FINAL SEMIANNUAL SAMPLING REPORT (June 2006 Sampling Event)

Multi Site G Operation, Maintenance & Monitoring

> Dzus Fasteners Site West Islip, Suffolk County, NY Site 1-52-033

> > Work Assignment No. D004445-14

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

October 2006

Prepared by:

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, New Jersey 07003

TABLE OF CONTENTS

Chapter

Page

1.0	INTR	ODUCTION	1
2.0	BACk	GROUND INFORMATION	1
3.0	FIELI	D ACTIVITIES	1
	3.1 3.2 3.3 3.4	 Water Level Survey Groundwater Sampling Surface Water / Sediment Sampling Fish Tissue Sampling 3.4.1 Fish Collection Methods 3.4.2 Fish Sample Preparation and Shipment 	1 2 3 3
4.0	SAMI 4.1 4.2 4.3 4.4	PLING RESULTS Monitoring Well Samples Surface Water Samples Sediment Samples Fish Tissue Samples	4 5 6
5.0		MARY AND RECCOMMENDATIONS FOR FUTURE SITE REMEDIATION	7

LIST OF TABLES

- 1 Monitoring Well Locations
- 2 Summary of TAL Metals in Groundwater
- 3 Summary of TAL Metals in Lake Capri Surface Water Samples
- 4 Summary of TAL Metals in lake Capri Sediment Samples
- 5 Lake Capri Fish Samples
- 6 Cadmium Analytical Results in Fish Tissue

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Plan June 2006
- 3 Summary of TAL Metals in Groundwater June 2006
- 4 Summary of TAL Metals in Surface Water June 2006
- 5 Summary of TAL Metals in Sediment June 2006

LIST OF APPENDICES

- A Well Sampling Forms
- B Data Summary Package (Laboratory Summary and Form 1s)
- C Collected Fish Samples

1.0 INTRODUCTION

Past releases from the Dzus Fasteners facility in West Islip, New York (Site No. 1-52-033) resulted in the contamination of Willetts Creek and Lake Capri sediments downstream of the Dzus Facility. Earth Tech was tasked with collecting two rounds of semiannual samples from selected monitoring wells, and surface water/sediment samples from Lake Capri. This report presents the results from the first semiannual sampling effort conducted in June 2006.

2.0 BACKGROUND INFORMATION

The Dzus Fasteners Superfund site is located at 425 Union Boulevard, West Islip, New York (Figure 1). The Site is bounded to the north by railroad tracks. To the southeast is Union Boulevard. On the southeast side of Union Boulevard is a shopping plaza and southeast of the shopping plaza is Willetts Creek. Willetts Creek flows south past a junior high school and high school, and eventually discharges into Lake Capri approximately 4,500 ft south of the Site. A total of 14 wells and six surface water/sediment sample locations were identified for long term monitoring at the Site (Figure 2). Fish sample collection locations were identified in the field in conjunction with NYSDEC Fish and Wildlife staff at the time of collection as shown on Figure 2.

3.0 FIELD ACTIVITIES

The field sampling at the Dzus Site occurred on June 6 through June 8, 2006. Sampling was conducted in accordance with the Sampling and Analysis Plan (SAP) prepared by Earth Tech, dated April 2006. The SAP is comprised of the Field Sampling Plan (FSP), the Quality Assurance Project Plan (QAPP) and the Safe Work Plan (SWP). All field work was performed in Level D personal protection.

3.1 Water Level Survey

Prior to the start of sampling a synoptic round of water levels was collected from the 14 monitoring wells selected for sampling. Readings were recorded in the field notebook and on the Well Sampling Forms. The locations of the wells are presented in Table 1.

3.2 Groundwater Sampling

Fourteen wells were identified for long term monitoring at the Site. The selected wells included MW-1, MW-2, MW-3, MW-9, MW-9B, MW-13A, MW-13B, MW-15A, MW-15B, MW-18, MW-22A, MW-22B, MW-23A and MW-23B. Each location was photo-documented and a hand-held GPS unit was used to record the coordinates. The coordinates were recorded on the Well Sampling Forms.

Earth Tech used either a Honda centrifugal or a Waterra Hydrolift pump with black polyethylene tubing with a foot valve to purge each monitoring well prior to sampling. When the depth to water was too great for the centrifugal pump, the Waterra Hydrolift pump was used. Monitoring wells were purged of at least three casing volumes of water prior to sampling. Measurements of pH, specific conductance, temperature and turbidity were recorded on the Well Sampling Forms after each well volume was removed. Well Sampling Forms are provided in Appendix A. Once the minimum volume of water was evacuated, a dedicated Teflon bailer was used to collect a groundwater sample. The sample was placed into laboratory supplied containers placed in an ice-filled cooler. The samples were then transported to Mitkem Laboratory via Federal Express. Proper chain-of-custody procedures and requirements were maintained throughout the sampling event in accordance with the QAPP.

3.3 Surface Water / Sediment Sampling

Six surface water samples were collected from Lake Capri during the June 2006 semi-annual sampling event. A small boat was used to gain access to the lake. Each surface water sample was collected by dipping laboratory supplied bottles into the lake and then transferring the water to the laboratory supplied preserved bottles. At each surface water location, a co-located sediment sample was also collected. Sediment samples were collected using a ponar to reach the lake bottom sediments. Excess water was decanted from the sediment sample prior to placement in the laboratory provided sample jars.

3.4 Fish Tissue Sample Collection

Earth Tech performed fish sampling in Lake Capri, West Islip, New York. The purpose of the sampling was to obtain edible-sized fish for cadmium analysis. In 1999, fish were removed from Lake Capri, as part of remedial activities. In 2000, after the completion of remedial activities, which included dredging of the lake's bottom, the lake was restocked with silversides; bluegill, *Lepomis macrochirus*; and largemouth bass, *Microptera salmoides*.

Lake Capri is located on the southern shore of Long Island. Lake Capri is approximately 150 meters (m) wide and 210 m long. The deepest point of the lake during the time of sampling was observed to be approximately 2.5 m in depth. At the shoreline, there is usually a vertical drop off approximately one meter in depth. The near vertical condition of the shoreline is likely a result of previous dredging activities. During the sampling event, thick growths of submerged aquatic vegetation were present throughout the lake. The lake is completely bordered by residential homes on its north, east, and west shoreline. The southern shoreline consists of a bulkhead structure that is adjacent to Route 25A (Montauk highway).

The lake is fed by Willetts Creek to the north. Willetts Creek is a north-south flowing, slow moving creek, about 5-7 meters wide and less than ten centimeters in depth. On the lake's southern boundary, there is an outlet from the lake that flows to Willetts Cove, a tidally influenced inlet. This outlet is a concrete weir and box culvert that flows under Route 25A.

Earth Tech obtained fish samples using collection techniques that would not influence the cadmium analysis. These techniques included electro shocking, gill nets, and traps (box and minnow). In order to collect the fish, Earth Tech applied for and received a NYSDEC collection license (#945). Sampling occurred on July 17, and July 18, 2006, and very hot (temperatures 35°+ Celsius [C]) were encountered on both days. The water temperature too at the surface was very warm, with a temperature of 32°C.

The initial plan called for the collection of 80, 100-gram samples from Lake Capri. Forty samples from the northern boundary of the lake near the mouth of Willetts Creek and 40 samples near the weir. However, due to very hot conditions, fish capture was much lower than anticipated. Also, on Tuesday, July 18, 2006, sampling ended circa 10:00AM due to a homeowner who requested that we remove ourselves from the lake. The homeowner indicated that the lake is private property and that NYSDEC had provided no advanced notice to the lake owners association, and that the authorities would be contacted if sampling did not cease immediately.

The fish samples that were collected were catalogued and preserved (on ice) as per NYSDEC instructions. The samples were then shipped to Pace Laboratory, a NYSDEC-certified laboratory, for cadmium analysis.

3.4.1 Fish Collection Methods

Several methods were employed to obtain the fish samples: electro shocking, gill nets, and traps. The gill net and trap locations were recorded with a global positioning system (GPS).

Electro shocking

Due to the lack of vehicular access ways to the lake from local roads, the use of a large boat outfitted with a commercial electro shocking device was not feasible. Instead, a backpack-mounted electro shocker was utilized. Due to the depths of the water, use of the backpack-mounted electro shocker was not feasible (on foot) due to the likelihood of submersion and safety concerns for the operator. Instead, one ecologist sat in a plastic boat with the electro shocker. The ecologist placed the cathodes and anode over the side of the vessel and attempted to electroshock; however, this proved unsuccessful. It is likely that the extreme heat of the day caused the fish to lie on the lake's bottom in order to find locations with cooler temperatures. Thus, if they were affected by the electrical output, they would be caught in the weeds and not float to the surface; thus not allowing them to be netted.

<u>Gill Nets</u>

A multi-sized mesh gill net was set in the lake on the evening of Monday, July 17 and checked the following morning. The net measured approximately 1.5 m in height and 15.2 m in length. The net was set in approximately 1.5 m of water. Two, 3-m long metal poles were obtained and driven into the lake bead, perpendicular to the waters surface. The net was then stretched between both poles, in order to catch fish. A GPS reading for the gill net's position was recorded at N40° 41' 46.1 and W73° 18' 1.5. On Tuesday morning, July 18, the net was retrieved and captured fish were processed for sampling on shore.

<u>Traps</u>

Box and minnow traps were used in the fish sampling efforts. Both traps were baited with frankfurters and cat food. Both baits have worked well in the past as they are high in lipids and/or give off a strong odor. Minnow traps were often placed under logs, ledges, and other overhangs that would attract small fish. Box traps, which are designed to catch larger fish, were placed in locations near the mouth of Willetts Creek and the weir.

After the traps were baited, they were checked periodically. Similar to the gill net, the traps too were set out over night. Traps were initially set just south of the mouth of Willetts Creek at N40° 41' 52.8 and W73° 18' 2.7 and near the weir N40° 41' 44.6 and W73° 18' 01.0. However due to low fish recovery on Monday, July 17, traps were then set all along the northern shoreline and the southern shoreline. Fish that were captured on Monday were kept alive in a trap overnight.

3.4.2 Sample Preparation and Shipment

On Tuesday morning, fish that were caught on Monday and Tuesday morning were removed from the water alive. The fish were identified to species, measured for length, and then weighed. The fish were grouped together by species, given a sample identification number, and placed in a plastic bag. The bag was then labeled with the sample number, and immediately placed in a cooler with ice. Later in the afternoon, the sample was shipped overnight to Pace Laboratory, a NYSDEC certified laboratory, for cadmium analysis.

4.0 SAMPLING RESULTS

Groundwater, surface water and sediment samples were analyzed for target analyte list metals (TAL metals) using USEPA Method 6000/7000. The analyses were performed by Mitkem Laboratory of Warwick, Rhode Island, a NYSDOH ELAP certified laboratory (ELAP certification number 11522). Data validation was not performed. An Earth Tech chemist provided a limited review of the data packages.

4.1 Monitoring Well Samples

Fourteen monitoring well samples were collected during the June 2006 sampling event. The monitoring well locations are presented on Figure 2. A summary of the detections is presented in Table 2. The full data is presented in Appendix B. The laboratory data summary packages are included in Appendix B. A summary of the exceedances is presented on Figure 3.

Monitoring well MW-1 yielded a concentration of cadmium of 23.9 microgram per liter (μ g/L) which exceeds the Class GA criterion of 10 μ g/L, iron of 13,200 μ g/L which exceeds the criterion of 300 μ g/L, sodium of 22,500 μ g/L which exceeds the criterion of 20,000 μ g/L, and thallium of 1.9 μ g/L which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-2 yielded a concentration of cadmium of 23.9 μ g/L which exceeds the Class GA criterion of 10 μ g/L, iron of 14,900 μ g/L which exceeds the criterion of 300 μ g/L, manganese of 518 μ g/L which exceeds the criterion of 300 μ g/L, sodium 21,500 μ g/L which exceeds the criterion of 20,000 μ g/L, and thallium of 2.3 μ g/L which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-3 yielded a concentration of iron of 14,900 μ g/L which exceeds the Class GA criterion of 300 μ g/L, manganese of 518 μ g/L which exceeds the criterion of 300 μ g/L, sodium of 21,500 μ g/L which exceeds the criteria of 20,000 μ g/L, and thallium of 2.5 μ g/L which exceeds the limit of 0.5 μ g/L.

Monitoring well MW-9 yielded a concentration of arsenic of 32.6 μ g/L which exceeds the Class GA criterion of 25 μ g/L, cadmium of 32.8 μ g/L which exceeds the criterion of 10 μ g/L, chromium of 125 μ g/L which exceeds the criterion of 50 μ g/L, iron of 21,600 μ g/L which exceeds the criterion of 300 μ g/L, and sodium 25,500 μ g/L which exceeds the criterion of 20,000 μ g/L.

Monitoring well MW-9B yielded a concentration of iron of 561 μ g/L which exceeds the Class GA criterion of 300 μ g/L.

Monitoring well MW-13A yielded a concentration of cadmium of 174 μ g/L which exceeds the Class GA criterion of 10 μ g/L, iron of 12,700 μ g/L which exceeds the criterion of 300 μ g/L, manganese of 9,560 μ g/L which exceeds the criterion of 300 μ g/L, sodium 94,500 μ g/L which exceeds the criterion of 20,000 μ g/L, and thallium of 44 which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-13B yielded a concentration of cadmium of 15 μ g/L which exceeds the Class GA criterion of 10 μ g/L, iron of 614 μ g/L which exceeds the criterion of 300 μ g/L, and manganese of 621 μ g/L which exceeds the criterion of 300 μ g/L.

Monitoring well MW-15A yielded a concentration of cadmium of 28.8 μ g/L which exceeds the Class GA criterion of 10 μ g/L, iron of 2,320 μ g/L which exceeds the criterion of 300 μ g/L, manganese of 370 μ g/L which exceeds the criterion of 300 μ g/L, and thallium of 1.9 μ g/L which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-15B yielded a concentration of iron of 4,780 μ g/L which exceeds the Class GA criterion of 300 μ g/L, sodium of 46,600 μ g/L which exceeds the criterion of 20,000 μ g/L, and thallium of 3 μ g/L which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-18 yielded a concentration of iron of 1,150 μ g/L which exceeds the Class GA criteria of 300 μ g/L, manganese of 6,270 μ g/L which exceeds the criterion of 300 μ g/L, and thallium of 26.5 μ g/L which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-22A yielded a concentration cadmium of 38.9 μ g/L which exceeds the Class GA criterion of 10 μ g/L, iron of 70,400 μ g/L which exceeds the criterion of 300 μ g/L, manganese of 1,280 μ g/L which exceeds the criterion of 300 μ g/L, and sodium of 95,200 which exceeds the criterion of 20,000 μ g/L.

Monitoring well MW-22B yielded a concentration cadmium of 29 μ g/L which exceeds the Class GA criteria of 10 μ g/L, iron of 4,600 μ g/L which exceeds the criterion of 300 μ g/L, manganese of 2,310 μ g/L which exceeds the criterion of 300 μ g/L, and thallium of 20.1 μ g/L which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-23A yielded a concentration cadmium of 110 μ g/L which exceeds the Class GA criterion of 10 μ g/L, iron of 10,300 μ g/L which exceeds the criterion of 300 μ g/L, manganese of 1,100 μ g/L which exceeds the criterion of 300 μ g/L, sodium of 60,200 which exceeds the criterion of 20,000 μ g/L and thallium of 9.3 μ g/L which exceeds the criterion of 0.5 μ g/L.

Monitoring well MW-23B yielded a concentration antimony 3.2 μ g/L which exceeds the Class GA criteria of 3 μ g/L, cadmium of 320 which exceeds the criterion of 5 μ g/L, chromium of 74.9 μ g/L which exceeds the criterion of 50 μ g/L, iron of 8,220 μ g/L which exceeds the criterion of 300 μ g/L, lead of 35.7 which exceeds the criterion of 25 μ g/L, manganese of 548 μ g/L which exceeds the criterion of 3.1 μ g/L which exceeds the criterion of 0.5 μ g/L.

4.2 Surface Water Samples

Six surface water samples were collected from Lake Capri and Willetts Creek at the locations shown on Figure 2. A summary of the detections is presented in Table 3. The full data is presented in Appendix B. The laboratory data packages are included in Appendix B. A summary of the exceedances is presented on Figure 4.

Surface water sample SW-1 was collected on the north end of Lake Capri near the mouth of Willetts Creek and yielded a concentration iron of 691 μ g/L which exceeds the Class A criterion of 300 μ g/L, manganese of 1,050 μ g/L which exceeds the criterion of 300 μ g/L.

Surface water sample SW-2 was collected on the north end of Lake Capri near the mouth of Willets Creek (and just south of SW-1) and yielded a concentration iron of 619 μ g/L which exceeds the Class A criterion of 300 μ g/L, manganese of 1,010 μ g/L which exceeds the criterion of 300 μ g/L.

Surface water sample SW-3 was collected on the south end of Lake Capri just west of the spill way and yielded a concentration iron of 788 μ g/L which exceeds the Class A criterion of 300 μ g/L, manganese of 882 μ g/L which exceeds the criterion of 300 μ g/L.

Surface water sample SW-4 was collected on the south end of Lake Capri just east of the spill way and yielded a concentration iron of 610 μ g/L which exceeds the Class A criterion of 300 μ g/L, manganese of 786 μ g/L which exceeds the criterion of 300 μ g/L.

Surface water sample SW-5 was collected from Willetts Creek just south of the footbridge behind the high school and yielded a concentration iron of 632 μ g/L which exceeds the Class A criterion of 300 μ g/L, manganese of 1,420 μ g/L which exceeds the criterion of 300 μ g/L, and sodium of 21,100 μ g/L which exceeds the criterion of 20,000 μ g/L.

Surface water sample SW-6 was collected from Willetts Creek just south of the Blockbuster Video store in the small shopping center and yielded a concentration iron of 5,400 μ g/L which exceeds the Class A criterion of 300 μ g/L, manganese of 26,100 μ g/L which exceeds the criterion of 300 μ g/L, and sodium of 29,200 μ g/L which exceeds the criterion of 20,000 μ g/L. At the time of the sampling event, Earth Tech observed a rusty color in the water and excessive reddish algae growth. This portion of the creek also appears to be subject to frequent littering and dumping.

Concentrations of iron manganese were identified in all six surface water samples collected. In addition to the iron and manganese, sodium was identified in samples SW-5 and SW-6. The highest concentration of each contaminant was found in sample SW-6 which was collected in Willetts Creek just south of the Blockbuster Video store in the small shopping center.

4.3 Sediment Samples

Six co-located sediment samples were collected at the same locations as the surface water samples as shown on Figure 2. A summary of the detections is presented in Table 4. The full data is presented in Appendix B. The laboratory data packages are included in Appendix B. A summary of the exceedances is presented on Figure 5.

Sample SED-1 yielded an arsenic concentration of 7.9 milligram per kilograms (mg/kg) which exceeds the NYSDEC Technical Guidance for Sediment Criterion of 6.0 mg/kg, cadmium of 47.8 mg/kg which exceeds the criterion of 0.6 mg/kg, copper of 38.6 mg/kg which exceeds the criterion of 16 mg/kg, lead of 170 mg/kg which exceeds the criterion of 31 mg/kg, manganese of 1,290 mg/kg which exceeds the criterion of 460 mg/kg, mercury of 0.21 mg/kg which exceeds the criterion of 0.15 mg/kg, and zinc of 215 mg/kg which exceeds the criterion of 120 mg/kg.

Sample SED-2 yielded an arsenic concentration of 19.7 mg/kg which exceeds the NYSDEC Technical Guidance for Sediment Criterion of 6.0 mg/kg, cadmium of 133 mg/kg which exceeds the criterion of 0.6 mg/kg, chromium of 33.7 mg/kg which exceeds the criterion of 0.6 mg/kg, copper of 210 mg/kg which exceeds the criterion of 16 mg/kg, lead of 315 mg/kg which exceeds the criterion of 31 mg/kg, mercury of 0.45 mg/kg which exceeds the criterion of 0.15 mg/kg, nickel of 17.6 mg/kg which exceeds the criterion of 16 mg/kg, and zinc of 402 mg/kg which exceeds the criterion of 120 mg/kg.

Sample SED-3 yielded a cadmium concentration of 1.5 mg/kg which exceeds the NYSDEC Technical Guidance for Sediment Criterion of 0.6 mg/kg.

Sample SED-4 yielded a cadmium concentration of 32.3 mg/kg which exceeds the NYSDEC Technical Guidance for Sediment Criterion of 0.6 mg/kg, copper of 21.6 mg/kg which exceeds the criterion of 16 mg/kg, lead of 71.2 mg/kg which exceeds the criterion of 31 mg/kg, manganese of 837 mg/kg which exceeds the criterion of 460 mg/kg, and zinc of 122 mg/kg which exceeds the criterion of 120 mg/kg.

Sample SED-5 yielded no concentrations in excess of the NYSDEC Technical Guidance for Sediment

Criterion.

Sample SED-6 yielded a copper concentration of 21.6 mg/kg which exceeds the NYSDEC Technical Guidance for Sediment Criterion of 16 mg/kg.

4.4 Fish Tissue Samples

The target was for each sample to weigh at least 100 grams. For some samples this was not possible due to low recovery of fish. Some samples consisted of one individual fish and other samples consisted of numerous small fish. The length and weight of each fish that comprises each sample is provided in Appendix C.

A total of four species comprised of 62 individual fish were obtained from Lake Capri. The species included American eel, bluegill, largemouth bass, and pumpkinseed, *Lepomis gibbosus*. The lengths of the fish ranged from 3 centimeters (cm) to 37.75 cm. The weight of each individual fish ranged from less than 1 gram (g) to 700 g. The total length and weight of each sample is provided in Table 5.

Cadmium analysis on the fish samples was performed by Pace Laboratories in Wisconsin. The samples were prepared in accordance with NYSDEC guidelines and cadmium was analyzed using the SW846 M3050 preparation method and the SW846 6020 analysis method. The Pace Analytical Laboratory data summary package is included in Appendix B. Table 6 provides the results of each sample.

Cadmium concentrations varied from 28 micrograms per kilogram (μ g/kg) to 270 μ g/kg. For several samples (i.e., North 2, South 3, and South 4) the concentration was at the MDL (minimum detection limit) for the cadmium analysis.

5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES

Based on a review of the groundwater analytical data, concentrations of metals in the groundwater remain above the NYSDEC Groundwater Criteria. Cadmium and thallium were present in 10 of 14 monitoring wells at concentrations above their respective Class GA criterion. Most monitoring well samples had exceedances of iron, manganese and sodium; however, as these are common elements, they most likely represent background conditions. There were also one or two exceedances of antimony, arsenic, chromium, lead and vanadium in MW-9 and MW-23D. These do not appear to be related to the Dzus Fasteners Site.

Iron and manganese were present in all six surface water samples above the Class A surface water standards. Sodium was also present above the criterion in two samples. The highest concentrations were found in the stream behind the Blockbuster Video Store. The second highest concentrations were detected in the sample collected just south of the foot bridge behind West Islip High School. As these are common elements, they most likely represent background conditions.

The sediment samples indicate that the sediments in the bottom of Lake Capri remain contaminated with metals above the applicable NYSDEC Technical Guidance for Sediment Criteria. Of the four sediment samples from Lake Capri, all four had exceedances of cadmium, three had exceedances of copper and zinc, two had exceedances of arsenic and mercury and one had exceedances of chromium and nickel. The highest concentrations appear to be located near the north end of Lake Capri near the mouth of Willetts Creek.

Fish tissue samples were analyzed for cadmium. Only samples South 1, South 2, and North 1 were comprised of edible sized fish. These samples also had cadmium concentrations of 28, 28, and 80 μ g/kg, respectively. The higher concentrations recorded in the other samples, which often consisted of yearlings, ranged from 39 μ g/kg to 270 μ g/kg. However, this range may be a result of the low weights of the samples, which are all below the 100 g sample requirement, and that the samples contain whole body analysis not just fillets.

Due to the small numbers of collected fish, it is not possible to statistically analyze the results. However, a review of the data shows that there is no discernable trend regarding differences in cadmium concentrations between the north and south locations. No variation in species was observed. The NYSDOH fish advisory for cadmium in Lake Capri fish tissue is 1 mg/kg in carp. As noted in the Table in Appendix C, there were no carp caught during the July collection event. However, all of the sample results for any species were well below the 1 mg/kg advisory limit.

Based on the findings of this sampling event, Earth Tech recommends another round of sampling of the wells at the facility to further assess the groundwater trends. Furthermore, Earth Tech recommends a second round of surface water sampling to attempt to identify potential sources of surface water contaminants which might be related to the dumping activities observed behind the Blockbuster Video Store which might be impacting the observed surface water contaminant concentrations. A second round of fish tissue sampling in Lake Capri is also recommended.

TABLE 1 DZUS FASTENERS SITE MONITORING WELL LOCATIONS

Well ID	Latitude	Longitude	Comments
MW-1	40° 42.49	73° 18.10	Located in the grassy area just north of the parking lot between the main building and the shed
MW-2	40° 42.45	73° 18.10	Located in the grassy area just south of the western parking lot
MW-3	40° 42.49	73° 18.02	In grass in front of the eastern half on the Dzus building
MW-9	40° 42.50	73° 18.02	In driveway on eastern end of Dzus building
MW-9B	40° 42.49	73° 18.01	In driveway on eastern end of Dzus building
MW-13B	40° 42.43	73° 17.99	In parking lot on eastern end of the shopping center
MW-13A	40° 42.44	73° 17.100	In parking lot on eastern end of the shopping center
MW-15A	40° 42.49	73° 17.97	In parking lot in front of hardware store in the smaller shopping center
MW-15B	40° 42.50	73° 17.96	In parking lot in front of hardware store in the smaller shopping center
MW-22A	40° 42.491	73° 17.941	In grass to the east of Block Buster video store
MW-22B	40° 42.491	73° 17.941	In grass to the east of Block Buster video store
MW-23A	40° 42.402	73° 17.991	In eastern parking lot behind the shopping center
MW-23B	40° 42.403	73° 17.987	In eastern parking lot behind the shopping center
HSMW-1	40° 42.140	73° 18.110	Located on the north side of West Islip High School along the fence line near the back parking lot

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-9	MW-9B	MW-13A	MW-13B	MW-15A
Sample ID	Class GA	MW-1	MW-2	MW-3	MW-9	MW-9B	MW-13A	MW-13B	MW-15A
Laboratory ID	Groundwater	E0773-05A	E0773-10A	E0773-07A	E0773-09A	E0773-08A	E0773-13A	E0773-14A	E0773-03A
Sample Date	Criteria	6/8/06	6/7/06	6/8/06	6/8/06	6/8/06	6/8/06	6/8/06	6/7/06
Matrix	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q							
Aluminum	NC	4,180	7,090	5,650	16,800	213	15,000	330	773
Antimony	3	ND	ND	ND	ND	1.8 B	ND	ND	ND
Arsenic	25	4.3 B	3.9 B	2.9 B	32.6	ND	5.7 B	ND	ND
Barium	1,000	80.2 B	96.5 B	90.9 B	102 B	45.5 B	176 B	54.3 B	53.7 B
Beryllium	3	0.42 B	0.4 B	0.26 B	0.63 B	ND	0.53 B	ND	ND
Cadmium	5	23.9	4.2 B	77.4	32.8	2.9 B	174	15	28.8
Calcium	NC	8,790	15,500	17,800	16,000	10,800	37,900	10,700	18,900
Chromium	50	8 B	8.8 B	9.2 B	125	2.2 B	12.9 B	27.8	3 B
Cobalt	NC	5.1 B	18.3 B	4.4 B	5.2 B	2.6 B	55.8	3.9 B	3.2 B
Copper	200	18.3 B	19.3 B	16.1 B	62.3	28.8 B	34.3	19.3 B	38
Iron	300	13,200	14,900	4,430	21,600	561	12,700	614	2,320
Lead	25	3.9 B	14.7	ND	11.6	ND	5.7 B	ND	9.9 B
Magnesium	35,000	3,010	3,740	4,160	3,170	1,640	5,580	1,710	3,170
Manganese	300	210	518	423	151	211	9,560	621	370
Mercury	0.7	ND							
Nickel	100	8.7 B	13.3 B	6.8 B	18.3 B	8.6 B	9.4 B	9.8 B	7.1 B
Potassium	NC	1,760	2,140	2,630	3,270	2,140	7,430	2,410	2,090
Selenium	10	ND	1.4 B	ND	2.7 B	ND	ND	ND	ND
Silver	50	ND							
Sodium	20,000	22,500	21,500	27,700	25,500	8,070	94,500	7,880	18,000
Thallium	0.5	1.9 B	2.3 B	2.5 B	ND	ND	44	ND	1.9 B
Vanadium	NC	7.8 B	11.9 B	8.1 B	33.1 B	ND	17.6 B	1.3 B	2.6 B
Zinc	2,000	244	138	87	170	83.7	53.3	45.9 B	155

TABLE 2 DZUS FASTENERS SITE SUMMARY OF TAL METALS IN GROUNDWATER

NC - No Criteria

ND - Not Detected

B - Estimated value

Sample Location	NYSDEC	MW-15B	MW-18	MW-22A	MW-22B	MW-23A	MW-23B
Sample ID	Class GA	MW-15B	MW-18	MW-22A	MW-22B	MW-23A	MW-23B
Laboratory ID	Groundwater	E0773-04A	E0773-06A	E0773-11A	E0773-12A	E0773-01A	E0773-02A
Sample Date	Criteria	6/7/06	6/8/06	6/7/06	6/7/06	6/7/06	6/7/06
Matrix	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	224	1,430	4320	763 B	941	2,450
Antimony	3	ND	ND	1.7 B	ND	1.8 B	3.2 B
Arsenic	25	1.7 B	ND	16 B	ND	2 B	4.1 B
Barium	1,000	83.6 B	168 B	167 B	76.6 B	87.5 B	215
Beryllium	3	ND	ND	0.15 B	ND	ND	0.21 B
Cadmium	5	3.6 B	3 B	38.9	29 B	110	320
Calcium	NC	16,400	13,900	52,100	12,800	34,200	21,500
Chromium	50	2.1 B	2.2 B	18 B	7.9 B	3.6 B	74.9
Cobalt	NC	5.5 B	7.3 B	2.2 B	17.4 B	3.2 B	4.8 B
Copper	200	20.4 B	17.7 B	32.3	118 B	33.2	94.6
Iron	300	4,780	1,150	70,400	4,600	10,300	8,220
Lead	25	3.3 B	ND	8.6 B	8.6 B	ND	35.7
Magnesium	35,000	5,930	2,340	8,300	2,660 B	6,660	1,890
Manganese	300	239	6,270	1,280	2,310	1,100	548
Mercury	0.7	ND	ND	ND	ND	0.065 B	0.11 B
Nickel	100	11.5 B	17.5 B	6 B	28 B	9.3 B	68.8
Potassium	NC	2,450	1,520	4,560	3,000 B	7,070	2,400
Selenium	10	ND	ND	8.7 B	ND	1.3 B	ND
Silver	50	ND	ND	ND	ND	0.92 B	ND
Sodium	20,000	46,600	7,870	95,200	8,170 B	60,200	2,390
Thallium	0.5	3 B	26.5	ND	20.1 B	9.3 B	3.1 B
Vanadium	NC	0.72 B	2.6 B	17.4 B	ND	5.5 B	17.7 B
Zinc	2,000	129	235	1,650	194 B	181	417

TABLE 2 DZUS FASTENERS SITE SUMMARY OF TAL METALS IN GROUNDWATER

NC - No Criteria

ND - Not Detected

B - Estimated value

Earth Tech

TABLE 3 DZUS FASTENERS SITE SUMMARY OF TAL METALS IN LAKE CAPRI SURFACE WATER SAMPLES

Sample Location	NYSDEC	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	
Sample ID	Class A	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	
Laboratory ID	Surface Water		E0868-03A	E0868-05A	E0868-07A	E0868-09A	E0868-11A	
Sample Date	Criteria	6/21/06	6/21/06	6/21/06	6/21/06	6/21/06	6/21/06	
Matrix	water	water	water	water	water	water	water	
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	
	P 9, -	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	
Aluminum	NC	31.9 B	16.8 B	69.5 B	ND	15.3 B	40.5 B	
Antimony	3	ND	ND	ND	ND	1.5 B	ND	
Arsenic	50	ND	ND	ND	ND	ND	ND	
Barium	1,000	13.2 B	12.2 B	7.9 B	5.7 B	36.9 B	35.5 B	
Beryllium	3	ND	ND	ND	ND	ND	ND	
Cadmium	5	1.1 B	1 B	1.9 B	0.89 B	5.7	0.55 B	
Calcium	NC	15,100	14,900	15,200	14,600	14,400	26,700	
Chromium	50	0.6 B	0.52 B	0.58 B	ND	ND	0.99 B	
Cobalt	NC	0.94 B	0.92 B	0.72 B	0.37 B	0.82 B	3.1 B	
Copper	200	8.9 B	ND	ND	11.7 B	ND	ND	
Iron	300	691	649	788	610	632	5,400	
Lead	50	ND	ND	0.92 B	ND	ND	ND	
Magnesium	35,000	3,500	3,490	3,540	3,510	3,550	5,130	
Manganese	300	1,050	1,010	882	786	1,420	2,610	
Mercury	0.7	ND	ND	ND	ND	ND	ND	
Nickel	100	1.3 B	1.1 B	0.96 B	0.6 B	0.98 B	1.4 B	
Potassium	NC	2,000	1,990	2,000	1,950	2,080	2,230	
Selenium	10	ND	ND	ND	ND	ND	ND	
Silver	50	1.8 B	1.6 B	1.3 B	ND	ND	ND	
Sodium	20,000	18,500	18,100	18,300	18,100	21,100	29,200	
Thallium	0.5	ND	ND	ND	ND	ND	ND	
Vanadium	NC	0.78 B	ND	0.7 B	ND	ND	1.1 B	
Zinc	2,000	22.4 B	15.6 B	21.5 B	20.2 B	22 B	35.6 B	

NC - No Criteria

ND - Not Detected

B - Estimated value

TABLE 4DUZS FASTENERS SITESUMMARY OF TAL METALS IN LAKE CAPRI SEDIMENT SAMPLES

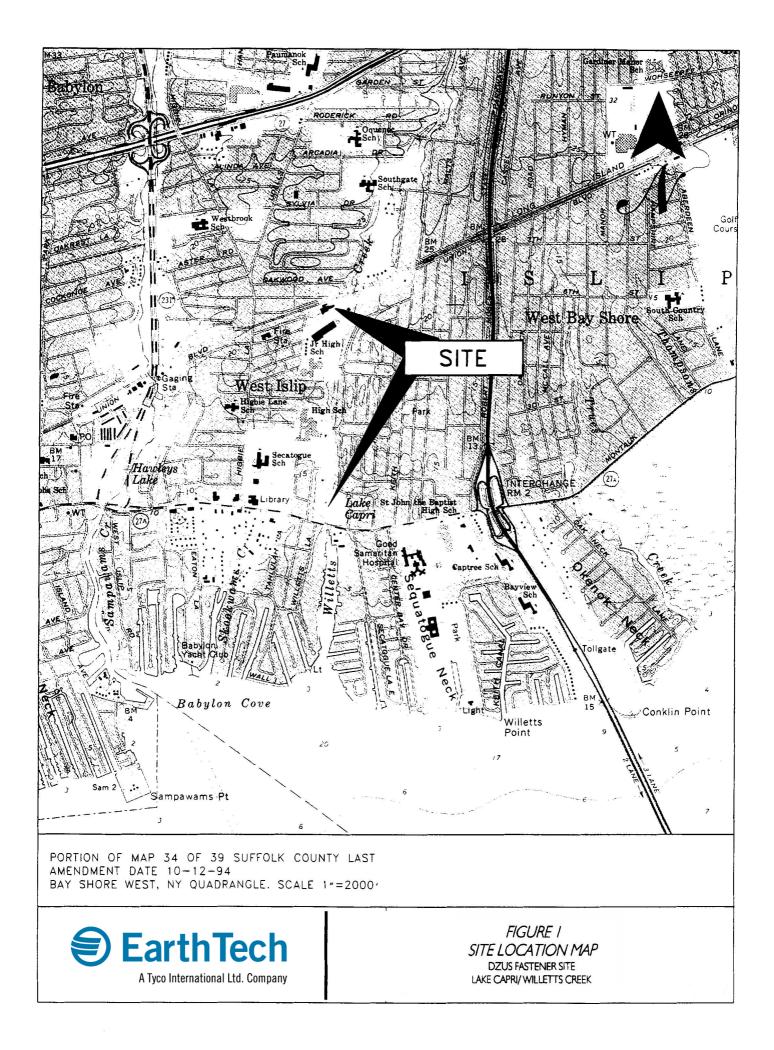
Sample DateSecMatrixUnitsLowUnitsLowAluminumNAntimony2Arsenic6BariumNBerylliumNCadmium0CalciumNChromium2CobaltNCopper1	fect NC 2.0	ical ce for Criteria Highest	SED-1 SED-1 E0868-02A 6/21/06 Sediment mg/kg conc. Q	SED-2 SED-2 E0868-04A 6/21/06 Sediment mg/kg	SED-3 SED-3 E0868-06A 6/21/06 Sediment	SED-4 SED-4 E0868-08A 6/21/06 Sediment	SED-5 SED-5 E0868-10A 6/21/06 Sediment	SED-6 SED-6 E0868-12A 6/21/06
Laboratory ID C Sample Date Sea Matrix Units Low Eff Aluminum N Antimony 2 Arsenic 6 Barium N Beryllium N Cadmium 0 Calcium N Chromium 2 Cobalt N Copper 1	Guidanc diment (west H fect VC 2.0	ce for Criteria Highest	E0868-02A 6/21/06 Sediment mg/kg	E0868-04A 6/21/06 Sediment	E0868-06A 6/21/06 Sediment	E0868-08A 6/21/06	E0868-10A 6/21/06	E0868-12A 6/21/06
Sample DateSecMatrixUnitsLowUnitsEffAluminumNAntimony2Arsenic6BariumNBerylliumNCadmium0CalciumNChromium2CobaltNCopper1	diment (west H fect NC 2.0	Criteria Highest	6/21/06 Sediment mg/kg	6/21/06 Sediment	Sediment	6/21/06	6/21/06	6/21/06
Matrix Units Lov Eff Aluminum N Antimony 2 Arsenic 6 Barium N Beryllium N Cadmium 0 Calcium N Chromium 2 Cobalt N Copper 1	west H fect NC 2.0	Highest	mg/kg			Sediment	Sediment	
Units Lov Eff Aluminum N Antimony 2 Arsenic 6 Barium N Beryllium N Cadmium 0 Calcium N Chromium 2 Cobalt N Copper 1	fect NC 2.0			mg/kg			Counton	Sediment
Eff Aluminum N Antimony 2 Arsenic 6 Barium N Beryllium N Cadmium 0 Calcium N Chromium 2 Cobalt N Copper 1	fect NC 2.0				mg/kg	mg/kg	mg/kg	mg/kg
Antimony2Arsenic6BariumNBerylliumNCadmium0CalciumNChromium2CobaltNCopper1	2.0		Serie: Se	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Antimony2Arsenic6BariumNBerylliumNCadmium0CalciumNChromium2CobaltNCopper1	2.0							
Arsenic6BariumNBerylliumNCadmium0CalciumNChromium2CobaltNCopper1		NC	5,020	15,500	690	2,730	1,060	1,030
BariumNBerylliumNCadmium0CalciumNChromium2CobaltNCopper1		25	0.7 B	0.92 B	ND	0.22 B	0.074 B	0.076
BerylliumNCadmium0CalciumNChromium2CobaltNCopper1	6.0	33	7.9	19.7	0.31 B	3.4	0.6 B	0.97
Cadmium 0 Calcium N Chromium 2 Cobalt N Copper 1	NC	NC	81.2	89.8	6.7	41.5	12.1	7.4
Calcium N Chromium 2 Cobalt N Copper 1	NC	NC	0.5 B	1.2	0.047 B	0.2 B	0.083 B	0.094
Chromium 2 Cobalt N Copper 1	0.6	9	47.8	133	1.5	32.3	0.43	0.23
Cobalt N Copper 1	NC	NC	2,540	2,860	104	588	228	4,760
Copper 1	26	110	20.7	33.7	1.5	8.6	3.8	2.4
	NC	NC	7.6	12.1	0.66 B	4.9	1.2 B	1.8
Iron 2	16	110	38.6	210	2.7	21.6	4.7	28.3
	2%	4%	10,300	20,300	920	4,450	3,400	3,290
	31	110	170	315	9.2	71.2	7.9	7.9
Magnesium N	NC	NC	1,300	1,510	121	352	604	2,930
Manganese 4	60	1,100	1,290	153	89.8	837	174	102
Mercury 0.	.15	1.3	0.21	0.45	0.016 B	0.096	0.016 B	0.036 B
Nickel 1	16	50	11.4	17.6	1.6 B	6	1.6	1.8
Potassium N	NC	NC	514	555	115	145	135	118
Selenium N	NC	NC	1.6 B	2.2 B	0.2 B	0.76 B	0.28 B	ND
Silver 1	1.0	2.2	ND	0.33 B	ND	ND	ND	ND
Sodium N	NC	NC	117	143	13.7 B	35.4 B	18.3 B	24.9 B
Thallium N	NC	NC	5.8	0.39 B	0.33 B	3.7	0.56 B	0.25 B
Vanadium N	NC	NC	29.4	55.9	1.8	9.2	5.6	9.9
Zinc 1	20	270	215	402	10	122	13.2	17.2

NC - No Criteria

ND - Not Detected

B - Estimated value

TABLE 5 DZUS FASTENERS SITE


LAKE CAPRI FISH SAMPLES

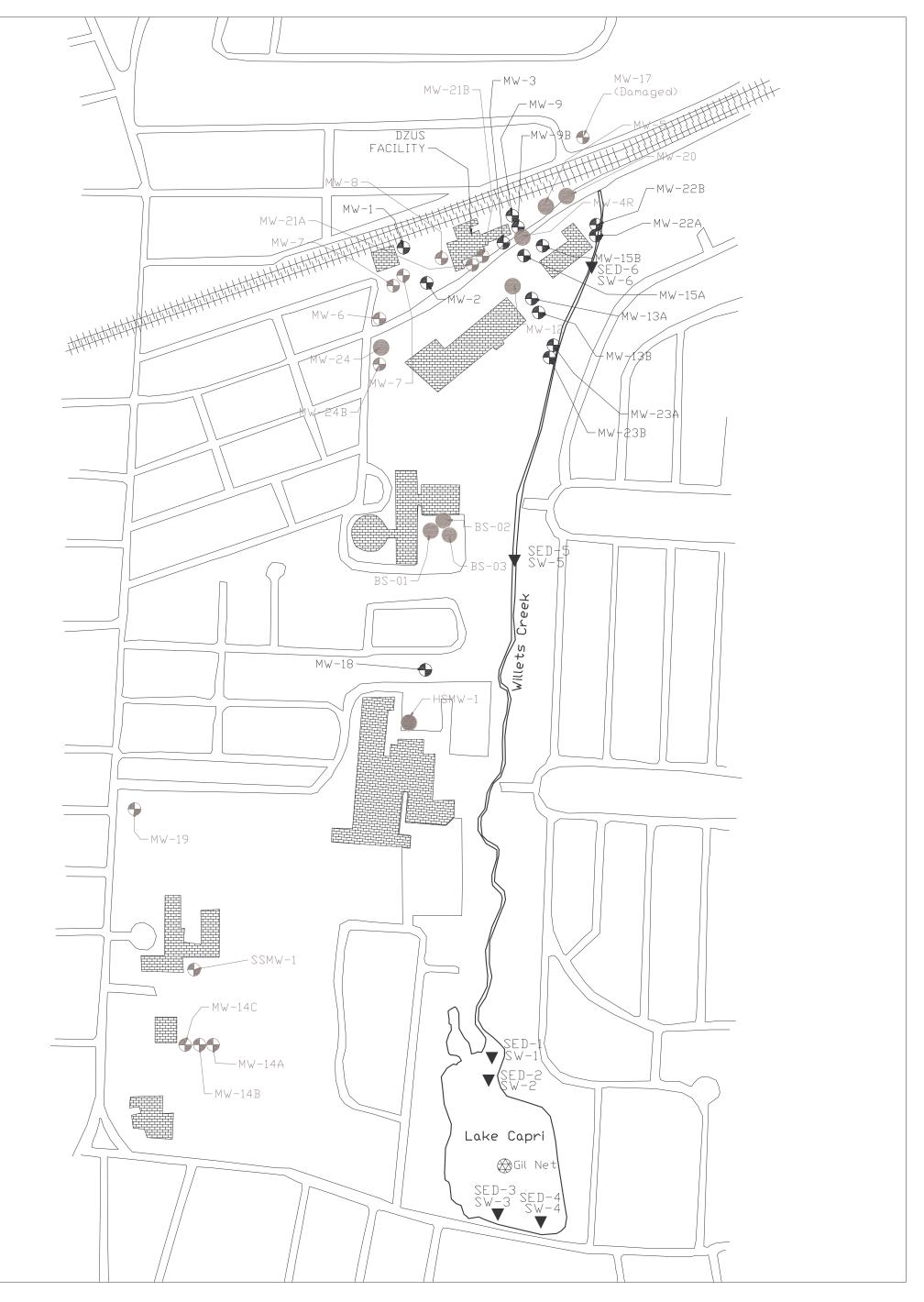
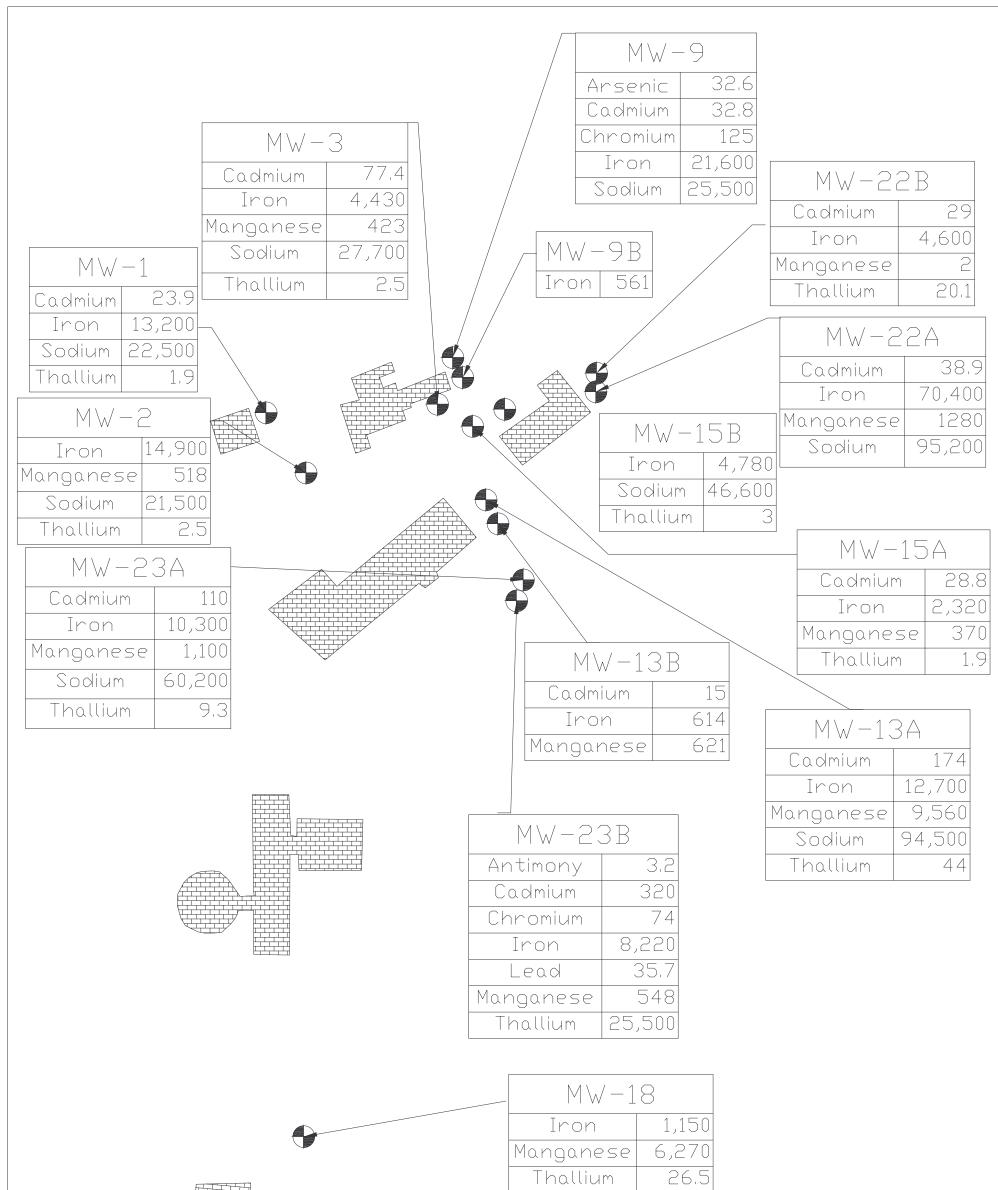

Sample	Common name	Scientific Name	Total Length (cm)	Total Weight (g)
South 1	Largemouth bass	Microptera salmoides	37.8	700
South 2	Largemouth bass	Microptera salmoides	26	240
South 3*	Bluegill	uegill Lepomis macrochirus		24**
South 4*	Largemouth bass	Microptera salmoides	12.5	6**
North 1	Pumpkinseed	Lepomis gibbosus	16.5	110
North 2	Pumpkinseed	Lepomis gibbosus	10.5	24**
North 3	Bluegill	Lepomis macrochirus	17.3	124
North 4	Bluegill	Lepomis macrochirus	14	61**
North 5	American eel	Anguilla rostrata	30	51**
North 6*	Pumpkinseed	Lepomis gibbosus	79.2	61**
North 7*	Largemouth bass	Microptera salmoides	101.8	30**
North 8*	Bluegill	Lepomis macrochirus	103.9	60**
		nore than one individual. e 100g, the minimum sam	ple requirement.	

TABLE 6DZUS FASTENERS SITE

Sample	Cadmium Concentration (µg/Kg) Wet
South 1	28
South 2	28
South 3*	190
South 4*	270
North 1	80
North 2	120
North 3	39
North 4	76
North 5	120
North 6*	130
North 7*	160
North 8*	140
Notes: * Sample comprised c	of more than one individual.

CADMIUM ANALYTICAL RESULTS IN FISH TISSUE



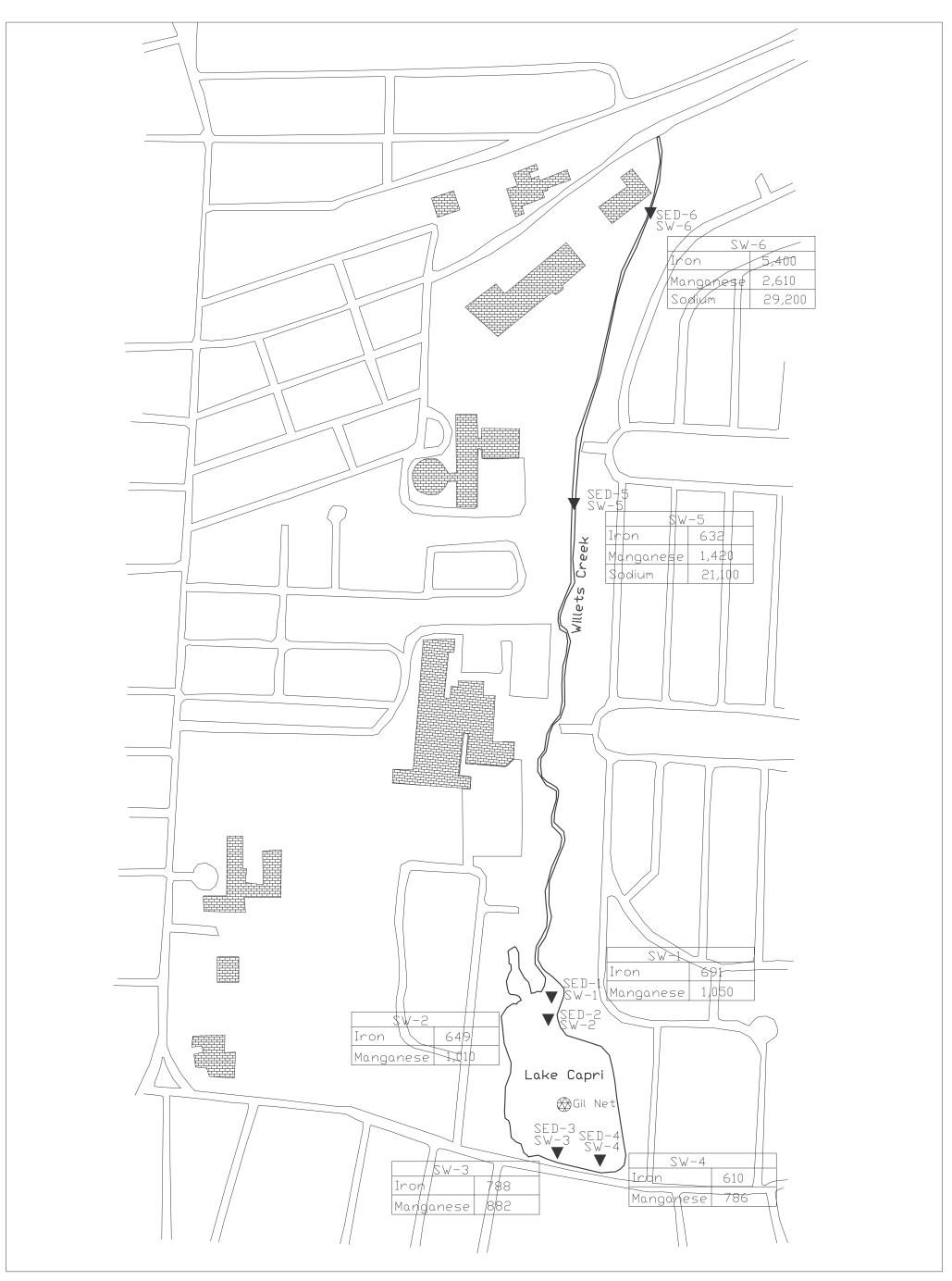
Site Plan- June 2006

NSearthTechAtycoInternational Ltd. CompanyMultisite G87616.03Dzus FastenersScaleNot to ScaleSHEET

Legend

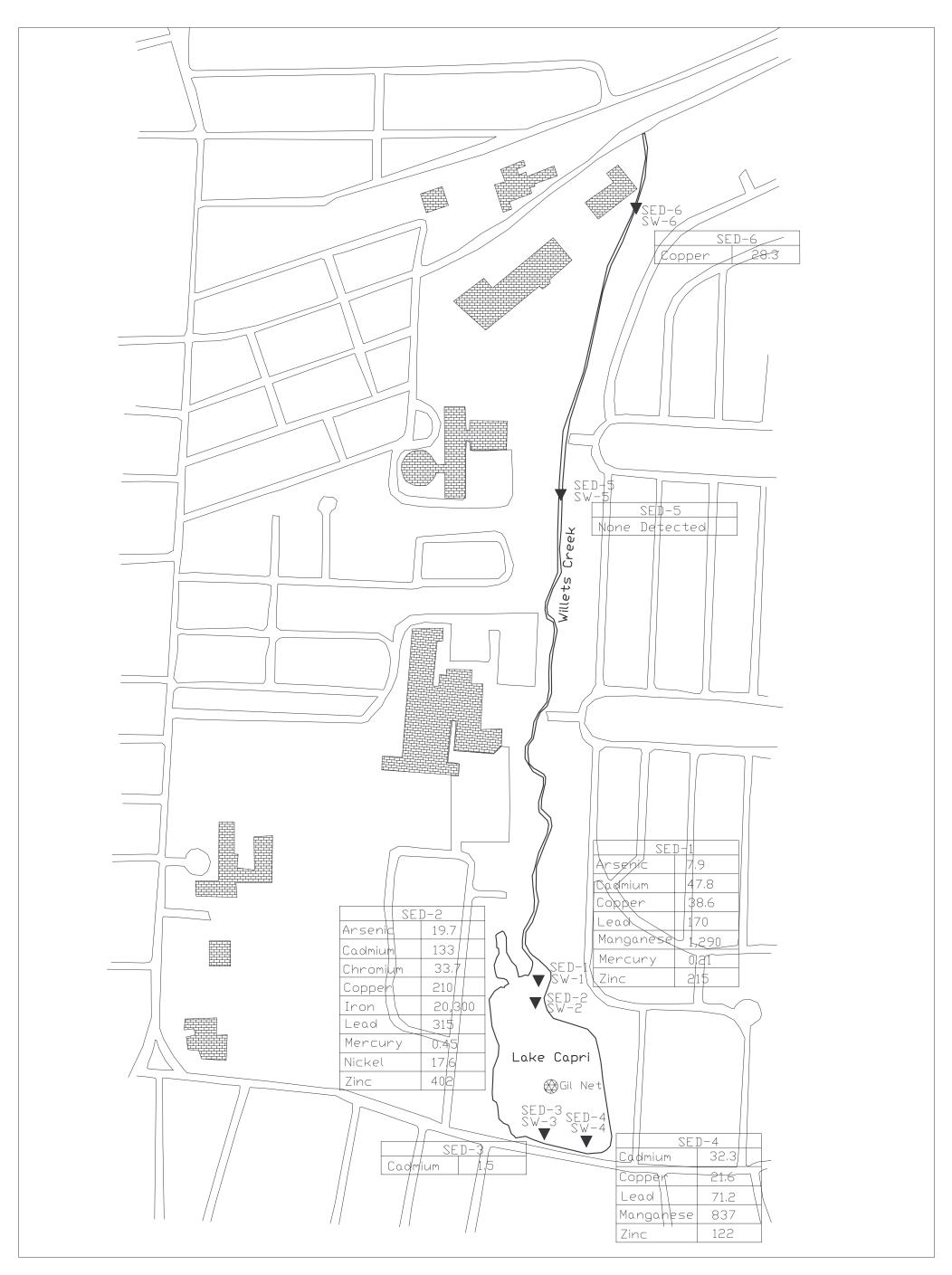
- 🔶 Existing Monitoring Well
- Missing Monitoring Well
- Surface Water and Sediment Sample Location

Summary of TAL Metals in **Groundwater - June 2006**


Legend

- Existing Monitoring Well
- Missing Monitoring Well

Note -All results in micrograms per liter (ug/L)


Summary of TAL Metals in Surface Water - June 2006

Legend

- Existing Monitoring Well
- Missing Monitoring Well
- Surface Water and Sediment Sample Location

Note -All results in micrograms per liter (ug/L)

Summary of TAL Metals in

Legend

- Existing Monitoring Well
- Missing Monitoring Well
- Surface Water and Sediment Sample Location

Note – All results in milligrams per kilogram (mg/kg)

Sediments - June 2006

APPENDIX A

WELL SAMPLING FORMS

				PROJECT					PROJECT No.	SHEET	SHEETS	
		LING FOR	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1	
				/ 114 FO O				DATE WELL S		DATE WELL COMPLETED		
DZUS F	astene	rs, West I	Islip, NY	′, #1-52-C	33			6/8/06 NAME OF INS		6/8/06		
	ork Sta	te Depart	ment of	Environn	nental (Conserv	vation	Kevin Seise, Jason Klein				
DRILLING	COMPANY	to Dopart		211110111		5011001	lation	SIGNATURE C	F INSPECTOR			
		4.45			WELL TD:	45.00						
ONE WELL	. VOLUME :	1.15			WELL ID:	15.00		PUMP INTAKE DEPTH:				
	Depth			FIE	D MEAS	SUREME	NTS					
	to	Purge					•					
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS		
	(ft) 8	(ml/min)	(C)	(ms/cm)	(mg/L)	E 47	047.0	(ntu)				
12:00	8		14.5	0.138	6.09	5.47	247.8					
12:00			13.79	0.138	6.77	5.59	226.7	20	Purge Volum	ie 3.456 gal.		
									[
D	T	Contrite		a	مارىم – ان	م الم						
Pump	i ype:	Centrifug	ai pum	o with bla	ск роју	tubing						
Analyti		omotora		TAL Meta								
Analyti	cai Par	ameters:			215							

				PROJECT					PROJECT No.	SHEET	SHEETS	
WELL LOCATION		LING FO	RM	MULTI S	ITE-G			DATE WELL S	87616 / 03	1 OF	1	
		rs, West I	slin NN	/ #1-52-0	33			6/8/06		6/8/06		
CLIENT	asterie	13, 10031	1311p, 141	, #1 02 0				NAME OF INS		0/0/00		
New Y	<u>ork S</u> ta	te Depart	ment of	Environn	nental C	<u>Cons</u> erv	vation	Kevin Seise, Jason Klein				
DRILLING	COMPANY							SIGNATURE OF INSPECTOR				
ONE WELL		1.00			WELL TD:	14.3		PUMP INTAKE DEPTH:				
	Depth			FIEI			NTS					
	to	Purge		FIELD MEASUREMENTS								
Time	_			Conduct.	DO	рН	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	8.15		14.79	0.206	3.4	5.95	193.1	1.23				
14:35			14.34	0.172	6.01	5.97	119.1	1.79	Purge Volum	ne 3.0 gal.		
 							l		1			
Pump	Tyne	Centrifug	al num	a with bla	ck noly	tubing						
i unp	i ype.	Centinug	a pun		or hold	uning						
Analyti	cal Par	ameters:		TAL Meta	als							
, that y t												

WELL SAMPLING FORM MULTI SITE-G 87616 / 03 1 or 1 Discrime Date well states Dates Date well states D					PROJECT					PROJECT No.	SHEET	SHEETS	
Dzus Fasteners, West Islip, NY, #1-52-03 6/8/06 6/8/06 New York State Department of Environmental Conservation DRILING COMPANY New York State Department of Environmental Conservation DRILING COMPANY New York State Department of Environmental Conservation DRILING COMPANY ONE WELL YOLME WELL TD: 15.03 PUMP INTAKE OF INSPECTOR ONE WELL YOLME WELL TD: 15.03 PUMP INTAKE OF INSPECTOR Time Water Rate (ntfmin) FIELD MEASUREMENTS PUMP INTAKE DEPTIL Time Water Rate (ntfmin) Conduct (NO) PH OR P Turbidity 9:20 16.6 0.193 7.19 5.8 227.4 1.6 9:20 16.1 0.226 6.44 5.76 229.1 1.6 9:20 16.1 0.226 6.44 5.76 229.1 1.6 1.6 9:20 16.1 0.226 6.44 5.76 229.1 1.6 1.6 9:20 16.1 0.226 6.44 5.76 229.1 1.6 1.6 9:20 16.1 0.26 1.6	WELL	SAMP	LING FOR	RM	MULTI S	ITE-G				87616 / 03		1	
MARE OF INSPECTOR MARE OF INSPECTOR NAME OF INSPECTOR SINUARE OF INSPECTOR NAME OF INSPECTOR Conduct No TIME WELL VOLUME : VELT: 15.03 PURP INTAKE OF PITE TIME WITH TO			*** \\/***		μ4 ΕΩ C								
New York State Department of Environmental Conservation DRILLING CONFARY Kevin Seise, Jason Klein DRATIKE OF INSPECTOR ONE WELL VOLME WEL TO: 15.03 PUMP MTAKE DEPTIN Time Order Transport FIELD MEASUREMENTS (1) (might) PUTATE 57.77 16.66 0.193 7.19 5.8 227.4 1.8 9:20 16.61 0.226 6.44 5.76 229.1 1.6 9:20 16.1 0.226 6.44 5.76 229.1 1.6 9:20 16.1 0.226 6.44 5.76 229.1 1.6 9:20 16.1 0.226 6.44 5.76 29.1 1.6 9:20 16.1 0.226 6.44 5.76 29.1 1.6 9:20 16.1 0.226 6.44 5.76 29.1 1.6 9:20 16.1 0.226 6.44 5.76 29.1 1.6 9:20 16.1 0.226 1.4 1.4 1.4 1.4 9:20 16.1 </td <td></td> <td>astene</td> <td>rs, west i</td> <td>siip, ivi</td> <td>r, #1-52-U</td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td>0/8/06</td> <td></td>		astene	rs, west i	siip, ivi	r, #1-52-U	33					0/8/06		
Desk Purge FIELD MEASUREMENTS Purge (nt/min) REMARKS 5.77 16.65 0.193 7.19 5.8 227.4 1.8 9:20 16.1 0.226 6.44 5.76 229.1 1.6 1 1 1 0.226 6.44 5.76 229.1 1.6 9:20 1 16.1 0.226 6.44 5.76 229.1 1.6 1 1 1.2 1.2 1.4 1.4 1.4 1.4 1 1 1.2 1.4 1.4 1.4 1.4 1.4 1 1 1.4 1.4 1.4 1.4 1.4 1.4 1 1 1.4 1.4 1.4 1.4 1.4 1 1 1.4 1.4 1.4 1.4 1.4 1 1 1.4 1.4 1.4 1.4 1.4 1 1 1.4 1.4 1.4 1.		ork Sta	te Depart	ment of	Environn	nental (Conserv	vation					
Deptit Function FIELD MEASUREMENTS REMARKS 5.77 16.65 0.193 7.19 5.8 227.4 1.8 9:20 1 16.1 0.226 6.44 5.76 229.1 1.6 10 10 10 10 10 10 10 10 11 10.226 6.44 5.76 229.1 1.6 10	DRILLING	COMPANY	to Dopun					adon	SIGNATURE OF INSPECTOR				
Deptit Function FIELD MEASUREMENTS REMARKS 5.77 16.65 0.193 7.19 5.8 227.4 1.8 9:20 1 16.1 0.226 6.44 5.76 229.1 1.6 10 10 10 10 10 10 10 10 11 10.226 6.44 5.76 229.1 1.6 10													
Deptit Function FIELD MEASUREMENTS REMARKS 5.77 16.65 0.193 7.19 5.8 227.4 1.8 9:20 1 16.1 0.226 6.44 5.76 229.1 1.6 10 10 10 10 10 10 10 10 11 10.226 6.44 5.76 229.1 1.6 10													
io Purge Rate (m/min) Temp. Top Conduct. (m/s/cm) D0 PH ORP Turbidity (ntu) REMARKS 5.77 16.65 0.193 7.19 5.8 227.4 1.8 9:20 16.1 0.226 6.44 5.76 229.1 1.6 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 12 10 </td <td>ONE WELL</td> <td>VOLUME</td> <td></td> <td></td> <td></td> <td>WELL TD:</td> <td>15.03</td> <td></td> <td></td> <td>PUMP I</td> <td>NTAKE DEPTH:</td> <td></td>	ONE WELL	VOLUME				WELL TD:	15.03			PUMP I	NTAKE DEPTH:		
io Purge Rate (m/min) Temp. Top Conduct. (m/s/cm) D0 PH ORP Turbidity (ntu) REMARKS 5.77 16.65 0.193 7.19 5.8 227.4 1.8 9:20 16.1 0.226 6.44 5.76 229.1 1.6 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 12 10 </td <td></td> <td>Depth</td> <td></td> <td></td> <td>FIE</td> <td>D MEAS</td> <td>UREME</td> <td>NTS</td> <td></td> <td></td> <td></td> <td></td>		Depth			FIE	D MEAS	UREME	NTS					
Time Water (ft) Retwork (ml/ml) Temp. Conduct. (ms/cm) Do PH ORP Turbidity (nti) REMARKS 5.77 16.65 0.193 7.19 5.8 227.4 1.8			Purge	Purge									
5.77 16.65 0.193 7.19 5.8 227.4 1.8 9:20 16.1 0.226 6.44 5.76 229.1 1.6 9 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Time	ime Water Rate Temp		Temp.	Conduct.	DO	рН	ORP	Turbidity				
9:20 16.1 0.226 6.44 5.76 229.1 1.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
Image:		5.77		16.65	0.193	7.19	5.8	227.4	1.8				
	9:20			16.1	0.226	6.44	5.76	229.1	1.6				
										-			
	Pump	Type:	Centrifug	al pum	o with bla	ck poly	tubing						
Analytical Parameters: TAL Metals	-		-			,	-						
	Analyti	cal Par	ameters:		TAL Meta	als							

									PROJECT No.	SHEET	SHEETS	
		LING FO	RM	MULTI S	IIE-G			DATE WELL S	87616 / 03	DATE WELL COMPLETED	1	
Dzus F		rs, West I	lslip, N	/, #1-52-0	33			6/8/06		6/8/06		
CLIENT						_	_	NAME OF INS				
New Y	ork Sta	te Depart	ment of	Environn	nental (Conserv	/ation	Kevin Se	ise, Jason Kl	ein		
DRILLING	COMPANY							SIGNATURE	F INSPECTOR			
ONE WELI		1.19			WELL TD:	11.93			PUMP INTAKE DEPTH:			
	Depth	_		FIE	D MEAS	SUREME	NTS					
Time	to Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS		
Time	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	pri	ON	(ntu)	REMARKS			
	4.59	. ,	17.5	0.067	7.75	6.72	183.3	4.52				
8:50			16.61	0.202	7.5	6.04	211.8	2.68	Purge Volum	ne 3.59 gal.		
_	_	• • •										
Pump	Type:	Centrifug	al pum	o with bla	ck poly	tubing						
Analyti	ical Dar	amotore		TAL Meta	ale							
Analyt	ical Par	ameters:			215							

				PROJECT					PROJECT No.	SHEET	Γ	SHEETS
		LING FOR	RM	MULTI S	ITE-G				87616 / 03	1		1
				/ 114 50 5				DATE WELL S		DATE WELL COMPLI	ETED	
DZUS F	astene	rs, West I	slip, N۱	′, #1-52-C)33			6/8/06		6/8/06		
	ork Sta	te Depart	mont of	Environn	oontal (Concor	ation	NAME OF INS	ise, Jason Kle	ain		
	COMPANY	te Depart				JUIISEI	alion	SIGNATURE	FINSPECTOR			
_												
								1				
ONE WELL		6.48			WELL TD:	44.22		PUMP INTAKE DEPTH:				
	Depth			FIF			NTS					
	to	Purge										
Time	Water	Rate	Temp.						REMARKS			
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		Turbidity (ntu)				
	4.5		18.19	0.089	7.03	5.91	222.8	2.37	,			
9:10			15.8	0.15	3.96	5.66	235.8	1.06				
							1	1	<u>I</u>			
Pump	Type [.]	Centrifug	al num	n with hla	ck poly	tubing						
	·)pc.	Sonunug	a pun		on poly	Coonig						
Analyti	cal Par	ameters:		TAL Meta	als							
, that y t												

WELL NO. MW-13A

				PROJECT				PROJECT No.	SHEET	SHEETS		
WELL	SAMP	LING FOR	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1	
			alia AD	(114 50 0				DATE WELL S		DATE WELL COMPLETED		
DZUS F	astene	rs, West I	slip, N۱	r, #1-52-0	33			6/8/06 NAME OF INS		6/8/06		
	ork Sta	te Depart	mont of	Environn	oontal (- 	vation		ise, Jason Kl	oin		
	COMPANY	le Depail			ientai (JOUREN	valion	SIGNATURE	DF INSPECTOR			
									-			
						40.00		-				
ONE WELL	VOLUME :	:			WELL TD:			PUMP INTAKE DEPTH:				
	Depth to	Purge		FIEI	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	REMARKS			
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	P	••••	(ntu)				
	2.59		19.07	0.342	2.72	6.62	196.9	110				
7:50			17.1	0.622	2.32	6.86	232.7	92				
Duran	Tunai	Contritu		o with hi-	ماديممان	tubin c						
Pump	i ype:	Centrifug	ai pum	o with dia	ск роју	lubing						
Ameliat				TAL N4-4								
Analyti	cal Par	ameters:		TAL Meta	ais							

WELL NO. MW-13B

				PROJECT				PROJECT No.	SHEET	SHEETS		
WELL	SAMP	LING FOR	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1	
				(114 50 0				DATE WELL S		DATE WELL COMPLETED		
DZUS F	-astene	rs, West I	ISIIP, NY	r, #1-52-0	33			6/8/06 NAME OF INS		6/8/06		
	ork Sta	te Depart	ment of	Environn	nental (Concor	vation		ise, Jason Kl	oin		
	COMPANY	to Depart			ional (SIGNATURE	DF INSPECTOR			
								•				
ONE WELI		:			WELL TD:	44.95		PUMP INTAKE DEPTH:				
	Depth			FIE	D MEAS	SUREME	NTS					
	to	Purge										
Time	Water	Rate	Temp.							REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
	2.39		16.2	0.101	8.49	6.63	226.4					
8:04			15.53	0.098	5.55	5.77	238					
-												
-												
									1			
									1			
									1			
									1			
						-						
						-						
						-						
						-						
							1		<u> </u>			
Dump	Type	Centrifug	سيرم اور	a with bla	ck now	tubing						
runp	i ype.	Centinug	jai pum		ck poly	lubing						
Apolyti	ical Dar	ameters:		TAL Meta	ale							
Anaiyt	icai Fal	anieteis.			215							

WELL NO. MW-15A

WELL SAMPLING FORM MULTI SITE-G 187616 (0.3) 1 of 1 0 of 1 Data Settings West Islip, NY, #1-52-03 Data Setting SARED 677/06 677/06 New York State Department of Environmental Conservation New Fork Section 677/06 677/06 New York State Department of Environmental Conservation New Fork Section 677/06 677/06 New York State Department of Environmental Conservation New Fork Section 677/06 677/06 New York State Department of Environmental Conservation New Fork Section 877/06 877/06 New York State Department of Environmental Conservation New Fork Section 877/06 877/06 New Well Volume 3.754 VEL TO: 28.55 Pure Natare Depth 7 Time Water Reference 16.67 18.83 3.27 11.42 14.54 0.18 4.8 5.99 18.0.9 1.62 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 18.0.9 1.62 Purge Volume 11.26 gal. 11.42 14.54 0.18 1.6 1.6 <th></th> <th></th> <th></th> <th></th> <th>PROJECT</th> <th></th> <th></th> <th></th> <th></th> <th>PROJECT No.</th> <th>SHEET</th> <th>SHEETS</th>					PROJECT					PROJECT No.	SHEET	SHEETS	
DOCATION DUES Fastemers, West Islip, NY, #1-52-033 CLEW New York State Department of Environmental Conservation New York State Department of Environmental Conser	WELL	SAMP	LING FOR			ITE-G				87616 / 03	1 оғ	1	
CLENT NAME OF	LOCATION									TARTED			
New York State Department of Environmental Conservation Keyin Seise, Jason Klein BRUNUE of NAPECTOR DRULH COMPARY State Department of Environmental Conservation Senaruse of NAPECTOR ONE WELL VOLME: 3.754 WELL TO: 28.55 PUMP INTAKE DEPTH: Time Water Rate (th) Temp, Conduct, DO, (mg/L) PH ORP Turbidity REMARKS 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 16.0 1.4 1.4 11:42 14.54 0.18 4.8 5.99 180.9 1.62 1.4 1.4 11:42 14.54 1.6 1.6 1.4 <t< td=""><td>Dzus F</td><td>astene</td><td>rs, West I</td><td>slip, N۱</td><td>⁄, #1-52-0</td><td>)33</td><td></td><td></td><td></td><td></td><td>6/7/06</td><td></td></t<>	Dzus F	astene	rs, West I	slip, N۱	⁄, #1-52-0)33					6/7/06		
DRILLING COMPANY		l. 04			F						- !		
NEWLIVLINE: 3.75 YELE 2.85 PUTED TOURNEY TIME WITTER TOURNEY TELED MEASUREMENTS REMARKS TIME VIEWLIVLINE: 3.70 TOURNEY OLIVER 3.83.3.27 REMARKS 11.42 14.54 0.18 4.8 5.99 16.02 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 16.02 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 16.02 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 16.02 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 16.02 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 16.02 Purge Volume 11.26 gal. 11.42 14.54 14.54 14.54 14.54 14.54 14.54 11.42 14.54 16.56 16.56 16.56 16.56 11.45 14.54 14.54 14.56 14.56 14.56 11.45 14.56 14.56 14.56 14.56 14.56 <t< td=""><td></td><td>OFK Sta</td><td>te Depart</td><td>ment of</td><td>Environn</td><td>nental</td><td>Jonser</td><td>/ation</td><td>KEVIN SE</td><td>ISE, JASON KI</td><td>ein</td><td></td></t<>		OFK Sta	te Depart	ment of	Environn	nental	Jonser	/ation	KEVIN SE	ISE, JASON KI	ein		
Depti Press FIELD MEASUREMENTS REMARKS 5.48 15.97 0.186 1.16 5.68 188.3 3.27 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 <td>DIGLEING</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SIGNATORE C</td> <td></td> <td></td> <td></td>	DIGLEING								SIGNATORE C				
Depti Press FIELD MEASUREMENTS REMARKS 5.48 15.97 0.186 1.16 5.68 188.3 3.27 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 <td></td>													
to Purge Rate (nulvin) Temp. Conduct. (ngL) PH ORP Turbidity (nulu) REMARKS 5.48 15.97 0.186 1.16 5.68 188.3 3.27 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 1.9 1.9 1.9 1.9 1.9 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 1 1	ONE WELL	VOLUME :	3.754			WELL TD:	28.55			PUMP IN	NTAKE DEPTH:		
to Purge Rate (nulvin) Temp. Conduct. (ngL) PH ORP Turbidity (nulu) REMARKS 5.48 15.97 0.186 1.16 5.68 188.3 3.27 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 1.9 1.9 1.9 1.9 1.9 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 1 1		Donth			EIEI			NTC					
Time Water Remove (ml/min) Temps Conduct. DQ pH ORP Turbidity (ntu) REMARKS 5.48 15.79 0.18 1.16 5.68 188.3 3.27 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14 </td <td></td> <td></td> <td>Purge</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td colspan="5"></td>			Purge										
(n) (ml/min) (c) (ms/cm) (mg/L) (mu) 5.48 15.97 0.186 1.16 5.68 188.3 3.27 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11.42 14	Time			Temp.	Conduct.	DO	Hα	ORP	Turbidity	REMARKS			
5.48 15.97 0.186 1.16 5.68 188.3 3.27 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 14.54 14.54 14.54 14.54 14.54 14.54 14.54 11:42 14.54 14.54 14.54 14.54 14.54 14.54 14.54 11:42 14.54 14.54 14.54 14.54 14.54 14.54 14.54 11:42 14.54 14.54 14.54 14.54 14.54 14.54 14.54 11:42 14.54 1			(ft) (ml/min) (C) (ms/cm) (n										
11:42 14.54 0.18 4.8 5.99 180.9 1.62 Purge Volume 11.26 gal. 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1 1 1 1 1 1 1 1 11:42 1				15.97			5.68	188.3					
Image:	11:42												
								-	-	•			
	Pump	Type:	Centrifug	al pum	o with bla	ck poly	tubing						
Analytical Parameters: TAL Metals			0	• •		. ,	5						
•	Analyti	cal Par	ameters:		TAL Meta	als							

WELL NO. MW-15B

				PROJECT					PROJECT No.	SHEET	SHEETS	
		LING FO	RM	MULTI S	ITE-G			87616 / 03 1 оғ 1				
								DATE WELL S				
DZUS F	astene	rs, West I	slip, N۱	′, #1-52-C	33			6/7/06		6/7/06		
	ork Sta	te Depart	mont of	Environn	oontal (Concor	ation	NAME OF INSI	ise, Jason Kl	oin		
	COMPANY	te Depart			lentar	JUNSEN	alion	SIGNATURE	FINSPECTOR			
ONE WELL	VOLUME	12.88			WELL TD:	84.31		PUMP INTAKE DEPTH:				
	Danth				D MEAS		NTO		1			
	Depth to	Purge		FIE		DUREINIE	113					
Time			Temp. Conduct. DO pH ORP					Turbidity	REMARKS			
	Water Rate Temp. Conduct. DO pH (ft) (ml/min) (C) (ms/cm) (mg/L)					pri	•	(ntu)				
	5.35	(,	15.95	0.305	2.79	5.34	178.3	3.85				
11:15	5.41		14.25	0.297	2.92	5.43	189	1.67				
11.10	0.41		14.20	0.201	2.02	0.40	100	1.07	i dige volui	10 00.000 gui		
	ļ	L					l		ļ			
Pump	Type	Centrifug	al num	a with bla	ck noly	tubing						
i unp	i ype.	Centinug			or hold	lability						
Apolyti	cal Dar	amotora		TAL Meta	ale							
Analyti	cai Par	ameters:			215							

				PROJECT					PROJECT No.	SHEET	SHEETS	
WELL	SAMP	LING FOR		MULTI S	ITE-G				87616 / 03	1 оғ	1	
LOCATION								DATE WELL S	TARTED	DATE WELL COMPLETED		
Dzus F	astene	rs, West I	slip, N۱	⁄, #1-52-0	33			6/8/06		6/8/06		
	l. 04			F				NAME OF INS		- !		
INEW Y	OFK Sta	te Depart	ment of	Environn	nental C	Jonser	/ation	KEVIN SE	ise, Jason Klop DF INSPECTOR	ein		
DRILLING	COMPANY							SIGNATORE	JF INSFECTOR			
ONE WELL		0.898			WELL TD:				PUMP II	NTAKE DEPTH:		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity	REMARKS			
	(ft) (ml/min) (C) (ms/cm)				(mg/L)			(ntu)				
	7.93		14.68	0.099	7.74	6.16	217.5	4.86				
11:15			13.63	0.111	4.19	6.11	218.2	2.2	Purge Volume 2.693 gal			
								L				
								L				
							1		Į			
Pumo '	Type	Centrifug	سيرم اد	a with bla	ck noly	tubing						
rump	гуре.	Centinug	ai pum	s with bla	ck poly	uning						
Anchat		omotors										
Analyti	cai Par	ameters:		TAL Meta	315							

EarthTech

A **tyco** International Ltd. Company

WELL NO. MW-22A

				PROJECT				PROJECT No.	SHEET	SHEETS			
		LING FOR	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1		
LOCATION								DATE WELL S					
Dzus F	astene	rs, West I	slip, N۱	⁄, #1-52-C)33			6/7/06		6/7/06			
	orle Sto	to Donort	mont of	Fnuironn	oontol (otion	NAME OF INS		ain			
	COMPANY	te Depart	ment of	EINIOIII	lentar	Jonsen	alion	SIGNATURE	ise, Jason Kle	eni			
ONE WELL	VOLUME :				WELL TD:	14.4		PUMP INTAKE DEPTH:					
	Depth to	Purge		FIEI	LD MEAS	SUREME	NTS						
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	Turbidity REMARKS				
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	P	••••	(ntu)	REMARKS				
	6	(13.65	0.615	2.54	6.31	19.1	1.36					
9:50	<u> </u>		13.27	0.677	2.76	6.43	23.2	1.41	Duplicate				
0.00			10.21	0.077	2.70	0.40	20.2	1.71	Dapiloate				
									1				
	_												
Pump	Туре:	Centrifug	al pum	o with bla	ck poly	tubing							
Analyti	cal Par	ameters:		TAL Meta	als								

EarthTech

A **tyco** International Ltd. Company

WELL NO. MW-22B

				PROJECT					PROJECT No.	SHEET	SHEETS		
		LING FOR	RM	MULTI S	ITE-G			87616 / 03 1 ог			1		
								DATE WELL S		DATE WELL COMPLETED			
Dzus F client	astene	rs, West I	slip, N۱	′, #1-52-C)33			6/7/06 NAME OF INS		6/7/06			
	ork Sta	te Depart	mont of	Environn	oontal (Concor	ation		ise, Jason Kl	oin			
	COMPANY	te Depart	ment of		lentar	JUNSEN	alion	SIGNATURE	FINSPECTOR	eni			
_													
ONE WELL	VOLUME	:			WELL TD:	14.4		PUMP INTAKE DEPTH:					
	Depth			FIF	LD MEAS		NTS						
	to	Purge											
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS				
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)	-		(ntu)					
	5.82		14.1	0.106	5.84	5.6	184.1	1.38					
10:00			14.32	0.104	5.76	5.43	180.6	1.25					
									MSD				
									1				
Dumo	Tupai	Contrifue		a with he	ok noby	tubing							
Fump	i ype:	Centrifug	ai pum	o with bla	ск рогу	guiani							
Anche		omotora											
Analyti	cai Par	ameters:		TAL Meta	215								

WELL NO. MW-23A

				PROJECT					PROJECT No.	SHEET	SHEETS	
		LING FOR	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1	
								DATE WELL S		DATE WELL COMPLETED		
DZUS F	astene	rs, West I	slip, N	7, #1-52-0	33			6/7/06 NAME OF INS	PECTOP	6/7/06		
	ork Sta	te Depart	ment of	Environn	nental (Conserv	vation		ise, Jason Kle	ein		
DRILLING	COMPANY	to Dopun		LINIOI				SIGNATURE C	F INSPECTOR			
		4 000										
ONE WELL		1.628			WELL TD:	14.57		PUMP INTAKE DEPTH:				
	Depth			FIE	D MEAS	SUREME	NTS					
	to	Purge										
Time	e Water Rate Temp. Conduct. DO pH ORP					Turbidity	y REMARKS					
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu))			
	4.59		17.45	0.404	1.4	6.43	3.6	170	-			
9:30			17	0.449	3.17	6.3	18.5		Purge Volum	ne 4.886 gal.		
Pump	Type:	Centrifug	al pum	o with bla	ck poly	tubing						
Analyti	cal Par	ameters:		TAL Meta	als							

A **tyco** International Ltd. Company

WELL NO. MW-23B

	_			PROJECT					PROJECT No.	SHEET	SHEETS
	SAMP	LING FO	RM	MULTI S	ITE-G			DATENELL	87616 / 03		- 1
		ers, West I	elin NN	/ #1.52 0	133			date well s 6/7/06		DATE WELL COMPLETED 6/7/06	
DZUS F	asiene	13, VVE3L	ыр, м	,#1-52-0				NAME OF INS	PECTOR	0///00	
New Y	ork Sta	te Depart	ment of	Environn	nental (Conserv	/ation	Kevin Se	ise, Jason Kl	ein	
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WELL		6.55			WELL TD:	44.67				NTAKE DEPTH:	
	-		-								
	Depth			FIE	LD MEAS	SUREME	NTS				
Time	to Water	Purge	Toma	Conduct	DO	nLi		Turbidia	-	DEMARKE	
Time	(ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
	4.51	()	18.62	0.056	6.68	6.86	75.4	200			
9:40			16.56	0.048	6.45	6.52	62.4	12.3	Purge Volum	ne 19.66 gal	
0.10			. 5.55	0.010	0.10	0.02		.2.0			
l											
	_										
Pump	Туре:	Centrifug	al pum	o with bla	ck poly	tubing					
Analyti	ical Par	ameters:		TAL Meta	als						

A **tyco** International Ltd. Company

				PROJECT					PROJECT No.	SHEET		SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03	1	OF	1
		ers, West I	lelin NN	/ #1_52_0	133			DATE WELL S 6/21/06		DATE WELL COMPLE 6/21/06	TED	
CLIENT	asterie		ыр, м	I, #1-52-C				NAME OF INS		0/21/00		
New Y	ork Sta	te Depart	ment of	Environn	nental (Conserv	vation		eise, Jason Kl	ein		
DRILLING	COMPANY	•						SIGNATURE O	OF INSPECTOR			
ONE WEL		:			WELL TD:				PUMP I	NTAKE DEPTH:		
	Depth			FIE		SUREME	NTS					
	to	Purge										
Time	Water	Rate	Temp.	Conduct.		рН	ORP	Turbidity		REMARKS		
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)				
9:05			22.4	0.2	12.06	7.04	90.8					
	<u> </u>							ļ	 			
									ļ			
									ļ			
	<u> </u>							ļ				
 									<u> </u>			
	_											
Pump	Туре:	grab sam	nple									
				TAL 14	- 1 -							
Analyt	ical Par	ameters:		TAL Meta	ais							

A **tyco** International Ltd. Company

				PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOI	RM	MULTI S	ITE-G			-	87616 / 03	1 оғ	1
								DATE WELL S		DATE WELL COMPLETED	
DZUS I	-astene	ers, West	ISIIP, N	7, #1-52-0)33			6/21/06 NAME OF INS	PECTOP	6/21/06	
	ork Sta	te Depart	ment of	Environr	nental (Conser	vation		eise, Jason Kl	ein	
DRILLING	COMPANY	te Depart				5011301	valion	SIGNATURE	DF INSPECTOR		
ONE WEL		:			WELL TD:				PUMP I	NTAKE DEPTH:	
	Depth			FIE		SUREME	INTS				
	to	Purge									
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
9:35			17.55	0.193	15.26	7.42	102.3				
									•		
Pump	Type:	grab sam	nple								
· ·		-									
Analyt	ical Par	ameters:		TAL Met	als						

A **tyco** International Ltd. Company

				PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G			I	87616 / 03	1 оғ	1
		ro Moot		/ #1 50 (122			DATE WELLS		DATE WELL COMPLETED	
DZUS F	-astene	ers, West	isiip, iv	r,#1-52-(133			6/21/06 NAME OF INS		6/21/06	
	ork Sta	te Depart	ment of	Environr	nental (Conser	vation			ein	
DRILLING	COMPANY							SIGNATURE	eise, Jason Kl	•	
ONE WEL		:			WELL TD:				PUMPI	NTAKE DEPTH:	
	Depth			FIE	LD MEAS	SUREME	NTS				-
	to	Purge									
Time	Water	Rate	Temp.	Conduct.		рН	ORP	Turbidity		REMARKS	
	(ft)	(ml/min)	(C)	(ms/cm)	(mg/L)			(ntu)			
10:20			23.34	0.199	14.52	8.06	72.2				
 											
 									 		
									 		
									 		
							<u> </u>				
									<u> </u>		
							<u> </u>				
			<u> </u>					}	 		
			<u> </u>				<u> </u>		<u> </u>		
			<u> </u>				<u> </u>		<u> </u>		
	}		<u> </u>		}			<u> </u>	+		
 	<u> </u>	<u> </u>	<u> </u>						ļ		
Dumo	Tupo	arob oo~	anlo								
Fump	i ype.	grab sam	ihie								
Analyt	ical Dar	ameters:		TAL Met	ale						
, sharyt											

A **tyco** International Ltd. Company

				PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1
		ers, West I	lelin NN	/ #1_52_0	133			date well s 6/21/06		DATE WELL COMPLETED 6/21/06	
DZUS F	asterie		ыр, м	1, #1-52-0	133			NAME OF INS		0/21/00	
New Y	ork Sta	te Depart	ment of	Environn	nental (Conserv	vation	Kevin Se	ise. Jason Kl	ein	
DRILLING	COMPANY							SIGNATURE C	DF INSPECTOR		
ONE WELL					WELL TD:					NTAKE DEPTH:	
	VOLUME	•							FOMFT	NTARE DEF III.	
	Depth	_		FIE	LD MEAS	SUREME	NTS				
T :	to Water	Purge	Taman	Conduct	DO		000	Teoria i alitere	4	DEMARKO	
Time	(ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
11:00	(11)	(111/1111)	23.4	0.199	17.01		88.8	(intu)	Duplicate		
11.00									MS		
									MSDS		
								1			
								1	1		
		1						1			
								ļ			
								 			
								 			
								}			
l								1	<u> </u>		
Pump	Tvne	grab sam	nle								
i unp	i ype.	yian sali	ihie								
Analyti	cal Par	ameters:		TAL Meta	als						
y t				.,							

A **tyco** International Ltd. Company

				PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03	1 оғ	1
		ers, West I	lelin NN	/ #1_52_0	133			DATE WELL S 6/21/06		DATE WELL COMPLETED 6/21/06	
CLIENT	asterie	13, 11631	ыр, м	I, #1-52-C	55			NAME OF INS	PECTOR	0/21/00	
New Y	ork Sta	te Depart	ment of	Environn	nental (Conser	vation		eise, Jason Kl	ein	
DRILLING	COMPANY							SIGNATURE O	OF INSPECTOR		
ONE WELI		:			WELL TD:				PUMP I	NTAKE DEPTH:	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
11:50	(,	(,	16.5	0.19	6.97	7.08	90.2	()			
								1			
	<u>I</u>	<u>I</u>	<u>I</u>			I		1	ł		
Pump	Type:	grab sam	nple								
		-									
Analyti	ical Par	ameters:		TAL Meta	als						
1											

A **tyco** International Ltd. Company

				PROJECT					PROJECT No.	SHEET	SHEETS
WELL LOCATION	SAMP	LING FO	RM	MULTI S	ITE-G				87616 / 03		f 1
		rs, West I	Islin NN	(#1-52-0)33			date well s 6/21/06		DATE WELL COMPLETED 6/21/06	
CLIENT	usterie	10, 11001	1011p, 141	, // 1 02 0	.00			NAME OF INS	PECTOR	•	
New Y	ork Sta	te Depart	ment of	Environ	nental (Conserv	vation	Kevin Se	ise, Jason Kl	ein	
DRILLING	COMPANY							SIGNATURE C	OF INSPECTOR		
ONE WELL		:			WELL TD:				PUMP I	NTAKE DEPTH:	
	Depth to	Purge			LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (ml/min)	Temp. (C)	Conduct. (ms/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)		REMARKS	
13:10			18.75	0.323	6.25	6.97	18.1				
		ļ						 			
								1	<u> </u>		
Pump	Type:	grab sam	nple								
	71 ·	0									
Analyti	cal Par	ameters:		TAL Meta	als						

APPENDIX B

DATA SUMMARY PACKAGES

APPENDIX B TABLE 1 DZUS FASTENERS SITE TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-1		MW-2		MW-3		MW-9		MW-9B		MW-13/	4
Sample ID	Class GA	DF-MW-	1	DF-MW	/-2	DF-MW	/-3	DF-MV	V-9	DF-MW	-9B	DF-MW	-13A
Laboratory ID	Groundwater	E0773-0	5A	E0773-	10A	E0773-	07A	E0773-	-09A	E0773-0	08A	E0773-1	I3A
Sample Date	Criteria	6/8/06		6/7/06		6/8/06		6/8/06		6/8/06		6/8/06	
Matrix	water	water		water		water		water		water		water	
Units	µg/L	µg/L		µg/L		µg/L		µg/L		µg/L		µg/L	
	. 0		ג	conc.	Q	conc.	Q	conc.	Q	conc.	Q		Q
A		1.100		7				10.000		0.4.0		45.000	
Aluminum	NC	4,180		7,090		5,650		16,800		213		15,000	
Antimony	3	20 L	-	20		20		20		1.8		20	
Arsenic	25	4.3 E		3.9		2.9		32.6		20		5.7	
Barium	1,000	80.2 E		96.5		90.9		102		45.5		176	
Beryllium	3	0.42 E	3	0.4		0.26		0.63		_	U	0.53	В
Cadmium	10	23.9		4.2	В	77.4		32.8		2.9		174	
Calcium	NC	8,790		15,500		17,800		16,000		10,800		37,900	
Chromium	50	8 E		8.8		9.2		125		2.2		12.9	В
Cobalt	NC	5.1 E		18.3		4.4		5.2		2.6		55.8	
Copper	200	18.3 E	3	19.3	В	16.1	В	62.3		28.8	В	34.3	
Iron	300	13,200		14,900		4,430		21,600		561		12,700	
Lead	25	3.9 E	3	14.7		10	U	11.6		10	U	5.7	В
Magnesium	35,000	3,010		3,740		4,160		3,170		1,640		5,580	
Manganese	300	210		518		423		151		211		9,560	
Mercury	0.7	0.28 l	J	0.28	U	0.28	U	0.28	U	0.28	U	0.28	U
Nickel	100	8.7 E	3	13.3	В	6.8	В	18.3	В	8.6	В	9.4	В
Potassium	NC	1,760		2,140		2,630		3,270		2,140		7,430	
Selenium	10	30 L	J	1.4	В	30	U	2.7	В	30	U	30	U
Silver	50	30 L	J	30	U	30	U	30	U	30	U	30	U
Sodium	20,000	22,500		21,500		27,700		25,500		8,070		94,500	
Thallium	0.5	1.9 E	3	2.3	В	2.5	В	20	U	20	U	44	
Vanadium	NC	7.8 E	3	11.9	В	8.1	В	33.1	В	50	U	17.6	В
Zinc	2,000	244		138		87		170		83.7		53.3	

APPENDIX B TABLE 1 DZUS FASTENERS SITE TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-13B	MW-15A	MW-15B	MW-18	MW-22A
Sample ID	Class GA	DF-MW-13B		DF-MW-15B	DF-MW-18	DF-MW-22A
Laboratory ID	Groundwater	E0773-14A	E0773-03A	E0773-04A	E0773-06A	E0773-11A
Sample Date	Criteria	6/8/06	6/7/06	6/7/06	6/8/06	6/7/06
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	- 0	conc. Q				
						1.000
Aluminum	NC	330	773	224	1,430	4,320
Antimony	3	20 U	20 U	20 U	20 U	1.7 B
Arsenic	25	20 U	20 U	1.7 B	20 U	16 B
Barium	1,000	54.3 B	53.7 B	83.6 B	168 B	167 B
Beryllium	3	5 U	5 U	5 U	5 U	0.15 B
Cadmium	10	15	28.8	3.6 B	3 B	38.9
Calcium	NC	10,700	18,900	16,400	13,900	52,100
Chromium	50	27.8	3 B	2.1 B	2.2 B	18 B
Cobalt	NC	3.9 B	3.2 B	5.5 B	7.3 B	2.2 B
Copper	200	19.3 B	38	20.4 B	17.7 B	32.3
Iron	300	614	2,320	4,780	1,150	70,400
Lead	25	10 U	9.9 B	3.3 B	10 U	8.6 B
Magnesium	35,000	1,710	3,170	5,930	2,340	8,300
Manganese	300	621	370	239	6,270	1,280
Mercury	0.7	0.28 U				
Nickel	100	9.8 B	7.1 B	11.5 B	17.5 B	6 B
Potassium	NC	2,410	2,090	2,450	1,520	4,560
Selenium	10	30 U	30 U	30 U	30 U	8.7 B
Silver	50	30 U				
Sodium	20,000	7,880	18,000	46,600	7,870	95,200
Thallium	0.5	20 U	1.9 B	3 B	26.5	20 U
Vanadium	NC	1.3 B	2.6 B	0.72 B	2.6 B	17.4 B
Zinc	2,000	45.9 B	155	129	235	1,650

APPENDIX B TABLE 1 DZUS FASTENERS SITE TAL METALS IN GROUNDWATER


Sample Location	NYSDEC	MW-22E	3	MW-23	A	MW-23	В
Sample ID	Class GA	DF-MW-	22B	DF-MW	/-23A	DF-MW	/-23B
Laboratory ID	Groundwater	E0773-1	2A	E0773-	01A	E0773-	02A
Sample Date	Criteria	6/7/06		6/7/06		6/7/06	
Matrix	water	water		water		water	
Units	µg/L	µg/L		µg/L		µg/L	
		conc.	Q	conc.	Q	conc.	Q
			_				
Aluminum	NC	763		941		2,450	
Antimony	3	200		1.8		3.2	
Arsenic	25	200			В	4.1	
Barium	1,000	76.6		87.5		215	
Beryllium	3	50		-	U	0.21	
Cadmium	10	29	В	110		320	
Calcium	NC	12,800		34,200		21,500	
Chromium	50	7.9		3.6		74.9	
Cobalt	NC	17.4		3.2		4.8	ВΒ
Copper	200	118	В	33.2		94.6	
Iron	300	4,600		10,300)	8,220)
Lead	25	8.6			U	35.7	
Magnesium	35,000	2,660	В	6,660)	1,890)
Manganese	300	2,310		1,100)	548	5
Mercury	0.7	2	U	0.065		0.11	
Nickel	100	28	-	9.3	В	68.8	5
Potassium	NC	3,000	В	7,070)	2,400)
Selenium	10	300	U	1.3	в	30	U
Silver	50	300	U	0.92	В	30	U
Sodium	20,000	8,170	В	60,200)	2,390)
Thallium	0.5	20.1	В	9.3	В	3.1	
Vanadium	NC	500	U	5.5	В	17.7	Β
Zinc	2,000	194	В	181		417	,

APPENDIX B TABLE 2 DZUS FASTENERS SITE TAL METALS IN SURFACE WATER SAMPLES

Sample Location	NYSDEC	SW-1	SW-2	SW-3	SW-4	SW-5	MW-6
Sample ID	Class A	DF-SW-1	DF-SW-2	DF-SW-3	DF-SW-4	DF-SW-5	DF-SW-6
Laboratory ID	Surface Water	E0868-01A	E0868-03A	E0868-05A	E0868-07A	E0868-09A	E0868-11A
Sample Date	Criteria	6/21/06	6/21/06	6/21/06	6/21/06	6/21/06	6/21/06
Matrix	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q					
Aluminum	NC	31.9 B	16.8 B	69.5 B	200 U	15.3 B	40.5 B
Antimony	3	20 U	20 U	20 U	20 U	1.5 B	20 U
Arsenic	50	20 U					
Barium	1,000	13.2 B	12.2 B	7.9 B	5.7 B	36.9 B	35.5 B
Beryllium	3	5.0 U					
Cadmium	5	1.1 B	1.0 B	1.9 B	0.89 B	5.7	0.55 B
Calcium	NC	15,100	14,900	15,200	14,600	14,400	26,700
Chromium	50	0.6 B	0.52 B	0.58 B	20 U	20 U	0.99 B
Cobalt	NC	0.94 B	0.92 B	0.72 B	0.37 B	0.82 B	3.1 B
Copper	200	8.9 B	30 U	30 U	11.7 B	30 U	30 U
Iron	300	691	649	788	610	632	5,400
Lead	50	10 U	10 U	0.92 B	10 U	10 U	10 U
Magnesium	35,000	3,500	3,490	3,540	3,510	3,550	5,130
Manganese	300	1,050	1,010	882	786	1,420	2,610
Mercury	0.7	0.28 U					
Nickel	100	1.3 B	1.1 B	0.96 B	0.6 B	0.98 B	1.4 B
Potassium	NC	2,000	1,990	2,000	1,950	2,080	2,230
Selenium	10	30 U					
Silver	50	1.8 B	1.6 B	1.3 B	30 U	30 U	30 U
Sodium	20,000	18,500	18,100	18,300	18,100	21,100	29,200
Thallium	0.5	20 U					
Vanadium	NC	0.78 B	50 U	0.7 B	50 U	50 U	1.1 B
Zinc	2,000	22.4 B	15.6 B	21.5 B	20.2 B	22 B	35.6 B

APPENDIX B TABLE 3 DZUS FASTENERS SITE TAL METALS IN SEDIMENT SAMPLES

Sample Location	NYS	DEC	SED-1	SED-2	SED-3	SED-4	SED-5	SED-6
Sample ID	Tech	nical	DF-SED-1	DF-SED-2	DF-SED-3	DF-SED-4	DF-SED-5	DF-SED-6
Laboratory ID	Guida	nce for	E0868-02A	E0868-04A	E0868-06A	E0868-08A	E0868-10A	E0868-12A
Sample Date	Sedimen	t Criteria	6/21/06	6/21/06	6/21/06	6/21/06	6/21/06	6/21/06
Matrix	Sedi	ment	sediment	sediment	sediment	sediment	sediment	sediment
Units	Lowest	Highest	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Effect	Effect	conc. Q					
Aluminum	NC	NC	5,020	15,500	690	2,730	1,060	1,030
Antimony	2.0	25	0.7 B	0.92 B	0.64 U	0.22 B	0.074 B	0.076
Arsenic	6.0	33	7.9	19.7	0.31 B	3.4	0.6 B	0.97
Barium	NC	NC	81.2	89.8	6.7	41.5	12.1	7.4
Beryllium	NC	NC	0.5 B	1.2	0.047 B	0.2 B	0.083 B	0.094
Cadmium	0.6	9	47.8	133	1.5	32.3	0.43	0.23
Calcium	NC	NC	2540	2,860	104	588	228	4,760
Chromium	26	110	20.7	33.7	1.5	8.6	3.8	2.4
Cobalt	NC	NC	7.6	12.1	0.66 B	4.9	1.2 B	1.8
Copper	16	110	38.6	210	2.7	21.6	4.7	28.3
Iron	2%	4%	10,300	20,300	920	4,450	3,400	3,290
Lead	31	110	170	315	9.2	71.2	7.9	7.9
Magnesium	NC	NC	1,300	1510	121	352	604	2,930
Manganese	460	1,100	1,290	153	89.8	837	174	102
Mercury	0.15	1.3	0.21	0.45	0.016 B	0.096	0.016 B	0.036 B
Nickel	16	50	11.4	17.6	1.6 B	6.0	1.6	1.8
Potassium	NC	NC	514	555	115	145	135	118
Selenium	NC	NC	1.6 B	2.2 B	0.2 B	0.76 B	0.28 B	1.0 U
Silver	1.0	2.2	2.6 U	0.33 B	0.96 U	1.6 U	0.95 U	1.0 U
Sodium	NC	NC	117	143	13.7 B	35.4 B	18.3 B	24.9 B
Thallium	NC	NC	5.8	0.39 B	0.33 B	3.7	0.56 B	0.25 B
Vanadium	NC	NC	29.4	55.9	1.8	9.2	5.6	9.9
Zinc	120	270	215	402	10	122	13.2	17.2

* Data Summary Pack *

EARTH TECH

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : Multi Site - Dzus and Servall

SDG : E0773

			Anal	lytical Requirements		
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other
MW-23A	E0773-01				SW6010B_W	
MW-23A	E0773-01				SW7470A	
MW-23B	E0773-02			-	SW6010B_W	
MW-23B	E0773-02				SW7470A	
MW-15A	E0773-03			-	SW6010B_W	
MW-15A	E0773-03				SW7470A	
MW-15B	E0773-04				SW6010B_W	
MW-15B	E0773-04				SW7470A	
MW-1	E0773-05				SW6010B_W	
MW-1	E0773-05					
MW-18	E0773-06		1		SW6010B_W	
MW-18	E0773-06				SW7470A	
MW-3	E0773-07				SW6010B_W	
MW-3	E0773-07				SW7470A	
MW-9B	E0773-08				SW6010B_W	
MW-9B	E0773-08					
MW-9	E0773-09				SW6010B_W	
MW-9	E0773-09	-				
MW-2	E0773-10				SW6010B_W	
MW-2	E0773-10					
MW-22A	E0773-11				SW6010B_W	
MW-22A	E0773-11				SW7470A	
MW-22B	E0773-12				SW6010B_W	
MW-22B	E0773-12					
MW-13A	E0773-13				SW6010B_W	
MW-13A	E0773-13					
MW-13B	E0773-14				SW6010B_W	
MW-13B	E0773-14				SW7470A	
DUP	E0773-15				SW6010B_W	
DUP	E0773-15					
SMW-3A	E0773-18	SW8260B_W			SW6010B_W	
SMW-3A	E0773-18				SW7470A	
SMW-11	E0773-19	SW8260B_W			SW6010B W	
SMW-11	E0773-19				SW7470A	
SMW-23S	E0773-20	SW8260B_W			SW6010B_W	
SMW-23S	E0773-20				SW7470A	
SMW23D	E0773-21	SW8260B_W	· · · · · · · · · · · · · · · · · · ·		SW6010B_W	
SMW23D	E0773-21		·		SW7470A	

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Multi Site - Dzus and Servall

SDG : <u>E0773</u>

Laboratory Sample ID	Matrix	Date Collected	Date Received By Lab	Date Extracted	Date Analyzed
SW8260B_W	······································				Analyzed
E0773-18B	AQ	06/06/2006	06/09/2006	NA	06/14/2006
E0773-19B	AQ	06/08/2006	06/09/2006	NA	06/14/2006
E0773-20B	AQ	06/08/2006	06/09/2006	NA	06/14/2006
E0773-20BDL	AQ	06/08/2006	06/09/2006	NA	06/18/2006
E0773-21B	AQ	06/08/2006	06/09/2006	NA	06/15/2006

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Multi Site - Dzus and Servall

SDG : <u>E0773</u>

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Low/Medium Level	Dil/Conc Factor
SW8260B_W					······································
E0773-18B	AQ	SW8260B_W	NA	LOW	1
E0773-19B	AQ	SW8260B_W	NA	LOW	1
E0773-20B	AQ	SW8260B_W	NA	LOW	1
E0773-20BDL	AQ	SW8260B_W	NA	LOW	40
E0773-21B	AQ	SW8260B_W	NA	LOW	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : Multi Site - Dzus and Servall

SDG : <u>E0773</u>

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010B_W			i	
E0773-01A	AQ	SW6010B W	06/09/2006	06/20/2006
E0773-02A	AQ	SW6010B W	06/09/2006	06/20/2006
E0773-03A	AQ	SW6010B W	06/09/2006	06/20/2006
E0773-04A	AQ	SW6010B W	06/09/2006	06/20/2006
E0773-05A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-06A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-07A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-08A	AQ	SW6010B W	06/09/2006	06/20/2006
E0773-09A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-10A	AQ	SW6010B W	06/09/2006	06/20/2006
E0773-11A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-12A	AQ	SW6010B_W	06/09/2006	06/21/2006
E0773-12ADUP	AQ	SW6010B_W	06/09/2006	06/21/2006
E0773-12AMS	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-13A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-14A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-15A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-18A	AQ		06/09/2006	06/20/2006
E0773-19A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-20A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-20ADUP	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-20AMS	AQ	SW6010B_W	06/09/2006	06/19/2006
E0773-21A	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-21ADUP	AQ	SW6010B_W	06/09/2006	06/20/2006
E0773-21AMS	AQ	SW6010B_W	06/09/2006	06/19/2006
SW7470A				
E0773-01A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-02A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-03A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-04A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-05A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-06A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-07A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-08A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-09A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-10A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-11A	AQ	SW7470A	06/09/2006	06/19/2006
E0773-12A	AQ	SW7470A	06/09/2006	06/20/2006
0773-12ADUP	AQ	SW7470A	06/09/2006	06/20/2006
0773-12AMS	AQ	SW7470A	06/09/2006	06/20/2006
0773-13A	AQ	SW7470A	06/09/2006	06/20/2006
0773-14A	AQ	SW7470A	06/09/2006	
0773-15A	AQ	SW7470A	06/09/2006	06/19/2006
0773-18A	AQ	SW7470A	06/09/2006	06/19/2006
0773-19A	AQ	SW7470A	06/09/2006	06/19/2006
0773-20A	AQ	SW7470A	06/09/2006	06/19/2006
0773-21A	AQ	SW7470A	06/09/2006	06/19/2006

Report of Laboratory Analyses for Earth Tech Northeast, Inc.

Client Project: Multi-site G, Dzus and Servall

Mitkem Work Order ID: E0773

July 12, 2006

Prepared For: Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Allen Burton

Prepared By: Mitkem Corporation 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

YORK WERE GREEN AN

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Earth Tech Northeast Inc.'s Multi-site G, Dzus and Servall, project. Under this deliverable, analysis results are presented for twenty-one aqueous samples that were received on June 9, 2006. Analyses were performed per specifications in the project's contract and the chain of custody forms, following discussions with the client. Following the narrative is the Mitkem Work Order for cross-referencing client sample ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (October 1995 update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/lab control sample duplicate: spike recoveries were within the QC limits with the exception of high recovery of vinyl chloride and chloroethane in the V6KLCS and high

recovery of chloroethane and low recovery of trichlorofluoromethane and chloroform in V6LLCS. Replicate RPDs were within the QC limits.

Sample analysis: due to the high concentration of target analytes, sample SMW-23S was reanalyzed at 40x dilution. No other unusual observation was made for the analysis.

3. Metals Analysis:

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike was performed on samples MW-22B, SMW-23S and SMW23D. Spike recoveries were within the QC limits.

Duplicate: duplicate analysis was performed on samples MW-22B, SMW-23S and SMW23D. Replicate RPDs were within the QC limits.

Sample analysis: serial dilution was performed on samples MW-22B, SMW-23S and SMW23D. Percent differences were within the QC limits with the exception of aluminum, iron and magnesium for sample SMW23D. Aluminum, iron and magnesium are qualified with an "E" on the data report forms. No other unusual observation was made for the analysis.

The pages in this report have been numbered consecutively, starting from this narrative and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hardcopy data package.

Agnes Ng

Agnes Ng CLP Project Manager 07/12/06

Mitken	Mitkem Corporation	I)/nn//6	19/Jun/06 14:56	Worl	WorkOrder: E0773
Client Pro Locat Comme	Client ID: EARTH_NJ Project: Multi Site Location: DZUS AND SERVALL Comments: N/A		Case: SDG: PO:	Zase: DG: PO: 152033/152077	Rej	Report Level: ASP-B EDD: CLF HC Due: 06/30/06 Fax Due:
Sample ID	Client Sample ID	Collection Date Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
E0773-01A	MW-23A	06/07/2006 09:30 06/09/2006	Aqueous	SW6010B_W	TAL	M2
				SW7470A	TAL	□ □ M2
E0773-02A	MW-23B	06/07/2006 09:40 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	□ □ M2
E0773-03A	MW-15A	06/07/2006 11:42 06/09/2006	Aqueous	SW6010B_W	TAL	□ M2
				SW7470A	TAL	M2
E0773-04A	MW-15B	06/07/2006 11:15 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	□ □ M2
E0773-05A	I-MM	06/08/2006 12:00 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	M2
E0773-06A	MW-18	06/08/2006 11:15 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	□ □ M2
E0773-07A	MW-3	06/08/2006 09:20 06/09/2006	Aqueous	SW6010B_W	TAL	□ √ M2
Client Rep:	Client Rep: Agnes R Ng				Page	ge 1 of 4

1000 1000 0000

Mitkem	Mitkem Corporation	I	9/Jun/0	19/Jun/06 14:56	Work	WorkOrder: E0773
Client Proj Locati Commer	Client ID: EARTH_NJ Project: Multi Site Location: DZUS AND SERVALL Comments: N/A		Case: SDG: PO:	2 ase: BG: PO: 152033/152077	Rep	Report Level: ASP-B EDD: CLF HC Due: 06/30/06 Fax Due:
Sample ID	Client Sample ID	Collection Date Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
E0773-07A	MW-3	06/08/2006 09:20 06/09/2006	Aqueous	SW7470A	TAL	M2
E0773-08A	MW-9B	06/08/2006 09:10 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	□ □ M2
E0773-09A	6-WM	06/08/2006 08:50 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	□ □ M2
E0773-10A	MW-2	06/07/2006 14:35 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	□ □ M2
E0773-11A	MW-22A	06/07/2006 09:50 06/09/2006	Aqueous	SW6010B_W	TAL	□ V M2
				SW7470A	TAL	□ □ M2
E0773-12A	MW-22B	06/07/2006 10:00 06/09/2006	Aqueous	SW6010B_W	TAL	M2
				SW7470A	TAL	□ √ □ M2
E0773-13A	MW-13A	06/08/2006 07:50 06/09/2006	Aqueous	SW6010B_W	TAL	□ ∨ M2
THE MAN COMMAND IN A REAL PROPERTY OF A REA				SW7470A	TAL	□ □ M2
Client Rep:	Client Rep: Agnes R Ng				Page	le 2 of 4

Mitkem (Mitkem Corporation	19/	19/Jun/06 14:56	Wo	WorkOrder: E0773
Client ID: EAR Project: Mult Location: DZU Comments: N/A	Client ID: EARTH_NJ Project: Multi Site Location: DZUS AND SERVALL omments: N/A		Case: SDG: PO: 152033/152077		Report Level: ASP-B EDD: CLF HC Due: 06/30/06 Fax Due:
Sample ID (Client Sample ID	Collection Date Date Recv'd I	Matrix Test Code	Lab Test Comments	Hold MS SEL Storage
E0773-14A N	MW-13B	06/08/2006 08:04 06/09/2006	Aqueous SW6010B_W	TAL	
			SW7470A	TAL	
E0773-15A	DUP	06/08/2006 09:50 06/09/2006	Aqueous SW6010B_W	TAL	2
			SW7470A	TAL	M2
E0773-16A	SW	06/07/2006 10:00 06/09/2006	Aqueous SW6010B_W	TAL	
			SW7470A	TAL	M2
E0773-17A	MSD	06/07/2006 10:00 06/09/2006	Aqueous SW6010B_W	TAL	M M2
			SW7470A	TAL	M2
E0773-18A	SMW-3A	06/06/2006 14:00 06/09/2006	Aqueous SW6010B_W	TAL	□ V M2
			SW7470A	TAL	M2 M2
E0773-18B	SMW-3A	06/06/2006 14:00 06/09/2006	Aqueous SW8260B_W		VOA
E0773-19A	SMW-11	06/08/2006 13:00 06/09/2006	Aqueous SW6010B_W	TAL	□ ■ M2
Client Rep: Agnes R Ng	Agnes R Ng				Page 3 of 4

Mitkem	Mitkem Corporation	19	/Jun/06	19/Jun/06 14:56	Work	WorkOrder: E0773
Client Proj Locat Conme	Client ID: EARTH_NJ Project: Multi Site Location: DZUS AND SERVALL Comments: N/A		Case: SDG: PO: 1	ase: DG: PO: 152033/152077	Repo	Report Level: ASP-B EDD: CLF HC Due: 06/30/06 Fax Due:
Sample ID	Client Sample ID	Collection Date Date Recv'd	Matrix	Test Code	Lab Test Comments	S SW P
E0773-19A	SMW-11	06/08/2006 13:00 06/09/2006	Aqueous 5	SW7470A	TAL	П П M2
E0773-19B	II-MWS	06/08/2006 13:00 06/09/2006	Aqueous	SW8260B_W		NOA
E0773-20A	SMW-23S	06/08/2006 15:45 06/09/2006	Aqueous	SW6010B_W SW7470A	TAL TAL	M2 M2 M2
E0773-20B	SMW-23S	06/08/2006 15:45 06/09/2006	Aqueous	SW8260B_W		NOA
E0773-21A	SMW23D	06/08/2006 16:00 06/09/2006	Aqueous	SW6010B_W SW7470A	TAL TAL	M2 M2 M2
E0773-21B	SMW23D	06/08/2006 16:00 06/09/2006	Aqueous	SW8260B_W		NOA

Client Rep: Agnes R Ng

Page 4 of 4

1

EPA SAMPLE NO

INORGANIC	ANALYSIS	DATA	SHEET
-----------	----------	------	-------

U.S. EPA - CLP

	INORGANIC	ANALYSIS DATA SHEET		DU	P
Lab Name: Mitkem Cor	poration	Contract: <u>152033/</u>	15		
Lab Code: MITKEM	Case No.	SAS No.:		SDG No.:	ME0773
Matrix (soil/water):	WATER	Lab Sample ID:	EO	773-15	
Level (low/med):	MED	Date Received:	06	5/09/06	
<pre>% Solids:</pre>	0.0				

Concentration Units (ug/L or mg/kg dry weight): $\underline{UG/L}$

	Deel who	Concentration	с	0	м
CAS No.	Analyte	Concentración		×	
7429-90-5	Aluminum	3370			Р
7440-36-0	Antimony	1.2	U		Р
7440-38-2	Arsenic	18.0	В		P
7440-39-3	Barium	168	В		P
7440-41-7	Beryllium	0.16	В		Р
7440-43-9	Cadmium	38.2			Р
7440-70-2	Calcium	49600			P
7440-47-3	Chromium	16.0	В		P
7440-48-4	Cobalt	2.5	В		Р
7440-50-8	Copper	37.7			Р
7439-89-6	Iron	73800			Р
7439-92-1	Lead	7.4	В		Р
7439-95-4	Magnesium	7730			P
7439-96-5		1250			P
7440-02-0	Nickel	5.5	В		P
7440-09-7	Potassium	4370			P
7782-49-2	Selenium	11.0	В		P
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	94800			P
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	16.7	В		P
7440-66-6	Zinc	1710			P
7439-97-6	Mercury	0.074	B		CV

	TNORGANIC AN	1 MALYSIS DATA SHEET		EPA SAN	APLE NO
Lab Name: Mitkem Cor			33/15	MW	-1
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:		SDG No.:	ME0773
Matrix (soil/water):	WATER	Lab Sample 1	ID: <u>EC</u>	773-05	
Level (low/med):	MED	Date Receive	ed: <u>06</u>	5/09/06	
<pre>% Solids:</pre>	0.0				

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	4180		1	P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	4.3	В		P
7440-39-3	Barium	80.2	В		P
7440-41-7	Beryllium	0.42	В		Р
7440-43-9	Cadmium	23.9			Р
7440-70-2	Calcium	8790			Р
7440-47-3	Chromium	8.0	В		Р
7440-48-4	Cobalt	5.1	В		Р
7440-50-8	Copper	18.3	В		P
7439-89-6	Iron	13200			Р
7439-92-1	Lead	3.9	В		Р
7439-95-4	Magnesium	3010			Р
7439-96-5	Manganese	. 210			Р
7440-02-0	Nickel	8.7	В		Р
7440-09-7	Potassium	1760			Р
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	22500			P
7440-28-0	Thallium	1.9	В		Р
7440-62-2	Vanadium	7.8	В		P
7440-66-6	Zinc	244			Р
7439-97-6	Mercury	0.065	U		CV

Comments:

EPA SAMPLE NO

ſ

	1			
INORGANIC	ANALYSIS	DATA	SHEET	

Lab Name: <u>Mitkem Co</u>	rporation	Contract: <u>152033/1</u>	.5 MW-2
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0773
Matrix (soil/water):	WATER	Lab Sample ID:	<u>E0773-10</u>
Level (low/med):	MED	Date Received:	06/09/06
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

	1	1	1	·
Analyte	Concentration	С	Q	М
Aluminum	7090	<u> </u>		P
Antimony	1.2	U		P
Arsenic	3.9	В		P
Barium	96.5	В		P
Beryllium	0.40	В		P
Cadmium	4.2	В		P
Calcium	15500			P
Chromium	8.8	В		Р
Cobalt	18.3	В		Р
Copper	19.3	В		Р
Iron	14900			Р
Lead	14.7			Р
Magnesium	3740			P
Manganese	518			Р
Nickel	13.3	В		P
Potassium	2140			Р
Selenium	1.4	В		Р
Silver	0.91	U		Р
Sodium	21500			Р
Thallium	2.3	В		Р
Vanadium	11.9	В		Р
Zinc	138			P
Mercury	0.065	υ		CV
	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	Aluminum 7090 Antimony 1.2 Arsenic 3.9 Barium 96.5 Beryllium 0.40 Cadmium 4.2 Calcium 15500 Chromium 8.8 Cobalt 18.3 Copper 19.3 Iron 14900 Lead 14.7 Magnesium 3740 Manganese 518 Nickel 13.3 Potassium 2140 Selenium 1.4 Silver 0.91 Sodium 21500 Thallium 2.3 Vanadium 11.9 Zinc 138	Aluminum 7090 Antimony 1.2 U Arsenic 3.9 B Barium 96.5 B Beryllium 0.40 B Cadmium 4.2 B Calcium 15500 Chromium Chromium 8.8 B Cobalt 18.3 B Copper 19.3 B Iron 14900 Lead Lead 14.7 Magnesium Marganese 518 Nickel Nickel 13.3 B Potassium 2140 Selenium Silver 0.91 U Sodium 21500 Thallium 2.3 Vanadium 11.9 B Zinc 138	Aluminum 7090 Antimony 1.2 U Arsenic 3.9 B Barium 96.5 B Beryllium 0.40 B Cadmium 4.2 B Calcium 15500 Chromium Chromium 8.8 B Cobalt 18.3 B Copper 19.3 B Iron 14900 Lead Lead 14.7 Magnesium Marganese 518 Nickel Nickel 13.3 B Potassium 2140 Selenium Silver 0.91 U Sodium 21500 Thallium Thallium 2.3 B Vanadium 11.9 B

Comments:

SW846

nan oldar aada aaraa

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Cor	poration	Contract: <u>152033/15</u>	MW-3
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: <u>ME0773</u>
Matrix (soil/water):	WATER	Lab Sample ID: 1	E0773-07
Level (low/med):	MED	Date Received:	06/09/06
<pre>% Solids:</pre>	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5650			P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	2.9	В		P
7440-39-3	Barium	90.9	В		Р
7440-41-7	Beryllium	0.26	В		P
7440-43-9	Cadmium	77.4			P
7440-70-2	Calcium	17800			Р
7440-47-3	Chromium	9.2	В		Р
7440-48-4	Cobalt	4.4	В		Р
7440-50-8	Copper	16.1	В		Р
7439-89-6	Iron	4430			Р
7439-92-1	Lead	0.46	U		Р
7439-95-4	Magnesium	4160			Р
7439-96-5	Manganese	423			Р
7440-02-0	Nickel	6.8	В		Р
7440-09-7	Potassium	2630			Р
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	27700			Р
7440-28-0	Thallium	2.5	В		P
7440-62-2	Vanadium	8.1	В		P
7440-66-6	Zinc	. 87.0			P
7439-97-6	Mercury	0.065	U		CV

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

			NTI O
Lab Name: Mitkem Cor	poration	Contract: <u>152033</u>	/15
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0773
Matrix (soil/water):	WATER	Lab Sample ID:	E0773-09
Level (low/med):	MED	Date Received:	06/09/06

% Solids: <u>0.0</u>

Concentration Units (ug/L or mg/kg dry weight): $\underline{\rm UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	16800			Р
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	32.6			Р
7440-39-3	Barium	102	В		Р
7440-41-7	Beryllium	0.63	В		Р
7440-43-9	Cadmium	32.8			Р
7440-70-2	Calcium	16000			Р
7440-47-3	Chromium	125			Р
7440-48-4	Cobalt	5.2	В		Р
7440-50-8	Copper	62.3			Р
7439-89-6	Iron	21600			Р
7439-92-1	Lead	11.6			P
7439-95-4	Magnesium	3170			Р
7439-96-5	Manganese	151			P
7440-02-0	Nickel	18.3	В		Р
7440-09-7	Potassium	3270			Р
7782-49-2	Selenium	2.7	В		P
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	25500			P
7440-28-0	Thallium	1.2	υ		Р
7440-62-2	Vanadium	33.1	В		P
7440-66-6	Zinc	170			Р
7439-97-6	Mercury	0.065	U		CV
[

	INORCANIC A	1 NALYSIS DATA SHEET		EPA SAN	IPLE NO
Lab Name: Mitkem Cor		Contract: 15203	3/15	MW-	-9B
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:		SDG No.:	ME0773
Matrix (soil/water):	WATER	Lab Sample ID): <u>EC</u>	0773-08	
Level (low/med):	MED	Date Received	1: <u>06</u>	5/09/06	

% Solids: <u>0.0</u>

Concentration Units (ug/L or mg/kg dry weight): $\underline{UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	213			Р
7440-36-0	Antimony	1.8	В		Р
7440-38-2	Arsenic	1.6	U		Р
7440-39-3	Barium	45.5	В		Р
7440-41-7	Beryllium	0.15	U		Р
7440-43-9	Cadmium	2.9	В		Р
7440-70-2	Calcium	10800			P
7440-47-3	Chromium	2.2	В		P
7440-48-4	Cobalt	2.6	В		Р
7440-50-8	Copper	28.8	В		P
7439-89-6	Iron	561			Р
7439-92-1	Lead	0.46	υ		Р
7439-95-4	Magnesium	1640			P
7439-96-5	Manganese	211			Р
7440-02-0	Nickel	8.6	В		Р
7440-09-7	Potassium	2140			P
7782-49-2	Selenium	0.98	U		P
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	8070			Р
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	0.47	U		Р
7440-66-6	Zinc	83.7			P
7439-97-6	Mercury	0.065	U		CV
	1				

EPA SAMPLE NO

1 INORGANIC ANALYSIS DATA SHEET

Lab Name: <u>Mitkem Cor</u>	poration	Contract: <u>152033/15</u>	MW-13A
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: <u>ME0773</u>
Matrix (soil/water):	WATER	Lab Sample ID:	E0773-13
Level (low/med):	MED	Date Received:	06/09/06
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): $\underline{UG/L}$

CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 15000 P 7440-36-0 Antimony 1.2 U P 7440-38-2 Arsenic 5.7 B P 7440-39-3 Barium 176 B P 7440-41-7 Beryllium 0.53 B P 7440-43-9 Cadmium 174 P 7440-43-9 Cadmium 174 P 7440-43-9 Cadmium 174 P 7440-43-9 Cadmium 174 P 7440-43-9 Cadmium 12.9 B P 7440-43-9 Cadmium 12.9 B P 7440-47-3 Chromium 12.9 B P 7440-48-4 Cobalt 55.8 P P 7439-89-6 Iron 12700 P P 7439-92-1 Lead 5.7 B P 7439-		1	1	T	T	1
7440-36-0 Antimony 1.2 U P 7440-38-2 Arsenic 5.7 B P 7440-39-3 Barium 176 B P 7440-41-7 Beryllium 0.53 B P 7440-41-7 Beryllium 0.53 B P 7440-43-9 Cadmium 174 P 7440-47-2 Calcium 37900 P 7440-47-3 Chromium 12.9 B P 7440-48-4 Cobalt 55.8 P 7440-50-8 Copper 34.3 P 7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7440-02-0 Nickel 9.4 B P 7440-02-0 Nickel 9.4 B P 7440-02-7 Potassium 7430 P P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 <td< td=""><td>CAS No.</td><td>Analyte</td><td>Concentration</td><td>C</td><td>Q</td><td>М</td></td<>	CAS No.	Analyte	Concentration	C	Q	М
7440-38-2 Arsenic 5.7 B P 7440-39-3 Barium 176 B P 7440-41-7 Beryllium 0.53 B P 7440-41-7 Beryllium 0.53 B P 7440-43-9 Cadmium 174 P 7440-43-9 Cadmium 17900 P 7440-47-3 Chromium 12.9 B P 7440-50-8 Copper 34.3 P P 7439-89-6 Iron 12700 P P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P P	7429-90-5	Aluminum	15000			P
7440-39-3 Barium 176 B P 7440-41-7 Beryllium 0.53 B P 7440-43-9 Cadmium 174 P 7440-43-9 Calcium 37900 P 7440-47-3 Chromium 12.9 B P 7440-48-4 Cobalt 55.8 P 7440-50-8 Copper 34.3 P 7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7440-02-0 Nickel 9.4 B P 7440-02-0 Nickel 9.4 B P 7440-02-7 Potassium 7430 P P 7440-23-5 Sodium 94500 P 7440-23-5 Sodium <td>7440-36-0</td> <td>Antimony</td> <td>1.2</td> <td>U</td> <td></td> <td>P</td>	7440-36-0	Antimony	1.2	U		P
7440-41-7Beryllium 0.53 BP $7440-43-9$ Cadmium 174 P $7440-43-9$ Cadmium 174 P $7440-70-2$ Calcium 37900 P $7440-47-3$ Chromium 12.9 BP $7440-48-4$ Cobalt 55.8 P $7440-50-8$ Copper 34.3 P $7439-89-6$ Iron 12700 P $7439-92-1$ Lead 5.7 BP $7439-95-4$ Magnesium 5580 P $7439-95-4$ Magnese 9560 P $7440-02-0$ Nickel 9.4 BP $7440-02-7$ Potassium 7430 P $7782-49-2$ Selenium 0.98 UP $7440-22-4$ Silver 0.91 UP $7440-23-5$ Sodium 94500 P $7440-23-5$ Thallium 44.0 P $7440-66-6$ Zinc 53.3 P	7440-38-2	Arsenic	5.7	В		P
7440-43-9 Cadmium 174 P 7440-70-2 Calcium 37900 P 7440-47-3 Chromium 12.9 B P 7440-48-4 Cobalt 55.8 P 7440-50-8 Copper 34.3 P 7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-92-1 Lead 5.7 B P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7440-02-0 Nickel 9.4 B P 7440-02-0 Nickel 9.4 B P 7440-02-0 Nickel 9.4 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P P 7440-23-5 Sodium 94500 P P 7440-28-0 Thallium 44.0 P P 7440-66-6 Zinc 53.3 P <	7440-39-3	Barium	176	В		P
7440-70-2 Calcium 37900 P 7440-47-3 Chromium 12.9 B P 7440-48-4 Cobalt 55.8 P 7440-50-8 Copper 34.3 P 7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P P 7440-28-0 Thallium 44.0 P P 7440-28-0 Thallium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-41-7	Beryllium	0.53	В		P
7440-47-3 Chromium 12.9 B P 7440-48-4 Cobalt 55.8 P 7440-50-8 Copper 34.3 P 7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7439-95-5 Magnese 9560 P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P P 7440-28-0 Thallium 44.0 P P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-43-9	Cadmium	174			P
7440-47-3 Chromium 12.9 B P 7440-48-4 Cobalt 55.8 P 7440-50-8 Copper 34.3 P 7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7439-96-5 Manganese 9560 P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 7440-22-4 Silver 0.91 U P 7440-22-5 Sodium 94500 P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-70-2	Calcium	37900			P
7440-50-8 Copper 34.3 P 7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-92-1 Lead 5.7 B P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7440-02-0 Nickel 9.4 B P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P P 7440-28-0 Thallium 44.0 P P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-47-3	Chromium				P
7439-89-6 Iron 12700 P 7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7439-96-5 Manganese 9560 P 7440-02-0 Nickel 9.4 B P 7440-02-7 Potassium 7430 P 782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P	7440-48-4	Cobalt	55.8			P
7439-92-1 Lead 5.7 B P 7439-95-4 Magnesium 5580 P 7439-96-5 Manganese 9560 P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 7782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-50-8	Copper	34.3			P
7439-95-4 Magnesium 5580 P 7439-96-5 Manganese 9560 P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 7782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7439-89-6	Iron	12700			Р
7439-96-5 Manganese 9560 P 7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 7782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7439-92-1	Lead	5.7	В		P
7440-02-0 Nickel 9.4 B P 7440-09-7 Potassium 7430 P 7782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7439-95-4	Magnesium	5580			Р
7440-09-7 Potassium 7430 P 7782-49-2 Selenium 0.98 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7439-96-5	Manganese	9560			Р
7782-49-2 Selenium 7180 P 7440-22-4 Silver 0.98 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-02-0	Nickel	9.4	В		Р
7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-09-7	Potassium	7430			P
7440-23-5 Sodium 94500 P 7440-28-0 Thallium 44.0 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7782-49-2	Selenium	0.98	U		Р
7440-28-0 Thallium 74300 P 7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-22-4	Silver	0.91	U		P
7440-62-2 Vanadium 17.6 B P 7440-66-6 Zinc 53.3 P	7440-23-5	Sodium	94500			Р
7440-66-6 Zinc 53.3 P	7440-28-0	Thallium	44.0			P
7440-66-6 Zinc 53.3 P	7440-62-2	Vanadium	17.6	B		P
7439-97-6 Mercury 0.065 U CV	7440-66-6	Zinc	53.3			
	7439-97-6	Mercury	0.065	U		CV

Comments:

SW846

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: <u>Mitkem Cor</u>	poration	Contract: <u>152033/</u>	MW-13B
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0773
Matrix (soil/water):	WATER	Lab Sample ID:	E0773-14
Level (low/med):	MED	Date Received:	06/09/06
% Solids:	0.0		

% Solids:

Concentration Units (ug/L or mg/kg dry weight): $\underline{\rm UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	330			P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	54.3	В	Í	P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	15.0			P
7440-70-2	Calcium	10700			P
7440-47-3	Chromium	27.8			P
7440-48-4	Cobalt	3.9	В		P
7440-50-8	Copper	19.3	В		P
7439-89-6	Iron	614			Р
7439-92-1	Lead	0.46	Ũ		Р
7439-95-4	Magnesium	1710			Р
7439-96-5	Manganese	621			Р
7440-02-0	Nickel	9.8	В		Р
7440-09-7	Potassium	2410			Р
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	7880			P
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	1.3	В		P
7440-66-6	Zinc	45.9			P
7439-97-6	Mercury	0.065	U		CV
	1]

Comments:

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: <u>Mitke</u>	m Corporation	Contract: <u>152033/15</u> MW-15A	
Lab Code: <u>MITKE</u>	M Case No.	SAS No.: SDG No.: ME0773	3
Matrix (soil/wat	er): <u>WATER</u>	Lab Sample ID: E0773-03	
Level (low/med):	MED	Date Received: 06/09/06	
% Solids:	0.0		

% Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	773	1		P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	53.7	В		P
7440-41-7	Beryllium	0.15	U		Р
7440-43-9	Cadmium	28.8			Р
7440-70-2	Calcium	18900			Р
7440-47-3	Chromium	3.0	В		Р
7440-48-4	Cobalt	3.2	В		Р
7440-50-8	Copper	38.0			P
7439-89-6	Iron	2320			Р
7439-92-1	Lead	9.9	В		P
7439-95-4	Magnesium	3170			P
7439-96-5	Manganese	370			P
7440-02-0	Nickel	7.1	В		P
7440-09-7	Potassium	2090			P
7782-49-2	Selenium	0.98	υ		P
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	18000			P
7440-28-0	Thallium	1.9	В		P
7440-62-2	Vanadium	2.6	В		P
7440-66-6	Zinc	155			P
7439-97-6	Mercury	0.065	U		cv
]

1

EPA SAMPLE NO

INORGANIC	ANATVETE	<u>ה</u> ת הכת	CUPPT
THOUGUNTO		PALA	لد ستدند د ب

MW-15B Lab Name: Mitkem Corporation Contract: 152033/15 Lab Code: MITKEM Case No. SAS No.: SDG No.: ME0773 Matrix (soil/water): <u>WATER</u> Lab Sample ID: E0773-04 Date Received: 06/09/06 Level (low/med): MED 0.0

% Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L

		· · · · · · · · · · · · · · · · · · ·			
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	224			P
7440-36-0	Antimony	1.2	U		Р
7440-38-2	Arsenic	1.7	В		P
7440-39-3	Barium	83.6	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	3.6	В		P
7440-70-2	Calcium	16400			Р
7440-47-3	Chromium	2.1	В		P
7440-48-4	Cobalt	5.5	В		Р
7440-50-8	Copper	20.4	В		Р
7439-89-6	Iron	4780			P
7439-92-1	Lead	3.3	В		Р
7439-95-4	Magnesium	5930			Р
7439-96-5	Manganese	239		_	Р
7440-02-0	Nickel	11.5	В		Р
7440-09-7	Potassium	2450			Р
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	46600			Р
7440-28-0	Thallium	3.0	В		Р
7440-62-2	Vanadium	0.72	В		Р
7440-66-6	Zinc	129			Р
7439-97-6	Mercury	0.065	U		CV

Comments:

SW846

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Con	poration	Contract: <u>152033/15</u>	MW-18
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: <u>ME0773</u>
Matrix (soil/water):	WATER	Lab Sample ID: <u>E</u>	0773-06
Level (low/med):	MED	Date Received: 0	6/09/06
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): $\underline{UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	1430	1		P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	168	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	3.0	В		P
7440-70-2	Calcium	13900	1		P
7440-47-3	Chromium	2.2	В		P
7440-48-4	Cobalt	7.3	В		P
7440-50-8	Copper	17.7	В		P
7439-89-6	Iron	1150			P
7439-92-1	Lead	0.46	U		Р
7439-95-4	Magnesium	2340			Р
7439-96-5	Manganese	6270			Р
7440-02-0	Nickel	17.5	В		Р
7440-09-7	Potassium	1520			P
7782-49-2	Selenium	0.98	υ		P
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	7870			P
7440-28-0	Thallium	26.5			Р
7440-62-2	Vanadium	2.6	B		Р
7440-66-6	Zinc	235			P
7439-97-6	Mercury	0.065	U		CV

Comments:

1

EPA SAMPLE NO

	TNORGANI	C ANALYSIS DATA SHEET	LPA SAMPLE NO
Lab Name: Mitk		Contract: <u>152033</u> /2	MW-22A
Lab Code: MITK	EM Case No.	SAS No.:	SDG No.: <u>ME0773</u>
Matrix (soil/wa	ter): <u>WATER</u>	Lab Sample ID:	<u>E0773-11</u>
Level (low/med)	: <u>MED</u>	Date Received:	06/09/06
<pre>% Solids:</pre>	0.0		

Concentration Units (ug/L or mg/kg dry weight): $\underline{ ext{UG/L}}$

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	4320			P
7440-36-0	Antimony	1.7	В	1	P
7440-38-2	Arsenic	16.0	В		P
7440-39-3	Barium	167	В		P
7440-41-7	Beryllium	0.15	В	1	Р
7440-43-9	Cadmium	38.9			P
7440-70-2	Calcium	52100			P
7440-47-3	Chromium	18.0	В		P
7440-48-4	Cobalt	2.2	В		P
7440-50-8	Copper	32.3			Р
7439-89-6	Iron	70400			P
7439-92-1	Lead	8.6	В		P
7439-95-4	Magnesium	8300			Р
7439-96-5	Manganese	1280			Р
7440-02-0	Nickel	6.0	В		Р
7440-09-7	Potassium	4560			P
7782-49-2	Selenium	8.7	В		Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	95200			Р
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	17.4	В		P
7440-66-6	Zinc	1650			P
7439-97-6	Mercury	0.065	υ		CV

Comments:

	TNORCANIC	1 ANALYSIS DATA SHI	דו כז כ	EPA SA	MPLE NO
Lab Name: <u>Mitkem Cor</u>		Contract:	152033/15	MW-	-22B
Lab Code: MITKEM	Case No.	SAS No.:		SDG No.:	<u>ME0773</u>
Matrix (soil/water):	WATER	Lab Sar	nple ID: <u>E</u>	0773-12	
Level (low/med):	MED	Date Re	eceived: <u>O</u>	6/09/06	
% Solids:	0.0				

Concentration Units (ug/L or mg/kg dry weight): $\underline{UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	763	В		P
7440-36-0	Antimony	12	U		P
7440-38-2	Arsenic	16	U		P
7440-39-3	Barium	76.6	В		P
7440-41-7	Beryllium	1.5	U		P
7440-43-9	Cadmium	29.0	В		P
7440-70-2	Calcium	12800			P
7440-47-3	Chromium	7.9	В		P
7440-48-4	Cobalt	17.4	В		Р
7440-50-8	Copper	118	В		P
7439-89-6	Iron	4600			Р
7439-92-1	Lead	8.6	В		P
7439-95-4	Magnesium	2660	В		P
7439-96-5	Manganese	2310			P
7440-02-0	Nickel	28.0	В		Р
7440-09-7	Potassium	3000	В		Р
7782-49-2	Selenium	9.8	U		P
7440-22-4	Silver	9.1	U		Р
7440-23-5	Sodium	8170	В		Р
7440-28-0	Thallium	20.1	В		Р
7440-62-2	Vanadium	4.7	U		Р
7440-66-6	Zinc	194	В		Р
7439-97-6	Mercury	0.47	U		CV

Comments:

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Cor	poration	Contract: <u>152033/15</u>						
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0773					
Matrix (soil/water):	WATER	Lab Sample ID:	E0773-01					
Level (low/med):	MED	Date Received:	06/09/06					
<pre>% Solids:</pre>	0.0							

Concentration Units (ug/L or mg/kg dry weight): $\underline{ ext{UG/L}}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	941			P
7440-36-0	Antimony	1.8	В		P
7440-38-2	Arsenic	2.0			P
7440-39-3	Barium	87.5	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	110			P
7440-70-2	Calcium	34200			P
7440-47-3	Chromium	3.6			 P
7440-48-4	Cobalt	3.2	В		P
7440-50-8	Copper	33.2			P
7439-89-6	Iron	10300			P
7439-92-1	Lead	0.46	U		P
7439-95-4	Magnesium	6660			P
7439-96-5	Manganese	1100			P
7440-02-0	Nickel	9.3			P
7440-09-7	Potassium	7070			P
7782-49-2	Selenium	1.3	В		P
7440-22-4	Silver	0.92	В		P
7440-23-5	Sodium	60200			P
7440-28-0	Thallium	9.3	В		P
7440-62-2	Vanadium	5.5	В		P
7440-66-6	Zinc	181			P
7439-97-6	Mercury	0.065	В		CV

Comments:

EPA SAMPLE NO

1 INORGANIC ANALYSIS DATA SHEET

Lab Name: <u>Mitkem Co</u>	rporation	Contract: <u>152033/1</u>	.5 MW-23B
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0773
Matrix (soil/water):	WATER	Lab Sample ID:	<u>E0773-02</u>
Level (low/med):	MED	Date Received:	06/09/06
<pre>% Solids:</pre>	0.0		

Concentration Units (ug/L or mg/kg dry weight): $\underline{UG/L}$

	1			T	·
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2450			Р
7440-36-0	Antimony	3.2	В		Р
7440-38-2	Arsenic	4.1	В		P
7440-39-3	Barium	215			Р
7440-41-7	Beryllium	0.21	В		P
7440-43-9	Cadmium	320			P
7440-70-2	Calcium	21500			Р
7440-47-3	Chromium	74.9			Р
7440-48-4	Cobalt	4.8	В		Р
7440-50-8	Copper	94.6			Р
7439-89-6	Iron	8220			Р
7439-92-1	Lead	35.7			Р
7439-95-4	Magnesium	1890			Р
7439-96-5	Manganese	548			Р
7440-02-0	Nickel	68.8			Р
7440-09-7	Potassium	2400			Р
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	2390			P
7440-28-0	Thallium	3.1	В		P
7440-62-2	Vanadium	17.7	В		Р
7440-66-6	Zinc	417			Р
7439-97-6	Mercury	0.11	В		CV

Report of Laboratory Analyses for Earth Tech Northeast, Inc.

Client Project: Multi-site G, Dzus and Liberty

Mitkem Work Order ID: E0868

July 14, 2006

Prepared For: Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Allen Burton

Prepared By:

Mitkem Corporation 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Earth Tech Northeast Inc.'s Multi-site G, Dzus and Liberty, project. Under this deliverable, analysis results are presented for seven aqueous and six soil samples that were received on June 23, 2006. Analyses were performed per specifications in the project's contract and the chain of custody forms, following discussions with the client. Following the narrative is the Mitkem Work Order for cross-referencing client sample ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (October 1995 update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Metals Analysis:

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike was performed on sample SED-2 for mercury only and SW-3 for the ICAP metals. Spike recoveries were within the QC limits.

Duplicate: duplicate analysis was performed on sample SED-2 for mercury only and SW-3 for the ICAP metals. Replicate RPDs were within the QC limits.

Sample analysis: serial dilution was performed on sample SW-3. Percent differences were within the QC limits. No unusual observation was made for the analysis.

The pages in this report have been numbered consecutively, starting from this narrative and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hardcopy data package.

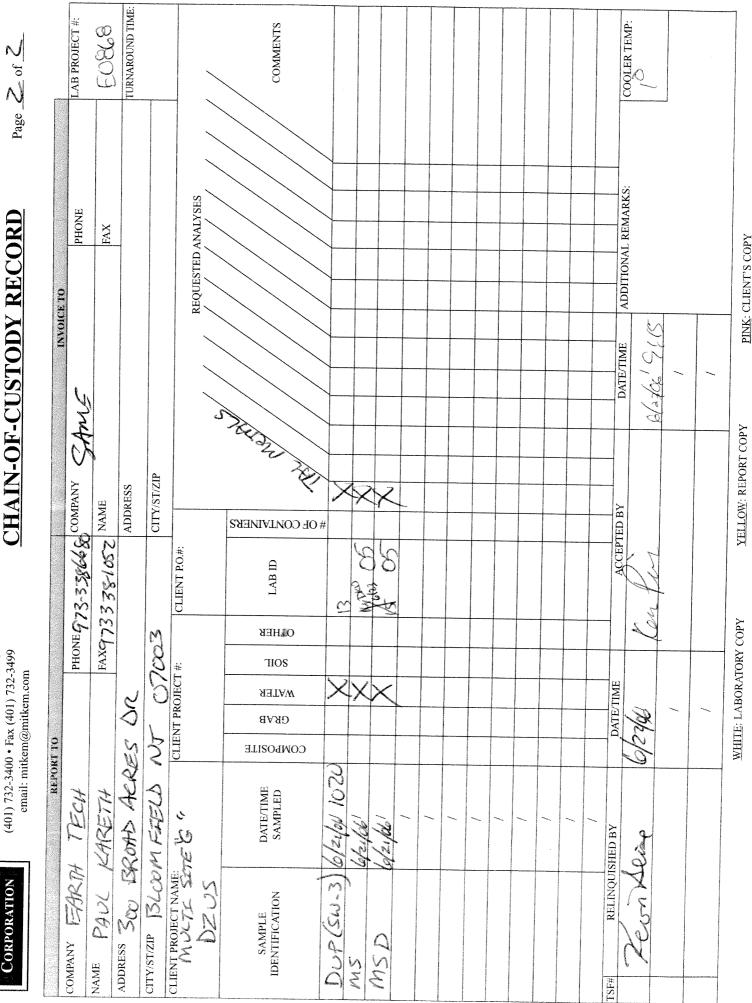
agnusRHZ

Agnes Ng CLP Project Manager 07/14/06

Mitker	Mitkem Corporation		27/Jun	27/Jun/06 08:51	Wor	WorkOrder: E0868
Clien Pro Loca Commo	Client ID: EARTH_NJ Project: Multi Site Location: DZUS/LIBERTY Comments: N/A		Case: SDG: PO:	ase: DG: PO: 152033/152108	Ä	Report Level: ASP-B EDD: CLF HC Due: 07/14/06 Fax Due:
Sample ID	Client Sample ID	Collection Date Date Ree	Recv ¹ d Matrix	Test Code	Lah Test Comments	STATES OF STATES
E0868-01A	SW-1	06/21/2006 09:05 06/23/2006	06 Aqueous	s SW6010B_W	TAL	
(4) minimum is improved any equilation management of the second se Second second se				SW7470A	TAL	
E0868-02A	SED-I	06/21/2006 09:15 06/23/2006	06 Soil	PMoist		98
				SW6010B_S	TAL	A6
				SW7471A	TAL	□ □ □ A6
E0868-03A	SW-2	06/21/2006 09:35 06/23/2006	06 Aqueous	SW6010B_W	TAL	M5
				SW7470A	TAL	— — — M5
E0868-04A	SED-2	06/21/2006 09:50 06/23/2006	06 Soil	PMoist		9V
ana a ang mana a ang mang mang mang mang			• • • • • • • • • • • • • • • • • • •	SW6010B_S	TAL	□ V A6
				SW7471A	TAL	□ □ A6
E0868-05A	SW-3	06/21/2006 10:20 06/23/2006)6 Aqueous	SW6010B_W	TAL	MS MS
An and a second s				SW7470A	TAL	□ V □ M5
E0868-06A	SED-3	06/21/2006 10:20 06/23/2006	6 Soil	PMoist		□ □ A6
A CALL THE REAL PROPERTY OF THE REAL PROPERTY				SW6010B_S	TAL	
Client Rep:	Client Rep: Agnes R Ng				Page	e 1 of 3

Mitken	Mitkem Corporation	2	////////	27/Jun/06 08:51	Work	WorkOrder: E0868
Client Proj Locat Comme	Client ID: EARTH_NJ Project: Multi Site Location: DZUS/LIBERTY Comments: N/A		Case: SDG: PO:	ase: DG: PO: 152033/152108	Re	Report Level: ASP-B EDD: CLF HC Due: 07/14/06 Fax Due:
Sample ID	Client Sample ID	Collection Date Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
E0868-06A	SED-3	06/21/2006 10:20 06/23/2006	Soil	SW7471A	TAL	A6
E0868-07A	SW-4	06/21/2006 11:00 06/23/2006	Aqueous	SW6010B_W	TAL	□ ■ M5
11 - 1 11 III III III III III III III II				SW7470A	TAL	□ □ M5
E0868-08A	SED-4	06/21/2006 11:00 06/23/2006	Soil	PMoist		□ □ A6
				SW6010B_S	TAL	□ V A6
				SW7471A	TAL	A6
E0868-09A	SW-5	06/21/2006 11:50 06/23/2006	Aqueous	SW6010B_W	TAL	□ ■ M5
				SW7470A	TAL	□ □ M5
E0868-10A	SED-5	06/21/2006 11:50 06/23/2006	Soil	PMoist		□ □ ¥6
				SW6010B_S	TAL	A6
				SW7471A	TAL	
E0868-11A	SW-6	06/21/2006 13:10 06/23/2006	Aqueous	SW6010B_W	TAL	□ ■ M5
Albert a second and				SW7470A	TAL	M5
Client Rep:	Client Rep: Agnes R Ng				Page	5 2 of 3

The Task Task State

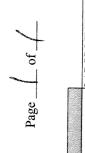

Mitken	Mitkem Corporation	2	//////////////////////////////////////	27/Jun/06 08:51	Worl	WorkOrder: E0868
Clien Pro Locat Comme	Client ID: EARTH_NJ Project: Multi Site Location: DZUS/LIBERTY Comments: N/A		Case: SDG: PO:	ase: DG: PO: 152033/152108	Rej	Report Level: ASP-B EDD: CLF HC Due: 07/14/06 Fax Due:
Sample ID	Client Sample ID	Collection Date Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
E0868-12A	SED-6	06/21/2006 13:10 06/23/2006	Soil	PMoist		A C V
and the second				SW6010B_S	TAL	□ ■ A6
				SW7471A	TAL	□ □ A6
E0868-13A	DUP (SW-3)	06/21/2006 10:20 06/23/2006	Aqueous	SW6010B_W	TAL	M5
				SW7470A	TAL	MS
E0868-14A	LMW-18	06/22/2006 12:40 06/23/2006	Aqueous	SW6010B_W	TAL	MS
AND A DESCRIPTION OF A				SW7470A	TAL	M5
E0868-15A	LMW-19	06/22/2006 13:40 06/23/2006	Aqueous	SW6010B_W	TAL	
 A (1) II. The state of the stat			 Provide a second and se Second and second and se Second and second and seco	SW7470A	TAL	M5

Client Rep: Agnes R Ng

Page 3 of 3

Sample Transmittal Documentation

Page of		LAB PROJECT #:	EORB	AROUN					COMMENTS															
RECORD	8	PHONE	FAX				KEQUESTED ANALYSES														ADDITIONAL DEMADYS.	TOTAL NEWARAS		
CHAIN-OF-CUSTODY RECORD	UL AJIUANI	COMPANY SAME		ADDRESS	CITY/ST/ZIP			AL AL						×			×				DATE/TIME	10		YELLOW- REPORT CODV
		PHONE 775 338 680 COM	FAX 773 358 1052 NAME			CLIENT P.O.#:			DE COMIX TABID OTHE		5 6				්ත්	Ĩ	8	S	0	= 2	ACCEPTED BY	the the		
 175 Metro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com 	REPORT TO	HH	FA	br	しい	LIENT PR		<u>।</u> 8	COMPO GRA WATE SOII	X				X		X		X			DATE/TIME	(c/zz/4)	/	WHITE: LABORATORY COPY
	REPO	H TECH	KARETH	BROADACRES	METEUD	יזבייביו	So	DATE/TIME	SAMPLED	6/21/04/090S	1 10915	10935	0950	020	11020	11100	1100	1150	00121	V 13/0	RELINQUISHED BY	Serae		
M I T K E M Corporation		λų	PAUL.	300	CITY/ST/ZIP $BL\alpha$	CLIENT PROJECT NAME:		SAMPLE	IDENTIFICATION	Sw-1	SED-	Sw-2	565-2	S-23	262-3	<u>50-4</u>	1-1-1-1	SEVES	Siv-6	9-9-	TSF# RELINQU	Lever		


CHAIN-OF-CUSTODY RECORD

Warwick, Rhode Island 02886-1755

MITKEM

175 Metro Center Boulevard

a na analan ang mangang mangang na ang ang mangang na na ang mangang na ang mangang na ang mga na ang ang mga n	RECORD	10	PHONE	FAX			REQUESTED ANALYSES						
n waaraa waxaa maha waxaa mahaa waxaa w	CHAIN-OF-CUSTODY RECORD	INVOICE TO	SAME		ADDRESS	CITY/ST/ZIP			DF CONTAINERS				
ann a chuire an	Ŋ		PHONE973 338 600 COMPANY	FAX 973 338/052 NAME	7		CLIENT PO.#;		LAB ID	14	14 10		
na la cheanna an an an			NEQ-	975		M			ЯЗНТО				
and the state of the state of the	rd -1755 3499 m		[OHd	FAX	ふい	02003	F #:		NOS				
	Boulevard nd 02886-1 (401) 732-3 uitkem.com				DRENE	0	COJECT		MATER	X	X		
	nter Bc sland (ax (40 @mitk						CLIENT PROJECT #:		GKAB				
	tro Cer hode I 400 • F iitkem	REPORT TO			N.	ろろ	CLII		COMPOSITE				
	175 Metro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com	REP	EARTH TECH	FAUL RARETH	300 BROAD ALRES	BLOOMFIEWS	ETE 12"		DATE/TIME SAMPLED	6/24/0/1240	6/22/04/ 134C	_	
	M I T K E M Corporation		λų	June		CUTY/ST/ZIP BLOC	MULTE SETE "	and the second s	SAMPLE IDENTIFICATION	81-MM7	CMW-19		

PAIN VARATU	11000 as 238 6000 11000	シュート		PHONE	LAB FRUJEUI #:
	_		2		
	FAX 973 338/052 NAME			FAX	E0868
AUDITESS 300 BROAD ACRES DRIVE	シート	ADDRESS			TURNAROUND TIME:
CITY/ST/ZIP BLOOMFIEW NJ 0701	07003	CITY/ST/ZIP			
	T #: CLIENT PO.#:		REQUESTEL	REQUESTED ANALYSES	
WATER GRAB COMPOSITE SAMPLE SAMPLED SAMPLED SAMPLED SAMPLED	Г тур олнек soiг	DF CONTAINERS			COMMENTS
X 0+1240 X	Later Ld				
LMW -19 6/22/01 1340 X	4				
		•			
RELINQUISHED BY DATE/TIME	ACCEPTED BV				
in Seine Warder	Kertine		COSTA 915 ADDITIONA	ADDITIONAL REMARKS:	COOLER TEMP:
1					2
/			/		
WHITE: LABORATORY CODV	NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF	VELLOW, DEDODE CONV.			

MITKEM CORPORATION

Sample Condition Form

Page _(_ of __

Dient Project: Mulh Sif		Lab San		Client:	tart	th Jec	EM Worko		Soil Headspa
) Cooler Sealed Yes / N	lo	Lab San			-				TOOLITEAUSD
) Cooler Sealed Yes / N	10	Lau Sal	ania ID		Preser	vation (p	The second se	VOA	or Air Bubb
		60868	1	HNO ₃	H ₂ SO ₄	HCI	NaOH	Matrix	<u>≥ 1/4"</u>
		2000	61	42					
			02			ļ			
) Custody Seal(s)	Present / Absent		03	62		ļ			
	Coolers / Bottles		<u>CU</u>	_					
	Intact / Broken		65	42					
	5 1 <i> ()</i>		00						
Custody Seal Number(s)	N/4		07	42					
			08						
			09	22					
			10						
_	-		()	<2					
Chain-of-Custody	Present / Absent		12						
			13	22					
Cooler Temperature	(°C	J	14	< 2					
Coolant Condition	ike	E0868	15	42					
-									
Airbill(s)	Present / Absent								
	FedEx								
-	3567 80268866								
-								$ \rightarrow $	
-									
-							6		
Sample Bottles		1999 - Langel - Lange				(h3)			
Sample Dottles	ntact/Broken/Leaking				$ \rightarrow $	2			
Data Dessived	duala -				Q/				
Date Received -	6/23/06			Ľ					
-	5:15				-				
Fime Received	5:(5				ľ	VOA M	atrix Key	:	
	Ļ						preserved		A = Air
servative Name/Lot No:							preserved		I = HCI
						M = MeO			= Encore
						l = NaH			= Freeze
				**************************************	Ľ		- 4		
Soo Somala Ora !!!		t.	L.	I					
See Sample Conditio	on Notification/Correctiv	e Action For	m yes	s / no			yes/ no		

Agnes Ng

From:"Seise, Kevin" <kevin.seise@earthtech.com>To:<ang@mitkem.com>Sent:Monday, June 26, 2006 15:30Subject:FW: Dsuz samples

Agnes,

The MS, MSD, and Dup sample were all collected from SW-3. Sorry for the confusion.

Kevin Seise

Earth Tech Inc. 300 Broadacres Drive Bloomfield, NJ 07003 **Phone** 973-338-6680 ext 256 **Direct** 973-337-4256 kevin.seise@earthtech.com **Fax** 973-338-1052 **Cell** 201-923-7155

From: Kareth, Paul Sent: Monday, June 26, 2006 8:48 AM To: Seise, Kevin Subject: FW: Dsuz samples

From: Agnes Ng [mailto:ang@mitkem.com] Sent: Friday, June 23, 2006 3:08 PM To: Kareth, Paul Subject: Dsuz samples

Hi Paul,

We received some samples today. I can't tell which sample the MS and MSD is associated with.

Thanks, Agnes Ng CLP Project Manager (Ph) 401-732-3400 (Fax) 401-732-3499

This message is intended only for the use of the individual to whom it is addressed and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, or the employee responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone at 401-732-3400

MITKEM Corporation

* Metals *

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab	Name:	Mitkem Corpora	ation	Contract: 1520	33/1521	
Lab	Code:	MITKEM	Case No.	SAS No.:	SDG No.:	ME0868
SOW	No.:	SW846				
		EPA Sample <u>DUP (SW-3)</u> <u>LMW-18</u> <u>LMW-19</u> <u>SED-1</u> <u>SED-2</u> <u>SED-2D</u> <u>SED-2D</u> <u>SED-2S</u> <u>SED-3</u> <u>SED-4</u> <u>SED-4</u> <u>SED-5</u> <u>SED-6</u> <u>SW-1</u> <u>SW-2</u> <u>SW-3</u> <u>SW-3D</u> <u>SW-3S</u> <u>SW-4</u> <u>SW-5}</u> <u>SW-6</u>		Lab Sample E0868-13 E0868-14 E0868-15 E0868-02 E0868-04 E0868-04 E0868-04 E0868-04 E0868-06 E0868-06 E0868-08 E0868-10 E0868-10 E0868-03 E0868-03 E0868-05 E0868-05 E0868-05 E0868-05 E0868-07 E0868-09 E0868-11		
			rections applie	1?	Yes/No	YES
Were	If yes	-were raw data	ctions applied? generated befor cound correctior	e 	Yes/No	YES
Comme		action of backyr	Lound Correction	15 ?	Yes/No	NO
I cer	tify th	hat this data p	backage is in co	mpliance with the t	Arms and con	
the c packa autho the f	onditic ge and rized k ollowir	in the compute by the Laborato g signature	pove. Release er-readable data pry Manager or t	of the data contain submitted on diske he Manager's design	other than ed in this h tte has been ee, as verif	ardcopy data ied by
Signa	ture:	Kondine	bedue	Name: KAR	20LUNA	BADURA
Date:		7/13/0	Bodue	Title:		,
			COVER PA			SW846

<u>SW846</u>

the test of the

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

			DUP (SW-3)
Lab Name: <u>Mitkem Cor</u>	poration	Contract: <u>152033/1</u>	
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	WATER	Lab Sample ID:	<u>E0868-13</u>
Level (low/med):	MED	Date Received:	06/23/06
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	40.2	В		P
7440-36-0	Antimony	2.2			P
7440-38-2	Arsenic	1.6			P
7440-39-3	Barium	6.1	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	1.6			P
7440-70-2	Calcium	14600			P
7440-47-3	Chromium	0.51			P
7440-48-4	Cobalt	0.40	В		P
7440-50-8	Copper	6.3	U		Р
7439-89-6	Iron	667			P
7439-92-1	Lead	0.50	В		Р
7439-95-4	Magnesium	3470			Р
7439-96-5	Manganese	766			Р
7440-02-0	Nickel	0.59	U		Р
7440-09-7	Potassium	1960			Р
7782-49-2	Selenium	0.98	U		P
7440-22-4	Silver	1.1	В		P
7440-23-5	Sodium	18100			P
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	0.47	U		P
7440-66-6	Zinc	16.4	В		Р
7439-97-6	Mercury	0.065	υ		CV
	-				

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Cor	poration	Contract: 152033/15	SED-1
Lab Code: MITKEM	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	SOIL	Lab Sample ID: 1	E0868-02
Level (low/med):	MED	Date Received:	06/23/06
% Solids:	33.0		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5020			P
7440-36-0	Antimony	0.70	В		P
7440-38-2	Arsenic	7.9			P
7440-39-3	Barium	81.2			P
7440-41-7	Beryllium	0.50	В		P
7440-43-9	Cadmium	47.8			P
7440-70-2	Calcium	2540			P
7440-47-3	Chromium	20.7			P
7440-48-4	Cobalt	7.6			P
7440-50-8	Copper	38.6			P
7439-89-6	Iron	10300			P
7439-92-1	Lead	170			P
7439-95-4	Magnesium	1300			P
7439-96-5	Manganese	1290			P
7440-02-0	Nickel	11.4			P
7440-09-7	Potassium	514			P
7782-49-2	Selenium	1.6	В		P
7440-22-4	Silver	0.033	U	····	P
7440-23-5	Sodium	117			P
7440-28-0	Thallium	5.8			P
7440-62-2	Vanadium	29.4			P
7440-66-6	Zinc	215			P
7439-97-6	Mercury	0.21			CV

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Cor	poration	Contract: <u>152033/15</u>	SED-2
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	SOIL	Lab Sample ID: <u>E</u>	0868-04
Level (low/med):	MED	Date Received: <u>0</u>	6/23/06
% Solids:	28.0		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	15500			P
7440-36-0	Antimony	0.92	В		P
7440-38-2	Arsenic	19.7			P
7440-39-3	Barium	89.8			P
7440-41-7	Beryllium	1.2			P
7440-43-9	Cadmium	133			P
7440-70-2	Calcium	2860			P
7440-47-3	Chromium	33.7			P
7440-48-4	Cobalt	12.1			P
7440-50-8	Copper	210			P
7439-89-6	Iron	20300			P
7439-92-1	Lead	315			P
7439-95-4	Magnesium	1510			P
7439-96-5	Manganese	153			P
7440-02-0	Nickel	17.6			P
7440-09-7	Potassium	555			P
7782-49-2	Selenium	2.2	B		P
7440-22-4	Silver	0.33	В		P
7440-23-5	Sodium	143			P
7440-28-0	Thallium	0.39	В		P
7440-62-2	Vanadium	55.9			P
7440-66-6	Zinc	402			P
7439-97-6	Mercury	0.45			CV

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: <u>Mitkem Cor</u>	poration	Contract: <u>152033/1</u>	5SED-3
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	SOIL	Lab Sample ID:	E0868-06
Level (low/med):	MED	Date Received:	06/23/06
<pre>% Solids:</pre>	83.0		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	690			P
7440-36-0	Antimony	0.036	U		P
7440-38-2	Arsenic	0.31	В		P
7440-39-3	Barium	6.7	1		P
7440-41-7	Beryllium	0.047	В		P
7440-43-9	Cadmium	1.5			P
7440-70-2	Calcium	104			P
7440-47-3	Chromium	1.5			P
7440-48-4	Cobalt	0.66	here was a second		P
7440-50-8	Copper	2.7			P
7439-89-6	Iron	920	1		P
7439-92-1	Lead	9.2			P
7439-95-4	Magnesium	121			P
7439-96-5	Manganese	89.8			P
7440-02-0	Nickel	1.6	В		- P
7440-09-7	Potassium	115			P
7782-49-2	Selenium	0.20	В		P
7440-22-4	Silver	0.012	U		P
7440-23-5	Sodium	13.7	B		P
7440-28-0	Thallium	0.33	В		P
7440-62-2	Vanadium	1.8			P
7440-66-6	Zinc	10.0			 P
7439-97-6	Mercury	0.016	В		CV

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: <u>Mitkem Cor</u>	poration	Contract: <u>152033/1</u>	SED-4
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	SOIL	Lab Sample ID:	E0868-08
Level (low/med):	MED	Date Received:	06/23/06
% Solids:	66.0		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2730			P
7440-36-0	Antimony	0.22			P
7440-38-2	Arsenic	3.4			P
7440-39-3	Barium	41.5			P
7440-41-7	Beryllium	0.20			P
7440-43-9	Cadmium	32.3			P
7440-70-2	Calcium	588			P
7440-47-3	Chromium	8.6			P
7440-48-4	Cobalt	4.9			P
7440-50-8	Copper	21.6			P
7439-89-6	Iron	4450			P
7439-92-1	Lead	71.2			P
7439-95-4	Magnesium	352			P
7439-96-5	Manganese	837			P
7440-02-0	Nickel	6.0			P
7440-09-7	Potassium	145		· · · · · · · · · · · · · · · · · · ·	P
7782-49-2	Selenium	0.76	В		P
7440-22-4	Silver	0.020	U		P
7440-23-5	Sodium	35.4	в		P
7440-28-0	Thallium	3.7			P
7440-62-2	Vanadium	9.2			P
7440-66-6	Zinc	122			P
7439-97-6	Mercury	0.096			CV

Comments:

1046 - 4146 - 1146 - 11

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Cor	poration	Contract: <u>152033/15</u>	SED-5
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	SOIL	Lab Sample ID: <u>E</u>	20868-10
Level (low/med):	MED	Date Received: <u>(</u>	06/23/06
<pre>% Solids:</pre>	83.0		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	1060			P
7440-36-0	Antimony	0.074	В		P
7440-38-2	Arsenic	0.60	В		P
7440-39-3	Barium	12.1			Р
7440-41-7	Beryllium	0.083	В		P
7440-43-9	Cadmium	0.43			P
7440-70-2	Calcium	228			P
7440-47-3	Chromium	3.8			P
7440-48-4	Cobalt	1.2	В		P
7440-50-8	Copper	4.7	÷		P
7439-89-6	Iron	3400			P
7439-92-1	Lead	7.9			P
7439-95-4	Magnesium	604			P
7439-96-5	Manganese	174	ĺ		P
7440-02-0	Nickel	1.6			P
7440-09-7	Potassium	135			P
7782-49-2	Selenium	0.28	В		P
7440-22-4	Silver	0.012	U		P
7440-23-5	Sodium	18.3	В		P
7440-28-0	Thallium	0.56	В		P
7440-62-2	Vanadium	5.6			P
7440-66-6	Zinc	13.2			P
7439-97-6	Mercury	0.016	в		CV

Comments:

SW846

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

			يقد استقار		
Lab Name: Mitkem Co.	rporation	Contract:	152033/15		D-6
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:		SDG No.:	ME0868
Matrix (soil/water):	SOIL	Lab Sam	ple ID:	E0868-12	
Level (low/med):	MED	Date Re	ceived:	06/23/06	
% Solids:	83.0				

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	1030			P
7440-36-0	Antimony	0.076			P
7440-38-2	Arsenic	0.97			P
7440-39-3	Barium	7.4			P
7440-41-7	Beryllium	0.094	l		P
7440-43-9	Cadmium	0.23			P
7440-70-2	Calcium	4760			P
7440-47-3	Chromium	2.4			P
7440-48-4	Cobalt	1.8			P
7440-50-8	Copper	28.3			P
7439-89-6	Iron	3290			P
7439-92-1	Lead	7.9			P
7439-95-4	Magnesium	2930			P
7439-96-5	Manganese	102			P
7440-02-0	Nickel	1.8			P
7440-09-7	Potassium	118			Р
7782-49-2	Selenium	0.047	U		P
7440-22-4	Silver	0.013	U		Р
7440-23-5	Sodium		В		Р
7440-28-0	Thallium	0.25	В		P
7440-62-2	Vanadium	9.9			P
7440-66-6	Zinc	17.2			P
7439-97-6	Mercury	0.036	В		CV

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Cor	poration	Contract: <u>152033/15</u>	SW-1
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	WATER	Lab Sample ID: E	20868-01
Level (low/med):	MED	Date Received: <u>C</u>	06/23/06
<pre>% Solids:</pre>	0.0		

Concentration Units (ug/L or mg/kg dry weight): $\underline{
m UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	31.9	В		P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	13.2	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	1.1	В		P
7440-70-2	Calcium	15100			P
7440-47-3	Chromium	0.60	 		P
7440-48-4	Cobalt	0.94	В		P
7440-50-8	Copper	8.9	В		P
7439-89-6	Iron	691			P
7439-92-1	Lead	0.46	U		P
7439-95-4	Magnesium	3500			P
7439-96-5	Manganese	1050			P
7440-02-0	Nickel	1.3	В		P
7440-09-7	Potassium	2000			Р
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	1.8	В		P
7440-23-5	Sodium	18500			P
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	0.78	В		P
7440-66-6	Zinc	22.4	B		P
7439-97-6	Mercury	0.065	U		CV
					<u>.</u>

Comments:

1

EPA SAMPLE NO

		INC	ORGANIC ANALYSIS DATA SHEET		LIA SAI	MPLE NO
Lab Name: <u>Mi</u>	itkem Corp		Contract: <u>152033/</u>	15	SW	-2
Lab Code: MI	ITKEM	Case No.	SAS No.:		SDG No.:	ME0868
Matrix (soil,	/water):	WATER	Lab Sample ID:	<u>E0</u>	868-03	
Level (low/me	ed):	MED	Date Received:	06	/23/06	
% Solids:		0.0				

Concentration Units (ug/L or mg/kg dry weight): $\underline{\rm UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	16.8	В		P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	1.6	U		·P
7440-39-3	Barium	12.2	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	1.0	В		P
7440-70-2	Calcium	14900	1		P
7440-47-3	Chromium	0.52	В		P
7440-48-4	Cobalt	0.92	В		P
7440-50-8	Copper	6.3	U		P
7439-89-6	Iron	649		- 19	P
7439-92-1	Lead	0.46			P
7439-95-4	Magnesium	3490			P
7439-96-5	Manganese	1010			P
7440-02-0	Nickel	1.1	В		P
7440-09-7	Potassium	1990			P
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	1.6	В		P
7440-23-5	Sodium	18100			P
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	0.47	U		P
7440-66-6	Zinc	15.6			P
7439-97-6	Mercury	0.065	U		CV

Comments:

<u>SW846</u>

1

EPA SAMPLE NO

			INORGANIC	ANALYSIS	DATA	SHEI	ET	-
Lab 1	Name:	Mitkem Corporation		Cc	ntrac	et:	152033/15	

SW-3

Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	WATER	Lab Sample ID:	E0868-05
Level (low/med):	MED	Date Received:	06/23/06
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): $\underline{UG/L}$

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	69.5	B		P
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	7.9	В		P
7440-41-7	Beryllium	0.15			P
7440-43-9	Cadmium	1.9	В		P
7440-70-2	Calcium	15200			P
7440-47-3	Chromium	0.58	В		P
7440-48-4	Cobalt	0.72	В		P
7440-50-8	Copper	6.3	U		P
7439-89-6	Iron	788			P
7439-92-1	Lead	0.92	В		P
7439-95-4	Magnesium	3540			P
7439-96-5	Manganese	882			P
7440-02-0	Nickel	0.96	В		P
7440-09-7	Potassium	2000			P
7782-49-2	Selenium	0.98	U		P
7440-22-4	Silver	1.3	B		P
7440-23-5	Sodium	18300			P
7440-28-0	Thallium	1.2	υ		P
7440-62-2	Vanadium	0.70	В		P
7440-66-6	Zinc	21.5	В		P
7439-97-6	Mercury	0.065	U		CV

Comments:

<u>SW846</u>

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

Lab Name: Mitkem Cor	poration	Contract: <u>152033/1</u>	SW-4
Lab Code: <u>MITKEM</u>	Case No.	SAS No.:	SDG No.: ME0868
Matrix (soil/water):	WATER	Lab Sample ID:	E0868-07
Level (low/med):	MED	Date Received:	06/23/06
<pre>% Solids:</pre>	0.0		

Concentration Units (ug/L or mg/kg dry weight): $\underline{
m UG/L}$

	1	1	·	T	······
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	14	U		Р
7440-36-0	Antimony	1.2	U		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	5.7	В		Р
7440-41-7	Beryllium	0.15	U		Р
7440-43-9	Cadmium	0.89	В		Р
7440-70-2	Calcium	14600			Р
7440-47-3	Chromium	0.38	U		Р
7440-48-4	Cobalt	0.37	В		Р
7440-50-8	Copper	11.7	В		Р
7439-89-6	Iron	610			Р
7439-92-1	Lead	0.46	U		P
7439-95-4	Magnesium	3510			Р
7439-96-5	Manganese	786			Р
7440-02-0	Nickel	0.60	В		P
7440-09-7	Potassium	1950			Р
7782-49-2	Selenium	0.98	U		P
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	18100			P
7440-28-0	Thallium	1.2	U		Р
7440-62-2	Vanadium	0.47	U		P
7440-66-6	Zinc	20.2	B		P
7439-97-6	Mercury	0.065	U		CV
			T		

INORGANIC ANALYSIS DATA SHEET Lab Name: Mitkem Corporation Contract: <u>152033/15</u> Lab Code: <u>MITKEM</u> Case No. SAS No.: SDG No.: ME0868 Lab Sample ID: E0868-09 Matrix (soil/water): WATER Date Received: 06/23/06 Level (low/med): MED 0.0 % Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Analyte Concentration C Q 7429-90-5 Aluminum 15.3 B 7440-36-0 Antimony 1.5 B 7440-38-2 Arsenic 1.6 U 7440-39-3 Barium 36.9 B 7440-41-7 Beryllium 0.15 U 7440-43-9 Cadmium 5.7 1 7440-70-2 Calcium 14400 1 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632 1	М
7440-36-0 Antimony 1.5 B 7440-38-2 Arsenic 1.6 U 7440-39-3 Barium 36.9 B 7440-41-7 Beryllium 0.15 U 7440-43-9 Cadmium 5.7 1.6 7440-70-2 Calcium 14400 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632 1	1.1
7440-36-0 Antimony 1.5 B 7440-38-2 Arsenic 1.6 U 7440-39-3 Barium 36.9 B 7440-41-7 Beryllium 0.15 U 7440-43-9 Cadmium 5.7 1.6 7440-70-2 Calcium 14400 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632 1	
7440-38-2 Arsenic 1.6 U 7440-39-3 Barium 36.9 B 7440-41-7 Beryllium 0.15 U 7440-43-9 Cadmium 5.7 1 7440-70-2 Calcium 14400 14400 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632 1	Р
7440-39-3 Barium 36.9 B 7440-41-7 Beryllium 0.15 U 7440-43-9 Cadmium 5.7 7440-70-2 Calcium 14400 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632	Р
7440-41-7 Beryllium 0.15 U 7440-43-9 Cadmium 5.7 7440-70-2 Calcium 14400 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632	Р
7440-43-9 Cadmium 5.7 7440-70-2 Calcium 14400 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632	Р
7440-70-2 Calcium 14400 7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632	Р
7440-47-3 Chromium 0.38 U 7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632 Iron	Р
7440-48-4 Cobalt 0.82 B 7440-50-8 Copper 6.3 U 7439-89-6 Iron 632	Р
7440-50-8 Copper 6.3 U 7439-89-6 Iron 632	Р
7439-89-6 Iron 632	Р
	Р
	Р
7439-92-1 Lead 0.46 U	Р
7439-95-4 Magnesium 3550	Р
7439-96-5 Manganese 1420	Р
7440-02-0 Nickel 0.98 B	Р
7440-09-7 Potassium 2080	Р
7782-49-2 Selenium 0.98 U	P
7440-22-4 Silver 0.91 U	Р
7440-23-5 Sodium 21100	Р
7440-28-0 Thallium 1.2 U	P
7440-62-2 Vanadium 0.47 U	Р
7440-66-6 Zinc 22.0 B	Р
7439-97-6 Mercury 0.065 U	CV

INORGANIC ANALYSIS DATA SHEET SW-6 Contract: <u>152033/15</u> Lab Name: Mitkem Corporation Lab Code: MITKEM Case No. SAS No.: SDG No.: ME0868 Matrix (soil/water): <u>WATER</u> Lab Sample ID: E0868-11 Date Received: 06/23/06 Level (low/med): MED 0.0 % Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	΄ Q	М
7429-90-5	Aluminum	40.5	В		Р
7440-36-0	Antimony	1.2	U		Р
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	35.5	В		Р
7440-41-7	Beryllium	0.15	U		Ρ
7440-43-9	Cadmium	0.55	В		Р
7440-70-2	Calcium	26700			Р
7440-47-3	Chromium	0.99	В		Р
7440-48-4	Cobalt	3.1	В		Р
7440-50-8	Copper	6.3	U		Р
7439-89-6	Iron	5400			Р
7439-92-1	Lead	0.46	U		Р
7439-95-4	Magnesium	5130			P
7439-96-5	Manganese	2610			Р
7440-02-0	Nickel	1.4	В		Р
7440-09-7	Potassium	2230			Р
7782-49-2	Selenium	0.98	U		Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	29200			Р
7440-28-0	Thallium	1.2	U		Р
7440-62-2	Vanadium	1.1	В		Р
7440-66-6	Zinc	35.6	В		Р
7439-97-6	Mercury	0.065	U		CV

Comments:

SW846

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302 Phone: 920.469.2436 Fax: 920.469.8827

September 14, 2006

Paul Kareth Earth Tech Inc. 300 Broadacres Drive Bloomfield, NJ 07003

Dear Mr. Kareth:

Enclosed is a data package of results for the metals analysis of fish samples and associated QC samples for the Dzus Fastener, Town of West Islip project. The samples have been stored frozen since receipt. These fish were assigned to batch number 874144 for laboratory tracking purposes.

The samples were homogenized by blending with liquid nitrogen. A portion of each sample was then analyzed for cadmium following EPA method 6020. The results are reported on an as-is basis.

An electronic copy of the results was sent to you previously via e-mail. If you have any questions regarding this data please call me at (608) 232-3300 ext. 302.

Sincerely,

Tod Noltemeyer Project Manager

Metals Result Summary Cover Sheet

Client:EARTH TECH INCProject:SUTFOLKSDG:874144

SDG Narrative

NameEARTH TECH INCClient Project NameSUTFOLKClient Project#TOWN OF ISLIPProject CoordinatorTod NoltemeyerSDG874144LabSectionMETALS-K

Lab Number	SampleID	Collect Date	Received	Matrix
874144-001	NORTH 1	07/18/06	07/19/06	ΒΙΟΤΑ
874144-002	NORTH 2	07/18/06	07/19/06	ΒΙΟΤΑ
874144-003	NORTH 3	07/18/06	07/19/06	BIOTA
874144-004	NORTH 4	07/18/06	07/19/06	ΒΙΟΤΑ
874144-005	NORTH 5	07/18/06	07/19/06	BIOTA
874144-006	NORTH 6	07/18/06	07/19/06	ΒΙΟΤΑ
874144-007	NORTH 7	07/18/06	07/19/06	ΒΙΟΤΑ
874144-008	NORTH 8	07/18/06	07/19/06	ΒΙΟΤΑ
874144-009	SOUTH 1	07/18/06	07/19/06	ΒΙΟΤΑ
874144-010	SOUTH 2	07/18/06	07/19/06	ΒΙΟΤΑ
874144-011	SOUTH 3	07/18/06	07/19/06	ΒΙΟΤΑ
874144-012	SOUTH 4	07/18/06	07/19/06	BIOTA

ace Analvtical

CASE NARRATIVE - METALS ANALYSIS

Lab Report Number (SDG): 874144 Client: EARTH TECH INC Project Name: SUFFOLK Project Number: TOWN OF ISLIP

1. RECEIPT

The samples were received at 2°C.

2. HOLDING TIMES

- A. Sample Preparation: All recommended holding times were met.
- B. Sample Analysis: All recommended holding times were met.

3. METHOD

- A. Preparation: SW846 M3050B
- B. Analysis: SW846 6020

4. PREPARATION

Sample preparation proceeded normally.

5. ANALYSIS

- A. Calibration:
 - 1. Initial verification: All method acceptance criteria were met.
 - 2. Continuing verification: All method acceptance criteria were met.
- B. Blanks:
 - 1. Initial calibration: All in-house acceptance criteria were met.
 - 2. Continuing calibration: All in-house acceptance criteria were met.
 - 3. Method: All method and in-house acceptance criteria were met.
 - 4. **Catfish:** A Catfish Blank is prepared and analyzed with each sample batch to determine the background contamination levels of the Catfish used for the laboratory control spike (LCS).
- C. Spikes:
 - 1. Lab Control Spike (LCS): All in-house accuracy criteria were met for the LCS.
 - 2. SRM: A Standard Reference Material is analyzed with each tissue sample batch. The default accuracy criterion is 80%-120% for ICP-MS metals and 75%-125% for CVAA Mercury.
 - 3. Matrix Spike / Duplicate (MS/MSD): Sample NORTH 1 was designated MS/MSD for this SDG. All in-house accuracy and precision criteria were met.
- **D.** Sample Duplicates: None required for this SDG.
- E. ICP-MS Internal Standards: All in-house acceptance criteria were met for the internal standards used for quantification.
- F. ICP-MS Interference Check Samples: All method acceptance criteria were met.
- G. ICP-MS Post Spike: All method acceptance criteria were met.
- H. ICP-MS Serial Dilution: Sample NORTH 2 was the parent sample for the ICP-MS serial dilution. All method acceptance criteria were met.
- I. Samples: Sample analyses proceeded normally.
- J. Sample Dilutions: None required for this SDG.
- K. Reanalysis: Not applicable.
- L. Comments:

I certify that this data package is in compliance with the terms and conditions agreed to by **Pace Analytical Services**, **Inc.** and by the client, both technically and for completeness, except for the conditions detailed above. The Laboratory Manager or his designee, as verified by the following signature, has authorized release of the data contained in this hard copy data package and in the computer-readable data submitted on diskette:

Signed:	all Duranceau	Date:	08/31/06
Name:	Jill Duranceau	Position:	Quality Assurance Auditor

Qualifier Codes

		Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
в	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Е	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
K	Inorganic	Sample received unpreserved. Sample was either preserved at the time of receipt or at the time of sample preparation.
К	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
М	Organic	Sample pH was greater than 2
Ν	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Ρ	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
V	All	Sample received with headspace.
W	All	A second aliquot of sample was analyzed from a container with headspace.
Х	All	See Sample Narrative.
Z	Organics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
+	Inorganic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and the to correct the deficiency.
		and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to

Test Group Name	874144-001	874144-002	874144-003	874144-004	874144-005	874144-006	874144-007	874144-008	874144-009	874144-010	874144-011	874144-012
BIOTA PREP	к	К	к	к	к	к	к	к	к	К	к	Κ
CADMIUM	к	К	к	к	к	к	к	K	К	К	К	К

Code	Facility	Address	NJ Certification	
К	Kimberly Laboratory	1090 Kennedy Ave. Kimberly, WI 54136	Not Certified	

Appendix B. Sample Chain of Custody Form

CHAIN	OF	CUS	TO	DY
-------	----	-----	----	----

Å

14

874144

(Print Name)	TECH Bloghtield N (Print Address)	have collected the following
on <u>7/18</u> , 20 <u>0</u> (₆ from <u>1</u> (Date)	AKE CAPRI in 1	$\frac{LAKE'S \ NORTHERN }{HAIF}$
Town of WEST ISHP	Suttalk County.	
Item(s): FISL SAMPLES for	CADMIUN MARA	waly sis
·	-001 -002	-003 -004
I have assigned the identification number have recorded pertinent data on the atta sampling protocols provided to me prior FPO FV	er(s) <u>NoRTH 5</u> , NoRTH 6, A ached collection records. The san	NORTH 3, NORTH 4 -007 NORTH 8-008 <u>SORTH 7</u> , to these samples, and nples were handled according to
<u> </u>		es in the custody of
I,, of		
I,, of, of, sample(s) on the date specified for the purpo		
remained in my custody until subsequently tr Signed <u>CS_OWAWAM</u> FRUEX	ransferred, prepared or shipped a	t times and dates as attested to below.
SECOND RECIPIENT (Print Name)	TIME & DATE	
Crystal Schlefelbein	7/19/00 1045	PURPOSE OF TRANSFER
C'NSTAT SCHLETELBEIN SIGNATURE (-Schufelbein	7/19/00, 1045 AFFILIATION Pace	PURPOSE OF TRANSFER
	AFFILIATION	PURPOSE OF TRANSFER PURPOSE OF TRANSFER
Schufelben	AFFILIATION	
SIGNATURE SCHULDEN THIRD RECIPIENT (Prin Name)	AFFILIATION PACE TIME & DATE	
SIGNATURE SCHULDEN THIRD RECIPIENT (Prim Name) SIGNATURE	AFFILIATION PACE TIME & DATE AFFILIATION	PURPOSE OF TRANSFER
SIGNATURE SCHUELDEN THIRD RECIPIENT (Print Name) SIGNATURE FOURTH RECIPIENT (Print Name)	AFFILIATION PACE TIME & DATE AFFILIATION TIME & DATE	PURPOSE OF TRANSFER

NOTICE OF WARRANTY

By signature to the chain of custody (reverse), the signator warrants that the information provided is truthful and accurate to the best of his/her ability.

Appendix B. Sample Chain of Custody Form

CHAIN OF CUSTODY

874144

1. \underline{John} Rolling, of <u>EARTH TECH</u> <u>Bloomfield</u>, <u>NJ</u> have collected the following (Print Name) (Print Address) on $\underline{7/18}$ 20 <u>D6</u> from <u>LAKE</u> <u>CAPRT</u> in the vicinity of <u>LAKE'S</u> Southern Town of WEST ISLIP Suffolk County. SAMPLES for CADMIUM ANALYSIS Item(s): Fist -009 -000 -011 -012 South 1, South 2, South 3, + South 4 I have assigned the identification number(s) _______ to these samples, and have recorded pertinent data on the attached collection records. The samples were handled according to sampling protocols provided to me prior to collection. I placed the samples in the custody of FEO EOto these samples, and on 7118 _,2006. ١, sample(s) on the date specified for the purpose of ______ have received the above mentioned remained in my custody until subsequently transferred, prepared or shipped at times and dates as attested to below. Signed Date SECOND RECIPIENT (Print Name) TIME & DATE PURPOSE OF TRANSFER PARA 7/19/04 1045 SIGNATURE AFFILIATION THIRD RECIPIENT (Print Name) TIME & DATE PURPOSE OF TRANSFER 7/19/00 Ubein 1045 SIGNATION AFFILIATION VAIL FOURTH RECIPIENT (Fint Name) TIME & DATE PURPOSE OF TRANSFER SIGNATURE AFFILIATION RECEIVED IN LABORATORY BY (Print Name) TIME & DATE SIGNATURE AFFILIATION

NOTICE OF WARRANTY

By signature to the chain of custody (reverse), the signator warrants that the information provided is truthful and accurate to the best of his/her ability.

Sar	nple Conditio	n Upon Receipt
Pace Analytical Client Nam	ne: <u>Farth</u>	<u>Tech</u> Project # 874144
Courier: 📈 Fed Ex 🗌 UPS 🗌 USPS 🔲 Clier	nt 🗌 Commercial	Pace Other Ophional Action and Action a
Custody Seal on Cooler/Box Present: Xyes	no Seal	s intact: 🙀 yes 🔲 no 🛛 Protection at the second second
Packing Material: Bubble Wrap Bubble	Bags None	
Thermometer Used IRGIN	Type of Ice: We	
Cooler Temperature 2-0	Biological Tissue	
Temp should be above freezing to 6°C		Comments: <u>U 7/19/06</u>
Chain of Custody Present:		1. non-Pace
Chain of Custody Filled Out:	Reves INO INVA	2.
Chain of Custody Relinquished:		<u>3.</u>
Sampler Name & Signature on COC:		4.
Samples Arrived within Hold Time:	DETYES DNO DN/A	5.
Short Hold Time Analysis (<72hr):	DYes ANO DNA	6.
Rush Turn Around Time Requested:	□Yes XNo □N/A	
Sufficient Volume:	XYes DNO DN/A	8.
Correct Containers Used:		
-Pace Containers Used:	Yes No DN/A	
Containers Intact:		10.
Filtered volume received for Dissolved tests	DYes DNo BINA	11.
Sample Labels match COC:	AYYes INO IN/A	12.
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked.	B DYes DNO ADN/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation.		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	DYes DNo	Initial when completed
Samples checked for dechlorination:		14.
Headspace in VOA Vials (>6mm):		<u>15.</u>
Trip Blank Present:	DYes DNO ADINIA	<u>16.</u>
Trip Blank Custody Seals Present		
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
Person Contacted:	Date/	
Comments/ Resolution:		
Project Manager Review:	holteneys	Date: 7/19/06
Note: Whenever there is a discremancy affecting North Cr	I Imina comotioneo cor	noles a copy of this form will be sent to the North Carolina DEHNR

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical Services, Inc.	An	alytica	ıl Rep	ort N	1241 Bellevue Street Green Bay, WI 54302 920-469-2436					
Client : EARTH TECH INC Project Name : SUTFOLK Project Number : TOWN OF ISLIP Field ID : NORTH 1						Matrix Type : BIOTA Collection Date : 07/18/06 Report Date : 08/31/06 Lab Sample Number : 874144-001				
INORGANICS										
Test Res	ult	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Cadmium 80	В	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020	

Pace Analytical Services, Inc.	Analy	ical	Repo	ort Ni	umber: 87	4144	1241 Bellevue Street Green Bay, WI 54302 920-469-2436					
Client : EARTH TECH INC Project Name : SUTFOLK Project Number : TOWN OF ISLIP Field ID : NORTH 2						Ĺ	Matrix Type : BIOTA Collection Date : 07/18/06 Report Date : 08/31/06 Lab Sample Number : 874144-002					
INORGANICS Test Resu	ilt M	DL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method			
Cadmium 120	28		100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020			

Pace Analytical Services, Inc.	An	alytica	l Rep	ort N	umber: 87	1241 Bellevue Street Green Bay, WI 54302 920-469-2436			
Client: EARTH TECH INC							Mat	rix Type : BIOTA	A
Project Name : SUTFOLK							Collecti	on Date: 07/18/	06
Project Number : TOWN OF ISLIP							Rep	ort Date: 08/31/	06
Field ID: NORTH 3						L	ab Sample	Number : 87414	4-003
INORGANICS									
Test Res	ult	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Cadmium 39	E	3 28	100	1	ug/Kg Wet	¥	08/14/06	SW846 M3050	SW846 6020

Pace Analytic Services, Inc.		Ana	alytica	l Rep	ort N		1241 Bellevue Street Green Bay, WI 54302 920-469-2436						
Project Name : Project Number :						Matrix Type : BIOTA Collection Date : 07/18/06 Report Date : 08/31/06 Lab Sample Number : 874144-004							
INORGANICS Test	Resu	ult	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method			
Cadmium	76	В	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020			

Pace Analytical Services, Inc.	Analy	ical	Rep	ort N	umber: 87	1241 Bellevue Street Green Bay, WI 54302 920-469-2436					
Client : EARTH TECH INC Project Name : SUTFOLK Project Number : TOWN OF ISLIP Field ID : NORTH 5						L	Matrix Type: BIOTA Collection Date: 07/18/06 Report Date: 08/31/06 Lab Sample Number: 874144-005				
INORGANICS Test Res	ult M	DL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method		
Cadmium 120	28		100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020		

Pace Analytical Services, Inc.		Analytica	I Rep	ort N	umber: 87	1241 Bellevue Street Green Bay, WI 54302 920-469-2436				
Client : EARTH T Project Name : SUTFOLI								rix Type: BIOTA on Date: 07/18/		
Project Number: TOWN O Field ID: NORTH 6			Report Date: 08/31/06 Lab Sample Number: 874144-006							
INORGANICS										
Test	Result	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method	
Cadmium	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020		

Pace Analytical Services, Inc.	Analy	Analytical Report Number: 874144 1241 Bellevue S Green Bay, WI 5 920-469-2436									
Client : EARTH TECH INC Project Name : SUTFOLK Project Number : TOWN OF ISLIP Field ID : NORTH 7						Matrix Type: BIOTA Collection Date: 07/18/06 Report Date: 08/31/06 Lab Sample Number: 874144-007					
INORGANICS Test Resu	ılt N	IDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method		
Cadmium 160	28	8	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020		

Pace Analytical Services, Inc.		Analytical Report Number: 874144							evue Street y, WI 54302 2436
Client : EARTH	TECH INC						Mat	rix Type : BIOTA	l l
Project Name : SUTFO	LK						Collect	ion Date: 07/18/	06
Project Number : TOWN	OF ISLIP						Rep	ort Date: 08/31/	06
Field ID : NORTH						L	ab Sample.	Number: 87414	4-008
INORGANICS									
Test	Result	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Cadmium	140	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020

Pace Analytical Services, Inc.		Ana	lytica	I Rep	ort N	umber: 87	4144			evue Street y, WI 54302 2436
Client : EARTH TECH IN	IC							Mat	rix Type : BIOTA	ι.
Project Name : SUTFOLK								Collecti	on Date: 07/18/	06
Project Number : TOWN OF ISLIP	1							Rep	ort Date: 08/31/	06
Field ID : SOUTH 1							L	ab Sample	Number : 87414	4-009
INORGANICS										
Test	Result		MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Cadmium	28	U	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020

Pace Analytical Services, Inc.	Ana	alytica	l Rep	ort N	umber: 87	4144			evue Street y, WI 54302 2436
Client: EARTH TECH INC Project Name: SUTFOLK Project Number: TOWN OF ISLIP Field ID: SOUTH 2						L	Collecti Rep	rix Type: BIOTA on Date: 07/18/ ort Date: 08/31/ Number: 87414	06 06
INORGANICS Test Resu	1+	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Cadmium 28	U	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	

Pace Analytical Services, Inc.		Analytical Report Number: 874144			1241 Bellevue Street Green Bay, WI 54302 920-469-2436				
Client : EARTH TEC Project Name : SUTFOLK Project Number : TOWN OF IS Field ID : SOUTH 3						L	Collecti Rep	rix Type: BIOTA ion Date: 07/18/ ort Date: 08/31/ Number: 87414	06 06
INORGANICS Test	Result	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Cadmium	190	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020

Pace Analytical Services, Inc.		Analytical Report Number: 874144				evue Street y, WI 54302 2436			
Client : EARTH TECH I Project Name : SUTFOLK Project Number : TOWN OF ISLI Field ID : SOUTH 4						L	Collecti Rep	rix Type : BIOTA on Date : 07/18/ ort Date : 08/31/ Number : 87414	06 06
INORGANICS Test	Result	MDL	EQL	Dil.	Units	Code	Anl Date	Prep Method	Ani Method
Cadmium	270	28	100	1	ug/Kg Wet		08/14/06	SW846 M3050	SW846 6020

APPENDIX C

COLLECTED FISH SAMPLES

Appendix C - Collected Fish Samples

South 1							
Common Name	Scientific Name	Length (cm)	Weight (g)				
largemouth bass	Microptera salmoides	37.75	700				
Fish caught by gill	net.						

South 2								
Common Name	Scientific Name	Length (cm)	Weight (g)					
largemouth bass	Microptera salmoides	26	240					
Fish caught by gill	net							

	South 3						
Common Name	Scientific Name	Length (cm)	Weight (g)				
bluegill	Lepomis macrochirus	8.8	12				
bluegill	Lepomis macrochirus	7.6	8				
bluegill	Lepomis macrochirus	6.3	4				
	Total	22.7	24				
Fish caught by trap							

South 4								
Common Name	Scientific Name	Length (cm)	Weight (g)					
largemouth bass	Microptera salmoides	5.7	2					
largemouth bass	Microptera salmoides	6.8	4					
	Total	12.5	6					
Fish caught by trap)							

North 1								
Common Name	Scientific Name	Length (cm)	Weight (g)					
Pumkinseed	Lepomis gibbosus	16.5	110					
Fish caught by trap)							

North 2							
Common Name	Scientific Name	Length (cm)	Weight (g)				
Pumkinseed	Lepomis gibbosus	10.5	24				
Fish caught by trap)						

North 3								
Common Name	Scientific Name	Length (cm)	Weight (g)					
Bluegill	Lepomis macrochirus	17.3	124					
Fish caught by trap)							

North 4			
Common Name	Scientific Name	Length (cm)	Weight (g)
Bluegill	Lepomis macrochirus	14	61
Fish caught by trap			

North 5			
Common Name	Scientific Name	Length (cm)	Weight (g)
American eel	Anguilla rostrata	30	51
Fish caught by trap			

North 6			
Common Name	Scientific Name	Length (cm)	Weight (g)
Pumkinseed	Lepomis gibbosus	7.3	6
Pumkinseed	Lepomis gibbosus	7	6
Pumkinseed	Lepomis gibbosus	7	5
Pumkinseed	Lepomis gibbosus	6.1	3
Pumkinseed	Lepomis gibbosus	7.2	7
Pumkinseed	Lepomis gibbosus	6.5	5
Pumkinseed	Lepomis gibbosus	6.8	5
Pumkinseed	Lepomis gibbosus	6.3	5
Pumkinseed	Lepomis gibbosus	6	4
Pumkinseed	Lepomis gibbosus	6.3	6
Pumkinseed	Lepomis gibbosus	6.6	5
Pumkinseed	Lepomis gibbosus	6.1	4
	Total	79.2	61
Fish caught by trap			

North 7			
Common Name	Scientific Name	Length (cm)	Weight (g)
largemouth bass	Microptera salmoides	3.9	1
largemouth bass	Microptera salmoides	6.6	3
largemouth bass	Microptera salmoides	6.5	3
largemouth bass	Microptera salmoides	6.3	2
largemouth bass	Microptera salmoides	4.1	1
largemouth bass	Microptera salmoides	4.6	1
largemouth bass	Microptera salmoides	6.1	2
largemouth bass	Microptera salmoides	4.3	1
largemouth bass	Microptera salmoides	3.9	1
largemouth bass	Microptera salmoides	3.8	1
largemouth bass	Microptera salmoides	3.9	1
largemouth bass	Microptera salmoides	5.6	1
largemouth bass	Microptera salmoides	5.6	1
largemouth bass	Microptera salmoides	6.5	1
largemouth bass	Microptera salmoides	5.5	2
largemouth bass	Microptera salmoides	6.4	3
largemouth bass	Microptera salmoides	4.5	<1
largemouth bass	Microptera salmoides	5.2	2
largemouth bass	Microptera salmoides	4.2	<1
largemouth bass	Microptera salmoides	4.3	<1
	Total	101.8	30
Fish caught by trap			

North 8

Common Name	Scientific Name	Length (cm)	Weight (g)
Bluegill	Lepomis macrochirus	6.5	4
Bluegill	Lepomis macrochirus	6.8	5
Bluegill	Lepomis macrochirus	6.6	5 6
Bluegill	Lepomis macrochirus	7.1	6
Bluegill	Lepomis macrochirus	6	<u>6</u> <u>3</u> 4
Bluegill	Lepomis macrochirus	6.5	4
Bluegill	Lepomis macrochirus	7	6
Bluegill	Lepomis macrochirus	6.1	6 3 2 3 3 4
Bluegill	Lepomis macrochirus	5.5	2
Bluegill	Lepomis macrochirus	6.1	3
Bluegill	Lepomis macrochirus	5.6	3
Bluegill	Lepomis macrochirus	6	4
Bluegill	Lepomis macrochirus	5.2	2 2
Bluegill	Lepomis macrochirus	5.5	2
Bluegill	Lepomis macrochirus	2.8	1
Bluegill	Lepomis macrochirus	5.5	2
Bluegill	Lepomis macrochirus	3	1
Bluegill	Lepomis macrochirus	6.1	3
	Total	103.9	60
Fish caught by trap			