

REMEDIAL ACTION REPORT (Volume 2: Appendix G -Topsoil, Clean Fill)

FOR

PEERLESS PHOTO PRODUCTS SITE ROUTE 25A AND RANDALL RD. SUFFOLK COUNTY SHOREHAM, NEW YORK (SITE NO.: 1-52-031)

ATC PROJECT NO. 68.28817.0001

JUNE 20, 2007

Prepared for:

AGFA Corporation 100 Challenger Road Ridgefield Park, NJ 07660-2199 Prepared by:

ATC Engineering, LLP

104 East And Let

New York New York

DATA USABILITY REPORT

ACCUTEST CASE NO. J26131

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK MARCH 2006

REPORTED JULY 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

MARK TRAXLER
SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of March 27, 2006 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Traxler

Mark Traxler

Senior Quality Assurance Scientist

DATA USABILITY SUMMARY ORGANICS AND INORGANICS PEERLESS PHOTO PRODUCTS SITE MARCH 2006

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the organics and inorganics results from the March 27, 2006 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J26131 included a total of two (2) soil samples, including one (1) set of field duplicate samples, for Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Semivolatile Organic Compounds (SVOCs), TCL Organochlorine Pesticides, TCL Polychlorinated Biphenyls (PCBs), Target Analyte List (TAL) Metals and Cyanide analyses.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, GC/MS tuning, surrogate recoveries, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. Samples in this report were analyzed by Accutest Laboratories (Accutest), Dayton, New Jersey following United States Environmental Protection Agency (EPA) Test Methods for Evaluating Solid Waste, Update III, 1996 (SW-846) Methods 8260B, 8270C, 8081A, 8082, 6010B, 7471A and 9012. The quality assurance review of the data described was prepared according to EPA's National Functional Guidelines for Inorganic Data Review, Final, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J26131 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the organics and inorganics that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes

the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met:
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected and properly preserved on March 27, 2006, and delivered under a chain of custody record to Accutest on March 28, 2006. All samples were received intact and in good condition at Accutest.

the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- · Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data:
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- · Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected and properly preserved on March 27, 2006, and delivered under a chain of custody record to Accutest on March 28, 2006. All samples were received intact and in good condition at Accutest.

3.0 FINDINGS/QUALIFIERS

3.1 TCL Volatile Organic Compounds

The following TCL VOCs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike and matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip/field blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits

It is recommended that Case J26131 VOCs results be used with the following qualifiers:

- 1. No MS and MSD spikes were analyzed on site-specific samples. Batch QC was performed for this set of samples. There were many MS/MSD outliers and RPD outliers in the batch QC sample due to matrix interference. However, since there were no positive detected VOCs, no data were qualified.
- 2. There were no field blank samples associated with this batch. No data were qualified due to field blank results.

3.2 TCL Semivolatile Organic Compounds

The following TCL SVOCs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- GC/MS instrument performance
- Sample result verification and identification

- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits

It is recommended that Case J26131 SVOCs results be used with the following qualifiers:

- 1. All results that were above the Instrument Detection Limit (IDL) but less than the CRDL were flagged by the laboratory with a "J". Since these values were less than the CRDL, the results were qualified as estimated (J).
- 2. No MS and MSD sample spikes were analyzed on site-specific samples. Batch QC was performed for this set of samples. All recoveries were within the QC limits.
- 3. There were no field blank samples associated with this batch. No data were qualified due to field blank results.
- 4. The field duplicate sample associated with this batch was analyzed outside of the technical holding time at the client's request (on Day 16, which exceeds the technical holding time for extraction by 2 days). No data were qualified due to the holding time on the field duplicate sample.

3.3 TCL Organochlorine Pesticides

The following TCL organochlorine pesticides analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- Sample result verification and identification
- Initial calibrations
- Performance evaluation mixtures
- Field duplicate precision
- Quantitation limits

It is recommended that Case J26131 TCL organochlorine pesticides results be used with the following qualifiers:

- 1. Batch QC was performed for this set of samples. All recoveries were within the QC limits.
- 2. There were no field blank samples associated with this batch. No data were qualified due to field blank results.
- 3. The field duplicate sample associated with this batch was analyzed outside of the technical holding time at the client's request (on Day 16, which exceeds the technical holding time for extraction by 2 days). No data were qualified due to the holding time on the field duplicate sample.

3.4 TCL Polychlorinated Biphenyls

The following TCL PCBs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times

FFF TO THE SEA OF THE PROPERTY OF THE PROPERTY

- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- Sample result verification and identification
- Initial calibrations
- Field duplicate precision
- Quantitation limits

It is recommended that Case J26131 TCL PCBs results be used with the following qualifiers:

- 1. Batch QC was performed for this set of samples. All recoveries were within the QC limits.
- 2. There were no field blank samples associated with this batch. No data were qualified due to field blank results.
- 3. The field duplicate sample associated with this batch was analyzed outside of the technical holding time at the client's request (on Day 16, which exceeds the technical holding time for extraction by 2 days). No data were qualified due to the holding time on the field duplicate sample.

3.5 TAL Metals and Cyanide

The following TAL Metals and Cyanide analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Quantitation Limit (CRQL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike (MS) and matrix spike duplicate (MSD) recoveries
- MS/MSD precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J26131 TAL Metals and Cyanide results be used with the following qualifiers:

- 1. There were no field blank samples associated with this batch. No data were qualified due to field blank results.
- 2. The MS percent recovery for antimony, calcium and magnesium exceeded the control limits of 75-125% (53.7, 61.1 and 66.3%, respectively). The spike recovery indicates possible matrix interference or sample non-homogeneity. Antimony, calcium and magnesium data were reported flagged "N" on the "Matrix Spike and Duplicate Results Summary" form by the laboratory. The sample was not post spiked and reanalyzed for these compounds. All associated antimony, calcium and magnesium results were qualified as estimated and may be biased low (J-).
- 3. The MSD percent recovery for antimony, calcium magnesium and mercury exceeded the control limits of 75-125% (52.0, 36.2, 71.0 and 129.5%, respectively). The spike recovery indicates possible matrix interference or sample non-homogeneity. Antimony, calcium magnesium and mercury data were reported flagged "N" on the "Matrix Spike and Duplicate Results Summary" form by the laboratory. The sample was not post spiked and reanalyzed for these compounds. All associated antimony, calcium and magnesium results were qualified as estimated and may be biased low (J-). All associated mercury results were qualified as estimated and may be biased high (J+).

- 5. The field duplicate RPD for chromium exceeded the technical limit of 20% and the project control limit of 35% (42.8%). The field duplicate RPD indicates possible matrix interferences or sample non-homogeneity. All associated chromium results were qualified as estimated (J).
- 6. The ICP serial dilution exceeded the control limit of 10% difference for cadmium, selenium, sodium and cobalt (100, 100, 100 and 11.7%, respectively) on sample BOVE1. However, since the original values of cadmium, selenium, sodium and cobalt were less than 50 times the IDL, the ICP serial dilution for cadmium, selenium, sodium and cobalt were acceptable. No qualification of data was deemed necessary due to the ICP serial dilution results.

4.0 SUMMARY

Solidini Bolini (Upwessorija 2001.2 goda

The organics and inorganics results are acceptable as qualified. Holding times, initial and continuing calibration verification results, GC/MS tuning performance, surrogate recoveries, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified low antimony, calcium and magnesium MS and MSD results and high mercury MSD results; high lead MS/MSD RPD results; and high chromium field duplicate RPD results as areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - TCL VOCs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL VOLATILE ORGANIC COMPOUNDS

Sampling Date(s) 3/27/2006 Aqueous samples in ug/L Fraction/Meth		Site Name P	erless Photo Products					Laboratory Accutest			
Sample Description Sample Number J26131-3 J26131-3 J26131-3 J26131-3 Matrix Soil S	F	Project Number 68	.28817.0001		Soil samples	in ug/kg	C	ase/Order #	J26131		
Sample Description or Location BOVE1 BOVE1 DUP Barmple Number J26131-3 J26131-3A Matrix Soil Soi	Sa	ampling Date(s) 3/	27/2006	j	Agueous sampl	es in ug/L	Frac	ction/Method	CLP Volatiles		
or Location BOVE1 BOVE1 DUP Sample Number J26131-3 J28131-3A Matrix Soil Soil % Solids 87.9 88.6 Dilution Factor 1 1 Sampling Date 3/27/2006 3/27/2006 CRCC3 Comments U U 10% chloromethane U 10% bromomethane U 10% vinyl chloride U 10% chloroethane U 10% carbon disulfide U 10% 1,1-dichloroethane U 10% 1,2-dichloroethane U 10% 1,2-dichloroethane U 10% 1,2-dichloroethane U 10% 1,1-1-trichloroethane U				4	• •	J					
or Location BOVE1 BOVE1 DUP Sample Number J26131-3 J28131-3A Matrix Soil Soil % Solids 87.9 88.6 Dilution Factor 1 1 Sampling Date 3/27/2006 3/27/2006 CRCC3 Comments U U 10% chloromethane U 10% bromomethane U 10% vinyl chloride U 10% chloroethane U 10% carbon disulfide U 10% 1,1-dichloroethane U 10% 1,2-dichloroethane U 10% 1,2-dichloroethane U 10% 1,2-dichloroethane U 10% 1,1-1-trichloroethane U	Г	Sample Description									
Sample Number J26131-3 J26131-3A Matrix Soil S			BOVE1	BOVE1 DUP		ſ					
% Solids	- 14-							[
Dilution Factor 1	-		Soil	Soil				1			
Sampling Date 3/27/2006 3/27/2006 3/27/2006 3/											
CRQIII Comments 10 chloromethane 10 bromomethane 10 vinyl chloride 10 vinyl chloride 10 vinyl chloride 10 chloroethane 10 methylene chloride 10 acetone 10 carbon disulfide 10 carbon disulfide 11 dichioroethane 10 1,1-dichioroethane 10 1,2-dichioroethane 10 1,2-dichioroethane 10 1,1,1-trichioroethane 10 1,1,1-trichioroethane 10 1,1,1-trichioroethane 10 1,2-dichioroethane 10 1,2-dichioroethane 10 1,2-dichioroptopane 10 1,2-dichioropropane 10 1,2-dichioropropane 10 1,2-dichioropropane 10 1,2-dichioropropane 10 1,2-dichioropropane	-										
Chloromethane	_		3/2//2006	3/2//2006					 i		
10	-	Comments	lov ex		Place	Jentroff to	- American	Lexignary	700 - 215 - 2	- Brookley	
10 vinyl chloride U	į (chloromethane		l\u\u^2					No. 16 to 10		
Chloroethane	ű	bromomethane		U		(Paris)		161	1. En. 15	1000	
10	1	vinyl chloride				1000				723	
10 acetone	ŧ,	chloroethane	1 U	اندا	本語		7 SM	T.	1.76	100	
10	ř.	methylene chloride	ຸ້ນ	√ U.*				is hills	and the state of t	7 N	
10 1,1-dichloroethene	es a	acetone						課約	計 15年度 20年度	- 5	
10 1,1-dichloroethane	9	carbon disulfide						GRADI Glass	105 00 5 86 1 2 5	17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
1,2-dichloroethene (total)	į	1,1-dichloroethene	10 0		1860			i gara	91.16	· · · · · · · · · · · · · · · · · · ·	
10		1,1-dichloroethane	Ū ^k	. · Û#	7 () () () () ()			SEAS.			
10 1,2-dichloroethane	λ	1,2-dichloroethene (t	otal)	U					is the		
10		chioroform) U	Ü	The last	l		5 (B) 2.0 5 (B) 2.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
10 1,1,1-trichloroethane U U 10 carbon tetrachloride U U 10 bromodichloromethane U U 10 1,2-dichloropropane U U 10 cis-1,3-dichloropropene U U	2	1,2-dichloroethane	JU.	U.				建 级			
Carbon tetrachloride U U U D Tomodichloromethane U U U U U U U U U U U U U	ķ	2-butanone	(Li)	\(\frac{1}{2} \tilde{\frac{1}{2}} \)			付護	展展 的	(0.3) n		
10 bromodichloromethane U U U U U U U U U U U U U U U U U U U	×4.	1,1,1-trichloroethane		υ Û				30,8	1.00	1000	
100 bromodichloromethane U	4	carbon tetrachloride	Ú	Ü		新沙 维	运货	140	4		
10 th cis-1,3-dichloropropene	Ĉ.	bromodichlorometha	ie Ju	១.បុះ			100			100 mg	
	1	1,2-dichloropropane	e Ug	√ UÎ		1	1 1 mg	Tjuir.	g laye da	disk	
85.00 186	ac Le	cis-1,3-dichloroprope	ne ju	U	10 10	435	1460	ALC:	1 (1) (2) (1) (3)	300	
trichloroethene	34 चे	trichloroethene	1	U	产	750		T. P. C.	130 00 00 00 00 00 00 00 00 00 00 00 00 0		
10 dibromochloromethane		dibromochlorometha	ie jū	الْنَّ الْ	$\mathbb{N}_n W$	\$ 5.8	11.0	100	1. 电线		
10 1,1,2-trichloroethane	ž.	1,1,2-trichloroethane	ً	Ū,	974	9 800	194	44.	7, 712 1		
1D2 benzene	7		308	٠ <u>٠</u> ٠	nei gr	\$ 18°	1.29	स्पृह्मीय जुड्डेया	77.78 77.78	100	
10 trans-1,3-dichloropropene	ė		pene ຢູ່ປ່າ	Ů	温度	i de	136	1840	1	n A	
ি10 [®] bromoform	-							(Alan	F 4 15		

QA Scientist Made Date 11/14/06

DATA SUMMARY - TCL VOLATILE ORGANIC COMPOUNDS

	Site Name	Peerless	Photo Produ	ucts	<u> </u>					Laboratory	Accutest	
	Project Number	68.28817	.0001]		Soil samples l	n ug/kg	С	ase/Order#	J26131	
,	Sampling Date(s)	3/27/200	6		1		Aqueous sample	es in ug/L	Frac	tion/Method	CLP Volatiles	
	Sample Descripti	on										
!	or Location		BOVE1		BOVE1 DUP	_[
	Sample Number		J26131-3		J26131-3A	_						lI
	Matrix		Soll		Soil	_4						
	% Solids		87.9	To see Ton	88.6			- I demonstrate	Is a contract	len- una	l marian	
图10公	4-methyl-2-pental	none		U.		Ü	स-१८ ०६ इ.स.च्या	第2 文学		100000		斯 斯
10	2-hexanone			Ü		U	1.70		NA.		建	
110 1	tetrachloroethene		l	U	(4) (4)	U	1.75	48,14	传教 主	100		17 A. 18
M0	1,1,2,2-tetrachlore	pethane		Ü		U	(N. 1941 41)	海 斯	H.	12 399 15290s	নামার্কির ক্রিক্টের	
110	toluene		1	, U	3	υ·		50 M (5) 74 (6) 3		\$		斯 義
110	chlorobenzene			٦U		U.		10.000		Ú.	- 15人 (2年度) (2年度)	K.A
410 s	ethylbenzene			ı U	ń.	U	1		Marie Marie			in is
110	styrene			Ü	i i	U.	- W	Sint	43.0		3.05%	\$6.50 \$1.50
湖10	xylenes (total)			Ú		U.	() * * #	Jan 1	\$500.	, j.e. 6.9.	海阳	fik di
\$40 E. W	Surrogate Recove	ery, %		3745		746 / 17	10 Cont.		(8.8) (1.7)	(Septial)	WERS.	以多
	dibromofluorome	hane	87	2040	90	() () () () () () () () () ()	1.7 * 6.2		31 mg - 4	(c. 8)	v As	10 mg
	1,2-dichloroethan	e-d4	89	LX).	91	r)	Loss Spirit	O TA	19.0	沙漠	5,434	P. 2
The way	toluene-d8		93	368		ų	1.3	学 家	110.0 Mr.	143		15.2
	4-bromofluorober	zene	99		101	73	1, 100	938	1		10 to 10 f	She All

QA Scientist M Jayan Date 11/14/06

QUALIFIER CODES - TCL SVOCs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

	Site Name	Peerless i	Photo Products						Laboratory	Acculest			
	Project Number	68.28817.	8.28817.0001 /27/2006			Soil samples	in ug/kg	С	ase/Order#	J26131			
	Sampling Date(s)	3/27/2006]	Aqueous samp	les in ug/L	Frac	tion/Method	CLP Semivolatile	S		
	Sample Description or Location Sample Number Matrix Percent Solids		BOVE1 J26131-3 Soil 87.9	BOVE1 DUP J26131-3A Soil 68.6									
AQ# SOI			1 3/27/2006	1 3/27/2006									
10 67	bis(2-chloroisopropyl)	ether		- U	1.25		121.73 17.53	5-154.5 A Factors	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			G., *6*1	
. 10 57	1,2-dichlorobenzene		Ü	ינט:	1.1.1	100 Mg	* 4	1.14			\$84.X		
10 67	1,3-dichlorobenzene		ΰ	ÿ.u.	19.5	THE PARTY OF	627	- 1	- 34	774(35) 274(47)	14 T	N. 183	
10 7	1,4-dichlorobenzene		ก็บ	ڭ ئ		14 ²⁰ 5	4 × 4	2.3	(中華)		10 mg 2 mg	13.00	
10 170	phenol		ΰ	ី ប	. N.	- More	表验。		· 38	1975 1975	學術		
10 67	bis(2-chloroethyl)ethe	er	Ü		-15	5.87			75.0			913	
10 170	2-chlorophenol		ِ الْهُ	<u>\</u>	(h.)	である。	1,30 1,30	#A6.5	1. F. S. W.		19 17		
10 170	2-methylphenol		ئن:؟]. Ü		11/10/201	attraction of the second		V. (1)		(1) (1) (1) (1)	- EE	
10 170	3&4-methylphenol		<u></u> ∮ûï	U			jų i	Distriction of the second	0.30	1 977.00	0 (21.58) 2.70 0 0	1,100	
10 1 170	N-nitroso-di-n-propyla	amine	έυ.	ຶ່ນ		1.00	THE PLANE	第 35	740	3.0	jā, ģ		
10 170	hexachloroethane		*บ`	່ານ	To the Man	(M)	1443	100 mg/s		TOWN A	福光	775.2%	
10 67	nitrobenzene		¥U	/ U	in fini	/ / / / / / / / / / / / / / / / / / /	The second secon	S of the		4.4	113		
10 67			<u>ີ</u> ເບີ່:	ะับ	i nyaéta	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 50 Mar. 1	情的第			liga g &		
10 170	100		້ ບໍ່:	<u> </u>	1.5	1 ph 1 m	The second	() () () () () () () () () ()			(V) (V)		
10 1 170	 		″ບ່	ື່ ບໍ່	ir ir	13,200.6 13,00.6			1.00	34%	25.7	100	
10 67		ethane	WU	4.U		1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	73	# 1 P	77 Tu		GARAS		
10 170			U	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			100 m		1 3 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		l (A) (A)		
10 67	1,2,4-trichlorobenzen	e	Ü	∜ ∪ ∵	그 및		100 mg (100 mg)	K. 111/2			78 3.42897	(A)	
10 67	naphthalene		U.	÷ΰ		[3+6!)	397.7	1 73					
10 170	4-chloroaniline		יט"ר.	1 Ú-1		2004	18 mg		1999	10 (Self)	1.37 38	810,1820	

QA Scientist Mande Date 11/14/06

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

		Site Name	Peerless Photo Products]				Laboratory	Accutest		
		Project Number	88,28817,0001		1	Soil samples i	in ug/kg	C	ase/Order#	J26131		
		Sampling Date(s)	3/27/2006]	Aqueous sample	es in ug/L	Frac	tion/Method	CLP Semivolatile	s	
		Sample Description or Location	BOVE1	BOVE1 DUP								
		Sample Number	J26131-3	J26131-3A			- Torne 7					19.40
10	67	hexachlorobutadiene	U.	יַט		1.73	7.8	0363	10 m		1000	192
110	170	4-chloro-3-methylpheno	ol U.	<u>ان</u>	Illiands		de jailt			Market Control	150 M	
10	67	2-methylnaphthalene	· u	Ü	1913		7 A 8 8	1000	7,57			1997
94o	670	hexachlorocyclopentad	ene U	ن ا	\$14. h		12 Sam		MA S	10.78		
ે હ10	170	2,4,6-trichlorophenol	ט	. 0	Professional Computer of the C	(2.13)	j ka	18	lead in the first of the first	() ()		7 T.
25	170	2,4,5-trichlorophenol	U	يْن :	\$\frac{1}{2}\tag{2}	ी ेह	7 (Fag let		Fig. 1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	108 (3.1)
10	67	2-chloronaphthalene	<u> </u>		1944 1874	4.14	7. 7. 18 1. 7. 18	1 4 Sp	100 mg	17. 5		
125	170	2-nitroanillne	Ų	" Ú:	\$ d	हीत रेलवे स	e i dilli		William I			
10	67	dimethyl phthalate		اِنْ اِنْ اِنْ اِنْ اِنْ اِنْ اِنْ اِنْ	W.T			二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	13.50			
110	67	acenaphthylene	ان ا	<u>ان ا</u>	T.		· 设设施	i Car	J. W.	一灣		
310	67	2,6-dinitrotoluene	ΰ	10	(10 m)	140 or 50 f	84	-45°		4) 1 48/25 2 1 1 1 2	\$14 8	
45 S	170	3-nitroanlline	Ù		langer.	\$ 39	i i i i i i i i i i i i i i i i i i i		77		19	
:10	67	acenaphthene		ોઇ	Quinter of			410	64.		+ 13	7-10-4 V
25:1	670	2,4-dinitrophenol		PÚV	能	S. 13		海源家		· 排鍵	[2]秦	
25	670	4-nitrophenol		ាប់	in the second	(A) 2000 (A) 2000 (A			學和社		10W	49.0
40	67	dibenzofuran	Ü			建 合类。	- 37h	16484	165 h	4.4	三 第	ž (ří
10	67	2,4-dinitrotoluene	U	,Ů	977. 817. :	\$ J. J.	/ 490W	70 F 4	7/V	[1]	科 斯	
Mo	67	diethyl phthalate	U	330	dit.	34-3	7.50 mg	SAN	103	e chip	減額	7 (A)
10	67	4-chlorophenyl-phenyl	ether Ü	.ن. ا	dends Wydra	19 (4) (1) (2) (2) (2)	i de la companya de l	(1)	12.7			16.2
10	67	fluorene	ט"		i kata	#4 (P)	13.00	47%	44		多數	186
25	170	4-nitroaniline	· U	יט י	Mist.	800	18%	E SEC	共2000 年	1500	(4)	H.Co

QA Scientist M Luple Date 11/14/06

J26131 SVOC DS

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

		Site Name Peerles	Peerless Photo Products 68.28817.0001]				Laboratory	Accutest		
		Project Number 68,288	17.0001]	Soil samples	in ug/kg	С	ase/Order#	J26131		
		Sampling Date(s) 3/27/20	06			_	1	Aqueous samp	les in ug/L	Frac	tion/Method	CLP Semivolatile:	5	
		· · · · · · · · · · · · · · · · · · ·												
		Sample Description	BOVE1		00/54 00									
		or Location Sample Number	J26131-3		BOVE1 DU J26131-3A				<u> </u>	[-			
25	670	4,6-dinitro-2-methylphenol	0201010	÷υ	020 (01 01)	ָּט י	or year	原系 科	\text{\ti}\text{\ti}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	21 787 2 12%	4 - 421/2(1) (45) (47)	198128	心物學	5366
10 [°]	170	n-nitrosodiphenylamine		U	<u> </u>	U	4.27	Spran of San	W-7/4	1000	Z Na	the file	5/4	
10.0	67	4-bromophenyl-phenyl ether		U"		U			\$2.55 \$2.55	() () () () () () () () () ()	计图 家		. 4 H S I	174
10	67*	hexachlorobenzene	1	٠Ü	i	U.S.	1.3 m Y - 1 1.2 m / 2 m	92.00	9.2%	198	456	Tipola	工家獲	
*25	670	pentachlorophenol		Ü		Ü	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	200	481 1850 (1. 11 m)	100	156	18 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0	1.00	
10	67	phenanthrene	203		237	> 13	7 35 mg	*				45		
100	67	anthracene	47.1 J	j.!	48.2 J	القرار ا	1 2 m C	第74 5	19.75 A		不動脈 2指動		\$6-\$	(Ala)
10.2	67	carbazole	27.3 J	J	48.2 J	(j		Philas.	東京公	់កំពុំ	110		· 156	
10.9	67	di-n-butyl phthalete		Ü		Ü	· · · · · · · · · · · · · · · · · · ·	137	A SALE	3,878	H. Carlot	建筑		1 (21) 1 (21)
10 1	67#	fluoranthene	425	10	388	100		7.P.Y	The state of the s	148	142.4	05 g n		
10%	67	ругеле	372	144	530	J. 6.	中華	原	\$ 100 kg			\$ P. 18	3.4	Color
110	67	butyl benzyl phthalate		U		Ü			With the	And Market		(de 3)	V. 101	
100	170	3,3'-dichlorobenzidine		U		Ü		(P. 7. 7. 7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1 to		560			
10∗	67	benzo(a)anthracene	212	3 . 34	227	144	(#w	ich:	第11	(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	10 May 1			3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10:#	67	chrysene	258	4:14	293			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	() () () () () () () () () ()	10.48		100 TS	1.00 mg	
10	674	bis(2-ethylhexyl) phthalate	106		75.7 J	Ja	1000		5.45 5.45 5.45	100			(2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	THE STATE OF THE S
10	67	di-n-octyl phthalate		U		υi	1960	10 AC V	(1) 1 4 4 (1) 1 5 6 (1) 1 5 6 (1) 1 5 6	1.78	300.75		1000	
:10 🕸	67	benzo(b)fluoranthene	231	\$ p. 1	276	U		等(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	2.57	* 円端 小方面				
10.9	67	benzo(k)fluoranthene	227	1 1	259	10.75	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1964 W		
10	670	benzo(a)pyrene	244		251	(1 - W) (1 - W)		(1863) 1967: 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			37.56		
10	67	indeno(1,2,3-cd)pyrene	65.5 J	J	144	1.50 (A) 1.50 (A)	(1 m / 1 m /			7784 7784 7784 7784	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
10 ¹	67 67*	dibenz(a,h)anthracene	33.5 J 60,6 J	J	27.2 J 124	j)	- 1966 - 1866	Part of the state	26 - 17 - 18 26 - 17 - 18	1 200				6200 SGB
TARRE	PERSONAL PROPERTY.	benzo(g,h,i)-perylene Surrogate Recovery, %	U 0,00	h 359	124	子傷	1000 C	167	() algori	- 45 th	238	1975		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		nitrobenzene-d5	70	100	 56		184	JEN/	- 3	7.				
J/188		2-fluorobiphenyl	83		69	1.7	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1000 miles		7/2	7			
18	3 3 3	4-terphenyl-d14	82	T 224	75	1.73	1, 21	314%,71	i i	19.70	389		· Jak	STA 19
9. 5.		phenoi-d5	83	F . 16	55	1	1.00		新港集	本篇		in the second		74.2824 (1.384)
	- 100 mg/s	2-fluorophenol	73		41		1986	17.65	Ŷaŭ.	1,552	186	jair v	: 196	1200
1986	多為鄉	2,4,6-tribromophenol	113	la E	78	1137	1.55%	油 銀で	\$ 15T	(ই 0)	4 his	Section 1	77 (SE) 12 pa (2 m)	海

QA Scientist M Hadh Date 11/14/06

QUALIFIER CODES - TCL PESTICIDES

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL PESTICIDES

	Site Name	Peerless P								Laboratory	Acculest	
	Project Number	68.28817.0	0001				Soil samples	In ug/kg	C	ase/Order#	J26131	
5	Sampling Date(s)	3/27/2006			ĺ		Aqueous samp	les in ug/L	Frac	tion/Method	CLP Pesticides	
	Sample Description Location Sample Number Matrix Percent Solids Dilution Factor Sampling Date		BOVE1 J26131-3 Soil 87.9 1 3/27/2006		BOVE1-DL J26131-3A Soil 86.6 1 3/27/2006							
	Comments										l	
1\5	aldrin		6.	100		%U*	模觀	170et en	all the	(K/K)	NO.	1178
1.5	alpha-BHC			Ü		iiu i	्रेट्टा <u>र</u> ्थ	200	24.4	\$4.65 \$6 \$4.65 \$4 \$6 \$4 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6	1.50	7.3
1.5	beta-BHC			Ü.		U	4.4.3		4,383	(Carl	123	1. 10
1.5	delta-BHC			Ü		ÿU.	1961	(A)	\$10°	(C)	12 100	174
1.5	gamma-BHC (Lin	dane)		100		ďυ	677	J. Francisco	ಗೊ	Jan 18	1.198	2
1.5	alpha-chlordane		25.1		26.0	474	神學學	1134	100	1.47%	- 3	i li
1.5	gamma-chlordane	,	28.0	1	23.8	1, 1	della.	The same		11794	17.30	11.00
1.5党	dieldrin		8.7	4.5	8.5	1.44		146	Š _r isia	h-A	177	V.A.
6.0	4,4'-DDD		112	100	92.8	RES	3.886	19	(20,4)	exe	(d. 13	1,120
6.0	4,4'-DDE		172	で制	138	1.5	(数)	1997	13.4	LTEA LTEA	进量	
6.0	4,4'-DDT		200	1 6	164	1275	100	10%	1 *	11 5 3	ាម៉ា	
े 1.5∜	endrin			ΙU.		U	(TÁB)		961	[139]	4.74	100
1.5	endosulfan sulfat	e	5.7	Els.	5.5	300	1176	12.011	세크	12 lo	金属	5.48
1.5	endrin aldehyde			U		U	1877	TS/T	13.5	# Sat		(4.0) (1)
-1.5	endosulfan-i			ט'		U	inage skorik	W	발표	(H) (C)	1.0	[F. 31]
1.5	endosulfan-li		3.8	1,00	3.9	OPE:	(a) (4 to	1500 C		H.C.		(EA
1.5	heptachlor			Ü		100	非 律:	21.90 21.90		杨淳	" Ni	
1.5	heptachlor epoxic	le		ال		Ü	353	14		6.93. Ja Mer 45) or 1 \$ 1 3 m 2 m	turily (XX)
3.7	methoxychlor			\∪∦		U	and a	Harris A.	285.5	455	iledi	ok j
3.75	endrin ketone			TU:		Ü	104	[4]	Harry A.	30 M	G- ti	100
19	toxaphene			: Us		ŅÚΙ	The state of the s	5 4 6 4 6 .	i i i i i i i i i i i i i i i i i i i	Sink.		1.5k-39
经人类	Surrogate Recov	егу, %		42		A Dist	27 12 2000 2000	14	原	Programme and the second	High	
特特的	tetrachloro-m-xyle	ane	94	學能	86	1		No.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 150 \$ 150	13.14	241
A STATE OF	tetrachloro-m-xyle	ene	98	144	102	1 2	多級	14.0 14.0	. 45	के तर है। इस्मेक	die ei	
1	decachloroblpher	ıyl	83	5.30	87	1	Page 1	MAC TO SERVICE			(明]	in Si
1000	decachlorobipher	ıyl	85	(A)(A)	85	5/13	2 8 a.	KAN N	300	(1 ; Y.,	¢ kendi	11.30

QA Scientist Maxle Date 11/14/06

QUALIFIER CODES - TCL PCBs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL POLYCHLORINATED BIPHENYLS

	Site Name	Peerless I	Photo Produ	cts					Laboratory	Accutest	
	Project Number	68.28817.	0001			Soil samples	in ug/kg	С	ase/Order#	J26131	
8	Sampling Date(s)	3/27/2006		_	Ì	Aqueous sampl	es in ug/L	Frac	tion/Method	CLP PCBs	
	Sample Description or Location Sample Number Matrix Percent Solids Dilution Factor Sampling Date		BOVE1 J26131-3 Soil 87.9 1 3/27/2006		APC11-SR-09 J26131-3A Soil 86.6 1 3/27/2006						
RL 33	Comments Aroclor 1016			J.)(² , 0)	7) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(2.4.8M)		海		美元学
33 ^{//}	Aroclor 1221			u.	الله الله الله الله الله الله الله الله		1754 7 1754 7 1755 7 1755 7 1755	85/8	3 3		
33 33	Arocior 1232 Aroclor 1242			U					in fitting () in fitting () in fitting () in fitting () in fitting ()		
33	Aroclor 1248			U	T.U.			# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	We will be		
33 33	Aroclor 1254 Aroclor 1260		 	U							
	Surrogate Recover				Spirit The Spirit Spiri	176 H (176 177 H) 177 H)	200 PS (0)	3	作		4.7
00/84.4 867.74	tetrachloro-m-xyler tetrachloro-m-xyler		82 89	4	101 106				**************************************		
SEE	decachlorobipheny decachlorobipheny		78 80	が構造し	93 91						

QA Scientist M Harle Date 14/4/06

QUALIFIER CODES – TAL METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be blased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

page 1

	Site Name	Peerl	eerless Photo Products 3.28817.0001					S	Soil in mg/kg	L	aboratory	Accutest		page
Pi	roject Number	68.28	817.0001			7				Cas	e/Order #	J26131		
Sa	mpling Date(s)	3/27/	2006			=				Eractio	n/Method		SW-846 301	04/6010B
Jai	inpling Date(s)	312.112	2000					pr	3 	rractio	II/Wethou	TAL WELAIS	377-040 301	0A/0010B
	Sample Locati	on												
	or Description		BOVE1		BOVE1-DU	-				}	 -	-		
	Sample Numb		J26131-3	200	J26131-3A 3/27/20					_	 	 		
IDL/CRQL	Sampling Date	P Hg	3/27/20	000	3/2//20	00			<u> </u>	}		 		
	Control Street Control Control		The second second			1		e marty da i day.						
20	Aluminum	X	5,910	111	6,050	111				 -				
2.0	Antimony Arsenic	X	6.8	UJ	6.5	ŲJ		· 						
20	Barium	$\frac{1}{x}$	28.0	+-	26.2	-		-		1	 -			
0.50	Beryllium	$\frac{1}{x}$	20.0	U	20.2	U				·				
0.50	Cadmium	X	<u> </u>	U		Ü				1		-		
500	Calcium	X	4,950	J-	4,790	J-				1				
1.0	Chromium	X	9.0	J	13.9	J								
5	Cobalt	Х		U		U								
2.5	Copper	X	15.7		14.5									
10	Iron	X	7,430		7,910									
2.0	Lead	X	44.4		43.3									
500	Magnesium	X	2,420	J-	2,380	J-								
1.5	Manganese	X	97.8	<u> </u>	98.6			<u> </u>		!				
0.03	Mercury	X	-8	J+	0.070	J+						 		
4.0	Nickel	X	5.6	-	5.6							-		
500	Potassium	X		U		U			 	-		- 	 	
2.0	Selenium	X	_	U]	U]			 		
1.0	Silver	X	{	U	 	U			 	.]		<u> </u>		
500	Sodium	X	-	U	 	U			-				 	
1.0	Thallium	X	145	U	10.4	U		ļ .	-	_		-		
5.0	Vanadium	X	14.5	+-	16.1 59.4	├			 	-			[
2.0	Zinc	14	65.3		59.4			<u> </u>		-				
0.25	Cyanide			U		U		- -						

QA Scientist Nach HadroATE 7/14/06

•		
•		
_		
-		
• •		
<u>-</u>		
-	APPENDIX A	
•		
-		
•		

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: ATC Associates, Inc. Job No

J26131

Site:

AGFA-Peerless, Shorham, NY

Report Date

4/26/2006 8:48:30 AM

2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 03/27/2006 and were received at Accutest on 03/28/2006 properly preserved, at 5.6 Deg. C and intact. These Samples received an Accutest job number of J26131. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: SO

Batch ID: VV2192

- All samples were analyzed within the recommended method holding time.
- Sample(s) J26810-3MS, J26810-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 1,1,1-Trichloroethane, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethene, 1,2-Dichloroethane, 1,2-Dichloropropane, 4-Methyl-2-pentanone(MIBK), Benzene, Bromodichloromethane, Bromoform, Carbon disulfide, Carbon tetrachloride, Chlorobenzene, Chloroform, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, Dibromochloromethane, Ethylbenzene, Methylene chloride, Styrene, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Trichloroethene, Xylene (total) are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 1,1,1-Trichloroethane, 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethene, 1,2-Dichloroethane, 1,2-Dichloropropane, 4-Methyl-2-pentanone(MIBK), Acetone, Benzene, Bromodichloromethane, Bromoform, Carbon tetrachloride, Chlorobenzene, Chloroform, Chloromethane, cis-1,2-Dichloroethene, Ethylbenzene, Styrene, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, Trichloroethene, Xylene (total), cis-1,3-Dichloropropene, Dibromochloromethane, Methylene chloride, trans-1,3-Dichloropropene are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MSD for cis-1,3-Dichloropropene, Dibromochloromethane, Methylene chloride, trans-1,3-Dichloropropene are outside control limits for sample J26810-3MSD. Outside control limits due to matrix interference.

Extractables by GCMS By Method SW846 8270C

Matrix: SO

Batch ID: OP23178

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J26357-1MS, J26357-1MSD were used as the QC samples indicated.

Matrix: SO

Batch ID: OP23254

- All samples were analyzed within the recommended method holding time.
- Sample(s) J26908-9MS, J26908-9MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- The following samples were extracted outside of holding time for method SW846 8270C: J26131-3A Sample extracted outside the holding time per client's request.
- J26131-3A: Confirmation run.
- J26131-3A: Sample extracted outside the holding time per client's request.

Extractables by GC By Method SW846 8081A

Matrix: SO

Batch ID: OP23246

- All samples were analyzed within the recommended method holding time.
- Sample(s) J27255-5MS, J27255-5MSD, OP23246-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- The following samples were extracted outside of holding time for method SW846 8081A: J26131-3A Sample extracted outside the holding time per client's request.
- J26131-3A: Sample extracted outside the holding time per client's request.
- J26131-3A: Sample extracted outside the holding time per client's request,
- J26131-3A for alpha-Chlordane: Reported from 2nd signal due to interference on 1st signal.
- J26131-3 for alpha-Chlordane: Reported from 2nd signal due to interference on 1st signal.

Extractables by GC By Method SW846 8082

Matrix: SO

Batch ID: OP23180

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J26131-1MS, J26131-1MSD, OP23180-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- J26131-1: for QC MS/MSD purpose only.

Matrix: SO

Batch ID: OP23249

- All samples were analyzed within the recommended method holding time.
- Sample(s) J27194-3MS, J27194-3MSD, OP23249-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- The following samples were extracted outside of holding time for method SW846 8082: J26131-3A Sample extracted outside the holding time per client's request.
- J26131-3A: Sample extracted outside the holding time per client's request.
- OP23249-BS1 for Aroclor 1260: Reported from 2nd signal. %D of check calibration on 1st signal exceed method criteria (15%) so using for confirmation only.

Metals By Method SW846 6010B

Matrix: SO

Batch ID: MP33923

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J26131-3MS, J26131-3MSD, J26131-3SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Antimony, Calcium, Magnesium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Antimony, Calcium, Magnesium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- RPD(s) for MSD for Lead are outside control limits for sample MP33923-S2. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Cadmium, Cobalt, Selenium, Sodium are outside control limits for sample MP33923-SD1 Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method SW846 7471A

Matrix: SO

Batch ID: MP33949

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J26131-3MS, J26131-3MSD were used as the QC samples for metals.

Wet Chemistry By Method ASTM 4643-00

Matrix: SO

Batch ID: GN89629

The data for ASTM 4643-00 meets quality control requirements.

Wet Chemistry By Method EPA 160.3 M

Matrix: SO

Batch ID: GN89506

The data for EPA 160.3 M meets quality control requirements.

Matrix: SO

Batch ID: GN89542

The data for EPA 160.3 M meets quality control requirements.

Wet Chemistry By Method SW846 9012 M

Matrix: SO

Batch ID: GP32836

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- * Sample(s) J26131-3DUP, J26131-3MS were used as the QC samples for Cyanide.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (J26131).

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number:

J26131

Client Name:

ATC Associates, Inc.

AGFA-Peerless, Shorham, NY

				Analytic	al Requi	rements		
Customer	Laboratory	VOA	BNA	Pest	PCB		Metals	Other
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC		
		Method	Method	Method	Method	Method		
		8260	8270C	8081	8082	8015		CN
BOVEI BOVE TOPSOIL	J26131-3	X	Х	X	Х		X	X
BOVEI BOVE TOPSOIL	J26131-3A	X	Х	X	X		X	X

Report of Analysis

Client Sample ID: BOYE1 BOYE TOPSOIL

Lab Sample ID:

J26131-3

Date Sampled: 03/27/06

Matrix: Method: SO - SoiI SW846 8260B Date Received: 03/28/06

Project:

AGFA-Peerless, Shorham, NY

Percent Solids: 87.9

File ID V57040.D Run #1

DF 1

By **GTT**

Analyzed

04/08/06

Prep Date n/a

Prep Batch Analytical Batch n/a

VV2192

Run #2

Initial Weight

Run #1 4.9 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units Q)
67-64-1	Acetone	ND	12	3.3	ug/kg	
71-43-2	Benzene	ND	1.2	0.56	ug/kg	
75-27-4	Bromodichloromethane	ND	5.8	0.53	ug/kg	
75-25-2	Bromoform	ND	5.8	0.50	ug/kg	
74-83-9	Bromomethane	ND	5.8	0.43	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	3.2	ug/kg	
75-15-0	Carbon disulfide	ND	5.8	0.64	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.8	1.1	ug/kg	
108-90-7	Chlorobenzene	ND	5.8	0.50	ug/kg	
75-00-3	Chloroethane	ND	5.8	2.0	ug/kg	
67-66-3	Chloroform	ND	5.8	0.68	ug/kg	
74-87-3	Chloromethane	ND	5.8	0.54	ug/kg	
124-48-1	Dibromochloromethane	ND	5.8	0.64	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.8	0.56	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.63	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.8	0.80	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.8	0.78	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.8	0.79	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.8	0.64	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.8	0.48	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.8	0.46	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.52	ug/kg	
591-78-6	2-Hexanone	ND	5.8	1.6	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.8	2.3	ug/kg	
75-09-2	Methylene chloride	ND	5.8	0.80	ug/kg	
100-42-5	Styrene	ND	5.8	0.38	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.8	0.67	ug/kg	
127-18-4	Tetrachloroethene	ND	5.8	0.96	ug/kg	
108-88-3	Toluene	ND	1.2	0.63	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.8	0.69	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.8	0.62	ug/kg	
79-01-6	Trichloroethene	ND	5.8	0.60	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3

SO - Soil

Matrix: Method: Project:

SW846 8260B

AGFA-Peerless, Shorham, NY

Date Sampled: 03/27/06 Date Received: 03/28/06

Percent Solids: 87.9

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	5.8 2.3	0.75 0.57	ug/kg ug/kg	٠	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	87%		70-12	20%		
17060-07-0	1,2-Dichloroethane-D4	89%		61-13	33%		
2037-26-5	Toluene-D8	93%		75-12	23%		
460-00-4	4-Bromofluorobenzene	99%		65-14	12%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc. U	nits	Q
	Total TIC, Volatile			0 .	: : u	g/kg	

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID: Matrix:

J26131-3

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 03/27/06 Date Received: 03/28/06

Percent Solids: 87.9

Method: Project:

AGFA-Peerless, Shorham, NY

File ID \mathbf{DF} B76565.D Run #1

By Analyzed WHS 04/10/06

Prep Date 04/06/06

Prep Batch

Analytical Batch

EB2137 OP23178

Run #2

Initial Weight

Final Volume

Run#1 30.1 g 1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	32	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	48	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	63	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	97	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	760	57	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	760	33	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	54	ug/kg	
88-75-5	2-Nitrophenol	ND	190	47	ug/kg	
100-02-7	4-Nitrophenol	ND	760	51	ug/kg	
87-86-5	Pentachlorophenol	ND	760	42	ug/kg	
108-95-2	Phenol	ND	190	47	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	57	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	32	ug/kg	
83-32-9	Acenaphthene	ND	76	19	ug/kg	
208-96-8	Acenaphthylene	ND	76	15	ug/kg	
120-12-7	Anthracene	47.1	76	15	ug/kg	J
56-55-3	Benzo(a)anthracene	212	76	18	ug/kg	
50-32-8	Benzo(a)pyrene	244	76	13	ug/kg	
205-99-2	Benzo(b)fluoranthene	231	76	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	60.6	76	21	ug/kg	J
207-08-9	Benzo(k)fluoranthene	227	: 76	28	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	: 76	19	ug/kg	
85-68-7	3 1	ND	76	29	ug/kg	
91-58-7	2-Chloronaphthalene	ND	. 76	53	ug/kg	
106-47-8	4-Chloroaniline	ND	190	23	ug/kg	
86-74-8	Carbazole	27.3	· 76	15	ug/kg	J
218-01-9	Chrysene	258	76	14	ug/kg	,
111-91-1	bis(2-Chloroethoxy)methane	ND	. 76	24	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	76	19	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	76	28	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	18	ug/kg	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID: Matrix:

Method:

Project:

J26131-3

SO - Soil SW846 8270C SW846 3550B

AGFA-Peerless, Shorham, NY

Date Sampled: 03/27/06 Date Received: 03/28/06 Percent Solids: 87.9

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	76	17	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	76	20	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	76	16	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	76	44	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	76	43	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	36	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	33.5	76	20	ug/kg	J
132-64-9	Dibenzofuran	ND	76	18	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	76	24	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	76	32	ug/kg	
84-66-2	Diethyl phthalate	ND	76	16	ug/kg	
131-11-3	Dimethyl phthalate	ND	76	16	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	106	76	48	ug/kg	
206-44-0	Fluoranthene	425	76	13	ug/kg	
86-73-7	Fluorene	17.6	76	15	ug/kg	J
118-74-1	Hexachlorobenzene	ND	76	22	ug/kg	•
87-68-3	Hexachlorobutadiene	ND	76	25	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	7.60	27	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	65.5	76	24	ug/kg	J
78-59-1	Isophorone	ND	76	19	ug/kg	
91-57-6	2-Methylnaphthalene	ND	76	25	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	29	ug/kg	
100-01-6	4-Nitroaniline	ND	190	26	ug/kg	
91-20-3	Naphthalene	ND	76	21	ug/kg	
98-95-3	Nitrobenzene	ND	76	26	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	76	24	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	16	ug/kg	
85-01-8	Phenanthrene	203	76	17	ug/kg	
129-00-0	Pyrene	372	76	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	76	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	73 %	•	33-1	05%	
4165-62-2	Phenol-d5	83 %		34-1	10%	
118-79-6	2,4,6-Tribromophenol	113%		33-1	24%	•
4165-60-0	Nitrobenzene-d5	70%			13%	
321-60-8	2-Fluorobiphenyl	83 %		40-1	06%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3

Matrix:

SO - Soil

SW846 8270C SW846 3550B

Method: Project:

AGFA-Peerless, Shorham, NY

Date Sampled: 03/27/06

Date Received: 03/28/06

Percent Solids: 87.9

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	82%		35-142%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	system artifact/aldol-condensat system artifact/aldol-condensat unknown unknown Total TIC, Semi-Volatile		3.77 5.55 20.21 22.13	210 160	ug/kg ug/kg ug/kg ug/kg ug/kg	J J

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3

SO - Soil

Date Sampled: 03/27/06

Matrix: Method:

SW846 8081A SW846 3545

Date Received: 03/28/06

Project:

AGFA-Peerless, Shorham, NY

Percent Solids: 87.9

}	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	2G09473.D	1	04/12/06	JSE	04/06/06	OP23246	G2G382
Run #2	2G09480.D	4	04/12/06	JSE	04/06/06	OP23246	G2G383

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.54	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.14	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.67	ug/kg	
319-86-8	delta-BHC	ND	1.5	0.11	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.37	ug/kg	
5103-71-9	alpha-Chlordane a	25.1	1.5	0.50	ug/kg	
5103-74-2	gamma-Chlordane	28.0	1.5	0.19	ug/kg	
60-57-1	Dieldrin	8.7	1.5	0.26	ug/kg	
72-54-8	4,4'-DDD	112 b	6.0	1.0	ug/kg	
72-55-9	4,4'-DDE	172 b	6.0	1.2	ug/kg	
50-29-3	4,4'-DDT	200 b	6.0	1.1	ug/kg	
72-20-8	Endrin	ND	1.5	0.17	ug/kg	
1031-07-8	Endosulfan sulfate	5.7	1.5	0.24	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.25	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.14	ug/kg	
33213-65-9	Endosulfan-lI	3.8	1.5	0.43	ug/kg	
76-44-8	Heptachlor -	ND	1.5	0.094	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.5	0.23	ug/kg	
72-43-5	Methoxychlor	ND	3.7	0.46	ug/kg	
53494-70-5	Endrin ketone	ND	3.7	0.26	ug/kg	
8001-35-2	Toxaphene	ND	19	14	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	94%	101%	. 31-13	36%	
877-09-8	Tetrachloro-m-xylene	98%	103%	31-13	36%	
2051-24-3	Decachlorobiphenyl	83 %	110%	28-14	18 <i>%</i>	
2051-24-3	Decachlorobiphenyl	85%	100%	28-14	18%	

⁽a) Reported from 2nd signal due to interference on 1st signal.

ND = Not detected MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Result is from Run# 2

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3

Matrix:

SO - Sóil

DF

1

Method: Project:

SW846 8082 SW846 3545

Date Sampled: 03/27/06 Date Received: 03/28/06

04/06/06

Percent Solids: 87.9

AGFA-Peerless, Shorham, NY

Ву Prep Date

KLS

Prep Batch

Q

Analytical Batch

OP23180 GOA992

Run #1 Run #2

Initial Weight

OA29824.D

File ID

Final Volume

Analyzed

04/11/06

Run #1

15.2 g

10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units

12674-11-2	Aroclor 1016	ND 37	8.5	ug/kg
11104-28-2	Aroclor 1221	ND 37	8.8	ug/kg
11141-16-5	Aroclor 1232	ND 37	8.8	ug/kg
53469-21-9	Aroclor 1242	ND 37	5.8	ug/kg
12672-29-6	Aroclor 1248	ND 37	10	ug/kg
11097-69-1	Aroclor 1254	ND 37	9.3	ug/kg
11096-82-5	Aroclor 1260	ND 37	6.1	ug/kg

CAS No.	Surrogate Recoveries	Run# 1 Run# 2	L Limits
877-09-8	Tetrachloro-m-xylene	82 %	37-140%
877-09-8	Tetrachloro-m-xylene	89%	37-140%
2051-24-3	Decachlorobiphenyl	78%	40-151%
2051-24-3	Decachlorobiphenyl	80 <i>%</i>	40-151%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID: Matrix:

J26131-3 SO - Soil

Date Sampled: 03/27/06 Date Received: 03/28/06

Percent Solids: 87.9

Project:

AGFA-Peerless, Shorham, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5910	£ 24	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Antimony	< 2.4	2.4	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ^I	SW846 3050B ³
Arsenic	6.8	2.4	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Barium	28.0	24	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Beryllium	< 0.61	0.61	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Cadmium	< 0.61	0.61	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Calcium	4950	610	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Chromium	9.0	1.2	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Cobalt	< 6.1	6.1	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Copper	15.7	3.0	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Iron	7430	12	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Lead	44.4	2.4	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Magnesium	2420	610	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Manganese	97.8	1.8	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Mercury	0.070	0.037	mg/kg	1	04/11/06	04/12/06 JW	SW846 7471A ²	SW846 7471A ⁴
Nickel	5.6	4.8	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Potassium	<610	610	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Selenium	<2.4	2.4	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Silver	< 1.2	1.2	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Sodium	< 610	610	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Thallium	<1.2	1.2	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Vanadium	14.5	6.1	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³
Zinc	65.3	2.4	mg/kg	1	04/10/06	04/10/06 JDM	SW846 6010B ¹	SW846 3050B ³

(1) Instrument QC Batch: MA17317 (2) Instrument QC Batch: MA17327 (3) Prep QC Batch: MP33923 (4) Prep QC Batch: MP33949

Page 1 of 1

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID: Matrix: J26131-3 SO - SoiI **Date Sampled:** 03/27/06 **Date Received:** 03/28/06

Percent Solids: 87.9

Project:

AGFA-Peerless, Shorham, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide	< 0.26	0.26	mg/kg	1·	04/07/06 15:38	NR	SW846 9012 M
Solids, Percent	87.9		%	1	04/10/06	NC	EPA 160.3 M

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3A

Matrix: Method: SO - Soil SW846 8260B

Project:

AGFA-Peerless, Shorham, NY

Date Sampled: 03/27/06

Date Received: 03/28/06

Percent Solids: 88.6

}	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	V57041.D	1	04/08/06	GTT	n/a	n/a	VV2192

Run #2

Initial Weight

Run #1 5.3 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units Q
67 C . 1	•			2.0	
67-64-1	Acetone	ND	11	3.0	ug/kg
71-43-2	Benzene	ND	1.1	0.51	ug/kg
75-27-4	Bromodichloromethane	ND	5.3	0.49	ug/kg
75-25-2	Bromoform	ND	5.3	0.46	ug/kg
74-83-9	Bromomethane	ND	5.3	0.39	ug/kg
78-93-3	2-Butanone (MEK)	ND	11	2.9	ug/kg
75-15-0	Carbon disulfide	ND	5.3	0.59	ug/kg
56-23-5	Carbon tetrachloride	ND	5,3	1.0	ug/kg
108-90-7	Chlorobenzene	ND	5.3	0.46	ug/kg
75-00-3	Chloroethane	ND	5.3	1.9	ug/kg
67-66-3	Chloroform	ND	5.3	0.62	ug/kg
74-87-3	Chloromethane	ND	5.3	0.49	ug/kg
124-48-1	Dibromochloromethane	ND	5.3	0.58	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.3	0.51	ug/kg
107-06-2	1,2-Dichloroethane	ND	1.1	0.58	ug/kg
75-35-4	1,1-Dichloroethene	ND	5.3	0.73	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	5.3	0.71	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	5.3	0.73	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.3	0.59	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.3	0.44	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	5.3	0.42	ug/kg
100-41-4	Ethylbenzene	ND	1.1	0.48	ug/kg
591-78-6	2-Hexanone	ND	5.3	1.4	ug/kg
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.3-	2.1	ug/kg
75-09-2	Methylene chloride	ND	5.3	0.74	ug/kg
100-42-5	Styrene	ND	5.3	0.35	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.3	0.61	ug/kg
127-18-4	Tetrachloroethene	ND	5.3	0.88	ug/kg
108-88-3	Toluene	ND	1.1	0.58	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	5.3	0.63	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	5.3	0.57	ug/kg
79-01-6	Trichloroethene	ND	5.3	0.55	ug/kg

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3A

Date Sampled: 03/27/06

Matrix: Method: SO - Soil SW846 8260B Date Received: Percent Solids: 88.6

03/28/06

Project:

AGFA-Peerless, Shorham, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND		0.69 0.52	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	90%		70-12	20%	
17060-07-0	1,2-Dichloroethane-D4	91%		61-13	33%	
2037-26-5	Toluene-D8	91%		75-12	23 %	
460-00-4	4-Bromofluorobenzene	101%		65-14	12 %	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc. U	nits Q
	Total TIC, Volatile	0	ug	/kg		

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3A

Matrix:

SO - Soil

SW846 8270C SW846 3550B

Date Sampled: 03/27/06 Date Received: 03/28/06

Method: Project:

AGFA-Peerless, Shorham, NY

Percent Solids: 88.6

Analytical Batch

File ID

Run #1 a M41455.D

Run #2 b M41466.D

DF Analyzed
1 04/13/06
1 04/13/06

 By
 Prep Date

 SSW
 04/12/06

 SSW
 04/12/06

Prep Batch OP23254 OP23254

EM1351 EM1351

Initial Weight

30.2 g

30.2 g

Final Volume

1.0 ml 1.0 ml

ABN TCL List

Run #1

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	190	32	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	47	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	62	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	96	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	750	57	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	. 750	33	ug/kg	
95-48-7	2-Methylphenol	ND	190	37	ug/kg	
	3&4-Methylphenol	ND	190	53	ug/kg	
88-75-5	2-Nitrophenol	ND	190	46	ug/kg	
100-02-7	4-Nitrophenol	ND	750	51	ug/kg	
87-86-5	Pentachlorophenol	ND	750	42	ug/kg	
108-95-2	Phenol	ND	190	46	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	56	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	31	ug/kg	
83-32-9	Acenaphthene	ND	75	19	ug/kg	
208-96-8	Acenaphthylene	ND	75	15	ug/kg	
120-12-7	Anthracene	48.2	. 75	14	ug/kg	J
56-55-3	Benzo(a)anthracene	227	75	18	ug/kg	
50-32-8	Benzo(a)pyrene	251	75	13	ug/kg	
205-99-2	Benzo(b)fluoranthene	276	75	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	124	75	20	ug/kg	
207-08-9	Benzo(k)fluoranthene	259	: 75	28	ug/kg	
10 1 -55-3	4-Bromophenyl phenyl ether	ND	75	19	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	75	28	ug/kg	
91-58-7	2-Chloronaphthalene	ND	- 75	52	ug/kg	
106-47-8	4-Chloroaniline	ND	190	23	ug/kg	
86-74-8	Carbazole	29.2	75	15	ug/kg	J.
218-01-9	Chrysene	293	. 75	14	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	24	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	75	19	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	75	28	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	75	18	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3A

Date Sampled: 03/27/06

Matrix: Method: SO - Soil SW846 8270C SW846 3550B Date Received: 03/28/06

Project:

AGFA-Peerless, Shorham, NY

Percent Solids: 88.6

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	75	17	ug/kg	*
541-73-1	1,3-Dichlorobenzene	ND	75	20	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	75	16	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	75	43	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	75	43	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	190	36	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	27.2	75	20	ug/kg	J
132-64-9	Dibenzofuran	ND	. 75	17	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	75	24	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	75	32	ug/kg	
84-66-2	Diethyl phthalate	ND	75	16	ug/kg	
131-11-3	Dimethyl phthalate	ND	75	16	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	75.7	75	48	ug/kg	
206-44-0	Fluoranthene	388	75	13	ug/kg	
86-73-7	Fluorene	21.0	75	15	ug/kg	J
118-74-1	Hexachlorobenzene	ND	75	21	ug/kg	-
87-68-3	Hexachlorobutadiene	ND	. 75	25	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	750	27	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	144	75	24	ug/kg	
78-59-1	Isophorone	ND	75	19	ug/kg	
91-57-6	2-Methylnaphthalene	ND	75	24	ug/kg	
88-74-4	2-Nitroaniline	ND	190	24	ug/kg	
99-09-2	3-Nitroaniline	ND	190	29	ug/kg	
100-01-6	4-Nitroaniline	ND	190	26	ug/kg	
91-20-3	Naphthalene	ND	75	21	ug/kg	
98-95-3	Nitrobenzene	ND	75	26	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	75	24	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	15	ug/kg	
85-01-8	Phenanthrene	237	75	16	ug/kg	
129-00-0	Pyrene	530	75	13	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	75	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	41%	43 %	33-10	05 %	
4165-62-2	Phenol-d5	55%	55%	34-1	10%	
118-79-6	2,4,6-Tribromophenol	78%	83%	33-12	24%	
4165-60-0	Nitrobenzene-d5	56%	55%	26-1		
321-60-8	2-Fluorobiphenyl	69%	70%	40-10	06%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID: Matrix:

J26131-3A SO - Soil

Date Sampled: 03/27/06 Date Received: 03/28/06

Method:

SW846 8270C SW846 3550B

Percent Solids: 88.6

Project:

AGFA-Peerless, Shorham, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	75%	107%	35-142%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	system artifact/aldol-condensa system artifact/aldol-condensa unknown unknown unknown alkane alkane unknown		25.67	270 43000 250 170 160 980 440 170	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg]]]]
	unknown Total TIC, Semi-Volatile		26.36	210 2380	ug/kg ug/kg	J J

⁽a) Sample extracted outside the holding time per client's request.

⁽b) Confirmation run.

B = Indicates analyte found in associated method blank

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3A SO - Soil **Date Sampled:** 03/27/06

Matrix:

SW846 8081A SW846 3545

Date Received: 03/28/06

Method: Project:

AGFA-Peerless, Shorham, NY

Percent Solids: 88.6

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1 a	3G9131.D	1	04/13/06	MCR	04/12/06	OP23246	G3G368
Run #2 a	3G9164.D	4	04/14/06	MCR	04/12/06	OP23246	G3G369

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2	15.4 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.5	0.53	ug/kg	
319-84-6	alpha-BHC	ND	1.5	0.13	ug/kg	
319-85-7	beta-BHC	ND	1.5	0.66	ug/kg	
319-86-8	delta-BHC	ND	1.5	0.11	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.5	0.37	ug/kg	
5103-71-9	alpha-Chlordane b	26.0	1.5	0.49	ug/kg	
5103-74-2	gamma-Chlordane	23.8	1.5	0.19	ug/kg	
60-57-1	Dieldrin	8.5	1.5	0.25	ug/kg	
72-54-8	4,4'-DDD	92.8 ^c	5.9	1.0	ug/kg	
72-55-9	4,4'-DDE	138 ^c	5.9	1.1	ug/kg	
50-29-3	4,4'-DDT	164 ^c	5.9	1.1	ug/kg	
72-20-8	Endrin	ND	1.5	0.17	ug/kg	
1031-07-8	Endosulfan sulfate	5.5	1.5	0.24	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.5	0.25	ug/kg	
959-98-8	Endosulfan-I	ND	1.5	0.14	ug/kg	
33213-65-9	Endosulfan-II	3.9	1.5	0.42	ug/kg	
76-44-8	Heptachlor	ND	1.5	0.092	ug/kg	
1024-57-3	Heptachlor epoxide	ND	. 1.5	0.22	ug/kg	
72-43-5	Methoxychlor	ND	: 3.7	0.45	ug/kg	
53494-70-5	Endrin ketone	ND	; 3. 7	0.25	ug/kg	
8001-35-2	Toxaphene	ND	18	14	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	86%	97%	31-1	36%	
877-09-8	Tetrachloro-m-xylene	102%	102%	31-1	36%	
2051-24-3	Decachlorobiphenyl	87%	90%	28-1	48%	
2051-24-3	Decachlorobiphenyl	85%	92%	28-1	48%	

- (a) Sample extracted outside the holding time per client's request.
- (b) Reported from 2nd signal due to interference on 1st signal.
- (c) Result is from Run# 2

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3A

Matrix:

SO - Soil

Method: Project:

SW846 8082 SW846 3545

AGFA-Peerless, Shorham, NY

Date Sampled: 03/27/06 Date Received: 03/28/06

Percent Solids: 88.6

File ID OA29921.D

DF

Analyzed 04/14/06

Вy KLS Prep Date 04/12/06

Prep Batch OP23249

Analytical Batch GOA995

Run #1 a Run #2

> Final Volume Initial Weight

15.4 g

10.0 ml

Run #1 Run #2

PCB List

CAS No. Compound Result RL MDL Unit	s · Q
12674-11-2 Aroclor 1016 ND 37 8.4 ug/k 11104-28-2 Aroclor 1221 ND 37 8.6 ug/k 11141-16-5 Aroclor 1232 ND 37 8.6 ug/k 53469-21-9 Aroclor 1242 ND 37 5.7 ug/k 12672-29-6 Aroclor 1248 ND 37 10 ug/k 11097-69-1 Aroclor 1254 ND 37 9.1 ug/k 11096-82-5 Aroclor 1260 ND 37 6.0 ug/k	වේ වීම

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8 877-09-8 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	101% 106% 93%		37-140% 37-140% 40-151%
2051-24-3	Decachlorobiphenyl	91%		40-151%

(a) Sample extracted outside the holding time per client's request.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID: Matrix:

J26131-3A

SO - Soil

Date Sampled: 03/27/06

Date Received: 03/28/06 Percent Solids: 88.6

Project:

AGFA-Peerless, Shorham, NY

Metals Analysis

Aluminum 6050 23 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Antimony <2.3 2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Arsenic 6.5 2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Barium 26.2 23 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Beryllium <0.56 0.56 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Cadmium <0.56 0.56 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Calcium 4790 560 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Analyte	Result	RL	Units	DF	Prep	Analyzed By	y Method	Prep Method
Antimony <2.3 2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Arsenic 6.5 2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Barium 26.2 23 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Beryllium <0.56 0.56 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Cadmium <0.56 0.56 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Calcium 4790 560 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	A 1	Zozos Sist	22		,	04/10/06	04/10/06 10	N. 000046 6010D 1	ave 46 ages p. 3
Arsenic 6.5 2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Barium 26.2 23 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Beryllium < 0.56		************************************			_				_
Barium 26.2 23 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B ¹ SW846 3050B ³ Beryllium < 0.56	•		e.						
Beryllium < 0.56 0.56 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Cadmium < 0.56	Arsenic		2.3		1				
Cadmium <0.56 0.56 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3 Calcium 4790 560 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3		26.2	23		1	•			
Calcium 4790 560 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Beryllium	< 0.56	0.56	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
	Cadmium	< 0.56	0.56	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
01 12 0 1 1 1 11 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0	Calcium	4790	560	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Chromium 13.9 1.1 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Chromium	13.9	1.1	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Cobalt <5.6 5.6 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B ¹ SW846 3050B ³	Cobalt	< 5.6	5.6	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ^I	SW846 3050B ³
Copper 14.5 2.8 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Copper	14.5	2.8	mg/kg	1	04/10/06	04/10/06 JD		SW846 3050B ³
Iron 7910 11 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B ¹ SW846 3050B ³	Iron	7910	11	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Lead 43.3 2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Lead	43.3	2.3	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Magnesium 2380 560 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Magnesium	2380	560	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Manganese 98.6 1.7 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Manganese	98.6	1.7	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Mercury 0.070 0.034 mg/kg 1 04/11/06 04/12/06 JW SW846 7471A 2 SW846 7471A 4	Mercury	0.070	0.034	mg/kg	1	04/11/06	04/12/06 JW	/ SW846 7471A ²	SW846 7471A ⁴
Nickel 5.6 4.5 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Nickel	5.6	4.5	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Potassium <560 560 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Potassium	< 560	560	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Selenium <2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Selenium	< 2.3	2.3	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Silver < 1.1 1.1 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B ¹ SW846 3050B ³	Silver	< 1.1	1.1	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Sodium <560 560 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Sodium	< 560	560	mg/kg	1	04/10/06	04/10/06 JD	м sw846 6010в ¹	SW846 3050B ³
Thallium <1.1 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B SW846 3050B 3	Thallium	<1.1	1.1	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Vanadium 16.1 5.6 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Vanadium	16.1	5.6	mg/kg	1	04/10/06	04/10/06 JD	M SW846 6010B ¹	SW846 3050B ³
Zinc 59.4 2.3 mg/kg 1 04/10/06 04/10/06 JDM SW846 6010B 1 SW846 3050B 3	Zinc	59.4	2.3		1	04/10/06	04/10/06 JD	M SW846 6010B ¹	_

(1) Instrument QC Batch: MA17317(2) Instrument QC Batch: MA17327(3) Prep QC Batch: MP33923(4) Prep QC Batch: MP33949

Page 1 of 1

Client Sample ID: BOVE1 BOVE TOPSOIL

Lab Sample ID:

J26131-3A

Date Sampled: 03/27/06

Matrix:

SO - Soil

Date Received: 03/28/06

Project:

AGFA-Peerless, Shorham, NY

Percent Solids: 88.6

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide	<0.27	,-	mg/kg	1	04/10/06 14:42	NR	SW846 9012 M
Solids, Percent	88.6		%	1	04/11/06	NC	EPA 160.3 M

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY **VOLATILE (VOA) ANALYSIS**

Project No:

<u>J26131</u>

Client Name: ATC Associates, Inc.

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
J26131-3	Soil	27-Mar-06	28-Mar-06	-	8-Apr-06
J26131-3A	Soil	27-Mar-06	28-Mar-06		8-Apr-06

ACCUTEST LABORATORIES

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSIS

Project No: J26131

Client Name: ATC Associates, Inc.

Laboratory		Analytical	Extraction	Auxillary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
J26131-3	Soil	SW 8270C	3550B	NONE	30.1g:1.0ml
J26131-3A	Soil	SW 8270C	3550B	NONE	30.2g:1.0ml

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSIS

Project No:

<u>J26131</u>

Client Name: ATC Associates, Inc.

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
J26131-3	Soil	27-Mar-06	28-Mar-06	06-Apr-06	10-Apr-06
J26131-3A	Soil	27-Mar-06	28-Mar-06	12-Apr-06	13-Apr-06

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE / PCB ANALYSIS

Project No:

J26131

Client Name: ATC Associates, Inc.

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
PESTICIDE					
J26131-3	Soil	27-Mar-06	28-Mar-06	06-Apr-06	12-Apr-06
J26131-3A	Soil	27-Mar-06	28-Mar-06	12-Apr-06	14-Apr-06
PCB				_	
J26131-3	Soil	27-Mar-06	28-Mar-06	06-Apr-06	11-Apr-06
J26131-3A	Soil	27-Mar-06	28-Mar-06	12-Apr-06	14-Apr-06

ACCUTEST LABORATORIES

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY PESTICIDE / PCB ANALYSIS

Project No:

J26131

Client Name:

ATC Associates, Inc.

Laboratory		Analytical	Extraction	Auxillary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
PESTICIDE					
J26131-3	Soil	SW846 8081	3545	None	15.2g:10.0ml
J26131-3A	Soil	SW846 8081	3545	None	15.4g:10.0ML
PCB	Ţ				
J26131-3	Soil	SW846 8082	3545	None	15.2g:10.0ml
J26131-3A	Soil	SW846 8082	3545	None	15.4g:10.0ML

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project No:

J26131

Client Name: ATC Associates, Inc.

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J26131-3	Soil	Metals	28-Mar-06	12-Apr-06
J26131-3A	Soil	Metals	28-Mar-06	12-Apr-06

ACCUTEST LABORATIOIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY CYANIDE

Project Numbe <u>J26131</u>

Client Name: ATC Associates, Inc.

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
J26131-3	Soil	27-Mar-06	28-Mar-06	-	07-Apr-06
J26131-3A	Soil	27-Mar-06	28-Mar-06	-	10-Apr-06

Laboratories

1000

CHAIN OF CUSTODY

50

2235 Route 130, Dayton NJ 08810 TEL, 732-329-0200 FAX; 732-329-3499/3480 www.accutest.com

FED-EX Tracking #	Bottle Order Control #	
	MV-3/24/2006	- 3
Acculest Quote #	Accutest Job #	

0

Client / Reporting Information Requested Analysis Company Name Protect Name DW - Drinking Water AGFA ASSOCIATES GW - Ground Water WW - Water STAPS () MIBE SW - Surface Water SO - Solt D 23 ₹ 200 Project Contact 85 g SL - Bludge Ø JAMES, SELIGA P ATCASSOTIATES, COM ٤ 01 - 01 00 ā. □ 0 0 0 £ £ £ 00 LIQ - Other Liquid 过度 524 D AIR - AIr Sampler's Name Client Purchase Order # £% ₩ 8 2 SQL-Other Solid Collection D 952 6780 C Acculest Field ID / Point of Collection SUMMA# WP - Wpe Semole # Sampled By # of LAB USE ONLY Malrix MEOH Viel# Time 141 50 TOPSOIL ζ0 - 2 BOYEL So dulos -3* So (0 Turnaround Time (Business Days) Data Deliverable Information Approved By: / Data: ☐ FULL CLP ☐ Std. 15 Business Days ☐ Commercial "A" ☐ Commercial *B* I NYASP Calegory A ☐ 10 Day RUSH MYASP Category B NJ Reduced ☐ 5 Day RUSH ☐ NJ Folk ☐ State Forms 3 Day EMERGENCY WALLEY SAMPLES ARE ON HAD, USE JAMS PRIVILED FUR ☐ 2 Day EMERGENCY FOR MEINSD & CHORELD DUTE)
Commercial "A" = Results Only 1 Day EMERGENCY 371EC RLA D Other * No extra vol. 3/28/obuc provided Emergency & Rush T/A data available VIA LabLink Sample Custody must be documented below each time samples change possession, including courier delivery. Relinguished by: Relinquished by Sampler 31000 Relinquished by Date Time: Received by: Relinquished by: Date Time: Custody Seal # Preserved where applicable Relinquished by Received by

Job Change Order:

J26131_4/5/2006

Requested Date:

4/5/2006

Received Date:

3/28/2006

Account Name:

ATC Associates, Inc.

Due Date:

4/18/2006

Project Description:

AGFA-Peerless, Shorham, NY

Deliverable:

NYASPB

CSR:

MV

TAT (Days):

7

Sample #:

J26131-3

Change:

Off hold- Run for TCL+30. Sample needs to be run in

Duplicate. Please assign -1A as well and log for

TCL+30.

BOVE1 BOVE TOPSOIL

Above Changes Per:

Jim Celegra

Date: 4/5/2006

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

Page 1 of 1

APPENDIX B

. . . .

BCM Project Name: BCM Project No.: Project Manager: Laboratory:	Peerless Photo Pro 68.28817.0001 M. McNally Accutest	oducts		Sampli Reviev	lo./SDG: ing Date(s): ved By: etion Date:	J26131 3/27/2006 M. Traxler 7/14/2006
Fraction Reviewed: Compound List: Method:	XVOLATILE ORGANI XTCL CLP SOW	Priority P		ı. 601/602	SEMIVOLATI Appendix IX SW-846 Meth	LE ORGANICS Other
The following table in	idicates the data rev	riew criteria	exami	ned, pro	blems identif	ied, and QA action
Data Validation Criter	ia:	accept	FYII	qualify	Comment	S
Holding Times		х			< 14 days	soil / 7 days water
GC/MS Tuning		х				
Initial Calibrations		X			<25 RPD	
Continuing Calibration	ons	х			<20 RPD	
Blank Analysis Resul	ts	х			<rl< td=""><td></td></rl<>	
System Monitoring/S	urrogate Results	х			Within acc	eptance limits
MS/MSD Results			X		No MS/MS	D results
Field Duplicate Resul	ts	X			Within acc	eptance limits
Internal Standard Are	as/RT				NR	
Target Compound Ide	entification				NR	
TIC Identification					NR	
Quantitation/Detectio	n Limits	4 []			NR	
Laboratory Control S	ample	X			80-120%	
Other:						
General Comments:						
					-	
						
NA - Not applicable						
NR - Not reviewed						

QA Scientist Mark Staples Date 7/74/06

Volatile Field Duplicate Precision

1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene ATC

Project Name:	Peerless Photo Produc	cts	Case No./SDG:	J26131
Project Number:	68.28817.0001		-	
			_	
Sample Description			7	
or Location	BOVE1	BOVE1-DUP]	
Sample Number	J26131-3	J26131-3A		
Matrix	Soil	Soil		
Units	mg/kg	mg/kg	1	
Dilution Factor	1	1	j	
	Sample	Field Duplicate		
Compound	Concentration	Concentration	RPD Q	:_
chloromethane				_[
vinyl chloride				_[
bromomethane				_j
chloroethane				
trichlorofluoromethane				1
1,1-dichloroethene				
methylene chloride				
trans-1,2-dichloroethene				1
1,1-dichloroethane]		1
chloroform				7
1,1,1-trichloroethane				ı
1,2-dichloroethane				
carbon tetrachloride				
trichloroethene				
1,2-dichloropropane				1
bromodichloromethane				7
2-chloroethylvinyl ether				7
cis-1,2-dichloroethene				7
trans-1,3-dichloropropane				
1,1,2-trichloroethane				1
tetrachloroethene				7
dibromochloromethane				
chlorobenzene				1
bromoform			1	7
1,1,2,2-tetrachloroethane			†	ヿ
cis-1,2-dichloroethene			 	7
benzene			 	7
toluene			 	7
ethylbenzene			 	7
				1

QA Scientist Mark Saxles Date 7/14/06

BCM Project Name: BCM Project No.: Project Manager: Laboratory:	Dject No.: 68.28817.0001 Wanager: M. McNally			Sampli Reviev	lo./SDG: ing Date(s): ved By: etion Date:	0604424 3/27/2006 M. Traxler 7/14/2006
Fraction Reviewed:	VOLATILE ORGANIC	s			SEMIVOLATI	LE ORGANICS
Compound List:	X TCL	Priority F	Pollutant		Appendix IX	Other
Method:	CLP SOW	40 CFR	136 Met	n. 601/602	X SW-846 Meth	nod 8270B Other
The following table in	ndicates the data rev	iew criteria	exam	ined, pro	blems identif	ied, and QA action
Data Validation Criter	ria:	accep	t/ FYI/	qualify	Comment	s
Holding Times		Х			<40 days	
GC/MS Tuning		x				
Initial Calibrations		X			<25 RSD	
Continuing Calibration	ons	x		,]	<20 RPD	
Blank Analysis Resul	ts	X			<rl< td=""><td></td></rl<>	
System Monitoring/S	urrogate Results	X			Within acc	eptance limits
MS/MSD Results		X	<u>x</u>		No MS/MS	D
Field Duplicate Resul	ts	X			Within acc	eptance limits
Internal Standard Are	as/RT	X			Within acc	eptance limits
Target Compound Ide	entification	X				
TIC Identification		X				
Quantitation/Detection	n Limits	X				
Laboratory Control S	ample	x			80-120% F	₹
Other:						
General Comments:						<u> </u>

NA - Not applicable NR - Not reviewed

QA Scientist Mark Hapler

Date 7/14/66

Semivolatile Field Duplicate Precision Worksheet ATC

Project	Name:
Project	Number:

Peerless Photo Products 68.28817.0001

Case/SDG Number: J26131

Sample Location	BOVE1	BOVE1-DUP
or Description		
Sample Number	J26131-3	J26131-3A
Sampling Date	3/27/2006	3/27/2006
Units	mg/kg	mg/kg

	Sample	Field Duplicate		
			RPD	Q
phenol				
bis(2-chloroethyl)ether				
2-chlorophenol				
1,3-dichlorobenzene				
1,4-dichlorobenzene				
1,2-dichlorobenzene				
2-methylphenol				
2,2'-oxybis(1-chloropropane)				
4-methylphenol				
N-nitroso-di-n-propylamine				
hexachloroethane				
nitrobenzene				
isophorone				
2-nitrophenol				
2,4-dimethylphenol				
bis(2-chloroethoxy)methane				
2,4-dichlorophenol				Г
1,2,4-trichlorobenzene				
naphthalene				
4-chloroaniline				
hexachlorobutadiene				
4-chloro-3-methylphenol				
2-methylnaphthalene				
hexachlorocyclopentadiene				
2,4,6-trichlorophenol				
2,4,5-trichlorophenol				
2-chioronaphthalene				
2-nitroaniline				
dimethylphthalate				
acenaphthylene				
2,6-dinitrotoluene				
3-nitroaniline				
acenaphthene				
2,4-dinitrophenol				L
4-nitrophenol				

QA Scientist Mark Hables Date 7/14/06

Semivolatile Field Duplicate Precision Worksheet ATC

Project Name: Project Number: Peerless Photo Products

68.28817.0001

Case/SDG Number: J26131

Sample Location	BOVE1	BOVE1-DUP
or Description		
Sample Number	J26131-3	J26131-3A
Sampling Date	3/27/2006	3/27/2006
Units	mg/kg	mg/kg

	Sample	Field Duplicate		
			RPD	Q
dibenzofuran				
2,4-dinitrotoluene			<u> </u>	
diethylphthalate				
4-chlorophenyl-phenylether			·	L
fluorene			_l	
4-nitroaniline				
4,6-dinitro-2-methylphenol				
N-nitrosodiphenylamine				
4-bromophenyl-phenylether				
hexachlorobenzene				
pentachlorophenol				
phenanthrene	203	237	15	
anthracene	47.1	48.2	2	
carbazole	27.3	29.2	7	
di-n-butylphthalate				
fluoranthene	425	388	9	
pyrene	372	530	35	
butylbenzylphthalate				
3,3'-dichlorobenzidine				
benzo(a)anthracene	212	227	7	
chrysene	258	293	13	
bis(2-ethylhexyl)phthalate	106	75.7	33	
di-n-octylphthalate				
benzo(b)fluoranthene	231	276	18	
benzo(k)fluoranthene	227	259	13	
benzo(a)pyrene	244	251	3	
indeno(1,2,3-cd)pyrene	65.5	144	75	1
dibenz(a,h)anthracene	33.5	27.2	21	
benzo(g,h,i)perylene	60.6	124	69	*

Comments:

QA Scientist Mark Harder Date 7/14/06

^{* -} Denotes RPD outside criteria

ATC Project Name: ATC Project No.: Project Manager: Laboratory:	Peerless Photo I 68.28817.0001 M. McNally Accutest	Produ	icts		San Rev	se No./SDG: npling Date(s): viewed By: npletion Date:	J26131 3/27/2006 M. Traxler 7/14/2006
Fraction Reviewed: Compound List: Method:	X PESTICIDES XTCL XCLP SOW	Ō	40 CFR		thod	PCBs Appendix IX SW-846 Me	thodOther
Data Validation Criter					quali		entified, and QA action. comments
Holding Times			х				
Initial Calibrations		_}	Х				
Continuing Calibratio	ons	_				NA	
Blank Analysis Resul	ts_		х				
System Monitoring/S	urrogate Results		Х				
MS/MSD Results				Х		No MS/M	SD results
Field Duplicate Resul	ts		Х				
Internal Standard Are	eas/RT		Х				
Target Compound Ide	entification		X_				
Quantitation/Detectio	n Limits	7	Х				-
System Performance			Х				
Overall Assessment o	of Data		Х				
Other:							
Other:							
Other:							
General Comments:							

QA Scientist Mark Hapler Date 7/14/06

Pesticide Field Duplicate Precision

ATC

Case No./SDG: J26131

Project Name: Peerless Photo Products
Project Number: 68.28817.0001

Sample Description	
or Location	BOVE1
Sample Number	J26131-3
Matrix	Soil
Units	mg/kg
Dilution Factor	1

BOVE1-DUP
J26131-3A
Soil
mg/kg
11

	Sample
Compound	Concentration
aldrin	
alpha-BHC	
beta-BHC	
delta-BHC	
gamma-BHC (Lindane)	
alpha-chlordane	25.1
gamma-chlordane	28.0
dieldrin	8.7_
4,4'-DDD	112_
4,4'-DDE	172
4,4'-DDT	200
endrin	
endosulfan sulfate	5.7
endrin aldehyde	
endosulfan-l	
endosulfan-II	3.8
heptachlor	
heptachlor epoxide	
methoxychlor	
endrin ketone	
toxaphene	

Field Duplicate Concentration	RPD	Q
		L_{-}
 		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
		lacksquare
26	3.5	
23.8	16.2	L
8.5	2.3	1
92.8	18.8	L_
138	21.9	
164	19.8	
5.5	3.6	
		L^{-}
3.9	2.6	

QA Scientist Mark Marder Date 7/14/06

ATC Project Name: ATC Project No.: Project Manager: Laboratory:	Peerless Photo 68.28817.0001 M. McNally Accutest	Products	•	Samp Revie	No./SDG: ling Date(s): wed By: ·letion Date:	J26131 3/27/2006 M. Traxler 7/14/2006
Fraction Reviewed:	PESTICIDES				XPCBs	
Compound List:	XTCL	Priorit	y Pollutant		Appendix IX	Other
Method:	X CLP SOW	40 CF	R 136 Metl	hod	SW-846 Meth	oodOther
The following table in	ndicates the data	review cri	teria exa	amined,	problems ider	ntified, and QA action.
Data Validation Crite			ot/ FYI/			comments
Holding Times		Х				
Initial Calibrations		Х] [
Continuing Calibration	ons				NA	
Blank Analysis Resul		X				
System Monitoring/S	urrogate Results	X				
MS/MSD Results			Х		No MS/MS	D results
Field Duplicate Resul	lts	Х				
Internal Standard Ar	eas/RT	Х				
Target Compound Ide	entification	X				
Quantitation/Detection	n Limits	X				
System Performance		X		1 1		
Overall Assessment	of Data	Х				
Other:						
Other:						
Other:						
General Comments:						
				-		
						
NA - Not applicable NR - Not reviewed						

QA Scientist Mark Jade

Date 7/14/06

Polychlorinated Biphenyls Field Duplicate Precision ATC

Project Name:	Peerless Photo Products	Case No./SDG:	J26131	
Project Number:	68.28817.0001			

Sample Description	
or Location	BOVE1
Sample Number	J26131-3
Matrix	Soil
Units	mg/kg
Dilution Factor	1

BOVE1-DUP
J26131-3A
Soil
mg/kg
1_

	Sample
Compound	Concentration
Aroclor 1016	
Aroclor 1221	
Aroclor 1232	
Aroclor 1242	
Aroclor 1248	
Aroclor 1254	
Aroclor 1260	

Fleta Duplicate		
Concentration	RPD	Q
		I
		<u> </u>
		-
		$ldsymbol{ldsymbol{ldsymbol{eta}}}$

QA Scientist Mark Stander Date 7/14/06

Project Name: Project No.: Project Manager:	Peerless Photo Proc 68.28817.0001 M. McNally	ducts		San Rev	se No./SDG: npling Date(s): riewed By:	J26131 3/27/2006 M. Traxler 7/14/2006
Laboratory: Compound List: Method: Matrix:	Accutest X TAL CLP SOW 3/90 X soil/solid (mg/Kg)	Appen X SW-84 aqueou			npletion Date: Other	
The following table is and QA action.	ndicates the data vali	idation	criteri	a exar	nined, problems	identified,
Data Validation Crite	ria:	acce	ot FYI	qualif	y comments	
Holding Times Calibration Linearity and CN	- Furnace, Hg,	X			Less than 180 d	ays
Calibration Verification	on	X X			2-point standard	
Calibration Blanks Preparation Blanks		X		84 101. mg	< RL < RL	
Field Blank ICP Interference Che	ck Sample	×			< RL 80 - 120 % R	
Laboratory Control S Matrix Spike Results		X		X	75 - 125 % R 75 - 125 % R - (outliers Sb, Ca, Mg, I
Matrix Duplicate Res ICP Serial Dilution	ults	×		X C	Lead > 20% RP < 10% D (Cd, S	D e, Na, Co <50X (DL)
Post Digestion Analy Method of Standard / Field Duplicate Resu	Addition				NR NR Cr >35% RPD	
Sample Result Verifice Other:	h Politighows Science Ast Miss.	×			C1 >35% RFD	
General Comments:						

QA Scientist Nach Aapla Date 7/14/06

Inorganic Matrix Spike/ Matrix Duplicate Worksheet

Project Name:

Peerless Photo Products

Case/SDG Number: J26131

Project Number: 68.28817.0001

Sample	Location
or Des	cription
Sample	Number
Sampli	ng Date
Units	

BOVE1	BOVE1-MS	BOVE1-MSD
J26131-3	J26131-3MS	J26131-3MSD
3/27/2006	3/27/2006	3/27/2006
mg/kg	mg/kg	mg/kg

Spike Sample Result MS Result MSD Result Amount

	**				MS %R	Q	MSD %R	Q	MS/MSD RPI	D Q
Aluminum	5400	5,910	11,400	11,600	94.7	T	95.4		1.7	T
Antimony	100	0.0	57.6	57.4	53.7	*	52.0	*	0.3	
Arsenic	400	6.8	370	374	84.6	1	83.1		1.1	
Barium	400	28.0	411	422	89.2		89.2		2.6	
Beryllium	10	0.20	9.9	9.9	90.4		87.8		0.0	1
Cadmium	10	0.16	9.7	9.7	88.9		86.4		0.0	1
Calcium	1250	4950	5770	5450	61.1	*	36.2	*	5.7	
Chromium	40	9.0	48.0	49.2	90.8		91.0		2.5	
Cobalt	100	2.6	98.0	98.4	88.9		86.7		0.4	1
Copper	50	15.7	66.8	69.8	95.2		98.0		4.4	1
Iron	5200	7,430	12,700	12,400	94.4		86.5		2.4	1
Lead	100	44.4	172	139	118.9		85.6		21.2	*
Magnesium	1250	2420	3310	3400	66.3	*	71.0	*	2.7	
Manganese	100	97.8	193	189	88.7		82.6		2.1	
Mercury	0.37	0.070	0.45	0.52	101.6		129.5	*	14.4	1
Nickel	100	5.6	103	103	90.8		88.2		0.0	
Potassium	1250	555	1720	1740	86.8		85.8		1.2	1
Selenium	400	0.51	361	368	84.0		83.2		1.9	
Silver	10	0.0_	9.6	9.8	89.4		88.7		2.1	
Sodium	1250	88.3	1310	1340	91.1		90.7		2.3	
Thallium	400	0.0	374	380	87.1		86.0		1.6	
Vanadium	100	14.5	113	114	91.8		90.1		0.9	
Zinc	100	65.3	164	157	92.0		83.0		4.4	T

NT - Not Tested

Q - Qualifier

QA Scientist Mark Hapler Date 7/14/06

^{* -} Denotes RPD outside criteria

Metals Field Duplicate Precision

ATC

Project Name:

Peerless Photo Products

Case No./SDG: J26131

Project Number:

68.28817.0001

Sample Description	
or Location	BOVE1
Sample Number	J26131-3
Matrix	Soil
Units	mg/kg
Dilution Factor	1

D01/54 D1/D
BOVE1-DUP
J26131-3A
Soil
mg/kg
1

	Sample
Compound	Concentration
aluminum	5,910
antimony	
arsenic	6.8
barium	28.0
beryllium	
cadmium	
calcium	4,950
chromium	9.0
cobalt	
copper	15.7
iron	7,430
lead	44.4
magnesium	2,420
manganese	97.8
mercury	0.07
nickel	5.6
potassium	
selenium	
silver	
sodium	
thallium	
vanadium	14.5
zinc	65.3
cyanide	

Field Duplicate Concentration	RPD	Q
6,050	2.3	
6.5	4.5	
26.2	6.6	
4,790	3.3	
13.9	42.8	*
14.5	7.9	
7,910	6.3	
43.3	2.5	
2,380	1.7	
98.6	0.8	
0.070	0.0	
5.6	0.0	
16.1	10.5	
59.4	9.5	

QA Scientist Mark Hardy Date 7/14/06

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J26131

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33923 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg

Prep Date:

المتناب ويترمن المراهمين فيتمواه والأحاضان

04/10/06

ricp bacc.				03/10/00			
Metal	J26131-3 Original		Spikelot MPIRS1	ት Rec	QC Limíts		
Aluminum	5910	11400	5800	94.7	75-125		
Antimony	0.0	57.6	107	(53.7N(a)	75-125		
Arsenic	6.8	370	429	84.6	75-125		
Barium	28.0	411	429	89.2	75-125	MT Job	
Beryllium	0.20	9.9	11	90.4	75-125	MT7/14/06	
Cadmium	0.16	9.7	11	88.9	75-125	,	
Calcium	4950	5770	1340	61.1N(a)	75-125		
Chromium	9.0	48.0	42,9	90.8	75-125		
Cobalt	2.6	98.0	107	88.9	75-125		
Copper	15.7	66.8	53.7	95.2	75-125		
Iron	7430	12700	5580	94.4	75-125		
Lead	44.4	172	107	118.9	75-125		
Magnesium	2420	3310	1340	(66.3N(a)	75-125		
Manganese	97.8	193	107	88.7	75-125		
Nickel	5.6	103	107	90.8	75-125		
Potassium	555	1720	1340	86.8	75-125		
Selenium	0.51	361	429	84.0	75-125		
Silver	0.0	9.6	11	89.4	75-125		
Sodium	88.3	1310	1340	91.1	75-125		
Thallium	0.0	374	429	87.1	75-125		
Vanadium	14.5	113	107	91.8	75-125		
Zinc	65.3	164	107	92.0	75-125		

Associated samples MP33923: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

⁽N) Matrix Spike Rec. outside of QC limits

Janr) Analyte not requested

⁽a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J26131 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33923 Matrix Type: SOLID

Methods: SW846 6010B

Units: mg/kg

Prep Date:

 $\sigma = (x, \, \mathbb{R}^d \cup \mathbb{R}^d)$, which is a substitution of $(x, \, \mathbb{R}^d)$, where σ

04/10/06

Metal	J26131-: Origina:		Spikelot MPIRSI	% Rec	MSD RPD	QC Limit	
Aluminum	5910	11600	5960	95.4	1.7	20	
Antimony	0.0	57.4	110	52.0N(a)	0.3	20	
Arsenic	6.8	374	442	83.1	1.1	20	
Barium	28.0	422	442	89.2	2.6	20	
Beryllium	0.20	9.9	11	87.8	0.0	20	201
Cadmium	0.16	9.7	11	86.4	0.0	20	\mathcal{M}_{1}
Calcium	4950	5450	1380	36.2N(a)	5.7	20	1/14/00
Chromium	9.0	49.2	44.2	91.0	2.5	20	11.1
Cobalt	2.6	98.4	110	86.7	0.4	20	
Copper	15.7	69.8	55.2	98.0	4.4	20	
Iron	7430	12400	5740	86.5	2.4	20	
Lead	44.4	139	110	85.6	(21.2 (b)	20	
Magnesium	2420	3400	1380	71.0N(a))2.7	20	
Manganese	97.8	189	110	82.6	2.1	20	
Nickel	5.6	103	110	88.2	0.0	20	
Potassium	555	1740	1380	85.8	1.2	20	
Selenium	0.51	368	442	83.2	1.9	20	
Silver	0.0	9.8	11	88.7	2.1	20	
Sodium	88.3	1340	1380	90.7	2.3	20	
Thallium	0.0	380	442	86.0	1.6	20	
Vanadium	14.5	114	110	90.1	0.9	20	
Zînc	65.3	157	110	83.0	4.4	20	

Associated samples MP33923: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

⁽N) Matrix Spike Rec. outside of QC limits

⁽a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

(b) High rpd due to possible sample nonhomogeneity.

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J26131 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33923 Matrix Type: SOLID

2014 - Villian <u>2018</u> - State - State

Methods: SW846 6010B Units: mg/kg

Prep Date:

04/10/06

Metal	BSP Result	Spikelot MPIRS1	₹ Rec	QC Limits
Aluminum	5040	5400	93.3	80-120
Antimony	90.8	100	90.B	80-120
Arsenic	350	400	87.5	80-120
Barium	373	400	9 3 .3	80-120
Beryllium	9.4	10	94.0	80-120
Cadmium	9.4	10	94.0	80-120
Calcium	1190	1250	95.2	80-120
Chromium	38.3	40	95.8	80-120
Cobalt	93.0	100	93.0	80-120
Copper	50.3	50	100.6	80-120
Iron	4820	5200	92.7	80-120
Lead	93.2	100	93.2	80-120
Magnesium	1160	1250	92.8	80-120
Manganese	93.8	100	93.8	80-120
Nickel	94.2	100	94.2	80-120
Potassium	1100	1250	68.0	80-120
Selenium	343	400	85.8	80-120
Silver	9.3	10	93.0	80-120
Sodium	1200	1250	96.0	80-120
Thallium	364	400	91.0	80-120
Vanadium	96.4	100	96.4	80-120
Zinc	97.1	100	97.1	80-120

Associated samples MP33923: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: J26131 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33923 Matrix Type: SOLID

Methods: SW846 6010B

Units: ug/l

Prep Date:

 $(x_1, \dots, x_{n-1}, x_n) = (x_1, \dots, x_{n-1}, \dots, x_n)$

04/10/06

Metal	J26131-3 Original		RPD	QC Limits
Aluminum	48800	49700	1.8	0-10
Antimony	0.00	0.00	NC	0-10
Arsenic	55.8	59.3	6.3	0-10
Barium	231	234	1.2	0-10
Beryllium	1.62	1.69	4.5	0-10
Cadmium	1.31	0.00	100.0(a)	0-10
Calcium	40900	41800	2.3	0-10
Chromium	74.6	77.3	3.5	0-10
Cobalt	21.6	24.2	11.7 (a)	d-10
Copper	130	130	0.0	0-10
Iron	61400	62300	1.6	0-10
Lead	367	380	3.5	0-10
Magnesium	20000	20400	2.4	0-10
Manganese	308	830	2.6	0-10
Nickel	46.4	44.4	4.3	0-10
Potassium	4590	4710	2.6	0-10
Selenium	4.24	0.00	100.0(a)	0-10
Silver	0.00	0.00	NC	0-10
Sodium	730	0.00	100.0(a)	>0-10
Thallium	0.00	D.00	NC	0-10
Vanadium	120	126	4.8	0-10
Zinc	539	562	4.1	0-10

Associated samples MP33923: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: J26131 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33949 Matrix Type: SOLID

Methods: SW846 7471A Units: mg/kg

Prep Date:

04/11/06

71CP 2200.)
			MB		
Metal	RL	IDL	raw	final	
Mercury	0.033	.014	-0.0013	<0.033	

Associated samples MP33949: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J26131 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33949 Matrix Type: SOLID

Methods: SW846 7471A

Units: mg/kg

Prep Date:

04/11/06

Metal	J26131- Origina		Spikelot HGPWS1	% Rec	QC Limits
Mercury	0.070	0.45	0.37	101.5	53-149

Associated samples MP33949: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

Page 1

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J26131

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33949 Matrix Type: SOLID

Methods: SW845 7471A

Units: mg/kg

Prep Date:

04/11/06

Metal	J26131- Origina		Spikelo HCPWS1		MSD RPD	QC Limit
Mercury	0.070	0.52	0.35	129.5	14.4 .	33

Associated samples MP33949: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J26131

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP33949 Matrix Type: SOLID

Methods: SW846 7471A

Units: mg/kg

Prep Date:

رايا يريدانها الحاصوصينيسطونانستطاع للاالد

04/11/06

	LCS	Spikelo	ot	QC
Metal	Result	HGLCS4	2540% Rec	Limits
L				
Mercury	8 B	10 9	BQ 7	59-141

Associated samples MP33949: J26131-3, J26131-3A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

DATA USABILITY REPORT

ACCUTEST CASE NO. J8775

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK SEPTEMBER 2005

REPORTED MARCH 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

MARK TRAXLER
SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of September 1, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Traxler

Senior Quality Assurance Scientist

DATA USABILITY SUMMARY ORGANICS AND INORGANICS PEERLESS PHOTO PRODUCTS SITE SEPTEMBER 2005

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the organics and inorganics results from the September 1, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J8775 included a total of three (3) soil samples, including one (1) set of field duplicate samples for Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Semivolatile Organic Compounds (SVOCs), TCL Organochlorine Pesticides, TCL Polychlorinated Biphenyls (PCBs), Target Analyte List (TAL) metals and cyanide analyses. Case J8775 also included one (1) aqueous trip blank sample for VOCs analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, GC/MS tuning, surrogate recoveries, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. Samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 8260B, 8270C, 8081A, 8082, 6010B, 7471A and 9012. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J8775 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the organics and inorganics that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes

the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative;
- Summary forms and supporting documents;
- Calibration data:
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record on September 1, 2005, and received at Accutect on the September 3, 2005. All samples were received intact and in good condition at Accutest.

3.0 FINDINGS/QUALIFIERS

3.1 TCL Volatile Organic Compounds

The following TCL VOCs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike and matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip/field blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits

It is recommended that Case J8775 VOCs results be used with the following qualifiers:

- 1. Methylene chloride, a common laboratory contaminant, was detected in a blank at an estimated concentration, "BJ" (below the reporting limit [RL]). These values were adjusted to non-detect, "U", at the RL.
- 2. Trichloroethene was detected at an estimated concentration, "J" (below the reporting limit [RL]). This value was not adjusted.

3.2 TCL Semivolatile Organic Compounds

The following TCL SVOCs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times

- Field duplicate precision
- Quantitation limits

It is recommended that Case J8775 SVOCs results be used with the following qualifiers:

1. A number of analytes were detected at an estimated concentration, "J" (below the reporting limit [RL]). These values were not adjusted.

3.3 TCL Organochlorine Pesticides

The following TCL organochlorine pesticides analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- Sample result verification and identification
- Initial calibrations
- Performance evaluation mixtures
- Field duplicate precision
- Quantitation limits

It is recommended that Case J8775 TCL organochlorine pesticides results be used with the following qualifiers:

1. Heptachlor and heptachlor epoxide were reported at an estimated concentration, "J" (below the reporting limit [RL]) because they are not distinguishable from each other. These values were not adjusted.

3.4 TCL Polychlorinated Biphenyls

The following TCL PCBs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries

- Laboratory method blank and field blank contamination
- Sample result verification and identification
- Initial calibrations
- Field duplicate precision
- Quantitation limits

It is recommended that Case J8775 TCL PCBs results be used with no qualifiers.

3.5 TAL Metals and Cyanide

The following TAL Metals and cyanide analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J8775 TAL Metals and cyanide results be used with no qualifiers.

4.0 SUMMARY

The organics and inorganics results are acceptable as qualified. Holding times, initial and continuing calibration verification results, GC/MS tuning performance, surrogate recoveries, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - TCL VOCs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL VOLATILE ORGANIC COMPOUNDS

	Site Name Peerl	ess Photo Produ	icts]						Laboratory	Accutest		
	Project Number 68.28	817,0001				Soil sar	nple s	in mg/kg	C	ase/Order#	J8775		
5	Sampling Date(s) 9/1/2	005		ĺ		Aqueous	samp	les in ug/L	Frac	tion/Method	CLP Volatiles		
				· 									
	Sample Description or Location	CF-001		CF-002		FD-090105	;	TRIP BLANK					
	Sample Number	J8775-1		J8775-2		J8775-3		J8775-4		-			
	Matrix	Soil		Soil		Soil		Aqueous					
	% Solids	93.3		90,6		93.1							
	Dilution Factor	1		1		1		1					
	Sampling Date	9/1/2005		9/1/2005		9/1/2005		9/1/2005					
CRQL	Comments	_		ļ									
5	chloromethane		U		C		U	<u>ا</u> ن ا	11.5	• 1.		.0.50	
5	bromomethane		٠U		U		U	U	147,		1	1762	
- 5	vinyl chloride		U		U		U	U		1.45			
5	chloroethane		U		U		U	Ü	29 kg.	Party.			
5	methylene chloride	3.0 JB	Ü	3.0 JB	U	2.5 JB	Ü	Ú	V. 9	1.8	. 1		
10	acetone		U		U		U	U	1.1	12.5		1.0.5 2.7.5	
5	carbon disulfide		U		U		U	U	138	5 5		ा ते को है। इस कि	
5.0	1,1-dichloroethene		U		U		U.	U	1.54	1,11		18	
57	1,1-dichloroethane		U		U		U-	1.0	.215	14.7	1. 1	36.	
5	trans-1,2-dichloroethene	,	U	-	U		Ú	U	10.00	(3年)		3 v m	
5 5.3	cis-1,2-dichloroethene		U		U		U	υ 🦪	100		1. (17.5	
5	chloroform		U		U	l —	U	្រាប់នា	[545]	1 1,11	1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19.3	
- 5	1,2-dichloroethane		U		U		U	iu.	- 3. 3	7.74	13.4		
10	2-butanone		U		Ü	l	U	וֹטּ	77 s	3.75	1.15	1.750	
5.	1,1,1-trichloroethane		U		Ū	-	U	101	13.0	147	. :		
5	carbon tetrachloride		ıÚ:		Ü		U	י ט י	1.1		1 2	1,30	
5	bromodichloromethane		U		Ü		U	· U	1 1	1.4		72.0	
5	1,2-dichloropropane		U		U		U	10		e 211 Tri 24	1	18. gr	
5	cis-1,3-dichloropropene		U		Ü		U	i u i				145-41	
5	trichloroethene		U	1.3 J			U	No.					
5	dibromochloromethane		U	7.55	U	l	U	U		 			
- 5	1,1,2-trichloroethane		U		U		U	U					
1	benzene		U		U		U	U					
5	trans-1,3-dichloropropen	ne e	U		U		U	U		:			
5	bromoform		U	1	U		U	U				- 1	

QA Scientist M Haples Date 3/17/06

DATA SUMMARY - TCL VOLATILE ORGANIC COMPOUNDS

	Site Name	Peerless F	Photo Produ	cts						Laboratory	Accutest		
	Project Number	68.28817.	0001				Soil samples	in mg/kg	C	ase/Order#	J8775		
8	Sampling Date(s)	9/1/2005					Aqueous samp	les in ug/L	Frac	tion/Method	CLP Volatiles		
1,	Sample Description Location Sample Number Matrix % Solids	on	CF-001 J8775-1 Soil 93.3		CF-002 J8775-2 Soil 90.6		FD-090105 J8775-3 Soil 93.1	TRIP BLANK J8775-4 Aqueous -					
5	4-methyl-2-pentar	ione		Ü		U	U	U				111	
5 5	2-hexanone tetrachloroethene			U)		U	<u>ַ</u> טַ	(1) (1)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2.17.5) (2.17.5) (2.17.5)	
5	1,1,2,2-tetrachlore	ethane		Ü		Ů,	Ü,	U	E A	# 15. - 19.	16.5		
16 d. 4 d. 4	toluene			U		U	U	ַעַיּ	1.34		1973	1. (. §) 1.15 %	
/ 5 % 1 √ 3	chlorobenzene ethylbenzene			Ü		U	ָט ט	*U	1. 17 A	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.5 s (46.3)		
5	styrene			Ü		U	Ü	ı u	7.1.2 7.1.3		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	14,13 03.00	
ATT.	xylenes (total) Surrogate Recove	ery, %	_	1847			1.185 1.185	P.A.	216g		in it		
1.4	dibromofluoromet	hane	84		88	197	90	92		T k			
31 2013	1,2-dichloroethan	e-d4	73		80		84	105	- 1		[18]	1.3.2	
3.5	toluene-d8		80	110	85		84	91		1, 8,		(411)	
0 . 74	4-bromofluoroben	zene	91		96	- "	97	94		7 Pa.	N.	1.0	

QA Scientist M Sapla Date 3/17/06

QUALIFIER CODES - TCL SVOCs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

		Site Name	Peerless	Photo Products							Laboratory	Accutest		
		Project Number	68.28817	.0001]	Soil samples	in mg/kg	С	ase/Order#	J8775		
		Sampling Date(s)	9/1/2005]	Aqueous samp	les in ug/L	Frac	tion/Method	CLP Semivolatile	s	
		Sample Description or Location		CF-001	CF-00	12	FD-090105							
		Sample Number		J8775-1	J8775		J8775-3	ļ				 		
		Matrix		Soil	501.70		Soil					<u> </u>		
		Percent Solids		93.3	90	.6	93.1							
_		Dilution Factor		1	1		1							
AQ.	SOIL	Sampling Date		9/1/2005	9/1/20	05	9/1/2005	<u> </u>						
RL	RL	Comments			1									
10	70	bis(2-chloroisopropyl)e	ether		J	U	U	4		14 E		li in		100
10	70	1,2-dichlorobenzene		, L		U	· U ·	ř.			10.0	1		is is
10	70°	1,3-dichlorobenzene		. (j	U	U	11.				li.		10 58
10	× 70 ¹	1,4-dichlorobenzene		l	J	U	Ü							
10	180	phenol		l	,	U	U	[: T			1 37			
10 \$	₹70	bis(2-chloroethyl)ether	r	į		U.	Ü	1.						i i
10	180	2-chlorophenol			,	U	U-					,,,		
10	180°	2-methylphenol		· ·	J	U	U	:					7	
10	180	4-methylphenol		,	į	U	Ü				32			11
10	70	N-nitroso-di-n-propylar	mine		,	U	Ü				1.			-15
10	180	hexachloroethane			j	U	U				1 .			
10	70	nitrobenzene		ī		U	Ü							1 1
10	70	Isophorone				U	Ü,				1.1			'ís)
10	180	2-nitrophenol			_	U	U.	1.,.				(i)		
10	180	2,4-dimethylphenol		l l	_	U	U			Į.	(2)	(P) -		19
10	70	bis(2-chloroethoxy)ma	thane			U	U				-31.	1.1		50.
10	180	2,4-dichlorophenol				U	100							
10	70	naphthalene					U				25.0			
10	180	4-chloroaniline				U				7				1771

QA Scientist M Sayler Date 3/17/06

J8775 SVOC Data

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

		Site Name	Peerless Photo	Products			}				Laboratory	Accutest			
		Project Number	68.28817.0001					Soll samples	in mg/kg	С	ase/Order#	J8775			
		Sampling Date(s)	9/1/2005]	Aqueous samp	les in ug/L	Frac	tion/Method	CLP Semivolatile	8		
		Sample Description									1	<u> </u>			
		or Location	CF-0		CF-002		FD-090105								
9		Sample Number	J877		J877 <u>5</u> -2	_	J8775-3		1	1. ;	<u> </u>	<u> </u>	[\$ tr		
10	70 ·	hexachlorobutadiene		U		U	U						111		
10	180	4-chloro-3-methylphen	ol	.U_		U	U								
10	70	2-methylnaphthalene		· U	34.5 J	J	U								
10	700	hexachlorocyclopentad	liene	Ų		· U	U					1 0 .			
10	180	2,4,6-trichlorophenol		U		U	Ų					্ৰ-	E E		
25	180	2,4,5-trichlorophenol		Ü		U	U		. 3			y.Bi			
10 4	70	2-chioronaphthalene		.∵U		· U	U								
25	180	2-nitroaniline		U		U	U								
10	÷ 70 *	dimethylphthalate		. U_		U	U								
10	70	acenaphthylene _		U	110	:	U				ļi,	40,			
10	70	2,6-dinitrotoluene		Į U		U	U								
25	180	3-nitroaniline		U		U	·U			,		1.3			
10	70	acenaphthene		U	80.3	Г	U					1.7			
25	700	2,4-dinitrophenol		· U		U	U								
25	700	4-nitrophenol		U		u	U								
10	70	dibenzofuran		U	52.3	. J	U		1:			1			
10 }	70	2,4-dinitrotoluene		. U		U	U	100	1:			17			
10	70	diethylphthalate		U		U	U						-		
10	70	4-chlorophenyl-phenyl	ether	ΰ		U	U							: :	
10	70	fluorene		U	117		U					1 1 2	1 1		
25	_	4-nitroaniline		TU		U									

QA Scientist M Haple Date 3/17/06

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

		Site Name	Peerless Photo Products										Laboratory	Accutest			
		Project Number	68.28817.0	001						Soll samples	in mg/kg	C	ase/Order#	J8775			
		Sampling Date(s)	9/1/2005							Aqueous samp	les in ug/L	Frac	tion/Method	CLP Semivolatile	s		
		Sample Description or Location		F-001		CF-002		FD-090105					1		1		
		Sample Number		8775-1	_	J8775-2	-	J8775-3								<u> </u>	
25	700	4,8-dinitro-2-methylphe			U		υ		U		- 70				7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.1	
10	180	n-nitrosodiphenylamina	e –		Ü		U		. U	- · · · · ·	1 1	E			1.4	1.	
10	70	4-bromophenyl-phenyl	lether		Ü		U		U					:	1.5	[5]	
10	70	hexachlorobenzene			U		U		υ		37		1				
25	700	pentachlorophenol			U.		ů		U		F-1				A 190	b is	
10	70~	phenanthrene		49.2 J	J.	1030		55.1 J	J			f.,				4 1	
10	70	anthracene			ان	313			··υ								
10	70	carbazole			U	56.7 J	J		U						126.	17	
10	70	di-n-butylphthalate			ÚΪ	44.9 J	J.		U		. 70%				3		
10	70	fluoranthene		104	8.4	2050		120			1 27				1111		
10	70	pyrene		87.0		2280		106	<u>. </u>					1 :			
10	70	butylbenzylphthalate			Ü	82.7_	12		U				ļ				
10	180	3,3'-dichlorobenzidine			U		Ü		U								
10	70	benzo(a)anthracene		56.4 J	J	1050	L.	64.2 J	. J			35			17.1		
10	70	chrysene		53.6 J	J	952		59.4 J	J					-	45		
10	70	bis(2-ethylhexyl)phthal	late		ΰ	171	1 1		U	<u> </u>		<u> </u>		1		1	
10	70	di-n-octylphthalate			U		U		U				ļ	4		l	
10	70	benzo(b)fluoranthene		49.5 J	J	1070	77	63.5 J	J		2.16	107	-		1 1		
10	70	benzo(k)fluoranthene		47.4 J	1	1090	-	50.7 J	J			<u> </u>		1			
10	70	benzo(a)pyrene		55.5 J	. لې ادرن	1130	* 1	65.4 J 48.1 J	: J					1		21	
10	70 70	indeno(1,2,3-cd)pyren		34.0 J	الل ا	519	- 1	45.1 J	J							<u> </u>	
10	70	dibenz(a,h)anthracene		31,9 J	U .	111 416	100	37.4 J	<u> </u>	1		-		- 1	l		
10	70	benzo(g,h,i)-perylene		31.93	J	416_		3/.4 J	<u> </u>		_						

QA Scientist M Haples Date 3/17/06

QUALIFIER CODES – TCL PESTICIDES

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

	Site Name	Peerless F	Photo Produ	cts							Laboratory	Accutext	
	Project Number	68.28817.	0001				Soil sar	nples i	in mg/kg	С	ase/Order#	J8775	
\$	Sampling Date(s)	9/1/2005					Aqueous	sampl	les in ug/L	Frac	tion/Method	CLP Pesticides	
ı	0 - (- B												
	Sample Description or Location	on	CF-001		CF-002		FD-090105	5					
	Sample Number		J8775-1		J8775-2		J8775-3						
	Matrix		Soil		Soil		Soll						
	Percent Solids		93.3		90.6		93.1						
	Dilution Factor Sampling Date		1 9/1/2005		1 9/1/2005		9/1/2005						
- RL∜	Comments		9/1/2005_	_	9/1/2005		9/1/2005						
		_		. 12		1 : 15		1995	16, 111 17	l c.	Line	1.27	V
1.3	aldrin		5.4	1 2	40.1		9.1	175		18 3/1	10.11		[-1, 1
1.3	alpha-BHC			U	L	Ü		U U	18.0		1,719.3		P.15
1.3	beta-BHC delta-BHC			U		Ü		U	[87.5] [15.	111		11.5	
1.3				U		Ü	———	U	12 12 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	L 3.00		10	(r. 300)
1.3	gamma-BHC (Lin	gane)		U		V 0	40.0	U			Tig.	104	100
1.3 71.3	aipha-chiordane		18.5	-1	5.2 4.7	1	19.6	16.7	100 m	100	2.3	1 32.	
1,3	gamma-chlordane dieldrin	<u>'</u>	19.1 14.6		10.8	1	20.1	17 1	- 18				- 12.5
1.3	4,4'-DDD		14.0	U	2.7		13.1	υ				- INT	
1.3∜	4,4'-DDE		6.0	5		ا ن	6,7				348	12.5	
· 1.3	4,4'-DDT		11,1		12.2	15	11.0	150	10.7				1.01
1.3	endrin		- 11.1	Ü	12.2	ΰ	11.0	U		117	1.1		11.7
1.3	endosulfan sulfate			U		υÜ		U	135	, , , , , , , , , , , , , , , , , , ,			
1.3	endrin aidehyde			U		Ü	 	U		 	: 7	1.0	1.1
∽1.3	endosuifan-l			U		U	l	U					
1.3	endosulfan-il			U		Ü	 	U					
1.3	heptachlor		2.4 J	J		· U	2.5 J	J],			1.0	
1.3	heptachlor epoxid	e	2.4 J	J		U	2.6 J	J	1,3***		- I.		
3.3	methoxychlor			U		U.		U	1.1				7.7
3.3	endrin ketone		-	U		Ü		υ					
17	toxaphene			U		U		U,					
in thinks	Surrogate Recove	ery, %		· it		1 9		K I					
1	tetrachloro-m-xyle	ene	87		94	1. 19	79	7.1	100				
of Maria	tetrachloro-m-xyle	ene	76	- 5	98	::]	74	i	15				
	decachlorobipher	yl	82	1	96	1.	75						
	decachlorobipher	yl	115	1	74	1	93						

QA Scientist M Hayde Date 3/17/06

QUALIFIER CODES – TCL PCBs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL POLYCHLORINATED BIPHENYLS

Site Name Peerless Photo Products			Laboratory							Accutest			
Project Number 68.28817.0001			Soil samples in mg/kg Case/Or						Case/Order#	Order # J8775			
5	Sampling Date(s) 9/1/2005			Aqueous samples in ug/L Fraction/f						ction/Method	n/Method CLP PCBs		
	Sample Descripti	on										T	
	or Location		CF-001		CF-002	_	FD-090105				ļ <u></u> .	<u> </u>	
	Sample Number		J8775-1		Soil		J8775-3 Soil						
	Matrix		Soil								<u> </u>		
	Percent Solids		93,3		90.6		93.1						<u> </u>
	Dilution Factor		1		1		1				<u> </u>		
w.L. Taks	Sampling Date		9/1/2005		9/1/2005		9/1/2005				ļ		
RL."	Comments							_					
33	Aroclor 1016			U		U		U	100	100		1 m 1;	11. 13
33	Aroclor 1221			U		U		U					
33	Aroclor 1232			U.		U		U				di s	1
33 1	Aroclor 1242			U		U		U					
33	Aroclor 1248			U		U		U					
33	Aroclor 1254			U		U		U					
ી.33	Aroclor 1260			U		U		U				.381	1 16
5 - 55 A	Surrogate Recove	егу, %						4					19.5
	tetrachloro-m-xyle	ene	99		90		80						
	tetrachloro-m-xyie	ene	99	j.r	88		81		l'			at .	
	decachlorobipher	ıyl	105		95		90				5		1. 111
	decachlorobipher	ıyl	104		96		93				1	10 g 1	'

QA Scientist M Hawles Date 3/17/06

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

Site Name Peerless Photo Products					Soil in mg/kg Laboratory					ooratory	Accutest									
Project Number 68.28817.0001					Case/Order#					Order#	J8775									
0		9/1/2	005				2 1					F	. .	/8 # _ L	TAL Metals - SW-846 3010A/6010B					
Sai	npling Date(s)	9/1/2	005			_	j 					- Frac	uon/	Method	IAL	ivietais -	SVV-846	3010	AV6010B	
	Sample Locati	on				•					\neg									
	or Description		CF-001		CF-002		FD09010)5			_				<u> </u>					
	Sample Numb		J8775-1	_	J8775-2		J8775-3													
	Sampling Date		9/1/20	05	9/1/20	05_	9/1/20	05												
IDL/CRDL		PH	g					_												
20	Aluminum	X	7760	<u></u> .	6760		7840													
1	Antimony	X		U	1.3			U												
1	Arsenic	X	2.3		5.6		2.5													
20	Barium	X	54.3		53.9		59.9													
0.5	Beryllium	X		U	L	U		U			- 1		_Ł		1					
0.5	Cadmium	X		U		U		U												
500	Calcium	X	1720		6750		1580				1									
1	Chromium	X	18.7		17.3		21.9													
5	Cobalt	X	6.4				6.4													
2.5	Copper	X	17.6		62.2		19.2													
10	Iron	X	12800		13800		13600													
1	Lead	X	40.8		93.9		47.3													
500	Magnesium	X	2010		2910		1930													
1.5	Manganese	X	265		215		277		_				- 1							
0.03	Mercury	X	0.073		0.11		0.070												<u></u>	
4	Nickel	X	18.4		77.8		20.0												ļi	
500	Potassium	X	954		829		920						_1				.			
1	Selenium	X		U	1,1			U												
1	Silver	X		U		U		U												
500	Sodium	X		U	767			U												<u></u>
1	Thallium	X		U		U		U												
5	Vanadium	X	26.0		21.6		24.4													
2	Zinc	X	45.1		64.6		50.9													
1	Cyanide			U	2.0]	U												

APPENDIX A

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: ATC Associates, Inc. Job No

J8775

Site:

AGFA-Peerless, Shorham, NY

Report Date

9/22/2005 11:25:56 A

3 Sample(s), 1 Trip Blank(s) and 0 Field Blank(s) were collected on 09/01/2005 and were received at Accutest on 09/03/2005 properly preserved, at 4 Deg. C and intact. These Samples received an Accutest job number of J8775. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ

Batch ID: V1A1239

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J8897-2MS, J8897-2MSD were used as the OC samples indicated.
- Matrix Spike Recovery(s) for Carbon disulfide are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Carbon disulfide are outside control limits. Outside control limits due to matrix interference.

Matrix: SO

Batch ID:

VX1684

- All samples were analyzed within the recommended method holding time.
- Sample(s) J8775-2MS, J8775-2MSD were used as the QC samples indicated.
- Sample(s) J8775-1, J8775-2, J8775-3 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- Blank Spike Recovery(s) for Bromoform are outside control limits. High percent recoveries and no associated positive found in the QC batch.
- Matrix Spike Recovery(s) for Acetone are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MSD for 2-Butanone (MEK) are outside control limits for sample J8775-2MSD. Outside control limits due to matrix interference.

Extractables by GCMS By Method SW846 8270C

Matrix: SO

Batch ID: OP21271

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J8775-2MS, J8775-2MSD were used as the OC samples indicated.
- Matrix Spike Recovery(s) for Di-n-octyl phthalate are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Di-n-octyl phthalate are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MSD for 2,4-Dinitrophenol, 2-Nitrophenol, 4,6-Dinitro-o-cresol, Hexachlorocyclopentadiene, outside control limits for sample OP21271-MSD. Outside control limits due to matrix interference.
- J8775-2: Confirmation run.

Extractables by GC By Method SW846 8081A

Matrix: SO Batch ID: OP21274

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J8775-2MS, J8775-2MSD, OP21274-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for beta-BHC, Dieldrin, Methoxychlor are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for beta-BHC are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MSD for Dieldrin, Endosulfan sulfate, Endrin ketone are outside control limits for sample OP21274-MSD. Outside control limits due to matrix interference.
- J8775-3 for alpha-Chlordane: Reported from 2nd signal due to interference on 1st signal.
- J8775-3 for Dieldrin: Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.
- J8775-3 for 4,4'-DDE: Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.
- J8775-3 for Heptachlor epoxide: More than 40 % RPD for detected concentrations between the two GC columns.
- J8775-2 for alpha-Chlordane: Reported from 2nd signal due to interference on 1st signal.
- J8775-2 for 4,4'-DDT: Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.
- J8775-1 for alpha-Chlordane: Reported from 2nd signal due to interference on 1st signal.
- J8775-1 for Heptachlor epoxide: More than 40 % RPD for detected concentrations between the two GC columns.
- Matrix Spike and Matrix Spike Duplicate Recovery(s) for Aldrin are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- RPD(s) for MSD for Aldrin are outside control limits. Outside control limits due to high level in sample relative to spike
- J8775-1 for 4,4'-DDE: Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.

Extractables by GC By Method SW846 8082

Matrix: SO Batch ID: OP21275

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J8775-2MS, J8775-2MSD, OP21275-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals By Method SW846 6010B

Matrix: SO

Batch ID:

MP31426

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J8775-2MS, J8775-2MSD, J8775-2SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Antimony, Copper, Iron, Magnesium, Manganese, Nickel are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Antimony, Lead, Manganese, Nickel, Iron are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike and Matrix Spike Duplicate Recovery(s) for Calcium are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Chromium, Copper, Iron, Magnesium are outside control limits for sample MP31426-S2. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Antimony, Cadmium, Selenium, Sodium are outside control limits for sample MP31426-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- RPD(s) for Serial Dilution for Potassium are outside control limits indicating possible matrix interference. Results confirmed with analysis of second dilution.

Metals By Method SW846 7471A

Matrix: SO

Batch ID: MP31423

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J8775-2MS, J8775-2MSD were used as the QC samples for metals.

Wet Chemistry By Method ASTM 4643-00

Matrix: SO

Batch ID:

GN82449

There is no applicable data to evaluate for ASTM 4643-00.

Wet Chemistry By Method SW846 9012 M

Matrix: SO

Batch ID:

GP29778

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J8775-2MS, J8775-2DUP were used as the QC samples for Cyanide.
- RPD(s) for Duplicate for Cyanide are outside control limits for sample GP29778-D1. High RPD due to possible sample nonhomogeneity.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J8775).

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: <u>J8775</u>

Client Name: ATC Associates, Inc.

AGFA-Peerless, Shorham, NY

			Analytical Requirements								
Customer	VOA	BNA				Metals	Other				
Sample Code	Sample ID		GC/MS	GC	GC	GC					
<u>.</u> .			1	Method	Method	Method					
		8260B	8270C		8082	8151		CYANIDE			
CF-001	J8775-1	Х	Х	Х	X		Х	X			
CF-002	J8775-2	X	Х	Х	Х		Х	X			
FD-090105	J8775-3	Х	Х	X	Х		Х	X			
TRIP BLANK	J8775-4	Х				_					

Client Sample ID: CF-001

Lab Sample ID:

J8775-1

Matrix: Method:

Project:

SO - Soil

SW846 8260B

AGFA-Peerless, Shorham, NY

Date Sampled:

09/01/05 09/03/05

Date Received: Percent Solids: 93.3

File ID Ву DF Analytical Batch **Analyzed** Prep Date Prep Batch Run #1 X43633.D 1 09/09/05 DTM n/a n/a VX1684 Run #2

Initial Weight

Run #1

5.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	1.9	ug/kg	
71-43-2	Benzene	ND-	1.1	0.60	ug/kg	
75-27-4	Bromodichloromethane	ND	5.3	0.18	ug/kg	
75-25-2	Bromoform	ND	5.3	0.50	ug/kg	
74-83-9	Bromomethane	ND	5.3	0.78	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.5	ug/kg	
75-15-0	Carbon disulfide	ND	5.3	0.57	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.3	0.61	ug/kg	
108-90-7	Chlorobenzene	ND	5.3	0.27	ug/kg	
75-00-3	Chloroethane	ND	5.3	1.2	ug/kg	
67-66-3	Chloroform	ND	5.3	0.34	ug/kg	
74-87-3	Chloromethane	ND	5.3	0.81	ug/kg	
124-48-1	Dibromochloromethane	ND	5.3	0.32	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.3	0.24	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.3	0.28	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.3	0.36	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.3	0.26	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.3	0.40	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.3	0.61	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.3	0.21	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.3	0.28	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.53	ug/kg	
591-78-6	2-Hexanone	ND	5.3	0.94	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.3	1.2	ug/kg	
75-09-2	Methylene chloride	3.0	5.3	0.22	ug/kg	JВ
100-42-5	Styrene	ND	5.3	0.68	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.3	0.51	ug/kg	
127-18-4	Tetrachloroethene	ND	5.3	0.82	ug/kg	
108-88-3	Toluene	ND	1.1	0.42	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.3	0.59	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.3	0.72	ug/kg	
79-01-6	Trichloroethene	ND	5.3	0.47	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blanks

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: CF-001

Lab Sample ID: J8775-1 Matrix: SO - So

Matrix: SO - Soil Method: SW846 8260B

Project: AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 Date Received: 09/03/05 Percent Solids: 93.3

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	5.3 2.1	0.27 0.58	ug/kg ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	84%		70-12	22%		
17060-07-0	1,2-Dichloroethane-D4	73%		62-13	31%		
2037-26-5	Toluene-D8	80%		76-11	19%		
460-00-4	4-Bromofluorobenzene	91%		67-13	37%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

RL = Reporting Limit

Report of Analysis

Client Sample ID: CF-001

Lab Sample ID: J8775-1

30.5 g

Matrix: Method: SO - Soil

SW846 8270C SW846 3550B

Project:

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05

Date Received: 09/03/05 **Percent Solids:** 93.3

File ID DF By Prep Date Prep Batch **Analytical Batch Analyzed** R46791.D 09/08/05 WHS 09/06/05 OP21271 ER1624 Run #1 1 Run #2

Initial Weight Final Volume

Run #1

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	180	43	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	180	40	ug/kg		
120-83-2	2,4-Dichlorophenol	ND	180	42	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	180	40	ug/kg		
51-28-5	2,4-Dinitrophenol	ND	700	14	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	700	40	ug/kg		
95-48-7	2-Methylphenol	ND	180	34	ug/kg		
	3&4-Methylphenol	ND	180	34	ug/kg		
88-75-5	2-Nitrophenol	ND	180	42	ug/kg		
100-02-7	4-Nitrophenol	ND	700	57	ug/kg		
87-86-5	Pentachlorophenol	NÐ	700	45	ug/kg		
108-95-2	Phenol	ND	180	40	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	180	40	ug/kg		
88-06-2	2,4,6-Trichlorophenol	NĎ	180	34	ug/kg		
83-32-9	Acenaphthene	ND	70	3.8	ug/kg		•
208-96-8	Acenaphthylene	ND	70	17	ug/kg		
120-12-7	Anthracene	ND	70	5.5	ug/kg		
56-55-3	Benzo(a)anthracene	56.4	70	3.7	ug/kg	J	• •
50-32-8	Benzo(a)pyrene	55.5	70	6.4	ug/kg	J	
205-99-2	Benzo(b)fluoranthene	49.5	70	5.0	ug/kg	J	•
191-24-2	Benzo(g,h,i)perylene	31.9	- 70	6.1	ug/kg	J	
207-08-9	Benzo(k)fluoranthene	47.4	70	5.7	ug/kg	J	•
101-55-3	4-Bromophenyl phenyl ether	ND	70	4.8	ug/kg		••
85-68-7	Butyl benzyl phthalate	ND	70	7.2	ug/kg		
91-58-7	2-Chloronaphthalene	ND	70	6.6	ug/kg		· · · · · · · · · · · · · · · · · · ·
1.06-47-8	4-Chloroaniline	ND.	180	9.8	ug/kg		
86-74-8	Carbazole	ND	70	5.0	ug/kg		•
218-01-9	Chrysene	53.6	70	4.9	ug/kg	J	
111-91-1	bis(2-Chloroethoxy)methane	ND	70	5.4	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	70	13	ug/kg		•
108-60-1	bis(2-Chloroisopropyl)ether	ND	70	6.9	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	70	5.5	ug/kg		

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Lab Sample ID: J8775-1

Matrix:

SO - Soil

Method: Project:

SW846 8270C SW846 3550B

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 Date Received:

09/03/05

Percent Solids: 93.3

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND .	70	5.8	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	70	5.8	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	70	6.4	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	70	6.3	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	70	6.2	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	NÐ	180	8.2	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	70	10	ug/kg	
132-64-9	Dibenzofuran	ND	70	4.5	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	70	5.2	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	70	6.4	ug/kg	
84-66-2	Diethyl phthalate	ND	70	5.2	ug/kg	
131-11-3	Dimethyl phthalate	ND	70	3.9	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	70	5.7	ug/kg	
206-44-0	Fluoranthene	104	70	4.0	ug/kg	
86-73-7	Fluorene	ND	70	5.9	ug/kg	
118-74-1	Hexachlorobenzene	ND	70	5.7	ug/kg	
87-68-3	Hexachlorobutadiene	ND	70	5.0	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	700	7.4	ug/kg	
67-72-1	Hexachloroethane	ND	180	6.0	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	34.0	70	9.7	ug/kg	J
78-59-1	Isophorone	ND	70	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	70	4.3	ug/kg	
88-74-4	2-Nitroaniline	ND .	180	9.2	ug/kg	
99-09-2	3-Nitroaniline	ND	180	8.7	ug/kg	
100-01-6	4-Nitroaniline	ND	180	7.8	ug/kg	
91-20-3	Naphthalene	ND	70	4.5	ug/kg	
98-95-3	Nitrobenzene	ND	70	3.5	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	70	5.0	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	4.4	ug/kg	
85-01-8	Phenanthrene	49.2	70	4.8	ug/kg	J
129-00-0	Pyrene	87.0	70	4.5	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	70	4.8	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	69.%		34-1	11%	
4165-62-2	Phenol-d5	67%		34-1		
118-79-6	2,4,6-Tribromophenol	73:%		33-12	22%	
4165-60-0	Nitrobenzene-d5	71%	29-1	29-114%		
321-60-8	2-Fluorobiphenyl	66%		38-1	10%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blanks. N = Indicates presumptive evidence of a compound

Lab Sample ID: J8775-1

Matrix: Method: SO - Soil

SW846 8270C SW846 3550B

Project:

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 **Date Received:** 09/03/05

Percent Solids: 93.3

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	78%		32-136%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
	system artifact system artifact system artifact/aldol-condensat system artifact alkane alkane Total TIC, Semi-Volatile	ion	3.68 3.96 4.29 5.10 12.51 15.63	450 340 39000 340 160 150 310	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J J J J

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blan 19

N = Indicates presumptive evidence of a compound

Client Sample ID: CF-001 Lab Sample ID: J8775-1

Matrix: Method:

Project:

SO - Soil

SW846 8081A SW846 3545

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 Date Received: 09/03/05

Percent Solids: 93.3

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** OP21274 Run #1 OA25146.D 1 09/09/05 MCR 09/06/05 GOA800

Run #2

Initial Weight Final Volume

Run #1 15.0 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result RL		MDL	Units	Q
309-00-2	Aldrin	5.4	1.4	0.52	ug/kg	
319-84-6	alpha-BHC	ND	1.4	0.13	ug/kg	
319-85-7	beta-BHC	ND	1.4	0.64	ug/kg	
319-86-8	delta-BHC	ND	1.4	0.10	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.4	0.36	ug/kg	
5103-71-9	alpha-Chlordane a	18.5	1.4	0.48	ug/kg	
5103-74-2	gamma-Chlordane	19.1	1.4	0.18	ug/kg	
60-57-1	Dieldrin	14.6	1.4	0.25	ug/kg	
72-54-8	4,4'-DDD	ND	1.4	0.25	ug/kg	
72-55-9	4,4'-DDE ^b	6.0	1.4	0.28	ug/kg	
50-29-3	4,4'-DDT	11.1	1.4	0.27	ug/kg	
72-20-8	Endrin	ND	1.4	0.17	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.4	0.23	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.4	0.24	ug/kg	
959-98-8	Endosulfan-I	ND	1.4	0.14	ug/kg	
33213-65-9	Endosulfan-II	ND	1.4	0.41	ug/kg	
76-44-8	Heptachlor	2.4	1.4	0.090	ug/kg	
1024-57-3	Heptachlor epoxide c	2.4	1.4	0.22	ug/kg	
72-43-5	Methoxychlor	ND	3.6	0.44	ug/kg	
53494-70-5	Endrin ketone	ND	3.6	0.24	ug/kg	
8001-35-2	Toxaphene	ND	18	14	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	87%		30-14	10%	
877-09-8	Tetrachloro-m-xylene	76%		30-14	10%	
2051-24-3	Decachlorobiphenyl	82%		23-15	55%	

- (a) Reported from 2nd signal due to interference on 1st signal.
- (b) Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.

115%

ND = Not detected

2051-24-3

MDL - Method Detection Limit

J = Indicates an estimated value

23-155%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

B = Indicates analyte found in associated method b

Page 2 of 2

Client Sample ID: CF-001 Lab Sample ID:

J8775-1

Date Sampled:

09/01/05

Matrix:

SO - Soil

Date Received:

09/03/05

Method: Project:

SW846 8081A SW846 3545 AGFA-Peerless, Shorham, NY Percent Solids: 93.3

Pesticide TCL List

CAS No. Compound Result

RL

MDL Units Q

(c) More than 40 % RPD for detected concentrations between the two GC columns.

Client Sample ID: CF-001 Lab Sample ID:

Matrix:

J8775-1 SO - Soil

Method:

SW846 8082 SW846 3545

Project:

AGFA-Peerless, Shorham, NY

Date Sampled:

09/01/05 Date Received: 09/03/05 Percent Solids: 93.3

Prep Batch

Run #1

File ID DF 3G4358.D

By MCR

Analyzed

09/07/05

Prep Date 09/06/05

OP21275

Analytical Batch G3G162

Run #2

Initial Weight

Run #1 15.0 g Final Volume 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	8.1	ug/kg	
11104-28-2	Aroclor 1221	ND	36	8.4	ug/kg	
11141-16-5	Aroclor 1232	ND	36	8.4	ug/kg	
53469-21-9	Aroclor 1242	ND:	36	5.5	ug/kg	
12672-29-6	Aroclor 1248	ND	36	9.7	ug/kg	
11097-69-1	Aroclor 1254	ND	36	8.9	ug/kg	
11096-82-5	Aroclor 1260	ND	36	5.9	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	99%		28-136%
877-09-8	Tetrachloro-m-xylene	99%		28-136%
2051-24-3	Decachlorobiphenyl	105%		27-151%
2051-24-3	Decachlorobiphenyl	104%		27-151%

Lab Sample ID: Matrix: J8775-1 SO - Soil **Date Sampled:** 09/01/05 **Date Received:** 09/03/05

Percent Solids: 93.3

Project:

AGFA-Peerless, Shorham, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed B	y	Method	Prep Method
Aluminum	7760	21	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 1.0	1.0	mg/kg	1	09/07/05	09/07/05 NI	D	SW846 6010B ²	SW846 3050B ⁴
Arsenic	2.3	1.0	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Barium	54.3	21	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.52	0.52	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.52	0.52	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Calcium	1720	520	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Chromium	18.7	1.0	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Cobalt	6.4	5.2	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Copper	17.6	2.6	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Iron	12800	10	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Lead	40.8	1.0	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Magnesium	2010	520	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Manganese	265	1.6	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.073	0.033	mg/kg	1	09/06/05	09/07/05 M	KW	SW846 7471A ¹	SW846 7471A ³
Nickel	18.4	4.2	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Potassium	954	520	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Selenium	< 1.0	1.0	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Silver	< 1.0	1.0	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Sodium	< 520·	520	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Thallium	< 1.0	1.0	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Vanadium	26.0	5.2	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴
Zinc	45.1	2.1	mg/kg	1	09/07/05	09/07/05 NI)	SW846 6010B ²	SW846 3050B ⁴

Instrument QC Batch: MA16284
 Instrument QC Batch: MA16286
 Prep QC Batch: MP31423

(4) Prep QC Batch: MP31426

23

• • • • •

Page 1 of 1

Client Sample ID: CF-001

Lab Sample ID:

J8775-1

Matrix:

SO - Soil

Date Sampled: 09/01/05

Date Received: 09/03/05

Percent Solids: 93.3

Project:

AGFA-Peerless, Shorham, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide	<0.25	0.25	mg/kg	1	09/09/05 12:20	NR	SW846 9012 M
Solids, Percent	93.3		%	1	09/07/05	AK	ASTM 4643-00

Вy

Client Sample ID: CF-002 Lab Sample ID: J8775-2 Matrix: SO - Soil

File ID

X43634.D

SW846 8260B

Method: Project:

AGFA-Peerless, Shorham, NY

Analyzed

09/09/05

DF

1

Date Sampled: 09/01/05

Date Received: 09/03/05 **Percent Solids:** 90.6

Prep Date Prep Batch Analytical Batch

DTM n/a n/a VX1684

Run #1 Run #2

Initial Weight

Run #1 5.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	2.0	ug/kg	
71-43-2	Benzene	ND	1.1	0.63	ug/kg	
75-27-4	Bromodichloromethane	ND	5.5	0.19	ug/kg	
75-25-2	Bromoform	ND	5.5	0.53	ug/kg	
74-83-9	Bromomethane	ND	5.5	0.82	ug/kg	
78-93-3	2-Butanone (MEK)	NĎ	11	2.6	ug/kg	
75-15-0	Carbon disulfide	ND	5.5	0.60	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.5	0.64	ug/kg	
108-90-7	Chlorobenzene	ND.	5.5	0.28	ug/kg	
75-00-3	Chloroethane	ND	5.5	1.3	ug/kg	
67-66-3	Chloroform	ND	5.5	0.35	ug/kg	
74-87-3	Chloromethane	ND	5.5	0.86	ug/kg	
124-48-1	Dibromochloromethane	ND	5.5	0.34	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.5	0.25	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.5	0.30	ug/kg	
75-35-4	1,1-Dichloroethene	ND.	5.5	0.38	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.5	0.28	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.5	0.42	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.5	0.65	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.5	0.22	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.5	0.29	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.56	ug/kg	
591-78-6	2-Hexanone	ND	5.5	0.99	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.5	1.3	ug/kg	
75-09-2	Methylene chloride	3.0	5.5	0.24	ug/kg	JB
100-42-5	Styrene	ND	5.5	0.71	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.5	0.53	ug/kg	
127-18-4	Tetrachloroethene	ND	5.5	0.87	ug/kg	
108-88-3	Toluene	ND	1.1	0.44	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.5	0.62	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.5	0.75	ug/kg	
79-01-6	Trichloroethene	1.3	5.5	0.49	ug/kg	J

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blacks

Client Sample ID: CF-002 Lab Sample ID: J8775-2

Matrix:

J8775-2 SO - Soil

Method: Project: SW846 8260B

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 **Date Received:** 09/03/05

Percent Solids: 90.6

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	5.5 2.2	0.28 0.61	ug/kg ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits				
1868-53-7	Dibromofluoromethane	88%		70-12	22%		
17060-07-0	1,2-Dichloroethane-D4	80%		62-131 %			
2037-26-5	Toluene-D8	85%		76-11	9%		
460-00-4	4-Bromofluorobenzene	96%		67-13	37%		
CAS No.	Tentatively Identified Compo	unds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile	0		ug/kg			

Lab Sample ID: J8775-2

Matrix: Method:

Project:

SO - Soil

SW846 8270C SW846 3550B AGFA-Peerless, Shorham, NY **Date Sampled:** 09/01/05

Date Received: 09/03/05 Percent Solids: 90.6

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	R46792.D	1	09/08/05	WHS	09/06/05	OP21271	ER1624
Run #2 a	R46802.D	1	09/08/05	WHS	09/06/05	OP21271	ER1624

	Initial Weight	Final Volume
Run #1	30.0 g	1.0 ml
Run #2	30.0 g	1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND -	180	45	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	42	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	44	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	42	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	740	15	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	740	42	ug/kg	
95-48-7	2-Methylphenol	ND	180	35	ug/kg	
	3&4-Methylphenol	ND	180	36	ug/kg	
88-75-5	2-Nitrophenol	ND	180	44	ug/kg	
100-02-7	4-Nitrophenol	ND	740	60	ug/kg	
87-86-5	Pentachlorophenol	ND	740	47	ug/kg	
108-95-2	Phenol	ND	180	42	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	42	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	36	ug/kg	
83-32-9	Acenaphthene	80.3	74	3.9	ug/kg	
208-96-8	Acenaphthylene	110	74	18	ug/kg	
120-12-7	Anthracene	313	74	5.7	ug/kg	
56-55-3	Benzo(a)anthracene	1050	74	3.9	ug/kg	
50-32-8	Benzo(a)pyrene	1130	74	6.7	ug/kg	
205-99-2	Benzo(b)fluoranthene	1070	74	5.3	ug/kg	
191-24-2	Benzo(g,h,i)perylene	416	74	6.4	ug/kg	
207-08-9	Benzo(k)fluoranthene	1090	74	5.9	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	74	5.0	ug/kg	
85-68-7	Butyl benzyl phthalate	82.7	74	7.6	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	7.0	ug/kg	
106-47-8	4-Chloroaniline	ND	180	10	ug/kg	
86-74-8	Carbazole	56.7	74	5.2	ug/kg	J
218-01-9	Chrysene	952	. 74	5.1	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	74	5.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	14	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	74	7.2	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	5.8	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: CF-002 Lab Sample ID: J8775-2 Matrix: SO - Soil

SW846 8270C SW846 3550B

Method: Project: AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 Date Received: 09/03/05 Percent Solids: 90.6

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	74	6.1	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	74	6.1	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	74	6.7	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	74	6.6	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	74	6.5	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	180	8.5	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	111	74	11	ug/kg	
132-64-9	Dibenzofuran	52.3	74	4.7	ug/kg	J
84-74-2	Di-n-butyl phthalate	44.9	74	5.4	ug/kg	J
117-84-0	Di-n-octyl phthalate	ND	74	6.7	ug/kg	
84-66-2	Diethyl phthalate	ND	74	5.4	ug/kg	
131-11-3	Dimethyl phthalate	ND	74	4.1	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	171	74	5.9	ug/kg	
206-44-0	Fluoranthene	2050	74	4.2	ug/kg	
86-73-7	Fluorene	117	74	6.2	ug/kg	
118-74-1	Hexachlorobenzene	ND.	74	5.9	ug/kg	
87-68-3	Hexachlorobutadiene	ND	74	5.3	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	740	7.8	ug/kg	
67-72-1	Hexachloroethane	ND	180	6.3	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	519	74	10	ug/kg	
78-59-1	Isophorone	ND	74	14	ug/kg	
91-57-6	2-Methylnaphthalene	34.5	- 74	4.5	ug/kg	J
88-74-4	2-Nitroaniline	ND	180	9.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	8.2	ug/kg	
91-20-3	Naphthalene	49.9	74	4.7	ug/kg	J
98-95-3	Nitrobenzene	ND	74	3.7	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	74	5.2	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	4.6	ug/kg	
85-01-8	Phenanthrene	1030	74	5.0	ug/kg	
129-00-0	Pyrene	2280	74	4.7	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	74	5.1	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	74 %	.77%	34-1	11%	
4165-62-2	Phenol-d5	76%	82%	34-1	11%	
118-79-6	2,4,6-Tribromophenol	84%	87%	33-12	22%	
4165-60-0	Nitrobenzene-d5	76%	77%	29-1	14%	
321-60-8	2-Fluorobiphenyl	75%	75%.	38-1	10%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit E = Indicates value exceeds calibration range B = Indicates analyte found in associated method b

Date Sampled: 09/01/05

Date Received: 09/03/05

Percent Solids: 90.6

Client Sample ID: CF-002

Lab Sample ID: J8775-2 Matrix:

SO - Soil

SW846 8270C SW846 3550B

AGFA-Peerless, Shorham, NY

ABN TCL List

Method: Project:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	104%	105%	32-136%		
CAS No.	Tentatively Identified Compe	ounds	R.T.	Est. Conc.	Units	Q
	system artifact system artifact system artifact system artifact Phenanthrene methyl Phenanthrene methyl unknown Naphthalene, -phenyl- unknown unknown Pyrene methyl Pyrene methyl Pyrene methyl Pyrene methyl Pyrene methyl TH-Benz[de]anthracen-one Benzo[b]naphtho[d]thiophene unknown unknown unknown unknown unknown unknown unknown unknown unknown The Company of the company unknown unknown unknown unknown unknown unknown unknown unknown unknown Total TIC, Semi-Volatile	tion	3.69 3.96 4.28 5.10 15.90 15.96 16.15 16.62 17.75 18.23 18.64 18.89 19.04 19.12 19.32 20.12 20.34 20.43 20.43 20.86 21.18 21.45 21.57 21.89 23.53 23.74 23.87 25.16 25.77 26.59	330 430 45000 230 180 230 390 190 150 150 190 740 330 190 180 210 230 320 250 200 180 230 310 490 380 1100 210 480 300 7810	ug/kg	1 1 1 1 1 1 1 1 1 1

⁽a) Confirmation run.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method brank

Client Sample ID: CF-002 Lab Sample ID: J8775-2

Matrix: Method:

Project:

SO - Soil

SW846 8081A SW846 3545 AGFA-Peerless, Shorham, NY Date Sampled: 09/01/05 Date Received: 09/03/05

Percent Solids: 90.6

Ву File ID DF Prep Date Prep Batch **Analytical Batch** Analyzed OA25147.D 09/06/05 OP21274 GOA800 Run #1 1 09/09/05 MCR

Run #2

Initial Weight Final Volume

Run #1 15.4 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	40.1	1.4	0.52	ug/kg	
319-84-6	alpha-BHC	ND	1.4	0.13	ug/kg	
319-85-7	beta-BHC	ND	1.4	0.64	ug/kg	
319-86-8	delta-BHC	ND	1.4	0.10	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.4	0.36	ug/kg	
5103-71-9	alpha-Chlordane ^a	5.2	1.4	0.48	ug/kg	
5103-74-2	gamma-Chlordane	4.7	1.4	0.18	ug/kg	
60-57-1	Dieldrin	10.8	1.4	0.25	ug/kg	
72-54-8	4,4'-DDD	2.7	1.4	0.25	ug/kg	
72-55-9	4,4'-DDE	ND	1.4	0.28	ug/kg	
50-29-3	4,4'-DDT ^b	12.2	1.4	0.27	ug/kg	
72-20-8	Endrin	ND	1.4	0.17	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.4	0.23	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.4	0.24	ug/kg	
959-98-8	Endosulfan-1	ND	1.4	0.14	ug/kg	
33213-65-9	Endosulfan-II	ND	1.4	0.41	ug/kg	
76-44-8	Heptachlor	ND	1.4	0.090	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.4	0.22	ug/kg	
72-43-5	Methoxychlor	ND	3.6	0.44	ug/kg	
53494-70-5	Endrin ketone	ND	3.6	0.24	ug/kg	
8001-35-2	Toxaphene	ND	18	14	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	94%		30-140%		
877-09-8	Tetrachloro-m-xylene	98%	30-140%			

(a) Reported from 2nd signal due to interference on 1st signal.

(b) Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.

ND = Not detected

2051-24-3

2051-24-3

MDL - Method Detection Limit

96%

74%

J = Indicates an estimated value

23-155%

23-155%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

B = Indicates analyte found in associated method blank

By

MCR

Client Sample ID: CF-002 Lab Sample ID:

File ID

3G4359.D

J8775-2

SO - Soil

Analyzed

09/07/05

SW846 8082 SW846 3545 AGFA-Peerless, Shorham, NY Date Sampled: 09/01/05

09/06/05

Date Received: 09/03/05 Percent Solids: 90.6

Prep Date Analytical Batch Prep Batch

G3G162

OP21275

Run #1 Run #2

Matrix:

Method:

Project:

Initial Weight Final Volume

DF

1

Run #1 15.4 g 10.0 ml

Run #2

PCB List

2051-24-3

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	8.2	ug/kg	
11104-28-2	Aroclor 1221	ND	36	8.4	ug/kg	
11141-16-5	Aroclor 1232	ND	36	8.4	ug/kg	
53469-21-9	Aroclor 1242	ND	36	5.6	ug/kg	
12672-29-6	Aroclor 1248	ND	36	9.7	ug/kg	
11097-69-1	Aroclor 1254	ND	36	8.9	ug/kg	
11096-82-5	Aroclor 1260	ND	36	5.9	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	90%		28-1	36%	
877-09-8	Tetrachloro-m-xylene	88%		28-1	36%	
2051-24-3	Decachlorobiphenyl	95%		27-1	51%	

96%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

27-151%

B = Indicates analyte found in associated method blank 1

Client Sample ID: CF-002 Lab Sample ID: Matrix:

J8775-2 SO - Soil Date Sampled: 09/01/05 Date Received: 09/03/05 Percent Solids: 90.6

Project:

AGFA-Peerless, Shorham, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed	Ву	Method	Prep Method
Aluminum	6760	22	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Antimony	1.3	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Arsenic	5.6	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Barium	53.9	22	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.56	0.56	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.56	0.56	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Calcium	6750	560	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Chromium	17.3	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Cobalt	< 5.6	5.6	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Copper	62.2	2.8	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Iron	13800	11	mg/kg	l	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Lead	93.9	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Magnesium	2910	560	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Manganese	215	1.7	mg/kg]	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.11	0.034	mg/kg	1	09/06/05	09/07/05	MKW	SW846 7471A ¹	SW846 7471A ³
Nickel	77.8	4.5	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Potassium	829	560	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Selenium	1.1	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Silver	< 1.1	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Sodium	767	560	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.1 _i	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Vanadium	21.6	5.6	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Zinc	64.6	2.2	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA16284 (2) Instrument QC Batch: MA16286 (3) Prep QC Batch: MP31423 (4) Prep QC Batch: MP31426

Page 1 of 1

Client Sample ID: CF-002 Lab Sample ID: J8775-2

Matrix:

SO - Soil

Date Sampled: 09/01/05

Date Received: 09/03/05 Percent Solids: 90.6

Project:

AGFA-Peerless, Shorham, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide Solids, Percent	2.0 90.6	0.26	mg/kg %	1	09/09/05 12:21 09/07/05	NR AK	SW846 9012 M ASTM 4643-00

By

DTM

n/a

Client Sample ID: FD-090105 Lab Sample ID:

Matrix:

J8775-3 SO - Soil

SW846 8260B

Date Sampled: 09/01/05 Date Received: 09/03/05

n/a

Method:

File ID

X43635.D

Percent Solids: 93.1

Project:

AGFA-Peerless, Shorham, NY

Analyzed

09/09/05

DF

1

Analytical Batch Prep Date Prep Batch

VX1684

Run #1 Run #2

Initial Weight

Run #1 Run #2

5.2 g

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	1.9	ug/kg	
71-43-2	Benzene	ND	1.0	0.59	ug/kg	
75-27-4	Bromodichloromethane	ND	5.2	0.18	ug/kg	
75-25-2	Bromoform	ND	5.2	0.49	ug/kg	
74-83-9	Bromomethane	ND	5.2	0.76	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.5	ug/kg	
75-15-0	Carbon disulfide	ND	5.2	0.56	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.2	0.60	ug/kg	
108-90-7	Chlorobenzene	ND	5.2	0.26	ug/kg	
75-00-3	Chloroethane	ND	5.2	1.2	ug/kg	
67-66-3	Chloroform	ND	5.2	0.33	ug/kg	
74-87-3	Chloromethane	ND	5.2	0.80	ug/kg	
124-48-1	Dibromochloromethane	ND	5.2	0.32	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.2	0.23	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.2	0.28	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.2	0.35	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	. 5.2	0.26	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.2	0.39	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.2	0.60	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.2	0.20	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.2	0.27	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.52	ug/kg	
591-78-6	2-Hexanone	ND	5.2	0.93	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.2	1.2	ug/kg	
75-09-2	Methylene chloride	2.5	5.2	0.22	ug/kg	JB
100-42-5	Styrene	ND	5.2	0.67	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.2	0.50	ug/kg	
127-18-4	Tetrachloroethene	ND	5.2	0.81	ug/kg	
108-88-3	Toluene	ND	1.0	0.42	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.2	0.58	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.2	0.70	ug/kg	
79-01-6	Trichloroethene	ND	5.2	0.46	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:

J8775-3

Matrix:

SO - Soil

Method: Project:

SW846 8260B AGFA-Peerless, Shorham, NY Date Sampled:

09/01/05

Date Received: 09/03/05

Percent Solids: 93.1

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	5.2 2.1	0.26 0.57	ug/kg ug/kg	•	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits				
1868-53-7	Dibromofluoromethane	90%		70-12	22%		
17060-07-0	1,2-Dichloroethane-D4	84%	62-131%				
2037-26-5	Toluene-D8	84%		76-1	19%		
460-00-4	4-Bromofluorobenzene	97%		67-13	37%		
CAS No.	Tentatively Identified Compounds		R.T.	Est.	Conc.	Units C)
	Total TIC, Volatile			0		ug/kg	

B = Indicates analyte found in associated method blask5

N = Indicates presumptive evidence of a compound

Lab Sample ID: J8775-3 Matrix: SO - Soil

Method: SW846 8270C SW846 3550B Project:

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 Date Received: 09/03/05

Percent Solids: 93.1

File 1D DF Analyzed - $\mathbf{B}\mathbf{y}$ Prep Date **Prep Batch Analytical Batch** Run #1 R46790.D 1 09/08/05 WHS 09/06/05 OP21271 ER1624 Run #2

Initial Weight Final Volume

Run #1 30.5 g

Run #2

1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	180	43	ug/kg		
59-50-7	4-Chloro-3-methyl phenol	ND	180	40	ug/k g		
120-83-2	2,4-Dichlorophenol	ND	180	42	ug/kg		
105-67-9	2,4-Dimethylphenol	ND	180	40	ug/kg		
51-28-5	2,4-Dinitrophenol	ND .	700	14	ug/kg		
534-52-1	4,6-Dinitro-o-cresol	ND	700	40	ug/kg		
95-48-7	2-Methylphenol	ND	180	34	ug/kg		
	3&4-Methylphenol	ND	180	34	ug/kg		
88-75-5	2-Nitrophenol	ND	180	42	ug/kg		
100-02-7	4-Nitrophenol	ND	700	57	ug/kg		
87-86-5	Pentachlorophenol	ND	700	45	ug/kg		
108-95-2	Phenol	ND	180	40	ug/kg		
95-95-4	2,4,5-Trichlorophenol	ND	180	40	ug/kg		
88-06-2	2,4,6-Trichlorophenol	ND	180	34	ug/kg		
83-32-9	Acenaphthene	ND	70	3.8	ug/kg		
208-96-8	Acenaphthylene	ND	70	17	ug/kg		
120-12-7	Anthracene	ND	70	5.5	ug/kg		
56-55-3	Benzo(a)anthracene	64.2	70	3.7	ug/kg	J	
50-32-8	Benzo(a)pyrene	65.4	70	6.4	ug/kg	J	
205-99-2	Benzo(b)fluoranthene	63.5	70	5.0	ug/kg	J	
191-24-2	Benzo(g,h,i)perylene	37.4	70	6.1	ug/kg	J	
207-08-9	Benzo(k)fluoranthene	50.7	70	5.7	ug/kg	J	
101-55-3	4-Bromophenyl phenyl ether	ND	70	4.8	ug/kg		
85-68-7	Butyl benzyl phthalate	ND	70	7.3	ug/kg		
91-58-7	2-Chloronaphthalene	ND	70	6.7	ug/kg		
106-47-8	4-Chloroaniline	ND	180	9.8	ug/kg		•
86-74-8	Carbazole	ND	70	5.0	ug/kg		
218-01-9	Chrysene	59.4	70	4.9	ug/kg	J	
111-91-1	bis(2-Chloroethoxy)methane	ND	70	5.4	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	70	13	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	70	6.9	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	70	5.5	ug/kg		- •

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank 36

Lab Sample ID: J8775-3 Matrix: SO - Soil

Method: SW846 8270C SW846 3550B

Project: AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05
Date Received: 09/03/05
Percent Solids: 93.1

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	70	5.8	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	70	5.8	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	70	6.4	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	70	6.3	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	70	6.2	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	180	8.2	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	70	10	ug/kg	
132-64-9	Dibenzofuran	ND	70	4.5	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	70	5.2	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	70	6.4	ug/kg	
84-66-2	Diethyl phthalate	ND	70	5.2	ug/kg	
131-11-3	Dimethyl phthalate	ND	70	3.9	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	70	5.7	ug/kg	
206-44-0	Fluoranthene	120	70	4.0	ug/kg	
86-73-7	Fluorene	ND	70	6.0	ug/kg	
118-74-1	Hexachlorobenzene	ND	70	5.7	ug/kg	
87-68-3	Hexachlorobutadiene	ND	70	5.0	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	700	7.5	ug/kg	
67-72-1	Hexachloroethane	ND	180	6.1	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	48.1	70	9.7	ug/kg	J
78-59-1	Isophorone	ND	70	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	70	4.3	ug/kg	
88-74-4	2-Nitroaniline	ND	180	9.2	ug/kg	
99-09-2	3-Nitroaniline	ND	180	8.7	ug/kg	
100-01-6	4-Nitroaniline	ND	180	7.9	ug/kg	
91-20-3	Naphthalene	ND	70	4.5	ug/kg	
98-95-3	Nitrobenzene	ND	70	3.5	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	70	5.0	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	4.4	ug/kg	
85-01-8	Phenanthrene	55.1	70	4.8	ug/kg	J
129-00-0	Pyrene	106	70	4.5	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	70	4.9	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	75%		34-1	11%	
4165-62-2	Phenol-d5	73%		34-1	11%	
118-79-6	2,4,6-Tribromophenol	84%		33-13	22%	
4165-60-0	Nitrobenzene-d5	78%		29-1	14%	
321-60-8	2-Fluorobiphenyl	69:%		38-1	10%	

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank?

Lab Sample ID: Matrix:

J8775-3

SO - Soil

SW846 8270C SW846 3550B

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 Date Received: 09/03/05

Percent Solids: 93.1

ABN TCL List

Method:

Project:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	84%		32-136%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	system artifact system artifact system artifact/aldol-condensat system artifact Total TIC, Semi-Volatile	tion	3.67 3.96 4.28 5.10	340 380 41000 190	ug/kg ug/kg ug/kg ug/kg ug/kg	l 1

Lab Sample ID: J8775-3 Matrix: SO - Soil

Method: SW846 8081A SW846 3545

Project: AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05

Date Received: 09/03/05

Percent Solids: 93.1

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 OA25148.D 1 09/09/05 MCR 09/06/05 OP21274 GOA800 Run #2

Initial Weight Final Volume

Run #1 15.3 g

Run #2

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	9.1	1.4	0.51	ug/kg	
319-84-6	alpha-BHC	ND .	1.4	0.13	ug/kg	
319-85-7	beta-BHC	ND	1.4	0.63	ug/kg	
319-86-8	delta-BHC	ND	1.4	0.10	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.4	0.35	ug/kg	
5103-71-9	alpha-Chlordane a	19.6	1.4	0.47	ug/kg	
5103-74-2	gamma-Chlordane	20.1	1.4	0.18	ug/kg	
60-57-1	Dieldrin ^b	13.1	1.4	0.24	ug/kg	
72-54-8	4,4'-DDD	ND	1.4	0.25	ug/kg	
72-55-9	4,4'-DDE ^b	6.7	1.4	0.27	ug/kg	
50-29-3	4,4'-DDT	11.0	1.4	0.26	ug/kg	
72-20-8	Endrin	ND	1.4	0.16	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.4	0.23	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.4	0.24	ug/kg	
959-98-8	Endosulfan-I	ND .	1.4	0.13	ug/kg	
33213-65-9	Endosulfan-II	ND	1.4	0.40	ug/kg	
76-44-8	Heptachlor	2.5	1.4	0.088	ug/kg	
1024-57-3	Heptachlor epoxide ^c	2.6	1.4	0.21	ug/kg	
72-43-5	Methoxychlor	ND	3.5	0.43	ug/kg	
53494-70-5	Endrin ketone	ND	3.5	0.24	ug/kg	
8001-35-2	Toxaphene	ND	18	13	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	79%		30-14	10%	
877-09-8	Tetrachloro-m-xylene	74%				
		252 52.54				

⁽a) Reported from 2nd signal due to interference on 1st signal.

ND = Not detected

2051-24-3

2051-24-3

MDL - Method Detection Limit

75%

93%

J = Indicates an estimated value

23-155%

23-155%

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

⁽b) Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.

Page 2 of 2

Client Sample ID: FD-090105

Lab Sample ID: Matrix:

J8775-3 SO - Soil Date Sampled: 09/01/05 Date Received: 09/03/05

Method:

SW846 8081A SW846 3545

Percent Solids: 93.1

Project:

AGFA-Peerless, Shorham, NY

Pesticide TCL List

CAS No. Compound Result

RL

MDL

Units

(c) More than 40 % RPD for detected concentrations between the two GC columns.

Client Sample ID: FD-090105 Lab Sample ID:

15.3 g

J8775-3

Matrix: Method:

Project:

SO - Soil

SW846 8082 SW846 3545

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05

Date Received: 09/03/05

Percent Solids: 93.1

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3G4360.D	1	09/07/05	MCR	09/06/05	OP21275	G3G162
Run #2							

Initial Weight Final Volume

Run #1

10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	8.0	ug/kg	
11104-28-2	Aroclor 1221	ND	35	8.2	ug/kg	
11141-16-5	Aroclor 1232	ND.	35	8.2	ug/kg	
53469-21-9	Aroclor 1242	ND	35	5.4	ug/kg	
12672-29-6	Aroclor 1248	ND	35	9.5	ug/kg	
11097-69-1	Aroclor 1254	ND	35	8.7	ug/kg	
11096-82-5	Aroclor 1260	ND	35	5.7	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	80%		28-13	6%	
877-09-8	Tetrachloro-m-xylene	81%		28-13	6%	
2051-24-3	Decachlorobiphenyl	90%		27-15	1%	
2051-24-3	Decachlorobiphenyl	93 %		27-15	1%	

Client Sample ID: FD-090105 Lab Sample ID: J8775-3

Matrix: SO - Soil

Date Sampled: 09/01/05 Date Received: 09/03/05 Percent Solids: 93.1

Project: AGFA-Peerless, Shorham, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Aluminum	7840	22	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Antimony	< 1.1	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Arsenic	2.5	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Barium	59.9	22	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.55	0.55	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.55	0.55	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Calcium	1580	550	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Chromium	21.9	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Cobalt	6.4	5.5	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Copper	19.2	2.8	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
lron	13600	11	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Lead	47.3	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Magnesium	1930	550	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Manganese	277	1.7	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Mercury	0.070	0.033	mg/kg	1	09/06/05	09/07/05	MKW	SW846 7471A ¹	SW846 7471A ³
Nickel	20,0	4.4	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Potassium	920	550	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Selenium	<1.1	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Silver	< 1.1	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Sodium	< 550	550	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Vanadium	24.4	5.5	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴
Zinc	50.9	2.2	mg/kg	1	09/07/05	09/07/05	ND	SW846 6010B ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA16284(2) Instrument QC Batch: MA16286

(3) Prep QC Batch: MP31423 (4) Prep QC Batch: MP31426

42

Page 1 of 1

Client Sample ID: FD-090105

Lab Sample ID:

J8775-3

Matrix:

SO - Soil

Date Sampled: 09/01/05

Date Received: 09/03/05

Percent Solids: 93.1

Project:

AGFA-Peerless, Shorham, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide Solids, Percent	<0.24 93.1	0.24	mg/kg %	1	09/09/05 12:22 09/07/05	NR AK	SW846 9012 M ASTM 4643-00

Client Sample ID: TRIP BLANK

Lab Sample ID: J8775-4

Matrix: AQ - Trip Blank Soil Method: SW846 8260B

Project: AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05

Date Received: 09/03/05 Percent Solids: n/a

| File ID DF Analyzed By Prep Date Prep Batch Analytical Batch | Run #1 1A29677.D 1 09/08/05 EAG n/a n/a V1A1239

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	. 10	3.4	ug/l		
71-43-2	Benzene	ND	1.0	0.23	ug/l		
75-27-4	Bromodichloromethane	ND	1.0	0.11	ug/l		
75-25-2	Bromoform	ND	4.0	0.24	ug/l		
74-83-9	Bromomethane	ND	2.0	0.39	ug/l		
78-93-3	2-Butanone (MEK)	ND	10	2.9	ug/1		
75-15-0	Carbon disulfide	NÐ	2.0	0.15	ug/l		
5 6-23 - 5	Carbon tetrachloride	ND	1.0	0.48	ug/l		
108-90-7	Chlorobenzene	ND	1.0	0.086	ug/l		
75-00-3	Chloroethane	ND	1.0	0.99	ug/l		
67-66-3	Chloroform	ND	1.0	0.15	ug/l		
74-87-3	Chloromethane	ND	1.0	0.60	ug/l		
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l		
75-34-3	1,1-Dichloroethane	ND	1.0	0.36	ug/l		
107-06-2	1,2-Dichloroethane	ND ·	1.0	0.17	ug/l		
75-35-4	1,1-Dichloroethene	ND	1.0	0.32	ug/l		•
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.23	ug/l		
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.43	ug/l		
78-87-5	1,2-Dichloropropane	ND.	1.0	0.21	ug/l		
10061-01-5	cis-1,3-Dichloropropene	ND .	1.0	0.13	ug/l		
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.16	ug/l		
100-41-4	Ethylbenzene	ND	1.0	0.18	ug/l		
591-78-6	2-Hexanone	ND	5.0	1.2	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.8	ug/l		
75-09-2	Methylene chloride	ND	2.0	0.37	ug/l		·
100-42-5	Styrene	ND	5.0	0.085	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.19	ug/l	y -	::
108-88-3	Toluene	ND	1.0	0.16	ug/l	1	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.16	ug/l		
79-00-5	1,1,2-Trichloroethane	ND:	1.0	0.24	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	•	ì

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TRIP BLANK

Lab Sample ID:

J8775-4

Matrix: Method:

AQ - Trip Blank Soil SW846 8260B

Project:

AGFA-Peerless, Shorham, NY

Date Sampled: 09/01/05 **Date Received:** 09/03/05

Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4	Vinyl chloride	ND	1.0	0.24	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.13	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	92%		79-12	1 %		
17060-07-0	1,2-Dichloroethane-D4	105%		69-13	1%		
2037-26-5	Toluene-D8	91%		84-11	5%		
460-00-4	4-Bromofluorobenzene	94%		80-12	1.1%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/l	

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSIS

Project Number: <u>J8775</u>

Client Name: <u>ATC Associates, Inc.</u>

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
J8775-1	Soil	1-Sep-05	3-Sep-05	-	9-Sep-05
J8775-2	Soil	1-Sep-05	3-Sep-05	-	9-Sep-05
J8775-3	Soil	1-Sep-05	3-Sep-05	-	9-Sep-05
J8775-4	Trip Blank Soil	1-Sep-05	3-Sep-05	1	8-Sep-05

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSIS

Project Number: <u>J8775</u>

Client Name: <u>ATC Associates, Inc.</u>

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
J8775-1	Soil	1-Sep-05	3-Sep-05	6-Sep-05	8-Sep-05
J8775-2	Soil	1-Sep-05	3-Sep-05	6-Sep-05	8-Sep-05
J8775-3	Soil	1-Sep-05	3-Sep-05	6-Sep-05	8-Sep-05

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSIS

Project Number: <u>J8775</u>

Client Name: <u>ATC Associates, Inc.</u>

Laboratory		Analytical	Extraction	Auxillary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
J8775-1	Soil	SW8270C	SW3550B	None	30.5g:1.0ml
J8775-2	Soil	SW8270C	SW3545B	None	30.0g:1.0ml
J8775-3	Soil	SW8270C	SW3545B	None	30.5g:1.0ml

SAMPLE PREPARATION AND ANALYSIS SUMMARY Pesticide/PCB ANALYSIS

Project Number: <u>J8775</u>

Client Name:

ATC Associates, Inc.

Laboratory	<u> </u>	Date	Date Rec'd	Date	Date
Sampl <u>e</u> ID	Matrix	Collected	at Lab	Extracted	Analyzed
Pesticide					
J8775-1	Soil	1-Sep-05	3-Sep-05	6-Sep-05	9-Sep-05
J8775-2	Soil	1-Sep-05	3-Sep-05	6-Sep-05	9-Sep-05
J8775-3	Soil	1-Sep-05	3-Sep-05	6-Sep-05	9-Sep-05
		<u> </u>			
PCB					
J8775-1	Soil	1-Sep-05	3-Sep-05	6-Sep-05	7-Sep-05
J8775-2	Soil	1-Sep-05	3-Sep-05	6-Sep-05	7-Sep-05
J8775-3	Soil	1-Sep-05	3-Sep-05	6-Sep-05	7-Sep-05

SAMPLE PREPARATION AND ANALYSIS SUMMARY Pesticide/PCB ANALYSIS

Project Number: <u>J8775</u>

Client Name: ATC Associates, Inc.

Laboratory		Analytical	Extraction	Auxillary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
Pesticide					
J8775-1	Soil	SW8081A	SW3545	None	15.0g:10.0ml
J8775-2	Soil	SW8081A	SW3545	None	15.4g:10.0ml
J8775-3	Soil	SW8081A	SW3545	None	15.3g:10.0ml
			_		
PCB					
J8775-1	Soil	SW8082	SW3545	None	15.0g:10.0ml
J8775-2	Soil	SW8082	SW3545	None	15.4g:10.0ml
J8775-3	Soil	SW8082	SW3545	None	15.3g:10.0ml

SAMPLE PREPARATION AND ANALYSIS SUMMARY **INORGANIC ANALYSIS**

Project Number: <u>J8775</u>

Client Name: <u>ATC Associates, Inc.</u>

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J8775-1	Soil	T.A.L.Metals	3-Sep-05	7-Sep-05
J8775-2	Soil	T.A.L.Metals	3-Sep-05	7-Sep-05
J8775-3	Soil	T.A.L.Metals	3-Sep-05	7-Sep-05

SAMPLE PREPARATION AND ANALYSIS SUMMARY CYANIDE ANALYSIS

Project Number: <u>J8775</u>

Client Name: <u>ATC Associates, Inc.</u>

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
J8775-1	Soil	1-Sep-05	3-Sep-05		9-Sep-05
J8775-2	Soil	1-Sep-05	3-Sep-05	-	9-Sep-05
J8775-3	Soil	1-Sep-05	3-Sep-05	-	9-Sep-05

ACCUTEST.

CHAIN OF CUSTODY

2235 Route 130, Dayton NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 www.accutest.com

FED-EX Tracking #	Bottle Order Control #					
Acculest Quote #	Acculast Job # 18775					

				MANAGEMENT METATOLOGICAL PROPERTY OF THE	CALL HARLING CONTACT	(*************************************	400 mg maring programmer and a second se	
Client / Reporting Information		Project Information	on Lawy Country Country	race name of the	Requi	ested Analysis	Matrix Codes	
Company Nama ATC ASSOC (ATES	Project Name PEELLST PH	olo Produc	Az sik				DW - Drinking Water GW - Ground Water	
Address	Street				-1 1 \sim		WW - Water	
City C I State Zip	City	State		8 D 160 D 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 2		SW - Surface Water	
City Bushow NJ	SHOREMA	W X		1 15 15 1	\forall \forall		SO - Soil	
Project Contact E-mail	Project #			\$25 P	+50 +50 SMEC		SL Sludge	
Phone #				8021 352 8021 352 15 0 16 0 15 0 15 0 15 0 15 0 15 0 15 0	# 7 2		OI - OII	
109386 8800 EXT 227	Fax #	Fax #					LIQ - Other Liquid	
La	Client Purchase Order #	Client Purchase Ordor #			FULL FOL FOLT TAX MATRIX	Rest (1,12)	AJR - Air	
Michael McNells	Calladia				의 그 물		SOL - Other Solid	
Accutest Field /D / Point of Collection SUMMA #	Collection Sampled	# 0/	Number of preserved Bottles	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	当节至		WP · Wipe	
MEOH Val	Daid IIIII D)		HOFE HOSE HANGES HANGE HANGES HANGES HANGES HANGES HANGES HANGES HANGES HANGES HANGES	18 m 18 = 18 4	1		LAB USE ONLY	
- 1 CF-001	7-1-05 1040 M)4	5 4		 	XX	X X		
-2 CE-002	7-1-05 1325	58	Y		X x X	XX	1782	
-3 FD-090105	9-1-05	54	_ X		XX	Y X	1000	
-4 THE SCHIK	9-1-05	W X					NYSVOY	
	8/29/00 0630						ASP	
	TRS 9/3/8		- - - - - - - - - - 				PATOLOGI	
	1/63 7/3/9			1 1 1			1/1915	
				1 1 1				
			- - - - - - - - - - 					
		_						
Tumaround Time (Business Days) Std 15 Business Days Approved By: / Date:	Commercial 'A'		ble Information			omments / Remarks		
☐ 10 Day RUSH	Commercial "B"		NYASP Category A	K	<u>1774 ;</u>			
☐ 5 Day RUSH	□ NJ Reduced		NYASP Category B		2 - DA	tu TI	IDN	
DK3 Day EMERGENCY Peil	☐ NJ Full ☐ State Forms			3 011 1 1010				
□ 2 Day EMERGENCY □ Olher □			CDD Format					
☐ 1 Day EMERGENCY Commercial "A" = Results Only		Describe Osto	(EX58, mE3, 1961)					
Others	_ Commercial "A	- Results Only						
Entergency of refat 114 care sample at a rapruit	Sample Custody must be dodwn:	ented below each time	e samples change possession, inclui	ding couner delivery	- 44			
Emergency & Rush T/A data available V/A LabLink Relinquished by Sampler: Data Time 9:2004 F			Relinquished by:		Date Tipe 12516	Hocewed by Fe		
Pelinguished by: 9-Z-05 1 Date Time 9/3/4 R	ceived by.	d by. / Relinguisher			Date (Ime	Received by		
1. 1.9.1	Maxima		4			4		
	caved by:		Custody Scal #	Preserved whe	re applicable	On log	Cooler Tomp 4.0°C	
5 5			None					

4	
مث	
<u>.</u>	
-	
-	
-	
<u></u>	APPENDIX B
-	
	
	
	
<u>ــــــــــــــــــــــــــــــــــــ</u>	
←	
· · · · · · · · · · · · · · · · · · ·	

BCM Project Name: BCM Project No.: Project Manager: Laboratory:	CM Project No.: 68.28817.0001 roject Manager: M. McNally			Sampli Review	lo./SDG: ing Date(s): ved By: etion Date:	J8775 9/1/2005 M. Traxler 3/6/2006	
Fraction Reviewed:	XVOLATILE ORGAN	ICS		SEMIVOLATILE ORGANICS			cs
Compound List:	XTCL	Priority P	ollutant		Appendix IX		Other
Method:	CLP SOW	40 CFR	136 Meth. 6	601/602	X SW-846 Meth	od 8260B	Other
The following table ir	ndicates the data re	view criteria	examin	ed, proi	olems identif	ied, and (QA action
Data Validation Criter	ria:	accept	FYI/ q	ualify	Comment	\$	
Holding Times		Х			< 14 days	soil / 7 day	s water
GC/MS Tuning		X					
Initial Calibrations		X			<25 RPD		
Continuing Calibration	ons	X_			<20 RPD		
Blank Analysis Resul	ts	x			Methylene chloride (<rl)< td=""><td><rl)< td=""></rl)<></td></rl)<>		<rl)< td=""></rl)<>
System Monitoring/Surrogate Results		X			Within acceptance limits		
MS/MSD Results		X			75-125%R <20 RPD		
Field Duplicate Resul	ts	X	! 		<50 RPD		
Internal Standard Are	as/RT				NR		
Target Compound Ide	entification				NR		
TIC Identification					NR		<u> </u>
Quantitation/Detectio	n Limits				NR		
Laboratory Control S	ample	X			80-120%		
Other:							
General Comments:			··	-			-
NA - Not applicable							

QA Scientist_

Date_

Volatile Field Duplicate Precision ATC

1,2-dichlorobenzene

•	*		*			
Project Name:	Peerless Photo Produc	Case No./SD	G: J8775			
Project Number:	68.28817.0001	68.28817.0001				
Sample Description]			
or Location	CF-001	FD-090105				
Sample Number	J8775-1	J8775-3]			
Matrix	Soil	Soil]			
Units	mg/kg	mg/kg]			
Dilution Factor	1	1	1			
Compound	Concentration	Concentration	RPD	<u>Q</u>		
chloromethane						
vinyl chloride						
bromomethane						
chloroethane						
trichlorofluoromethane						
1,1-dichloroethene						
methylene chloride	3.0	2.5	18.2			
trans-1,2-dichloroethene						
1,1-dichloroethane						
chloroform						
1,1,1-trichloroethane						
1.2-dichloroethane			T			

vinyi chioride			
bromomethane			
chloroethane			
trichlorofluoromethane			
1,1-dichloroethene			
methylene chloride	3.0	2.5	18.2
trans-1,2-dichloroethene			T _
1,1-dichloroethane			
chloroform			
1,1,1-trichloroethane			
1,2-dichloroethane			
carbon tetrachloride			
trichloroethene			
1,2-dichloropropane			
bromodichloromethane			
2-chloroethylvinyl ether			7
cis-1,2-dichloroethene			
trans-1,3-dichloropropane			
1,1,2-trichloroethane			
tetrachloroethene			
dibromochloromethane			I
chlorobenzene			
bromoform			
1,1,2,2-tetrachloroethane			
cis-1,2-dichloroethene			1
benzene			
toluene			
ethylbenzene			
xylene (total)			
1,3-dichlorobenzene			
1,4-dichlorobenzene		1	

Volatile/Semivolatile Data Review Summary ATC Peerless Photo Products Case No./SDG: J8775 **BCM Project Name:** 9/1/2005 68.28817.0001 Sampling Date(s): **BCM Project No.:** M. McNally Reviewed By: M. Traxler Project Manager: Completion Date: 3/6/2006 Laboratory: Accutest X SEMIVOLATILE ORGANICS Fraction Reviewed: VOLATILE ORGANICS Other XTCL Priority Pollutant Compound List: Appendix IX CLP SOW _____ 40 CFR 136 Meth. 601/602 X SW-846 Method 8270B Other Method: The following table indicates the data review criteria examined, problems identified, and QA action. Data Validation Criteria: accept/ FYI/ qualify Comments <40 days **Holding Times** GC/MS Tuning Χ Х <25 RSD **Initial Calibrations** Х <20 RPD **Continuing Calibrations** Х <RL **Blank Analysis Results** System Monitoring/Surrogate Results Χ Within acceptance limits MS/MSD Results Х 75-125% R 20 RPD Χ Field Duplicate Results <50 RPD Internal Standard Areas/RT Х Within acceptance limits Target Compound Identification Х TIC Identification Х Quantitation/Detection Limits Х Laboratory Control Sample 80-120% R Other:

NA - Not applicable

General Comments:

NR - Not reviewed

QA Scientist Maple Date 3/17/06

Semivolatile Field Duplicate Precision Worksheet ATC

Project Name: Peerless Photo Products Case/SDG Number: J8775 68.28817.0001 Project Number:

Sample Location	CF-001	FD-090105
or Description		
Sample Number	J8775-1	J8775-3
Sampling Date	9/1/2005	9/1/2005
Units	mg/kg	mg/kg

Sample Field Duplicate **RPD** Q phenol bis(2-chloroethyl)ether 2-chlorophenol 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichlorobenzene 2-methylphenol 2,2'-oxybis(1-chloropropane) 4-methylphenol N-nitroso-di-n-propylamine hexachloroethane nitrobenzene isophorone 2-nitrophenol 2,4-dimethylphenol bis(2-chloroethoxy)methane 2,4-dichlorophenol 1,2,4-trichlorobenzene naphthalene 4-chloroaniline hexachlorobutadiene 4-chloro-3-methylphenol 2-methylnaphthalene hexachlorocyclopentadiene 2,4,6-trichlorophenol 2,4,5-trichlorophenol 2-chloronaphthalene 2-nitroaniline dimethylphthalate acenaphthylene 2,6-dinitrotoluene 3-nitroaniline acenaphthene 2,4-dinitrophenol 4-nitrophenol

QA Scientist

M Stander Date 3/17/06

Semivolatile Field Duplicate Precision Worksheet ATC

Case/SDG Number: J8775 Project Name: Peerless Photo Products Project Number: 68.28817.0001

Sample Location	CF-001	FD-090105
or Description		
Sample Number	J8775-1	J8775-3
Sampling Date	9/1/2005	9/1/2005
Units	mg/kg	mg/kg

	Sample	Field Duplicate		
			RPD	Q
dibenzofuran				
2,4-dinitrotoluene				
diethylphthalate				
4-chlorophenyl-phenylether				
fluorene			}	}
4-nitroaniline				
4,6-dinitro-2-methylphenol				
N-nitrosodiphenylamine				T
4-bromophenyl-phenylether				
hexachlorobenzene				T
pentachlorophenol		T		
phenanthrene	49.2	55.1	11	
anthracene				
carbazole				
di-n-butylphthalate				
fluoranthene	104	120	14	
pyrene	87.0	106	20	
butylbenzylphthalate				T
3,3'-dichlorobenzidine				1
benzo(a)anthracene	56.4	64.2	13	
chrysene	53.6	59.4	10	
bis(2-ethylhexyl)phthalate				
di-n-octylphthalate				
benzo(b)fluoranthene	49.5	63.5	25	
benzo(k)fluoranthene	47.4	50.7	7	
benzo(a)pyrene	55.5	65.4	16	.
indeno(1,2,3-cd)pyrene	34.0	48.1	34	
dibenz(a,h)anthracene			1	
benzo(g,h,i)perylene	31.9	37.4	16	

ATC QA Department has adopted the following criteria for field duplicate analysis:

Aqueous matrices 20 % RPD; Soil/Solid matrices 40 % RPD

* - Denotes RPD outside criteria

QA Scientist M Japle Date 3/17/06

ATC Project Name: Peerless Photo Project No.: 68.28817.0001 Project Manager: M. McNally Laboratory: Accutest		Products	Samplii Review		No./SDG: pling Date(s): ewed By: pletion Date:	9/1/2005 M. Traxler	J8775 9/1/2005 M. Traxler 3/17/2006	
Fraction Reviewed:	XPESTICIDES				PCBs			
Compound List:	XTCL	Prio	rity P	ollutant		Appendix IX		Other
Method:	XCLP SOW	40 (CFR 1	36 Met	hod	SW-846 Meth	od	Other
The following table in	idicates the data	review (rite	ria exa	amined	, problems ider	ntified, and	QA action.
Data Validation Criter	ria:	acc	ept/	FYI	qualify	,	comment	s
Holding Times								
Initial Calibrations		,	$\langle $		1 1			
Continuing Calibration	ons					NA		
Blank Analysis Resul	ts							
System Monitoring/S	urrogate Results							
MS/MSD Results		_	<u> </u>					
Field Duplicate Resul	ts		<u> </u>					
Internal Standard Are	eas/RT							
Target Compound Ide	entification							
Quantitation/Detectio	n Limits	_						
System Performance			<u> </u>			<u></u>		_ _
Overall Assessment	of Data		<u> </u>					
Other:		_						
Other:								
Other:	 ,	_ L						
General Comments:								

QA Scientist M Jayly Date 3/17/06

Pesticide Field Duplicate Precision

ATC

Project Name: Project Number: Peerless Photo Products

68.28817.0001

Sample Description	
or Location	CF-001
Sample Number	J8775-1
Matrix	Soil
Units	mg/kg
Dilution Factor	1

FD-090105
J8775-3
Soil
mg/kg
1

Case No./SDG:

J8775

Sample

Compound Concentration aldrin 5.4 alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) alpha-chlordane 18.5 gamma-chlordane 19.1 dieldrin 14.6 4,4'-DDD 4,4'-DDE 6.0 4,4'-DDT 11.1 endrin endosulfan sulfate endrin aldehyde endosulfan-l endosulfan-II heptachlor 2.4 heptachlor epoxide 2.4 methoxychlor endrin ketone toxaphene

Field Duplicate

Concentration	RPD	Q
9.1	51.0	*
19.6	5.8	
20.1	5.1	
13.1	10.8	
6.7	11.0	
11.0	0.9	
2.5	4.1	
2.6	8.0	

QA Scientist M Hadle Date 3/17/66

ATC Project Name: ATC Project No.: Project Manager: Laboratory:	Peerless Photo F 68.28817.0001 M. McNally Accutest	Products		Samp Revie	No./SDG: ling Date(s): wed By: lletion Date:	J8775 9/1/2005 M. Trax 3/17/200	er
Fraction Reviewed:	PESTICIDES				X PCBs		_
Compound List:	X TCL			t			
Method:	X CLP SOW	40 CFF	R 136 Me	thod	SW-846 Met	hod	Other
The following table in	ndicates the data r	eview crit	eria ex	amined,	problems ide	ntified, an	d QA action.
Data Validation Criter	ria:	accep	t FYI/	qualify		comme	nts
Holding Times		х					
Initial Calibrations		X	' <u> </u>				
Continuing Calibration	ons				NA		
Blank Analysis Resul	ts	X					
System Monitoring/S	urrogate Results	X					
MS/MSD Results		X					
Field Duplicate Resul	lts	X					
Internal Standard Are	eas/RT	X					
Target Compound Ide	entification	Х					
Quantitation/Detection	on Limits	X	·				
System Performance		X					
Overall Assessment	of Data	Х			<u> </u>		
Other:	·	_					
Other:							- -
Other:							
General Comments:							
NA - Not applicable NR - Not reviewed							

QA Scientist M Hayder Date 3/17/06

Polychlorinated Biphenyls Field Duplicate Precision

mg/kg

ATC

Project Name:	Peerless Photo Produc	Case No./SDG:	J8775	
Project Number:	68.28817.0001			
Sample Description			7	
or Location	CF-001	FD-090105		
Sample Number	J8775-1	J8775-3		

Compound	Sample Concentration
Arocior 1016	
Aroclor 1221	
Aroclor 1232	
Aroclor 1242	
Aroclor 1248	
Aroclor 1254	
Aroclor 1260	

Units Dilution Factor

Field Duplicate Concentration	RPD_	Q
		\Box
		+
	<u>_</u>	╁

mg/kg

QA Scientist M Staples Date 3/17/06

Project Name: Peerless Photo Products Project No.: 68.28817.0001 Project Manager: M. McNally Laboratory: Accutest				se No./SDG: npling Date(s):	J8775 9/1/2005		
				Reviewed By: M. Traxler			
			Cor	mpletion Date:	3/16/2006		
'AL	Append	iix IX		Other			
<u></u>	₫)	Other			
tes the data valid	dation	criter	ia exa	mined, problems	identified,		
	ассер	t FYI	qualif	fy comments			
	X	\prod		Less than 180 d	lays		
nace, Hg ,				NR			
[[x]	11	-	2-point standard	i		
	×]	50 - 150 % R			
J.	[x]		11	< RL			
	x	1.1.18		< RL			
	X	1 1	1 1	< RL			
mple	×			80 - 120 % R			
e	X	11	11	80 - 120 % R			
gger (1994)	×	5. d - 2. d - 3. d	i de la companya de l	75 - 125 % R			
	×	11	1 1	< 20 RPD	*		
1940 Britania (n. 1841)	×			< 10 RPD	ilia Leo 12 de martida de la		
			1 1	NR			
ion				NR			
	$ _{x} $		} }	< 50 RPD			
	×	14.67 46.67 47.44		Cadmium and S	Silver		
	11	} }	1	1			
	Cutest CAL CLP SOW 3/90 X oil/solid (mg/Kg)	Appendix SW-84 oil/solid (mg/Kg) aqueou acception acceptance acception acceptance acception acceptance acception acceptance acception acceptance acception acceptance acceptan	Appendix IX SLP SOW 3/90	AL Appendix IX SLP SOW 3/90 X SW-846 oil/solid (mg/Kg) aqueous (ug/L) tes the data validation criteria example accept FYI qualification criteria example accept acc	AL Appendix IX Other Other Other oil/solid (mg/Kg) SW-846 aqueous (ug/L) tes the data validation criteria examined, problems accept FYI qualify comments X		

QA Scientist M Stock Date 3/17/06

Metals Field Duplicate Precision

ATC

Project Name: Peerless Photo Products Case No./SDG: J8775 Project Number: 68.28817.0001

Sample Description	
or Location	CF-001
Sample Number	J8775-1
Matrix	Soil
Units	mg/kg
Dilution Factor	1

FD-090105	ı
J8775-3	
Soil	
mg/kg	
1	

	Sample
Compound	Concentration
aluminum	7760
antimony	
arsenic	2.3
barium	_54.3
beryllium	
cadmium	
calcium	1720
chromium	18.7
cobalt	6.4
copper	17.6
iron	12800
lead	40.8
magnesium	2010
manganese	265
mercury	0.073
nickel	18.4
potassium	954
selenium	
silver	
sodium	
thallium	
vanadium	26.0
zinc	45.1
cyanide	

Field Duplicate		_
Concentration	RPD	Q
7840	1.0	
2.5	8.3	
59.9	9.8	
1580	8.5	
21.9	15.8	1
6.4	0.0	
19.2	8.7	
13600	6.1	
47.3	14.8	
1930	4.1	T
277	4.4	T
0.070	4.2	
20.0	8.3	
920	3.6	
Ī		T
24.4	6.3	
50.9	12.1	
	<u> </u>	
		T^{-}

QA Scientist M. Mayder Date 3/17/06

Method Blank Summary Job Number: J8775

Account:

BCMNJ ATC Associates, Inc.

Project:

AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed 09/09/05	By	Prep Date	Prep Batch	Analytical Batch
VX1684-MB1	X43629.D	1		DTM	n/a	n/a	VX1684

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Result	RL	MDL	Units Q	
67-64-1	Acetone	ND	10	1.8	ug/kg	
71-43-2	Benzene	ND	1.0	0.57	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	0.17	ug/kg	
75-25-2	Bromoform	ND	5.0	0.48	ug/kg	
74-83-9	Bromomethane	ND	5.0	0.74	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/kg	
75-15-0	Carbon disulfide	ND	5.0	0.55	ug/kg	
56-23-5	Carbon tetrachloride	ND.	5.0	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	0.26	ug/kg	
75-00-3	Chloroethane	ND	5.0	1.2	ug/kg	
67-66-3	Chloroform	ND	5.0	0.32	ug/kg	
74-87-3	Chloromethane	ND	5.0	0.78	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	0.31	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	0.23	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	0.27	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.0	0.34	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.0	0.25	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.0	0.38	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	0.59	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	0.20	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	0.26	ug/kg	• •
100-41-4	Ethylbenzene	ND	1.0	0.51	ug/kg	3/17/06 MT Methyline chloride in a method blank.
591-78-6	2-Hexanone	ND	5.0	0.90	ug/kg	all MT
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.2	ug/kg	3/17/04
75-09-2	Methylene chloride	3.2	5.0	0.21	ug/kg J	Wonder Chlona
100-42-5	Styrene	ND	5.0	0.65	u g /kg	Methy we
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	0.48	ug/kg	- anothod bearing
127-18-4	Tetrachloroethene	ND	5.0	0.79	ug/kg	In a well
108-88-3	Toluene		1.0	0.40	ug/kg	•
71-55-6	1,1,1-Trichloroethane	ND	5.0	0.57	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.68	ug/kg	
79-01-6	Trichloroethene	ND	5.0	0.44	ug/kg	
75-01-4	Vinyl chloride	ND	5.0	0.26	ug/kg	
1330-20-7	Xylene (total)	ND	2.0	0.55	ug/kg	

Blank Spike Summary Job Number: J8775

Account:

BCMNJ ATC Associates, Inc.

Project:

AGFA-Peerless, Shorham, NY

Sample VX1684-BS	File ID X43631.D	DF 1	Analyzed 09/09/05	By DTM	Prep Date n/a	Prep Batch n/a	Analytical Batch VX1684
Į							

The QC reported here applies to the following samples:

Method: SW846 8260B

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
67-64-1	Acetone	50	80.6	161	18-170
71-43-2	Benzene	50	48.9	98	81-116
75-27-4	Bromodichloromethane	50	51.8	104	83-123
75-25-2	Bromoform	50	69.0	/138* a	74-127
74-83-9	Bromomethane	50	42.2	84	60-134
78-93-3	2-Butanone (MEK)	50	68.7	137	37-159
75-15-0	Carbon disulfide	50	42.3	85	52-138
56-23-5	Carbon tetrachloride	50	57.6	115	72-134
108-90-7	Chlorobenzene	50	54.6	109	83-115
75-00-3	Chloroethane	50	39.0	78	61-138
67-66-3	Chloroform	50	48.6	97 -	79-121
74-87-3	Chloromethane	50	37.3	75	57-139
124-48-1	Dibromochloromethane	50	61.1	122	80-127
75-34-3	1,1-Dichloroethane	50	42.0	84	77-123
107-06-2	1,2-Dichloroethane	50	50.3	101	77-129
75-35-4	1,1-Dichloroethene	50	41.1	82	68-130
156-59-2	cis-1,2-Dichloroethene	50	46.9	94	77-122
156-60-5	trans-1,2-Dichloroethene	50	46.3	93	74-125
78-87-5	1,2-Dichloropropane	50	46.6	93 -	81-119
	cis-1,3-Dichloropropene	50	53.9	108	83-119
	trans-1,3-Dichloropropene	50	55.2	110	81-123
100-41-4	Ethylbenzene	50	54.1	108	81-118
591-78-6	2-Hexanone	50	59.9	1.20	44-155
108-10-1	4-Methyl-2-pentanone(MIBK)	50	49.7	99	66-141
75-09-2	Methylene chloride	50	47.4	95	77-123
100-42-5	Styrene	50	57.0	114	85-121
79-34-5	1,1,2,2-Tetrachloroethane	50	50.8	102	75-125
127-18-4	Tetrachloroethene	50	55.5	111	67-132
108-88-3	Toluene	50	53.6	107	82-118
71-55-6	1,1,1-Trichloroethane	50	49.6	99	74-129
79-00-5	1,1,2-Trichloroethane	50	55.3	111	82-120
79-01-6	Trichloroethene	50	52.6	105	80-119
75-01-4	Vinyl chloride	50	37.5	75	62-139
1330-20-7	Xylene (total)	150	161	107	82 -119

Job Number: J8775

Account: BCMNJ ATC Associates, Inc.
Project: AGFA-Peerless, Shorham, NY

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch J8897-2MS 1A29689.D 1 09/08/05 EAG n/a n/a V1A1239

 J8897-2MSD
 1A29690.D
 1
 09/08/05
 EAG
 n/a
 n/a
 V1A1239

 J8897-2
 1A29687.D
 1
 09/08/05
 EAG
 n/a
 n/a
 V1A1239

The QC reported here applies to the following samples:

Method: SW846 8260B

Page 1 of 2

J8775-4

CAS No.	Compound	J8897-2 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		50	49.4	99	51.9	104	5	32-166/20
71-43-2	Benzene	ND		50	41.7	83	39.4	79	6	52-136/10
75-27-4	Bromodichloromethane	ND		50	55.8	112	52.2	104	7	79-128/12
75-25-2	Bromoform	ND		50	47.9	96	46.3	93	3	62-134/11
74-83-9	Bromomethane	ND		50	41.6	83	39.9	80	4	56-141/15
78-93-3	2-Butanone (MEK)	ND		50	45.8	92	44.9	90	2	47-147/15
75-15-0	Carbon disulfide	ND		50	25.5	51* a	′ 23.9 ⁄ ູ	_48* a/	6 .	54-129/15
56-23-5	Carbon tetrachloride	ND		50	49.5	99	43.7°	87	12	64-148/14
108-90-7	Chlorobenzene	ND		50	44.2	88	42.3	85	4	76-120/10
75-00-3	Chloroethane	ND		50	40.5	81	37.3	75	8 .	57-144/17
67-66-3	Chloroform	ND		50	50.0	100.	46.3	93	8	74-127/12
74-87-3	Chloromethane	ND		50	44.5	89	41.8	. 84	6	53-142/20
124-48-1	Dibromochloromethane	ND		50	50.1	100	48.2	96	4	77-128/9
75-34-3	1,1-Dichloroethane	ND		50	43.2	86	41.3	83	4	71-128/13
107-06-2	1,2-Dichloroethane	ND		50	63.5	127	58.8	118	.8	67-140/13
75-35-4	1,1-Dichloroethene	ND		50	34.3	69	31.7	63	8	61-135/12
156-59-2	cis-1,2-Dichloroethene	ND		50	41.2	82	40.1	80	3	70-128/10
156-60-5	trans-1,2-Dichloroethene	ND		50	37.2	74	35.5	71	5	69-126/11
78-87-5	1,2-Dichloropropane	ND		50	45.7	91	43.9	-88	4	76-123/11
10061-01-5	cis-1,3-Dichloropropene	ND		50	51.6	103	48.8	98	6	74-123/11
	trans-1,3-Dichloropropene	ND		50	53.4	107	49.9	100	7	73-127/12
100-41-4	Ethylbenzene	ND		50	45.5	91	43.0	86	6	52-140/11
591-78-6	2-Hexanone	ND		50	52.6	105	51.7	103	2	51-144/16
108-10-1	4-Methyl-2-pentanone(MIBK)	ND		50	52.9	106	50.7	101	4	54-145/20
75-09-2	Methylene chloride	ND		50	40.2	80	40.4	81	0	73-124/10
100-42-5	Styrene	ND		50	46.5	93	44.5	89	4	74-131/9
79-34-5	1,1,2,2-Tetrachloroethane	ND		50	44.6	89	44.7	89	0	72-121/11
127-18-4	Tetrachloroethene	ND		50	42.2	84	39.2	78	. 7	66-129/11
108-88-3	Toluene	ND		50	45.5	91	42.5	85	7	51-142/11
71-55-6	1,1,1-Trichloroethane	ND		50	48.4	97	42.4	85	13	69-140/14
79-00-5	1,1,2-Trichloroethane	ND		50	49.7	99	48.2	96	3	81-121/10
79-01-6	TrichIoroethene	ND		50	45.6	91	42.1	84	. 8	68-133/11
75-01-4	Vinyl chloride	ND		50	40.1	80	36.3	73	10	52-145/17
1330-20-7	Xylene (total)	ND		150	137	91	129	86	.6	63-127/10

Job Number: J8775

Account: BCMNJ ATC Associates, Inc. AGFA-Peerless, Shorham, NY Project:

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
J8775-2MS	X43639.D	1	09/09/05	DTM	n/a	n/a	VX1684
J8775-2MSD	X43640.D	1	09/09/05	DTM	n/a	n/a	VX1684
J8775-2	X43634.D	1	09/09/05	DTM	n/a	n/a	VX1684
36773-2	A43034.D	1	09/09/03	DIM	11/ d	11/ a	VA1004

The QC reported here applies to the following samples:

Method: SW846 8260B

Page 1 of 2

CAS No.	Compound	J8775-2 ug/kg	Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		55.2	113	205* a	99.5	180	13	6-184/34
71-43-2	Benzene	ND		55.2	44.7	81	43.8	79	2	54-132/15
75-27-4	Bromodichloromethane	ND		55.2	56.2	102	52.7	95	6	56-139/16
75-25-2	Bromoform	ND		55.2	64.5	117	65.9	119	2	52-134/20
74-83-9	Bromomethane	ND		55.2	44.1	80-	43.9	80	0	7-141/31
78-93-3	2-Butanone (MEK)	ND		55.2	69.8	126	29.2	53	82* 3	24-168/30
75-15-0	Carbon disulfide	ND		55.2	35.1	64	34.6	63	1	32-143/20
56-23-5	Carbon tetrachloride	ND		55.2	53.3	97	51.1	93	4	40-149/16
108-90-7	Chlorobenzene	ND		55.2	42.9	78	43.0	78	0	50-136/19
75-00-3	Chloroethane	ND		55.2	43.1	78	42.1	76	2	12-139/29
67-66-3	Chloroform	ND		55.2	50.9	92	47.0	85	8	57-135/15
74-87-3	Chloromethane	ND		55.2	39.8	72 -	40.1	73	1	41-138/22
124-48-1	Dibromochloromethane	ND		55.2	60.1	109	59.4	108	1	57-139/18
75-34-3	1,1-Dichloroethane	ND		55.2	45.8	83	43.1	78	6	56-135/15
107-06-2	1,2-Dichloroethane	ND		55.2	56.5	102	51.2	93	10	58-137/15
75-35-4	1,1-Dichloroethene	ND		55.2	43.8	79	43.5	79	1	43-144/18
156-59-2	cis-1,2-Dichloroethene	ND		55.2	45.7	83	44.4	80	3	54-139/15
156-60-5	trans-1,2-Dichloroethene	ND		55.2	43.2	78	41.5	75	4	48-139/16
78-87-5	1,2-Dichloropropane	ND		55.2	46.9	85	45.0	82	4	60-131/15
10061-01-5	cis-1,3-Dichloropropene	ND		55.2	52.6	95	49.7	90	6.	51-137/16
	trans-1,3-Dichloropropene	ND		55.2	56.3	102	52.8	96	6	50-140/17
100-41-4	Ethylbenzene	ND		55.2	41.5	75	40.7	74	2.	44-142/20
591-78-6	2-Hexanone	ND		55.2	67.7	123	62.3		8	27-161/27
108-10-1	4-Methyl-2-pentanone(MIBK)	ND		55.2	52.8	96	49.4	90	7	51-141/22
75-09-2	Methylene chloride	3.0	JB		44.5	75	44.6	75	0	56-137/17
100-42-5	Styrene	ND		55.2	43.4	79	43.7	79	1.	43-148/22
79-34-5	1,1,2,2-Tetrachloroethane	ND		55.2	45.3	82	45.6	83	1	51-137/24
127-18-4	Tetrachloroethene	ND		55.2	46.2	84	47.2	86	2	33-167/29
108-88-3	Toluene	ND		55.2	46.8	85	44.8	81	4	47-140/17
71-55-6	1,1,1-Trichloroethane	ND		55.2	52.6	95	47.6	86	10	48-142/16
79-00-5	1,1,2-Trichloroethane	ND	_	55.2	55.5	101	52.9	96.	5	60-134/17
79-01-6	Trichloroethene	1.3	J	55.2	47.9	84	45.9	81	4	45-145/17
75-01-4	Vinyl chloride	ND		55.2	38.6	70	41.2	75	7 :-	42-142/18
1330-20-7	Xylene (total)	ND		166	121	73.	120	72	1.	43-144/21

Job Number: J8775

Account: BCMNJ ATC Associates, Inc.
Project: AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP21271-MS	R46894.D	1	09/13/05	WHS	09/06/05	OP21271	ER1628
OP21271-MSD	R46895.D	1	09/13/05	WHS	09/06/05	OP21271	ER1628
J8775-2	R46792.D	1	09/08/05	WHS	09/06/05	OP21271	ER1624
J8775-2 ^a	R46802.D	1	09/08/05	WHS	09/06/05	OP21271	ER1624

The QC reported here applies to the following samples:

Method: SW846 8270C

Page 1 of 3

CAS No.	Compound	J8775-2 ug/kg	Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
95-57-8	2-Chlorophenol	ND		1830	1500	82	1350	74	11	45-103/18
59-50-7	4-Chloro-3-methyl phenol	ND		1830	1710	93	1640	90	4	49-113/19
120-83-2	2,4-Dichlorophenol	ND		1830	1690	92	1620	89	4	44-112/18
105-67-9	2,4-Dimethylphenol	ND		1830	1650	90	1590	87	4 _	39-114/19
51-28-5	2,4-Dinitrophenol	ND		3670	1440	39	632	17	78*b	1-116/38
534-52-1	4,6-Dinitro-o-cresol	ND		1830	753	41	297	16 /	87*b	2-123/39
95-48-7	2-Methylphenol	ND		1830	1410	77	1280	70	10	42-105/20
	3&4-Methylphenol	ND		1830	1500	82	1400	77	7	40-110/21
88-75-5	2-Nitrophenol	ND		1830	1570	86	1150	63	31*b	28-110/24
100-02-7	4-Nitrophenol	ND		1830	1500	82	1440	79	4	20-137/31
87-86-5	Pentachlorophenol	ND		1830	1600	87	1520	83	5	26-123/24
108-95-2	Phenol	ND		1830	1480	81	1340	74	10	43-106/21
95-95-4	2,4,5-Trichlorophenol	ND		1830	1600	87	1590	87	1	47-111/19
88-06-2	2,4,6-Trichlorophenol	ND		1830	1630	89	1560	86	4	50-113/19
83-32-9	Acenaphthene	80.3		1830	1510	78	1520	79	1	31-120/27
208-96-8	Acenaphthylene	110		1830	1470	74	1390	70	6	37-104/23
120-12-7	Anthracene	313		1830	1840	83	1770	80	4	41-119/28
56-55-3	Benzo(a)anthracene	1050		1830	2350	71	2230	65	5	37-125/31
50-32-8	Benzo(a)pyrene	1130		1830	2520	76	2140	55	16	37-124/29
205-99-2	Benzo(b)fluoranthene	1070		1830	3030	107	2500	79	19	25-147/33
191-24-2	Benzo(g,h,i)perylene	416		1830	1260	46	1160	41	8	4-135/38
207-08-9	Benzo(k)fluoranthene	1090		1830	2480	76	2260	64	9	25-142/31
101-55-3	4-Bromophenyl phenyl ether	ND		1830	1410	77	1320	72	7	48-115/20
85-68-7	Butyl benzyl phthalate	82.7		1830	1870	97	1970	104	5	32-148/22
91-58-7	2-Chloronaphthalene	ND		1830	1450	79	1390	76	4	45-105/19
106-47-8	4-Chloroaniline	ND		1830	832	45	912	50	9:	8-94/31
86-74-8	Carbazole	56.7	J	1830	1700	90	1580	84	7.	37-136/26
218-01-9	Chrysene	952		1830	2250	71.	2120	64	6	36-124/29
111-91-1	bis(2-Chloroethoxy)methane	ND		1830	1340	73	1230	68	9	40-112/21
111-44-4	bis(2-Chloroethyl)ether	ND		1830	1130	62	974	53	15	37-105/25
108-60-1	bis(2-Chloroisopropyl)ether	ND		1830	1270	69	1120	61	13	36-108/22
7005-72-3	4-Chlorophenyl phenyl ether	ND		1830	1370	75	1330	73	3	48-110/19
95-50-1	1,2-Dichlorobenzene	ND		1830	1320	72	1130	62	16	39-98/21
541-73-1	1,3-Dichlorobenzene	ND		1830	1300	71	1130	62	14	37-96/22
106-46-7	1,4-Dichlorobenzene	ND		1830	1290	70	1140	63	.12	36-98/22
121-14-2	2,4-Dinitrotoluene	ND		1830	1480	81	1260	69	. 16	30-126/25

Job Number: J8775

Account: BCMNJ ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP21271-MS	R46894.D	1	09/13/05	WHS	09/06/05	OP21271	ER1628
OP21271-MSD	R46895.D	1	09/13/05	WHS	09/06/05	OP21271	ER1628
J8775-2	R46792.D	1	09/08/05	WHS	09/06/05	OP21271	ER1624
J8775-2 a	R46802.D	1	09/08/05	WHS	09/06/05	OP21271	ER1624

The QC reported here applies to the following samples:

Method: SW846 8270C

Page 2 of 3

CAS No.	Compound	J8775-2 ug/kg	Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
606-20-2	2,6-Dinitrotoluene	ND		1830	1490	81	1330	73	11	42-117/24
91-94-1	3,3'-Dichlorobenzidine	ND		1830	559	30	808	44	36	3-111/39
53-70-3	Dibenzo(a,h)anthracene	111		1830	1120	55	1050	52	6	14-133/30
132-64-9	Dibenzofuran	52.3	J	1830	1450	76	1430	76 ⊹	1	37-125/29
84-74-2	Di-n-butyl phthalate	44.9	J	1830	1510	80	1420	75	6	47-122/21
117-84-0	Di-n-octyl phthalate	ND		1830	3550	194* ^b	3310	182*	b 7	27-168/29
84-66-2	Diethyl phthalate	ND		1830	1410	77	1360	75	4	50-113/20
131-11-3	Dimethyl phthalate	ND		1830	1350	74	1300	71	4	51-108/20
117-81-7	bis(2-Ethylhexyl)phthalate	171		1830	1910	95	2030	102	6	29-151/25
206-44-0	Fluoranthene	2050		1830	3150	60	2880	46	9.	28-133/35
86-73-7	Fluorene	117		1830	1630	83	1630	83	0	39-119/32
118-74-1	Hexachlorobenzene	ND		1830	1560	85	1480	81	5	49-111/19
87-68-3	Hexachlorobutadiene	ND		1830	1510	82	1400	77	8	37-114/21
77-47-4	Hexachlorocyclopentadiene	ND		3670	771	21	474	13	(48*b)	1-95/42
67-72-1	Hexachloroethane	ND		1830	1230	67	879	48	(33*b)	19-105/26
193-39-5	Indeno(1,2,3-cd)pyrene	519		1830	1760	68	1650	62	6	13-130/35
78-59-1	Isophorone	ND		1830	1380	75	1310	72	5	36-103/20
91-57-6	2-Methylnaphthalene	34.5	J	1830	1420	76	1350	72	5	30-120/26
88-74-4	2-Nitroaniline	ND		1830	1540	84	1470	81	5	39-122/23
99-09-2	3-Nitroaniline	ND		1830	1090	59	1160	64	6	27-107/30
100-01-6	4-Nitroaniline	ND		1830	1310	71	1260	69	4	20-123/35
91-20-3	Naphthalene	49.9	J	1830	1450	76	1350	71	7	29-113/28
98-95-3	Nitrobenzene	ND		1830	1410	77	1280	70	10	31-112/21
621-64-7	N-Nitroso-di-n-propylamine	ND		1830	1280	70	1110	61	14	36-114/22
86-30-6	N-Nitrosodiphenylamine	ND		1830	1370	75	1290	71	6	35-136/22
85-01-8	Phenanthrene	1030		1830	2270	68	2300	70	1	29-129/39
129-00-0	Pyrene	2280		1830	3850	86	4070	98	6	20-148/40
120-82-1	1,2,4-Trichlorobenzene	ND		1830	1430	78	1310	72	9	36-104/21
CAS No.	Surrogate Recoveries	MS		MSD	J87	75-2	J8775-2	L	imits	
367-12-4	2-Fluorophenol	81%		73%	749	%	77%	3	4-111%	
4165-62-2	Phenol-d5	81%		72%	769		82%		4-111%	•
118-79-6	2,4,6-Tribromophenol	98%		90%	849		87%		3-122%	•
4165-60-0	Nitrobenzene-d5	83%		75%	769		77%		9-114%	
		•							• ,	

Blank Spike Summary Job Number: J8775

Account:

BCMNJ ATC Associates, Inc.

Project:

AGFA-Peerless, Shorham, NY

Sample OP21274-BS1	File ID OA25143.D	DF	Analyzed 09/08/05	By MCR	Prep Date 09/06/05	Prep Batch OP21274	Analytical Batch GOA800

The QC reported here applies to the following samples:

Method: SW846 8081A

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
309-00-2	Aldrin	16.7	17.2	103	68-157
319-84-6	alpha-BHC	16.7	16.4	98	71-161
319-85-7	beta-BHC	16.7	16.2	97	71-150
319-86-8	delta-BHC	16.7	15.0	90	56-166
58-89-9	gamma-BHC (Lindane)	16.7	16.4	98	71-158
5103-71-9	alpha-Chlordane	16.7	14.9	89	71-153
5103-74-2	gamma-Chlordane	16.7	17.2	103	74-153
60-57-1	Dieldrin	16.7	17.6	106	74-160
72-54-8	4,4'-DDD	16.7	17.2	103	74-160
72-55-9	4,4'-DDE	16.7	17.1	103	73-160
50-29-3	4,4'-DDT	16.7	16.9	101	68-164
72-20-8	Endrin	16.7	16.6	100	69-158
1031-07-8	Endosulfan sulfate	16.7	16.2	97	67-158
7421-93-4	Endrin aldehyde	16.7	13.8	83	45-138
959-98-8	Endosulfan-I	16.7	16.5	99	72-153
33213-65-9	Endosulfan-II	16.7	16.9	101	72-155
76-44-8	Heptachlor	16.7	16.8	101	72-157
1024-57-3	Heptachlor epoxide	16.7	16.9	101	71-155
72-43-5	Methoxychlor	16.7	16.6	100	70-162
53494-70-5	Endrin ketone	16.7	16.5	99	76-160
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
877-09-8	Tetrachloro-m-xylene	92 %	30-	140%	
877-09-8	Tetrachloro-m-xylene	91%	30-	140%	
2051-24-3	Decachlorobiphenyl	100%	23-	155%	
2051-24-3	Decachlorobiphenyl	101%	23-	155%	

Page 1 of 1

Job Number:

J8775

Account:

BCMNJ ATC Associates, Inc.

Project:

AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP21274-MS	OA25144.D	1	09/08/05	MCR	09/06/05	OP21274	GOA800
OP21274-MSD	OA25145.D	1	09/09/05	MCR	09/06/05	OP21274	GOA800
J8775-2	OA25147.D	1	09/09/05	MCR	09/06/05	OP21274	GOA800
					_		

The QC reported here applies to the following samples:

Method: SW846 8081A

CAS No.	Compound	J8775-2 ug/kg	Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
309-00-2	Aldrin	40.1		18.2	89.0	269* a	30.1	0* a	99* a	26-166/32
319-84-6	alpha-BHC	ND		18.2	24.5	135	20.0	111_	20	24-172/36
319-85-7	beta-BHC	ND		18.2	41.1	226* b		190*b	18	16-174/41
319-86-8	delta-BHC	ND		18.2		110	16.3	90	20	10-175/42
58-89-9	gamma-BHC (Lindane)	ND		18.2	20.0	110	17.7	98	12	26-168/38
5103-71-9	alpha-Chlordane	5.2		18.2	23.6	112	20.7	97	13	21-177/34
5103-74-2	gamma-Chlordane	4.7		18.2	21.7	94	21.5	93	1	24-173/38
60-57-1	Dieldrin	10.8		18.2	106	524* b)	28.9		114* b	20-181/41
72-54-8	4,4'-DDD	2.7		18.2	21.0	101	29.7	150	34	22-186/36
72-55-9	4,4'-DDE	ND		18.2	18.2	100	24.2	134	28	19-192/42
50-29-3	4,4'-DDT	12.2		18.2		120	42.8	173	25	18-200/44
72-20-8	Endrin	ND		18.2	29.9	165	28.0	155	7 _	26-175/36
1031-07-8	Endosulfan sulfate	ND		18.2	12.2	67	31.3	174	88* b	9-175/46
7421-93-4	Endrin aldehyde	ND		18.2	10.9	60	9.9	55	10	10-141/46
959-98-8	Endosulfan-I	ND		18.2	19.4	107	17.4	96 .	11	24-167/38
33213-65-9	Endosulfan-II	ND		18.2	20.5	113	17.4	96	16	13-175/40
76-44-8	Heptachlor	ND		18.2	24.0	132	20.1	111	18	32-169/36
1024-57-3	Heptachlor epoxide	ND		18.2	20.9	115	19.1	105	9	25-169/34
72-43-5	Methoxychlor	ND		18.2	35.5 (196* b	31.2	173	13	18-182/45
53494-70-5	Endrin ketone	ND		18.2	26.7	147	17.1	95 /	44* 6	19-181/42
8001-35-2	Toxaphene	ND			ND		ND	~—	nc	50-150/10
CAS No.	Surrogate Recoveries	MS		MSD	J877	5-2	Limits			
877-09-8	Tetrachloro-m-xylene	99%		99%	94%		30-140%			
877-09-8	Tetrachloro-m-xylene	72%	٠.	94%	98%		30-140%			
2051-24-3	Decachlorobiphenyl	95%		83%	96%	. *	23-155%			
2051-24-3	Decachlorobiphenyl	82%	. :	93%	74%		23-155%			

⁽a) Outside control limits due to high level in sample relative to spike amount.

⁽b) Outside control limits due to matrix interference.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J8775

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31426 Matrix Type: SOLID

Methods: SW846 6010B

Units: mg/kg

Prep Date:

09/07/05

Prep Date:				09/07/05	
Metal	J8775-2 Original	MS	Spikelot MPIRS1	% Rec	QC Limits
Aluminum	6760	12100	5840	91.4	75-125
Antimony	1.3	51.1	108	46.0N(a)	75-125
Arsenic	5.6	376	433	85.6	75-125
Barium	53.9	436	433	88.3	75-125
Beryllium	0.31	9.6	11	85.9	75-125
Cadmium	0.057	9.4	11	86.3	75-125
Calcium	6750	7310	1350	41.4 (b)	75-125
Chromium	17.3	53.8	43.3	84.3	75-125
Cobalt	4.9	98.9	108	86.9	75-125
Copper	62.2	163	54.1	186.3N(a	75-125
Iron	13800	16600	5630	49.8N(a)	75-125
Lead	93.9	191	108	89.7	75-125
Magnesium	2910	3520	1350	45.lN(a)	75-125
Manganese	215	293	108	72.1N(a)	75-125
Nickel	77.8	148	108	64.9N(a)	75-125
Potassium	829	1980	1350	85.1	75-125
Selenium	1.1	362	433	83.4	75-125
Silver	0.0	9.5	11	87.8	75-125
Sodium	767	1860	1350	80.8	75-125
Thallium	0.0	377	433	87.1	75-125
Vanadium	21.6	116	108	87.2	75-125
Zinc	64.6	158	108	86.3	75-125

Associated samples MP31426: J8775-1, J8775-2, J8775-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

⁽N) Matrix Spike Rec. outside of QC limits

⁽anr) Analyte not requested

⁽a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.(b) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J8775

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31426 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg

Prep Date:

09/07/05

Metal	J8775-2 Original	MSD	Spikelot MPIRS1	% Rec	MSD RPD	QC Limit
Aluminum	6760	13900	6020	118.6	13.8	20
Antimony	1.3	57.2	111	50.1N(a)	11.3	20
Arsenic	5.6	383	446	84.6	1.8	20
Barium	53.9	457	446	90.4	4.7	20
Beryllium	0.31	9.8	11	85.1	2.1	20
Cadmium	0.057	9.5	11	84.7	1.1	20
Calcium	6750	8590	1390	132.0(b)	16.1	20
Chromium	17.3	72.7	44.6	124.2	29.9 (c)	20 .
Cobalt	4.9	100	111	85.3	1.1	20
Copper	62.2	131	55.7	123.4	21.8 (c)	20
Iron	13800	24400	5800	182.8N(a	38.0 (c)	20
Lead	93.9	170	111	68.3N(a)	11.6	20
Magnesium	2910	4370	1390	104.8	21.5 (c)	20
Manganese	215	289	111	66.4N(a)	1.4	20
Nickel	77.8	145	111	60.3N(a)	2.0	20
Potassium	829	2000	1390	84.0	1.0	20
Selenium	1.1	372	446	83.2	2.7	20
Silver	0.0	9.8	11	87.9	3.1	20
Sodium	767	2040	1390	91.3	9.2	20
Thallium	0.0	387	446	B 6 8	2.6	20
Vanadium	21.6	129	111	96.3	10.6	20
Zinc	64.6	161	111	B6.5	1.9	20

Associated samples MP31426: J8775-1, J8775-2, J8775-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

⁽N) Matrix Spike Rec. outside of QC limits

⁽anr) Analyte not requested

⁽a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

⁽b) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

⁽c) High rpd due to possible sample nonhomogeneity.

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J8775
Account: BCMNJ - ATC Associates, Inc.
Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31426 Matrix Type: SOLID Methods: SW846 6010B Units: mg/kg

Prep Date:

09/07/05

Trep bace:				
Metal	BSP Result	Spikelot MPIRS1	% Rec	QC Limits
Aluminum	5020	5400	93.0	80-120
Antimony	94.9	100	94.9	80-120
Arsenic	355	400	88.8	80-120
Barium	368	400	92.0	80-120
Beryllium	9.0	10	90.0	80-120
Cadmium	9.1	10	91.0	80-120
Calcium	1190	1250	95.2	80-120
Chromium	38.2	40	95.5	80-120
Cobalt	91.6	100	91.6	80-120
Copper	50.8	50	101.6	80-120
Iron	4820	5200	92.7	80-120
Lead	91.7	100	91.7	80-120
Magnesium	1130	1250	90.4	80-120
Manganese	92.8	100	92.8	80-120
Nickel	92.4	100	92.4	80-120
Potassium	1110	1250	8.88	80-120
Selenium	343	400	85.8	80-120
Silver	9.0	10	90.0	80-120
Sodium	1170	1250	93.6	80-120
Thallium	366	400	91.5	80-120
Vanadium	93.1	100	93.1	80-120
Zinc	94.3	100	94.3	80-120

Associated samples MP31426: J8775-1, J8775-2, J8775-3

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: J8775
Account: BCMNJ - ATC Associates, Inc.
Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31426 Matrix Type: SOLID Methods: SW846 6010B

Units: ug/l

Prep Date:

09/07/05

Metal	J8775-2 Original	SDL 1:5	RPD	QC Limits	
Aluminum	60600	63100	4.1	0-10	
Antimony	11.3	0.00	(100.0(a)	0-10	a . A libetion values < 50 x
Arsenic	50.5	51.5	1.9	0-10	Gerial dilution values < 50 x
Barium	484	503	4.0	0-10	197 317/06
Beryllium	2.76	2.83	2.2	0-10	
Cadmium	0.513	0.00	100.0(a)) 0-10	
Calcium	60500	62100	2:6	0~10	
Chromium	155	164	5.4	0-10	
Cobalt	43.6	46.2	6.0	0-10	
Copper	558	579	3.8	0-10	
Iron	123000	127000	2.5	0-10	
Lead	843	880	4.4	0-10	
Magnesium	26100	27100	3.6	0-10	
Manganese	1930	2010	4.1	0-10	
Nickel	697	717	2.9	0-10	
Potassium	7440	5940	20.1*(b)	0-10	
Selenium	9.47	0.00	100.0(a))0-10	
Silver	0.00	0.00	NC	0-10	
Sodium	6880	8550	24,3 (a)	0-10	
Thallium	0.00	0.00	NC	0-10	
Vanadium	194	202	4.0	0-10	
Zinc	579	617	6.6	0-10	

Associated samples MP31426: J8775-1, J8775-2, J8775-3

Results < IDL are shown as zero for calculation purposes

^(*) Outside of QC limits

⁽anr) Analyte not requested

⁽a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

(b) Serial dilution indicates possible matrix interference. Results confirmed with analysis of second

⁽b) Serial dilution indicates possible matrix interference. Results confirmed with analysis of second dilution.

DATA USABILITY REPORT

ACCUTEST CASE NO. J10018

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK SEPTEMBER 2005

REPORTED MARCH 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

MARK TRAXLER
SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of September 15, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Traxler

Mark Traxler

Senior Quality Assurance Scientist

DATA USABILITY SUMMARY ORGANICS AND INORGANICS PEERLESS PHOTO PRODUCTS SITE SEPTEMBER 2005

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the organics and inorganics results from the September 15, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J10018 included a total of two (2) soil samples, plus one (1) matrix spike and one (1) matrix spike duplicate sample for Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Semivolatile Organic Compounds (SVOCs), TCL Organochlorine Pesticides, TCL Polychlorinated Biphenyls (PCBs), Target Analyte List (TAL) metals and cyanide analyses.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, GC/MS tuning, surrogate recoveries, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. Samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) *Test Methods for Evaluating Solid Waste*, Update III, 1996 (SW-846) Methods 8260B, 8270C, 8081A, 8082, 6010B, 7471A and 9012. The quality assurance review of the data described was prepared according to EPA's *National Functional Guidelines for Inorganic Data Review, Final*, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J10018 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the organics and inorganics that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes

the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative:
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record on September 15, 2005, and received at Accutect on the next day. All samples were received intact and in good condition at Accutest.

3.0 FINDINGS/QUALIFIERS

3.1 TCL Volatile Organic Compounds

The following TCL VOCs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike and matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip/field blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits

It is recommended that Case J10018 VOCs results be used with no qualifiers.

3.2 TCL Semivolatile Organic Compounds

The following TCL SVOCs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- GC/MS instrument performance
- Sample result verification and identification
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Quantitation limits

It is recommended that Case J10018 SVOCs results be used with the following qualifiers:

1. Fluoranthene was detected at an estimated concentration, "J" (below the reporting limit [RL]). This value was not adjusted.

3.3 TCL Organochlorine Pesticides

The following TCL organochlorine pesticides analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- Sample result verification and identification
- Initial calibrations
- Performance evaluation mixtures
- Field duplicate precision
- Quantitation limits

It is recommended that Case J10018 TCL organochlorine pesticides results be used with no qualifiers.

3.4 TCL Polychlorinated Biphenyls

The following TCL PCBs analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy
- LCS recoveries
- Laboratory method blank and field blank contamination
- Sample result verification and identification
- Initial calibrations
- Field duplicate precision
- Quantitation limits

It is recommended that Case J10018 TCL PCBs results be used with no qualifiers.

3.5 TAL Metals and Cyanide

The following TAL Metals and cyanide analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J10018 TAL Metals and cyanide results be used with the following qualifiers:

1. Due to low MS and MSD recoveries, the detection limits for antimony are considered as estimated. There were no reported antimony results, so the data was qualified as undetected at an estimated detection limit "UJ".

4.0 SUMMARY

The organics and inorganics results are acceptable as qualified. Holding times, initial and continuing calibration verification results, GC/MS tuning performance, surrogate recoveries, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified low antimony spike recoveries as an area of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - TCL VOCs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL VOLATILE ORGANIC COMPOUNDS

Site Name Peerless Photo Products								La	aboratory	Accutest		
	Project Number 68.28817.0001				Soil sar	nples	in mg/kg	Case	e/Order#	J1001B		
Sampling Date(s) 9/15/2005			İ		Aqueous	samp	iles in ug/L	Fraction	n/Method	CLP Volatiles		
CRQL**	Sample Description or Location Sample Number Matrix % Solids Dilution Factor Sampling Date Comments		CF-003 J10018-1 Soil 94.2 1 9/15/2005	CF-003 J10018-1MS Soil 94.2 1 9/15/2005		CF-003 J10018-1MSD Soil 94.2 1 9/15/2005		FB-004 J10018-2 Soil 94.2 1 9/15/2005				
51	chloromethane	_	َ ن ﴿	72%	1. 1	69%	6 a)	U		1910	· · · · · · · · · · · · · · · · · · ·	203
5	bromomethane		יט י	70%	. 53	68%	1 1	Ü				.1.02
5	vinyl chloride	_	: . U	77%		72%		U	. 1	1.7	1. 2	- 5
5	chloroethane		Ę/ŮŠ	76%	10	73%	isi	U		12		, la
5.5	methylene chlorid	e	» U ~	83%		82%		U :	. v	- 1		
10	acetone		Ü	85%		88%	1 .1	ָּ	· .		1	
5	carbon disulfide			56%	, 4 1, 7	53%	Eq.	~US	37.	+1		
5 間	1,1-dichloroethene	9	ิป	71%	9.	69%	sa i	U			14.4	
5	1,1-dichloroethan	е	υ	81%	1	79%		U			9. 3	
· 5	trans-1,2-dichloro	ethene	Ŋ	73%		73%		U	1.0	1,191	<u>.</u>	
5	cis-1,2-dichloroeth	rene	U	80%		79%	100	U		194		73.50
- 5 *	chloroform		U	84%		82%	137	U				
5	1,2-dichloroethane	e	Ü	82%	ii A	82%		U		1 1 1		
10	2-butanone		U	63%		66%_	1.1	י ט ^י		1.48		No. ii
5	1,1,1-trichloroetha	ine	ı U.	72%_	1	71%	1977	U				. Ne
5	carbon tetrachlorid	de	U.	66%	M.	65%	1 T	U				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5	bromodichloromet	thane	U	80%	1	81%	100	U	"			
5	1,2-dichioropropa	ne	U	82%	- 1	81%	1.5.5	Ü				113
5	cis-1,3-dichloropro	opene	U	66%		68%		U			1	30 - 50
5	trichloroethene		U	74%		74%		U				
5	dibromochloromet	thane	U	79%		82%		υ				
5	1,1,2-trichloroethane		U	78%	1	81%	+:	U !			1	
	benzene		Ų	77%	1	76%	1:	U:	- 1			
5 🐡	trans-1,3-dichloro	propene	້ ປະ	64%	100	67%	1	U				
5	bromoform		U	72%	73	76%		Ú		·	1 - 2	

QA Scientist M have Date 3/21/06

DATA SUMMARY - TCL VOLATILE ORGANIC COMPOUNDS

Site Name Peerless Photo Products Project Number 58.28817.0001					Laborat								atory Accutest		
					Soli samples in mg/kg							ase/Order#	J10018		
į	Sampling Date(s) 9/15/2005						Aqueous	samp	ies in ug/L		Fraction/Method		CLP Volatiles		
	Sample Descripti	on	CF-003		CF-003	10	CF-003		FB-004		-				
	Sample Number Matrix % Solids		Soil		J10018-1MS Soil 94.2		J10018-1MSD Soil 94.2		J10018-2 Soil 94,2			 			
															
5 1	4-methyl-2-pentar	none		₹ U .*.	_	150 150 301 13	63%	i jõ		ືປ		1,000		T	
*£5	2-hexanone			U	49%	5.5	55%	3		ับ	1. %	- 2		27.1	
	tetrachloroethene	<u> </u>		U	102%	Č.	112%	10.35	<u> </u>	U	1	i di	ar sp		
5	1,1,2,2-tetrachlor	oethane		ີ ປູ້	71%		76%	7 . 10		U	- 1	, s.,	A 15	100	
變化計	toluene			÷υ	74%	17.	75%	- 3		U	· .	32	13		
5	chlorobenzene	-		់ប៉ុ	74%	99	77%	14.5		U		1	Projection (Projection)	5 77	
- 1	ethylbenzene			·U.	69%	4	71%	1.3		U	1.1	1	La de	1.5	
5	styrene			יטי.	65%		69%	7.0		U		13.3	Res (
2	xylenes (total)	_		ับ	108%	. P. P.	113%	1.34		U		194	1. 70.		
	Surrogate Recove	ery, %		N NEW		T.		15.76		1/15	F 7	1.5	100	1.1	
W. 7	dibromofluorome	thane	104	11.5	104	14, 15	104	1.50	102	2.0			v 5		
	1,2-dichloroethan	e-d4	96	0.5%	97	17.37	97	1	95			,	1.0	\$	
40.14	toluene-d8		104	100	105		105	1	105	2	:	100			
10,7,44	4-bromofluorober	zene	106	37.9	105	1511.2	105	100	103					1,63	

QUALIFIER CODES - TCL SVOCs

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

		Site Name	Peerless	eerless Photo Products]					Laboratory	Accutest			
		Project Number	68.28817	7.0001]		Soil samples	ln mg/kg	C	ase/Order#	J10018		
		Sampling Date(s)	9/15/200	5]		Aqueous samp	les in ug/L	Frac	ction/Method	CLP Semivolatile	es	
	1	Sample Description		Ī			_									
	1	or Location		CF-003		CF-003		CF-003		FB-004						
	;	Sample Number		J10018-1		J10018-1M	IS_	J10018-1M	ASD	J10018-2						
		Matrix		Soil		Soil		Soil		Soil						
		Percent Solids		94.2		94.2		94.2		94.2						
-		Dilution Factor		1		1		1		1		<u> </u>			<u> </u>	<u> </u>
Q)	SOIL RL	Sampling Date		9/15/2005		9/15/2005		9/15/2005		9/15/2005				_	ļ	l
31.5	RE	Comments		<u> </u>			_		— ,				<u> </u>	 		
0 7	70	bis(2-chloroisopropyl)	ether		ַט''	52%	1	52%		U						
0	70	1,2-dichlorobenzene			U	57%	:	58%		i.U						
0	70	1,3-dichlorobenzene			U	56%		57%		Ü						
0	70	1,4-dichlorobenzene			U	55%	٠.	57%	1	U		1				
0	180	phenol			υ	62%	Ŀ	63%	. 3	U						
10-	* 70	bis(2-chloroethyl)ethe			U	46%		47%		.n,	- 1	1				
0	180∜	2-chlorophenol	-		U	65%	Α.	64%		U	. :					
10	180	2-methylphenol			Ü	61%		59%		U				į.	1.	
10%	180	4-methylphenol			U	61%		59%	1	U						
10 -	70	N-nitroso-di-n-propyla	mine	1	ΰ	55%		54%		U.		-				
10	180	hexachloroethane			U	53%		54%	7.	U	i					
10	5 70 €	nitrobenzene			U	58%		58%	1 :	U						
10	70	isophorone			U	60%	, a 1	59%	Vig	U						, , , , , , , , , , , , , , , , , , ,
10	180	2-nitrophenol			U	60%		60%		υ				1.4		
10	180	2,4-dimethylphenol			U	76%		74%	* 1	U						1.00
10	70	bis(2-chloroethoxy)me	ethane		Ü	54%		54%	2.1	U					- 10 mg	<u></u>
10	180	2,4-dichlorophenol	_		U	76%	1.	72%	- 1	÷υ						
10	70	naphthalene	_		U	61%		61%		U						
10	180	4-chloroaniline			U	51%		52%	,	· U	_					

QA Scientist M. Maples Date 3/21/06

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

		Site Name Peerless Photo Products				 -					Laboratory	Accutest			
		Project Number	68.28817.000	1		-]		Soil samples i	n mg/kg	c	Case/Order#	J10018		
		Sampling Date(s)	9/15/2005]		Aqueous sampl	es in ug/L	Fra	ction/Method	CLP Semivolatile	is	
	ŀ	Sample Description	1			_	T	_	1		1	1		T	
	i	or Location	CF-0		CF-003		CF-003		FB-004		!	<u> </u>			
1-	. I	Sample Number	J100	018-1	J10018-1N	15_	J10018-1N	ISD_	J10018-2		10.	 -	 	 	
3	70	hexachlorobutadiene		U	66%		67%		U			·I			
1	180	4-chioro-3-methylphen	ol	Ú	83%		79%	1	U				<u></u>		
3	70∵	2-methylnaphthalene		ָּט	61%		59%	ļ	Ü						
22	700	hexachiorocyclopentac	diene	Ű	24%	1 1	22%	1000	U		<u> </u>				
3	180	2,4,6-trichlorophenol		U	83%	1	78%		Ü						
5	180	2,4,5-trichlorophenol		Ü	79%	1	72%		· U	10.1.					
οŅ	70	2-chloronaphthalene		Ű	71%		67%		U					-1	
5	180	2-nitroaniline			74%	1	71%	24	U				1.5		
0 -	.70∼	dimethylphthalate		ˈu	68%		64%		U	14.0			10.0		
0.2	70	acenaphthylene		Ü	67%		64%	1	U						
0 1	70	2,6-dinitrotoluene		Ü	75%	1.0	70%		Ü						
5	180	3-nitroaniline		Űυ	65%	201	63%	1	U	- 1					
03	70	acenaphthene		U	73%		71%	1	U	1.3					
5	700	2,4-dinitrophenol		U	22%		16%	1	U						
:5	700	4-nitrophenol		υ	69%	1.	55%	10.5	U	i. i					
0	70	dibenzofuran		U	71%		68%	1	U	2		1.			7. 7. 7
10 4	70	2,4-dinitrotoluene		U	73%		70%		Ü					1.	
10	70	diethylphthalate		انتا	73%	ļ.,	69%		Ü	1::1					
10	70	4-chlorophenyl-phenyl	ether	U	69%	 	66%	1	ن						
10	70	fluorene		U	B1%	\	77%	100	U	1.5,				1	1:11
25				U	57%	1	56%	1	Ü	7			10		

QA Scientist M Hades Date 3/21/06

DATA SUMMARY - TCL SEMIVOLATILE ORGANIC COMPOUNDS

	Site Name Peerless Photo Products]					Laboratory	Accutest				
		Project Number	68.28817	.0001				Ī		Soil samples	n mg/kg	С	ase/Order#	J10018		
		Sampling Date(s)	9/15/2005	5				j		Aqueous sampl	es in ug/L	Frac	tion/Method	CLP Semivolatile	ıs	
	ļ	Sample Description											r	T		
		or Location		CF-003		CF-003		CF-003		FB-004				L		
_		Sample Number		J1001B-1		J10018-1	vis	J10018-1N	ISD	J10018-2			<u></u>	 _		
3.5	700	4,6-dinitro-2-methylphe	enol		₽Ù.	28%	, deck	21%		. ZU [®] .	P. Pape	20°		1 134		70.0
1	180	n-nitrosodiphenylamin	e		Ü	71%	705	67%		U)) = 5 (6 %) 21	1 4.1	
133	70	4-bromophenyi-phenyi	lether		Ü	77%	30.5	71%	1 36	U		19.			Ja 6	
3/4	770	hexachlorobenzene		i	Ü	88%	48.5	86%	1:7	U		11/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$i = i j j_1 i$	71 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5	700	pentachlorophenoi			Ú	69%	Physical Party	67%	3	Ų.	37.44	F 1.			1 11 5 1 47, 1	13-24
0	70	phenanthrene			Ú	82%	15	79%		ំប្	(11.7	· '',	i ing	1 1	前水 別
0	70	anthracene			ŤŲ.	82%	18	78%		Ú	474.	A 1.11	1876		e State	i 1.16
0	70	carbazole			ľŮ	78%	17/7	75%	1.76	Ų	- 5 A	7/1		i aniq	1 4 4	A 25
0.	707	di-n-butyiphthalate		1	U	75%	1340	72%	7.	U.		8.1				M.145)
0.	×₹70	fluoranthene		19.5 J	J.	79%	10	77%	de la	U.	1 Page	2733		l pro-	त खेरी ५ व खेरी ५	
0	70	pyrene			יט י	82%	. fath	81%	40	U	1 4	311 (17)	7.12	N. A. C		
0	∦70 °	butylbenzylphthalate			Ju:	76%	. intro	73%	i eta	U≻	1.30	U 17 E 1			1.24 1.15	(Fried
0	180	3,3'-dichlorobenzidine			יָטָי:	52%	- Air	48%	V jos	∬ U ∠		The second	1		$m_{\tilde{q}} V_{\tilde{q}}^2$	21 to 6
Q.	₹70	benzo(a)anthracene			Ü	79%	116	77%	POLICE POLICE	. U≠	441	2 1 9 1	17	Think's		1127 g (1 1187
00	*70°	chrysene			U	79%	35	76%	1013	Ü	(हें)	Fria -	15.7	1 1		
10	70	bis(2-ethylhexyl)phthal	late		יט	81%	6.4	80%		'U'		2 1				1.0
0	70 [∆]	di-n-octylphthalate			ΰ	112%	201	118%	Lann	U	[34]	#:	7	1	1.3	#1.1 A
10	海70学	benzo(b)fluoranthene			Ü	86%	1900	83%	195	U	1 44					
10	√470°	benzo(k)fluoranthene			Ú	98%	32.1	98%	4000	U	14/36	1.		1 6.8	7.75.9	7.17
10	s-70 [®]	benzo(a)pyrene	-		יט!	81%	1365	78%	1	U	J. Sp.				1.5	4 4
10	∌70 *′	indeno(1,2,3-cd)pyren	•		Ü	B1%	136	72%	117	Ů.	4 4/2	5.7		1	2.43	je br
10	#70°	dibenz(a,h)anthracene			U	64%	14	57%	123.30	U	790	1.1			1.00	1, 3
_	_	benzo(a h i)-perviene			111	54%		47%	11.10	1				1 1 2	17	

QA Scientist M Stables Date 3/21/06

QUALIFIER CODES - TCL PESTICIDES

TO SEE SECTION OF THE
- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL PESTICIDES

	Site Name Peerless Photo Products											Laboratory	Accutext	
	Project Number	68.28817	.0001]		Soll san	nples	in mg/kg		c	Case/Order#	J10018	
	Sampling Date(s)	9/15/2005			Ī		Aqueous	samı	oles in ug/L		Frac	ction/Method	CLP Pesticides	
					·									
	Sample Descripti or Location	on	CF-003		CF-003		CF-003		FB-004			1	j	1 1
	Sample Number		J10018-1		J10018-1M	IS	J10018-1M	ISD	J10018-2			ļ	 	
	Matrix		Soil		Soil		Soil		Soil			 	i	1
	Percent Solids		94.2		94.2		94.2		94.2			1	†	
	Dilution Factor		1		1		1		1					
	Sampling Date		9/15/2005		9/15/2005		9/15/2005		9/15/2005					
'RL	Comments		<u> </u>	_		_						<u> </u>		
1.3	aldrin			· Ú	116%		115%	4.	4.3	} :				1:
1:3	alpha-BHC			U	101%	T.	104%			υ				
1.3	beta-BHC			. U.	110%	4.7	108%			U		1		
1:3	delta-BHC			Ü	98%		99%		I	U				
1.3	gamma-BHC (Lin	dane)		Ü	104%	22	105%			U				1.1
1.3	alpha-chlordane		1.7	47	105%		110%	1.0	3.4					
1.3	gamma-chlordan		1.6	1.7	104%	1.7	101%		3.1	1				
1.3	dieldrin		2.8	No.	88%	1	85%		6.8	1, 5,			1 :	
1.3	4,4'-DDD			Ü	118%		112%	1		U				100
1:3%	4,4'-DDE		2.8	100	90%		85%	1	2.5	,			1	
-113 h	4,4'-DDT		2.7	12.7	117%	177	108%	1	2.0				1	
1.3	endrin			:'υ	110%		106%	1		υ				
1.3	endosulfan sulfat			Ü	104%		100%		1	Ü	-			
1.3	endrin aldehyde			Ü	95%	1-	93%	1.		U				
1.3%	endosulfan-i		1	Ü	104%		101%			U.				
1.3	endosulfan-li			U	108%	1	103%	1		U				
ាំ1:3 ។	heptachior			υ	102%	1	104%			υ				
1.3	heptachlor epoxic	 le		Ü	109%	190	105%			C			1. 1	- 4
3.3	methoxychlor			U,	126%		121%	Τ.		υ				
3.3	endrin ketone			U	105%		99%	1	1	U				
17	toxaphene			U						U				
*	Surrogate Recove	ery, %			<u> </u>			-						
Sec. 3675	tetrachloro-m-xyle		99	11.	91		93		95				1	
The Control	tetrachloro-m-xyle		84	1.1	80	1	83		82	1.				
Seq. 8	decachlorobipher		93	1	102		92		90	\top				
-3 (mg)	decachlorobipher		87	1	95		86		86					

QA Scientist M Massler Date 3/21/06

QUALIFIER CODES - TCL PCBs

Affiliar Ad Arabaniania (Cost Dalla Americania)

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - TCL POLYCHLORINATED BIPHENYLS

Site Name					Labora							Accutest	
Project Number	68.28817	7.0001]		Soil san	nples	in mg/kg		C	ase/Order#	J10018	
Sampling Date(s)	9/15/200	5]		Aqueous	samp	les in ug/L		Frac	ction/Method	CLP PCBs	
Sample Descript or Location Sample Number Matrix Percent Solids Dilution Factor Sampling Date REC Comments		CF-003 J10018-1 Soil 94.2 1 9/15/2005		CF-003 J10018-1M Soil 94.2 1 9/15/2005	1S	CF-003 J10018-1M Soil 94.2 1 9/15/2005	ISD	FB-004 J10018-2 Soil 94.2 1 9/15/2005					
33 Aroclor 1016			U	102%		102%	1		U		[Jan]	HA 1	* 51/4 14, 1-2
33 Aroclor 1221 Aroclor 1232		╂	U	-					U	-			
33 Aroclor 1242			U						U				1.3
33 Aroclor 1248 Aroclor 1254		<u> </u>	U						U		- 1		
Aroclor 1260 Surrogate Recov	1001 0/	 	U	100%		100%			U				1. 12
tetrachloro-m-xy		95		93		93		94					
tetrachloro-m-xy		98		95	1	95	ļ.,	97	1		ļ		
decachlorobiphe decachlorobiphe		96 97	-	93 94		93 93	-	95 96	-	- '			

QA Scientist M Hapler Date 3/21/06

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

page 1

	Site Name	Peerless Photo Products						s	oil in mg/kg		La	aboratory	Accutes	t						
Pr	oject Number	68.2	288	17.0001	_								C	ase	e/Order #	J10018				
	-	9/15			=		=	l I					Ero		n/Method	TAL Ma	tala	SW-846 30	100/60105	
Sai	npling Date(s)	9/10	7/2(005				 					Fial	LIUI	i/wethou	TAL ME	lais -	377-040 30	107/00 101	
	Sample Location	on																		
	or Description		4	CF-003		CF-003		CF-003		FB-004	_					 				
	Sample Number		4	J10018-1	_	J10018-1										↓			!	
IDL/CRDL	Sampling Date	P		9/15/20	05	9/15/20	05	9/15/20	05	9/15/20	05			_		 	.	<u> </u>		
			y						_		-		<u> </u>			 -	-		 	
20	Aluminum	X	4	2820		103.5%	<u> </u>	92.3%		2730							-		-	
1	Antimony	X	4		UJ	60.2%	J-	59.0%	J-		UJ								-	
1	Arsenic	X	4	2.0	U	85.1% 88.4%		85.4% 88.1%		1.9	-				 	┨				
20 0.5	Barium	X	4		- $+$	89.2%					U			-		ļ			 	
0.5	Beryllium Cadmium	 	4		υ	87.2%		89.2% 88.2%			U					 -				1
500	Cadmium	\frac{1}{x}	4	925	-	111.0%		93.2%	-	1800	U					}			·	
100	Chromium	x	4	5.4		90.3%		90.0%		4.8					- 	·[+		-	
5	Cobalt	x	4	J.4	U	87.5%	-	87.3%		4.0	U	 				 	-		1	1
2.5	Copper	X	1	5.4	-	90.9%		93.0%		5.5	-					-	+-			+
10	Iron	X	1	5080		87.8%		80.7%		4470	-					 	+			+
***1	Lead	X	7	4.4		88.1%		88.1%		4.4	-					1	1			
500	Magnesium	X	7	617		100.5%		86.3%		1100						1	1			
1.5	Manganese	X	٦	91.6		85.8%		76.5%		87.1							1			
0.03	Mercury		X		Ü	101.4%		104.5%			U									
4	Nickel	X	7		U	87.7%		88.1%			U									
500	Potassium	X	\Box		U	97.6%		93.1%			U								J	
1.1.2	Selenium	X	\Box	,	U	85.8%		87.9%			U								<u> </u>	
	Silver	X			U	88.2%		89.1%			U					<u> </u>			1	
500	Sodium	X			U	87.9%		88.6%		l 	U								<u> </u>	
1	Thallium	X	_]		U	86.8%		87.2%			U					!			1	
5	Vanadium	X	_	7.2		86.1%		85.8%		7.3	-			_			4_			
2	Zinc	X	_	10.2		88.0%		86.1%		13.0	-								<u> </u>	
		\Box	_[ļ						ļ			_	
Her 61 1 2	Cyanide				U	-					U			ل_		<u>L</u>			<u> </u>	

QA Scientist M Hayola DATE 3/21/06

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client:

ATC Associates, Inc.

Job No

J10018

Site:

AGFA-Peerless, Shorham, NY

Report Date

9/30/2005 1:16:02 PM

2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 09/15/2005 and were received at Accutest on 09/16/2005 properly preserved, at 2.2 Deg. C and intact. These Samples received an Accutest job number of J10018. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: SO

Batch ID: VG4231

- All samples were analyzed within the recommended method holding time.
- Sample(s) J10018-1MS, J10018-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GCMS By Method SW846 8270C

Matrix: SO

Batch ID: OP21388

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J10018-1MS, J10018-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Extractables by GC By Method SW846 8081A

Matrix: SO

Batch ID: OP21389

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- Sample(s) J10018-1MS, J10018-1MSD, OP21389-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- J10018-1 for 4,4'-DDE: Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.
- J10018-1 for alpha-Chlordane: Reported from 2nd signal due to interference on 1st signal.
- J10018-2 for 4,4'-DDE: Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only.

Extractables by GC By Method SW846 8082

Matrix: SO

Batch ID: OP21390

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J10018-1MS, J10018-1MSD, OP21390-MSMSD were used as the QC samples indicated.

Metals By Method SW846 6010B

Matrix: SO

Batch ID: MP31582

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J10018-1MS, J10018-1MSD, J10018-1SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Antimony are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Antimony are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- RPD(s) for Serial Dilution for Arsenic, Beryllium, Nickel, Sodium are outside control limits for sample MP31582-SD1.

 Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- RPD(s) for Serial Dilution for Calcium, Chromium, Magnesium, Potassium, Zinc are outside control limits indicating possible matrix interference.

Metals By Method SW846 7471A

Matrix: SO

Batch ID: MP31572

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J10018-1MS, J10018-1MSD were used as the QC samples for metals.

Wet Chemistry By Method EPA 160.3 M

Matrix: SO

Batch ID:

GN82917

There is no applicable data to evaluate for EPA 160.3 M.

Wet Chemistry By Method SW846 9012 M

Matrix: SO

Batch ID:

GP29971

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J10018-1DUP, J10018-1MS were used as the QC samples for Cyanide.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (J10018).

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number:

<u>J10018</u>

Client Name:

ATC Associates, Inc.

		Analytical Requirements										
Customer	Laboratory	VOA	BNA				Metals	Other				
Sample Code	Sample ID	GC/MS	GC/MS	GC	GC	GC						
		Method	Method	Method	Method	Method						
		8260B	8270C	8081A	8082	8151		Cyanide				
CF-003	J10018-1	X	Х	Х	Х		Х	Х				
FB-004	J10018-2	Х	Х	X	Х		Х	Х				

Client Sample ID: CF-003 Lab Sample ID: J10018-1

Matrix: SO - Soil
Method: SW846 8260B

Date Sampled: 09/15/05 Date Received: 09/16/05 Percent Solids: 94.7

Project:

AGFA-Peerless, Shorham, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 G83291.D 1 09/20/05 SJM n/a n/a VG4231

Run #2

Initial Weight

Run #1 5.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	1.9	ug/kg	
71-43-2	Benzene	ND	1.0	0.59	ug/kg	
75-27-4		ND	5.2	0.18	ug/kg	
75-25-2	Bromoform	ND	5.2	0.49	ug/kg	
74-83-9	Bromomethane	ND	5.2	0.77	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.5	ug/kg	
75-15-0	Carbon disulfide	ND	5.2	0.57	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.2	0.60	ug/kg	
108-90-7	Chlorobenzene	ND	5.2	0.26	ug/kg	
75-00-3	Chloroethane	ND	5.2	1.2	ug/kg	
67-66-3	Chloroform	ND	5.2	0.33	ug/kg	
74-87-3	Chloromethane	ND	5.2	0.80	ug/kg	
124-48-1	Dibromochloromethane	ND	5.2	0.32	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.2	0.23	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.2	0.28	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.2	0.36	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.2	0.26	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.2	0.39	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.2	0.61	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.2	0.20	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.2	0.27	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.52	ug/kg	
591-78-6	2-Hexanone	ND	5.2	0.93	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.2	1.2	ug/kg	
75-09-2	Methylene chloride	ND	5.2	0.22	ug/kg	
100-42-5	Styrene	ND	5.2	0.67	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.2	0.50	ug/kg	•
127-18-4	Tetrachloroethene	ND	5.2	0.81	ug/kg	
108-88-3	Toluene	ND	1.0	0.42	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.2	0.58	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.2	0.71	ug/kg	
79-01-6	Trichloroethene	ND	5.2	0.46	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:

J10018-1

Matrix: Method: SO - Soil

Project:

SW846 8260B

AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05 Date Received: 09/16/05 Percent Solids: 94.7

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	ND ND	5.2 2.1	0.26 0.57	ug/kg ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	104% 96% 104% 106%		70-12 62-13 76-13 67-13	31 % 19 %		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc. 1	Units	Q
124-38-9	Carbon dioxide Total TIC, Volatile		2.89	360 0	.00.4990395.7993	ug/kg ug/kg	JNB

rackWarketel t....

Client Sample ID: CF-003 Lab Sample ID: J10018-1

Matrix:

SO - Soil

SW846 8270C SW846 3550B

AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05 **Date Received:** 09/16/05

Percent Solids: 94.7

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 R47015.D 1 09/20/05 WHS 09/17/05 OP21388 ER1634

Run #2

Method:

Project:

Initial Weight Final Volume

Run #1 30.3 g

1.0 ml

Run #2

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	170	42	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	170	40	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	170	41	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	170	40	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	700	14	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	700	40	ug/kg	
95-48-7	2-Methylphenol	ND	170	33	ug/kg	
	3&4-Methylphenol	ND	170	34	ug/kg	
88-75-5	2-Nitrophenol	ND	170	41	ug/kg	
100-02-7	4-Nitrophenol	ND	700	56	ug/kg	
87-86-5	Pentachlorophenol	ND	700	44	ug/kg	
108-95-2	Phenol	ND	170	40	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	170	40	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	170	34	ug/kg	
83-32-9	Acenaphthene	ND	70	3.7	ug/kg	
208-96-8	Acenaphthylene	ND	70	17	ug/kg	
120-12-7	Anthracene	ND	70	5.4	ug/kg	
56-55-3	Benzo(a)anthracene	ND	70	3.7	ug/kg	
50-32-8	Benzo(a)pyrene	ND	70	6.3	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	70	5.0	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	70	6.1	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	7 0	5.6	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	70	4.8	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	70	7.2	ug/kg	
91-58-7	2-Chloronaphthalene	ND	70	6.6	ug/kg	
106-47-8	4-Chloroaniline	ND	170	9.7	ug/kg	•
86-74-8	Carbazole	ND	70	4.9	ug/kg	
218-01-9	Chrysene	ND	70	4.8	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	70	5.4	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	70	13	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	70	6.9	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	70	5.5	ug/kg	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

A MARKETT OF A CALCULATION OF

Client Sample ID: CF-003

Lab Sample ID: J10018-1 Matrix: SO - Soil

Method: SW846 8270C SW846 3550B Project: AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05 Date Received: 09/16/05 Percent Solids: 94.7

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	70	5.8	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	70	5.8	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	70	6.4	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	70	6.3	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	70	6.1	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	170	8.1	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	70	10	ug/kg	
132-64-9	Dibenzofuran	ND	70	4.4	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	70	5.1	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	70	6.3	ug/kg	
84-66-2	Diethyl phthalate	ND	70	5.1	ug/kg	
131-11-3	Dimethyl phthalate	ND	70	3.9	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	70	5.6	ug/kg	
206-44-0	Fluoranthene	19.5	70	3.9	ug/kg	J
86-73-7	Fluorene	ND	70	5.9	ug/kg	
118-74-1	Hexachlorobenzene	ND	70	5.6	ug/kg	
87-68-3	Hexachlorobutadiene	ND	70	5.0	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	700	7.4	ug/kg	
67-72-1	Hexachloroethane	ND	170	6.0	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	70	9.6	ug/kg	
78-59-1	Isophorone	ND	70	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	70	4.3	ug/kg	
88-74-4	2-Nitroaniline	ND	170	9.1	ug/kg	
99-09-2	3-Nitroaniline	ND	170	8.6	ug/kg	
100-01-6	4-Nitroaniline	ND	170	7.8	ug/kg	
91-20-3	Naphthalene	ND	70	4.5	ug/kg	
98-95-3	Nitrobenzene	ND	70	3.5	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	70	4.9	ug/kg	•
86-30-6	N-Nitrosodiphenylamine	ND	170	4.4	ug/kg	·
85-01-8	Phenanthrene	ND	70	4.7	ug/kg	
129-00-0	Pyrene	ND	70	4.5	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	70	4.8	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	64%		34-1	11%	
4165-62-2	Phenol-d5	65%		34-1		• •
118-79-6	2,4,6-Tribromophenol	82%		33-1		
4165-60-0	Nitrobenzene-d5	62%		29-1		
321-60-8	2-Fluorobiphenyl	69%		38-1		ن د هو
J=1 00 0	1001001pilotiji			50 1	-3 /0	- A

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 3 of 3

Client Sample ID: CF-003

Lab Sample ID:

J10018-1

Date Sampled: 09/15/05

Matrix: Method: SO - Soil SW846 8270C SW846 3550B Date Received: 09/16/05 Percent Solids: 94.7

Project:

AGFA-Peerless, Shorham, NY

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	91%		32-136%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	system artifact/aldol-condensat system artifact/aldol-condensat system artifact/aldol-condensat system artifact/aldol-condensat unknown Total TIC, Semi-Volatile	3.64 3.92 4.24 5.06 25.98	330 410 49000 220 220 220	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg]]]	

Report of Analysis

Client Sample ID: CF-003 Lab Sample ID: J10018-1

Matrix:

Project:

SO - Soil

Method:

SW846 8081A SW846 3545

AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05 Date Received: 09/16/05

Percent Solids: 94.7

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch OA25350.D 1 09/20/05 **MCR** 09/17/05 OP21389 **GOA808** Run #1

Run #2

Initial Weight Final Volume 15.3 g

Run #1

10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	1.4	0.50	ug/kg	
319-84-6	alpha-BHC	ND	1.4	0.12	ug/kg	
319-85-7	beta-BHC	ND	1.4	0.62	ug/kg	
319-86-8	delta-BHC	ND	1.4	0.10	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.4	0.34	ug/kg	
5103-71-9	alpha-Chlordane a	1.7	1.4	0.46	ug/kg	
5103-74-2	gamma-Chlordane	1.6	1.4	0.17	ug/kg	
60-57-1	Dieldrin	2.8	1.4	0.24	ug/kg	
72-54-8	4,4'-DDD	ND	1.4	0.24	ug/kg	
72-55-9	4,4'-DDE ^b	2.8	1.4	0.27	ug/kg	
50-29-3	4,4'-DDT	2.7	1.4	0.26	ug/kg	
72-20-8	Endrin	ND	1.4	0.16	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.4	0.22	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.4	0.23	ug/kg	
959-98-8	Endosulfan-I	ND	1.4	0.13	ug/kg	
33213-65-9	Endosulfan-II	ND	1.4	0.40	ug/kg	
76-44-8	Heptachlor	ND	1.4	0.087	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.4	0.21	ug/kg	
72-43-5	Methoxychlor	ND	3.5	0.42	ug/kg	
53494-70-5	Endrin ketone	ND	3.5	0.24	ug/kg	
8001-35-2	Toxaphene	ND	17	13	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	9 9%		30-14	10%	•
877-09-8	Tetrachloro-m-xylene	84%		30-14	10%	
2051-24-3	Decachlorobiphenyl	93%		23-15	55%	
2051-24-3	Decachlorobiphenyl	87%		23-15	55%	

(a) Reported from 2nd signal due to interference on 1st signal.

(b) Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15 %) so using for confirmation only. 19 $\tilde{\Omega}$

ND = Not detected

MDL - Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Lab Sample ID:

J10018-1

Matrix: Method:

Project:

SO - Soil

SW846 8082 SW846 3545

AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05

Date Received: 09/16/05

Percent Solids: 94.7

File ID DF By Prep Date Prep Batch **Analytical Batch** Analyzed 2G05252.D 09/17/05 OP21390 G2G188 Run #1 1 09/20/05 OYA

Run #2

Initial Weight Final Volume

Run #1 15.3 g

10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND		7.9	ug/kg	
11104-28-2	Aroclor 1221	ND	35	8.1	ug/kg	
11141-16-5	Aroclor 1232	ND	35	8 1	110/kg	

ND 35 53469-21-9 Aroclor 1242 5.4 ug/kg ND 35 12672-29-6 Aroclor 1248 9.4 ug/kg ND 35 11097-69-1 Aroclor 1254 8.6 ug/kg 11096-82-5 Aroclor 1260 ND 35 5.7 ug/kg

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	95%		28-136%
877-09-8	Tetrachloro-m-xylene	98%		28-136%
2051-24-3	Decachlorobiphenyl	96%		27-151%
2051-24-3	Decachlorobiphenyl	97%		27-151%

MDL - Method Detection Limit

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: CF-003

Lab Sample ID: J10018-1 Matrix: SO - Soil Date Sampled: 09/15/05 Date Received: 09/16/05 Percent Solids: 94.7

Project: AGFA-Peerless, Shorham, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2820	22	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Antimony	<1.1	ី 1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Arsenic	2,0	§ 1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Barium	<22	22	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.54	0.54	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.54	0.54	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Calcium	925	540	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Chromium	5.4	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Cobalt	< 5.4	5.4	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Copper	5.4	2.7	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Iron	5080	g 11	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Lead	4.4	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Magnesium	617	540	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Manganese	91.6	1.6	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.032	0.032	mg/kg	1	09/19/05	09/20/05 MKY	V SW846 7471A ¹	SW846 7471A ³
Nickel	<4.3	4.3	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Potassium	<540	540	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Selenium	<1.1	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Sodium	< 540	540	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Thallium	<1.1	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Vanadium	7.2	5.4	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Zinc	10.2	2.2	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA16339(2) Instrument QC Batch: MA16351(3) Prep QC Batch: MP31572(4) Prep QC Batch: MP31582

Report of Analysis

Page 1 of 1

Client Sample ID: CF-003

Lab Sample ID: J10018-1 Matrix: SO - Soil Date Sampled: 09/15/05 Date Received: 09/16/05 Percent Solids: 94.7

Project:

AGFA-Peerless, Shorham, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Cyanide	< 0.25	0.25	mg/kg	1	09/21/05 14:21	NR	SW846 9012 M
Solids, Percent	94.7		%	1	09/19/05	AK	EPA 160.3 M

Lab Sample ID: Matrix:

J10018-2

Method:

SO - Soil SW846 8260B

Date Sampled: 09/15/05 Date Received: 09/16/05

Percent Solids: 94.2

Project: AGFA-Peerless, Shorham, NY

File ID G83292.D Run #1

DF 1

Analyzed 09/20/05

By SJM **Prep Date** n/a

Prep Batch

Analytical Batch

VG4231 n/a

Run #2

Initial Weight

Run #1 4.8 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	2.0	ug/kg	
71-43-2	Benzene	ND	1.1	0.63	ug/kg	
75-27-4	Bromodichloromethane	ND	5.5	0.19	ug/kg	
75-25-2	Bromoform	ND	5.5	0.53	ug/kg	
74-83-9	Bromomethane	ND	5.5	0.82	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.6	ug/kg	
75-15-0	Carbon disulfide	ND	5.5	0.60	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.5	0.64	ug/kg	
108-90-7	Chlorobenzene	ND	5.5	0.28	ug/kg	
75-00-3	Chloroethane	ND	5.5	1.3	ug/kg	
67-66-3	Chloroform	ND	5.5	0.35	ug/kg	
74-87-3	Chloromethane	ND	5.5	0.86	ug/kg	
124-48-1	Dibromochloromethane	ND	5.5	0.34	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.5	0.25	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.5	0.30	ug/kg	
75-35-4	1,1-Dichloroethene	ND	5.5	0.38	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	5.5	0.28	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	5.5	0.42	ug/kg	
78-87 <i>-</i> 5	1,2-Dichloropropane	ND	5.5	0.65	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.5	0.22	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.5	0.29	ug/kg	•
100-41-4	Ethylbenzene	ND	1.1	0.56	ug/kg	
591-78-6	2-Hexanone	ND	5.5	0.99	ug/kg	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.5	1.3	ug/kg	•
75-09-2	Methylene chloride	ND	5.5	0.24	ug/kg	
100-42-5	Styrene	ND	5.5	0.72	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.5	0.53	ug/kg	
127-18-4	Tetrachloroethene	ND	5.5	0.87	ug/kg	
108-88-3	Toluene	ND	1.1	0.44	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.5	0.62	ug/kg	•
79-00-5	1,1,2-Trichloroethane	ND	5.5	0.75	ug/kg	
79-01-6	Trichloroethene	ND	5.5	0.49	ug/kg	n 23

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:

J10018-2

Matrix: Method: SO - Soil

SW846 8260B

AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05

Date Received: 09/16/05 Percent Solids: 94.2

VOA TCL List

Project:

Compound	Result	RL	MDL	Units	Q	
Vinyl chloride Xylene (total)			0.28 0.61	ug/kg ug/kg		
Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
Dibromofluoromethane	102%					
•	- ASULORUS 5 (19.3568) 2+5:					
4-Bromofluorobenzene	103%		67-13	37%		
Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
Carbon dioxide Total TIC, Volatile		2.89	180 0	1994/03/00/95 259		JNB
	Vinyl chloride Xylene (total) Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene Tentatively Identified Compactors Carbon dioxide	Vinyl chloride Xylene (total) Surrogate Recoveries Run# 1 Dibromofluoromethane 1,2-Dichloroethane-D4 7oluene-D8 4-Bromofluorobenzene 103% Tentatively Identified Compounds Carbon dioxide	Vinyl chloride Xylene (total) Surrogate Recoveries Run# 1 Dibromofluoromethane 1,2-Dichloroethane-D4 7oluene-D8 4-Bromofluorobenzene Tentatively Identified Compounds R.T. Carbon dioxide S.5 Run# 1 Run# 2 Run# 2 Run# 2 Run# 2 A Run# 3 Run# 2 Run# 3 Run# 4 Run# 2 Run# 2 2.89	Vinyl chloride ND 5.5 0.28 Xylene (total) ND 2.2 0.61 Surrogate Recoveries Run# 1 Run# 2 Limit Dibromofluoromethane 102% 70-12 1,2-Dichloroethane-D4 95% 62-12 Toluene-D8 105% 76-1 4-Bromofluorobenzene 103% 67-12 Tentatively Identified Compounds R.T. Est. Carbon dioxide 2.89 180	Vinyl chloride ND 5.5 0.28 ug/kg Xylene (total) ND 2.2 0.61 ug/kg Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 102% 70-122% 1,2-Dichloroethane-D4 95% 62-131% Toluene-D8 105% 76-119% 4-Bromofluorobenzene 103% 67-137% Tentatively Identified Compounds R.T. Est. Conc. Carbon dioxide 2.89 180	Vinyl chloride Xylene (total) ND ND 5.5 2.2 0.28 0.61 ug/kg Surrogate Recoveries Run# 1 Run# 2 Limits Dibromofluoromethane 1,2-Dichloroethane-D4 95% Toluene-D8 4-Bromofluorobenzene 105% 105% 105% 4-Bromofluorobenzene 62-131% 76-119% 67-137% Tentatively Identified Compounds R.T. Est. Conc. Units Carbon dioxide 2.89 180 ug/kg

Вy

WHS

Analyzed

09/20/05

Client Sample ID: FB-004

File ID

R47016.D

Lab Sample ID:

J10018-2 SO - Soil

Matrix: Method:

Project:

SW846 8270C SW846 3550B

DF ·

AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05

09/17/05

OP21388

Date Received: 09/16/05 Percent Solids: 94.2

Prep Date Prep Batch **Analytical Batch**

ER1634

Run #1 Run #2

> Final Volume **Initial Weight**

Run #1 30.1 g

Run #2

1.0 ml

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	180	43	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	40	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	42	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	40	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	710	14	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	710	40	ug/kg	
95-48-7	2-Methylphenol	ND	180	34	ug/kg	
	3&4-Methylphenol	ND	180	34	ug/kg	
88-75-5	2-Nitrophenol	ND	180	42	ug/kg	
100-02-7	4-Nitrophenol	ND	710	57	ug/kg	
87-86-5	Pentachlorophenol	ND	710	45	ug/kg	
108-95-2	Phenol	ND	180	41	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	41	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	34	ug/kg	
83-32-9	Acenaphthene	ND	71	3.8	ug/kg	
208-96-8	Acenaphthylene	ND	71	17	ug/kg	
120-12-7	Anthracene	ND	71	5.5	ug/kg	
56-55-3	Benzo(a)anthracene	ND	71	3.7	ug/kg	
50-32-8	Benzo(a)pyrene	ND	71	6.4	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	71	5.0	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	71	6.1	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	71	5.7	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	71	4.8	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	71	7.3	ug/kg	
91-58-7	2-Chloronaphthalene	ND	71	6.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	9.8	ug/kg	
86-74-8	Carbazole	ND	71	5.0	ug/kg	•.
218-01-9	Chrysene	ND	71	4.9	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	71	5.4	ug/kg	·
111-44-4	bis(2-Chloroethyl)ether	ND	71	13	ug/kg	-
108-60-1	bis(2-Chloroisopropyl)ether	ND	71	6.9	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	71	5.5	ug/kg	ή¨ 25

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: J10018-2 Matrix: SO - Soil

SW846 8270C SW846 3550B

Project: AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05 **Date Received:** 09/16/05

Percent Solids: 94.2

ABN TCL List

Method:

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	71	5.8	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	71	5.8	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	71	6.5	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	71	6.3	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	71	6.2	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	180	8.2	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	71	10	ug/kg	
132-64-9	Dibenzofuran	ND	ି 71	4.5	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	71	5.2	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	[*] 71	6.4	ug/kg	
84-66-2	Diethyl phthalate	ND	71	5.2	ug/kg	
131-11-3	Dimethyl phthalate	ND	71	4.0	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	ិ 71	5.7	ug/kg	
206-44-0	Fluoranthene	ND	71	4.0	ug/kg	
86-73-7	Fluorene	ND	71	6.0	ug/kg	
118-74-1	Hexachlorobenzene	ND	71	5.7	ug/kg	
87-68-3	Hexachlorobutadiene	ND	71	5.0	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	710	7.5	ug/kg	
67-72-1	Hexachloroethane	ND	180	6.1	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ି 71	9.7	ug/kg	
78-59-1	Isophorone	ND	71	13	ug/kg	
91-57-6	2-Methylnaphthalene	ND	71	4.3	ug/kg	
88-74-4	2-Nitroaniline	ND	180	9.2	ug/kg	
99-09-2	3-Nitroaniline	ND	180	8.7	ug/kg	
100-01-6	4-Nitroaniline	ND	180	7.9	ug/kg	
91-20-3	Naphthalene	ND	71	4.5	ug/kg	
98-95-3	Nitrobenzene	ND	71	3.5	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	ຶ້ 71	5.0	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	4.4	ug/kg	
85-01-8	Phenanthrene	ND	ୂ 71	4.8	ug/kg	
129-00-0	Pyrene	ND	71	4.5	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	71	4.9	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	64%		34-1	11%	
4165-62-2	Phenol-d5	64%		34-1	11%	
118-79-6	2,4,6-Tribromophenol	74%		33-1	22%	
4165-60-0	Nitrobenzene-d5	62%		29-1	14%	
321-60-8	2-Fluorobiphenyl	63%	•	38-1	10%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

26

Report of Analysis

Page 3 of 3

Client Sample ID: FB-004

Lab Sample ID:

J10018-2

Date Sampled: 09/15/05

Matrix:

SO - Soil

Date Received: 09/16/05

Method: Project: SW846 8270C SW846 3550B AGFA-Peerless, Shorham, NY

Percent Solids: 94.2

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1718-51-0	Terphenyl-d14	87%		32-136%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
	system artifact/aldol-condense system artifact/aldol-condense system artifact/aldol-condense system artifact/aldol-condense Total TIC, Semi-Volatile	ation ation	3.63 3.91 4.23 5.06	350 380 47000 200 0	ug/kg ug/kg ug/kg ug/kg ug/kg	J J

Lab Sample ID: Matrix:

J10018-2

SO - Soil

Method: Project:

SW846 8081A SW846 3545

AGFA-Peerless, Shorham, NY

Date Sampled: 09/15/05 Date Received: 09/16/05

Percent Solids: 94.2

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 OA25351.D 09/20/05 MCR 09/17/05 OP21389 **GOA808** 1

Run #2

Initial Weight Final Volume

Run #1 15.0 g

Run #2

10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	4.3	1.4	0.51	ug/kg	
319-84-6	alpha-BHC	ND	1.4	0.13	ug/kg	
319-85-7	beta-BHC	ND	1.4	0.64	ug/kg	
319-86-8	delta-BHC	ND	1.4	0.10	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	1.4	0.35	ug/kg	
5103-71-9	alpha-Chlordane	3.4	1.4	0.47	ug/kg	
5103-74-2	gamma-Chlordane	3.1	1.4	0.18	ug/kg	
60-57-1	Dieldrin	6.8	1.4	0.24	ug/kg	
72-54-8	4,4'-DDD	ND	1.4	0.25	ug/kg	
72-55-9	4,4'-DDE ^a	2.5	1.4	0.27	ug/kg	
50-29-3	4,4'-DDT	2.0	1.4	0.27	ug/kg	
72-20-8	Endrin	ND	1.4	0.16	ug/kg	
1031-07-8	Endosulfan sulfate	ND	1.4	0.23	ug/kg	
7421-93-4	Endrin aldehyde	ND	1.4	0.24	ug/kg	
959-98-8	Endosulfan-I	ND	1.4	0.13	ug/kg	
33213-65-9	Endosulfan-II	ND.	1.4	0.41	ug/kg	
76-44-8	Heptachlor	ND	1.4	0.089	ug/kg	
1024-57-3	Heptachlor epoxide	ND	1.4	0.22	ug/kg	
72-43-5	Methoxychlor	ND	3.5	0.43	ug/kg	
53494-70-5	Endrin ketone	ND	3.5	0.24	ug/kg	
8001-35-2	Toxaphene	ND	18	14	ug/kg	
CAS-No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	95%		30-14	10%	
877-09-8	Tetrachloro-m-xylene	82%		30-14	10%	
2051-24-3	Decachlorobiphenyl	90%		23-15	55%	
2051-24-3	Decachlorobiphenyl	86%		23-15	55%	

(a) Reported from 1st signal. %D of end check (ECC) on 2nd signal excess method criteria (15.%) so using for confirmation only. 28

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

File ID

15.0 g

2G05253.D

Lab Sample ID:

J10018-2

SO - Soil

Date Sampled: 09/15/05

Matrix: Method:

SW846 8082 SW846 3545

Date Received: 09/16/05 Percent Solids: 94.2

Project:

AGFA-Peerless, Shorham, NY

DF

1

Run #1

Analyzed By 09/20/05 OYA Prep Date 09/17/05

Prep Batch OP21390 Analytical Batch G2G188

Run #2

Initial Weight

Final Volume

Run #1 Run #2

 $10.0 \, \text{ml}$

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
					4-	

12674-11-2 Aroclor 1016 8.1 ug/kg ND 35 11104-28-2 Aroclor 1221 ND 35 8.3 ug/kg 11141-16-5 Aroclor 1232 ND 35 8.3 ug/kg 53469-21-9 Aroclor 1242 ND 35 5.5 ug/kg 9.6 12672-29-6 Aroclor 1248 35 ND ug/kg

 12672-29-6
 Aroclor 1248
 ND
 35
 9.6
 ug/kg

 11097-69-1
 Aroclor 1254
 ND
 35
 8.8
 ug/kg

 11096-82-5
 Aroclor 1260
 ND
 35
 5.8
 ug/kg

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	94%		28-136%
877-09-8	Tetrachloro-m-xylene	97.%	A 4	28-136%
2051-24-3	Decachlorobiphenyl	95%		27-151%
2051-24-3	Decachlorobiphenyl	96%	P. Comment	27-151%

Lab Sample ID: J10018-2 Matrix: SO - Soil Date Sampled: 09/15/05 Date Received: 09/16/05

Percent Solids: 94.2

Project: AGFA-Peerless, Shorham, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2730	22	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B 4
Antimony	<1.1	1.1	mg/kg	1	09/19/05	09/20/05 г.н	SW846 6010B ²	SW846 3050B ⁴
Arsenic	1.9	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Barium	<22	22	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Beryllium	< 0.55	0.55	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Cadmium	< 0.55	0.55	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Calcium	1800	550	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Chromium	4.8	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Cobalt	<5.5	5.5	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Copper	5.5	2.7	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Iron	4470	ે 11	mg/kg	1	09/19/05	09/20/05 гн	SW846 6010B ²	SW846 3050B ⁴
Lead	4.4	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Magnesium	1100	550	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Manganese	87.1	1.6	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Mercury	< 0.031	0.031	mg/kg	1	09/19/05	09/20/05 MKV	V SW846 7471A ¹	SW846 7471A ³
Nickel	<4.4	4.4	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Potassium	< 550	550	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Selenium	<1.1	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Silver	<1.1	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Sodium	<550	550	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Thallium	` <1.1	1.1	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Vanadium	7.3	5.5	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴
Zinc	13.0	2.2	mg/kg	1	09/19/05	09/20/05 LH	SW846 6010B ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA16339(2) Instrument QC Batch: MA16351(3) Prep QC Batch: MP31572(4) Prep QC Batch: MP31582

Report of Analysis

Page 1 of 1

Client Sample ID: FB-004

Lab Sample ID:

J10018-2

Date Sampled: 09/15/05

Matrix:

SO - Soil

Date Received: 09/16/05 Percent Solids: 94.2

Project:

AGFA-Peerless, Shorham, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	<0.24 94.2	0.24	mg/kg %	1	09/21/05 14:22 09/19/05	NR AK	SW846 9012 M EPA 160.3 M

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSIS

Project Number: <u>J10018</u>

Client Name: ATC Associates, Inc.

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	_at Lab	Extracted	Analyzed
J10018-1	Soil	15-Sep-05	16-Sep-05	<u>-</u>	20-Sep-05
J10018-2	Soil	15-Sep-05	16-Sep-05	-	20-Sep-05

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSIS

Project Number: <u>J10018</u>

Client Name:

ATC Associates, Inc.

Laboratory		Date	Date Rec'd	Date	Date
Sample ID	Matrix	_Collected	at Lab	Extracted	Analyzed
J10018-1	Soil	15-Sep-05	16-Sep-05	17-Sep-05	20-Sep-05
J10018-2	Soil	15-Sep-05	16-Sep-05	17-Sep-05	20-Sep-05

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSIS

Project Number: <u>J10018</u>

Client Name: <u>ATC Associates, Inc.</u>

Laboratory		Analytical	Extraction	Auxillary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
J10018-1	Soil	SW8270C	SW3550B	None	30.3g:1.0ml
J10018-2	Soil	SW8270C	SW3550B	None	30.1g:1.0ml

SAMPLE PREPARATION AND ANALYSIS SUMMARY Pesticide/PCB ANALYSIS

Project Number: J10018

Client Name:

ATC Associates, Inc.

Laboratory		Date	Date Rec'd	Date	Date
_Sample ID	_ Matrix _	Collected	_at Lab	Extracted	Analyzed
Pesticide					
J10018-1	Soil	15-Sep-05	16-Sep-05	17-Sep-05	20-Sep-05
J10018-2	Soil	15-Sep-05	16-Sep-05	17-Sep-05	20-Sep-05
PCB					
J10018-1	Soil	15-Sep-05	16-Sep-05	17-Sep-05	20-Sep-05
J10018-2	Soil	15-Sep-05	16-Sep-05	17-Sep-05	20-Sep-05

SAMPLE PREPARATION AND ANALYSIS SUMMARY Pesticide/PCB ANALYSIS

Project Numb <u>J10018</u>

Client Name: ATC Associates, Inc.

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxillary Cleanup	Dil/Conc Factor
Pesticide					
J10018-1	Soil	SW8081A	SW3545	None	15.3g:10.0ml
J10018-2	Soil	SW8081A	SW3545	None	15.0g:10.0ml
PCB					
J10018-1	Soil	SW8082	SW3545	None	15.3g:10.0ml
J10018-2	Soil	SW8082	SW3545	None	15.0g:10.0ml

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSIS

Project Number: <u>J10018</u>

Client Name: <u>ATC Associates, Inc.</u>

AGFA-Peerless, Shorham, NY

Laboratory			Date Rec'd	Date
Sample ID	Matrix_	_Metals Requested	at Lab	Analyzed
J10018-1	Soil	T.A.L Metals	16-Sep-05	20-Sep-05
J10018-2	Soil	T.A.L Metals	16-Sep-05	20-Sep-05

37

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY CYANIDE ANALYSIS

Project Number:

J10018

Client Name:

ATC Associates, Inc.

AGFA-Peerless, Shorham, NY

Laboratory	Ţ _	Date	Date Rec'd	Date	Date
Sample ID	Matrix	Collected	at Lab	Extracted	Analyzed
J10018-1	Soil	15-Sep-05	16-Sep-05	-	21-Sep-05
J10018-2	Soil	15-Sep-05	16-Sep-05	-	21-Sep-05

38

ACCUTEST.

50

CHAIN OF CUSTODY

2235 Route 130, Dayton NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 www.accutest.com

ED-EX Tracking #	Boille Order Control #	•
ccutest Quote #	Acculest Job # 1/0018	

	Client / Reporting Information					Pr	roject Info	rmation				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			***				Reque	slod An	alysis	- 3			_
Company No			Project N													1						İ		ΩW - Drinking	Water
AI	C ASSOCIATES		Pe	ecle	<i>5</i> 5_	Pho	10]			S			l	- 1	GW - Ground	Water
Address	-		Street					^	 1]					E	ام		1	- 1	WW · Wat	ter I
3	Terri		5	14	ANO	Ve.	U_{\perp}	22							Ę.			ŀ	~	~	1	ĺ	ĺ	SW - Surface	Water
City D	cling Ton NJ E-r	Zip	City	,	t		State					-10-		PALG	STANS O WIBE	STARS D								SO - Soi	ı
<u> </u>	clinglon NJ			hore	5777	М_		<u>VY</u>			$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	780	<u> </u>	00	STA] # D]			7	0		J			Į.
Project Cont	aci E-r	mail	Project #	10	40	۸ . ـ	. .	_						000 000 000 000 000 000 000 000 000 00		αъ	٥	9	$\Delta \overline{a}$			-		St - Sludg	00
M	IKE MCNEALY			ω_0 .	28	81	1, QC	<u> </u>						o a	K.	E	+3	3	0	1	2	Ì	- (OI - OH	i
Phone #	201 201		Fax#											83Z [마음	اوو	+	+	ار آ	\(\frac{1}{4}\)	70]	-	- [LIQ - Other L	.quid
C	609) 386 - 8800		-	 										ຼື	_	草퓵	_	네	*	1	2		-	AJR - Au	,
Sampler's No	in Lovenduski		Chent Pu	rchase Orde	ar #									624 C	624 CI	E25 C1	70	#	Matri	tick	ð	- [SOL - Other	Solid
Accutest	Field ID / Point of Collection	SUMMA#	C	ollection				N	umbei	r of pre	servec	d Bottles							ัฮ	0	1	1	- i	WP · Win	ا ہ
Sample #	THE PERSON NAMED OF THE PE				Samoled		# of		T	T		7	BCOSE	8286 CD 8287	D 450	2270 C3 ABN: C1	Full	THE STATE OF	5	200	0		ļ	X	\sim
		MEOH Viel #	Date	Time	Sampled By		# of bottles	도 1	5	Ž.	ğ	P 5	18	Ad ho	¥	2 4		11	_			_		LAB USE O	
-	CF-003		9/15/05	11:05	JL_	5	6		1		6						X	X	X	X	λ	[_	_ []	EX80,19	951
- 2	FB-004		9/15/15	مير الالا	TL	5	6	-	1	1	9	7					X	X		人	X		$\exists \exists I$	7	
	18 207		145262	11.13	-16-1	<u> </u>	4	+	+-	+	*	<u> </u>									-		- \		_
-		 					\vdash			-			\perp]			_		
									L			[_											_1		
		ļ						-	╁╌	+	-		+ -		,			\dashv				\dashv	+		
	·	L																					╧		
l							ĺĺ		1				1 1					1							ļ
<u> </u>		 						+-	+-		1	+	1					_		~~-	$\neg +$	-			
		ļ						4	┷		\Box											_	_		
																		ı		j]	,			1
								_		1									_						
	Tumaround Time (Business Days)					*	Dala De	liverable	Inform	nation	L _				21(#*¥)			3333	244 C	nemmo	ts / Reme	erks			
☐ Sld 15	Business Days Approved By: / Dala:			Commerc				☐ FL							7	_									
□ 10 Day /			_ [Commerc	nal "B"			□ N	/ASP	Calcoo	ry A				L	121	121	7		<u>1 - C</u>	<u>707</u>		71		
□ 5 Day R				NJ Reduc	bec			X NY							1						V				1
Day E		705	_ c	NJ Full				☐ sı			•														
	MERGENCY		- 1	Other				□ E8	D Fo	rmat _															1
☐ 1 Day E			- -	_								_			-										
Other	MERGENC1		-	Comme	ercial "A"	= Ree	ults Only																		
	& Rush T/A data available V/A LabLink		-	Optoblic	noisi A	- 11001	um Only											_							
rue Ague	A RUSH HA GELE EVENEDIE VIA LEDLINK		Samole Co	islady must	he docum	negled h	No moles	h time s	amole	s chen	20.00	ececion	iacludi	no coud	er dellu	PD 3880	***************************************	(1)	***************************************	NAME OF THE OWNER, OWNER, OWNE		******************	******		and see
Relinquishe			elved by		uoto	uu t	A-04 600		<u> </u>	shed by:			incidal	y court	V. 17044	- 1 - 200	No. of Concession,	Time:	Treatment of	Recoived		son times			555555E5
1	The Home of 9/14/	. 1	•					2										-	[]		•				
Reflection to	Date Tur	(840) Rec	wive(g/by. /							shed by:							Dale	Tinse/ 8	73	Hechino	by				
8 leth	un la Monerel 9/6/6	5 3	S. bu	icon] 4									9	160	251	1					
Religions	sate Time	e: Rec	erved by.					Ĉ	uslady	Seel #					Pres	erved who	are applic	able		On Ice			Coole	Tamp. o	
5 4	V					·		L												_X_			_2	<u>d</u>	

APPENDIX B

BCM Project Name: BCM Project No.: Project Manager: Laboratory:	Peerless Photo Pro 68.28817.0001 M. McNally Accutest	oducts		Sampl Review	No./SDG: J10018 ing Date(s): 9/15/200 wed By: M. Traxle letion Date: 3/22/200	er
Fraction Reviewed:	XVOLATILE ORGANI	cs			SEMIVOLATILE ORGANIC	s
Compound List:	XTCL.	Priority F			Appendix IX	
Method:	CLP SOW	40 CFR	136 Met	h. 601/602	X SW-846 Method 8260B	
The following table in	dicates the data rev	view criteria	exam	ined, pro	blems identified, and Q	A a
Data Validation Criteri	ia:	accept	J FYI	qualify	Comments	
Holding ⊺imes		X			< 14 days soil / 7 days	s wa
GC/MS Tuning		x				
Initial Calibrations		X			<25 RPD	
Continuing Calibration	ns	X			<20 RPD	
Blank Analysis Result	s	х			<rl< td=""><td></td></rl<>	
System Monitoring/Su	rrogate Results	x			Within acceptance lim	nits
MS/MSD Results		х			75-125%R <20 RPD	
Field Duplicate Result	s		Х		No FD	
Internal Standard Area	as/RT				NR	
Target Compound Ide	ntification				NR	
TIC Identification					NR	
Quantitation/Detection	n Limits				NR	
Laboratory Control Sa	ımple	X			80-120%	
Other:					l 	
General Comments:						
						

QA Scientist M Hasler Date 3/21/06

BCM Project Name: BCM Project No.: Project Manager: Laboratory:	Peerless Photo Pro 68.28817.0001 M. McNally Accutest	oducts		Sampli Review	lo./SDG: ing Date(s): ved By: etion Date:	J10018 9/15/2005 M. Traxler 3/21/2006
Fraction Reviewed: Compound List:	VOLATILE ORGAN	CS Priority	Pollutant	 	X SEMIVOLATI	LE ORGANICS
Method:	CLP SOW					nod 8270B
The following table in	ndicates the data re	view criteria	exam	ined, prol	olems identif	ied, and QA actio
Data Validation Crite	ria:	accep	t FYI	qualify	Comments	5
Holding Times		х			<40 days	
GC/MS Tuning		X				
Initial Calibrations		X	ļ		<25 RSD	
Continuing Calibration	ons	X			<20 RPD	
Blank Analysis Resul	ts	X			<rl< td=""><td></td></rl<>	
System Monitoring/S	urrogate Results	х			Within acc	eptance limits
MS/MSD Results		X			75-125% F	R 20 RPD
Field Duplicate Resu	lts	X	 		<50 RPD	
Internal Standard Are	eas/RT	X	<u> </u>		Within acc	eptance limits
Target Compound Id	entification	X				
TIC Identification		X				
Quantitation/Detection	on Limits	X				
Laboratory Control S	ample	X			80-120% F	}
Other:						
General Comments:						
				. 		
NA - Not applicable						

QA Scientist M Sayler Date 3/21/06

ATC Project Name: ATC Project No.: Project Manager: Laboratory:	Peerless Photo F 68.28817.0001 M. McNally Accutest	Products		Case I Sampl Reviev	J10018 9/15/200 M. Traxl 3/21/200	15/2005 Traxler		
Fraction Reviewed: Compound List: Method:	XPESTICIDES XTCL XCLP SOW		r Pollutant R 136 Met		PCBs Appendix IX SW-846 Meti		Other	
The following table in				amined, qualify	problems ide	ntified, and		
Holding Times] [×		П			······································	
Initial Calibrations		X						
Continuing Calibratio	ns				NA			
Blank Analysis Resul	ts	X	<u> </u>					
System Monitoring/S	urrogate Results	X						
MS/MSD Results		X						
Field Duplicate Resul	ts	Х						
Internal Standard Are	eas/RT						·	
Target Compound Ide	entification	X						
Quantitation/Detection	n Limits	X						
System Performance		X						
Overall Assessment	of Data	X						
Other:		1					_ 	
Other:		_		 				
Other:		╛┖						
General Comments:								
NA - Not applicable NR - Not reviewed								

QA Scientist M Hapler

Date 3/21/06

ATC Project Name:	Peerless Photo I	Products			No./SDG:	J10018
ATC Project No.:	68.28817.0001			•	ling Date(s): wed By:	9/15/2005 M. Traxler
Project Manager: Laboratory:	M. McNally Accutest				wed by: oletion Date:	3/21/2006
•				J		072172000
Fraction Reviewed:	PESTICIDES				X PCBs	
Compound List:	XTCL	Priority			Appendix IX	
Method:	X CLP SOW	40 CFR	136 Me t	nod	SW-846 Meth	nodOther
The following table inc	dicates the data i	review crit	eria exa	mined,	problems idea	ntified, and QA action.
Data Validation Criteri	a:	ассер	FYII	qualify	<u> </u>	comments
Holding Times		x				
nitial Calibrations		X				
Continuing Calibration	าร				NA	
Blank Analysis Result	<u>s</u>	X				
System Monitoring/Su	rrogate Results	х				
MS/MSD Results	·	х				
Field Duplicate Result	s	X				
nternal Standard Are	as/RT	X				
Farget Compound Ide	ntification	X				
Quantitation/Detection	Limits	х				
System Performance		X				
Overall Assessment o	f Data	×				
Other:	· · · · · · · · · · · · · · · · · · ·					
Other:						
Other:						
General Comments:						

QA Scientist M. Majolis Date 3/21/06

Project No.: Project Manager:	Peerless Photo Pro 68.28817.0001 M. McNally Accutest	oducts		Sar Rev	se No./SDG: npling Date(s): viewed By: mpletion Date:	J10018 9/15/2005 M. Traxler 3/21/2006
Compound List: Method: Matrix:	TAL CLP SOW 3/90 soil/solid (mg/Kg)	Append X SW-84			Other	
The following table indi and QA action.	cates the data va	lidation	criteri	a exa	mined, problems	identified,
Data Validation Criteria		ассер	t FYI	qualit	fy comments	
Holding Times		×			Less than 180 d	ays
Calibration Linearity - F and CN	urnace, Hg ,				NR	
Calibration Verification		×			2-point standard	i ,
CRDL Standard		x			50 - 150 % R	
Calibration Blanks Preparation Blanks		×			< RL < RL	dae oo oo oo oo oo oo oo oo oo oo oo oo oo
Field Blank		1 1	×		No FB	
ICP Interference Check	Sample	X			80 - 120 % R	
Laboratory Control Sam	ple	X	11	11	80 - 120 % R	
Matrix Spike Results		X			75 - 125 % R	
Laboratory Duplicate R		X	11	11	< 20 RPD	
ICP Serial Dilution		X			< 10 RPD (exce	ept <50X IDL)
Post Digestion Analytic	al Spike	1 11			NR	
Method of Standard Ad	dition				NR	
Field Duplicate Results Sample Result Verificat	ion	×	×		No FD	
Other:		lЦ				
General Comments:						

and the second of the second o

QA Scientist M Hayden Date 3/21/06

Job Number: J10018

Account: BCMNJ ATC Associates, Inc.
Project: AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
J10018-1MS	G83293.D	1	09/20/05	SJM	n/a	n/a	VG4231
J10018-1MSD	G83294.D	1	09/20/05	SJM	n/a	n/a	VG4231
J10018-1	G83291.D	1	09/20/05	SJM	n/a	n/a	VG4231

The QC reported here applies to the following samples:

Method: SW846 8260B

Page 1 of 2

J10018-1, J10018-2

CAS No.	Compound	J10018- ug/kg	Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		51.8	43.8	85	45.3	88	3 .	6-184/34
71-43-2	Benzene	ND		51.8	39.9	77	39.2	76	2	54-132/15
75-27-4	Bromodichloromethane	ND		51.8	41.6	80	41.8	81	0 -	56-139/16
75-25-2	Bromoform	ND		51.8	37.2	72	39.4	76	6 .	52-134/20
74-83-9	Bromomethane	ND		51.8	36.2	70	35.3	68	3	7-141/31
78-93-3	2-Butanone (MEK)	ND		51.8	32.8	63	34.0	66	4	24-168/30
75-15-0	Carbon disulfide	ND		51.8	29.2	56	27.4	53	6	32-143/20
56-23-5	Carbon tetrachloride	ND		51.8	34.2	66 . •	33.4	65	2	40-149/16
108-90-7	Chlorobenzene	ND		51.8	38.1	74	40.0	77	5	50-136/19
75-00-3	Chloroethane	ND		51.8	39.4	76	37.8	73	4	12-139/29
67-66-3	Chloroform	ND		51.8	43.5	84	42.6	82	2	57-135/15
74-87-3	Chloromethane	ND		51.8	37.2	72	35.6	69	4	41-138/22
124-48-1	Dibromochloromethane	ND		51.8	41.0	79	42.5	82	4	57-139/18
75-34-3	1,1-Dichloroethane	ND		51.8	41.7	81	40.8	79	2	56-135/15
107-06-2	1,2-Dichloroethane	ND		51.8	42.3	82	42.5	82	0	58-137/15
75-35-4	1,1-Dichloroethene	ND		51.8	36.8	71	35.8	69	3	43-144/18
156-59-2	cis-1,2-Dichloroethene	ND		51.8	41.3	80	41.1	79	0	54-139/15
156-60-5	trans-1,2-Dichloroethene	ND		51.8	38.0	73	37.8	73	1	48-139/16
78-87-5	1,2-Dichloropropane	ND		51.8	42.2	82	41.8	81	1	60-131/15
10061-01-5	cis-1,3-Dichloropropene	ND		51.8	34.2	66	35.1	68	3	51-137/16
10061-02-6	trans-1,3-Dichloropropene	ND		51.8	33.0	64	34.8	67	5	50-140/17
100-41-4	Ethylbenzene	ND		51.8	35.9	69	37.0	71	3	44-142/20
591-78-6	2-Hexanone	ND		51.8	25.5	49	28.7	55	12	27-161/27
108-10-1	4-Methyl-2-pentanone(MIBK)	ND		51.8	30.4	59	32.4	63	6 : . · .	51-141/22
75-09-2	Methylene chloride	ND		51.8	42.8	83	42.6	82	0	56-137/17
100-42-5	Styrene	ND		51.8	33.5	65	35.6	69	6	43-148/22
79-34-5	1,1,2,2-Tetrachloroethane	ND		51.8	36.9	71	39.3	76	6	51-137/24
127-18-4	Tetrachloroethene	ND		51.8	52.9	102	58.0	112	9	33-167/29
108-88-3	Toluene	ND		51.8	38.2	74	38.8	75	2	47-140/17
71-55-6	1,1,1-Trichloroethane	ND		51.8	37.5	72	36.6	71	2	48-142/16
79-00-5	1,1,2-Trichloroethane	ND		51.8	40.6	78	41.8	81	3	60-134/17
79-01-6	Trichloroethene	ND		51.8	38.1	74	38.2	·74	0	45-145/17
75-01-4	Vinyl chloride	ND		51.8	39.6	77	37.4	72	6	42-142/18
1330-20-7	Xylene (total)	ND		155	108	70	113	73	5	43-144/21

Page 2 of 2

Job Number:

J10018

Account: Project:

BCMNJ ATC Associates, Inc. AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
J10018-1MS	G83293.D	1	09/20/05	SJM	n/a	n/a	VG4231
J10018-1MSD	G83294.D	1	09/20/05	SJM	n/a	n/a	VG4231
J10018-1	G83291.D	1	09/20/05	SJM	n/a	n/a	VG4231

The QC reported here applies to the following samples:

Method: SW846 8260B

J10018-1, J10018-2

CAS No.	Surrogate Recoveries	MS	MSD	J10018-1	Limits
	Dibromofluoromethane 1,2-Dichloroethane-D4	104% 97%		104% 96%	70-122% 62-131%
2037-26-5	Toluene-D8 4-Bromofluorobenzene	105% 105%	105 % 105 %	104%	76-119% 67-137%

Job Number: J10018

Account: BCMNJ ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP21388-MS	R47017.D	1	09/20/05	WHS	09/17/05	OP21388	ER1634
OP21388-MSD	R47018.D	1	09/20/05	WHS	09/17/05	OP21388	ER 1634
J10018-1	R47015.D	1	09/20/05	WHS	09/17/05	OP21388	ER 1634

The QC reported here applies to the following samples:

Method: SW846 8270C

J10018-1, J10018-2

CAS No.	Compound	J10018- ug/kg	-1 Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
95-57-8	2-Chlorophenol	ND		1740	1140	65	1120	64	2	45-103/18
59-50-7	4-Chloro-3-methyl phenol	ND		1740	1440	83	1380	79	4	49-113/19
120-83-2	2,4-Dichlorophenol	ND		1740	1320	76	1250	72	5	44-112/18
105-67-9	2,4-Dimethylphenol	ND		1740	1330	76	1290	74	3	39-114/19
51-28-5	2,4-Dinitrophenol	ND		3490	777	22	555	16	33	1-116/38
534-52-1	4,6-Dinitro-o-cresol	ND		1740	494	28	366	21	30	2-123/39
95-48-7	2-Methylphenol	ND		1740	1060	61	1020	59	4	42-105/20
	3&4-Methylphenol	ND		1740	1060	61	1020	59	4	40-110/21
88-75-5	2-Nitrophenol	ND		1740	1050	60	1040	60	1.00	28-110/24
100-02-7	4-Nitrophenol	ND		1740	1200	69	962	55	22	20-137/31
87-86-5	Pentachlorophenol	ND		1740	1200	69	1170	67	3	26-123/24
108-95-2	Phenol	ND		1740	1080	62	1100	63	2	43-106/21
95-95-4	2,4,5-Trichlorophenol	ND		1740	1370	79	1250	72	9	47-111/19
88-06-2	2,4,6-Trichlorophenol	ND		1740	1440	83	1360	78	6	50-113/19
83-32-9	Acenaphthene	ND		1740	1280	73	1230	71	4	31-120/27
208-96-8	Acenaphthylene	ND		1740	1160	67	1110	64	4	37-104/23
120-12-7	Anthracene	ND		1740	1430	82	1360	78	5	41-119/28
56-55-3	Benzo(a)anthracene	ND		1740	1380	79	1340	77	3	37-125/31
50-32-8	Benzo(a)pyrene	ND		1740	1420	81	1360	78	4	37-124/29
205-99-2	Benzo(b)fluoranthene	ND		1740	1500	86	1440	83	4	25-147/33
191-24-2	Benzo(g,h,i)perylene	ND		1740	941	54	823	47	13	4-135/38
207-08-9	Benzo(k)fluoranthene	ND		1740	1710	98	1710	98	0	25-142/31
101-55-3	4-Bromophenyl phenyl ether	ND		1740	1340	77	1240	71	8	48-115/20
85-68-7	Butyl benzyl phthalate	ND		1740	1320	76	1270	73	4	32-148/22
91-58-7	2-Chloronaphthalene	ND		1740	1230	71	1170	67	5	45-105/19
106-47-8	4-Chloroaniline	ND		1740	892	51	903	52	1	8-94/31
86-74-8	Carbazole	ND		1740	1360	78	1310	75	4	37-136/26
218-01-9	Chrysene	ND		1740	1380	79	1330	76	4	36-124/29
111-91-1	bis(2-Chloroethoxy)methane	ND		1740	948	54	942	54	1	40-112/21
111-44-4	bis(2-Chloroethyl)ether	ND		1740	802	46	817	47	2	37-105/25
108-60-1	bis(2-Chloroisopropyl)ether	ND		1740	910	52	908	52	0	36-108/22
7005-72-3	4-Chlorophenyl phenyl ether	ND		1740	1200	69	1150	.66	4	48-110/19
95-50-1	1,2-Dichlorobenzene	ND		1740	993	57	1010	58	2	39-98/21
541-73-1	1,3-Dichlorobenzene	ND		1740	979	56	996	5 7	2	37-96/22
106-46-7	1,4-Dichlorobenzene	ND		1740	961	55	996	57	4	36-98/22
121-14-2	2,4-Dinitrotoluene	ND		1740	1270	73	1220	70	4	30-126/25
								•	217	

Page 1 of 3

Job Number: J10018

Account: BCMNJ ATC Associates, Inc.
Project: AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP21388-MS	R47017.D	1	09/20/05	WHS	09/17/05	OP21388	ER1634
OP21388-MSD	R47018.D	1	09/20/05	WHS	09/17/05	OP21388	ER1634
J10018-1	R47015.D	1	09/20/05	WHS	09/17/05	OP21388	ER1634

The QC reported here applies to the following samples:

Method: SW846 8270C

Page 2 of 3

J10018-1, J10018-2

CAS No. Compound		J10018- ug/kg	·1 Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
606-20-2	2,6-Dinitrotoluene	ND		1740	1300	75	1220	70 -	6	42-117/24
91-94-1	3,3'-Dichlorobenzidine	ND		1740	908	52	835	48	8	3-111/39
53-70-3	Dibenzo(a,h)anthracene	ND		1740	1110	64	992	57	11	14-133/30
132-64-9	Dibenzofuran	ND		1740	1230	71	1180	68	4	37-125/29
84-74-2	Di-n-butyl phthalate	ND		1740	1310	75	1260	72	4	47-122/21
117-84-0	Di-n-octyl phthalate	ND		1740	1950	112	2060	118	5	27-168/29
84-66-2	Diethyl phthalate	ND		1740	1280	73	1210	69	6	50-113/20
131-11-3	Dimethyl phthalate	ND		1740	1180	68	1110	64	6	51-108/20
117-81-7	bis(2-Ethylhexyl)phthalate	ND		1740	1410	81	1390	80	1	29-151/25
206-44-0	Fluoranthene	19.5	J	1740	1400	79	1360	77	3	28-133/35
86-73-7	Fluorene	ND		1740	1410	81	1350	77	4	39-119/32
118-74-1	Hexachlorobenzene	ND		1740	1540	88	1490	86	3	49-111/19
87-68-3	Hexachlorobutadiene	ND		1740	1150	66	1160	67	1	37-114/21
77-47-4	Hexachlorocyclopentadiene	ND		3490	839	24	764	22	9	1-95/42
67-72-1	Hexachloroethane	ND		1740	931	53	948	54	2	19-105/26
193-39-5	Indeno(1,2,3-cd)pyrene	ND		1740	1420	81	1250	72	13	13-130/35
78-59-1	Isophorone	ND		1740	1040	60	1030	59	1	36-103/20
91-57-6	2-Methylnaphthalene	ND		1740	1060	61	1030	59	3	30-120/26
88-74-4	2-Nitroaniline	ND		1740	1290	74	1230	71	5	39-122/23
99-09-2	3-Nitroaniline	ND		1740	1130	65	1100	63	3	27-107/30
100-01-6	4-Nitroaniline	ND		1740	1000	57	980	56	2	20-123/35
91-20-3	Naphthalene	ND		1740	1060	61	1060	61	0	29-113/28
98-95-3	Nitrobenzene	ND		1740	1010	58	1010	58	0	31-112/21
621-64-7	N-Nitroso-di-n-propylamine	ND		1740	957	5 5	944	54	1	36-114/22
86-30-6	N-Nitrosodiphenylamine	ND		1740	1240	71	1160	67	7	35-136/22
85-01-8	Phenanthrene	ND		1740	1430	82	1370	79	4	29-129/39
129-00-0	Pyrene	ND		1740	1430	82	1410	81	1	20-148/40
120-82-1	1,2,4-Trichlorobenzene	ND		1740	1060	61	1060	61	0	36-104/21
CAS No.	Surrogate Recoveries	MS		MSD	J10	018-1	Limits			
367-12-4	2-Fluorophenol	62%	381 F.	63%	649	6	34-1119	76		
4165-62-2	Phenol-d5	68%		67%	659	are produced the face for	34-1119			
118-79-6	2,4,6-Tribromophenol	101%		95%	82 9	ra, e e .	33-1229			
4165-60-0	Nitrobenzene-d5	63%		62%	629		29-1149			
		WAR AND AR	- m. k	Abr. 14 3054 [At	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	art burytyk (e)		- 3	21	a

218

Job Number: J10018

Account: BCMNJ ATC Associates, Inc.
Project: AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP21389-MS	OA25331.D	1	09/19/05	MCR	09/17/05	OP21389	GOA808
OP21389-MSD	OA25332.D	1	09/19/05	MCR	09/17/05	OP21389	GOA808
J10018-1	OA25350.D	1	09/20/05	MCR	09/17/05	OP21389	GOA808
}							

The QC reported here applies to the following samples:

Method: SW846 8081A

Page 1 of 1

J10018-1, J10018-2

CAS No.	Compound	J10018-1 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
309-00-2	Aldrin	ND	17.5	20.2	116	20.0	115	199 .	26-166/32
319-84-6	alpha-BHC	ND	17.5	17.7	101	18.0	104	2	24-172/36
319-85-7	beta-BHC	ND	17.5	19.2	110	18.7	108	3	16-174/41
319-86-8	delta-BHC	ND	17.5	17.1	98	17.2	99	1	10-175/42
58-89-9	gamma-BHC (Lindane)	ND	17.5	18.2	104	18.3	105	1	26-168/38
5103-71-9	alpha-Chlordane	1.7	17.5	20.0	105	20.7	110	3	21-177/34
5103-74-2	gamma-Chlordane	1.6	17.5	19.8	104	19.2	101	3	24-173/38
60-57-1	Dieldrin	2.8	17.5	18.1	88	17.6	85	3	20-181/41
72-54-8	4,4'-DDD	ND	17.5	20.7	118	19.5	112	6	22-186/36
72-55-9	4,4'-DDE	2.8	17.5	17.8	90	16.8	85	6	19-192/42
50-29-3	4,4'-DDT	2.7	17.5	23.2	117	21.4	108	8	18-200/44
72-20-8	Endrin	ND	17.5	19.2	110	18.4	106	4	26-175/36
1031-07-8	Endosulfan sulfate	ND	17.5	18.2	104	17.3	100	5	9-175/46
7421-93-4	Endrin aldehyde	ND	17.5	16.6	95	16.1	93	3	10-141/46
959-98-8	Endosulfan-I	ND	17.5	18.1	104	17.6	101	3	24-167/38
33213-65-9	Endosulfan-II	ND	17.5	18.9	108	17.9	103	5	13-175/40
76-44-8	Heptachlor	ND	17.5	17.9	102	18.0	104	1	32-169/36
1024-57-3	Heptachlor epoxide	ND	17.5	19.0	10 9	18.2	105	4	25-169/34
72-43-5	Methoxychlor	ND	17.5	22.1	126	21.0	121	5	18-182/45
53494-70-5	Endrin ketone	ND	17.5	18.4	105	17.2	99	7	19-181/42
8001-35-2	Toxaphene	ND		ND		ND		nc	50-150/10
CAS No.	Surrogate Recoveries	MS	MSD	J10	018-1	Limits			
877-09-8	Tetrachloro-m-xylene	91%	93%	999	%	30-140%			
877-09-8	Tetrachloro-m-xylene	80%	83%	849	6	30-140%			
2051-24-3	Decachlorobiphenyl	102%	92%	939	6	23-155%			
2051-24-3	Decachlorobiphenyl	95%	86%	879	%	23-155%			

Page 1 of 1

Job Number: J10018

Account:

BCMNJ ATC Associates, Inc.

Project: AGFA-Peerless, Shorham, NY

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP21390-MS	2G05254.D	1	09/20/05	OYA	09/17/05	OP21390	G2G188
OP21390-MSD	2G05255.D	1	09/20/05	OYA	09/17/05	OP21390	G2G188
J10018-1	2G05252.D	1	09/20/05	OYA	09/17/05	OP21390	G2G188

The QC reported here applies to the following samples:

Method: SW846 8082

J10018-1, J10018-2

CAS No.		J10018-1 ug/kg Q	Spike ug/kg	MS ug/kg	MS 8 %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
	Aroclor 1016 Aroclor 1221	ND	138	141	102	141 ND	102	0:	54-146/26
	Aroclor 1221 Aroclor 1232	ND ND		ND ND		ND ND		nc	70-130/10 70-130/10
53469-21-9	Aroclor 1242	ND		ND		ND		nc	70-130/10
12672-29-6	Aroclor 1248	ND		ND		ND	٠.	nc	70-130/15
11097-69-1	Aroclor 1254	ND		ND	1.2	ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nc	70-130/18
11096-82-5	Aroclor 1260	ND	138	138	100	138	100	0	39-160/29
CAS No.	Surrogate Recoveries	MS	MSD	J	10018-1	Limits			
877-09-8	Tetrachloro-m-xylene	93%	93%	. 9	5%	28-136%			
877-09-8	Tetrachloro-m-xylene	95%	95%	. 9	8%	28-136%			
2051-24-3	Decachlorobiphenyl	93%	93%		6%	27-151%			
2051-24-3		94%	93%	1	7%	27-151%			

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J10018 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31582 Matrix Type: SOLID

Methods: SW846 6010B Units: mg/kg

Prep Date:

.....

09/19/05

Prep Date:	_			09/19/05		
Metal	J10018-1 Original		Spikelot MPIRS1	% Rec	QC Limits	
Aluminum	2820	8840	5820	103.5	75-125	1 1 1 10
Antimony	0.0	64.9	108	60.2N(a)	75-125	low antimony ">
Arsenic	2.0	369	431	85,1	75-125	low antimony MS MT 3/21/06
Barium	9.2	390	431	88.4	75-125	,
Beryllium	0.19	9.8	11	89.2	75-125	
Boron						
Cadmium	0.0	9.4	11	87.2	75-125	
Calcium	925	2420	1350	111.0	75-125	
Chromium	5.4	44.3	43.1	90.3	75-125	
Cobalt	1.6	95.9	108	87.5	75-125	
Copper	5.4	54.4	53.9	90.9	75-125	
Iron	5080	10000	5600	87.8	75-125	
Lead	4.4	99.3	108	88.1	75-125	
Magnesium	617	1970	1350	100.5	75-125	
Manganese	91.6	184	108	85.8	75-125	
Molybdenum						
Nickel	3.8	98.3	108	87.7	75-125	
Palladium						
Potassium	216	1530	1350	97.6	75-125	
Selenium	0.0	370	431	85.8	75-125	
Silicon						
Silver	0.0	9.5	11	88.2	75-125	
Sodium	36.4	1220	1350	87.9	75-125	
Strontium						
Thallium	0.0	374	431	86.8	75-125	
Tin						
Titanium						
Vanadium	7.2	100	108	86.1	75-125	
Zinc	10.2	105	108	88.0	75-125	

Associated samples MP31582: J10018-1, J10018-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

⁽N) Matrix Spike Rec. outside of QC limits

⁽a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J10018 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31582 Matrix Type: SOLID Methods: SW846 6010B Units: mg/kg

Prep Date:

 $r = (\mathcal{V}^{(1)}, \ldots, \mathcal{I}^{(n)}, \mathcal{I}^{(n)}, \mathcal{I}^{(n)})$

09/19/05

Prep Date:						
Metal	J10018-1 Original		Spikelot MPIRS1	Rec	MSD RPD	QC Limit
Aluminum.	2820	8190	5820	92.3	7.6	20
Antimony	0.0	63.6	108	59.0N(a)	3.0	20 low antimony MSD 20 MT 3/21/06
Arsenic	2.0	370	431	85.4	6.3	20 MT 3/01/1
Barium	9.2	389	431	88.1	0.3	20
Beryllium	0.19	9.8	11	89.2	0.0	20
Boron						
Cadmium	0.0	9.5	11	88.2	1.1	20
Calcium	925	2180	1350	93.2	10.4	20
Chromium	5.4	44.2	43.1	90.0	0.2	20
Cobalt	1.6	95.7	108	87.3	0.2	20
Copper	5.4	55.5	53.9	93.0	2.0	20
Iron	5080	9600	5600	80.7	4.1	20
Lead	4.4	99.3	108	88.1	0.0	20
Magnesium	617	1780	1350	86.3	10.1	20
Manganese	91.6	174	108	76.5	5.6	20
Molybdenum						
Nickel	3.8	98.7	108	88.1	0.4	20
Palladium						
Potassium	216	1470	1350	93.1	4.0	20
Selenium	0.0	379	431	87.9	2.4	20
Silicon						
Silver	0.0	9.6	11.	89.1	1.0	20
Sodium	36.4	1230	1350	88.6	0.8	20
Strontium						
Thallium	0.0	376	431	87.2	0.5	20
Tin						
Titanium						
Vanadium	7.2	99.7	108	85.8	0.3	20
Zinc	10.2	103	108	86.1	1.9	20

Associated samples MP31582: J10018-1, J10018-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

⁽N) Matrix Spike Rec. outside of QC limits

⁽a) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

SERIAL DILUTION RESULTS SUMMARY

Login Number: J10018

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31582 Matrix Type: SOLID Methods: SW846 6010B

Units: ug/l

Prep Date:

.09/19/05

Prep Date:		.09	719705
Metal	J10018-1 Original	SDL 1:5 RP	QC PD Limits
Aluminum	26100	28400 8.	6 0-10
Antimony	0.00	0.00 NC	0-10
Arsenic	18.7	0.00	0.0(a) 0 10
Barium	85.5	93.5 9 .	4 0-10
Beryllium	1.78	0.00	0.0(a) -10
Boron		Ţ.	
Cadmium	0.00	0.00 NC	0-10
Calcium	8580	9790 11	.1*(b) 0-10
Chromium	49.7	57.3 (15	1*(b) 0-10
Cobalt	14.7	13.8 5.	5 0-10
Copper	49.7	52.0 4,	5 0-10
Iron	47100	51600 9.	6 0-10
Lead	40.4	41.5 2.	7 0-10
Magnesium	5730	6340 10	.6*(b) 0) 10
Manganese	850	916 7.	8 0-10
Molybdenum		ابدي. مينر ا	
Nickel	35.1	39.0	.3 (a) 0-10
Palladium			
Potassium	2010	2220 (10	.4*(b) 0-10
Selenium	0.00	0.00 NC	0-10
Silicon			
Silver	0.00	0.00 NC	0-10
Sodium	338	975 18	8.4(a) 0-10
Strontium		17.3 13.3 1.71	
Thallium	0.00	0.00 NC	0-10
Tin			ledik Satura
Titanium	anr		in itema Duita ini Italia, ut
Vanadíum	67.0	73.2 9.	2 0-10
Zinc	95.0	111 16	.9*(b) 0-10

Serial tilutions exceed 10% RPD
As, Be, Cr, Ni, Mg, K, Na, Zn < 50x IDL
All metals acceptable,
MT 3/21/06

Associated samples MP31582: J10018-1, J10018-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

⁽a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

⁽b) Serial dilution indicates possible matrix interference.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J10018 Account: BCMNJ - ATC Associates, Inc.

Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31572 Matrix Type: SOLID

Methods: SW846 7471A

Units: mg/kg

Prep Date:

09/19/05

Metal	J10018-: Original		Spikelot HGPWS1	% Rec	QC Limits	
						
Mercury	0.013	0.34	0.32	101.4	51-153	

Associated samples MP31572: J10018-1, J10018-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J10018

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31572 Matrix Type: SOLID

Methods: SW846 7471A

Units: mg/kg

Prep Date:

09/19/05

							.
Metal	J10018-: Origina		Spikelot HGPWS1	% Rec	MSD RPD	QC Limit	
L							-
Mercury	0.013	0.33	0.3	104.5	3.0	40	

Associated samples MP31572: J10018-1, J10018-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

DATA USABILITY REPORT
ACCUSTEST CASE NO. J11554

DATA USABILITY SUMMARY REPORT

FOR

PEERLESS PHOTO PRODUCTS SHORHAM, NEW YORK OCTOBER 2005

REPORTED MARCH 2006

ATC PROJECT NO. 68.28817.0001

PREPARED BY

MARK TRAXLER
SENIOR QUALITY ASSURANCE SCIENTIST

The following Data Usability Summary Report (DUSR) was conducted by the ATC Associates Inc. Environmental Chemistry and Quality Assurance Department. This report has concluded that the following analytical data, with the use of the stated qualifications, generated in the sampling event of October 3, 2005 for the Peerless Photo Products Site are acceptable for its intended use in the subject investigation.

Mark Traxler

Senior Quality Assurance Scientist

DATA USABILITY SUMMARY TCLP METALS PEERLESS PHOTO PRODUCTS SITE OCTOBER 2005

1.0 INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *Guidance for the Development of Data Usability Summary Reports*, dated June 1999. This DUSR has been developed from a full NYSDEC Analytical Services Protocol (ASP) Category B deliverables package.

This DUSR addresses the eight (8) Toxicity Characteristic Leaching Procedure (TCLP) metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) results from the October 3, 2005 soil sampling event at the Peerless Photo Products site in Shorham, New York. Case J11554 included a total of three (3) soil samples for TCLP metals analysis.

The findings offered in this DUSR are based upon a general review of sample data, holding times, initial and continuing calibration verification results, contract required detection limit (CRDL) standard results, blank contamination results, inductively coupled plasma (ICP) interference check sample results, spike sample results, laboratory and field duplicate results, and laboratory control sample results. All samples in this report were analyzed by Accutest Laboratories, Dayton, New Jersey following United States Environmental Protection Agency (EPA) Test Methods for Evaluating Solid Waste, Update III, 1996 (SW-846) Methods 1311, 3010A, 7470 and 6010B. The quality assurance review of the data described was prepared according to EPA's National Functional Guidelines for Inorganic Data Review, Final, (EPA 540-R-04-004) dated October 2004, where applicable to SW-846 Methods. Method protocol criteria were also considered as prescribed by SW-846.

The analytical data deliverables for Case J11554 consist of NYSDCE ASP Category B reporting forms and raw data for each analysis, which includes instrument printouts, notebook pages, and chain-of-custody (COC) documents.

The data summary tables list the eight (8) metals that were analyzed. Appendix A provides the sample results as reported by the laboratory, along with a copy of the associated COC documentation. The support documentation in Appendix B summarizes the specific issues raised in this review. Analytical problems that were encountered were outlined in the Findings/Qualifiers section.

The following components of the data package were reviewed for completeness:

- Sample chain-of-custody form;
- Case narrative:
- Summary forms and supporting documents;
- Calibration data;
- Instrument and method performance data;
- Data report forms, preparation logs and run logs; and
- Raw analytical data.

The following items of the data package were reviewed for compliance:

- The data package is complete, as defined above;
- The data has been produced and reported in a manner consistent with the requirements of the Quality Assurance Project Plan (QAPP);
- The QAPP-defined quality assurance (QA) and quality control (QC) criteria have been met;
- Instrument calibration requirements have been met for the time frame during which the analyses were completed;
- Initial and Continuing calibration data are presented and documented;
- Data reporting forms are complete; and
- Problems encountered during the analytical process have been reported in the case narrative.

2.0 LABORATORY DATA PACKAGE

The data package that was received from Accutest was paginated, complete and overall was of good quality. Comments on specific QA/QC issues and other requirements are discussed in detail in this report.

The samples were collected, properly preserved, shipped under a chain of custody record, and received at Accutect on the next day. All samples were received intact and in good condition at Accutest.

The soil samples were collected and analyzed for TCLP metals following SW-846 Method 1311 for TCLP extraction, 3010A for digestion and 6010B for analysis (except for mercury, which was 7470).

3.0 FINDINGS/QUALIFIERS

The following TCLP metals analysis elements were reviewed for compliance:

- Custody documentation
- Holding times
- Initial and continuing calibrations
- Contract Required Detection Limit (CRDL) check sample
- Laboratory preparation blanks and field blanks
- Inductively coupled plasma (ICP) interference check sample
- Matrix spike recoveries
- Laboratory duplicate precision
- Field duplicate precision
- Laboratory control sample recoveries
- ICP serial dilution
- Sample result verification and identification
- Quantitation limits

It is recommended that Case J11554 TCLP metals results be used with the following qualifiers:

- 1. Batch QC samples were used for MS/MSD and serial dilution results. There were no field duplicate, field blank, or site-specific MS/MSD samples associated with this batch of samples.
- 2. The ICP serial dilution exceeded the control limit of 10% difference for several metals. However, since the original values were less than 50 times the Instrument Detection Limit (IDL), the ICP serial dilution for these metals were acceptable. No qualification of data was necessary due to the ICP serial dilution results.

4.0 SUMMARY

The TCLP metals results are acceptable as qualified. Holding times, initial and continuing calibration verification results, CRDL check sample results, continuing calibration blank results, laboratory preparation blank results, blank sample results, ICP interference check sample results, matrix spike recoveries, laboratory duplicates, field duplicates, laboratory control sample results, and ICP serial dilution results were within acceptance limits. Sample results were properly verified and identified, along with the appropriate quantitation limits.

This review has identified no areas of concern. The data has been qualified accordingly on the data summary table. For specifics relating to this review, see the attached documentation in Appendix B.

QUALIFIER CODES - METALS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise
- R The data is unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be in the sample.

DATA SUMMARY - INORGANIC ANALYTES

page 1

Site Name	Peerless Photo Products	_
Project Number	68.28817.0001	

TCLP Leachate (mg/L)

Laboratory

Accutest - Dayton, NJ

Case/Order#

J11554

Sampling Date(s) 10/3/2005

Fraction/Method

TCLP Metals / 3010A / 6010B

	Sample Location or Description		STOCKPILE-1	STOCKPILE-2	STOCKPILE-3						
	Sample Numb	er	J11554-1	J11554-2	J11554-3						
	Sampling Date		10/3/2005	10/3/2005	10/3/2005						
	Preparation Da	ite	10/4/2005	10/4/2005	10/4/2005						
	Analysis Date		10/21/2005	10/21/2005	10/21/2005						
	Percent Solids		n/a	n/a	n/a						
RL		P Hg	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF	Q DF
0.50	Arsenic	X	U 1	U 1	U 1	6 3 60				144	
1.0	Barium	X	υi	U 1	1.3					83	***
0.0050	Camium	X	ປີ 1	0.023	0.043 1					117	
0.010	Chromium	TX	U 1	U 1	U 1						
0.50	Lead	X	U 1	U 1	U 1				\$ + 1 .	Jane 1	
0.0020	Mercury	X	U 1	U 1	U 1			1 2 2			
0.50	Selenium	X	ן ט	U 1	U 1						
0.010	Silver	X	U 1	0.016 1	0.013						

P-ICP

Hg - Mercury

Q - Qualifier, if any

DF - Dilution Factor

QA Scientist M Haplu DATE 3/20/06

APPENDIX A

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: ATC Associates, Inc.

Job No

J11554

Site:

AGFA-Peerless, Shorham, NY

Report Date

10/21/2005 4:46:02 P

3 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 10/03/2005 and were received at Accutest on 10/04/2005 properly preserved, at 3.2 Deg. C and intact. These Samples received an Accutest job number of J11554. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010B

Matrix: LEACHATE

Batch ID: MP31789

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J11061-1MS, J11061-1MSD, J11061-1SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic, Chromium, Lead, Selenium are outside control limits for sample MP31789-SD1.
 Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method SW846 7470A

Matrix: LEACHATE

Batch ID: MP31810

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J10992-6MS, J10992-6MSD were used as the QC samples for metals.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(J11554).

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

Project Number: <u>J11554</u>

Client Name: <u>ATC Assoicateds, Inc.</u>

AGFA-Peerless, Shorham, NY

		Analytical Requirements									
Customer Sample Code	Laboratory Sample ID	VOA GC/MS	BNA GC/MS	VOC GC	Pest PCB	Metals	Other				
Sample Code	Sample ID	Method 8260	Method 8270C	Method 8021	Method 8082		PHC				
STOCKPILE-1	J11554-1		<u> </u>			X					
STOCKPILE-2	J11554-2					X					
STOCKPILE-3	J11554-3					X					

Report of Analysis

Page 1 of 1

Client Sample ID: STOCKPILE - 1

Lab Sample ID: Matrix: J11554-1

SO - Soil

Date Sampled: 10/03/05 **Date Received:** 10/04/05

Percent Solids: n/a

Project:

AGFA-Peerless, Shorham, NY

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 0.50	D004	5.0	0.50	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Barium	< 1.0	D005	100	1.0	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Cadmium	< 0.0050	D006	1.0	0.0050	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Chromium	< 0.010	D007	5.0	0.010	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Lead	< 0.50	D008	5.0	0.50	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Mercury	< 0.00020	D009	0.20	0.00020	mg/l	1	10/18/05	10/19/05 JW	SW846 7470A ²	SW846 7470A ⁵
Selenium	< 0.50	D010	1.0	0.50	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Silver	< 0.010	D011	5.0	0.010	mg/l	1	10/12/05	10/21/05 RP	SW846 6010B ³	SW846 3010A ⁴

(1) Instrument QC Batch: MA16451

(2) Instrument QC Batch: MA16503

(3) Instrument QC Batch: MA16516

(4) Prep QC Batch: MP31789

(5) Prep QC Batch: MP31810

Report of Analysis

Page 1 of 1

Client Sample ID: STOCKPILE - 2

Lab Sample ID:

J11554-2

Date Sampled: 10/03/05

Matrix:

SO - Soil

Date Received: 10/04/05

Percent Solids: n/a

Project:

AGFA-Peerless, Shorham, NY

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 0.50	D004	5.0	0.50	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Barium	< 1.0	D005	100	1.0	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Cadmium	0.023	D006	1.0	0.0050	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Chromium	< 0.010	D007	5.0	0.010	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Lead	< 0.50	D008	5.0	0.50	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Mercury	< 0.00020	D009	0.20	0.00020	mg/l	1	10/18/05	10/19/05 JW	SW846 7470A ²	SW846 7470A ⁵
Selenium	< 0.50	D010	1.0	0.50	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Silver	0.016	D011	5.0	0.010	mg/l	1	10/12/05	10/21/05 RP	SW846 6010B ³	SW846 3010A ⁴

(1) Instrument QC Batch: MA16451 (2) Instrument QC Batch: MA16503 (3) Instrument QC Batch: MA16516 (4) Prep QC Batch: MP31789

(5) Prep QC Batch: MP31810

Report of Analysis

Page 1 of 1

Client Sample ID: STOCKPILE - 3

Lab Sample ID:

J11554-3 SO - Soil Date Sampled: 10/03/05 Date Received: 10/04/05

Matrix:

Percent Solids: n/a

Project:

AGFA-Peerless, Shorham, NY

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 0.50	D004	5.0	0.50	mg/l	1	10/10/05	10/11/05 LF	SW846 6010B ¹	SW846 3010A ⁴
Barium	1.3	D005	100	1.0	mg/l	1	10/10/05	10/11/05 LF	SW846 6010B ¹	SW846 3010A ⁴
Cadmium	0.043	D006	1.0	0.0050	mg/l	1	10/10/05	10/11/05 LH	I SW846 6010B ¹	SW846 3010A ⁴
Chromium	< 0.010	D007	5.0	0.010	mg/l	1	10/10/05	10/11/05 LF	SW846 6010B ¹	SW846 3010A ⁴
Lead	< 0.50	D008	5.0	0.50	mg/l	1	10/10/05	10/11/05 LH	SW846 6010B ¹	SW846 3010A ⁴
Mercury	< 0.00020	D009	0.20	0.00020	mg/l	1 ·	10/18/05	10/19/05 JW	SW846 7470A ²	SW846 7470A ⁵
Selenium	< 0.50	D010	1.0	0.50	mg/l	1	10/10/05	10/11/05 LF	SW846 6010B ¹	SW846 3010A ⁴
Silver	0.013	D011	5.0	0.010	mg/l	1	10/12/05	10/21/05 RF	SW846 6010B ³	SW846 3010A ⁴

(1) Instrument QC Batch: MA16451 (2) Instrument QC Batch: MA16503 (3) Instrument QC Batch: MA16516 (4) Prep QC Batch: MP31789

(5) Prep QC Batch: MP31810

ACCUTEST LABORATORIES NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY **INORGANIC ANALYSIS**

Project No:

<u>J11554</u>

Client Name: ATC Assoicateds, Inc.

AGFA-Peerless, Shorham, NY

Laboratory			Date Rec'd	Date
Sample ID	Matrix	Metals Requested	at Lab	Analyzed
J11554-1	Leachate	TCLP Metals	04-Oct-05	21-Oct-05
J11554-2	Leachate	TCLP Metals	04-Oct-05	21-Oct-05
J11554-3	Leachate	TCLP Metals	04-Oct-05	21-Oct-05

ACCUTEST. Laboratories

40

CHAIN OF CUSTODY

. 2235 Route 130, Dayton NJ 08810 TEL. 732-329-0200 FAX: 732-329-3499/3480 www.sccutest.com

FFD-FX Tracking #	Bottle Order Control #
Accutest Quote #	Acculest Job # .T//554

Client / Reporting Information	Project Info	mation	2 Po	quested Analysis Matrix Cortes
Company Name	Project Name			DW - Drinking Water
ATC ASSOCIATES, INC	AFGA- Peerless	Photo Site	20 - 846	GW - Ground Weter
Address 3 Terri Lane City Burling Ton NJ 08016 Project Contact Michael Mandall Contact E-mail	Street S Randall E	7		WW - Water
City State 7in	City State	<u>.0</u>	FUS D WES D	SW - Surface Water
BURLINGTON NJ 08016	STURENAM DY		R	SO · Soil
Project Contact E-mail	Project #		602 604	Si Sludge
Mihe. Mc Nally @ ATC ASSOCIATES. COM Phone #	Project # 68.28817. G	∞	602 FALS 10 WO PALS 1-150 STARS OF 1-150 ARS OF 1-150	01 - 011
Phone # 609 - 386 - 8800	Fax# 609.386.79	3.1	182 602 00 1840 602 00 1840 00 1850 00	LIQ Other Liquid
I Sambler's Nazzo	Client Purchase Order #	71	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AIR - Air
Nicole Gorelias			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SOL - Other Solid
Accutest Field ID / Point of Collection SUMMA #	Collection	Number of preserved Bottles	الاسالاساليا والمنات	WP - Wipc.
Sample # MEOH Visi #	Date Time Sampled Matrix # of bottles	1 1 1 1 1 1 1 1 1 1	100 mm mm mm mm mm mm mm mm mm mm mm mm m	LAB USE ONLY
- 1 STOCKPILE - 1	0/x105 1360 NG SQ 1	8	¥ +	/ me3
	13/05 1315 NG So 1	*	4 4	
- 3 STOCKPILE - 3		1 - 2 -	\ - \	+++++
- 3 STOCKPile-3	1/3/05 1330 NG So 1	1111	7 4	
<u> </u>				
		- - - - - - - - - - 	 	
				
Turneround Time (Business Days)	Data Del	verable information		Comments / Remarks
BSLSId 15 Businoss Days Approved By: / Data:	Commercial *A*	☐ FULL CLP		
□ 10 Day RUSH	Commercial "B"	NYASP Category A	pg lest	
□ 5 Day RUSH	☐ NJ Reduced	NYASP Category B	0	
☐ 3 Day EMERGENCY	NJ Fult	State Forms	-	
☐ 2 DBy EMERGENCY ————————	Other	EDD Format		
1 Uay EMFRGENCY	0			
Other	Commercial "A" = Results Only			
Emergency & Rush T/A data available V/A LabLink	Sample Custody must be documented below each	time samples change possession, locker	ding courier delivery	
Relinquished to Sampler: Date Time' Receiv	ed by	Polinguished by	Colo Tierra de	Nacolund by
1/3003 1/34	Ted	2 Fed >	144/8	2 (a ting of
Relinquished by: Date Time Receiv	ed by:	Relinquished by	Delly Turns	Received by
3 3 Relinquished by Date 1 time Receive	ed by:	Custody Seel #	Preserved where applicable	On Ice Cooler Temp.
5	·	NOWE		3.2 %

APPENDIX B

roject Manager: M. McNally			San	npling Date(s):	10/3/2005
				viewed By:	M. Traxler
aboratory: Accutest			Cor	npletion Date:	3/20/2006
compound List:	Appen	dix IX		X OtherTCLP	
Method: CLP SOW 3/90 Matrix: soil/solid (mg/Kg)	X SW-84	16 us (ug/L)		X Othermg/L	
The following table indicates the data value and QA action.		,		mined, problems	identified,
ata Validation Criteria:	accep	ot FYI	qualif	y comments	_
lolding Times	X	\prod	П	Less than 180 d	ays
alibration Linearity - Furnace, Hg , nd CN				NR	
alibration Verification	X	11	11	2-point standard	
RDL Standard	×	11		50 - 150 % R	
alibration Blanks	×	11	11	< RL	
reparation Blanks	×	11		< RL	
ield Blank		×		< RL No FB in	batch
CP Interference Check Sample	х			80 - 120 % R	
aboratory Control Sample	X		11	80 - 120 % R	and the second s
latrix Spike Results	X			75 - 125 % R E	Batch QC
aboratory Duplicate Results	X		11	< 20 RPD	* · ·
CP Serial Dilution	X			< 10 RPD (or <	50x IDL)
ost Digestion Analytical Spike		} }	1	NR	
lethod of Standard Addition			28,0 (0.94) (3.97)	NR	
ield Duplicate Results		×		< 50 RPD No F	D in batch
ample Result Verification	×				
Other:		Ш	Ш		
General Comments:					
					

QA Scientist M Staples Date 3/20/06

Inorganic Matrix Spike/ Matrix Spike Duplicate Worksheet

ATC

Project Name:

Peerless Photo Products

Case/SDG Number: J11554

Project Number: 68.28817.0001

Sample Location or Description Sample Number Sampling Date Units

] _	
Batch QC	Batch QC	Batch QC
J11061-1	J11061-1MS	J11061-1MSD
10/4/2005	10/4/2005	10/4/2005
mg/L	mg/L	mg/L
	7	ſ

	•	Spike Amount	Sample Result	MS Result	MSD Result						
						MS %R	Q	MSD %R	Q	RPD	Q
400	Arsenic	2.0	0.020	2.0	2.0	99.0		99.0		0.0	TT
	Barium	10.0	0.45	10	10	95.5		95.5		0.0	
	Cadmium	0.050	0.0051	0.052	0.052	93.8		93.8		0.0	\Box
	Chromium	0.20	0.0022	0.19	0.19	93.9		93.9		0.0	
	Lead	2.0	0.048	2.0	2.0	97.6		97.6		0.0	
	Мегсигу	0.0020	0.0	0.0021	0.0021	105.0	1 1	105.0		0.0	T
	Selenium	2.0	0.021	2.0	2.0	99.0		99.0	T	0.0	
	Silver	0.050	0.0	0.054	0.054	108.0		108.0		0.0	1

Q - Qualifier

QA Scientist M. Hayler Date 3/20/06

^{* -} Denotes %R or RPD outside criteria

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J11554 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31789 Matrix Type: LEACHATE Methods: SW846 6010B

Units: mg/l

Prep Date:

10/04/05

Prep Date:				10/04/05	<u></u>		
Metal	J11061-1 Original		Spikelot MPITCLP1		QC Limits		
Aluminum						_	
Antimony							
Arsenic	0.020	2.0	2.0	99.0	75-125		
Barium	0.45	10	10.	95:5	75-125		
Beryllium							
Cadmium	0.0051	0.052	0.050	93.8	75-125		
Calcium							
Chromium	0.0022	0.19	0.20	93.9	75-125		
Cobalt							
Copper							
Iron				•			
Lead	0.048	2.0	2.0	97.6	75-125		
Magnesium							
Manganese							
Molybdenum							
Nickel				na saling.			
Palladium							
Potassium							
Selenium	0.021	2.0	2.0	99.0	75-125		
Silicon			:				
Silver	0.0	0.054	0.050	108.0	75~125		
Sodium							
Thallium							
Tin				*			
Vanadium							

Zinc

Associated samples MP31789: J11554-1, J11554-2, J11554-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

Login Number: J11554 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31789 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

Prep Date:

10/04/05

Prep Date:					10/04/05		
Metal	J11061-1 Original		Spikelot MPITCLP1		MSD RPD	QC Limit	
Aluminum						-	
Antimony							
Arsenic	0.020	2.0	2.0	99.0	0.0	20	
Barium	0.45	10	10.	95.5	0.0	20	
Beryllium							
Cadmium	0.0051	0.052	0.050	93.8	0.0	20	
Calcium							
Chromium	0.0022	0.19	0.20	93.9	0.0	20	
Cobalt							
Copper							
Iron							
Lead	0.048	2.0	2.0	97.6	0.0	20	
Magnesium							
Manganese							
Molybdenum							
Nickel							
Palladium							
Potassium							
Selenium	0.021	2.0	2.0	99.0	0.0	20	
Silicon							
Silver	0.0	0.054	0.050	108.0	0.0	20	
Sodium							
Thallium							
Tin							
Vanadium							
Zinc							

Associated samples MP31789: J11554-1, J11554-2, J11554-3

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: J11554 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31789 Matrix Type: LEACHATE Methods: SW846 6010B

Units: mg/l

Prep Date:

10/04/05

10/10/05

Prep Date:			10/04/05				10710705	
Metal	BSP Result	Spikelot MPITCLP1		QC Limits	LCS Result	Spikelot MPLCW2	% Rec	QC Limits
Aluminum						_	2004 S	
Antimony								
Arsenic	2.0	2.0	100.0	80-120	0.47	0.50	94.0	80-120
Barium	9.6	10.	960	80-120	0.50	0.50	100.0	80-120
Beryllium								
Boron								
Cadmium	0.048	0.050	96.0	80-120	0.49	0.50	98.0	80-120
Calcium								
Chromium	0.19	0.20	95.0	80-120	0.50	0.50	100.0	80-120
Cobalt								
Copper								
Iron								
Lead	2.0	2.0	100.0	80-120	0.50	0.50	100.0	80-120
Magnesium			김 불리는					
Manganese								
Molybdenum								
Nickel								
Palladium								
Potassium								
Selenium	2.1	2.0	105.0	80-120	0.46	0.50	92.0	80-120
Silicon								
Silver	0.054	0.050	108.0	80-120				
Sodium								
Strontium								
Thallium								
Tin								
Titanium								
Vanadium								
Zinc								

Associated samples MP31789: J11554-1, J11554-2, J11554-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAS CONTROL SAMPLE SUMMARY

Login Number: J11554 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31789 Matrix Type: LEACHATE Methods: SWB46 6010B

Units: mg/l

Prep Date:			10/12/05	<u> </u>	
Metal	LCS Result	Spikelot MPLCW2	ት Rec	QC Limits	
Aluminum					
Antimony					
Arsenic	0.46	0.50	92.0	80-120	
Barium	0.50	0.50	100.0	80-120	
Beryllium					
Boron					
Cadmium	0.50	0.50	100.0	80-120	
Calcium					
Chromium	0.51	0.50	102.0	80-120	
Cobalt					
Copper					
Iron					
Lead	0.50	0.50	100.0	80-120	
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Potassium					
Selenium	0.43	0.50	86.0	80-120	
Silicon					
Silver	0.20	0.20	100.0	80-120	
Sodium					
Strontium					··
Thallium					
Tin					
Titanium					
Vanadium					
Zinc					

Associated samples MP31789: J11554-1, J11554-2, J11554-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: J11554 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31789 Matrix Type: LEACHATE Methods: SW846 6010B

Units: ug/l

Prep Date:			10/04/0	5	
Metal	J11061-1 Original	SDL 1:5	RPD	QC Limits	
Aluminum		-			
Antimony					and Standa
Arsenic	20.0	0.00 /	100.0 (a	J0-10	1117 /120/08
Barium	448	480	7.1	0-10	Sund coice dilutions becard lots
Beryllium					Everal Sanac armitted
Cadmium	5.07	5.48	8.1	0-10	MT 3/20/06 Several serial dilutions exceed 102 However, all results <50x IDL
Calcium					
Chromium	2.19	0.00	100.0(a	10-10	
Cobalt		(
Copper					
Iron					
Lead	48.3	64.7	34.0 (a	D ₀₋₁₀	
Magnesium		(·
Manganese			٠.		
Molybdenum			ŕ		
Nickel			•		
Palladium					
Potassium					
Selenium	21.1	26.9	27.8 (a	0-10	
Silicon				f :	
Silver	0.00	0.00	NC	0-10	
Sodium					
Thallium					
Tin					
Vanadium				:	
Zinc			Talle in the second		

Associated samples MP31789: J11554-1, J11554-2, J11554-3

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J11554

Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31810 Matrix Type: LEACHATE Methods: SW846 7470A

Units: mg/l

Prep Date:

10/05/05

Associated samples MP31810: J11554-1, J11554-2, J11554-3

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: J11554 Account: BCMNJ - ATC Associates, Inc. Project: AGFA-Peerless, Shorham, NY

QC Batch ID: MP31810 Matrix Type: LEACHATE Methods: SW846 7470A

Units: mg/l

Prep Date:

10/05/05

Metal	J10992- Origina		Spikelo HGPW2	t % Rec	MSD RPD	QC Limit
Mercury	0.0	0.0021	0.0020	105.0	0.0	22

Associated samples MP31810: J11554-1, J11554-2, J11554-3

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $% \left(\frac{1}{2}\right) =0$

(N) Matrix Spike Rec. outside of QC limits