

FINAL GROUNDWATER SAMPLING REPORT (March 2010 Sampling Event)

Site: SMS Instruments Site, Site # 1-52-026

Deer Park, Suffolk County, NY Multi Site G Operation, Maintenance & Monitoring Work Assignment D004445-14.3

Submitted to:

New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233

Prepared for:

New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 100 Red Schoolhouse Road, Suite B-1 Chestnut Ridge, NY 10977

August 16, 2010

AECOM Project No. 60135736.20

FINAL GROUNDWATER SAMPLING REPORT (March 2010 Sampling Event)

Site: 1-52-026 SMS Instruments Site	-
Deer Park, Suffolk County, NY	Title:
Submitted to:	
New York State Department of Environmental Conservation	Date:
625 Broadway, Albany, New York 12233	
, , , , , , , , , , , , , , , , , , , ,	Reviewer:
Prepared for:	
New York State Department of Environmental Conservation 625 Broadway,	Title:
Albany, New York 12233	
Prepared by:	Date:
i i opai oa o ji	

Author:

August 16, 2010

AECOM Project No. 60135736.20

Chestnut Ridge, NY 10977

AECOM Technical Services Northeast, Inc. 100 Red Schoolhouse Road, Suite B-1

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION AND SITE CHRONOLOGY	1
2.1	USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well Installation	
	Activities (August 2004)	3
2.2	USEPA/Earth Tech GW P&T System Evaluation Sampling (August 31, 2005)	3
2.3	PHOSter™ System	
2.3.1	Technology Description	4
2.3.2	Technology Selection Rationale	5
2.3.3	PHOSter™ System Effectiveness Evaluation	5
3.0	FIELD ACTIVITIES	5
3.1	Elevation Survey	6
3.2	Water Level Survey	6
3.3	Groundwater Sampling	6
4.0	SAMPLING RESULTS FOR ROUNDS 1 THROUGH 5	6
4.1	Volatile Organic Compounds	7
4.2	Semivolatile Organic Compounds	8
4.3	TAL Metals	8
4.4	Round 5 Data Quality Review	10
4.4.1	Round 5 Volatile Organic Compound Data Quality	11
4.4.2	Round 5 Semivolatile Organic Compound Data Quality	11
4.4.3	Round 5 Metals Data Quality	12
5.0	SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION	
	ACTIVITIES	
5.1	Summary of Contamination	12
5.1.1	Volatile Organic Compounds	
5.1.2	Semivolatile Organic Compounds	13
5.1.3	TAL Metals	13
5.2	Recommendations	14
	Figures	
	e Location Map	
	nitoring Well Location Map	
	oundwater Contour Map, November 5, 2008	
	Cs and SVOCs Exceedances in Groundwater	
	tals Exceedances in Groundwater	
6 Tot	al VOCs in Monitoring Wells	

Tables

- 1 Well Construction Data
- 2 Groundwater Elevations
- February 2006, September 2006, August 2007, November 2008, and March 2010 Groundwater Sampling, Volatile Organic Compounds, Detections Only
- February 2006, September 2006, August 2007, November 2008, and March 2010 Groundwater Sampling, Semivolatile Organic Compounds, Detections Only
- February 2006, September 2006, August 2007, November 2008, and March 2010 Groundwater Sampling, Target Analyte List Metals, Detections Only

Appendices

Appendix A Well Sampling Forms – March 2010

Appendix B NYSDEC Monitoring Well Field Inspection Logs

Appendix C Laboratory Data Summary Packages, March 2010 only (Form Is)

1.0 INTRODUCTION

The SMS Instruments site was evaluated in 2003 as part of the Pump and Treat Optimization initiative from US Environmental Protection Agency (USEPA) headquarters which provided recommendations to enhance remedial and cost effectiveness. In July 2003, GeoTrans, Inc. (GeoTrans), on behalf of the USEPA, conducted a site visit to perform the optimization evaluation of the active Groundwater Pump and Treat system. The results of the evaluation were included in a Remediation System Evaluation (RSE) report (GeoTrans, December, 2003). The RSE report recommended developing an exit strategy and provided three potential approaches for consideration.

Site activities from 2004 to 2005 were performed based on the recommendations provided by the RSE report. In 2005, the Site was transferred from USEPA to the New York State Department of Environmental Conservation (NYSDEC). This sampling report summarizes the SMS Instruments Site remediation activities that occurred since the transfer. AECOM Technical Services Northeast, Inc. (AECOM [formerly Earth Tech Northeast, Inc.]) has been tasked with collecting groundwater samples on a five-quarter basis from selected monitoring wells as part of the long-term monitoring plan. AECOM is performing this work under the NYSDEC Superfund Standby Contract Work Assignment D004445-14.3.

2.0 BACKGROUND INFORMATION AND SITE CHRONOLOGY

The SMS Instruments Superfund site is located at 120 Marcus Boulevard in Deer Park, Suffolk County, New York (Figure 1). At the time of sampling (March 2010), the building was occupied. The site was listed on the National Priority List (NPL) in 1986. The Site consists of a 34,000 square foot building located on a 1.5-acre lot that is surrounded by other light industrial facilities. A recharge basin is located adjacent to the Site to the east. Facility operations occurred between 1967 and 1990 and primarily involved overhauling of military aircraft components. These activities consisted of cleaning, painting, degreasing, refurbishing, metal machining, and testing components. Other historic uses, under different ownership, included the manufacturing of wooden kitchen utensils. The building was unoccupied for the past several years but as of January 2, 2008, the building is now occupied. Site contamination was first discovered in 1980 when the Suffolk County Department of Health Services sampled a leaching pool on the south side of the facility. USEPA completed a remedial investigation/feasibility study (RI/FS) in 1989, and investigative and remedial activities have included pumping out the leaching pond and backfilling it, removal of an underground storage tank (which was used to store jet fuel), and operation of a soil vapor extraction system (SVE). The SVE system was operated from 1992 to 1994, near the former leaching pool and the former UST areas to remediate soils. Wastewater was historically discharged into a leaching pool at the site, which, subsequently contaminated soils and groundwater beneath the site. In addition, the leaking UST also contaminated soils and groundwater beneath the site. A Groundwater Pump and Treat (GW P&T) system, which includes an air stripper to treat contaminated groundwater, was constructed and began operation in 1994.

Soil sampling conducted after the operation of the SVE system reflected that the soil remedy reduced contamination and was effective in reducing potential exposure to contaminated soil vapor. The groundwater contamination has decreased substantially since activation of the GW P&T system. However, after several years of operation, the influent concentrations had decreased substantially, the contaminant removal cost per pound had increased dramatically, and the system was no longer seen as

accelerating site cleanup. Furthermore, the system was failing to achieve the ultimate groundwater cleanup goals (e.g., the maximum contaminant levels [MCLs]). Therefore, in July 2003, GeoTrans, on behalf of the USEPA, conducted a site visit to perform an evaluation of the active GW P&T system. The results of the evaluation were included in a Remediation System Evaluation (RSE) (GeoTrans, 2003). The RSE report recommended developing an exit strategy, and provided three potential approaches for consideration. One of the three recommended approaches, the most aggressive approach, was to conduct a pilot study on an alternative technology and determine if that alternative technology, or another approach, should replace the GW P&T system. The RSE report indicated various alternative technologies are available for reducing the mass of volatile organic compounds (VOCs), including air sparging, bioaugmentation, and chemical oxidation. The USEPA considered this approach the most viable of the three recommended approaches in the RSE report. The intent of aggressively addressing the remaining soil contamination was to reduce contaminant concentrations in the soil and reduce the potential for future contamination of the groundwater, thereby reducing both the cost and time required to remediate the site.

Following USEPA's selection of this recommendation from the RSE report, in May of 2004 the USEPA Remedial Action Branch sent a request for field support at the SMS Instruments Site. The request involved two phases: additional field-characterization of a former UST area through use of a geoprobe down to the water table, and a second phase to assess and implement additional remedial technologies to address remaining source areas, such as air sparging with SVE and/or bioremedial-enhancing injections. In an effort to field characterize the former UST area and obtain data needed for the selection of a pilot alternative approach, 25 soil borings were advanced and installation of SVE and air sparge wells were performed in August 2004 by ERT and the Response Engineering and Analytical Contract (REAC) contractor (Lockheed Martin Technology Services [Lockheed Martin]). Further details of the August 2004 ERT/REAC activities are included in section 2.1 of this report.

Based on an evaluation of the data generated by ERT/REAC, the USEPA Remedial Project Manager (RPM) and the USEPA Removal On-Scene Coordinator (OSC) concluded the installation of a PHOSter™ bioremediation system would be the most appropriate and cost effective technology for the time frame of operation. In April of 2005, under the Emergency and Rapid Response Services (ERRS) contract, AECOM (formerly Earth Tech Northeast, Inc.) procured a PHOSter™ system and the system was later installed and activated on site in May 2005. Further details of the PHOSter™ system are included in Section 2.3 of this report.

The USEPA operated the GW P&T system at the Site until July 15, 2005 when the Site was turned over to NYSDEC. Based on sampling conducted by CDM for the USEPA in June 2005 and effluent samples collected by Earth Tech in August 2005, Earth Tech determined that the GW P&T system was no longer removing significant quantities of contaminants, and VOC concentrations in the influent were below detection limits (at 5 micrograms per liter [µg/L]). In a letter to NYSDEC dated October 6, 2005, Earth Tech recommended that the groundwater treatment system be de-activated. NYSDEC concurred with this recommendation in a letter dated October 21, 2005.

2.1 USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well Installation Activities (August 2004)

In July 2004, EPA-ERT/REAC provided the necessary field support to characterize the remaining source area and preliminary cost projections to implement sparging/bioremediation operations. A Geoprobe was used to advance 25 soil borings to collect 46 subsurface soil samples which were analyzed with a field GC for benzene, toluene, ethylbenzene, and xylenes (BTEX); and three samples were also analyzed for VOCs. The highest BTEX/VOC concentrations were detected in samples collected in the vicinity of the drywell and groundwater extraction well EW-3. These soil samples were collected within the shallow saturated zone [between 24 and 28 feet below ground surface (ft bgs)]. The highest concentrations of BTEX were found in the drywell sample collected at 24 ft bgs with a total concentration of 170,580 micrograms per kilogram (μ g/kg). The highest VOC results were obtained from the drywell location at 24 ft bgs with a total VOC concentration of 408,100 μ g/kg. Vadose zone and saturated zone soil sample data indicated the contamination was contained within the shallow saturated zone. Complete details of the soil boring event are included in the Site Investigation Report (Technical Memorandum) (REAC / Lockheed Martin, August, 2005.

Following a review of these results, it was determined that bioremedial enhancement required further evaluation beyond the USEPA's Remedial Action Branch's required timeframe for transfer of the site to the NYSDEC. Therefore, in November 2004, USEPA's Remedial Action Branch, along with ERT/REAC, were able to provide continued field support to install the necessary piping for the bioremediation system. However, it was determined that purchasing or rental of the bioremediation system was beyond the scope of their existing contract. Therefore, in May 2005, Earth Tech, EPA Region II contractor, procured and installed a PHOSter™ bioremediation system at the Site. Further details of the bioremediation system are included in Section 2.3 of this report.

The system performance was evaluated in June 2006 with a soil sampling program designed to collect subsurface soil samples for chemical testing and methanotrophs. The results of this evaluation were presented in the Final PHOSter™ System Soil Sampling Report, June 2006 Sampling Event (Earth Tech, October 2006). The report concluded that the system was removing VOCs from the soil column; however, pockets of contamination still remained. The report recommended that the system continue to operate for another six months at which time the performance would again be evaluated.

2.2 USEPA/Earth Tech GW P&T System Evaluation Sampling (August 31, 2005)

In an effort to evaluate the current status of the GW P&T system, on August 31, 2005, three groundwater samples (including one field duplicate) were shipped to Mitkem Corporation for VOC analysis by USEPA Method 624, along with three air samples (also including one field duplicate), which were shipped to Con-Test Analytical Laboratory for VOC analysis by TO-15.

The groundwater samples were collected after a minimum of five gallons was purged from the sample ports located within the treatment system. Samples were collected from the influent (INFLUENT) and effluent (EFFLUENT, as well as duplicate sample EFFLUENT-A) of the treatment system for volatile organics analysis.

The air samples were collected using Summa canisters for a period of two minutes per sample. Samples were collected from post air stripper (POST AIR STRIPPER, along with a field duplicate POST AIR STRIPPER-A) and post carbon (POST CARBON) of the treatment system for total organics analysis. Further details of the August 31, 2005 sampling activities are detailed in a Sampling Trip report dated August 31, 2005.

Results of the GW P&T system evaluation sampling performed on August 31, 2005 indicated no contamination was being treated by the GW P&T system, and contaminants were not detected (at a detection limit of $5~\mu g/L$) in the influent. Therefore, on October 6, 2005, Earth Tech recommended the shut-down of the SMS groundwater pump and treatment plant and in a letter dated October 21, 2005, the NYSDEC approved the temporary shutdown of the groundwater treatment plant. The NYSDEC letter also indicated that groundwater sampling would continue to determine if any significant rebound occurs. If no rebound was observed after a reasonable period of time, the treatment system would be permanently shut down and dismantled.

Earth Tech prepared a Dismantlement Plan dated April 2007. The Plan was approved and notice to proceed was given by NYSDEC in a letter dated April 26, 2007. The building was demolished in two phases. All PVC piping and tanks were dismantled in May through June 2007. The interior of the P&T building was stripped of all electrical components, office furniture and equipment. Piping was placed in roll-offs for disposal. Metal was segregated into steel and stainless steel for disposal. Spent carbon was removed from the air stripper tower and placed in 1,000 pound bulk bags. The six 1,000 lb bulk bags were removed from the Site on October 9, 2007 and taken to the Siemens facility for disposal. On November 2, 2007, Veolia ES Technical Solutions removed all waste from the treatment building including water treatment chemicals, test meter solutions and other chemical wastes. Final building demolition and concrete foundation removal occurred in late December 2007. The demolition activities were documented in the Final Pump and Treat Dismantlement Report (Earth Tech, May 2008).

2.3 PHOSter™ System

2.3.1 Technology Description

The Enhanced In-Situ Bioremediation Process is a biostimulation technology developed by the US Department of Energy (DOE) at the Westinghouse Savannah River Plant site in Aiken, South Carolina. DOE refers to their phosphate injection technology as PHOSter™ and has licensed the process to Earth Tech. Earth Tech is utilizing the process to deliver a gaseous phase mixture of air, nutrients, and methane to contaminated soils at the SMS site. These enhancements are delivered to groundwater via injection wells to stimulate and accelerate the growth of existing microbial populations, especially methanotrophs. This type of aerobic bacteria has the ability to metabolize methane and produce enzymes capable of degrading chlorinated solvents and their degradation products to non-hazardous constituents. The primary components of Earth Tech's treatment system consist of injection wells, air injection equipment, groundwater monitoring wells, and soil vapor monitoring points. Figure 2 shows a plan view of the treatment area, the injection wells, and monitoring points. The injection wells are designed to deliver air, gaseous-phase nutrients, and methane to groundwater and the vadose zone in the underlying soils.

The SMS system consists of a 5 horsepower rotary screw compressor that is capable of delivering 15 to 30 pounds per square inch (psi) and approximately 10 to 100 standard cubic feet per hour (scfh) to a pressure-rated steel tank. Air from the main line is diverted to the injection wells (screened 30 to 50 ft bgs). The monitoring wells and soil vapor monitoring points were installed upgradient, downgradient and cross-gradient relative to the injection well location to delineate the zone of influence and to monitor groundwater within and outside the zone of influence. The soil vapor monitoring points can be designed to release or capture vapors that may build up in the overburden. The monitoring wells were constructed in a manner to allow them to be converted to either injection wells or soil vapor extraction points.

The SMS injection system consists of air, nutrient, and methane injection equipment (all housed in a small enclosed trailer). A compressor serves as the air source, and includes a condensate tank ("trap") with a drain, an air line, coalescing filters and pressure regulators and valves. Methane and nitrous oxide provide the source of carbon and nitrogen, respectively. Both are provided in standard gas cylinders and are piped into the main air line using regulators and flow meters. Triethyl phosphate (TEP), the phosphorus source, is stored as a liquid in a pressure-rated steel tank. Air from the main line is diverted through the tank to volatilize the TEP for subsurface delivery. The air, nitrous oxide, and TEP are injected continuously while the methane is injected on a pulsed schedule. The methane is closely monitored just prior to injecting into subsurface wells to ensure that the injection concentration does not exceed 4% by volume, thus avoiding the methane lower explosive limit (LEL) of 5%.

2.3.2 Technology Selection Rationale

The PHOSter™ technology was chosen for this site for a number of reasons. Contamination concentrations in the groundwater are at very low asymptotic levels and it was felt that the pump and treat system was no longer capable of removing a sufficient mass of contamination to justify operation. A system of groundwater and vadose zone wells were already in place that would be suitable for economically installing this technology. Soil and groundwater sampling results indicated existing biological activity was slowly degrading the contaminants. The site geology and hydrogeology was also ideal for this technology. The PHOSter™ technology has demonstrated ability to stimulate bacterial activity, promote the destruction of contaminants and act as a polishing technology for removal low levels of contamination often encountered in the final stages of site remediation.

2.3.3 PHOSter™ System Effectiveness Evaluation

On September 15 and 16, 2009, Earth Tech advanced six soil borings and collected subsurface soil samples for analysis of VOCs, pospholipid fatty acids (PLFA) and methanotrophs. The results were presented in the Final PHOSter™ System Soil Sampling Report (AECOM, January, 2010).

3.0 FIELD ACTIVITIES

In accordance with the June 2007 Sampling and Analysis Plan (Earth Tech, June 2007) developed for the SMS Instruments Site, AECOM conducted the fifth of five groundwater sampling events in March 2010. The first round of groundwater sampling was conducted in February 2006, under NYSDEC Work Assignment #D003821-41. The second round of groundwater sampling was conducted in September 2006 (under this work assignment). The third round of groundwater sampling was conducted in August

2007. The fourth round of sampling was conducted in November 2008. This section describes and presents the results of the Round 5 groundwater sampling event that took place on March 8 through 12, 2010.

3.1 Elevation Survey

YEC, Inc. performed a survey of the wells at the Site to determine location and elevation as this data could not be located. The survey was performed on March 23, 2007. The survey data is presented in Table 1 along with pertinent well construction data.

3.2 Water Level Survey

At the start of the sampling effort, the depth to groundwater was measured in each well. These measurements are presented in Table 2. A groundwater contour map is presented in Figure 3. As shown on the figure, the direction of groundwater flow at the Site is to the south. The gradient, as measured between contour lines, is approximately 0.0016, a very shallow gradient.

3.3 Groundwater Sampling

Prior to sampling each well, the depth to water was measured using a water level indicator, which was rinsed with distilled water before each use. Each monitoring well was purged of three well volumes with a submersible pump. The pump was decontaminated between each use by washing with Liquinox followed by a tap water rinse and a distilled water rinse.

After purging, temperature, conductivity, pH, and turbidity measurements were recorded on the field observation logs. Water samples were obtained with new dedicated Teflon bailers. All groundwater samples were collected in bottles provided by the laboratory. Samples were packed on ice, and submitted with a completed chain-of-custody (COC) to Mitkem Laboratories, Inc. (Warwick, RI). Each sample was analyzed for VOCs by SW-846 Method 8260B, semivolatile organic compounds (SVOCs) by Method 8270C, target analyte list (TAL) metals by Method 6010, and mercury by Method 7470.

Monitoring well locations are presented in Figure 2. A total of 19 monitoring wells were sampled during this sampling event (March 2010). The electric lines to the pumps in extraction wells EW-1 and EW-2 were disconnected during the building demolition in 2007 and no longer function; however, the pumps remain in the wells blocking access for sampling. MW-11 was not sampled during this field effort as the area is under construction and the well could not be located.

4.0 SAMPLING RESULTS FOR ROUNDS 1 THROUGH 5

The laboratory analytical results for the VOCs, SVOCs and TAL metals analyses are included as Tables 3, 4, and 5 of this report, respectively. In addition, the New York State Ambient Water Quality Standards and Guidance Values for groundwater are shown on each table. Any compound detected at a concentration at or above the applicable standard or guidance value is in bold/italics font.

4.1 Volatile Organic Compounds

VOCs results are shown on Table 3 of this report. The VOC results are also summarized on Figure 4. No VOCs were detected in monitoring wells MW-5, MW-11, and MW-12 during sampling Rounds 1 through 5. A few VOCs have been sporadically detected in monitoring wells MW-2, MW-4, MW-8, MW-9, MW-13, MW-13D, MW-14, MW-15, MW-16M, and MW-16S at concentrations below the criterion during Rounds 1 through 5. Five monitoring wells had one exceedance noted during Rounds 1 through 5 including MW-1, MW-6D, MW-7, MW-16D, and MW-17. (The sporadic Round 5 reported low-concentration detections of chloromethane are not included in the discussion below; see note at the end of this section and Section 4.4.1 of this report.) No VOCs were detected in these wells in Round 5.

During Round 2, hexachlorobutadiene was detected in three monitoring wells at concentrations that exceeded the Class GA criterion of 0.5 μ g/L. These wells include MW-6D (2 μ g/L), MW-16D (1 μ g/L) and MW-17 (2 μ g/L). Hexachlorobutadiene was not detected in any other sample during the five sampling events.

In monitoring well MW-1, 1,1-dichloroethane was detected at a concentration of 14 μ g/L during the February 2006 sampling which exceeded the Class GA criterion of 5 μ g/L. During the September 2006 sampling event, 1,1-dichloroethane was detected at an estimated 4 μ g/L. 1,1-Dichloroethane was not detected during the August 2007, November 2008, and March 2010 sampling events. No other VOCs (other than chloromethane in Round 5) have been detected at MW-1.

Two exceedances have been noted at MW-3. Vinyl chloride was detected at a concentration of 8 μ g/L which exceeded the Class GA criterion of 2 μ g/L during the Round 3 sampling event but was not detected during Rounds 1, 2, 4 and 5. cis-1,2-Dichloroethene was detected at a concentration of 8 μ /L during the Round 3 sampling event which exceeded the criterion of 5 μ g/L but was not detected during any other sampling round. Tetrachloroethene (PCE) was detected below the criterion only during Round 4. No VOCs (other than chloromethane) were detected at MW-3 in Round 5. No other VOCs were detected at MW-3 during any of the five sampling events.

At MW-6S, chlorobenzene was detected at an estimated concentration of 1 μ g/L during the February 2006 (Class GA criterion of 5 μ g/L). Several VOCs, mostly benzene derivatives, ethylbenzene and xylenes, have been detected at MW-6S during the last three sampling events, some of which exceeded their respective criteria. During the November 2008 sampling event, three exceedances of the Class GA criterion were noted: 1,3,5-trimethylbenzene at 11 μ g/L; 1,2,4-trimethylbenzene at 21 μ g/L; and 1,4-dichlorobenzene at an estimated 3.2 μ g/L. The concentrations and the exceedances at this location have remained relatively constant during the three sampling events between September 2006 and November 2008. However, in Round 5 (March 2010), the only benzene-related compound detected was 1,3,5-trimethylbenzene at a low concentration (1.7 μ g/L), less than the Class GA criterion.

At MW-6S, four compounds have exceeded the Class GA criterion during the five sampling rounds. Total xylenes were detected in three of five rounds at concentrations ranging from an estimated 4 μ g/L to 5 μ g/L (Class GA criterion 0f 5 μ g/L). 1,3,5-Trimethylbenzene was detected in four of five rounds at concentrations ranging from an estimated 1.7 μ g/L to 11 μ g/L, two of which exceeded the Class GA criterion of 5 μ g/L. 1,2,4-Trimethylbenzene was detected in three of five rounds at concentrations raging

from 6 μ g/L to 21 μ g/L, all of which exceeded the Class GA criterion of 5 μ g/L. 1,4-Dichlorobenzene was detected in three of five sampling rounds at concentrations ranging from an estimated 2 μ g/L to 4 μ g/L, two of which exceeded the Class GA criterion of 3 μ g/L. Six other VOCs were detected at various times at concentrations below their respective criterion during the five rounds. There were no VOCs exceedances during Round 5.

At MW-7, the concentration of 1,1-dichloroethane (Class GA criterion of 5 μ g/L) had increased during each of the first three sampling events: 1 μ g/L, 3 μ g/L and 13 μ g/L, respectively. During the November 2008 sampling event, the concentration decreased to an estimated 2.3 μ g/L and was not detected during the March 2010 sampling event. 1,1,1-Trichloroethane had been detected below the criterion during the two of five sampling events. None of these VOCs were detected in the Round 5 sample; however, tetrachloroethene (PCE) was detected at an estimated concentration of 1.6 μ g/L (less than the Class GA criterion of 5 μ g/L as a 'principal organic contaminant').

In round 5, low-concentration detections (2.9 to 5.9 µg/L) of chloromethane were reported sporadically (nine of seventeen samples) in the SDG J0398 groundwater samples analyzed by Mitkem. (Chloromethane was not detected in the three groundwater samples in the later SDG J0445.) This compound was detected infrequently in previous rounds; its presence in Round 5 data may be an artifact (not representative of actual groundwater conditions), as discussed in Section 4.4.1, below.

4.2 Semivolatile Organic Compounds

SVOC results are shown on Table 4 of this report. The SVOC results are also summarized on Figure 4.

No SVOCs have been detected in monitoring wells MW-4, , MW-11, MW-13, and MW-16S during any of the five sampling events. A few SVOCs have been sporadically detected in monitoring wells MW-2, MW-3, MW-4, MW-8, MW-9, MW-12, MW-13D, MW-14, MW-15 MW-16M, and MW-17 at concentrations below their respective Class GA criteria during the five sampling events.

Bis(2-ethylhexyl)phthalate (BEHP) was detected above the Class GA criterion of 5 μ g/L in five wells (MW-1, MW-6S, MW-6D, MW-7 and MW-16D) during Round 1 (February 2006). With the exception of MW-6S, BEHP concentrations have not exceeded the criterion during the last four sampling events.

Several polynuclear aromatic hydrocarbons (PAHs) were detected in monitoring wells MW-6S and MW-6D during Round 1 (February 2006) at concentrations above their respective Class GA criteria. There have been no exceedances in MW-6D during the last four sampling rounds, although there were sporadic hits of several phthalates at concentrations below their respective criteria. The concentrations of several PAHs and phthalates continued to exceed their respective criteria at MW-6S through Rounds 2, 3 and 4. However, there were no exceedances of any SVOCs in MW-6S during Round 5.

4.3 TAL Metals

Results for all five rounds of TAL metals data are shown on Table 5 of this report. The metals data is also summarized on Figure 5. Exceedances of the Class GA criterion were noted for antimony, beryllium, cadmium, chromium, iron, lead, manganese, selenium, sodium, and zinc.

Antimony was detected in 13 of 22 samples during Round 1, three of which exceeded the criterion of 3 μ g/L (maximum concentration of 4.7 μ g/L in MW-4). Antimony was only detected in four samples during Round 2, none of which exceeded the criterion. During Round 3, antimony was detected in all 19 samples, 16 of which exceeded the criterion (maximum concentration of 15.7 μ g/L in MW-14). During Round 4, antimony was not detected in any of the 19 samples collected. In Round 5, antimony was detected in nine of 19 samples, all of which exceeded criteria, with a maximum of 11 μ g/L in MW-17.

Beryllium was detected in three of 22 samples during Round 1, three of 20 samples during Round 2 and six of 19 samples during Round 3, none of which exceeded the criterion of 3 μ g/L. During Round 4, beryllium was detected in seven of 19 samples, one of which exceeded the criterion, 9.8 μ g/L at MW-6S. In Round 5, beryllium was detected in 16 samples, with the one exceedance again occurring at MW-6S (3.7 μ g/L).

Cadmium was detected in 21 of 22 samples during Round 1, four of which exceeded the criterion of 5 μ g/L (maximum concentration of 72.8 μ g/L at MW-13D). Cadmium was detected in 19 of 20 samples during Round 2 of which two exceeded the criterion (maximum concentration of 72.8 μ g/L at MW-13D). Cadmium was detected in 15 of 19 samples during Round 3 of which three exceeded the criterion (maximum concentration of 65.5 μ g/L at MW-13D). During Round 4, cadmium was detected in 18 of 19 samples and six exceeded the criterion (maximum concentration of 79 μ g/L at MW-13D). In Round 5, chromium concentrations exceeded the criterion in four of the 15 samples in which it was detected, with a maximum concentration of 58 μ g/L again at MW-13D.

Chromium has been detected in every sample during all five sampling events. There were no exceedances of chromium during Round 1. During Round 2, chromium exceeded the criterion of 50 μ g/L at two wells (maximum concentration of 275 μ g/L at MW-15). During Round 3, chromium exceeded the criterion at two wells (maximum concentration of 111 μ g/L at MW-6S). During the November 2008 sampling event, chromium exceeded the criterion at these same two wells (maximum concentration of 68.2 μ g/L at MW-6S). In the March 2010 sampling event, chromium exceedance occurred at four wells including MW-6S and MW-15 again, but the maximum concentration was reported at MW-17 (160 μ g/L).

Iron has been detected in every sample collected during all five sampling events. Iron concentrations exceeded the criterion of 300 μ g/L in 20 of 22 samples during Round 1 (maximum concentration of 107,000 μ g/L at MW-8). Iron exceeded the criterion in 17 of 20 samples during Round 2 (maximum concentration of 60,300 μ g/L at MW-7). Iron exceeded the criterion in 15 of 19 samples during Round 3 (maximum concentration of 296,000 μ g/L at MW-14). Iron exceeded the criterion in 18 of 19 samples during Round 4 (maximum concentration of 65,100 μ g/L at MW-14). Iron concentrations exceeded the criterion in all 19 Round 5 samples, at a maximum concentration of 240,000 μ g/L at MW-8.

Lead was detected in 21 of 22 samples during Round 1 but only one sample (135 μ g/L at MW-2) exceeded the criterion of 25 μ g/L. Lead was detected in 14 of 20 samples during Round 2 with one exceedance (128 μ g/L at MW-2). Lead was detected in 14 of 19 samples during Round 3 with two exceedances (maximum concentration of 197 μ g/L at MW-2). Lead was detected in 17 of 19 samples during Round 4 with two exceedances (maximum concentration of 271 μ g/L at MW-2). In Round 5, lead was detected in 16 of 19 samples, with three exceedances (maximum concentration of 350 μ g/L again occurring at MW-2).

Manganese was detected in every sample during all five sampling events. Manganese exceeded the criterion of 300 μ g/L in 9 of 22 samples during Round 1 (maximum concentration of 869 μ g/L at MW-6S). Manganese exceeded the criterion in seven of 20 samples during Round 2 (maximum concentration of 956 μ g/L at MW-12). During Round 3, manganese exceeded the criterion in 11 of 19 samples (maximum concentration of 1,290 μ g/L at MW-14). During Round 4, manganese exceeded the criterion in 12 of 19 samples (maximum concentration of 1,940 μ g/L at MW-17). In Round 5, manganese exceeded the criterion in 14 samples (maximum 2,600 μ g/L at MW-17).

During the February 2006 sampling event, selenium was detected in 14 of 22 samples. There was only one exceedance of the Class GA criterion of 10 μ g/L at MW-6D at a concentration of 12.5 μ g/L. During the September 2006 sampling event, selenium was detected in three of 20 samples with no exceedances noted. During the August 2007 sampling event, selenium was detected in all 19 samples with exceedances noted at 15 wells (maximum concentration of 41.2 μ g/L at MW-14). During the November 2008 sampling event, selenium was only detected in one well at a concentration below the criterion. In Round 5, selenium was detected in six wells, all at concentrations exceeding the criterion. The maximum Round 5 concentration of 23 μ g/L was reported at MW-2, MW-8, and WM-9.

Sodium was detected in every sample collected during all five sampling events. Sodium exceeded the criterion of 20,000 μ g/L in three samples during Round 1 (maximum concentration of 28,400 μ g/L at MW-1). Sodium exceeded the criterion in five samples during Round 2 (maximum concentration of 31,100 μ g/L at MW-6D). Five samples during Round 3 exceeded the criterion (maximum concentration of 73,900 μ g/L at MW-1). During Round 4, five samples exceeded the criterion (maximum concentration of 32,200 μ g/L at MW-1). In Round 5, the criterion was exceeded in six of the 19 samples (maximum 35,000 μ g/L in MW-1).

During the February 2006 sampling event, thallium was detected in nine of 22 samples at concentrations above the Class GA criterion of 0.5 μ /L with the highest concentration noted at MW-6S (6.4 μ g/L). During the September 2006 sampling event, thallium was detected in six of 20 samples above the criterion, with the highest concentration noted at MW-13 (4 μ g/L). During the August 2007 sampling event, thallium was detected in 12 of 19 samples above the criterion with the highest concentration noted at MW-14 (64.8 μ g/L). During the November 2008 and March 2009 sampling events, thallium was not detected in any of the 19 samples (MDL of 4.2 μ g/L [Round 4] and 5.7 μ g/L [Round 5]).

Zinc was detected in every sample collected during all five sampling events. During Round 1, only two samples exceeded the criterion of 2,000 μ g/L (maximum concentration of 4,620 μ g/L at MW-2). During Rounds 2, 3, 4, and 5, the sample from MW-2 had the only exceedances with concentrations of 2,720 μ g/L, 3,360 μ g/L, 4,230 μ g/L, and 12,000 μ g/L, respectively.

4.4 Round 5 Data Quality Review

In accordance with the project plans, data generated for this investigation were not subject to formal validation. However, AECOM's quality assurance officer (QAO) reviewed the data for reasonableness and the presence of any anomalies, including issues identified by the laboratory in the case narrative, and other items noted in review of shipping and handling documentation, inconsistencies with previous data,

and review of the laboratory QA forms for the two sample delivery groups (SDGs) comprising the SMS data set (J0398 and J0445). The QAO also reviewed the field duplicate data.

4.4.1 Round 5 Volatile Organic Compound Data Quality

During the March 2010 sampling, chloromethane detected in about half the samples (nine of seventeen) in one of the two SDGs (J0398). This compound had been detected infrequently in previous rounds of sampling; the laboratory noted that it had experienced this same issue previously and the problem was traced back to contamination in the HCl preservative used in the VOC vials procured by Mitkem and provided to the sampling firm. Therefore, AECOM does not consider these low-concentration detections of chloromethane to be representative of environmental conditions.

Toluene was detected in two of the three trip blanks at low concentrations (1.1 μ g/L in TB-1 and TB-2). The laboratory-reported detection of toluene at a similar concentration (1.2 μ g/L) in MW-17 may be an artifact. (Toluene was not detected in any other Round 5 groundwater sample.)

Laboratory QC was generally good. Laboratory control sample (LCS) recovery and precision was with limits for all analytes for both SDGs. In the site-specific matrix spike/matrix spike duplicate (MS/MSD performed on MW-13D) for SDG J0398, precision was good for all analytes although the recovery was low for 2,2-dichloropropane in both the MS and MSD (42 and 48 percent, respectively; less than the low limit of 70 percent recovery). Low concentrations of xylenes were detected in the method blank in SDG J0398; xylenes were not detected in any of the field samples.

One site-specific field duplicate pair (MW-9/MW-59) was analyzed for VOCs. 1,4-Dichlorobenzene was detected at similar concentrations (1.2 and 1.3 μ g/L) in the sample and duplicate, respectively, for a relative percent difference (RPD) of 8 percent. Chloromethane (4.6 μ g/L) was detected in the sample but not in the duplicate. No other VOCs were detected in the sample or duplicate.

4.4.2 Round 5 Semivolatile Organic Compound Data Quality

No issues affecting data quality were noted during the evaluation of the data and data package from the Round 5 (March 2010) SVOC sampling. LCS recovery (associated with both SDGs) of hexachlorocyclopentadiene and LCS duplicate (LCSD) recovery of 2-methylnaphthalene were very slightly outside the specified range. There was no (0 percent) recovery of 3,3'-dichlorobenzidene in the site-specific MS/MSD (performed on MW-13D); and the recovery of hexachlorobenzene and precision of 4-chloroaniline and 3-nitroaniline were outside limits. None of these deviations are considered to have a significant adverse impact on the usability of the Round 5 data.

One site-specific field duplicate pair (MW-9/MW-59; reported in J0398) was analyzed for SVOCs. Precision is qualitatively good; no SVOCs were detected in the sample or the duplicate.

4.4.3 Round 5 Metals Data Quality

Metals data for the March 2010 sampling event were reported in two SDGs (16 field samples in J0398, and three field samples in J0445). In SDG J0398, All laboratory QC (Laboratory control sample, laboratory spike, laboratory duplicate, matrix spike, matrix spike duplicate) was within limits. Laboratory QC was performed on site sample MW-13D.

One site-specific field duplicate pair (MW-9/MW-59) was analyzed for metals. Duplicate precision as measured by the RPD was good for the 18 metals for which it could be calculated. RPDs ranged from zero percent (sodium and copper) to 42 percent (selenium, detected at estimated concentrations less than the reporting limit in the sample and duplicate), with a median RPD of 6.7 percent and an average RPD of 11.2 percent.

5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES

5.1 Summary of Contamination

The following sections summarize the contaminants found at the Site during the five sampling rounds completed to date. Summaries of the compounds detected and exceedances of the Class GA criteria are presented in Table 3 (VOCs), Table 4 (SVOCs) and Table 5 (metals). The exceedances are also presented on Figure 4 (VOCs and SVOCs) and Figure 5 (metals).

5.1.1 Volatile Organic Compounds

During the February 2006 sampling event (Round 1) there were only two VOCs exceedances: chlorobenzene at EW-1 and 1,1-dichloroethane at MW-1. EW-1 was not sampled during Round 2 (September 2006) or Round 3 (August 2007) due to problems with the pump, and was not sampled in Rounds 4 or 5 as the pump electric lines were disconnected during the pump and treat dismantlement so there is not information for comparison. During Round 2, there were three compounds that exceeded the criterion – total xylenes at MW-6S, 1,2,4-trimethylbenzene at MW-6S, and hexachlorobutadiene at MW-6D, MW-16D and MW-17. During Round 3, exceedances were noted in three monitoring wells: MW-3, MW-6S and MW-7. During Round 4, there were three exceedances in monitoring well MW-6S; VOCs were either not detected or detected at concentrations below the criterion in the other 18 monitoring wells. In Round 5, none of the detected VOCs exceeded class GA criteria.

A summary of total VOCs is depicted on Figure 6. Each groundwater sampling event since 1994 is included in the figure. For each sampling event, the total VOC concentration in each monitoring well is graphically represented in the bars. The concentration for MW-1 is shown at the base of the bar; the concentration for MW-2 is then added to the bar, then MW-3 and so on until all 20 monitoring wells are shown with each well depicted by a different color. Each bar represents the total VOC concentration for the sampling event. As shown on the figure, the majority of the groundwater contamination at the Site has historically been present in MW-6S. The trendline depicts the overall decreasing concentrations of VOCs through time from the start of the GW P&T system to the most recent sampling event in November 2008.

Several VOCs, mostly aromatics, have been detected at MW-6S during all four sampling events. The concentrations have remained relatively constant for the most part during this time frame. The concentrations of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene showed a steady increase during sampling events 1 through 4: 1,3,5-trimethylbenzene – ND, 3 μ g/L, 5 μ g/L, and 11 μ g/L; and 1,2,4-trimethylbenzene – ND, 6 μ g/L, 11 μ g/L, and 21 μ g/L. However, 1,2,4-trimethylbenzene was not detected in Round 5, and the concentration of 1,3,5-trimethylbenzene decreased to 1.7 μ g/L.

Hexachlorobutadiene was not historically associated with the Site. Hexachlorobutadiene exceedances were noted at MW-6D, MW-16D and MW-17 during the September 2006 sampling event; however, it has not been detected in subsequent sampling events. The source of the hexachlorobutadiene is unknown and appears to have been an isolated occurrence.

No significant rebound of VOC concentrations has been noted in the five rounds of groundwater samples collected at the Site since the pump and treat system was shut down in October 2005 with the exception of the two trimethylbenzene compounds at MW-6S. However, in Round 5 trimethylbenzene concentrations decreased significantly and did not exceed GA criteria.

5.1.2 Semivolatile Organic Compounds

During Round 1 there were several exceedances of SVOCs, most of which were in wells MW-6D and MW-6S. The six compounds which exceeded criteria in Round 1 at MW-6D were not detected during Rounds 2, 3, 4, and 5 (a low concentration of BEHP, less than its criterion, was detected in Round 5).

Three SVOCs were detected at concentrations above the criterion during Round 1. During Round 2, only one SVOC was detected above the criterion. Seven SVOCs were detected at concentrations above the criterion during Round 3. During Round 4, eight SVOCs were detected at concentrations above the criterion. Most of the exceedances are polynuclear aromatic hydrocarbons (PAHs) have been detected in MW-6S during three of the four sampling events at concentrations that exceed the criteria. SVOC contamination appears to be limited to MW-6S. No PAHs were detected at MW-6S in Round 5; the only detected SVOCs were low concentrations (less than 3 μ g/L) of BEHP and 2-methylphenol.

5.1.3 TAL Metals

Eleven metals have been detected at concentrations that exceed the criterion including antimony, beryllium, cadmium, chromium, iron, lead manganese, selenium, sodium, thallium, and zinc.

Antimony exceedances have varied greatly between sampling events with the majority of exceedances occurring in Round 3 (16 exceedances); however, these exceedances have not been replicated in the other three sampling events, although there was an uptick in Round 5 (nine exceedances). Similarly, selenium concentrations peaked during Round 3 (15 exceedances) but were not replicated in the Round 1, Round 2, and Round 4 sampling events; six exceedances were reported in Round 5. Consequently, the presence of antimony and selenium do not appear to be site related. Beryllium has only exceeded the criterion twice in five sampling rounds (both times at MW-6S) and does not appear to be an issue at the Site. The presence of iron, manganese and sodium in groundwater are most likely related to background conditions on Long Island and do not appear to be Site related.

Cadmium exceedances appear to be localized and are present in monitoring wells MW-5, MW-13D and MW-16D. Chromium exceedances are limited to monitoring wells MW-6S, MW-15 and MW-16S (plus MW-17 in Round 5). Lead exceedances are generally limited to monitoring wells MW-2 and MW-6S. Zinc exceedances have been noted in all five sampling events at MW-2 and once at MW-6S (Round 1).

Although thallium concentrations have exceeded the criterion in numerous samples, the exceedances have for the most part not been replicated from one sampling event to the next. The exception has been at monitoring wells MW-6S and MW-13 where the concentration has exceeded the criterion in the first three sampling events. However, thallium has not been detected in any of the groundwater samples collected in Round 4 or Round 5.

5.2 Recommendations

AECOM recommends the following for the SMS Instruments Site:

- Collection of a final round of soil boring samples in the areas of known soil impact via direct-push soil sampling methods for the evaluation of current soil conditions in the area of concern and the effectiveness of the PHOSter™ bioremediation system after six months; and
- One additional round of groundwater sampling in 2011 for final Site closeout.

FIGURES

PΚ

JUNE 2010

DRAWING NO. :

AS SHOWN

TABLES

TABLE 1
SMS INSTRUMENTS SITE (1-25-026)
WELL CONSTRUCTION DATA

Well			GPS	GPS	Ground	Top of Riser	Top of Casing	Total Depth
Number	Northing	Easting	Latitude	Longitude	Elevation	Elevation	Elevation	of Well
MW-1	4,932.30	5,066.36	40º 45.691'	73º 18.969'	73.7	73.18	73.71	30.3
MW-2	5,030.89	5,162.26	40º 45.712'	73º 18.951'	72.7	72.34	72.73	28.5
MW-3	5,046.01	5,262.27	40º 45.716'	73º 18.930'	72.0	71.40	72.00	26.0
MW-4	4,947.99	5,389.05	40° 45.702'	73º 18.902'	72.7	72.04	72.70	29.6
MW-5	4,864.24	5,367.21	40° 45.689'	73º 18.911'	71.5	70.87	71.54	20.6
MW-6S	4,861.60	5,322.33	40° 45.690'	73° 18.915'	71.2	70.64	71.17	26.2
MW-6D	4,861.31	5,315.87	40° 45.690'	73º 18.919'	71.2	70.70	71.16	95.7
MW-7	4,842.41	5,095.83	40° 45.676'	73º 18.960'	72.6	72.09	72.64	28.7
MW-8	5,155.39	5,151.21	40° 45.728'	73º 18.959'	71.7	71.22	71.70	29.1
MW-9	5,162.70	5,331.93	40° 45.729'	73º 18.923'	71.1	70.58	71.11	28.8
MW-11	4,428.51	5,520.19	Missing		68.1	67.54	68.12	16.5
MW-12	4,426.77	5,391.08	40° 45.613'	73º 18.910'	70.4	69.82	70.43	47.5
MW-13	4,411.78	5,252.31	40° 45.617'	73º 18.907'	71.6	71.16	71.62	36.9
MW-13D	4,420.90	5,267.66	40° 45.620'	73º 18.881'	72.1	71.20	72.06	101.4
MW-14	4,404.80	5,114.02	40° 45.610'	73º 18.932'	71.8	71.29	71.84	45.9
MW-15	4,702.67	5,120.87	40° 45.658'	73º 18.945'	72.0	71.55	72.01	36.6
MW-16S	4,712.87	5,226.27	40° 45.690'	73º 18.915'	72.0	71.47	72.03	36.9
MW-16M	4,713.25	5,233.41	40° 45.690'	73º 18.927'	72.2	71.59	72.17	56.7
MW-16D	4,714.18	5,239.60	40° 45.690'	73º 18.919'	72.1	71.62	72.10	76.9
MW-17	4,745.67	5,393.99	40° 45.671'	73º 18.893'	71.7	71.19	71.68	36.5

Notes:

All elevations and depths in feet

GPS coordinates collected using a Magellan hand-held GPS unit

Field survey performed by YEC, Inc., on March 23, 2007

Vertical datum: NAVD 88, for NGVD 29, add 1.13 feet

Horizontal datum assumed

TABLE 2 SMS INSTRUMENTS SITE (1-52-026) GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
	Lievation		10 Water	Lievation	
MW-1	73.18	8/13/07	17.98	55.20	
10100	70.10	11/5/08	19.25	53.93	
		3/8/10	18.37	54.81	
		0/0/10	10.07	04.01	
MW-2	72.34	8/13/07	16.91	55.43	
	72.01	11/5/08	18.19	54.15	
		3/8/10	17.36	54.98	
		0,0,10		000	
MW-3	71.40	8/13/07	15.95	55.45	
		11/5/08	17.22	54.18	
		3/8/10	16.41	54.99	
			_		
MW-4	72.04	8/13/07	16.68	55.36	
		11/5/08	17.99	54.05	
		3/8/10	17.18	54.86	
MW-5	70.87	8/13/07	15.72	55.15	
		11/5/08	16.99	53.88	
		3/8/10	16.16	54.71	
MW-6S	70.64	8/13/07	15.15	55.49	
		11/5/08	16.73	53.91	
		3/8/10	15.94	54.70	
MW-6D	70.70	8/13/07	15.59	55.11	
		11/5/08	16.75	53.95	
		3/8/10	16.02	54.68	
MW-7	72.09	8/13/07	17.06	55.03	
		11/5/08	18.28	53.81	
		3/8/10	17.41	54.68	
	_,				
MW-8	71.22	8/13/07	15.54	55.68	
		11/5/08	16.85	54.37	
		3/8/10	16.02	55.20	
	70.50	0/46/07	44.5=		
MW-9	70.58	8/13/07	14.87	55.71	
		11/5/08	16.24	54.34	
		3/8/10	15.35	55.23	
NAVA 4 4	07.54	0/40/07			
MW-11	67.54	8/13/07			could not locate
		11/5/08			could not locate
		3/8/10			

TABLE 2 SMS INSTRUMENTS SITE (1-52-026) GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
MW-12	69.82	8/13/07 11/5/08 3/8/10	15.57 16.78 15.85	54.25 53.04 53.97	
MW-13	71.16	8/13/07 11/5/08 3/8/10	17.08 18.19 17.24	54.08 52.97 53.92	
MW-13D	71.20	8/13/07 11/5/08 3/8/10	17.01 18.24 17.28	54.19 52.96 53.92	
MW-14	71.29	8/13/07 11/5/08 3/8/10	17.24 18.33 17.33	54.05 52.96 53.96	
MW-15	71.55	8/13/07 11/5/08 3/8/10	16.78 18.03 17.10	54.77 53.52 54.45	
MW-16S	71.47	8/13/07 11/5/08 3/8/10	16.64 17.90 17.01	54.83 53.57 54.46	
MW-16M	71.59	8/13/07 11/5/08 3/8/10	16.75 18.01 17.14	54.84 53.58 54.45	
MW-16D	71.62	8/13/07 11/5/08 3/8/10	16.79 18.05 17.15	54.83 53.57 54.47	
MW-17	71.19	8/13/07 11/5/08 3/8/10	16.26 17.51 16.66	54.93 53.68 54.53	

All readings are from top of PVC casing. All measurements are in feet.

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Ground	E0136-20A					E0203-03C				
Sample Date	Water	2/9/06	09-12-06	08-14-07	11/5/08		2/23/06	09-12-06	08-14-07	11/5/08	
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Vinyl Chloride	2	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Acetone	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Methyl tert-butyl ether	10	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,1-Dichloroethane	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
cis-1,2-Dichloroethene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,1,1-Trichloroethane	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Tetrachloroethene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Trichloroethene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Chlorobenzene	5	32.0	NA	NA	NA	NA	ND	NA	NA	NA	NA
Chloroform	7	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Chloromethane	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Ethylbenzene	5	1.0 J	NA	NA	NA	NA	ND	NA	NA	NA	NA
Toluene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Xylene (Total)	5	5.0	NA	NA	NA	NA	ND	NA	NA	NA	NA
Isopropylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
n-Propylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,3,5-Trimethylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,2,4-Trimethylbenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,3-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,4-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Hexachlorobutadiene	0.5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Naphthalene	10	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,2,3-Trichlorobenzene	5	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Number of TICs		0	NA	NA	NA	NA	0	0	0	0	0
Total TICs		ND	NA	NA	NA	NA	ND	NA	NA	NA	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Ground	E0153-03A	E1376-16A	F1135-05A	G2029-10C	J0398-04A	E0136-03A	E1376-17A	F1135-13A	G2029-02C	J0398-05A
Sample Date	Water	2/10/06	09-12-06	08-14-07	11/5/08	3/09/10	2/7/06	09-12-06	08-15-07	11/4/08	3/9/10
Units	Criteria	μg/L									
		conc Q									
Vinyl Chloride	2	ND									
Acetone	50	ND									
Methyl tert-butyl ether	10	ND									
1,1-Dichloroethane	5	14.0	4 J	ND							
cis-1,2-Dichloroethene	5	ND									
1,1,1-Trichloroethane	5	ND									
Tetrachloroethene	5	ND									
Trichloroethene	5	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	ND	ND	ND	3.3 J	ND	ND	ND	ND	ND
Ethylbenzene	5	ND									
Toluene	5	ND									
Xylene (Total)	5	ND									
Isopropylbenzene	5	ND									
n-Propylbenzene	5	ND									
1,3,5-Trimethylbenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
1,2-Dichlorobenzene	3	ND	1 J	ND	ND						
1,2,4-Trichlorobenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Naphthalene	10	ND									
1,2,3-Trichlorobenzene	5	ND									
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	ND	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Ground	E0153-05A	E1376-12A	F1135-11A	G2029-03C	J0398-06A	E0153-01A	E1376-14A	F1135-14A	G2029-04C	J0398-14A
Sample Date	Water	2/10/06	09-12-06	08-15-07	11/4/08	3/9/10	2/9/06	09-12-06	08-15-07	11/4/08	3/11/10
Units	Criteria	μg/L									
		conc Q									
Vinyl Chloride	2	ND	ND	8	ND						
Acetone	50	ND									
Methyl tert-butyl ether	10	ND									
1,1-Dichloroethane	5	ND									
cis-1,2-Dichloroethene	5	ND	ND	8	ND						
1,1,1-Trichloroethane	5	ND									
Tetrachloroethene	5	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	1.4 J	ND							
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	ND	ND	ND	4.2 J	ND	ND	ND	ND	ND
Ethylbenzene	5	ND									
Toluene	5	ND									
Xylene (Total)	5	ND									
Isopropylbenzene	5	ND									
n-Propylbenzene	5	ND									
1,3,5-Trimethylbenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
1,2-Dichlorobenzene	3	ND									
1,2,4-Trichlorobenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Naphthalene	10	ND									
1,2,3-Trichlorobenzene	5	ND									
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	0	NA	ND	ND	ND	ND	NA

J - Estimated value NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING **VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY**

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Ground	E0136-19A	E1376-03A	F1135-03A	G2029-05C	J0398-11A	E0136-17A	E1376-05A	F1135-02A	G2029-07C	J0398-10A
Sample Date	Water	2/9/06	09-11-06	08-14-07	11/4/08	3/10/10	2/9/06	09-11-06	08-14-07	11/5/08	3/10/10
Units	Criteria	μg/L									
			conc Q								
Vinyl Chloride	2	ND									
Acetone	50	ND									
Methyl tert-butyl ether	10	ND									
1,1-Dichloroethane	5	ND									
cis-1,2-Dichloroethene	5	ND									
1,1,1-Trichloroethane	5	ND									
Tetrachloroethene	5	ND									
Trichloroethene	5	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	5.9								
Ethylbenzene	5	ND									
Toluene	5	ND									
Xylene (Total)	5	ND									
Isopropylbenzene	5	ND									
n-Propylbenzene	5	ND									
1,3,5-Trimethylbenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
1,2-Dichlorobenzene	3	ND									
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Naphthalene	10	ND									
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	ND	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC		MW-6S		MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Ground	E0136-13A	E1376-01A	F1135-01A	G2029-08C	J0398-9A	E0153-07A	E1376-07A	F1135-04A	G2029-09C	J0398-08A
Sample Date	Water	2/8/06	09-11-06	08-14-07	11/5/08	3/10/10	2/10/06	09-11-06	08-14-07	11/5/08	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	1.0 J	3 J	13 J	2.3 J	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	1 J	4 J	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6 J
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	1.0 J	ND	2 J	1.1 J	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	5.1	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	2 J	ND	1.2 J	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	5	4 J	4.1 J	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	1 J	1.6 J	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	2 J	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	3 J	5	11	1.7 J	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	6	11	21	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	2 J	1.7 J	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	2 J	4 J	3.2 J	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	1 J	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	0	0	0
Total TICs		ND	ND	ND	0 NJ	NA	ND	ND	ND	ND	NA

J - Estimated value NC - No criterion

 $\ensuremath{\textit{Bold/Italics}}$ - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Ground	E0136-01A	E1376-02A	F1135-07A	G2029-01C	J0398-03A	E0136-02A	E1376-15A	F1135-06A	G2029-16C	J0398-01A
Sample Date	Water	2/7/06	09-11-06	08-14-07	11/4/08	3/9/10	2/7/06	09-12-06	08-14-07	11/6/08	3/9/10
Units	Criteria	μg/L									
			conc Q								
Vinyl Chloride	2	ND									
Acetone	50	ND	ND	ND	5.8	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND									
1,1-Dichloroethane	5	ND									
cis-1,2-Dichloroethene	5	ND									
1,1,1-Trichloroethane	5	ND									
Tetrachloroethene	5	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	ND	ND	3.5 J	ND	ND	ND	ND	ND	4.6 J
Ethylbenzene	5	ND									
Toluene	5	ND									
Xylene (Total)	5	ND									
Isopropylbenzene	5	ND									
n-Propylbenzene	5	ND									
1,3,5-Trimethylbenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND	1.3 J								
1,2-Dichlorobenzene	3	ND									
1,2,4-Trichlorobenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Naphthalene	10	ND									
1,2,3-Trichlorobenzene	5	ND									
Number of TICs		0	0	0	0	0	0	0	0	1	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	28 J	NA

J - Estimated value NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Ground	E0136-05A	E1400-06A			NA	E0136-06A	E1400-05A	F1159-04A	G2029-23C	J0445-03A
Sample Date	Water	2/8/06	09-13-06	08-14-07	11/7/08	3/10/10	2/8/06	09-13-06	08-17-07	11/7/08	3/12/10
Units	Criteria	μg/L									
		conc Q									
Vinyl Chloride	2	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Acetone	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Toluene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Number of TICs		0	0	0	0	0	0	0	0	1	0
Total TICs		ND	ND	NA	NA	NA	ND	ND	ND	31 J	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13S	SMS-MW-13S	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Ground	E0136-07A	E1400-01A	F1159-03A	G2029-21C	J0445-02A	E0136-09A	E1400-02A	F1135-19A	G2029-22C	J0398-19A
Sample Date	Water	2/8/06	09-13-06	8/17/07	11/7/08	3/12/10	2/8/06	09-13-06	08-16-07	11/7/08	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q		conc Q	conc Q	conc Q		conc Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	1.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.9 J
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	0	1	0
Total TICs		ND	ND	ND	34 J	NA	ND	ND	ND	36 J	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15	MW-15
Sample ID		SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Ground	E0136-08A	E1400-07A	F1135-18A	G2029-19C	J0445-01A	E0136-11A	E1376-11A	F1135-17A	G2029-15C	J0398-15A
Sample Date	Water	2/8/06	09-13-06	08-16-07	11/7/08	3/12/10	2/8/06	09-12-06	08-16-07	11/6/08	3/11/10
Units	Criteria	μg/L									
		conc Q									
Vinyl Chloride	2	ND									
Acetone	50	ND	ND	6	ND						
Methyl tert-butyl ether	10	ND									
1,1-Dichloroethane	5	ND									
cis-1,2-Dichloroethene	5	ND									
1,1,1-Trichloroethane	5	ND									
Tetrachloroethene	5	ND									
Trichloroethene	5	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND									
Chloromethane	NC	ND	4.1 J								
Ethylbenzene	5	ND									
Toluene	5	ND									
Xylene (Total)	5	ND									
Isopropylbenzene	5	ND									
n-Propylbenzene	5	ND									
1,3,5-Trimethylbenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
1,2-Dichlorobenzene	3	ND									
1,2,4-Trichlorobenzene	5	ND									
Hexachlorobutadiene	0.5	ND									
Naphthalene	10	ND									
1,2,3-Trichlorobenzene	5	ND									
Number of TICs		0	0	0	1	0	0	0	0	1	0
Total TICs		ND	ND	ND	30 J	NA	ND	ND	ND	33 J	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Ground	E0136-16A	E1400-03A	F1135-09A	G2029-14C	J0398-17A	E0136-15A	E1376-10A	F1135-10A	G2029-13C	J0398-18A
Sample Date	Water	2/9/06	09-13-06	08-13-07	11/6/08	3/11/10	2/9/06	09-12-06	08-13-07	11/6/08	3/11/10
Units	Criteria	μg/L									
		conc Q									
Vinyl Chloride	2	ND									
Acetone	50	ND									
Methyl tert-butyl ether	10	ND	1 J	1 J	ND	ND	ND	2 J	ND	ND	ND
1,1-Dichloroethane	5	ND									
cis-1,2-Dichloroethene	5	ND									
1,1,1-Trichloroethane	5	ND									
Tetrachloroethene	5	ND									
Trichloroethene	5	ND									
Chlorobenzene	5	ND									
Chloroform	7	ND	1.3 J	ND							
Chloromethane	NC	ND	ND	ND	ND	5.3	ND	ND	ND	ND	ND
Ethylbenzene	5	ND									
Toluene	5	ND									
Xylene (Total)	5	ND									
Isopropylbenzene	5	ND									
n-Propylbenzene	5	ND									
1,3,5-Trimethylbenzene	5	ND									
1,2,4-Trimethylbenzene	5	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
1,2-Dichlorobenzene	3	ND									
1,2,4-Trichlorobenzene	5	ND									
Hexachlorobutadiene	0.5	ND	1 J	ND							
Naphthalene	10	ND									
1,2,3-Trichlorobenzene	5	ND									
Number of TICs		0	0	0	1	0	0	0	0	1	0
Total TICs		ND	ND	ND	29 J	NA	ND	ND	ND	36 J	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Ground	E0136-12A	E1376-09A	F1135-16A	G2029-12C	J0398-16A	E0136-18A	E1376-04A	F1135-15A	G2029-11C	J0398-12A
Sample Date	Water	2/9/06	09-12-06	08-16-07	11/6/08	3/11/10	2/9/06	09-11-06	08-16-07	11/6/08	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q				
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	2 J	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.2 J
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 J
Xylene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
Number of TICs		0	0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	NA	ND	ND	ND	ND	NA

J - Estimated value

NC - No criterion

Bold/Italics - Exceeds criterion

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Ground	E0136-20B					E0203-03C				
Sample Date	Water	2/9/06	9/12/06	8/14/07	11/5/08	3/9/10	2/23/06	9/12/06	8/14/07	11/5/08	3/9/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q					
Phenol	1	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,3-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
1,4-Dichlorobenzene	3	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Isophorone	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
2-Methylphenol	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
4-Methylphenol	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
2,4-Dimethylphenol	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Naphthalene	10	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Phenanthrene	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Di-n-butyl phthalate	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Fluoranthene	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Pyrene	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Butylbenzyl phthalate	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(a)anthracene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Dibenzo(a,h)anthracene	NC	ND	NA	NA	NA	NA	ND	NA	ND	NA	NA
Chrysene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
bis(2-Ethylhexyl)phthalate	5	83 B	NA	NA	NA	NA	1.0 J	NA	NA	NA	NA
Dimethylphthalate	50	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(b)fluoranthene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(k)fluoranthene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(a)pyrene	ND	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Benzo(g,h,i)perylene	NC	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Number of TICs		2	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total TICs		322 J	NA	NA	NA	NA	ND	NA	NA	NA	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Ground	E0153-03B	E1376-16B	F1135-05B	G2029-10C	J0398-04C	E0136-03C	E1376-17B	F1135-13B	G2029-02C	J0398-05C
Sample Date	Water	2/10/06	9/12/06	8/14/07	11/5/08	3/9/10	2/7/06	9/12/06	8/15/07	11/4/08	3/9/10
Units	Criteria	μg/L									
		conc Q									
Phenol	1	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Isophorone	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
2,4-Dimethylphenol	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Pyrene	50	ND									
Butylbenzyl phthalate	50	ND									
Benzo(a)anthracene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Chrysene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	21.0	1 J	ND	ND	ND	2.0 J	2 J	ND	ND	ND
Dimethylphthalate	50	ND									
Benzo(b)fluoranthene	0.002	ND									
Benzo(k)fluoranthene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Number of TICs		3	3	3	1	NA	2	0	9	0	NA
Total TICs		111 J	32 J	28 J	4.1 NJ	NA	634 J	ND	34 J	ND	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Ground	E0153-05B	E1376-12B	F1135-12B	G2029-03C	J0398-06C	E0153-01B	E1376-14B	F1135-14B	G2029-04C	J0398-14C
Sample Date	Water	2/10/06	9/12/06	8/15/07	11/4/08	3/9/10	2/9/06	9/12/06	8/15/07	11/4/08	3/11/10
Units	Criteria	μg/L									
		conc Q		conc Q							
Phenol	1	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Isophorone	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
2,4-Dimethylphenol	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Pyrene	50	ND									
Butylbenzyl phthalate	50	ND									
Benzo(a)anthracene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Chrysene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	2.0 J	2 J	1 J	ND						
Dimethylphthalate	50	ND									
Benzo(b)fluoranthene	0.002	ND									
Benzo(k)fluoranthene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Number of TICs		3	1	4.0	0.0	NA	1	0	7	0	NA
Total TICs		323 J	7 J	49 J	ND	NA	9 J	ND	79 J	ND	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Ground	E0136-19B	E1376-03B	F1135-03B	G2029-05C	J03898-11C	E0136-17B	E1376-05B	F1135-02B	G2029-07C	J0398-10C
Sample Date	Water	2/9/06	9/11/06	8/14/07	11/4/08	3/10/10	2/9/06	9/11/06	8/14/07	11/5/08	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q		conc Q	conc Q	conc Q	conc Q		conc Q	conc Q	conc Q
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	2 J	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	2.0 J	2 J	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	2.0 J	2 J	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	1.0 J	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	1 J	ND	ND	ND	5.0 JB	3 J	4 J	3 J	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	1.0 J	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	1.0 J	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
Number of TICs		2	0	3	0	NA	10	0	3	6	NA
Total TICs		353 J	ND	28 J	ND	NA	963 J	ND	29 J	177.5 NJ	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Ground	E0136-13C	E1376-01B	F1135-01B	G2029-08C	J0398-09C	E0203-01A	E1376-07B	F1135-04B	G2029-09C	J0398-08C
Sample Date	Water	2/8/06	9/11/06	8/14/07	11/5/08	3/10/10	2/23/06	9/11/06	8/14/07	11/5/08	3/10/10
Units	Criteria	μg/L									
		conc Q		conc Q							
Phenol	1	ND	ND	ND	1.2 J	ND	ND	ND	1 J	ND	ND
1,3-Dichlorobenzene	3	1.0 J	ND								
1,4-Dichlorobenzene	3	2.0 J	1 J	ND	1.3 J	ND	ND	ND	ND	ND	ND
Isophorone	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	1.0 J	ND								
Naphthalene	10	ND									
Phenanthrene	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	1.0 J	ND	2 J	3 J	ND	ND	ND	ND	ND	ND
Pyrene	50	1.0 J	ND	1 J	2 J	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	5.0 J	ND								
Benzo(a)anthracene	0.002	ND	ND	1 J	1.2 J	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	1.4 J	ND	ND	ND	ND	ND	ND
Chrysene	0.002	1.0 J	ND	2 J	2.2 J	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	6.0 JB	4 J	6 J	12	2.6 J	11.0	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	1.1 J	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	1.0 J	1 J	3 J	8.4 J	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	1 J	6.5 J	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	2 J	3.1 J	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	2 J	4.9 J	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	1.0 J	ND	3 J	6.4 J	ND	ND	ND	ND	ND	ND
Number of TICs		19	11	8	17	NA	6.0	0	3	0	NA
Total TICs		845 J	57 J	57 J	114 NJ	NA	53 J	ND	27 J	ND	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Ground	E0136-01C	E1376-02B	F1135-07B	G2029-01C	J0398-03C	E0136-02C	E1376-15B	F1135-06B	G2029-16C	J0398-01C
Sample Date	Water	2/7/06	9/11/06	8/14/07	11/4/08	3/9/10	2/7/06	9/12/06	8/14/07	11/6/08	3/9/10
Units	Criteria	μg/L									
		conc Q									
Phenol	1	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Isophorone	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
2,4-Dimethylphenol	50	ND									
Naphthalene	10	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
Phenanthrene	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Pyrene	50	ND									
Butylbenzyl phthalate	50	ND									
Benzo(a)anthracene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Chrysene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	2.0 J	ND	ND	ND	ND	2.0 J	3 J	ND	ND	ND
Dimethylphthalate	50	ND									
Benzo(b)fluoranthene	0.002	ND									
Benzo(k)fluoranthene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Number of TICs		9	0	3	0	NA	8	4	2	9	NA
Total TICs		53 J	ND	25 J	ND	NA	198 J	26 J	19 J	111.3 NJ	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Ground	E0136-05C	E1400-06B	NA	NA	NA	E0136-06C	E1400-05B	F1159-04B	G2029-23C	J0445-03C
Sample Date	Water	2/8/06	9/13/06	8/14/07	8/14/07	3/9/10	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10
Units	Criteria	μg/L									
		conc Q									
Phenol	1	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	NA	NA	NA	ND	1 J	ND	ND	ND
Dimethylphthalate	50	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Number of TICs		3	0				NA	0	3	0	NA
Total TICs		552 J	ND	NA	NA	NA	NA	ND	32 J	ND	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13S	SMS-MW-13S	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Ground	E0136-07C	E1400-01B	F1159-03B	G2029-21C	J0445-02C	E0136-09C	E1400-02B	F1159-02A	G2029-22C	J0398-19C
Sample Date	Water	2/8/06	9/13/06	8/17/07	11/7/08	3/12/10	2/8/06	9/13/06	8/17/07	11/7/08	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q			conc Q	conc Q
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		4	1	7	3	NA	3	0	4	5	NA
Total TICs		290 J	8 J	51 J	50.6 NJ	NA	256 J	ND	35 J	45.2 NJ	NA

J - Estimated value

B - Possible laboratory contamination

Bold/Italics - Exceeds criterion

NC - No criterion

NA - Not analyzed

D - Dilution

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Ground	E0136-08C	E1400-07B	F1135-18B	G2029-19C	J0445-01C	E0136-11C	E1376-11B	F1135-17B	G2029-15C	J0398-15C
Sample Date	Water	2/8/06	9/13/06	8/16/07	11/7/08	3/12/10	2/8/06	9/12/06	8/16/07	11/6/2008	3/11/10
Units	Criteria	μg/L									
		conc Q									
Phenol	1	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Isophorone	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
2,4-Dimethylphenol	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Pyrene	50	ND									
Butylbenzyl phthalate	50	ND									
Benzo(a)anthracene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Chrysene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	ND	2 J	ND							
Dimethylphthalate	50	ND									
Benzo(b)fluoranthene	0.002	ND									
Benzo(k)fluoranthene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Number of TICs		2	0	4	0	NA	1	0	3	1	NA
Total TICs		171 J	ND	31 J	ND	NA	7 J	ND	27 J	4.2 J	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Ground	E0136-16B	E1400-03B	F1135-09B	G2029-14C	J0398-17C	E0136-15B	E1376-10B	F1135-10B	G2029-13C	J0398-18C
Sample Date	Water	2/9/06	9/13/06	8/13/07	11/6/08	3/11/10	2/9/06	9/12/06	08-13-07	11/6/08	3/11/10
Units	Criteria	μg/L									
		conc Q			conc Q						
Phenol	1	ND									
1,3-Dichlorobenzene	3	ND									
1,4-Dichlorobenzene	3	ND									
Isophorone	50	ND									
2-Methylphenol	NC	ND									
4-Methylphenol	NC	ND									
2,4-Dimethylphenol	50	ND									
Naphthalene	10	ND									
Phenanthrene	50	ND									
Di-n-butyl phthalate	50	ND									
Fluoranthene	50	ND									
Pyrene	50	ND									
Butylbenzyl phthalate	50	ND									
Benzo(a)anthracene	0.002	ND									
Dibenzo(a,h)anthracene	NC	ND									
Chrysene	0.002	ND									
bis(2-Ethylhexyl)phthalate	5	190 DB		2 J	ND	ND	2.0 JB	ND	1.0 J	ND	ND
Dimethylphthalate	50	ND									
Benzo(b)fluoranthene	0.002	ND									
Benzo(k)fluoranthene	0.002	ND									
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND									
Benzo(g,h,i)perylene	NC	ND									
Number of TICs		2	0	4	1	NA	4	0	3	1	NA
Total TICs		140 J	ND	31 J	4.2 J	NA	329 J	ND	28 J	9 NJ	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Ground	E0136-12C	E1376-09B	F1135-16B	G2029-12C	J0398-16C	E0136-18B	E1453-01A	F1135-15B	G2029-11C	J0398-12C
Sample Date	Water	2/8/06	09-12-06	08-16-07	11/6/08	3/11/10	2/9/06	09-21-06	08-16-07	11/6/08	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q			conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	1 J	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		3	1	3	3	NA	2	5	3	0	NA
Total TICs		188 J	23 J	27 J	111.8 J	NA	102 J	30 J	28 J	ND	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Ground	E0136-20B					E0203-03				
Sample Date	Water	2/9/06	9/12/06	8-14-07	11/5/08	3/9/10	2/23/06	9/12/06	8-14-07	11/5/08	3/9/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	28.8 BE	NA	NA	NA	NA	77.2 B	NA	NA	NA	NA
Antimony	3	ND	NA	NA	NA	NA	4.0 B	NA	NA	NA	NA
Arsenic	25	ND	NA	NA	NA	NA	1.6 B	NA	NA	NA	NA
Barium	1,000	34.1 B	NA	NA	NA	NA	88.3 B	NA	NA	NA	NA
Beryllium	3	ND	NA	NA	NA	NA	0.15 B	NA	NA	NA	NA
Cadmium	5	0.97 B	NA	NA	NA	NA	ND	NA	NA	NA	NA
Calcium	NC	13,300 E	NA	NA	NA	NA	22,400	NA	NA	NA	NA
Chromium	50	3.4 B	NA	NA	NA	NA	8.3 B	NA	NA	NA	NA
Cobalt	NC	4.4 BE	NA	NA	NA	NA	1.3 B	NA	NA	NA	NA
Copper	200	8.9 B	NA	NA	NA	NA	4.6 B	NA	NA	NA	NA
Iron	300	3,650 NE	NA	NA	NA	NA	2,670	NA	NA	NA	NA
Lead	25	0.93 B	NA	NA	NA	NA	3.6 B	NA	NA	NA	NA
Magnesium	35,000	2,000 E	NA	NA	NA	NA	3,780	NA	NA	NA	NA
Manganese	300	684 E	NA	NA	NA	NA	200	NA	NA	NA	NA
Mercury	0.7	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA
Nickel	100	4.3 B	NA	NA	NA	NA	9.4 B	NA	NA	NA	NA
Potassium	NC	2,810	NA	NA	NA	NA	9,610	NA	NA	NA	NA
Selenium	10	3.3 B	NA	NA	NA	NA	2.0 B	NA	NA	NA	NA
Silver	50	ND	NA	NA	NA	NA	1.8 B	NA	NA	NA	NA
Sodium	20,000	17,300 E	NA	NA	NA	NA	18,400	NA	NA	NA	NA
Thallium	0.5	4.3 B	NA	NA	NA	NA	2.6 B	NA	NA	NA	NA
Vanadium	NC	0.92 B	NA	NA	NA	NA	ND	NA	NA	NA	NA
Zinc	2,000	52.7 E	NA	NA	NA	NA	126	NA	NA	NA	NA

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Ground	E0153-03C	E1376-16C	F1135-05C	G2029-10C	J0398-04C	E0136-03B	E1376-17C	F1135-13C	G2029-02C	J0398-05C
Sample Date	Water	2/10/06	9/12/06	8-14-07	11/5/08	3/9/10	2/7/06	9/12/06	8-15-07	11/4/08	3/9/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	236 E	319	4,360	705	604	1,930 E	6,060	3,440	929	2480
Antimony	3	3.3 B	ND	12.6 B	ND	ND	2.2 B	ND	8.9 B	ND	9.4 B
Arsenic	25	3.5 B	ND	ND	ND	7.5 B	2.6 B	4.4 B	ND	ND	5.9 B
Barium	1,000	48.7 B	71.5 B	91 B	76.7 B	85.9 B	28.2 B	63.2 B	78.9 B	64.5 B	75.2 B
Beryllium	3	ND	ND	0.48 B	0.19 B	0.17 B	ND	0.27 B	0.30 B	0.17 B	0.34 B
Cadmium	5	0.67 B	0.19 B	0.39 B	0.6 B	ND	4.1 B	3.2 B	3.9 B	9.2	29.1
Calcium	NC	24,000	19,500	20,100	38,600	33,600	13,100 E	18,300	19,700	24,700	26,200
Chromium	50	9.6 B	2.7 B	18 B	12.3 B	10.5 B	12.1 B	16.9 B	12.6 B	6.5 B	6.8 B
Cobalt	NC	2.5 B	1.2 B	9.3 B	4.0 B	2.3 B	2.4 BE	3.7 B	4.4 B	1.3 B	2.5 B
Copper	200	16.8 B	ND	33.8	41.3	30.8	43.0	35.6	37.0	37.5	40.6
Iron	300	<i>30,000</i> E	12,500	110,000	50,300	96,300	28,100 NE	25,100	40,400	20,500	166,000
Lead	25	3.2 B	0.95 B	17.3	6.5 B	31.2	135	128	197	271	347
Magnesium	35,000	4,610 E	3,370	4,230	6,880	5,160	3,380 E	4,660	4590	5,950	6,960
Manganese	300	226 E	126	585	724	310	221 E	715	1,080	295	422
Mercury	0.7	ND	ND	0.066 B	ND	ND	ND	ND	0.055 B	ND	ND
Nickel	100	13.9 B	4.8 B	19.8 B	16.7 B	11.2 B	13.6 B	14.0 B	10.9 B	5.6 B	10.3 B
Potassium	NC	7,940	9,380	4,450	9,970	16,700	4,210	6,750	14,100	11,100	5,440
Selenium	10	ND	ND	29.5 B	ND	17 B	5.1 B	ND	14.5 B	ND	23.4 B
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	1.2 B	ND
Sodium	20,000	28,400	27,200	73,900	32,200	35,100	8,240 E	16,500	20,100	25,900	28,700
Thallium	0.5	ND	ND	18.5 B	ND	ND	1.2 B	ND	2.5 B	ND	ND
Vanadium	NC	1.3 B	0.85 B	9.3 B	2.0 B	0.94 B	11.1 B	18.8 B	14.6 B	6.0 B	8.8 B
Zinc	2,000	55.1	87.1	234	128	142	4,620 E	2,720	3,360	4,230	11,800

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Ground	E0153-05C	E1376-12C	F1135-12C	G2029-03C	J0398-06C	E0153-01C	E1376-14C	F1135-14C	G2029-04C	J0398-14C
Sample Date	Water	2/10/06	9-12-06	8-15-07	11/4/08	3/9/10	2/9/06	9/12/06	8-15-07	11/4/08	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	886 E	1,860	1,860	184 B	428	139 BE	114 B	876	208	644
Antimony	3	2.3 B	ND	8.6 B	ND	4.5 B	4.7 B	2.5 B	11.2 B	ND	6.4 B
Arsenic	25	2.2 B	3.0 B	ND	ND	6.1 B	ND	ND	ND	ND	7.8 B
Barium	1,000	72.7 B	49.8 B	56.9 B	49.8 B	39.6 B	31.8 B	26 B	64 B	53.8 B	47.6 B
Beryllium	3	ND	ND	0.16 B	ND	0.16 B	ND	ND	ND	0.15 B	0.14 B
Cadmium	5	1.6 B	1.0 B	1.3 B	0.24 B	ND	0.51 B	ND	ND	0.4 B	ND
Calcium	NC	32,500	25,000	23,000	25,200	29,500	16,300	25,400	21,400	12,800	22,500
Chromium	50	15.4 B	10.6 B	12.6 B	3.5 B	6.8 B	2.4 B	2.3 B	5.7 B	5.0 B	7 B
Cobalt	NC	3.6 B	2.2 B	4.4 B	ND	1.9 B	2.1 B	0.79 B	3.2 B	3.0 B	0.67 B
Copper	200	29.8 B	21.6 B	27.1 B	14.4 B	13.1 B	ND	ND	ND	12.0 B	10.1 B
Iron	300	26,700 E	20,400	46,400	12,600	43,100	<i>47,800</i> E	23,800	78,200	20,800	52,200
Lead	25	6.8 B	4.3 B	9.5 B	4.8 B	4.9 B	1.5 B	ND	4.5 B	5.5 B	5 B
Magnesium	35,000	4,790 E	3,630	3,550	3,950	4,320	3,020 E	1,500	1,470	1,110	3,210
Manganese	300	399 E	502	910	499	566	<i>544</i> E	210	686	541	216
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	18.5 B	8.5 B	12.3 B	2.2 B	7.4 B	6.6 B	2.1 B	5.3 B	3.7 B	1.8 B
Potassium	NC	10,300	7,410	9,170	6,830	7,750	2,370	5,600	5,690	1,790	2,880
Selenium	10	ND	ND	15.2 B	ND	11.9 B	3.5 B	ND	14.1 B	ND	ND
Silver	50	1.6 B	ND	ND	0.99 B	ND	ND	ND	ND	1.5 B	ND
Sodium	20,000	16,900	20,000	12,700	17,600	16,700	6,310	3,990	3,600	3,030	13,100
Thallium	0.5	ND	ND	4.7 B	ND	ND	ND	ND	9.7 B	ND	ND
Vanadium	NC	3.5 B	5.2 B	4.6 B	1.2 B	1.0 B	2.1 B	2.5 B	5.1 B	3.0 B	3.4 B
Zinc	2,000	66.1	52.6	59.8	47.7 B	62.2	35.2 B	32.4 B	42.5 B	51.2	31.4 B

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Ground	E0136-19C	E1376-03C	F1135-03C	G2029-05C	J0398-11C	E0136-17C	E1376-05C	F1135-02C	G2029-07C	J0398-10C
Sample Date	Water	2/9/06	9/11/06	8-14-07	11/4/08	3/10/10	2/9/06	9/11/06	8-14-07	11/5/08	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	284 E	1140	583	130 B	289	2,340 E	197 B	416	254	931
Antimony	3	1.7 B	2.0 B	8.8 B	ND	ND	2.3 B	2.3 B	6.2 B	ND	ND
Arsenic	25	6.9 B	5.5 B	2.0 B	ND	12.7 B	5.1 B	1.7 B	ND	ND	3.3 B
Barium	1,000	22.3 B	39.2 B	199 B	190 B	95.4 B	52.1 B	60 B	16.5 B	24.4 B	25 B
Beryllium	3	ND	ND	0.16 B	0.14 B	0.14 B	ND	ND	ND	ND	0.1 B
Cadmium	5	5.8	3.4 B	8.4	5.0 B	3.4 B	4.1 B	0.37 B	0.76 B	1.4 B	0.86 B
Calcium	NC	10,500 E	15,100	21,600	13,400	20,400	24,000 E	22,400	13,700	18,800	16,700
Chromium	50	8.8 B	18.1 B	17.5 B	3.5 B	10.3 B	16.7 B	6.7 B	4.9 B	4.0 B	5.6 B
Cobalt	NC	2.3 BE	2.4 B	5.0 B	4.8 B	5.4 B	28.2 BE	54.1	10.8 B	6.5 B	7.2 B
Copper	200	30.9	30.0 B	24.5 B	35.5	20.5 B	74.5	9.3 B	20.7 B	27.9 B	17.6 B
Iron	300	44,700 NE	23,400	61,000	8,990	49,300	72,300 NE	9,810	39,300	5,350	26,000
Lead	25	4.2 B	7.9 B	8.4 B	4.0 B	5.5 B	21.7	ND	4.7 B	5.5 B	10
Magnesium	35,000	1,560 E	2,500	3,570	2,150	1,790	5,140 E	5,780	1,210	2,320	2,200
Manganese	300	291 E	551	548	777	760	593 E	276	256	281	294
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11 B
Nickel	100	13.4 B	12.8 B	13.7 B	6.7 B	7.9 B	25.8 B	12.9 B	12.7 B	5.2 B	6.9 B
Potassium	NC	2,240	3,100	3050	2,360	2,290	3,180	3,480	2,790	1,720	6,930
Selenium	10	6.3 B	ND	13.4 B	ND	11.9 B	12.5 B	ND	3.9 B	ND	11.9 B
Silver	50	ND	ND	ND	1.1 B	ND	ND	ND	ND	0.75 B	ND
Sodium	20,000	3,670 E	5,230	12,600	3,690	7,350	13,100 E	31,100	16,000	3,380	16,600
Thallium	0.5	ND	ND	9.4 B	ND	ND	ND	ND	10.6 B	ND	ND
Vanadium	NC	4.3 B	7.3 B	8.1 B	1.1 B	5.1 B	9.8 B	1.1 B	1.5 B	1.2 B	2.7 B
Zinc	2,000	44.3 BE	40.2 B	40.6 B	39.6 B	25.6 B	225 E	113	76.2	76.8	63.9

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Ground	E0136-13B	E1376-01C	F1135-01C	G2029-08C	J0398-09C	E0153-07C	E1376-07C	F1135-04C	G2029-09C	J0398-08C
Sample Date	Water	2/8/06	9-11-06	8-14-07	11/5/08	3/10/10	2/10/06	9-11-06	8-14-07	11/5/08	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	2,740 E	2790	8,920	21,400	8,700	161 BE	816	410	106 B	207
Antimony	3	2.0 B	ND	6.2 B	ND	ND	3.5 B	ND	8.0 B	ND	ND
Arsenic	25	8.1 B	5.8 B	12.1 B	13.7 B	17.5 B	4.0 B	3.3 B	ND	ND	5 B
Barium	1,000	44.2 B	52.4 B	86.7 B	96.1 B	87 B	30.2 B	39.3 B	62.6 B	56.7 B	59.6 B
Beryllium	3	0.24 B	0.45 B	1.0 B	9.8	3.7 B	0.19 B	0.16 B	0.22 B	0.23 B	0.22 B
Cadmium	5	3.3 B	1.4 B	2.6 B	9.7	3.7 B	2.2 B	1.7 B	2.2 B	2.1 B	1.2 B
Calcium	NC	54,000 E	27,300	30,300	40,300	47,200	20,400	21,800	26,200	32,400	30,100
Chromium	50	15.0 B	16.4 B	111	68.2	66.5	10.1 B	12.6 B	7.7 B	6.6 B	6.4 B
Cobalt	NC	21.2 BE	10.8 B	22 B	56.9	20.6 B	2.8 B	2.0 B	4.8 B	2.6 B	4.4 B
Copper	200	70.4	45.8	135	156	84.9	19.6 B	14.3 B	ND	14.7 B	27 B
Iron	300	<i>17,700</i> NE	8,790	40,400	42,000	46,700	72,000 E	60,300	96,100	34,700	99,500
Lead	25	20.5	12.1	58.1	81.1	37	1.4 B	2.9 B	4.6 B	4.4 B	3.8 B
Magnesium	35,000	13,700 E	8,340	9,290	9,060	8,100	3,910 E	4,380	3,900	4,690	5,910
Manganese	300	869 E	223	732	1,800	308	<i>44</i> 5 E	592	696	683	890
Mercury	0.7	ND	ND	0.3	ND	0.2	ND	ND	ND	ND	ND
Nickel	100	21.1 B	9.6 B	24.8 B	55.9	23.2 B	15.4 B	9.7 B	9.0 B	3.9 B	10.2 B
Potassium	NC	4,710	2,720	3,530	3,500	2,910	3,230	3,900	6,600	5,690	7,900
Selenium	10	5.9 B	ND	24.5 B	ND	ND	3.9 B	ND	17.9 B	ND	ND
Silver	50	ND	ND	ND	ND	3.5 B	ND	ND	ND	1.5 B	ND
Sodium	20,000	16,800 E	8,450	5,530	6,050	9,140	10,200	15,400	16,800	14,500	16,400
Thallium	0.5	6.4 B	1.8 B	7.9 B	ND	ND	ND	ND	17.6 B	ND	ND
Vanadium	NC	13.5 B	14.2 B	41.1 B	40 B	53.3	3.6 B	8.2 B	5.6 B	2.1 B	1.1 B
Zinc	2,000	3,280 E	608	1,390	1,570	487	35.9 B	47.4 B	39.0 B	51.1	51.7

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Ground	E0136-01B	E1376-02C	F1135-07C	G2029-01C	J0398-03C	E0136-02C	E1376-15C	F1135-06C	G2029-16C	J0398-01C
Sample Date	Water	2/7/06	9-11-06	8-14-07	11/4/08	3/9/10	2/7/06	9-12-06	8-14-07	11/6/08	3/9/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	194 BE	161 B	120 B	69.8 B	384	50.6 BE	21.9 B	40.8 B	ND	92.1 B
Antimony	3	2.8 B	ND	8.9 B	ND	ND	2.3 B	ND	6.7 B	ND	8.2 B
Arsenic	25	5.6 B	ND	ND	ND	ND	3.0 B	2.1 B	2.5 B	ND	4.3 B
Barium	1,000	43.4 B	39.6 B	61.3 B	119 B	103 B	35.1 B	25.7 B	34.4 B	50.3 B	45.1 B
Beryllium	3	ND	ND	ND	ND	0.27 B	ND	ND	ND	0.19 B	0.3 B
Cadmium	5	1.2 B	0.11 B	ND	ND	0.54 B	0.65 B	0.12 B	ND	0.30 B	ND
Calcium	NC	24,500 E	27,200	25,000	35,700	30,300	9,130 E	16,400	29,200	23,300	23,700
Chromium	50	31.7	9.9 B	26.1	6.7 B	15.5 B	38.5	6.3 B	5.4 B	2.8 B	12.6 B
Cobalt	NC	3.4 BE	1.1 B	7.3 B	2.1 B	9 B	2.0 BE	0.66 B	4.4 B	4.6 B	5.5 B
Copper	200	72.7	9.6 B	18.4 B	37.9	67.2	34.7	ND	ND	14.7 B	37.2
Iron	300	<i>107,000</i> NE	15,900	71,400	27,600	236,000	78,300 NE	21,700	57,100	29,600	115,000
Lead	25	7.0 B	ND	3.0 B	4.5 B	6.3 B	3.9 B	ND	2.9 B	4.7 B	15.5
Magnesium	35,000	3,870 E	3,520	4,960	5,300	3,610	1,530 E	2,560	4,860	3,770	3,620
Manganese	300	456 E	82.1	236	279	1,020	339 E	82.2	520	1,060	954
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	40.3 B	9.8 B	26.3 B	4.6 B	24.8 B	35.3 B	4.8 B	8.4 B	5.9 B	14.5 B
Potassium	NC	6,370	6,970	13,400	21,500	16,200	5,400	3,990	4,540	3,540	2,800
Selenium	10	9.9 B	ND	20.6 B	ND	22.9 B	7.1 B	ND	14.2 B	ND	23.5 B
Silver	50	ND	ND	ND	1.5 B	ND	ND	ND	ND	1.9 B	ND
Sodium	20,000	23,400 E	26,000	26,400	29,800	25,200	11,400 E	11,400	12,000	13,600	17,700
Thallium	0.5	ND	ND	13.5 B	ND	ND	ND	ND	9.2 B	ND	ND
Vanadium	NC	2.5 B	1.0 B	0.51 B	1.8 B	0.69 B	1.7 B	1.7 B	1.6 B	1.4 B	2.5 B
Zinc	2,000	95.5 E	31.0 B	68.6	72.0	123	33.9 BE	22.2 B	18.1 B	36.4 B	28.4 B

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Ground	E0136-05C	E1400-06C				E0136-06B	E1400-05C	F1159-04C	G2029-23C	J0445-03C
Sample Date	Water	2/8/06	9-13-06	Aug 2007	Nov 2008	3/9/10	2/8/06	09-13-06	08-17-07	11/7/08	3/12/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	44.9 BE	159 B	NA	NA	NA	48.8 BE	55.8 B	165 B	101 B	211
Antimony	3	ND	ND	NA	NA	NA	ND	ND	2.5 B	ND	ND
Arsenic	25	ND	ND	NA	NA	NA	ND	3.5 B	ND	ND	3.3 B
Barium	1,000	19.8 B	25.6 B	NA	NA	NA	9.2 B	29.7 B	36.9 B	27.4 B	29.2 B
Beryllium	3	ND	ND	NA	NA	NA	ND	ND	ND	ND	ND
Cadmium	5	0.16 B	0.23 BE	NA	NA	NA	0.32 B	0.4 BE	1.3 B	1.8 B	0.63 B
Calcium	NC	13,200 E	14,400	NA	NA	NA	8,410 E	16,700	16,000	13,100	12,500
Chromium	50	1.5 B	0.99 BE	NA	NA	NA	2.1 B	2.1 BE	0.86 B	2.7 B	1.2 B
Cobalt	NC	1.4 BE	0.57 B	NA	NA	NA	1.4 BE	1.0 B	3.7 B	ND	1.4 B
Copper	200	9.9 B	ND	NA	NA	NA	10.2 B	6.4 B	6.4 B	19 B	10.9 B
Iron	300	12,000 NE	11,800	NA	NA	NA	6,600 NE	19,700	23,000	3,810	35,100
Lead	25	ND	3.5 B	NA	NA	NA	1.0 B	3.2 B	1.8 B	7.2 B	ND
Magnesium	35,000	1,800 E	2,030 E	NA	NA	NA	1,210 E	2,190 E	2,180	1,700	848
Manganese	300	177 E	201 *E	NA	NA	NA	249 E	956 *E	854	503	468
Mercury	0.7	ND	ND	NA	NA	NA	ND	ND	ND	0.020 B	ND
Nickel	100	4.2 B	3.3 B	NA	NA	NA	5.0 B	3.6 B	4.5 B	5.1 B	3.4 B
Potassium	NC	3,730	3,040	NA	NA	NA	7,140	2,970	3,330	6,340	4,760
Selenium	10	1.6 B	1.7 B	NA	NA	NA	1.3 B	ND	8.3 B	ND	12 B
Silver	50	ND	ND	NA	NA	NA	ND	1.8 B	ND	6.5 B	ND
Sodium	20,000	14,800 E	9,370	NA	NA	NA	10,100 E	5,050	4,120	7,390	5,970
Thallium	0.5	1.5 B	2.9 B	NA	NA	NA	2.0 B	2.4 B	ND	ND	ND
Vanadium	NC	ND	3.2 B	NA	NA	NA	ND	4.2 B	ND	ND	0.76 B
Zinc	2,000	56.4 E	21.2 B	NA	NA	NA	44.5 BE	22.6 B	37.4 B	99.2	26.8 B

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5 SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Ground	E0136-07B	E1400-01C	F1159-03C	G2029-21C	J0445-02C	E0136-09C	E1400-02C	F1135-19C	G2029-22C	J0398-19C
Sample Date	Water	2/8/06	09-13-06	8-17-07	11/7/08	3/12/10	2/8/06	09-13-06	08-16-07	11/7/08	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	82.6 BE	84 B	66.4 B	120 B	145 B	53.0 BE	82.0 B	24.5 B	63.7 B	86.0 B
Antimony	3	ND	ND	4.7 B	ND	ND	ND	ND	8.3 B	ND	8.0 B
Arsenic	25	3.2 B	3.3 B	ND	ND	7.6 B	ND	ND	ND	ND	ND
Barium	1,000	103 B	39.4 B	29.2 B	20.8 B	16.3 B	67.2 B	69.6 B	76.9 B	66.8 B	75.4 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.064 B
Cadmium	5	1.4 B	0.89 BE	1.7 B	1.6 B	1.1 B	<i>7</i> 2.8	72.8 E	65.5	79	57.6
Calcium	NC	30,200 E	11,500	6,280	5,350	5,260	12,900 E	13,300	13,100	13,000	13,100
Chromium	50	3.1 B	1.9 BE	3.4 B	3.2 B	3.3 B	7.8 B	5.0 BE	1.7 B	5.8 B	20 B
Cobalt	NC	5.6 BE	2.3 B	5.3 B	3.5 B	3.8 B	1.1 BE	0.81 B	0.87 B	ND	ND
Copper	200	11.5 B	9.3 B	ND	8.7 B	11 B	32.9	19.6 B	15.3 B	28.4 B	19.5 B
Iron	300	52,600 NE	15,400	40,200	25,800	28,600	746 NE	210	241	383	515
Lead	25	1.0 B	2.3 B	0.84 B	2.4 B	ND	0.83 B	1.7 B	ND	2.4 B	4.2 B
Magnesium	35,000	3,260 E	1,230 E	1,020	902	677	7,790 E	8,300 E	8,340	7,990	7,390
Manganese	300	867 E	186 *E	401	413	434	12.3 BE	5.9 B*E	6.3 B	25.2 B	18.5 B
Mercury	0.7	ND	ND	ND	0.095 B	ND	ND	ND	ND	ND	ND
Nickel	100	9.3 B	3.6 B	6.0 B	4.9 B	5.5 B	15.1 B	11.2 B	9.2 B	18.5 B	139
Potassium	NC	11,200	14,600	15,800	17,200	18,300	2,430	2,440	2,960	3,030	3,470
Selenium	10	2.2 B	1.9 B	3.3 B	ND	ND	3.3 B	2.2 B	10.7 B	7.0 B	15.6 B
Silver	50	ND	1.8 B	ND	0.89 B	ND	ND	ND	1.4 B	1.9 B	ND
Sodium	20,000	19,900 E	15,000	12,400	12,000	12,400	27,500 E	28,700	31,800	28,700	26,100
Thallium	0.5	4.4 B	4.0 B	7.8 B	ND	9.7 B	ND	ND	ND	ND	ND
Vanadium	NC	0.79 B	3.4 B	ND	ND	1.1 B	ND	1.1 B	ND	ND	0.44 B
Zinc	2,000	88.0 E	37.7 B	85.7	301	68	72.4 E	74.2	67.2	84.3	60.4

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Ground	E0136-08B	E1400-07C	F1135-18C	G2029-19C	J0445-01C	E0136-11B	E1376-11C	F1135-17C	G2029-15C	J0398-15C
Sample Date	Water	2/8/06	09-13-06	08-16-07	11/7/08	3/12/10	2/8/06	09-12-06	08-16-07	11/6/08	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	334 E	154 B	1,040	161 B	229	43.2 BE	199 B	37.9 B	122 B	132 B
Antimony	3	ND	ND	15.7 B	ND	8.5 B	ND	ND	9.6 B	ND	5.0 B
Arsenic	25	ND	11.4 B	ND	ND	5.3 B	ND	2.0 B	1.6 B	ND	3.3 B
Barium	1,000	15.9 B	35.1 B	78.7 B	40.6 B	31 B	12.4 B	19.4 B	24.8 B	19.6 B	42.4 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.097 B
Cadmium	5	0.86 B	0.21 BE	2.7 B	0.68 B	ND	4.1 B	0.85 B	ND	4.1 B	1.4 B
Calcium	NC	12,100 E	21,800	16,500	26,000	16,100	13,800 E	12,800	20,100	4,990	17,600
Chromium	50	1.7 B	1.4 BE	2.9 B	2.5 B	1.2 B	9.8 B	275	18.1 B	12.8 B	125
Cobalt	NC	1.0 BE	ND	4.6 B	ND	0.72 B	1.1 BE	2.6 B	1.3 B	1.9 B	7.5 B
Copper	200	12.8 B	ND	ND	10.7 B	9.1 B	9.5 B	10.5 B	ND	9.0 B	ND
Iron	300	27,100 NE	48,000	296,000	65,100	63,000	276 NE	1,730	228	661	2,150
Lead	25	2.6 B	4.3 B	12.7	5.8 B	ND	2.3 B	2.6 B	ND	4.1 B	6.9 B
Magnesium	35,000	1,610 E	2,520 E	2,470	2,990	1,810	2,260 E	2320	4,210	1,480	4,030
Manganese	300	287 E	910 *E	1,290	508	350	27.9 BE	175	19.3 B	188	457
Mercury	0.7	ND	ND	0.052 B	ND	ND	ND	ND	ND	0.15 B	ND
Nickel	100	6.1 B	3.0 B	13.3 B	3.3 B	2.7 B	6.9 B	24.9 B	3.0 B	12.9 B	59
Potassium	NC	2,460	4,990	8,340	13,200	9,900	3,330	3470	6,850	2,680	12,300
Selenium	10	ND	ND	41.2	ND	13 B	ND	ND	19.6 B	ND	ND
Silver	50	ND	3.5 B	ND	1.4 B	ND	ND	ND	1.6 B	5.6 B	ND
Sodium	20,000	2,230 E	8,710	6,000	22,900	9,680	9,790 E	11,000	15,600	4,880	20,600
Thallium	0.5	ND	2.6 B	64.8	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	2.2 B	9.8 B	4.5 B	3.1 B	0.38 B	ND	1.2 B	ND	1.7 B	1.5 B
Zinc	2,000	29.2 BE	41.6 B	60.8	57.0	17.7 B	19.8 BE	29.8 B	20.1 B	56.0	23.2 B

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Ground	E0136-16C	E1400-03C	F1135-09C	G2029-14C	J0398-17C	E0136-15C	E1376-10C	F1135-10C	G2029-13C	J0398-18C
Sample Date	Water	2/9/06	09-13-06	08-13-07	11/6/08	3/11/10	2/9/06	09-12-06	08-13-07	11/6/08	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q				
Aluminum	NC	29.0 BE	97.3 B	45.2 B	104 B	200	203 E	94.2 B	55.0 B	91.6 B	176 B
Antimony	3	ND	ND	2.5 B	ND	ND	1.3 B	ND	4.5 B	ND	ND
Arsenic	25	ND	ND	1.6 B	ND	ND	ND	2.2 B	4.7 B	ND	5.6 B
Barium	1,000	51.9 B	48.3 B	45.6 B	43.8 B	44.6 B	97.9 B	93.6 B	97.5 B	91.6 B	83.6 B
Beryllium	3	ND	ND	ND	ND	0.05 B	ND	ND	ND	ND	0.078 B
Cadmium	5	23.4	11.8 E	5.1	35.3	24.9	4.0 B	2.3 B	0.22 B	2.2 B	0.84 B
Calcium	NC	18,200 E	18,500	19,100	18,500	19,000	23,900 E	19,200	21,900	17,600	23,600
Chromium	50	34.6	41.6 E	44.9	48.7	39.7	25.4	45.9	10.3 B	9.6 B	8.7 B
Cobalt	NC	1.3 BE	0.87 B	1.4 B	ND	ND	2.5 BE	8.0 B	2.6 B	5.4 B	2.6 B
Copper	200	17.0 B	ND	ND	12.8 B	6.2 B	26.6 B	ND	ND	13.2 B	5.3 B
Iron	300	262 NE	232	234	420	516	458 NE	814	375	822	571
Lead	25	2.5 B	1.2 B	0.88 B	3.3 B	4.2 B	1.5 B	0.58 B	ND	4.4 B	6 B
Magnesium	35,000	3,250 E	3,430 E	3,530	3,690	3,610	2,650 E	2,950	2,940	2,380	3,200
Manganese	300	60.7 E	196 *E	51.6	53.2	36.5 B	34.0 BE	536	29.0 B	125	107
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	0.038 B	0.057 B
Nickel	100	10.6 B	11.3 B	6.7 B	9.0 B	8.0 B	12.4 B	46.9 B	27.9 B	31.7 B	5.3 B
Potassium	NC	5,280	5,040	5,260	5,990	5,720	12,300	9,340	10,000	13,400	8,360
Selenium	10	ND	ND	9.5 B	ND	14.7 B	ND	ND	13.2 B	ND	ND
Silver	50	ND	ND	1.8 B	1.6 B	ND	ND	ND	2.1 B	ND	ND
Sodium	20,000	15,600 E	16,000	16,700	15,100	14,700	17,500 E	15,300	17,900	12,000	31,600
Thallium	0.5	ND	ND	ND	ND	ND	2.1 B	1.5 B	ND	ND	ND
Vanadium	NC	ND	0.89 B	ND	ND	0.66 B	0.59 B	0.71 B	ND	ND	0.76 B
Zinc	2,000	61.4 E	40.2 B	20.5 B	39.1 B	30.5 B	106 E	30.8 B	31.7 B	107	24.3 B

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Ground	E0136-12B	E1376-09C	F1135-16C	G2029-12C	J0398-16C	E0136-18C	E1376-04C	F1135-15C	G2029-11C	J0398-12C
Sample Date	Water	2/8/06	09-12-06	08-16-07	11/6/08	3/11/10	2/9/06	09-11-06	08-16-07	11/6/08	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
Aluminum	NC	135 BE	69.2 B	51.6 B	73.2 B	114 B	72.0 BE	34.3 B	19.6 B	57.7 B	530
Antimony	3	ND	ND	1.2 B	ND	4.5 B	2.6 B	2.3 B	10.0 B	ND	11.1 B
Arsenic	25	ND	ND	ND	ND	3.4 B	ND	ND	3.7 B	ND	ND
Barium	1,000	46.1 B	18.7 B	18.2 B	38.1 B	36.7 B	22.8 B	28.4 B	29.1 B	72.7 B	69.9 B
Beryllium	3	ND	ND	ND	ND	0.051 B	ND	ND	ND	ND	0.093 B
Cadmium	5	17.4	3.0 B	0.47 B	33.4	5.1	3.1 B	0.65 B	0.16 B	3.1 B	3.1 B
Calcium	NC	27,900 E	17,800	25,200	25,300	29,200	13,900 E	17,200	24,800	12,600	14,100
Chromium	50	31.3	117	95.7	54.2	59.8	14.8 B	11.3 B	9.0 B	6.9 B	161
Cobalt	NC	2.3 BE	2.1 B	3.6 B	4.0 B	4.1 B	1.6 BE	1.1 B	2.0 B	3.6 B	8.5 B
Copper	200	17.6 B	ND	ND	11.9 B	11.6 B	12.7 B	7.1 B	ND	9.9 B	11.2 B
Iron	300	480 NE	433	587	626	1,200	645 NE	284	220	145 B	3,940
Lead	25	2.0 B	ND	ND	ND	ND	1.3 B	ND	ND	ND	9.5 B
Magnesium	35,000	4,920 E	3,270	3,920	3,290	4,970	1,930 E	1,160	1,830	1,100	985
Manganese	300	251 E	108	173	394	443	77.9 E	109	113	1,940	2,640
Mercury	0.7	ND	0.1 B	ND	ND	0.067 B	0.14 B	ND	ND	ND	ND
Nickel	100	28.6 B	47.7 B	37.9 B	65.3	20.2 B	15.6 B	5.7 B	2.8 B	7.1 B	14.8 B
Potassium	NC	5,460	5,630	4,870	6,720	4,930	2,760	3,960	3,220	3,110	2,410
Selenium	10	ND	ND	12.7 B	ND	ND	ND	ND	13.6 B	ND	ND
Silver	50	ND	ND	1.8 B	ND	ND	ND	ND	2.1 B	0.73 B	ND
Sodium	20,000	12,100 E	14,100	17,300	12,800	19,500	5,940 E	2,690	6,680	3,060	3,560
Thallium	0.5	2.2 B	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	0.52 B	0.80 B	1.0 B	1.7 B	1.2 B	2.1 B	2.4 B	1.7 B	3.4 B	4.9 B
Zinc	2,000	66.8 E	18.4 B	17.4 B	42.7 B	28.3 B	43.4 BE	18.6 B	18.8 B	36.6 B	30.2 B

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

APPENDIX A

WELL SAMPLING FORMS - ROUND 5 (MARCH 2010)

				PROJECT			PROJECT No.		SHEET		SHEETS
		LING FO	RM	SMS			95900-02		1	OF	1
LOCATION			D D .	.1. NIX .44	EO 000		E I	DATE WEL	L COMPLE		2040
CLIENT	istrume	ents Site,	Deer Pa	rk, NY #1-	-52-026		3/9/2010			3/9/	2010
	ork State	e Departme	ent of Env	/ironmenta	l Conserv	/ation	Peter Lawler				
DRILLING	COMPANY	у воранине	one or an				SIGNATURE OF INSPECTOR	•			
							PL				
OVE 14151 I	varine		2.11	aal	WELL TD:	30 851	DUSED INTA	ZE DEDIU.	28	ft bgs	
ONE WELL	. VOLUME :	:	2.11	yaı.	WELL ID:	30.03	PUMP INTAI	CE DEP IN:	20	it bgs	
	Depth		F	FIELD MEAS	SUREMEN	NTS					
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	pН	Turbidity	REM	ARKS			
44,44	(ft) 18.43	(ml/min)	(C)	(ms/cm)		(ntu)	Static Level				
		4	151	0.464	-6.60	444	Į.				
	18.49	1	15.1	0.464	6.60	444 55	Pump on; Brown				
11:18 11:20		1	14.8 14.8	0.410	6.56 6.59	27	Light Brown Clear				
11:22	18.49	1	14.8	0.388 0.380	6.56	20	Clear				
11.22	10.48	Į.	14.0	0.360	0.50	20	Clear				
									•		
	-										
						<u> </u>					
								•			
								·			
		,									
					·			· ·			
t t			:				AVANCE.	•			
			···								
				:	···········				•		
		į									
	- 1										
						,	Sampled @ 11:35				
							replaced bailer				
				•							
^o ump 1	уре:	Grundfos	, sample	d with tef	on baile	rs					
**		4									
Analytic	al Para	ameters:	VOCs, S	SVOCs, T	AL Meta	ls					

				PROJECT			PROJECT No.			SHEET	-	SHEETS
		LING FOR	RM	SMS			95900-02			1	OF	1
LOCATION							DATE WELL STARTED		DATE WEL	L COMPLE		V0040
SMS II	nstrume	ents Site, I	Deer Pa	rk, NY #1-	-52-026		NAME OF INSPECTOR	3/9/2010			3/9	/2010
	ork State	. Denartme	ent of Env	/ironmental	l Consen	etion.	Peter Lawler					
DRILLING	COMPANY	Doparane	ATT OF EITH	, i o i i i o i i c	0011001	ration	SIGNATURE OF INSPECTO	OR .				
							PL					
			1 00	anl	WELL TD:	20 401		B1111B 111741		26	ft bgs	
ONE WELI	LVOLUME	:	1.88	yaı.	WELL TD:	20.49		PUMP INTAK	E DEPTH:	20	it bgs	,
	Depth		ı	FIELD MEAS	SUREME	NTS						
	to	Purge		·								
Time	Water	Rate	Temp.	Conduct.	pН	Turbidity		REMA	ARKS			
	(ft) 17.41	(ml/min)	(C)	(ms/cm)		(ntu)	Static Lev	<u>al</u>				
11:50		1	14.3	0.347	6.57	999	Pump on; Orange			· 		
11:52		1	14.5	0.337	6.63	78	Orange/brown	CIDIOWII				
	17.45	1	14.5	0.332	6.60	37	Clear					
11:56	17.45	1	14.5	0.332	6.61	22	Clear					
11.00	17.40		17.0	0.000	0.01		Olcai					
	,										*****	
								** "				

			v					** ****				
								10.10				
			-				Sampled @	1212				•
						L						
	_		<u>-</u>									
-ump	type:	Grundfos	, sample	ed with tef	ion baile	ers						
∕دن المسلم	I D -		VOO= 1	N/OO- T	A1 B4-4-	.la						*
anaiyti	cai Para	arneters:	vous, s	SVOCs, T	AL IVIETA	แร						

				PROJECT			PROJECT No.	SHE	ĒΤ		HEETS
WELL	SAMP	LING FOR	RM	SMS			95900-02	- 1	1	OF	1
LOCATION						•		E WELL CO	OMPLET		
SMS I	nstrume	ents Site, I	Deer Pa	rk, NY #1	<u>-52-026</u>		3/9/2010			3/9/	2010
CLIENT		D			l Canaan	otion	NAME OF INSPECTOR Peter Lawler				
DRILLING	COMPANY	Departme	ent of Env	rironmenta	Conser	valion	SIGNATURE OF INSPECTOR				-
						•	PL				l
							1			.	
ONE WELL	VOLUME :	:	1.59		WELL TD:		PUMP INTAKE DE	EPTH:	23 	ft bgs	
	Depth to	Purge	F	IELD MEA	SUREMEI						
Time	Water	Rate	Temp.	Conduct.	pН	Turbidity	REMARK	(S			
	(ft)	(ml/min)	(C)	(ms/cm)		(ntu)					
12:20	16.55						Static Level				
	16.55	1	14.3	0.284	6.60	318	Pump on; Orange				
	16.56	1	14.4	0.266	6.72	34	Orange				
12:30	16.56	1	14.5	0.265	3.67	21	Light orange				
12:33	16.56	1	14.4	0.265	6.68	17	clear				
							,				
		·									
-											
						<u> </u>					
		~									\neg
-											
						<u> </u>					
					<u> </u>						
					-	-		****			
						-					
						 					
						1					
						 					
			-			 	Complet @ 1212		—		×
						 	Sampled @ 1313			-	
				<u> </u>	<u> </u>		<u> </u>				
	_		-		, ,						
Pump ⁻	ı ype:	Grundfos	, sample	ed with tel	ion baile	ers					
	. –					•	/				
Analyti	cal Para	ameters:	vocs, s	SVOCs, T	AL Meta	RIS					
							· .				

				PROJECT			PROJECT No.		SHEET		SHEETS
		LING FO	RM	SMS			95900-02		1	OF	1
LOCATION								ATE WEL	L COMPLE		10040
	nstrume	ents Site,	Deer Pa	rk, NY #1	-52-026		3/11/2010 NAME OF INSPECTOR			3/11	/2010
CLIENT	ark State	Donortmo	nt of En	vironmenta	l Concon	otion	Peter Lawler				
DRILLING	COMPANY	Беранине	TR OF EIN	nionnienta	Conser	auon	SIGNATURE OF INSPECTOR				
							PL				
					<u> </u>	00.451			07		
ONE WELL	. VOLUME :	*	8.03	gal.	WELL TD:	29.45	PUMP INTAKE	DEPTH:	27	ft bgs	6
	Depth		I	TELD MEA	SUREMEI	NTS					,
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	рH	Turbidity	REMAR	RKS			
	(ft)	(ml/min)	(C)	(ms/cm)		(ntu)					
9:00	17.28						Static Level				
9:05	17.46	2.5	10.2	0.278	5.91	737	Pump on; Orange				
9:08	17.47	2.5	10.3	0.227	6.19	11	Light Brown				
9:11	17.49	2.5	10.5	0.225	6.50	-10					
9:13	17.5	2.5	10.5	0.225	6.63	-10	Clear				
9:16	17.5	2.5	10.5	0.227	7.01	-10	Clear; pump off, and back of	on, du	e to pH	jump	
9:20	17.51	2.5	10.5	0.229	7.14	-10	Clear				
9:22	17.51	2.5	10.5	0.227	7.23	-10	Clear				
9:25	17.51	2.5	10.5	0.227	7.31	-10	Clear				
							pH jumping, and Turbidity v	vas ot	it of rai	ıge,	
							Horiba U-10 recalibrated				
							readings; pH 3.99; 0NTU; 4	4.54m	S/cm; 9).7C	
				:							
						<u> </u>					
									·		
							Sampled @ 0940				
						<u> </u>					
	_		=								
Pump	Гуре:	Grundfos	, sample	d with tef	Ion baile	rs					
		,									
Analytic	cal Para	ameters:	vocs, s	SVOCs, T	AL Meta	lis					
										*	

				PROJECT			PROJECT No.		SHEET		SHEETS
		LING FOR	RM	SMS			95900-02		1	OF	1
LOCATION								DATE WEL	L COMPLE		60040
SMS II	nstrume	ents Site, I	Deer Pa	rk, NY #1	-52-026		3/10/2010			3/10	/2010
	ork State	e Departme	ent of Env	/ironmenta	l Consen	/ation	Peter Lawler				
DRILLING	COMPANY	, ворагане	on Em	· ·	Concor	radon	SIGNATURE OF INSPECTOR				
							PL				
			2.11	aal	WELL TD:	29 671	DUMP INTAK	E DEDTU	26	ft bgs	
ONE WELL	VOLUME :	:	2.11	yaı.	WELL ID:	20.07	PUMP INTAK	E DEPIR:	20	it bgs	,
	Depth		-	FIELD MEA	SUREME	NTS					
:	to	Purge	···· <u>-</u>			1	, , , , , , , , , , , , , , , , , , ,	. DICO			
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	pН	Turbidity (ntu)	REMA	ARKS			
12:39	16.24	(1111/11111)	(0)	(IIIS/CIII)		(IIII)	Static Level				
	16.26	1	14.6	0.159	7.66	346	Pump on; Orange				
	16.27	1	15.0	0.154	7.58	69	Turbid, Light Brown				
12:47	16.27	1	15.0	0.152	7.39	38	Turbid; Clear				
12:49	16.27	1	15.0	0.151	7.29	21	Clear, Turbid				

						<u>.</u>					
						-			*		
						-					

					•						
							Sampled @ 1313				
					L	L					
	-		<u>.</u>								
Pump 1	ype:	Grundfos,	, sample	ed with tef	ion baile	ers					ı
Anglest.	al Dan	matara: '	VOC= 9	evoca T	.VI	ale.	r				
чпатут	Jai Para	ameters: `	voos, s	SVUUS, I	AL METS	115					

				PROJECT	***		PROJECT No.		SHEET		SHEETS
		LING FOR	RM	SMS			95900-02		1	OF	1
LOCATION		ento Cito I	Door Bo	rk NIV #1	E2 026		DATE WELL STARTED 3/10/2010		L COMPLE)/2010
CLIENT	nstrume	nis site, i	Deel Pa	rk, NY #1-	-52-026		NAME OF INSPECTOR			3/10	<i>"2010</i>
	ork State	Departme	ent of Env	rironmental	Conserv	/ation	Peter Lawler				
DRILLING	COMPANY	,				<u>•m···</u>	SIGNATURE OF INSPECTOR				
							PL				
ONE WEL!	L VOLUME :	:	1.73	gal.	WELL TD:	26.18'	PUMP INTA	KE DEPTH:	24	ft bg:	s
	Depth to	Purge	F	FIELD MEAS	SUREME						
Time	Water	Rate	Temp.	Conduct.	pН	Turbidity	REM	ARKS			- 1
	(ft)	(ml/min)	(C)	(ms/cm)		(ntu)					
9:42	15.99		10.5	0.000	7.40	40.4	Static Level				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
9:45	16.04	1	13.5	0.302	7.16	424	Pump on; Brown				
9:47	16.05	1	13.8	0.327	7.00	46	Turbid, clear				
9:50	16.05	1	14.1	0.331	6.98	17	Clear				
9:53	16.05	1	14.1	0.332	7.02	13	Clear				
									,,		
			;								
						<u></u>					
						-					
						 					
											
							\				
						 -		···			
			······								
								•			· ·
						<u> </u>					
							····				
	<u> </u>										
							Sampled @ 1010				
							bailer replaced				
		<u> </u>				•	· · · · · · · · · · · · · · · · · · ·				
Pump ·	Гуре:	Grundfos	, sample	ed with tef	lon baile	ers					
•	• •		•								
Analyti	cal Para	ameters:	VOCs, S	SVOCs, T	AL Meta	als					
-											

				PROJECT			PROJECT No.		SHEET		SHEETS
WELL	. SAMP	LING FOR	RM	SMS			95900-02		1	OF	1
LOCATIO	N			da			DATE WELL STARTED	DATE WEL	L COMPLE		
SMS I	nstrume	ents Site, I	Deer Pa	rk, NY #1-	52-026		3/10/2010)		3/10	/2010
CLIENT	ark Ctate	Donortma	nt of En	vironmental	Concer	otion	NAME OF INSPECTOR Peter Lawler				
DRILLING	COMPANY	Departme	IN OF EIN	mommental	Conserv	ration	SIGNATURE OF INSPECTOR	 			-
							PL				
ONE WEL	L VOLUME	:	52.41	gal.	WELL TD:	95.45'	PUMP INT	KE DEPTH:	93	ft bgs	3
	Depth	[ı	FIELD MEAS	SUREMEN	NTS					
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	рΗ	Turbidity	REN	MARKS			
	(ft)	(ml/min)	(C)	(ms/cm)		(ntu)	0, 6, 1,	***			-
	16.04				- 40		Static Level		· -		
	20.92	4	13.9	0.207	9.19	182	Pump on; Black				\longrightarrow
10:40		4	13.9	0.425	7.93	93	Brown				
	20.87	4	14.3	0.431	7.15	57	Turbid clear			-	
10:05	20.96	4	14.2	0.425	7.12	36	Turbid clear				
			*****								-
							1				
										,	
					w						
									•		
								·			
						ļ					
			···								

		7"									
	 			ļ			Sampled @ 1125				+
	 							<u>.</u>			
Dumn	Type:	Grundfoe	samnla	ed with tef	lon haile	ers					
unp	. ype.	Jianalos	, oampie	od William	on Dune		· ·				
Analyt	ical Par	ameters:	VOCs :	SVOCs, T	AL Meta	als					!
			, ,			-					

				PROJECT			PROJECT No.	SHEET		SHEETS
WELL	SAMP	LING FOR		SMS			95900-02	1	OF	1
LOCATION		ents Site, I	Deer Par	rk NV #1_	52-026		DATE WELL STARTED DATE WE 3/10/2010	LL COMPLE		2010
CLIENT	isa umic	into Oite, i	Jeer I a	IK, INI # 1	32-020		NAME OF INSPECTOR			
New Yo	ork State	e Departme	nt of Env	rironmental	Conserv	ation	Peter Lawler			
DRILLING	COMPANY						SIGNATURE OF INSPECTOR PL			
							FE			
ONE WELI	VOLUME :	:			WELL TD:		PUMP INTAKE DEPTH	: 26	ft bgs	
	Depth to	Purge	F	TELD MEAS	SUREMEN	NTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REMARKS			
	(ft)	(ml/min)	(C)	(ms/cm)	•	(ntu)				
8:20	17.5						Static Level			
8:28	17.55	1.5	12.8	0.296	5.81	290	Pump on; Orange			
8:31	17.56	1.5	13.2	0.297	6.26	119	Light Brown			
8:33	17.56	1.5	13.5	0.295	6.38	: 48	Turbid, Light brown			
8:35	17.56	1.5	13.6	0.295	6.45	29	Turbid, clear			
										·
							,			
						 				
			-							
·										
								***	***	
			·							
							Sampled @ 0850			
-						1				
,		<u> </u>								
Pump	Type:	Grundfos	, sample	ed with tef	lon baile	ers				
-	,,			,						
Analyti	cal Par	ameters:	VOCs,	SVOCs, T	AL Meta	als				
-										

				PROJECT			PROJECT No.	SHEET	SHEE	TS
WELL	SAMP	LING FOR	RM	SMS			95900-02	1	of 1	
LOCATION	4			<u> </u>				LL COMPLE		\Box
SMS li	nstrume	ents Site, I	Deer Pa	rk, NY #1	<u>-52-026</u>		3/9/2010		3/9/20	10
CLIENT	vele Ctate	Donortmo	nt of En	rironmenta	l Concon	ration	Peter Lawler			ı
DRILLING	COMPANY	Departine	III OI EIN	HUIHEHLA	CONSCI	7atiOii	SIGNATURE OF INSPECTOR			\dashv
							PL			
			2.24	a a l	WELL TD:	20.241	DUMP WITAKE DEDT	. 27	ft bgs	
ONE WELI	. VOLUME :	:	2.24	gai.	WELL TD:	29.21	PUMP INTAKE DEPTH	1: 21	it bys	
	Depth		F	IELD MEA	SUREME	NTS	***			
	to	Purge		r <u></u>		T	DEMA DIVE			
Time	Water	Rate	Temp.	Conduct.	pН	Turbidity	REMARKS			
10:21	(ft) 16.06	(ml/min)	(C)	(ms/cm)		(ntu)	Static Level			╡
10:21	16.06	1	14.3	0.315	6.69	61	Pump on; Orange, no odor			一
	16.06	1	14.6	0.313	6.67	280	Orange			一
10:28		1	14.5	0.312	6.72	88	Light orange			ヿ
10:20	16.07	1	14.5	0.307	6.74	47	Yellowish Clear			
10.50	10.00	'	14.0	0.301	0.74	7,	Tellowion Clour			\dashv
						· 				╗
					<u> </u>	 				\neg
										\neg
	•					1				
						 				一
										\neg
										\neg
					ļ					\neg
						1	***			\neg
			:			 			****	
						 			-	

				-			, , , , , , , , , , , , , , , , , , ,	 ,		
						1				
				<u> </u>				-		
						<u> </u>				
						1				
			<u></u> -		 					
		·					·			
				l		1 "	Sampled @ 1045			
						1				_
				Ŧ	4					
Pump '	Type:	Grundfos	, sample	ed with te	flon baile	ers				
	71		,							
Analyti	cal Par	ameters:	VOCs,	SVOCs, 1	AL Met	als				
•			•	•					•	

WELL	SAMP	LING FOF	RM	PROJECT SMS			PROJECT No. SHEET SHEETS 95900-02 1 of 1
LOCATION		nto Sito I	Door Ba	rk NiV #1	52 026		DATE WELL STARTED DATE WELL COMPLETED 3/9/2010 3/9/2010
CLIENT I	istrume	ents Site, i	Deer Pa	rk, NY #1-	-52-020		NAME OF INSPECTOR
New Yo	rk State	Departme	ent of Env	rironmental	Conserv	ation	Peter Lawler
DRILLING	COMPANY						SIGNATURE OF INSPECTOR PL
ONE WELL	. VOLUME :	:	1.79	gal.	WELL TD:	25.96'	PUMP INTAKE DEPTH: 23 ft bgs
	Depth to	Purge	J	FIELD MEAS	SUREMEN		
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	pН	Turbidity (ntu)	REMARKS
9:10	15.42						Static Level
9:26	15.47	1	14.2	0.206	6.21	295	Pump on; Brown, turbid
9:28	15.47	1	14.5	0.244	6.33	32	Light Brown
9:30	15.47	1	14.5	0.241	6.35	10	Clear
9:32	15.47 1 14.5 0.240 6.38 7				6.38	7	Clear
	15.47 1 14.5 0.240 6.38 7						
	32 15.47 1 14.5 0.240 0.30					- 7.11.1	
*			****				
					····		
1							
						· · · · · · · · · · · · · · · · · · ·	
	-					_	
							Sampled @ 0945
						Duplicate	sample taken (SMS-MW-59) @0950
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals						ers	
			,	•			

				PROJECT			PROJECT No.		SHEET		SHEETS	
		LING FOR	RM	SMS			95900-02		1	OF	1	
LOCATIO SMS I		ents Site, I	Deer Pa	rk, NY #1-	52-026		DATE WELL STARTED	DATE WEI	L COMPLE	TED		
CLIENT							NAME OF INSPECTOR					
New Y	ork State	Departme	ent of Env	rironmental	Conser	vation	SIGNATURE OF INSPECTOR					
DIGIELING	OCINI ANT											
ONE WEL	L VOLUME :	:		gal. v	WELL TD:	-	PUMP INTA	AKE DEPTH:		ft bg	s	
	Depth to	Purge	i	TELD MEAS	UREME	NTS						
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REMARKS					
	(ft)	(ml/min)	(0)	(ms/cm)		(IIEU)	Static Level					
						<u>.</u>						

							Well No Longer Exists;					
							New construction has de	stroyed	MW-11			
						<u> </u>						
					··							
			gal. WELL TD: PUMP INTAKE DEPTH FIELD MEASUREMENTS Temp. Conduct. pH Turbidity (ntu) (C) (ms/cm) (ntu) Static Level Pump on;									
											V	
	-						/ ****			•		

		· · · · · · · · · · · · · · ·		•								
							<u> </u>					
											~	
						† · · · · ·						
						İ	Sampled @					
Pump Type: Grundfoe samn												
Pump Type: Grundfos, sampl				ed with teflo	on baile	ers						
Analytical Parameters: VOCs,				evoca T	\l mat	ale						
nnaiyt	ivai Fali	ailicitis.	v OOS, (JVOCS, 17	TE IIIEK	21 3			,			

				PROJECT			PROJECT No.		SHEET		SHEETS
WELL	IS Instruments Site, Dec		RM	SMS			95900-02		1	OF	1
LOCATION							DATE WELL STARTED		L COMPLE		
SMS Ir	istrume	ents Site, I	Deer Pa	rk, NY #1-	52-026		3/12/2010			3/12	/2010
CLIENT	1.04-1	D		·	0		NAME OF INSPECTOR				
New YO	COMPANY	рерапте	ent of Env	rronmental	Conserv	ation	Harry Sudwischer				
DIGLERIO	JOINI ANT						HS				
	- 10										
ONE WELL			20.72				PUMP INTA	KE DEPTH:	44	ft bgs	,
	Depth to	Purge	F	IELD MEAS	SUREMEN	ITS					
Time	ime Water Rate Temp. Conduct. pH (ft) (ml/min) (C) (ms/cm)					Turbidity	REM	IARKS			1
		(ml/min)	(C)	(ms/cm)		(ntu)					
							Static Level				
10:09		3	13.5				Pump on; Gray				
10:16		3	14.0	0.107 6.96 7			Clear				
			14.4 0.107 6.96 7 14.5 0.106 6.94 5								
10:30	16.16	3	14.5								
				···							
					well to: 47.40 ASUREMENTS t. pH Turbi (nt) 7.17 35 7.14 13 6.96 7						
				(ms/cm) (ntu) 0.106 7.17 35 0.106 7.14 13 0.107 6.96 7							
]											
				5 0.106 6.94 5							
							.,,				
						<u> </u>					
.,											
									··		
						<u> </u>			.00		
							0 1 10 10 10				
							Sampled @ 1040				
_	_		=	,							
Pump 7	ype:	Grundfos	, sample	ed with tef	ion baile	rs					
					A	1.					
Analytic	cal Para	ameters:	vocs, s	SVOCs, T	AL meta	IIS					

	0.110		~==	PROJECT			PROJECT No.	SHEET 1	SHEETS OF 1				
WELL SAMPLING FORM SMS LOCATION SMS Instruments Site, Deer Park, NY #1-52-026					95900-02 DATE WELL STARTED DATE WEI	L COMPLE							
		ents Site I	Deer Pa	rk NY #1.	-52-026		3/12/2010	L COM LL	3/12/2010				
CLIENT		THE CITE !		,			NAME OF INSPECTOR						
New Yo	rk State	Departme	nt of Env	rironmenta	l Conserv	ration	Peter Lawler						
DRILLING	COMPANY						SIGNATURE OF INSPECTOR PL						
ONE WELL	. VOLUME :	:	18.94	gal.	WELL TD:	46.07'	PUMP INTAKE DEPTH:	44	ft bgs				
,	Depth to	Purge	F	IELD MEAS	SUREMEN	ITS							
Time	Water	Rate	Temp.	Conduct.	pН	Turbidity	REMARKS						
	(ft) (ml/min) (C) (ms/cm) (ntu)					(ntu)	110		,				
9:05	17.37						Static Level						
9:12	17.57	5	14.3	0.341	7.16	90	Pump on; Gray						
9:16	17.58	5	14.9	0.357	7.01	21	Clear						
9:20	17.58	5	14.7	0.352	6.98	9	Clear						
9:24	17.58	5	14.8	0.362	6.96	7	Clear						
								····					
							·						
						"		`					
		-		, i									
							:						
							Sampled @ 0940						
		Grundfos											
Analyti	cal Para	ameters:	VOCs, §	SVOCs, T	AL meta	IIS							

WELL NO. MW- 13D

				PROJECT			PROJECT No.	SHEET		SHEETS			
WELL	SAMP	LING FOR	RM	SMS			95900-02	1	OF	1			
		ents Site, I	Deer Pa	rk, NY #1-	52-026		3/11/2010	ELL COMPLE		2010			
CLIENT							NAME OF INSPECTOR						
New Yo	ORK State	Departme	ent of Env	rironmental	Conserv	ration	Peter Lawler SIGNATURE OF INSPECTOR						
DIVICEING	OOMI ANT						PL PL						
ONE WELL	. VOLUME :		55.54	gal.	WELL TD:	101.62'	PUMP INTAKE DEPTH	ı: 95	ft bgs				
	Depth to	Purge	f	FIELD MEAS	SUREMEN	ITS							
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	рH	Turbidity (ntu)	REMARKS						
15:12		(1113/111117)	(0)	(IIIS/OIII)		(11.6)	Static Level						
15:14		5	13.6	0.325	5.94	21	Pump on; Clear						
15:25		5	14.4	0.528	5.64	3	Clear						
15:36		5	14.3	0.534	5.62	2	Clear						
15:47	17.62	5	14.3	0.530	5.64	1	Clear						
					:								
		٠.											
			_										
						<u></u>							
						ļ							
													
		·				<u> </u>	****						
						<u> </u>							
İ							Sampled @ 1610						
							SD collected with SMS-MW-13D)					
			-	ed with tef									
Analytical Parameters: VOC				SVOCs, T	AL meta	IIS							

				PROJECT			PROJECT No.		SHEET		SHEETS			
WELL	SAMP	LING FO	RM	SMS			95900-02		1	OF	1			
LOCATION	ı						DATE WELL STARTED	DATE WEL	L COMPLE					
	nstrume	ents Site, I	Deer Pa	rk, NY #1-	-52-026		3/12/2010			3/12	/2010			
CLIENT	l. 04-4-	D = = = = = = = =	44		Camaan	ation	NAME OF INSPECTOR Peter Lawler							
New YO	OFK STATE	Departme	ent of Env	rironmenta	Conserv	ration	SIGNATURE OF INSPECTOR				$\overline{}$			
DIGELLIO	0011111111						PL				ı			
ONE WELL	. VOLUME :		20.76		WELL TD:		PUMP INTAI	KE DEPTH:	46	ft bgs	;			
	Depth to	Purge	F	TELD MEAS	SUREME	NTS								
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS			1			
	(ft)	(ml/min)	(C)	(ms/cm)		(ntu)	0.1.1							
8:11	17.28						Static Level							
8:15	18.68	4.5	14.2	0.478	6.69	437	Pump on; Brown							
8:20	18.64	4.5	14.5	0.445	6.87	23	Light Brown							
8:24	18.63	4.5	14.8	0.453	6.80	16	Yellow							
8:29						12	Yellow							
	29 18.63 4.5 14.3 0.453 6.86													
										1000				
								-						
										1				
				·										
							i i							
						1								
										,				
				×			Sampled @ 0850							
					<u> </u>	<u>. </u>								
Pilmn ⁻	Lyne.	Grundfoe	sample	ed with tef	ion baile	ers								
ump	·yρc.	Sidikilos	, sample	WILLIE	ion bane									
Analytical Parameters: VOCs, SVOCs, TAL me						als								
a ruty ti	Juli al	A. 1 IO COI O.	. OOG, (, , , , ,										

WELL	SMS Instruments Site, Deer Park, NY #1-52				PROJECT No. SHEET SHEETS 95900-02 1 of 1							
LOCATION		nto Sito	Door Bo	rk NV #1	52 026		DATE WELL STARTED DATE WELL COMPLETED 3/11/2010 3/11/2010					
CLIENT	istrume	nis Sile, i	Deer Pa	IK, INT #1-	02-020		NAME OF INSPECTOR					
New Yo	rk State	Departme	ent of Env	rironmental	Conserv	ation	Peter Lawler					
DRILLING	COMPANY						SIGNATURE OF INSPECTOR					
							PL					
ONE WELL	. VOLUME :	:	12.8	gal.	WELL TD:	36.61'	PUMP INTAKE DEPTH: 34 ft bgs					
	Depth to	Purge	ş	FIELD MEAS								
Time	(ft) (ml/min) (C) (ms/cm) (ntu)					Turbidity (ntu)						
10:26	17.21						Static Level					
10:27	17.39	4	14.3	0.293	5.82	103	Pump on; Cloudy Brown					
10:31	0:31				6.24	13	Clear					
							Clear					
		4	14.5	0.355	6.64	18	Clear					
10:39	17.41	4 .	14.6	0.353	6.73	1	Clear					

			**									
				. ,								
		· ·										
						<u> </u>						
	•											
					·							

				4								
							Sampled @ 1100					
	ump Type: Grundfos, sampled with teflon bailers nalytical Parameters: VOCs, SVOCs, TAL metals											
,		_	•									

WELL NO. MW-16S

MS			PROJECT No.	SHEET		EETS								
SMS Instruments Site, Deer Park, NY #1-52-026 3/11/2010 3/11		OCATION												
Auto-OF-INSPECTOR									LL COMPLE		340			
New York State Department of Environmental Conservation Peter Lawler Sensitive of Inspector PL	SMS Ir	istrume	ents Site, I	Deer Pa	rk, NY #1-	52-026				3/11/20	710			
13.04 gal Well to: 36.87 Pump INTAKE DEPTI: 34 ft bgs		ele Ctoto	Donarimo	nt of En	.iranmantal	Concon	ration							
PL	DRILLING	COMPANY	реракти	HIL OF ETIN	/HOHHerital	Conserv	auon		. 11		\dashv			
Depth to Water (#th (mil/min) FIELD MEASUREMENTS (#th (mil/min								PL						
Depth to Water (#th (mil/min) FIELD MEASUREMENTS (#th (mil/min		•			_				0.4	£4 la				
Time Water	ONE WELL	VOLUME :	:	13.04	gal.	WELL TD:	36.87	PUMP INTAKE DEPTH	: 34	it bgs	·			
Time (th) (milmin) (C) (ms/cm) (ntu) Static Level 11:19 17.41				F	IELD MEAS	SUREMEN	ITS							
(it) (ml/min) (C) (ms/cm) (intu) (intu)				_			- 1	DEMARKS			- 1			
11:19 17.11 Static Level 11:21 T.25 4 12.3 0.314 7.54 9 Pump on; Clear 11:24 17.25 4 12.3 0.339 7.23 3 Clear 11:28 17.25 4 12.2 0.339 7.11 5 Clear 11:31 17.25	Time					рн		REMARKS						
11:21 17:25	11:10		(mi/min)	(0)	(ms/cm)		(ritu)	Static Level						
11:24 17:25			1	12.2	0.314	7.54	0				\dashv			
11:28 17:25 4 12:5 0.337 7:10 2 Clear 11:31 17:25 4 12:2 0.339 7:11 5 Clear														
11:31 17:25 4 12:2 0.339 7.11 5 Clear 1		:28 17.25 4 12.5 0.337 7.10 2									一			
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers	11:31						3	Clear			\dashv			
Pump Type: Grundfos, sampled with teflon bailers		31 17.25 4 12.2 0.339 7.11									\dashv			
Pump Type: Grundfos, sampled with teflon bailers											\dashv			
Pump Type: Grundfos, sampled with teflon bailers											\dashv			
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers					1						\dashv			
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers											\dashv			
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers											_			
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers			,											
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers					•									
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
Pump Type: Grundfos, sampled with teflon bailers														
			×					Sampled @ 1150						
						<u> </u>								
	Pump ⁻	Гуре:	Grundfos	, sample	ed with tef	lon baile	ers							
Analytical Parameters: VOCs, SVOCs, TAL metals	tamp type. Clamada, camples min tener paners													
	Analytic	cal Para	ameters:	VOCs.	SVOCs, T	AL meta	als							
	,				•									

WELL NO. MW- 16M

				PROJECT			PROJECT No.	SHEET	SHEETS				
	ELL SAMPLING FORM SMS CATION VIS Instruments Site, Deer Park, NY #1-52-026						95900-02	1	of 1				
LOCATION		. 6		1 107 44	50.000		1	LL COMPLE	3/11/2010				
SIVIS II	istrume	ents Site, i	Deer Pai	rk, NY #1-	-52-026		3/11/2010		3/11/2010				
	rk State	Denartme	ent of Env	rironmental	l Conserv	ration	Peter Lawler						
DRILLING	COMPANY	<i>b</i> oparane	,,,,, o, <u>_</u> ,,,				SIGNATURE OF INSPECTOR		***				
							PL						
ONE WELL	VOLUME.		20.79	nal	WELL TD:	48 74'	PUMP INTAKE DEPTH:	. 46	ft bgs				
ONE WELL	VOLUME :	i		•		_	Tom WARE DE TH						
	Depth		F	TELD MEAS	SUREMEN	NTS							
I	to	Purge				T	REMARKS						
Time	(ft) (ml/min) (C) (ms/cm) (ntu						y REIWARNS						
14:11						(ritu)	Static Level						
	12 17.39 5.5 12.7 0.335 6.12 8					8	Pump on; Clear						
	17.40 5.5 14.7 0.342 6.00 3						Clear						
14:20		5.5	14.6	0.339	6.04	2	Clear						
						6	Clear						
	17.71	- 0.0	11.0	0.000	0.07								
	24 17.41 5.5 14.6 0.338 6.07							•					
		*											
									-				
			*										
									,				
				ļ									
							Sampled @ 1444						
				<u> </u>	<u> </u>	<u> </u>							
 -	-		-										
Pump	l ype:	Grundfos	, sample	ed with tef	ion baile	ers							
Analytical Parameters: VOCs, SVOCs, TAL					. السحاد	ala.							
Analytic	cai Para	ameters:	vocs,	SVUUS, I	AL meta	มร							

WELL NO. MW- 16D

								AALL	L NO. M	
ME: I	CARAD	INC FO		PROJECT			PROJECT No. 95900-02		SHEET 1	OF 1
OCATION		LING FO	KIVI	SMS			DATE WELL STARTED	IDATE V	VELL COMPLI	
		ents Site.	Deer Pa	rk, NY #1-	52-026			2010		3/11/201
LIENT				,			NAME OF INSPECTOR			
lew Yo	rk State	Departme	ent of Env	/ironmental	Conserv	ation	Peter Lawler			
RILLING	COMPANY						SIGNATURE OF INSPECTOR PL			
NE WELL	. VOLUME :		39.27	gal.	WELL TD:	76.79'	PUN	IP INTAKE DEP	тн: 73	ft bgs
	Depth to	Purge	I	FIELD MEAS	SUREMEN	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS		
13:11	17.27						Static Level			
13:13	17.44	5	13.1	0.276	6.45	23	Pump on; Clear			
13:21	17.44	5	14.6	0.311	5.50	6	Clear			
13:29	17.44	5	14.4	0.310	5.53	2	Clear			
13:37	17.45	5	14.3	0.309	5.56	4	Clear			<u> </u>
			,							
					-					
						-				1
			<u> </u>		:			***		
								**		

								advalt W7		
							Sampled @ 135	0		
	. 1									
				ed with tef						•

				PROJECT			PROJECT No.		SHEET		SHEETS		
WELL	LL SAMPLING FORM SMS TION S Instruments Site, Deer Park, NY #1-52-026						95900-02		1	OF	1		
LOCATION	l - c.t	nto Cita	Door De	els BIXX 44	E2 026		DATE WELL STARTED 3/10/2010	DATE WEL	L COMPLE		/2010		
CLIENT	istrume	ents Site, I	peer Pa	IK, NY #1-	02-026		NAME OF INSPECTOR	l		3/ 10	12010		
New Yo	ork State	Departme	ent of Env	rironmenta!	Conserv	ation	Peter Lawler						
DRILLING	COMPANY	-					SIGNATURE OF INSPECTOR						
							PL						
ONE WELL	. VOLUME :	:	12.96		WELL TD:		PUMP INTA	KE DEPTH:	34	ft bgs	5		
	Depth to	Purge	F		SUREMEN								
Time	Water	Rate	Temp.	Conduct.	pН	Turbidity	REMARKS						
44.00		(ml/min)	(C)	(ms/cm)		(ntu)	Ctatia Laval						
		2.5	15.7	0.000	7.40	120	Static Level Pump on; Brown		2				
14:08						130 13	Clear						
	3 16.83 2.5 16.0 0.098 7.17		3	Clear									
14:23				3	Clear								
17.20				<u> </u>									
	08 16.83 2.5 15.7 0.099 7.48 13 16.83 2.5 16.0 0.098 7.23 18 16.83 2.5 16.0 0.098 7.17												
	to Water (ft) (ml/min) (C) (ms/cm) (C) (ms/cm) (C) (7.48 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (7.17) (1.88 (16.83) (2.5 (16.0) (0.098) (2.88 (16.83) (2.5 (16.0) (0.098) (2.88 (16.83) (2.5 (16.0) (0.098) (2.88 (16.83) (2.5 (16.0) (0.098) (2.88 (16.83) (2.5 (16.0) (0.098) (2.88 (16.83) (2												
	Water (ft) Rate (ml/min) Temp. (C) Conduct. (ms/cm) pH T 06 16.76												
							Sampled @ 1444		··				
							Campica & 1777						
i	<u> </u>	<u>'</u>		<u> </u>		L							
Pumn ⁻	Type:	Grundfoe	sample	ed with tef	lon baile	ers							
Pump Type: Grundfos, sampled with teflon bailers						· ·							
Analyti	cal Para	ameters:	VOCs.	SVOCs, T	AL meta	als	•						
,			,	•									

APPENDIX B

NYSDEC MONITORING WELL FIELD INSPECTION LOGS

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Grass lawn in front of SMS building; Missing lock

None

REMARKS:

Well cap is for a water meter; Measurements taken from north edge of riser

Paved, active driveway to SMS building rear; No restoration needed

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): none

REMARKS:

Measurements taken from North side of riser

	J	ĽΙ	4		
				_	

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	
MONITODI	ING WELL FIELD INSPECTION LOG	INSPECTOR: DATE/TIME:	
MONITOR	ING WELL FIELD INSPECTION LOG	WEll ID.:	3/9/10-1300 MW-3
WELL COORDIN PDOP Re			YES NO √
WELL I.D. VISIB	· ,		YES NO
	APPEARS ON PROTECTIVE CASING OR WELL:		Tang No.
			YES NO
TYPE OF PROTE PROTECTIVE CA	ADING (ppm) AND INSTRUMENT USED CTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) ASING MATERIAL TYPE: ECTIVE CASING INSIDE DIAMETER (Inches):		0.0 ppm flush Metal 6" YES NO
	NAL?		\frac{1}{\sqrt{1}}
MEASURE DEPT MEASURE WELL WELL CASING M PHYSICAL CON ATTACH ID MAI	L DIAMETER (Inches):		25.92 16.55 2 metal Good - 250'
power lines, proxii	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction of the permanent structures, etc.); ADD SKETCH OF LOCATION ON B	ACK, IF NECESSARY	Υ.
Narrow active driv	reway, near fence, overhead lines at entrance; No sketch, see attached photo	o log	
AND ASSESS TH	L SETTING (For example, located in a field, in a playground, on pavement HE TYPE OF RESTORATION REQUIRED. ravel/dirt present; No restoration needed	t, in a garden, etc.)	
IDENTIFY ANY I (e.g. Gas station, s Parked cars	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENtialt pile, etc.):	NT	
REMARKS:			
Measurements take	en from North side of riser		

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

At grade in partially paved parking lot, lots of dirt and gravel present; Well casing and bell have been dislodged,

will need to be reset; Missing lock

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT Parked vehicles

REMARKS:

Well casing is intact but removed from top of well; TD has not diviated from historical records; Sampled

at request of Paul (AECOM); Measurements taken from north edge of riser

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Granite slabs partially cover well pad; Overhead lines to remediation system; Overhead lines cross entrance to parking

lot; No sketch, see attached photo log

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

At grade in paved parking lot. Lot is used for Granite showroom, gravel present; No restoration required

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT
None

REMARKS:

Measurements taken from north edge of riser

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

Overhead lines run next to well for small remediation system; Overhead lines at entrance to driveway;

No Sketch made, see attached photo log

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)

AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Paved active driveway; Lots of loose gravels; No restoration required

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Parked trucks

REMARKS:

Measurements taken from north side of riser

AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Paved active driveway, has lots of loose gravels; No restoration required

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

Parked Cars

REMARKS:

Measurements taken from north edge of riser; Well is not shown on site map

SITE NAME: SMS Instruments, Deer Park, NY SITE ID.:	1-52-026
INSPECTOR:	
MONITORING WELL FIELD INSPECTION LOG DATE/TIME: 3/	/10/10-0819
WEII ID.:	MW-7
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X PDOP Reading from Trimble pathfinder: GPS Method (circle) Satelites: MYTM Y Satelites:	YES NO √
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	YES NO √
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES NO √. √.
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	0.0 ppm Grade Metal 6" YES NO
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	28.61 17.50 2 metal Good - 5'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. 20' away from fence, Narrow rows of Granite slabs, overhead lines nearby and at driveway entrance; No sketch, see attached photo log	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Paved active driveway entrance; Lots of gravel; parking on either side; Missing lock	

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT parked cars

REMARKS:

Measurements taken from north edge of riser; Well cap is labeled as water meter

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)

AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Paved parking lot; Missing lock and plug

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

Parked cars

REMARKS:

Measurements taken from north edge of riser

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

Overhead lines cross lot entrance; No sketch, see attached photo log

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)

AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Paved parking lot; Missing lock

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

Dumpsters

REMARKS:

Measurements taken from north edge of riser

MONITORING WELL INSPECTION LOG

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
	INSPECTOR:	PL
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	3/8/10-1457
	WEII ID.:	MW-11
		YES NO
WELL VISIBLE? (If not, provide directions below)		1
WELL COORDINATES? NYTM X NYTM Y		•
PDOP Reading from Trimble pathfinder: Satelites: Satelites:		
OF S Mediod (circle) Trinible And/Of Magenan		YES NO
WELL I.D. VISIBLE?	~,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
		YES NO
SURFACE SEAL PRESENT?		
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		
HEADSPACE READING (ppm) AND INSTRUMENT USED		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	***************************************	
PROTECTIVE CASING MATERIAL TYPE:		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT?		
LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?	.,	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		<u> </u>
WELL MEASURING POINT VISIBLE?	••••••	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet);		-
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	•••••	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction	ns, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAC	K, IF NECESSARY	Z.
New construction; Well location places it in newly landscaped area, no sign of well		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in	a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
Well no longer exists		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.):		
None		
LODY		
REMARKS:		A114.00

YES NO IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT None REMARKS: Measurements taken from north edge of riser; Well cap is labeled as water meter MONITORING WELL INSPECTION LOG

SITE ID.: 1-52-026
INSPECTOR: PL

MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	3/12/10-0905
	WEII ID.:	MW-13S
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X PDOP Reading from Trimble pathfinder: Satelites:		YES NO √
GPS Method (circle) Trimble And/Or Magellan WELL I.D. VISIBLE?		YES NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		1
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
SURFACE SEAL PRESENT?		YES NO √
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		√ √
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		0.0 ppm Grade Metal
LOCK PRESENT?		YES NO √
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?		1
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		46.07 17.37
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:		4 metal Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		50'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACI Under a large tree; No sketch, see attached photo log	•	7.
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in AND ASSESS THE TYPE OF RESTORATION REQUIRED. Grass lawn in front of business; surrounded by curb; Missing lock	a garden, etc.)	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT None		
REMARKS: Measurements taken from north edge of riser; Well cap labeled water meter		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
MONIMODING WHEEL BURE BURE BURE COLORS	INSPECTOR:	PL
MONITORING WELL FIELD INSPECTION LOG		3/11/10-1505
	WEII ID.:	MW-13D
		YES NO
WELL VISIBLE? (If not, provide directions below)		$\sqrt{}$
WELL COORDINATES? NYTM X NYTM Y		
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISIBLE?		TES NO
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		<u> </u>
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		Type I NO
SURFACE SEAL PRESENT?		YES NO
		$\sqrt{ \vec{y} }$
		0.0
HEADSPACE READING (ppm) AND INSTRUMENT USEDTYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	PPD	0.0 ppm Grade
PROTECTIVE CASING MATERIAL TYPE:	***************************************	Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		1110141
MEROCIES I ROTEO I VELO I SOLITO I RODE DI INIBIEM (MICHOS)		YES NO
LOCK PRESENT?		V
LOCK FUNCTIONAL?		V
DID YOU REPLACE THE LOCK?	************************	: 1
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		
WELL MEASURING POINT VISIBLE?	•••••	_ √
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		101.62
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		17.28
MEASURE WELL DIAMETER (Inches):		4
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:		metal Good
		- 0004
· · · · · · · · · · · · · · · · · · ·	***************************************	120'
		1
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAC		,
	K, IF NECESSAR	
Adjacent to active driveway; No sketch, see attached photo log		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in	a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	,,	
Grass lawn in front of business; No restoration required		
Grass fawir in Front of Business, 140 restoration required		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
None		4
None		
REMARKS:		
Meaasurements taken from north edge of risor		

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: PL

DATE/TIME: 3/12/10-0810

	WEII ID.:	MW-14
WELL VISIDLES (If not provide directions below)		YES NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM Y		V
PDOP Reading from Trimble pathfinder: Satelites:	<u> </u>	
GPS Method (circle) Trimble And/Or Magellan		
or a matter (order) Trimble Trianger Magazina		YES NO
WELL I.D. VISIBLE?		1
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		1
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PRESENT?		V V
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		
		<u> </u>
HEADSPACE READING (ppm) AND INSTRUMENT USED	PID	0.0 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	****************	Grade
PROTECTIVE CASING MATERIAL TYPE:		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		6"
LOCK BREGENTO		YES NO
LOCK PRESENT? LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?		1
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		
WELL MEASURING POINT VISIBLE?	***************************************	1 1
		10.51
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		48.74
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		<u>17.28</u> 4
MEASURE WELL DIAMETER (Inches):		Metal
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		15'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions,		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK,	IF NECESSARY.	
Overhead lines on street; tree branch over head; No sketch, see attached photo log		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a g	garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
Grass lawn in front of business; Missing lock		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
None		
LIVILY		
DEMARKS.		
REMARKS:		
Measurements taken from north edge of riser; Well cap is labeled water meter		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
	INSPECTOR:	PL
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	3/11/10-1013
	WEll ID.:	MW-15
		YES NO
WELL VISIBLE? (If not, provide directions below)		$\sqrt{}$
WELL COORDINATES? NYTM X NYTM Y		
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISIBLE?		1ES NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
· · ·		<u> </u>
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PRESENT?		1E3 NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		1 1
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		V
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 ppm
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		. Flush
PROTECTIVE CASING MATERIAL TYPE:		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		12"
		YES NO
LOCK PRESENT?		
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	***************************************	. 1
WELL MEASURING POINT VISIBLE?	***************************************	. 1
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		36.61
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		17.10
MEASURE WELL DIAMETER (Inches):		4
WELL CASING MATERIAL:		metal
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	***************************************	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		10'
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAC	· ·	Y.
Overhead lines block entrence to parking lot; Tree limbs over well; No sketch, see attached phot	o log	
DECOMPS WHY A COMMING OF		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in	n a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
Brush/weeds next to fenced in parking lot; Lock no longer attached to well plug		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
None		
REMARKS:		
Measurements taken from north edge of well riser		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.: _ INSPECTOR: _	1-52-026 PL
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	3/11/10-1255
	WEII ID.:	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	PID	YES NO YES NO √ √
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		17.15 4 PVC Good

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Dirt plot at rear of parking lot; No restoration required

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT None

REMARKS:

Measurements taken from north edge of riser

SITE NAME:	SMS Instruments, Deer Park, NY		**************************************	SITE ID.: _ INSPECTOR:	1-
MONITOR	ING WELL FIELD INSP	ECTION LOG		DATE/TIME:	3/10
				WEII ID.:	N
WELL VISIBLES	? (If not, provide directions below)				
WELL COORDI		NYT.	M Y	,,,	
	eading from Trimble pathfinder: hod (circle) Trimble And/Or	Magellan	Satelites:		
WELL I.D. VISIE	BLE? ON MATCH SITE MAP? (if not, sketc				
	APPEARS ON PROTECTIVE CASI				
SURFACE SEAL			•••••		•••
	COMPETENT? (If cracked, heaved ASING IN GOOD CONDITION? (If a	· -			
	EADING (ppm) AND INSTRUMENT ECTIVE CASING AND HEIGHT OF				
		STICKUP IN FEET (I			
	TECTIVE CASING INSIDE DIAMET				
LOCK PRESENT LOCK FUNCTIO					
	ENCE THAT THE WELL IS DOUBLING POINT VISIBLE?	E CASED? (If yes,des	cribe below)		
	L DEPTH FROM MEASURING POL	•	•••••		
	TH TO WATER FROM MEASURING L DIAMETER (Inches):		***************************************		
WELL CASING I	` ,				
	DITION OF VISIBLE WELL CASIN	G:			
	RKER (if well ID is confirmed) and II		ГҮРЕ	••••	
PROXIMITY TO	UNDERGROUND OR OVERHEAD	UTILITIES			
	ESS TO WELL: (Include accessibility				οv
	mity to permanent structures, etc.); Al entrance to parking lot; secuded corn				
	<u>.</u>				
	L SETTING (For example, located in		d, on pavement, i	n a garden, etc.)	
	HE TYPE OF RESTORATION REQUES TRANSPORTED THE TENDER TO TH				
IDENTIFY ANY	NEARBY POTENTIAL SOURCES (OF CONTAMINATIO	N, IF PRESENT		• • • • •

None

APPENDIX C

LABORATORY DATA SUMMARY PACKAGES (FORM 1s)

APPENDIX TABLE C1 SMS INSTRUMENTS SITE (#1-52-026) MARCH 2010 GROUNDWATER SAMPLING VOCs, SVOCs and TAL METALS

Sample Location	NVSDEC	M\Λ/_1	MW-2	MW-3	MW-4	MW-5
Sample ID	Class GA	SMS-MW-1	SMS-MW-2	SMS-MW-3	SMS-MW-4	SMS-MW-5
Laboratory ID	Ground	J0398-04A	J0398-05A	J0398-06A	J0398-14A	J0398-11A
Sample Date	Water	3/09/10	3/9/10	3/9/10	3/11/10	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
Office	Cilicila	conc Q	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds		00110 Q	00110 Q	00110 Q	COLIC Q	00110 Q
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloropropene	5	5 U	5 U	5 U	5 U	5 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NC	5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	5	5 U	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1,3-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
2,2-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	50	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U
Bromobenzene	5	5 U	5 U	5 U	5 U	5 U
Bromochloromethane	5	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U
Bromoform	50	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	60	5 U	5 U	5 U	5 U	5 U
Carbon tetrachloride	5	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U
Chloromethane	NC	3.3 J	5 U	4.2 J	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U

APPENDIX TABLE C1 SMS INSTRUMENTS SITE (#1-52-026) MARCH 2010 GROUNDWATER SAMPLING VOCs, SVOCs and TAL METALS

[-						
Sample Location		MW-1	MW-2	MW-3	MW-4	MW-5
Sample ID	Class GA	SMS-MW-1	SMS-MW-2	SMS-MW-3	SMS-MW-4	SMS-MW-5
Laboratory ID	Ground	J0398-04A	J0398-05A	J0398-06A	J0398-14A	J0398-11A
Sample Date		3/09/10	3/9/10	3/9/10	3/11/10	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q				
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	5 U
Iodomethane	NC	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U	5 U
Xylene (Total)	5	5 U	5 U	5 U	5 U	5 U
Semivolatile Organic Compound						
1,2,4-Trichlorobenzene	5	10 U				
1,2-Dichlorobenzene	3	10 U				
1,3-Dichlorobenzene	3	10 U				
1,4-Dichlorobenzene	3	10 U				
2,2´-oxybis(1-Chloropropane)	NC	10 U				
2,4,5-Trichlorophenol	NC	20 U				
2,4,6-Trichlorophenol	NC	10 U				
2,4-Dichlorophenol	1	10 U				
2,4-Dimethylphenol	50	10 U				
2,4-Dinitrophenol	10	20 U				
2,4-Dinitrotoluene	5	10 U				
2,6-Dinitrotoluene	5	10 U				
2-Chloronaphthalene	10	10 U				
2-Chlorophenol	NC	10 U				

APPENDIX TABLE C1 SMS INSTRUMENTS SITE (#1-52-026) MARCH 2010 GROUNDWATER SAMPLING VOCs, SVOCs and TAL METALS

Sample Location	NYSDEC	N/\\/_1	MW-2	MW-3	MW-4	MW-5
	Class GA					
Sample ID Laboratory ID	Ground		SMS-MW-2	SMS-MW-3	SMS-MW-4	SMS-MW-5
Sample Date	Water	J0398-04A 3/09/10	J0398-05A 3/9/10	J0398-06A 3/9/10	J0398-14A 3/11/10	J0398-11A 3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	µg/L
O Marila Landalla Landa	NO	conc Q	conc Q	conc Q	conc Q	conc Q
2-Methylnaphthalene	NC	10 U	10 U	10 U	10 U	10 U
2-Methylphenol	NC	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
2-Nitrophenol	NC	10 U	10 U	10 U	10 U	10 U
3,3'-Dichlorobenzidine	5	10 U	10 U	10 U	10 U	10 U
3-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
4,6-Dinitro-2-methylphenol	NC	20 U	20 U	20 U	20 U	20 U
4-Bromophenyl-phenylether	NC	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	NC	10 U	10 U	10 U	10 U	10 U
4-Chloroaniline	5	10 U	10 U	10 U	10 U	10 U
4-Chlorophenyl-phenylether	NC	10 U	10 U	10 U	10 U	10 U
4-Methylphenol	NC	10 U	10 U	10 U	10 U	10 U
4-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
4-Nitrophenol	NC	20 U	20 U	20 U	20 U	20 U
Acenaphthene	20	10 U	10 U	10 U	10 U	10 U
Acenaphthylene	NC	10 U	10 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002	10 U	10 U	10 U	10 U	10 U
Bis(2-chloroethoxy)methane	5	10 U	10 U	10 U	10 U	10 U
Bis(2-chloroethyl)ether	1	10 U	10 U	10 U	10 U	10 U
Bis(2-ethylhexyl)phthalate	5	10 U	10 U	10 U	10 U	10 U
Butylbenzylphthalate	50	10 U	10 U	10 U	10 U	10 U
Carbazole	NC	10 U	10 U	10 U	10 U	10 U
Chrysene	0.002	10 U	10 U	10 U	10 U	10 U
Di-n-butylphthalate	50 50	10 U	10 U	10 U	10 U	10 U
Di-n-octylphthalate	50	10 U	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene	NC	10 U	10 U	10 U	10 U	10 U
Dibenzofuran	NC 50	10 U	10 U	10 U	10 U	10 U
Diethylphthalate	50 50	10 U	10 U	10 U	10 U	10 U
Dimethylphthalate	50 50	10 U	10 U	10 U	10 U	10 U
Fluoranthene	50 50	10 U	10 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.5	10 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	5	10 U	10 U	10 U	10 U	10 U
Hexachloroethane	5	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002	10 U	10 U	10 U	10 U	10 U
Isophorone	50	10 U	10 U	10 U	10 U	10 U

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-4	MW-5
Sample ID	Class GA	SMS-MW-1	SMS-MW-2	SMS-MW-3	SMS-MW-4	SMS-MW-5
Laboratory ID	Ground	J0398-04A	J0398-05A	J0398-06A	J0398-14A	J0398-11A
Sample Date	Water	3/09/10	3/9/10	3/9/10	3/11/10	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q				
N-Nitroso-di-n-propylamine	NC	10 U				
N-Nitrosodiphenylamine	50	10 U				
Naphthalene	10	10 U				
Nitrobenzene	0.4	10 U				
Pentachlorophenol	1	20 U				
Phenanthrene	50	10 U				
Phenol	1	10 U				
Pyrene	50	10 U				
TAL Metals						
Aluminum	NC	604	2480	428	644	289
Antimony	3	4.2 U	9.4 B	4.5 B	6.4 B	4.2 U
Arsenic	25	7.5 B	5.9 B	6.1 B	7.8 B	12.7 B
Barium	1,000	85.9 B	75.2 B	39.6 B	47.6 B	95.4 B
Beryllium	3	0.17 B	0.34 B	0.16 B	0.14 B	0.14 B
Cadmium	5	0.5 U	29.1	0.5 U	0.5 U	3.4 B
Calcium	NC	33600	26200	29500	22500	20400
Chromium	50	10.5 B	6.8 B	6.8 B	7 B	10.3 B
Cobalt	NC	2.3 B	2.5 B	1.9 B	0.67 B	5.4 B
Copper	200	30.8	40.6	13.1 B	10.1 B	20.5 B
Iron	300	96300	166000	43100	52200	49300
Lead	25	31.2	347	4.9 B	5 B	5.5 B
Magnesium	35,000	5160	6960	4320	3210	1790
Manganese	300	310	422	566	216	760
Mercury	0.7	0.056 U				
Nickel	100	11.2 B	10.3 B	7.4 B	1.8 B	7.9 B
Potassium	NC	16700	5440	7750	2880	2290
Selenium	10	17 B	23.4 B	11.9 B	10 U	11.9 B
Silver	50	2.4 U				
Sodium	20,000	35100	28700	16700	13100	7350
Thallium	0.5	5.7 U				
Vanadium	NC	0.94 B	8.8 B	1 B	3.4 B	5.1 B
Zinc	2,000	142	11800	62.2	31.4 B	25.6 B

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9	
Sample Location		SMS-MW-6D	SMS-MW-6S	SMS-MW-7	SMS-MW-8	SMS-MW-9	
Laboratory ID	Ground	J0398-10A	J0398-9A	J0398-08A	J0398-03A	J0398-01A	
Sample Date	Water	3/10/10	3/10/10	3/10/10	3/9/10	3/9/10	
Units	Criteria						
Office	Cillella	μg/L conc Q	μg/L conc Q	μg/L conc Q	μg/L conc Q	μg/L conc Q	
Volatile Organic Compounds		oone Q	00110 Q	00110 Q	00110 &	CONC Q	
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U	
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U	
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	
1,1-Dichloropropene	5	5 U	5 U	5 U	5 U	5 U	
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U	5 U	
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U	
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	5 U	5 U	
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U	5 U	
1,2-Dibromoethane	NC	5 U	5 U	5 U	5 U	5 U	
1,2-Distribution 1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U	
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U	
1,3,5-Trimethylbenzene	5	5 U	1.7 J	5 U	5 U	5 U	
1,3-Dichlorobenzene	3	5 U	1.7 J 5 U	5 U	5 U	5 U	
1,3-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U	
·	3	5 U	5 U	5 U	5 U	1.3 J	
1,4-Dichlorobenzene	5 5	5 U	5 U	5 U	5 U	1.5 J 5 U	
2,2-Dichloropropane	5 50		5 U	5 U	5 U		
2-Butanone	50	5 U 5 U	5 U	5 U	5 U	5 U 5 U	
2-Chlorotoluene 2-Hexanone	5 50	5 U	5 U	5 U	5 U	5 U	
4-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U	
	5 5	5 U	5 U	5 U	5 U	5 U	
4-Isopropyltoluene	5 50	5 U	5 U	5 U	5 U	5 U	
4-Methyl-2-pentanone Acetone	50 50	5 U		5 U	5 U		
_		5 U	5 U 5 U	5 U	5 U	5 U	
Benzene	1 5			5 U	5 U	5 U 5 U	
Bromobenzene Bromochloromethane	5	5 U	5 U				
	5 50	5 U	5 U	5 U	5 U	5 U	
Bromodichloromethane	50 50	5 U	5 U	5 U	5 U	5 U	
Bromoform	50 -	5 U	5 U	5 U	5 U	5 U	
Bromomethane	5	5 U	5 U	5 U	5 U	5 U	
Carbon disulfide	60	5 U	5 U	5 U	5 U	5 U	
Carbon tetrachloride	5	5 U	5 U	5 U	5 U	5 U	
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U	
Chloroethane	5	5 U	5 U	5 U	5 U	5 U	
Chloroform	7	5 U	5 U	5 U	5 U	5 U	
Chloromethane	NC	5.9	5.1	5 U	5 U	4.6 J	
cis-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9
Sample ID			SMS-MW-6S		SMS-MW-8	SMS-MW-9
Laboratory ID	Ground	J0398-10A	J0398-9A	J0398-08A	J0398-03A	J0398-01A
Sample Date	Water	3/10/10	3/10/10	3/10/10	3/9/10	3/9/10
Sample Date Units	Criteria					
Offics	Cillella	μg/L conc Q	μg/L conc Q	μg/L conc Q	μg/L conc Q	μg/L conc Q
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50 50	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
	5	5 U	5 U	5 U	5 U	5 U
Ethylbenzene Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U 5 U	5 U	5 U	5 U	5 U
m,p-Xylene	5		5 U	5 U	5 U	5 U
Methylene ehleride	10	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5 5	5 U 5 U				
n-Butylbenzene	5 5					
n-Propylbenzene		5 U	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	1.6 J	5 U	5 U
Toluene	5	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U	5 U
Xylene (Total)	5	5 U	5 U	5 U	5 U	5 U
Semivolatile Organic Compound		40.11				40.11
1,2,4-Trichlorobenzene	5	10 U				
1,2-Dichlorobenzene	3	10 U				
1,3-Dichlorobenzene	3	10 U				
1,4-Dichlorobenzene	3	10 U				
2,2'-oxybis(1-Chloropropane)	NC	10 U				
2,4,5-Trichlorophenol	NC	20 U				
2,4,6-Trichlorophenol	NC	10 U				
2,4-Dichlorophenol	1	10 U				
2,4-Dimethylphenol	50	10 U				
2,4-Dinitrophenol	10	20 U				
2,4-Dinitrotoluene	5	10 U				
2,6-Dinitrotoluene	5	10 U				
2-Chloronaphthalene	10	10 U				
2-Chlorophenol	NC	10 U				

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6S	SMS-MW-7	SMS-MW-8	SMS-MW-9
Laboratory ID	Ground	J0398-10A	J0398-9A	J0398-08A	J0398-03A	J0398-01A
Sample Date	Water	3/10/10	3/10/10 3/10/10		3/9/10	3/9/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
2-Methylnaphthalene	NC	10 U	10 U	10 U	10 U	10 U
2-Methylphenol	NC	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
2-Nitrophenol	NC	10 U	10 U	10 U	10 U	10 U
3,3´-Dichlorobenzidine	5	10 U	10 U	10 U	10 U	10 U
3-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
4,6-Dinitro-2-methylphenol	NC	20 U	20 U	20 U	20 U	20 U
4-Bromophenyl-phenylether	NC	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	NC	10 U	10 U	10 U	10 U	10 U
4-Chloroaniline	5	10 U	10 U	10 U	10 U	10 U
4-Chlorophenyl-phenylether	NC	10 U	10 U	10 U	10 U	10 U
4-Methylphenol	NC	10 U	1.3 J	10 U	10 U	10 U
4-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
4-Nitrophenol	NC	20 U	20 U	20 U	20 U	20 U
Acenaphthene	20	10 U	10 U	10 U	10 U	10 U
Acenaphthylene	NC	10 U	10 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002	10 U	10 U	10 U	10 U	10 U
Bis(2-chloroethoxy)methane	5	10 U	10 U	10 U	10 U	10 U
Bis(2-chloroethyl)ether	1	10 U	10 U	10 U	10 U	10 U
Bis(2-ethylhexyl)phthalate	5	10 U	2.6 J	10 U	10 U	10 U
Butylbenzylphthalate	50	10 U	10 U	10 U	10 U	10 U
Carbazole	NC	10 U	10 U	10 U	10 U	10 U
Chrysene	0.002	10 U	10 U	10 U	10 U	10 U
Di-n-butylphthalate	50	10 U	10 U	10 U	10 U	10 U
Di-n-octylphthalate	50	10 U	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene	NC	10 U	10 U	10 U	10 U	10 U
Dibenzofuran	NC	10 U	10 U	10 U	10 U	10 U
Diethylphthalate	50	10 U	10 U	10 U	10 U	10 U
Dimethylphthalate	50	10 U	10 U	10 U	10 U	10 U
Fluoranthene	50	10 U	10 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.5	10 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	5	10 U	10 U	10 U	10 U	10 U
Hexachloroethane	5	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002	10 U	10 U	10 U	10 U	10 U
Isophorone	50	10 U	10 U	10 U	10 U	10 U

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6S	SMS-MW-7	SMS-MW-8	SMS-MW-9
Laboratory ID	Ground	J0398-10A	J0398-9A	J0398-08A	J0398-03A	J0398-01A
Sample Date	Water	3/10/10	3/10/10	3/10/10	3/9/10	3/9/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q				
N-Nitroso-di-n-propylamine	NC	10 U				
N-Nitrosodiphenylamine	50	10 U				
Naphthalene	10	10 U				
Nitrobenzene	0.4	10 U				
Pentachlorophenol	1	20 U				
Phenanthrene	50	10 U				
Phenol	1	10 U				
Pyrene	50	10 U				
TAL Metals						
Aluminum	NC	931	8700	207	384	92.1 B
Antimony	3	4.2 U	4.2 U	4.2 U	4.2 U	8.2 B
Arsenic	25	3.3 B	17.5 B	5 B	3.1 U	4.3 B
Barium	1,000	25 B	87 B	59.6 B	103 B	45.1 B
Beryllium	3	0.1 B	3.7 B	0.22 B	0.27 B	0.3 B
Cadmium	5	0.86 B	3.7 B	1.2 B	0.54 B	0.5 U
Calcium	NC	16700	47200	30100	30300	23700
Chromium	50	5.6 B	66.5	6.4 B	15.5 B	12.6 B
Cobalt	NC	7.2 B	20.6 B	4.4 B	9 B	5.5 B
Copper	200	17.6 B	84.9	27 B	67.2	37.2
Iron	300	26000	46700	99500	236000	115000
Lead	25	10	37	3.8 B	6.3 B	15.5
Magnesium	35,000	2200	8100	5910	3610	3620
Manganese	300	294	308	890	1020	954
Mercury	0.7	0.11 B	0.2	0.056 U	0.056 U	0.056 U
Nickel	100	6.9 B	23.2 B	10.2 B	24.8 B	14.5 B
Potassium	NC	6930	2910	7900	16200	2800
Selenium	10	11.9 B	10 U	10 U	22.9 B	23.5 B
Silver	50	2.4 U	3.5 B	2.4 U	2.4 U	2.4 U
Sodium	20,000	16600	9140	16400	25200	17700
Thallium	0.5	5.7 U				
Vanadium	NC	2.7 B	53.3	1.1 B	0.69 B	2.5 B
Zinc	2,000	63.9	487	51.7	123	28.4 B

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

Commission of the continue	NVCDEC	NA) A / A O	INAVA 4.0	M/M/ 42D	INANA/ 4 4	NA) A F
Sample Location			MW-13		MW-14	MW-15
Sample ID				SMS-MW-13D		SMS-MW-15
Laboratory ID		J0445-03A	J0445-02A	J0398-19A	J0445-01A	J0398-15A
Sample Date	Water	3/12/10	3/12/10	3/11/10	3/12/10	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
Volatile Organic Compounds		conc Q	conc Q	conc Q	conc Q	conc Q
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U
	5		5 U	5 U	5 U	5 U
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5 5	5 U 5 U	5 U	5 U	5 U	5 U
	0.04	5 U	5 U	5 U	5 U	5 U
1,2,3-Trichloropropane		5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5 5	5 U	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene		5 U		5 U	5 U	
1,2-Dibromo-3-chloropropane	0.04 NC		5 U			5 U
1,2-Dibromoethane		5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	5	5 U	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1,3-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
2,2-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	50	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U
Bromobenzene	5	5 U	5 U	5 U	5 U	5 U
Bromochloromethane	5	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U
Bromoform	50	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	60	5 U	5 U	5 U	5 U	5 U
Carbon tetrachloride	5	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U
Chloromethane	NC	5 U	5 U	2.9 J	5 U	4.1 J
cis-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U

Sample Location	NYSDEC	M\/\-12	MW-13	MW-13D	MW-14	MW-15
Sample ID		SMS-MW-12		SMS-MW-13D		SMS-MW-15
Laboratory ID		J0445-03A	J0445-02A	J0398-19A	J0445-01A	J0398-15A
Sample Date		3/12/10	3/12/10	3/11/10	3/12/10	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
	Ontona	conc Q	conc Q	conc Q	conc Q	conc Q
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U	5 U
Xylene (Total)	5	5 U	5 U	5 U	5 U	5 U
Semivolatile Organic Compound						
1,2,4-Trichlorobenzene	5	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	3	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	3	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	3	10 U	10 U	10 U	10 U	10 U
2,2'-oxybis(1-Chloropropane)	NC	10 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	NC	20 U	20 U	20 U	20 U	20 U
2,4,6-Trichlorophenol	NC	10 U	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	1	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	50	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	10	20 U	20 U	20 U	20 U	20 U
2,4-Dinitrotoluene	5	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	5	10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10 NO	10 U	10 U	10 U	10 U	10 U
2-Chlorophenol	NC	10 U	10 U	10 U	10 U	10 U

Sample Location	NYSDEC	MW-12	MW-13	MW-13D	MW-14	MW-15
Sample ID		SMS-MW-12				SMS-MW-15
Laboratory ID	Ground	J0445-03A	J0445-02A	J0398-19A	J0445-01A	J0398-15A
Sample Date	Water	3/12/10	3/12/10	3/11/10	3/12/10	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
Office	Ontona	conc Q				
2-Methylnaphthalene	NC	10 U				
2-Methylphenol	NC	10 U				
2-Nitroaniline	5	20 U				
2-Nitrophenol	NC	10 U				
3,3'-Dichlorobenzidine	5	10 U				
3-Nitroaniline	5	20 U				
4,6-Dinitro-2-methylphenol	NC	20 U				
4-Bromophenyl-phenylether	NC	10 U				
4-Chloro-3-methylphenol	NC	10 U				
4-Chloroaniline	5	10 U				
4-Chlorophenyl-phenylether	NC	10 U				
4-Methylphenol	NC	10 U				
4-Nitroaniline	5	20 U				
4-Nitrophenol	NC	20 U				
Acenaphthene	20	10 U				
Acenaphthylene	NC	10 U				
Anthracene	50	10 U				
Benzo(a)anthracene	0.002	10 U				
Benzo(a)pyrene	ND	10 U				
Benzo(b)fluoranthene	0.002	10 U				
Benzo(g,h,i)perylene	NC	10 U				
Benzo(k)fluoranthene	0.002	10 U				
Bis(2-chloroethoxy)methane	5	10 U				
Bis(2-chloroethyl)ether	1	10 U				
Bis(2-ethylhexyl)phthalate	5	10 U				
Butylbenzylphthalate	50	10 U				
Carbazole	NC	10 U				
Chrysene	0.002	10 U				
Di-n-butylphthalate	50	10 U				
Di-n-octylphthalate	50	10 U				
Dibenzo(a,h)anthracene	NC	10 U				
Dibenzofuran	NC	10 U				
Diethylphthalate	50	10 U				
Dimethylphthalate	50	10 U				
Fluoranthene	50	10 U				
Fluorene	50	10 U				
Hexachlorobenzene	0.04	10 U				
Hexachlorobutadiene	0.5	10 U				
Hexachlorocyclopentadiene	5	10 U				
Hexachloroethane	5	10 U				
Indeno(1,2,3-cd)pyrene	0.002	10 U				
Isophorone	50	10 U				

Sample Location	NYSDEC	MW-12	MW-13	MW-13D	MW-14	MW-15
Sample ID	Class GA	SMS-MW-12	SMS-MW-13S	SMS-MW-13D	SMS-MW-14	SMS-MW-15
Laboratory ID	Ground	J0445-03A	J0445-02A	J0398-19A	J0445-01A	J0398-15A
Sample Date	Water	3/12/10	3/12/10	3/11/10	3/12/10	3/11/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q
N-Nitroso-di-n-propylamine	NC	10 U	10 U	10 U	10 U	10 U
N-Nitrosodiphenylamine	50	10 U	10 U	10 U	10 U	10 U
Naphthalene	10	10 U	10 U	10 U	10 U	10 U
Nitrobenzene	0.4	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	1	20 U	20 U	20 U	20 U	20 U
Phenanthrene	50	10 U	10 U	10 U	10 U	10 U
Phenol	1	10 U	10 U	10 U	10 U	10 U
Pyrene	50	10 U	10 U	10 U	10 U	10 U
TAL Metals						
Aluminum	NC	211	145 B	86 B	229	132 B
Antimony	3	4.2 U	4.2 U	8 B	8.5 B	5 B
Arsenic	25	3.3 B	7.6 B	3.1 U	5.3 B	3.3 B
Barium	1,000	29.2 B	16.3 B	75.4 B	31 B	42.4 B
Beryllium	3	0.037 U	0.037 U	0.064 B	0.037 U	0.097 B
Cadmium	5	0.63 B	1.1 B	57.6	0.5 U	1.4 B
Calcium	NC	12500	5260	13100	16100	17600
Chromium	50	1.2 B	3.3 B	20 B	1.2 B	125
Cobalt	NC	1.4 B	3.8 B	0.67 U	0.72 B	7.5 B
Copper	200	10.9 B	11 B	19.5 B	9.1 B	4.7 U
Iron	300	35100	28600	515	63000	2150
Lead	25	2.1 U	2.1 U	4.2 B	2.1 U	6.9 B
Magnesium	35,000	848	677	7390	1810	4030
Manganese	300	468	434	18.5 B	350	457
Mercury	0.7	0.056 U	0.056 U	0.056 U	0.056 U	0.056 U
Nickel	100	3.4 B	5.5 B	139	2.7 B	59
Potassium	NC	4760	18300	3470	9900	12300
Selenium	10	12 B	10 U	15.6 B	13 B	10 U
Silver	50	2.4 U	2.4 U	2.4 U	2.4 U	2.4 U
Sodium	20,000	5970	12400	26100	9680	20600
Thallium	0.5	5.7 U	9.7 B	5.7 U	5.7 U	5.7 U
Vanadium	NC	0.76 B	1.1 B	0.44 B	0.38 B	1.5 B
Zinc	2,000	26.8 B	68	60.4	17.7 B	23.2 B

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

Sample Location	NYSDEC	MW-16D	MW-16M	MW-16S	MW-17
Sample ID		SMS-MW-16D	SMS-MW-16M	SMS-MW-16S	SMS-MW-17
Laboratory ID	Ground	J0398-17A	J0398-18A	J0398-16A	J0398-12A
Sample Date		3/11/10	3/11/10	3/11/10	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L
O'III.O	Ontona	conc Q	conc Q	conc Q	conc Q
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U
1,1-Dichloropropene	5	5 U	5 U	5 U	5 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NC	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	5	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U
1,3-Dichloropropane	5	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U
2,2-Dichloropropane	5	5 U	5 U	5 U	5 U
2-Butanone	50	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	50	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U
Bromobenzene	5	5 U	5 U	5 U	5 U
Bromochloromethane	5	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U
Bromoform	50	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U
Carbon disulfide	60	5 U	5 U	5 U	5 U
Carbon tetrachloride	5	5 U	5 U	5 U	5 U
Chlorobenzene	5	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U
Chloromethane	, NC	5.3	5 U	5 U	3.2 J
cis-1,2-Dichloroethene	5	5.5 5 U	5 U	5 U	5 U

Sample Location	NYSDEC	MW-16D	MW-16M	MW-16S	MW-17
Sample ID			SMS-MW-16M		
Laboratory ID		J0398-17A	J0398-18A	J0398-16A	J0398-12A
Sample Date		3/11/10	3/11/10	3/11/10	3/10/10
·	Criteria				
Units	Cillena	μg/L	μg/L conc Q	μg/L	μg/L
oio 4.2 Diobloropropos	0.4	conc Q 5 U	conc Q 5 U	conc Q 5 U	conc Q 5 U
cis-1,3-Dichloropropene Dibromochloromethane	0.4 50	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U
	5 5				
Ethylbenzene		5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U	1.2 J
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U
Xylene (Total)	5	5 U	5 U	5 U	5 U
Semivolatile Organic Compound					
1,2,4-Trichlorobenzene	5	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	3	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	3	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	3	10 U	10 U	10 U	10 U
2,2´-oxybis(1-Chloropropane)	NC	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	NC	20 U	20 U	20 U	20 U
2,4,6-Trichlorophenol	NC	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	1	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	50	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	10	20 U	20 U	20 U	20 U
2,4-Dinitrotoluene	5	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	5	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10	10 U	10 U	10 U	10 U
2-Chlorophenol	NC	10 U	10 U	10 U	10 U

Sample Location	NYSDEC	MW-16D	MW-16M	MW-16S	MW-17
Sample ID			SMS-MW-16M		SMS-MW-17
Laboratory ID	Ground	J0398-17A	J0398-18A	J0398-16A	J0398-12A
Sample Date	Water	3/11/10	3/11/10	3/11/10	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q
2-Methylnaphthalene	NC	10 U	10 U	10 U	10 U
2-Methylphenol	NC	10 U	10 U	10 U	10 U
2-Nitroaniline	5	20 U	20 U	20 U	20 U
2-Nitrophenol	NC	10 U	10 U	10 U	10 U
3,3´-Dichlorobenzidine	5	10 U	10 U	10 U	10 U
3-Nitroaniline	5	20 U	20 U	20 U	20 U
4,6-Dinitro-2-methylphenol	NC	20 U	20 U	20 U	20 U
4-Bromophenyl-phenylether	NC	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	NC	10 U	10 U	10 U	10 U
4-Chloroaniline	5	10 U	10 U	10 U	10 U
4-Chlorophenyl-phenylether	NC	10 U	10 U	10 U	10 U
4-Methylphenol	NC	10 U	10 U	10 U	10 U
4-Nitroaniline	5	20 U	20 U	20 U	20 U
4-Nitrophenol	NC	20 U	20 U	20 U	20 U
Acenaphthene	20	10 U	10 U	10 U	10 U
Acenaphthylene	NC	10 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	10 U	10 U
Benzo(a)anthracene	0.002	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002	10 U	10 U	10 U	10 U
Bis(2-chloroethoxy)methane	5	10 U	10 U	10 U	10 U
Bis(2-chloroethyl)ether	1	10 U	10 U	10 U	10 U
Bis(2-ethylhexyl)phthalate	5	10 U	10 U	10 U	10 U
Butylbenzylphthalate	50	10 U	10 U	10 U	10 U
Carbazole	NC	10 U	10 U	10 U	10 U
Chrysene	0.002	10 U	10 U	10 U	10 U
Di-n-butylphthalate	50	10 U	10 U	10 U	10 U
Di-n-octylphthalate	50	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene	NC	10 U	10 U	10 U	10 U
Dibenzofuran	NC	10 U	10 U	10 U	10 U
Diethylphthalate	50	10 U	10 U	10 U	10 U
Dimethylphthalate	50	10 U	10 U	10 U	10 U
Fluoranthene	50	10 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.5	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	5	10 U	10 U	10 U	10 U
Hexachloroethane	5	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002	10 U	10 U	10 U	10 U
Isophorone	50	10 U	10 U	10 U	10 U

Sample Location	NYSDEC	MW-16D	MW-16M	MW-16S	MW-17
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16M	SMS-MW-16S	SMS-MW-17
Laboratory ID	Ground	J0398-17A	J0398-18A	J0398-16A	J0398-12A
Sample Date	Water	3/11/10	3/11/10	3/11/10	3/10/10
Units	Criteria	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q
N-Nitroso-di-n-propylamine	NC	10 U	10 U	10 U	10 U
N-Nitrosodiphenylamine	50	10 U	10 U	10 U	10 U
Naphthalene	10	10 U	10 U	10 U	10 U
Nitrobenzene	0.4	10 U	10 U	10 U	10 U
Pentachlorophenol	1	20 U	20 U	20 U	20 U
Phenanthrene	50	10 U	10 U	10 U	10 U
Phenol	1	10 U	10 U	10 U	10 U
Pyrene	50	10 U	10 U	10 U	10 U
TAL Metals					
Aluminum	NC	200	176 B	114 B	530
Antimony	3	4.2 U	4.2 U	4.5 B	11.1 B
Arsenic	25	3.1 U	5.6 B	3.4 B	3.1 U
Barium	1,000	44.6 B	83.6 B	36.7 B	69.9 B
Beryllium	3	0.05 B	0.078 B	0.051 B	0.093 B
Cadmium	5	24.9	0.84 B	5.1	3.1 B
Calcium	NC	19000	23600	29200	14100
Chromium	50	39.7	8.7 B	59.8	161
Cobalt	NC	0.67 U	2.6 B	4.1 B	8.5 B
Copper	200	6.2 B	5.3 B	11.6 B	11.2 B
Iron	300	516	571	1200	3940
Lead	25	4.2 B	6 B	2.1 U	9.5 B
Magnesium	35,000	3610	3200	4970	985
Manganese	300	36.5 B	107	443	2640
Mercury	0.7	0.056 U	0.057 B	0.067 B	0.056 U
Nickel	100	8 B	5.3 B	20.2 B	14.8 B
Potassium	NC	5720	8360	4930	2410
Selenium	10	14.7 B	10 U	10 U	10 U
Silver	50	2.4 U	2.4 U	2.4 U	2.4 U
Sodium	20,000	14700	31600	19500	3560
Thallium	0.5	5.7 U	5.7 U	5.7 U	5.7 U
Vanadium	NC	0.66 B	0.76 B	1.2 B	4.9 B
Zinc	2,000	30.5 B	24.3 B	28.3 B	30.2 B

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

Report Date: 13-Apr-10 16:09

Final Report	
☐ Re-Issued Re	port
Revised Repor	rt

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECOM Technical Services, Inc.

300 Broadacres Drive Bloomfield, NJ 07003 Work Order: J0398

Project: SMS Instruments, 152026

Project #:

Attn: Paul Kareth

Laboratory ID	Client Sample ID		<u>Matrix</u>	Date Sampled	Date Received
J0398-01	SMS-MW-9	•	Aqueous	09-Mar-10 09:45	10-Mar-10 08:55
J0398-02	SMS-MW-59		Aqueous	09-Mar-10 09:50	10-Mar-10 08:55
J0398-03	SMS-MW-8		Aqueous	09-Mar-10 10:45	10-Mar-10 08:55
J0398-04	SMS-MW-1		Aqueous	09-Mar-10 11:35	10-Mar-10 08:55
J0398-05	SMS-MW-2		Aqueous	09-Mar-10 12:12	10-Mar-10 08:55
J0398-06	SMS-MW-3		Aqueous	09-Mar-10 13:13	10-Mar-10 08:55
J0398-07	TB-1		Aqueous	09-Mar-10 00:00	10-Mar-10 08:55
J0398-08	SMS-MW-7		Aqueous	10-Mar-10 08:50	10-Mar-10 08:55
J0398-09	SMS-MW-6		Aqueous	10-Mar-10 10:10	10-Mar-10 08:55
J0398-10	SMS-MW-6D		Aqueous	10-Mar-10 11:25	10-Mar-10 08:55
J0398-11	SMS-MW-5		Aqueous	10-Mar-10 13:13	10-Mar-10 08:55
J0398-12	SMS-MW-17		Aqueous	10-Mar-10 14:44	10-Mar-10 08:55
J0398-13	TB-02		Aqueous	10-Mar-10 00:00	10-Mar-10 08:55
J0398-14	SMS-MW-4		Aqueous	11-Mar-10 09:40	12-Mar-10 08:29
J0398-15	SMS-MW-15		Aqueous	11-Mar-10 11:00	12-Mar-10 08:29
J0398-16	SMS-MW-16S		Aqueous	11-Mar-10 11:50	12-Mar-10 08:29
J0398-17	SMS-MW-16D		Aqueous	11-Mar-10 13:50	12-Mar-10 08:29
J0398-18	SMS-MW-16M		Aqueous	11-Mar-10 14:44	12-Mar-10 08:29
J0398-19	SMS-MW-13D		Aqueous	11-Mar-10 16:10	12-Mar-10 08:29
J0398-20	TB-3		Aqueous	11-Mar-10 00:00	12-Mar-10 08:29

I attest that the information contained within the report has been reviewed for accuracy and checked against the quaility control requirements for each method. The results relate only to the samples(s) as recevied.

All applicable NELAC or USEPA CLP requirments have been meet.

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

	• • • • • • • • • • • • • • • • • • • •
Department of Defense	N/A
Connecticut	PH-0153
Delaware	N/A
Maine	2007037
Massachusetts	M-RI907
New Hampshire	2631
New Jersey	` RI001
New York	11522
North Carolina	581
Pennsylyania	68-00520
Rhode Island	LAI00301
Texas	T104704422-08-TX
USDA	P330-08-00023
USEPA - ISM	EP-W-09-039
USEPA - SOM	EP-W-05-030

Authorized by:

MANS

Yihai Ding Laboratory Director

Technical Reviewer's Initials:

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: SMS Instruments, 152026

			Anal	ytical Requirements		
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other
SMS-MW-9	J0398-01	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-9	J0398-01	A CALADAR PAPER OF THE STREET			SW7470	
SMS-MW-59	J0398-02	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-59	J0398-02				SW7470	
SMS-MW-8	J0398-03	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-8	J0398-03			-	SW7470	
SMS-MW-1	J0398-04	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-1	J0398-04				SW7470	
SMS-MW-2	J0398-05	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-2	J0398-05				SW7470	
SMS-MW-3	J0398-06	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-3	J0398-06				SW7470	
ГВ-1	J0398-07	SW8260_W				
SMS-MW-7	J0398-08	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-7	J0398-08			2.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	SW7470	
SMS-MW-6	J0398-09	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-6	J0398-09				SW7470	
SMS-MW-6D	J0398-10	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-6D	J0398-10				SW7470	
SMS-MW-5	J0398-11	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-5	J0398-11				SW7470	
SMS-MW-17	J0398-12	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-17	J0398-12				SW7470	
TB-02	J0398-13	SW8260_W				
SMS-MW-4	J0398-14	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-4	J0398-14				SW7470	
SMS-MW-15	J0398-15	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-15	J0398-15				SW7470	
SMS-MW-16S	J0398-16	SW8260_W	SW8270_W	· · · · · · · · · · · · · · · · · · ·	SW6010_W	
SMS-MW-16S	J0398-16				SW7470	
SMS-MW-16D	J0398-17	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-16D	J0398-17				SW7470	
SMS-MW-16M	J0398-18	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-16M	J0398-18				SW7470	
SMS-MW-13D	J0398-19	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-13D	J0398-19				SW7470	
TB-3	J0398-20	SW8260_W				

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

J0398-19AMS

J0398-20A

J0398-19AMSD

AQ

AQ

AQ

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260_W					
J0398-01A	AQ	3/9/2010	3/10/2010	NA	3/19/2010
J0398-02A	AQ	3/9/2010	3/10/2010	NA	3/19/2010
J0398-03A	AQ	3/9/2010	3/10/2010	NA	3/19/2010
J0398-04A	AQ	3/9/2010	3/10/2010	NA	3/19/2010
J0398-05A	AQ	3/9/2010	3/10/2010	NA	3/19/2010
J0398-06A	AQ	3/9/2010	3/10/2010	NA	3/19/2010
J0398-07A	AQ	3/9/2010	3/10/2010	NA	3/19/2010
J0398-08A	AQ	3/10/2010	3/10/2010	NA	3/23/2010
J0398-09A	AQ	3/10/2010	3/10/2010	NA	3/23/2010
J0398-10A	AQ	3/10/2010	3/10/2010	NA	3/23/2010
J0398-11A	AQ	3/10/2010	3/10/2010	NA	3/24/2010
J0398-12A	AQ	3/10/2010	3/10/2010	NA	3/24/2010
J0398-13A	AQ	3/10/2010	3/10/2010	NA	3/23/2010
J0398-14A	AQ	3/11/2010	3/12/2010	NA	3/19/2010
J0398-15A	AQ	3/11/2010	3/12/2010	NA	3/19/2010
J0398-16A	AQ	3/11/2010	3/12/2010	NA	3/19/2010
J0398-17A	AQ	3/11/2010	3/12/2010	NA	3/19/2010
J0398-18A	AQ	3/11/2010	3/12/2010	NA	3/19/2010
J0398-19A	AQ	3/11/2010	3/12/2010	NA	3/25/2010
					

3/11/2010

3/11/2010

3/11/2010

3/12/2010

3/12/2010

3/12/2010

NA

NA

NA

3/24/2010

3/24/2010 3/19/2010

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8270_W					
J0398-01C	AQ	3/9/2010	3/10/2010	3/16/2010	3/18/2010
J0398-02C	AQ	3/9/2010	3/10/2010	3/16/2010	3/18/2010
J0398-03C	AQ	3/9/2010	3/10/2010	3/16/2010	3/18/2010
J0398-04C	AQ	3/9/2010	3/10/2010	3/16/2010	3/18/2010
J0398-05C	AQ	3/9/2010	3/10/2010	3/16/2010	3/18/2010
J0398-06C	AQ	3/9/2010	3/10/2010	3/16/2010	3/18/2010
J0398-08C	AQ	3/10/2010	3/10/2010	3/16/2010	3/18/2010
J0398-09C	AQ	3/10/2010	3/10/2010	3/16/2010	3/18/2010
J0398-10C	AQ	3/10/2010	3/10/2010	3/16/2010	3/18/2010
J0398-11C	AQ	3/10/2010	3/10/2010	3/16/2010	3/18/2010
J0398-12C	AQ	3/10/2010	3/10/2010	3/16/2010	3/18/2010
J0398-14C	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010
J0398-15C	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010
J0398-16C	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010
J0398-17C	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010
J0398-18C	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010
J0398-19C	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010
J0398-19CMS	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010
J0398-19CMSD	AQ	3/11/2010	3/12/2010	3/18/2010	3/19/2010

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

SMS Instruments,	<u>152026</u>				SDG:	<u> 10398</u>
Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc]
Sample ID	Matrix	Protocol	Method	Level	Factor	
SW8260_W						
J0398-01A	AQ	SW8260_W	NA	LOW	1	1
J0398-02A	AQ	SW8260_W	NA	LOW	1]
J0398-03A	AQ	SW8260_W	NA	LOW	1]
J0398-04A	AQ	SW8260_W	NA	LOW	1]
J0398-05A	AQ	SW8260_W	NA	LOW	1]
J0398-06A	AQ	SW8260_W	NA	LOW	1	}
J0398-07A	AQ	SW8260_W	NA	LOW	1]
J0398-08A	AQ	SW8260_W	NA	LOW	1	
J0398-09A	AQ	SW8260_W	NA	LOW	1	
J0398-10A	AQ	SW8260_W	NA	LOW	1]
J0398-11A	AQ	SW8260_W	NA	LOW	1	
J0398-12A	AQ	SW8260_W	NA	LOW	1	
J0398-13A	AQ	SW8260_W	NA	LOW	1	
J0398-14A	AQ	SW8260_W	NA	LOW	1]
J0398-15A	AQ	SW8260_W	NA	LOW	1	
J0398-16A	AQ	SW8260_W	NA	LOW	1	
J0398-17A	AQ	SW8260_W	NA	LOW	1	
J0398-18A	AQ	SW8260_W	NA	LOW	1]
J0398-19A	AQ	SW8260_W	NA	LOW	1	
J0398-19AMS	AQ	SW8260_W	NA	LOW	1	
J0398-19AMSD	AQ	SW8260_W	NA	LOW	1	
J0398-20A	AQ	SW8260 W	NA	LOW	1	}

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

Laboratory		Analytical	Extraction	Auxiliary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
SW8270_W					
J0398-01C	AQ	SW8270_W	3520C	NA	1
J0398-02C	AQ	SW8270_W	3520C	NA	1
J0398-03C	AQ	SW8270_W	3520C	NA	1
J0398-04C	AQ	SW8270_W	3520C	NA	1
J0398-05C	AQ	SW8270_W	3520C	NA	1
J0398-06C	AQ	SW8270_W	3520C	NA	1
J0398-08C	AQ	SW8270_W	3520C	NA	1
J0398-09C	AQ	SW8270_W	3520C	NA	1
J0398-10C	AQ	SW8270_W	3520C	NA	1
J0398-11C	AQ	SW8270_W	3520C	NA	1
J0398-12C	AQ	SW8270_W	3520C	NA	1
J0398-14C	AQ	SW8270_W	3520C	NA	1
J0398-15C	AQ	SW8270_W	3520C	NA	1
J0398-16C	AQ	SW8270_W	3520C	NA	1
J0398-17C	AQ	SW8270_W	3520C	NA	1
J0398-18C	AQ	SW8270_W	3520C	NA	1
J0398-19C	AQ	SW8270_W	3520C	NA	1
J0398-19CMS	AQ	SW8270_W	3520C	NA	1
J0398-19CMSD	AQ	SW8270_W	3520C	NA	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name: SMS Instruments, 152026

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010_W				
J0398-01B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-02B	AQ	SW6010 W	3/10/2010	3/23/2010
J0398-03B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-04B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-05B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-06B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-08B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-09B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-10B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-11B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-12B	AQ	SW6010_W	3/10/2010	3/23/2010
J0398-14B	AQ	SW6010_W	3/12/2010	3/23/2010
J0398-15B	AQ	SW6010_W	3/12/2010	3/23/2010
J0398-16B	AQ	SW6010_W	3/12/2010	3/23/2010
J0398-17B	AQ	SW6010_W	3/12/2010	3/23/2010
J0398-18B	AQ	SW6010_W	3/12/2010	3/23/2010
J0398-19B	AQ	SW6010_W	3/12/2010	3/23/2010
J0398-19BDUP	AQ	SW6010_W	3/12/2010	3/23/2010
J0398-19BMS	AQ	SW6010_W	3/12/2010	3/23/2010
SW7470				
J0398-01B	AQ	SW7470	3/10/2010	3/23/2010
J0398-02B	AQ	SW7470	3/10/2010	3/23/2010
J0398-03B	AQ	SW7470	3/10/2010	3/23/2010
J0398-04B	AQ	SW7470	3/10/2010	3/23/2010
J0398-05B	AQ	SW7470	3/10/2010	3/23/2010
J0398-06B	AQ	SW7470	3/10/2010	3/23/2010
J0398-08B	AQ	SW7470	3/10/2010	3/23/2010
J0398-09B	AQ	SW7470	3/10/2010	3/23/2010
J0398-10B	AQ	SW7470	3/10/2010	3/23/2010
J0398-11B	AQ	SW7470	3/10/2010	3/23/2010
J0398-12B	AQ	SW7470	3/10/2010	3/23/2010
J0398-14B	AQ	SW7470	3/12/2010	3/23/2010
J0398-15B	AQ	SW7470	3/12/2010	3/23/2010
J0398-16B	AQ	SW7470	3/12/2010	3/23/2010
J0398-17B	AQ	SW7470	3/12/2010	3/23/2010
J0398-18B	AQ	SW7470	3/12/2010	3/23/2010
J0398-19B	AQ	SW7470	3/12/2010	3/25/2010
J0398-19BDUP	AQ	SW7470	3/12/2010	3/25/2010
J0398-19BMS	AQ	SW7470	3/12/2010	3/25/2010

Analytical Data Package for AECOM Technical Services, Inc.

Client Project: SMS

SDG# SJ0398

Mitkem Work Order ID: J0398

April 13, 2010

Prepared For:

AECOM Technical Services, Inc.

300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to AECOM Technical Services, Inc.'s SMS project. Under this deliverable, analysis results are presented for twenty aqueous samples that were received from March 10 to March 12, 2010. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

• M1	peak tailing or fronting.
• M2	peak co-elution.
• M3	rising or falling baseline.
• M4	retention time shift.
• M5	miscellaneous – under this category, the justification is explained.
• M6	software did not integrate peak
• M7	partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/lab control sample duplicate: spike recoveries and replicate RPDs were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SMS-MW-13D. Spike recoveries were within the QC limits with the exception of low recovery of 2,2-dichloropropane in the matrix spike and matrix spike duplicate. Replicate RPDs were within the QC limits.

Sample analysis: m,p-xylene and total xylene were detected in method blank MB-49928 below the reporting limit but above the method detection limit. m,p-Xylene and total xylene were not detected in the associated samples. Please note that chloromethane was detected in the following samples at for below the reporting limit: SMS-MW-9, SMS-MW-1, SMS-MW-3, SMS-MW-6, SMS-MW-6D, SMS-MW-17, SMS-MW-15, SMS-MW-16D and SMS-MW-13D. This may be due to possible contamination from the HCl used in preserving the samples. No other unusual observation was made for the analysis.

3. Semivolatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/lab control sample duplicate: spike recoveries were within the QC limits with the exception of low recovery of hexachlorocyclopentadiene in LCS-49849 and high recovery of 2-methylnaphthalene in LCSD-49849. Replicate RPDs were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SMS-MW-13D. Spike recoveries were within the QC limits with the exception of no recovery of 3,3'-dichlorobenzidine and high recovery of hexachlorobenzene in the matrix spike and no recovery of 3,3'-dichlorobenzidine in the matrix spike duplicate. Replicate RPDs were within the QC limits with the exception of 4-chloroaniline

Sample analysis: no other unusual observation was made for the analysis.

4. Metals Analysis:

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike was performed on sample SMS-MW-13D. Spike recoveries were within the QC limits.

Duplicate: duplicate analysis was performed on sample SMS-MW-13D. Replicate RPDs were within the QC limits.

Sample analysis: serial dilution was performed on sample SMS-MW-13D. Percent differences were within the QC limits. No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Huntley

CLP Project Manager

04/13/10

WorkOrder: J0398

04/13/2010 13:52

Mitkem Laboratories

Client ID: EARTH_NJ

Project: SMS Instruments, 152026

WO Name: SMS Instruments, 152026

Location: SMS,

Comments: N/A

Case: SDG:

Fax Due: 03/26/10 HC Due: 04/02/10 Fax Report:

Report Level: ASP-B Special Program:

EDD: CLF

PO: D003821-41

Lab Samp ID	Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0398-01A	SMS-MW-9	03/09/2010 09:45	03/10/2010	Aqueous	SW8260_W		VOA
J0398-01B	SMS-MW-9	03/09/2010 09:45	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-01B	SMS-MW-9	03/09/2010 09:45	03/10/2010	Aqueous	SW7470	/ TAL	LM1
J0398-01C	SMS-MW-9	03/09/2010 09:45	03/10/2010	Aqueous	SW8270_W		N4
J0398-02A	SMS-MW-59	03/09/2010 09:50	03/10/2010	Aqueous	SW8260_W		VOA
J0398-02B	SMS-MW-59	03/09/2010 09:50	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-02B	SMS-MW-59	03/09/2010 09:50	03/10/2010	Aqueous	SW7470	/TAL	LM
J0398-02C	SMS-MW-59	03/09/2010 09:50	03/10/2010	Aqueous	SW8270_W		N4
J0398-03A	SMS-MW-8	03/09/2010 10:45	03/10/2010	Aqueous	SW8260_W		VOA
J0398-03B	SMS-MW-8	03/09/2010 10:45	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-03B	SMS-MW-8	03/09/2010 10:45	03/10/2010	Aqueous	SW7470	/ TAL	TM
J0398-03C	SMS-MW-8	03/09/2010 10:45	03/10/2010	Aqueous	SW8270_W		N4
J0398-04A	SMS-MW-1	03/09/2010 11:35	03/10/2010	Aqueous	SW8260_W		VOA
J0398-04B	SMS-MW-1	03/09/2010 11:35	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-04B	SMS-MW-1	03/09/2010 11:35	03/10/2010	Aqueous	SW7470	/TAL	M1
J0398-04C	SMS-MW-1	03/09/2010 11:35	03/10/2010	Aqueous	SW8270_W		N4
J0398-05A	SMS-MW-2	03/09/2010 12:12	03/10/2010	Aqueous	SW8260_W		VOA
J0398-05B	SMS-MW-2	03/09/2010 12:12	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-05B	SMS-MW-2	03/09/2010 12:12	03/10/2010	Aqueous	SW7470	/TAL	M1

HF = Fraction logged in but all tests have been placed on hold

HT = Test logged in but has been placed on hold

WorkOrder: J0398

04/13/2010 13:52

Mitkem Laboratories

Client ID: EARTH NJ

Project: SMS Instruments, 152026

WO Name: SMS Instruments, 152026

Location: SMS,

Comments: N/A

Case:

HC Due: 04/02/10 Fax Due: 03/26/10 > x Report:

Report Level: ASP-B

EDD: CLF Special Program:

Fa	
	D003821-41
.5 .5	PO:

Lab Samp ID	Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0398-05C	SMS-MW-2	03/09/2010 12:12	03/10/2010	Aqueous	SW8270_W		N4
J0398-06A	SMS-MW-3	03/09/2010 13:13	03/10/2010	Aqueous	SW8260_W		VOA
J0398-06B	SMS-MW-3	03/09/2010 13:13	03/10/2010	Aqueous	SW6010_W	/TAL	Y M1
J0398-06B	SMS-MW-3	03/09/2010 13:13	03/10/2010	Aqueous	SW7470	/ TAL	M1
J0398-06C	SMS-MW-3	03/09/2010 13:13	03/10/2010	Aqueous	SW8270_W		NA
J0398-07A	TB-1	03/09/2010 00:00	03/10/2010	Aqueous	SW8260_W		VOA
J0398-08A	SMS-MW-7	03/10/2010 08:50	03/10/2010	Aqueous	SW8260_W		VOA
J0398-08B	SMS-MW-7	03/10/2010 08:50	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-08B	SMS-MW-7	03/10/2010 08:50	03/10/2010	Aqueous	SW7470	/TAL	M1
J0398-08C	SMS-MW-7	03/10/2010 08:50	03/10/2010	Aqueous	SW8270_W		N3
J0398-09A	SMS-MW-6	03/10/2010 10:10	03/10/2010	Aqueous	SW8260_W		VOA
J0398-09B	SMS-MW-6	03/10/2010 10:10	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-09B	SMS-MW-6	03/10/2010 10:10	03/10/2010	Aqueous	SW7470	/ TAL	TM
J0398-09C	SMS-MW-6	03/10/2010 10:10	03/10/2010	Aqueous	SW8270_W		N3
J0398-10A	SMS-MW-6D	03/10/2010 11:25	03/10/2010	Aqueous	SW8260_W		VOA
J0398-10B	SMS-MW-6D	03/10/2010 11:25	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-10B	SMS-MW-6D	03/10/2010 11:25	03/10/2010	Aqueous	SW7470	/ TAL	M1
J0398-10C	SMS-MW-6D	03/10/2010 11:25	03/10/2010	Aqueous	SW8270_W		N3
J0398-11A	SMS-MW-5	03/10/2010 13:13	03/10/2010	Aqueous	SW8260_W	1	VOA
HF = Fract	$\mathrm{HF} = \mathrm{Fraction}$ logged in but all tests have been placed on hold	ve been placed on l	hold			HT = Test logged	HT = Test logged in but has been placed on hold

agas

HT = Test logged in but has been placed on hold

WorkOrder: J0398

Project: SMS Instruments, 152026 WO Name: SMS Instruments, 152026

Location: SMS, Comments: N/A

Client ID: EARTH_NJ

04/13/2010 13:52

Mitkem Laboratories

HC Due: 04/02/10

Case: SDG:

Fax Due: 03/26/10

Report Level: ASP-B EDD: CLF Special Program:

Fax Report:

PO: D003821-41

Lab Samp ID	Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0398-11B	SMS-MW-5	03/10/2010 13:13	03/10/2010	Aqueous	SW6010_W	/TAL	Y M1
J0398-11B	SMS-MW-5	03/10/2010 13:13	03/10/2010	Aqueous	SW7470	/ TAL	M1
J0398-11C	SMS-MW-5	03/10/2010 13:13	03/10/2010	Aqueous	SW8270_W		N3
J0398-12A	SMS-MW-17	03/10/2010 14:44	03/10/2010	Aqueous	SW8260_W	,	VOA
J0398-12B	SMS-MW-17	03/10/2010 14:44	03/10/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-12B	SMS-MW-17	03/10/2010 14:44	03/10/2010	Aqueous	SW7470	/ TAL	M1
J0398-12C	SMS-MW-17	03/10/2010 14:44	03/10/2010	Aqueous	SW8270_W		N3
J0398-13A	TB-02	03/10/2010 00:00	03/10/2010	Aqueous	SW8260_W		VOA
J0398-14A	SMS-MW-4	03/11/2010 09:40	03/12/2010	Aqueous	SW8260_W		VOA
J0398-14B	SMS-MW-4	03/11/2010 09:40	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-14B	SMS-MW-4	03/11/2010 09:40	03/12/2010	Aqueous	SW7470	/ TAL	: M1
J0398-14C	SMS-MW-4	03/11/2010 09:40	03/12/2010	Aqueous	SW8270_W		N3
J0398-15A	SMS-MW-15	03/11/2010 11:00	03/12/2010	Aqueous	SW8260_W		VOA
J0398-15B	SMS-MW-15	03/11/2010 11:00	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-15B	SMS-MW-15	03/11/2010 11:00	03/12/2010	Aqueous	SW7470	/ TAL	M1
J0398-15C	SMS-MW-15	03/11/2010 11:00	03/12/2010	Aqueous	SW8270_W		N3
J0398-16A	SMS-MW-16S	03/11/2010 11:50	03/12/2010	Aqueous	SW8260_W		VOA
J0398-16B	SMS-MW-16S	03/11/2010 11:50	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M1
J0398-16B	SMS-MW-16S	03/11/2010 11:50	03/12/2010	Aqueous	SW7470	/ TAL	M1

HF = Fraction logged in but all tests have been placed on hold

Lab Client Rep: Shirley S Ng

HT = Test logged in but has been placed on hold

WorkOrder: J0398

04/13/2010 13:52

Mitkem Laboratories

Report Level: ASP-B

Special Program:

Fax Due: 03/26/10 HC Due: 04/02/10

Fax Report:

EDD: CLF

Client ID: EARTH_NJ

Project: SMS Instruments, 152026

WO Name: SMS Instruments, 152026

Location: SMS,

Comments: N/A

Case: SDG:

PO: D003821-41

b Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
يتدينها والمراجعة والمراجع	A THE PARTY OF THE	- Annual Control of the Control of t		The state of the s		Company of the Compan

Lab Samp II	Lab Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0398-16C	SMS-MW-16S	03/11/2010 11:50 03/12/2010	03/12/2010	Aqueous	SW8270_W	1	N3
J0398-17A	SMS-MW-16D	03/11/2010 13:50 03/12/2010	03/12/2010	Aqueous	SW8260_W		VOA
J0398-17B J0398-17B	SMS-MW-16D SMS-MW-16D	03/11/2010 13:50 03/11/2010 13:50	03/12/2010	Aqueous	SW6010_W SW7470	/ TAL / TAL	Y M1
J0398-17C	SMS-MW-16D	03/11/2010 13:50 03/12/2010	03/12/2010	Aqueous	SW8270_W		N3
J0398-18A	SMS-MW-16M	03/11/2010 14:44 03/12/2010	03/12/2010	Aqueous	SW8260_W		VOA
J0398-18B J0398-18B	SMS-MW-16M SMS-MW-16M	03/11/2010 14:44 03/12/2010 03/11/2010 14:44 03/12/2010	03/12/2010	Aqueous	SW6010_W SW7470	/ TAL / TAL	Y M1
J0398-18C	SMS-MW-16M	03/11/2010 14:44 03/12/2010	03/12/2010	Aqueous	SW8270_W		N3
J0398-19A	SMS-MW-13D	03/11/2010 16:10 03/12/2010	03/12/2010	Aqueous	SW8260_W		Y VOA
J0398-19B J0398-19B	SMS-MW-13D SMS-MW-13D	03/11/2010 16:10 03/12/2010 03/11/2010 16:10 03/12/2010	03/12/2010	Aqueous	SW6010_W SW7470	/TAL /TAL	Y Y M1
J0398-19C	SMS-MW-13D	03/11/2010 16:10 03/12/2010	03/12/2010	Aqueous	SW8270_W		γ N3
J0398-20A	TB-3	03/11/2010 00:00 03/12/2010	03/12/2010	Aqueous	SW8260_W		VOA

HF = Fraction logged in but all tests have been placed on hold

Lab Client Rep: Shirley S Ng

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-9	

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	J0398-01A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1L1916.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 ((mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		(:	mL)		

	T	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	4.6	J
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	ט
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	Ū
	1,2-Dichloropropane	5.0	Ū
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
	1,1,2-Trichloroethane	5.0	Ū
	1,3-Dichloropropane	5.0	U

Purge Volume: 5.0

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-9	

Lab Name: MITKEM LABORAT	ORIES			Contract:		
Lab Code: MITKEM C	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-01A	
Sample wt/vol: 5.00) (g/mL)	ML		Lab File ID:	V1L1916.D	
Level: (TRACE/LOW/MED) I	JOW			Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	0
			-L
	Tetrachloroethene	5.0	U
	2-Hexanone	5.0	U
	Dibromochloromethane	5.0	U
	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	U
	1,1,1,2-Tetrachloroethane	5.0	U .
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5		5.0	U
75-25-2	Bromoform	5.0	U
	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	Ū
	sec-Butylbenzene	5.0	ט
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	1.3	J
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	Ū
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	Ŭ .
91-20-3	Naphthalene	5.0	U

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENI	SAMPLE	L NO.
SMS-MW	-59	

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398 J0398-02A Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: Sample wt/vol: 5.00 (g/mL) Lab File ID: V1L1917.D Level: (TRACE/LOW/MED) LOW Date Received: 03/10/2010 Date Analyzed: 03/19/2010 % Moisture: not dec. GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 5.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	_ Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	ט
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū,

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-59	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-02A	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L1917.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purae Volume: 5.0			- (mT.)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
	Ethylbenzene	5.0	Ū
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	Ü
	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	ט
	1,4-Dichlorobenzene	1.2	J
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	ט
91-20-3	Naphthalene	5.0	U

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-8	

Lab Name: MITKEM	LABORATOR	IES			Contract:		
Lab Code: MITKEM	Cas	e No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED	/WATER) W	ATER			Lab Sample ID:	J0398-03A	
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1L1918.D	
Level: (TRACE/LOW	/MED) LOW			<u>.</u>	Date Received:	03/10/2010	
% Moisture: not d	ec				Date Analyzed:	03/19/2010	
GC Column: DB-62	4	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volu	me:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.	0			(mL)			

		CONCENTRATION UNITS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ü
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ü
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U .
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-8	

Lab Name: MITKEM LABOR	ATORIES			Contract:		_
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	J0398-03A	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1L1918.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (ul	L)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	Ü
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ü
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	Ü
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ü

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-1	

Lab Name: MITKEM LABORAT	ORIES			Contract:	
Lab Code: MITKEM (Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-04A
Sample wt/vol: 5.00) (g/mL)	ML		Lab File ID:	V1L1919.D
Level: (TRACE/LOW/MED) I	OM			Date Received:	03/10/2010
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uI
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
		(ug/L or ug/Kg) µG/L	
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	3.3	J
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	ט
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	Ū
	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
	Chloroform	5.0	Ū
	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	ט
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
I .	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	Ū
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	Ū
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-1	

Lab Name:	MITKEM LABORA	TORIES			Contract:	
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	J0398-04A
Sample wt/	vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L1919.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	03/10/2010
% Moisture	: not dec.				Date Analyzed:	03/19/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volu	me: 5.0			(mL)		

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
I .	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	Ū
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
	Bromoform	5.0	U
	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	U .
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U -
541-73-1	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	Ū
95-50-1	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	Ū
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	Ū
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-2	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	}
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-05A	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L1920.D	······································
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	Ü
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	U
	1,1-Dichloroethane	5.0	U
	Vinyl acetate	5.0	Ū
	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	Ü
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ū
	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	Ū
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-2	

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-05A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L1920.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010
% Moisture: not dec.	-			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		· · · ·	(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mI ₁)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū ·
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	Ū
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-3	

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)) WATER			Lab Sample ID:	J0398-06A
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1L1921.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	4.2	J
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ü
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U .
	Vinyl acetate	5.0	Ü
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U .
74-97-5	Bromochloromethane	5.0	U
	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	ט
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ū
	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ü
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-3	

Lab Name:	MITKEM LABORA	TORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	J0398-06A	·
Sample wt/	vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1L1921.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	03/10/2010	
% Moisture	: not dec.				Date Analyzed:	03/19/2010	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volu	me: 5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5		5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	Ü
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
TB-1		

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.: 3	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	J0398-07A
Sample wt/vol: 5	.00 (g/mL) A	ML	Lab File ID:	V1L1914.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/10/2010
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID: C	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0		(mL)	*	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ü
108-88-3	Toluene	1.1	J
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ü

CLIENT	SAMPLE	NO.
TB-1		

Lab Name: MITKEM LABORATO	DRIES			Contract:		
Lab Code: MITKEM Co	ase No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-07A	
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1L1914.D	
Level: (TRACE/LOW/MED) Lo	WC			Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	Ŭ
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	Ū
	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	Ū
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-7	

Lab Name: Ml	TKEM LABORA	TORIES			Contract:		
Lab Code: MI	ITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOI	L/SED/WATER)	WATER	'		Lab Sample ID:	J0398-08A	
Sample wt/vo	1: 5.0	0 (g/mL)	ML		Lab File ID:	V2L5037.D	
Level: (TRAC	E/LOW/MED)	LOW			Date Received:	03/10/2010	
% Moisture: 1	not dec.				Date Analyzed:	03/23/2010	
GC Column: 1	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract	Volume:			(uL)	Soil Aliquot Vol	ume: (v	ıL)
Purge Volume	: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	ט
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	Ū
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	Ü
	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-7	

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER		,	Lab Sample ID:	J0398-08A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L5037.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010
% Moisture: not dec.				Date Analyzed:	03/23/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	*****		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5 A			(mT.)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	1.6	- J
	2-Hexanone	5.0	U
	Dibromochloromethane	5.0	U
	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	Ū
	1,1,1,2-Tetrachloroethane	5.0	Ū
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	Ū
	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	Ü
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-6	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-09A	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V2L5038.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/23/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

	GOVERNO	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	_
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.1	
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ü
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	Ü
	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	Ū
	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U
	1,2-Dichloroethane	5.0	Ū
	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
†	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	Ü
	trans-1,3-Dichloropropene	5.0	Ū
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-6	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	}
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-09A	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V2L5038.D	
Level: (TRACE/LOW/MED)	LOW	- 100		Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/23/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	•
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ũ
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5		5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ü
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	Ü
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	1.7	J
	4-Chlorotoluene	5.0	Ū
98-06-6	tert-Butylbenzene	5.0	Ū
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	Ü
	4-Isopropyltoluene	5.0	Ū
	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	Ü
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	Ū
1	1,2,3-Trichlorobenzene	5.0	Ū
	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-6D	

Lab Name: MITKI	M LABORAT	ORIES			Contract:		
Lab Code: MITK	M C	ase No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/S	CD/WATER)	WATER			Lab Sample ID:	J0398-10A	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V2L5039.D	
Level: (TRACE/Le	W/MED) L	OW			Date Received:	03/10/2010	
% Moisture: not	dec.				Date Analyzed:	03/23/2010	
GC Column: DB-	524	ID:	0.25	(mm)	Dilution Factor:	1.0	•
Soil Extract Vo	ume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume:	5.0			(mL)			

	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	$(ug/L \text{ or } ug/Kg)$ $\mu G/L$	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.9	
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	Ü
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-6D	

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398	-
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	J0398-10A	
Sample wt/vol: 5.00 (g/mL)	ML	Lab File ID:	V2L5039.D	
Level: (TRACE/LOW/MED) LOW		Date Received:	03/10/2010	
% Moisture: not dec.		Date Analyzed:	03/23/2010	
GC Column: DB-624 ID:	0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0	(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	ט
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	ט
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ū
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	Ū.
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	Ū
	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-5	

Lab Name: MITKEM LABO	ORATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATE	ER) WATER		Lab Sample ID:	J0398-11A
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V1L2065.D
Level: (TRACE/LOW/MED)) LOW		Date Received:	03/10/2010
% Moisture: not dec.			Date Analyzed:	03/24/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	ט
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
	trans-1,2-Dichloroethene	5.0	Ū
	Methyl tert-butyl ether	5.0	U.
75-34-3	1,1-Dichloroethane	5.0	U
	Vinyl acetate	5.0	Ū
	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	Ū
	2,2-Dichloropropane	5.0	Ū
I .	Bromochloromethane	5.0	Ū
	Chloroform	5.0	Ū
	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ū
	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	ט
	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ü
	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	ט
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	บ
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-5	
-		

Lab Name: MITKEM LAB	ORATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WAT	'ER) WATER			Lab Sample ID:	J0398-11A
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1L2065.D
Level: (TRACE/LOW/MEI)) LOW			Date Received:	03/10/2010
% Moisture: not dec.				Date Analyzed:	03/24/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uI
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
	2-Hexanone	5.0	Ū
	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
	1,2,4-Trimethylbenzene	5.0	Ü
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	ט
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	Ū
	Naphthalene	5.0	Ū.

CLIENT	SAMPLE	NO.
SMS-MW	-17	

Lab Name:	MITKEM LABORA	ATORIES	•		Contract:	
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (S	OIL/SED/WATER) WATER			Lab Sample ID:	J0398-12A
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V1L2066.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	03/10/2010
% Moisture	: not dec.				Date Analyzed:	03/24/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volu	me: 5.0			(mL)		

and No	GOMBOLINIO	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	0
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	_
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	3.2	J
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ü
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ū
	Toluene	1.2	J
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ü

CLIENT	SAMPLE	NO.
SMS-MW	-17	

Lab Name: MITKEM LABORATO	ORIES			Contract:	
Lab Code: MITKEM C	ase No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-12A
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1L2066.D
Level: (TRACE/LOW/MED) L	OW			Date Received:	03/10/2010
% Moisture: not dec.				Date Analyzed:	03/24/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	ט
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5		5.0	Ŭ
75-25-2	Bromoform	5.0	U
	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	ט
	Bromobenzene	5.0	U
L	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	Ū
	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	Ū
1	1,3-Dichlorobenzene	5.0	Ū
1	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	Ü
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.
TB-02		

Lab Name: MITKEM LA	BORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WA	TER) WATER	Lab Sample ID:	J0398-13A
Sample wt/vol:	5.00 (g/mL) ML	Lab File ID:	V2L5034.D
Level: (TRACE/LOW/ME	D) LOW	Date Received:	03/10/2010
% Moisture: not dec.		Date Analyzed:	03/23/2010
GC Column: DB-624	ID: 0.25 (mm	n) Dilution Factor:	1.0
Soil Extract Volume:	(uI) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mI	.)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	_ Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U ,
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ü
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		1.1	J
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
TB-02		

Lab Name: MITKEM LABORA	FORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-13A	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V2L5034.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/10/2010	
% Moisture: not dec.				Date Analyzed:	03/23/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		D. March	(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	Ū
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-4	
		1
		- 1

Lab Name: MITKEM LABO	RATORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATE	ER) WATER			Lab Sample ID:	J0398-14A	
Sample wt/vol: 5	5.00 (g/mL)	ML		Lab File ID:	V1L1922.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/12/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

	T	CONCENTRATION UN	ITS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane		5.0	U
75-01-4	Vinyl chloride		5.0	Ū
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	Ū
75-35-4	1,1-Dichloroethene		5.0	Ū
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	Ū
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	บ
156-60-5	trans-1,2-Dichloroethene		5.0	Ū
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	ט
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
	2,2-Dichloropropane		5.0	Ū
74-97-5	Bromochloromethane		5.0	Ū
67-66-3	Chloroform		5.0	Ŭ
71-55-6	1,1,1-Trichloroethane		5.0	Ū
563-58-6	1,1-Dichloropropene		5.0	Ū
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	Ū
71-43-2	Benzene		5.0	Ū
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	Ū
	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	Ū
10061-01-5	cis-1,3-Dichloropropene		5.0	Ū
108-10-1	4-Methyl-2-pentanone		5.0	Ū
108-88-3			5.0	Ū
10061-02-6	trans-1,3-Dichloropropene		5.0	U
	1,1,2-Trichloroethane		5.0	U
	1,3-Dichloropropane		5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	- 4	

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	J0398-14A
Sample wt/vol: 5	.00 (g/mL)	ML	Lab File ID:	V1L1922.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/12/2010
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purae Volume: 5 0		(mT.)		

<u> </u>		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ü
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
	o-Xylene	5.0	Ū
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	Ū
	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
	4-Chlorotoluene	5.0	Ū
98-06-6	tert-Butylbenzene	5.0	ט
	1,2,4-Trimethylbenzene	5.0	Ū
	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	Ü
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	Ū
	Naphthalene	5.0	Ü

CLIENT	SAMPLE	NO.
SMS-MW	-15	

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0398-15A Sample wt/vol: 5.00 (g/mL)Lab File ID: V1L1923.D Date Received: 03/12/2010 Level: (TRACE/LOW/MED) LOW % Moisture: not dec. Date Analyzed: 03/19/2010 (mm) Dilution Factor: 1.0 GC Column: DB-624 ID: 0.25 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume:

(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	Q
CAS NO.	COMPOUND		_ \
	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	4.1	J
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ü
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
	Carbon tetrachloride	5.0	Ü
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ü
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	U

Purge Volume: 5.0

CLIENT	SAM	PLE	NO.
SMS-MW	-15		

Lab Name: MITKEM LABOR	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	J0398-15A	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1L1923.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/12/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ü
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	U _.
1330-20-7	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	Ü
75-25-2	Bromoform	5.0	Ū
	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U .
87-68-3	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-16S	

Lab Name: MITKEM LABOR	RATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	J0398-16A
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1L1947.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/12/2010
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uI
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U .
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-16S	

Lab Name: MITKEM LABORAT	ORIES			Contract:	
Lab Code: MITKEM C	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-16A
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1L1947.D
Level: (TRACE/LOW/MED) I	"OW			Date Received:	03/12/2010
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	Ü
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	Ü
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
	1,2,4-Trimethylbenzene	5.0	U,
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
1	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-16D	

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398 Matrix: (SOIL/SED/WATER) WATER J0398-17A Lab Sample ID: Sample wt/vol: 5.00 (g/mL)Lab File ID: V1L1948.D Level: (TRACE/LOW/MED) LOW Date Received: 03/12/2010 % Moisture: not dec. Date Analyzed: 03/19/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 5.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.3	
75-01-4	Vinyl chloride	5.0	Ü
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ü
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	υ
	Bromochloromethane	5.0	Ū
	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ü
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	Ū
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-16D	

Lab Name:	MITKEM LABOR	RATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	}
Matrix: (S	SOIL/SED/WATER	R) WATER			Lab Sample ID:	J0398-17A	
Sample wt/	/vol: 5.	.00 (g/mL)	ML		Lab File ID:	V1L1948.D	,
Level: (TR	RACE/LOW/MED)	LOW			Date Received:	03/12/2010	
% Moisture	e: not dec.				Date Analyzed:	03/19/2010	· · · · · · · · · · · · · · · · · · ·
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	act Volume: _			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volu	me: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	Ü
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	Ū
135-98-8	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	Ü
	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	Ū
1 .	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	Ü
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-16M	

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER	R) WATER.		Lab Sample ID:	J0398-18A
Sample wt/vol: 5	.00 (g/mL)	ML	Lab File ID:	V1L1949.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/12/2010
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	Ü
108-05-4	Vinyl acetate	5.0	U
	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	Ü
	Carbon tetrachloride	5.0	U
	1,2-Dichloroethane	5.0	U
	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ŭ
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
L	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
1	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	Ū
i -	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-16M	-

Lab Name: MITKEM LABORATO	ORIES			Contract:		
Lab Code: MITKEM C	ase No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	3
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-18A	
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1L1949.D	
Level: (TRACE/LOW/MED) L	OW			Date Received:	03/12/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ü
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	Ü
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	ט
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-13D	
•		

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0398-19A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L2096.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/12/2010
% Moisture: not dec.				Date Analyzed:	03/25/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		-	(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	_ Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	2.9	J
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U .
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	Ū
ľ	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
SMS-MW	-13D	

Lab Name: MITKEM LABORATORIE	S	Contract:	
Lab Code: MITKEM Case	No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WAS	ΓER	Lab Sample ID:	J0398-19A
Sample wt/vol: 5.00 (g,	/mL) ML	Lab File ID:	V1L2096.D
Level: (TRACE/LOW/MED) LOW		Date Received:	03/12/2010
% Moisture: not dec.		Date Analyzed:	03/25/2010
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5		5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	Ū
	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	Ū
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	Ū
104-51-8	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	Ū
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

	SAMPLE	NO.
SMS-MW	-13DMS	

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398	-1-	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	J0398-19AMS
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1L2084.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/12/2010
% Moisture: not dec.				Date Analyzed:	03/24/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL

(mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	44	
74-87-3	Chloromethane	61	
75-01-4	Vinyl chloride	60	
	Bromomethane	54	
75-00-3	Chloroethane	57	
75-69-4	Trichlorofluoromethane	52	
75-35-4	1,1-Dichloroethene	59	
67-64-1	Acetone	52	
74-88-4	Iodomethane	58	
75-15-0	Carbon disulfide	45	
75-09-2	Methylene chloride	59	
156-60-5	trans-1,2-Dichloroethene	56	
1634-04-4	Methyl tert-butyl ether	57	
75-34-3	1,1-Dichloroethane	57	
108-05-4	Vinyl acetate	37	
78-93-3	2-Butanone	51	
156-59-2	cis-1,2-Dichloroethene	58	
	2,2-Dichloropropane	21	
74-97-5	Bromochloromethane	56	
	Chloroform	57	
71-55-6	1,1,1-Trichloroethane	58	
563-58-6	1,1-Dichloropropene	56	
56-23-5	Carbon tetrachloride	56	
107-06-2	1,2-Dichloroethane	58	
71-43-2	Benzene	57	
79-01-6	Trichloroethene	59	
78-87-5	1,2-Dichloropropane	58	
	Dibromomethane	57	
75-27-4	Bromodichloromethane	56	
10061-01-5	cis-1,3-Dichloropropene	46	
	4-Methyl-2-pentanone	56	-
108-88-3	Toluene	57	
10061-02-6	trans-1,3-Dichloropropene	46	
	1,1,2-Trichloroethane	60	
	1,3-Dichloropropane	55	

Purge Volume: 5.0

CLIENT	SAMPLE	NO.
SMS-MW	-13DMS	

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0398-19AMS Sample wt/vol: 5.00 (g/mL) MLLab File ID: V1L2084.D Level: (TRACE/LOW/MED) LOW Date Received: 03/12/2010 % Moisture: not dec. Date Analyzed: 03/24/2010 (mm) Dilution Factor: 1.0 GC Column: DB-624 ID: 0.25 (uL) (uL) Soil Aliquot Volume: Soil Extract Volume: Purge Volume: 5.0 (mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	57	
591-78-6	2-Hexanone	50	
124-48-1	Dibromochloromethane	53	
106-93-4	1,2-Dibromoethane	55	
108-90-7	Chlorobenzene	57	
630-20-6	1,1,1,2-Tetrachloroethane	57	
	Ethylbenzene	56	
	m,p-Xylene	110	
95-47-6	o-Xylene	55	
	Xylene (Total)	170	
100-42-5	Styrene	56	
75-25-2	Bromoform	46	
98-82-8	Isopropylbenzene	55	
	1,1,2,2-Tetrachloroethane	56	
108-86-1	Bromobenzene	57	
96-18-4	1,2,3-Trichloropropane	48	
	n-Propylbenzene	56	
95-49-8	2-Chlorotoluene	57	
108-67-8	1,3,5-Trimethylbenzene	56	
106-43-4	4-Chlorotoluene	55	
98-06-6	tert-Butylbenzene	57	
95-63-6	1,2,4-Trimethylbenzene	57	
135-98-8	sec-Butylbenzene	55	
99-87-6	4-Isopropyltoluene	56	
541-73-1	1,3-Dichlorobenzene	55	
106-46-7	1,4-Dichlorobenzene	55	
104-51-8	n-Butylbenzene	51	
95-50-1	1,2-Dichlorobenzene	57	
96-12-8	1,2-Dibromo-3-chloropropane	51	
120-82-1	1,2,4-Trichlorobenzene	54	
87-68-3	Hexachlorobutadiene	47	
87-61-6	1,2,3-Trichlorobenzene	. 55	
91-20-3	Naphthalene	54	

CLIENT SAMPLE NO.
SMS-MW-13DMSD

Lab Name:	MITKEM LABOR	ATORIES		Contract:		
Lab Code:	MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (S	OIL/SED/WATEF	R) WATER		Lab Sample ID:	J0398-19AMSD	
Sample wt/	vol: 5.	00 (g/mL)	ML	Lab File ID:	V1L2085.D	
Level: (TR	ACE/LOW/MED)	LOW		Date Received:	03/12/2010	
% Moisture	: not dec.			Date Analyzed:	03/24/2010	
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volu	me: 5.0		(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	41	
74-87-3	Chloromethane	54	
75-01-4	Vinyl chloride	57	
74-83-9	Bromomethane	50	
75-00-3	Chloroethane	54	
75-69-4	Trichlorofluoromethane	51	
75-35-4	1,1-Dichloroethene	54	
67-64-1	Acetone	55	
74-88-4	Iodomethane	53	
75-15-0	Carbon disulfide	44	
75-09-2	Methylene chloride	55	
	trans-1,2-Dichloroethene	54	
	Methyl tert-butyl ether	55	
	1,1-Dichloroethane	52	
108-05-4	Vinyl acetate	34	
78-93-3	2-Butanone	48	
156-59-2	cis-1,2-Dichloroethene	. 55	
594-20-7	2,2-Dichloropropane	19	
74-97-5	Bromochloromethane	54	
67-66-3	Chloroform	54	
71-55-6	1,1,1-Trichloroethane	55	
	1,1-Dichloropropene	54	
56-23-5	Carbon tetrachloride	53	
	1,2-Dichloroethane	55	
71-43-2	Benzene	54	
79-01-6	Trichloroethene	57	
	1,2-Dichloropropane	55	
	Dibromomethane	55	
75-27-4	Bromodichloromethane	52	
10061-01-5	cis-1,3-Dichloropropene	45	
	4-Methyl-2-pentanone	54	
108-88-3		54	
10061-02-6	trans-1,3-Dichloropropene	42	
	1,1,2-Trichloroethane	54	
142-28-9	1,3-Dichloropropane	54	

CLIENT SAMPLE NO.
SMS-MW-13DMSD

Lab Name: MITKEM LABORA	TORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	J0398-19AMSD
Sample wt/vol: 5.0	O (g/mL) ML	Lab File ID:	V1L2085.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	03/12/2010
% Moisture: not dec.		Date Analyzed:	03/24/2010
GC Column: DB-624	ID: 0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0	(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	56	
	2-Hexanone	50	
	Dibromochloromethane	51	†
	1,2-Dibromoethane	54	
	Chlorobenzene	55	
	1,1,1,2-Tetrachloroethane	55	
	Ethylbenzene	53	<u> </u>
	m,p-Xylene	110	
	o-Xylene	54	
	Xylene (Total)	160	
100-42-5		54	
	Bromoform	46	
	Isopropylbenzene	54	
79-34-5	1,1,2,2-Tetrachloroethane	54	
	Bromobenzene	58	
96-18-4	1,2,3-Trichloropropane	47	
	n-Propylbenzene	55	
	2-Chlorotoluene	56	
	1,3,5-Trimethylbenzene	54	
	4-Chlorotoluene	53	,
	tert-Butylbenzene	54	
	1,2,4-Trimethylbenzene	53	
	sec-Butylbenzene	52	
	4-Isopropyltoluene	53	
541-73-1	1,3-Dichlorobenzene	53	
106-46-7	1,4-Dichlorobenzene	52	
104-51-8	n-Butylbenzene	50	
95-50-1	1,2-Dichlorobenzene	54	
96-12-8	1,2-Dibromo-3-chloropropane	48	
	1,2,4-Trichlorobenzene	53	
87-68-3	Hexachlorobutadiene	49	
	1,2,3-Trichlorobenzene	54	
91-20-3	Naphthalene	54	

CLIENT	SAMPLE	NO.
TB-3		

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATE	CR) WATER		Lab Sample ID:	J0398-20A
Sample wt/vol: 5	5.00 (g/mL)	ML	Lab File ID:	V1L1915.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/12/2010
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	ט
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT	SAMPLE	NO.
TB-3		

Lab Name: MITKEM LABOR	RATORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	J0398-20A	
Sample wt/vol: 5.	.00 (g/mL)	ML		Lab File ID:	V1L1915.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/12/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
	2-Hexanone	5.0	U
	Dibromochloromethane	5.0	U
	1,2-Dibromoethane	5.0	Ū
	Chlorobenzene	5.0	U
	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	U
	Xylene (Total)	5.0	Ū
100-42-5		5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	Ü
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	Ü
95-49-8	2-Chlorotoluene	5.0	Ü
	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	Ū
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	Ū
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	Ü
	Hexachlorobutadiene	5.0	Ü
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT	SAMPLE	NO.
LCS-49	928	

Lab Name: MITKEM LABOR	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	LCS-49928	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1L1910.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.				Date Analyzed:	03/18/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	0
			2
	Dichlorodifluoromethane	46	
74-87-3	Chloromethane	50	
	Vinyl chloride	54	
	Bromomethane	49	
	Chloroethane	52	
	Trichlorofluoromethane	50	
75-35-4	1,1-Dichloroethene	52	
67-64-1	Acetone	47	
74-88-4	Iodomethane	53	
75-15-0	Carbon disulfide	51	
	Methylene chloride	52	
156-60-5	trans-1,2-Dichloroethene	53	
1634-04-4	Methyl tert-butyl ether	52	
75-34-3	1,1-Dichloroethane	52	
108-05-4	Vinyl acetate	51	
	2-Butanone	47	
156-59-2	cis-1,2-Dichloroethene	53	
	2,2-Dichloropropane	43	
74-97-5	Bromochloromethane	52	
67-66-3	Chloroform	52	
71-55-6	1,1,1-Trichloroethane	53	
563-58-6	1,1-Dichloropropene	51	
56-23-5	Carbon tetrachloride	52	
107-06-2	1,2-Dichloroethane	53	
71-43-2	Benzene	52	
79-01-6	Trichloroethene	54	
78-87-5	1,2-Dichloropropane	53	
	Dibromomethane	51	
75-27-4	Bromodichloromethane	54	
10061-01-5	cis-1,3-Dichloropropene	52	
	4-Methyl-2-pentanone	50	
108-88-3		53	
	trans-1,3-Dichloropropene	50	
	1,1,2-Trichloroethane	52	
	1,3-Dichloropropane	53	

CLIENT	SAMPLE	NO.
LCS-49	928	
ł		
l		

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	LCS-49928
Sample wt/vol: 5	.00 (g/mL)	ML	Lab File ID:	V1L1910.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	03/18/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mT ₁)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	0
		warman and resolve to the state of the state	- V
	Tetrachloroethene	55	
	2-Hexanone	50	
	Dibromochloromethane	53	
	1,2-Dibromoethane	52	
	Chlorobenzene	54	
	1,1,1,2-Tetrachloroethane	52	
	Ethylbenzene	54	
	m,p-Xylene	110	В
	o-Xylene	53	
	Xylene (Total)	160	В
100-42-5		53	
	Bromoform	50	
98-82-8	Isopropylbenzene	52	
79-34-5	1,1,2,2-Tetrachloroethane	50	
108-86-1	Bromobenzene	52	
	1,2,3-Trichloropropane	48	
	n-Propylbenzene	52	1
95-49-8	2-Chlorotoluene	52	
	1,3,5-Trimethylbenzene	52	
	4-Chlorotoluene	52	
98-06-6	tert-Butylbenzene	52	
	1,2,4-Trimethylbenzene	52	
	sec-Butylbenzene	52	
99-87-6	4-Isopropyltoluene	53	
541-73-1	1,3-Dichlorobenzene	52	
106-46-7	1,4-Dichlorobenzene	52	
104-51-8	n-Butylbenzene	54	
	1,2-Dichlorobenzene	52	
	1,2-Dibromo-3-chloropropane	49	
120-82-1	1,2,4-Trichlorobenzene	54	
	Hexachlorobutadiene	49	
87-61-6	1,2,3-Trichlorobenzene	53	
91-20-3	Naphthalene	50	

CLIENT	SAMPLE	NO.
LCSD-4	9928	

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCSD-49928
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1L1911.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/18/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

	COMPONE	CONCENTRATION UNITS:	0
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Ų
	Dichlorodifluoromethane	45	
74-87-3	Chloromethane	46	
75-01-4	Vinyl chloride	54	
	Bromomethane	48	
75-00-3	Chloroethane	52	
75-69-4	Trichlorofluoromethane	49	
75-35-4	1,1-Dichloroethene	50	
67-64-1	Acetone	46	
74-88-4	Iodomethane	50	
75-15-0	Carbon disulfide	49	
75-09-2	Methylene chloride	51	
156-60-5	trans-1,2-Dichloroethene	50	
1634-04-4	Methyl tert-butyl ether	51	
	1,1-Dichloroethane	51	
108-05-4	Vinyl acetate	50	
78-93-3	2-Butanone	47	
156-59-2	cis-1,2-Dichloroethene	50	
594-20-7	2,2-Dichloropropane	42	
74-97-5	Bromochloromethane	50	
67-66-3	Chloroform	51	
71-55-6	1,1,1-Trichloroethane	52	
563-58-6	1,1-Dichloropropene	51	
56-23-5	Carbon tetrachloride	51	
	1,2-Dichloroethane	52	
71-43-2	Benzene	51	
79-01-6	Trichloroethene	52	
	1,2-Dichloropropane	52	
	Dibromomethane	50	
75-27-4	Bromodichloromethane	51	
10061-01-5	cis-1,3-Dichloropropene	49	
	4-Methyl-2-pentanone	51	
108-88-3		52	
	trans-1,3-Dichloropropene	49	
	1,1,2-Trichloroethane	51	
142-28-9	1,3-Dichloropropane	50	

CLIENT	SAMPLE	NO.
LCSD-4	9928	

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATE	ER) WATER		Lab Sample ID:	LCSD-49928
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V1L1911.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	03/18/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	55	=
	2-Hexanone	49	
	Dibromochloromethane	51	+
	1,2-Dibromoethane	49	
	Chlorobenzene	51	
	1,1,1,2-Tetrachloroethane	50	
	Ethylbenzene	50	
	m,p-Xylene	100	В
	o-Xylene	52	
	Xylene (Total)	150	В
100-42-5		50	
	Bromoform	48	
	Isopropylbenzene	51	
79-34-5	1,1,2,2-Tetrachloroethane	49	
	Bromobenzene	50	
	1,2,3-Trichloropropane	48	
	n-Propylbenzene	52	
	2-Chlorotoluene	52	
	1,3,5-Trimethylbenzene	51	
	4-Chlorotoluene	52	
	tert-Butylbenzene	50	
95-63-6	1,2,4-Trimethylbenzene	52	
	sec-Butylbenzene	50	
	4-Isopropyltoluene	51	
541-73-1	1,3-Dichlorobenzene	49	
	1,4-Dichlorobenzene	51	
104-51-8	n-Butylbenzene	. 52	
	1,2-Dichlorobenzene	50	
96-12-8	1,2-Dibromo-3-chloropropane	49	
	1,2,4-Trichlorobenzene	51	
87-68-3	Hexachlorobutadiene	47	
87-61-6	1,2,3-Trichlorobenzene	48	
91-20-3	Naphthalene	50	

CLIENT	SAMPLE	NO.
LCS-49	950	

Lab Name: MITKEM LABORA	ATORIES			Contract:	:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER) WATER		- Works V	Lab Sample ID:	LCS-49950	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1L1932.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.		112 Wat 1 W	· · · · · · · · · · · · · · · · · · ·	Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAC NO	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	0
CAS NO.	COMPOUND		<u> </u>
	Dichlorodifluoromethane	51	
74-87-3	Chloromethane	47	
75-01-4	Vinyl chloride	53	
	Bromomethane	50	
75-00-3	Chloroethane	50	
75-69-4	Trichlorofluoromethane	52	
75-35-4	1,1-Dichloroethene	51	
67-64-1	Acetone	41	
74-88-4	Iodomethane	52	
75-15-0	Carbon disulfide	50	
75-09-2	Methylene chloride	53	
156-60-5	trans-1,2-Dichloroethene	52	
1634-04-4	Methyl tert-butyl ether	50	
75-34-3	1,1-Dichloroethane	51	
108-05-4	Vinyl acetate	51	
78-93-3	2-Butanone	46	
156-59-2	cis-1,2-Dichloroethene	52	
	2,2-Dichloropropane	54	
74-97-5	Bromochloromethane	52	
67-66-3	Chloroform	51	
71-55-6	1,1,1-Trichloroethane	52	
563-58-6	1,1-Dichloropropene	54	
56-23-5	Carbon tetrachloride	52	
107-06-2	1,2-Dichloroethane	52	
71-43-2	Benzene	51	
79-01-6	Trichloroethene	53	
78-87-5	1,2-Dichloropropane	53	
	Dibromomethane	52	
75-27-4	Bromodichloromethane	51	
10061-01-5	cis-1,3-Dichloropropene	50	
	4-Methyl-2-pentanone	50	
108-88-3		53	
	trans-1,3-Dichloropropene	51	
	1,1,2-Trichloroethane	52	
	1,3-Dichloropropane	50	

CLIENT	SAMPLE	NO.
LCS-49	950	

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SC	DIL/SED/WATER	R) WATER			Lab Sample ID:	LCS-49950
Sample wt/v	701: 5.	00 (g/mL)	ML		Lab File ID:	V1L1932.D
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	
% Moisture:	not dec.				Date Analyzed:	03/19/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purae Volum	ne: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	52	
	2-Hexanone	48	
	Dibromochloromethane	50	
	1,2-Dibromoethane	50	
108-90-7	Chlorobenzene	53	
630-20-6	1,1,1,2-Tetrachloroethane	51	
100-41-4	Ethylbenzene	52	
1330-20-7	m,p-Xylene	110	
95-47-6	o-Xylene	52	
1330-20-7	Xylene (Total)	160	
100-42-5		52	
75-25-2	Bromoform	49	
98-82-8	Isopropylbenzene	52	
79-34-5	1,1,2,2-Tetrachloroethane	49	
108-86-1	Bromobenzene	51	
96-18-4	1,2,3-Trichloropropane	48	
103-65-1	n-Propylbenzene	. 52	
95-49-8	2-Chlorotoluene	53	
108-67-8	1,3,5-Trimethylbenzene	51	
	4-Chlorotoluene	51	
98-06-6	tert-Butylbenzene	51	
	1,2,4-Trimethylbenzene	51	
135-98-8	sec-Butylbenzene	51	
99-87-6	4-Isopropyltoluene	52	
541-73-1	1,3-Dichlorobenzene	50	
106-46-7	1,4-Dichlorobenzene	51	
104-51-8	n-Butylbenzene	52.	
	1,2-Dichlorobenzene	51	
96-12-8	1,2-Dibromo-3-chloropropane	47	
	1,2,4-Trichlorobenzene	53	
	Hexachlorobutadiene	48	
	1,2,3-Trichlorobenzene	49	
91-20-3	Naphthalene	48	

CLIENT	SAMPLE	NO.
LCS-50	047	

Lab Name:	MITKEM LABOR	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SC	OIL/SED/WATER	WATER			Lab Sample ID:	LCS-50047	
Sample wt/v	vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L5031.D	
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:		
% Moisture:	: not dec.				Date Analyzed:	03/23/2010	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extrac	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volum	ne: 5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	56	
74-87-3	Chloromethane	62	
75-01-4	Vinyl chloride	64	
	Bromomethane	67	
75-00-3	Chloroethane	65	
75-69-4	Trichlorofluoromethane	57	
75-35-4	1,1-Dichloroethene	56	
67-64-1	Acetone	37	
74-88-4	Iodomethane	55	
	Carbon disulfide	58	
	Methylene chloride	55	
156-60-5	trans-1,2-Dichloroethene	58	
1634-04-4	Methyl tert-butyl ether	61	
75-34-3	1,1-Dichloroethane	60	
108-05-4	Vinyl acetate	62	
78-93-3	2-Butanone	46	
156-59-2	cis-1,2-Dichloroethene	57	
594-20-7	2,2-Dichloropropane	59	
	Bromochloromethane	54	
67-66-3	Chloroform	58	
71-55-6	1,1,1-Trichloroethane	59	
563-58-6	1,1-Dichloropropene	57	
	Carbon tetrachloride	59	
107-06-2	1,2-Dichloroethane	60	
71-43-2	Benzene	58	
79-01-6	Trichloroethene	55	
	1,2-Dichloropropane	58	
	Dibromomethane	55	
	Bromodichloromethane	57	
	cis-1,3-Dichloropropene	57	
	4-Methyl-2-pentanone	59	
108-88-3		55	
10061-02-6	trans-1,3-Dichloropropene	57	
79-00-5	1,1,2-Trichloroethane	54	
	1,3-Dichloropropane	56	

CLIENT	SAMPLE	NO.
LCS-50	047	

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCS-50047
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V2L5031.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/23/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	55	· · · · · · · · · · · · · · · · · · ·
591-78-6	2-Hexanone	56	
124-48-1	Dibromochloromethane	55	
106-93-4	1,2-Dibromoethane	55	
108-90-7	Chlorobenzene	54	
630-20-6	1,1,1,2-Tetrachloroethane	54	
100-41-4	Ethylbenzene	55	
1330-20-7	m,p-Xylene	110	
	o-Xylene	54	
1330-20-7	Xylene (Total)	160	
100-42-5	Styrene	56	
75-25-2	Bromoform	54	
98-82-8	Isopropylbenzene	55	
79-34-5	1,1,2,2-Tetrachloroethane	56	
108-86-1	Bromobenzene	55	
96-18-4	1,2,3-Trichloropropane	55	
	n-Propylbenzene	56	
95-49-8	2-Chlorotoluene	55	
108-67-8	1,3,5-Trimethylbenzene	57	
106-43-4	4-Chlorotoluene	56	
	tert-Butylbenzene	55	
95-63-6	1,2,4-Trimethylbenzene	56	
	sec-Butylbenzene	56	
99-87-6	4-Isopropyltoluene	56	
541-73-1	1,3-Dichlorobenzene	54	
106-46-7	1,4-Dichlorobenzene	54	
104-51-8	n-Butylbenzene	57	
95-50-1	1,2-Dichlorobenzene	52	
96-12-8	1,2-Dibromo-3-chloropropane	53	
	1,2,4-Trichlorobenzene	51	
87-68-3	Hexachlorobutadiene	53	
87-61-6	1,2,3-Trichlorobenzene	52	
91-20-3	Naphthalene	52	

CLIENT	SAMPLE	NO.
LCS-50	061	
		1

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	LCS-50061
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V1L2062.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	03/24/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: _		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		•

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
75-71-8	Dichlorodifluoromethane	46	
74-87-3	Chloromethane	49	
75-01-4	Vinyl chloride	52	
74-83-9	Bromomethane	53	
75-00-3	Chloroethane	52	
75-69-4	Trichlorofluoromethane	50	
75-35-4	1,1-Dichloroethene	50	
67-64-1	Acetone	64	
74-88-4	Iodomethane	53	
75-15-0	Carbon disulfide	45	
75-09-2	Methylene chloride	50	
156-60-5	trans-1,2-Dichloroethene	52	
1634-04-4	Methyl tert-butyl ether	52	
75-34-3	1,1-Dichloroethane	52	
108-05-4	Vinyl acetate	52	
78-93-3	2-Butanone	55	
156-59-2	cis-1,2-Dichloroethene	52	
	2,2-Dichloropropane	53	
74-97-5	Bromochloromethane	53	
67-66-3	Chloroform	51	
71-55-6	1,1,1-Trichloroethane	51	
563-58-6	1,1-Dichloropropene	52	
56-23-5	Carbon tetrachloride	50	
107-06-2	1,2-Dichloroethane	53	
71-43-2	Benzene	51	
79-01-6	Trichloroethene	55	
78-87-5	1,2-Dichloropropane	52	
	Dibromomethane	49	
75-27-4	Bromodichloromethane	50	
	cis-1,3-Dichloropropene	50	
	4-Methyl-2-pentanone	52	
108-88-3	Toluene	52	
10061-02-6	trans-1,3-Dichloropropene	49	
79-00-5	1,1,2-Trichloroethane	54	
142-28-9	1,3-Dichloropropane	51	

CLIENT	SAMPLE	NO.
LCS-50	061	
		ı

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCS-50061	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L2062.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.				Date Analyzed:	03/24/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	· · · · · · · · · · · · · · · · · · ·		(uL)	Soil Aliquot Vol	ume:(u	.L)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	53	
591-78-6	2-Hexanone	59	
124-48-1	Dibromochloromethane	47	
106-93-4	1,2-Dibromoethane	50	
108-90-7	Chlorobenzene	52	
630-20-6	1,1,1,2-Tetrachloroethane	51	
100-41-4	Ethylbenzene	52	
1330-20-7	m,p-Xylene	100	
95-47-6	o-Xylene	50	
1330-20-7	Xylene (Total)	150	
100-42-5		52	
	Bromoform	43	
98-82-8	Isopropylbenzene	50	
79-34-5	1,1,2,2-Tetrachloroethane	51	
108-86-1	Bromobenzene	53	
96-18-4	1,2,3-Trichloropropane	45	
	n-Propylbenzene	52	
95-49-8	2-Chlorotoluene	51	
108-67-8	1,3,5-Trimethylbenzene	52	
106-43-4	4-Chlorotoluene	50	
98-06-6	tert-Butylbenzene	51	
95-63-6	1,2,4-Trimethylbenzene	51	
135-98-8	sec-Butylbenzene	50	
99-87-6	4-Isopropyltoluene	51	
541-73-1	1,3-Dichlorobenzene	50	
106-46-7	1,4-Dichlorobenzene	51	
104-51-8	n-Butylbenzene	50	
95-50-1	1,2-Dichlorobenzene	50	
96-12-8	1,2-Dibromo-3-chloropropane	40	
	1,2,4-Trichlorobenzene	51	
87-68-3	Hexachlorobutadiene	49	
	1,2,3-Trichlorobenzene	49	
	Naphthalene	49	

CLIENT	SAMPLE	NO.
LCS-50	103	

Lab Name: MITKEM LABORAT	ORIES			Contract:		
Lab Code: MITKEM C	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCS-50103	
Sample wt/vol: 5.00	(g/mL)	ML	jujir m	Lab File ID:	V1L2092.D	
Level: (TRACE/LOW/MED) I	WO			Date Received:		
% Moisture: not dec.	·	141 F = 115		Date Analyzed:	03/25/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µg/L	0
	Dichlorodifluoromethane	47	ļ
	Chloromethane	51	
	Vinyl chloride	54	
	Bromomethane	51	
	Chloroethane	52	<u> </u>
	Trichlorofluoromethane	52	
	1,1-Dichloroethene	52	
	Acetone	66	
	Iodomethane	51	
	Carbon disulfide	4.4	
	Methylene chloride	52	
	trans-1,2-Dichloroethene	51	
	Methyl tert-butyl ether	52	
	1,1-Dichloroethane	53	
108-05-4	Vinyl acetate	52	
	2-Butanone	55	
	cis-1,2-Dichloroethene	51	
594-20-7	2,2-Dichloropropane	53	
	Bromochloromethane	52	
	Chloroform	52	
71-55-6	1,1,1-Trichloroethane	52	
563-58-6	1,1-Dichloropropene	53	
56-23-5	Carbon tetrachloride	52	
107-06-2	1,2-Dichloroethane	52	
71-43-2	Benzene	52	
79-01-6	Trichloroethene	54	
78-87-5	1,2-Dichloropropane	52	
	Dibromomethane	51	
75-27-4	Bromodichloromethane	51	
10061-01-5	cis-1,3-Dichloropropene	51	
	4-Methyl-2-pentanone	51	
108-88-3		52	
	trans-1,3-Dichloropropene	50	
79-00-5	1,1,2-Trichloroethane	52	
	1,3-Dichloropropane	52	

SOM_002

CLIENT	SAMPLE	NO.
LCS-50	103	

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	LCS-50103
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1L2092.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/25/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		•

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	7-18-4 Tetrachloroethene 55		
591-78-6	2-Hexanone	55	
124-48-1	Dibromochloromethane	50	
	1,2-Dibromoethane	52	
108-90-7	Chlorobenzene	53	
630-20-6	1,1,1,2-Tetrachloroethane	51	
100-41-4	Ethylbenzene	53	
1330-20-7	m,p-Xylene	110	
95-47-6	o-Xylene	53	
1330-20-7	Xylene (Total)	160	
100-42-5	Styrene	53	
75-25-2	Bromoform	47	
98-82-8	Isopropylbenzene	53	
79-34-5	1,1,2,2-Tetrachloroethane	50	
108-86-1	Bromobenzene	52	
96-18-4	1,2,3-Trichloropropane	49	
103-65-1	5-1 n-Propylbenzene 53		
	9-8 2-Chlorotoluene 52		
108-67-8	-8 1,3,5-Trimethylbenzene 53		
106-43-4	4 4-Chlorotoluene 52		
98-06-6	-6 tert-Butylbenzene 53		
	1,2,4-Trimethylbenzene	52	_
135-98-8	sec-Butylbenzene	52	
	4-Isopropyltoluene	52	
541-73-1	1,3-Dichlorobenzene	51	
106-46-7	1,4-Dichlorobenzene	51	
104-51-8	n-Butylbenzene	51	
95-50-1	1,2-Dichlorobenzene	52	
96-12-8	1,2-Dibromo-3-chloropropane	46	
120-82-1	-82-1 1,2,4-Trichlorobenzene 53		
	87-68-3 Hexachlorobutadiene 49		
	87-61-6 1,2,3-Trichlorobenzene 52		
91-20-3	Naphthalene	50	

CLIENT	SAMPLE	NO.
SMS-MW	-9	

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398 Lab Sample ID: J0398-01C Matrix: (SOIL/SED/WATER) WATER ___ Lab File ID: Sample wt/vol: 1000 (g/mL) ML S3G3441.D Extraction: (Type) CONT Level: (LOW/MED) LOW Decanted: (Y/N) Date Received: 03/10/2010 % Moisture: Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010 GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

	T	CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2	Phenol	10	Ū
111-44-4	Bis(2-chloroethyl)ether	10	Ū
95-57-8	2-Chlorophenol	10	Ū
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	Ū.
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	. 10	U
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	ט
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	Ü
106-47-8	4-Chloroaniline	10	Ü .
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ü
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	U
208-96-8	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	U
	Acenaphthene	10	Ū
	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	Ū
132-64-9	Dibenzofuran	10	U

CLIENT	SAMPLE	NO.
SMS-MW	-9	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-01C
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3G3441.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	Ū
534-52 - 1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	Ü
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	Ū
85-01-8	Phenanthrene	10	Ū .
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	Ū
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	Ū
	Benzo(a)anthracene	10	Ū
218-01-9		10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	ט
205-99-2	Benzo(b)fluoranthene	10	Ü
207-08-9	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ū

CLIENT SAMPLE NO.

SMS-MW-59

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ03 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0398-02C	
Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0398-02C	3 8
Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3G3442.D	
Level: (LOW/MED) LOW Extraction: (Type) CONT	
% Moisture: Decanted: (Y/N) Date Received: 03/10/2010	
Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010	
Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010	
GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0	

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	,Q.
108-95-2	Phenol	10	Ū
	Bis(2-chloroethyl)ether	10	Ū
	2-Chlorophenol	10	U
	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	10	Ū
67-72-1	Hexachloroethane	10	U
	Nitrobenzene	10	U
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	U
	2,4-Dimethylphenol	10	Ü.
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	Ū
	4-Chloroaniline	10	Ū
	Bis(2-chloroethoxy)methane	10	ט
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	20	Ū
91-58-7	2-Chloronaphthalene	10	Ū
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	ט
51-28-5	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	Ū
132-64-9	Dibenzofuran	10	Ū

CLIENT	SAMPLE	NO.
SMS-MW	T-59	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-02C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3442.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-018	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0		10	U
	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2		10	U
	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	Ū
	Indeno(1,2,3-cd)pyrene	10	U
	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	U

CLIENT	SAMPLE	NO.
SMS-MW	7-8	

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Matrix: (SOIL/SED/WATER) WATER

Lab Sample ID: J0398-03C

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3G3443.D

Level: (LOW/MED) LOW

Extraction: (Type) CONT

% Moisture: Decanted: (Y/N)

Date Received: 03/10/2010

Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010

Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010

GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	U
	Bis(2-chloroethyl)ether	10	U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	Ü
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	ט
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ü
	2,4-Dichlorophenol	10	U
	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	Ū
	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	Ū
	2,4-Dinitrophenol	20	U
	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	Ū

	CLIENT	SAMPLE	NO.
	SMS-MW	-8	
-			

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-03C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3443.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2 2,4-Dinitrotoluene	10	Ū
	Diethylphthalate	10	U
	4-Chlorophenyl-phenylether	10	Ū
	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	Ū
	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	U
	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
	Butylbenzylphthalate	10	U
	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	ט
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

CLIENT	SAMPLE	NO.
SMS-MW	-1	

Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0398-04C Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3G3444.D Level: (LOW/MED) LOW Extraction: (Type) CONT % Moisture: Decanted: (Y/N) Date Received: 03/10/2010 Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010	Lab Name: MITKE	M LABORATORIES	Contract:	
Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3G3444.D Level: (LOW/MED) LOW Extraction: (Type) CONT % Moisture: Decanted: (Y/N) Date Received: 03/10/2010 Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010	Lab Code: MITKE	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Level: (LOW/MED) LOW Extraction: (Type) CONT % Moisture: Decanted: (Y/N) Date Received: 03/10/2010 Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010	Matrix: (SOIL/SE	D/WATER) WATER	Lab Sample ID:	J0398-04C
% Moisture: Decanted: (Y/N) Date Received: 03/10/2010 Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010	Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3G3444.D
Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010	Level: (LOW/MED)	LOW	Extraction: (Type	e) CONT
Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010	% Moisture:	Decanted: (Y/N)	Date Received:	03/10/2010
	Concentrated Ext	ract Volume: 1000 (uL)	Date Extracted:	03/16/2010
GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0	Injection Volume	:1.0 (uL) GPC Factor:1.00	Date Analyzed:	03/18/2010
	GPC Cleanup: (Y/N	N pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2		10	U
111-44-4	Bis(2-chloroethyl)ether	10	ט
	2-Chlorophenol	10	U
	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	Ū
	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	ט
	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	Ü
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	Ü
106-47-8	4-Chloroaniline	10	U.
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	Ü
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	Ū
	Acenaphthylene	10	Ū
606-20-2	2,6-Dinitrotoluene	10	U
	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	Ū
	2,4-Dinitrophenol	20	U
	4-Nitrophenol	20	Ū
132-64-9	Dibenzofuran	10	U

CLIENT	SAMPLE	NO.
SMS-MW	- 1	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-04C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3444.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor:	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
121-14-2	2 2,4-Dinitrotoluene	10	Ū
84-66-2	2 Diethylphthalate	10	U
7005-72-3	3 4-Chlorophenyl-phenylether	10	Ü
86-73 - 1	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	Ū
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	Ū
101-55-3	3 4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	ט
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	Ū
	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ū

CLIENT SAMPLE NO.

Contract: Lab Name: MITKEM LABORATORIES SDG No.: SJ0398 Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: Lab Sample ID: J0398-05C Matrix: (SOIL/SED/WATER) WATER Lab File ID: Sample wt/vol: 1000 (g/mL) ML S3G3445.D Extraction: (Type) CONT Level: (LOW/MED) LOW Decanted: (Y/N) Date Received: 03/10/2010 % Moisture: Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/16/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/18/2010 GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	U
	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	Ū
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	· 10	Ū
	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	Ü
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ü
208-96-8	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U ·
99-09-2	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	U
	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	U

CLIENT	SAMPLE	NO.
SMS-MW	-2	
i		

Lab Name: MITKEM	LABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	J0398-05C
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3G3445.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/10/2010
Concentrated Extra	ct Volume: 1000 (uL)	Date Extracted:	03/16/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/18/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0

]	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	Ü
118-74-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	Ū
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	Ü
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	U
	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	U
	Benzo(b)fluoranthene	10	ט
	Benzo(k)fluoranthene	10	Ū
	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ŭ
191-24-2	Benzo(g,h,i)perylene	10	U

	CLIENT	SAMPLE	NO.
	SMS-MW	- 3	
ı			

Lab Name: MITKEM LABORATORIES		Contract:	
Lab Code: MITKEM Case N	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATE	R	Lab Sample ID:	J0398-06C
Sample wt/vol: 1000 (g/m	L) <u>ML</u>	Lab File ID:	S3G3446.D
Level: (LOW/MED) LOW	·	Extraction: (Typ	e) CONT
% Moisture: Decanted	l: (Y/N)	Date Received:	03/10/2010
Concentrated Extract Volume:	1000 (uL)	Date Extracted:	03/16/2010
Injection Volume: 1.0 (uL) GP	C Factor: 1.00	Date Analyzed:	03/18/2010
GPC Cleanup: (Y/N) N p	H:	Dilution Factor:	1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
			1
108-95-2		10	Ū
	Bis(2-chloroethyl)ether	10	Ū
	2-Chlorophenol	10	U
	1,3-Dichlorobenzene	10	U
	1,4-Dichlorobenzene	10	Ū
	1,2-Dichlorobenzene	10	Ū
	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	Ū-
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ü
	Naphthalene	10	Ū
106-47-8	4-Chloroaniline	10	Ū
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ū
	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	Ū
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	U
	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	Ū
	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	U
	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	Ū
	Dibenzofuran	10	Ū

CLIENT	SAMPLE	NO.
SMS-MW	r - 3	
		İ

Lab Name: MITKEM LA	ABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WA	ATER) WATER	Lab Sample ID:	J0398-06C
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3G3446.D
Level: (LOW/MED) LO	DW	Extraction: (Type	e) <u>CONT</u>
% Moisture:	Decanted: (Y/N)	Date Received:	03/10/2010
Concentrated Extract	Volume: 1000 (uL)	Date Extracted:	03/16/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/18/2010
GPC Cleanup: (Y/N) N	И рн:	Dilution Factor:	1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
	Di-n-octylphthalate	10	Ū
	Benzo(b)fluoranthene	10	U
	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

	CLIENT	SAMPLE	NO.
	SMS-MW	1-7	
1			

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-08C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3447.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

GAG NO	COMPOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2	Phenol	10	Ū
	Bis(2-chloroethyl)ether	10	Ū
95-57-8	2-Chlorophenol	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	Ū
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	U
	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	Ū
606-20-2	2,6-Dinitrotoluene	10	U
	3-Nitroaniline	20	Ū
	Acenaphthene	10	Ū
51-28-5	2,4-Dinitrophenol	20	Ū
100-02-7	4-Nitrophenol	. 20	Ū
	Dibenzofuran	10	บ .

	CLIENT	SAMPLE	NO.
Ì	SMS-MV	1 –7	
ļ			
1			

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.	: J0398 Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	J0398-08C
Sample wt/vol: 1000 (g/mL)) ML Lab File ID:	S3G3447.D
Level: (LOW/MED) LOW	Extraction: (Ty	ype) CONT
% Moisture: Decanted:	(Y/N) Date Received:	03/10/2010
Concentrated Extract Volume:	1000 (uL) Date Extracted:	: 03/16/2010
Injection Volume: 1.0 (uL) GPC	Factor: 1.00 Date Analyzed:	03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor	c: 1.0

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	U
86 - 73-7	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	Ū
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	Ü
87-86-5	Pentachlorophenol	20	U .
85-01-8	Phenanthrene	10 .	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U .
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	U
	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-6	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-09C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3448.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	1.3	J
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	U .
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	Ū.
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	Ū
	2-Chloronaphthalene	. 10	Ū
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	Ū
	3-Nitroaniline	20	Ū
	Acenaphthene	10	U
	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	U
	Dibenzofuran	10	Ū

CLIENT	SAMPLE	NO.
SMS-MW	7-6	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-09C
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3G3448.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
	Diethylphthalate	10	U
	4-Chlorophenyl-phenylether	10	U
	Fluorene	10	U
	4-Nitroaniline	20	U
	4,6-Dinitro-2-methylphenol	20	U
	N-Nitrosodiphenylamine	10	Ū
	4-Bromophenyl-phenylether	10	<u>ט</u>
	Hexachlorobenzene	10	U
	Pentachlorophenol	20	U
	Phenanthrene	10	$\overline{0}$
	Anthracene	10	u
	Carbazole	10	U
	Di-n-butylphthalate	10	Ü
	Fluoranthene	10	Ū
129-00-0	1	10	Ū
	Butylbenzylphthalate	10	Ū
	3,3'-Dichlorobenzidine	10	U U
	Benzo(a) anthracene	10	Ū
218-01-9		10	Ū
	Bis(2-ethylhexyl)phthalate	2.6	J
	Di-n-octylphthalate	10	Ū
	Benzo(b) fluoranthene	10	U
	Benzo(k) fluoranthene	10	Ū
	Benzo (a) pyrene	10	Ū
	Indeno(1,2,3-cd)pyrene	10	U
	Dibenzo(a,h)anthracene	10	U
	Benzo(g,h,i)perylene	10	Ū

CLIENT SAMPLE NO.

Contract:
Mod. Ref No.: SDG No.: SJ0398
Lab Sample ID: J0398-10C
Lab File ID: S3G3449.D
Extraction: (Type) CONT
Date Received: 03/10/2010
Date Extracted: 03/16/2010
Date Analyzed: 03/18/2010
Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2	Phenol	10	Ū
111-44-4	Bis(2-chloroethyl)ether	10	Ū
95-57-8	2-Chlorophenol	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
95-50 - 1	1,2-Dichlorobenzene	10	Ü
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	10	U
	Hexachloroethane	10	Ū
	Nitrobenzene	10	U
78-59-1	Isophorone	10	Ū
	2-Nitrophenol	10	U
	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	Ü.
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
	Hexachlorocyclopentadiene	10	Ū
	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	20	Ū
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	U
	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	Ū
100-02-7	4-Nitrophenol	20	Ū
132-64-9	Dibenzofuran	10	Ü

CLIENT SAMPLE NO.

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-10C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3449.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	Ü
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	U
	4-Bromophenyl-phenylether	10	U
	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	Ū
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ü
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	Ū
	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ü
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	U
	Benzo(b)fluoranthene	10	U
	Benzo(k)fluoranthene	10	U -
	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

CLIENT	SAMPLE	NO.	
SMS-MW	' –5		
			ı
			ł

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-11C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3450.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q.
108-95-2	Phenol	10	Ū.
111-44-4	Bis(2-chloroethyl)ether	10	Ū
95-57-8	2-Chlorophenol	10	Ū ·
	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	10	ט
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	Ū
	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ü
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	Ū
106-47-8	4-Chloroaniline	10	Ū
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ū
	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	U
	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	Ū
99-09-2	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	Ū
51-28-5	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	U
	Dibenzofuran	10	Ü

CLIENT	SAMPLE	NO.
SMS-MW	- 5	
ł		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-11C
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S3G3450.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2 2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	Ū
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	ט
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U .
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	ט
117-81-7	Bis(2-ethylhexyl)phthalate	10	ט
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	Ū
	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

CLIENT	SAMPLE	NO.
SMS-MW	-17	
		ľ

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-12C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3451.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	U
	Bis(2-chloroethyl)ether	10	U
	2-Chlorophenol	10	ט
	1,3-Dichlorobenzene	10	U
	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
106-44-5	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72 - 1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	Ū
	1,2,4-Trichlorobenzene	10	Ū
91-20-3	Naphthalene	10	U
	4-Chloroaniline	10	Ū
111-91-1	Bis(2-chloroethoxy)methane	10	U
	Hexachlorobutadiene	10	Ū
	4-Chloro-3-methylphenol	10	U
	2-Methylnaphthalene	10	U
	Hexachlorocyclopentadiene	10	ט
88-06-2	2,4,6-Trichlorophenol	10	Ü
	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
	Dimethylphthalate	10	Ū
	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	ט
99-09-2	3-Nitroaniline	20	Ü .
83-32-9	Acenaphthene	10	Ū
	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	Ū
132-64-9	Dibenzofuran	10	Ū

CLIENT	SAMPLE	NO.
SMS-MW	I - 17	

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398	
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-12C	
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3451.D	
Level: (LOW/MED) LOW	Extraction: (Type) CONT	
% Moisture: Decanted: (Y/N)	Date Received: 03/10/2010	
Concentrated Extract Volume: 1000 (ul) Date Extracted: 03/16/2010	
Injection Volume: 1.0 (uL) GPC Factor: 1.0	Date Analyzed: 03/18/2010	
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52 - 1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	Ü
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	Ū
	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	ט
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b) fluoranthene	10	Ū
	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

CLIENT SAMPLE NO.

Lab Name: MITKEM	LABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	J0398-14C
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1G2629.D
Level: (LOW/MED)	LOW	Extraction: (Typ	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/12/2010
Concentrated Extra	ct Volume: 1000 (uL)	Date Extracted:	03/18/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/19/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	ט
	2-Chlorophenol	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
	1,4-Dichlorobenzene	10	U
	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	10	Ü
	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	Ū
	4-Chloroaniline	10	Ü
	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ü
59-50-7	4-Chloro-3-methylphenol	10	ט
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	20	Ū
91-58-7	2-Chloronaphthalene	10	Ü
88-74-4	2-Nitroaniline	20	Ū.
131-11-3	Dimethylphthalate	10	Ū
	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	Ü
	3-Nitroaniline	20	Ū
	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	Ū
	Dibenzofuran	10	Ū

CLIENT	SAMPLE	NO.
SMS-MW	-4	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-14C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2629.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
<pre>Injection Volume: 1.0 (uL) GPC Factor: 1.00</pre>	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	. I
	Diethylphthalate.	10	II
	4-Chlorophenyl-phenylether	10	U
	Fluorene	10	Ū
	4-Nitroaniline	20	U
	4,6-Dinitro-2-methylphenol	20	Ū
	N-Nitrosodiphenylamine	10	Ū
	4-Bromophenyl-phenylether	10	Ū
	Hexachlorobenzene	10	U
	Pentachlorophenol	20	Ū
	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
	Fluoranthene	10	Ū
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	Ū
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	Ū .
205-99-2	Benzo(b)fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	Ū
	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

CLIENT SAMPLE NO.
SMS-MW-15

Lab Name: MITKEM	LABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	J0398-15C
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1G2630.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/12/2010
Concentrated Extra	ct Volume: 1000 (uL)	Date Extracted:	03/18/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/19/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	Ū
111-44-4	Bis(2-chloroethyl)ether	10	Ū
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
	2-Methylphenol	10	Ū
	2,2'-oxybis(1-Chloropropane)	10	U
	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	Ū
	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ū
	2,4-Dichlorophenol	10	Ü
	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	Ū
	4-Chloroaniline	10	U
	Bis(2-chloroethoxy)methane	10	U
	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	U
	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
	2-Chloronaphthalene	10	Ū
88-74-4	2-Nitroaniline	20	U
	Dimethylphthalate	10	Ü
	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	Ū
99-09-2	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	U
	2,4-Dinitrophenol	20	U
	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	Ū

CLIENT	SAMPLE	NO.
SMS-MW	- 15	

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG N	No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0398-15C	
Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1G2630.D	
Level: (LOW/MED) LOW Extraction: (Type) CONT	
% Moisture: Decanted: (Y/N) Date Received: 03/12/2010	
Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/18/2010	
Injection Volume: 1.0 (uL) GPC Factor: 1.00 Date Analyzed: 03/19/2010	
GPC Cleanup: (Y/N) N pH: Dilution Factor: 1.0	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7		10	Ū
100-01-6	4-Nitroaniline	20	Ū
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	Ū
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	Ū
	Fluoranthene	10	U
129-00-0		10	U
	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	U
	Benzo(a)anthracene	10	U
	Chrysene	10	Ü
117-81-7		10	U
117-84-0		10	U
205-99-2	Benzo(b)fluoranthene	10	Ū
	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	Ū
	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

CLIENT SAMPLE NO.

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	J0398-16C
Sample wt/vol: 100	0 (g/mL) ML	Lab File ID:	S1G2631.D
Level: (LOW/MED) LOW		Extraction: (Typ	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/12/2010
Concentrated Extract Vo	lume: 1000 (uL)	Date Extracted:	03/18/2010
Injection Volume: 1.0	(uL) GPC Factor: 1.00	Date Analyzed:	03/19/2010 .
GPC Cleanup: (Y/N) N	pH:	Dilution Factor:	1.0

GRG NG	GOMDOLIND	CONCENTRATION UNITS:	\Box
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	Ū
111-44-4	Bis(2-chloroethyl)ether	10	U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
	2-Methylphenol	10	ט
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	U
	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	20	Ü
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	Ū
606-20-2	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	U
	4-Nitrophenol	20	Ū
	Dibenzofuran	10	Ū

	CLIENT	SAMPLE	NO.
	SMS-MW	-16S	
- 1			

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-16C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2631.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (uL	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
	Diethylphthalate	10	Ū
	4-Chlorophenyl-phenylether	10	U
	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
86-74-8	Carbazole	. 10	Ū
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ŭ
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b) fluoranthene	10	U .
	Benzo(k)fluoranthene	10	Ū
	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(q,h,i)perylene	10	Ū

CLIENT SAMPLE NO.

Contract:
Mod. Ref No.: SDG No.: SJ0398
Lab Sample ID: J0398-17C
Lab File ID: S1G2632.D
Extraction: (Type) CONT
Date Received: 03/12/2010
Date Extracted: 03/18/2010
Date Analyzed: 03/19/2010
Dilution Factor: 1.0

		CONCENTRATION UNITS:	T	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q	
108-95-2	Phenol	10	Ū	
111-44-4	Bis(2-chloroethyl)ether	10	Ū	
95-57-8	2-Chlorophenol	10	U	
541-73-1	1,3-Dichlorobenzene	10	Ū	
106-46-7	1,4-Dichlorobenzene	10	Ū	
95-50-1	1,2-Dichlorobenzene	10	U	
95-48-7	2-Methylphenol	10	Ū	
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū	
106-44-5	4-Methylphenol	10	U	
621-64-7	N-Nitroso-di-n-propylamine	10	Ū	
67-72-1	Hexachloroethane	10	Ū	
98-95-3	Nitrobenzene	10	Ū	
78-59-1	Isophorone	10	Ū	
88-75-5	2-Nitrophenol	10	ט	
105-67-9	2,4-Dimethylphenol	10	Ū	
120-83-2	2,4-Dichlorophenol	10	Ū	
120-82-1	1,2,4-Trichlorobenzene	10	Ū	
	Naphthalene	10	U	
106-47-8	4-Chloroaniline	10	Ū	
111-91-1	Bis(2-chloroethoxy)methane	10	U	
87-68-3	Hexachlorobutadiene	10	U	
59-50-7	4-Chloro-3-methylphenol	10	Ū	
91-57-6	2-Methylnaphthalene	10	U	
77-47-4	Hexachlorocyclopentadiene	. 10	Ū	
88-06-2	2,4,6-Trichlorophenol	10	Ū	
95-95-4	2,4,5-Trichlorophenol	20	U	
	2-Chloronaphthalene	10	U	
88-74-4	2-Nitroaniline	20	ט	
131-11-3	Dimethylphthalate	10	Ū	
	Acenaphthylene	10	U	
	2,6-Dinitrotoluene	10	Ū	
	3-Nitroaniline	20	Ū	
83-32-9	Acenaphthene	10	Ū	
	2,4-Dinitrophenol	20	U	
	4-Nitrophenol	20	Ū	
	Dibenzofuran	10	Ü	

CLIENT SAMPLE NO. SMS-MW-16D

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-17C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2632.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	บ
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	. 10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ü
117-84-0	Di-n-octylphthalate	10	U
	Benzo(b)fluoranthene	10	U
	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	U
	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

	SAMPLE	NO.
SMS-MW	-16M	7
		i

Lab Name: MITKEM LABORA	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: <u>J0398</u>	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)) WATER	Lab Sample ID:	J0398-18C
Sample wt/vol: 1000) (g/mL) ML	Lab File ID:	S1G2633.D
Level: (LOW/MED) LOW		Extraction: (Typ	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/12/2010
Concentrated Extract Vol	lume: 1000 (uL)	Date Extracted:	03/18/2010
Injection Volume: 1.0	(uL) GPC Factor: 1.00	Date Analyzed:	03/19/2010
GPC Cleanup: (Y/N) N	pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	Ū
95-57-8	2-Chlorophenol	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	Ū
	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ū
	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	U
	2,4-Dimethylphenol	10	Ū
	2,4-Dichlorophenol	10	Ū
	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	Ū
	4-Chloroaniline	10	Ū
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
	4-Chloro-3-methylphenol	10	U
	2-Methylnaphthalene	10	Ū
	Hexachlorocyclopentadiene	10	Ū
	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	Ū
	2-Chloronaphthalene	10	U
	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	U
	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	Ū
	3-Nitroaniline	20	Ū
	Acenaphthene	10	Ū
	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	Ū
	Dibenzofuran	10	U

CLIENT SAMPLE NO. SMS-MW-16M

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-18C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2633.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (uL	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-	2 2,4-Dinitrotoluene	10	U .
84-66-	2 Diethylphthalate	10	U.
	3 4-Chlorophenyl-phenylether	10	Ū
	7 Fluorene	10	Ū
100-01-	4-Nitroaniline	20	Ü
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-	N-Nitrosodiphenylamine	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	Ũ
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-	Anthracene	10	Ū
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	Ū
206-44-0	Fluoranthene	10	Ū
	Pyrene	. 10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b)fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ü

CLIENT SAMPLE NO.

SMS-MW-13D

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-19C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2634.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

	7	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2		10	Ū
	Bis(2-chloroethyl)ether	10	Ū
	2-Chlorophenol	10	U
	1,3-Dichlorobenzene	10	U
	1,4-Dichlorobenzene	10	Ū
	1,2-Dichlorobenzene	10	Ū
	2-Methylphenol	10	Ū
	2,2'-oxybis(1-Chloropropane)	10	Ū
	4-Methylphenol	10	Ū
	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	U
	2-Nitrophenol	10	Ü
105-67-9	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ü
91-20-3	Naphthalene	10	U
	4-Chloroaniline	10	U
	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	ט
95-95-4	2,4,5-Trichlorophenol	20	U
	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
	Dimethylphthalate	10	Ū
	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	Ü
	4-Nitrophenol	20	Ū
132-64-9	Dibenzofuran	10	U

CLIENT SAMPLE NO.

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-19C
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S1G2634.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
86-73-7	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	Ω
87-86-5	Pentachlorophenol	20	Ū
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
	3,3'-Dichlorobenzidine	10	U
	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
	Bis(2-ethylhexyl)phthalate	10	U
	Di-n-octylphthalate	10	U
	Benzo(b)fluoranthene	10	Ū
	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	Ū
	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

CLIENT SAMPLE NO.

SMS-MW-13DMS

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	J0398-19CMS
Sample wt/vol: 100	O (g/mL) ML	Lab File ID:	S1G2635.D
Level: (LOW/MED) LOW		Extraction: (Type	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/12/2010
Concentrated Extract Vo	lume: 1000 (uL)	Date Extracted:	03/18/2010
Injection Volume: 1.0	(uL) GPC Factor: 1.00	Date Analyzed:	03/19/2010
GPC Cleanup: (Y/N) N	pH:	Dilution Factor:	1.0

CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L
108-95-2 Phenol	35
111-44-4 Bis(2-chloroethyl)eth	ner 35
95-57-8 2-Chlorophenol	38
541-73-1 1,3-Dichlorobenzene	33
106-46-7 1,4-Dichlorobenzene	37
95-50-1 1,2-Dichlorobenzene	37
95-48-7 2-Methylphenol	47
108-60-1 2,2'-oxybis(1-Chlorop	propane) 38
106-44-5 4-Methylphenol	49
621-64-7 N-Nitroso-di-n-propyl	amine 47
67-72-1 Hexachloroethane	34
98-95-3 Nitrobenzene	44
78-59-1 Isophorone	38
88-75-5 2-Nitrophenol	37
105-67-9 2,4-Dimethylphenol	50
120-83-2 2,4-Dichlorophenol	45
120-82-1 1,2,4-Trichlorobenzen	e 42
91-20-3 Naphthalene	44
106-47-8 4-Chloroaniline	11
111-91-1 Bis(2-chloroethoxy)me	thane 33
87-68-3 Hexachlorobutadiene	44
59-50-7 4-Chloro-3-methylphen	ol 45
91-57-6 2-Methylnaphthalene	44
77-47-4 Hexachlorocyclopentad	iene 21
88-06-2 2,4,6-Trichlorophenol	41
95-95-4 2,4,5-Trichlorophenol	51
91-58-7 2-Chloronaphthalene	47
88-74-4 2-Nitroaniline	42
131-11-3 Dimethylphthalate	49
208-96-8 Acenaphthylene	37
606-20-2 2,6-Dinitrotoluene	46
99-09-2 3-Nitroaniline	18 J
83-32-9 Acenaphthene	40
51-28-5 2,4-Dinitrophenol	50
100-02-7 4-Nitrophenol	35
132-64-9 Dibenzofuran	49

CLIENT SAMPLE NO.
SMS-MW-13DMS

Lab Name: MITKEM	LABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED,	/WATER) WATER	Lab Sample ID:	J0398-19CMS
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1G2635.D
Level: (LOW/MED)	LOW	Extraction: (Typ	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/12/2010
Concentrated Extra	act Volume: 1000 (uL)	Date Extracted:	03/18/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/19/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0
			•

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	47	1
84-66-2	Diethylphthalate	40	
7005-72-3	4-Chlorophenyl-phenylether	51	
86-73-7	Fluorene	40	
100-01-6	4-Nitroaniline	18	J
534-52-1	4,6-Dinitro-2-methylphenol	46	
86-30-6	N-Nitrosodiphenylamine	32	
101-55-3	4-Bromophenyl-phenylether	52	
118-74-1	Hexachlorobenzene	55	
87-86-5	Pentachlorophenol	49	
85-01-8	Phenanthrene	51	
120-12-7	Anthracene	42	
86-74-8	Carbazole	37	
84-74-2	Di-n-butylphthalate	40	
206-44-0	Fluoranthene	40	
129-00-0	Pyrene	52	
85-68-7	Butylbenzylphthalate	35	
91-94-1	3,3'-Dichlorobenzidine	10	Ū
56-55-3	Benzo(a)anthracene	38	
218-01-9	Chrysene	40	
117-81-7	Bis(2-ethylhexyl)phthalate	41	
117-84-0	Di-n-octylphthalate	48	
205-99-2	Benzo(b) fluoranthene	55	
207-08-9	Benzo(k)fluoranthene	48	
50-32-8	Benzo(a)pyrene	41	
193-39-5	Indeno(1,2,3-cd)pyrene	40	
53-70-3	Dibenzo(a,h)anthracene	41	
191-24-2	Benzo(g,h,i)perylene	37	

CLIENT SAMPLE NO.

SMS-MW-13DMSD

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-19CMSD
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2636.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (u	L) Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.0	0 Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µg/L	0
108-95-2		33	
	Bis(2-chloroethyl)ether	37	
	2-Chlorophenol	37	
	1,3-Dichlorobenzene	32	
	1,4-Dichlorobenzene	34	
	1,2-Dichlorobenzene	35	
95-48-7	2-Methylphenol	43	
	2,2'-oxybis(1-Chloropropane)	36	
	4-Methylphenol	4 4	
	N-Nitroso-di-n-propylamine	42	
	Hexachloroethane	32	
98-95-3	Nitrobenzene	43	
78-59-1	Isophorone	39	
88-75-5	2-Nitrophenol	40	
105-67-9	2,4-Dimethylphenol	49	
120-83-2	2,4-Dichlorophenol	43	
120-82-1	1,2,4-Trichlorobenzene	45	
91-20-3	Naphthalene	45	
	4-Chloroaniline	20	
111-91-1	Bis(2-chloroethoxy)methane	39	
87-68-3	Hexachlorobutadiene	43	
59-50-7	4-Chloro-3-methylphenol	43	
91-57-6	2-Methylnaphthalene	46	
77-47-4	Hexachlorocyclopentadiene	17	H-12-17-111
88-06-2	2,4,6-Trichlorophenol	41	
95-95-4	2,4,5-Trichlorophenol	45	
	2-Chloronaphthalene	45	
	2-Nitroaniline	41	
131-11-3	Dimethylphthalate	40	
	Acenaphthylene	37	
	2,6-Dinitrotoluene	36	
	3-Nitroaniline	25	
	Acenaphthene	38	
	2,4-Dinitrophenol	46	
	4-Nitrophenol	29	
	Dibenzofuran	47	

CLIENT SAMPLE NO.

SMS-MW-13DMSD

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0398-19CMSD
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2636.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/12/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	49	
	Diethylphthalate	38	+
	4-Chlorophenyl-phenylether	48	
	Fluorene	39	1
100-01-6	4-Nitroaniline	24	
534-52-1	4,6-Dinitro-2-methylphenol	43	
86-30-6	N-Nitrosodiphenylamine	39	
101-55-3	4-Bromophenyl-phenylether	49	
118-74-1	Hexachlorobenzene	54	
87-86-5	Pentachlorophenol	38	
85-01-8	Phenanthrene	50	
120-12-7	Anthracene	40	
86-74-8	Carbazole	38	
84-74-2	Di-n-butylphthalate	36	
206-44-0	Fluoranthene	40	
129-00-0	Pyrene	48	
85-68-7	Butylbenzylphthalate	33	
	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	35	
218-01-9		40	
117-81-7	Bis(2-ethylhexyl)phthalate	37	
	Di-n-octylphthalate	40	
	Benzo(b) fluoranthene	46	
	Benzo(k)fluoranthene	42	
	Benzo(a)pyrene	34	
	Indeno(1,2,3-cd)pyrene	35	
53-70-3	Dibenzo(a,h)anthracene	36	
191-24-2	Benzo(g,h,i)perylene	34	

CLIENT	SAMPLE	NO.
LCS-49	849	

Lab Name: MITKEM LABORATO	DRIES	Contract:	•
Lab Code: MITKEM C	ase No.: <u>J0398</u>	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	LCS-49849
Sample wt/vol: 1000	(g/mL) ML	Lab File ID:	S3G3436.D
Level: (LOW/MED) LOW	· 	Extraction: (Typ	e) CONT
% Moisture: Dec	canted: (Y/N)	Date Received:	
Concentrated Extract Volum	ne: 1000 (uL)	Date Extracted:	03/16/2010
Injection Volume: 1.0 (u	L) GPC Factor: 1.00	Date Analyzed:	03/18/2010
GPC Cleanup: (Y/N) N	pH:	Dilution Factor:	1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	· Q
108-95-2	Phenol	36	-
	Bis(2-chloroethyl)ether	37	
95-57-8	2-Chlorophenol	38	
	1,3-Dichlorobenzene	34	
	1,4-Dichlorobenzene	33	
	1,2-Dichlorobenzene	34	
	2-Methylphenol	38	
	2,2'-oxybis(1-Chloropropane)	35	
	4-Methylphenol	39	
	N-Nitroso-di-n-propylamine	37	
67-72-1	Hexachloroethane	34	
98-95-3	Nitrobenzene	39	
78-59-1	Isophorone	39	
	2-Nitrophenol	42	
	2,4-Dimethylphenol	43	
120-83-2	2,4-Dichlorophenol	38	
120-82-1	1,2,4-Trichlorobenzene	37	
91-20-3	Naphthalene	38	
	4-Chloroaniline	27	
	Bis(2-chloroethoxy)methane	40	
	Hexachlorobutadiene	35	
	4-Chloro-3-methylphenol	43	
	2-Methylnaphthalene	52	
	Hexachlorocyclopentadiene	13	-
	2,4,6-Trichlorophenol	38	
	2,4,5-Trichlorophenol	37	
	2-Chloronaphthalene	38	
	2-Nitroaniline	41	
	Dimethylphthalate	39	
	Acenaphthylene	39	
	2,6-Dinitrotoluene	40	
	3-Nitroaniline	33	
	Acenaphthene	39	
	2,4-Dinitrophenol	47	
	4-Nitrophenol	54	
132-64-9	Dibenzofuran	39	

CLIENT	SAMPLE	NO.
LCS-49	849	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-49849
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3436.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup:(Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	41	
84-66-2	Diethylphthalate	41	
7005-72-3	4-Chlorophenyl-phenylether	39	
	Fluorene	39	
100-01-6	4-Nitroaniline	38	
534-52-1	4,6-Dinitro-2-methylphenol	44	
86-30-6	N-Nitrosodiphenylamine	38	
101-55-3	4-Bromophenyl-phenylether	40	
118-74-1	Hexachlorobenzene	39	
87-86-5	Pentachlorophenol	42	
	Phenanthrene	41	
120-12-7	Anthracene	41	
86-74-8	Carbazole	42	
84-74-2	Di-n-butylphthalate	43	
206-44-0	Fluoranthene	42	•
129-00 - 0	Pyrene	40	
85-68-7	Butylbenzylphthalate	41	
91-94-1	3,3'-Dichlorobenzidine	23	
	Benzo(a)anthracene	42	
218-01-9	Chrysene	42	
117-81-7	Bis(2-ethylhexyl)phthalate	41	
117-84-0	Di-n-octylphthalate	41	
205-99-2	Benzo(b) fluoranthene	41	
	Benzo(k)fluoranthene	39	
50-32-8	Benzo(a)pyrene	38	
193-39-5	Indeno(1,2,3-cd)pyrene	38	
53-70-3	Dibenzo(a,h)anthracene	38	
191-24-2	Benzo(g,h,i)perylene	38	

CLIENT	SAMPLE	NO.
LCS-49	914	
1		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-49914
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2616.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	32	
	Bis(2-chloroethyl)ether	35	
	2-Chlorophenol	36	
541-73-1	1,3-Dichlorobenzene	30	
	1,4-Dichlorobenzene	32	
	1,2-Dichlorobenzene	33	
95-48-7	2-Methylphenol	43	
108-60-1	2,2'-oxybis(1-Chloropropane)	33	
106-44-5	4-Methylphenol	. 45	
621-64-7	N-Nitroso-di-n-propylamine	43	
67-72-1	Hexachloroethane	. 31	
98-95-3	Nitrobenzene	45	
78-59-1	Isophorone	41	
	2-Nitrophenol ·	39	
105-67-9	2,4-Dimethylphenol	55	
	2,4-Dichlorophenol	46	
120-82-1	1,2,4-Trichlorobenzene	44	
91-20-3	Naphthalene	44	
106-47-8	4-Chloroaniline	27	
111-91-1	Bis(2-chloroethoxy)methane	41	
87-68-3	Hexachlorobutadiene	42	
59-50-7	4-Chloro-3-methylphenol	48	
	2-Methylnaphthalene	46	
	Hexachlorocyclopentadiene	31	
	2,4,6-Trichlorophenol	45	
	2,4,5-Trichlorophenol	45	
	2-Chloronaphthalene	43	
88-74-4	2-Nitroaniline	41	
	Dimethylphthalate	45	
	Acenaphthylene	38	
606-20-2	2,6-Dinitrotoluene	42	
	3-Nitroaniline	38	
	Acenaphthene	40	
	2,4-Dinitrophenol	46	
	4-Nitrophenol	4.4	
132-64-9	Dibenzofuran	49	

CLIE	NT SA	MPLE	NO.
LCS	-49914	1	
1			.

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-49914
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2616.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	· Q
	2,4-Dinitrotoluene	42	
	Diethylphthalate	42	
	4-Chlorophenyl-phenylether	49	
	Fluorene	44	
100-01-6	4-Nitroaniline	29	
534-52-1	4,6-Dinitro-2-methylphenol	41	
86-30-6	N-Nitrosodiphenylamine	39	
101-55-3	4-Bromophenyl-phenylether	56	
118-74-1	Hexachlorobenzene	54	
87-86-5	Pentachlorophenol	43	
85-01-8	Phenanthrene	45	
120-12-7	Anthracene	49	
86-74-8	Carbazole	44	
84-74-2	Di-n-butylphthalate	41	
206-44-0	Fluoranthene	41	
129-00-0	Pyrene	48.	
85-68-7	Butylbenzylphthalate	39	
91-94-1	3,3'-Dichlorobenzidine	12	
56-55-3	Benzo(a)anthracene	42	
218-01-9	Chrysene	50	
117-81-7	Bis(2-ethylhexyl)phthalate	37	
117-84-0	Di-n-octylphthalate	41	····
205-99-2	Benzo(b)fluoranthene	43	
207-08-9	Benzo(k)fluoranthene	57	
50-32-8	Benzo(a)pyrene	41	
	Indeno(1,2,3-cd)pyrene	39	
	Dibenzo(a,h)anthracene	42	
	Benzo(g,h,i)perylene	36	

CLIENT SAMPLE NO. LCSD-49849

Lab Name: MITKEM	LABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: <u>J0398</u>	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	LCSD-49849
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3G3437.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	
Concentrated Extra	ct Volume: 1000 (uL)	Date Extracted:	03/16/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/18/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	40	.
	Bis(2-chloroethyl)ether	39	
	2-Chlorophenol	41	
	1,3-Dichlorobenzene	34	
	1,4-Dichlorobenzene	35	
	1,2-Dichlorobenzene	35	
	2-Methylphenol	39	
	2,2'-oxybis(1-Chloropropane)	37	
	4-Methylphenol	41	
	N-Nitroso-di-n-propylamine	39	
	Hexachloroethane	35	
98-95-3	Nitrobenzene	40	
	Isophorone	40	
	2-Nitrophenol	43	
	2,4-Dimethylphenol	44	
	2,4-Dichlorophenol	43	
	1,2,4-Trichlorobenzene	37	
91-20-3	Naphthalene	39	
106-47-8	4-Chloroaniline	29	
111-91-1	Bis(2-chloroethoxy)methane	41	
87-68-3	Hexachlorobutadiene	35	
59-50-7	4-Chloro-3-methylphenol	44	
91-57-6	2-Methylnaphthalene	54	
77-47-4	Hexachlorocyclopentadiene	16	
	2,4,6-Trichlorophenol	40	
95-95-4	2,4,5-Trichlorophenol	39	
91-58-7	2-Chloronaphthalene	39	
	2-Nitroaniline	41	
131-11-3	Dimethylphthalate	40	
	Acenaphthylene	41	
	2,6-Dinitrotoluene	41	
	3-Nitroaniline	33	-
83-32-9	Acenaphthene	40	
	2,4-Dinitrophenol	47	
	4-Nitrophenol	58	
132-64-9	Dibenzofuran	41	

CLIENT	SAMPLE	NO.
LCSD-4	9849	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCSD-49849
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3437.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
<pre>Injection Volume:1.0 (uL) GPC Factor:</pre>	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q	
121-14-2	2,4-Dinitrotoluene	42		
84-66-2	Diethylphthalate	42	J	
7005-72-3	4-Chlorophenyl-phenylether	41		
86-73-7	Fluorene	40		
100-01-6	4-Nitroaniline	39		
534-52-1	4,6-Dinitro-2-methylphenol	44		
86-30-6	N-Nitrosodiphenylamine	39		
101-55-3	4-Bromophenyl-phenylether	40		
	Hexachlorobenzene	39		
87-86-5	Pentachlorophenol	43		
85-01-8	Phenanthrene	42		
120-12-7	Anthracene	43		
86-74-8	Carbazole	43		
84-74-2	Di-n-butylphthalate	43		
	Fluoranthene	42		
129-00-0	Pyrene	42		
	Butylbenzylphthalate	41		
	3,3'-Dichlorobenzidine	23		
	Benzo(a)anthracene	41		
218-01-9	Chrysene	44		
	Bis(2-ethylhexyl)phthalate	42		
	Di-n-octylphthalate	41		
	Benzo(b) fluoranthene	44		
	Benzo(k)fluoranthene	39		
	Benzo(a)pyrene	40		
	Indeno(1,2,3-cd)pyrene	31		
	Dibenzo(a,h)anthracene	39		
191-24-2	Benzo(g,h,i)perylene	40		

-

EPA SAMPLE NO.

SMS-MW-1

INORGANIC ANALYSIS DATA SHEET

THOROTHVIO THVIETOTO DITTI ONDO

Contract: D003821-41

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SJ0398

Matrix (soil/water): WATER Lab Sample ID: J0398-04

Level (low/med): MED Date Received: 03/10/2010

% Solids: 0.0

Lab Name: Mitkem Laboratories

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	604			P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	7.5	B.		P
7440-39-3	Barium	85.9	В		P
7440-41-7	Beryllium	0.17	В		P
7440-43-9	Cadmium	0.50	Ü		P
7440-70-2	Calcium	33600			P
7440-47-3	Chromium	10.5	В		Р
7440-48-4	Cobalt	2.3	В		P
7440-50-8	Copper	30.8			P
7439-89-6	Iron	96300			P
7439-92-1	Lead	31.2			P
7439-95-4	Magnesium	5160			P
7439-96-5	Manganese	310			P
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	11.2	В		Р
7440-09-7	Potassium	16700			P
7782-49-2	Selenium	17.0	В		P
7440-22-4	Silver	2.4	Ū		P
7440-23-5	Sodium	35100			P
7440-28-0	Thallium	5.7	Ū		Р
7440-62-2	Vanadium	0.94	В		P
7440-66-6	Zinc	. 142			P

Comments:		
	·	

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-13D

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

Lab Sample ID:

SDG No.: SJ0398

Matrix (soil/water): WATER

J0398-19

Level (low/med): MED

Date Received:

03/12/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	86.0	В		P
7440-36-0	Antimony	8.0	В		P
7440-38-2	Arsenic	3.1	Ū		P
7440-39-3	Barium	75.4	В		P
7440-41-7	Beryllium	0.064	В		P
7440-43-9	Cadmium	57.6			P
7440-70-2	Calcium	13100			P
7440-47-3	Chromium	20.0	В		P
7440-48-4	Cobalt	0.67	Ū		P
7440-50-8	Copper	19.5	В		P
7439-89-6	Iron	515			P
7439-92-1	Lead	4.2	В		Р
7439-95-4	Magnesium	7390			Р
7439-96-5	Manganese	18.5	В		P
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	139			P
7440-09-7	Potassium	3470			Р
7782-49-2	Selenium	15.6	В		Р
7440-22-4	Silver	2.4	Ū		Р
7440-23-5	Sodium	26100			Р
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	0.44	В		P
7440-66-6	Zinc	60.4			Р

Commen:	ts:			
-				

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-15

D003821-41 Lab Name: Mitkem Laboratories Contract:

SDG No.: SJ0398 SAS No.: Lab Code: MITKEM Case No.:

Lab Sample ID: J0398-15 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 03/12/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	132	В		P
7440-36-0	Antimony	5.0	В		P
7440-38-2	Arsenic	3.3	В		P
7440-39-3	Barium	42.4	В		P
7440-41-7	Beryllium	0.097	В		Р
7440-43-9	Cadmium	1.4	В		P
7440-70-2	Calcium	17600			P
7440-47-3	Chromium	125			P
7440-48-4	Cobalt	7.5	В		P
7440-50-8	Copper	4.7	U		P
7439-89-6	Iron	2150			P
7439-92-1	Lead	6.9	В		P
7439-95-4	Magnesium	4030			P
7439-96-5	Manganese	457			P
7439-97-6	Mercury	0.056	Ū	,	CV
7440-02-0	Nickel	59.0			Р
7440-09-7	Potassium	12300			Р
7782-49-2	Selenium	10.0	Ū		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	20600			P
7440-28-0	Thallium	5.7	Ū		Р
7440-62-2	Vanadium	1.5	В		Р
7440-66-6	Zinc	23.2	В		P

Comments:		

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-16D

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water): WATER

Lab Sample ID: J0398-17

Level (low/med): MED

Date Received: 03/12/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	200			P
7440-36-0	Antimony	4.2	U		P
7440-38-2.	Arsenic	3.1	U		P
7440-39-3	Barium	44.6	В		P
7440-41-7	Beryllium	0.050	В		P
7440-43-9	Cadmium	24.9			P
7440-70-2	Calcium	19000			P
7440-47-3	Chromium	39.7			P
7440-48-4	Cobalt	0.67	Ū		P
7440-50-8	Copper	6.2	В		P
7439-89-6	Iron	516			P
7439-92-1	Lead	4.2	В		P
7439-95-4	Magnesium	3610			P
7439-96-5	Manganese	36.5	В		P
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	8.0	В		P
7440-09-7	Potassium	5720			P
7782-49-2	Selenium	14.7	В		P
7440-22-4	Silver	2.4	U.		P
7440-23-5	Sodium	14700			P
7440-28-0	Thallium	5.7	Ū		P
7440-62-2	Vanadium	0.66	В		P
7440-66-6	Zinc	30.5	В		P

Comments:		
	,	
		# 21 - 1-1/

1

EPA SAMPLE NO.

SMS-MW-16M INORGANIC ANALYSIS DATA SHEET

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water):

WATER

Lab Sample ID: J0398-18

Level (low/med): MED

Date Received: 03/12/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	176	В		P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	5.6	В		P
7440-39-3	Barium	83.6	В		P
7440-41-7	Beryllium	0.078	В		P
7440-43-9	Cadmium	0.84	В		P
7440-70-2	Calcium	23600			P
7440-47-3	Chromium	8.7	В		P
7440-48-4	Cobalt	2.6	В		P
7440-50-8	Copper	5.3	В		Р
7439-89-6	Iron	571			Р
7439-92-1	Lead	6.0	В		Р
7439-95-4	Magnesium	3200			P
7439-96-5	Manganese	107			P
7439-97-6	Mercury	0.057	В		CV
7440-02-0	Nickel	5.3	В		P
7440-09-7	Potassium	8360			P
7782-49-2	Selenium	10.0	ΰ		Р
7440-22-4	Silver	2.4	U		Р
7440-23-5	Sodium	31600			Р
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	0.76	В		Р
7440-66-6	Zinc	24.3	В		Р

Comments:			

EPA SAMPLE NO.

SMS-MW-16S

INORGANIC ANALYSIS DATA SHEET

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

SDG No.: SJ0398

Matrix (soil/water): WATER

Case No.:

SAS No.:

Lab Sample ID: J0398-16

Level (low/med): MED

Date Received: 03/12/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	114	В		Р
7440-36-0	Antimony	4.5	В		P
7440-38-2	Arsenic	3.4	В		Р
7440-39-3	Barium	36.7	В		P
7440-41-7	Beryllium	0.051	В		Р
7440-43-9	Cadmium	5.1			Р
7440-70-2	Calcium	29200			P
7440-47-3	Chromium	59.8			P
7440-48-4	Cobalt	4.1	В		P
7440-50-8	Copper	11.6	В		P
7439-89-6	Iron	1200			Р
7439-92-1	Lead	2.1	U		Р
7439-95-4	Magnesium	4970			P
7439-96-5	Manganese	443			P
7439-97-6	Mercury	0.067	В		CV
7440-02-0	Nickel	20.2	В		Р
7440-09-7	Potassium	4930			Р
7782-49-2	Selenium	10.0	Ū		Р
7440-22-4	Silver	2.4	Ū		Р
7440-23-5	Sodium	19500			Р
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	1.2	В		Р
7440-66-6	Zinc	28.3	В		Р

ments:		

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-17

D003821-41 Lab Name: Mitkem Laboratories Contract:

Lab Code: MITKEM SAS No.: SDG No.: SJ0398 Case No.:

Lab Sample ID: J0398-12 Matrix (soil/water): WATER

Date Received: 03/10/2010 Level (low/med): MED

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	530			P
7440-36-0	Antimony	11.1	В		P
7440-38-2	Arsenic	3.1	Ū		P
7440-39-3	Barium	69.9	В		P
7440-41-7	Beryllium	0.093	В		P
7440-43-9	Cadmium	3.1	В		P
7440-70-2	Calcium	14100			Р
7440-47-3	Chromium	161			Р
7440-48-4	Cobalt	8.5	В		Р
7440-50-8	Copper	11.2	В		Р
7439-89-6	Iron	3940			P
7439-92-1	Lead	9.5	В		P
7439-95-4	Magnesium	985			Р
7439-96-5	Manganese	2640			Р
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	14.8	В		Р
7440-09-7	Potassium	2410			Р
7782-49-2	Selenium	10.0	U		Р
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	3560			Р
7440-28-0	Thallium	5.7	Ü		Р
7440-62-2	Vanadium	4.9	В		Р
7440-66-6	Zinc	30.2	В		P

Comment	s:			
		 	 	

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-2

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water): WATER

Lab Sample ID: J0398-05

Level (low/med): MED

Date Received: 03/10/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	2480			P
7440-36-0	Antimony	9.4	В		P
7440-38-2	Arsenic	5.9	В		P
7440-39-3	Barium	75.2	В		P
7440-41-7	Beryllium	0.34	В		P
7440-43-9	Cadmium	29.1			P
7440-70-2	Calcium	26200			P
7440-47-3	Chromium	6.8	В		P
7440-48-4	Cobalt	2.5	В		Р
7440-50-8	Copper	40.6			P
7439-89-6	Iron	166000			P
7439-92-1	Lead	347			P
7439-95-4	Magnesium	6960			P
7439-96-5	Manganese	422			P
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	10.3	В		P
7440-09-7	Potassium	5440			Р
7782-49-2	Selenium	23.4	В		Р
7440-22-4	Silver	2.4	U		Р
7440-23-5	Sodium	28700			Р
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	8.8	В		P
7440-66-6	Zinc	11800			P

Comments:				

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-3	

Lab Name: Mitkem Laboratories

Contract: D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water): WATER

Lab Sample ID: J0398-06

Level (low/med): MED

Date Received: 03/10/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	428			P
7440-36-0	Antimony	4.5	В		P
7440-38-2	Arsenic	6.1	В		Р
7440-39-3	Barium	39.6	В		P
7440-41-7	Beryllium	0.16	В		P
7440-43-9	Cadmium	0.50	Ū		P
7440-70-2	Calcium	29500			P.
7440-47-3	Chromium	6.8	В		Р
7440-48-4	Cobalt	1.9	В		P
7440-50-8	Copper	13.1	В		P
7439-89-6	Iron	43100			P
7439-92-1	Lead	4.9	В		Р
7439-95-4	Magnesium	4320			Р
7439-96-5	Manganese	566			Р
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	7.4	В		Р
7440-09-7	Potassium	7750			Р
7782-49-2	Selenium	11.9	В		Р
7440-22-4	Silver	2.4	Ū		Р
7440-23-5	Sodium	16700			Р
7440-28-0	Thallium	5.7	Ū.		Р
7440-62-2	Vanadium	1.0	В		Р
7440-66-6	Zinc	62.2			Р

Comme:	nts:			
	~		 	
	Water to the second sec		 	
		 	 -	

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SMS-MW-4

SDG No.: SJ0398

Matrix (soil/water):

WATER

7440-66-6 Zinc

Lab Sample ID:

J0398-14

Level (low/med): MED

Date Received:

03/12/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Concentration Analyte Μ 7429-90-5 Aluminum 644 Ρ 7440-36-0 Antimony 6.4 P В 7440-38-2 Arsenic 7.8 P В 7440-39-3 Barium 47.6 Р 7440-41-7 Beryllium 0.14 В P 7440-43-9 Cadmium 0.50 Р 22500 7440-70-2 Calcium P 7440-47-3 Chromium 7.0 P 7440-48-4 Cobalt 0.67 Р 7440-50-8 Copper 10.1 В Ρ 7439-89-6 Iron 52200 P 7439-92-1 Lead 5.0 В Ρ 7439-95-4 Magnesium 3210 P 7439-96-5 Manganese 216 P 7439-97-6 Mercury 0.056 CV 7440-02-0 Nickel 1.8 В P 7440-09-7 Potassium 2880 Р 7782-49-2 Selenium 10.0 U P 7440-22-4 Silver 2.4 U Ρ 7440-23-5 Sodium 13100 Р 7440-28-0 Thallium 5.7 U P 7440-62-2 Vanadium 3.4 В P

Comments:			

31.4

В

Ρ

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Contract:

D003821-41

Lab Code: MITKEM

Lab Name: Mitkem Laboratories

Case No.:

SAS No.:

SDG No.: SJ0398

SMS-MW-5

Matrix (soil/water):

WATER

Lab Sample ID:

J0398-11

Level (low/med): MED

Date Received:

03/10/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	289			P
7440-36-0	Antimony	4.2	Ū		Р
7440-38-2	Arsenic	12.7	В		Р
7440-39-3	Barium	95.4	В		Р
7440-41-7	Beryllium	0.14	В		P
7440-43-9	Cadmium	3.4	В		P
7440-70-2	Calcium	20400			P
7440-47-3	Chromium	10.3	В		P
7440-48-4	Cobalt	5.4	В		P
7440-50-8	Copper	20.5	В		P
7439-89-6	Iron	49300			Р
7439-92-1	Lead	5.5	В		Р
7439-95-4	Magnesium	1790			Р
7439-96-5	Manganese	760			Р
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	7.9	В		Р
7440-09-7	Potassium	2290			P
7782-49-2	Selenium	11.9	В		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	7350			Р
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	5.1	В		Р
7440-66-6	Zinc	25.6	В		Р

Comme:	nts:			
		 	 	

EPA SAMPLE NO.

SMS-MW-59

INORGANIC ANALYSIS DATA SHEET

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water):

WATER

Lab Sample ID: J0398-02

Level (low/med): MED

Date Received:

03/10/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	77.8	В		Р
7440-36-0	Antimony	4.2	Ū		P
7440-38-2	Arsenic	5.1	B		P
7440-39-3	Barium	42.4	В		P
7440-41-7	Beryllium	0.28	В		P
7440-43-9	Cadmium	0.50	U		P
7440-70-2	Calcium	24200			P
7440-47-3	Chromium	18.5	В		P
7440-48-4	Cobalt	5.4	В		P
7440-50-8	Copper	36.8			P
7439-89-6	Iron	121000			P
7439-92-1	Lead	16.4			P
7439-95-4	Magnesium	3660			P
7439-96-5	Manganese	907			P
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	18.2	В		P
7440-09-7	Potassium	2920			P
7782-49-2	Selenium	14.8	В		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	18000			P
7440-28-0	Thallium	5.7	U	1000	Р
7440-62-2	Vanadium	3.0	В		Р
7440-66-6	Zinc	26.7	В		P

Comme	nts:			,	
			:		
		:			

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-6

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water): WATER

Lab Sample ID: J0398-09

Level (low/med): MED

Date Received: 03/10/2010

% Solids: 0.0

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	8700			P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	17.5	В		P
7440-39-3	Barium	87.0	В		P
7440-41-7	Beryllium	3.7	В		P
7440-43-9	Cadmium	3.7	В		P
7440-70-2	Calcium	47200			P
7440-47-3	Chromium	66.5			P
7440-48-4	Cobalt	20.6	В	·	P
7440-50-8	Copper	84.9			P
7439-89-6	Iron	46700			P
7439-92-1	Lead	37.0			Р
7439-95-4	Magnesium	8100			P
7439-96-5	Manganese	308			P
7439-97-6	Mercury	0.20			CV
7440-02-0	Nickel	23.2	В		Р
7440-09-7	Potassium	2910			Р
7782-49-2	Selenium	10.0	U		P
7440-22-4	Silver	3.5	В		P
7440-23-5	Sodium	9140			P
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	53.3			P
7440-66-6	Zinc	487			P

Comments:				
			100 11 100 100 100 100 100 100 100 100	

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-6D

Lab Name: Mitkem Laboratories Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water): WATER

Lab Sample ID: J0398-10

Level (low/med): MED

Date Received: 03/10/2010

% Solids: 0.0

CAS No.	Analyte	Concentration		Q	M
7429-90-5	Aluminum	931			P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	3.3	В		P
7440-39-3	Barium	25.0	В		P
7440-41-7	Beryllium	0.10	В		P
7440-43-9	Cadmium	0.86	В		P
7440-70-2	Calcium	16700			P
7440-47-3	Chromium	5.6	В		P
7440-48-4	Cobalt	7.2	В		P
7440-50-8	Copper	17.6	В		Р
7439-89-6	Iron	26000			P
7439-92-1	Lead	10.0			P
7439-95-4	Magnesium	2200			P
7439-96-5	Manganese	294			Р
7439-97-6	Mercury	0.11	В		CV
7440-02-0	Nickel	6.9	В		Р
7440-09-7	Potassium	6930			P
7782-49-2	Selenium	11.9	В		Р
7440-22-4	Silver	2.4	Ū		P
7440-23-5	Sodium	16600			P
7440-28-0	Thallium	5.7	Ū	-	Р
7440-62-2	Vanadium	2.7	В		P
7440-66-6	Zinc	63.9			P

Comments:		
		,

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-7

Name:	Mitkem	Laboratories	Contract:	D003821-

-41

Lab Code: MITKEM SAS No.: SDG No.: SJ0398 Case No.:

Matrix (soil/water): WATER Lab Sample ID: J0398-08

Level (low/med): MED Date Received: 03/10/2010

% Solids: 0.0

Lab

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	207			P
7440-36-0	Antimony	4.2	U		Р
7440-38-2	Arsenic	5.0	В		Р
7440-39-3	Barium	59.6	В		P
7440-41-7	Beryllium	0.22	В		P
7440-43-9	Cadmium	1.2	В		P
7440-70-2	Calcium	30100		*	P
7440-47-3	Chromium	6.4	В		P
7440-48-4	Cobalt	4.4	В		Р
7440-50-8	Copper	27.0	В		P
7439-89-6	Iron	99500			P
7439-92-1	Lead	3.8	В		Р
7439-95-4	Magnesium	5910			P
7439-96-5	Manganese	890			P
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	10.2	В	-	P
7440-09-7	Potassium	7900			P
7782-49-2	Selenium	10.0	Ü		P
7440-22-4	Silver	2.4	Ū		Р
7440-23-5	Sodium	16400			Р
7440-28-0	Thallium	5.7	Ū		Р
7440-62-2	Vanadium	1.1	В		P
7440-66-6	Zinc	51.7			Р

Comments:		
A		

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SMS-MW-8

SDG No.: SJ0398

Matrix (soil/water):

WATER

Lab Sample ID: J0398-03

Level (low/med): MED

Date Received: 03/10/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	384			P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	3.1	U		P
7440-39-3	Barium	103	В		P
7440-41-7	Beryllium	0.27	В		Р
7440-43-9	Cadmium	0.54	В		P
7440-70-2	Calcium	30300			P
7440-47-3	Chromium	15.5	В		Р
7440-48-4	Cobalt	9.0	В		P
7440-50-8	Copper	67.2			P
7439-89-6	Iron	236000			P
7439-92-1	Lead	6.3	В		P
7439-95-4	Magnesium	3610			P
7439-96-5	Manganese	1020			Р
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	24.8	В		P
7440-09-7	Potassium	16200			P
7782-49-2	Selenium	22.9	В		Р
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	25200			P
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	0.69	В	<u> </u>	P
7440-66-6	Zinc	123			P

Comments:		

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-9

Lab Name: Mitkem Laboratories

Contract: D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water): WATER

Lab Sample ID: J0398-01

Level (low/med): MED

Date Received: 03/10/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	92.1	В		Р
7440-36-0	Antimony	8.2	В		Р
7440-38-2	Arsenic	4.3	В		Р
7440-39-3	Barium	45.1	В		Р
7440-41-7	Beryllium	0.30	В		P
7440-43-9	Cadmium	0.50	Ū		P
7440-70-2	Calcium	23700		-	P
7440-47-3	Chromium	12.6	В		P
7440-48-4	Cobalt	5.5	В		Р
7440-50-8	Copper	37.2			P
7439-89-6	Iron	115000			P
7439-92-1	Lead	15.5			P
7439-95-4	Magnesium	3620			Р
7439-96-5	Manganese	954			P
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	14.5	В		Р
7440-09-7	Potassium	2800			Р
7782-49-2	Selenium	23.5	В		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	17700			P
7440-28-0	Thallium	5.7	Ü		Р
7440-62-2	Vanadium	2.5	В		Р
7440-66-6	Zinc	28.4	В		P

Comments:			
-			
	·	 <u> </u>	

7

LABORATORY CONTROL SAMPLE

Lab Name: Mitkem Laboratories		tories	Contract:	D003821-41		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0398
Solid LCS	Source:				LCS(D) ID:	
Aqueous Lo	CS Source:				LCS-49906	

	Aque	Aqueous (ug/L)			Solid (mg/Kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R		
Aluminum	9100.0	8694.90	95.5	Symmetric Section Control Cont						
Antimony	455.0	493.17	108.4							
Arsenic	455.0	460.53	101.2							
Barium	9100.0	8891.76	97.7							
Beryllium	227.0	220.52	97.1							
Cadmium	227.0	230.03	101.3							
Calcium	22700.0	21564.85	95.0							
Chromium	910.0	869.02	95.5							
Cobalt	2270.0	2222.94	97.9							
Copper	1130.0	1087.57	96.2							
Iron	4550.0	4471.90	98.3							
Lead	455.0	460.61	101.2							
Magnesium	22700.0	21818.10	96.1							
Manganese	2270.0	2227.95	98.1							
Nickel	2270.0	2206.68	97.2							
Potassium	22700.0	21439.13	94.4							
Selenium	455.0	459.27	100.9							
Silver	1130.0	1098.55	97.2							
Sodium	22700.0	21523.89	94.8							
Thallium	455.0	473.62	104.1							
Vanadium	2270.0	2198.36	96.8							
Zinc	2270.0	2195.03	96.7							

7

LABORATORY CONTROL SAMPLE

Lab Name: Mitkem Laboratories		Contract:	D003821-41				
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0398	
Solid LCS	Source: _				LCS(D) ID:		
Aqueous LO	CS Source:				LCS-50021		

	Aque	ous (ug/L)		Sol	id (mg/	′Kg)	
Analyte	True	Found	%R	True	Found	C	Limits	%R
Mercury	4.6	5.41	117.6		The state of the s			

7

LABORATORY CONTROL SAMPLE

Lab Name:	Mitkem Labor	atories	Contract:	D003821-41		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0398
Solid LCS	Source:		-		LCS(D) ID:	
Aqueous LO	CS Source: _		-		LCS-50099	

	Aque	ous (ug/L)	Solid (mg/Kg)						
Analyte	True	Found	%R	True	Found	С	Limits	%R		
Mercury	4.6	4.53	98.5							

2B - FORM II VOA-2 WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Level: (TRACE or LOW) LOW

SAMPLE NO. (DBFM) # (DCE) # (TOL) # (BFB) # 01 LCS-49928 103 99 100 99 0 02 LCSD-49928 101 100 98 97 0 03 MB-49928 100 96 100 96 0 04 TB-1 98 97 100 94 0 05 TB-3 100 96 86 93 0 06 SMS-MW-9 100 97 99 94 0 07 SMS-MW-59 101 101 99 92 0 08 SMS-MW-8 98 97 97 91 0					1	T 4	-1		mom)
SAMPLE NO. (DBEM) # (DEC) # (101) # (BFB) #		CLIENT	VDMC1	VDMC2	VDMC3	VDMC4			TOT
02 LCSD-49928 101 100 98 97 0 03 MB-49928 100 96 100 96 0 04 TB-1 98 97 100 94 0 05 TB-3 100 96 86 93 0 06 SMS-MW-9 100 97 99 94 0 07 SMS-MW-59 101 101 99 92 0 08 SMS-MW-8 98 97 97 91 0 09 SMS-MW-1 100 100 99 91 0 10 SMS-MW-2 99 96 100 92 0 11 SMS-MW-3 100 100 99 90 0 12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 15 MB-49950		SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB) #		 	
03 MB-49928 100 96 100 96 0 0 04 TB-1 98 97 100 94 0 05 TB-3 100 96 86 93 0 06 SMS-MM-9 100 97 99 94 0 07 SMS-MM-59 101 101 99 92 0 08 SMS-MM-8 98 97 97 97 91 0 09 SMS-MM-1 100 100 99 91 0 01 SMS-MM-2 99 96 100 92 0 01 SMS-MM-2 100 100 99 90 0 01 SMS-MM-4 101 99 100 92 0 01 SMS-MM-4 101 99 100 92 0 01 SMS-MM-15 100 96 98 89 0 01 SMS-MM-15 100 96 98 89 0 01 SMS-MM-15 100 96 98 89 0 01 SMS-MM-15 100 96 98 89 0 01 SMS-MM-15 100 96 98 89 0 01 SMS-MM-16 101 99 100 92 0 02 SMS-MM-16 101 99 100 98 97 0 03 SMS-MM-16 101 99 9 90 0 04 DESTANCE 101 99 9 95 100 94 0 05 SMS-MM-16 101 99 9 95 100 94 0 06 SMS-MM-16 101 99 99 99 99 99 90 90 0 07 SMS-MM-16 101 99 99 99 99 90 90 90 90 90 90 90 90 90	01	LCS-49928	103	99	100	99			
04 TB-1 98 97 100 94 00 05 TB-3 100 96 86 93 00 06 SMS-MW-9 100 97 99 94 00 07 SMS-MW-59 101 101 99 92 00 08 SMS-MW-1 100 100 99 91 00 09 SMS-MW-1 100 100 99 91 00 10 SMS-MW-2 99 96 100 92 00 11 SMS-MW-3 100 100 99 90 00 12 SMS-MW-4 101 99 100 92 00 13 SMS-MW-4 101 99 100 92 00 14 LCS-49950 99 100 98 97 00 15 SMS-MW-15 100 96 98 89 00 16 SMS-MW-165 101 99 100 93 00 17 SMS-MW-165 101 99 100 93 00 18 SMS-MW-160 99 95 100 93 00 19 LCS-50047 103 96 101 101 00 94 00 19 LCS-50047 103 96 101 101 00 00 20 MB-50047 102 99 97 98 96 00 21 TB-02 102 104 98 96 96 00 22 SMS-MW-6 105 109 87 94 00 25 LCS-50061 100 101 100 100 00 26 MB-50061 98 104 99 99 90 27 SMS-MW-6D 103 104 99 90 00 27 SMS-MW-6D 103 104 99 99 90 00 27 SMS-MW-6D 103 104 99 90 00 28 SMS-MW-6D 105 109 87 94 00 29 SMS-MW-6D 103 104 99 99 90 00 20 MB-50061 98 104 99 90 00 20 SMS-MW-5 100 101 100 100 00 20 MB-50061 98 104 99 90 00 20 SMS-MW-5 100 101 100 100 00 20 MB-50061 98 104 99 90 00	02	LCSD-49928	101	100	98	97			
10	03	MB-49928	100	96	100	96			
06 SMS-MW-9 100 97 99 94 0 07 SMS-MW-59 101 101 99 92 0 08 SMS-MW-8 98 97 97 91 0 09 SMS-MW-1 100 100 99 91 0 10 SMS-MW-2 99 96 100 92 0 11 SMS-MW-3 100 100 99 90 0 12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16B 101 99 95 100 94 0 18	04	TB-1	98	97	100	94			0
07 SMS-MW-59 101 101 99 92 0 08 SMS-MW-8 98 97 97 91 0 09 SMS-MW-1 100 100 99 91 0 10 SMS-MW-2 99 96 100 92 0 11 SMS-MW-3 100 100 99 90 0 12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16B 99 95 100 94 0 18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047	05	TB-3	100	96	86	93			.11
08 SMS-MW-8 98 97 97 91 0 09 SMS-MW-1 100 100 99 91 0 10 SMS-MW-2 99 96 100 92 0 11 SMS-MW-3 100 100 99 90 0 12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047	06	SMS-MW-9	100	97	99	94			1 1
09 SMS-MW-1 100 100 99 91 0 10 SMS-MW-2 99 96 100 92 0 11 SMS-MW-3 100 100 99 90 0 12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 </td <td>07</td> <td>SMS-MW-59</td> <td>101</td> <td>101</td> <td>99</td> <td>92</td> <td></td> <td></td> <td><u> </u></td>	07	SMS-MW-59	101	101	99	92			<u> </u>
10 SMS-MW-2 99 96 100 92 0 11 SMS-MW-3 100 100 99 90 0 12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16D 99 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SM	08	SMS-MW-8	98	97	97	91			0
11 SMS-MW-3 100 100 99 90 0 12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16B 99 95 100 94 0 18 SMS-MW-16M 99 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 S	09	SMS-MW-1	100	100	99	91			0
12 SMS-MW-4 101 99 100 92 0 13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16M 99 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 0 20 MB-50047 102 99 97 98 0 0 21 TB-02 102 104 98 96 0 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 </td <td>10</td> <td>SMS-MW-2</td> <td>99</td> <td>96</td> <td>100</td> <td>92</td> <td></td> <td></td> <td>J</td>	10	SMS-MW-2	99	96	100	92			J
13 SMS-MW-15 100 96 98 89 0 14 LCS-49950 99 100 98 97 0 15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061	11	SMS-MW-3	100	100	99	90			0
14 LCS-49950 99 100 98 97 15 MB-49950 103 103 103 95 16 SMS-MW-16S 101 99 100 93 17 SMS-MW-16D 99 95 100 94 18 SMS-MW-16M 99 99 99 92 19 LCS-50047 103 96 101 101 20 MB-50047 102 99 97 98 21 TB-02 102 104 98 96 22 SMS-MW-7 107 101 92 95 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 0 27 SMS-MW-5 102 101 100 92 0	12	SMS-MW-4	101	99	100	92			0
15 MB-49950 103 103 103 95 0 16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 0 27 SMS-MW-5 102 101 100 92 0	13	SMS-MW-15	100	96	98	89			0
16 SMS-MW-16S 101 99 100 93 0 17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 0 27 SMS-MW-5 102 101 100 92 0 0	14	LCS-49950	99	100	98	97			0
17 SMS-MW-16D 99 95 100 94 0 18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 0 27 SMS-MW-5 102 101 100 92 0	15	MB-49950	103	103	103	95			0
18 SMS-MW-16M 99 99 99 92 0 19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	16	SMS-MW-16S	101	99	100	93			0
19 LCS-50047 103 96 101 101 0 20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	17	SMS-MW-16D	99	95	100	94			0
20 MB-50047 102 99 97 98 0 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	18	SMS-MW-16M	99	99	99	92			0
20 MB-30047 102 35 37 36 21 TB-02 102 104 98 96 0 22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	19	LCS-50047	103	96	101	101			0
22 SMS-MW-7 107 101 92 95 0 23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	20	MB-50047	102	99	97	98			0
23 SMS-MW-6 105 109 87 94 0 24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	21	TB-02	102	104	98	96			0
24 SMS-MW-6D 103 104 94 93 0 25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	22	SMS-MW-7	107	101	92	95			0
25 LCS-50061 100 101 100 100 0 26 MB-50061 98 104 99 90 0 27 SMS-MW-5 102 101 100 92 0	23	SMS-MW-6	105	109	87	94			0
26 MB-50061 98 104 99 90 27 SMS-MW-5 102 101 100 92 0	24	SMS-MW-6D	103	104	94	93			0
27 SMS-MW-5 102 101 100 92 0	25	LCS-50061	100	101	100	100			0
	26	MB-50061	98	104	99	90			0
28 SMS-MW-17 103 100 101 89 0	27	SMS-MW-5	102	101	100	92			0
	28	SMS-MW-17	103	100	101	89			0

SOM_002

Page 1 of 2

SW846

[#] Column to be used to flag recovery values

^{*} Values outside of contract required QC limits

2B - FORM II VOA-2

WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Level: (TRACE or LOW) LOW

	CLIENT	VDMC1	VDMC2	VDMC3	VDMC4	TOT
	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB) #	OUT
29	SMS-MW-13DMS	105	102	94	94	0
30	SMS-MW-13DMS D	102	106	99	93	0
31	LCS-50103	101	100	100	95	0
32	мв-50103	101	97	100	91	0
33	SMS-MW-13D	101	97	100	93	0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75-120)

[#] Column to be used to flag recovery values

SOM_002

Page 2 of 2 SW846

^{*} Values outside of contract required QC limits

2H - FORM II SV-2

WATER SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

	CLIENT	SDMC1	SDMC2	SDMC3	SDMC4	SDMC5	SDMC6		тот
	SAMPLE NO.	(NBZ) #	(FBP) #	(TPH) #	(PHL) #	(2FP) #	(TBP) #		OUT
01	MB-49849	91	83	85	89	91	71		0
02	LCS-49849	83	77	78	84	80	70		0
03	LCSD-49849	86	82	83	75	89	73		0
04	SMS-MW-9	84	76	79	78	82	72		0
05	SMS-MW-59	74	70	77	74	75	66		0
06	SMS-MW-8	86	75	82	74	84	65		0
07	SMS-MW-1	86	76	80	81	83	69		0
08	SMS-MW-2	79	72	72	81	80	67		0
09	SMS-MW-3	77	69	78	75	76	64		0
10	SMS-MW-7	84	78	78	72	76	56		0
11	SMS-MW-6	83	72	66	81	85	75		. 0
12	SMS-MW-6D	66	65	68	69	68	62	· ·	0
13	SMS-MW-5	81	71	81	66	72	53		0
14	SMS-MW-17	86	71	81	58	64	47		0
15	MB-49914	78	75	89	.67	80	87		0
16	LCS-49914	82	88	107	72	71	120		0
17	SMS-MW-4	71	79	123	69	77	98		0
18	SMS-MW-15	69	77	124	66	71	97		0
19	SMS-MW-16S	75	80	125	73	77	94		0
20	SMS-MW-16D	71	78	121	68	73	111		0
21	SMS-MW-16M	74	76	131	65	76	96		0
22	SMS-MW-13D	63	75	126	64	72	92		0
23	SMS-MW-13DMS	81	94	124	76	72	108		0
	SMS-MW-13DMS D	83	94	108	73	72	84		0

			QC LIMITS
SDMC1	(NBZ)	= Nitrobenzene-d5	(40-110)
SDMC2	(FBP)	= 2-Fluorobiphenyl	(50-110)
SDMC3	(TPH)	= Terphenyl-d14	(50-135)
SDMC4	(PHL)	= Phenol-d5	(10-115)
SDMC5	(2FP)	= 2-Fluorophenol	(20-110)
SDMC6	(TBP)	= 2,4,6-Tribromophenol	(40-125)

[#] Column to be used to flag recovery values

SOM_002

^{*} Values outside of contract required QC limits

D DMC diluted out

3A - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Matrix Spike - EPA Sample No.: SMS-MW-13D Level: (TRACE or LOW) LOW

	SPIKE	SAMPLE	MS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	MS %REC	#	LIMITS
	(µg/L)	(µg/L)	(µg/L)			REC.
Dichlorodifluoromethane	50.0000	0.0000	43.6655	87		30-155
Chloromethane	50.0000	0.0000	60.8338	122		40-125
Vinyl chloride	50.0000	0.0000	60.3700	121		50-145
Bromomethane	50.0000	0.0000	54.2401	108		30-145
Chloroethane	50.0000	0.0000	57.0925	114		60-135
Trichlorofluoromethane	50.0000	0.0000	52.2812	105		60-145
1,1-Dichloroethene	50.0000	0.0000	58.9814	118		70-130
Acetone	50.0000	0.0000	52.4709	105		40-140
Iodomethane	50.0000	0.0000	58.3607	117		72-121
Carbon disulfide	50.0000	0.0000	44.7099	89		35-160
Methylene chloride	50.0000	0.0000	58.7639	118		55-140
trans-1,2-Dichloroethene	50.0000	0.0000	55.9344	112		60-140
Methyl tert-butyl ether	50.0000 50.0000	0.0000	57.3112 57.3884	115 115		65-125 70-135
1,1-Dichloroethane Vinyl acetate	50.0000	0.0000	36.6920	73	+	70-135 38-163
2-Butanone	50.0000	0.0000	51.2217	102	 	30-150
cis-1,2-Dichloroethene	50.0000	0.0000	58.0021	116	-	70-125
2,2-Dichloropropane	50.0000	0.0000	20.8512	42	*	70-135
Bromochloromethane	50.0000	0.0000	56.4420	113		65-130
Chloroform	50.0000	0.0000	57.4323	115		65-135
1,1,1-Trichloroethane	50.0000	0.0000	57.9392	116		65-130
1,1-Dichloropropene	50.0000	0.0000	55.5267	111		75-130
Carbon tetrachloride	50.0000	0.0000	56.0743	112		65-140
1,2-Dichloroethane	50.0000	0.0000	58.0183	116		70-130
Benzene	50.0000	0.0000	56.6326	113		80-120
Trichloroethene	50.0000	0.0000	59.1918	118		70-125
1,2-Dichloropropane	50.0000	0.0000	58.0264	116		75-125
Dibromomethane	50.0000	0.0000	57.0781	114		75-125
Bromodichloromethane	50.0000	0.0000	55.9291	112		75-120
cis-1,3-Dichloropropene	50.0000	0.0000	46.4276	93		70-130
4-Methyl-2-pentanone	50.0000	0.0000	55.8606	112		60-135
Toluene	50.0000	0.0000	57.2933	115		75-120
trans-1,3-Dichloropropene	50.0000	0.0000	46.0260	92		55-140
1,1,2-Trichloroethane	50.0000	0.0000	59.6242	119		75-125
1,3-Dichloropropane	50.0000	0.0000	54.8849	110		75-125
Tetrachloroethene	50.0000	0.0000	57.2082	114		45-150
2-Hexanone	50.0000	0.0000	50.2101	100		55-130
Dibromochloromethane	50.0000	0.0000	52.6213	105	+	60-135
1,2-Dibromoethane Chlorobenzene	50.0000	0.0000	55.4326 56.7767	111		80-120 80-120
1,1,1,2-Tetrachloroethane	50.0000	0.0000	56.8718	114	++	80-120
Ethylbenzene	50.0000	0.0000	55.9778	112	++	75-125
m,p-Xylene	100.0000	0.0000	112.7240	113		75-123
o-Xylene	50.0000	0.0000	55.3896	111		80-120
O_v\retie	30.0000	0.0000	33.3696	T T T		00-120

3A - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Matrix Spike - EPA Sample No.: SMS-MW-13D Level: (TRACE or LOW) LOW

Xylene (Total)	150.0000	0.0000	168.1136	112	81-121
Styrene	50.0000	0.0000	56.4512	113	65-135
Bromoform	50.0000	0.0000	45.8227	92	70-130
Isopropylbenzene	50.0000	0.0000	55.2433	110	75-125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	55.6730	111	65-130
Bromobenzene	50.0000	0.0000	57.4048	115	75-125
1,2,3-Trichloropropane	50.0000	0.0000	48.4766	97	75-125
n-Propylbenzene	50.0000	0.0000	56.1520	112	70-130
2-Chlorotoluene	50.0000	0.0000	56.5313	113	75-125
1,3,5-Trimethylbenzene	50.0000	0.0000	56.2029	112	75-130
4-Chlorotoluene	50.0000	0.0000	55.4153	111	75-130
tert-Butylbenzene	50.0000	0.0000	56.9742	114	70-130
1,2,4-Trimethylbenzene	50.0000	0.0000	56.6800	113	75-130
sec-Butylbenzene	50.0000	0.0000	54.7318	109	70-125
4-Isopropyltoluene	50.0000	0.0000	55.9527	112	75-130
1,3-Dichlorobenzene	50.0000	0.0000	55.3528	111	75-125
1,4-Dichlorobenzene	50.0000	0.0000	55.3530	111	75-125
n-Butylbenzene	50.0000	0.0000	51.0310	102	70-135
1,2-Dichlorobenzene	50.0000	0.0000	56.6592	113	70-120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	50.7230	101	50-130
1,2,4-Trichlorobenzene	50.0000	0.0000	54.4379	109	65-135
Hexachlorobutadiene	50.0000	0.0000	46.9257	94	50-140
1,2,3-Trichlorobenzene	50.0000	0.0000	54.7850	110	55-140
Naphthalene	50.0000	0.0000	53.5775	107	55-140

	SPIKE	MSD					QC LIMITS	
	ADDED	CONCENTRATION	MSD %REC	#	%RPI) #]		
COMPOUND	(µg/L)	(µg/L)					RPD	REC.
Dichlorodifluoromethane	50.0000	41.4159	83		5		0-40	30-155
Chloromethane	50.0000	54.1650	108		12		0-40	40-125
Vinyl chloride	50.0000	56.7045	113		6		0-40	50-145
Bromomethane	50.0000	49.9441	100		8		0-40	30-145
Chloroethane	50.0000	54.3128	109		5		0-40	60-135
Trichlorofluoromethane	50.0000	51.0691	102		2		0-40	60-145
1,1-Dichloroethene	50.0000	54.0558	108		9		0-40	70-130
Acetone	50.0000	54.5907	109		4		0-40	40-140
Iodomethane	50.0000	53.4259	107		9		0-40	72-121
Carbon disulfide	50.0000	43.9402	88		2		0-40	35-160
Methylene chloride	50.0000	54.6492	109		7		0-40	55-140
trans-1,2-Dichloroethene	50.0000	53.9515	108		4		0-40	60-140
Methyl tert-butyl ether	50.0000	54.6633	109		5		0-40	65-125
1,1-Dichloroethane	50.0000	52.0141	104		10		0-40	70-135
Vinyl acetate	50.0000	33.5756	67		9		0-40	38-163
2-Butanone	50.0000	47.8471	96		7		0-40	30-150
cis-1,2-Dichloroethene	50.0000	54.6866	109		6		0-40	70-125
2,2-Dichloropropane	50.0000	18.8303	38	*	10		0-40	70-135
Bromochloromethane	50.0000	54.4369	109		4		0-40	65-130

3A - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Matrix Spike - EPA Sample No.: SMS-MW-13D Level: (TRACE or LOW) LOW

			100			
Chloroform	50.0000	53.8621	108	6	0-40	65-135
1,1,1-Trichloroethane	50.0000	54.6972	109	6	0-40	65-130
1,1-Dichloropropene	50.0000	54.3241	109	2	0-40	75-130
Carbon tetrachloride	50.0000	53.2672	107	5	0-40	65-140
1,2-Dichloroethane	50.0000	55.0842	110	5	0-40	70-130
Benzene	50.0000	53.6609	107	5	0-40	80-120
Trichloroethene	50.0000	57.4208	115	3	0-40	70-125
1,2-Dichloropropane	50.0000	54.7863	110	6	0-40	75-125
Dibromomethane	50.0000	54.6555	109	4	0-40	75-125
Bromodichloromethane	50.0000	52.1581	104	7	0-40	75-120
cis-1,3-Dichloropropene	50.0000	44.6953	89	4	0-40	70-130
4-Methyl-2-pentanone	50.0000	53.8511	108	4	0-40	60-135
Toluene	50.0000	53.9572	108	6	0-40	75-120
trans-1,3-Dichloropropene	50.0000	41.9864	84	9	0-40	55-140
1,1,2-Trichloroethane	50.0000	54.2171	108	9	0-40	75-125
1,3-Dichloropropane	50.0000	54.0351	108	2	0-40	75-125
Tetrachloroethene	50.0000	56.3056	113	2	0-40	45-150
2-Hexanone	50.0000	49.7529	100	1	0-40	55-130
Dibromochloromethane	50.0000	51.2269	102	3	0-40	60-135
1,2-Dibromoethane	50.0000	53.6212	107	3	0-40	80-120
Chlorobenzene	50.0000	55.1282	110	3	0-40	80-120
1,1,1,2-Tetrachloroethane	50.0000	55.2938	111	3	0-40	80-130
Ethylbenzene	50.0000	52.9644	106	6	0-40	75-125
m,p-Xylene	100.0000	110.1169	110	2	0-40	75-130
o-Xylene	50.0000	54.3647	109	2	0-40	80-120
Xylene (Total)	150.0000	164.4816	110	2	0-40	81-121
Styrene	50.0000	54.1404	108	4	0-40	65-135
Bromoform	50.0000	46.0248	92	0	0-40	70-130
Isopropylbenzene	50.0000	53.8242	108	3	0-40	75-125
1,1,2,2-Tetrachloroethane	50.0000	54.3638	109	2	0-40	65-130
Bromobenzene	50.0000	57.8620	116	1	0-40	75-125
1,2,3-Trichloropropane	50.0000	47.1523	94	3	0-40	75-125
n-Propylbenzene	50.0000	54.6840	109	3	0-40	70-130
2-Chlorotoluene	50.0000	55.5790	111	2	0-40	75-125
1,3,5-Trimethylbenzene	50.0000	53.8405	108	4	0-40	75-130
4-Chlorotoluene	50.0000	53.0008	106	4	0-40	75-130
tert-Butylbenzene	50.0000	54.0838	108	5	0-40	70-130
1,2,4-Trimethylbenzene	50.0000	53.1407	106	6	0-40	75-130
sec-Butylbenzene	50.0000	52.4570	105	4	0-40	70-125
4-Isopropyltoluene	50.0000	53.4010	107	5	0-40	75-130
1,3-Dichlorobenzene	50.0000	53.4597	107	3	0-40	75-125
1,4-Dichlorobenzene	50.0000	51.8644	104	7	0-40	75-125
n-Butylbenzene	50.0000	49.9756	100	2	0-40	70-135
1,2-Dichlorobenzene	50.0000	54.2285	108	4	0-40	70-120
1,2-Dibromo-3-chloropropan	50.0000	47.7966	96	6	0-40	50-130
	50.0000	52.8038	106	3	0-40	65-135
1,2,4-Trichlorobenzene						

3A - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:	MITKEM LAI	BORATORIES		Contract:				
Lab	Code:	Code: MITKEM Case No.: J0398 Mod. Ref No.:			SDG No.:	SJ0398			
Mati	rix Spi	ke - EPA S	ample No.:	SMS-MW-13D		Level	: (TRAC	E or LOW)	LOW
	1,2,3	3-Trichlorob	enzene	50.0000	53.7211	107	2	0-40	55-140
	Napht	halene		50.0000	54.4213	109	2	0-40	55-140
* Va	lues ou	tside of QC	limits	cy and RPD valu	es with an aste	erisk			
RPD:	0	out of	68 outside	limits					
Spik	e Recov	ery: 2	out of 1	.36 outside lir	nits				
COMM	ENTS:	· _						<u> </u>	

CLIENT SAMPLE NO.

LCS-49928

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Lab Sample ID: LCS-49928 LCS Lot No.:

Date Extracted: 03/18/2010 Date Analyzed (1): 03/18/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
00112 00112			•			REC.
Dichlorodifluoromethane	50.0000	0.0000	46.2661	93		30 - 15
Chloromethane	50.0000	0.0000	50.3183	101		40 - 12
Vinyl chloride	50.0000	0.0000	53.5248	107		50 - 14
Bromomethane	50.0000	0.0000	49.4183	99		30 - 14
Chloroethane	50.0000	0.0000	52.1843	104		60 - 13
Trichlorofluoromethane	50.0000	0.0000	49.5007	99		60 - 14
1,1-Dichloroethene	50.0000	0.0000	52.4129	105		70 - 13
Acetone	50.0000	0.0000	46.8294	94		40 - 14
Iodomethane	50.0000	0.0000	52.7376	105		72 - 12
Carbon disulfide	50.0000	0.0000	50.9423	102		35 - 16
Methylene chloride	50.0000	0.0000	51.9707	104		55 - 14
trans-1,2-Dichloroethene	50.0000	0.0000	52.8287	106		60 - 14
Methyl tert-butyl ether	50.0000	0.0000	52.0500	104		65 - 12
1,1-Dichloroethane	50.0000	0.0000	52.2189	104		70 - 13
Vinyl acetate	50.0000	0.0000	51.2780	103		38 - 16
2-Butanone	50.0000	0.0000	46.8198	94		30 - 15
cis-1,2-Dichloroethene	50.0000	0.0000	52.9834	106		70 - 12
2,2-Dichloropropane	50.0000	0.0000	43.4717	87		70 - 13
Bromochloromethane	50.0000	0.0000	51.8170	104		65 - 13
Chloroform	50.0000	0.0000	52.1704	104		65 - 13
l,1,1-Trichloroethane	50.0000	0.0000	52.8423	106		65 - 13
1,1-Dichloropropene	50.0000	0.0000	51.0374	102		75 - 13
Carbon tetrachloride	50.0000	0.0000	52.2799	105		65 - 14
1,2-Dichloroethane	50.0000	0.0000	53.4941	107		70 - 13
Benzene	50.0000	0.0000	52.2827	105		80 - 12
Trichloroethene	50.0000	0.0000	53.5322	107		70 - 12
1,2-Dichloropropane	50.0000	0.0000	52.9462	106		75 - 12
Dibromomethane	50.0000	0.0000	50.7527	102		75 - 12
Bromodichloromethane	50.0000	0.0000	53.7486	107		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	51.9951	104		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	50.0111	100		60 - 13
Toluene	50.0000	0.0000	53.4548	107		75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	49.6326	99		55 - 14
1,1,2-Trichloroethane	50.0000	0.0000	52.4978	105		75 - 12
1,3-Dichloropropane	50.0000		52.5201	105		75 - 12
Tetrachloroethene	50.0000	0.0000	55.3990	111		45 - 15
2-Hexanone	50.0000	0.0000	49.7179	99		55 - 13
Dibromochloromethane	50.0000	0.0000	52.7805	106		60 - 13
1,2-Dibromoethane	50.0000	0.0000	51.9642	104		80 - 12
Chlorobenzene	50.0000	0.0000	54.3146	109		80 - 12
1,1,1,2-Tetrachloroethane	50.0000	0.0000	52.1107	104		80 - 13
	50.0000	0.0000	53.6675	107		75 - 12
Ethylbenzene	30.0000	0.0000			Į.	, 0
Ethylbenzene m,p-Xylene	100.0000	0.0000	108.3436	108		75 - 13

CLIENT SAMPLE NO.

LCS-49928

Lab Name: MITKE		1 LABORATORIES		Contract:		
Lab Code:	MITKEN	Case No.:	J0398	Mod. Ref No.:	SDG No.:	SJ0398
Lab Sample	ID:	LCS-49928		LCS Lot No.:		
Date Extrac	ted:	03/18/2010		Date Analyzed (1):	03/18/2010	

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	161.5264	108		81 - 121
Styrene	50.0000	0.0000	53.2110	106		65 - 135
Bromoform	50.0000	0.0000	49.5437	99		70 - 130
Isopropylbenzene	50.0000	0.0000		105		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	50.0310	100		65 - 130
Bromobenzene	50.0000	0.0000	52.4650	105		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	47.9321	96		75 - 125
n-Propylbenzene	50.0000	0.0000	52.3251	105		70 - 130
2-Chlorotoluene	50.0000	0.0000	52.2192	104		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	52.4859	105		75 - 130
4-Chlorotoluene	50.0000	0.0000	52.0358	104		75 - 130
tert-Butylbenzene	50.0000	0.0000	52.4158	105		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	52.3483	105		75 - 130
sec-Butylbenzene	50.0000	0.0000	52.3867	105		70 - 125
4-Isopropyltoluene	50.0000	0.0000	52.6660	105		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	51.6674	103		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	51.5604	103		75 - 125
n-Butylbenzene	50.0000	0.0000	53.5217	107		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	51.7851	104		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	48.9739	98		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	54.0600	108		65 - 135
Hexachlorobutadiene	50.0000	0.0000	48.8427	98		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	52.5520	105		55 - 140
Naphthalene	50.0000	0.0000	50.3980	101		55 - 140

# COLUMN CO	ne useu	LO	IIag Iecov	сту а	and RID vardes with an asterisk	
* Values out	tside of	QC	limits			
Spike Recov	ery:	0	out of _	68	outside limits	
COMMENTS:	· .					

3 - FORM III

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-49928

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0398

Mod. Ref No.:

SDG No.: SJ0398

Lab Sample ID: LCSD-49928

LCS Lot No.:

	SPIKE ADDED	LCSD CONCENTRATION	ICSD &BEC	#	%RPI) #	QC	LIMITS
COMPOUND	ADDED	CONCENTRATION	HCDD SKEC	ıı	OILL	, 11	RPD	REC.
Dichlorodifluoromethane	50.0000	44.6924	89		4		40	30 - 155
Chloromethane	50.0000		92		9		40	40 - 125
Vinyl chloride	50.0000	53.8015	108		1		40	50 - 145
Bromomethane	50.0000	48.0422	96		3		40	30 - 145
Chloroethane	50.0000	52.2147	104		0		40	60 - 135
Trichlorofluoromethane	50.0000		98		1		40	60 - 145
1,1-Dichloroethene	50.0000		100		5		40	70 - 130
Acetone	50.0000	1	93		1		40	40 - 140
Iodomethane	50.0000	49.6772	99		6		40	72 - 121
Carbon disulfide	50.0000	49.3182	99		3		40	35 - 160
Methylene chloride	50.0000	50.5442			3		40	55 - 140
trans-1,2-Dichloroethene	50.0000	50.2983	101		5		40	60 - 140
Methyl tert-butyl ether	50.0000	50.7920	102		2		40	65 - 125
1,1-Dichloroethane	50.0000		102		2		40	70 - 135
Vinyl acetate	50.0000				4		40	38 - 163
2-Butanone	50.0000				0		40	30 - 150
cis-1,2-Dichloroethene	50.0000	1		-	5		40	70 - 125
2,2-Dichloropropane	50.0000				5		40	70 - 135
Bromochloromethane	50.0000	1			3		40	65 - 130
Chloroform	50.0000				2		40	65 - 135
1,1,1-Trichloroethane	50.0000	51.9802			2		40	65 - 130
1,1-Dichloropropene	50.0000	1			0		40	75 - 130
Carbon tetrachloride	50.0000				3		40	65 - 140
1,2-Dichloroethane	50.0000				3		40	70 - 130
Benzene	50.0000				3		40	80 - 120
Trichloroethene	50.0000				3		40	70 - 125
1,2-Dichloropropane	50.0000				2		40	75 - 125
Dibromomethane	50.0000				1		40	75 - 125
Bromodichloromethane	50.0000				5		40	75 - 120
cis-1,3-Dichloropropene	50.0000				6	-	40	70 - 130
	50.0000				3		40	60 - 135
4-Methyl-2-pentanone	50.0000		1		3		40	75 - 120
Toluene	50.0000				0		40	55 - 140
trans-1,3-Dichloropropene	50.0000				2		40	75 - 125
1,1,2-Trichloroethane	50.0000				4		40	75 - 125
1,3-Dichloropropane	50.0000	<u></u>			2	-	40	45 - 150
Tetrachloroethene		<u> </u>			1		40	55 - 130
2-Hexanone	50.0000		<u> </u>		4	-	40	60 - 135
Dibromochloromethane	50.0000		<u> </u>		7		40	80 - 120
1,2-Dibromoethane	50.0000				6		40	80 - 120
Chlorobenzene	50.0000	1			1	-		80 - 120
1,1,1,2-Tetrachloroethane	50.0000				4		40	75 - 125
Ethylbenzene	50.0000				6	-	40	
m,p-Xylene	100.0000				7		40	75 - 130
o-Xylene	50.0000				3	<u> </u>	40	80 - 120
Xylene (Total)	150.0000		<u> </u>		6	ļ	40	81 - 121
Styrene	50.0000	50.2549	101		5		40	65 - 135

EPA SAMPLE NO.

LCSD-49928

Lab	Name:	MITKE	M LABORATORIES		Contract:		
Lab	Code:	MITKE	M Case No.:	J0398	Mod. Ref No.:	SDG No.:	SJ0398
Lab	Sample	ID:	LCSD-49928		LCS Lot No.:		

	SPIKE	LCSD				QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #		
COMPOUND						RPD	REC.
Bromoform	50.0000	48.4059	97		2	40	70 - 130
Isopropylbenzene	50.0000	51.3454	103		2	40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	49.2183			2	40	65 - 130
Bromobenzene	50.0000	50.2664	101		4	40	75 - 125
1,2,3-Trichloropropane	50.0000		96		0	40	75 - 125
n-Propylbenzene	50.0000	51.6300	103		2	40	70 - 130
2-Chlorotoluene	50.0000	51.7587	104		0	40	75 - 125
1,3,5-Trimethylbenzene	50.0000	51.1712	102		3	40	75 - 130
4-Chlorotoluene	50.0000	52.3946	105		1	40	75 - 130
tert-Butylbenzene	50.0000	49.7036	99		6	40	70 - 130
1,2,4-Trimethylbenzene	50.0000	51.6972	103		2	40	75 - 130
sec-Butylbenzene	50.0000	50.2846	101		4	40	70 - 125
4-Isopropyltoluene	50.0000	50.9121	102		3	40	75 - 130
1,3-Dichlorobenzene	50.0000	49.4489	99		4	40	75 - 125
1,4-Dichlorobenzene	50.0000	51.4285	103		0	40	75 - 125
n-Butylbenzene	50.0000	52.1109	104		3	40	70 - 135
1,2-Dichlorobenzene	50.0000	50.1459	100		4	40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	49.0736	98		0	40	50 - 130
1,2,4-Trichlorobenzene	50.0000	51.3006	103		5	40	65 - 135
Hexachlorobutadiene	50.0000	47.0752	94		4	40	50 - 140
1,2,3-Trichlorobenzene	50.0000	48.3682	97		8	40	55 - 140
Naphthalene	50.0000	49.6963	99		2	40	55 - 140

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values with an asterisk

*	17011100	outside	of	\circ	limits
~	values	ourside	OT	U/U	TTHITCO

RPD: 0 out of	68 outside limits	
Spike Recovery:	0 out of 68 outside limits	
COMMENTS:		

CLIENT SAMPLE NO.

LCS-49950

Lab	Name:	MITKEM LABORA	ATORIES		Contract:				
Lab	Code:	MITKEM	Case No.:	J0398	Mod. Ref No.:	<u>.</u>	SDG 1	No.:	SJ0398
Lab	Sample	ID: LCS-499) 50		LCS Lot No.:				

Date Extracted: 03/19/2010 Date Analyzed (1): 03/19/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	0.0000	51.1044	102		30 - 155
Chloromethane	50.0000	0.0000	46.8080			40 - 125
Vinyl chloride	50.0000	0.0000	52.5559			50 - 145
Bromomethane	50.0000	0.0000	50.4630			30 - 14
Chloroethane	50.0000	0.0000	50.4364			60 - 13
Trichlorofluoromethane	50.0000	0.0000	52.3281	105		60 - 14
1,1-Dichloroethene	50.0000	0.0000	50.7907	102		70 - 130
Acetone	50.0000	0.0000	40.5812	81		40 - 140
Iodomethane	50.0000	0.0000	52.1413	104		72 - 123
Carbon disulfide	50.0000	0.0000	49.8159			35 - 160
Methylene chloride	50.0000	0.0000	52.7094			55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000	51.9179	104		60 - 140
Methyl tert-butyl ether	50.0000	0.0000	50.3453	101		65 - 125
1,1-Dichloroethane	50.0000	0.0000	50.5449	101		70 - 135
Vinyl acetate	50.0000	0.0000	50.6767	101		38 - 163
2-Butanone	50.0000	0.0000	45.7540	92		30 - 150
cis-1,2-Dichloroethene	50.0000	0.0000	52.0470	104		70 - 125
2,2-Dichloropropane	50.0000	0.0000	53.6629	107		70 - 13
Bromochloromethane	50.0000	0.0000	51.6566	103		65 - 130
Chloroform	50.0000	0.0000	50.7242	101		65 - 13
1,1,1-Trichloroethane	50.0000	0.0000	51.7853	104		65 - 130
1,1-Dichloropropene	50.0000	0.0000	53.5357	107		75 - 130
Carbon tetrachloride	50.0000	0.0000	52.1167	104		65 - 140
1,2-Dichloroethane	50.0000	0.0000	52.1570	104		70 - 130
Benzene	50.0000	0.0000	51.4723	103		80 - 120
Trichloroethene	50.0000	0.0000	53.4894	107		70 - 125
1,2-Dichloropropane	50.0000	0.0000	52.5706	105		75 - 12
Dibromomethane	50.0000	0.0000	51.8012	104		75 - 125
Bromodichloromethane	50.0000	0.0000	51.1765	102		75 - 120
cis-1,3-Dichloropropene	50.0000	0.0000	50.3230	101		70 - 130
4-Methyl-2-pentanone	50.0000	0.0000	50.3227	101		60 - 13
Toluene	50.0000	0.0000	52.9074	106		75 - 120
trans-1,3-Dichloropropene	50.0000	0.0000	51.4049	103		55 - 140
1,1,2-Trichloroethane	50.0000	0.0000	52.4090	105		75 - 12
1,3-Dichloropropane	50.0000	0.0000	50.4367	101		75 - 12
Tetrachloroethene	50.0000	0.0000	52.4667	105		45 - 150
2-Hexanone	50.0000	0.0000	48.2279	96		55 - 130
Dibromochloromethane	50.0000	0.0000	50.3871	101		60 - 13
1,2-Dibromoethane	50.0000	0.0000	50.3584	101		80 - 12
Chlorobenzene	50.0000	0.0000	53.1819	106		80 - 120
1,1,1,2-Tetrachloroethane	50.0000	0.0000	50.8091	102		80 - 13
Ethylbenzene	50.0000	0.0000	51.8867	104		75 - 12
m,p-Xylene	100.0000	0.0000	105.0587	105		75 - 130
o-Xylene	50.0000	0.0000	51.8190	104		80 - 120

CLIENT SAMPLE NO.

LCS-49950

Lab Name: M	1ITKEM	1 LABORATORIES	Contract:	
Lab Code: M	1ITKEM	1 Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Lab Sample I	ID:	LCS-49950	LCS Lot No.:	
Date Extract	ted:	03/19/2010	Date Analyzed (1): 03/19	9/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						REC.
Xylene (Total)	150.0000	0.0000	156.8777	105		81 - 121
Styrene	50.0000	0.0000	51.8246	104	1	65 - 135
Bromoform	50.0000	0.0000	49.3876	99		70 - 130
Isopropylbenzene	50.0000	0.0000	52.0175	104		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	48.5245	97		65 - 130
Bromobenzene	50.0000	0.0000	51.4633	103		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	47.9741	96		75 - 125
n-Propylbenzene	50.0000	0.0000	51.6625	103		70 - 130
2-Chlorotoluene	50.0000	0.0000	52.6616	105		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	51.4098	103		75 - 130
4-Chlorotoluene	50.0000	0.0000	51.1747	102		75 - 130
tert-Butylbenzene	50.0000	0.0000	51.2962	103		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	50.5090	101		75 - 130
sec-Butylbenzene	50.0000	0.0000	51.0653	102		70 - 125
4-Isopropyltoluene	50.0000	0.0000	51.8114	104		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	50.2235	100		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	51.3629	103		75 - 125
n-Butylbenzene	50.0000	0.0000	51.9156	104		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	51.1247	102		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	47.2075	94		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	52.5343	105		65 - 135
Hexachlorobutadiene	50.0000	0.0000	48.4660	97		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	48.9001	98		55 - 140
Naphthalene	50.0000	0.0000	47.7979	96		55 - 140

# Column to be used	to flag recovery and RPD values with an asterisk
* Values outside of	QC limits
Spike Recovery:	0 out of 68 outside limits
COMMENTS:	

CLIENT SAMPLE NO.

LCS-50047

Lab Name:	MITKEN	1 LABORATORIES	Contract:		
Lab Code:	MITKEN	1 Case No.: J0398	Mod. Ref No.:	SDG No.:	SJ0398
Lab Sample	ID:	LCS-50047	LCS Lot No.:		
Date Extrac	cted:	03/23/2010	Date Analyzed (1):	03/23/2010	

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS REC.
Dichlorodifluoromethane	50.0000	0.0000	55.8634	112		30 - 15
Chloromethane	50.0000	0.0000	62.4239	125		40 - 12
Vinyl chloride	50.0000	0.0000	63.6279	127		50 - 14
Bromomethane	50.0000	0.0000	66.6281	133		30 - 14
Chloroethane	50.0000	0.0000	65.4051	131		60 - 13
Trichlorofluoromethane	50.0000	0.0000	57.3164	115		60 - 14
1,1-Dichloroethene	50.0000	0.0000	55.8135	112		70 - 13
Acetone	50.0000	0.0000	36.5868	73		40 - 14
Iodomethane	50.0000	0.0000	54.6835	109		72 - 12
Carbon disulfide	50.0000	0.0000	58.0438	116		35 - 16
Methylene chloride	50.0000	0.0000	55.2348	110		55 - 14
trans-1,2-Dichloroethene	50.0000	0.0000	57.8642	116		60 - 14
Methyl tert-butyl ether	50.0000	0.0000				65 - 12
1,1-Dichloroethane	50.0000	0.0000	59.8057	120		70 - 13
Vinyl acetate	50.0000	0.0000	62.3387	125		38 - 16
2-Butanone	50.0000	0.0000	45.9618	92		30 - 15
cis-1,2-Dichloroethene	50.0000	0.0000	56.8630	114		70 - 12
2,2-Dichloropropane	50.0000	0.0000	59.2763	119		70 - 13
Bromochloromethane	50.0000	0.0000	53.7151		<u> </u>	65 - 13
Chloroform	50.0000	0.0000	58.1952	116		65 - 13
1,1,1-Trichloroethane	50.0000	0.0000	59.1306	118		65 - 13
1,1-Dichloropropene	50.0000	0.0000	56.7808			75 - 13
Carbon tetrachloride	50.0000	0.0000	59.0484			65 - 14
1,2-Dichloroethane	50.0000	0.0000	59.6522	119		70 - 13
Benzene	50.0000	0.0000	58.0203			80 - 12
Trichloroethene	50.0000	0.0000	54.5164			70 - 12
1,2-Dichloropropane	50.0000	0.0000	57.6131	115		75 - 12
Dibromomethane	50.0000	0.0000	55.2443	110		75 - 12
Bromodichloromethane	50.0000	0.0000	57.1074	114		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	56.9658	114		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	59.1795	118		60 - 13
Toluene	50.0000	0.0000	54.5184	109		75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	56.9897	114		55 - 14
1,1,2-Trichloroethane	50.0000	0.0000	54.3783	109		75 - 12
1,3-Dichloropropane	50.0000			112		75 - 12
Tetrachloroethene	50.0000		54.6720	109		45 - 15
2-Hexanone	50.0000		56.0553	112		55 - 13
Dibromochloromethane	50.0000			111		60 - 13
1,2-Dibromoethane	50.0000			109		80 - 12
Chlorobenzene	50.0000			108		80 - 12
1,1,1,2-Tetrachloroethane	50.0000					80 - 13
Ethylbenzene	50.0000					75 - 12
m,p-Xylene	100.0000					75 - 13
o-Xylene	50.0000		<u> </u>			80 - 12

SW846

CLIENT SAMPLE NO.

LCS-50047

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: N		Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Lab Sample	ID:	LCS-50047	LCS Lot No.:	
Date Extrac	ted:	03/23/2010	Date Analyzed (1):	03/23/2010
r			7.00	

	SPIKE	SAMPLE	LCS		•	QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	164.9512	110		81 - 121
Styrene	50.0000	0.0000	56.1873	112		65 - 135
Bromoform	50.0000	0.0000	53.9484	108		70 - 130
Isopropylbenzene	50.0000	0.0000	55.1406	110		75 - 125
1,1,2,2-Tetrachloroethane	50.0000			113		65 - 130
Bromobenzene	50.0000	0.0000	55.1439	110		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	55.1910	110		75 - 125
n-Propylbenzene	50.0000	0.0000	55.5566	111		70 - 130
2-Chlorotoluene	50.0000	0.0000	54.8099	110		75 – 125
1,3,5-Trimethylbenzene	50.0000	0.0000	56.8808	114		75 – 130
4-Chlorotoluene	50.0000	0.0000	56.0441	112		75 - 130
tert-Butylbenzene	50.0000	0.0000	55.4194	111		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	55.9869	112		75 - 130
sec-Butylbenzene	50.0000	0.0000	56.1289	112		70 - 125
4-Isopropyltoluene	50.0000	0.0000	55.7176	111		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	54.2497	108		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	54.4766	109		75 - 125
n-Butylbenzene	50.0000	0.0000	56.6198	113		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	52.0988	104		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	52.7246	105		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	50.9398	102		65 - 135
Hexachlorobutadiene	50.0000	0.0000	53.0337	106		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	51.5643	103		55 - 140
Naphthalene	50.0000	0.0000	52.0061	104		55 - 140

#	Column	to	be	used	to	flag	recovery	and	RPD	values	with	an	asterisk

* Values outside	of QC limits		
Spike Recovery:	out of	68 outside	limits
COMMINTED			
COMMENTS:		, 4	

CLIENT SAMPLE NO.

LCS-50061

Lab Name:	MITKE	M LABORATORIES		Contract:		
Lab Code:	MITKE	M Case No.:	Ј0398	Mod. Ref No.:	SDG No.: SJ0398	
Lab Sample	e ID:	LCS-50061		LCS Lot No.:		
Date Extra	acted:	03/24/2010		Date Analyzed (1):	03/24/2010	

	SPIKE .	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	0.0000	1			30 - 15
Chloromethane	50.0000	0.0000				40 - 12
Vinyl chloride	50.0000	0.0000				50 - 14
Bromomethane	50.0000	0.0000				30 - 14
Chloroethane	50.0000	0.0000				60 - 13
Trichlorofluoromethane	50.0000	0.0000				60 - 14
1,1-Dichloroethene	50.0000	0.0000				70 - 13
Acetone	50.0000	0.0000				40 - 14
odomethane	50.0000	0.0000				72 - 12
Carbon disulfide	50.0000	0.0000				35 - 16
Methylene chloride	50.0000	0.0000				55 - 14
rans-1,2-Dichloroethene	50.0000	0.0000	f			60 - 14
Methyl tert-butyl ether	50.0000	0.0000		L		65 - 12
.,1-Dichloroethane	50.0000	0.0000				70 - 13
7inyl acetate	50.0000	0.0000				38 - 16
2-Butanone	50.0000	0.0000				30 - 15
cis-1,2-Dichloroethene	50.0000	0.0000		103		70 - 12
2,2-Dichloropropane	50.0000	0.0000				70 - 13
Bromochloromethane	50.0000					65 - 13
Chloroform	50.0000					65 - 13
,1,1-Trichloroethane	50.0000	0.0000	1			65 - 13
,1-Dichloropropene	50.0000	0.0000				75 - 13
Carbon tetrachloride	50.0000	0.0000				65 - 14
1,2-Dichloroethane	50.0000	0.0000				70 - 13
Benzene	50.0000	0.0000				80 - 12
Frichloroethene	50.0000					70 - 12
1,2-Dichloropropane	50.0000					75 - 12
Dibromomethane	50.0000	0.0000		<u></u>		75 - 12
Bromodichloromethane	50.0000	0.0000				75 - 12
cis-1,3-Dichloropropene	50.0000					70 - 13
4-Methyl-2-pentanone	50.0000					60 - 13
Toluene	50.0000					75 - 12
crans-1,3-Dichloropropene	50.0000					55 - 14
1,1,2-Trichloroethane	50.0000					75 - 12
1,3-Dichloropropane	50.0000	~~				75 - 12
Tetrachloroethene	50.0000					45 - 15
2-Hexanone	50.0000	1				55 - 13
Dibromochloromethane	50.0000					60 - 13
1,2-Dibromoethane	50.0000					80 - 12
Chlorobenzene	50.0000					80 - 12
1,1,1,2-Tetrachloroethane	50.0000					80 - 13
Ethylbenzene	50.0000					75 - 12
m,p-Xylene	100.0000					75 - 13
o-Xylene	50.0000	0.0000	50.3582	101		80 - 12

SW846

CLIENT SAMPLE NO.

LCS-50061

Lab Name: MITKEM		M LABORATORIES		Contract:			
Lab Code:	MITKE	M Case No.:	J0398	Mod. Ref No.:	SDG No.:	SJ0398	
Lab Sample	e ID:	LCS-50061		LCS Lot No.:			
Date Extra	acted:	03/24/2010		Date Analyzed (1): 03/2	4/2010		

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	152.6347	102		81 - 121
Styrene	50.0000	0.0000	52.1192	104		65 - 135
Bromoform	50.0000	0.0000	42.7886	86		70 - 130
Isopropylbenzene	50.0000	0.0000	49.8042	100		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	50.5950	101		65 - 130
Bromobenzene	50.0000	0.0000	52.7837	106		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	44.6642	89		75 - 125
n-Propylbenzene	50.0000	0.0000	51.8258	104		70 - 130
2-Chlorotoluene	50.0000	0.0000		102		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	52.0705	104		75 - 130
4-Chlorotoluene	50.0000	0.0000	50.4188	101		75 - 130
tert-Butylbenzene	50.0000	0.0000	50.8228	102		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	50.5008	101		75 - 130
sec-Butylbenzene	50.0000	0.0000	49.9661	100		70 - 125
4-Isopropyltoluene	50.0000	0.0000	50.8115	102		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	50.3974	101		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	50.6283	101		75 - 125
n-Butylbenzene	50.0000	0.0000	49.9907	100		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	50.3540	101		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	40.2352	80		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	50.5136	101		65 - 135
Hexachlorobutadiene	50.0000	0.0000	48.6630	97		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	49.4408	99		55 - 140
Naphthalene	50.0000	0.0000	49.3020	99		55 - 140

 $\mbox{\tt\#}$ Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery:	0	out of	68	outside limits	
COMMENTS:					

3 - FORM III WATER LABORATORY CONTROL

SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-50103

Lab	Name:	MITKEM	LABORATORIES	Contract:	

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Lab Sample ID: LCS-50103 LCS Lot No.:

Date Extracted: 03/25/2010 Date Analyzed (1): 03/25/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
Dichlorodifluoromethane	50.0000	0.0000	46.8865	94		REC.
Chloromethane	50.0000	0.0000	51.3382	103	ļ	40 - 12
Vinyl chloride	50.0000	0.0000	53.6327	107		50 - 14
Bromomethane	50.0000	0.0000	50.7257	101		30 - 14
Chloroethane	50.0000	0.0000	52.2090	104		60 - 13
Trichlorofluoromethane	50.0000	0.0000	52.1889	104		60 - 14
1,1-Dichloroethene	50.0000	0.0000	51.8781	104		70 - 13
Acetone	50.0000	0.0000	66.2969	133		40 - 14
Iodomethane	50.0000	0.0000	51.0059	102		72 - 12
Carbon disulfide	50.0000	0.0000	43.5331	87		35 - 16
Methylene chloride	50.0000	0.0000	52.2316	104		55 - 14
trans-1,2-Dichloroethene	50.0000	0.0000	51.4709	103		60 - 14
Methyl tert-butyl ether	50.0000	0.0000	51.9647	104		65 - 12
1,1-Dichloroethane	50.0000	0.0000	52.6083	105		70 - 13
Vinyl acetate	50.0000	0.0000	51.7601	104		38 - 16
2-Butanone	50.0000	0.0000	54.5362	109		30 - 15
cis-1,2-Dichloroethene	50.0000	0.0000	51.4707	103		70 - 12
2,2-Dichloropropane	50.0000	0.0000	53.1226	106		70 - 13
Bromochloromethane	50.0000	0.0000	52.3337	105		65 - 13
Chloroform	50.0000	0.0000	51.5698	103		65 - 13
1,1,1-Trichloroethane	50.0000	0.0000	52.3886	105		65 - 13
1,1-Dichloropropene	50.0000	0.0000	52.7233	105		75 - 13
Carbon tetrachloride	50.0000	0.0000	52.2590	105		65 - 14
1,2-Dichloroethane	50.0000	0.0000	52.3776	105		70 - 13
Benzene	50.0000	0.0000	51.5465	103		80 - 12
Trichloroethene	50.0000	0.0000	54.4095	109		70 - 12
1,2-Dichloropropane	50.0000	0.0000	51.9217	104		75 - 12
Dibromomethane	50.0000	0.0000	51.3479	103		75 - 12
Bromodichloromethane	50.0000	0.0000	50.7321	101		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	50.9147	102		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	50.8414	102		60 - 13
Toluene	50.0000	0.0000	51.8676	104		75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	50.3853	101		55 - 14
1,1,2-Trichloroethane	50.0000	0.0000	52.3871	105		75 - 12
1,3-Dichloropropane	50.0000	0.0000	52.1618	104		75 - 12
Tetrachloroethene	50.0000	0.0000	54.6074	109		45 - 15
2-Hexanone	50.0000	0.0000	55.2532	111		55 - 13
Dibromochloromethane	50.0000	0.0000	50.2480	100		60 - 13
1,2-Dibromoethane	50.0000	0.0000	51.7460	103		80 - 12
Chlorobenzene	50.0000	0.0000	53.1141	106		80 - 12
1,1,1,2-Tetrachloroethane	50.0000	0.0000	51.0046	102		80 - 13
Ethylbenzene	50.0000	0.0000	52.6244	105		75 - 12
m,p-Xylene	100.0000	0.0000	105.7152	106		75 - 13
o-Xylene	50.0000	0.0000	52.9937	106		80 - 12

CLIENT	SAMPLE	NO.

LCS-50103

Lab Name: MI	TKEM LABORATORIES	Contract:
Lab Code: MI	TKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Lab Sample ID	LCS-50103	LCS Lot No.:
Date Extracte	ed: 03/25/2010	Date Analyzed (1): 03/25/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000				81 - 121
Styrene	50.0000	0.0000				65 - 135
Bromoform	50.0000	0.0000		93		70 - 130
Isopropylbenzene	50.0000	0.0000		105		75 - 125
1,1,2,2-Tetrachloroethane	50.0000			101		65 - 130
Bromobenzene	50.0000	0.0000				75 - 125
1,2,3-Trichloropropane	50.0000	0.0000		L		75 - 125
n-Propylbenzene	50.0000	0.0000				70 - 130
2-Chlorotoluene	50.0000	0.0000				75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000				75 - 130
4-Chlorotoluene	50.0000					75 - 130
tert-Butylbenzene	50.0000					70 - 130
1,2,4-Trimethylbenzene	50.0000					75 – 130
sec-Butylbenzene	50.0000	0.0000				70 - 125
4-Isopropyltoluene	50.0000	0.0000				75 - 130
1,3-Dichlorobenzene	50.0000				L	75 - 125
1,4-Dichlorobenzene	50.0000	0.0000				75 – 125
n-Butylbenzene	50.0000	0.0000				70 - 135
1,2-Dichlorobenzene	50.0000					70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	·	<u> </u>		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000				65 - 135
Hexachlorobutadiene	50.0000					50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000				55 - 140
Naphthalene	50.0000	0.0000	49.7088	99		55 - 140

Column to be used to flag recovery and RPD values with an asterisk

* Values outside	of QC limits			
Spike Recovery:	out of	68 outside l	imits	
COMMENTS:				

3C - FORM III SV-1 WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Matrix Spike - EPA Sample No.: SMS-MW-13D

	SPIKE	SAMPLE	MS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	MS %REC	# '	LIMITS
	(µg/L)	(µg/L)	(µg/L)			REC.
3,3'-Dichlorobenzidine	50.0000	0.0000	0.0000	0	*	20-110
Phenol	50.0000	0.0000	34.7201	69		0-115
Bis(2-chloroethyl)ether	50.0000	0.0000	34.5304	69		35-110
2-Chlorophenol	50.0000	0.0000	38.3532	77		35-105
1,3-Dichlorobenzene	50.0000	0.0000	33.0880	66		30-100
1,4-Dichlorobenzene	50.0000	0.0000	36.7471	73		30-100
1,2-Dichlorobenzene	50.0000	0.0000	37.0450	74		35-100
2-Methylphenol	50.0000	0.0000	47.4233	95		40-110
2,2'-oxybis(1-Chloropropan	50.0000	0.0000	37.7238	75		30-123
4-Methylphenol	50.0000	0.0000	48.8102	98		30-110
N-Nitroso-di-n-propylamine	50.0000	0.0000	46.6025	93		35-130
Hexachloroethane	50.0000	0.0000	33.6802	67		30-95
Nitrobenzene	50.0000	0.0000	43.8354	88		45-110
Isophorone	50.0000	0.0000	38.1628	76		50-110
2-Nitrophenol	50.0000	0.0000	37.4701	75		40-115
2,4-Dimethylphenol	50.0000	0.0000	49.9132	1:00		30-110
2,4-Dichlorophenol	50.0000	0.0000	44.8440	90		50-105
1,2,4-Trichlorobenzene	50.0000	0.0000	42.3356	85		35-105
Naphthalene	50.0000	0.0000	44.2494	88		40-100
4-Chloroaniline	50.0000	0.0000	10.8819	22		15-110
Bis(2-chloroethoxy)methane	50.0000	0.0000	33.4251	67		45-105
Hexachlorobutadiene	50.0000	0.0000	44.2556	89		25-105
4-Chloro-3-methylphenol	50.0000	0.0000	44.5876	89		45-110
2-Methylnaphthalene	50.0000	0.0000	43.8050	88		45-105
Hexachlorocyclopentadiene	50.0000	0.0000	21.2361	42		27-147
2,4,6-Trichlorophenol	50.0000	0.0000	41.2471	82		50-115
2,4,5-Trichlorophenol	50.0000	0.0000	50.9408	102		50-110
2-Chloronaphthalene	50.0000	0.0000	46.7945	94		50-105
2-Nitroaniline	50.0000	0.0000	42.4558	85		50-115
Dimethylphthalate	50.0000	0.0000	49.0537	98		25-125
Acenaphthylene	50.0000	0.0000	37.3189	75		50-105
2,6-Dinitrotoluene	50.0000	0.0000	45.7621	92		50-115
3-Nitroaniline	50.0000	0.0000	17.9839	36		20-125
Acenaphthene	50.0000	0.0000	40.3176	81		45-110
2,4-Dinitrophenol	50.0000	0.0000	50.1367	100		15-140
4-Nitrophenol	50.0000	0.0000	34.5455	69		0-125
Dibenzofuran	50.0000	0.0000	49.4498	99		55-105
2,4-Dinitrotoluene	50.0000	0.0000	46.7131	93	-	50-120
Diethylphthalate	50.0000	0.0000	39.7174	79		40-120
4-Chlorophenyl-phenylether	50.0000	0.0000	50.5222	101		50-110
Fluorene	50.0000	0.0000	40.4956	81		50-110
4-Nitroaniline	50.0000	0.0000	18.1012	36		35-120
4,6-Dinitro-2-methylphenol	50.0000	0.0000	45.5039	91		40-130
N-Nitrosodiphenylamine	50.0000	0.0000	31.8634	64		50-110

3C - FORM III SV-1 WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Matrix Spike - EPA Sample No.: SMS-MW-13D

4-Bromophenyl-phenylether	50.0000	0.0000	51.8408	104		50-115
Hexachlorobenzene	50.0000	0.0000	55.1915	110	*	50-110
Pentachlorophenol	50.0000	0.0000	48.5279	97		40-115
Phenanthrene	50.0000	0.0000	50.5114	101		50-115
Anthracene	50.0000	0.0000	41.9046	84		55~110
Carbazole	50.0000	0.0000	36.6862	73		50-115
Di-n-butylphthalate	50.0000	0.0000	40.2346	80		55-115
Fluoranthene	50.0000	0.0000	40.4134	81		55-115
Pyrene	50.0000	0.0000	51.6956	103		50-130
Butylbenzylphthalate	50.0000	0.0000	35.4010	71		45-115
Benzo(a)anthracene	50.0000	0.0000	37.5997	75		55-110
Chrysene	50.0000	0.0000	40.4183	81		55-110
Bis(2-ethylhexyl)phthalate	50.0000	0.0000	40.9143	82		40-125
Di-n-octylphthalate	50.0000	0.0000	47.5588	95		35-135
Benzo(b) fluoranthene	50.0000	0.0000	54.9615	110		45-120
Benzo(k)fluoranthene	50.0000	0.0000	47.8569	96		45-125
Benzo(a)pyrene	50.0000	0.0000	41.0141	82		55-110
Indeno(1,2,3-cd)pyrene	50.0000	0.0000	39.7213	79		45-125
Dibenzo(a,h)anthracene	50.0000	0.0000	41.3040	83		40-125
Benzo(g,h,i)perylene	50.0000	0.0000	37.3358	75		40-125

	SPIKE	MSD					QC	LIMITS
·	ADDED	CONCENTRATION	MSD %REC	#	%RPI) #		
COMPOUND	(µg/L)	(µg/L)					RPD	REC.
3,3'-Dichlorobenzidine	50.0000	0.0000	0	*	·		0-40	20-110
Phenol	50.0000	33.1095	66		5		0-40	0-115
Bis(2-chloroethyl)ether	50.0000	36.6968	73		6		0-40	35-110
2-Chlorophenol	50.0000	36.9240	74		4		0-40	35-105
1,3-Dichlorobenzene	50.0000	31.8287	64		4		0-40	30-100
1,4-Dichlorobenzene	50.0000	34.1503	68		7		0-40	30-100
1,2-Dichlorobenzene	50.0000	34.9394	70		6		0-40	35-100
2-Methylphenol	50.0000	43.1714	86		9		0-40	40-110
2,2'-oxybis(1-Chloropropan	50.0000	35.9093	72		5		0-40	30-123
4-Methylphenol	50.0000	44.4256	89	ı	9		0-40	30-110
N-Nitroso-di-n-propylamine	50.0000	42.2164	84		10		0-40	35-130
Hexachloroethane	50.0000	32.4571	65		4		0-40	30-95
Nitrobenzene	50.0000	43.3400	87		1		0-40	45-110
Isophorone	50.0000	39.0146	78		2		0-40	50-110
2-Nitrophenol	50.0000	40.4472	81		8		0-40	40-115
2,4-Dimethylphenol	50.0000	49.1370	98		2		0-40	30-110
2,4-Dichlorophenol	50.0000	42.8205	86		5		0-40	50-105
1,2,4-Trichlorobenzene	50.0000	45.3583	91	ŀ	7		0-40	35-105
Naphthalene	50.0000	44.7148	89		1		0-40	40-100
4-Chloroaniline	50.0000	19.9244	40		59	*	0-40	15-110
Bis(2-chloroethoxy)methane	50.0000	39.2398	78		16		0-40	45-105
Hexachlorobutadiene	50.0000	42.8916	86		3		0-40	25-105
4-Chloro-3-methylphenol	50.0000	43.0172	86		4		0-40	45-110

3C - FORM III SV-1

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Matrix Spike - EPA Sample No.: SMS-MW-13D

NexentNate S0.0000 16.8180 34 23 0-40 27-147 Reachlorocyclopentadiene S0.0000 16.8180 34 23 0-40 27-147 Reachlorocyclopentadiene S0.0000 41.4349 83 0 0-40 50-115 Reachlorocyclopentadiene S0.0000 41.4349 83 0 0-40 50-115 Reachlorocyclopentadiene S0.0000 44.5681 89 5 0-40 50-105 Reachlorocyclopentadiene S0.0000 44.5681 89 5 0-40 50-105 Reachlorocyclopentadiene S0.0000 44.5681 89 5 0-40 50-105 Reachlorocyclopentadiene S0.0000 39.9711 80 20 0-40 25-125 Recenpthylene S0.0000 36.8516 74 1 0-40 50-105 Recenpthylene S0.0000 36.8516 74 1 0-40 50-105 Recenpthylene S0.0000 36.2438 72 23 0-40 50-105 Recenpthylene S0.0000 36.2438 72 23 0-40 50-105 Recenpthylene S0.0000 36.8366 77 5 0-40 45-110 Recenpthylene S0.0000 38.3836 77 5 0-40 45-110 Recenpthylene S0.0000 38.3836 77 5 0-40 45-110 Recenpthylene S0.0000 Recent S0.000 Recent S0.000 Recent S0.0000 Recent S0.000 Recent S0.000 Recent Recent S0.000 Recent Recent S0.000 Recent Recent Recent S0.000 Recent Recent Recent Recent Recent Rece	0. 16-13-13-13-13-13	50,000	46 1160			0.40	15.105
2.4,6-Trichlorophenol 50.0000	2-Methylnaphthalene	50.0000	46.1169	92	5	0-40	45-105
2.4,5-Trichlorophenol 50.0000		1 7					
2-Chloronaphthalene							
Dimethylphthalate	I						
Dimethylphthalate	_						
Acenaphthylene							
2,6-Dinitrotoluene	3 1	1					
3-Nitroaniline		1					
Acenaphthene							<u> </u>
2,4-Dinitrophenol 50.0000 45.6040 91 9 0-40 15-140 4-Nitrophenol 50.0000 28.6324 57 19 0-40 0-125 Dibenzofuran 50.0000 47.4449 95 4 0-40 55-105 2,4-Dinitrocoluene 50.0000 49.0021 98 5 0-40 50-120 Diethylphthalate 50.0000 37.9307 76 5 0-40 40-120 4-Chlorophenyl-phenylether 50.0000 47.5703 95 6 0-40 50-110 Fluorene 50.0000 39.3595 79 3 0-40 50-110 Fluorene 50.0000 23.5575 47 26 0-40 35-120 4,6-Dinitro-2-methylphenol 50.0000 39.1266 78 20 0-40 40-130 N-Nitrosodiphenylamine 50.0000 39.1266 78 20 0-40 50-110 4-Bromophenyl-phenylether 50.0000 39.1266 78 20 0-40 50-110 4-Bromophenyl-phenylether 50.0000 49.3437 99 5 0-40 50-110 Flexachlorobenzene 50.0000 33.9686 108 2 0-40 50-115 Flexachlorophenol 50.0000 38.1054 76 24 0-40 50-115 Flexachlorophenol 50.0000 39.5067 79 6 0-40 55-110 Flexachlorophenol 50.0000 37.8995 76 3 0-40 50-115 Fluoranthene 50.0000 37.8995 76 70.40 55-115 Fluoranthene 50.0000 37.8995 70 70.40 55-115 Fluoranthene 50.0000 37.8995 70 70.40 55-115 Fluoranthene 50.0000 37.8995 70 70.40 55-110 Fluoranthene 50.0000 37.8995 70 70.40 57-110 F						0-40	
4-Nitrophenol 50.0000 28.6324 57 19 0-40 0-125			38.3836	77		0-40	45-110
Dibenzofuran S0.0000		I	45.6040		9	0-40	15-140
2,4-Dinitrotoluene	4-Nitrophenol	50.0000	28.6324	57	19	0-40	0-125
Diethylphthalate	Dibenzofuran		47.4449	95	4	0-40	55-105
4-Chlorophenyl-phenylether 50.0000 47.5703 95 6 0-40 50-110 Fluorene 50.0000 39.3595 79 3 0-40 50-110 4-Nitroaniline 50.0000 23.5575 47 26 0-40 35-120 4,6-Dinitro-2-methylphenol 50.0000 42.6309 85 7 0-40 40-130 N-Nitrosodiphenylamine 50.0000 39.1266 78 20 0-40 50-110 4-Bromophenyl-phenylether 50.0000 49.3437 99 5 0-40 50-110 Hexachlorobenzene 50.0000 53.9686 108 2 0-40 50-110 Pentachlorophenol 50.0000 38.1054 76 24 0-40 40-115 Phenanthrene 50.0000 39.5067 79 6 0-40 50-115 Anthracene 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12	2,4-Dinitrotoluene	50.0000	49.0021	98	5	0-40	50-120
Fluorene 50.0000 39.3595 79 3 0-40 50-110 4-Nitroaniline 50.0000 23.5575 47 26 0-40 35-120 4,6-Dinitro-2-methylphenol 50.0000 42.6309 85 7 0-40 40-130 N-Nitrosodiphenylamine 50.0000 49.3437 99 5 0-40 50-110 4-Bromophenyl-phenylether 50.0000 49.3437 99 5 0-40 50-110 Hexachlorobenzene 50.0000 53.9686 108 2 0-40 50-110 Pentachlorophenol 50.0000 38.1054 76 24 0-40 40-115 Phenanthrene 50.0000 49.5612 99 2 0-40 50-115 Anthracene 50.0000 39.5067 79 6 0-40 50-115 Anthracene 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Flyrene 50.0000 40.4641 81 0 0-40 55-115 Benzo(a) anthracene 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 45-115 Benzo(a) anthracene 50.0000 36.9072 74 10 0-40 45-125 Di-n-octylphthalate 50.0000 41.6865 83 14 0-40 45-125 Benzo(b) fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Dibenzo(a,h) anthracene 50.0000 35.6946 71 15 0-40 45-125 Dibenzo(a,h) anthracene 50.0000 35.6946 71 15 0-40 45-125 Dibenzo(a,h) anthracene 50.0000 35.6946 71 15 0-40 45-125 Dibenzo(a,h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Diethylphthalate	50.0000	37.9307	76	5	0-40	40-120
4-Nitroaniline 50.0000 23.5575 47 26 0-40 35-120 4,6-Dinitro-2-methylphenol 50.0000 42.6309 85 7 0-40 40-130 N-Nitrosodiphenylamine 50.0000 39.1266 78 20 0-40 50-110 4-Bromophenyl-phenylether 50.0000 49.3437 99 5 0-40 50-110 Hexachlorobenzene 50.0000 53.9686 108 2 0-40 50-115 Henachlorophenol 50.0000 38.1054 76 24 0-40 40-115 Phenanthrene 50.0000 39.5067 79 6 0-40 50-115 Anthracene 50.0000 37.8995 76 3 0-40 55-115 Carbazole 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 36.6037 71 12 0-40 55-115 Fluoranthene 50.0000 48.1736 96 7 0-40	4-Chlorophenyl-phenylether	50.0000	47.5703	95	6	0-40	50-110
4,6-Dinitro-2-methylphenol 50.0000 42.6309 85 7 0-40 40-130 N-Nitrosodiphenylamine 50.0000 39.1266 78 20 0-40 50-110 4-Bromophenyl-phenylether 50.0000 49.3437 99 5 0-40 50-115 Hexachlorobenzene 50.0000 53.9686 108 2 0-40 50-110 Pentachlorophenol 50.0000 38.1054 76 24 0-40 40-115 Phenanthrene 50.0000 49.5612 99 2 0-40 50-115 Anthracene 50.0000 37.8995 76 3 0-40 55-115 Anthracene 50.0000 37.8995 76 3 0-40 55-115 Anthracene 50.0000 37.8995 76 3 0-40 55-115 Fluoranthene 50.0000 35.6037 71 12 0-40 55-115 Fyrene 50.0000 48.1736 96 7 0-40 55-	Fluorene	50.0000	39.3595	79	3	0-40	50-110
N-Nitrosodiphenylamine	4-Nitroaniline	50.0000	23.5575	47	26	0-40	35-120
4-Bromophenyl-phenylether 50.0000 49.3437 99 5 0-40 50-115 Hexachlorobenzene 50.0000 53.9686 108 2 0-40 50-110 Pentachlorophenol 50.0000 38.1054 76 24 0-40 40-115 Phenanthrene 50.0000 49.5612 99 2 0-40 50-115 Anthracene 50.0000 39.5067 79 6 0-40 55-110 Carbazole 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 35.0887 70 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-11	4,6-Dinitro-2-methylphenol	50.0000	42.6309	85	7	0-40	40-130
Hexachlorobenzene 50.0000 53.9686 108 2 0-40 50-110 Pentachlorophenol 50.0000 38.1054 76 24 0-40 40-115 Phenanthrene 50.0000 49.5612 99 2 0-40 50-115 Anthracene 50.0000 39.5067 79 6 0-40 55-110 Carbazole 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 36.9072 74 10 0-40 45-125	N-Nitrosodiphenylamine	50.0000	39.1266	78	20	0-40	50-110
Pentachlorophenol 50.0000 38.1054 76 24 0-40 40-115 Phenanthrene 50.0000 49.5612 99 2 0-40 50-115 Anthracene 50.0000 39.5067 79 6 0-40 55-110 Carbazole 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 36.9072 74 10 0-40 45-115 Bis (2-ethylhexyl)phthalate 50.0000 39.8585 80 18 0-40 35-135	4-Bromophenyl-phenylether	50.0000	49.3437	99	5	0-40	50-115
Phenanthrene 50.0000 49.5612 99 2 0-40 50-115 Anthracene 50.0000 39.5067 79 6 0-40 55-110 Carbazole 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis (2-ethylhexyl) phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 <td>Hexachlorobenzene</td> <td>50.0000</td> <td>53.9686</td> <td>108</td> <td>2</td> <td>0-40</td> <td>50-110</td>	Hexachlorobenzene	50.0000	53.9686	108	2	0-40	50-110
Anthracene 50.0000 39.5067 79 6 0-40 55-110 Carbazole 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 36.9072 74 10 0-40 45-115 Bis (2-ethylhexyl) phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo (b) fluoranthene 50.0000 41.6865 83 14 0-40 45-120 Benzo (k) fluoranthene 50.0000 34.4970 69 17 0-40 55-110 Indeno (1,2,3-cd) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo (a,h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Pentachlorophenol	50.0000	38.1054	76	24	0-40	40-115
Carbazole 50.0000 37.8995 76 3 0-40 50-115 Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis (2-ethylhexyl)phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo(b) fluoranthene 50.0000 45.5282 91 19 0-40 45-125 Benzo(a)pyrene 50.0000 34.4970 69 17 0-40	Phenanthrene	50.0000	49.5612	99	2	0-40	50-115
Di-n-butylphthalate 50.0000 35.6037 71 12 0-40 55-115 Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis (2-ethylhexyl) phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo (b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo (a) pyrene 50.0000 34.4970 69 17 0-40 45-125 Dibenzo (a, h) anthracene 50.0000 35.6946 71 15	Anthracene	50.0000	39.5067	79	6	0-40	55-110
Fluoranthene 50.0000 40.4641 81 0 0-40 55-115 Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis (2-ethylhexyl) phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo (b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo (k) fluoranthene 50.0000 34.4970 69 17 0-40 45-125 Benzo (a) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo (a, h) anthracene 50.0000 35.6946 71 15	Carbazole	50.0000	37.8995	76	3	0-40	50-115
Pyrene 50.0000 48.1736 96 7 0-40 50-130 Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis (2-ethylhexyl) phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo (b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo (k) fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo (a) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo (a, h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Di-n-butylphthalate	50.0000	35.6037	71	12	0-40	55-115
Butylbenzylphthalate 50.0000 32.9571 66 7 0-40 45-115 Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis(2-ethylhexyl)phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo(b)fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo(k)fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo(a)pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno(1,2,3-cd)pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo(a,h)anthracene 50.0000 35.6946 71 15 0-40 40-125	Fluoranthene	50.0000	40.4641	81	0	0-40	55-115
Benzo(a) anthracene 50.0000 35.0887 70 7 0-40 55-110 Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis (2-ethylhexyl) phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo (b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo (k) fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo (a) pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno (1, 2, 3-cd) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo (a, h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Pyrene	50.0000	48.1736	96	7	0-40	50-130
Chrysene 50.0000 40.0441 80 1 0-40 55-110 Bis (2-ethylhexyl)phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo (b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo (k) fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo (a) pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno (1, 2, 3-cd) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo (a, h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Butylbenzylphthalate	50.0000	32.9571	66	7	0-40	45-115
Bis (2-ethylhexyl) phthalate 50.0000 36.9072 74 10 0-40 40-125 Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo (b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo (k) fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo (a) pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno (1, 2, 3-cd) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo (a, h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Benzo(a)anthracene	50.0000	35.0887	70	7	0-40	55-110
Di-n-octylphthalate 50.0000 39.8585 80 18 0-40 35-135 Benzo(b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo(k) fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo(a) pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno(1,2,3-cd) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo(a,h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Chrysene	50.0000	40.0441	80	1	0-40	55-110
Benzo (b) fluoranthene 50.0000 45.5282 91 19 0-40 45-120 Benzo (k) fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo (a) pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno (1, 2, 3-cd) pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo (a, h) anthracene 50.0000 35.6946 71 15 0-40 40-125	Bis(2-ethylhexyl)phthalate	50.0000	36.9072	74	10	0-40	40-125
Benzo(k)fluoranthene 50.0000 41.6865 83 14 0-40 45-125 Benzo(a)pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno(1,2,3-cd)pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo(a,h)anthracene 50.0000 35.6946 71 15 0-40 40-125	Di-n-octylphthalate	50.0000	39.8585	80	18	0-40	35-135
Benzo(a)pyrene 50.0000 34.4970 69 17 0-40 55-110 Indeno(1,2,3-cd)pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo(a,h)anthracene 50.0000 35.6946 71 15 0-40 40-125	Benzo(b) fluoranthene	50.0000	45.5282	91	19	0-40	45-120
Indeno(1,2,3-cd)pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo(a,h)anthracene 50.0000 35.6946 71 15 0-40 40-125	Benzo(k)fluoranthene	50.0000	41.6865	83	14	0-40	45-125
Indeno(1,2,3-cd)pyrene 50.0000 35.1087 70 12 0-40 45-125 Dibenzo(a,h)anthracene 50.0000 35.6946 71 15 0-40 40-125	Benzo(a)pyrene	50.0000	34.4970	69	17	0-40	55-110
Dibenzo(a,h)anthracene 50.0000 35.6946 71 15 0-40 40-125		50.0000	35.1087	70	12	0-40	45-125
		50.0000	35.6946	71	15	0-40	40-125
		50.0000		67	11	0-40	40-125

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 1 out of 64 outside limits

SOM_002

SW846

^{*} Values outside of QC limits

... 3C - FORM III SV-1 WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	MITKEM LABOR	ATORIES		Contract:	West ac		
Lab Code:	MITKEM	Case No.:	J0398	Mod. Ref No.:		SDG No.:	SJ0398
Matrix Spi	ke - EPA Samp	le No.: SMS	-MW-13D				
Spike Recov	ery: 3 o	ut of128	_outside limi	ts ·			
COMMENTS:							

CLIENT SAMPLE NO.

LCS-49849

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Lab Sample ID: LCS-49849 LCS Lot No.:

Date Extracted: 03/16/2010 Date Analyzed (1): 03/18/2010

	SPIKE	SAMPLE	LCS		,	QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	Heb side	п	REC.
Phenol	50.0000	0.0000	36.2556	73		0 - 115
Bis (2-chloroethyl) ether	50.0000				-	35 - 110
2-Chlorophenol	50.0000					35 - 105
1,3-Dichlorobenzene	50.0000					30 - 100
1,4-Dichlorobenzene	50.0000		33.0630	66		30 - 100
1,2-Dichlorobenzene	50.0000	0.0000	34.4462	69		35 - 100
2-Methylphenol	50.0000	0.0000	37.8136	76		40 - 110
2,2'-oxybis(1-Chloropropan	50.0000	0.0000		70		30 - 123
4-Methylphenol	50.0000	0.0000	39.3574	79		30 - 110
N-Nitroso-di-n-propylamine	50.0000	0.0000	36.7817	74		35 - 130
Hexachloroethane	50.0000	0.0000	34.1115	68		30 - 95
Nitrobenzene	50.0000		39.3881	79		45 - 110
Isophorone	50.0000	0.0000	38.6223	77		50 - 110
2-Nitrophenol	50.0000	0.0000	41.8861	84		40 - 115
2,4-Dimethylphenol	50.0000	0.0000	42.9809	86		30 - 110
2,4-Dichlorophenol	50.0000	0.0000	37.6433	75		50 - 105
1,2,4-Trichlorobenzene	50.0000	0.0000	36.5134	73		35 - 105
Naphthalene	50.0000	0.0000	38.3301	. 77		40 - 100
4-Chloroaniline	50.0000	0.0000	26.6492	53		15 - 110
Bis (2-chloroethoxy) methane	50.0000	0.0000	39.7473	79		45 - 105
Hexachlorobutadiene	50.0000	0.0000	34.8840	70		25 - 105
4-Chloro-3-methylphenol	50.0000	0.0000	42.6774	85		45 - 110
2-Methylnaphthalene	50.0000	0.0000	51.7271	103		45 - 105
Hexachlorocyclopentadiene	50.0000	0.0000	12.9551	26		27 - 147
2,4,6-Trichlorophenol	50.0000	0.0000	37.8558	76		50 - 115
2,4,5-Trichlorophenol	50.0000	0.0000	36.8714	74		50 - 110
2-Chloronaphthalene	50.0000	0.0000	38.4994	77		50 - 105
2-Nitroaniline	50.0000	0.0000	40.6773	81		50 - 115
Dimethylphthalate	50.0000	0.0000	39.3556	79		25 - 125
Acenaphthylene	50.0000	0.0000	39.3906	79		50 - 105
2,6-Dinitrotoluene	50.0000	0.0000	39.6308	79		50 - 115
3-Nitroaniline	50.0000	0.0000	33.0438	66		20 - 125
Acenaphthene	50.0000	0.0000	38.7382	77		45 - 110
2,4-Dinitrophenol	50.0000	0.0000	47.3082	95		15 - 140
4-Nitrophenol	50.0000	0.0000	54.1297	108		0 - 125
Dibenzofuran	50.0000	0.0000	38.8668	78		55 - 105
2,4-Dinitrotoluene	50.0000	0.0000	40.8086	82		50 - 120
Diethylphthalate	50.0000	0.0000	40.7258	81		40 - 120
4-Chlorophenyl-phenylether	50.0000	0.0000	38.8558	78		50 - 110
Fluorene	50.0000	0.0000	39.1231	78		50 - 110
4-Nitroaniline	50.0000	0.0000	37.6620	75		35 - 120
4,6-Dinitro-2-methylphenol	50.0000	0.0000	44.4937	89		40 - 130
N-Nitrosodiphenylamine	50.0000	0.0000	38.4079	77		50 - 110
4-Bromophenyl-phenylether	50.0000	0.0000	39.6854	79		50 - 115
- Promobucuar buenarecuer		0.0000	33.0034	,,,		

CLIENT SAMPLE NO.

LCS-49849

Lab Name: MITH	EM LABORATORIES	Contract:
Lab Code: MITE	Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Lab Sample ID:	LCS-49849	LCS Lot No.:
Date Extracted:	03/16/2010	Date Analyzed (1): 03/18/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
	İ					REC.
Hexachlorobenzene	50.0000	0.0000	38.7350	77		50 - 110
Pentachlorophenol	50.0000	0.0000	41.5529	83		40 - 115
Phenanthrene	50.0000	0.0000	41.3605	83		50 - 115
Anthracene	50.0000	0.0000	40.8843	82		55 - 110
Carbazole	50.0000	0.0000	41.5448	83		50 - 115
Di-n-butylphthalate	50.0000	0.0000	42.7379	85		55 - 115
Fluoranthene	50.0000	0.0000	41.7760	84		55 - 115
Pyrene	50.0000	0.0000	40.4909	81		50 - 130
Butylbenzylphthalate	50.0000	0.0000	41.1646	82		45 - 115
3,3'-Dichlorobenzidine	50.0000	0.0000	23.4626	47		20 - 110
Benzo(a)anthracene	50.0000	0.0000	41.9423	84		55 - 110
Chrysene	50.0000	0.0000	41.5402	83		55 - 110
Bis(2-ethylhexyl)phthalate	50.0000	0.0000	40.8969	82		40 - 125
Di-n-octylphthalate	50.0000	0.0000	41.3055	83		35 - 135
Benzo(b) fluoranthene	50.0000	0.0000	41.1411	82		45 - 120
Benzo(k)fluoranthene	50.0000	0.0000	39.4485	79		45 - 125
Benzo(a)pyrene	50.0000	0.0000	38.4860	77		55 - 110
Indeno(1,2,3-cd)pyrene	50.0000	0.0000	37.9068	76		45 - 125
Dibenzo(a,h)anthracene	50.0000	0.0000	37.8071	76		40 - 125
Benzo(g,h,i)perylene	50.0000	0.0000	38.2184	76		40 - 125

Column to be used to flag recovery and RPD values with an asterisk

* values outs	side of QC limits		
Spike Recover	ry: 1 out of	64 outside limits	
COMMENTS:			

CLIENT SAMPLE NO.

LCS-49914

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

Lab Sample ID: LCS-49914 LCS Lot No.:

Date Extracted: 03/18/2010 Date Analyzed (1): 03/19/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
COMPOUND	ADDED	CONCENTRATION	CONCENTION	LCD SILLC		REC.
Phenol	50.0000	0.0000	32.0901	64	Ţ	0 - 115
Bis(2-chloroethyl)ether	50.0000		35.3162		1	35 - 110
2-Chlorophenol	50.0000		35.5447	}	-	35 - 105
1,3-Dichlorobenzene	50.0000		30.3314			30 - 100
1,4-Dichlorobenzene	50.0000	0.0000	32.2469	l	<u> </u>	30 - 100
1,2-Dichlorobenzene	50.0000		32.5786			35 - 100
2-Methylphenol	50.0000	0.0000	42.9561	86		40 - 110
2,2'-oxybis(1-Chloropropan	50.0000	0.0000	33.3233	67		30 - 123
4-Methylphenol	50.0000	0.0000	44.7610	90		30 - 110
N-Nitroso-di-n-propylamine	50.0000	0.0000	43.3118	87		35 - 130
Hexachloroethane	50.0000	0.0000	31.2818	63		30 - 95
Nitrobenzene	50.0000	0.0000	44.8284	. 90		45 - 110
Isophorone	50.0000	0.0000	41.2021	82	- 1	50 - 110
2-Nitrophenol	50.0000	0.0000	39.3307	79		40 - 115
2,4-Dimethylphenol	50.0000	0.0000	54.7991	110		30 - 110
2,4-Dichlorophenol	50.0000	0.0000	46.3248	93		50 - 105
1,2,4-Trichlorobenzene	50.0000	0.0000	44.1089	88		35 - 105
Naphthalene	50.0000	0.0000	43.5218	87		40 - 100
4-Chloroaniline	50.0000	0.0000	27.4031	55		15 - 110
Bis(2-chloroethoxy)methane	50.0000	0.0000	41.0047	82		45 - 105
Hexachlorobutadiene	50.0000	0.0000	42.2636	85		25 - 105
4-Chloro-3-methylphenol	50.0000	0.0000	47.7086	95		45 - 110
2-Methylnaphthalene	50.0000	0.0000	45.8411	92		45 - 105
Hexachlorocyclopentadiene	50.0000	0.0000	30.8134	. 62		27 - 147
2,4,6-Trichlorophenol	50.0000	0.0000	45.1900	90		50 - 115
2,4,5-Trichlorophenol	50.0000	0.0000	45.0325	90		50 - 110
2-Chloronaphthalene	50.0000	0.0000	43.0136	86		50 - 105
2-Nitroaniline	50.0000	0.0000	40.8449	82		50 - 115
Dimethylphthalate	50.0000	0.0000	45.2247	90		25 - 125
Acenaphthylene	50.0000	0.0000	38.1356	76		50 - 105
2,6-Dinitrotoluene	50.0000	0.0000	41.9018	84		50 - 115
3-Nitroaniline	50.0000	0.0000	38.1823	76		20 - 125
Acenaphthene	50.0000	0.0000	40.2525	81		45 - 110
2,4-Dinitrophenol	50.0000	0.0000	46.4203	93		15 - 140
4-Nitrophenol	50.0000	0.0000	44.4300	89		0 - 125
Dibenzofuran	50.0000	0.0000	48.5758	97		55 - 105
2,4-Dinitrotoluene	50.0000	0.0000	41.9008	84		50 - 120
Diethylphthalate	50.0000	0.0000	42.2153	84		40 - 120
4-Chlorophenyl-phenylether	50.0000	0.0000	48.5199	97		50 - 110
Fluorene	50.0000	0.0000	43.8136	88		50 - 110
4-Nitroaniline	50.0000	0.0000	29.4266	59		35 - 120
4,6-Dinitro-2-methylphenol	50.0000	0.0000	41.3838	83		40 - 130
N-Nitrosodiphenylamine	50.0000	0.0000	39.1281	78		50 - 110
4-Bromophenyl-phenylether	50.0000	0.0000	55.9118	112		50 - 115

CLIENT SAMPLE NO.

LCS-49914

Lab Name:	MITKEN	1 LABORATORIES		Contract:		
Lab Code:	MITKEN	1 Case No.:	J0398	Mod. Ref No.:	SDG No.:	SJ0398
Lab Sample	ID:	LCS-49914		LCS Lot No.:		
Date Extrac	cted:	03/18/2010		Date Analyzed (1):	03/19/2010	

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
	*					REC.
Hexachlorobenzene	50.0000	0.0000	53.7232	107	[50 - 110
Pentachlorophenol	50.0000	0.0000	43.4452	87		40 - 115
Phenanthrene	50.0000	0.0000	44.5931	89		50 - 115
Anthracene	50.0000	0.0000	49.1358	98		55 - 110
Carbazole	50.0000	0.0000	43.7226	87		50 - 115
Di-n-butylphthalate	50.0000	0.0000	40.9070	82		55 - 115
Fluoranthene	50.0000	0.0000	40.5071	81		55 - 115
Pyrene	50.0000	0.0000	47.8502	96		50 - 130
Butylbenzylphthalate	50.0000	0.0000	39.2518	79		45 - 115
3,3'-Dichlorobenzidine	50.0000	0.0000	12.1386	24		20 - 110
Benzo(a) anthracene	50.0000	0.0000	42.2063	84		55 - 110
Chrysene	50.0000	0.0000	50.2209	100		55 - 110
Bis(2-ethylhexyl)phthalate	50.0000	0.0000	36.7071	73		40 - 125
Di-n-octylphthalate	50.0000	0.0000	40.9148	82		35 - 135
Benzo(b)fluoranthene	50.0000	0.0000	42.5456	85		45 - 120
Benzo(k) fluoranthene	50.0000	0.0000	56.5303	113		45 - 125
Benzo(a)pyrene	50.0000	0.0000	40.8427	82		55 - 110
Indeno(1,2,3-cd)pyrene	50.0000	0.0000	39.1102	78		45 - 125
Dibenzo(a,h)anthracene	50.0000	0.0000	42.2775	85		40 - 125
Benzo(g,h,i)perylene	50.0000	0.0000	36.3808	73		40 - 125

Column to be used to flag recovery and RPD values with an asterisk

* Values outside	of QC	limits			•	
Spike Recovery:	0	out of	64	_outside limit	S	
COMMENTS:				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

EPA SAMPLE NO.

LCSD-49849

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0398

Mod. Ref No.:

SDG No.: SJ0398

Lab Sample ID: LCSD-49849

LCS Lot No.:

	SPIKE	LCSD					OC LIMITS		
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD	#		TITITIO	
COMPOUND							RPD	REC.	
Phenol	50.0000	39.9772	80	Ī	9		40	0 - 115	
Bis(2-chloroethyl)ether	50.0000	39.1996	·	-	4		40	35 - 110	
2-Chlorophenol	50.0000	40.5607	81	<u> </u>	5		40	35 - 105	
1,3-Dichlorobenzene	50.0000	34.3203	69		1		40	30 - 100	
1,4-Dichlorobenzene	50.0000	34.7274	. 69		4		40	30 - 100	
1,2-Dichlorobenzene	50.0000	35.4476	71	· · ·	3		40	35 - 100	
2-Methylphenol	50.0000	39.3410	79		4		40	40 - 110	
2,2'-oxybis(1-Chloropropan	50.0000	37.1449	74		6		40	30 - 123	
4-Methylphenol	50.0000	40.6916	81		3		40	30 - 110	
N-Nitroso-di-n-propylamine	50.0000	39.0078	78		5	-	40	35 - 130	
Hexachloroethane	50.0000	34.7361	69		1		40	30 - 95	
Nitrobenzene	50.0000	39.8569	80		1		40	45 - 110	
Isophorone	50.0000	40.3097	81		5		40	50 - 110	
2-Nitrophenol	50.0000	43.3410	87		4		40	40 - 115	
2,4-Dimethylphenol	50.0000	43.6464	87		1		40	30 - 110	
2,4-Dichlorophenol	50.0000	42.5416	85		13		40	50 - 105	
1,2,4-Trichlorobenzene	50.0000	37.0854	74		1		40	35 - 105	
Naphthalene	50.0000	39.0432	78	-	1		40	40 - 100	
4-Chloroaniline	50.0000	28.9237	58		9		40	15 - 110	
Bis(2-chloroethoxy)methane	50.0000	40.9445	82		4		40	45 - 105	
Hexachlorobutadiene	50.0000	35.0851	70		0		40	25 - 105	
4-Chloro-3-methylphenol	50.0000	44.3404	89		5		40	45 - 110	
2-Methylnaphthalene	50.0000	53.6488	107	*	4		40	45 - 105	
Hexachlorocyclopentadiene	50.0000	16.0491	32		21		40	27 - 147	
2,4,6-Trichlorophenol	50.0000	39.5792	79		4		40	50 - 115	
2,4,5-Trichlorophenol	50.0000	38.6142	77		4		40	50 - 110	
2-Chloronaphthalene	50.0000	39.2911	79		3		40	50 - 105	
2-Nitroaniline	50.0000	41.4282	83		2		40	50 - 115	
Dimethylphthalate	50.0000	40.2797	81		3		40	25 - 125	
Acenaphthylene	50.0000	40.8667	82		4		40	50 - 105	
2,6-Dinitrotoluene	50.0000	40.6771	81		3		40	50 - 115	
3-Nitroaniline	50.0000	33.3126	67		2		40	20 - 125	
Acenaphthene	50.0000	39.6177	79		3		40	45 - 110	
2,4-Dinitrophenol	50.0000	47.3345	95		0		40	15 - 140	
4-Nitrophenol	50.0000	57.5448	115		6		40	0 - 125	
Dibenzofuran	50.0000	40.9588	82		5		40	55 - 105	
2,4-Dinitrotoluene	50.0000	42.4427	85		4		40	50 - 120	
Diethylphthalate	50.0000	41.6125	83		2		40	40 - 120	
4-Chlorophenyl-phenylether	50.0000	40.8357	82		5	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{I}}}$	40	50 - 110	
Fluorene	50.0000	40.3894	81		4	$oxed{\mathbb{I}}$	40	50 - 110	
4-Nitroaniline	50.0000	39.3945	79		5		40	35 - 120	
4,6-Dinitro-2-methylphenol	50.0000	44.3018	89		0		40	40 - 130	
N-Nitrosodiphenylamine	50.0000	39.1616	78		1		40	50 - 110	
4-Bromophenyl-phenylether	50.0000	40.0098	80		1		40	50 - 115	
Hexachlorobenzene	50.0000	39.0693	78		1		40	50 - 110	
Pentachlorophenol	50.0000	42.7074	85		2		40	40 - 115	

EPA SAMPLE NO.

LCSD-49849

Lab Name:	MITKEN	1 LABORATORIES		Contract:			
Lab Code:	MITKEN	Case No.:	J0398	Mod. Ref No.:		SDG No.:	SJ0398
Lab Sample	ID:	LCSD-49849		LCS Lot No.:	,		

	SPIKE	LCSD				QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	CSD %REC #		#	
COMPOUND						RPD	REC.
Phenanthrene	50.0000	42.1957	84		1	40	50 - 115
Anthracene	50.0000	42.5209	85		4	40	55 - 110
Carbazole	50.0000	42.5619	85		2	40	50 - 115
Di-n-butylphthalate	50.0000	43.1991	86		1	40	55 - 115
Fluoranthene	50.0000	42.4693	85		1	40	55 - 115
Pyrene	50.0000	41.8447	84		4	40	50 - 130
Butylbenzylphthalate	50.0000	41.3474	83		1	40	45 - 115
3,3'-Dichlorobenzidine	50.0000	23.0909	46		2	40	20 - 110
Benzo(a)anthracene	50.0000	41.4428	83		1	40	55 - 110
Chrysene	50.0000	44.0641	88		6	40	55 - 110
Bis(2-ethylhexyl)phthalate	50.0000	41.6146	83		1	40	40 - 125
Di-n-octylphthalate	50.0000	41.3075	83		0	40	35 - 135
Benzo(b) fluoranthene	50.0000	43.8102	88		7	40	45 - 120
Benzo(k)fluoranthene	50.0000	39.1994	78		1	40	45 - 125
Benzo(a)pyrene	50.0000	39.7713	80		4	40	55 - 110
Indeno(1,2,3-cd)pyrene	50.0000	30.7235	61		22	40	45 - 125
Dibenzo(a,h)anthracene	50.0000	38.6022	77		1	40	40 - 125
Benzo(g,h,i)perylene	50.0000	39.7291	79		4	40	40 - 125

[#] Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

RPD:	0	out of	6	4 outsi	de lim	its			
Spike	Recove	ery:	1	out of	64	_outside l	imits.		
COMME	NTS:							 ·	

5A

EPA SAMPLE NO.

SPIKE SAMPLE RECOVERY

SMS-MW-13DS

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0398

Matrix (soil/water): WATER

Level (low/med): MED

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	Control							
	Limit	Spiked Sample	Sample		Spike			
Analyte	%R	Result (SSR) C	Result (SR)	С	Added (SA)	%R	Q	M
Aluminum	75-125	8640	86.0	В	9100	94		P
Antimony	75-125	484	8.0	В	456	104		P
Arsenic	75-125	456	3.1	Ū	456	100		Р
Barium	75-125	8920	75.4	В	9100	97		Р
Beryllium	75-125	218	0.064	В	227	96		P
Cadmium	75-125	274	57.6		227	95		P
Chromium	75-125	877	20.0	В	910	94		P
Cobalt	75-125	2190	0.67	Ū	2270	96		Р
Copper	75-125	1090	19.5	В	1130	95		Р
Iron	75-125	4790	515		4550	94		Р
Lead	75-125	447	4.2	В	455	97		P
Manganese	75-125	2190	18.5	В	2270	96		Р
Nickel	75-125	2300	139		2270	95		P
Selenium	75-125	456	15.6	В	455	97		P
Silver	75-125	1090	2.4	U	1130	97		P
Thallium	75-125	445	5.7	U	455	98		P
Vanadium	75-125	2170	0.44	В	2270	95		Р
Zinc	75-125	2180	60.4		2270	94		P
Mercury	75-125	4.5	0.056	U	4.6	98		CV

Comments:				
		The same of the sa	· /	

EPA SAMPLE NO.

DUPLICATES

Lab Name: Mitkem Laboratories

Contract: D003821-41

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: SJ0398

SMS-MW-13DD

Matrix (soil/water): WATER

Level (low/med): MED

% Solids for Sample: 0.0

% Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	Control							
Analyte	Limit	Sample (S)	C	Duplicate (D)	С	RPD	Q	M
Aluminum	Company of the Compan	86.0180	В	66.3511	В	25.8		P
Antimony		7.9924	В	4.2000	Ū	200		Р
Arsenic		3.1000	U	3.4646	В	200		Р
Barium	-	75.4446	В	75.5154	В	0.1		P
Beryllium		0.0635	В	0.0370	U	200		Р
Cadmium		57.5877		56.6505		1.6		Р
Calcium		13132.1268		12768.7276		2.8		P
Chromium	20.0	19.9588	В	20.2974		1.7		P
Cobalt		0.6700	U	0.6700	Ų			P
Copper		19.5050	В	18.0387	В	7.8		P
Iron	200.0	515.1237		473.4971		8.4		Р
Lead		4.1551	В	2.1000	U	200		Р
Magnesium		7394.0339		7319.1725		1		Р
Manganese		18.4760	В	17.3147	В	6.5		Р
Nickel	50.0	139.2486		138.2502		0.7		Р
Potassium	1000.0	3472.8437		3458.7781		0.4		Р
Selenium		15.6200	В	10.0000	U	200		Р
Silver		2.4000	U	2.4000	U			P
Sodium		26092.5472		26013.0179		0.3		Р
Thallium		5.7000	U	5.7000	Ū			Р
Vanadium		0.4358	В	0.4037	В	7.6		Р
Zinc	50.0	60.4123		57.9064	-	4.2		P
Mercury		0.0560	U	0.0560	U			CV

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

MB-49928

Level: (TRACE or LOW/MED) LOW Time Analyzed: 0:35

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-49928	LCS-49928	V1L1910.D	23:14
02	LCSD-49928	LCSD-49928	V1L1911.D	23:42
03	TB-1	J0398-07A	V1L1914.D	1:02
04	TB-3	J0398-20A	V1L1915.D	1:29
05	SMS-MW-9	J0398-01A	V1L1916.D	1:56
06	SMS-MW-59	J0398-02A	V1L1917.D	2:23
07	SMS-MW-8	J0398-03A	V1L1918.D	7:05
08	SMS-MW-1	J0398-04A	V1L1919.D	7:32
09	SMS-MW-2	J0398-05A	V1L1920.D	7:59
10	SMS-MW-3	J0398-06A	V1L1921.D	8:26
11	SMS-MW-4	J0398-14A	V1L1922.D	8:53
12	SMS-MW-15	J0398-15A	V1L1923.D	9:20

COMMENTS:	
	<u> </u>
SOM_002	

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

	CLIENT	SAMPLE	NO.
1	MB-499	28	
1			
1			

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	MB-49928
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1L1913.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purae Volume: 5 0			(mT.)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ū
	Trichloroethene	5.0	Ü
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	Ü
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	Ü
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-499	28	

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	MB-49928
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1L1913.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	0
	Tetrachloroethene	5.0	U
1	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	1.4	J
	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	1.4	J
100-42-5	Styrene	5.0	Ü
75-25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	Ū
	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	Ū

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.
MB-49950

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-49950	LCS-49950	V1L1932.D	10:35
02	SMS-MW-16S	J0398-16A	V1L1947.D	17:36
03	SMS-MW-16D	J0398-17A	V1L1948.D	18:03
04	SMS-MW-16M	J0398-18A	V1L1949.D	18:31

COMMENTS:	
FOM 002	

Page 1 of 1

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-499	50	

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	MB-49950
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1L1935.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	Ü
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	Ū
	trans-1,3-Dichloropropene	5.0	Ū
	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ü

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-499	50	

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	MB-49950
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V1L1935.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (m	n) Dilution Factor:	1.0
Soil Extract Volume: _		(u)	L) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		. (m)	۲,)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	Ü
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	Ü

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO. MB-50047

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKE	M Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398	
Lab File ID:	V2L5033.D	Lab Sample ID:	MB-50047	
Instrument ID:	V2	_		
Matrix: (SOIL/SE	CD/WATER) WATER	Date Analyzed:	03/23/2010	
Level: (TRACE or	LOW/MED) LOW	Time Analyzed:	13:38	
GC Column: DB-6	524 ID: 0.25 (mm) Heated Purge: (Y/N) N	

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-50047	LCS-50047	V2L5031.D	12:45
02	TB-02	J0398-13A	V2L5034.D	14:14
03	SMS-MW-7	J0398-08A	V2L5037.D	15:34
04	SMS-MW-6	J0398-09A	V2L5038.D	16:00
05	SMS-MW-6D	J0398-10A	V2L5039.D	16:27

COMMENTS:	
SOM_002	

Page 1 of 1

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-500	47	

Lab Name:	MITKEM LABORA	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (S	OIL/SED/WATER) WATER			Lab Sample ID:	MB-50047
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L5033.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	
% Moisture	: not dec.				Date Analyzed:	03/23/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volu	me: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū .
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ü
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	ט
	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	ט
	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	บ
107-06-2	1,2-Dichloroethane	5.0	U
	Benzene	5.0	Ū
	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	U
1	1,1,2-Trichloroethane	5.0	Ü
142-28-9	1,3-Dichloropropane	5.0	Ū

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-500	47	

Lab Name:	MITKEM LABOR	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (S	OIL/SED/WATER	WATER			Lab Sample ID:	MB-50047	
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L5033.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:		
% Moisture	: not dec.				Date Analyzed:	03/23/2010	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	Ü
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	Ū
	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	Ū
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	Ü
120-82-1	1,2,4-Trichlorobenzene	5.0	Ü
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

MB-50061

Lab Name: MITK	EM LABORATORIES	Contract:	
Lab Code: MITK	EM Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Lab File ID:	V1L2064.D	Lab Sample ID:	MB-50061
Instrument ID:	V1	_	
Matrix: (SOIL/S	ED/WATER) WATER	Date Analyzed:	03/24/2010
Level: (TRACE o	r LOW/MED) LOW	Time Analyzed:	8:56
GC Column: DB-	624 ID: 0.25 (mm) Heated Purge: (Y	//N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-50061	LCS-50061	V1L2062.D	8:01
02	SMS-MW-5	J0398-11A	V1L2065.D	9:23
03	SMS-MW-17	J0398-12A	V1L2066.D	9:50
04	SMS-MW-13DMS	J0398-19AMS	V1L2084.D	18:41
05	SMS-MW-13DMS D	J0398-19AMSD	V1L2085.D	19:08

COMMENTS:			
	 ~		
SOM_002			1.00

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-500	61	
İ		

Lab Name: MITK	EM LABORATO	ORIES			Contract:		
Lab Code: MITK	EM C	ase No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398	
Matrix: (SOIL/S	ED/WATER)	WATER			Lab Sample ID:	MB-50061	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1L2064.D	
Level: (TRACE/L	OW/MED) L	OM	y		Date Received:		
% Moisture: not	dec.				Date Analyzed:	03/24/2010	
GC Column: DB-	624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Vo	lume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume:	5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	Ü
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	5.0	Ū
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ü

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-500	61	

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.: J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	MB-50061
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1L2064.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	03/24/2010
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		_ (mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
	1,2-Dibromoethane	5.0	Ü
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	Ü
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	Ū
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	Ū
541-73-1	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	Ū
95-50-1	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

MB-50103

Lab Name:	MITKEM LABORA	TORIES	Contract:	
Lab Code:	MITKEM	Case No.: J0398	Mod. Ref No.:	SDG No.: SJ0398
Lab File II	V1L2094	. D	Lab Sample ID:	MB-50103
Instrument	ID: V1		_	
Matrix: (SC	OIL/SED/WATER)	WATER	Date Analyzed:	03/25/2010
Level: (TRA	ACE or LOW/MED) LOW	Time Analyzed:	9:32
GC Column:	DB-624	ID: 0.25 (mm	n) Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-50103	LCS-50103	V1L2092.D	8:24
02	SMS-MW-13D	J0398-19A	V1L2096.D	10:26

COMMENTS:	
SOM_002	

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-501	03	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.:	SJ0398
Matrix: (SOIL/SED/WATER)	WATER	.,		Lab Sample ID:	MB-50103	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L2094.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:		
% Moisture: not dec.				Date Analyzed:	03/25/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	-
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purae Volume: 5 0		•	(mT.)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
	Bromomethane	5.0	Ü
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ü
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ü
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	Ü
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ü
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-501	03	

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0398		Mod. Ref No.:	SDG No.: SJ0398
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	MB-50103
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1L2094.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/25/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			(mL)		

	T	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	Ü
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	Ū
95-50-1	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MB-49849

Lab Name: N	MITKEM LABORA	ATORIES		Contract:	
Lab Code: M	MITKEM	Case No.:	J0398	Mod. Ref No.:	SDG No.: SJ0398
Lab File ID:	: S3G3435	5.D	· 	Lab Sample ID:	MB-49849
Instrument 1	ID: S3		,	Date Extracted:	03/16/2010
Matrix: (SO)	IL/SED/WATER) WATER		Date Analyzed:	03/18/2010
Level: (LOW/	/MED) LOW			Time Analyzed:	15:51
Extraction:	(Type) CON	T		GPC Cleanup: (Y/	N) N

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-49849	LCS-49849	S3G3436.D	03/18/2010
02	LCSD-49849	LCSD-49849	S3G3437.D	03/18/2010
03	SMS-MW-9	J0398-01C	S3G3441.D	03/18/2010
04	SMS-MW-59	J0398-02C	S3G3442.D	03/18/2010
05	SMS-MW-8	J0398-03C	S3G3443.D	03/18/2010
06	SMS-MW-1	J0398-04C	S3G3444.D	03/18/2010
07	SMS-MW-2	J0398-05C	S3G3445.D	03/18/2010
08	SMS-MW-3	J0398-06C	S3G3446.D	03/18/2010
09	SMS-MW-7	J0398-08C	S3G3447.D	03/18/2010
10	SMS-MW-6	J0398-09C	S3G3448.D	03/18/2010
11	SMS-MW-6D	J0398-10C	S3G3449.D	03/18/2010
12	SMS-MW-5	J0398-11C	S3G3450.D	03/18/2010
13	SMS-MW-17	J0398-12C	S3G3451.D	03/18/2010

COMMENTS:				
		 		

SOM_002

Page 1 of 1

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIE	NT	SAMPLE	NO.
MB-	4984	19	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-49849
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3435.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	- U
	Bis(2-chloroethyl)ether	10	U
	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	Ū
	1,4-Dichlorobenzene	10	Ū
	1,2-Dichlorobenzene	10	Ū
	2-Methylphenol	10	ט
	2,2'-oxybis(1-Chloropropane)	10	Ū
	4-Methylphenol	10	Ū
	N-Nitroso-di-n-propylamine	10	ט
	Hexachloroethane	10	Ū.
	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	Ū
	2,4-Dimethylphenol	10	U
	2,4-Dichlorophenol	10	Ū
	1,2,4-Trichlorobenzene	10	Ū
	Naphthalene	10	Ū
	4-Chloroaniline	10	Ū
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	U
	4-Chloro-3-methylphenol	10	Ū
	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ü
95-95-4	2,4,5-Trichlorophenol	20	Ū
91-58-7	2-Chloronaphthalene	10	Ū
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	Ū
	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	Ū
51-28-5	2,4-Dinitrophenol	20	Ū
100-02-7	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	Ū

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-498	49	
1		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-49849
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S3G3435.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/16/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/18/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
	Diethylphthalate	10	U
	4-Chlorophenyl-phenylether	10	Ū
	Fluorene	10	U
	4-Nitroaniline	20	Ū
	4,6-Dinitro-2-methylphenol	20	U
	N-Nitrosodiphenylamine	10	Ū
	4-Bromophenyl-phenylether	10	Ū
	Hexachlorobenzene	10	Ū
	Pentachlorophenol	20	U
	Phenanthrene	10	U
120-12-7	Anthracene	10	Ü
	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	U
	Fluoranthene	10	Ū
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	Ū
	3,3'-Dichlorobenzidine	10	Ū
	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b)fluoranthene	10	Ū
	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(q,h,i)perylene	10	U

4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MB-49914

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-49914	LCS-49914	S1G2616.D	03/19/2010
02	SMS-MW-4	J0398-14C	S1G2629.D	03/19/2010
03	SMS-MW-15	J0398-15C	S1G2630.D	03/19/2010
04	SMS-MW-16S	J0398-16C	S1G2631.D	03/19/2010
05	SMS-MW-16D	J0398-17C	S1G2632.D	03/19/2010
06	SMS-MW-16M	J0398-18C	S1G2633.D	03/19/2010
07	SMS-MW-13D	J0398-19C	S1G2634.D	03/19/2010
08	SMS-MW-13DMS	J0398-19CMS	S1G2635.D	03/19/2010
	SMS-MW- 13DMSD	J0398-19CMSD	S1G2636.D	03/19/2010

COMMENTS:					
	 	 	 		
			 		

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-499	14	
		٠.

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-49914
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2615.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	U
	Bis(2-chloroethyl)ether	10	U
	2-Chlorophenol	10	Ū
	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ü
	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	Ü
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
	2,4,5-Trichlorophenol	20	Ū
91-58-7	2-Chloronaphthalene	10	Ū
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	Ū
	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	Ū

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE N	0.
MB-499	14	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0398	Mod. Ref No.: SDG No.: SJ0398
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-49914
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2615.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/19/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	Ü
7005-72-3	4-Chlorophenyl-phenylether	10	U
	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	Ū
86-30-6	N-Nitrosodiphenylamine	10	U
	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
	Fluoranthene	10	Ū
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	ט
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	Ū
	Benzo(b)fluoranthene	10	U
	Benzo(k)fluoranthene	10	Ū
	Benzo(a)pyrene	10	Ū
	Indeno(1,2,3-cd)pyrene	10	Ū
	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

3

BLANKS

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.:

SJ0398

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

MB-50021

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

FIMS1_100323A

	Initial Calibration	ì	Co	onti	nuing Calib	rat.	ion		Preparation	n	
	Blank (ug/L	ng/L) Blank (ug/L)							Blank		
Analyte		С	1	С	2	С	3	С		С	М
Mercury	0.056	ט	0.092	В	0.151	В	0.056	Ü	0.056	U	CV

3

BLANKS

Lab Name: Mitkem Laboratories Contract: D003821-41

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SJ0398

Preparation Blank Matrix (soil/water): WATER Method Blank ID: MB-50099

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

FIMS1 100325A

	Initial										
	Calibration		С	onti	nuing Cal	ibrati	on		Preparation	n	
	Blank (ug/L)		•		Blank (ug/	/L)			Blank		
Analyte			1	C	2	C	3	С		C	М
Mercury	0.056	7	0.056	U					0.056	U	CV

3

BLANKS

Lab Name: Mitkem Laboratories Contract: D003821-41

Lab Code: MITKEM Case No.: SAS No.: SDG No.: SJ0398

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

MB-49906

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

OPTIMA3_100323A

	Initial										
	Calibration	ı	Co	nt:	inuing Calib	rat	tion		Preparation	n	
	Blank (ug/L)		Blank							
Analyte		С	1	C	2	С	3	С		С	М
Potassium	59.0	ט	59.0	U	59.0	U	59.0	U	59.000	U	Р
Sodium	29.0	U	38.1	В	30.0	В	29.0	Ū	40.513	В	Р

3

BLANKS

Lab Name: Mitk	em Laboratories		Contract:	D00	3821-41					
Lab Code: MITK	EM Case	No.:		SAS No.:			SDC	G No.:	SJ039	8
Preparation Bla	ank Matrix (soi	L/water):						Method	Blank	ID:
Preparation Bla	ank Concentratio	on Units		or mg/kg): PTIMA3_1003	23A	M-4	_			
	Initial Calibration Blank (ug/L)		Cont	inuing Cali Blank (ug/		on		Prepar Bla		
Analyte		: 1	С	2	C	3	С		С	М
Potassium			59.0 U							P

29.0 U

Potassium

Sodium

BLANKS

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.:

SJ0398

Method Blank ID:

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

MB-49906

OPTIMA3 100323D

			T						T		T
	Initial										
	Calibration	n	C	ont	inuing Calib	ra	tion		Preparation	n	
	Blank (ug/I	٦)			Blank (ug/L	,)			Blank		
Analyte		C	1	С	2	C	. 3	С		С	М
Aluminum	12.0	Ü	12.0	U	12.0	U	12.0	Ū	79.497	В	P
Antimony	4.7	В	6.5	В	4.9	В	4.2	U	11.380	В	Р
Arsenic	3.1	U	3.1	Ū	3.1	U	3.1	U	4.601	В	Р
Barium	2.9	Ū	2.9	Ū	2.9	U	2.9	Ū	2.900	Ū	Р
Beryllium	0.1	В	0.1	В	0.1	В	0.1	В	0.109	В	Р
Cadmium	0.5	U	0.5	Ü	0.5	U	0.5	U	0.500	Ū	Р
Calcium	87.0	Ū	87.0	Ū	267.6	В	87.0	U	87.000	U	Р
Chromium	0.5	U	0.5	Ū	0.5	U	0.5	Ū	0.500	Ü	P
Cobalt	0.7	U	0.7	Ū	0.7	U	0.7	U	0.670	U	P
Copper	4.7	U	4.7	Ū	4.7	U	4.7	U	4.700	Ū	Р
Iron	47.0	U	47.0	U	47.0	U	47.0	U	109.280	В	Р
Lead	2.1	Ū	2.1	Ü	2.1	U	2.1	U	3.009	В	Р
Magnesium	62.0	Ū	62.0	Ü	62.0	U	62.0	U	92.297	В	Р
Manganese	3.5	U	3.5	Ū	3.5	Ü	3.5	U	3.500	U	P
Nickel	0.6	U	0.6	U	0.6	Ų	0.6	Ü	0.640	U	Р
Selenium	10.0	U	10.0	U	10.0	U	11.5	В	15.024	В	P
Silver	2.4	U	2.4	Ū	2.4	Ū	2.4		2.400	U	P
Thallium	5.7	U	5.7	U	-6.6	В	-6.3		5.700	U	Р
Vanadium	0.6	В	0.3	U	0.4	В	0.3	Ū	0.340	U	P
Zinc	7.0	Ū	7.0	U	7.0	U	7.0	U	7.000	U	P.

3

BLANKS

Lab Name:	: Mitkem Laboratories		Contract:	D003821-41		·
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0398
Preparatio	on Blank Mat	crix (soil/water):			Method	Blank ID:
Preparation	on Blank Con	ncentration Units (ug,	/L or mg/kg):			
			OPTIMA3_10032	23D		

	Initial										
	Calibration	ר	Co	ont	inuing Cal	ibratio	n		Preparation	n	
	Blank (ug/L)			Blank (ug	g/L)			Blank		
Analyte		С	1	C	2	C	3	С		С	М
Aluminum			12.0	U							Р
Antimony			11.2	В							P
Arsenic			5.5	В							Р
Barium			2.9	U							P
Beryllium			0.0	В			.,,				P
Cadmium			0.5	ט							Р
Calcium			139.2	В							Р
Chromium			0.5	U							Р
Cobalt			0.7	Ū							Р
Copper			4.7	U	-						Р
Iron			47.0	U							Р
Lead			2.1	Ū							P
Magnesium			62.0	Ū							P
Manganese			3.5	Ū	*						P
Nickel			0.6	Ū							P
Selenium			10.8	В							P
Silver			2.4	U							P
Thallium			5.7	U	W. 4						Р
Vanadium			0.5	В							Р
Zinc			7.0	U							Р

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 03/17/2010 03/17/2010

EPA Sample No.(VSTD#####): VSTD0501V Date Analyzed: 03/18/2010

Lab File ID (Standard): V1L1909.D Time Analyzed: 22:47

Instrument ID: V1 Heated Purge: (Y/N) N

		IS1 (S1)				IS2 (S2)				IS3 (S3)			
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	615772		6.69	-	442947		10.392		171190		13.218	
	UPPER LIMIT	1231544		7.19		885894	- Arrented	10.892		342380		13.718	
	LOWER LIMIT	307886		6.19	-	221474		9.892		85595		12.718	
	SAMPLE NO.			. A. A.W									
01	LCS-49928	630424		6.699		447988		10.391		177986		13.227	
02	LCSD-49928	625784		6.694		450084		10.397		174952		13.222	
03	MB-49928	571042		6.689		394371		10.391		141316		13.217	
04	TB-1	687996		6.699		486014		10.401		171510		13.217	
05	TB-3	685180		6.695		479764		10.398		162684		13.214	
06	SMS-MW-9	595354		6.699		412789		10.401		144036		13.217	
07	SMS-MW-59	657972		6.700		462669		10.392		162587		13.218	
08	SMS-MW-8	797033		6.686		557779		10.388		189577		13.214	
09	SMS-MW-1	706136		6.690		506974	-	10.382		176162		13.218	
10	SMS-MW-2	726371		6.686		497735		10.378		170920		13.213	
11	SMS-MW-3	717928		6.685		505273		10.377		170455		13.213	
12	SMS-MW-4	724437		6.686		506358		10.388		173483		13.214	
13	SMS-MW-15	720161		6.684		506761		10.386		168526		13.212	

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

SOM_002

Page 1 of 1

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Contract: Lab Name: MITKEM LABORATORIES SDG No.: SJ0398 Mod. Ref No.: Lab Code: MITKEM Case No.: J0398 03/17/2010 03/17/2010 (mm) Init. Calib. Date(s): GC Column: DB-624 ID: 0.25 Date Analyzed: 03/19/2010 EPA Sample No. (VSTD#####): VSTD0501W Time Analyzed: 9:58 Lab File ID (Standard): V1L1931.D Heated Purge: (Y/N) Ν Instrument ID: V1

	·	IS1 (S1)		IS2 (S2)		IS3 (S3)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	607652	6.679	443985	10.381	171993	13.207
	UPPER LIMIT	1215304	7.179	887970	10.881	343986	13.707
	LOWER LIMIT	303826	6.179	221993	9.881	85997	12.707
	SAMPLE NO.						
)1	LCS-49950	612446	6.681	437801	10.383	172141	13.209
)2	MB-49950	661505	6.690	462581	10.392	164985	13.218
)3	SMS-MW-16S	678011	6.690	478807	10.382	170083	13.218
) 4	SMS-MW-16D	677623	6.680	475353	10.373	166183	13.208
)5	SMS-MW-16M	715428	6.679	497165	10.381	175586	13.207

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of

internal standard area AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

SOM_002

Page 1 of 1

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

 Lab Name:
 MITKEM LABORATORIES
 Contract:

 Lab Code:
 MITKEM
 Case No.:
 J0398
 Mod. Ref No.:
 SDG No.:
 SJ0398

 GC Column:
 DB-624
 ID:
 0.25 (mm)
 Init. Calib. Date(s):
 03/17/2010
 03/17/2010

 EPA Sample No. (VSTD#####):
 VSTD0501C
 Date Analyzed:
 03/24/2010

Lab File ID (Standard): V1L2061.D Time Analyzed: 7:23

Instrument ID: V1 Heated Purge: (Y/N)

		IS1 (S1)		IS2 (S2)		IS3 (S3)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	562836	6.719	396690	10.411	149026	13.237
	UPPER LIMIT	1125672	7.219	793380	10.911	298052	13.737
	LOWER LIMIT	281418	6.219	198345	9.911	74513	12.737
	SAMPLE NO.						
01	LCS-50061	582613	6.719	409526	10.421	158153	13.237
02	MB-50061	563749	6.700	390925	10.402	132895	13.238
03	SMS-MW-5	601235	6.709	418100	10.411	138820	13.237
04	SMS-MW-17	600157	6.706	416546	10.408	137152	13.234
05	MB-50005	461919	6.709	317004	10.402	116317	13.237
06	SMS-MW-13DMS	468612	6.702	337303	10.394	127904	13.230
07	SMS-MW-13DMS D	575179	6.699	402071	10.401	154883	13.227

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

SOM_002

Page 1 of 1

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract: SDG No.: SJ0398 Case No.: J0398 Mod. Ref No.: Lab Code: MITKEM (mm) Init. Calib. Date(s): 03/17/2010 03/17/2010 GC Column: DB-624 ID: 0.25 Date Analyzed: 03/25/2010 EPA Sample No. (VSTD#####): VSTD0501E Lab File ID (Standard): V1L2091.D Time Analyzed: 7:45

Heated Purge: (Y/N)

IS3 (S3) IS2 (S2) IS1 (S1) AREA # AREA RTRTRT AREA 10.392 177477 13.228 471764 12 HOUR STD 661988 6.69 7.19 943528 10.892 354954 13.728 UPPER LIMIT 1323976 12.728 88739 LOWER LIMIT 330994 6.19 235882 9.892 SAMPLE NO. 6.683 10.376 170995 13.211 01 LCS-50103 436684 637054 13.202 10.376 142016 MB-50103 633971 6.674 433476 02 127691 13.207 553575 6.679 377944 10.381 03 SMS-MW-13D

IS1 () = Fluorobenzene

Instrument ID:

V1

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

SOM 002

Page 1 of 1

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 03/23/2010 03/23/2010

EPA Sample No.(VSTD#####): VSTD0502I Date Analyzed: 03/23/2010

Lab File ID (Standard): V2L5030.D Time Analyzed: 12:18

Instrument ID: V2 Heated Purge: (Y/N) N

		IS1 (S1)		IS2 (S2)		IS3 (S3)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	2659535	6.749	1625363	10.488	830498	13.337
	UPPER LIMIT	5319070	7.249	3250726	10.988	1660996	13.837
	LOWER LIMIT	1329768	6.249	812682	9.988	415249	12.837
	SAMPLE NO.						
01	LCS-50047	2210804	6.754	1363195	10.493	685960	13.342
02	MB-50047	2568825	6.760	1609445	10.489	837678	13.338
03	TB-02	2791876	6.763	1759979	10.492	916846	13.340
04	SMS-MW-7	2049904	6.760	1394245	10.499	743131	13.338
05	SMS-MW-6	2212516	6.760	1462672	10.499	738921	13.348
06	SMS-MW-6D	2367965	6.760	1653796	10.499	835411	13.348

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

SOM_002

Page 1 of 1

8C - FORM VIII SV-1

SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

EPA Sample No.(SSTD020##): SSTD0503B Date Analyzed: 03/18/2010

Lab File ID (Standard): S3G3431.D Time Analyzed: 14:13

Instrument ID: S3

		IS1 (DCB)	_			IS2 (NPT)				IS3 (ANT)			
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	23316		2.54		94085		3.576		59406		5.088	
	UPPER LIMIT	46632		3.04		188170		4.076		118812		5.588	
	LOWER LIMIT	11658		2.04		47043		3.076		29703		4.588	
	SAMPLE NO.												
01	MB-49849	25479		2.541		98590		3.577		63246		5.083	
02	LCS-49849	31761		2.545		127144		3.576		82281		5.088	
03	LCSD-49849	30731		2.541		124395		3.577		80757		5.089	
04	SMS-MW-9	34000		2.543		130540		3.579		83693		5.091	
05	SMS-MW-59	24632		2.545	T	95771		3.576		62230		5.087	
06	SMS-MW-8	29497		2.545		109052		3.576		70254		5.088	
07	SMS-MW-1	28559		2.543	T	111150		3.580		71016		5.086	
08	SMS-MW-2	30572		2.543		121880		3.580		77436		5.086	
09	SMS-MW-3	33190		2.546	1	126871		3.577		81689		5.088	
10	SMS-MW-7	25843		2.544	1	97667		3.580		63184		5.087	
11	SMS-MW-6	35219		2.546		136806		3.577		88209		5.089	
12	SMS-MW-6D	27449		2.545	Ì	110496		3.576		70895		5.088	
13	SMS-MW-5	32373		2.546		127095		3.577		81680		5.088	
14	SMS-MW-17	26843		2.546		104737		3.577		68824		5.089	

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside contract required QC limits with an asterisk.

8C - FORM VIII SV-1

SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

EPA Sample No.(SSTD020##): SSTD0501H Date Analyzed: 03/19/2010

Lab File ID (Standard): S1G2611.D Time Analyzed: 9:52

Instrument ID: S1

		IS1 (DCB)				IS2 (NPT)				IS3 (ANT)			
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	405709		3.673		1259813		4.818		932125		6.503	
	UPPER LIMIT	811418		4.173		2519626		5.318		1864250		7.003	
	LOWER LIMIT	202855	i	3.173		629907		4.318		466063		6.003	
	SAMPLE NO.												
01	MB-49914	309710		3.662		1018561		4.818		722537		6.482	
02	LCS-49914	389203		3.672		1143944		4.817		833251		6.492	
03	SMS-MW-4	293576		3.671		1030030		4.816		689727		6.491	
04	SMS-MW-15	306573		3.670		1044245		4.816		709291		6.490	
05	SMS-MW-16S	326213		3.669		1110713		4.815		790241		6.489	
06	SMS-MW-16D	308889		3.670		1058586		4.815		737061		6.490	
07	SMS-MW-16M	300867		3.660		1030013		4.816		709105		6.491	
08	SMS-MW-13D	305846		3.670		1050054		4.815		703390		6.489	
09	SMS-MW-13DMS	378259		3.674		1225047		4.819		819805		6.493	
10	SMS-MW-13DMS D	331938		3.670		1012054		4.816		698142		6.490	

SOM_002

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside contract required QC limits with an asterisk.

8D - FORM VIII SV-2

SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

EPA Sample No.(SSTD020##): SSTD0503B Date Analyzed: 03/18/2010

Lab File ID (Standard): S3G3431.D Time Analyzed: 14:13

Instrument ID: S3 GC Column: Rxi-5sil MS ID: 0.25 (mm)

		IS4 (PHN)		IS5 (CRY)						IS6 (PRY)			
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	100569		6.37		113652		8.673		106215		9.811	
	UPPER LIMIT	201138		6.87		227304		9.173		212430		10.311	
	LOWER LIMIT	50285		5.87		56826		8.173		53108		9.311	
	SAMPLE NO.												
01	MB-49849	108116		6.366		128472		8.668		113794		9.806	
02	LCS-49849	135823		6.370		159768		8.678		149355		9.816	
03	LCSD-49849	135881		6.371		159809		8.673		150205		9.817	
04	SMS-MW-9	139028		6.373		157738		8.676		142252		9.819	
05	SMS-MW-59	108866		6.370		131148		8.672		118277		9.815	
06	SMS-MW-8	117874		6.370		134043		8.673		118451		9.816	
07	SMS-MW-1	119571		6.368		140486		8.671		124809		9.814	
08	SMS-MW-2	134197		6.374		156387		8.676		138499		9.814	
09	SMS-MW-3	138139		6.370		163318		8.673		143489		9.816	
10	SMS-MW-7	108397		6.369		125326		8.671		112196		9.814	
11	SMS-MW-6	147421		6.376		175308		8.673		155294		9.822	
12	SMS-MW-6D	119087		6.370		136111		8.673		122861		9.816	
13	SMS-MW-5	134069		6.371		151825		8.673		135707		9.816	
14	SMS-MW-17	117497		6.371		131047		8.674		114754		9.812	

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside contract required QC limits with an asterisk.

8D - FORM VIII SV-2

SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0398 Mod. Ref No.: SDG No.: SJ0398

EPA Sample No.(SSTD020##): SSTD0501H Date Analyzed: 03/19/2010

Lab File ID (Standard): S1G2611.D Time Analyzed: 9:52

Instrument ID: S1 GC Column: Rxi-5sil MS ID: 0.25 (mm)

		IS4 (PHN)				IS5 (CRY)				IS6 (PRY)			
		AREA	#	RT	#	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	1060569		7.929	•	968692		10.5		530739		11.775	
	UPPER LIMIT	2121138		8.429		1937384		11		1061478		12.275	
	LOWER LIMIT	530285		7.429		484346		10		265370		11.275	
	SAMPLE NO.												
01	MB-49914	1085174		7.919		1115235		10.479		738832		11.765	
02	LCS-49914	1091985		7.929		946772		10.489		580500		11.775	
03	SMS-MW-4	898037		7.917		705270		10.478		447160		11.763	
04	SMS-MW-15	881378		7.916		655682		10.477		377866		11.762	
05	SMS-MW-16S	952555		7.915		697075		10.476		408543		11.761	
06	SMS-MW-16D	872771		7.916		652792		10.476	İ	398136		11.762	
07	SMS-MW-16M	946615		7.917		664216		10.477		349104		11.763	
08	SMS-MW-13D	863202		7.915		614192		10.476		338891		11.762	\Box
09	SMS-MW-13DMS	1111189		7.919		832977		10.491		391157		11.766	
10	SMS-MW-13DMS D	883297		7.916		651384		10.487		332620		11.762	

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside contract required QC limits with an asterisk.

Report Date: 08-Apr-10 14:04

✓ Final Report

☐ Re-Issued Report

☐ Revised Report

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

AECOM Technical Services, Inc.

300 Broadacres Drive Bloomfield, NJ 07003 Work Order: J0445

Project: SMS Instruments, 152026

Project #:

Attn: Paul Kareth

Laboratory ID	Client Sample ID		<u>Matrix</u>	Date Sampled	Date Received
J0445-01	SMS-MW-14		Aqueous	12-Mar-10 08:50	13-Mar-10 08:50
J0445-02	SMS-MW-13		Aqueous	12-Mar-10 09:40	13-Mar-10 08:50
J0445-03	SMS-MW-12		Aqueous	12-Mar-10 10:40	13-Mar-10 08:50
J0445-04	TB-4		Aqueous	12-Mar-10 00:00	13-Mar-10 08:50

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as recevied.

All applicable NELAC or USEPA CLP requirments have been meet.

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense N/A PH-0153 Connecticut Delaware N/A 2007037 Maine Massachusetts M-RI907 New Hampshire 2631 New Jersey RI001 11522 New York North Carolina 581 Pennsylvania 68-00520 Rhode Island LAI00301 Texas

 Texas
 T104704422-08-TX

 USDA
 P330-08-00023

 USEPA - ISM
 EP-W-09-039

 USEPA - SOM
 EP-W-05-030

Authorized by:

MASS

Yihai Ding Laboratory Director

Technical Reviewer's Initials:

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: SMS Instruments, 152026

		Analytical Requirements							
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other			
SMS-MW-14	J0445-01	SW8260_W	SW8270_W		SW6010_W				
SMS-MW-14	J0445-01				SW7470				
SMS-MW-13	J0445-02	SW8260_W	SW8270_W		SW6010_W				
SMS-MW-13	J0445-02				SW7470				
SMS-MW-12	J0445-03	SW8260_W	SW8270_W		SW6010_W				
SMS-MW-12	J0445-03				SW7470				
 TB-4	J0445-04	SW8260_W							

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

Laboratory Sample ID	Matrix	Date Collected	Date Received By Lab	Date Extracted	Date Analyzed
SW8260_W					· · · · · · · · · · · · · · · · · · ·
J0445-01A	AQ	3/12/2010	3/13/2010	NA	3/19/2010
J0445-02A	AQ	3/12/2010	3/13/2010	NA	3/19/2010
J0445-03A	AQ	3/12/2010	3/13/2010	NA	3/19/2010
J0445-04A	AQ	3/12/2010	3/13/2010	NA	3/19/2010

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

Laboratory Sample ID	Matrix	Date Collected	Date Received By Lab	Date Extracted	Date Analyzed
SW8270_W					
J0445-01C	AQ	3/12/2010	3/13/2010	3/19/2010	3/20/2010
J0445-02C	AQ	3/12/2010	3/13/2010	3/19/2010	3/20/2010
J0445-03C	AQ	3/12/2010	3/13/2010	3/19/2010	3/20/2010

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Low/Medium Level	Dil/Conc Factor
SW8260_W					
J0445-01A	AQ	SW8260_W	NA	LOW	1
J0445-02A	AQ	SW8260_W	NA	LOW	1
J0445-03A	AQ	SW8260_W	NA	LOW	1
J0445-04A	AQ	SW8260_W	NA	LOW	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
SW8270_W					
J0445-01C	AQ	SW8270_W	3520C	NA	1
J0445-02C	AQ	SW8270_W	3520C	NA	1
J0445-03C	AQ	SW8270_W	3520C	NA	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name: SMS Instruments, 152026

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010_W				
J0445-01B	AQ	SW6010_W	3/13/2010	3/25/2010
J0445-02B	AQ	SW6010_W	3/13/2010	3/25/2010
J0445-03B	AQ	SW6010_W	3/13/2010	3/25/2010
SW7470				
J0445-01B	AQ	SW7470	3/13/2010	3/25/2010
J0445-02B	AQ	SW7470	3/13/2010	3/25/2010
J0445-03B	AQ	SW7470	3/13/2010	3/25/2010

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: SMS Instruments

SDG# SJ0445

Mitkem Work Order ID: J0445

April 8, 2010

Prepared For:

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to Earth Tech Northeast, Inc.'s SMS Instruments project. Under this deliverable, analysis results are presented for four aqueous samples that were received on March 13, 2010. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/lab control sample duplicate: spike recoveries and replicate RPDs were within the QC limits.

Sample analysis: no other unusual observation was made for the analysis.

3. Semivolatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/lab control sample duplicate: spike recoveries were within the QC limits with the exception of high recovery of hexachlorobenzene and low recovery of 3,3'-dichlorobenzidine in LCS-49951. Replicate RPDs were within the QC limits with the exception of 4-chloroaniline, 3-nitroaniline and 3,3'-dichlorobenzidine.

Sample analysis: no other unusual observation was made for the analysis.

4. Metals Analysis:

Lab control sample: spike recoveries were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Huntley

CLP Project Manager

04/08/10

03/18/2010 12:56

WorkOrder: J0445

Client ID: EARTH_NJ

Project: SMS Instruments, 152026

WO Name: SMS Instruments, 152026

Location: SMS,

Comments: Collection times taken from sample bottle labels.

Case: SDG:

HC Due: 04/05/10

Fax Due: 03/29/10

Report Level: ASP-B EDD: CLF Special Program:

Fax Report:

PO: D003821-41

						A THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS	
Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0445-01A	SMS-MW-14	03/12/2010 08:50 03/13/2010	03/13/2010	Aqueous	SW8260_W	1	VOA
J0445-01B J0445-01B	SMS-MW-14 SMS-MW-14	03/12/2010 08:50 03/13/2010 03/12/2010 08:50 03/13/2010	03/13/2010	Aqueous	SW6010_W SW7470	/ TAL / TAL	Y M6 M6
J0445-01C	SMS-MW-14	03/12/2010 08:50	03/13/2010	Aqueous	SW8270_W		D3
J0445-02A	SMS-MW-13	03/12/2010 09:40 03/13/2010	03/13/2010	Aqueous	SW8260_W		VOA
J0445-02B J0445-02B	SMS-MW-13 SMS-MW-13	03/12/2010 09:40 03/13/2010 03/12/2010 09:40 03/13/2010	03/13/2010 03/13/2010	Aqueous	SW6010_W SW7470	/TAL /TAL	Y M6
J0445-02C	SMS-MW-13	03/12/2010 09:40 03/13/2010	03/13/2010	Aqueous	SW8270_W		D3
J0445-03A	SMS-MW-12	03/12/2010 10:40	03/13/2010	Aqueous	SW8260_W		VOA
J0445-03B J0445-03B	SMS-MW-12 SMS-MW-12	03/12/2010 10:40 03/13/2010 03/12/2010 10:40 03/13/2010	03/13/2010 03/13/2010	Aqueous	SW6010_W SW7470	/TAL /TAL	Y M6
J0445-03C	SMS-MW-12	03/12/2010 10:40 03/13/2010	03/13/2010	Aqueous	SW8270_W		D3
J0445-04A	TB-4	03/12/2010 00:00 03/13/2010	03/13/2010	Aqueous	SW8260_W		VOA

(S) (S) (S) HF = Fraction logged in but all tests have been placed on hold (E)

HT = Test logged in but has been placed on hold

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENI	SHMETE	NO.
SMS-MW	-14	

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	J0445-01A
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V2L4960.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/13/2010
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ü .
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ü
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34 - 3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	Ū
	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	U
78 - 87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	Ū
108-88-3		5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00 - 5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.				
SMS-MW	SMS-MW-14					

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	J0445-01A
Sample wt/vol: 5.	.00 (g/mL)	ML	Lab File ID:	V2L4960.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/13/2010
% Moisture: not dec.	-		Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: _		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µg/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ü
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630 - 20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75 - 25-2	Bromoform	5.0	Ū
98-82-8	Isopropylbenzene	5.0	Ū
79 - 34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	. 5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū ·
95-49 - 8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ū
98-06 - 6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98 - 8	sec-Butylbenzene	5.0	Ū
99-87 - 6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	Ū
104-51-8	n-Butylbenzene	5.0	Ū
95 - 50-1	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	Ū
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
87-68-3	Hexachlorobutadiene	5.0	Ū
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	Ū

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

_	СТТБИТ	SAMELL	140.
	SMS-MW	-13	
			I

Contract: Lab Name: MITKEM LABORATORIES Mod. Ref No.: SDG No.: SJ0445 Lab Code: MITKEM Case No.: J0445 Lab Sample ID: J0445-02A Matrix: (SOIL/SED/WATER) WATER Sample wt/vol: 5.00 (g/mL) MLLab File ID: V2L4961.D Level: (TRACE/LOW/MED) LOW Date Received: 03/13/2010 % Moisture: not dec. Date Analyzed: 03/19/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

(mL)

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) μ G/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	Ü
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ŭ
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58 - 6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27 -4		5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	5.0	Ū
	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

Purge Volume: 5.0

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

SMS-MW-13	NO.	SAMPLE	CLIENT
		-13	SMS-MW

Lab Name: MITKEM LABO	RATORIES		Contract:		
Lab Code: MITKEM	Case No.: J04	145	Mod. Ref No.:	SDG No.: SJ0445	
Matrix: (SOIL/SED/WATE	CR) WATER		Lab Sample ID:	J0445-02A	
Sample wt/vol: 5	.00 (g/mL) ML		Lab File ID:	V2L4961.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/13/2010	
% Moisture: not dec.			Date Analyzed:	03/19/2010	
GC Column: DB-624	ID: 0.2	25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0		(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	U.
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
	1,1,2,2-Tetrachloroethane	5.0	Ū
	Bromobenzene	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	Ü
106-43-4	4-Chlorotoluene	5.0	Ū
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	Ū
135-98-8	sec-Butylbenzene	5.0	Ū
99-87-6	4-Isopropyltoluene	5.0	Ū
	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	Ū
95-50-1	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
87-68-3	Hexachlorobutadiene	5.0	Ū
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	- 12	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0445		Mod. Ref No.:	SDG No.: SJ044	5
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0445-03A	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V2L4962.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/13/2010	
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	_ (uL)
Purge Volume: 5.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q ·
75-71-8	Dichlorodifluoromethane	5.0	Ū ·
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35 - 4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0_	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	Ü
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	U
56-23 - 5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U .
	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U .

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
--------	--------	-----

SMS-MW-12

Lab Name:	MITKEM LABOR	ATORIES		Contract:	
Lab Code:	MITKEM	Case No.:	J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (So	OIL/SED/WATER	R) WATER		Lab Sample ID:	J0445-03A
Sample wt/	vol: 5.	00 (g/mL)	ML	Lab File ID:	V2L4962.D
Level: (TR	ACE/LOW/MED)	LOW		Date Received:	03/13/2010
% Moisture	: not dec.			Date Analyzed:	03/19/2010
GC Column:	DB-624	ID:	0.25 (m	m) Dilution Factor:	1.0
Soil Extra	ct Volume:		(ul	L) Soil Aliquot Vol	ume: (uL)
Purge Volum	me: 5.0		(m]	L)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	Ŭ
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū
	1,2-Dibromo-3-chloropropane	5.0	Ū
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	Ū
	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	U

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
TB-4		
	,	

Lab Name: MITKEM LABORA	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0445		Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0445-04A
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V2L4958.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	03/13/2010
% Moisture: not dec.			·	Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ū.
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	Ū
108-88-3		1.5	J
	trans-1,3-Dichloropropene	5.0	Ų
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

	CLIENT	SAMPLE	NO.
1	TB-4		

Lab Name: MITKEM LABOR	ATORIES	-	Contract:	
Lab Code: MITKEM	Case No.:	J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	J0445-04A
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V2L4958.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	03/13/2010
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	U .
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	Ü
96-18-4	1,2,3-Trichloropropane	5.0	Ū
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U.
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	Ū
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	. U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	Ü
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENI	SAMPLE	NO.
LCS-49	958	

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0445		Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATER	.) WATER			Lab Sample ID:	LCS-49958
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L4953.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	46	
74-87-3	Chloromethane	49	1
75-01-4	Vinyl chloride	54	
74-83-9	Bromomethane	54	
75-00-3	Chloroethane	. 56	
75-69-4	Trichlorofluoromethane	46	
75-35-4	1,1-Dichloroethene	48	
67-64-1	Acetone	45	
74-88-4	Iodomethane	50	
75-15-0	Carbon disulfide	50	
75-09-2	Methylene chloride	50	В
156-60-5	trans-1,2-Dichloroethene	50	
1634-04-4	Methyl tert-butyl ether	48	
75-34-3	1,1-Dichloroethane	48	
108-05-4	Vinyl acetate	49	1
78-93-3	2-Butanone	52	
156-59-2	cis-1,2-Dichloroethene	50	1
594-20-7	2,2-Dichloropropane	49	
	Bromochloromethane	51	1
67-66-3	Chloroform	48	+
71-55-6	1,1,1-Trichloroethane	48	
563-58-6	1,1-Dichloropropene	49	
56-23-5	Carbon tetrachloride	49	
107-06-2	1,2-Dichloroethane	48	
	Benzene	50	
79-01-6	Trichloroethene	50	
78-87-5	1,2-Dichloropropane	49	
	Dibromomethane	50	
75-27-4	Bromodichloromethane	49	+-
10061-01-5	cis-1,3-Dichloropropene	50	
	4-Methyl-2-pentanone	47	
108-88-3	Toluene	50	
10061-02-6	trans-1,3-Dichloropropene	49	
	1,1,2-Trichloroethane	50	\top
142-28-9	1,3-Dichloropropane	49	

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

	CLIENT	SAMPLE	NO.
	LCS-49	958	
ı			- 1
			1

Lab Name: MITKI	M LABORAT	ORIES			Contract:		
Lab Code: MITK	M (Case No.:	J0445		Mod. Ref No.:	SDG No.:	SJ0445
Matrix: (SOIL/S	D/WATER)	WATER			Lab Sample ID:	LCS-49958	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V2L4953.D	
Level: (TRACE/L	W/MED) I	JOM			Date Received:		
% Moisture: not	dec.				Date Analyzed:	03/19/2010	A
GC Column: DB-	24	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Vo.	ume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume:	.0			(mL)			

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	50	
591-78-6	2-Hexanone	46	
124-48-1	Dibromochloromethane	51	
106-93-4	1,2-Dibromoethane	50	
108-90-7	Chlorobenzene	49	
630-20-6	1,1,1,2-Tetrachloroethane	50	
	Ethylbenzene	50	
	m,p-Xylene	100	
95-47-6	o-Xylene	51	
	Xylene (Total)	150	
100-42-5		51	
75-25-2	Bromoform	51	
98-82-8	Isopropylbenzene	50	
79-34-5	1,1,2,2-Tetrachloroethane	49	
108-86-1	Bromobenzene	50	
96-18-4	1,2,3-Trichloropropane	45	
	n-Propylbenzene	50	
	2-Chlorotoluene	49	
	1,3,5-Trimethylbenzene	49	
	4-Chlorotoluene	50	
	tert-Butylbenzene	49	
95-63-6	1,2,4-Trimethylbenzene	49	
	sec-Butylbenzene	50	
	4-Isopropyltoluene	4.9	
	1,3-Dichlorobenzene	49	
	1,4-Dichlorobenzene	49	
	n-Butylbenzene	49	
	1,2-Dichlorobenzene	48	
	1,2-Dibromo-3-chloropropane	44	
120-82-1	1,2,4-Trichlorobenzene	47	
	Hexachlorobutadiene	46	
	1,2,3-Trichlorobenzene	46	
91-20-3	Naphthalene	46	

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
LCSD-4	9958	

Lab Name: MITKEM LABOR	RATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATE	R) WATER	Lab Sample ID:	LCSD-49958
Sample wt/vol: 5	.00 (g/mL) <u>ML</u>	Lab File ID:	V2L4954.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	
% Moisture: not dec.		Date Analyzed:	03/19/2010
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume: _		(uL) Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	47	=
	Chloromethane	50	_
	Vinyl chloride	54	+-
	Bromomethane	57	1.
	Chloroethane	57	
	Trichlorofluoromethane	4 4	
75-35-4	1,1-Dichloroethene	49	1
67-64-1	Acetone	45	
74-88-4	Iodomethane	49	
75-15-0	Carbon disulfide	50	1
75-09-2	Methylene chloride	49	В
156-60-5	trans-1,2-Dichloroethene	49	
1634-04-4	Methyl tert-butyl ether	47	
	1,1-Dichloroethane	48	
	Vinyl acetate	47	
78-93-3	2-Butanone	49	
156-59-2	cis-1,2-Dichloroethene	50	1
	2,2-Dichloropropane	48	
74-97-5	Bromochloromethane	50	
67-66-3	Chloroform	48	
71-55-6	1,1,1-Trichloroethane	48	
563-58-6	1,1-Dichloropropene	49	
56-23-5	Carbon tetrachloride	48	—
107-06-2	1,2-Dichloroethane	47	
71-43-2	Benzene	49	
79-01-6	Trichloroethene	49	\top
78-87-5	1,2-Dichloropropane	49	
	Dibromomethane	48	\top
75-27-4	Bromodichloromethane	50	
10061-01-5	cis-1,3-Dichloropropene	49	
108-10-1	4-Methyl-2-pentanone	47	
108-88-3	Toluene	49	
10061-02-6	trans-1,3-Dichloropropene	48	
79-00-5	1,1,2-Trichloroethane	49	
142-28-9	1,3-Dichloropropane	49	

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
LCSD-4	9958	

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0445		Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	LCSD-49958
Sample wt/vol: 5.	00 (g/mL)	ML	, .	Lab File ID:	V2L4954.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	49	
591-78-6	2-Hexanone	44	<u> </u>
124-48-1	Dibromochloromethane	50	<u> </u>
106-93-4	1,2-Dibromoethane	48	†
	Chlorobenzene	48	<u> </u>
630-20-6	1,1,1,2-Tetrachloroethane	49	
100-41-4	Ethylbenzene	49	
1330-20-7	m,p-Xylene	99	
95-47-6	o-Xylene	48	
1330-20-7	Xylene (Total)	150	
100-42-5	Styrene	50	
75 - 25-2	Bromoform	49	
98-82-8	Isopropylbenzene	49	
	1,1,2,2-Tetrachloroethane	49	
108-86-1	Bromobenzene	49	
96-18-4	1,2,3-Trichloropropane	45	
103-65-1	n-Propylbenzene	50	
	2-Chlorotoluene	49	
108-67-8	1,3,5-Trimethylbenzene	50	
106-43-4	4-Chlorotoluene	. 50	
98-06-6	tert-Butylbenzene	49	
95-63-6	1,2,4-Trimethylbenzene	50	
135-98-8	sec-Butylbenzene	50	
99-87-6	4-Isopropyltoluene	49	
541-73-1	1,3-Dichlorobenzene	49	
106-46-7	1,4-Dichlorobenzene	48	
104-51-8	n-Butylbenzene	49	
95-50-1	1,2-Dichlorobenzene	48	
96-12-8	1,2-Dibromo-3-chloropropane	44	
120-82-1	1,2,4-Trichlorobenzene	46	
87-68-3	Hexachlorobutadiene	46	
87-61-6	1,2,3-Trichlorobenzene	46	
91-20-3	Naphthalene	45	

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-14	
		l

Lab Name: MITKEM LABOR	RATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATE	R) WATER	Lab Sample ID:	J0445-01C
Sample wt/vol: 100	00 (g/mL) ML	Lab File ID:	S1G2652.D
Level: (LOW/MED) LOW		Extraction: (Typ	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/13/2010
Concentrated Extract V	olume: 1000 (uL)	Date Extracted:	03/19/2010
Injection Volume: 1.	0 (uL) GPC Factor: 1.00	Date Analyzed:	03/20/2010
GPC Cleanup: (Y/N) N	pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	U
	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
	1,4-Dichlorobenzene	10	U
	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
	2-Nitrophenol	10	ט
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	U
	4-Chloroaniline	10	Ū
	Bis(2-chloroethoxy)methane	10	U
	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	U
	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	Ū
99-09-2	3-Nitroaniline	20	Ū
83-32-9	Acenaphthene	10	Ū
51-28-5	2,4-Dinitrophenol	20	ט
	4-Nitrophenol	20	U
	Dibenzofuran	10	U

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	1-14	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0445-01C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2652.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/13/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L	0
CAS NO.	COMPOUND		\
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	U
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	. 10	Ū
205-99-2	Benzo(b) fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	ט
50-32-8	Benzo(a)pyrene	10	U
	Indeno(1,2,3-cd)pyrene	10	U
	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENI	SAMPLE	NO.
SMS-MW	-13	

Lab Name: MITKEM I	ABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/W	WATER) WATER	Lab Sample ID:	J0445-02C
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1G2653.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	03/13/2010
Concentrated Extrac	ct Volume: 1000 (uL)	Date Extracted:	03/19/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/20/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	U
111-44-4	Bis(2-chloroethyl)ether	10	U
95-57-8	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	Ü
95-50-1	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ü
	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	U
105-67-9	2,4-Dimethylphenol	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ü
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
87-68-3	Hexachlorobutadiene	10	U
59-50-7	4-Chloro-3-methylphenol	10	Ü
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	Ū
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	U
606-20-2	2,6-Dinitrotoluene	10	Ū
	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	U
	2,4-Dinitrophenol	20	U
	4-Nitrophenol	20	U
	Dibenzofuran	10	U

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.	
SMS-MW	-13		1
			ı
			1

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0445-02C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2653.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/13/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-	2 2,4-Dinitrotoluene	10	Ū
84-66-2	2 Diethylphthalate	10	U
7005-72-	3 4-Chlorophenyl-phenylether	10	U
	7 Fluorene	10	Ü
100-01-	6 4-Nitroaniline	20	U
534-52-3	4,6-Dinitro-2-methylphenol	20	U
86-30-0	N-Nitrosodiphenylamine	10	U
101-55-3	3 4-Bromophenyl-phenylether	10	Ü
118-74-1	Hexachlorobenzene	10	U
87-86-	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	Ū
120-12-	Anthracene	10	U
	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-	Butylbenzylphthalate	10	U
91-94-3	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	Ū .
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ū

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-12	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0445-03C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2654.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/13/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	_
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
108-95-2	Phenol	10	Ü
111-44-4	Bis(2-chloroethyl)ether	10	U
	2-Chlorophenol	10	Ü
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
	1,2-Dichlorobenzene	10	Ū
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U
	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	U
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	U
	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	U
	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	U
208-96-8	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U
	3-Nitroaniline	20	U
	Acenaphthene	10	U
51-28-5	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	U
132-64-9	Dibenzofuran	10	U

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
SMS-MW	-12	
1		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0445-03C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2654.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 03/13/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	U
	4-Chlorophenyl-phenylether	10	U
86-73-7	Fluorene	10	U
100-01-6	4-Nitroaniline	20	Ū
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	ט
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b)fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	U

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
LCS-49	951	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-49951
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2650.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	
108-95-2	Phenol	37	
	Bis(2-chloroethyl)ether	32	
95-57-8	2-Chlorophenol	37	
541-73-1	1,3-Dichlorobenzene	31	
106-46-7	1,4-Dichlorobenzene	33	<u></u>
	1,2-Dichlorobenzene	33	<u> </u>
95-48-7	2-Methylphenol	40	<u> </u>
108-60-1	2,2'-oxybis(1-Chloropropane)	35	
106-44-5	4-Methylphenol	41	
621-64-7	N-Nitroso-di-n-propylamine	37	
67-72-1	Hexachloroethane	33	
98-95-3	Nitrobenzene	46	<u> </u>
	Isophorone	39	
	2-Nitrophenol	38	
	2,4-Dimethylphenol	54	
	2,4-Dichlorophenol	43	
120-82-1	1,2,4-Trichlorobenzene	44	
91-20-3	Naphthalene	45	
106-47-8	4-Chloroaniline	17	
	Bis(2-chloroethoxy)methane	30	
87-68-3	Hexachlorobutadiene	43	
59-50-7	4-Chloro-3-methylphenol	45	
	2-Methylnaphthalene	44	1
	Hexachlorocyclopentadiene	19	
	2,4,6-Trichlorophenol	45	
95-95-4	2,4,5-Trichlorophenol	46	
	2-Chloronaphthalene	42	
88-74-4	2-Nitroaniline	38	
	Dimethylphthalate	. 45	
208-96-8	Acenaphthylene	31	
606-20-2	2,6-Dinitrotoluene	37	
99-09-2	3-Nitroaniline	22	
	Acenaphthene	36	
	2,4-Dinitrophenol	46	
	4-Nitrophenol	38	
	Dibenzofuran	46	

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
LCS-49	951	
I		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-49951
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2650.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	43	
84-66-2	Diethylphthalate	39	
7005-72-3	4-Chlorophenyl-phenylether	48	1
86-73-7	Fluorene	41	
100-01-6	4-Nitroaniline	33	
534-52-1	4,6-Dinitro-2-methylphenol	48	
86-30-6	N-Nitrosodiphenylamine	30	
101-55-3	4-Bromophenyl-phenylether	50	
118-74-1	Hexachlorobenzene	56	
87-86-5	Pentachlorophenol	51	
85-01-8	Phenanthrene	45	
120-12-7	Anthracene	43	
86-74-8	Carbazole	37	
84-74-2	Di-n-butylphthalate	40	
206-44-0	Fluoranthene	49	
129-00-0	Pyrene	33	
85-68-7	Butylbenzylphthalate	29	
91-94-1	3,3'-Dichlorobenzidine	2.9	J
56-55-3	Benzo(a)anthracene	42	
218-01-9	Chrysene	43	1
117-81-7	Bis(2-ethylhexyl)phthalate	34	
117-84-0	Di-n-octylphthalate	39	
205-99-2	Benzo(b)fluoranthene	45	
207-08-9	Benzo(k)fluoranthene	56	
50-32-8	Benzo(a)pyrene	40	
193-39-5	Indeno(1,2,3-cd)pyrene	40	
53-70-3	Dibenzo(a,h)anthracene	44	
191-24-2	Benzo(g,h,i)perylene	36	

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
LCSD-4	9951	

Lab Name: MITKEM	LABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	LCSD-49951
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1G2651.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	
Concentrated Extra	ct Volume: 1000 (uL)	Date Extracted:	03/19/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/20/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	30	
	Bis(2-chloroethyl)ether	34	
95-57-8	2-Chlorophenol	35	
	1,3-Dichlorobenzene	30	
	1,4-Dichlorobenzene	33	
	1,2-Dichlorobenzene	33	
95-48-7	2-Methylphenol	39	
108-60-1	2,2'-oxybis(1-Chloropropane)	34	
106-44-5	4-Methylphenol	37	
621-64-7	N-Nitroso-di-n-propylamine	40	
	Hexachloroethane	30	
98-95-3	Nitrobenzene	35	
78-59-1	Isophorone	36	
88-75-5	2-Nitrophenol	. 38	
	2,4-Dimethylphenol	42	
	2,4-Dichlorophenol	39	
120-82-1	1,2,4-Trichlorobenzene	38	
	Naphthalene	41	
106-47-8	4-Chloroaniline	35	
111-91-1	Bis(2-chloroethoxy)methane	35	
87-68-3	Hexachlorobutadiene	40	
59-50-7	4-Chloro-3-methylphenol	42	
91-57-6	2-Methylnaphthalene	32	
77-47-4	Hexachlorocyclopentadiene	21	
	2,4,6-Trichlorophenol	45	
95-95-4	2,4,5-Trichlorophenol	40	
91-58-7	2-Chloronaphthalene	40	
88-74-4	2-Nitroaniline	39	
131-11-3	Dimethylphthalate	41	
208-96-8	Acenaphthylene	38	
606-20-2	2,6-Dinitrotoluene	35	
	3-Nitroaniline	38	
83-32-9	Acenaphthene	38	
	2,4-Dinitrophenol	44	
	4-Nitrophenol	39	
	Dibenzofuran	40	

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
LCSD-	49951	
1		

Lab Name: MITKEM	LABORATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/	WATER) WATER	Lab Sample ID:	LCSD~49951
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1G2651.D
Level: (LOW/MED)	LOW	Extraction: (Type	e) CONT
% Moisture:	Decanted: (Y/N)	Date Received:	
Concentrated Extra	ct Volume: 1000 (uL)	Date Extracted:	03/19/2010
Injection Volume:	1.0 (uL) GPC Factor: 1.00	Date Analyzed:	03/20/2010
GPC Cleanup: (Y/N)	N pH:	Dilution Factor:	1.0

		CONCENTRATION UNITS:	Τ	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q	
121-14-2	2,4-Dinitrotoluene	49		
	Diethylphthalate	38		
7005-72-3	4-Chlorophenyl-phenylether	43		
86-73-7	Fluorene	45		
100-01-6	4-Nitroaniline	36		
534-52-1	4,6-Dinitro-2-methylphenol	48		
86-30-6	N-Nitrosodiphenylamine	42		
	4-Bromophenyl-phenylether	53		
118-74-1	Hexachlorobenzene	52		
87-86-5	Pentachlorophenol	53		
85-01-8	Phenanthrene	40		
120-12-7	Anthracene	48		
86-74-8	Carbazole	45		
84-74-2	Di-n-butylphthalate	40		
206-44-0	Fluoranthene	43		
129-00-0	Pyrene	33		
	Butylbenzylphthalate	29		
	3,3'-Dichlorobenzidine	34		
	Benzo(a)anthracene	37		
218-01-9		38		
	Bis(2-ethylhexyl)phthalate	34		
117-84-0	Di-n-octylphthalate	34		
205-99-2	Benzo(b)fluoranthene	46		
	Benzo(k)fluoranthene	44		
	Benzo(a)pyrene	43		
193-39-5	Indeno(1,2,3-cd)pyrene	40		
	Dibenzo(a,h)anthracene	41		
191-24-2	Benzo(g,h,i)perylene	36		

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SMS-MW-12

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: SJ0445

Matrix (soil/water): WATER

Lab Sample ID: J0445-03

Level (low/med): MED

Date Received: 03/13/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	211			P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	3.3	В		P
7440-39-3	Barium	29.2	В		P
7440-41-7	Beryllium	0.037	Ū		P
7440-43-9	Cadmium	0.63	В		P
7440-70-2	Calcium	12500			P
7440-47-3	Chromium	1.2	В		P
7440-48-4	Cobalt	1.4	В		P
7440-50-8	Copper	10.9	В		P
7439-89-6	Iron	35100			P
7439-92-1	Lead	2.1	Ū		P
7439-95-4	Magnesium	848			Р
7439-96-5	Manganese	468			P
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	3.4	В		P
7440-09-7	Potassium	4760		- V- 200	P
7782-49-2	Selenium	12.0	В		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	5970			Р
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	0.76	В		P
7440-66-6	Zinc	26.8	В		Р

Commen	ts:			
-			 	

U.S. EPA - CLP

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SMS-MW-13

SDG No.: SJ0445

Matrix (soil/water):

WATER

Lab Sample ID: J0445-02

Level (low/med): MED

Date Received: 03/13/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	145	В		P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	7.6	В		P
7440-39-3	Barium	16.3	В		P
7440-41-7	Beryllium	0.037	Ū		P
7440-43-9	Cadmium	1.1	В		P
7440-70-2	Calcium	5260			Р
7440-47-3	Chromium	3.3	В		P
7440-48-4	Cobalt	3.8	В		Р
7440-50-8	Copper	11.0	В		P
7439-89-6	Iron	28600		-	P
7439-92-1	Lead	2.1	U		Р
7439-95-4	Magnesium	677			P
7439-96-5	Manganese	434			P
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	5.5	В		P
7440-09-7	Potassium	18300			Р
7782-49-2	Selenium	10.0	U		Р
7440-22-4	Silver	2.4	υ		Р
7440-23-5	Sodium	12400			Р
7440-28-0	Thallium	9.7	В		P
7440-62-2	Vanadium	1.1	В		P
7440-66-6	Zinc	68.0			Р

Comment	s:				
-					
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Contract: D003821-41

SMS-MW-14

Lab Name: Mitkem Laboratories

SDG No.: SJ0445

Lab Code: MITKEM Case No.:

SAS No.:

Matrix (soil/water): WATER

Lab Sample ID: J0445-01

Level (low/med): MED

Date Received: 03/13/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	229			P
7440-36-0	Antimony	8.5	В		P
7440-38-2	Arsenic	5.3	В		P
7440-39-3	Barium	31.0	В		P
7440-41-7	Beryllium	0.037	Ū		Р
7440-43-9	Cadmium	0.50	Ū		Р
7440-70-2	Calcium	16100			Р
7440-47-3	Chromium	1.2	В		Р
7440-48-4	Cobalt	0.72	В		P
7440-50-8	Copper	9.1	В		P
7439-89-6	Iron	63000			P
7439-92-1	Lead	2.1	U		P
7439-95-4	Magnesium	1810			P
7439-96-5	Manganese	350			P
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	2.7	В		Р
7440-09-7	Potassium	9900		`	Р
7782-49-2	Selenium	13.0	В		P
7440-22-4	Silver	2.4	U		Р
7440-23-5	Sodium	9680			Р
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	0.38	В		P
7440-66-6	Zinc	17.7	В		P

Comments:			•	
		 		·
				<u> </u>

7

LABORATORY CONTROL SAMPLE

Lab Name: Mitkem Lab		ratories	Contract:	D003821-41		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0445
Solid LCS	Source:				LCS(D) ID:	
Aqueous LO	CS Source:				LCS-50093	

	Aque	eous (ug/L)		Sol	id (mg/	′Kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	9100.0	9128.89	100.3	gark on hann gann gairt head an darbare an traininn an				
Antimony	455.0	488.43	107.3					
Arsenic	455.0	462.85	101.7					
Barium	9100.0	8784.71	96.5					
Beryllium	227.0	233.37	102.8					
Cadmium	227.0	246.60	108.6					
Calcium	22700.0	22896.46	100.9					
Chromium	910.0	897.63	98.6					
Cobalt	2270.0	2333.61	102.8					
Copper	1130.0	1083.89	95.9	,				
Iron	4550.0	4666.91	102.6					
Lead	455.0	482.29	106.0					
Magnesium	22700.0	22608.95	99.6					
Manganese	2270.0	2395.74	105.5					
Nickel	2270.0	2300.96	101.4					
Potassium	22700.0	21492.99	94.7					
Selenium	455.0	475.10	104.4					
Silver	1130.0	1137.66	100.7					
Sodium	22700.0	21844.92	96.2					
Thallium	455.0	494.27	108.6					
Vanadium	2270.0	2279.23	100.4					
Zinc	2270.0	2373.10	104.5					

7

LABORATORY CONTROL SAMPLE

Lab Name: 1	Mitkem Laborat	tkem Laboratories			Contract: DO	D0038	D003821-41					
Lab Code: 1	MITKEM	Case No.:		SAS No	o.:			SDG No.:	SJ0445)		
Solid LCS S	Source:							LCS(D) ID):			
Aqueous LCS	S Source:							LCS-50100)			
	Aqu	eous (ug/I	1)			Soli	_d (mg/	/Ka)				
Analyte	True	Found	%R	True	Fo		C	Limits	웅]	R .		
Mercury	4.6	4 51	98 0									

2B - FORM II VOA-2

WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0445 Mod. Ref No.: SDG No.: SJ0445

Level: (TRACE or LOW) LOW

	CLIENT	VDMC1	VDMC2	VDMC3	VDMC4		TOT
	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB) #		OUT
0.1	LCS-49958	98	103	. 99	97		0
02	LCSD-49958	99	101	99	96		0
03	MB-49958	101	109	94	96		0
04	TB-4	103	104	93	95		0
05	SMS-MW-14	104	99	93	94		 0
06	SMS-MW-13	104	103	93	98		0
07	SMS-MW-12	107	106	93	97		0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75-120)

[#] Column to be used to flag recovery values

SOM 002

Page 1 of 1

SW846

^{*} Values outside of contract required QC limits

2H - FORM II SV-2 WATER SEMIVOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0445 Mod. Ref No.: SDG No.: SJ0445

	CLIENT	SDMC1	SDMC2	SDMC3	SDMC4	SDMC5	SDMC6	 TOT
	SAMPLE NO.	(NBZ) #	(FBP) #	(TPH) #	(PHL) #	(2FP) #	(TBP) #	OUT
01	MB-49951	81	84	93	74	80	99	0
02	LCS-49951	86	91	97	71	73	114	0
03	LCSD-49951	79	90	98	72	70	106	0
04	SMS-MW-14	68	80	64	67	72	91	0
05	SMS-MW-13	75	79	86	73	72	100	0
06	SMS-MW-12	76	82	97	77	77	99	0

			QC LIMITS
SDMC	(NBZ)	= Nitrobenzene-d5	(40-110)
SDMC	2 (FBP)	= 2-Fluorobiphenyl	(50-110)
SDMC	(TPH)	= Terphenyl-d14	(50-135)
SDMC	24 (PHL)	= Phenol-d5	(10-115)
SDMC	5 (2FP)	= 2-Fluorophenol	(20-110)
SDMC	6 (TBP)	= 2,4,6-Tribromophenol	(40-125)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D DMC diluted out

SOM_002

WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-49958

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0445 Mod. Ref No.: SDG No.: SJ0445

Lab Sample ID: LCS-49958 LCS Lot No.:

Date Extracted: 03/19/2010 Date Analyzed (1): 03/19/2010

3	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Dichlorodifluoromethane	50.0000	0.0000	46.0753			30 - 155
Chloromethane	50.0000					40 - 125
Vinyl chloride	50.0000	0.0000				50 - 145
Bromomethane	50.0000					30 - 145
Chloroethane	50.0000	0.0000		111		60 - 135
Trichlorofluoromethane	50.0000	0.0000		_		60 - 145
1,1-Dichloroethene	50.0000	0.0000	48.3151	97		70 - 130
Acetone	50.0000	0.0000	44.5060			40 - 140
Iodomethane	50.0000	0.0000	49.8461	100		72 - 121
Carbon disulfide	50.0000	0.0000	50.4202	101		35 - 160
Methylene chloride	50.0000	0.0000	50.0363	100		55 - 140
trans-1,2-Dichloroethene	50.0000	0.0000	49.8528	100		60 - 140
Methyl tert-butyl ether	50.0000	0.0000	48.2338	96		65 - 125
1,1-Dichloroethane	50.0000	0.0000	48.4710	97		70 - 135
Vinyl acetate	50.0000	0.0000	48.7627	98		38 - 163
2-Butanone	50.0000	0.0000	51.5475	103		30 - 150
cis-1,2-Dichloroethene	50.0000	0.0000	50.2451	100		70 - 125
2,2-Dichloropropane	50.0000	0.0000	48.9204	98		70 - 135
Bromochloromethane	50.0000	0.0000	50.5225	101		65 - 130
Chloroform	50.0000	0.0000	47.8981	96		65 - 135
1,1,1-Trichloroethane	50.0000	0.0000	47.7931	96		65 - 130
1,1-Dichloropropene	50.0000	0.0000				75 - 130
Carbon tetrachloride	50.0000	0.0000				65 - 140
1,2-Dichloroethane	50.0000			95		70 - 130
Benzene	50.0000			99		80 - 120
Trichloroethene	50.0000	0.0000	49.7219	99		70 - 125
1,2-Dichloropropane	50.0000					75 - 125
Dibromomethane	50.0000					75 - 125
Bromodichloromethane	50.0000					75 - 120
cis-1,3-Dichloropropene	50.0000			101		70 - 130
4-Methyl-2-pentanone	50.0000			94		60 - 135
Toluene	50.0000					75 - 120
trans-1,3-Dichloropropene	50.0000			99		55 - 140
1,1,2-Trichloroethane	50.0000					75 - 125
1,3-Dichloropropane	50.0000					75 - 125
Tetrachloroethene	50.0000					45 - 150
2-Hexanone	50.0000					55 - 130
Dibromochloromethane	50.0000					60 - 13
1,2-Dibromoethane	50.0000					80 - 120
Chlorobenzene	50.0000			· ·	,	80 - 12
1,1,1,2-Tetrachloroethane	50.0000					80 - 130
Ethylbenzene	50.0000			100		75 - 12
m,p-Xylene	100.0000					75 - 130
o-Xylene	50.0000	0.0000	50.8015	102		80 - 12
o-Xylene	50.0000	0.0000	50.8015	102		80 - 12

WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-49958

Lab Name: MITI	KEM LABORATORIES	Contract:				
Lab Code: MIT	KEM Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445			
Lab Sample ID: LCS-49958		LCS Lot No.:				
Date Extracted	: 03/19/2010	Date Analyzed (1):	03/19/2010			

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
·	,		,			REC.
Xylene (Total)	150.0000	0.0000	152.1245	101		81 - 121
Styrene	50.0000	0.0000	51.3559	103		65 - 135
Bromoform	50.0000	0.0000	51.0803	102		70 - 130
Isopropylbenzene	50.0000	0.0000	49.7907	100		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	48.9352	98		65 - 130
Bromobenzene	50.0000	0.0000	49.7329	99		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	44.9611	90		75 - 125
n-Propylbenzene	50.0000	0.0000	50.4784	101		70 - 130
2-Chlorotoluene	50.0000	0.0000	49.4724	99		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	48.9890	98		75 - 130
4-Chlorotoluene	50.0000	0.0000	50.3499	101		75 - 130
tert-Butylbenzene	50.0000	0.0000	49.0974	98		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000		99		75 - 130
sec-Butylbenzene	50.0000	0.0000	49.5776	99		70 - 125
4-Isopropyltoluene	50.0000	0.0000	49.3918	99		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000				75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	49.2746	99		75 - 125
n-Butylbenzene	50.0000	0.0000	49.2296	98		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	48.4423	97		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	43.8285	88		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	47.2887	95		65 - 135
Hexachlorobutadiene	50.0000	0.0000	46.0608	92		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	46.2828	93		55 - 140
Naphthalene	50.0000	0.0000	46.0829	92		55 - 140

* Values outside of QC limits

Spike Recovery: ___ 0 __ out of __ 68 __ outside limits

COMMENTS: ____

Column to be used to flag recovery and RPD values with an asterisk

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-49958

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0445

Mod. Ref No.:

SDG No.: SJ0445

Lab Sample ID: LCSD-49958

LCS Lot No.:

	SPIKE	LCSD			_		QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD	#		
COMPOUND							RPD	REC.
Dichlorodifluoromethane	50.0000				2		40	30 - 155
Chloromethane	50.0000				2		40	40 - 125
Vinyl chloride	50.0000		109	_	1		40	50 - 145
Bromomethane	50.0000				5		40	30 - 145
Chloroethane	50.0000				3		40	60 - 135
Trichlorofluoromethane	50.0000				4		40	60 - 145
1,1-Dichloroethene	50.0000	48.6868	97		0		40	70 - 130
Acetone	50.0000		90		1		40	40 - 140
Iodomethane	50.0000	49.0722	98		2		40	72 - 121
Carbon disulfide	50.0000	50.1404	100		1		40	35 - 160
Methylene chloride	50.0000	49.2182	98		2		40	55 - 140
trans-1,2-Dichloroethene	50.0000	48.9947	98		2		40	60 - 140
Methyl tert-butyl ether	50.0000	47.4078	95		1		40	65 - 125
1,1-Dichloroethane	50.0000	47.9603	96		1		40	70 - 135
Vinyl acetate	50.0000	47.1100	94		4		40	38 - 163
2-Butanone	50.0000	48.7247	97		6		40	30 - 150
cis-1,2-Dichloroethene	50.0000	49.5855	99		1		40	70 - 125
2,2-Dichloropropane	50.0000	47.5866	95		3		40	70 - 135
Bromochloromethane	50.0000	49.6657	99		2		40	65 - 130
Chloroform	50.0000	48.0399	96		0		40	65 - 135
1,1,1-Trichloroethane	50.0000	47.5087	95		1		40	65 - 130
1,1-Dichloropropene	50.0000	49.2211	98		1		40	75 - 130
Carbon tetrachloride	50.0000		95		2	\top	40	65 - 140
1,2-Dichloroethane	50.0000				0		40	70 - 130
Benzene	50.0000				2	_	40	80 - 120
Trichloroethene	50.0000				2	_	40	70 - 125
1,2-Dichloropropane	50.0000				0		40	75 - 125
Dibromomethane	50.0000				4		40	75 - 125
Bromodichloromethane	50.0000				1	-	40	75 - 120
cis-1,3-Dichloropropene	50.0000				2		40	70 - 130
4-Methyl-2-pentanone	50.0000				1		40	60 - 135
Toluene	50.0000				2	-	40	75 - 120
trans-1,3-Dichloropropene	50.0000				3		40	55 - 140
1,1,2-Trichloroethane	50.0000				2		40	75 - 125
1,3-Dichloropropane	50.0000				1		40	75 - 125
Tetrachloroethene	50.0000				3	-+	40	45 - 150
2-Hexanone	50.0000				3		40	55 - 130
Dibromochloromethane	50.0000				2	-+	40	60 - 135
1,2-Dibromoethane	50.0000				2		40	80 - 120
Chlorobenzene	50.0000				3		40	80 - 120
1,1,1,2-Tetrachloroethane	50.0000	i			2		40	80 - 130
Ethylbenzene	50.0000				1	\rightarrow	40	75 - 125
m,p-Xylene	100.0000				2		40	75 - 130
o-Xylene	50.0000				5	-	40	80 - 120
Xylene (Total)	150.0000				3		40	81 - 121
Styrene (Total)	50.0000				3		40	65 - 135
prareire	30.0000	49.0003	100				40	100 - 100

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-49958

Lab	b Name: MITKEM LABORATORIES			Contract:					
Lab	Code:	MITKEM	Case No	.: J0445	Mod. Ref No.:		SDG No.:	SJ0445	
Lab	Sample	ID:	LCSD-49958		LCS Lot No.:				

	SPIKE	LCSD				QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #		
COMPOUND						RPD	REC.
Bromoform	50.0000	49.3870	99		3	40	70 - 130
Isopropylbenzene	50.0000	48.7561	98		2	40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	48.9178	98		0	40	65 - 130
Bromobenzene	50.0000	49.4949	99		0	40	75 - 125
1,2,3-Trichloropropane	50.0000	44.6163	89		1	40	75 - 125
n-Propylbenzene	50.0000	50.1583	100		1	40	70 - 130
2-Chlorotoluene	50.0000	49.1768	98		1	40	75 - 125
1,3,5-Trimethylbenzene	50.0000	49.6999	99		1	40	75 - 130
4-Chlorotoluene	50.0000	49.8153	100		1	40	75 - 130
tert-Butylbenzene	50.0000	49.3197	99		1	40	70 - 130
1,2,4-Trimethylbenzene	50.0000	49.5020	99		0	40	75 - 130
sec-Butylbenzene	50.0000	49.8318	100		1	40	70 - 125
4-Isopropyltoluene	50.0000	49.0361	98		1	40	75 - 130
1,3-Dichlorobenzene	50.0000	49.0205	98		1	40	75 - 125
1,4-Dichlorobenzene	50.0000	48.3098	97		2	40	75 - 125
n-Butylbenzene	50.0000	49.1603	98		0	40	70 - 135
1,2-Dichlorobenzene	50.0000	47.8315	96		1	40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	43.7753	88		0	40	50 - 130
1,2,4-Trichlorobenzene	50.0000	46.3492	93		2	40	65 - 135
Hexachlorobutadiene	50.0000	46.3950	93		1	40	50 - 140
1,2,3-Trichlorobenzene	50.0000	46.3974	93		0	40	55 - 140
Naphthalene	50.0000	45.4958	91		1	40	55 - 140

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: _	0	out of	68	3 outside	e lim	its
Spike I	Recove	ry:	0	out of _	68	outside limits
COMMEN'	TS:		· · ·			

3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-49951

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0445 Mod. Ref No.: SDG No.: SJ0445

Lab Sample ID: LCS-49951 LCS Lot No.:

Date Extracted: 03/19/2010 Date Analyzed (1): 03/20/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Phenol	50.0000	0.0000	37.4035	75		0 - 115
Bis(2-chloroethyl)ether	50.0000	0.0000	32.3900	65		35 - 110
2-Chlorophenol	50.0000	0.0000	36.8543	74		35 - 105
1,3-Dichlorobenzene	50.0000			1		30 - 100
1,4-Dichlorobenzene	50.0000	0.0000				30 - 100
1,2-Dichlorobenzene	50.0000	0.0000	33.3028			35 - 100
2-Methylphenol	50.0000	0.0000	39.9733			40 - 110
2,2'-oxybis(1-Chloropropan	50.0000	0.0000	34.5695	1 1		30 - 123
4-Methylphenol	50.0000	0.0000	41.0776			30 - 110
N-Nitroso-di-n-propylamine	50.0000	0.0000	37.2807	75		35 - 130
Hexachloroethane	50.0000	0.0000	32.7535	66		30 - 95
Nitrobenzene	50.0000	0.0000	45.8924 39.4498	92 79		45 - 110 50 - 110
Isophorone	50.0000	0.0000	38.2892	77		40 - 115
2-Nitrophenol 2,4-Dimethylphenol	50.0000	0.0000	54.2448	108		30 - 110
2,4-Dimethylphenol	50.0000	0.0000	42.5652	85		50 - 105
1,2,4-Trichlorobenzene	50.0000	0.0000	43.8770			35 - 105
Naphthalene	50.0000	0.0000	45.3855	91		40 - 100
4-Chloroaniline	50.0000	0.0000	17.3595	35		15 - 110
Bis(2-chloroethoxy) methane	50.0000	0.0000	29.8569	60		45 - 105
Hexachlorobutadiene	50.0000	0.0000	42.9369	86		25 - 105
4-Chloro-3-methylphenol	50.0000	0.0000	44.6210	89		45 - 110
2-Methylnaphthalene	50.0000	0.0000	44.1682	88		45 - 105
Hexachlorocyclopentadiene	50.0000	0.0000	18.7167	37		27 - 147
2,4,6-Trichlorophenol	50.0000	0.0000	45.3882	91		50 - 115
2,4,5-Trichlorophenol	50.0000	0.0000	45.9103	92		50 - 110
2-Chloronaphthalene	50.0000	0.0000	42.3238	85		50 - 105
2-Nitroaniline	50.0000	0.0000	37.8266	76		50 - 115
Dimethylphthalate	50.0000	0.0000	44.5804	89		25 - 125
Acenaphthylene	50.0000	0.0000	30.9399	62		50 - 105
2,6-Dinitrotoluene	50.0000	0.0000	37.2720	75		50 - 115
3-Nitroaniline	50.0000	0.0000	21.8778	44		20 - 125
Acenaphthene	50.0000	0.0000	35.8758	72		45 - 110
2,4-Dinitrophenol	50.0000	0.0000	46.2820	93		15 - 140
4-Nitrophenol	50.0000	0.0000	37.6444	75		0 - 125
Dibenzofuran	50.0000	0.0000	46.0861	92		55 - 105
2,4-Dinitrotoluene	50.0000	0.0000	42.6678	85		50 - 120
Diethylphthalate	50.0000	0.0000	38.6443	77		40 - 120
4-Chlorophenyl-phenylether	50.0000	0.0000	47.7275	95		50 - 110
Fluorene	50.0000	0.0000	40.5509	81		50 - 110
4-Nitroaniline	50.0000	0.0000	33.1498	66		35 - 120
4,6-Dinitro-2-methylphenol	50.0000	0.0000	48.0131	96		40 - 130
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether	50.0000	0.0000	30.4862	61		50 - 110
4-promobnenyr-pnenyretner	50.0000	0.0000	49.5662	99		50 - 115

3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

CLIENT SAMPLE NO.

LCS-49951

Lab Name:	MITKE	M LABORATORIES	Contract:	
Lab Code:	MITKE	M Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445
Lab Sample	ID:	LCS-49951	LCS Lot No.:	
Date Extra	cted:	03/19/2010	Date Analyzed (1):	03/20/2010

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Hexachlorobenzene	50.0000	0.0000	56.2960	113	*	50 - 110
Pentachlorophenol	50.0000	0.0000	51.3011	103		40 - 115
Phenanthrene	50.0000	0.0000	45.0319	90		50 - 115
Anthracene	50.0000	0.0000	43.2228	86		55 - 110
Carbazole	50.0000	0.0000	36.6073	73		50 - 115
Di-n-butylphthalate	50.0000	0.0000	40.4961	81	·	55 - 115
Fluoranthene	50.0000	0.0000	49.3234	99		55 - 115
Pyrene	50.0000	0.0000	33.1999	66		50 - 130
Butylbenzylphthalate	50.0000	0.0000	29.1111	58		45 - 115
3,3'-Dichlorobenzidine	50.0000			6	*	20 - 110
Benzo(a)anthracene	50.0000	0.0000	41.6053	83		55 - 110
Chrysene	50.0000	0.0000	42.6353	85		55 - 110
Bis(2-ethylhexyl)phthalate	50.0000	0.0000	34.0506	68		40 - 125
Di-n-octylphthalate	50.0000	0.0000	38.9775	78		35 - 135
Benzo(b) fluoranthene	50.0000	0.0000	44.7194	89		45 - 120
Benzo(k) fluoranthene	50.0000	0.0000	56.2345	112		45 - 125
Benzo(a)pyrene	50.0000	0.0000	39.7922	80		55 - 110
Indeno(1,2,3-cd)pyrene	50.0000	0.0000	40.3447	81		45 - 125
Dibenzo(a,h)anthracene	50.0000	0.0000	43.7136	87		40 - 125
Benzo(g,h,i)perylene	50.0000	0.0000	35.9204	72		40 - 125

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values with an asterisk

* Values outside	of QC	limits			
Spike Recovery:	2	out of	64	_outside limits	
COMMENTS:					

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

LCSD-49951

Lab Name: MITKEM LABORATORIES

Contract:

Lab Code: MITKEM Case No.: J0445

Mod. Ref No.:

SDG No.: SJ0445

Lab Sample ID: LCSD-49951

LCS Lot No.:

	SPIKE	LCSD	I ICCD SDEC			1 -	LIMITS
COMPOUND	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #	RPD	REC.
	50.0000	30.4269	61		21	40	0 - 115
Phenol	50.0000	34.1793	1		5	40	35 - 110
Bis(2-chloroethyl)ether	50.0000		l		$-\frac{3}{7}$	40	35 - 110
2-Chlorophenol	50.0000		60		5	40	30 - 100
1,3-Dichlorobenzene	50.0000	32.9761			2	40	30 - 100
1,4-Dichlorobenzene 1,2-Dichlorobenzene	50.0000	32.6869			3	40	35 - 100
	50.0000	38.9158			3	40	40 - 110
2-Methylphenol	50.0000				3	40	30 - 123
2,2'-oxybis(1-Chloropropan	50.0000				10	40	30 - 123
4-Methylphenol	50.0000				6	40	35 - 130
N-Nitroso-di-n-propylamine	50.0000				10	40	30 - 95
Hexachloroethane			i		29	40	45 - 110
Nitrobenzene	50.0000						50 - 110
Isophorone	50.0000	35.6711			11	40	1
2-Nitrophenol	50.0000	37.5069		_	3	40	40 - 115
2,4-Dimethylphenol	50.0000	42.2319			25	40	30 - 110
2,4-Dichlorophenol	50.0000	38.7502	78		9	40	50 - 105
1,2,4-Trichlorobenzene	50.0000	38.3119			13	40	35 - 105
Naphthalene	50.0000	40.5215	81		12	40	40 - 100
4-Chloroaniline	50.0000	35.4928	71		68	* 40	15 - 110
Bis(2-chloroethoxy)methane	50.0000	34.5022	69		14	40	45 - 105
Hexachlorobutadiene	50.0000	40.2693	81		6	40	25 - 105
4-Chloro-3-methylphenol	50.0000	41.9384	84		6	40	45 - 110
2-Methylnaphthalene	50.0000	31.9054	64		32	40	45 - 105
Hexachlorocyclopentadiene	50.0000	21.4100	43		15	40	27 - 147
2,4,6-Trichlorophenol	50.0000	45.0052	90		1	40	50 - 115
2,4,5-Trichlorophenol	50.0000	40.1001	80		14	40	50 - 110
2-Chloronaphthalene	50.0000	40.0843	80		6	40	50 - 105
2-Nitroaniline	50.0000	39.3350	79		4	40	50 - 115
Dimethylphthalate	50.0000	40.5143	81		9	40	25 - 125
Acenaphthylene	50.0000	37.8040	76		20	40	50 - 105
2,6-Dinitrotoluene	50.0000	35.3390	71		5	40	50 - 115
3-Nitroaniline	50.0000	38.2574	77		55	* 40	20 - 125
Acenaphthene	50.0000	38.2848	77		7	40	45 - 110
2,4-Dinitrophenol	50.0000	44.2507	. 89		4	40	15 - 140
4-Nitrophenol	50.0000	38.5589	77		3	40	0 - 125
Dibenzofuran	50.0000	40.3606	81		13	40	55 - 105
2,4-Dinitrotoluene	50.0000	48.9011	98		14	40	50 - 120
Diethylphthalate	50.0000	38.2384	76		1	40	40 - 120
4-Chlorophenyl-phenylether	50.0000	43.2000			10	40	50 - 110
Fluorene	50.0000	45.0226		\neg	11	40	50 - 110
4-Nitroaniline	50.0000	35.7443			7	40	35 - 120
4,6-Dinitro-2-methylphenol	50.0000	47.6845			1	40	40 - 130
N-Nitrosodiphenylamine	50.0000	41.6805		\dashv	31	40	50 - 110
4-Bromophenyl-phenylether	50.0000	53.4625			8	40	50 - 115
Hexachlorobenzene	50.0000	51.6846			9	40	50 - 110
Pentachlorophenol	50.0000	52.8381	106	\dashv	3	40	40 - 115

3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

|--|

LCSD-49951

Lab Name	: MITKEM LABORATORIES			Contract:	 	
Lab Code		M Case No.:	J0445	Mod. Ref No.:	 SDG No.:	SJ0445
Lab Samp	le ID:	LCSD-49951		LCS Lot No.:	 	

	SPIKE	LCSD					QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #			
COMPOUND						ļ	RPD	REC.
Phenanthrene	50.0000	39.9768	80		12		40	50 - 115
Anthracene	50.0000	47.9405	96		11	ļ	40	55 - 110
Carbazole	50.0000	45.1882	90		21		40	50 - 115
Di-n-butylphthalate	50.0000	39.5861	79		3		40	55 - 115
Fluoranthene	50.0000	42.6508	85		15		40	55 - 115
Pyrene	50.0000	33.3616	67		2		40	50 - 130
Butylbenzylphthalate	50.0000	29.4138	59		2		40	45 - 115
3,3'-Dichlorobenzidine	50.0000	34.4652	69		168	*	40	20 - 110
Benzo(a) anthracene	50.0000	36.7800	74		11		40	55 - 110
Chrysene	50.0000	37.8424	76		11		40	55 - 110
Bis(2-ethylhexyl)phthalate	50.0000	34.0553	68		0		40	40 - 125
Di-n-octylphthalate	50.0000	34.4358	69		12		40	35 - 135
Benzo(b) fluoranthene	50.0000	46.4438	93		4		40	45 - 120
Benzo(k) fluoranthene	50.0000	44.4290	89		23		40	45 - 125
Benzo(a)pyrene	50.0000	43.3334	87		8		40	55 - 110
Indeno(1,2,3-cd)pyrene	50.0000	40.3480	81		0		40	45 - 125
Dibenzo(a,h)anthracene	50.0000	41.1911	82		6		40	40 - 125
Benzo(g,h,i)perylene	50.0000	36.1039	72		0		40	40 - 125

 $[\]ensuremath{\sharp}$ Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	ο£	QC	limits
---	--------	---------	----	----	--------

RPD:	3	out c	of (64 outsid	de lim	its			
Spike	Recove	ery:	0	out of	64	outside	limits		
•									
COMME	NTS:							 	

4A - FORM IV VOA VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MB-49958

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0445 Mod. Ref No.: SDG No.: SJ0445

Lab Sample ID: MB-49958 Lab File ID: V2L4956.D

Instrument ID: V2

Matrix: (SOIL/SED/WATER) WATER Date Analyzed: 03/19/2010

Level: (TRACE or LOW/MED) LOW Time Analyzed: 17:13

GC Column: DB-624 ID: 0.25 (mm) Heated Purge: (Y/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-49958	LCS-49958	V2L4953.D	15:54
02	LCSD-49958	LCSD-49958	V2L4954.D	16:20
03	TB-4	J0445-04A	V2L4958.D	18:06
04	SMS-MW-14	J0445-01A	V2L4960.D	18:58
05	SMS-MW-13	J0445-02A	V2L4961.D	19:25
06	SMS-MW-12	J0445-03A	V2L4962.D	19:51

COMMENTS:	

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-499	58	

Lab Name: MITKEM LABORA	TORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0445		Mod. Ref No.:	SDG No.: SJ044	5
Matrix: (SOIL/SED/WATER)	WATER	5		Lab Sample ID:	MB-49958	
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V2L4956.D	
Level: (TRACE/LOW/MED)	LOW		· .	Date Received:		
% Moisture: not dec.				Date Analyzed:	03/19/2010	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)

(mL)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	0
75 71 0		5.0	U
	Chloromethane	5.0	Ū
· ·	I	5.0	U
	Vinyl chloride Bromomethane	5.0	TU U
	Chloroethane	5.0	Ū
	Trichlorofluoromethane	5.0	U
	1,1-Dichloroethene	5.0	Ū
67-64-1	1 '	5.0	U
	Iodomethane	5.0	111
			Ü
	Carbon disulfide	5.0	
	Methylene chloride	1.6	J
	trans-1,2-Dichloroethene	5.0	U
	Methyl tert-butyl ether	5.0	U
	1,1-Dichloroethane	5.0	U
	Vinyl acetate	5.0	U
	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	Ū
	Bromochloromethane	5.0	U
	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	Ū
	1,2-Dichloroethane	5.0	U
71-43-2		5.0	U
	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
		5.0	U
	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

Purge Volume: 5.0

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENI	SAMPLE	NO.
MB-499	58	
1		

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0445	Mod. Ref No.:	SDG No.: SJ0445
Matrix: (SOIL/SED/WATE	ER) WATER		Lab Sample ID:	MB-49958
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V2L4956.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	03/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µg/L	Q
127-18-4	Tetrachloroethene	5.0	U
L	2-Hexanone	5.0	Ū
	Dibromochloromethane	5.0	Ū
	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	U
	1,1,1,2-Tetrachloroethane	5.0	Ū
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	U
98-82 - 8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

4C - FORM IV SV SEMIVOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MB-49951

Lab Name:	MITKEM LA	BORATORIES	Contract:	
Lab Code:	MITKEM	Case No.: J0445	Mod. Ref No.:	SDG No.: SJ0445
Lab File I	D: S1G	2649.D	Lab Sample ID:	MB-49951
Instrument	ID: S1	·	Date Extracted:	03/19/2010
Matrix: (S	OIL/SED/WA	ATER) WATER	Date Analyzed:	03/20/2010
Level: (LO	W/MED) LO	WC	Time Analyzed:	15:27
Extraction	: (Type)	CONT	GPC Cleanup: (Y/	N) N
				

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS-49951	LCS-49951	S1G2650.D	03/20/2010
02	LCSD-49951	LCSD-49951	S1G2651.D	03/20/2010
03	SMS-MW-14	J0445-01C	S1G2652.D	03/20/2010
04	SMS-MW-13	J0445-02C	S1G2653.D	03/20/2010
05	SMS-MW-12	J0445-03C	S1G2654.D	03/20/2010

COMMENTS:					
	Transact T-T-T	 			

SOM_002

Page 1 of 1

SW846

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.	
MB-499	51		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-49951
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2649.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uI) Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.0	Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) µG/L	Q
108-95-2	Phenol	10	U
	Bis(2-chloroethyl)ether	10	Ū
	2-Chlorophenol	10	U
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	Ū
	1,2-Dichlorobenzene	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	ט
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	U
	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	10	U
	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	20	U
91-58-7	2-Chloronaphthalene	10	U
	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	Ū
99-09-2	3-Nitroaniline	20	U
83-32-9	Acenaphthene	10	U
	2,4-Dinitrophenol	20	U
	4-Nitrophenol	20	U
	Dibenzofuran	10	U

SOM_002

SW846

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MB-499	51	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0445	Mod. Ref No.: SDG No.: SJ0445
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: MB-49951
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G2649.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received:
Concentrated Extract Volume: 1000 (uL) Date Extracted: 03/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1	00 Date Analyzed: 03/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

	1	CONCENTRATION UNITS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
121-14-2	2,4-Dinitrotoluene	10	U
	Diethylphthalate	10	U
	4-Chlorophenyl-phenylether	10	U
	Fluorene	10	Ū
100-01-6	4-Nitroaniline	20	Ū
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	Ü
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ü
191-24-2	Benzo(g,h,i)perylene	10	U

3

BLANKS

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.:

SJ0445

Preparation Blank Matrix (soil/water):

WATER

Method Blank ID:

MB-50100

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

FIMS1_100325A

	Initial										
	Calibration	Continuing Calibration						Preparation		Í	
Blank (ug/L)			Blank (ug/L)						Blank		
Analyte		С	1	C	2	С	3	C		C	М
Mercury	0.056	ט	0.056	Ū	0.056	U	0.05	6 U	0.056	Ū	CV

3

BLANKS

Lab Name: Mitkem Laboratories		Contract:	D003821-41			
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0445
Preparation	on Blank Ma	trix (soil/water):			Method	Blank ID:
Preparation	on Blank Co	ncentration Units (ug/				
			FTMC1 100325	Δ		

	Initial									
	Calibration	Continuing Calibration					Preparation			
	Blank (ug/L)		Blank (ug/L)				Blank			
Analyte	С	1	С	2	C	3	С		С	М
Mercury		0.056		0.101	В					CV

3

BLANKS

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.:

SJ0445

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

MB-50093

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

OPTIMA3	100325A

	Initial Calibration Blank (ug/L	1	C	ont	inuing Calib Blank (ug/I		tion	Preparation Blank	n	
Analyte		С	1	С	2	С	3 C		С	М
Potassium	59.0	U	59.0	U	59.0	Ū	59.0 U	59.000		P
Sodium	29.0	ַ	29.0	ט	29.0	Ū	29.0 U	29.000	U	P

3

BLANKS

Lab Name:	Name: Mitkem Laboratories		Contract:	D003821-41		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0445
Preparation	on Blank Ma	trix (soil/water):			Method	Blank ID:
Preparation	on Blank Co	ncentration Units (ug	/L or mg/kg):			
			OPTIMA3_1003	25A		

	Initial Calibratio Blank (ug/	C	Preparation Blank								
Analyte		С	1	С	2	C	3	С		С	М
Potassium			59.0	ט ט							P
Sodium			29.0	טכ			,				P

3

BLANKS

Lab Name: Mitkem Laboratories

Contract:

D003821-41

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.:

SJ0445

Preparation Blank Matrix (soil/water): WATER

Method Blank ID:

MB-50093

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

OPTIMA3 100325B

				٠.	11HAJ_10032						
	Initial		~		invina Calib		+ion	Preparation		<u> </u>	
	Calibration		Continuing Calibration								
	Blank (ug/I	۱)			Blank (ug/I	٦)			Blank		
Analyte		С	1	С	2	C	3	С		C	М
Aluminum	24.8	В	12.0	U	12.4	В	12.0	U	16.879	В	P
Antimony	4.2	U	5.7	В	4.4	В	4.2	U	15.230	В	P
Arsenic	3.1	σ	5.4	В	7.0	В	3.1	U	5.776	В	P
Barium	2.9	U	2.9	Ū	2.9	Ū	2.9	U	2.900	U	P
Beryllium	0.0	U	0.0	U	-0.1	В	0.0	В	0.037	U	Р
Cadmium	0.5	U	0.5	U	0.5	U	0.5	U	0.500	U	P
Calcium	87.0	U	87.0	Ū	-98.1	В	87.0	U	87.000	Ū	Р
Chromium	0.5	Ū	0.5	U	0.5	Ū	0.5	U	0.500	Ū	Р
Cobalt	0.7	U	0.7	U	0.7	U	0.7	В	0.670	Ū	Р
Copper	4.7	Ū	4.7	Ü	4.7	Ū	4.7	Ū	4.700	U	Р
Iron	47.0	U	47.0	U	47.0	U	47.0	U	47.000	U	P
Lead	-3.1	В	-2.3	В	2.1	U	-3.3	В	2.100	Ü	Р
Magnesium	62.0	U	62.0	U	62.0	U	62.0	Ū	62.000	U	P
Manganese	3.5	Ū	3.5	U	3.5	U	3.5	Ū	8.213	В	P
Nickel	0.8	В	0.7	В	1.0	В	0.6	U	0.640	Ū	P
Selenium	10.0	ט	12.8	В	11.7	В	10.0	U	12.358	В	P
Silver	3.0	В	2.4	U	2.4	Ū	2.4	Ū	2.400	Ū	P
Thallium	5.7	Ū	5.7	U	5.7	Ü	5.7	U	5.700	Ū	P
Vanadium	1.1	В	1.2	В	1.7	В	0.8	В	1.715	В	P
Zinc	7.0	U	7.0	U	7.0	Ū	7.0	U	7.000	U	P

3

BLANKS

Lab Name:	Mitkem Laborat	cories	Contract:	D003821-41		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0445
Preparation	on Blank Matrix	(soil/water):			Method	Blank ID:

Preparation Blank Concentration Units (ug/L or mg/kg):

OPTIMA3 100325B

			01	11MA3_10032	02					
	Initial							Preparation		
	Calibration	C	Continuing Calibration							
	Blank (ug/L)		Blank (ug/L)							
Analyte	C	1	С	2	C	3	C	С	M	
Aluminum		12.0	Ū	-13.1	В	-12.1	В		F	
Antimony		4.3	В	8.6	В	4.2	Ū		P	
Arsenic		3.1	U	3.1	U	3.1	Ū		P	
Barium		2.9	Ū	2.9	U	2.9	U		P	
Beryllium		0.0	Ū	0.0	U	0.0	U		P	
Cadmium		0.5	U	0.5	U	0.5	U		P	
Calcium		87.0	Ū	87.0	Ū	195.5	В		P	
Chromium		0.5	Ū	0.5	U	0.5	U		P	
Cobalt		0.7	U	0.7	Ū	0.7	Ü		P	
Copper		4.7	U	4.7	U	4.7	U		P	
Iron		47.0	U	47.0	Ū	47.0	U		P	
Lead		-3.4	В	-3.4	В	-4.2	В		P	
Magnesium		62.0	U	62.0	Ū	62.0	U		P	
Manganese		3.5	Ū	3.5	U	3.5	U		P	
Nickel		0.8	В	0.6	U	0.6	Ū		P	
Selenium		10.0	U	13.7	В	10.0	U		P	
Silver		2.4	U	2.4	Ü	2.4	U		P	
Thallium		5.7	U	5.7	Ū	5.7	U		P	
Vanadium		1.2	В	0.4	В	1.1	В		P	
Zinc .		7.0	Ū	7.0	U	7.0	U		P	

8A - FORM VIII VOA

VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0445 Mod. Ref No.: SDG No.: SJ0445

GC Column: DB-624 ID: 0.25 (mm) Init. Calib. Date(s): 03/19/2010 03/19/2010

EPA Sample No.(VSTD#####): VSTD0502F Date Analyzed: 03/19/2010

Lab File ID (Standard): V2L4952.D Time Analyzed: 15:27

Instrument ID: V2 Heated Purge: (Y/N) N

		IS1 (S1)		IS2 (S2)		IS3 (S3)	
	-	AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	2659157	6.74	1636804	10.479	842925	13.317
	UPPER LIMIT	5318314	7.24	3273608	10.979	1685850	13.817
	LOWER LIMIT	1329579	6.24	818402	9.979	421463	12.817
	SAMPLE NO.						
)1	LCS-49958	2539303.	6.740	1545730	10.479	792576	13.317
)2	LCSD-49958	2591361	6.740	1587092	10.479	797728	13.317
)3	MB-49958	2396255	6.739	1503014	10.478	828227	13.317
) 4	TB-4	2192286	6.741	1510606	10.469	839991	13.318
)5	SMS-MW-14	1706946	6.731	1125150	10.470	638225	13.319
6	SMS-MW-13	1916272	6.740	1235337	10.469	740090	13.317
7	SMS-MW-12	1860959	6.729	1243127	10.468	712722	13.317

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area

AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of

internal standard area

RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles)

minutes of internal standard RT

RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)

minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

8C - FORM VIII SV-1

SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABORATORIES Contract:

Lab Code: MITKEM Case No.: J0445 Mod. Ref No.: SDG No.: SJ0445

GC Column: Rxi-5sil MS ID: 0.25 (mm) Init. Calib. Date(s): 02/09/2010 02/09/2010

EPA Sample No.(SSTD020##): SSTD0501I Date Analyzed: 03/20/2010

Lab File ID (Standard): S1G2641.D Time Analyzed: 11:18

Instrument ID: S1

		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA :	# RT :	# AREA #	RT #	AREA #	RT #
	12 HOUR STD	328495	3.626	942392	4.771	645396	6.445
	UPPER LIMIT	656990	4.126	1884784	5.271	1290792	6.945
	LOWER LIMIT	164248	3.126	471196	4.271	322698	5.945
	SAMPLE NO.						
01	MB-49951	364099	3.619	1083759	4.764	671319	6.438
02	LCS-49951	360827	3.627	1046391	4.772	721986	6.446
03	LCSD-49951	386919	3.630	1201447	4.775	766243	6.450
04	SMS-MW-14	350518	3.627	1095083	4.772	629874	6.436
05	SMS-MW-13	335656	3.618	1030465	4.763	679901	6.438
06	SMS-MW-12	355983	3.626	1129963	4.771	739467	6.446

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside contract required QC limits with an asterisk.

8D - FORM VIII SV-2

SEMIVOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab File ID (Standard): S1G2641.D Time Analyzed: 11:18

Instrument ID: S1 GC Column: Rxi-5sil MS ID: 0.25 (mm)

		IS4 (PHN)	T		IS5 (CRY)				IS6 (PRY)			
		AREA	#	RT #	AREA	#	RT	#	AREA	#	RT	#
	12 HOUR STD	894097		7.872	1004673		10.443		732859		11.728	
	UPPER LIMIT	1788194		8.372	2009346	-	10.943		1465718		12.228	
	LOWER LIMIT	447049		7.372	502337		9.943		366430		11.228	
	SAMPLE NO.			•								
)1	MB-49951	1008719		7.864	1181843		10.436		936463		11.721	
)2	LCS-49951	938694		7.872	1053308		10.444		701683		11.718	
)3	LCSD-49951	999561		7.876	1146089		10.447		748598		11.722	
) 4	SMS-MW-14	974724		7.873	1043911		10.433		786981		11.719	
5	SMS-MW-13	982521		7.864	1142361		10.435		866383		11.721	
)6	SMS-MW-12	1012474		7.872	1019093		10.432		752394		11.718	

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = 200% of internal standard area

AREA LOWER LIMIT = 50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside contract required QC limits with an asterisk.