.7	В	23.9	В	17.8	В	8.2	В	14.4 B
Beryllium	3			\perp			Ш		Ш					ш		_		4		4				Ш		ш	
Cadmium	5			\perp			Ш		Ш					ш		_		4		4	0.4	В		Ш		ш	
Chromium	50			Ш				437		19	3.9	В	3.1	В					2.9	_	8.0	В	1.7	В	1.5	В	
Cobalt	NL												2	В		_			1.7	В	2.1	В				ш	
Copper	200			Ш							1.6	В	5.5	В						_	3.1	В	1.6	В	7.9	В	
Iron	300		233		717	1740		2140		4900	1140		707	EJ	36.5	В	418		1130	_	403		524		455		430
Lead	25	2	1	Ш	3	6	Щ		Ш	16	1	4	3.9	Щ		_		4		В		Щ	2.8	В		Щ	3.4
Manganese	300	280	11	\sqcup	26	171	Щ	456	Щ	1910	187	1	60	J	12.8	В	9.8	В	53.6	4	44.7	Щ	121	Щ	20.6	Щ	9.4 B
Mercury	2			\perp			Ш		Ш		1									_				Ш		Ш	
Nickel	NL			Ш		1	Щ		Ш	22	3.7	В	3.1	В		_		4	2.7	В		Щ	1.1	В		Щ	
Selenium	10			Ш		1	Щ		Ш		1	4		Щ		_		4		_		Щ		Щ		Щ	
Silver	50			Ш		1	Щ		Ш		1	4		Щ		_		4		_		Щ		Щ		Щ	
Thallium	0.5			\perp			Ш		Ш		1	1												Ш		Ш	
Vanadium	NL			\perp			Ш		Ш		1.2	В								_			1	В		Ш	
Zinc	300	4850	10		35				Ш	348	1364.2	4		Щ	42.9 173.6	J	52 524.2	4	87.7 1601.3	_	642	Щ	32.7 1090.8	J	184	J	116 573.2
Total Metals		5132	330		902	2737		3146		8955			1058.4												692.6		

NOTES:
Results in parts per billion (ppb) or micrograms per liter (ugfl)
U - not detected above instrument detection limit
J - estimated value
B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	10/22	/98	1/3/9	9	11/18/	/99	8/10/	00	3/21/0)1	6/25/0	01	10/18/	01	12/13/0	1 -	4/4/02	12	/4/02	3/24	/03	8/7/0	3	11/10/0)4	6/23/05	5	2/10/0	16	9/12/06	6 1	8/14/07
VOC ppb or µg/L																																	
1,1,1-Trichloroethane	5	5.4	П			1.3						0.6	JQM			1.0		0.3 J	2M		0.3	JQM										Т	
1,1-Dichloroethane	5	7.7	t t			0.6	JQM					0.8	JQM			3.5		0.4 J	2M		1.1												
1,2,4-Trimethylbenzene	5		t t																														
1,2-Dibromo-3-Chloropropane	0.04		\Box				П		П		П											\top											
1,2-Dichlorobenzene	3		t t																														1.0 J
1,3,5-Trimethylbenzene	5		t t																														
2-Butanone	NL		\Box				П		П		П											\top											
Acetone	50		t t					0.9	JQM	1.0	JQM	0.7	JQM			1.0		1.4							2.1		2.1	K					
Bromodichloromethane	50	2.3	t t																														
Carbon Disulfide	NL	1.4		2.5		0.2	JQM		П		П																	T					
Chloroethane	5						П		П		П																	T					
Chloroform	7	3.3	t t			0.4	JQM									0.4 .	ЮW																
Chloromethane	NL						П		П		П	0.2	JQM															T					
cis-1,2-Dichloroethene	5	1.4																															
Isopropylbenzene	5		T		П		П		П	10.0	J		П		П		1					П						T				T	
Methyl tert-butyl ether	NL	0.9	TT	2.4																													
Methylene Chloride	5		T		П		П		П		П	0.5	JQM		П		1					П						T				T	
n-propylbenzene	5		\Box				П		П		П											\top											
Tetrachloroethene	5		t t																														
Toluene	5		t t																														
Trichloroethene	5		t t																														
Vinyl Acetate	NL		t t																														
Total VOCs		22.4	t t	4.9		2.5		0.9		11.0		2.8		0.0		5.9		2.1	0.	0	1.4		0.0		2.1		2.1		0.0		0.0		1.0
SVOC ppb or µg/L																																	
Benzo(g,h,i)perylene	5		T		П				П		П		П		П	10	J									П		Т				Т	
bis(2-Ethylhexyl)phthalate	50		Ħ	1	J	3	J		П		Ħ	4	J		Ħ		1		1			\top							2	J	2	J	
Di-n-octyl phthalate			Ħ		m		\Box		П		Ħ		m		Ħ				1		10	R										+	
Indeno(1,2,3-cd)pyrene	0.002		TT		Ħ				Ħ				Ħ		Ħ	10	J		1			\top						_				+	
Phenol	1		Ħ		Ħ		Ħ	2	J		Ħ		Ħ		Ħ		1		1			\top										+	
Total SVOCs		0	TT	1	Ħ	3		2	Ħ	0		4	Ħ	0	Ħ	20		0	(,	10	\top	0					_	2		2	+	0
Metals ppb or μg/L		-															_									_		_			_	_	
Aluminum	NL	80	В	302	П		П	12.1	в		П	128	В	79.5	В	145	_	303	62	.8 В	262			П		┪	$\overline{}$	┱	1.930	Е	6,060	Τ.	3.440
Antimony	3		Ť	3.9	в		\vdash		Ť		\vdash	120	Ť	10.0	Ť		+	,,,,	T	.0		+		Н				+	2.2	В	ND	_	8.9 B
Arsenic	25		tt	3.3	۲		+		H		\vdash		H		H		+	- 1	+	_	1	+		Н				+	2.6	В			ND D
Barium	1,000	15.5	В	29.5	в	16.6	В	24.4	В	22	В	23.6	В	19.5	в	127	в :	21.3	B 19	.6 B	20.3	В	16	Н				+	28.2	В			78.9 B
Beryllium	3	13.3	۳	23.3	۲	10.0	۲	24.4	-		-	0.34	В	1.3	В	121	-	.1.0	10	.0 .	20.3	۳		Н				+	ND	-			0.3 B
Cadmium	5		+		H		\vdash	1.8	В		\vdash	0.34	۲	1.5	-			_	+	_	1	+		Н				+	4.1	В			3.9 B
Chromium	50		tt	3.3	В	0.8	В	1.0	В		\vdash	4.6	В	0.8	В	1.6	В	4.3	В	_	1	+		Н				+	12.1	В			12.6 B
Cobalt	NL NL		tt	3.3	В	1.2	В		-		\vdash	4.0	۲	0.0	-	1.0	-	7.3	+	_	1	+		Н				+	2.4	BE			4.4 B
Copper	200	36.1	1.1	39.9	۲	1	В		H		\vdash	11.5	В	7.8	В			4.4		_	2.3	В		Н				+	43.0	DL	35.6	-	37
Iron	300	30.1	۲	11300	H	240	۲		H	420	\vdash	364	۲	457	۲	416	_	700	51	4	1290	Ť		Н		+			28,100	NF	25,100		40,400
Lead	25	3	В	2.6	В	1.7	BJ	1.5	В	720	\vdash	6	J	3.4	\vdash	410		5.7	- 3	-	3	В		Н		+			135		128		197
Manganese	300	9.6	В	360	۲	6.2	В	7.6	В		\vdash	9.7	В	19.3	H	76.7		239	29	4	62.3	Ť	5.3	Н		+		+	221	F	715		1080
Mercury	2	9.0	+*+	300	\vdash	0.2	15	7.0	P	0.2	ОН	3.1	P	13.3	\vdash	10.1	+		28		02.3	+	3.3	Н		-		+	ND	-	ND ND		0.055 B
Nickel	NL NL	1	+	3.6	\vdash		+	1.3	В	0.2	Ψn	6.5	В	2.3	В		+	3.1	в з	В	+	+		Н		+		+	13.6	В	14		10.9 B
Selenium	10		+	3.0	H		+	1.0	۲		\vdash	0.5	۲	4.0	۲	1	+		+	۳	1	+		Н		+		+	5.1	В	ND I		14.5 B
Silver	50	 	+		\vdash	0.8	В		\vdash		\vdash		\vdash	1.7	BJ		+	-+	+	-	+	+		Н		+		+	ND	۲	ND		ND B
Thallium	0.5	 	+		\vdash	3.1	В		\vdash		\vdash		\vdash		ы		+	-+	+	-	+	+		Н		+		+	1.2	В	ND		2.5 B
Vanadium Vanadium	0.5 NL		++	2.2	В	0.6	В		+		\vdash		\vdash	2.3	В			1.2			1	+		Н		-		+	11.1	В	18.8		14.6 B
Zinc	300	1	++	2.2	1	0.0	l B		H	50	QB	53.3	H	2.3	-	16	_	i.2 i4.1	18	.5 B	60.3	+	41	Н		-	-	+	4,620	E	2,720	_	3,360
Zinc Total Metals	300	144.2	+	12050.3	\vdash	272	+	49.7	\vdash	492.2		607.54	\vdash	594.9	\vdash	782.3		336.1	64		1700.2	+	62.3	Н		+			35131.6	E .	34883.07		3,360
					1 1																												

NOTES:
Results in parts per billion (ppb) or micrograms per liter (ug/l)
U - not detected above instrument detection limit

- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

																													_
Sample Date	NYSAGWQS1	4/19/94	9/8	3/94	12/5/9	4 3/1	0/95	9/29/	95	12/5/9	95	7/11/9	96	10/21/	96	1/16/9	7	5/29/9	7	7/16/9	7	10/8/9	77	1/15/9	8	4/9/9	3	7/16/9	8
VOC ppb or µg/L		1, 10,01	0/0	,, 0 .	12/0/0	. 0, .	0,00	0,20,	-	12/0/	,,,	171170	,,,	10/21/	00	17 1 07 0		0,20,0		17 10/0		10/0/0		17 1070		1,0,0		171070	
1,1,1-Trichloroethane	5	2.0	1.0	Т	6.0	1.0	П	1.0				1.9	П		П	0.3	J	0.7	J		П	0.4	JQM		Т	0.3	JQM	\neg	┑
1,1,2-Trichloroethane	1																												
1,1-Dichloroethane	5	9.0	18.0)	62.0	17.	0	62.0		27.0		29.0		1.1		2.0		1.0		1.5		2.7	П			0.3	JQM		
1,1-Dichloroethene	5				0.5							0.3	JQM			0.3	J						П						
1,2,4-Trimethylbenzene	5																											2.3	П
1,3,5-Trimethylbenzene	5												Ħ				Ħ		Ħ		T				7			0.6	\neg
1,4-Dichlorobenzene	5							0.7		1.0	В																		П
2-Butanone	NL											0.5	JQM	0.7	JQM														П
Acetone	50																					1.4						2.2	J
Carbon Disulfide	NL							0.6	В																				П
Chloroethane	5		5.0		13.0	11.	0	69.0	\vdash	4.0		0.4	JQM				\Box		\Box										\neg
Chloroform	7								\vdash				m				\Box		\Box										\neg
cis-1,2-Dichloroethene	5			_				2.0			Н		H					0.3	J		_								\neg
Ethylbenzene	5			_							Н		H					0.6	J		_								\neg
Isopropylbenzene	5		2.0	+			1	3.0	П		П		Ħ		Н		H		Ħ				П		+		_	-	\dashv
Methyl tert-butyl ether	NL			+			1	 	П		П		Ħ		Н		H		H				П		+		_	8.6	J
Methylene Chloride	5		+-	+			\dashv	 	H		Н		H		H		\vdash		\vdash		+		Н		\dashv		+		Ť
n-butylbenzene	5		+-	+			\dashv	1.0	H		Н		H		H		\vdash		\vdash		+		Н		\dashv		+	+	\dashv
n-propylbenzene	5		+-	+			\dashv	4.0	H		Н		H		H		\vdash		\vdash		+		Н		\dashv		+	0.6	\dashv
	10		_	_			+	4.0	+			0.3			H		\vdash		\vdash		_		\vdash		_		_	0.0	\dashv
Naphthalene sec-butylbenzene	5	-	3.0	+	2.0		+	2.0	+	1.0	Н	0.4	JUM	0.3	ION:		\vdash		\vdash		\dashv	0.6	JQM				+	\longrightarrow	\dashv
	5	-	3.0	+	0.6	0.6	+	2.0		1.0	Н	0.4	JQM	0.3	JQM	0.2	J	0.4	J		-	0.6	JQM		+		\dashv	\longrightarrow	\dashv
Tetrachloroethene Toluene	5	\vdash	-	_	0.0	0.0	' +		+		H	0.5	JQM	0.3	JQM	0.2	7	0.4	7		-		\vdash		_		-	0.8	-
11111	5			_			_			0.5		2.8	Н		Н		\vdash		\vdash		_	0.5	.IOM		_	0.5	-+	0.0	\dashv
Trichloroethene Vinvl Chloride	2	\vdash	_	-	8.0	0.6	<u>'</u>	1.0	+	0.5	Н	2.8	H	3.4	+		H		H	0.6	-	0.5	JQM		-	0.5	JQM		\dashv
,				_		_							Н		Н		\vdash		\vdash		_				_		-+		\dashv
Xylene (Total) Total VOCs	5	11.0	29.0	_	84.9	30.	_	146.3		33.5		36.1	Н	5.8	Н	2.8	\vdash	3.0 6.0	\vdash	2.1	_	5.6			_	1.1	-+	0.5 15.6	\dashv
		11.0	29.	<u>' </u>	64.9	30.	2	146.3		33.5	Ш	30.1	<u> </u>	5.6	ш	2.0	ш	6.0	ш	2.1	_	5.6		0.0		1.1	_	15.6	_
SVOC ppb or μg/L	-	-	_	_	1		_	Т	_				П		_		_		_	_	_		_	-	_	_	_	_	_
Benzo(g,h,i)perylene	5 50			_		_							Н		Н		\vdash		\vdash		_				_		-+		\dashv
bis(2-Ethylhexyl)phthalate		-	-	_			-		+		H		\vdash		+		\vdash		\vdash		-		\vdash		_		-		\exists
Diethylphthalate	50			_		_							Н		Н		\vdash		\vdash		_				_		-+	0.7	J
Di-n-butyl phthalate	50			_		_							Н		Н		\vdash		\vdash		_				_		-+	0.7	J
Di-n-octyl phthalate	50			_		_							Н		Н		\vdash		\vdash		_				_		-+		\dashv
Indeno(1,2,3-cd)pyrene	0.002	_	_	_		_	_		+		Н		H	_	\vdash	_	ш		ш		_	_	\vdash		_		-		-
Total SVOCs		0	0		0	0		0	ш	0	ш	0	ш	0	ш	0	ш	0	ш	0		0	ш	0		0		1.4	_
Metals ppb or μg/L					, ,				_						_												_		
Aluminum	NL				8430	137	00	1790		1430			R	509	ш	28.9	В	61.6	В	262		362				2290	_	57.7	В
Antimony	3												Ш				ш		ш	3	В						_		
Arsenic	25							1	ш		Щ		Щ		Ш	4.6	В	2.1	В		_		Ш		_	5	В		
Barium	1,000							1	ш		Щ	34.6	В	34.2	В	36.5	В	32.7	В	42.4	В	44.6	В			55.2	В	44.8	В
Beryllium	3							1	ш		Щ		Щ		Ш		Щ		Щ		_		Ш		_	0.11	В		
Cadmium	5										Ш	3	В	1	В		Щ		Щ			0.5	В						
Chromium	50				55	34					Ш		Ш	7.4	В		Щ		Щ		В	4.4	В		_	23.2			
Cobalt	NL										Ш	11.7	В	4.2	В	9.2	В		В		В	4.9	В			6.5	В		
Copper	200		4		42	72	_					2.4	В	6.9	В				В		В	17.5	В		_	23.1			
Iron	300		310		1400	202		1480		1930		1390	$oxed{\Box}$	4670	EJ	7620	Ш	1140	Ш	1400		16300			1	31700		14300	
Lead	25	1			27	32		0.6		2			$oxed{\Box}$	2	В		Ш		Ш										
Manganese	300	145	524		941	113	0	948		960		1340	$oxed{\Box}$	382	J	513	Ш	393	Ш	357		249				809		656	
Mercury	2					0.2			\Box				ШĪ				ШĪ		ШĪ		[0.2	В						
Nickel	NL				54	33						2.4	В	7.4	В					3.4	В	5	В			16	В		
Selenium	10																												
Silver	50										П		П				П		П		П		П			1	В		П
Thallium	0.5											56	В	2.9	В					3.6	В								\neg
Vanadium	NL												П	1.3	В											5.9	В		╗
Zinc	300	7			66	10							П			6	JB			10.5	В							6.9	В
Total Metals		153	838	1	11015	1712	2.2	4218.6		4322		2840.1	П	5628.3		8218.2		1639.1		2094.6		16988.1		0	34	4935.01		15065.4	╗
NOTES:			•			-	_				_				_						_				_		_		_

Results in parts per billion (ppb) or micrograms per liter (ug/l) U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Note that the property of th																																		
No.	Sample Date	NYSAGWQS ¹	10/22	/98	1/3/9	99	11/18	/99	8/10/	00	3/21/0)1	6/25/0	01	10/18/	01	12/13/	01	4/4/0	2	12/4/02	. 3	/24/03	8/	7/03	11/	0/04	6/23/	05	2/10/	06	9/12/0	6	8/14/
11.2-Princentame	/OC ppb or μg/L																																	
15-10-Information 5	,1,1-Trichloroethane	5			5.0										0.7	JQM							0.6 Jo	м 0.	6				\Box		Ш			
15Discontense	,1,2-Trichloroethane	1										П																	\square		П		I	
1.2-Firestyleanzene	,1-Dichloroethane	5			4.0		1.1	П				П	1.6		14.0		5.0		0.4	JQM		-	3.1	10	.0				П		П			
13.5 Trentlybacenee	,1-Dichloroethene	5																																
14-Dehiorhedrenee	,2,4-Trimethylbenzene	5																											\prod					
Substance Subs	,3,5-Trimethylbenzene	5																											$\Pi \Pi$					
Action Medicide NIL 1,1 1	,4-Dichlorobenzene	5																																
Carbon Desiration Ni	2-Butanone	NL																																
Chicordane	Acetone	50					1.1		1.1				1.2				1.4		3.1				0.9 Jo	м				4.9	к					
Chlorodrom	Carbon Disulfide	NL																											$\Pi \Pi$					
Sector S	Chloroethane	5	0.8										1.6		33.0		20.0																	
Etlybenzene	Chloroform	7			0.7		0.3	JQM																					\prod					
September Sept	is-1,2-Dichloroethene	5										П			0.3	JQM													\Box		Π			8.0
Methylsense Chloride	thylbenzene	5										П																	\Box		Π			
Methylane Chloride	sopropylbenzene	5																											\Box		\Box			
Publisherate	Methyl tert-butyl ether	NL	1.5																										\Box		$\Pi \uparrow$		T	
Publisherate				П		П		П		П		П	0.6	JQM		П		T									1		\sqcap		\sqcap		T	
Proprigherane 5				П		П		П		П		П		П		П		T									1		\sqcap		\sqcap		T	
Naphthalane 10		5																											\Box		\Box			
Sec-butyBenzene 5				П		П		П		П		П		П		П		T									1		\sqcap		\sqcap		T	
Tetrachrocethene	ec-butylbenzene	5					0.2	JQM																					\Box	Ī	\Box			
Total confidence								Ħ		П		П			0.4	JQM			0.3	JQM			0.5 Jo	м 2.	4				\Box		T		\neg	
Virgit Chloride		5																											\Box	Ī	\Box			
Virgit Chloride	richloroethene	5		\Box		\Box	0.4	JQM	0.3	JQM	0.3	JQM	0.3	JQM		П	0.3	JQM					0.8 JC	м О.	9				\vdash		†		\neg	
Xylene (Total)				\Box		\Box		Ħ		Ħ		Ħ				П		JQM											\vdash		†		\neg	8.0
Total VOCs	,			Ħ		Ħ		Ħ		Ħ		H		т		Ħ								1		1	_		+		Ħ		\pm	
SVOC ppb or µg/L			2.3	\Box	9.7	\Box	3.1	Ħ	1.4	Ħ	0.3	H	5.3	т	48.4	П	27.2		3.8		0.0	1	0.9	13	.9	0.0		4.9	\vdash	0.0	†	0.0	\neg	16.0
Benzo(gh.i)perylene 5																																		
bisi/2-Etriy/hex/liphthalate 50 1000 D 2 J	Benzo(q,h,i)perylene	5										П					11	J											П		П		т	
Di-n-butyl phthalate 50							1000	D		П		П	2	J										6.	4				\Box	2	J	2	J	1
Di-n-butyl phthalate 50		50						Ħ		П		П																	\Box		\top		\neg	
Di-n-octyl phthalate				\Box		\Box		Ħ		Ħ		H		т		П								1					\vdash		†		\neg	
Indeno(1,2,3-cd)pyrene				\Box		\Box		Ħ		Ħ		H		т		П							10 F	2					\vdash		†		\neg	
Total SVOCs 0 0 1000 0 0 2 0 22 0 0 10 16.4 2 2 Metals ppb or μg/L				\Box		\Box		Ħ		Ħ		H		т		П	11	J						1					\vdash		†		\neg	
Metals ppb or µg/L Aluminum NL 818 81.1 B 226 86.3 B 740 579 J 868 2510 848 2220 141 B 886 E Antimony 3 3 4			0	Ħ	0	Ħ	1000	Ħ	0	Ħ	0	H	2	т	0	Ħ			0		0		10	6.	4	1			+	2	Ħ	2	\pm	1
Aluminum NL 818 81.1 B 226 86.3 B 740 579 J 868 2510 848 2220 141 B 886 E Antimony 3 2 2.3 B									-													_			_	_								
Antimony 3 2.3 B		NI	818	П	81 1	В	226	П	86.3	B	740	П	579	Li	868	$\overline{}$	2510	Т	848	П	2220	Т.	41 F	ì.	$\overline{}$	_	$\overline{}$		$\overline{}$	886	TΕΤ	1.860	一	1860
			0.0	+	01.1	۲	220	+	00.5	۳	740	H	313	Ů	000	\vdash	2310	\dashv	040	H	2220	+	7	+	_	+	_		+		_	1,000	_	8.6
			1	+		+		+		+		\vdash	18	В	11	\vdash		\vdash	41	B		+		1	-	+		1	+		В	3	В	5.0
			44 1	В	17.5	В	29.2	B	24.7	B	26	\vdash				В	98.9	В			35.9	R 1	49 5	1 1		+	+	-	+		В			56.9
Berrylliam 3 0.047 B 1.4 B 0.47 B 1.4 B 0.47 B B B 0.47 B B 0.47 B B B 0.47 B B B B B B B B B B B B B B B B B B B				۲	17.3	۲	23.2	+-	24.7	┰	20	\vdash					30.3	-	22.3	H				+ "	+	+	+	-	+	12.1	⇈	73.0		0.16
			 	+		+		+	2	B		\vdash	0.41	۲	1.4	H	2.4	В	0.55	В		_	-	+	-	+	+	-	+	16	В	1		1.3
			15.4	+	1.8	B	2	B				\vdash	12.4	H	15.2	\vdash		В		_		+		1	-	+		1	+		В		_	12.6
				B	1.0	15			2.2	+"		\vdash		В		В		В				R		1	-	+		1	+		В			4.4
					12	B		1	12	B		\vdash				-		В						1	-	+		1	+					27.1
				Р	12	В		+		-	10000	+		-		ř		+		Ь		_	210	144	20	+	-1-	1	+			20,400		16,400
				Ы	12			1	ວວບປ	+	19000	+		H.		\vdash		+	3300	Н		+	10	171		+	-1-	1	+		B			9.5
				Р		_		J	260	+	170	+		J		\vdash		+	405	Н		+	26	40	•	+	-1-	1	+		B	502		9.5
production = 300 203 0.2 D 403 209 170 307 202 320 430 435 172.6 400 1 1 399 E			203	++	0.2	Р	400	+	209	+		011	307	\vdash	202	\vdash	320	+	490	Н	493	+	2.0	40	<u> </u>	+	-1-	1	+	399	丰	302	-	310
			424	-		-	2.0	1	4.0	+	0.2	ųн	F0 F	\vdash	40.4		40.5	긁	4.0		27.4	-		1		1-			+	40.5	+-+	0.5	В	40.0
Mercury 2 0 0.2 QH 0 0.2 QH			12.1	В	1.4	В	2.6	B	1.6	В		\vdash	53.5	\vdash	10.1	В		В	4.2	В	27.1	<u> </u>		1		1-			+	18.5	18	8.5		12.3
Mercury 2			 	++		++		╁		₩		\vdash		\vdash		<u> </u>	4./	J		Н		-		1		1-	+		+	4.	╁┼		-	15.2
Mercury 2 1 1 8 1.4 8 2.6 8 1.6 8 53.5 10.1 8 12.5 8 2.7 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			!	++		++		_		╁		\vdash		\vdash	2.4	RJ		1		Н		+		+	-	+		 	+	1.6	1 B	\longrightarrow	+	
Mercury 2			L	+-		+-	3.4	В	5.9	В		\vdash		-		⊣		ᆛ	_	닉		+		+	-	+		 	+		╁			4.7
Mercury 2		NL	2.5	В	1.1	В		+		\perp			1.9	В	5.6	В		В				В				1			\perp		В	5.2		4.6
Mercury 2 1 1 8 1.4 8 2.6 8 1.6 8 53.5 10.1 8 12.5 8 4.2 8 27.1 8		000										-																						
Mercury 2 12.1 B 1.4 B 2.6 B 1.6 B 0.2 QH 0 1 B 1.5 B 1.6 B 0.2 QH 0 1 B 1.5 B 1.6 B 0.2 QH 0 1 B 1.5 B 1.6 B 0.2 QH 0 1 B 1.5 B 1.6 B 0.2 QH 0 1 B 1.5 B 1.6 B 0.2 QH 0 1 B 1.6 B 1.6 B 0.2 QH 0 1 B 1.6 B	linc	300		Щ		\sqcup		+		щ		QB		Н		Щ		4				+		1	_	4-	_		+		₩	53 22920.8		59.8 9387.16

Results in parts per billion (ppb) or micrograms per liter (ug/l) U - not detected above instrument detection limit

- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

- Shading and Italics Result is above the NYSDEC AWQS.
- 1 Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

																															_
Sample Date	NYSAGWQS1	4/19/9	4	9/8/94	Т	12/5/9	4	3/10/9	; T	9/29/9	25	12/5/9	15	7/11/9	16	10/21/9	96	1/16/9	7	5/29/9	7	7/16/9	7	10/8/9	97	1/15/9	98	4/9/9	8	7/16/9	8
VOC ppb or μg/L		7/13/3	_	3/0/31		12/3/3	_	3/10/3	,	3/23/3	55	12/5/3	,5	77 1 1/3	,0	10/21/3	30	1/10/3	,,	3/23/3	,,	7/10/3	,,	10/0/.	,,	1/10/3	90	7/3/3	_	1/10/3	_
1,1,1-Trichloroethane	5	0.7		П	_		_	3.0	т		П					П	$\overline{}$		П		П				Т		Т	ı	$\overline{}$		_
1,1,2-Trichloroethane	1	0.7			-			4.0	+		H								H		H				┢		-		H		_
1,1-Dichloroethane	5	3.0			-			4.0	+		H						-								H				\vdash		-
2-Butanone	NL	3.0			-				+		H			0.2	JQM				H		H				┢		-		H		_
4-Chloro-3-Methylphenol	NL NL				-				+		H			0.2	JUM				H		H				┢		-		H		_
Acetone	50	96.0			-				+		H						-							0.8	ł				\vdash		-
Carbon Disulfide	NL	96.0			-				+	0.5	В								H		H			0.6	JQM		-		H		_
	NL 5	2.0			+	-			+	0.5	В								Н		Н				H		-		\vdash		_
Chloroethane		2.0	Н		-				_		H		Н		\vdash		-		H						┢		-		\vdash		_
Ethylbenzene	5			-	-		_		-		Н						_	0.3	J		Н				1		-		₩		-
Methyl tert-butyl ether	NL				-				_		Н						_		Н		Н								₩	1.8	J
Trichloroethene	5	0.5			-			1.0	_		\vdash			1.5		2.3	-								-		-		\vdash		_
Trichlorofluoromethane	5				_				4		Н			3.6					Н		Н				<u> </u>		-		ш		_
Xylene (Total)	5		Щ		4		_		_		Н		Щ		Щ	 	\dashv	2.0	Н		Н		H		₩		₩		\sqcup		_
Total VOCs		102.2		0.0		0.0		8.0		0.5	Ш	0.0		5.3		2.3	Ш	2.3	Ш	0.0	Ш	0.0		0.8	<u> </u>	0.0		0.0	ш	1.8	_
SVOC ppb or µg/L																											_				
Benzo(k)fluoranthene	0.002																												Ш		
bis(2-Ethylhexyl)phthalate	50																			56		4	J						Ш		
Diethylphthalate	50																												Ш	0.6	J
Di-n-butyl phthalate	50													2	J															0.8	J
Di-n-octyl phthalate	50																														
Phenol	1																														
Total SVOCs		0		0		0		0		0		0		2		0		0		56		4		0		0		0		1.4	
Metals ppb or μg/L																															
Aluminum	NL					139		282		179		139				288		68.2	В	154	В	268		120	В	477	J			167	В
Antimony	3																					4.4	В								
Arsenic	25																	5.8	В											1.3	ВJ
Barium	1,000													22.9	В	15.1	В	15.8	В	14.6	В	22.3	В	25.1	В	15	В	12	В	15.1	В
Beryllium	3																														_
Cadmium	5																							0.7	В			0.31	В		_
Chromium	50													3	В	4.3	В			6.4	В	5.4	В	1.2	В	2.5	В	1.7	В		_
Cobalt	NL													1.1	В	1.4	В					2.8	В	2.7	В	1.6	В				_
Copper	200			4		5			T					4.4	В	5.8	В	2.4	В	4.7	В	4.2	В	14.9	В	4.5	В	6.1	в		
Iron	300	33		1430		8150		6100	T	4330		2590		3890			EJ	93.9	В	1060		3100		1160	T	1780		909	ΙĪ	2500	
Lead	25			2		5		12	T	40		4									В				T	1.2	В		ΙĪ		
Manganese	300	1220		111		137		72	7	50		54		43.3		90.5	J	6.6	В	31.5		49.5		37.2		27.5	Ť	14.6	В	53.5	_
Mercury	2								7								Ť												Ħ		_
Nickel	NL								1		H			2.4	В	3.3	В					5.1	В	2.2	В	2.4	В	2.3	В		_
Selenium	10				1				+		H				Ť	0.0	Ť		Н		Н	···	Ť		ť		Ť		Ħ		_
Silver	50				1				+		H						Ħ		Н		Н		Н		t		t		Ħ		_
Thallium	0.5		H		1				-		H		H				\dashv		H		H				H		 		\vdash		_
Vanadium	NL		H		1				-		H		H				\dashv		H		H				H	1.2	В		\vdash		_
Zinc	300	13	H	14	\dashv	13	-		\dashv		H		H		H	\vdash	\dashv	3.6	JB	12.1	В	8.1	В		H	12.5	В		\vdash	12.2	В
Total Metals	300	1266	H	1561	\dashv	8449	-	6466	+	4599	H	2787	H	3967.1	H	5118.4	\dashv	196.3	20	1285.8	H	3469.8	-	1364	H	2325.4	1	946.01	\vdash	2749.1	
NOTES:		1200		1001	_	0443		0400	_	7000	ш	2101		5507.1		5110.4		100.0	ш	1200.0	ш	J-03.0	ш	1304	_	2023.4	_	343.01	_	2173.1	_

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	10/22	/98	1/3/9	9	11/18	/99	8/10/	00	3/21/0)1	6/25/0)1	10/18/	01	12/13/	01	4/4/0	2	12/4/0	2	3/24/03	Т	8/7/03	T	11/9/2004	4 6/	25/200	5 2	2/10/0)6	9/12/0	06	8/14/07
VOC ppb or μg/L																											-							
1,1,1-Trichloroethane	5		П		ПТ		П		Т		П		П		П				П		Т		Т	П	Т		Т		丅	T	П		П	-
1,1,2-Trichloroethane	1		T		Ħ																_		1		1				\top				Ħ	
1,1-Dichloroethane	5		T	0.8	Ħ																_		1		1				\top				Ħ	
2-Butanone	NL		T		Ħ																_		1		1				\top				Ħ	
4-Chloro-3-Methylphenol	NL		T		Ħ											10.0	J				_		1		1				\top				Ħ	
Acetone	50				Ħ			0.6	JQM	1.0	JQM					1.6		2.3				0.8 Jo	эм	2.5	T				\top				Ħ	
Carbon Disulfide	NL			1.2	Ħ							0.6	JQM						T		T				T		1		\top				M	
Chloroethane	5				Ħ				\top										T		T		T		T		1		\top				M	
Ethylbenzene	5		T		Ħ																_		1		1				\top				Ħ	
Methyl tert-butyl ether	NL		T		Ħ																_		1		1				\top				Ħ	
Trichloroethene	5		T		tt		1		+										H		1		+		T				+				H	
Trichlorofluoromethane	5		1		Ħ		T		T		H		H				П		Ħ				\top		T		T		\top				H	
Xylene (Total)	5	1	T		Ħ		Н		T		H		H		Н		Н		H		+		+		T		+		+		Ħ		Ħ	-
Total VOCs	Ĭ	0.0	T	2.0	Ħ	0.0	Н	0.6	T	1.0	H	0.6	H	0.0	Н	11.6	Н	2.3	H	0.0	+	0.8	+	2.5	T	0.0	+		+	0.0	Ħ	0.0	Ħ	0.0
SVOC ppb or µg/L		0.0	_	2.0		0.0		0.0		1.0	ш	0.0	_	0.0	_		ш	2.0	_	0.0		0.0	_		_	0.0			\rightarrow	0.0		0.0		0.0
Benzo(k)fluoranthene	0.002		П		П		П		Т		П		П			10	ы		П		Т		т	т	Т		Т		丅	T			一	-
bis(2-Ethylhexyl)phthalate	50		+		+		+		+		H						Ů		H		-		+		+		+		+		-		${f +}$	
Diethylphthalate	50		+		H		\mathbf{H}		+		H		H						H		\dashv		+		\dashv				十				+	-+
Di-n-butyl phthalate	50		+		+		+		+		H								H		-		+		+		+		+		-		${f +}$	
Di-n-octyl phthalate	50		+		+		+		+		H					10			H		-		+		+		+		+		-		${f +}$	
Phenol	1		+	2	J		+		+		H		H			10	-		H		+		+		+		+		+		-		++	
Total SVOCs	'	0	+	2	,	0	+	0	+	0	H	0	H	0		20	H	0	H	0	+	0	+	0	+		+		+	0	-	0	${}^{++}$	0
Metals ppb or µg/L		Ü				-		U		U	Ш		ш	U	ш	20	ш	U	ш	0	_	•	_	0	_		_		_	0		U	_	
	NL	68.8	В	134			1	130	В	102	в	177	В	70.9	BJ	297		164		179	_	299	_		т		_		一	139	BE	114		876
Aluminum	3	68.8	В	3.6	В		+	130	В	102	В	6.6	В	70.9	BJ	297	Н	164	H	1/9	+	299	+		+	-	+			4.7	BE	2.5	В	11.2 B
Antimony			+	3.6	В		В		+_			6.6	В		_		Ļ		⊣		_		+		+		_		_		В		В	
Arsenic	25		B		-	3.4	_	2.9	В				H	6.1	BJ		В.		В		_		+		+		_		_	ND	_	ND	╁	ND D
Barium	1,000	22.8	В	9.1	В	19	В	16.7	В	31.2	В	28.8	В	24.6	В	111	J	27.4	В	24.8	В	14.4 E	3	20	+		_		_		В	26	В	64 B
Beryllium	3		+		+		+		+-	0.1	В	0.41	В				Н		Н		_		_		+		_		_	ND	_	ND	₩	ND
Cadmium	5		+		+_+		+	1.7	В		H		Н		H		H		⊢		_		_		+		_		_		В	ND	₩	ND
Chromium	50		+	1.6	В	3	В	2.7	В	2.1	В	5	В	1.4	В	3.3	В	1.4	В	5	В		_		+		_		_		В	2.3	В	5.7 B
Cobalt	NL	-	+		\vdash	8.0	В		+		Н								Н		_		+		4		-		_	_	В	0.79	В	3.2 B
Copper	200	22	В	19.2	В	1.6	В	2.7	В	3.7	В	12.7	В	309		3.2	В		В		В	1.7 E	_		4				_	ND		ND	ш	ND
Iron	300	3150	+	750	\vdash	1250	-	2490	+	726	Н	1620				2600		1660	Н	1260	_	928	+	1000	4		-			7,800	_	23,800	-	78,200
Lead	25		\bot		\perp		1		1				ш			2.7	В		Ш		_		_		4				_		В	ND	₩	4.5 B
Manganese	300	104	+	9.6	В	14.4	В	18.9	4	7.7	В	36.5	Щ	5.5	В	32.4	Н	14	В	17.7	_	12.8	+	22	4		+		_	544	Е	210	ш	686
Mercury	2		+		₩		\vdash		+		Щ		Щ		Ш		Ш		Щ		4		4		4		\bot		_	ND	_	ND	$\boldsymbol{\vdash}$	ND
Nickel	NL	2.5	В	1.5	В	1.9	В	1.3	В	3.1	В	6.4	В	4.6	В	3.9	В		Щ	4.3	В		4		4		4		_		В	2.1	В	5.3 B
Selenium	10	.	ш		\sqcup		\perp		\perp		Щ		Щ		Щ		Щ		Щ		_		_		4		4		_		В	ND	ш	14.1 B
Silver	50		Ш		Ш		Щ		4		Щ		Щ	1.6	В		Щ		Щ		_		_		4		4		_	ND	4	ND	ш	ND
Thallium	0.5	.	ш		\sqcup	4.7	В	3.9	В		Щ		Щ		Щ		Щ		Щ		_		_		4		4		_	ND		ND	ш	9.7 B
Vanadium	NL		Ш	1.7	В		Щ	1.1	В	1.1	В	1.6	В	2	В		Щ		Щ		В		_		4		4		_	_	В	2.5	В	5.1 B
Zinc	300		ш		ш		Ш		\perp	2.5	В	26	Ш				Ш		Ш		В		_		_		\perp		_		В	32	В	42.5 B
Total Metals		3370.1		930.3		1298.8		2671.9		879.5		1921.01		425.7		3059.9		1873.1		1499.8		1255.9		1042					48	573.41		24192.59	Ш	79927.3
NOTES:																																		

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	4/19/94	9/8/9	14	12/5/9	4 '	3/10/95	9/29/	95	12/5/9	15	7/11/9	6	10/21/	96	1/16/9	7	5/29/9	7	7/16/9	7	10/8/9	97	4/9/9	8	7/16/9	38
VOC ppb or μg/L		4/10/04	0/0/0		12/0/0	T '	0/10/00	0/20/	00	12/0/0	,0	171170	Ü	10/21/	00	17 10/0		0/20/0	_	1710/0	_	10/0/	<i>,</i>	4/0/0	<u> </u>	1710/0	,0
1,1-Dichloroethane	5	24.0	Т	1 1	г т		Т	T	_	1 1					П		$\overline{}$		П		П				П		_
2-Butanone	NL NL	24.0		H				1	╁		\vdash				H								H		H		H
2-Hexanone	50							1	+-						H										H		
4-Chloro-3-Methylphenol	NL NL			H				1	╁		\vdash				H								H		H		H
4-Methyl-2-Pentanone	NL							1	+-						H										H		
Acetone	50			+					+		\vdash				H		-					0.8	.IOM		H	2.4	J
Bromodichloromethane	50			H				1	╁		\vdash				H							0.0	JQM		H	2.4	۲
Bromoform	50			+					+		\vdash				H		-						H	0.4	JQM		┢
Carbon Disulfide	NL			+				0.6	В		\vdash				H		-						H	0.4	JUM		┢
Carbon Distillide Chloroethane	- NL - 5	15.0		+				0.6	В		\vdash		_		Н		-						\vdash		H		╁
		15.0		+				+	╁		+				Н								H		H	44.0	╁
Methyl tert-butyl ether	NL	-	_	1					+-		\vdash				Н		_								H	11.0	J
Methylene Chloride	5	-	_	1					+-		\vdash				Н		_								H		₩
Toluene	5	-	-	1		_		-	+		Н						-						\vdash		₩		₩
Trichloroethene	5											1.2		1.8									ш		ш		<u> </u>
Total VOCs		39.0	0.0		0.0		0.0	0.6		0.0		1.2		1.8		0.0		0.0		0.0		0.8		0.4		13.4	<u> </u>
SVOC ppb or μg/L																											
bis(2-Ethylhexyl)phthalate	50																										
Diethylphthalate	50																									0.7	J
Di-n-butyl phthalate	50											2	J							3	J					0.9	۲
Di-n-octyl phthalate	50																										
Phenol	1																							2	J	1	J
Total SVOCs		0	0		0		0	0		0		2		0		0		0		3		0		2		2.6	
Metals ppb or µg/L																											
Aluminum	NL															265	J					46.2	В			32	В
Antimony	3																			2.9	В						
Arsenic	25																										
Barium	1,000											17.1	В	15.5	В	11.2	В	10.4	В	15.6	В	15.9	В	7.2	В	9.5	В
Beryllium	3																										П
Cadmium	5															2.6	В					0.39	В				
Chromium	50	4										1.6	В	1.9	В									1.1	В		
Cobalt	NL																					2.7	В				T
Copper	200	7	6		4							1.2	В	1.9	В	29.8						7.5	В	3	В		
Iron	300	14900	7880		3800	- 1	2390	1940		3120				555	EJ	2610		131		81.9	В	117		424	Ħ	741	т
Lead	25	2	17		2			16								5.1										2.8	В
Manganese	300	7810	1820		509		155	29	\top	52		11.8	В	13.7	BE	53.7		7	В	16.9		14.7	В	12.6	В	12.2	В
Mercury	2																					0.1	В				
Nickel	NL	76		П					T		П			5.1	В	3.5	В			1.6	В				Ħ		П
Selenium	10			П					T		П				Ħ		T								Ħ		T
Silver	50			T				1	\dagger		H				H		\dashv				\Box		М		Ħ		T
Thallium	0.5			T				1	\dagger		H				H		\dashv				\Box		М		Ħ		T
Vanadium	NL		1	H					1		H				H	1.3	В		\exists		\exists		Н		Ħ	4.2	В
Zinc	300	71	5	H	7				1		H				H	32.2	J		\exists	4.3	В		Н		Ħ	5.9	В
Total Metals	300	22870	9728	+	4322	- -	2545	1985	╁	3172	H	31.7		593.1	H	3014.4	Ť	148.4		123.2	-	204.49	H	447.9	H	807.6	Ť
NOTES:	1	22010	3120	1	7022		_070	1303	_	3172	ш	31.7		000.1	ш	JU 17.4		. 70.7				_07.73		441.3	ш	307.0	ш

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	10/22	/08	1/3/9	ıa l	11/18/	/aa	8/10/	/nn	3/21/0	11	6/25/0	11	10/18	/∩1	12/13/	01	4/4/0	2	12/4/0	2	3/24/03	2	8/7/03		11/10/04		6/23/05	2/	10/06	6	9/12/0	6	8/14/07
VOC ppb or μg/L		10/22	/90	1/3/5	19	11/10/	33	0/10/	00	3/21/0	''	0/23/0	, ,	10/10/	101	12/13/	UI	4/4/0	_	12/4/0	2	3/24/00	,	0/1/03		11/10/04		0/23/03	2/	10/00	0	9/12/0	U	0/14/07
1,1-Dichloroethane	5		1		Т		1	1	т -	1					_				П			Т	┱		_		_		т —	т			П	
2-Butanone	NL	1	+		+			0.4	.IOM				H		+								\dashv		-		+		+				\dashv	+
2-Hexanone	50		+		+		\vdash	0.4	JUM						1								\dashv		-		+		+-	-+	-		\dashv	+
4-Chloro-3-Methylphenol	NL		+		+		+-	0.6	JQM						1	10.0	-						+		-		+		-		-		-	+
4-Methyl-2-Pentanone	NL NL		+		+		\vdash	0.3	+						1	10.0	-						\dashv		-		+		+-	-+	-		\dashv	
Acetone	50		+		+		+-	3.3	JQM	1.0					1								+		-		+		-		-		-	-
Bromodichloromethane	50	1	+		+			3.3	+	1.0	JQM		H		+	0.8	-	2.3				0.7 J			-		+		+				\dashv	
Bromodicnioromethane Bromoform	50		+		+		+	-	+-				Н		1	0.8	JQM	2.3				U.7 J	QM		-	-	+		+-	-	-		-	
			+	0.5	+	0.7	+		+						+								+		-		+		+	-+	-		-	
Carbon Disulfide	NL 5	<u> </u>	+	0.5	+	0.7	JQM		-						1								\dashv		-		+		-		_		-	
Chloroethane		 	+		+		-		-						1								\dashv		-		+		-		_		-	
Methyl tert-butyl ether	NL .	6.2	+	0.6	++		+		+-	-	\vdash		H		+-		H		\vdash		Н		+		-	-	+		+-				4	
Methylene Chloride	5	H	+		++		+	0.2	JQM	-	\vdash		H		+-		H		\vdash		Н		+		-	-	+		+-				4	\longrightarrow
Toluene	5	0.6	\perp		\vdash			0.4	JQM				Н		4								4		_		+		4_	_	_		Щ	
Trichloroethene	5		\perp		\perp										<u> </u>								4		_		4				_			
Total VOCs		6.8		1.1		0.7		5.2		1.0		0.0		0.0		10.8		2.3		0.0		0.7		0.0		0.0		0.0	0	.0		0.0		0.0
SVOC ppb or μg/L																																		
bis(2-Ethylhexyl)phthalate	50																															1	J	
Diethylphthalate	50																																	
Di-n-butyl phthalate	50							1	J																									
Di-n-octyl phthalate	50															10	J																	
Phenol	1																																	
Total SVOCs		0		0		0		1		0		0		0		10		0		0		0		0)		1		0
Metals ppb or μg/L																																		
Aluminum	NL	527	В	27.4	В					122	В	236	J	84.3	В			188	В	48.1	В	22.4	T				T		2	34	Е	1140		583
Antimony	3							3.3	В							3.1	В			4.5	В								1	.7	В	2	В	8.8 B
Arsenic	25													6.1	В			4	В	3.7	В								6	.9	В	5.5	В	2 E
Barium	1,000	17.7	В	20.4	В	16.2	В	14.5	В	16.6	В	14.4	В	20	В	99	В	27.8	В	17.2	В	15.7	В	7.8					22	2.3	В	39.2	В	199 E
Beryllium	3									1	В	0.51	BJ	1.3	В								T											0.16 E
Cadmium	5							17.8				0.68	BJ										T						5	.8		3.4	В	8.4
Chromium	50			2.2	В	1	В	2.7	В	4.3	В	12.9	J	3.8	В	2	В	3.7	В	2.2	В		T						8	.8	В	18.1	В	17.5 E
Cobalt	NL		\top	1.1	В	1.2	В	3.4	В			0.71	В	2.7	В								T		T				2	_	_	2.4	В	5 E
Copper	200	3.7	В	17.7	В	1.8	В	3.2	В	4.8	В	19.9	В	11.8	В	5	В	7.6	В	4.3	В	2.7	в		T				30).9		30	В	24.5 E
Iron	300		+-		1	362	1	3910	1	5670		1600	J	2810	T	5720		10800		4110		1600	7	590	_		1		44.		NF :	23,400		61.000
Lead	25		+	1.8	В	1.4	В		1				Ť	2.3	В			2.1	В				7		_		1					7.9	В	8.4 E
Manganese	300	605	\dagger	133	Ť	44.4	Ť	51.6	1	49.6		27.9	Н	28.3	Ť	50.9	П	103	Ť	46		47	7	21	_		T		2	_		551	Ť	548
Mercury	2	1	T		\Box		H				\Box		П		T		П		П				\dashv		_		T		1		Ť			
Nickel	NL	1.7	В	1.9	В		Н	2.2	В	4.2	В	12.6	В	3.5	В	3.3	В		H	2	В		1	1	1		T		13	3.4	В	12.8	В	13.7 B
Selenium	10	T	Ť		۲		Н		Ť				Ħ	0.0	Ť	4.7	J	2.5	В	_			1	1	1		T		6	_	В			13.4 E
Silver	50		+		+1				+-		\dashv		H	1.5	В		H	0	1		\dashv		\dashv		7		+		Ť		-		Н	
Thallium	0.5	1	+	3.1	В	2.9	В	l -	1				H	1.5	Ť		H		H				\dashv	t	-	- t	+		+	-	-		Н	9.4 E
Vanadium	NL	 	+	3.1	-	2.3	-		+	1.4	В		H	3	В		H	1.5	В	1.5	В		\dashv		+	-	+		4	.3	В	7.3	В	8.1 E
Zinc	300	 	+		+		+		+	4	В	36.2	H	3	15		H	3.3	В	3.6	В		\dashv		+	-	+		4	_	BE	40	В	40.6 E
Zinc Total Metals	300	1155.1	+	208.6	+	430.9		4008.7	+	5877.9	ь	1961.8	H	2978.6	+	5888	H	11143.5	В	4243.1	-	1687.8	+	618.8	-		+		454	-		40 5259.8	_	40.6 E
TUIAI IVICIAIS	I	1100.1	1	200.0	ш	430.9	1	4006.7	1	3011.9		1901.8	ш	2910.0	1	2000	Ш	11143.5		4243.T		1001.0		010.0					434	40.4		J239.8		02409.90

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

2.0 6.0 399.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	372.0 23.0 146.0 21.0 45.0 883.0 33.0 501.0 42.0 2210.0	508.0 21.0 191.0 20.0 49.0 7.0 482.0 417.0 51.0 1900.0 62.0 116.0 33.0	6.0 477. 14.6. 176. 17.6. 44.6. 473. 473. 4600 1600	0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51.	503.0 26.0 180.0 19.0 48.0 10.0 10.0 828.0 6.0 736.0 54.0 2280.0	229.0 100.0 20.0 56.0 606.0 412.0 27.0		420.0 16.0 100.0 100.0 57.0 57.0 0.7 5.5 John 0.4 450.0 440.0 450.0	21.0 21.0 52.0 Jose 52.0 J	J	40.0 43.0 I 100.0 179.0 I	400.0 17.0 170.0 0 15.0 33.0 5.5	0.8 x 380.0 20.0 21.0 40.0 7.9 2.1 1.4 x 210.0	9.6 30.0 16.0 42.0 5.6 5.6	320.0 8.5 79.0 17.0 45.0	
6.0 399.0 18.0 108.0 13.0 34.0 7.0 617.0 37.0 876.0 876.0 45.0 529.0 33.0 2350.0 40.0 133.0 92.0	23.0 146.0 21.0 45.0 45.0 883.0 33.0 501.0 42.0 2210.0	21.0 191.0 20.0 49.0 7.0 8.0 417.0 51.0 1900.0	477. 144.6 176. 477. 444.6 176. 477. 444.6 473. 473. 416.0 1600	10.0 51 10.0	26.0 180.0 19.0 48.0 10.0 10.0 6.0 736.0 54.0	100.0 20.0 56.0 606.0	380.0 20.0 120.0 21.0 57.0 0.5 5.0 0.6 570.0 0.5 570.0	420.0 16.0 100.0 22.0 57.0 JOM 0.7 5.5 JOM 0.4 450.0 JOM 410.0	JOM 250.J)	43.0 I 100.0 I 179.0 I	17.0 170.0 15.0 33.0 5.5	380.0 20.0 130.0 21.0 40.0 7.9 2.1	44.0 9.6 30.0 16.0 42.0 5.6 140.0 8.9	8.5 79.0 17.0 45.0	
399.0 18.0 108.0 13.0 34.0 7.0 617.0 3.0 45.0 529.0 2350.0 133.0 92.0	23.0 146.0 21.0 45.0 45.0 883.0 33.0 501.0 42.0 2210.0	21.0 191.0 20.0 49.0 7.0 8.0 417.0 51.0 1900.0	477. 144.6 176. 477. 444.6 176. 477. 444.6 473. 473. 416.0 1600	10.0 51 10.0	26.0 180.0 19.0 48.0 10.0 10.0 6.0 736.0 54.0	100.0 20.0 56.0 606.0	380.0 20.0 120.0 21.0 57.0 0.5 5.0 0.6 570.0 0.5 570.0	420.0 16.0 100.0 22.0 57.0 JOM 0.7 5.5 JOM 0.4 450.0 JOM 410.0	JOM 250.J)	43.0 I 100.0 I 179.0 I	17.0 170.0 15.0 33.0 5.5	380.0 20.0 130.0 21.0 40.0 7.9 2.1	44.0 9.6 30.0 16.0 42.0 5.6 140.0 8.9	8.5 79.0 17.0 45.0	
399.0 18.0 108.0 13.0 34.0 7.0 617.0 3.0 45.0 529.0 2350.0 133.0 92.0	23.0 146.0 21.0 45.0 45.0 883.0 33.0 501.0 42.0 2210.0	21.0 191.0 20.0 49.0 7.0 8.0 417.0 51.0 1900.0	477. 144.6 176. 477. 444.6 176. 477. 444.6 473. 473. 416.0 1600	10.0 51 10.0	26.0 180.0 19.0 48.0 10.0 10.0 6.0 736.0 54.0	100.0 20.0 56.0 606.0	380.0 20.0 120.0 21.0 57.0 0.5 5.0 0.6 570.0 0.5 570.0	420.0 16.0 100.0 22.0 57.0 JOM 0.7 5.5 JOM 0.4 450.0 JOM 410.0	JOM 250.J)	43.0 I 100.0 I 179.0 I	17.0 170.0 15.0 33.0 5.5	380.0 20.0 130.0 21.0 40.0 7.9 2.1	44.0 9.6 30.0 16.0 42.0 5.6 140.0 8.9	8.5 79.0 17.0 45.0	
18.0 108.0 13.0 34.0 7.0 617.0 3.0 876.0 45.0 529.0 33.0 2350.0 133.0 92.0	23.0 146.0 21.0 45.0 45.0 883.0 33.0 501.0 42.0 2210.0	21.0 191.0 20.0 49.0 7.0 8.0 417.0 51.0 1900.0	14.5 176. 176. 17.4 44.0 44.0 473. 416. 45.0 1600	100 200 200 200 200 200 200 200 200 200	26.0 180.0 19.0 48.0 10.0 10.0 6.0 736.0 54.0	100.0 20.0 56.0 606.0	20.0 120.0 21.0 57.0 0.5 5.0 0.2 0.6 570.0 0.5 530.0	16.0 100.1 22.0 57.0 JOM 0.7 5.5 JOM 0.4 450.0 JOM 410.0	JOM 250.J)	43.0 I 100.0 I 179.0 I	17.0 170.0 15.0 33.0 5.5	380.0 20.0 130.0 21.0 40.0 7.9 2.1	44.0 9.6 30.0 16.0 42.0 5.6 140.0 8.9	8.5 79.0 17.0 45.0	
18.0 108.0 13.0 34.0 7.0 617.0 3.0 876.0 45.0 529.0 33.0 2350.0 133.0 92.0	23.0 146.0 21.0 45.0 45.0 883.0 33.0 501.0 42.0 2210.0	21.0 191.0 20.0 49.0 7.0 8.0 417.0 51.0 1900.0	14.5 176. 176. 17.4 44.0 44.0 473. 416. 45.0 1600	100 200 200 200 200 200 200 200 200 200	26.0 180.0 19.0 48.0 10.0 10.0 6.0 736.0 54.0	100.0 20.0 56.0 606.0	20.0 120.0 21.0 57.0 0.5 5.0 0.2 0.6 570.0 0.5 530.0	16.0 100.1 22.0 57.0 JOM 0.7 5.5 JOM 0.4 450.0 JOM 410.0	JOM 250.J)	43.0 I 100.0 I 179.0 I	17.0 170.0 15.0 33.0 5.5	20.0 130.0 21.0 40.0 7.9 2.1 1.4 × 210.0	9.6 30.0 16.0 42.0 5.6	8.5 79.0 17.0 45.0	
108.0 13.0 34.0 7.0 617.0 3.0 876.0 45.0 529.0 33.0 2350.0 133.0 92.0	146.0 21.0 45.0 45.0 883.0 33.0 501.0 42.0 2210.0	191.0 20.0 49.0 7.0 482.0 8.0 417.0 1900.0 62.0 116.0 33.0	176. 17.7. 44.0. 473. 473. 416.0. 1600	10.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	180.0 19.0 48.0 10.0 10.0 828.0 6.0 736.0 54.0	20.0 56.0 56.0 606.0 412.0 27.0	120.0 21.0 57.0 0.5 5.0 0.2 0.6 570.0 0.5 530.0	100.0 22.0 57.0 JOM 0.7 5.5 JOM 0.4 450.0 JOM 410.0	21.0 52.0 30M 30M 30M 30 250.1)	43.0 I 100.0 I 179.0 I	170.0 0 15.0 33.0 5.5 0 370.0	130.0 21.0 40.0 7.9 2.1 1.4 8 210.0	30.0 16.0 42.0 5.6	79.0 17.0 45.0	
13.0 34.0 7.0 617.0 3.0 876.0 45.0 529.0 33.0 2350.0 40.0 133.0 92.0	21.0 45.0 883.0 33.0 501.0 42.0 2210.0	20.0 49.0 7.0 7.0 482.0 8.0 417.0 51.0 1900.0 62.0 116.0 33.0	17.0 44.0 44.0 44.0 44.0 47.0 47.0 16.0 16.0 16.0 16.0 16.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	.0 11 1 1 1 .0 8: 1.0 7: 1.0 7: 1.0 7:	19.0 48.0 10.0 10.0 828.0 6.0 736.0 54.0	20.0 56.0 56.0 606.0 412.0 27.0	21.0 57.0 0.5 5.0 0.2 0.6 570.0 0.5 530.0 47.0	22.0 57.0 Jom 0.7 5.5 Jom 0.4 450.0 Jom 410.0	21.0 52.0 Jom Jom D 250.1)	179.0 I	5.5 5.5 5.5 0 370.0	21.0 40.0 7.9 2.1 1.4 x 210.0	16.0 42.0 5.6 5.6 140.0 8.9	17.0 45.0	
34.0 7.0 617.0 3.0 876.0 45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	883.0 883.0 501.0 42.0 2210.0 83.0	49.0 7.0 7.0 482.0 8.0 417.0 51.0 1900.0 62.0 116.0 33.0	44.6 416. 416. 1600	1 1 1 1 1 1 1 1 1 1 1 7 7 7 7 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48.0 10.0 828.0 6.0 736.0 54.0	606.0 412.0 27.0	57.0 0.5 5.0 0.2 0.6 570.0 0.5 530.0 47.0	57.0 Jom 0.7 5.5 Jom 0.4 450.0 Jom 410.0	Jom Jom 250.1)	179.0 I	33.0 5.5 0 370.0 D 2.3	7.9 2.1 1.4 x 210.0	5.6 5.6 140.0 8.9	190.0	
7.0 617.0 3.0 876.0 45.0 529.0 33.0 2350.0 133.0 92.0	883.0 33.0 501.0 42.0 2210.0	49.0 7.0 7.0 482.0 8.0 417.0 51.0 1900.0 62.0 116.0 33.0	44.6 416. 416. 1600	1.0 8: 4 1.0 7: 0.0 5 0.0 32	10.0 828.0 6.0 736.0 54.0	606.0 412.0 27.0	0.5 5.0 0.2 0.6 570.0 0.5 530.0 47.0	Jom 0.7 5.5 Jom 0.4 450.0	Jom Jom 250.1))	179.0 I	5.5 5.5 0 370.0 D 2.3	7.9 2.1 1.4 x 210.0	5.6 0M 140.0 8.9	190.0	
7.0 617.0 3.0 876.0 45.0 529.0 33.0 2350.0 133.0 92.0	883.0 33.0 501.0 42.0 2210.0	7.0 482.0 8.0 417.0 51.0 1900.0 62.0 116.0 33.0	473. 416. 45.0 1600	1.0 8: 4 1.0 7: 0.0 5 0.0 32	10.0 828.0 6.0 736.0 54.0	606.0 412.0 27.0	0.5 5.0 0.2 0.6 570.0 0.5 530.0 47.0	Jom 0.7 5.5 Jom 0.4 450.0	Jom Jom 250.1))	179.0 I	5.5 5.5 0 370.0 D 2.3	7.9 2.1 1.4 x 210.0	5.6 0M 140.0 8.9		
617.0 3.0 876.0 45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	33.0 501.0 42.0 2210.0 49.0 83.0	482.0 8.0 447.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 8: i.0 7: 0 5	828.0 6.0 736.0 54.0	412.0 27.0	5.0 0.2 0.6 570.0 0.5 530.0 47.0	Jon 0.4 450.0	Jom D 250.		6.0 J	370.0 D 2.3	2.1 1.4 x 210.0	ом 140.0 8.9		
617.0 3.0 876.0 45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	33.0 501.0 42.0 2210.0 49.0 83.0	482.0 8.0 447.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 8: i.0 7: 0 5	828.0 6.0 736.0 54.0	412.0 27.0	0.2 0.6 570.0 0.5 530.0 47.0	JOM 0.4 450.0 JOM 410.0	Jam 0 250.1		6.0 J	370.0 D 2.3	2.1 1.4 x 210.0	ом 140.0 8.9		
617.0 3.0 876.0 45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	33.0 501.0 42.0 2210.0 49.0 83.0	482.0 8.0 447.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 8: i.0 7: 0 5	828.0 6.0 736.0 54.0	412.0 27.0	0.2 0.6 570.0 0.5 530.0 47.0	JOM 0.4 450.0 JOM 410.0	Jam 0 250.1		6.0 J	370.0 D 2.3	1.4 x 210.0	ом 140.0 8.9		
3.0 876.0 45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	33.0 501.0 42.0 2210.0 49.0 83.0	8.0 417.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 73 .0 5 0.0 32	6.0 736.0 54.0	412.0 27.0	0.6 570.0 0.5 530.0 47.0	JOM 0.4 450.0 JOM 410.0	250.0		6.0 J	D 2.3	1.4 x 210.0	8.9		
45.0 529.0 33.0 2350.0 40.0 133.0 92.0	33.0 501.0 42.0 2210.0 49.0 83.0	8.0 417.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 73 .0 5 0.0 32	6.0 736.0 54.0	412.0 27.0	0.6 570.0 0.5 530.0 47.0	JOM 0.4 450.0 JOM 410.0	250.0		6.0 J	D 2.3	210.0	8.9		
45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	33.0 501.0 42.0 2210.0 49.0 83.0	8.0 417.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 73 .0 5 0.0 32	6.0 736.0 54.0	412.0 27.0	0.5 530.0 47.0	JOM 410.0	250.0		6.0 J	D 2.3	210.0	8.9		
45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	33.0 501.0 42.0 2210.0 49.0 83.0	8.0 417.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 73 .0 5 0.0 32	6.0 736.0 54.0	412.0 27.0	0.5 530.0 47.0	JOM 410.0	250.0		6.0 J	D 2.3	210.0	8.9		
45.0 529.0 33.0 2350.0 40.0 133.0 92.0 2.0	33.0 501.0 42.0 2210.0 49.0 83.0	8.0 417.0 51.0 1900.0 62.0 116.0 33.0	416. 45.0 1600	i.0 73 .0 5 0.0 32	6.0 736.0 54.0	412.0 27.0	0.5 530.0 47.0	JOM 410.0) 400.		6.0 J	D 2.3		8.9		
529.0 33.0 2350.0 40.0 133.0 92.0 2.0	501.0 42.0 2210.0 49.0 83.0	62.0 116.0 33.0	45.0 1600 12.0 57.0	i.0 7: .0 5 0.0 32	736.0 54.0	27.0	530.0 47.0	410.0)			1.5			-
529.0 33.0 2350.0 40.0 133.0 92.0 2.0	501.0 42.0 2210.0 49.0 83.0	62.0 116.0 33.0	45.0 1600 12.0 57.0	i.0 7: .0 5 0.0 32	736.0 54.0	27.0	530.0 47.0	410.0)						
33.0 2350.0 40.0 133.0 92.0 2.0	42.0 2210.0 49.0 83.0	51.0 1900.0 62.0 116.0 33.0	45.0 1600 12.0 57.0	0.0 5	54.0	27.0	47.0									JOM
2350.0 40.0 133.0 92.0 2.0	2210.0 49.0 83.0	62.0 116.0 33.0	12.0	0.0 32				45.0			276.0 I		320.0	270.0	310.0	\bot
40.0 133.0 92.0 2.0 5.0	49.0 83.0	62.0 116.0 33.0	12.0		280.0	1920.0	2600.0					32.0	36.0		33.0	
133.0 92.0 2.0 5.0	83.0	116.0 33.0	57.0	#				1500.	0	\neg			1700.0		1100.0	
133.0 92.0 2.0 5.0	83.0	116.0 33.0	57.0	#											_	0.
133.0 92.0 2.0 5.0	83.0	116.0 33.0	57.0	. + + -						-	_	1.1	9.0	+	_	++-
133.0 92.0 2.0 5.0	83.0	116.0 33.0	57.0		_	_				+		1.1	9.0	+-+	-	
133.0 92.0 2.0 5.0	83.0	116.0 33.0	57.0	J 1	17.0	\vdash	9.0	Н—		\perp	_			+		\vdash
92.0 2.0 5.0	83.0	116.0 33.0		0 6	63.0	29.0	50.0	46.0				43.0	41.0	40.0	37.0	ш
92.0 2.0 5.0		33.0	120.	1.0	156.0	59.0	110.0	100.0)	- I T	Т	160.0	120.0	74.0	120.0	11
2.0			6.0				1.7	1.7	JOM				1.2	эм	1.2	JOM
5.0				,	5.0	1 1	6.6	7.5		+	-	8.7	8.7	6.8	4.2	\vdash
5.0		7.0	++ ".0			1 1	0.0	1.5	+	+	-+	· · · ·	"	5.1		+
5.0		-	+-	++		\vdash	_			+	-+	+			+	+
			+	$-\!\!+\!\!\!-\!\!\!\!+$		\perp	4.4	4.7		\perp		4.2	5.2	3.6	2.9	$\perp \perp \perp$
								ш								ш
		Т					0.3	JQM 0.4	JQM	\Box						
8.0			\top	+		1	0.8	JQM 2.4		\top		1		+	-	
0.0	+	_	+	+	-+	1 1	0.0		+	+	-	1		+	+	\vdash
	+	_	+	++	-+	+	+-	+	1800.	. ++	4 400 -	2200.0	+	780.0	+	+
				$-\!\!-\!\!\!-\!\!\!\!-$							1400.0 I					\bot
5320.0	4506.0	3872.0	3470	J.0 59	931.0	3458.0	4535.0	3189.	3 2523.	0	2044.0	3901.8	3055.8	1476.6	2268.6	0.1
			TT	\neg			8	J 17			11	11	10	8 -	J 11	
			++-	-			6	J 12	23	-	11	13	11	4 .		J
			+	$-\!\!+\!\!-\!\!\!+$	_											J
				$-\!\!-\!\!\!-\!\!\!\!-$			21	44		J	26	29	26	20	24	\bot
							28		1	J			1 1 .	J	5	J
			TT							\neg						
			11	$\neg \neg$			6	.1 20	46		13	22	24	8	J 11	
			++-	-						-				+ - +		+-
			++-	$-\!\!\!\!+\!\!\!\!\!-$	_	_	12		3	+		_		+-+	-	
			+	$-\!\!+\!\!-\!\!\!+$	_		_					_				
			+	$-\!\!+\!\!\!-\!\!\!\!+$		\perp		ш.		\perp		1	$\sqcup \sqcup \sqcup$			$\perp \perp \perp$
L T		L _	ш ¯			⊥_ T		ш		11	ſ			l T		ш
			\top	$\neg \neg \neg$												П
			11	$\neg \neg$										7 1	_	
			+	-						-				_	_	-
		_	++-	-+-	_	-		_		-	_	_			_	-
		_	+	+	_		_	_		+	_	_				\vdash
																ш_
									8	J						1
												6	J			
			11	$\neg \neg$										7 1	_	
			+	-						-				_	_	-
		_	++-	-+-	_	-				-		- 00	74			-
			+	$-\!\!+\!\!-\!\!\!-$	_		30	84	J		04	69	/4	39	44	
																ш_
0	0	0	0		0	0	111	181	87		115	150	146	79	99	1
	81		$\overline{}$	$\neg \neg$					63.7	В		20.2	B 41.1 F	8 19.8	В	29
		_	+	+			_		30.1	17				1		B 35
\vdash	+		++-	++		+		\vdash	++	-			В	+-+		B 35
\vdash		_		+		\vdash	_	Н—			4 1	,		+		
				\bot			21.4	B 18.6	B 16	В	15.6 E	14.2	B 21.4 E	3 22.6	B 10.1	B 7.
LT						∟_Т		ш_ Т		யு			┸	T		ш_ Т
1 1		Т					T	П		\Box						
3			TT					17.7	J	\top			0.94	8 1.2	B 1.3	В
1	+	_	+	+		1 1			12	R	-	1.4				t-t
10	-	_	+	++	-+	+	+-	H -			27					В 7
		_	+-	_+-		اــــا				+				1.9		
9660		5900	5440	0 9	9580	10500	9230	8940	EJ 6050	ш	7120	9090	8180	8130	J 5940	220
LI	2				L_	Щ.Т				╜	1.7	3		T		0.9
2810	1700	3420	312	10 3	3170	1370	1880	892	EJ 377		444	513	495	312	260	10
			T	T						\top				T		
	12	_	40	-	16	1 1	12	B 22.0	R	+	-	1.1	В	5.5	B 53	В
	12		+ 12	-++	.0	+	1.2	22.8	В	+	\rightarrow	1.1	-	0.0	0.0	+
23		_		+		\vdash	_	Н—		\perp				+		\vdash
23			$+\!\!-\!\!\!-$	1 1	1					1 1		1				$\perp \perp \perp$
23														1 T	1 -	11 -
23		1	1 1			1	7.1			\top						
23		+	+	$+ \mathbb{F}$						H				1.2	B 1.6	B 5.
111	968	47	73	#.	101	223		B 3.3 B 1.1		Ħ	70.3	39.9		1.2 I	B 1.6	B 5.
	0 3 10 9660 2810 23	3 10 6 9860 7150 2 2810 1700	3 1 6 9660 7150 5900 2 2 2810 1700 3420	3 10 6 5900 544 2 2 2010 17700 3420 312	3 1 10 6 9600 7150 5900 5440 2 2 2810 1700 3420 3120	3 10 6 5900 5440 9580 2 2 2010 1700 3420 3120 3170	3 1 10 6 9500 5440 9580 10500 2 2810 1700 3420 3120 3170 1370	3								

11

Sample Date	NYSAGWQS1	10/22	2/98	1/3/9	99	11/18/9	99 8/	10/00	3/21/	01	6/25/0	1 10	/18/0	1 12/13	/01	4/4/02	12/4	02	3/24/0	3 8/	7/03	11/8/0	4 (6/22/05	2/10	0/06	9/12/06	8/14
VOC ppb or µg/L									_					_														
1,1,1-Trichloroethane	5	<u> </u>																										
1,1-Dichloroethane	5	<u></u>					0.	.2 Jan							ш	0.7	IQM	\perp										
1,2,4-Trichlorobenzene	5	<u></u>					0	.3 Jan							ш	0.4		\perp										
,2,4-Trimethylbenzene	5		┸	12.0	J	16.0	9	5	27.0	ப	52.0	1	5.0	32.0	₽Ţ	90		ш	27.0	8.2	┸	╙	┸	8.8		⊥_	6	11
1,2-Dichlorobenzene	3	T .				1.1	лом 3.	.1	1.2		0.5	JQM (.3 J	ом 0.5	JQM	1.0				QM				0.6		Т	T	
1,3,5-Trimethylbenzene	5			3.9	J	3.6	26	i.0	8.9		12.0	- 2	.3	3.1		13.0			1.0	QM 1.1				3.7		T	3	J 5
1,3-Dichlorobenzene	5	1			П		1.	.8	0.9	JOM	0.5	JQ (.3 J	ом 0.4	JQM	0.6	IQM	T	0.5	iQM				1.2		\top	T	2
1,4-Dichlorobenzene	5	1			П	0.4	4.	.3	2.3	П		JQM		0.7	JQM	1.4		П	1.1	0.5				3.0		T	2	J 4
2-Butanone	NL						0.	7 101	0.6	юм	4.7					1.0	IOM	\top	1.0	OM				2.5 H	к	\top		
4-Chlorotoluene	5	t -	+		+					1								+		-	_				+	+	+	
4-Isopropyltoluene	5	t -	+	1.3	J		4	2	2.4		1.5		.1	2.1		1.9		+	0.7	OM	_				+	+	+	
Acetone	50	3.2	٠,			1.6	IOM T	-		+	14.0				\vdash	3.7		+	1.4	3.2	+		_	8.0	+	+	+	
Benzene	1	- 0.1	۳		+	1.0	Julie			_	14.0	-	-		+	0.1	_	+	1.4	0	+		-	0.0	+-	+	+	_
Carbon Disulfide	NL NL	\vdash	+		+					_			.4 л		+		_	+	0.2		+		-		+-	+	+	_
Chlorobenzene	5	1	+		+	2.3	юм 53		1	+	0.5	1011		0.5	IOM	8.4	+	+	1.3	5.6	+		-	10.0	L 1.0	+-	+ - +	2
Chloromethane		+	+-		++	2.3	JOM 53	1.0	_	+	0.5	JQM	-	0.5	JOM	8.4		++	1.3	5.0	+		_	10.0	2 1.0	- 3	+-+	- 2
	NL	├	+		+		-	_	-	+		-	_	_	+		_	+		_	+		_	_	+	+	+	_
cis-1,2-Dichloroethene	5	├	+		+		0			+		-	_	_	+		_	+		_	+		_	_	+	+	+	_
Ethylbenzene	5	↓	+		+	5.8	42	.0	12.0	+	4.5	1:	3.0	2.7	\vdash	13.0		++	5.2	5.7				5.1		+	2	J
Isopropylbenzene	5		_	0.8	J	1.7	лом 8	.6	1.5	\perp	3.1	1	.4	4.0	ш			\perp	3.9	1.4				1.9		4	\bot	1
m,p-Xylene	NL	<u> </u>				6.6	87	.0	29.0		7.7			1.1		12.0			2.4	7.2				13.0			5	4
Methyl tert-butyl ether	NL			0.6	J																							
Methylene Chloride	5	1								П	0.5	JQM			П			П								T		
n-butylbenzene	5	0.7	J	2.0	J		9.	.6		\Box		- 6	.7	3.1	П			T	1.0	OM						\top	T	
n-propylbenzene	5	0.8				2.6	15		3.2	T^{\dagger}	4.0		.4	6.8	\Box	28.0	1 -	T^{\dagger}	4.3	1.4				2.1	1	\top	1 1	1 -
Naphthalene	10	T	Ť	0.6		2.0	JOM 17		12.0	+	3.7		.9 J	ом 0.9	JOM	3.1	_	+	1.4	0.7				4.6	\top	+	1	J
O-Xviene	NL NL	t -	+	1	ť		7"	-+	12.0	+		+	- 1"	1 0.5	1		+	+		J.,	+	\vdash	+		+	+	+	+
o-Aylene sec-butylbenzene	NL 5	0.9	+-	1.4	J	4.1	6	0	2.7	+	1.4	+	.6	4.4	+	6.2	+	+	0.9	юм	+	\vdash	+	0.8	+	+	+	+
sec-butylbenzene Styrene	5	0.9	+ 3	1.4	1	7.1	- 6	-	2.1	+	1.4	+		4.4	+	0.2	+	+	t.u	ne M	+	\vdash	+	0.0	+	+	+	+
		+	+	-	+		_	_ +	H	+		+	-	+	+		-	+		-	+	-	+		-	+	+	-
tert-butylbenzene	5	+	+	-	+	1.1	JQM 2		0.8	JOM	0.5		.3	1.6	+	3.8	_	+	0.4	OM	-		-	0.6		—	+	_
Tetrachloroethene	5	₩	+		+	0.5	лом О.	.3 Jan	4	11	0.4	лом (.5 J	ом 0.3	JQM		-	\perp		-	4	1.6			—	4	+	-
Toluene	5	<u> </u>			\perp						0.4	JQM			ш													
Trichloroethene	5	<u> </u>	┸	$ldsymbol{}$	₽Ţ		0.	.7 Jan		ப		┸	$oldsymbol{ol}}}}}}}}}}}}}}}}$	\perp	J		\perp	ப			┸		┸	\Box	\bot	╨		\perp
Vinyl Chloride	2	L_	T_{-}		LΤ		╝		ш_	LΤ			_T		LΤ		┸	ΤТ				┸	ЩП		┸	Ш	┸	┸
Xylene (Total)	5																							13.0		T	5	4
Total VOCs		5.6		24.1		49.4	37	8.2	104.5		112.6	5	2.2	64.2		188.2	0.0	\top	54.1	35.)	1.6		78.9	1.0	\top	24.0	33.0
SVOC ppb or µg/L													_										_			_		
1.3-Dichlorobenzene	5	+	_		т т			_			_	_		_				1 1		_	_				1	J	$\overline{}$	
		├	+		+		_		-	+		-	_	_	+		_	++		_	+		_	_	_ '	- 3	+	_
1,2-Dichlorobenzene	3	—			\perp								_		\perp			+		_						_	\perp	
1,4-Dichlorobenzene	4.7	—			\perp								_		\perp			+		_					2.0			J
2,4-Dimethylphenol	50	<u> </u>																							1.0	J	\perp	
Acenaphthene	20								0.2	J																		
2-Methylnaphthalene	4.7			0.6	J	2	J (3 J	2	J																T	T	
4-Methylphenol	NL	f			П					\Box					П			T								\top	T	
Benzo(a)anthracene	0.002																	\top								\top		1
Benzo(a)pyrene	0.002																								$\overline{}$	-	1 1	2
Benzo(b)fluoranthene	0.002	\vdash	+		+					_		-	-		+		_	+			+		-		1	J	1	J 3
Benzo(g,h,i)perylene	5	1	+		+			-+	1	+		_	-		\vdash		+	+		_	+		-		1	J	+	3
		├	+		+		_		-	+		-	_	_	+		_	++		_	+		_	_	_ '	- 3	+	3
Benzo(k)fluoranthene	0.002	↓	+		+				1	+		_	_		\vdash			++			_		_			+	+-+	1
bis(2-Ethylhexyl)phthalate	50	↓	+	2	J				1	+		_	_	0.6	J			++			_		_		- 6	JB	3 4	J 6
Butylbenzyl phthalate	50	<u> </u>		0.4	J																				5	J	\perp	
Chrysene	0.002	<u> </u>																							1	J		2
Diethylphthalate	50								0.3	J																		
Di-n-butyl phthalate	50																									T	T	
Fluoranthene	50	1		0.3	J				0.2	J															1.0	J		2
Indeno(1,2,3-cd)pyrene	0.002																	\top								\top		2
Naphthalene	10	t -	+	0.3	J	2	J 1	4	9	J				0.6	J			+			_				+	+	+	
Pyrene	50	1	+	0.5	-	-		-	-	ľ		_	-	0.0	ř		+	+		_	+		-		1.0	J	+ - +	- 1
Total SVOCs	- 50	0	+	3.6	+	4	-	0	11.7	+	0	_	0	1.2	\vdash	0	0	+	0	0	+		-		20		6	23
		-	_	3.6		4		U	11.7	<u> </u>	U		U	1.2	\perp	U	0		U	U						ㅗ	_ •	23
Metals ppb or μg/L			-							,		_						,			_			-	_	-	_	
Aluminum	NL	65.9	В	47.4	В		_		48.3	В	140	B 5	23	J	ш		-	\perp	117	В	4	\vdash					2790	8,920
Antimony	3	<u> </u>			\perp										ш											В		6.2
Arsenic	25	<u></u>	⊥_¯	11	டு		B 8	.4 B	15.1	كسا	5.9	BJ 2	7.8	J	யி	3.6	B 5.1	В	14.8		L_	ЩТ				В	5.8	B 12.1
Barium	1,000	5	В	10.1	В	19.9	B 21	.7 B	28.6		27.8	B 1	80 I	B 154	В	67.1	B 22.4	В	9.5	B 15	Т		Т		44.2	: В	52.4	B 86.7
Beryllium	3	1			T^{\dagger}								52		П			T^{\dagger}							0.2	В		
Cadmium	5	1	1		1 1		7.	.2		T^{\dagger}		BJ	7 .	J	П		1 -	T^{\dagger}	4.1	В					3.3	В		
Chromium	50	1	1	2.7	В	1.6	B 10		2.3	В	5.2		3.5		В		1.1	В							15.0			
Cobalt	NL NL	t -	T	3.7	В	1.3	B 13		1.1		1.4		6 1		В	2.5	B 0.67	В	4.7	В	\top		\neg	_	21.2			
Copper	200	28	+	18		0.8		1 B			23.3		-+'	7.7		1.8		+++	13.3		+	\vdash	+	-+	70.4		45.8	135
Iron	300	+~~	+-	2320		3750		100	3670		3390		900			13700	7380	++	7150	160		+ +	+	-	17,700			40,400
Lead	25	+	+	1.6	В	3730	12.		30/0	+	3350	J 22		04/0	+	.3700	/380	++	. 100	160	+	1	+	\rightarrow	20.5		12.1	58.1
		1	+	1.6		77.4			20.	+	404	+-		005	+		147	++	407	41	+	1	+	\rightarrow				38.1
Manganese	300	97.5	+	105	+	77.1	74	iU .	75.3	+	181	2	10	227	+	909	147	+	127	41	+		+	_	869	E		732
Mercury	2	₩	+-		4				1	+		0	11 I		\vdash			44			_				ND	-	ND	0.3
Nickel	NL	3.3	В	4.7	В	1.4	B 12	.8 B	4.5	В	7	B 7	.8 1	B 3.3	В		1.7	В	6.8	B 6.4					21.1	В	9.6	B 24.8
Selenium	10	<u> </u>			$\perp \perp$				1	$\perp \perp$					ш	2.9	J	$\perp \perp$							5.9	В		24.5
Silver	50		1		$\perp \Gamma$	0.6	В			$\perp \Gamma$					ப			$\perp \Gamma$							ND	┸	ND	ND
	0.5		⊥ ¯	3.3	В	5.9	В		ш ¯	⊥Г	7		_ Г		LΤ	7		ユΓ	T	ш ¯		┸		Г	6.4	В	1.8	B 7.9
Thallium	NL	7.1	В	5.8		3.8	В	\top	4.3	В	5.1	B 2	7.1	B 3.2	В		1.9	В	2.7	В	Т		\top		13.5	В	14.2	B 41.1
Thallium Vanadium	300	938	1	783	1 1			\neg	250	T^{\dagger}	572	1:	140	3400		55.9	1340		3070	290)		\neg		3.280	0 E		1,390
Vanadium		1144.8		3316.3	+	3869.9	134	27.4	4103.2	+ +	4360.44			9270.2		14742.8			0519.9	4574		1	$^{+}$	-+	24820.8		12581.75	51975.
Vanadium Zinc			_	50.0.3		_505.5	.31		-103.2	1 1.		202		52.3.2		20	0003.0			-3/-						-1_	1.2000	0.070.
Vanadium Zinc Total Metals																												
Vanadium Zinc Total Metals NOTES:																												
Vanadium Zinc Total Metals NOTES: Results in parts per billion (ppb) or micrograms per liter (ug/l)																												
Valnadium Zinc Total Metals NOTES: Results in parts per billion (ppb) or micrograms per liter (ug/l) U - not detected above instrument detection limit																												
Variadum Zize Total Metals NOTEs: Results in parts per billion (ppb) or micrograms per filer (ugf) U - not detected above instrument detection limit - setsmided value - setsmided value																												
Variadum Zize Total Metals NOTEs: Results in parts per billion (ppb) or micrograms per filer (ugf) U - not detected above instrument detection limit - setsmided value - setsmided value																												
Variadium Total Metalis NOTES: Results in joint joi																												
Variadum Zince Trout Metals NOTES: Results in parts per billion (gob) or micrograms per liter (uplf) U - not defected above instrument detection limit - setimated value B - analyte found in associated method blank E - value exceeds collaboration range	it																											
Variadum Trout Mestals Trout Mestals Results in pasts per billion (gob) or micrograms per liter (upt) U- or detected ablow instrument detection limit J - estimated value B - analyle found in associated method blank E: value accessed solibration range DOL FORTY- Composity was detected above instrument detection limit	it																											
Variadum Tizer Treat Montes: Notices: Results in parts per billion (gob) or micrograms per liter (upfl) 1 - not delected above instrument delection limit 2 - estimated value 8 - analyte found in associated method blank 5 - value excedes collisation range BOLD FOXT - Compound was detected above instrument detection limit Shading and falsia: Featurel sabove the NYSSEC AVIOS.	it																											
Variadum Tioru Mestas Tioru Mestas Results in pasts per billion (ppb) or micrograms per iter (upt) Un disested ablow instrument detection limit J estimated value B - analyte found in associated method blank E: value accessés calibration range BUD FORTY- Composity was detected above instrument detection limit Shading and balics - Results above the NYSDEC AWIOS. Diskion of Walter Foreincia and Opderation (Jodance Series	it																											
Variadum Tiroti Menisis NOTES: Eleasta in parts per billion (ppb) or micrograms per filer (upfl) - not detected above instrument detection limit - estimated value 3 - analyse found in associated method blank 2 - analyse found in associated method blank 2 - analyse found in associated method blank 5 - subsection of the control	it																											
Intendium Class Messis Results in parts per billion (pgb) or micrograms per liter (ugt) The distenced about per billion (pgb) or micrograms per liter (ugt) - estimated value - value exceeds califoration range - value exceeds califoration value - value exceeds califoration val	it																											

Sample Date	NYSAGWQS1	4/19/9)4	9/8/94	4	12/5/9	4 9/2	9/95	12/5/9	15	7/11/9	96	10/21/	96	1/16/9	97	5/29/9	7	7/16/9	7	10/8/97	7 T	1/15/9	8	4/9/9	8	7/16/98
VOC ppb or μg/L				0.0.0	_					_	.,	_					0 0. 0		.,					_		_	.,
1,1,1-Trichloroethane	5	2.0	П	3.0	П	1.0		Т	0.7		0.5	JQN	0.9	JQM	2.0	П	1.0	J	1.3		1.5	Т	1.6	П	1.8		1.6
1,1-Dichloroethane	5	0.7		2.0		1.0							0.2	JQM	0.4	J	0.6	J			0.5		0.6		0.5	JQM	
1,1-Dichloroethene	5												0.2	JQM	0.4	J					0.4				0.4	JQM	
1,2,3-Trichlorobenzene	5																										
1,2,4-Trimethylbenzene	5																										
2-Butanone	NL										0.4	JQN	0.4	JQM													
4-Chloro-3-Methylphenol	NL																										
Acetone	50																				0.6						
Carbon Disulfide	NL																										
Chloroform	7										0.5	JQN	0.3	JQM	0.4	7					0.4				0.3	JQM	
Ethylbenzene	5														1.0												
Hexachlorobutadiene	0.5										0.2	JQN															
Styrene																											
Tetrachloroethene	5	2.0		2.0		2.0	2.0		8.0		0.3	JQN	0.3	JQM		J	0.4	J			0.4				0.4	JQM	
Toluene	5				\Box							L			8.0							[Ш		Ш	
Trichloroethene	5										0.9	JQN	1.7										,				
Xylene (Total)	5				\Box							L			7.0							[Ш		Ш	
Total VOCs		4.7		7.0		4.0	2.0		1.5		2.8		4.0		19.6		2.0		1.3		3.8		2.2		3.4		1.6
SVOC ppb or μg/L																											
Benzo(a)anthracene	0.002										2	J															
Benzo(a)pyrene	0.002										2	J															
Benzo(b)fluoranthene	0.002										6	ΧJ	2	J													
Benzo(g,h,i)perylene	5										2	J	2	J													
Benzo(k)fluoranthene	0.002										6	ΧJ	1	J													
bis(2-Ethylhexyl)phthalate	50																				43						
Chrysene	0.002										4	J	1	J													
Di-n-butyl phthalate	50																		6	J							
Fluoranthene	50										6	J															
Indeno(1,2,3-cd)pyrene	0.002										1	J															
Phenanthrene	50																										
Pyrene	50										5	J															
Total SVOCs		0		0		0	0		0		34		6		0		0		6		43		0		0		0
Metals ppb or μg/L													_														
Aluminum	NL			980		128	250		371			П	242		111	В	73.7	В	83.8	В	118	Т	101	В			107 B
Antimony	3							1											4	В		T					
Arsenic	25											Т			4.4	В											
Barium	1,000				_			1			105	В	87.3	В	87.1	В	82.7	В	89.6	В	84.6	7	80.4	В	79.2	В	81.7 B
Beryllium	3											Т															
Cadmium	5							1			1.1	В									0.68	T					
Chromium	50			16				1			9.3	В	3.7	В					2.4	В	1.1	T	1.5	В	0.67	В	
Cobalt	NL							十			1.7	В	20.1	В	32.7	В	36.9	В	41.8	В	32.2	7		В	25.3	В	25.8 B
Copper	200	7	П	6.5		1.7	1	1	23		27.2	П	13.8		37.1	П	8.6	В	7.1	В	10.8	寸		В	8.7	В	6 B
Iron	300	2790		39500		2320	3800	,	24400		17800		5060	EJ	2880		2290		2240		2740	7	2170		4190		2710
Lead	25	1		1.4		5	4	十	7				3.3	f	5.1		2.9	В				7		В			1.7 B
Manganese	300	278		375	T	202	176	1	240		221		169		167		153		166		148	T	141		152		157
Mercury	2			0.3				十														7					
Nickel	NL	7	П			12	1	1	1		9.5	В	5.8	В	3.3	В			6	В	5.1	寸	4.6	В	5.6	В	
Selenium	10							十				Ė										7					
Silver	50		П				1	1	1			П				П						寸		\Box		П	
Thallium	0.5		П				1	1	1			П				П						寸		\Box		П	
Vanadium	NL		П				1	1	1 1		2.8	В	1.2	В		П						寸		\Box		П	
Zinc	300	31	H	256	7	140	92	\top	149			Ť		T	121	Н	121		118			十	160				96.7
Total Metals		3114	П	41135.2		2808.7	4322	:	25190		18177.6	П	5606.2		3448.7	П	2768.8		2758.7		3140.48	寸	2693.9	\Box	4461.47	П	3185.9
NOTES:												•		•				_		_						•	

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

- Shading and Italics Result is above the NYSDEC AWQS.
- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations
- NA Not Analyzed

Sample Date	NYSAGWQS ¹	10/22/	98	1/3/9	99	11/18	/99	8/10	/00	3/21	01	6/25/	01	10/18/	01	12/13/	01	4/4/0	2	12/4/0	2 :	3/24/03	3	8/7/03		11/8/0	4	6/22/0	5	2/10/0	16	9/12/	06	8/14/07
VOC ppb or μg/L																																		
1,1,1-Trichloroethane	5	1.4	J	1.1		1.6		1.6		1.2		1.6		1.8		1.5		1.8				1.5	T	1.5		0.7		0.6						$\overline{}$
1,1-Dichloroethane	5	0.7	J	0.8		0.9	JQM	0.6	JQM	0.6	JQM	0.7	JQM	0.8	JQM	0.7	JQM	0.8				0.9 J	QM	0.9									П	
1,1-Dichloroethene	5				П	0.7	JQM	0.7	JQM	0.6	JQM	0.9	JQM	0.6	JQM	0.6	JQM	0.6	JQM			0.8 J	QM	0.8									\Box	
1,2,3-Trichlorobenzene	5																						T									2	J	
1,2,4-Trimethylbenzene	5																						T									1	J	
2-Butanone	NL																					0.5 J	QM										П	
4-Chloro-3-Methylphenol	NL		T		Ħ		1		1		1		1			2.0	J		П		_		Ť		_				\neg				\boldsymbol{T}	
Acetone	50									1.0						1.4		2.2				1.4	T			1.5		2.3	к				П	
Carbon Disulfide	NL				1	1.6			1		1										-		7		+		_						Ħ	
Chloroform	7				H	0.2	JOM		1		1		1					0.3	H			0.2 J	ом		+		T		_		1		Ħ	
Ethylbenzene	5				H				1		1		1						H				_		+		T	1.2	_		1		Ħ	
Hexachlorobutadiene	0.5		1		+		+		+		+		+		\vdash		+		H		_		+		+		_		\dashv		-	2.0	J	
Styrene	0.0		+		+		+		+		+		+		Н		H		H		_		$^{+}$		+		_	1.0	\dashv		\dashv	2.0	Ť	
Tetrachloroethene	5		1		+	0.3	IOM		+		+		+				\vdash		H		-		\dashv		+		-	1.0	-+		\dashv		+	+
Toluene	5		+		+	0.0	Jul		+		+		+-		\vdash		\vdash		H	-	+		+	+	+		\dashv		+		+		+	+
	5	-	+		+		+		+		+	-	+	1	+		+		H		+		+		+		\dashv		\dashv		+		+	$-\!\!+$
Trichloroethene Xylene (Total)	5		+		+		+		+		+	-	+	<u> </u>	Н		Н		H				+		+		+		+		\vdash		+	
Total VOCs	5	2.1	+	1.9	+	5.3	+	2.9	+	3.4	+-	3.2	+	3.2	+	6.2	\vdash	5.7	Н	0.0	_	5.3	+	3.2	+	2.2	-+	5.1	-	0.0	-+	5.0	+	0.0
		2.1		1.9		5.3		2.9		3.4		3.2		3.2	ш	0.2		5.7	ш	0.0		5.3	_	3.2		2.2	_	5.1		0.0		5.0	ш	0.0
SVOC ppb or μg/L			-		_		_		_		_		_							-	_	-	_		_	-	_	-	_				_	
Benzo(a)anthracene	0.002				\perp		_		_		_		_		ш				Н				4		_		4		_	1	J		\vdash	 -
Benzo(a)pyrene	0.002						4		4		4		4								_		4		4		4			2	J		ш	\vdash
Benzo(b)fluoranthene	0.002				\perp														ш				4		_		_			2	J		ш	\vdash
Benzo(g,h,i)perylene	5				ш														ш											2	J		ш	
Benzo(k)fluoranthene	0.002				ш														ш											1	J		ш	
bis(2-Ethylhexyl)phthalate	50					13										1	J														JB	3	J	4 .
Chrysene	0.002																													2	J			
Di-n-butyl phthalate	50																																	
Fluoranthene	50									0.2	J																			2.0	J	2	J	
Indeno(1,2,3-cd)pyrene	0.002																						T							1	J			
Phenanthrene	50																															2	J	
Pyrene	50									0.3	J												T							2.0	J	2	J	
Total SVOCs		0		0	П	13	T	0		0.5		0	T	0		1		0		0		0	T	0						20		9	\Box	4
Metals ppb or μg/L																																		
Aluminum	NL	126	В	125	В		Т		Т	209	Т	156	В	93.1	ВJ				П	82	Т	209	Т		т		T		┰	2.340	Е	197	В	416
Antimony	3		Ť		Ť		1		1		1		Ť						H				\dashv		+		T		_	2.3	В	2.3	В	6.2 E
Arsenic	25		1		+		+		+		+		+	7.5	В		+		H		_		+		+		_		\dashv		В	1.7	В	
Barium	1,000	84.3	В	68.6	В	75.2	В	77.5	В	90.3	В	98.4	В	85.7	В	195	В	69	В	71.6	+	66.7	В	84	+		+		\dashv	52.1	В	60	В	16.5 E
Beryllium	3	04.5	۳	00.0	┯	13.2	Ť	77.3	+-	0.1	В	0.55	В	0.54	В	133	ř	00	 	71.0	+		7	57	+		+		\dashv	J2.1	-	00	∺	10.0
Cadmium	5		+		+		+	6.5	+	0.1	15	0.55	B.	0.04	-		\vdash		H	-	+		+	+	+		\dashv		+	4.1	В	0.37	В	0.76 E
Chromium	50		+	3.3	В	0.6	В	0.0	+	4.5	В	4.7	В	1.1	В		\vdash		H	13.1	+		+	+	+		\dashv		+	16.7	В	6.7	В	4.9 E
Cobalt	NL	22.2	В	19.5	В	23.6	В	24.9	Ь	21.3	В	27	В		В	30.9	В	24.1	В	24.4	+	22	В	30	+		+		+		BE	54.1	+-	10.8 E
	200	17.2	В	39.9	В	3.6	- B	5.5	B	12.5	В	16.9	B	34.2	P	4.5	В	5.2	В	24.4	_		В	30	+		\dashv		\dashv	74.5	3E	9.3	В	20.7 E
Copper			-		+		+ -				_		+-	2470	+		ь		P	EC70	_		-	2000	+		\dashv		\rightarrow		NE		₽	
Iron	300	4870	+	3990	╁	3230	+	1910	+-	11500		4120	J	2170	J	1960	\vdash	6220	\vdash	5670	+	7650	+	3800	+		+		-	72,300	NE	9,810	4	39,300
Lead	25		+	2	В		+	2.7	В	1.8	В	L	+		\vdash		\vdash		\vdash		+		+		+		+		-	21.7			+	4.7 E
Manganese	300	193	+	114	+	99	1	87.1	+	118	١_	116	1	90.4	Н	91.2	\vdash	101	\vdash	86.6	_	101	+	97	_		4		_	593	Е	276	₩	256
Mercury	2		1		┰		4_		4	0.1	В		4_		ш				⊢		_		_		_		_		_		\vdash		ᆛ	
Nickel	NL	5	В	6.1	В	3	В	4.6	В	6.4	В	6.8	В	6.2	В	3.7	В	2.7	В	20.5	4	3.2	В	400	_		4		_	25.8	В	12.9	В	12.7 E
Selenium	10		\downarrow	4.6	В		1_				1_		1_		Ш		Ш	2.5	J		_		4		4		4		_	12.5	В		ш	3.9 E
Silver	50		\downarrow		\perp		1_				1_		1_		Ш		Ш		ш		_		4		4		4				\sqcup		ш	\rightarrow
Thallium	0.5						1_						1_						Ш														Ш	10.6 E
Vanadium	NL				$oldsymbol{L}$		L			1.4	В		L						ШΙ											9.8	В	1.1	В	1.5 E
Zinc	300									78.5						76.6		71.4		64.5		57.7	I	70	I					225	Е	113		76.2
Total Metals		5317.7		4373		3435		2118.8	3	12043.	9	4546.99)	2488.74	П	2361.9		6495.9		6032.7	8	117.4	Т	4481	T		T		7	75710.8	1	0544.4	1	40141.46
NOTES:							•						•																					

NOTES:
Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

MW-7 SMS Instruments Inc. Deer Park, NY

																											_				_
Sample Date	NYSAGWQS ¹	4/19/94	4	9/8/94	1	12/5/9	4	3/10/9	5 9	/29/95	5	12/5/9	95	7/11/9	96	10/21/	96	1/16/9	7	5/29/9	97	7/16/9	97	10/8/9	97	1/15/98	8	4/9/98	3	7/16/9	98
VOC ppb or μg/L																															
1,1,1-Trichloroethane	5	3.0		2.0		3.0		1.0						0.3	JQM	4.0		4.0		6.0	J			0.3	JQM	39.0		47.0		31.0	
1,1-Dichloroethane	5	2.0		2.0		3.0		4.0						0.3	JQM	17.0		15.0		17.0				0.5	JQM	50		47.0		35.0	
1,1-Dichloroethene	5																										L			8.6	
4-Chloro-3-Methylphenol	NL																														
Acetone	50																							1.0	JQM						
Bromoform	50																											0.2	JQM		
Bromomethane	5																									0.6					
Carbon Disulfide	NL								-	0.8	В																				
Chloroform	7																													0.8	
cis-1,2-Dichloroethene	5															0.5	JQM														
Ethylbenzene	5																			0.3	J						\neg				П
Hexachlorobenzene				2.0	В						-														H		\neg				
m,p-Xylene	NL		_		_				_	0.7	В				П						H		Ħ		H		十				Н
Methyl tert-butyl ether	NL		-		+		_			- 1	Ť		H								Ħ		Ħ		H		\pm			1.5	J
Methylene Chloride	5				_						_		Н		H				\dashv		H		H		H		+		_		H
Naphthalene	10	†		6.0	В						\dashv		H		H						H		H		H		+		+		H
sec-butylbenzene	5		-	0.0	-		-		_		-	2.0			H						H		H		H		+				Н
Tetrachloroethene	5		_		_		_		_		-	2.0	1	1.3	H	0.9		0.5	J	0.5	J.	0.5	H	0.4	H	0.5	+	0.5	.IOM		\vdash
Trichloroethene	5				-		-		_		-			1.1	Н	2.4	JQM	0.5	J	0.5	J	0.5	H	0.4	JQM	0.5	+	0.5	JQM		\vdash
Xylene (Total)	5	1			-		-		-		-			1.1	Н	2.4		0.7	J		H		H		H	0.7	+	0.4	JQM		\vdash
Total VOCs	5	5.0		12.0	_	6.0	_		Н.	1.5	-	2.0		3.0	ш	24.8		20.5	J	23.8	\vdash	0.5	\vdash	2.2	H	90.8	+	95.1		76.9	\vdash
		5.0		12.0		6.0				1.5	_	2.0		3.0	Ш	24.8		20.5	Ш	23.8	<u> </u>	0.5	ш	2.2	ш	90.8	_	95.1		76.9	Щ
SVOC ppb or µg/L					_			-	_		_			1							_				_		_		_		
Benzo(b)fluoranthene	0.002				_				_		_			1	J						Ш		ш				_		_		Ш
Benzo(k)fluoranthene	0.002				_				_		_			0.9	J						ш		_				\rightarrow				ш
bis(2-Ethylhexyl)phthalate	50								_		_									12					Ш		_				
Di-n-butyl phthalate	50													2	J												_			0.6	J
Di-n-octyl phthalate	50																										_				
Phenol	1																														
Total SVOCs		0		0		0				0		0		3.9		0		0		12		0		0		0		0		0.6	
Metals ppb or μg/L																															
Aluminum	NL			851		120		149								183		129		232		126		109		193					
Antimony	3																					2.4	В								
Arsenic	25																	4.4	В	2.1	В										
Barium	1,000													124	В	84.6	В	45.7	В	33.5	В	25.2	В	23.5	В	30.7	В	23.6	В	21.4	В
Beryllium	3																														
Cadmium	5													2.3	В						Ħ			1.1	В		丁	0.56	В		П
Chromium	50													1	В	1.8	В					1.8	В					0.74	В		
Cobalt	NL															1.6	В	1.2	В		П	1.5	В	1.4	В	1.1	В				П
Copper	200			16		5								3.1	В	3.3	В	33.6	J	3.4	В	2.7	В	13.2	В		_	3.9	В		
Iron	300	81		8580	_	418		6970	1	163		93			Ť	1350	_	1170	Ť	1990	Ť	2400	Ť	580	ī.		_	1440	-	2310	Н
Lead	25	1		6	_	3	_	3		2	-		-		\vdash	.000		7.7	-	.000	H	2-100	\vdash	000	Ť		В	1440		1.5	В
Manganese	300	564	-	90	+	223	+	1090		375	-+	83	H	18.3	H	108		81.8	-	32.5	H	30.1	H	31.5	Н	28.5	_	43.8	_	166	J
Mercury	2	304		30	-	223		1030	+	,, 3	\dashv	03	H	10.3	H	100	,	01.0	\vdash	32.3	\vdash	30.1	H	31.3	۲	20.5	+	73.0	+	100	H
Nickel	NL	 	-		+		+		+	-+	+		Н	1.9	В	2.2	В	 	\vdash		\vdash	2.5	В		Н	1.5	В	2.3	В		Н
Selenium	10	 	-		+		+		+	-+	+		Н	1.3	В	4.4	-	 	\vdash		\vdash	2.5	Н		Н	1.5	4	2.3	-		Н
		 	-		+		+		+	-+	+		Н		Н			 	\vdash		\vdash		H		Н	+	+		-+		Н
Silver	50	-			-				_		+		H		H				\vdash		\vdash		H		H		+		+		\vdash
Thallium	0.5	 			-						+		Н		Н			 	\vdash		\vdash		H		H		+		\dashv		H
Vanadium	NL				+		-		-		-		Н		Н		_	l	Н		\vdash		닏		Н		+		-+		⊢
Zinc	300	16		24		19	_		+		-		Н	.== .	Н	.=		26.2	\vdash	22.3	\vdash	8.8	В		H		В		-+	4.2	В
Total Metals NOTES:		662	1 5	9567		788			1	040		176		150.6		1734.5		1499.6		2315.8		2601	ш	759.7		704.7	ᅶ	1514.9		2503.1	

NOTES:

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

MW-7 SMS Instruments Inc. Deer Park, NY

	Ī																												_	_	_	_	_	_	_
Sample Date	NYSAGWQS1	10/22/	/98	1/3/9	9	11/18/	99	8/10/0	00	3/21/0)1	6/25/0	1	10/18/0)1	12/13/0)1	4/4/02	2	12/4/0)2	3/24/03	3	8/7/03	3	11/9/04		6/23/05	2	/10/06	6 T	9/12/0	06	8/14/0)7
VOC ppb or µg/L																																			
1,1,1-Trichloroethane	5	1.5	П	3.6	П	0.5	JQM	3.1	П	2.4	П	2.3	П		Т	0.2	JQM	0.3	JQM		П		Т			0.5	Т	2.8	\top	\neg	\top	1.0	J	4.0	J
1,1-Dichloroethane	5	2.8	Ħ	7.7	Ħ	0.5	JOM	8.1		9.5		10.0						0.6	JOM				_			1.3	_	9.8	+-	1.0	J	3.0	j	13.0	J
1,1-Dichloroethene	5		Ħ		Ħ		m		Ħ						7		7		_								T		\top	\neg	\top		П		
4-Chloro-3-Methylphenol	NL		Ħ		Ħ											10.0	J						_				+	_	+	=t	=	$\overline{}$	H		г
Acetone	50		Ħ		Ħ	3.5	JQG	0.7	JQM						7	1.2		2.9	_					2.3			T	1.3 K	.	\neg	\neg		П	, T	
Bromoform	50		Ħ		Ħ				\Box						7		7		_								T		\top	\neg	\neg		П	, T	T
Bromomethane	5		t t		Ħ		Ħ		\Box						_				_				T						\top	\neg	\neg		П		
Carbon Disulfide	NL		Ħ		Ħ			2.1															_				+	_	+	=t	=	$\overline{}$	H		H
Chloroform	7		Ħ		Ħ																		_				+	_	+	=t	=	$\overline{}$	H		H
cis-1,2-Dichloroethene	5	1.3	Ħ		Ħ	0.9	.IOM	3.2		2.0		2.4						0.3	IOM			1.8	_				+	_	+	=t	=	$\overline{}$	H		H
Ethylbenzene	5		tt		Ħ																		7				+	-	+	\neg t	\neg	$\overline{}$	H		H
Hexachlorobenzene	Ť	-	Ħ		H		H		\vdash						_				_		H		1				+		+	\dashv	+		Ħ		H
m,p-Xylene	NL	\vdash	\vdash		\vdash		H		H		H				\dashv		+		-		H		\dashv		\dashv		+	-+	+	\dashv	+	$\overline{}$	\vdash	-	Н
Methyl tert-butyl ether	NL NL	\vdash	\vdash		H		Ħ		Ħ		H				+		+		\dashv		Ħ		+		\exists		+	-+	+	一十	+	—	\vdash		Т
Methylene Chloride	5	\vdash	\vdash		\vdash		H	0.2	юм		H	0.5	JOM.		-		_		+		H		\dashv				+	-+	+	\dashv	+	-	+	-	\vdash
Naphthalene	10	\vdash	+		\vdash		H	V.2	Jum		H	0.0	JUM		+		-		+		H		+			-	+	-+	+	\dashv	+		+	-	Н
sec-butylbenzene	5	\vdash	+		\vdash		H		\vdash		H		-		+		+		+		H		\dashv		\dashv		+	-+	+	\dashv	+		+	 	\vdash
Tetrachloroethene	5	-	++		H	0.3	JQM		\vdash								-				H		+				+	-+	+	\dashv	+	—	+		⊢
Trichloroethene Trichloroethene	5	\vdash	+		\vdash	0.3	JQM		\vdash		H				-		-	-			H	1.7	\dashv				+	-+	+	\dashv	+		+		⊢
	5	 	++		\vdash		H		\vdash		Н				-		-		+		H	1.7	+			-	+	-+	+	\dashv	+		\vdash	$\vdash \vdash$	⊢
Xylene (Total)	5		++	44.0	\vdash	5.7	H		\vdash	13.9		15.2			-	44.4	-		-	0.0	H	3.5	+			4.0	+	13.9	+-	-	+	4.0	\vdash	17.0	⊢
Total VOCs		5.6	<u>—</u>	11.3	Щ	5./	ш	17.4	Щ	13.9	Ш	15.2		0.0	_	11.4	_	4.1		0.0	ш	3.5	_	2.3		1.8	_	13.9	ــــــــــــــــــــــــــــــــــــــ	1.0	ㅗ	4.0	ᆜ	17.0	_
SVOC ppb or µg/L					_				_				_	-	_	-	_		_				_	-			_		—	_	4		—		
Benzo(b)fluoranthene	0.002		ш		\vdash		Ш								_	10	J		_				_				_		+	\dashv	_		₩	⊢—	▙
Benzo(k)fluoranthene	0.002		ш		\vdash		Ш								_		_		_				_				_		+	+	_		₩	⊢—	▙
bis(2-Ethylhexyl)phthalate	50		44		\sqcup	1	J		ш						_		_		_		ш		_				_		┸1	11	_		ш	lacksquare	_
Di-n-butyl phthalate	50		ш	0.6	J										_				_		ш		_				_		4	\rightarrow	_		\vdash	igsquare	┞
Di-n-octyl phthalate	50		1 1		Ш											10	J						4				4		4	_	_		ш	igsquare	L
Phenol	1		ш	1	J		Ш										4						_				4		4	_	_		ш	1.0	J
Total SVOCs		0		1.6		1		0		0		0		0		20		0		0		0		0					'ـــــــــــــــــــــــــــــــــــــ	11	丄	0	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	1	
Metals ppb or μg/L																																			
Aluminum	NL	57	В	28.3	В					63.7	В	95.1	В	32.3	BJ							137	В						1	61 E	BE	816		410	
Antimony	3																												3	3.5	В			8	В
Arsenic	25					2.8	В							8.6	BJ															4.0	В	3.3	В		
Barium	1,000	32.4	В	19.5	В	18.4	В	39.2	В	46	В	47.9	В	15.8	В	177	В	30.5	В	21.2	В	19.4	В	18					3	0.2	В	39.3	В	62.6	В
Beryllium	3									2	В	0.56	В																(0.2	В	0.16	В	0.22	В
Cadmium	5					1.6	В	12.9	J	1.4	В	0.54	BJ			1.4	В			1.3	В								7	2.2	В	1.7	В	2.2	В
Chromium	50			1.5	В	1.2	В			3.8	В	2.6	В			5.3	В	1.2	В	4.2	В								1	0.1	В	12.6	В	7.7	В
Cobalt	NL					1.4	В	2.4	В																				7 7	2.8	В	2	В	4.8	В
Copper	200	18.7	В	11.5	В	3.8	В			6.1	В	12	В	289		7.9	В	2	В	1.4	В	1.1	В						1	9.6	В	14.3	В		
Iron	300	3320		1020		523		1340		19600		1720	J	1960		24100		4180		1300			J	6300					72	,000		60,300		96,100	
Lead	25		\Box		Ħ		П				П						7		7	2.3	В		T				T			_	_	2.9	В		В
Manganese	300	194	\Box	106	Ħ	36.6	П	272		685	П	472		26.6		536	7	134	7	34.4	П	26.2	T	90			T		4	145	Е	592		696	
Mercury	2		\Box		Ħ		П				П						7		7		П		T				T		\top		\neg		П		Г
Nickel	NL	3.1	В		ΠŢ	2.4	В		ΠŢ	5.1	В	5.3	В	2.6	В	4.8	В		T	4.7	В		T				T		1	5.4	В	9.7	В	9	В
Selenium	10		Ħ		Ħ	1.9	В		Πİ		Ħ						J	2.5	J		Ħ		T				T				В		\Box		В
Silver	50		\sqcap		П	1.1	В		Πİ		П			1	В		7		T				T				T		1	\neg	丁	\neg	П		Г
Thallium	0.5	3.3	В	3.5	В	3.5	В		Πİ		П					5.8	В		T				T				T		1	\neg	丁	\neg	П	17.6	В
Vanadium	NL		Ħ		Ħ	0.6	В		Πİ	2.1	В						В		T		Ħ		T				T		1 7	3.6	В	8.2	В		В
		+	+		\vdash		H		\vdash		В		_		-+		-		-		ᆖ		_				+	-+	_	_			B		В
Zinc	300									10.4	В						- 1			8.2	в	4.3	в	8.7						36 I	в	47			
Zinc Total Metals	300	3628.5	H	1190.3	\forall	598.3	H	1666.5	1	10.4 20425.6	В	2356	+	2335.9	2	24845.3	+	4350.2	+	8.2 1377.7	В	4.3 1418	В	8.7 6416.7	\dashv	-	-	-+		36 38.79		47 1849.56	_	97385.22	

NOTES

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	4/19/94	9/8/	94	12/5/9	4 3/1	0/95	9/29/	95	12/5/9	95	7/11/	96	10/21/	96	1/16/9	7	5/29/9	7	7/16/9	7	10/8/9	97	1/15/9	98	4/9/9	8	7/16/98	
VOC ppb or μg/L																													٦
1,1,1-Trichloroethane	5		2.0		2.0	16.)	14.0		7.0		7.5		5.5		0.4	J	7.0		4.0		8.9				10.0		12.0	٦
1,1,2-Trichloroethane	1																												٦
1,1-Dichloroethane	5	1.0	9.0		8.0	16.)	17.0				11.0		7.4		0.9	J	4.0		2.9		7.3				10.0		15.0	
1,1-Dichloroethene	5																							15.0					
1,1,1,2-Tetrachloroethane	5																							15.0					1
2-Butanone	NL													0.6	JQM														Ш
Acetone	50								Ш													8.0	JQM				Ш		
Bromodichloromethane	50														Ш										Ш			1.6	
Bromoform	50																						Ш			0.2	JQM		
Carbon Disulfide	NL							1.0	В														Ш	1.5			Ш		
Chloroethane	5		1.0			0.6			ш						Ш										Ш				
Chloroform	7		_	4		_			Ш				ш		Ш		Н		_				Ш		Ш		Ш	2.4	4
cis-1,2-Dichloroethene	5			4		_	_		ш				1											19.0					4
Dibromochloromethane	50			4		_	_		ш				1															1.1	4
Hexachlorobutadiene	0.5	$\perp \perp$					_	<u> </u>	Н				1		Ш		_		_		_		Щ		Ш		Щ		4
Isopropylbenzene	5	\vdash	+	+	—		-		Н		Н		Н		Н		Н		_				H		Н		H		4
m,p-Xylene	NL NI		+	+	-		+	1	H		Н		H		Н		Н		4	-		0.2	JQM		Н		Н		H
Methyl tert-butyl ether	NL	\vdash	+	+	H.,	_	-	-	H		Н		Н	L	Н		Н		_				H		Н		H	0.7	J
Tetrachloroethene	5		2.0	+	0.7	0.6	+	8.0	В		Н	0.4	JQM	0.3	JQM		\dashv	0.4	J	-			Н		Н	0.3	JQM		4
Trichloroethene Total VOCs	5	0.6 1.6	14.0	+	10.7		+	32.8	H	7.0	Н	0.7 19.6	JQM	0.6 14.4	JQM	0.8	J		4		-	47.0	Н	50.5	Н	20.5	Н	32.8	4
		1.6	14.0	_	10.7			32.8	ш	7.0	ш	19.6	ш	14.4	Ш	2.1	ш	11.4	_	6.9	_	17.2	Ш	50.5	Ш	20.5	Ш	32.8	4
SVOC ppb or μg/L		_	_	_		-	_		_				_			_	_		_	-	_								
Anthracene	50			+			_		Н		Ш		1		Н				_		_	0.9	J		Н		Н		4
Benzo(a)anthracene	0.002			+			_		Н		Ш		1		Н				_		_	1	J		Н		Н		4
Benzo(a)pyrene	0.002			+			_		Н		Ш		1		Н				_		_	1	J		Н		Н		4
Benzo(b)fluoranthene	0.002			+			_		Н		Ш		1		Н				_		_	1	J		Н		Н		4
Benzo(g,h,i)perylene	5		-	+-			-		Н				\perp		Н		_		_		_	0.6	J		Н		Н		4
bis(2-Ethylhexyl)phthalate	50		-	+-			-		Н				\perp		Н		_	14	_		_		Н		Н		Н		4
Butylbenzyl phthalate	50		+	4			-	1	+				\vdash		Н		_		-		_		H		Н		Н		-
Carbazole	NL 0.002		+	4			-	1	+				\vdash		Н		_		-		_	0.7	J		Н		Н		-
Chrysene	0.002 50		+	4			-	1	+				\vdash		Н		_		-		_	1	J		Н		Н	0.7	J
Diethylphthalate	50	_	+	+	_		+		+		Н		+		Н		_		_		-		Н		Н		Н		J
Di-n-butyl phthalate Di-n-octyl phthalate	50	_	+	+	_		+		+		Н		+		Н		_		_		-		Н		Н		Н	-1	4
Fluoranthene	50	-	+	+		+	+	1	Н		Н		Н		Н				_			4	J		Н		\vdash	-	4
Indeno(1,2,3-cd)pyrene	0.002	-	+	+		+	+	1	Н		Н		Н		Н				_			0.7	J		Н		\vdash	-	4
Phenanthrene	50	-	+	+		+	+	1	Н		Н		Н		Н				_			3	J		Н		\vdash	-	4
Phenol	1		+	+			-		Н		Н		\vdash		Н		\dashv		-		-		J		Н		H	2	J
Pyrene	50		+	+			-		+		H		+		H		-		-		-	3	J		H		H		4
Total SVOCs	30	0	0	+	0		-	0	+	0	H	0	+	0	H	0	-	14	-	0	-	16.9	-	0	H	0	H	3.7	4
Metals ppb or μg/L		Ů		_	Ů		_	·	_	0	_	Ů	_	Ů	ш	_ •	_		_		_	10.3	_		ш		_	3.7	-
Aluminum	NL		84	_	1	83	$\overline{}$	T		150				40.4	В			40.8	В	36.4	В	76.2	В	18.3	В				4
Antimony	3		04	+		- 03	-		Н	130	Н		\vdash	40.4	В		\dashv	40.0	ь.		В	70.2	В	10.3	В		H	-	4
Antimony Arsenic	25	1	+	+				1	Н		Н		Н		Н		\dashv		+	2.3	ь		Н		Н		Н		┥
Barium	1.000	\vdash	+-	+	\vdash		+	 	H		H	18.5	В	17.3	В	30.9	В	15.8	В	13.5	В	14	В	13.1	В	12.6	В	11.4	в
Beryllium	3	\vdash	+	+			+	-	H		H	10.3	ř	17.3	H	30.3	-	13.0	-	13.3	-	- 17	H	13.1	H	12.0	H	11.4	4
Cadmium	5		1	+	\vdash	+	+	1	Н		H		Н		Н		\dashv	- 1	+		\dashv	0.49	В		Н		H		┪
Chromium	50	 	1	+		-1-		1	H		H		H	1.8	В		\dashv	- 1	一		-	0.40	H		H	2.2	В		٦
Cobalt	NL NL		1	+		-1-	+	1	Н		Н		Н	1.9	В	1.3	В	1	7	2.2	В	1.4	В		H		Ħ		٦
Copper	200	3170	4	+		-1-	+	1	Н		Н	1.1	В	1.8	В		Ħ	3.2	В		-	8.2	В	1	В	5.6	В		٦
Iron	300	625	5900	1	1260	693	0	62	П	451	П		П	1660	EJ	146	T	2690	7	2370	_	897	П	611	J	17200	П	5110	٦
Lead	25	318	3	1		2	1	5	П		П		П		П		T		В		_		П	1.5	В		П		В
Manganese	300	761	306	1	29	87	1	16	П	22	П	12.6	В	27.6	J	2590	T	27.2	7	22.5	_	19.4	П	7.4	В	31.4	П		в
Mercury	2			1			1		П				П		П		П		T				П		П		П		٦
Nickel	NL		17	1	18		1		П			2	В	2.1	В		П		T	2.1	В		П	1.2	В	3.1	В		٦
Selenium	10			1			1		П				П		П		П		T				П		П		П		٦
Silver	50			1			1		П				П		П		П		T				П		П		П		٦
Thallium	0.5			Ť			1		П						П		T	i	T				П		П		П		٦
Vanadium	NL																												٦
Zinc	300	1260	74		11											5.2	В	24		15.1	В			21.5	J			20.3	٦
Total Metals		6134	6388		1318			83		623		34.2		1752.9		2773.4		2802.9		2464.1		1016.69		675		17254.9		5158.2	J
NOTES:																													_

NOTES:
Results in parts per billion (ppb) or micrograms per liter (ug/l)
U - not detected above instrument detection limit
J - estimated value

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and falies - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

NA - Not Analyzed

		_					_		_		_		_		_		_		_		_		_		_						_		_		_
Comula Data	NYSAGWQS1	10/22	/O0	1/3/9	00	11/10	/nn	0/10/	nn	3/21/0	14	C/OF/C	14	10/10/	01	12/13/	04	4/4/0	2 1	12/4/0	12	3/24/03	э Т	8/7/03	-	11/8/04	4 T	6/23/05	2	/10/06	,	0/42/	26	8/14	1/07
Sample Date		10/22	/98	1/3/8	99	11/18	99	8/10/	00	3/21/0	JΊ	6/25/0) I	10/18/	UT	12/13/	UT	4/4/0	2	12/4/0)2	3/24/03	3	8/7/03		11/8/04	4	6/23/05	2/	/10/06)	9/12/0	00	8/14	/07
VOC ppb or µg/L	-		_	1.5		0.2		0.8	-			0.0		1.4		4.7		1.0				-	7	0.8	_	1.2	-	-	_	_	_		$\overline{}$	_	_
1,1,1-Trichloroethane 1,1,2-Trichloroethane	5	1.1	+	1.5	+	0.2	JQM	0.8	JQM	1.4	Н	0.6	JQM	1.4	┢	1.7	Н	1.0	Н		Н	2.7	+	0.8	+	1.2	-		+	-	+		\vdash		+
1,1-Dichloroethane	5	0.6	+	0.9	+		Н	1.2		2.9	Н	1.2	Н	5.9	-	9.3	Н	2.1	Н		Н	7.9	+	2.4	+	2.7	-		+	-	+		\vdash		+
1,1-Dichloroethene	5	0.6	+	0.9	+		Н	1.2		2.9	Н	1.2	Н	3.9	-	9.3	Н	2.1	Н		Н	7.9	+	2.4	+	2.1	-		+	-	+		\vdash		+
1,1,2-Tetrachloroethane	5		+		H		Н		+		Н		Н				Н		Н		Н		+		+	-	-		+	-	+		H		+
2-Butanone	NL NL		+		H		Н		+		Н		Н				Н		Н		Н		+		+	-	-		+	-	+		H		+
Acetone	50		+		H		Н		+		Н	1.1	Н			1.2	Н	4.1	Н		Н	0.9	юм		+	-	-		+	-	+		H		+
Bromodichloromethane	50	2.9	\vdash	1.2	+		\vdash				Н		Н		Н		Н		Н		Н	0.0	,		+		_		+	-	+		H		+
Bromoform	50	2.0	\vdash		+		\vdash				Н		Н		Н		Н		Н		Н		+		+		_		+	-	+		H		+
Carbon Disulfide	NL NL		\vdash	1.1	+		\vdash			1.0	Н		Н		Н		Н		Н		Н		+		+		_		+	-	+		H		+
Chloroethane	5		\vdash		Ħ		Н				Н		Н				Н		Н		Н		7		+	1	_		1	_	+		Ħ		\pm
Chloroform	7	4.4	\vdash	1.9	Ħ		Н				Н		Н				Н		Н		Н		7		+	1	_		1	_	+		Ħ		+
cis-1,2-Dichloroethene	5		\vdash		Ħ		Н				Н		Н				Н		Н		Н		7		+	1	_		1	_	+		Ħ		+
Dibromochloromethane	50	1.9	\vdash	0.6	Ħ		Н				Н		Н				Н		Н		Н		7		+	1	_		1	_	+		Ħ		\pm
Hexachlorobutadiene	0.5		\vdash		Ħ		Н				Н		Н			10.0	J		Н		Н		7		+	1	_		1	_	+		Ħ		+
Isopropylbenzene	5		\vdash		Ħ		Н				Н	0.6	JOM				Ħ		Н		Н		7		+	1	_		1	_	+		Ħ		+
m,p-Xylene	NL		П		\Box		Н		Ħ		H		Ħ		Н		Н		Н		H		+		\top		1	 -	1	- t	+		H		\top
Methyl tert-butyl ether	NL		\vdash	1.0	+		Н		Н		H		H		Н		H		Н		H	- I	7		\top	-	_		1	- t	+		\vdash		+
Tetrachloroethene	5		H		H	0.3	JON		H		H		Н		H		Н		H		H	0.3	юм		+		-1		+		+		H		+
Trichloroethene	5		\vdash		+	0			H		H		Н		H		Н		Н		H	0.3	IQM		+		7		+		+		H		+
Total VOCs		10.9	\vdash	8.2	+	0.5	Н	2.0	Н	5.3	H	3.5	H	7.3	Н	22.2	H	7.2	Н	0.0	H	12.1	7	3.2	\top	3.9	_	0.0	0	0.0	+	0.0	\vdash	0.0	+
SVOC ppb or µg/L		1	_		_				_		_		_				_		_		_		ť		t				Ť		Ť				_
Anthracene	50		П		ТТ		П						П		_		П						┱		┰		_		т	$\overline{}$	┰		П		一
Benzo(a)anthracene	0.002		+		+		+		+-		H		Н		H		Н		H		Н		+		+	+	-		+	-	+		H		+
Benzo(a)pyrene	0.002		+		+		+		+-		H		Н		H		Н		H		Н		+		+	+	-		+	-	+		H		+
Benzo(b)fluoranthene	0.002		+		+		Н				Н		Н		-		Н		Н		Н		+		+		-		+	-	+		\vdash		+
Benzo(g,h,i)perylene	5		+		+		Н		-		Н		Н		Н		Н		Н		Н		+	-	+		-	_	+	-	+		\vdash		+
bis(2-Ethylhexyl)phthalate	50		+		+		Н				Н	3	J		-		Н		Н		Н		+		+		-		+	2 .	J		\vdash		+
Butylbenzyl phthalate	50		+		+		Н		-		Н	3	,		Н		Н	3	J		Н		+	-	+		-	_	+		,		\vdash		+
Carbazole	NL NL		+		+		Н				Н		Н		-		Н	- 3	J		Н		+		+		-		+	-	+		\vdash		+
Chrysene	0.002		+		+		Н		-		Н		Н		Н		Н		Н		Н		+	-	+		-	_	+	-	+		\vdash		+
Diethylphthalate	50		+		+		Н		-		Н		Н		Н		Н		Н		Н		+	-	+		-	_	+	-	+		\vdash		+
Di-n-butyl phthalate	50		+		+		Н		-		Н		Н		Н		Н		Н		Н		+	-	+		-	_	+	-	+		\vdash		+
Di-n-octyl phthalate	50		+		+		Н		-		Н		Н		Н	10	J		Н		Н	10	R	-	+		-	_	+	-	+		\vdash		+
Fluoranthene	50		+		+		Н		-		Н		Н		Н	10	,		Н		Н	10	ĸ	-	+		-	_	+	-	+		\vdash		+
Indeno(1,2,3-cd)pyrene	0.002		+		+		Н		-		Н		Н		Н		Н		Н		Н		+	-	+		-	_	+	-	+		\vdash		+
Phenanthrene	50		+		+		Н				Н		Н		-		Н		Н		Н		+		+		-		+	-	+		\vdash		+
Phenol	1		+	2	J		+		+-		H		Н		H		Н		H		Н		+		+	+	-		+	-	+		H		+
Pyrene	50		+		۳		+		+-		H		Н		H		Н		H		Н		+		+	+	-		+	-	+		H		+
Total SVOCs	30	0	+	2	+	0	+	0	+-	0	H	3	Н	0	H	10	Н	3	H	0	Н	10	+	0	+	+	-		+-	2	+	0	H	0	+
Metals ppb or µg/L		Ů	_				_		_		ш	3	ш	U	_	10	ш	J	ш	-	ш	10	_	Ů	_		_		_		_	_	$\boldsymbol{\vdash}$	Ť	_
	NII	50.0	I 6	25.4	La	400		0.0	-			00.5	_	44.5	-			200		04.5	В	044	_		_		_			04 10	·- I	404	В	400	Τ,
Aluminum Antimony	NL 3	58.3	В	35.4	В	120	В	8.6	В		Н	66.5	В	44.5	В		Н	398	Н	81.5	В	244	+		+		-			94 B	SE B	161	н	120 8.9	
Antimony	25	1	+		+		Н		Н		Н		Н	6.8	В		Н		Н		Н		\dashv		+		-				В		\vdash	0.9	- 6
Arsenic Barium	1.000	6.7	В	8.5	В	12.5	В	20.1	В	18	Н	26.5	В	29.6	В	193	В	17.8	В	24.9	В	23.5	В	28	+		-					39.6	В	61.3	В
Beryllium Beryllium	3	6.7	P	0.0	+-	12.3	Р	20.1	-	10	Н	0.34	В	1.3	В	193	В	17.0	В	24.9	P	23.3	٥	20	+		-		4.	J.49 I	-	J9.0	P	01.3	뿌
Cadmium	5	1	+		+	0.3	В	1.5	В		Н	0.34	В	1.3	В		Н		Н		Н		\dashv		+		-		-	.2 1	В	0.11	В		+
Chromium	50	1	+	1.3	В	1.2	В	1.4	В		Н	2.4		3	В	3.3	В	3.8	В	4.4	В	9.4	В		+		-			1.7	-	9.9	В	26.1	+
Cobalt	NL	1	+	1.1	В	1.6	В	1.4	-		Н	2.4	В	3	В	3.3	В	3.0	В		В		В		+		-			1.7 1.4 B	20	1.1	В	7.3	
Copper	200	27	-	16.5	В	1.6	В	1.7	В		Н	14.5	В	14	В	5.1	В	2.7	В	5.7	В		В		+		-			2.7	,	9.6	В	18.4	
Copper Iron	300	2260	1	1340	+-	582	Р	3250	-	2100	Н	15500	В	15700	В	14700	В	8720	В	16200	P	32100	٥	2900	+		-			,000 N	IE 4	5,900	_	71,40	
lron Lead	25	2200	+	1340	+	302	Н	3230	Н	2100	Н	3.1	H	2.2	В	14700	Н	0120	Н	10200	Н	JZ 100	\dashv	2900	+		-				B	5,300	\vdash	71,40	B
Lead Manganese	300	7.3	В	5.1	В	3.6	В	8.4	В		Н	30.5	J	25.4	В	31.6	Н	38.2	Н	39.7	Н	83.4	\dashv	16	+		-					82.1	\mapsto	236	_
Manganese Mercury	2	1.3	P	3.1	+-	3.0	Р	0.4	ь	0.2	ОН	30.0	Н	23.4	Н	31.0	Н	30.2	Н	39.1	Н	03.4	\dashv	10	+		-		4	JJ 1	-	UZ. I	\mapsto	236	+
Nickel	NL	1.2	В	1.4	В		Н		Н	0.2	αn	3	В	2.8	В		Н	2.8	В	2.3	В	5.8	В		+		-		40	0.3	В	9.8	В	26.3	В
Nickel Selenium	NL 10	1.2	15	1.4	15		Н		+		Н	3	В	2.8	В		Н	3	В	2.3	В	5.8	8		+		-		_		В	3.8	r B	26.3	
Selenium	10 50	 	+		+	0.6	В		+		Н		Н	1.6	BJ		Н	3	В		Н		+		+		-		9	1.9	D		\vdash	20.6	В
Silver Thallium		 	+		+	0.0	В	4.4	В		Н		Н	1.6	ВJ		Н		Н		Н		+		+		-		+		+		\vdash	12.5	В
Thailium Vanadium	0.5 NL	 	+	1.5	В	0.6	В	4.4	В		Н		Н	2.7	В		Н		Н		Н		+		+		-		+-	2.5	В	1	В	13.5 0.51	
Vanadium Zinc	NL 300	 	+	1.5	15	0.0	В		+	10	ОН	28.9	Н	2.1	В	19.9	В	15.1	В	21.2	Н	25	+	11	+		-				E	31	В	68.6	
Zinc Total Metals	300	2360.5	+	1410.8	+	724	Н	3296.1	Н	2128.2	۷.,	15675.74	Н	15833.9	Н	14952.9	-	15.1 9201.4	_	16380.39	Н	32502.4	+	2955	+		-			7966		31	_	72010.5	
		2300.5	ш	1410.8		124	ш	3Z96.1		2128.2	Ш	136/5.74	ш	15833.9	<u> </u>	14952.9	ш	9201.4	ш	16380.39	ш	3Z3UZ.4		∠955					107	900	11	245.21	لب	12010.5	21
NOTES:																																			

NOTES:
Results in parts per billion (ppb) or micrograms per liter (ug/l)
U - not detected above instrument detection limit
J - estimated value

J - estimatero value
B - analyke found in associated method blank
E - value exceeds calibration range
BOLD FONT- Compound was detected above instrument detection limit
Shading and tallics - Result is above the NYSDEC AWOS.

1 Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1): Ambient Water Guality Standards and Guidance Values and Groundwater Effluent Limitations NA - Not Analyzed

																												n
Sample Date	NYSAGWQS ¹	4/19/94	9/8/94	12/5/9	94 3/10	/95	9/29/9	95	12/5/9	95	7/11/9	96	10/21	/96	1/16/9	97	5/29/9	97	7/16/9	7	10/8/9	97	1/15/9	98	4/9/9	В	7/16/98	1
VOC ppb or μg/L																												Ī
1,1,1-Trichloroethane	5	11.0	6.0	2.0			0.6		0.7		0.8	JQM	0.5	JQM	2.0		1.0	J			0.4	JQM			0.2	JQM		1
1,1-Dichloroethane	5	18.0	3.0	1.0	1.0						0.2	JQM	0.3	JQM	2.0		2.0								0.8	JQM]
1,1-Dichloroethene	5																										1.8]
1,2,4-Trimethylbenzene	5																				0.5	JQM			2.4]
1,4-Dichlorobenzene	5																								0.5	JQM		1
2-Butanone	NL												0.5	JQM														1
Acetone	50																											1
Carbon Disulfide	NL						1.0	В													0.2	JQM	1.1					1
Chloroethane	5	2.0																										1
Chloroform	7																											1
cis-1,2-Dichloroethene	5												0.2	JQM														1
Ethylbenzene	5													П			0.2	J			0.2	JQM						1
Isopropylbenzene	5	8.0	2.0				1.0																					1
m,p-Xylene	NL																				1.4							1
Methyl tert-butyl ether	NL		1 1																								1.7 J	1
Methylene Chloride	5		1 1											Ħ		П												1
n-butylbenzene	5	2.0					0.6							Ħ		П								П				1
Naphthalene	10		1 1			1								tt				H		_	0.5	JQM		Н				1
O-Xylene	NL		1 1			1								tt				H		_				Н	0.4	.IOM		1
sec-butylbenzene	5	4.0	5.0	1.0		1	4.0	Н	2.0		0.4	.IOM		Ħ		П		Н		T								1
Tetrachloroethene	5	0.9	0.9	0.7		_		\vdash		\dashv				Ħ	0.3	J		H		_				H		_		1
Toluene	5	0.0	0.0	0		_		\vdash		\dashv		H		Ħ	0.0	Ť		H	0.8	_				H		_		1
Trichloroethene	5		+	_		+					1.5	H	3.3	+	0.8	J		Н	0.0	_	0.4	.IOM		Н				1
Total VOCs	J	45.9	16.9	4.7	 	+	7.2	Н	2.7		2.9	H	4.8	+	5.1	ŭ	3.2	Н	0.8	_	3.6	Jum	1.1	Н	4.3		3.5	1
SVOC ppb or μg/L		40.0	10.0			_				_	2.0		4.0		0.1	_	0.2	Н	0.0	_	0.0			ш		_	0.0	1
bis(2-Ethylhexyl)phthalate	50	_	т т	_		_	_				_			т					-	_			_					4
Butylbenzyl phthalate	50		+	-	H	+		H				+		+		Н		H		-+				Н				4
Diethylphthalate	50	\vdash	+-+			+		Н				H		+		H		Н		-				Н	3	J	0.8 J	4
7.	50		+	-	H	+		H			2	+-1		+		Н		H		-+				Н	3	J	0.8 J	
Di-n-butyl phthalate			++			+-				-	2	J		+		Н		Н		-				Н			1 1	4
Di-n-octyl phthalate	50		+	-	H	+		H				+		+		Н		H		-+				Н				4
Naphthalene	10		+			+		Н		_		H		+		Н		Н		4				Н				4
Phenol	1				.	-		Н				\vdash		+		Н		Н		_				Н			2 J	4
Total SVOCs		0	0	0	ш	<u> </u>	0	Ш	0		2	Ш	0	<u> </u>	0	ш	0	Ш	0	_	0		0	Ш	3		3.8	4
Metals ppb or μg/L			, , ,					_		_										_						_		4
Aluminum	NL													\perp	72	В		Ш		_			9.1	В				4
Antimony	3					4						Ш		\perp		Ш				4				Ш				4
Arsenic	25																											4
Barium	1,000										33.8	В	19.3	В	17.5	В	26.5	В	24.5	В	27.8	В	34.3	В	36.6	В	38.5 B	4
Beryllium	3													Ш														1
Cadmium	5																				0.57	В						Ш
Chromium	50							Ш		Ш			1.9	В		Ц							1.1	В		Ш		1
Cobalt	NL										5.4	В	1.1	В		Ш			1.8	В	1.9	В						1
Copper	200	4									1.7	В	2.5	В	35						14.4	В	2.4	В	10.2	В		1
Iron	300	10100	15600	16000	13100)	6110		4250		987	EJ	1540	EJ	3170	\coprod	716		475		343		1070	J	1390		2330	1
Lead	25	3	2	2	2		2							\coprod	3.8	\coprod								$oxed{\Box}$			2.6 E	1
Manganese	300	2970	1740	1800	2040		1960		2280		2230		1110	J	32.7		1660		987		591		719		725		434	1
Mercury	2									$oxed{\Box}$				\coprod		Ш								LJ				1
Nickel	NL	22	14				14		14		1.1	В	2.4	В		Ш			2.2	В			1.5	В	6.4	В		1
Selenium	10															Ш				J			5900					1
Silver	50																											1
Thallium	0.5					1		П			6.2	В	5.4	В		П				7				П				1
Vanadium	NL					1		П				П		П		П				7				П				1
Zinc	300	23	8	6	i i -	1		П				П		Ħ	28.3	J	10.3	В					9	В			17.2	1
Total Metals		13122	17364	17808		1	8086	П	6544		3265.2	П	2682.6	П	3359.3	П	2412.8		1490.5	7	978.67		7746.4	П	2168.2		2822.3	1
NOTES:								-				• -										•				_		-

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	10/22/	98 1/	3/99	11/18	/99	8/10/0	00	3/21/0	6/2	25/01	10/1	8/01	12/13/	01	4/4/0	2	12/4/0)2	3/24/0	03	8/7/0	3	11/10/0)4	6/23/05	2/1	0/06	9/1:	2/06	8/14/07
VOC ppb or μg/L																															
1,1,1-Trichloroethane	5				3.5								T			0.2	JQM														
1,1-Dichloroethane	5																		П												
1,1-Dichloroethene	5				6.7								T													0.9					
1,2,4-Trimethylbenzene	5																														
1,4-Dichlorobenzene	5																		П												
2-Butanone	NL												T																		
Acetone	50								1.0	ωм 0.	9 Jo	QM		1.2		3.6			П	0.9	JQM			1.6							
Carbon Disulfide	NL		0.	6					1.8			0.3	JO	eM.																	
Chloroethane	5												T																		
Chloroform	7				0.3	JQM			0.4	QM			7											0.9							
cis-1,2-Dichloroethene	5		3.	2							_		T		П		\Box		П		П										
Ethylbenzene	5										_		T				Ħ		П												
Isopropylbenzene	5										_		T		П		\Box		П		П										
m,p-Xylene	NL										_		T		П		\Box		П		П										
Methyl tert-butyl ether	NL NL	0.6		_	1	tt		\vdash		+	-	1	\top	1	H		H		Ħ		H						1	-	1	+	
Methylene Chloride	5			+	1	tt				0.	5 .ĸ	ом	+		H		H		H		H			1	-1		+		1	+	
n-butylbenzene	5				+	TT			t	Ť	Ť		Ť	1	H		H		H		H						1	-	1	+	
Naphthalene	10			+	1	tt				+	\dashv	1	+		H		H		H		H			1	-1		+		1	+	
O-Xylene	NL NL			_	1	t			t	_	-		+		H		\vdash		H		Н				_		1	_	1	+	t - t
sec-butylbenzene	5			_	1	t			t	_	-		+		H		\vdash		H		Н				_		1	_	1	+	t - t
Tetrachloroethene	5		0.	6	+	tt		-		-	-	+	+	0.2	JQM				H		Н			1	_		+	-	+	+	
Toluene	5			Ť		++		-			-		+	0.2	Julia		H		H		H				_		+	_	1	_	
Trichloroethene	5		1.	5	+	tt		-		-	-	+	+	+	H				H	0.4	.IOM			1	_		+	-	+	+	
Total VOCs	Ŭ	0.6	5.		10.5	++	0.0	-	3.2	1.	4	0.3	+	1.4	H	3.8	H	0.0	H	1.3	J-Q,III	0.0		2.5	_	0.9	0.0	n	0.0	_	0.0
SVOC ppb or μg/L		0.0		_	10.0		0.0		0.2		_	0.0	_	1		0.0		0.0				0.0		2.0	_	0.0	0.0	_	0.0	_	0.0
bis(2-Ethylhexyl)phthalate	50		1	$\overline{}$	1	П				3	$\overline{}$		┰	1	_	1			П	2	J	4.2		П	_		2	J	J 3	J	1 1
Butylbenzyl phthalate	50			-t-	-	++		-			-+		+		H	4	J		H		,	4.2			-1			-	, ,	- 3	-
Diethylphthalate	50		-	-	-	H		-+		-	+	+	+	+	Н	-	,		Н		Н				\dashv		+	-	-	+	
	50			-t-	-	++		-		_	-	-	+		H		H		H		H				-1		+	-	1	_	-
Di-n-butyl phthalate Di-n-octyl phthalate	50		-	-	-	++		-		-	-	-	+	10	J		\vdash		Н	10	R		_	-	-		-	-	-	_	
Naphthalene	10			-t-	-	++		+		_	-	-	+	10	J		H		H	10	~				-1		+	-	1	J	-
Napritraiene Phenol	10		+	-	J	++		-		-	-	-	+	+	+		\vdash		Н		Н		_	-	-		-	-	+ '		
Total SVOCs	'	0			0	++	0	-	0	3	-	0	+	10	Η-	4	\vdash	0	Н	12	Н	4.2			-		2	-	4	_	0
		U	<u> </u>		_ u	<u> </u>	U		v I	,	_	U	_	10	_	4	ш	U	ш	12	ш	4.2			_				4	_	<u> </u>
Metals ppb or μg/L			-1-		- 1					1	. т.	- 1	-		_				_		- 1				_		1	- 1-			T T-
Aluminum	NL	126	B 6			++	5.1	В		48	.4 I	B 22.8	E	3	<u> </u>	198	ш		ш	119	В				_		50.) В	
Antimony	3		3.	8 1	В	++		_			_		4		<u> </u>		\perp		ш						_		2.3			_	6.7 E
Arsenic	25					\vdash				8.			4		<u> </u>		В		ш		ш				_		3.0				
Barium	1,000	28.2	B 21	.4 I	B 23.2	В	25	В	17	24	_	_	E		_	31.6	В	29.5	В	27.6	В	23			_		35.	.1 E	3 25.7	′ В	34.4 E
Beryllium	3			_		Щ.				0.3	5 I	B 1.2	E	3	<u> </u>						Ш				_		1	_		_	
Cadmium	5			_		Щ.							4		<u> </u>						Ш				_		0.7				
Chromium	50		1.				1.6	В		1.	6 I	В	4	2.3	В	4.1	В	1.1	В		Ц		_		_		38.	_	6.3		
Cobalt	NL		1.		B 0.6	В							_		1		Ш		Н	5.7	В				_		2.0		E 0.66	В	4.4 E
Copper	200	10.8	B 37		В 1			В		1		B 9.6	_		В		В	1.8	В	12.4	В		_		_		34.	_	_	_	\vdash
Iron	300		12		613	J :	5300		1700	51	_	623	4	2730	<u> </u>	14900	Щ	2390	Щ	6630	Щ	3200	<u> </u>		_		78,3		E 21,70	00	57,100
Lead	25	6.8	2.		_	ш				5.		J	4		<u> </u>		Ш		Щ		Ш				_		3.9		_	_	2.9 E
Manganese	300	190	35	.3	2.5	В	12	В	5.7	4.	5 I	B 4.7	E	8.1	В	38	Ш	13.2	В	37	Ш	22			_		33	9 E	82.2	2	520
Mercury	2					$\sqcup \!\!\! \perp$			0.2	ΣH			_				Щ		Ш		Ш										
Nickel	NL	1.3	В 1.	7		$\sqcup \!\!\! \perp$				2.	4 I	B 2.8	E	3		3.6	В	2.6	В	9.5	В						35.		_	В	
Selenium	10					Ш													Ш								7.1	1 E	3		14.2 E
Silver	50					Ш						1.9	Е	3			Ш		$oxed{\Box}$,	$oxed{\Box}$,									
Thallium	0.5					Ш	5.7	В					I																		9.2 E
Vanadium	NL		1.	7 1	В	Ш						1.8	Е	3													1.7	7 E			
Zinc	300						1	J		11	.5 I	В				5.3	В	3.6	В								34	В	E 22	В	
Total Metals		363.1	142	8.8	640.3		5353	1	722.9	631	.55	696.8	ıΤ	2742.8		15191.6		2441.8		6841.2		3245					78887	7.75	21867	.68	57768.6
NOTES:			•			•				•															_			_			•

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

MW-11 SMS Instruments Inc. Deer Park, NY

Sample Date	NYSAGWQS ¹	4/19/94	9/8/94	12/5	/94 3	3/10/95	9/29/9	95	12/5/95	7/11	1/96	10/2	1/96	1/16/9	97	5/29/9	7	7/16/9	97	10/8/9	97	1/15/9	98	4/9/9	8	7/16/98
VOC ppb or μg/L																										
1,1,1-Trichloroethane	5	2.0							4.0																	
1,1-Dichloroethane	5	0.7																								
1,2,4-Trimethylbenzene	5		2.0																							0.8
2-Chlorotoluene	5			0.6																						
4-Chloro-3-Methylphenol	NL																									
Acetone	50																			2.0						
Carbon Disulfide	NL		1.0				0.6	В		0.4	JQN	0.4	JQM							1.8						
cis-1,2-Dichloroethene	5																									
Methyl tert-butyl ether	NL																									1.1
Methylene Chloride	5																			0.2	JQM					
Tetrachloroethene	5								4.0																	
Toluene	5		0.9																							
Trichloroethene	5								4.0	0.7	JQN	2.5				[
Vinyl Acetate	NL								2.0																	
Xylene (Total)	5														Ħ											0.8
Total VOCs		2.7	3.9	0.6			0.6		14.0	1.1		2.9		0.0	Ħ	0.0		0.0		4.0		0.0		0.0		2.7
SVOC ppb or μg/L							•					•														
Acenaphthene	20				П															1	J					
4-Methylphenol	NL				11										Ħ					1	J		Ħ			
Diethylphthalate	50													13	Ħ			6	J	5	J	7	J	3	J	2 J
Di-n-butyl phthalate	50									2	J				Ħ											
Fluoranthene	50														Ħ					2	J					
Naphthalene	10														Ħ					1	J					
Phenanthrene	50														Ħ					4	J					
Pyrene	50														Ħ					1	J					
Total SVOCs		0	0	0	11		0		0	2		0		13		0		6		15		7		3		2
Metals ppb or µg/L																										
Aluminum	NL		280	$\overline{}$	$\overline{}$		Г			_	Т	22.2	В	6.2	В	25.3	В	35.3	В	45.7	ВJ	18.2	В	31.4	В	$\overline{}$
Antimony	3										1		1		Ħ			3.8	В							
Arsenic	25				11										Ħ				Ē				H			
Barium	1,000				11					39.7	В	49.8	В	47.6	В	44	В	42.4	В	47.6	ВJ	44.6	В	45.2	В	51.8 B
Beryllium	3				11						T	10.0	Ť		Ħ		_		Ē				Ħ	0.16	В	
Cadmium	5				11										Ħ								H	0.95	В	
Chromium	50	4	17		11							14.7	J		Ħ			1.8	В				H			
Cobalt	NL									8.2	В		В	4.2	В	6	В	16.7	В	11	ВJ	6.9	В	5.9	В	19.8 B
Copper	200		8								1	2.7	В		Ħ		7			11.6	BJ	1.2	В	2.2	В	
Iron	300	8310	1380	15100	8	010	7370		6090	8840	_	6320	EJ	5610	Ħ	6520		19000		9660	J	6110	J	5300		27000
Lead	25		10	1	-	1	2					1.1	В		Ħ											
Manganese	300	1810	2330	2800	1	170	1420		1300	1260	,	1060	_	916	Ħ	782		620	Ħ	561	J	549		531		474
Mercury	2		1 1		11		1	П		1.200		1	1_0	1	Ħ			0.13	В		Ħ		Ħ		H	
Nickel	NL		54		11	13	1	П	1	3.1	В	16.5	В		Ħ			5.4	В		П	3.6	В	3.3	В	
Selenium	10			1	11		1	H			T	<u> </u>	Ť		Ħ				Ħ		H		H		H	
Silver	50				11		1	П	1	1					Ħ				Ħ		П		Ħ		H	
Thallium	0.5			1	11		1	H		6	В	4.6	В		Ħ			5.7	В		H		Ħ	4.6	В	1.2 B
Vanadium	NL				11		1	П	1	1	Ť		Ť		Ħ			,	Ħ		П		Ħ		Ħ	
Zinc	300	21	204	25	TT		†		+	1	+	1	+	5.4	В		-	68.9	H		H	15	В		H	19.5 B
Total Metals	555	10145	4283	17926	+		8792		7390	1015	7	7497.	7	6589.4		7377.3	_	9800.13	H	10336.9	H	6748.5	_	5924.71		27566.3
NOTES:					1 1					1										,	_					

NOTES:

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

- Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

MW-11 SMS Instruments Inc. Deer Park, NY

Sample Date	NYSAGWQS1	10/22/	/98	1/3/9	9	11/18/	/99	8/10/0	00	3/21/0)1	6/25/	01	10/18/	01	12/13/	01	4/4/02	2	12/4/0	2	3/24/03	3	8/7/03	T	11/8/0)4	6/22/05	T	2/10/0	6	9/12/06	3	8/14/07
VOC ppb or μg/L																																		
1,1,1-Trichloroethane	5																				T				T								T	
1,1-Dichloroethane	5																																	
1,2,4-Trimethylbenzene	5		Ħ		Ħ																T				T								T	
2-Chlorotoluene	5		Ħ		Ħ																T				T				1				T	
4-Chloro-3-Methylphenol	NL		H													1.0	J				1				1				+				1	
Acetone	50	3.8	J			3.2				1.0	JQM	0.9	JQM	1.5		0.5	JQM	2.1			1	1.2			1	1.8		2.1	+				1	
Carbon Disulfide	NL	12.0				1.8		0.4	JQM	3.4							Ė				1				1				+				1	
cis-1,2-Dichloroethene	5	0.6	Ħ		Ħ																T				T				1				T	
Methyl tert-butyl ether	NL		Ħ	2.3	Ħ																T				T	4.5			1				T	
Methylene Chloride	5		H									0.5	.IOM								1				1				+				1	
Tetrachloroethene	5		H																		1				1				+				1	
Toluene	5		t		t t																T		_		7				_				1	
Trichloroethene	5		\Box				T		H		H		H		T		H		十		寸		7		T				+		7		十	
Vinyl Acetate	NL		\Box		Ħ		\Box		П		П		H				П		T		T		寸		T				+		7		T	
Xylene (Total)	5		\Box		Ħ		\Box		П		П		H				П		T		T		寸		T				+		7		T	
Total VOCs	Ů	16.4	t	2.3	t	5.0	T	0.4	H	4.4		1.4		1.5		1.5		2.1	_	0.0	T	1.2		0.0	T	6.3		2.1	+	0.0	1	0.0	\dashv	0.0
SVOC ppb or µg/L		10.1		2.0		0.0		0						1.0		1.0		2		0.0	_			0.0		0.0		2	_	0.0		0.0	_	0.0
Acenaphthene	20		П		П		П		П		П			T	П		П		Т	1	Т		Т	Т	т			Т	т	Т	┪		Т	
4-Methylphenol	NL NL		+		H		+		H		H								\dashv		=		-		+				_				+	
Diethylphthalate	50		+	5	J		+		H						H				+		- †		-		+				+		_		+	
Di-n-butyl phthalate	50		+		-		+		H		H								\dashv		=		-		+				_				+	
Fluoranthene	50	1	+		\vdash		+		H		H				┢		-		-		-		-		+				+		_	-	+	
Naphthalene	10		+		H		+		H		H								\dashv		=		-		+				_				+	
Phenanthrene	50	1	+		\vdash		+		H		H				┢		-		-		-		-		+				+		_	-	+	
Pyrene	50		+		H		\mathbf{H}		H		Н												-		+		Н		_		-		+	
Total SVOCs	50	0	+	5	\vdash	0	+	0	H	0	H	0		0	┢	0	-	0	-	0	-	0	-	0	+				+	0	_	0	+	0
		U		<u> </u>	<u> </u>			U	ш	<u> </u>	ш	-		U	_	U	Ш	U		U	_	U	_	U	_		ш		_	<u> </u>			_	
Metals ppb or μg/L							_						-		I		_	-	_	1	_		_		_	-	_		_					
Aluminum	NL -	52.4	+		H		1		H	35.8	В	98.5	В	47.9	BJ				_	48	В	102	В		+				_		BE		В	NA
Antimony	3		+		\vdash		+		\vdash		Н		_		BJ		H		-				-		+				+	ND ND	_	ND	+	NA
Arsenic	25		В				-		В		Ļ	4.4	RJ	8.2	B		Ļ		_		_		_		+				+		_	ND	+	NA
Barium	1,000	29.7	В	28.9	В	40.7	В	48.1	В	32.8	В	49.6	В	44.1	В	131	В	34.5	В	81.8	В	57.4	В	33	+		H	-	+		В		В	NA
Beryllium	3	<u> </u>	+		H		1		 	0.2	Н	0.27	В	0.43	В				_		_	-	-		+				_	ND	_	ND	+	NA
Cadmium	5		+		-		+	2.6	В		Н		Ļ.		<u> </u>		H		-		В		-		+				+		В	0.20	3E	NA
Chromium	50		+_+	1.3	В		+_+		- -		В	3.4	В		В		Ł		-	4	В		_		+				+		В		3E	NA
Cobalt	NL	4.8	В	4.2	В	7.2	В	6.3	В		В	3.8	В	7.8	В	3.8	В		_	4.3	В	3.2	В		+				_		BE		В	NA
Copper	200	10.9	В	16	В		+		\vdash	8	В	12.2	В		 		H		-				-		+				_		В	ND	+	NA
Iron	300	3760	+	3540	\vdash	4110	+	8270	\vdash	4990	Н	11000	J	6310	J	5340	H	6640	-	8460		12000	-	9000	+				1	2,000	NE	11,800	+	NA
Lead	25		\vdash		\vdash		+		Н		Н								-				_		+				_	ND			В	NA
Manganese	300	297	\vdash	272	\vdash	329	+	439		230		485		218	-	192		161	_	257		217	-	190	4				+		Е		Έ	NA
Mercury	2		\perp		\vdash		1				ш			0.11	В		ш		_		_		_		4				_	ND	_	ND	4	NA
Nickel	NL	_	+	2.5	В		+		Н	2.7	В	3.9	В	4.6	В	<u> </u>	H		+	5	В		_		4		Щ		4		В		В	NA
Selenium	10	1	₩		\vdash		\vdash		H		H		\vdash	<u> </u>	 	4.7	J	2.5	J		4		4		+		Н		4		В		В	NA
Silver	50	_	+		H		+		Н		Щ		H	1.6	В		H		4		_		_		4		Щ		4	ND		ND	_	NA
Thallium	0.5		Ш		Ш		Ш		Ш		Щ		L.	6.3	В		<u> </u>		_		_		_ļ		4					1.5	В		В	NA
Vanadium	NL		Ш		Ш		Ш		Ш	0.7	В		L.	ļ	<u> </u>		<u> </u>		_		_		_ļ		4				4	ND	4		В	NA
Zinc	300	!	Ш		ш		Ш		Ш		Щ		Щ		<u> </u>		Щ		_	13	В		В		4		Щ		4		Е		В	NA
Total Metals		4154.8		3864.9		4486.9		8766		5304.2		11661.07	1	6650.24		5671.5		6838		8873.7		12384.7		9223					12	2318.36		12223.19		0
NOTES:																																		

NOTES:

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	4/19/94	9/8/94	12/5/94	4 3/10/9	5 9	9/29/95	12/5/9	15	7/11/9	96	10/21/9	96	1/16/97	7 5/2	29/97	7/16/	97	10/8	/97	1/15/	98	4/9/9	98	7/16/98
VOC ppb or µg/L																									
1,1-Dichloroethane	5	8.0																		T					
1,2-Dichlorobenzene	3							0.6		0.2	JQM	0.3	JQM							1					
1,4-Dichlorobenzene	5											0.2	JQM												
2-Butanone	NL										Ħ									1				T	
2-Chlorotoluene	5						1.0	1.0		0.2	JQM									1				T	
4-Chloro-3-Methylphenol	NL										Ħ									1					
4-Chlorotoluene	5										Ħ	0.5	JQM							1					
Acetone	50										Ħ								1.4	1					
Benzene	1									0.2	JQM									1				T	
Carbon Disulfide	NL									1.1		0.5	JQM						0.3	JQM					
Chlorobenzene	5						0.6				Ħ			0.5	J									i i	
Chloroethane	5	9.0									Ħ				1					1				i i	
Chloroform	7	0.0									Ħ		\vdash			_		1	0.2	JQM				+	
Methyl tert-butyl ether	, NL		t t		1	\vdash					Ħ		\vdash			-		1		1				Ħ	12.0
Methylene Chloride	5		 	1 1	1				Ħ		Ħ		H				1	t		+	1	t	1	П	
Tetrachloroethene	5		 	1 1	1				Ħ	0.6	JOM	0.3	JOM				1	t		+	1	t	1	П	
Trichloroethene	5		t t	1 1	1 -				\dashv	1.0	JQM	2.1	- Cem		_		1	+		+	†	+	†	H	
Total VOCs	Ů	17.0	0.0	0.0			1.6	1.6	\rightarrow	3.3	04	3.9	\vdash	0.5	0.	,	0.0	1	1.9	+	0.0	1	0.0	+	12.0
SVOC ppb or µg/L		17.0	0.0	0.0			1.0	1.0	_	5.5		5.5		0.0	1 0.		0.0	_	1.5	_	0.0		0.0	_	12.0
	20		т т		_			1			П	_					т —	_	1	J	1	_	1		т т
Acenaphthene 2-Methylnaphthalene	4.7		 						-		H		H		-	-	-	+	0.8	.1		1		+	
	50		-						-		₩		\vdash	-	_			+-	0.6	٦		+-		+	49 E
bis(2-Ethylhexyl)phthalate			-						-		₩		\vdash	-	_			+-	-	+		+-		+	
Butylbenzyl phthalate	50 50		-						-	4	+.+		\vdash	-	_			+-		+		+-		+	
Di-n-butyl phthalate			-						-	4	J		\vdash	-	_			+-	-	+-		+-		+	0.5 J
Fluoranthene	50		-	_				-	_		1				_		-	-	2	J	-	1	-	1	
Naphthalene	10		-	_				-	_		1				_		-	-	2	J	-	1	-	1	
Phenanthrene	50		<u> </u>						_		₩		\vdash					+-	4	J		+-		J	
Phenol	1								_		1							4		+.		1	1	J	
Pyrene	50	_					_		-		₩		\vdash		-			+	1	J		-		-	
Total SVOCs		0	0	0			0	0		4	<u> </u>	0	Ц.	0	0		0	_	10.8	<u> </u>	0	<u> </u>	1		50.1
Metals ppb or μg/L											, ,														
Aluminum	NL										Ш			6.4	В		18.6	В	43.6	BJ		В			
Antimony	3										Ш						2.7	В		4_	4.5	В			
Arsenic	25										ш				В				4.1	BJ					
Barium	1,000									21.8	В	24.2	В	19.7	B 12	5 B	14.6	В	24.8	BJ	20	В	18.8	В	34.7 E
Beryllium	3										Ш														
Cadmium	5										Ш												0.62	В	
Chromium	50	8								2.4	В	9	В				1.3	В	1.1	BJ					
Cobalt	NL									2.5	В	1.6	В	1.4	B 2.	5 B	1.7	В	3.2	BJ					
Copper	200	10		5						1.4	В	1.2	В						8.9	BJ	1.3	В	6	В	
Iron	300	38600	15800	4780	12700	1	460	2040		2900		1380	EJ	6190	453	0	675		1560	J	2550	J	3100		3010
Lead	25	2	2	1	2		8	1																	2 E
Manganese	300	11900	4300	3970	1340	2	2000	5350		2340		2770	EJ	1120	96	2	1220		1090	J	812		894		2110
Mercury	2																								
Nickel	NL	61	28	12	17			22		31	В	13.7	В				1	В			1.1	В			
Selenium	10								П																
Silver	50						i i													1					
Thallium	0.5						1			10.9		8.7	В		3.	1 В				1			5.4	В	
Vanadium	NL										Πİ							1		1				\Box	
Zinc	300	14	116	32							tt		ΙT	5.3	В		2.2	В	1	1	9.4	В		T	3.2 E
Total Metals		50595	20246	8800	1	3	468	7413		5310	Ħ	4208.4	Η,	7347.3	551	0.4	1937.1	Ť	2735.7	1	3408.2	Ť	4024.82		5159.9
IOTES:		- 0000	102.0	, 0000					ш	30.0		.200.4	ш.		001				2.00.7	_	5-100.Z		.02-1.02	_	00.0

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS ¹	10/22	/98	1/3/9	99	11/18	/99	8/10/0	00	3/21/0)1	6/25/0	01	10/18/	01	12/13/0	01	4/4/02	2	12/4/0	2	3/24/03	3	8/7/03	3	11/8/0	4	6/22/0	5	2/10/0	16	9/12/	06	8/14/07
VOC ppb or μg/L																																		
1,1-Dichloroethane	5																																	
1,2-Dichlorobenzene	3		П																														П	
1,4-Dichlorobenzene	5																																	
2-Butanone	NL		\Box																		T	0.4 J	QM											
2-Chlorotoluene	5																																	
4-Chloro-3-Methylphenol	NL		П													1.0	J																П	
4-Chlorotoluene	5		\Box																		T													
Acetone	50					3.0						1.6				0.5	JQM	2.7				1.6				3.8		1.9						
Benzene	1		П																														П	
Carbon Disulfide	NL					1.7										0.2	JQM																	
Chlorobenzene	5		T					0.2															T										П	
Chloroethane	5		T																				T										П	
Chloroform	7		T																				T										П	
Methyl tert-butyl ether	NL		\Box	3.0	\Box				П		T								7		1		T			5.2			7		T		Ħ	
Methylene Chloride	5	i e	\Box	0.0	T		H				\dashv	0.6	JQM		Н				+		+	i	+			V	_		+		\dashv		H	
Tetrachloroethene	5		\top		T		\Box		H		Ħ		Ħ		Н				1		T	t	T						1		Ħ		Ħ	
Trichloroethene	5		\top		T		t		Ħ				H						T		1		1						T				H	
Total VOCs	Ť	0.0	\Box	3.0	T	4.7	H	0.2		0.0	\dashv	2.2	H	0.0	Н	1.7		2.7	+	0.0	+	2.0	+	0.0		9.0	_	1.9	+	0.0	\dashv	0.0	H	0.0
SVOC ppb or µg/L		0.0		0.0			ш	0.2		0.0				0.0	_				_	0.0	_	2.0	_	0.0		0.0			_	0.0		0.0		0.0
Acenaphthene	20				т т		1		П		Т					1	_	T	_	Т	_		₹	Т	_	T	_	-	_	1	Т		П	
2-Methylnaphthalene	4.7	1	+		+		Н		H		\dashv		Н		\vdash				\dashv		+		+	-					\dashv		\dashv		H	
	50		+		++		+		\vdash		-		\vdash			_	J		\rightarrow		-		+						\rightarrow		-		+	
bis(2-Ethylhexyl)phthalate			+		+		+		\vdash		-		H			3	J		-+		+	-	+						-+		-	1	J	
Butylbenzyl phthalate Di-n-butyl phthalate	50 50		+		++		+		\vdash		-		\vdash						\rightarrow		-		+						\rightarrow		-		\vdash	
* '			+		++		+		\vdash		-		\vdash						\rightarrow		-		+						\rightarrow		-		\vdash	
Fluoranthene	50		+		++		+		Н		-		Н		Н				-+		4		4				_		-+		-		Н	
Naphthalene	10	 	+		+		1		H		-		Н		Н				-		+		+		_				-		-		\vdash	
Phenanthrene	50	 	+		+		1		H		-		Н		Н				-		+		+		_				-		-		\vdash	
Phenol	1		+		+		\perp		ш		_								_		_		_						_		_			
Pyrene	50		+		++		+		Н		-	_	Н		Н			_	-+	_	4		4	_			_		-+	_	-		Н	
Total SVOCs		0		0		0	Ш	0	ш	0		0	Ш	0	ш	3		0		0		0	_	0						0		1	\perp	0
Metals ppb or µg/L			, ,																		_		_		_		_						, ,	
Aluminum	NL	53.4	В						Ш			94.5	В	56.3	BJ				4		4	95.8	В						4		BE	55.8	В	165 B
Antimony	3		\perp		\perp				Ш										_		4		_						_	ND		ND		2.5 B
Arsenic	25		\perp											5.9	BJ			2.8	В											ND		3.5	В	ND
Barium	1,000	18.6	В	12.7	В	16.2	В	17.1		17.3	В	22.8	В	21.4	BJ	126	В	12.9	В	39.3	В	26.5	В	23						9.2	В	29.7	В	36.9 B
Beryllium	3		\perp									0.3	В	0.46	В															ND		ND		ND
Cadmium	5		\perp		$\perp \downarrow$	0.4	В	1.4			Щ		Ш								_									0.3	В	0.4	BE	1.3 B
Chromium	50		\sqcup	1	В	2.4	В		Ш	1	В	3.9	В	1.3	В				4		В		_						4	2.1	В	2.1	BE	0.86 B
Cobalt	NL		\perp		$\perp \downarrow$	5.2	В			0.9	В	1.4	В	2	В			1.5	В	2.6	В									1.4	BE	1	В	3.7 B
Copper	200	18.1	В	19.2	В	1.3	В			1.1	В	9.4	В			1.7	В				_									10.2	В	6.4	В	6.4 B
Iron	300			723		543		1880		4190		3070	J	2840	J	1430		1140		2720		5540		6800						6,600	NE	19,700		23,000
Lead	25		$oxed{oxed}}}}}}}}}}}}}}}}}}} $		$oldsymbol{oldsymbol{\sqcup}}$								Ш						_[_[1.0	В	3.2	В	1.8 B
Manganese	300	909		633		1080		1250		1110		1300		1270				811		1720		841		870						249	Ε	956	*E	854
Mercury	2		\Box							,																				ND		ND	Ш	ND
Nickel	NL		Ш	1.8	В	1.4	В		Ш	2.2	В	2.9	В	8.6	В					7.4	В									5.0	В	3.6	В	4.5 B
Selenium	10																	2.5	J											1.3	В	ND		8.3 B
Silver	50					0.8	В																							ND		1.8	В	ND
Thallium	0.5		\prod		ΔŢ	2.7	В														I			T						2.0	В	2.4	В	ND
Vanadium	NL																			[1				1		ND		4.2	В	ND
Zinc	300										П		П				П		T	2.9	В						П		T	45	BE	23	В	37.4 B
Total Metals		999.1	T	1390.7		1653.4		3148.5		5322.5	T	4505.2		4205.96		1557.7		1970.7	T	4498.6	T	6503.3		7693					-	6974.82	T	20792.7	П	24122.66
NOTES:	•	•	•		•								_		_	-							_				_		_	-	_		•	

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range
- BOLD FONT- Compound was detected above instrument detection limit
- Shading and Italics Result is above the NYSDEC AWQS.
- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations
- NA Not Analyzed

Sample Date	NYSAGWQS1	4/19/94	9/8/9	4 1	12/6/94	3/10/9	5 9/2	9/95	12/5/95	7/10/	96	10/15/	/96	1/15/9	7	5/28/97	7	7/15/97		10/7/9	97	1/14/9	98	4/8/9	8	7/15/98
VOC ppb or µg/L																										
1,1,1-Trichloroethane	5	2.0	4.0	1	10.0	10.0				0.8	JQM	0.6	JQM	0.8	J	3.0		5.7		7.3		0.8				
1,1-Dichloroethane	5	12.0	28.0	4	49.0	12.0				3.3		14.0		11.0		89.0**		84.0		60.0		5.3		0.5	JQM	
1,1-Dichloroethene	5				8.8	8.4						8.4	JQM				J	8.7		8.7	JQM					
1,2-Dichlorobenzene	3				0.6												J									
1,3-Dichlorobenzene	5				3.0						Ш	0.2	JQM		_		J						Ш			
1,4-Dichlorobenzene	5		0.8		9.0		1.0					0.3	JQM		_	0.4	J		_							
2-Chlorotoluene	5			_				_							_		_		4						<u> </u>	
4-Chloro-3-Methylphenol	NL			_				_							_		_		4						<u> </u>	
4-Chlorotoluene	5							_		-					-		_		_						-	
Acetone	50			-							Н		+		\dashv		R			1.1			H		H	
Carbon Disulfide	NL 5			Η.	46.0		0.6	В		1.1	\vdash	0.7	JQM		\dashv		+		+	1.1	\vdash		\vdash		┢	
Chlorobenzene	-						_	+	+		\vdash	40.0	+		.1	704	+		+		\vdash		\vdash		┢	
Chloroethane Chloroform	5 7	3.0	2.0	-	3.0	2.0		+		1.9	\vdash	43.0		28.0	J	70°		18.0	+	3.4	H				┢	
Chloromethane	NL	-		-				+			\vdash				\dashv				+	0.3	JQM				┢	
cis-1,2-Dichloroethene	5	-		-				+			\vdash	0.1	IOM		\dashv	3.0		1.6		0.7	JQM				┢	
Ethylbenzene	5			+				+		1		0.1	Jum		\dashv	3.0	+	1.0	+	0.7	Jum		H		H	
Isopropylbenzene	5	2.0						_				0.6	JQM		+		$^+$	0.6	+	0.6	юм		H		H	
m,p-Xylene	NL NL	2.0		H	-	0.9		_		1	H	0.0	JQM		+		+		+		246		Н		H	
Methyl tert-butyl ether	NL NL			H				\dashv		t –	H		П		7	-	$^{+}$		$^{+}$		H		H		H	
Methylene Chloride	5			Ħ				\neg		1	Ħ		П		1		\top		T		П		П			
n-butylbenzene	5			Ħ				1		0.4	JQM	1.0	П		1		1	0.6	T	0.4	JQM		П			
n-propylbenzene	5	0.9	0.6								П		П		T		Т		T		П		П			
O-xylene	NL												П		T											
sec-butylbenzene	5	2.0	1.0			0.6		I		1.8		3.0			J		I	3.0	I	3.5		2.5		2.0		2.1
tert-butylbenzene	5											0.3	JQM		I		Ι			0.3	JQM					
Tetrachloroethene	5					0.9	1.0		0.6	0.4	JQM					1.0		2.0		2.2						
Toluene	5											0.2	JQM				_									
Trichloroethene	5									1.0		2.6					_	1.8		1.7						
Vinyl Chloride	2														_		_		_							
Total VOCs		21.9	36.4	1:	29.4	34.8	2.6		0.6	10.7		75.2		39.8		9.9		126.0		91.3		8.6		2.5		2.1
SVOC ppb or µg/L															_		_									
1,3-Dichlorobenzene	5							_			\vdash		\perp		-	-			-						₩	
1,4-Dichlorobenzene	4.7							_		-					-		+		_		١.				-	
2-Methylnaphthalene				-				-			Н		+		\dashv		+		+	2	J		H		H	
Acenaphthalene	20			-				-			Н		+		\dashv		+		+	2	J		H		H	
Dibenzofuran Di-n-butyl phthalate	NL 50			-				-		2	J		+		\dashv	-	+		+	2	J		H		H	
Fluoranthene	50	-		-				+			J				\dashv				+	2	J				₩	
Fluorene	50			+				+		1					\dashv		+		+	2	J		H		H	
Naphthalene	10							_							+		$^+$		+	3	J		H		H	
Phenanthrene	50							_			Н		+		\dashv		\dashv		_	6	J		H		H	
Phenol	1										П		-		7		_				Ť		H	1.0	J	
Pyrene	50										П		-		7		_			1	J		H		Ť	
Total SVOCs		0	0.0		0.0	0.0	0.0		0.0	2.0		0.0		0.0	T	0.0		0.0		20.0		0.0		1.0		0.0
Metals ppb or μg/L																										
Aluminum	NL		90.0								R			58.2	В	17.9	В			21.7	BJ	10.5	В			
Antimony	3			Ħ				1		1	Ħ		П		1		1	3.1	В		M		П			
Arsenic	25										П		П	4.3	В	2.9	В		Т		П		П			
Barium	1,000									74.7	В	68.6	В		В			59.3	B 1	15.0	BJ	99.8	В	72.1	В	70.2 B
Beryllium	3							╧									╧		I							
Cadmium	5														I		Ι		Ι							
Chromium	50											2.9	В		I		Ι		В							
Cobalt	NL			ШΞ						25.7	В	16.4	В		В	14.4	В	9.9			BJ	11.0	В	6.9	В	
Copper	200			Ш							Ш				В					18.2	BJ	1.8	В	2.7	В	
Iron	300	5150.0	1060.0		130.0	12100.0	9280		11200.0	16400.0		7770.0	EJ	16500.0	_	10400.0	_ :	560.0	6	660.0	J	7320.0	J	2690.0	<u> </u>	6520.0
Lead	25	2.0	4.0		1.0	1.0	5.0			1	R		Ш	2.5	В		_		_		Ш		Ш		<u> </u>	0.7 B
Manganese	300	1630.0	4700.0	44	400.0	3250.0	4490	.0	4510.0	3180.0	Ш	2710.0	EJ	2120.0	_	1720.0	_ 1	810.0	1	730.0	J	1900.0	Ш	1250.0	1	1140.0
Mercury	2			$\sqcup \!\!\! \perp$					\perp	1	Ш		Н		_		4		+		Ш		Ш		1	\vdash
Nickel	NL	12.0	34.0	2	23.0	26.0	20.0)	26.0	2.2	В	7.6	В		_		4	1.8	В	2.5	BJ	1.9	В	2.4	В	0.0
Selenium	10			$\vdash \vdash$			_	_		1	Н		Н		_		_	-	+		Н		Н		1	
Silver	50			$\vdash \vdash$			_	_		L	Н		Н		_		_	-	+		Ы		Н		1	
Thallium	0.5			$\vdash \vdash$			_	_		11.9	Н	11.2	Н		_		_	-	+	3.6	BJ		Н		1	
Vanadium	NL			$\vdash \vdash$			_	_	+-+	-	Н		Н		-		_	-	+		Н		Н		-	
Zinc	300	24.0	243.0		20.0	l		_	l	1	R		R	42.9	J		+		В		R	46.9	J		R	9.3 B
Total Metals	<u> </u>	6818	6131	11	1574	15377	1379	15	15736	19694.5		10586.7	Ш	18833.9		12209.2	1 5	453.1	8	567.2	Ш	9391.9	Ш	4024.1	<u> </u>	7740.23
NOTES:																										

- NOTES:
 Results in parts per billion (ppb) or micrograms per liter (ugfl)
 U not detected above instrument detection limit
 J estimated value
 B analyte found in associated method blank
 E value exceeds calibration range
 BOLD FONT- Compound was detected above instrument detection limit
 Shading and lailiser. Result is above the NYSDEC AWOS.
 1 Division of Water Technical and Operational Guidance Series
 (TOGS) (1.1.1): Ambient Water Quality Standards and
 Quidance Values and Groundwater Effluent Limitations
 NA Not Analyzed

Sample Date	NYSAGWQS1	10/21	/98	1/12/	99	11/16/	/99	8/8/0	0	3/21/0)1	6/19/0)1	10/16/	01	12/11/	01	4/2/02	2 12/3/	02	3/24/03	8/5/03	11/8/04		6/22/05	2/1	0/06	9/12/0	06	8/14/07
VOC ppb or μg/L																														
1,1,1-Trichloroethane	5				П	0.8	JQM		П								П							Т						
1,1-Dichloroethane	5	0.9	П			26.0	П	8.0		8.0								0.4	JOM		0.6 јам	8.9		╅					П	
1,1-Dichloroethene	5		П				П																	╅	2.8				П	
1,2-Dichlorobenzene	3					0.3	IOM																							
1,3-Dichlorobenzene	5					0.3	JOM							0.5	JOM															
1,4-Dichlorobenzene	5		\vdash		\top	0.5	JOM		Н					2.0				0.4	JQM	-				+						
2-Chlorotoluene	5		+		+ +	0.2	JOM		1					0.7	JQM			0.4	Jum	+				+		_			1	_
4-Chloro-3-Methylphenol	NL NL		+			0.2	Just		\vdash					0.7	Jum	0.4	J			+				+			_		H	
4-Chlorotoluene	5		+				+		\vdash					1.9		0.4	3			+				+			_		H	
Acetone	50		+			0.9	1014	0.6	JOM			0.7	JQM	1.0		0.5	JQM	0.8	JQM	+	1.3			+	4.1 F		_		H	
	NL NL		+		+	5.4	JQM	0.6	JQM			0.7	JOM	0.5	.IOM		JQM	0.0	JOM	+	1.3			+	4.1 F	`	-		H	
Carbon Disulfide	5	-	+		+	5.4	+		+						JQM		JQM			+-				-		_	_	-	\vdash	_
Chlorobenzene		-	+		+		+		+					15.0		53.0	\vdash	0.5	JQM	+-			3.1	-		_	_	-	\vdash	_
Chloroethane	5		+		+	28.0	+	13.0	-											+	1.9	10.0		+	3.2	_			\vdash	
Chloroform	7		+		-		+	8.0	JQM											-	0.3 јом			-			_		\vdash	
Chloromethane	NL		ш		1				_											1				_						
cis-1,2-Dichloroethene	5					2.0		0.6	JQM					0.4	JQM							0.7		_	0.8					
Ethylbenzene	5															0.4	JQM													
Isopropylbenzene	5																													
m,p-Xylene	NL		ШŢ		ШŢ		ШŢ		L		ШŢ		L٦		ШĪ		ШГ			ш_			ЩТ	Ш			L_	L	ШΤ	
Methyl tert-butyl ether	NL		Ш	0.9					Г															I						
Methylene Chloride	5											0.4	JQM																	
n-butylbenzene	5		П		ΤŢ		\Box		П		П		П		П		Πİ							T					П	
n-propylbenzene	5																													
O-xylene	NL		П		T				Т		П		П	1.2	П	1.7	Ħ			1				\top					H	
sec-butylbenzene	5	1.3	\vdash	0.7	\top	1.5	+	1.4	1	0.8								0.7	JQM	-	1.4	1.3		+	1.9					
tert-butylbenzene	5	1.0	+	0.,	+ +	1.0	+ +		1	0.0								0.,	Jum	+	1.4	1.0		+	1.0	_			1	_
Tetrachloroethene	5		+				+		\vdash											+	0.6 Jan			+	6.1		_		H	
	5		+		+		+		\vdash											+	U.6 JQM	_		+	0.1		-		H	
Toluene	5	-	+		+	0.8	JQM	0.3	JQM								\vdash			+-	0.2 JQM		-	-	3.5	_	_		\vdash	_
Trichloroethene			+		+		JQM		JQM											+	U.2 JQM			+	3.5	_			\vdash	
Vinyl Chloride	2		+		-	2.0	+	0.4	-											-				-		-			\vdash	
Total VOCs		2.2	Ш	1.6		68.7	Ш	25.1	_	8.8		1.1		22.2		56.4		2.8	0.0	<u> </u>	6.3	20.9	3.1		22.4	0.0	<u> </u>	0.0	Ш	0.0
SVOC ppb or µg/L																										_				
1,3-Dichlorobenzene	5		ш		1				_							1.6				1				_						
1,4-Dichlorobenzene	4.7															6.8														
2-Methylnaphthalene	4.7																													
Acenaphthalene	20																													
Dibenzofuran	NL																													
Di-n-butyl phthalate	50																													
Fluoranthene	50				П																									
Fluorene	50																													
Naphthalene	10		П				П																	╅					П	
Phenanthrene	50																													
Phenol	1		+		1 1				-											+				+					H	
Pyrene	50	l	+		+		+1		\vdash		H		H	-	Н	-	\vdash		H	+			+	+	-	+	+	 	H	
Total SVOCs	30	0.0	+	0.0	+	0.0	+	0.0	\vdash	0.0	Н	0.0	Н	0.0	Н	8.4	\vdash	0.0	0.0	+-	0.0	0.0	1	+	-	0.0		0.0	H	0.0
Metals ppb or μg/L		0.0		0.0		0.0	ш	0.0	_	0.0	ш	0.0	_	0.0	_	0.4		0.0	U.U	1	0.0	0.0		_	_	0.0		0.0		0.0
	MI		I n	0.0	I n		1			220.0	В	07.0	В	50.2	В					_	407.0			-		00.	e le-	0.4	В	66.4
Aluminum	NL	5.1	В	9.9	В		+		⊢	228.0	В	97.8	В	56.3	В	-	\vdash			1	107.0 B		-	+		82.4	6 BE	84	В	66.4 B
Antimony	3		+		+		+		ــــ		Ш		Ш		Ш		H		\vdash	1			_	4				-	\vdash	4.7 B
Arsenic	25		\perp		\perp	2.6	В	4.0	В		Ш		BJ		BJ		ш		В	1				4		3.2			В	
Barium	1,000	58.6	В	69.0	В	52.8	В	68.5	В		В	86.4	В		В	196.0	В	99.7	B 74.2	В	69.3 B	72.0		4		103	3 B	39.4	В	29.2 B
Beryllium	3									0.1	В	0.4	В	0.5	В															
Cadmium	5		ШŢ		ШŢ		ШŢ		L		ШŢ		L٦		ШĪ		ШГ			ш_			ЩТ	Ш		1.4	В	0.89	BE	1.7 B
Chromium	50		П	3.1	В	3.1	В	2.1	В	2.2	В	4.0	В	3.0	В	3.0	В		3.5	В				Т		3.1	В	1.9	BE	3.4 B
Cobalt	NL	4.5	В	11.4	В	9.8	В	9.8	В	6.3	В	16.2	В	22.4	В	17.3	В	15.7	B 17.0	В	14.6 B	22.0		1		5.6	BE	2.3	В	5.3 B
Copper	200	9.0	В	17.4	В	0.8	В	0.0	П	1.5	В		В		R	4.4	В	1.7	В	R				T		11.5			В	
Iron	300	4410.0	П	10400.0	,	9220.0		9140.0	П	12000.0				14500.0				10000.0	10200.0		8650.0	16000.0		T				15,400		40,200
Lead	25		П		T				Т		П		П		Н		Ħ			1				T		1.0			В	0.84 B
Manganese	300	1070.0	\Box	1200.0	\vdash	2750.0	\Box	4700.0	т	4410.0	H	3330.0	Н	2420.0	Н	2270.0		2240.0	975.0	1	1430.0	1900.0		$^{+}$		867			*E	401
Mercury	2		+	. 200.0	+	_,	+	,, 00.0	H	10.0	H	2000.0	H		Н		H		3.3.0	+	. 400.0	. 300.0		+	-	207			-	
	NL	1.3	В	4.6	В	3.2	В	3.2	В	4.8	В	5.7	В	7.4	В	5.8	В		5.2	В	 	 	1	+	-	0.3	В	3.6	В	6 B
Nickel Setenium		1.3	+-	4.0	+-			3.2	P	4.0	В	5.1	В	7.4	-			2.5		+-	 	-	-	+	-	9.3				
Selenium	10	-	R		+	2.6	В		+		Н		Н			4.7	J	2.5	J	+-	 	-	-	+	-	2.2	: В		В	3.3 B
Silver	50		R		+	1.4	В		⊢		Н		Н	2.1	В	-	\vdash			1	-		-	+			_	1.8	В	
Thallium	0.5		+		+	2.6	В		ــــ		Ш		Ш		Ш		H		\vdash	1			_	4		4.4			В	7.8 B
Vanadium	NL		\perp		\perp		\perp		ـــــ		Ш		Ш		Ш		ш			1				4		0.8			В	ND
Zinc	300		R		R		\perp		R		В		R		R		ш		B 6.8	В	4.7 B			4		88			В	85.7
Total Metals	L	5558.53	3	11715.4	Ш	12048.9		13927.6	L	16710.1	Ш	14055.48	Ш	17115.5		14101.2	1	12365.7	11281.7		10275.6	18003.2		Ш		53783	.09	15781.79	∟.	40815.34
NOTES:																														

NOTES:
Resulsin parts per billion (ppb) or micrograms per liter (ugrl)
U - not detected above instrument detection limit
J - estimated value
B - analyte found in associated method blank
E - value exceeds calibration range
BOLD FONT*- Compound was detected above instrument detection limit
Shading and tallisics - Result is above the NYSDEC AWOS.
1 Division of Water Technical and Operational Guidance Series
(TOGS) (1.1.1): Ambient Water Quality Standards and
Quidance Values and Groundwater Effluent Limitations
NA - Not Analyzed

Sample Date	NYSAGWQS ¹	4/19/9	4	9/8/94	1 1	2/6/94	3/10	95	9/29/9	5 1	12/5/95	7	7/10/9	6	10/15/	96	1/15/9	97	5/28/	97	7/15/9	97	10/7/9	97	1/14/9	98	4/8/9	8	7/15/9	98	10/21/98
VOC ppb or μg/L																															
1,1,1-Trichloroethane	5	1.0		2.0	1 2	2.0	2.0		3.0		3.0		1.8		2.1		3.0		1.0		0.8		0.7	JQM	1.2		1.3		0.8	П	0.7
1,1-Dichloroethane	5	0.5		0.7	().6	0.5		2.0		2.0		0.8	JQM	1.1		1.0		0.8	J	0.6		0.4	JQM	0.5		0.6	JQM			
1,1-Dichloroethene	5								0.8		0.7		0.8	JQM	0.7	JQM	0.3	J	0.4	J							0.8	JQM			
2-Butanone	NL																			R											
Acetone	50												i							R											
Carbon Disulfide	NL												0.3	JQM	0.2	JQM															1.4
Chloroform	7												0.5	JQM	0.5	JQM	0.4	J					0.3	JQM			0.2	JQM			
cis-1,2-Dichloroethene	5												0.4	JQM	0.3	JQM	0.4	J													
m,p-Xylene	NL						1.0						i																		
Methyl tert-butyl ether	NL																														
Tetrachloroethene	5	1.0		2.0	1	1.0	1.0		1.0				0.7	JQM	0.8	JQM	0.9	J	0.5	J			0.2	JQM			0.3	JQM			
Trichloroethene	5										1.0		1.2		2.0															\Box	
Total VOCs		2.5		4.7	3	3.6	4.5		6.8		6.7		6.5		7.7	П	6.0		2.7		1.4		1.6	П	1.7		3.2		0.8	\Box	2.1
SVOC ppb or μg/L																															
2-Methylnaphthalene	4.7		П	T					T	T		Т		T		П		П		П		П	2.0	J		П		П		П	\neg
Acenaphthalene	20													T									2.0	J							
bis(2-Ethylhexyl)phthalate	50											+		t								m						m	64.0	В	
Butylbenzyl phthalate	50											+		t								m						m	0.6	J	
Dibenzofuran	NL													- 				T					3.0	J		H					
Fluoranthene	50											+	2.0	J								m						m			
Fluorene	50													Ť									3.0	J							
Isophorone	50													T																	
Naphthalene	10													T									3.0	J							
Total SVOCs		0		0.0	(0.0	0.0		0.0		0.0	+	2.0	t	0.0		0.0		0.0		0.0	m	13.0		0.0		0.0	m	64.6		0.0
Metals ppb or μg/L																															
Aluminum	NL		П		8	9.0	94.0		196.0	1	87.0	\top		R	38.7	В	27.7	В	140.0	В	26.4	В	64.7	B.I	235.0	L. I	41.7	В	41.7	В	125.0 E
Antimony	3										-	+				Ē		Ė		Ē	2.7	В		1		Ť		Ė		Ħ	
Arsenic	25				_			+				+				t		T		\vdash		T		1			3.6	В			
Barium	1,000												54.2	В	55.9	В	63.7	В	80.9	В	89.3	В	101.0	BJ	117.0	В	93.8	В	104.0	В	108.0 E
Beryllium	3				_			+				+		-		Ē		Ħ		Ħ		T		1		Ħ		T		Ħ	
Cadmium	5													- 				T						T		H					
Chromium	50	4.0			_			+				+	7.0	В	5.6	В		T	4.9	В	1.8	В	2.3	BJ	4.1	В	2.4	В			3.2 E
Cobalt	NL NL	-1.0												Ť	0.0	-		T	-1.0	Ť	1.5	В	4.4	BJ		Ť					<u> </u>
Copper	200	19.0	Ħ	4.0		<u> </u>		T				1	1.2	В		H		m		Ħ		Ħ	28.4	J	1.0	В	1.0	В		Ħ	12.9 E
Iron	300	201.0	H	142.0	7	3.0	137.0	\Box	234.0	3	305.0	1		R	95.0	BE		H	259.0	T	47.4	В	79.2	BJ	230.0	J	98.6	В	66.6	В	
Lead	25	2.0					1		2.0	_	1.0	1		R		Ħ		\Box		\Box		Ħ		R		Ħ		Ħ	2.0	В	-
Manganese	300	56.0		17.0	1	6.0	15.0		19.0		23.0	1		В	13.4	BE	13.8	В	24.3	\Box	19.5	Ħ	39.2	J	23.9	\Box	17.3	Ħ	20.2	\vdash	20.1
Mercury	2		H		<u> </u>		1.2.0					\top		Ŧ		Ħ	1.1	Ħ		H		H		Ť		П		H		\sqcap	
Nickel	NL	31.0		15.0	1	4.0						1	8.5	В	12.2	В		\Box		\Box	3.8	В	2.5	BJ	8.0	В	5.4	В		\vdash	4.4 E
Selenium	10		H		<u> </u>							\top		7		Ħ		П		H		T		Ť		Ħ		T		\sqcap	5.7
Silver	50											1		7		Ħ		\Box		\Box		Ħ		П		\Box		Ħ		R	
Thallium	0.5											1		7		Ħ		\Box		\Box		Ħ		П		\Box		Ħ		Ħ	2.1 E
Vanadium	NL											1		7		Ħ				\Box		H		П		\Box		H		\Box	
Zinc	300	24.0		19.0	1	6.0						1		R		R	12.0	JB		\Box	11.0	В		R	24.9	J		R	12.5	В	F
Total Metals		337	H	197	_	208	246	\Box	451	1	516	-	83.9		220.8	Ħ	118.3	Ħ	509.1	T	203.4	Ħ	321.7	Ħ	643.9		263.8	Ħ	247	Ħ	281.4
NOTES:										_				_				•				•		•				•		—	

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS ¹	1/12/	99	11/16/	99	8/8/0	0	3/21/	01	6/19/	01	10/16	/01	12/11/	01	4/2/0	2	12/3/0)2	3/24/0	03	8/5/03	1	11/8/0	4	6/22/05		2/10/0	06	9/12/	06	8/14/07
VOC ppb or μg/L																																
1,1,1-Trichloroethane	5	0.6		0.6	JQM	0.5	JQM	0.8	JQM	0.8	JQM	0.8	JQM	0.9	JQM	1.6				1.5		1.4		1.4		1.8						
1,1-Dichloroethane	5			0.2	JQM	0.3	JQM	0.4	JQM	0.3	JQM			0.3	JQM	0.4	JQM			0.9	JQM	1		0.6		0.7						
1,1-Dichloroethene	5				Ħ			0.3		0.3	JQM					0.6	JQM			0.8		0.8		0.8	T	0.7						
2-Butanone	NL																			0.5	JQM				T							
Acetone	50				Ħ					0.7	JQM					2.0				1.2					T							
Carbon Disulfide	NL			1.2	Ħ	3.7																			T							
Chloroform	7			0.2	JQM					0.3	JQM	0.4	JQM	0.4	JQM	0.3	JQM		h	0.2	JQM				T				Ħ			
cis-1,2-Dichloroethene	5				Ħ																				T							
m,p-Xylene	NL				t								t						h						T				Ħ			
Methyl tert-butyl ether	NL	1.0			Ħ																				T							
Tetrachloroethene	5		m	0.3	JOM.								1						H		t								Ħ			
Trichloroethene	5		Ħ				П		H		\Box		1		H		П		П		H		1		7		T		\Box		H	
Total VOCs	i i	1.6	H	2.5	H	4.5	H	1.5	H	2.4	H	1.2	1	1.6	H	4.9	H	0.0		5.1	H	3.2	-	2.8	1	3.2	$^{+}$	0.0	H	0.0	H	0.0
SVOC ppb or μg/L																					_				_							
2-Methylnaphthalene	4.7		П		П		П		П		П		т		П		П		П		П	Т	T		Т	Т	Т		П		П	$\overline{}$
Acenaphthalene	20		\vdash		\vdash		H		\vdash		+		+		\vdash		H		H		H	+	+		\dashv		+		\vdash		\Box	
bis(2-Ethylhexyl)phthalate	50										H		+	16					H				-		_		+					
Butylbenzyl phthalate	50		H		H		\vdash		H		t		+-		H		\vdash		H		1		+				+		H			
Dibenzofuran	NL NL				\vdash						+		+						H		H		+				+		\vdash		+	
Fluoranthene	50				\vdash						+		+						H		H		+				+		\vdash		+	
Fluorene	50				\vdash						+		+						H		H		+				+		\vdash		+	
Isophorone	50		\vdash		H		\vdash		\vdash		+		+		\vdash		\vdash		H		1		+		\dashv		+	2.0	J		+	
Naphthalene	10		\vdash		H		\vdash		\vdash		+		+		\vdash		\vdash		H		1		+		\dashv		+	2.0	3		+	
Total SVOCs	10	0.0	+	0.0	H	0.0		0.0		0.0	H	0.0	+	16.0		0.0		0.0		0.0		0.0			+		+	2.0	H	0.0		0.0
		0.0	ш	0.0	ш	0.0		0.0		0.0	_	0.0	_	16.0		0.0		0.0	ш	0.0		0.0	_		_		_	2.0		0.0		0.0
Metals ppb or μg/L			1 - 1		_				- 1				1		_				- 1		_		_		_		_				1 - 1	
Aluminum	NL -	26.6	В		\vdash			33.6	В	309.0	J	74.5	BJ	225.0				142.0	В	209.0	\vdash		+		-+		_	53.0	BE	82	В	
Antimony	3		\vdash		₽		\vdash		\vdash		+		+		\vdash		\vdash		\vdash		1		_		-		_	ND	\vdash	ND	\vdash	8.3 B
Arsenic	25				₽		-		-		+	4.6	BJ		-		-		-		+		_		-		_	ND	-	ND	-	ND
Barium	1,000	87.9	В	84.4	В	73.7	В	71.4	В	83.5	В	74.7	В	137.0	В	58.5	В		В	64.8	В	61.0	_		_		_	67.2	В	69.6	В	76.9 B
Beryllium	3				\vdash			0.1	В	0.3	В	0.5	В						В				_		_		_	ND		ND		ND
Cadmium	5		\sqcup		Ш	7.6	\sqcup		₩	0.6	BJ		1		₩		\sqcup		В		H		_		_		_	72.8		72.8	Е	65.5
Chromium	50	2.5	В	2.6	В	2.8	В	2.2	В	6.1	В	4.4	В	4.2	В	2.4	В	3.6	В	3.1	В		_		_		_	7.8	В	5	BE	
Cobalt	NL	2.1	В	1.4	В	2.2	В		₩		Щ		4_		₩	15.8	В		Щ		H		+		4		_	1.1	BE	0.81	В	0.87 B
Copper	200	13.6	В		Ш		\sqcup		₩	10.9	В		R		₩		\sqcup		Ш		H		_		_		_	32.9		19.6	В	15.3 B
Iron	300	0.0	R	45.0	В		R	42.6	В		R	166.0	J	286.0	₩		\sqcup	129.0	Ш	183.0	H		_		_		_	746	NE	210	ш	241
Lead	25		\sqcup		Ш		\sqcup		₩		R		R		₩		\sqcup		Ш		H		_		_		\perp	8.0	В	1.7	В	ND
Manganese	300	15.3	Ш	15.6	\sqcup	16.7	Н	13.1	В	22.3	Ш	15.8	1	19.6	\sqcup	9.4	В	15.8	Ш	15.8	\sqcup	14.0	_		_		_	12	BE	5.9	B*E	6.3 B
Mercury	2		Ш		Щ		Щ	0.1	В		Щ	0.2	В		\sqcup		Щ		\sqcup		Щ				_		_	ND	\sqcup	ND	\sqcup	ND
Nickel	NL	4.2	В	4.6	В	4.0	В	4.8	В	6.8	В	8.7	В	7.3	В	3.1	В	6.2	В	7.4	В	8.3			_		_	15.1	В	11.2	В	9.2 B
Selenium	10		Ш	2.9	В				Ш				1	4.7	J	2.5	J		Ш		Ш						_	3.3	В	2.2	В	10.7 B
Silver	50		Ш	0.4	В				Ш			1.5	В		Ш				Ш		Ш						_	ND	ш	ND	Ш	1.4 B
Thallium	0.5		Ш	2.3	В		Ш		Ш						Ш		Ш				Ш						_	ND		ND		ND
Vanadium	NL		Ш	0.6	В		Ш		Ш						Ш		Ш				Ш						\perp	ND		1.1	В	ND
Zinc	300		R				R	6.8	В		R		R			6.8	В		В	9.0	В							72	Е	74		67.2
Total Metals		152.2		159.8	\coprod	107		174.7		439.44		350.87		683.8		98.5		369.18	oxdot	492.1		83.3					10	084.73		556.11		528.87
NOTES:																																

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

MW-14 SMS Instruments Inc. Deer Park, NY

	1																										
Sample Date	NYSAGWQS ¹	4/19/94	9/8/94	1 12/6	6/94	3/10/9	5 9,	/29/95	12/5	/95	7/10/	96	10/15/	96	1/15/9	7	5/28/9	97	7/15/9	97	10/7/9	7	1/14/9	98	4/8/9	8	7/15/98
VOC ppb or μg/L																											
1,1,1-Trichloroethane	5					0.6			1.0		0.6	JQM	1.4		6.0		2.0		4.0		7.5		6.0		4.9		87.0
1,1-Dichloroethane	5		0.9			0.8					0.5	JQM	1.0	JQM	3.0		14.0		25.0		71.0		15.0		6.9		89
1,1-Dichloroethene	5																0.7	J			0.7	JQM					2.0
1,4-Dichlorobenzene	5																0.4	7			0.2	JQM					
2-Butanone	NL																	R									
2-Chlorotoluene	5																										
Acetone	50																	R			0.6	JQM					
Benzene	1										0.2	JQM															
Bromodichloromethane	50																										
Carbon Disulfide	NL		3.0				2	2.0 E	3		0.3	JQM	0.5	JQM													
Chlorodibromomethane	NL																										
Chloroethane	5																										0.8
Chloroform	7																										
cis-1,2-Dichloroethene	5			T i																	0.3	JQM					0.5
Dibromochloromethane	50													П													
Dichloromethane	NL													П													
m,p-Xylene	NL					Ì								П							0.3	JQM					
Methyl tert-butyl ether	NL																										1.0
Methylene Chloride	5																										
Tetrachloroethene	5									1	0.3	JQM	0.2	JQM	4.0		0.6	J	0.7		0.6	JQM			0.4	JQM	0.6
Toluene	5									1			0.2	JQM					1.3								
Trichloroethene	5										0.7	JQM	2.6						0.7		0.8	JQM		H			1.3
Total VOCs		0.0	3.9	0.0		1.4	- 2	2.0	1.0	1	2.6		5.9		13.0		17.7		31.7		82.0		21.0		12.2		182.2
SVOC ppb or µg/L				_																		_					
bis(2-Ethylhexyl)phthalate	50		T	$\overline{}$		П	Т	Т	Т	$\overline{}$		$\overline{}$	Г	П				П				П		П			
Di-n-butyl phthalate	50				\top		_		1	+	4	J						П				_					
Naphthalene	10			-								Ť									0.5	J.					
Phenanthrene	50				\top		_		1	+								П			1.0	J					
Phenol	1				\pm			h		+-		1		\vdash				\vdash				Ť		H	2.0	J	
Total SVOCs	·	0	0.0	0.0	\pm	0.0	-	0.0	0.0	+-	4.0	1	0.0	\vdash	0.0		0.0	\vdash	0.0		1.5		0.0	H	2.0	ŭ	0.0
Metals ppb or μg/L			0.0	0.0		0.0		,.0	0.0	_		_	0.0	_	0.0	_	0.0	_	0.0	Н	1.0	_	0.0		2.0		0.0
Aluminum	NL		1270.0	$\overline{}$		109.0	22	4.0	_	_		Г	700.0		236.0	J	197.0	ь	24.3	В	52.2	вЈ	152.0	В	79.1	В	35.1 B
Antimony	3 3		1270.0	-	+	109.0	30	4.0	+	+-		ĸ	700.0	Н	230.0	J	197.0	В	2.0	В	32.2	БJ	152.0	В	79.1	ь	33.1 B
•	25		11.0	-	+		-		+	+-		1		Н	4.0	В	2.4	В	2.0	В		-		H			
Arsenic	1,000		11.0		+	-	_		-	+	33.6	В	58.5	В	4.9 50.3	В	45.1	В	46.8	В	17.7	BJ	63.5	В	49.3	В	60.6 B
Barium	3		+	-	+		-		+	+-	33.0	Р	36.3	ь	50.3	ь	45.1	В	40.0	В	17.7	БJ	63.5	В	49.3	ь	00.0 Б
Beryllium	5		+	_	+	-	_			+-		+	1.2	В				ш				-		-			
Cadmium			740	_	+		_		-	+-				_				Н		_		-					
Chromium	50 NL		74.0	_	+	-	_			+-	4.0	-	18.8	J	-,,	В		ш	1.1	В		-		-		_	
Cobalt					+					+-	1.3	В	2.6	В	1.4	В		⊢				-		L.		В	
Copper	200		106.0	4.0	\perp				+	_	3.2	В	24.4	В	34.5			В	2.0	В	321.0	J	8.8	В.		В	
Iron	300	3460.0	6310.0	3280.	0	13200.0	_	0.00	7620.)	10900.0		66100.0	EJ	36300.0		30300.0	Н	6690.0		1330.0	J	33000.0	J	11900.0		5690.0
Lead	25	2.0	9.0		+	1.0		8.0	2.0	+-	0.0	+-	4.2	H	4.4	Н		Н		H		R		\vdash		Н	2.6 B
Manganese	300	327.0	1970.0	83.0	+	57.0	11-	40.0	904.0	+	1040.0	1	772.0	EJ	857.0		757.0	Н	917.0	Н	194.0	J	330.0	H	359.0	\Box	676.0
Mercury	2				+		+-		-	+-		⊬		늰		Ų		Н		H				H		_	
Nickel	NL	-	59.0	18.0	+		1:	2.0	-	+	4.6	В	24.9	В	5.5	В		Н	4.4	В	8.3	BJ	2.7	В	3.8	В	
Selenium	10		1	_	+		-			4		╄		Н				Ш		Щ		_		Щ		Щ	
Silver	50	—	1	_	Ш	ļ	_	_		_		₩	<u> </u>	Н		Щ		Щ		Щ		_		Щ		Щ	R
Thallium	0.5		\perp	_	Щ		_		-	\perp	5.5	В		В				Ш		Ш		_	5.1	В		Ш	
Vanadium	NL		\perp	_	Щ				-		2.8	В	4.7	В	2.0	В		Щ		Щ		_	1.4	В		Ц	
Zinc	300	7.0	155.0	5.0	Ш							R		R	20.3	J		Ш	5.1	В		R	16.0	В		R	2.9 B
Total Metals		3796	9964	3390		13367	38	504	8526		11991		67716.3		37516.3		31312.8		7694.2		1923.2		33579.5		12400.5		6467.2
NOTES:					_					_						_				_							

NOTES:

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS ¹	10/21/	98	1/12/9	99	11/16/	99	8/8/0	00	3/26/0	01	6/19/	01	10/16/	01	12/11/	01	4/2/0	2	12/3/0	2	3/24/0	3	8/5/03	3	11/8/0)4	6/22/0)5	2/10/0	16	9/12/0	6	8/14/07
VOC ppb or μg/L																																		
1,1,1-Trichloroethane	5	58.0		5.1		0.5	JQM	4.3		0.4	JQM			0.4	JQM	0.6	JQM					0.6	JQM	0.6										
1,1-Dichloroethane	5	60	П	4.7		0.9	JQM	6.1		0.8	JQM			0.9	JQM	2.4		0.5	JQM			2.8		3.4				0.5						
1,1-Dichloroethene	5	1.1	M																															
1,4-Dichlorobenzene	5		П																			0.7	JQM											
2-Butanone	NL		M																			0.5	JQM											
2-Chlorotoluene	5		П																			0.3	JQM											
Acetone	50		M					0.4	JQM			1.1				0.5	JQM	3.4				1.8				1.4								6.0
Benzene	1		П																															
Bromodichloromethane	50		M			0.6	JQM	0.3	JQM																									
Carbon Disulfide	NL	1.2				2.2		1.0	JQM																									
Chlorodibromomethane	NL		Ħ		Ħ	0.5	JQM						T								\neg		7										7	
Chloroethane	5		Ħ		Ħ								T								\neg		7										7	
Chloroform	7		Ħ		tt	1.0	Ħ	1.4													\neg													
cis-1,2-Dichloroethene	5	0.6	tt		tt		Ħ			0.3	JQM		T				П		Ħ		\vdash	2.4	7	4.7	7								7	
Dibromochloromethane	50		H		\Box		H	0.5	JQM		f		H		H		П		Ħ		\dashv		7		_								7	
Dichloromethane	NL NL	0.7	H		\Box		H		Ħ		\Box		H		H		П		Ħ		\dashv		7		_								7	
m,p-Xylene	NL		Ħ		tt								i i												_									
Methyl tert-butyl ether	NL		Ħ	0.8	tt		Ħ		т		T		Ħ		H		H		Ħ		o		7										7	
Methylene Chloride	5		Ħ	0.0	tt		H		\vdash		t	0.5	.IOM		H						\dashv													
Tetrachloroethene	5		Ħ		tt		H		+		+				\vdash	0.3	JQM		-		+	0.2	JQM										_	
Toluene	5		Ħ		tt		H		+		+		+		\vdash	0.0	- Julian		-		+	0.2	-										_	
Trichloroethene	5	0.8	t		++		1						1		H						-		+	1.6	_		H						+	
Total VOCs	Ü	122.4	Ħ	10.6	tt	5.7	H	14.0	+	1.5	+	1.6	+	1.3	\vdash	3.8	-	3.9	-	0.0	+	9.3	_	10.3		1.4		0.5		0.0		0.0	_	6.0
SVOC ppb or µg/L		12214				0		. 4.0			_				_	0.0		0.0	_	0.0	_	0.0	_		_		_	0.0	_	0.0		0.0	_	0.0
bis(2-Ethylhexyl)phthalate	50		П		П		П		П		П		Т			0.8	J		П		т	- 1	Т	1	_				П	1		2	J	
Di-n-butyl phthalate	50		H		++		H		+		+		+		H	0.0	J		-		+		-		-				-			-	-	
Naphthalene	10		H		++		H		+		+		+		H		1		-		+		-		-				-				-	
Phenanthrene	50		1		++		H		+		+		1		H				-		-		-				Н						-	
Phenol	1		H		++		H		+		Н		+		Н		Н		-		+	-	\dashv				Н						\dashv	
Total SVOCs	'	0.0	H	0.0	++	0.0	H	0.0	+	0.0	Н	0.0	+	0.0	Н	0.8	Н	0.0	-	0.0	+	0.0	\dashv	0.0			Н			0.0		2.0	\dashv	0.0
		0.0	ш	0.0	<u> </u>	0.0	ш	0.0	ш	0.0	ш	0.0		0.0	ш	0.6	_	0.0	_	0.0	ш	0.0	_	0.0	_		ш		ш	0.0		2.0	_	0.0
Metals ppb or μg/L											_				_						_		_	-	_							-	_	-
Aluminum	NL	115.0	В	13.9	В		Ш		\perp	1100.0		157.0	В	107.0	BJ		ш	159.0	В	418.0	_	198.0	В	340.0	_		Ш				Ε		В	1,040
Antimony	3		1		₩				-		4		4								_		_							ND		ND	_	15.7 B
Arsenic	25		ш		4		Щ		ш		4		4	6.6	BJ				_		_		_							ND		11.4	В	ND
Barium	1,000	47.5	В	33.6	В	16.8	В	24.7	В	64.0	4	69.4	В	43.1	BJ			37.4	В	106.0	В	84.3	В	70.0						15.9	В	35.1	В	78.7 B
Beryllium	3		ш		4		Щ		ш		4	0.4	В	0.5					_		_		_							ND		ND	_	ND
Cadmium	5		ш		44	0.4	В	5.3	ш												_				_					0.9	В	0.21	BE	2.7 B
Chromium	50		ш	1.0	В		Щ		ш		4	6.3	В	3.9	В			1.3	В	2.3	В		_							1.7	В		BE	2.9 B
Cobalt	NL		1	1.5	В	1.0	В	2.5	В			1.2	В										В		_						BE	ND	_	4.6 B
Copper	200	20.9	В	15.7	В		ш	2.1	В	15.0	ш	10.4	В		R	5.2	В	7.4	В		R		В	12.0			Ш		Щ	12.8	В	ND		ND
Iron	300	36500.0	Ш	1830.0	ш	890.0	Щ	8080.0	ш	71000.0	Ш	4720.0	J	16900.0		20200.0	Щ	19900.0	Ц	0.00808	<u> </u>	9100.0	_	58000.0	_		Щ		Щ	27,100	NE	48,000	_	296,000
Lead	25		\sqcup		\vdash		Ш		\perp		ш		R		R		Н		Ц		$\sqcup \!\!\! \perp$		_		_		Ш		Щ		В		В	12.7
Manganese	300	733.0	\sqcup	514.0	Ш	222.0	Щ	103.0		250.0	Ш	308.0	Ш	93.6	Ш	130.0	Ш	80.7	Щ	269.0	Щ	123.0		260.0			Ш			287	Ε	910	*E	1,290
Mercury	2		\sqcup		$\perp \perp$		ш		ш	4.1	QH		\perp		Ш		Ш		Щ		\sqcup		_				Ш			ND		ND	_	0.052 B
Nickel	NL	4.2	В	3.2	В		ш	2.1	В	5.4	ш	8.7	В	2.9	В	3.9	В		Щ	3.8	В	4.0	В	5.7			Ш			6.1	В		В	13.3 B
Selenium	10		Ш		$\perp \perp$		Ш						Ш		Ш	4.7	J	2.5	J	5.6	$\sqcup \! \! \perp$								Ш	ND		ND		41.2
Silver	50		Ш		$\perp \perp$		Ш					8.0	В	2.3	В		Щ		Щ		$\sqcup \! \! \perp$								Ш	ND			В	ND
Thallium	0.5		Ш		Ш	2.7	В							7.7	В															ND			В	64.8
Vanadium	NL		Ш		Ш		Ш		Ш				Щ	1.1	В		Щ		Щ	1.8	В								Ш	2.2	В		В	4.5 B
Zinc	300		R		R				BR	11.0	QB		R		R		oxdot	5.1	В	8.4	В]					29	BE	42	В	60.8
Total Metals		37420.6		2412.9	\prod	1132.9		8219.7		72449.5		5282.25		17168.73		20343.8		20193.4		81614.9		9515.3		58687.7						27793.4		49176.9		298632
NOTES:																																		

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

NA - Not Analyzed

30

MW-15 SMS Instruments Inc. Deer Park, NY

																									_	
Sample Date	NYSAGWQS1	4/19/94	9/8/94	12/15	94 3/10/9	5 9/2	9/95	12/5/9	5 7/	/11/9	6 1	10/16/9	96	1/16/9	7	5/28/97	7	7/15/9	7	10/7/9	7	1/14/9	98	4/9/98	8	7/15/98
VOC ppb or μg/L																										
1,1,1,2-tetrachloroethane					П		Т				Т	T	Т		Т		Т	T							т	
1.1.1-Trichloroethane	5		1.0	0.6		1.0		10.0	4	1.6	7	13.0		6.0	7	4.0	7	4.3		14.0		4.5		4.4	\neg	3.2
1,1-Dichloroethane	5	2.0	1.0	0.8	3.0	2.0	1	20.0	18	8.0		33.0		14.0	7	9.0	7	6.1		12.0		4.2		3.1	ΠŢ	3.4
1,1-Dichloroethene	5								0).2	JQM	0.4	JQM		7		7			0.3	JQM				\neg	
1,4-Dichlorobenzene	5						1		_).5	JQM				7		7								ΠŢ	
2-Butanone	NL								0).4	JQM				7		R								\neg	
2-Chlorotoluene	5								_	0.3	JQM				7		7								\neg	
4-Chloro-3-Methylphenol	NL														7		7								\neg	
Acetone	50						1								7		R								ΠŢ	
Bromodichloromethane	50										-		T		===		Ť						П		ΠŤ	
Carbon Disulfide	NL				1 1	9.0	В				\dashv	0.2	J		+		\dashv								一	
Chloroethane	5	4.0									T T	0.3	IOM		T		T								\neg	
Chloroform	7	1.0			1 1		+				\dashv	0.0	-		+		\dashv								一	
cis-1,2-Dichloroethene	5				1.0			3.0	0	0.3	IOM	0.2	юм		T		T								\neg	
Dibromochloromethane	50		1 1					0.0				J			\dashv		\dashv				Н		Н		\dashv	
Methylene Chloride	5		1 1				-1-				-		+		\dashv		+						Ħ		\dashv	
Meth Tert Butyl Ether	ŭ				1 1		_				\dashv				\dashv	- t	\dashv						\vdash		\neg	
Tetrachloroethene	5				1 1		+	0.5	0).4	IOM	0.6	юм	0.7	J.	0.4	J.			0.3	юм				一	
Toluene	5				1 1		_	0.0	Ť		-	0.2	IOM		Ť	0.4	Ť			0.0	o cum		\vdash		\neg	
Trichloroethene	5		+ +		 		_	1	1	.4	-	2.7	-		+		\dashv	-					Н		一	
Total VOCs	, , , , , , , , , , , , , , , , , , ,	6.0	2.0	1.4	4.0	12.0	,	33.5	_	6.1		50.6		20.7		13.4	-	10.4		26.6		8.7	H	7.5	一	6.6
SVOC ppb or µg/L		0.0	2.0	11-4	1.0	1.2.0		00.0			_	00.0	_	20	_	10.4		10.4		20.0		0	Н	1.0		0.0
Benzo(b)fluoranthene	0.002		T 1	_	П	_	T			Т	Т		$\overline{}$		$\overline{}$		$\overline{}$		┪						$\overline{}$	$\overline{}$
bis(2-Ethylhexyl)phthalate	50				 								t				-						H		一	22.0
Butylbenzyl phthalate	50				1 1		_				\dashv				\dashv	- t	\dashv						\vdash		\neg	
Diethylphthalate	50				 								t				-						H		一	0.6 J
Di-n-butyl phthalate	50				1 1		+				\dashv				+		\dashv								一	1.0 J
Di-n-octyl phthalate	50				 								t				-						H		一	1.0
Phenanthrene	50		+ +		 		_	1	-	- 1	-		- 1		+		\dashv	-		0.6	-		Н		一	
Total SVOCs	30	0	0.0	0.0	0.0	0.0		0.0	0	0.0		0.0	t	0.0		0.0	-	0.0		0.6	Ů	0.0	H	0.0	一	23.6
Metals ppb or μg/L			0.0	0.0	0.0	0.0	_	0.0		,		0.0	_	0.0	_	0.0	_	0.0		0.0		0.0	_	0.0	_	20.0
Aluminum	NL		4830.0	_	П	330.	٠.		42	10.0	_	23.5	В	6.2	в		$\overline{}$		_	25.6	BJ	8.5	В	60.8	В	$\overline{}$
Antimony	3		4030.0		++	330.	_	+	12	10.0	+	23.5	В	0.2	-		\dashv	2.6	В	23.0	ы	6.0	ь	60.6	ᅀ	-+
,	25		+		++	-	-	+			+	-	-+		+		\dashv	2.0	В				Н		\dashv	-+
Arsenic Barium	1,000		+	-	 	-	-		44	0.5	В	35.5	В	27.6	В	18.9	В	20.4	В	21.6	BJ	15.5	В	15.0	В	24.5 B
	3		+		++	-	-	+	41	0.5	-	35.5	В	27.0	-	10.9	В	20.4	В	21.0	ы	15.5	ь	15.0	ᅀ	24.5 B
Beryllium Cadmium	5		+	-	 	-	-		-		-		-+		+		-	-			-		H	0.5	В	
Chromium	50		64.0				_	1		0.3	+	11.0	J		+		+				BJ	4.0	В		В	+
Cobalt	NL		64.0				_	1				1.1	В		+		+				BJ	1.9	В	2.7	В	+
		6.0	40.0						_		В	1.1	В						_		BJ		Н		_	
Copper	200		13.0				_	 	_	_	_		F.I		+		_+		_				-	2.7	В	+
Iron	300	101.0	7330.0	2870.0	36.0	877.		251.0	30	30.0	<u> </u>	133.0	EJ		+	54.9	В	30.2	В	62.0	BJ R	10.5	В	70.2	В	
Lead 	25		2.0	14.0		3.0	_				R .								_		••		Н		\dashv	
Manganese	300	4250.0	1700.0	1650.0	2580.0	1680	.0	2250.0	129	90.0	1	1680.0	EJ	2520.0	+	732.0	-	948.0		782.0	J	47.7	Н	46.5	\rightarrow	408.0
Mercury	2		45.0		25.0	+	_	05.0	+-			45.0	_		+		+	4.5	_		.				႕	
Nickel	NL 40	27.0	45.0	_	 	15.0	,	25.0	59	9.3	-	15.9	В		+		+	1.5	В	2.5	BJ	1.5	В	2.9	В	0.0
Selenium	10	-	+	_	 		_	-	_				-+		+								Н		\rightarrow	
Silver	50	-	+	_	 		_	-	_		_		_+		+								Н		\rightarrow	R
Thallium	0.5	\vdash	+				_	1	_			5.3	В		-		4		_		Щ		Н		\dashv	
Vanadium	NL	\vdash	+				_	1	2	2.8	В		_		-		4		_		Щ		Н		\dashv	
Zinc	300	8.0	30.0	5.0	 		+	1			R		R		JB		4	3.7	В		R	11.2	В		R	
Total Metals		4392	14014	4539	2641	290	5	2526	569	97.1	1	1905.3		2556.1	L	305.8		1006.4		910.01		96.8		201.3	ш	432.5
NOTES:																										

NOTES:
Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS ¹	10/21	/98	1/13/9	99	11/16/	99	8/9/0	0	3/26/0	01	6/20/0	01	10/17/	01	12/12/	01	4/3/0)2	12/4/02	2	3/24/03	Т	8/6/03	T	11/8/04	6/23/	05	2/10/0	06	9/12	2/06	8/1	14/07
VOC ppb or μg/L																																		
1,1,1,2-tetrachloroethane																		4.1														· T	1	\top
1,1,1-Trichloroethane	5	6.4		0.9		1.5		1.7		1.1		2.1		3.2		1.8						1.2		0.6			0.5							
1,1-Dichloroethane	5	8.3		1.2		1.8		3.1		2.0		7.7		12.0		8.7		20.0				7.0		3.5			1.3							
1,1-Dichloroethene	5																																	
1,4-Dichlorobenzene	5															0.6	JQM											T				T		
2-Butanone	NL																																	
2-Chlorotoluene	5															0.2	JQM																	
4-Chloro-3-Methylphenol	NL															10	J																	
Acetone	50							0.7	JQM							0.7	JQM	2.2						1.7										
Bromodichloromethane	50	0.8		2.7	Ħ	2.1	Ħ				Ħ								T						T			T		1 1		1	†	\neg
Carbon Disulfide	NL			0.6	t	0.4	JQM			0.6	JQM	1.7					H						+		+			tt				+	†	\rightarrow
Chloroethane	5				t												H						+		+			tt				+	†	\pm
Chloroform	7	1.2		3.9	t	4.5	h				h				H				i i				1		1			1 1				+	†	\neg
cis-1,2-Dichloroethene	5				t											1.4	H	0.3	JQM			1.1	+		+		0.5	tt				+	†	\pm
Dibromochloromethane	50	1		1.6	\vdash	1.4	H		Н		H		1		H		Н	0.0	July	1	\dashv		+		+			+		H		+	t	+
Methylene Chloride	5	i e			Ħ		H		H		H	0.5	.IOM		t		H		П	1	+		+		+			t		Н		+	T	+
Meth Tert Butyl Ether	Ü	†	+		H		H		-		H	0.0	- Cum		Ħ		H		+		_		+		+		1.0	+		+		+	+-	-
Tetrachloroethene	5	i e			Ħ		H	0.2	MOI.		H	0.3	.IOM	0.6	MOI.	0.4	.IOM	0.2	JQM	1	+		+		+			t		Н		+	T	+
Toluene	5	1			\vdash		H		Juni		H	0.0	Jum	0.0	- Design	0	D-Gentle		July	1	\dashv	- +	+		+			+		H		+	t	+
Trichloroethene	5		+		H		H				H		1	0.4	юм	0.3	ю	0.3	IOM		-+	0.4 Jo		-	+	-		++		H	$\overline{}$	+	+	-
Total VOCs	3	16.7	+	10.9	H	11.7	H	5.7		3.7	H	12.3	1	16.2	Jum	24.1	JUM	27.1	JUM	0.0	-+	9.7	am	5.8	+	0.0	3.4	++	0.0	H	0.0	+	0.0	_
SVOC ppb or µg/L		10.7	_	10.3	_	11.7		5.1	Н	3.7		12.0	_	10.2		24.1		27.1		0.0	_	3.1	_	5.0	+	0.0	3.4		0.0	_	0.0	\pm		
Benzo(b)fluoranthene	0.002		Т		П		П		П		П		Т	T T	П	10	J		П	П	т	Т	т	Т	т		Г	ТТ		П	_	一	$\overline{}$	$\overline{}$
bis(2-Ethylhexyl)phthalate	50		+		H		H				H		1		H		ŭ	8.0	-		-+	-	+	-	+	-	1	++		H	$\overline{}$	+	+	-
Butylbenzyl phthalate	50				H	1.0					H		+-		H		H	0.0	ľ		\dashv		+		+			1 1				+	†	-+
Diethylphthalate	50		+		H	1.0	۳				H		1		H		H		H		-+	-	+	-	+	-	1	++		H	$\overline{}$	+	+	-
Di-n-butyl phthalate	50		+	3.0			H				H		1		H		H		H		-+	-	+	-	+	-	1	++		H	$\overline{}$	+	+	-
Di-n-octyl phthalate	50		+	3.0	-		H		H		H					10	J		+		+	-	+		+			+		+	$\overline{}$	+	+-	+
Phenanthrene	50	 	+		\vdash		H		\vdash		H		+-		┢		Ů		+		\dashv		+		+			++		+		+	+-	-
Total SVOCs	50	0.0	+	3.0	\vdash	1.0	H	0.0	\vdash	0.0	H	0.0	+-	0.0	┢	20.0	H	8.0	+	0.0	\dashv	0.0	+	0.0	+			++	0.0	+	0.0	+	0.0	0
		0.0		3.0		1.0	ш	0.0		0.0	ш	0.0	_	0.0	<u> </u>	20.0		6.0		0.0	_	0.0	_	0.0	_	_			0.0	ш	0.0	_		
Metals ppb or μg/L			1 - 1		- 1				_				т.						_		_		_		_		_	т т		11		7		_
Aluminum	NL	53.4	В	44.4	В		H		Н		H	92.8	В	62.6	BJ				+		-	129.0 I	3		+			+	43.2	BE	199			.9 B
Antimony	3		+		H		H		Н		H		1		<u>.</u>				+		-		+		+			+	ND	+	ND	+	9.6	
Arsenic	25		_		L		L		_		Ш		-	5.0	BJ		_		-		_		_		+			1	ND	4_	2	B	1.6	
Barium	1,000	19.8	В	9.8	В	108.0	В	16.2	В	14.0	H	21.3	В	25.6	В	120.0	В	24.7	В	25.8	В	23.6 I	3	25.0	+			+	12.4	В	19.4	_ в	24.	_
Beryllium	3		-		ш		L				Ш	0.4	В	0.7	В				4		_	-	_		+			1	ND	4_	ND	+-	NE	
Cadmium	5		_		L	0.5	В	6.3	_				<u> </u>		<u> </u>		Ļ		1		_		_		4			1 1	4.1	В	0.85	_	NE	_
Chromium	50		-	2.4	В	1.5	В	7.6	В		Ш	4.6	В	27.8		2.7	В	64.9	4	1.9	В	4.5	3		+			1	9.8	В	275		18.	
Cobalt	NL				ш	1.2	В		ш		ш	0.7	В												4			+	1.1	BE	2.6		1.3	
Copper	200	11.3	В	14.2	В		Ш		ш		Ш	11.9	В		R				4		_		_		_			44	9.5	В	10.5		NE	_
Iron	300				R	35.3	В		R				R		R			470.0			_	44.7 I	3		4			1	276	NE	1,730		22	
Lead	25	352.0		1.2	В	1.4	В		ш		ш		R		J			2.2	В						4			+	2.3	В	2.6		NE	
Manganese	300			24.4		4.9	В	8.0	В	16.0		10.3	В	15.5	<u> </u>	59.0		30.4		8.2	В	4.2 I	3	6.7	4			1	28	BE	175		19.	
Mercury	2	.	\perp		\sqcup		Ш		Ш	0.2	QH		1		<u> </u>				\perp		4		_		+			++	ND	Ш	ND	\bot	NE	
Nickel	NL	7.5	В	1.3	В	1.6	В	1.3	В		Ш	5.7	В	8.9	В		В	7.9	В	6.1	В		4		\perp			\sqcup	6.9	В	24.9	В	3	
Selenium	10		1		Ш		Ш		Ш		Ш		1_	<u> </u>	Ц_	4.7	J		Ш		4		1		\perp			\sqcup	ND	Ш	ND	4	19.	
Silver	50		Ш		Ш	0.6	В		Ш		Ш		<u> </u>	1.2	В				igspace				4		\perp			\sqcup	ND	Ш	ND	4	1.6	
Thallium	0.5			3.6	В	3.3	В																					Ш	ND		ND	丄	NE	
Vanadium	NL				Ш		Ш		Ш		Ш								Щ				Ţ					Ш	ND	Ш	1.2	В	NE	_
Zinc	300		R		R		Ш		R		Ш		R		R		Ш		Ш		В		_		4			$\sqcup \downarrow$	20	BE	30	В	20.	
Total Metals		444		101.3	\coprod	158.3		39.4		30.2		147.73	L	151.44	L	194		600.1		44.2		206		31.7	╧			Ш	413		2472.8	5	384	.9
NOTES:																																		

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	4/19/9	4	9/8/94	Т	12/15/9	4 3/1	0/95	9/29/9	95	12/5/9	95	7/11/9	96	10/16	96	1/16/9	97	5/28/9	97	7/15/9	7	10/7/9	97	1/14/9	98	4/9/9	8	7/15/98	3
VOC ppb or μg/L																														
1,1,1-Trichloroethane	5	4.0							0.6		0.7		0.2		1.3		2.0		8.0		2.2		0.9	JQM						٦
1,1-Dichloroethane	5	4.0							0.6		7.0		3.3		34.0		21.0		27**		13.0		16.0		0.8		1.7		0.6	П
1,1-Dichloroethene	5														0.3	JQM			0.4											П
2-Butanone	NL												0.3	JQM						R										٦
4-Chloro-3-Methylphenol	NL																													П
Acetone	50	54.0																					0.8	JQM						П
Bromoform	50																										0.4	JQM		П
Carbon Disulfide	NL														0.6	JQM														٦
Chloroethane	5										9.0		3.5		21.0		2.0		3.0		1.9		1.1				0.8	JQM	0.6	П
Chloroform	7																												0.5	Т
Chloromethane	NL				T								0.3	JQM	1.0	JQM							0.2	JQM			0.3	JQM		T
cis-1,2-Dichloroethene	5				T																									T
Isopropylbenzene	5		T		7										0.3	JQM				H										٦
Methyl tert-butyl ether	NL		1		7			1		П		П		П		П								П		П		П	0.7	٦
Methylene Chloride	5			t	T			+		П		П		Н		H				H						H		H		٦
n-butylbenzene	5		寸	t	十			1		П		П	0.2	JOM	0.2	JQM				H				H		H		H		٦
sec-butylbenzene	5				十						0.6		1.0		1.1						1.1		1.0		0.9		1.0	.IOM	1.4	Т
Tetrachloroethene	5			t	T			+		П		П	0.4	MOI.	0.6	MQI.	0.5	_	2.0	H	1.4		0.5	.IOM		H				٦
Trichloroethene	5		+	i	\dashv	-		\top	1	Н		Н	1.9	Juni	4.1	Just	0.0	Ť		H	1.4		1.1	Jum	0.7	H	0.3	JQM		٦
Trichlorofluoromethane	5			1	+			_	1					-		-				H				\vdash						Ħ
Vinyl Chloride	2			1	+			_	1					-		-				H				\vdash						Ħ
Total VOCs	-	62.0		0.0	\dashv	0.0	0.0	-	1.2		17.3		11.1		64.5		25.5		13.4	H	21.0		21.6	H	2.4	H	4.5	H	3.8	-1
SVOC ppb or µg/L		02.0	_	0.0	_	0.0	0.0			_		_		_	04.0		20.0	_	.0.7	_	20		20	_	2	ш	-1.0	ш	0.0	
bis(2-Ethylhexyl)phthalate	50		Т		Т			Т	Г	П		П		П		П				П				П		П		П		٦
Diethylphthalate	50			- t	\dashv			-												H				H		H		H	0.6	╗
Di-n-butyl phthalate	50		- 1		+	-		_								H		Н		H				H		H		H		J
Di-n-octyl phthalate	50		- 1		+	-		_								H		Н		H						H		H	1.0	Ť
Fluoranthene	50				+			+						H						H				H		H		H		=
Phenol	1		-+	+	+	-		+						Н		Н				H				Н		Н	1.0	J	-	-
Total SVOCs	<u> </u>	0		0.0	\dashv	0.0	0.0	-	0.0		0.0		0.0		0.0		0.0	Н	0.0	H	0.0		0.0	H	0.0		1.0	J	1.6	-
		0	_	0.0	_	0.0	0.0	_	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		1.0		1.0	
Metals ppb or μg/L			_		_		_	_		_		_		1 - 1		-				_	_					- 1		- 1		
Aluminum	NL				-			-	83					R	41.1	В			418				71.4	BJ	47.1	В	21.5			-
Antimony	3		-+		4									Н		\vdash		L		Н				Н		Н	3.3	В		-
Arsenic	25		_		4			_								_	4.3	В		_		_				_		_		_
Barium	1,000		-+		4								27.7	Н	61.1	В	52	В	43.6	В	46.9	В	63.6	BJ	47.5	В	44.9	В	59.9	В
Beryllium	3		_		4			_																				_		4
Cadmium	5		_		4			_								4				ш		_	0.3	BJ		L	0.7	В		4
Chromium	50		_		4			_					15.5		13	J		_	64.1		1	В	91	J	3.6	В	0.72	В	19.6	4
Cobalt	NL		_		_			_						ш			2.2	В			1.8	В	3.8	BJ	2.5	В	3.8	В		_
Copper	200		_		4			_								ш			8	В			71.6	J	1.4	В	12	В		4
Iron	300	587	_	94	4	216	41		279	Ш	75	Ш		R	280	EJ			1200		23.5	В	697	J	653	J	181	Щ	503	4
Lead	25	1	4		4	10		_	1	Ш		Ш		Н		H		Щ		Ш				R	1.4	В		R		В
Manganese	300	852	_	185	4	161	93		25	Ш	14	Ш	22	Ш	21.6	EJ	36.3		1210		1690		1920	J	3830	Щ	4400	Щ	7090	4
Mercury	2		4		4			_		Ш		Ш		Н		H		Щ		Ш				Щ		Щ		Щ		4
Nickel	NL				4					Ш	19	Ш	11.4	В	16.2	В	0	Ш	13.7	В	3.9	В	31.5	BJ	4.2	В	3.7	В	55.9	_
Selenium	10		ļ_		_				<u> </u>	Ш		Ш		Ш		Ш		Ш		Ш				Ш		Ш	3.2	В		_
Silver	50				_					Ш		Ш		Ш		Ш				Ш				Ш		Щ	0.1	В		R
Thallium	0.5				_					Ш		Ш		Ш		Щ				Ш				Щ		Ш		Ш		
Vanadium	NL				[Ш		Щ								oxdot		Ш		Ш		
Zinc	300	11		10		T								R		R	2.7	JB			2.7	В		R	8.6	В		R	7.3	В
Total Metals		1451		289		387	134		388		108		76.6		433	oxdot	97.5		2957.4		1769.8		2950.2		4599.3	$oxed{\mathbb{L}}$	4674.92	$oxed{\mathbb{L}}$	7737.3	
NOTES:																														_

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS ¹	10/21	/98	1/13/	99	11/17	/99	8/9/0	00	3/26/0	01	6/20/	01	10/17	01	12/12/	/01	4/3/02	2	12/4/0	2	3/24/03		3/6/03	1	11/9/04	ı	6/23/05	5 2	2/10/0	6	9/12/0	6	8/14/07
VOC ppb or μg/L																																		
1,1,1-Trichloroethane	5																					1.3		1.7		1.9								
1,1-Dichloroethane	5	2.9	J			2.7		3.1		2.4		6.4										14		30		1.6		2.6						
1,1-Dichloroethene	5																																	
2-Butanone	NL																																	
4-Chloro-3-Methylphenol	NL															10	J																	
Acetone	50							0.6	JQM			0.9	JQM			0.6	JQM	1.7								1.1								
Bromoform	50																																	
Carbon Disulfide	NL			0.8				1.6		0.4	JQM																							
Chloroethane	5	6.4	J			7.9		5.5		3.0		14										3.2		4		0.5		9.0						
Chloroform	7																																	
Chloromethane	NL																																	
cis-1,2-Dichloroethene	5																					0.3 J	QM (0.7		0.5								
Isopropylbenzene	5																																	
Methyl tert-butyl ether	NL	2.7	J																													2.0	J	
Methylene Chloride	5		П				П		\Box		П	0.8	JQM		П		П		T		T						T						T	
n-butylbenzene	5		П				П		\Box		П				П		П		T		T						T						T	
sec-butylbenzene	5	0.5	J		T	0.5	JQM	0.6	JQM			0.4	JQM	0.5	JQM	0.3	JQM		T		T	0.2 J	ом О	.70			T						T	
Tetrachloroethene	5											0.4	JQM	8.2		1.5		0.3	JQM			0.2 J	ZW .	1.9		4.4								
Trichloroethene	5				Ħ		Ħ	0.3	JQM	0.4	JQM						T				7		_	1.6		3.1								
Trichlorofluoromethane	5								Ħ										_		7	0.7 J	эм				_							
Vinyl Chloride	2				Ħ	0.4	JQM		Ħ		Ħ	0.7	JQM				T		_		7							0.7						
Total VOCs		12.5		0.8		11.5		11.7	Ħ	6.2		23.6		8.7		12.4		2.0	_	0.0	7	19.9	4	0.6		13.1	_	12.3		0.0		2.0		0.0
SVOC ppb or µg/L																	_		_		_										_			
bis(2-Ethylhexyl)phthalate	50				П		ПТ		ПТ		П				П		П	24.0	J		Т		Т				Т		Т	1	Т		Т	
Diethylphthalate	50				tt		t		1 1												-				1						T h			
Di-n-butyl phthalate	50						t	1.0	J		h					0.4	J				1										T			
Di-n-octyl phthalate	50						t		Ť		h					0.3	J.				1										T			
Fluoranthene	50		\Box		Ħ		Ħ		Ħ		H		-			10	J		_		\dashv		+-		1				\neg		\dashv			
Phenol	1	†	+		+		+		+		H		-		-		Ť		\dashv		_		+	- t	+		_				\dashv		_	
Total SVOCs	· ·	0.0	+	0.0	+	0.0	+	1.0	+	0.0	H	0.0	-	0.0	-	10.7	+	24.0	\dashv	0.0	_	0.0	_	0.0	+		_		\dashv	0.0	\dashv	0.0	_	0.0
Metals ppb or μg/L		0.0	_	0.0		0.0		1.0		0.0		0.0		0.0	_	10.7		2 1.0	_	0.0	_	0.0	_	5.0	_		_			0.0	_	0.0	_	0.0
Aluminum	NL	468	В	26.4	в		1 1		1		П	96.1	В	87.1	В				$\overline{}$		$\overline{}$	128			_		_			135	BE	69.2	В	51.6 B
Antimony	3	400	В	20.4	В	2.4	BJ		+		H	96.1	В	07.1	БJ		+		+		+	120	-		+	-	+			ND	DE	ND	В	1.2 B
		-	+		++	2.4	БJ	4.1	В		H		+-	6.6	BJ		1				+		-		-		_		_	ND	-	ND	_	
Arsenic	25 1,000	46.5	В	13.7	В	25.5	B.I	29.4	В	43	В	94	В	59.3	B	156	В	17.9	В	92.6	В	45.6		95	+	-	_		_	16.1	-	18.7	В	ND B
Barium	3	46.5	В	13.7	В	23.3	ы	29.4	Р	43	В	0.42	R	0.82	B	136	В	17.9	В	92.0	-	45.6	-	95	+	-	+		_	ND	-	ND	В	ND B
Beryllium Cadmium	5	-	+		+		+	5.3	+		H	0.42	В	0.82	В		+		-		-		+		+	-	_			17.4	_	3 3	В	0.47 B
	50	10.5	+	5.4	В	5.7	В	5.3	+		H	13.7	-	297	\vdash	359	+	33.2	\rightarrow	1.3	_	3.2	. .	7.6	+	-	_			31.3	_	117	В	95.7 B
Chromium Cobalt	NL	2.8	В	1.3	В	2.9	В		+		H	17.4	В	10.1	R	7.5	В	33.2	+	1.3	В	3.2		7.6	+	-	+				BE	2.1	R	3.6 B
		_	В	11.8	В		_	_	В		H		В	232	В				\rightarrow		-		-		+	-	_		_	_	B		В	
Copper	200	5.7	R	11.8	-	7.2	В	3	R	400	Н	9.8	В		J	6.6	В	424	+		+	225	+.	220	+		+			17.6	_	ND 422	+	ND 507
Iron	300	├	к	1.8	R B	131	Ь,		R	460	H	1550	J	4670 2.8	J BJ	2730	+	421	+		+	225	+3	320	+	-+	+			480 2.0	NE B	433 ND	-	587 ND
Lead	25	0400	+	1.8 453	В	2.1 829	RJ	00.5	+	2005	H	F705	к		ВJ	2005	+	769	\dashv	440	+	50.0	+.		+		+		_	_	E		+	ND 470
Manganese	300	2180	+	453	₩	829	+	22.8	╁┤	3200		5760	+	3240	닉	2930	+	769	+	116	+	56.9	$+^{2}$	220	+		+		_		E	108	_	173
Mercury	2	40-	+	•	1_1	440			+_	0.2	QH	44.5	+	0.11	В	40.4	Ļ		_		+	 }	-	_	+		+	 }		ND	_	0.1	B	ND D
Nickel	NL 40	16.7	В	2.1	В	14.9	В	2.6	В		\vdash	11.5	В	22.3	В	19.1	В	3.4	В	-	+		+-	5	+		+				В	47.7	В	37.9 B
Selenium	10	1	+		₩		 		+		\vdash		\vdash	-	Н		+	2.5	J		+		+		+		+		_	ND	_	ND	-	12.7 B
Silver	50	L	⊢		₩	1.5	В		+		\vdash		\vdash	-	Н		+		+		+		+		+		+		_	ND	_	ND	+	1.8 B
Thallium	0.5	5.2	В		₩		+		+		Щ		\perp	ļ	Н		\vdash		_		4	}	_	_	_		4	}			В	ND	_	ND
Vanadium	NL	├	\vdash		₩	8.0	В		+		Щ		\perp	ļ	Н		\vdash		_		4	}	_	_	_		4	}	_		В	8.0	В	1 B
Zinc	300	L	R		R		R		BR		Н		R		R		Н		_	8.3	В		-		_		4		_	_	Е	18	В	17.4 B
Total Metals		2735.4		515.5		1023		67.2		3703.2		7553.63		8628.13		6208.2		1247		218.2		458.7	6	47.6					10	80.82		818	1	1001.57
NOTES:					_	_	_					_											_	_	_			_	_	_		_		

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NYSAGWQS1	4/19/9	14	9/8/94		12/6/94	4	3/10/9	5	9/29/9	5	12/5/9	5	7/11/9	6	10/16/	96	1/16/	97	5/28/9	97	7/15/9	97	10/7/9	97	1/14/9	98	4/9/9	8	7/15/9	8	10/21/98
VOC ppb or μg/L																																
1,1,1-Trichloroethane	5	25.0		20.0				0.6						0.3	JQM																	
1,1-Dichloroethane	5	32.0		22.0								1.0		42.0																		
1,1-Dichloroethene	5	0.4												1.1																		
1,2-Dichlorobenzene	3													0.5	JQM																	
1,3-Dichlorobenzene	5													0.4	JQM																	
1,4-Dichlorobenzene	5													0.7	JQM																	
2-Butanone	NL													0.3	JQM						R											
2-Chlorotoluene	5													0.4	JQM																	
4-Chloro-3-Methylphenol	NL																															
Acetone	50			34.0																	R											
Carbon Disulfide	NL															0.2	JQM															
Chloroethane	5	6.0		6.0								10.0		114.0																		
Chloroform	7															0.2	JQM	2.0				2.9		4.3				2.4				2.9
cis-1,2-Dichloroethene	5													5.5																		
Isopropylbenzene	5			1.0	I									1.0	JQM																	
Methyl tert-butyl ether	NL										I																					0.6
Methylene Chloride	5				I						I			0.2	JQM																	
n-butylbenzene	5											0.6		0.6	JQM																	
sec-butylbenzene	5			2.0								5.0		1.7												2.1		0.6	JQM	1.4		
tert-butylbenzene	5																															
Tetrachloroethene	5	0.6				0.5		0.7																								
Toluene	5																															
Trichloroethene	5													1.5		3.0																
Total VOCs		64.0		85.0		0.5		1.3		0.0		16.6		170.2		3.4		2.0		0.0		2.9		4.3		2.1		3.0		1.4		3.5
SVOC ppb or µg/L																																
1,4-Dichlorobenzene	4.7																											2.0	J			
Benzo(b)fluoranthene	0.002																															
bis(2-Ethylhexyl)phthalate	50																															
Di-n-butyl phthalate	50												T																	0.6	J	
Di-n-octyl phthalate	50																															
Naphthalene	10																											5.0	J			
Total SVOCs		0		0.0		0.0		0.0		0.0		0.0	T	0.0		0.0		0.0		0.0		0.0		0.0		0.0		7.0		0.6		0.0
Metals ppb or μg/L														•																		
Aluminum	NL		П		Т	$\overline{}$	T				Т		Т				П		П	1	П		П			7.8	В				П	59.9 B
Antimony	3												T									2.9	В									
Arsenic	25		П		7	- 1	十		寸		1		╛		\neg		П	4.9	В		Ħ		П		П		П		П		7	
Barium	1,000				T	Ì			T				T	78.8		83.9	В	53.7	В	51.4	В	52.7	В	63	BJ	91.2	В	66.5	В	83.8	В	83.2 B
Beryllium	3				T	Ì	T		T				T				П				П				П		Ħ		П		7	
Cadmium	5		П		7	- 1	十		寸		1		╛	1.1	\neg		П		П		Ħ		П		П		П		П		7	
Chromium	50		Ħ		1		7		T		1		T		В	2.1	В				Ħ	1.4	В		П		П		П		7	
Cobalt	NL				T	Ì	T		T				T				П				П			2	BJ	1	В		П		7	
Copper	200	17	П	5	7	- 1	十		寸		1		╛		\neg		П		П		Ħ		П		BJ	1.3	В	1.6	В		7	10.9 B
Iron	300	1040	П	415	7	76	十		寸	40	1	75	╛		R	42.1	BE		П	46.4	В	29.6	В		BJ		П	19.6	В		7	
Lead	25	4	Ħ	2	1		7	1	T	22	1		T				Ħ				Ħ		П		R		П		П	1.5	В	
Manganese	300	455	П	480	7	75	十	34	寸	64	1	51	╛	205	\neg	193	EJ	194	П	139	Ħ	75.1	П	122	J	188	П	92.8	П	81.2	7	71.2
Mercury	2		П		7		十		寸		1		╛		\neg		Ħ		П		Ħ		П		П		П		П		7	
Nickel	NL	19	П		7	14	十		寸		1		╛	8.4	В	8.6	В		П		Ħ	1.2	В		П	2	В		П		7	2 B
Selenium	10		П		7	- 1	十		寸		1		╛		\neg		П		П		Ħ		П		П		П		П		7	
Silver	50		H		\dashv	- 1	\dashv		7		$^{+}$		\dashv		\dashv		H		H	1	Ħ		H		Н		H		H		R	
Thallium	0.5		H		\dashv	- 1	+		十		+		\dashv		_		H		H	1	H		H		H		H		H		-	0
Vanadium	NL		H		\dashv	- 1	+		十		+		\dashv		_		H		H	1	H		H		H		H		H		+	
Zinc	300	16	H	14	+	12	$^{+}$		\dashv		+		\dashv		R		R	2.6	JB	1	H	2.9	В	0	R	12.8	В		R	4	В	R
Total Metals	500	1551	H	916	\dashv	177	+	35	十	126	+	126	\dashv	298.3		329.7	H	255.2	122	236.8	H	165.8	H	230.9	H	304.1	۲	180.5	H	170.5		227.2
NOTES:			_	0.0	_			••		0	_			_00.0	_	J	ш	200.2	-	200.0		. 00.0	ш	200.0	ш	50-11		.00.0	ш		_	
NOTES.																																

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations

NA - Not Analyzed

9/21/2010

35

Samula Data	NYSAGWQS1	1/13/	00	1/13/9	00 T	44/47	/OO	8/9/0	00	3/26/	04	CIOOI	04	40/47	/04	40/40/	04	4/2/0	2	12/4/0	o I	3/24/03		8/6/03	2 1	11/9/04	-	6/23/05	1 0/4	0/06	0/4	2/06	8/14/07
Sample Date		1/13/	99	1/13/	99	11/17/	/99	8/9/0)()	3/26/	01	6/20/	01	10/17/	01	12/12/	01	4/3/0	2	12/4/0	2	3/24/03	3	8/6/03	3	11/9/04		6/23/05	2/1	0/06	9/1	2/06	8/14/07
VOC ppb or µg/L 1,1,1-Trichloroethane	-				П	0.4		0.2												-	_		_	- 1		- т	_	-	1		_		П
1,1-Dichloroethane	5	5.1	Н	5.1	H	4.5	JQM	0.2	JQM		-		+	0.3							\dashv	4.1	+		Н	-	+		-	+	+-	+	-
1,1-Dichloroethene	5	3.1	Н	3.1	H	4.5	+		+		-		+	0.3	JUM						\dashv	4.1	+		Н	-	+		-	+	+-	+	-
1,2-Dichlorobenzene	3		+		H		+		+		+-		+		-		H		\vdash		-		+		H		+		+	-	+		
1,3-Dichlorobenzene	5		+		H		+		+		1		+		H		Н				-+		+		Н		+		1	-	-	-	-
1,4-Dichlorobenzene	5		+		H		+		+		+-		+		-		H		\vdash		-		+		H		+		+	-	+		
2-Butanone	NL NL		+		H		+		+	0.7	JOM		+		H		Н				-+		+		Н		+		1	-	-	-	-
2-Chlorotoluene	5		+		H		+		+	0.7	JUM		+		H		Н				-+		+		Н		+		1	-	-	-	-
4-Chloro-3-Methylphenol	NL NL		+		H		+		+		+-		+		-	10			\vdash		-		+		H		+		+	-	+		
Acetone	50		+		H		+	0.7		2.0		1.7	+		H	0.7		2.5			-+		+		Н		+		1	-	-	-	-
Carbon Disulfide	NL NL		+		H	2.4	+	2.3	JUM	2.0	JUM	1.7	+	1.2	H	0.7	JUM	2.3			-+		+		Н		+		1	-	-	-	-
Chloroethane	5	13.0	+	13.0	H	2.2	+	2.3	+		1		+	1.7	H		Н				-+	3.8	+		Н		+		1	-	-	-	-
Chloroform	7	1.7	H	1.5	H	4.7	+	0.6			+		+	1.5	1	4.8	Н	1.7	\vdash		_	0.2			Н		+	0.9	1	+	+	_	
cis-1,2-Dichloroethene	5	1.0	+	1.0	H	0.4		0.0	JUM		1		+	1.0	H	4.0	Н	1.7			-+	0.2	QM		Н		+	0.9	1	-	-	-	-
Isopropylbenzene	5	1.0	+	1.0	H	U.4	JUM		+		+		+		H		H		Н		+	0.3	-cm		Н		+	-+	1	+	+		1
Methyl tert-butyl ether	NL	1	Н		\vdash		H		H		+		H		H		H		H		+	- 1	+	-	Н	0.6	+	-+	+	\dashv	2.0) J	+ +
Methylene Chloride	5	1	+		H		+		+		Н		+		⊢		H		Н		+		+		Н	0.0	+	-+	1	+	2.0	- 1	1
n-butylbenzene	5	1	+		H		+		+		+	0.7	-		⊢		Н		Н		-		+		Н		+	-	1	+	+	+	1
sec-butylbenzene	5	1.6	+	1.6	H	0.4			+	0.8		5.6	JUM		H	0.3	JQM	1.0			-+	2.6	+	4.2	Н		+	0.8	1	-	-	-	-
·	5	1.0	+	1.0	H	0.4	JUM		+	0.0	JUM	3.0	+		H	0.3	JUM	1.0	JUM		-+	0.2		4.2	Н		+	0.0	1	-	-	-	-
tert-butylbenzene	5	_	+		₩		+		+		+		+		-		Н	0.0			-	0.2	QM		Н	-	+			-	_	_	-
Tetrachloroethene	5	_	+		₩		+	0.4	+		+		+		-		Н	0.6	JQM		-		+		Н	-	+			-	_	_	-
Toluene Trichloroethene	5	-	+		+		+	0.4	JQM		+		+		 		Н		\vdash		-		+		Н		+		+	-	+	-	-
Total VOCs	5	22.4	Н	22.2	+	15.0	+	4.2	+	3.5		8.0	+	4.7	+-	15.8	Н	5.8		0.0	-+	11.2	+	4.2	Н	0.6	+	1.7	0.0	+	2.0	. +	0.0
		22.4	ш	22.2	<u> </u>	15.0	ш	4.2	ш	3.5		8.0	ш	4.7	_	15.6	ш	5.6		0.0		11.2	_	4.2	ш	0.6	_	1.7	0.0	<u>' </u>	2.0	<u>' </u>	0.0
SVOC ppb or µg/L			_				_		_		-		-		_				_	_	_		-				_		1	_	_	_	
1,4-Dichlorobenzene	4.7	-	\vdash		₩		+		+		+		4		_		Н		\vdash		-		_		Н		+		+	_	-	_	-
Benzo(b)fluoranthene	0.002				Н		ш		ш				4		<u> </u>	10	J				_		4		Ш		4		4	_		_	1
bis(2-Ethylhexyl)phthalate	50		\vdash		ш		+		+		1		4		_						_		_		Н		+		2	JI	В	_	1 ,
Di-n-butyl phthalate	50	-	\vdash		₩		+		+		+		4		_		.I		\vdash		-		_		Н		+		+	_	-	_	-
Di-n-octyl phthalate	50	-	\vdash		₩		+		+		+		4		_	10	7		\vdash		-		_		Н		+		+	_	-	_	-
Naphthalene	10		\vdash	0.0	ш		+		+		1		4	0.0	_	00.0				0.0	_	0.0	_	0.0	Н		+			. +		. +	4.0
Total SVOCs		0.0	ш	0.0	ш	0.0	ш	0.0	ш	0.0	ш	0.0	ш	0.0	_	20.0	ш	0.0	ш	0.0		0.0	_	0.0	Ш		_		2.0		0.0	<u>'</u>	1.0
Metals ppb or μg/L																					_		_				_						
Aluminum	NL	130	В	130	В		ш		ш			152	В	56.3	BJ		Ш				_	143	В		Ш		4		203	_	94.		
Antimony	3				ш																_								1.3		3 NE		4.5 E
Arsenic	25				ш	2.4	В							7.8	BJ						_								NE		2.2		
Barium	1,000	73.5	В	73.5	В	60.9	В	87.5	В	160	\vdash	231	Ш	91.1	BJ	189	В	62	В	42.1	В	81.7	В	77	Ц		4		97.		93.		97.5 E
Beryllium	3		Ш		ш		Ш		Ш		ш	0.66	В	0.84	В		Щ		Ш		4		4		Щ		4		NE	_	NE		ND
Cadmium	5		Ш		ш		Ш	9	Ш		ш	0.93	В		<u> </u>		Щ		Ш		4		4		Щ		4		4.0		,	_	
Chromium	50	3.3	В	3.3	В	1.6	В					7.3	В	0.79	В		Ш	7.1	В	1.6	В		4		Ш		4		25.		45.	_	10.3 E
Cobalt	NL	1.7	В	1.7	В	1.2	В	3.3	В			1.7	В					2			_								2.5	_			
Copper	200	16.2	В	16.2	В							12	В	255															26.				ND
Iron	300		R	0	R				R				R		R			125		101	_								458		E 814		375
Lead	25	1.9	В	1.9	В								R	15.9	J														1.5				ND
Manganese	300	88.1		88.1	ш	131		275		150		251		137		55.2		158		83.2	_	104		59					34.		E 536	_	29 E
Mercury	2		Ш		ш		Ш		Ш	0.2	QH	0.11	В		<u> </u>		Щ		Ш		4		4		Щ		4		NE		NE		ND
Nickel	NL	2.5	В	2.5	В		Ш	2.9	В		ш	7.8	В	3.5	В		Щ		Ш	3.1	В		4		Щ		4		12.	_		_	27.9 E
Selenium	10				\sqcup											4.7	J	2.5	J				_		Ш		4		NE		NE		13.2 E
Silver	50				\sqcup	0.5	В							1.6	В		Ш		Ш				_		Ш		4		NE		NE		2.1 E
Thallium	0.5	3.5	В	3.5	В												Ш		Ш				_		Ш		4		2.1		3 1.5		
Vanadium	NL				\sqcup												Ш		Ш				_		Ш		4		0.6	_	0.7	_	
Zinc	300		R		R				BR				R		R		Ш	7	В	1.9	В		В	8.7	Ш		4		106		31		
Total Metals		320.7	Ш	320.7	Ш	197.6		377.7		310.2	Ш	664.5		569.83	L	248.9	Ш	363.6		232.9		345.6		144.7	Ш		⊥		975.	29	1676	.69	653.72
NOTES:																																	

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range
- BOLD FONT- Compound was detected above instrument detection limit Shading and Italics - Result is above the NYSDEC AWQS.
- 1 Division of Water Technical and Operational Guidance Series
- (TOGS) (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations
- NA Not Analyzed

																														_
Sample Date	NYSAGWQS1	4/19/94	9/8/9	A 1 12/4	704 T	9/29/9)E	3/10/95	E 4	2/5/95	1 7	/11/00	2 4	0/16/96	2 1/-	16/07	5/28	2/07	7/15/	07 1	10/7/	07	1/14/9	20	4/8/9	10	7/15/9	10 I	10/21	/O.O
Sample Date		4/19/94	9/8/9	4 12/13	0/94	9/29/9	50	3/10/98	5 1.	2/5/95	1	/11/96) 10	0/16/96	1/	16/97	5/28	3/97	7/15/	97	10///	97	1/14/	98	4/8/9	Ö	7/15/8	18	10/21	98
VOC ppb or μg/L		_	_		1 1	_	_		_		-				_	_	_	_	1	т т				_						-
1,1,1-Trichloroethane	5	-	-	.	++				_		-		-				-	-		+				\vdash				Н		+
1,1-Dichloroethane	5		_				_				-			2.0	_	_				1								\sqcup		+
2-Butanone	NL				\bot						_		_			_		R		\perp								ш		+
4-Chloro-3-Methylphenol	NL				\bot						_		_			_		_		\perp								ш		4
Acetone	50				++						_		_					R		\perp								ш		+
Bromoform	50				\bot						_		_			_		_		\perp								ш		4
Carbon Disulfide	NL					0.5	В											4												
Chloroethane	5												_	2.1				4												
Chloroform	7											0.2 J	QM I	0.7 Jo	Ωм О.	4 .	J			Ш	0.3	JQM			0.5	JQM	0.6		8.0	
Hexachlorobutadiene	0.5																													
Methyl tert-butyl ether	NL																										1.1		2.0	
Methylene Chloride	5																											Ш		
Tetrachloroethene	5		1.0																	\Box								$oxed{\Box}$		
Trichloroethene	5				ш		Ш	T				1.6		3.5						\coprod		oxdot				oxdot		$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}}$		L
Total VOCs		0.0	1.0	0.0		0.5		0.0	0	0.0	1	1.8		8.3	0.	4	0.0		0.0		0.3		0.0		0.5		1.7		2.8	
SVOC ppb or µg/L																														
Benzo(b)fluoranthene	0.002																													П
bis(2-Ethylhexyl)phthalate	50																													T
Diethylphthalate	50																										0.8	J		П
Di-n-butyl phthalate	50																										1.0	J		П
Di-n-octyl phthalate	50																													\Box
Phenol	1										1		1							Ħ					2.0	J		П		\Box
Total SVOCs		0	0.0	0.0		0.0		0.0	0	0.0	(0.0		0.0	0.	0	0.0		0.0		0.0		0.0		2.0		1.8		0.0	T
Metals ppb or μg/L			_																											
Aluminum	NL		611		TT						T		R	78 E	B 24	.5 1	B 48.2	В	33	В	32.5	ВJ	166	В	75.8	В	115	в	87.7	Тв
Antimony	3				+++						+	- 1	`\				-10.2	Ť	2.5	В	02.0			Ť	10.0	Ť		Ť	01	Ť
Arsenic	25				\top						+		+		4.	6 1	B 2.6	В	2.0	Ť				H				H		\vdash
Barium	1,000				+++						7	5.7	В 7	74.7 E		.4 1			62.3	В	69.3	BJ	71.4	В	60.9	В	62	В	69.3	В
Beryllium	3				+++					- h	+		-		02		02.0	Ť	02.0	Ť	00.0			Ť	00.0	Ť		Ť	00.0	Ť
Cadmium	5	+	+	 	+				-		1	1.2	В	-	+	- 1	+	+	1	+	0.6	BJ	1.5	В	1.5	В		H	1.2	В
Chromium	50		-	\vdash	++		\vdash		+					16 E	R		+	+	2.4	В	0.0	53	1.0	H	0.67	В		H	1.4	Ť
Cobalt	NL	 	+	 	++		\vdash	- 1	+		+-'	1.0	_		+	-+	-	+	2.4	+-1	2.5	B I		H	0.07	-		H		+
Copper	200	8	6	\vdash	++		\vdash	-+	+		+	-+	+	2.9 E	R		0	+	0	+	23.1	BJ	1	В	2	В		H	18.1	В
Iron	300	67	563	120	++	48	\vdash	29	-	62	+	-	_		J.	-+	102	+	35.1	В	48.7	BJ		J	101	В	119	H	10.1	R
lron Lead	300 25	2	2	120	++	48 1	$\vdash\vdash$	29	+	02	+		_	1.2 E	_	-+	102	+	35.1	В	40./	BJ	111	J	101	H	1.4	В		-
	300	18	31	321	++	1020	\vdash	941	-	106	-	525			.J 10	6	92.1	+	123	+	129	ĸ	457	H	582	Н	583		498	+
Manganese		10	31	321	++	1020	$\vdash\vdash$	34 I	4	+00	1 3) <u>2</u> 3	+	324 E	J 10		92.1	+	123	+	129	J	437	H	302	Н	303	H	496	+
Mercury	2 NL	├	+	14	++		\vdash		_		+-	3.2	B 1	8.7 E			+	+	2.2	В		H	4.2	В	4.4	В		H	4	В
Nickel		├	+	14	++		\vdash		_		+3	3.2	<u> </u>	10./ L	-		+	+	2.2	В		H	4.2	В	4.4	В		H	4	+ B
Selenium	10	-		$\vdash\vdash$	++		$\vdash\vdash$		+		+	_	+		+	-	+	+	1	+		\vdash		Н		\vdash		R		+
Silver	50	-		$\vdash\vdash$	++		$\vdash\vdash$		+		+	_	+		+	-	+	+	1	╁┤		Н		H		Н		к		+
Thallium	0.5	-	-	\vdash	++		\vdash		_		-	4	-				-	+	1	+		H		Н		H		Н		+
Vanadium	NL			Н.,	++		\vdash				-		_		+-	_	-	+		+		Η.		H		L		H		╄
Zinc	300	29	23	11	44	109	\vdash			81			R		R 84			+	85.4	+	121	J	90.5	J		R		Н		R
Total Metals		124	1236	467		1178		970	5	549	61	10.6	6	85.5	28	2	297.	7	345.9		426.7		902.6		828.27		947.8		678.3	

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

J - estimated value

B - analyte found in associated method blank

E - value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations NA - Not Analyzed

Sample Date	NYSAGWQS ¹	1/13/	99	1/13/	99	11/17/	99	8/9/0	0	3/26/	01	6/20/0	01	10/17/	01	12/12	/01	4/3/0	2	12/4/	02	3/24/	03	8/6/03	П	11/9/04	1	6/23/05	2/10	/06	9/1	2/06	1 8	8/14/07
VOC ppb or µg/L		.,		.,		, ,	1	0, 0, 0		5, 25,		0, _ 0,			-					, .,		G/ _ U/		0,0,00		, ., .		0, = 0, 0 0					_	
1,1,1-Trichloroethane	5		Т		П	0.3	юм	0.5	юм	0.4	юм	0.5	.IOM	0.4	JQM		П		П		П	0.9	юм	0.6	Т	1	T		П	т	П	Т	Т	$\overline{}$
1.1-Dichloroethane	5		T		Ħ	0.0	o am	0.0	o cum		Jum.	0.0	J-Q,III	0	- Cum		+		H		\vdash	0.0	Ju.	0.0	1		+			1		+	+	-
2-Butanone	NL		T		Ħ		H		H		t				H		+		H		\vdash	0.3	.IOM		1		+			1		+	+	-
4-Chloro-3-Methylphenol	NL		+		H		H		т		+		\vdash		\vdash	10	J.		H		+				1		+			+		+	+	-
Acetone	50		T		Ħ		H	0.7	юм		t	0.9	.IOM		H	1.5	Ť	1.5	H		\vdash	0.8	юм	2	1		+			1		+	+	-
Bromoform	50		T		Ħ		H		o cum	0.9	.IOM	0.0	J-Q,III		H	1.0	+		H		\vdash	0.0	Ju.		1		+			1		+	+	-
Carbon Disulfide	NL				t						1						i i								十		7					1	+	-+
Chloroethane	5		T		Ħ		H		H		t				H		+		H		\vdash		t		1		+			1		+	+	-
Chloroform	7	0.5		0.5	t	0.4	.IOM	0.7	JQM		t	0.8	JQM	0.8	JQM	0.8	IOM	0.4	.IOM			0.7	юм		十	0.5	7					1	+	-+
Hexachlorobutadiene	0.5	0.0	T	0.0	Ħ	0.4	o am		o cum		t	0.0	J-Q,III	0.0	- Cum	0.0	- Cum	0.7	o quin		\vdash	0	Ju.		1	0.0	+			1	1.0	J		-
Methyl tert-butyl ether	NL	0.5	+	0.5	H						H		H		H		1								_	1.3	\dashv	0.9		+			-	-+
Methylene Chloride	5	5.5		0.0			H		H		H	0.7	.IOM		H		H		H		\vdash		t		_		\dashv	3.0		+		\dashv	+	-
Tetrachloroethene	5	t	+		H		H		H		+	···	Just		H		H		H		\vdash		+		+	- t	\dashv			+		-	+	-+
Trichloroethene	5		+		\vdash		H		H		+1		Н		Н		\vdash		H		\vdash		+1		7	1	\dashv			+		\dashv	+	-
Total VOCs		1.0	+	1.0	H	0.7	H	1.9	H	1.3	H	2.9	Н	1.2	H	12.3	H	1.9	H	0.0	\vdash	2.7	H	2.6	-	1.8	\dashv	0.9	0.0	+	1.0	+	+	0.0
SVOC ppb or µg/L						0		1.0				2.0	_			.2.0				0.0	_		ш	2.0	_		_	0.0	0.0				_	0.0
Benzo(b)fluoranthene	0.002		Т		П		П		П		т					10	I.I		П		П		П	т т	Т	т	Т	- 1	1	$\overline{}$	1	т	т	-
	50		+		H		+		H		+		Н		H	10	J		+		+		+		-	-	+		190	DE			+	2 J
bis(2-Ethylhexyl)phthalate Diethylphthalate	50		+		H		H		H		+		Н		Н		+		H		+		Н	-	-		+	-	190	DE	•	+	+	
Di-n-butyl phthalate	50		+		H		+		H		+		Н		H		1		+		+		+		-	-	+			+	1		+	-+
Di-n-octyl phthalate	50		+		H		+		H		+		Н		H	10	.1		+		+		+		-	-	+			+	1		+	-+
Phenol	1		+		H		H		H		+		Н		Н	10	J		H		+		Н	-	-		+	-		+-	-	+	+	-+
Total SVOCs	'	0.0	+	0.0	H	0.0	+	0.0	H	0.0	+	0.0	Н	0.0	H	20.0	1	0.0	+	0.0	+	0.0	+	0.0	-	-	+		190.0	+	0.0		+	2.0
Metals ppb or μg/L		0.0		0.0		0.0		0.0		0.0		0.0		0.0		20.0		0.0		0.0		0.0	ш	0.0	_		_		150.0	_	0.0		_	2.0
	NL	113	В	113	В	0	П		П		т т	181	В	57.7	ВJ		1		П	35.6	В	136	В	-	_	- т	_		29.0	ВЕ	97.	вВ	_	45.2 B
Aluminum Antimony	NL 3	113	В	113	В	3.2	BJ		Н		+	181	В	57.7	BJ		+		\vdash	35.6	В	136	В		-		+		29.0 ND	BE	97.	_		45.2 B 2.5 B
	25		+		H	3.2	BJ		Н		+		H	5.8	BJ		+		H		+		+		-		+		ND	+	NE NE	_	_	1.6 B
Arsenic Barium		65.3	В	65.3	В	54.6	BJ	57	В	67	+	77.5	В	715	В	166	В	64.9	В	59.1	В	57.3	В	59	-		+		51.9	-	48.:			1.6 B
	1,000	65.3	В	65.3	В	54.6	BJ	5/	В	67	+	0.48	В		В	166	В	64.9	В	59.1	В	57.3	В	59	-		+		51.9 ND	В	48.	_	_	
Beryllium	3 5		В		В	1	В	7.8	Н		+	2.6	ВJ	0.88	В		В	4.0	В		+		В		-		+		23.4		_	_	_	ND
Cadmium		1.4	В	1.4 2.8	В	3	В	7.8	1		+	7.1	BJ		В	2.3	В	1.3	В		В	1.7	В		-		\dashv		34.6		11.		_	5.1
Chromium	50	2.8	В	1.1	В	2.8	В		В		+	7.1	В	1.1	В		+		H	1.5	В		+		-		+			-	41.0	_	_	44.9
Cobalt	NL 200	13.1	В	13.1	В	1.8	В	2.4	В		+	11.8	В	219	\vdash		+		\vdash	1.5	В		+		-		+		1.3 17.0	BE	0.8°			1.4 B
Copper		13.1		13.1	R		В		-		+	11.8	_	219	Н		+		-				+		-		+	-	_	÷	-	_	_	
Iron	300		R		к	28.2	В		R		+		R		Н		1	15.6	В	26.3	В		1		-		\dashv		262	NE		_	_	234
Lead	25		+		₩		Н		Н		+		R		\vdash		-		Н		+		1		-		\dashv		2.5	B	1.2		_	0.88 E
Manganese	300	384	+	384	⊢⊦	184	\vdash	238	+	320	 	362	Н	510	H	569	\vdash	519	\vdash	510	+	500	H	580	+	-	+		60.7	E		_	_	51.6
Mercury	2	L	+		- ⊢		⊢		⊢	0.2	QH		L	0.33	L		+-		⊢		┺		+			-	+		ND	+-	NE	_		ND
Nickel	NL 10	3.4	В	3.4	В	3.6	В	4	В		+	11.8	В	6.4	В	7.1	В.	3.1	B	3.3	В		₩		-		+		10.6	В	11.3	_	_	6.7 E
Selenium	10		+		₩	0	닏		H		++		Н		H	4.7	J	2.5	J		+		+		+	-	+		ND	+	NE	_		9.5 E
Silver	50	H	+-		 	1.9	В		Н		+		Н		H		+		\vdash		+		+	-	+	-	+		ND	+	NE	_	_	1.8 E
Thallium	0.5	5.5	В	5.5	В	4.4	В		H		++		Н		Н		+		\vdash		+		+		-		+		ND	+	NE	_		ND
Vanadium	NL	<u> </u>	+-		I .	1.4	В		L		1		L		Ļ		\vdash		\vdash		1		1		_		4		ND	+_	0.8	_	_	ND
Zinc	300		R		R		R		R	27	QB		R		R	25.2	\vdash	22.7	\vdash	22.1	J	19.7	В	21	-		+		61	E	40	_		20.5 E
Total Metals		589.6		589.6		289.9		309.2		414.2		654.28		1518.21		774.3		629.1		659.4		714.7		660					554.4		681.	16	4	71.28

Results in parts per billion (ppb) or micrograms per liter (ug/l)

- U not detected above instrument detection limit
- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

MW-17 SMS Instruments Inc. Deer Park, NY

Sample Date	NYSAGWQS ¹	9/8/94	1 1	12/15/94	3/1	0/95	9/29/	95	12/5/9	95 7/1	1/96	10/1	6/96	1/16/	97	5/29/9	97	7/16/9	97	10/8/9	97	1/15/9	8	4/9/9	8	7/16/	98	10/22/	/98
VOC ppb or μg/L																													
1,1,1-Trichloroethane	5		Т		19.)		T			Т	T	Т		T												П		Т
1,2,3-Trichlorobenzene	5														1												Ħ		1
4-Chloro-3-Methylphenol	NL																										Ħ		T
Acetone	50																R			0.7	JQM							<u> </u>	1
Bromomethane	5														1							0.7					Ħ		1
Carbon Disulfide	NL																											<u> </u>	1
Hexachlorobutadiene	0.5																											<u> </u>	T
Hexachloroethane	5																			18.0								<u> </u>	1
m,p-Xylene	NL									0.3	JQN	4																<u> </u>	T
Methyl tert-butyl ether	NL																									4.3	J	l	
Methylene Chloride	5				12.)																						Ī	
Tetrachloroethene	5				7.0																						\Box		1
Toluene	5									0.4	JQN	4																<u> </u>	T
Trichloroethene	5				16.)				1.6	_	2.6															\Box		
Total VOCs		0.0		0.0	54.)	0.0		0.0	2.3		2.6		0.0		0.0		0.0		18.7		0.7		0.0		4.3	\Box	0.0	1
SVOC ppb or µg/L														•		•													
Benzo(b)fluoranthene	0.002																										П	ĺ	T
bis(2-Ethylhexyl)phthalate	50																											<u> </u>	T
Di-n-butyl phthalate	50																											<u> </u>	T
Total SVOCs		0.0		0.0	0.0		0.0		0.0	0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
Metals ppb or μg/L														•		•													
Aluminum	NL	465									R	19.7	В	27.8	В			60	В	40.4	В	51	В				П	50.1	В
Antimony	3											4	В					5.2	В										T
Arsenic	25															5	В									1.8	В	6.2	В
Barium	1,000									34.	1 В	21.8	В	18.4	В	23.7	В	30.3	В	28.4	В	22.2	В	17.1	В	21.4	В	28.3	В
Beryllium	3																												T
Cadmium	5																												T
Chromium	50	75								1.3	В	10.6	J					1.9	В			1.8	В	1.6	В			1	T
Cobalt	NL																	1.7	В	2.5	В							1	
Copper	200	8		5						3.2	В	3	В	2.7	В	3.7	В	3.4	В	6.6	В	2	В	4	В			5	В
Iron	300	1450					59		62		R	66.3	BE			56.2	В	86.1	В	54	В			17.2	В				
Lead	25	5					2				R										R					1.1	В	1	T
Manganese	300	238		170			44		406	2.2	В	10.8	BE			3.9	В	7.2	В	100		33.1		1.8	В	16.1		250	
Mercury	2																												I
Nickel	NL									2	В	5.21	В					2.4	В	3.5	В	5	В	2.9	В			2.6	В
Selenium	10																												
Silver	50																												
Thallium	0.5															3	В												
Vanadium	NL								, and the second									1.5	В			,		•		4.2	В	2.4	В
Zinc	300	23		5					81		R		R					2.5	В		R	6	В		R	5.4	В		R
Total Metals		2264		180	0		105		549	43.		141.4	ı	48.9		95.5		202.2		235.4		121.1		44.6		50		344.6	
NOTES:			_		_		_				_		_			_	_						_	_			_		_

NOTES:

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection limit

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

MW-17 SMS Instruments Inc. Deer Park, NY

	NIVE A CIWOOT																															
Sample Date	NYSAGWQS ¹	1/13/9	99	11/17/	99	8/9/0	0	3/20/	01	6/25/	01	10/17	/01	12/12/	01	4/3/0	2	12/4/0)2	3/24/0	03	8/6/03	3	11/9/04	4	6/23/05	2/	10/0	6	9/12/0)6	8/14/07
VOC ppb or μg/L																											_					
1,1,1-Trichloroethane	5																															
1,2,3-Trichlorobenzene	5																													1.0	J	
4-Chloro-3-Methylphenol	NL													10	J																	
Acetone	50			4.2	JQM	0.7	JQM	1.0	JQM					0.7	JQM	1.4				0.9	JQM			2.0								
Bromomethane	5																															
Carbon Disulfide	NL			0.3	JQM					1																						
Hexachlorobutadiene	0.5																													2.0	J	
Hexachloroethane	5																															
m,p-Xylene	NL																															
Methyl tert-butyl ether	NL	1.1																														
Methylene Chloride	5			0.2	JQM					0.6	JQM																					
Tetrachloroethene	5																					ĺ										
Toluene	5																					ĺ										
Trichloroethene	5																															
Total VOCs		1.1		4.7		0.7		1.0		1.6		0.0		10.7		1.4		0.0		0.9		0.0		2.0		0.0	0.	0		3.0		0.0
SVOC ppb or µg/L																																
Benzo(b)fluoranthene	0.002	ĺ												10	J																	
bis(2-Ethylhexyl)phthalate	50																								T					1	J	
Di-n-butyl phthalate	50													10	J										T							
Total SVOCs		0.0		0.0		0.0		0.0		0.0		0.0		20.0		0.0		0.0		0.0		0.0					0.	0		1.0		0.0
Metals ppb or μg/L																																
Aluminum	NL	25.9	В					20.4	В	106	В	34.4	BJ							134	В						72	.0	BE	34.3	В	19.6 B
Antimony	3																										2.	6	В	2.3	В	10 B
Arsenic	25			3.2	В					5.5	BJ	9.5	BJ			5.1	В										N	D		ND		3.7 B
Barium	1,000	24.7	В	20.7	В	58.6	В	22.6	В	26	В	37.2	BJ	135	В	38.3	В	24.3	В	24.2	В	23					22	.8	В	28.4	В	29.1 B
Beryllium	3							0.2	В	0.51	В																N	D		ND		ND
Cadmium	5			0.3	В	6.4																					3.	1	В	0.65	В	0.16 B
Chromium	50																										14	.8	В	11.3	В	9 B
Cobalt	NL			0.6	В	3.8	В																				1.	6	BE	1.1	В	2 B
Copper	200	11.8	В	1.6	В			1.4	В	15.8	В	43.8		2.1	В	4	В	2.5	В								12	.7	В	7.1	В	ND
Iron	300		R	136			R	291		191	J		R	72.4	В	700		130		66	В						64	5	NE	284		220
Lead	25	2.4	В								R	4.5	J														1.	3	В	ND		ND
Manganese	300	34.8		272		981		98		21.1		146		133		169		48.7		14.5	В	21					77	.9	Е	109		113
Mercury	2															0.11	В					ĺ					0.	1	В	ND		ND
Nickel	NL	2.1	В	9.9	В	2.8	В	2.8	В	4	В	10.1	В	7.3	В	5.4	В	3	В								15	.6	В	5.7	В	2.8 B
Selenium	10			2.5	В							4.8	В			2.5	J					ĺ					N	D		ND		13.6 B
Silver	50																					ĺ					N	D		ND		2.1 B
Thallium	0.5	5.3	В	2.7	В																	ĺ					N	D		ND		ND
Vanadium	NL	1.5	В	1.6	В			1.7	В			2.7	В	2.1	В	1.7	В	2.8	В								2.	1	В	2.4	В	1.7 B
Zinc	300		R				BR			17.3	В		R					2	В			ĺ					4:	3	BE	19	В	18.8 B
Total Metals		108.5		451.1		1052.6		438.1		387.21		293		351.9		926.11		213.3		238.7		44					915	.04		504.85		445.56
NOTES:	-	-	•		_		_				•		_	•	_		_		_				_		_				_		_	

NOTES:

Results in parts per billion (ppb) or micrograms per liter (ug/l)

U - not detected above instrument detection limit

- J estimated value
- B analyte found in associated method blank
- E value exceeds calibration range

BOLD FONT- Compound was detected above instrument detection li

Shading and Italics - Result is above the NYSDEC AWQS.

1 Division of Water Technical and Operational Guidance Series

(TOGS) (1.1.1): Ambient Water Quality Standards and

Guidance Values and Groundwater Effluent Limitations

Sample Date	NVC 4 CHACCT	2/9/06	•	2/23/06	
Sample Date Matrix	NYSAGWQS ¹	2/9/06 water	water	2/23/06 water	wate
/OC ppb		water	water	water	wate
/inyl Chloride	2	ND U	ND	ND U	NA
acetone	50	ND U	ND	ND U	NA
Methyl tert-butyl ether	NC	ND U	NA	ND U	NA
,1-Dichloroethane	5	ND U	NA	ND U	NA
is-1,2-Dichloroethene	5	ND U	ND	ND U	NA
,1,1-Trichloroethane	5	ND U	NA	ND U	NA
Chlorobenzene	5	32.0	NA	ND U	NA
thylbenzene	5	1.0 J	NA	ND U	NA
n,p-Xylene	NC	5.0	NA	ND U	NA
(ylene (Total)	5	5.0	NA	ND U	NA
sopropylbenzene	5	ND U	NA	ND U	NA
1,3,5-Trimethylbenzene	5	ND U	NA	ND U	NA
,2,4-Trimethylbenzene	5	ND U	NA	ND U	NA
,3-Dichlorobenzene	5	ND U	NA	ND U	NA
1,4-Dichlorobenzene	5	ND U	NA	ND U	NA
,2-Dichlorobenzene	3	ND U	ND	ND U	NA
1,2,4-Trichlorobenzene	5	ND U	NA	ND U	NA
-lexachlorobutadiene	0.5	ND U	NA	ND U	NA
Naphthalene	10	ND U	NA	ND U	NA
I,2,3-Trichlorobenzene	5	ND U	NA	ND U	NA
I,1-Dichloroethene	5		NA NA		NA NA
Carbon Disulfide 2-Butanone			NA NA		NA
2-Butanone Bromomethane	+	1	NA NA	+	NA NA
Bromoform	+	1	NA	1	NA
Chloroform			NA NA	 	NA
Toluene		1 1	NA	1 1	NA
Trichloroethene			NA NA		NA
Tetrachloroethene			NA		NA
1,1,2-Trichloroethane			NA		NA
Methylene Chloride			NA		NA
,2-Dibromo-3-Chloropropane					
/inyl Acetate	ĺ				
SVOC ppb					
Phenol	1	ND	NA	ND	NA
1,3-Dichlorobenzene	5	ND	NA	ND	NA
,4-Dichlorobenzene	4.7	ND	NA	ND	NA
sophorone	50	ND	NA	ND	NA
2,4-Dimethylphenol	50	ND	NA	ND	NA
Naphthalene	10	ND	NA	ND	NA
Phenanthrene	50	ND	NA	ND	NA
Di-n-butyl phthalate	50	ND	NA	ND	NA
Fluoranthene	50	ND	NA	ND	NA
Pyrene	50	ND	NA	ND	NA
Butylbenzyl phthalate	50	ND	NA NA	ND	NA
Benzo(a)anthracene	0.002	ND	NA	ND	NA
Chrysene	0.002	ND	NA NA	ND	NA
bis(2-Ethylhexyl)phthalate	50	83.0 B	NA	1 J	NA
Benzo(b)fluoranthene	0.002	ND D	NA	ND S	NA
Benzo(k)fluoranthene	0.002	ND	NA	ND	NA
Benzo(a)pyrene	0.002	ND	NA	ND	NA
ndeno(1,2,3-cd)pyrene	0.002	ND	NA	ND	NA
Benzo(g,h,i)perylene	5	ND	NA	ND	NA
Metals ppb					
Aluminum	NL	28.8 BE	NA	77 B	NA
Antimony	3	ND	NA	4 B	NA
Arsenic	25	ND	NA	2 B	NA
Barium	1,000	34.1 B	NA	88 B	NA
Beryllium	3	ND D	NA	0 B	NA
Cadmium	5	1.0 B	NA	ND _	NA
Calcium	NL	13,300 E	NA	22,400	NA
Chromium	50	3.4 B	NA	8 B	NA
Cobalt	NL	4.4 BE	NA	1 B	NA
Copper	200	8.9 B	NA	5 B	NA
ron	300	3,650 NE	NA	2,670	NA
_ead	25	0.9 B	NA	4 B	NA
Magnesium	35,000	2,000 E	NA	3,780	NA
Manganese	300	684 E	NA	200	NA
Mercury	2	ND _	NA	ND	NA
Nickel	NL	4.3 B	NA	9 B	NA
Potassium	NL	2,810	NA	9,610	NA
Selenium	10	3.3 B	NA	2 B	NA
Silver	50	ND D	NA	2 B	NA
Sodium	20,000	17,300 E	NA	18,400	NA
Γhallium	0.5	4.3 B	NA	3 B	NA
/anadium	NL	0.9 B	NA	ND	NA
Zinc	300	53 E	NA	126	NA
IOTES:		- 1		- '	
Results in parts per billion (ppb) or micrograms p	er liter (ug/l)				
J - not detected above instrument detection limit					
- estimated value					
3 - analyte found in associated method blank					
s - analyte found in associated method blank - value exceeds calibration range					
- value exceeds calibration range	strument detection limit				
OID FONT- Compound was detected at	su univeni detection limit				
SOLD FONT- Compound was detected above in					
shading and Italics - Result is above the NYSDE	C AWQS.				
shading and Italics - Result is above the NYSDE Division of Water Technical and Operational Gu	C AWQS. uidance Series				
hading and Italics - Result is above the NYSDE	C AWQS. uidance Series s and				

Periodic Review Report – SMS Instruments Inc. New York State Department of Environmental Conservation
APPENDIX B
IC/EC Certification Forms

New	Periodic Review Report – SMS Instruments Inc. y York State Department of Environmental Conservation
	·
	APPENDIX C
	Outline and Checklist for PRR
AECOM To sharing I Coming North a set Jan	