FINAL GROUNDWATER SAMPLING REPORT (November 2008 Sampling Event)

Multi Site G Operation, Maintenance & Monitoring

> Dzus Fasteners Site West Islip, Suffolk County, NY Site 1-52-033

> > Work Assignment No. D004445-14.2A

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

August 2009

Prepared by:

AECOM Technical Services Northeast, Inc. 300 Broadacres Drive Bloomfield, New Jersey 07003

TABLE OF CONTENTS

Chapter

Page

1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION	1
3.0	FIELD ACTIVITIES 2 3.1 WATER LEVEL SURVEY 3.2 GROUNDWATER SAMPLING 3.3 SURFACE WATER / SEDIMENT SAMPLING	2 2
4.0	SAMPLING RESULTS. 3 4.1 GROUNDWATER DATA 4.2 SURFACE WATER SAMPLES 4.3 SEDIMENT SAMPLES	3 4
5.0	SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES 5.1 GROUNDWATER 5.2 SURFACE WATER 5.3 SEDIMENTS 5.4 RECOMMENDATIONS	7 7 8

LIST OF TABLES

- 1 Well Construction Data
- 2 Groundwater Elevations
- 3 Summary of TAL Metals in Groundwater
- 4 Summary of TAL Metals in Willetts Creek and Lake Capri Surface Water Samples
- 5 Summary of TAL Metals in Willetts Creek and Lake Capri Sediment Samples

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Plan
- 3 Groundwater Contour Map November 11, 2008
- 4 Summary of TAL Metals in Groundwater
- 5 Summary of TAL Metals in Surface Water
- 6 Summary of TAL Metals in Sediment

LIST OF APPENDICES

- A Monitoring Well and Surface Water Sampling Forms
- B NYSDEC Monitoring Well Field Inspection Logs
- C Data Summary Package (Laboratory Summary and Forms 1)

1.0 INTRODUCTION

The Dzus Fasteners facility is located in West Islip, New York (Site No. 1-52-033). The Dzus Fastener facility was used to manufacturer fasteners and springs from 1932 to the present. Discharge of oils, heavy metals and salts via on-site leaching pools led to the contamination of soil, groundwater, and nearby surface waters and sediment in Willetts Creek and Lake Capri. An initial site inspection took place in August 1983. Contamination was discovered later in August 1983 and a preliminary site assessment was completed in September 1984. A phase I investigation was completed and a phase II investigation was submitted by Dzus in August of 1990. Dzus then completed an Interim Remedial Measure (IRM) in October 1990. During the IRM a leach field on the eastern side of the site was removed. A remedial investigation / feasibility study (RI/FS) was initiated on the site in 1992. The site was then broken up into the two Operable Units (OU1: the Dzus facility & OU2: the offsite localities including Willetts Creek and Lake Capri). A Record Of Decision (ROD) for OU1 was issued for the site in March 1995. A ROD for OU2 was issued for the site in October 1997. In response to the ROD for OU1, The remedy for contaminated groundwater in the vicinity of the Dzus facility consisted of source removal and ongoing natural attenuation. An asphalt cover at the eastern parking lot at the Dzus manufacturing facility was constructed to eliminate the potential for direct human contact with the underlying contaminated soils at the site, and to eliminate or reduce the mobility of soil contaminants that would cause further groundwater degradation. In response to the ROD for OU2, Lake Capri and a portion of Willetts Creek were dredged in 1999 and riprap was used to cover portions identified as having deeper zones of contamination in order to prevent future erosion.

In accordance with the remedial design, the fish population of Lake Capri was eradicated using Rotenone, a NYSDEC approved fish eradicant, in July 1999. In 2000 after completion of the remedial activities, the lake was restocked with silversides; bluegill, *Lepomis macrochirus*; and largemouth bass, *Microptera salmoides*.

AECOM Technical Services Northeast, Inc. (AECOM, [formerly Earth Tech Northeast, Inc.]) was tasked with collecting three rounds of samples from selected monitoring wells, and surface water/sediment samples from Willetts Creek and Lake Capri, at five-quarter intervals as part of a long term monitoring plan. Two rounds of fish tissue samples were also collected from Lake Capri in July 2006 and May 2007. AECOM is performing this work under the New York State Department of Environmental Conservation (NYSDEC) Superfund Standby Contract Work Assignment No. D004445-14.2A. The first round of sampling was conducted in June 2006. The second round of groundwater samples was collected in August 2007. A report was prepared and submitted after each round of sampling. This report presents the results from the third round of groundwater sampling that was conducted in November 2008.

2.0 BACKGROUND INFORMATION

The Dzus Fasteners Superfund site is located at 425 Union Boulevard, West Islip, New York (Figure 1). The Site is bounded to the north by railroad tracks and Union Boulevard to the south and east. The Site is bounded to the west by Beach Street and commercial properties. On the southeast side of Union Boulevard is a shopping plaza and southeast of the shopping plaza is Willetts Creek (a Class A surface water body). Willetts Creek flows south past a junior high school and high school, and eventually discharges into Lake Capri approximately 4,500 ft south of the Site. A total of 14 wells and six surface water/sediment sample locations were identified for long term monitoring at the Site (Figure 2).

3.0 FIELD ACTIVITIES

The third round of groundwater sampling activities occurred on November 11, 12 and 13, 2008. Surface water and sediment sampling was conducted on November 12 and 14, 2008. Sampling was conducted in accordance with the Sampling and Analysis Plan (SAP) prepared by AECOM (June, 2007). The SAP is comprised of the Field Sampling Plan (FSP), the Quality Assurance Project Plan (QAPP) and the Safe Work Plan (SWP). All field work was performed in Level D personal protection.

The monitoring wells were surveyed prior to the start of sampling on November 11, 2008. NYSDEC Monitoring Well Field Inspection Logs were prepared for each well and are presented in Appendix A. According to personnel at Dzus Fasteners, monitoring well MW-1 was damaged in December 2007 during snow removal and could not be located.

3.1 Water Level Survey

Readings were recorded in the field notebook and on the Well Sampling Forms. A summary of well construction data is presented in Table 1. Prior to the start of sampling, a synoptic round of water levels was collected from the 14 monitoring wells selected for sampling. Groundwater elevation data are presented on Table 2. A groundwater contour map was prepared for the November 2008 sampling event and is presented on Figure 3. As shown on the figure, the general direction of groundwater flow at the Site is to the south. The gradient was calculated as 0.0013, a very shallow gradient.

3.2 Groundwater Sampling

Fourteen wells were identified for long term monitoring at the Site. The selected wells are MW-1, MW-2, MW-3, MW-9, MW-9B, MW-13A, MW-13B, MW-15A, MW-15B, MW-18, MW-22A, MW-22B, MW-23A and MW-23B.

AECOM used a Honda centrifugal pump with black polyethylene tubing to purge each monitoring well prior to sampling. Monitoring wells were purged of at least three casing volumes of water prior to sampling. Measurements of pH, dissolved oxygen, specific conductance, oxygen reduction potential, temperature and turbidity were recorded on the Well Sampling Forms after each well volume was removed. Well Sampling Forms are provided in Appendix A. NYSDEC Monitoring Well Field Inspection Logs were completed for each monitoring well and are included in Appendix B. Once the minimum volume of water was evacuated, a dedicated Teflon bailer was used to collect a groundwater sample. The sample was placed into laboratory supplied containers placed in an ice-filled cooler. The samples were then transported to Mitkem Laboratory via FedEx. Proper chain-of-custody procedures and requirements were maintained throughout the sampling event in accordance with the QAPP.

3.3 Surface Water / Sediment Sampling

Six surface water samples were collected from Lake Capri during the November 2008 sampling event. A small boat was used to gain access to the lake. Each surface water sample was collected by dipping laboratory-supplied bottles into the lake and then transferring the water to the laboratory supplied preserved bottles. At each surface water location, a co-located sediment sample was also collected. Sediment samples were collected using a ponar dredge to reach the lake bottom sediments. Excess water was decanted from the sediment sample prior to placement in the sample jars. Sample forms are included in Appendix A.

4.0 SAMPLING RESULTS

Groundwater, surface water and sediment samples were analyzed for target analyte list metals (TAL metals) using USEPA Method 6000/7000. The analyses were performed by Mitkem (Warwick, Rhode Island), a NYSDOH ELAP certified laboratory (ELAP certification number 11522). Data validation was not performed. An AECOM chemist provided a limited review of the data packages.

4.1 Groundwater Data

Groundwater samples were collected from 14 monitoring wells during the November 2008 sampling event. The monitoring well locations are presented on Figure 2. The laboratory data summary packages are included in Appendix C. A summary of the detections from all three sampling events is presented in Table 3. A summary of the exceedances from all three sampling events is presented on Figure 4.

Seven metals have been detected above their Class GA criteria during the three rounds of groundwater sampling at the Site. These metals are antimony, cadmium, iron, lead, manganese, sodium and thallium.

During the Round 1 sampling event in June 2006, antimony was detected in four of 14 monitoring wells. Of these detections, only one exceeded the Class GA criterion of $3 \mu g/L$ ($3.2 \mu g/L$ at MW-23B). During Round 2 in August 2007, antimony was detected in four of 14 monitoring well samples and all four samples exceeded the criterion (maximum concentration of 7.3 $\mu g/L$ in MW-2). During Round 3 in November 2008, antimony was only detected in one monitoring well sample, MW-18, and the concentration of 5.1 $\mu g/L$ exceeded the criterion.

Cadmium was detected in every sample collected during all three rounds. During Round 1, cadmium concentrations exceeded the criterion of 5 μ g/L in 10 of 14 samples (maximum concentration of 174 μ g/L in MW-13A). During Round 2, cadmium again exceeded the criterion in 10 of 14 samples (maximum concentration of 702 μ g/L in MW-23A). During Round 3, cadmium concentrations exceeded the criterion in eight of 13 samples (maximum concentration of 1,080 μ g/L in MW-23A).

Iron was detected in all but one sample during the three rounds of sampling and the majority of samples exceeded the criterion of 300 μ g/L. During Round 1, all 14 samples exceeded the criterion (maximum concentration of 70,400 μ g/L in MW-22A). During Round 2, iron exceeded the criterion in 13 of 14 samples (maximum concentration of 29,700 μ g/L in MW-23A). During Round 3 iron was detected in 12 of 13 samples and eight samples exceeded the criterion (maximum concentration of 23,300 μ g/L in MW-2).

Lead was detected in the majority of the samples collected during the three sampling events at concentrations below the criterion of 25 μ g/L. During Round 1, lead was detected in one sample, MW-23B, at a concentration of 35.7 μ g/L exceeding the criterion.

Manganese was detected in every sample collected during the three rounds of groundwater sample collection, most of which exceeded the criterion of 300 μ g/L. During Round 1, manganese concentrations exceeded the criterion in 10 of 14 samples (maximum concentration of 9,560 μ g/L in MW-13A). During Round 2, the criterion was exceeded in 11 of 14 samples (maximum concentration of 8,040 μ g/L in MW-13A). During Round 3 manganese concentrations exceeded the criterion in seven of 13 samples (maximum concentration of 16,400 μ g/L in MW-13A).

Sodium was detected in every sample collected during the three rounds of sampling. Sodium exceeded the criterion of $20,000 \ \mu g/L$ in 8 of 14 samples during Round 1 (maximum concentration of 95,200 $\mu g/L$). The criterion was exceeded in 10 of 14 samples during Round 2 (maximum concentration of 77,500 $\mu g/L$)

in MW-13A). During Round 3, sodium concentrations exceeded the criterion in five of 13 samples (maximum concentration of 43,900 μ g/L in MW-15B).

Thallium has been detected sporadically in monitoring well samples during the three sampling events. During Round 1, thallium was detected in eight of 14 samples, all of which exceeded the criterion of 0.5 μ g/L (maximum concentration of 44 μ g/L in MW-13A). During Round 2, thallium was detected in four of 14 samples, all of which exceeded the criterion (maximum concentration of 6.3 μ g/L in MW-2). During Round 3, thallium was only detected in only one sample, MW-13 at a concentration of 11.7 μ g/L, which exceeded the criterion.

4.2 Surface Water Samples

Six surface water samples were collected from Lake Capri and Willetts Creek at the locations shown on Figure 2. A summary of the detections is presented in Table 4. The results were compared to the NYSDEC Class A surface water criteria. The full data set is presented in Appendix C, along with the laboratory data summary packages. A summary of the exceedances is presented on Figure 5.

Surface water sample SW-1 was collected on the north end of Lake Capri near the mouth of Willetts Creek. Iron and manganese were detected at concentrations above the Class A surface water criterion during each of the three sampling events. Iron was detected at concentrations of 691 μ g/L, 738 μ g/L, and 598 μ g/L, which exceeded the Class A criterion of 300 μ g/L. Manganese was detected at concentrations of 1,050 μ g/L, 862 μ g/L and 1,610 μ g/L, which exceeded the criterion of 300 μ g/L.

Surface water sample SW-2 was collected on the north end of Lake Capri near the mouth of Willetts Creek (south of SW-1). Iron and manganese were detected at concentrations above the Class A surface water criterion during all three sampling events. Iron was detected at concentrations of 649 μ g/L, 819 μ g/L and 675 μ g/L which exceeded the Class A criterion of 300 μ g/L. Manganese was detected at concentrations of 1,010 μ g/L, 819 μ g/L and 1,560 μ g/L which exceeded the criterion of 300 μ g/L.

Surface water sample SW-3 was collected on the south end of Lake Capri just west of the spillway. During the June 2006 sampling event, iron was detected at a concentration of 788 μ g/L which exceeded the Class A criterion of 300 μ g/L, and manganese was detected at a concentration of 882 μ g/L which exceeded the criterion of 300 μ g/L. There were no reported exceedances of the Class A surface water criterion during the August 2007 sampling event. During the November 2008 sampling event, iron and manganese again exceeded their criteria at concentrations of 772 μ g/L and 1,790 μ g/L, respectively.

Surface water sample SW-4 was collected on the south end of Lake Capri just east of the spillway. Iron was detected above the Class A criterion of 300 μ g/L during all three sampling events at concentrations of 610 μ g/L, 609 μ g/L and 741 μ g/L. Manganese was detected in all three sampling events but only exceeded the criterion of 300 μ g/L during Rounds 1 and 3 at concentrations of 786 μ g/L and 1,630 μ g/L, respectively.

Surface water sample SW-5 was collected from Willetts Creek just south of the footbridge behind the high school. Antimony was detected during Rounds 1 and 2 at concentrations of 1.5 μ g/L and 4.4 μ g/L but only the Round 2 concentration exceeded the Class A criterion of 3 μ g/L. Cadmium (Class A criterion of 5 μ g/L) was detected in all three sampling events but only the Round 1 and 2 concentrations (5.7 μ g/L and 5.6 μ g/L) exceeded the criterion. Iron (Class A criterion of 300 μ g/L) was detected above the criterion during all three sampling events at concentrations of 632 μ g/L, 599 μ g/L and 1,060 μ g/L. Manganese (Class A criterion Of 300 μ g/L) was detected above the criterion during all three sampling events at concentrations of 632 μ g/L. Sodium was detected during all three

sampling events but exceeded the criterion of 20,000 μ g/L only during Rounds 1 and 2 at concentrations of 21,100 μ g/L and 21,800 μ g/L.

Surface water sample SW-6 was collected from Willetts Creek just south of the Blockbuster Video store in the small shopping center. Five metals, including antimony, cadmium, iron, manganese and sodium were detected at concentrations above the Class A criteria during the three sampling events. Antimony was only detected during Round 2 at a concentration of 8 μ g/L which exceeded the Class A criterion of 3 μ g/L. Cadmium was detected during all three sampling rounds but only exceeded the Class A criterion of 5 μ g/L criterion during the November 2008 sampling event at a concentration of 75.4 μ g/L. Iron (Class A criterion of 300 μ g/L) was detected above the criterion during all three sampling events at concentrations of 5,400 μ g/L, 2,170 μ g/L and 4,010 μ g/L. Manganese (Class A criterion of 300 μ g/L) was detected above the criterion during all three sampling events at concentrations of 2,6,10 μ g/L, 1,510 μ g/L and 1,040 μ g/L. Sodium (Class A criterion of 20,000) was detected above the criterion during all three sampling events at concentrations of 2,6,10 μ g/L, 1,510 μ g/L and 1,040 μ g/L. Sodium (Class A criterion of 20,000) was detected above the criterion during all three sampling events at concentrations of 29,200 μ g/L, 33,600 μ g/L and 26,000 μ g/L.

4.3 Sediment Samples

Six co-located sediment samples were collected at the same locations as the surface water samples as shown on Figure 2. The data presented in Table 5 were compared to the NYSDEC Technical Guidance for Sediment Criteria lowest effects values. The full data set is presented in Appendix C. The laboratory data summary packages are also included in Appendix C. A summary of the exceedances is presented on Figure 6.

Sample SED-1 was collected on the north end of Lake Capri near the mouth of Willetts Creek. Ten metals, including antimony, arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel and zinc were detected at concentrations above the guidance values. Antimony was detected during all three sampling events but only the Round 3 concentration of 2.2 mg/kg exceeded the guidance value of 2 mg/kg. Arsenic was detected during all three sampling events but only the Round 1 and 3 concentrations (7.9 mg/kg and 8.7 mg/kg) exceeded the guidance value of 6.0 mg/kg. Cadmium exceeded the guidance value of 0.6 mg/kg during all three sampling events at concentrations of 47.8 mg/kg, 11.6 mg/kg and 61.4 mg/kg. Chromium was detected during all three sampling events but only exceeded the guidance value of 26 during the Round 3 sampling event at a concentration of 27.1 mg/kg. Copper was detected above the guidance value of 16 mg/kg during all three sampling events at concentrations of 38.6 mg/kg, 86.3 mg/kg and 65.7 mg/kg. Lead was detected during all three sampling events but only the concentrations from Round 1 and 3 exceeded the guidance value of 31 mg/kg at concentrations of 170 mg/kg and 176 mg/kg, respectively. Manganese was detected above the guidance value of 460 mg/kg during the Round 1 and 2 sampling events at concentrations of 1,290 mg/kg and 1,200 mg/kg but was below the guidance value during Round 3. Mercury was detected during all three sampling events but the concentrations only exceeded the guidance value of 0.15 mg/kg during Round 1 (0.21 mg/kg) and Round 3 (0.34 mg/kg). Nickel was detected during all three sampling events but only exceeded the guidance value of 16 mg/kg during Round 3 at a concentration of 19.4 mg/kg. Zinc was detected during all three sampling rounds and exceeded the guidance value of 120 mg/kg during Rounds 1 (215 mg/kg) and Round 3 (445 mg/kg).

Sample SED-2 was collected on the north end of Lake Capri near the mouth of Willetts Creek, just south of SED-1. Ten metals, including arsenic, cadmium, chromium, copper, iron, lead, manganese mercury, nickel and zinc, were detected at concentrations above the guidance values during the three sampling events. Arsenic was detected during all three sampling events but only exceeded the guidance value of 6 mg/kg during Round 1 at a concentration of 19.7 mg/kg. Cadmium was detected above the guidance value of 0.6 mg/kg during all three sampling events at concentrations of 133 mg/kg, 21.2 mg/kg and 12.5 mg/kg. Chromium was detected during all three sampling events but only exceeded the guidance

value of 26 during Round 1 at a concentration of 33.7 mg/kg. Copper was detected during all three sampling events but only exceeded the guidance value of 16 mg/kg during Rounds 1 and 2 at concentrations of 210 mg/kg and 19.6 mg/kg, respectively. Iron was detected during all three sampling events but only exceeded the guidance value of 20,000 mg/kg during Round 1 at a concentration of 20,300 mg/kg. Lead was detected during all three sampling events but only exceeded the guidance value of 31 mg/kg during Round 1 and Round 2 at concentrations of 315 mg/kg and 40.7 mg/kg, respectively. Manganese was detected during all three sampling events and exceeded the guidance value of 460 mg/kg during Round 2 and 3 at concentrations of 1,300 mg/kg and 769 mg/kg, respectively. Mercury was detected during all three sampling events but only exceeded the guidance value of 0.15 during Round 1 at a concentration of 0.45 mg/kg. Nickel was detected during all three sampling events but only exceeded the guidance value of 16 mg/kg during Round 1 at a concentration of 17.6 mg/kg. Zinc was detected during all three sampling events but only exceeded the guidance value of 120 mg/kg during Rounds 1 and 2 at concentrations of 402 mg/kg and 138 mg/kg, respectively.

Sample SED-3 was collected on the south end of Lake Capri just west of the spillway. Four metals have been detected above the guidance values including cadmium, copper, lead and manganese. Cadmium was detected above the guidance value of 0.6 mg/kg during all three sampling events at concentrations of 1.5 mg/kg, 27.7 mg/kg and 1.7 mg/kg. Copper was detected during all three sampling events and exceeded the guidance value of 16 mg/kg during Round 2 and 3 at concentrations of 16.7 mg/kg and 32.4 mg/kg. Lead was detected during all three sapling events and exceeded the guidance value of 31 mg/kg during Rounds 2 and 3 at concentrations of 44.2 mg/kg and 34 mg/kg. Manganese was detected during all three sampling events and exceeded the guidance value of 36 mg/kg and 308 mg/kg, respectively.

Sample SED-4 was collected on the south end of Lake Capri just east of the spillway. Seven metals were detected at concentrations that exceed the guidance values including cadmium, copper, lead, manganese, mercury, silver and zinc. Cadmium was detected above the guidance value of 0.6 mg/kg during all three sampling events at concentrations 32.3 mg/kg, 32.3 mg/kg and 15.8 mg/kg, respectively. Copper was detected above the guidance value of 16 mg/kg during all three sampling events at concentrations of 21.6 mg/kg, 35.7 mg/kg and 17.1 mg/kg, respectively. Lead was detected above the guidance value of 31 mg/kg during all three sampling events at concentrations of 71.2 mg/kg, 193 mg/kg and 34.4 mg/kg, respectively. Manganese was detected above the guidance value of 460 mg/kg during all three sampling events at concentrations of 837 mg/kg, 845 mg/kg and 11,700 mg/kg, respectively. Mercury was detected during all three sampling events but only exceeded the guidance value of 0.15 mg/kg during Round 3 at a concentration of 0.21 mg/kg. Silver was only detected during Round 3 at a concentration of 1.1 mg/kg which exceeds the guidance value of 1 mg/kg. Zinc was detected during all three sampling events but only exceeded the guidance value of 2 mg/kg and 2 at concentrations of 122 mg/kg and 186 mg/kg, respectively.

Sample SED-5 was collected from Willetts Creek just south of the footbridge behind the high school. Nine metals were detected above the guidance values at this location, including arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel and zinc. Arsenic was detected during all three sampling events but only exceeded the guidance value of 6 mg/kg during Round 3 at a concentration of 8.2 mg/kg. Cadmium was detected during all three sampling events and exceeded the guidance value of 0.6 mg/kg during Rounds 2 and 3 at concentrations of 1.6 mg/kg and 52 mg/kg, respectively. Chromium was detected during all three sampling events but only exceeded the guidance value of 26 during Round 3 at a concentration of 33.3 mg/kg. Copper was detected during all three sampling events but only exceeded the guidance value of 16 mg/kg during Round 3 at a concentration of 103 mg/kg. Lead was detected during all three sampling events but only exceeded the guidance value of 31 mg/kg during Round 3 at a concentration of 215 mg/kg. Manganese was detected during all three sampling events and exceeded the guidance value of 460 mg/kg during Round 3 at a concentration of 2,140 mg/kg. Mercury

was detected during all three sampling events but only exceeded the guidance value of 0.15 during Round 3 at a concentration of 0.48 mg/kg. Nickel was detected during all three sampling events but only exceeded the guidance value of 16 mg/kg during Round 3 at a concentration of 19.2 mg/kg. Zinc was detected during all three sampling events but only exceeded the guidance value of 120 mg/kg during Round 3 at a concentration of 290 mg/kg.

Sample SED-6 was collected from Willetts Creek just south of the Blockbuster Video store in the small shopping center. Ten metals were detected above the guidance values at this location, including antimony, arsenic, cadmium, chromium, copper, lead, manganese, mercury, nickel and zinc. Antimony was detected during all three sampling events but only exceeded the guidance value of 2 mg/kg during Round 3 at a concentration of 2.6 mg/kg. Arsenic was detected during all three sampling events but only exceeded the guidance value of 6 mg/kg during Round 3 at a concentration of 6.4 mg/kg. Cadmium was detected during all three sampling events and exceeded the guidance value of 0.6 mg/kg during Round 3 at a concentration of 101 mg/kg. Chromium was detected during all three sampling events but only exceeded the guidance value of 26 during Round 3 at a concentration of 41.8 mg/kg. Copper was detected during all three sampling events but only exceeded the guidance value of 16 mg/kg during Rounds 1 and 3 at concentrations of 28.3 mg/kg and 77.3 mg/kg, respectively. Lead was detected during all three sampling events but only exceeded the guidance value of 31 mg/kg during Round 3 at a concentration of 109 mg/kg. Manganese was detected during all three sampling events and exceeded the guidance value of 460 mg/kg during Round 3 at a concentration of 978 mg/kg. Mercury was detected below the guidance value of 0.15 mg/kg during Rounds 1 and 2 and equaled the guidance value during Round 3. Nickel was detected during all three sampling events but only exceeded the guidance value of 16 mg/kg during Round 3 at a concentration of 17.2 mg/kg. Zinc was detected during all three sampling events but only exceeded the guidance value of 120 mg/kg during Round 3 at a concentration of 409 mg/kg.

5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES

5.1 Groundwater

Cadmium has been present in every sample collected during all three sampling events with exceedances noted in 11 samples during Round 1, ten samples during Round 2 and eight samples during Round 3. The majority exceedances are concentrated along the eastern side of the Site in wells MW-3, MW-9, MW-13A, MW-13B, MW-23A and MW-23B. The concentrations in these six monitoring wells have exceeded the criterion in each of the three sampling events.

Concentrations of iron, manganese and sodium have exceeded the criterion in numerous wells but these compounds are typically found in groundwater on Long Island are most likely representative of background conditions and not Site-related. There have been sporadic exceedances of antimony, lead and thallium but the concentrations and locations of the exceedances have not been replicated during the three sampling events and are most likely a result of entrained sediment in the samples and are not representative of the dissolved groundwater concentrations.

5.2 Surface Water

Cadmium was detected in both of the Willetts Creek samples (SW-5 and SW-6) during all three rounds. The concentrations in upstream sample SW-6 were below the criterion in the first two rounds but significantly exceeded the 5 μ g/L criterion in Round 3 at 75.4 μ g/L. The concentrations at downstream sample SW-5 have slightly exceeded the criterion during Rounds 1 and 2 but were below the criterion

during Round 3. Cadmium concentrations did not exceed the criterion in any of the four samples from Lake Capri. Continued monitoring is necessary to determine if the exceedance in SW-6 during Round 3 is an isolated occurrence.

With a few exceptions, iron and manganese were detected in all six surface water samples above their criterion during all three sampling events. This is most likely a result of natural conditions in Willetts Creek and not Site related.

Sodium concentrations exceeded the criterion in the two Willetts Creek samples (SED-5 and SED-6).

5.3 Sediments

The samples indicate that the surficial sediments in Lake Capri and Willetts Creek remain contaminated with metals above the applicable NYSDEC Technical Guidance for Sediment Criteria, lowest effects level. Cadmium has been detected above the criterion in 15 of 18 samples collected during the three rounds of sampling. Copper has been detected above the criterion in 13 of 18 samples collected and lead has been detected in 11 of 18 samples collected. Several other metals including arsenic, chromium, iron, manganese, mercury, nickel and zinc, were detected sporadically at concentrations exceeding the criteria during the three sampling events.

There was a significant increase in the number of metals that exceeded the criterion in the two Willetts Creek sediment samples collected during Round 3. At upstream sample SED-6, there was one exceedance during Round 1, no exceedances during Round 2, and 10 exceedances during Round 3. At SED-5, there were no exceedances during Round 1, one exceedance in Round 2, and nine exceedances during Round 3. Further sampling may be necessary to establish whether the exceedances noted in Round 3 can be replicated or these two samples are isolated occurrences. If the data is compared to the highest effects levels, only cadmium exceeded the criterion during all three sampling events.

5.4 **Recommendations**

This Round 3 sampling event completes AECOM's work assignment at the Site. AECOM recommends continued periodic sampling to document the metals contamination in groundwater, surface water and sediment.

TABLE 1 DZUS FASTENERS SITE (1-52-033) WELL CONSTRUCTION DATA

Well Number	Latitude	Longitude	Ground Elevation	Top of Riser Elevation	Top of Casing Elevation	Total Depth of Well
MW-1	40° 42.49	73° 18.10	22.44	22.03	22.44	15.3
MW-2	40° 42.45	73° 18.10	22.16	21.42	22.16	14.3
MW-3	40° 42.49	73° 18.02	20.23	19.71	20.23	15.0
MW-9	40° 42.50	73° 18.02	19.14	18.83	19.14	11.5
MW-9B	40° 42.49	73° 18.02	19.08	18.75	19.08	44.5
MW-13A	40° 42.49	73° 18.01	16.34	16.02	16.34	10.7
MW-13B	40° 42.43	73° 17.100	16.14	15.82	16.14	44.3
MW-15A	40° 42.43	73° 17.99	19.45	19.09	19.45	28.8
MW-15B	40° 42.49	73° 17.97	19.35	19.06	19.35	84.7
MW-18	40° 42.50	73° 17.96	14.69	14.31	14.66	13.5
MW-22A	40° 42.491	73° 17.941	20.49	20.09	20.49	14.4
MW-22B	40° 42.491	73° 17.941	20.35	19.95	20.35	44.5
MW-23A	40° 42.402	73° 17.991	17.57	17.34	17.57	14.3
MW-23B	40° 42.403	73° 17.987	17.54	17.29	17.54	44.5

Notes:

All elevations and depths are in feet

Vertical datum: on-site benchmark from previous survey.

Latitude / Longitude taken from a previous report

Survey performed by YEC, Inc., on April 18, 2007

TABLE 2 DZUS FASTENERS SITE (1-52-033) GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
	Lievation				
MW-1	22.03	6/8/06 8/22/07 11/11/08	8.00 8.62	14.03 13.41	could not be located, damaged during snow
		11/11/00			removal
MW-2	21.42	6/8/06 8/22/07	8.15 8.50	13.27 12.92	
		11/11/08	8.30	13.12	
MW-3	19.71	6/8/06 8/22/07	5.77 6.30	13.94 13.41	
		11/11/08	6.25	13.46	
MW-9	18.83	6/8/06 8/22/07	4.59 5.15	14.24 13.68	
		11/11/08	5.01	13.82	
MW-9B	18.75	6/8/06	4.50	14.25	
		8/22/07 11/11/08	5.05 4.93	13.70 13.82	
MW-13A	16.02	6/8/06	2.59	13.43	
		8/22/07 11/11/08	3.02 2.90	13.00 13.12	
MW-13B	15.82	6/8/06	2.39	13.43	
		8/22/07 11/11/08	2.85 2.69	12.97 13.13	
MW-15A	19.09	6/7/06	5.48	13.61	
		8/22/07 11/11/08	5.80 5.64	13.29 13.45	
MW-15B	19.06	6/7/06	5.35	13.71	
		8/22/07 11/11/08	5.70 5.58	13.36 13.48	
MW-18	14.31	6/8/06	7.93	6.38	
		8/23/07 11/11/08	5.05 4.98	9.26 9.33	
MW-22A	20.09	6/7/06	6.00	14.09	
		8/22/07 11/11/08	6.44 6.38	13.65 13.71	

TABLE 2 DZUS FASTENERS SITE (1-52-033) GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
	Liovadori		i o mator	Liovatori	
MW-22B	19.95	6/7/06	5.82	14.13	
		8/22/07	6.30	13.65	
		11/11/08	6.20	13.75	
		11/11/08			
MW-23A	17.34	6/7/06	4.59	12.75	
		8/22/07	4.80	12.54	
		11/11/08	4.62	12.72	
MW-23B	17.29	6/7/06	4.51	12.78	
		8/22/07	5.05	12.24	
		11/11/08	4.59	12.70	

Notes:

All measurements in feet from top of casing Veritcal data NGVD

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3
Sample ID	Class GA	MW-1	DMW-1	DMW-1	MW-2	DMW-2	DMW-2	MW-3	DMW-3	DMW-3
Laboratory ID	Groundwater	E0773-05A	F1193-01A	destroyed	E0773-10A	F1193-04A	G2114-01	E0773-07A	F1193-07A	G2114-04
Sample Date	Criteria	6/8/06	8/22/07	11/11/08	6/7/06	8/22/07	11/11/08	6/8/06	8/22/07	11/11/08
Matrix	water	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
			conc. Q		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	4,180	3,160	NA	7,090	1,580	242	5,650	620	314
Antimony	3	ND	ND	NA	ND	7.3 B	ND	ND	ND	ND
Arsenic	25	4.3 B	3.8 B	NA	3.9 B	6.3 B	ND	2.9 B	ND	ND
Barium	1,000	80.2 B	73.3 B	NA	96.5 B	212	38.7 B	90.9 B	37.2 B	28.3 B
Beryllium	3	0.42 B	0.25 B	NA	0.4 B	0.71 B	0.27 B	0.26 B	ND	ND
Cadmium	5	23.9	5.1	NA	4.2 B	8.6	2.7 B	77.4	74.4	70.8
Calcium	NC	8,790	7,150	NA	15,500	28,200	14,500	17,800	17,200	11,800
Chromium	50	8 B	5 B	NA	8.8 B	3.1 B	ND	9.2 B	1.6 B	ND
Cobalt	NC	5.1 B	6.9 BE	NA	18.3 B	27 BE	13.8 B	4.4 B	1.6 BE	ND
Copper	200	18.3 B	16 B	NA	19.3 B	8.3 B	12.6 B	16.1 B	5.4 B	ND
Iron	300	13,200	12,600	NA	14,900	25,200	23,300	4,430	649	253
Lead	25	3.9 B	9.8 B	NA	14.7	4.2 B	5.2 B	ND	3.8 B	2.7 B
Magnesium	35,000	3,010	2,420	NA	3,740	4,690	2700	4,160	3820	2,650
Manganese	300	210	158	NA	518	989	2,150	423	301	262
Mercury	0.7	ND	ND	NA	ND	ND	ND	ND	ND	ND
Nickel	100	8.7 B	8.7 B	NA	13.3 B	9 B	4.7 B	6.8 B	2.1 B	1.6 B
Potassium	NC	1,760	1,680	NA	2,140	2,780	1880	2,630	2,050	1,420
Selenium	10	ND	5.4 B	NA	1.4 B	ND	ND	ND	8.4 B	ND
Silver	50	ND	ND	NA	ND	ND	ND	ND	3.5 B	ND
Sodium	20,000	22,500	23,100	NA	21,500	66,200	18,600	27,700	31,000	25,000
Thallium	0.5	1.9 B	5.5 B	NA	2.3 B	6.3 B	ND	2.5 B	ND	ND
Vanadium	NC	7.8 B	8.2 B	NA	11.9 B	4 B	ND	8.1 B	1.1 B	ND
Zinc	2,000	244	196	NA	138	82.8	64.3	87	29.4 B	26.2 B

NC - No Criteria

ND - Not Detected

B - Estimated value

Sample Location		MW-9	MW-9	MW-9		MW-9B	MW-9B	MW-9B		MW-13A	MW-13A	MW-13A
Sample ID	Class GA	MW-9	DMW-9	DMW-9		MW-9B	DMW-9B	DMW-9B		MW-13A	DMW-13A	DMW-13A
Laboratory ID	Groundwater	E0773-09A	F1193-06A	G2114-02		E0773-08A	F1193-05A	G2114-03		E0773-13A	F1193-14A	F1193-14A
Sample Date	Criteria	6/8/06	8/22/07	11/11/08		6/8/06	8/22/07	11/11/08		6/8/06	8/22/07	G2114-12
Matrix	water	water	water	water		water	water	water		water	water	11/12/08
Units	µg/L	µg/L	µg/L	µg/L		µg/L	µg/L	µg/L		µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q		conc. Q	conc. Q	conc. Q		conc. Q	conc.	conc.
Aluminum	NC	16,800	3,520	611		213	177 B	ND		15,000	2,560	258
Antimony	3	ND	ND	ND		1.8 B	4.6 B	ND		ND	ND	ND
Arsenic	25	32.6	16.2 B	ND		ND	ND	ND		5.7 B	ND	ND
Barium	1,000	102 B	44.7 B	30.2 E	В	45.5 B	25.5 B	27.1 E	3	176 B	94 B	185 B
Beryllium	3	0.63 B	ND	0.21 E	В	ND	ND	ND		0.53 B	ND	ND
Cadmium	5	32.8	22.4	15.5		2.9 B	1.2 B	0.23 E	3	174	94.1	67.7
Calcium	NC	16,000	15,100	10,800		10,800	11,900	8,180		37,900	23,300	19,900
Chromium	50	125	62.2	35.3		2.2 B	3.4 B	ND		12.9 B	2.7 B	ND
Cobalt	NC	5.2 B	4.9 BE	1.5 E	В	2.6 B	1.5 BE	ND		55.8	45.4 BE	35.4 B
Copper	200	62.3	41.4	17.3 E	В	28.8 B	14.8 B	ND		34.3	ND	ND
Iron	300	21,600	12,400	3,670		561	429	134 E	3	12,700	3,490	300
Lead	25	11.6	10.6	5.9 E	В	ND	6 B	ND		5.7 B	2.5 B	ND
Magnesium	35,000	3,170	1,550	2,690		1,640	1,630	1,330		5,580	3,640	2,630
Manganese	300	151	117	62.6		211	306	171		9,560	8,040	16,400
Mercury	0.7	ND	ND	ND		ND	ND	ND		ND	ND	ND
Nickel	100	18.3 B	7.3 B	3.3 E	В	8.6 B	2.9 B	ND		9.4 B	2.1 B	ND
Potassium	NC	3,270	4,830	1,720		2,140	2,050	1,940		7,430	6,390	3,680
Selenium	10	2.7 B	ND	ND		ND	ND	ND		ND	ND	ND
Silver	50	ND	ND	ND		ND	2.2 B	ND		ND	3.5 B	ND
Sodium	20,000	25,500	52,100	16,100		8,070	10,100	11,800		94,500	77,500	21,700
Thallium	0.5	ND	ND	ND		ND	ND	ND		44	ND	11.7 B
Vanadium	NC	33.1 B	13.4 B	5.5 E	В	ND	0.83 B	ND		17.6 B	3.7 B	ND
Zinc	2,000	170	73.1	55.9		83.7	36 B	35.3 E	3	53.3	16.8 B	20.8 B

NC - No Criteria

ND - Not Detected

B - Estimated value

Sample Location	NYSDEC	MW-13B	MW-13B	MW-13B	MW-15A	MW-15A	MW-15A	MW-15B	MW-15B	MW-15B
Sample ID	Class GA	MW-13B	DMW-13B	DMW-13B	MW-15A	DMW-15A	DMW-15A	MW-15B	DMW-15B	DMW-15B
Laboratory ID	Groundwater	E0773-14A	F1193-13A	G2114-13	E0773-03A	F1193-15A	G2114-08	E0773-04A	F1193-10A	G2114-07
Sample Date	Criteria	6/8/06	8/22/07	11/12/08	6/7/06	8/22/07	11/12/08	6/7/06	8/22/07	11/12/08
Matrix	water	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	330	133 B	ND	773	ND	ND	224	58.6 B	ND
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND	1.7 B	ND	ND
Barium	1,000	54.3 B	29 B	33.4 B	53.7 B	15.5 B	20.1 B	83.6 B	40.6 B	45 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	0.19 B
Cadmium	5	15	9.8	2.3 B	28.8	29.1	33.9	3.6 B	0.54 B	0.29 B
Calcium	NC	10,700	9,840	11,700	18,900	13,700	12,100	16,400	13,700	13,700
Chromium	50	27.8	27.2	22.3	3 B	0.45 B	ND	2.1 B	0.56 B	ND
Cobalt	NC	3.9 B	1.9 BE	ND	3.2 B	1.3 BE	ND	5.5 B	2.7 BE	1.9 B
Copper	200	19.3 B	13.8 B	ND	38	4.8 B	ND	20.4 B	2.5 B	ND
Iron	300	614	404	106 B	2,320	158 B	ND	4,780	1,320	875
Lead	25	ND	7.7 B	3.1 B	9.9 B	1.7 B	ND	3.3 B	ND	3.6 B
Magnesium	35,000	1,710	1,600	1,910	3,170	2,240	1,890	5,930	5,290	5,240
Manganese	300	621	426	153	370	929	895	239	228	267
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	9.8 B	4.2 B	ND	7.1 B	0.85 B	ND	11.5 B	1.4 B	2.2 B
Potassium	NC	2,410	1,820	2,100	2,090	1,960	1,610	2,450	1,500	1,980
Selenium	10	ND	6.2 B	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	2.3 B	ND	ND	3.4 B	ND	ND	2.5 B	1 B
Sodium	20,000	7,880	6,710	9,280	18,000	13,300	9,040	46,600	45,200	43,900
Thallium	0.5	ND	ND	ND	1.9 B	ND	ND	3 B	ND	ND
Vanadium	NC	1.3 B	0.96 B	ND	2.6 B	ND	ND	0.72 B	ND	ND
Zinc	2,000	45.9 B	33.2 B	24.3 B	155	18.8 B	24.3 B	129	16.8 B	38.9 B

NC - No Criteria

ND - Not Detected

B - Estimated value

Sample Location	NYSDEC	MW-18	MW-18	MW-18	MW-22A	MW-22A	MW-22A	MW-22B	MW-22B	MW-22B
Sample ID	Class GA	MW-18	DMW-18	DMW-18	MW-22A	DMW-22A	DMW-22A	MW-22B	DMW-22B	DMW-22B
Laboratory ID	Groundwater	E0773-06A	F1193-16A	G2114-06	E0773-11A	F1193-09A	G2114-09	E0773-12A	F1193-08A	G2114-11
Sample Date	Criteria	6/8/06	8/23/07	11/11/08	6/7/06	8/22/07	11/12/08	6/7/06	8/22/07	11/12/08
Matrix	water	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	1,430	829	88.1 B	4,320	2,870	2,620	763 B	151 B	ND
Antimony	3	ND	ND	5.1 B	1.7 B	5.2 B	ND	ND	4.7 B	ND
Arsenic	25	ND	ND U	ND	16 B	3.8 B	7.2 B	ND	ND	ND
Barium	1,000	168 B	71.3 B	166 B	167 B	76.9 B	69.6 B	76.6 B	48.2 B	41.3 B
Beryllium	3	ND	ND	ND	0.15 B	ND	0.21 B	ND	ND	ND
Cadmium	5	3 B	1.2 B	9.8	38.9	22.1	13.5	29 B	4.4 B	1.2 B
Calcium	NC	13,900	9,790	12,600	52,100	37,500	55,700	12,800	20,400	27,200
Chromium	50	2.2 B	0.63 B	ND	18 B	12.8 B	13 B	7.9 B	1.5 B	ND
Cobalt	NC	7.3 B	5.5 BE	2 B	2.2 B	5.2 BE	ND	17.4 B	3.9 BE	1.5 B
Copper	200	17.7 B	3.5 B	11.1 B	32.3	24 B	19.3 B	118 B	4 B	ND
Iron	300	1,150	1,320	114 B	70,400	22,400	22,000	4,600	1,120	518
Lead	25	ND	1.9 B	ND	8.6 B	13.1	11.3	8.6 B	3 B	2.4 B
Magnesium	35,000	2,340	1,550	2,440	8,300	5,580	7,860	2,660 B	3,130	5,090
Manganese	300	6,270	4,490	2,870	1,280	1,190	1,030	2,310	2,440	775
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	17.5 B	13 B	29.3 B	6 B	3.7 B	2.6 B	28 B	2.7 B	6.5 B
Potassium	NC	1,520	1,180	1,540	4,560	3,530	3,980	3,000 B	2,500	1,910
Selenium	10	ND	ND	ND	8.7 B	ND	ND	ND	ND	ND
Silver	50	ND	1.5 B	ND	ND	ND	ND	ND	4.2 B	ND
Sodium	20,000	7,870	6,020	12,100	95,200	69,400	39,900	8,170 B	17,100	11,300
Thallium	0.5	26.5	ND	ND	ND	2.8 B	ND	20.1 B	3.5 B	ND
Vanadium	NC	2.6 B	1.4 B	ND	17.4 B	9.2 B	7 B	ND	0.49 B	ND
Zinc	2,000	235	89	265	1,650	1,170	714	194 B	39.4 B	29.8 B

NC - No Criteria

ND - Not Detected

B - Estimated value

Sample Location	NYSDEC	MW-23A	ł	MW-23/	4	MW-23A	١	MW-23	3	MW-23E	3	MW-23E	3
Sample ID	Class GA	MW-23A	4	DMW-2	3A	DMW-23	3A	MW-238	3	DMW-2	3B	DMW-23	3B
Laboratory ID	Groundwater	E0773-0)1A	F1193-1	I2A	G2114-14		E0773-0)2A	F1193-1	1A	G2114-15	
Sample Date	Criteria	6/7/06		8/22/07		11/12/08	3	6/7/06		8/22/07		11/12/08	3
Matrix	water	water		water		water		water		water		water	
Units	µg/L	µg/L		µg/L		µg/L		µg/L		µg/L		µg/L	
		conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q
Aluminum	NC	941		2,440		3200		2,450		632		406	
Antimony	3	1.8	В	5.8	В	ND		3.2	В	ND		ND	
Arsenic	25	2	В	4.1	В	5.8	В	4.1	В	ND		ND	
Barium	1,000	87.5	В	51.2		40.1	В	215		86.4	В	64.6	В
Beryllium	3	ND		ND		0.29	В	0.21	В	ND		0.13	В
Cadmium	5	110		702		1,080		320		60		42.2	
Calcium	NC	34,200		40,900		31,000		21,500		25,100		15,700	
Chromium	50	3.6	В	4.9	В	3.6	В	74.9		13.9	В	4.3	В
Cobalt	NC	3.2	В	6.1	ΒE	ND		4.8	В	2.4	ΒE	ND	
Copper	200	33.2		35.9		47.6		94.6		19.8	В	24.6	В
Iron	300	10,300		29,700		13,100		8,220		2,140		1,270	
Lead	25	ND		6.6	В	9.5	В	35.7		10.3		17.7	
Magnesium	35,000	6,660		6,280		9,020		1,890		1,290		1,590	
Manganese	300	1,100		612		1,390		548		508		52.1	
Mercury	0.7	0.065	В	ND		ND		0.11	В	ND		ND	
Nickel	100	9.3	В	7.1	В	2.2	В	68.8		16.7	В	20.5	В
Potassium	NC	7,070		5,200		6,780		2,400		1,970		1,660	
Selenium	10	1.3	В	6.1	В	ND		ND		8.6	В	ND	
Silver	50	0.92	В	ND		ND		ND		5	В	0.81	В
Sodium	20,000	60,200		32,400		37,800		2,390		3,870		2,200	
Thallium	0.5	9.3	В	ND		ND		3.1	В	ND		ND	
Vanadium	NC	5.5	В	12.6	В	20.5	В	17.7	В	9	В	5.9	В
Zinc	2,000	181		26.9	В	42.7	В	417		145		198	

NC - No Criteria

ND - Not Detected

B - Estimated value

TABLE 4DZUS FASTENERS SITE (1-52-033)

JUNE 2006, AUGUST 2007 AND NOVEMBER 2008 SAMPLING EVENTS

SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SURFACE WATER SAMPLES

Sample Location	NYSDEC	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
		Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Class A	SW-1	SW-1	SW-1	SW-2	SW-2	SW-2	SW-3	SW-3	SW-3
Laboratory ID	Surface Water	E0868-01A	F1193-20A	G2136-11	E0868-03A	F1194-02A	G2136-09	E0868-05A	F1194-04A	G2136-13
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	6/21/06	8/23/07	11/14/08	6/21/06	8/23/07	11/14/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc.	conc.	conc. Q	conc.	conc.	conc. Q	conc. Q	conc. Q
Aluminum	NC	31.9 B	40.1 B	ND	16.8 B	98.4 B	ND	69.5 B	37 U	ND
Antimony	3	ND	ND	6 B	ND	ND	ND	ND	ND	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1,000	13.2 B	23.1 B	31.8 B	12.2 B	24.3 B	32.4 B	7.9 B	12.6 B	38.6 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	1.1 B	2.3 B	1.5 B	1 B	2.1 B	2 B	1.9 B	0.32 B	0.97 B
Calcium	NC	15,100	14,100	14,300	14,900	13,300	14,300	15,200	13,100	14,000
Chromium	50	0.6 B	0.95 B	ND	0.52 B	1.2 B	ND	0.58 B	0.7 B	ND
Cobalt	NC	0.94 B	1.4 BE	ND	0.92 B	1 B	ND	0.72 B	1 B	ND
Copper	200	8.9 B	3.1 B	ND	ND	4.4 B	ND	ND	3.9 B	ND
Iron	300	691	738	598	649	819	675	788	280	772
Lead	50	ND	2.1 B	ND	ND	3.1 B	2.4 B	0.92 B	ND	ND
Magnesium	35,000	3,500	2,860	3,570	3,490	2940	3,530	3,540	2,990	3,440
Manganese	300	1,050	862	1,610	1,010	819 E	1,560	882	73.9 E	1,790
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	1.3 B	0.6 B	ND	1.1 B	0.81 B	ND	0.96 B	ND	ND
Potassium	NC	2,000	1,930	2,250	1,990	1990	2,320	2,000	2020	2,290
Selenium	10	ND	6 B	ND	ND	ND	ND	ND	ND	ND
Silver	50	1.8 B	2.8 B	0.98 B	1.6 B	3.1 B	ND	1.3 B	3.4 B	0.64 B
Sodium	20,000	18,500	15,800	19,000	18,100	16,200 E	19,500	18,300	16,800 E	17,700
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	0.78 B	0.79 B	ND	ND	0.88 B	1.1 B	0.7 B	0.42 B	ND
Zinc	2,000	22.4 B	22.8 B	22.3 B	15.6 B	27.4 B	21 B	21.5 B	14 B	16.4 B

NC - No Criteria

ND - Not Detected

B - Estimated value

TABLE 4 DZUS FASTENERS SITE (1-52-033) JUNE 2006, AUGUST 2007 AND NOVEMBER 2008 SAMPLING EVENTS SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SURFACE WATER SAMPLES

Sample Location	NYSDEC	Lake	Lake	Lake	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts
		Capri	Capri	Capri	Creek	Creek	Creek	Creek	Creek	Creek
Sample ID	Class A	SW-4	SW-4	SW-4	SW-5	SW-5	SW-5	SW-6	SW-6	SW-6
Laboratory ID	Surface Water	E0868-07A	F1194-06A	G2136-15	E0868-09A	F1193-18A	G2114-20	E0868-11A	F1194-08A	G2114-16
Sample Date	Criteria	6/21/06	8/23/07	11/14/08	6/21/06	8/23/07	11/12/08	6/21/06	8/23/07	11/12/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	ND	ND	ND	15.3 B	ND	ND	40.5 B	ND	190 B
Antimony	3	ND	ND	ND	1.5 B	4.4 B	ND	ND	8 B	ND
Arsenic	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1,000	5.7 B	14 B	31.9 B	36.9 B	36.4 B	26.2 B	35.5 B	40.6 B	37.7 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	0.89 B	0.77 B	0.63 B	5.7	5.6	3 B	0.55 B	2.8 B	75.4
Calcium	NC	14,600	12,900	14,000	14,400	16,100	12,500	26,700	27,200	20,100
Chromium	50	ND	0.88 B	ND	ND	0.39 B	ND	0.99 B	0.88 B	7.2 B
Cobalt	NC	0.37 B	1.2 B	ND	0.82 B	1.9 BE	ND	3.1 B	2.8 B	ND
Copper	200	11.7 B	4.9 B	ND	ND	1.7 B	ND	ND	2.8 B	ND
Iron	300	610	609	741	632	599	1,060	5,400	2,170	4,010
Lead	50	ND	2.2 B	ND	ND	ND	ND	ND	2.5 B	9.8 B
Magnesium	35,000	3,510	2,950	3,490	3,550	3,420	3,100	5,130	5,290	4,080
Manganese	300	786	135 E	1,630	1,420	1,110	956	2,610	1,510 E	1,040
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	0.6 B	ND	ND	0.98 B	0.85 B	ND	1.4 B	1.5 B	ND
Potassium	NC	1,950	2,040	2,310	2,080	2,040	1,780	2,230	2,480	2,830
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	2.8 B	ND	ND	3.1 B	ND	ND	5.9 B	ND
Sodium	20,000	18,100	16,600 E	17,800	21,100	21,800	18,100	29,200	33,600 E	26,000
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	ND	ND	ND	ND	0.99 B	1.1 B	0.63 B	1.6 B
Zinc	2,000	20.2 B	18 B	9.7 B	22 B	21.2 B	10.4 B	35.6 B	32.2 B	48.2 B

NC - No Criteria

ND - Not Detected

B - Estimated value

TABLE 5

DUZS FASTENERS SITE (1-52-033)

JUNE 2006, AUGUST 2007 AND NOVEMBER 2008 SAMPLING EVENTS

SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SEDIMENT SAMPLES

Sample Location			Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake	Lake
	NYS	DEC	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri	Capri
Sample ID	Tech	nical	SED-1	SED-1	SED-1	SED-2	SED-2	SED-2	SED-3	SED-3	SED-3
Laboratory ID	Guidar	nce for	E0868-02A	F1193-19A	G2136-10	E0868-04A	F1194-01A	G2136-08	E0868-06A	F1194-03A	G2136-14
Sample Date	Sedimen	t Criteria	6/21/06	8/23/07	11/14/08	6/21/06	8/23/07	11/14/08	6/21/06	8/23/07	11/14/08
Units	Lowest	Highest	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	5,020	895	7630 *	15,500	1,850	2,800 *	690	2,010	5,860 *
Antimony	2.0	25	0.7 B	0.41 B	2.2 BN	0.92 B	0.82 B	0.19 BN	ND	0.35 B	0.63 BN
Arsenic	6.0	33	7.9	1.5	8.7	19.7	2 B	1.8	0.31 B	3.1	4.2 B
Barium	NC	NC	81.2	31.9	67.7 B*E	89.8	57.9	40.8 *E	6.7	29.7	88.2 *E
Beryllium	NC	NC	0.5 B	0.074 B	0.64 B	1.2	0.16 B	0.16 B	0.047 B	0.18 B	0.3 B
Cadmium	0.6	9	47.8	11.6	61.4 N*E	133	21.2	12.5 N*E	1.5	27.7	<i>1.7</i> N*E
Calcium	NC	NC	2,540	646	3,140 *	2,860	1,320	1,400 *	104	605	11,700 *
Chromium	26	110	20.7	2.8	27.1 E	33.7	7.7	6.5 E	1.5	7.9	9.6 E
Cobalt	NC	NC	7.6	3.7	20.2 E	12.1	8.1	3 BE	0.66 B	4.7	12.6 E
Copper	16	110	38.6	86.3	65.7	210	19.6	15.6	2.7	16.7	32.4
Iron	20,000	20,000	10,300	3,880	19,700 E	20,300	8,940	3,850 E	920	5,730	10,900 E
Lead	31	110	170	19.3	176 N*E	315	40.7	25.8 N*E	9.2	44.2	34 N*E
Magnesium	NC	NC	1,300	217	1,260 *E	1,510	404	305 *E	121	326	4,200 *E
Manganese	460	1,100	1,290	1,200	181 *	153	1,300	769 *	89.8	568	908 *
Mercury	0.15	1.3	0.21	0.0071 B	0.34	0.45	0.047 BN	0.018 B	0.016 B	0.049 BN	0.074 B
Nickel	16	50	11.4	3	19.4	17.6	6.8 E	3.2 B	1.6 B	5 E	8.5 B
Potassium	NC	NC	514	91.9	465 *	555	200 E	123 *	115	168 E	1,010 *
Selenium	NC	NC	1.6 B	0.64 B	ND	2.2 B	1.2 B	ND	0.2 B	1.2 B	ND
Silver	1.0	2.2	ND	ND	ND	0.33 B	ND	ND	ND	ND	ND
Sodium	NC	NC	117	44.2 B	136 B	143	92.5 B	46.5 B	13.7 B	51.5 B	528
Thallium	NC	NC	5.8	ND	ND	0.39 B	ND	ND	0.33 B	ND	ND
Vanadium	NC	NC	29.4	5.1	39.9 E	55.9	11.9	5.8 E	1.8	9.5	36.4 E
Zinc	120	270	215	71.6	445 *E	402	138	67.9 *E	10	110	71.3 *E

NC - No Criteria

ND - Not Detected

B - Estimated value

E - Replicate RPDs were not within QC limits

* - Percent recovery for duplicates were not within QC limits

N - Spike recoveries were not within QC limts

TABLE 5

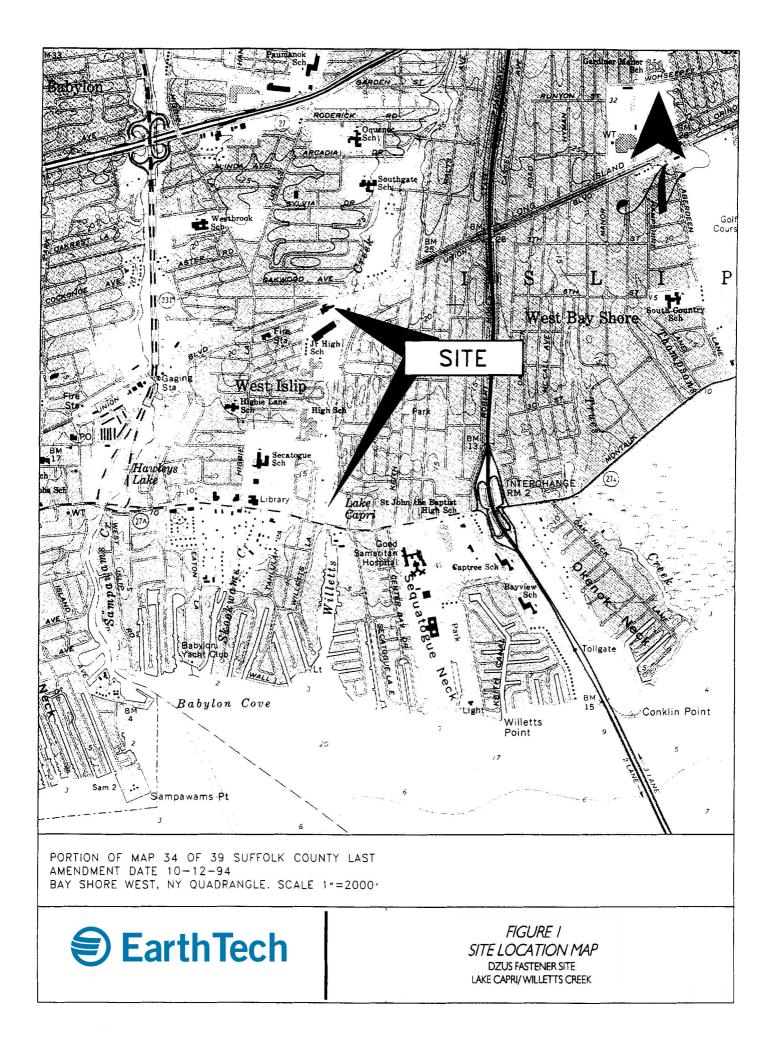
DUZS FASTENERS SITE (1-52-033)

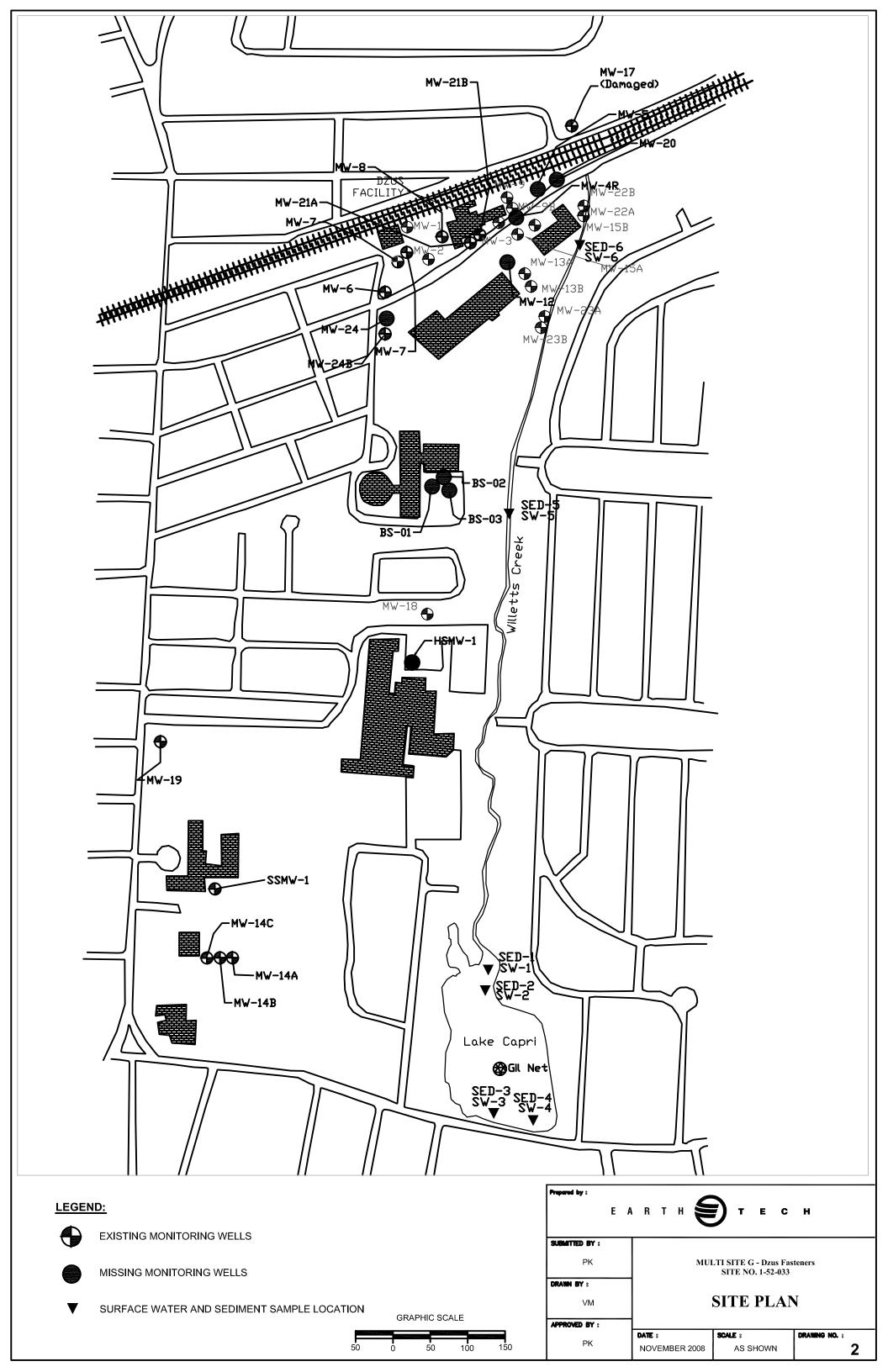
JUNE 2006, AUGUST 2007 AND NOVEMBER 2008 SAMPLING EVENTS

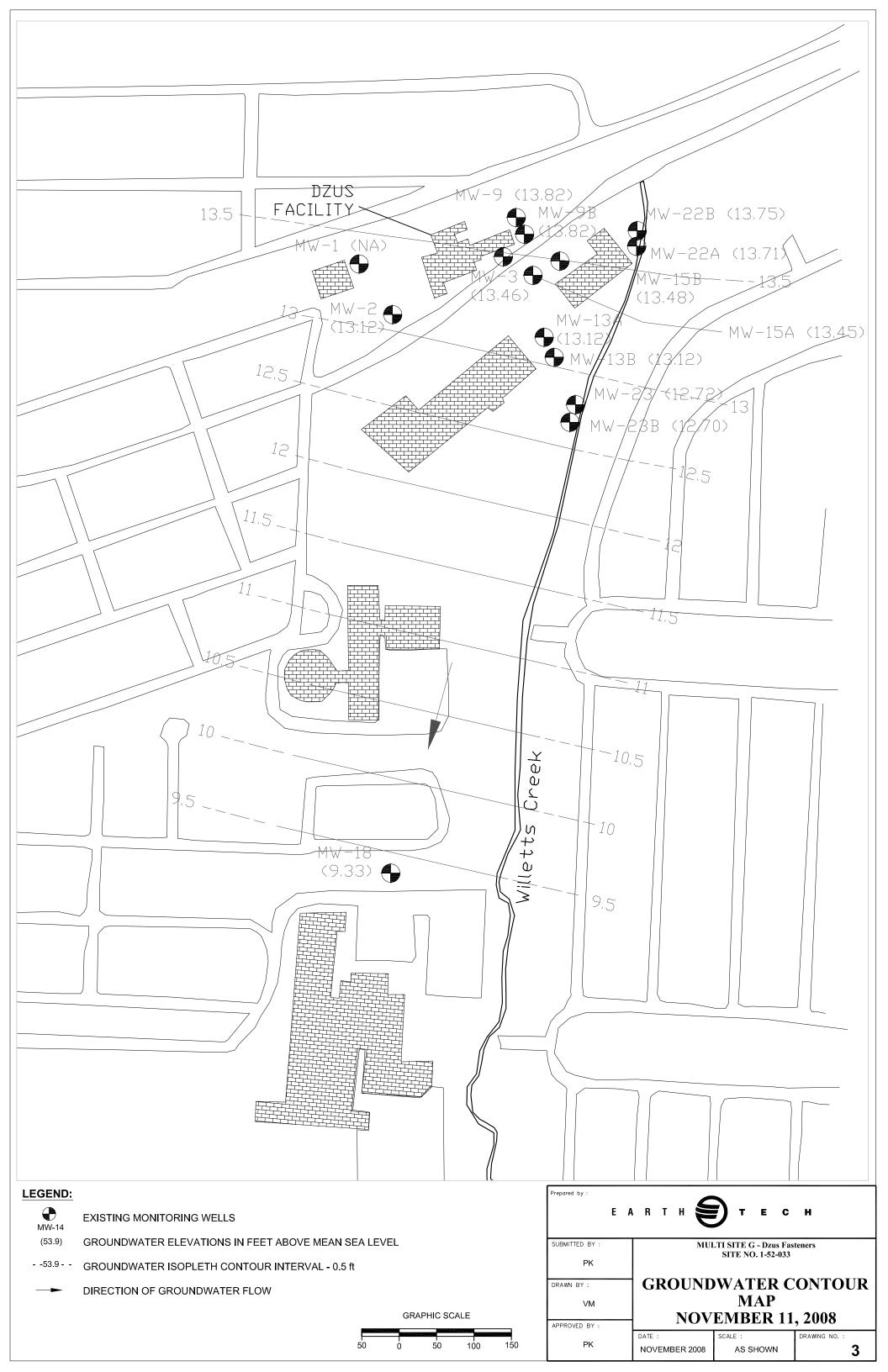
SUMMARY OF TAL METALS IN WILLETTS CREEK AND LAKE CAPRI SEDIMENT SAMPLES

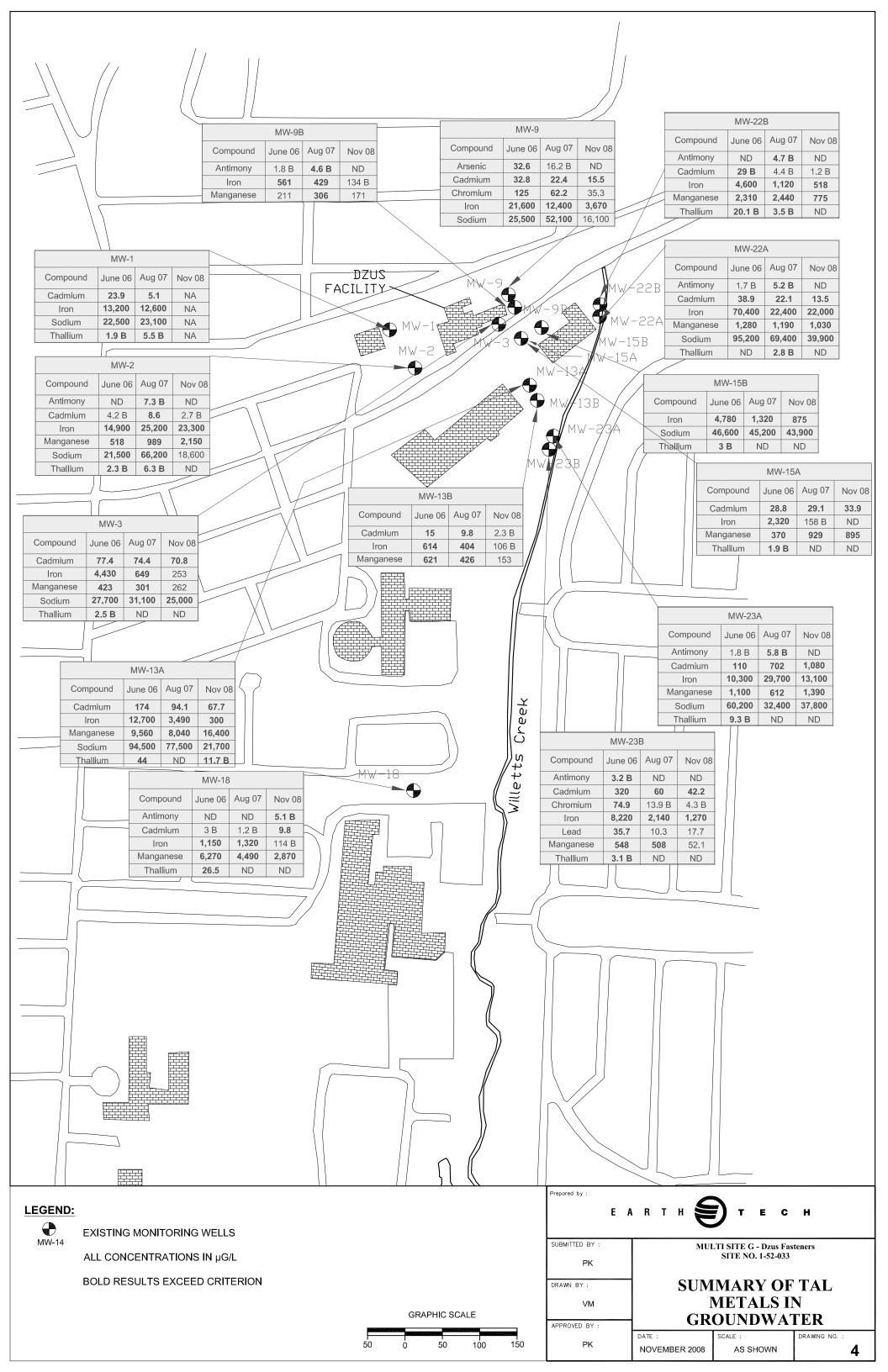
Sample Location	ocation		Lake	Lake	Lake	Willetts	Willetts	Willetts	Willetts	Willetts	Willetts
	NYS	DEC	Capri	Capri	Capri	Creek	Creek	Creek	Creek	Creek	Creek
Sample ID	Tech	nical	SED-4	SED-4	SED-4	SED-5	SED-5	DSED-5	SED-6	SED-6	DSED-6
Laboratory ID	Guida	nce for	E0868-08A	F1194-05A	G2136-16	E0868-10A	F1193-17A	G2114-21	E0868-12A	F1194-07A	G2114-17
Sample Date	Sedimen	t Criteria	6/21/06	8/23/07	11/14/08	6/21/06	8/23/07	11/14/08	6/21/06	8/23/07	11/14/08
Units	Lowest	Highest	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Effect	Effect	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	NC	2,730	3,290	1,790 *	1,060	552	5,150	1,030	775	7,700
Antimony	2.0	25	0.22 B	0.76 B	0.42 BN	0.074 B	0.27 B	1.1 BN	0.076	0.38 B	2.6 N
Arsenic	6.0	33	3.4	4	3.9	0.6 B	0.52 B	8.2	0.97	0.84 B	6.4
Barium	NC	NC	41.5	47.8	177 *E	12.1	13.6	96.6	7.4	4.7 B	89.7
Beryllium	NC	NC	0.2 B	0.22 B	0.13 B	0.083 B	0.03 B	0.34 B	0.094	0.049 B	0.36 B
Cadmium	0.6	9	32.3	32.3	15.8 N*E	0.43	1.6	52	0.23	0.31	101
Calcium	NC	NC	588	1,240	8,090 *	228	1,430	4,150	4,760	599	7,690
Chromium	26	110	8.6	12.5	6.8 E	3.8	2.7	33.3	2.4	3.4	41.8
Cobalt	NC	NC	4.9	10	7 E	1.2 B	1.1 B	7.8	1.8	0.77 B	8.1
Copper	16	110	21.6	35.7	17.1	4.7	4.7	103	28.3	6.3	77.3
Iron	20,000	20,000	4,450	9,330	7,280 E	3,400	3,410	23,900	3,290	2,900	25,600
Lead	31	110	71.2	193	34.3 N*E	7.9	4.9	215 E	7.9	10.3	109 E
Magnesium	NC	NC	352	519	653 *E	604	864	1,370	2,930	468	1,980
Manganese	460	1,100	837	845	11,700 *	174	291	2,140	102	30.4	978
Mercury	0.15	1.3	0.096	0.059 BN	0.21	0.016 B	0.0055 B	0.48	0.036 B	0.0063 UN	0.15
Nickel	16	50	6	10.7 E	6.3	1.6	1 B	19.2	1.8	1.9 BE	17.2
Potassium	NC	NC	145	236 E	281 *	135	58.3	320	118	122 E	528
Selenium	NC	NC	0.76 B	1.9 B	3.3	0.28 B	0.56 B	ND	ND	0.69 B	ND
Silver	1.0	2.2	ND	ND	1.1 B	ND	ND	ND	ND	ND	ND
Sodium	NC	NC	35.4 B	87	131	18.3 B	102	204	24.9 B	70.7	414
Thallium	NC	NC	3.7	ND	2.8	0.56 B	ND	2.1 B	0.25 B	0.36 B	0.98 B
Vanadium	NC	NC	9.2	16.9	7.4 E	5.6	4.5	54.2	9.9	6	42.4
Zinc	120	270	122	186	110 *E	13.2	26.2	290 E	17.2	24.2	409 E

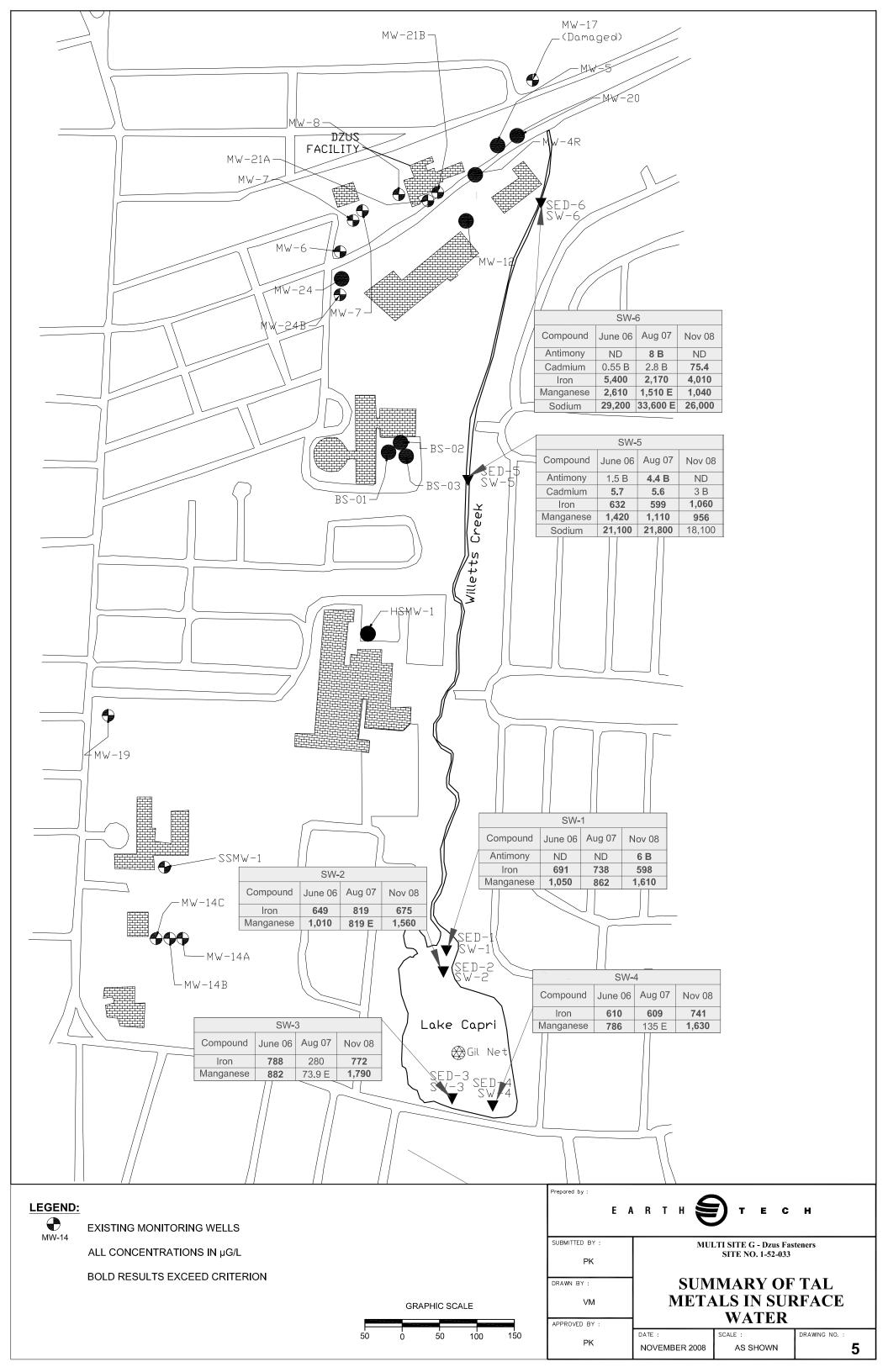
NC - No Criteria

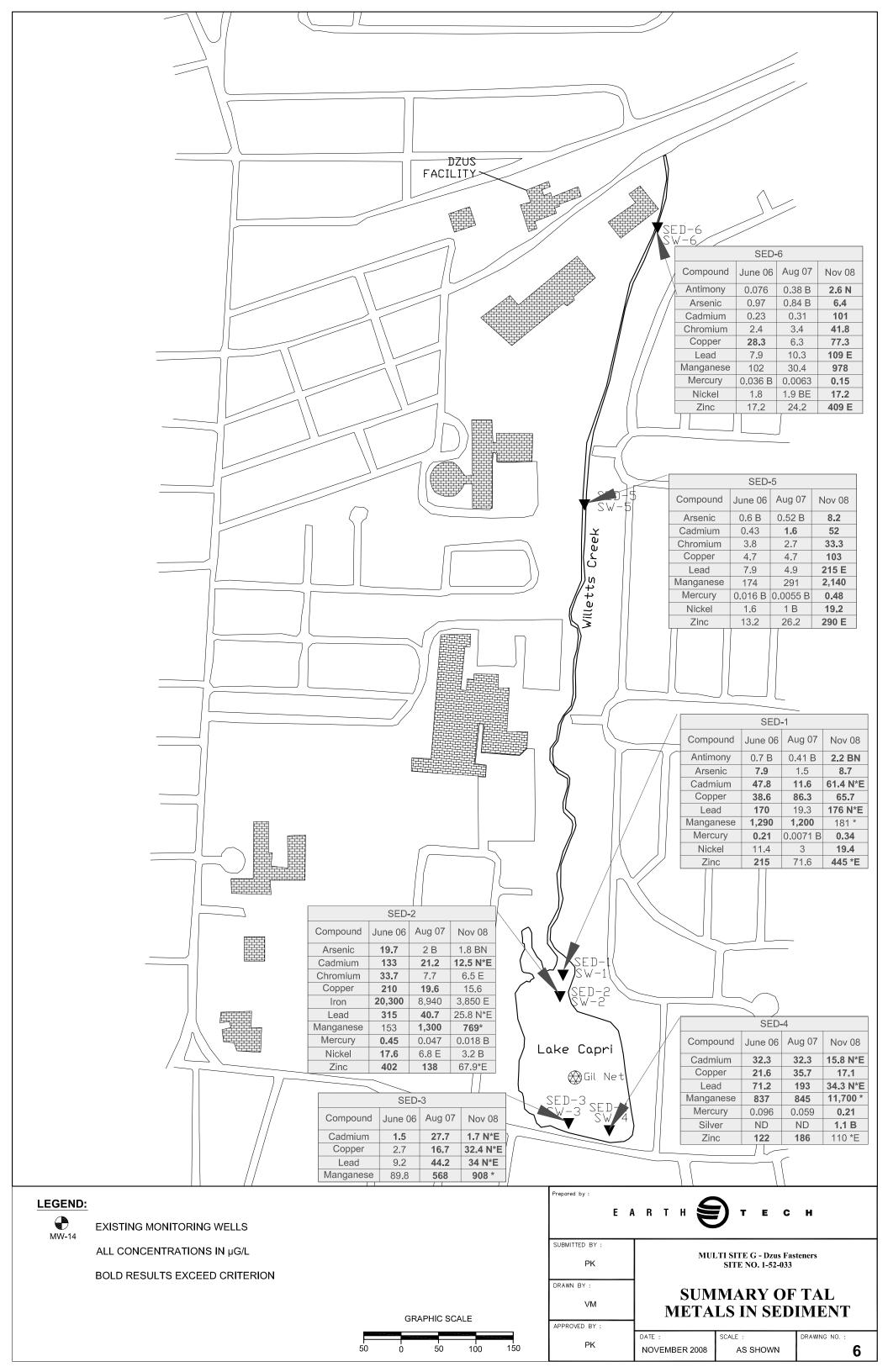

ND - Not Detected


B - Estimated value


E - Replicate RPDs were not within QC limits


* - Percent recovery for duplicates were not within QC limits


N - Spike recoveries were not within QC limts



APPENDIX A

MONITORING WELL AND SURFACE WATER SAMPLING FORMS

		•		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOR		95900	1 оғ	1					
LOCATION				Multi Site					DATE WELL STARTED	DATE WELL COMPL	ETED
Dzus F	astene	rs, West I	slip, N	(#1-52-0	33				11/11/08	11/11/08	
CLIENT	ork Sta	te Departi	mont of	Environn	oontal (Doncom	ation		NAME OF INSPECTOR MA / SC		
	OFK Sta	ie Departi			nentai (Junsen	auon		MA / SC SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :		Gallons	١	WELL TD:		ft	PUMP INTAKE DEPTH: ft		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	•	-	(ntu)		-	
									Static water level		
									pump on		
									Well was destroyed	during snow	
									removal in Decembe	er 2007	
								ļ			
								L			
								L			
	T .										
Pump	i ype:										
Analysi		omotore									
Analyti	cal Par	ameters:									

		-		PROJECT					PROJECT No.	SHEET	SHEETS			
WELL	SAMP	LING FOR		95900	1 оғ	1								
LOCATION				Multi Site					DATE WELL STARTED	DATE WELL COMPL	ETED			
Dzus F	astene	rs, West I	slip, N۱	(#1-52-0	33				11/11/08	11/11/08				
	orly Sta	to Donort	mont of	Environn	nontal (otion		NAME OF INSPECTOR MA / SC					
	COMPANY	te Depart	ment of	Environi	nentar	Jonsen	vation		MA / SC SIGNATURE OF INSPECTOR					
			1.0	Collona			44.0	4		40 F #				
	ONE WE	LL VOLUME :	1.0	Gallons		WELL TD:	14.3	π	PUMP INTAKE DEPTH: 13.5 ft					
	Depth			FIE	LD MEAS	SUREME	INTS							
Time	to Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	DEM	ARKS				
Time	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	рп	OKF	(ntu)		ARRS				
	(19	(gui/iiii)	(0)	(µ3/011)	(ing/L)			(inco)	1					
11:50	8.30								Static water level					
12:30	8.30	0.3	15.89	289	9.52	6.81	-82	342	pump on					
12:35	8.40		14.89	300	7.5	6.8	-110	661						
12:40	8.42		15.9	348	7.9	6.7	-116	41						
12:45	8.42	0.3	16	325	7.62	6.7	-123	18						
12:50									Collect sample DMV	V-2				
					1		<u> </u>	l	1					
Pumn	Tune	Centrifug	al num	n with his		tubing								
i unp	гурс.	Centinuy	a pun		or poly	ubiliy								
Analvti	cal Par	ameters:		TAL meta	als									
, anaryti	sui i ui			., .= 1100										

		•		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOR		Multi Site	G				95900	1 оғ	1
LOCATION									DATE WELL STARTED	DATE WELL COMPL	ETED
Dzus F	astene	rs, West I	slip, N	(#1-52-0	33				11/11/08	11/11/08	
CLIENT									NAME OF INSPECTOR		
New Y	ork Sta	te Depart	ment of	Environn	nental (Conser	ation		MA / SC		
DRILLING	COMPANY								SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :	1.4	Gallons	١	VELL TD:	15.0	ft	PUMP INTAKE DEPTH: 12.0 ft		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS	
-	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	•	-	(ntu)		-	
			. ,								
14:45	6.25								Static water level		
14:55	6.25	0.4	20.1	199	9.58	6.12	93	16	Pump on		
15:00	6.25	0.1	22	238	8.98	6.07	82	24			
15:05	6.25		21.9	245	8.9	6.06	97	16	Purged 6 gal		
15:10	6.25	0.4	21.95	250	8.95	6.07	97	10	i uigeu o gai		
15.10	0.25	0.4	21.90	200	0.95	0.07	97	10			
45.45									Callest sample DMV	<u></u>	
15:15									Collect sample DMV	V-3	
									Duplicate DMW-53		
									1		
									l		
Pump	Type:	Centrifug	al pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		VOCs, T	AL meta	als					

		•		PROJECT					PROJECT No.	SHEET	SHEETS	
WELL	SAMP	LING FOR		Multi Site	G				95900	1 оғ	1	
LOCATION									DATE WELL STARTED	DATE WELL COMPL	ETED	
Dzus F	astene	rs, West I	slip, N۱	/ #1-52-0	33				11/11/08	11/11/08		
CLIENT	orle Cto	to Donort	mont of	Environn	nontal (otion		NAME OF INSPECTOR MA / SC			
DRILLING	COMPANY	te Depart	ment of	EINNIOUL	nentar	Jonsen	alion		MA / SC SIGNATURE OF INSPECTOR			
				0			44.5					
	ONE WE	LL VOLUME :	1.1	Gallons	١	WELL TD:	11.5	π	PUMP INTAKE DEPTH:	10.0 ft		
	Depth			FIE	LD MEAS	SUREME	NTS					
Time	to	Purge	Tamm	Conduct	D 0		000	Tunkialitu	REMARKS			
Time	Water (ft)	Rate (gal/min)	Temp. (°C)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REIM	AKKS		
	(1)	(gai/iiiii)	(0)	(µ5/cm)	(ing/L)			(intu)				
13:40	5.01								Static water level			
13:50	5.08	0.3	19.42	287	9	6.66	-66	51	Pump on			
13:55	5.08	0.0	19.4	323	8.26	6.68	-92	525				
14:00	5.12		22.3	176	8.23	6.31	-70	191				
14:05	5.12	0.3	22.14	177	9.37	6.28	-60	42	Purged approx 5 ga			
14:10									Collect sample DMV	V-9		
_												
Pump ⁻	Type:	Centrifug	al pum	p with bla	ck poly	tubing						
				-								
Analyti	cal Par	ameters:		TAL meta	als							

		•		PROJECT					PROJECT No.	SHEET	SHEETS	
WELL	SAMP	LING FOI		Multi Site	G				95900	1 оғ	1	
LOCATION									DATE WELL STARTED	DATE WELL COMPL	ETED	
Dzus F	astene	rs, West I	slip, N۱	/ #1-52-0	33				11/11/08	11/11/08		
	orly Sta	ta Danart	mont of	Environn	nontal (otion		NAME OF INSPECTOR MA / SC			
DRILLING	COMPANY	te Depart	ment of	EINNIOUL	nentar	Jonsen	alion		SIGNATURE OF INSPECTOR			
			<u> </u>	0 11			44.5					
	ONE WE	LL VOLUME :	6.4	Gallons	١	WELL TD:	44.5	π	PUMP INTAKE DEPTH:	10.0 ft		
	Depth			FIE	LD MEA	SUREME	NTS					
	to	Purge			•							
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS		
	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)			(ntu)				
	4.93								Static water level			
14:20	5.05	1.7	22.28	285	8.96	6.46	10.6	37	Pump on			
14:25	5.05	1.7	16.8	141	10.1	6.19	32	6	Fullip on			
14:30	5.12		15.28	139	8.93	6.03	74	5				
14:35	5.12	1.5	16.12	141	9.22	5.98	86	1	Purged approx 25 g	<u></u>		
14.00	0.12	1.0	10.12	141	5.22	0.00	00	1				
14:40									Collect sample DMV	V-98		
14.40									Collect Sample Dim			
					ļ							
									<u> </u>			
Dumn '	Tunai	Contritue		n with his	ok nabi	tubing						
Pump	i ype:	Centrifug	ai pum	p with bla	ск роју	guiani						
Δnalvti	cal Par	ameters:		TAL meta	ale							
, that yu					410							

WELL NO. MW- 13A

				PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOR	RM	Multi Site	G				95900	1 оғ	1
				DATE WELL STARTED	DATE WELL COMPL	ETED					
DZUS F	astene	rs, West I	slip, N۱	(#1-52-0	33				11/12/08 NAME OF INSPECTOR	11/12/08	
	ork Sta	te Depart	ment of	Environn	nontal (Oneon	ation		MAME OF INSPECTOR MA / SC		
DRILLING	COMPANY	te Depart				5011361	allon		SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :	1.3	Gallons	١	WELL TD:	10.7	ft	PUMP INTAKE DEPTH: 6.0 ft		
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	P	••••	(ntu)			
11:40	2.90								Static water level		
11:50	2.90	0.3	19.58	310	8.7	6.99	21	42	Pump on		
11:55	2.93		21.9	374	8.5	6.92	26	108			
12:00	2.93		21.8	355	8.26	7	44	300			
12:05	2.93	0.3	21.9	348	7.82	7.02	48	310	Purged approx 5 ga		
12:10									Collect sample DMV	N/ 12A	
12.10										V-13A	
								1			
Į									!		
Pump ⁻	Type:	Centrifug	al pum	p with bla	ck polv	tubing					
•		0	•		. ,	5					
Analyti	cal Par	ameters:		VOCs, T	AL meta	als					

WELL NO. MW- 13B

\A/E-1-1	CAND			project Multi Site					PROJECT No.	SHEET	SHEETS	
		LING FO	KM	95900 date well started	1 OF DATE WELL COMPL	1 ETED						
Dzus F		rs, West I	slip, N۱	(#1-52-0	33				11/12/08	11/12/08		
CLIENT												
	ork Sta	te Depart	ment of	Environn	nental (Conserv	ation/		MA / SC Signature of inspector			
	ONE WE	LL VOLUME :	6.8	Gallons	١	WELL TD:	44.3	ft	PUMP INTAKE DEPTH: 6.0 ft			
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS		
	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	•		(ntu)				
11:40	2.73								Static water level			
12:20	2.73	1	20.71	224	8.67	6.74	76	13	Pump on			
12:25	2.80		18	176	9.28	5.98	106	5				
12:30	2.80		17.9	177	9.2	5.8	127	9	Duran dana ang 00 an	-1		
12:35	2.80 2.80	1	18.17	181 184	9.28 9.58	5.81 5.82	135 137	11 11	Purged approx 22 ga	ai		
12:40	2.60	1	19	104	9.56	0.0Z	137					
12:45									Collect sample DMV	V-13B		
12.40									Collect Sample Diviv	100		
					1			1	ļ			
Pump	Type:	Centrifug	al pum	p with bla	ck polv	tubing						
	••	0				5						
Analyti	cal Par	ameters:		TAL meta	als							

WELL NO. MW- 15A

				PROJECT					PROJECT No.	SHEET	SHEETS
		LING FOF	RM	Multi Site	G				95900	1 оғ	1
									DATE WELL STARTED	DATE WELL COMPL	ETED
Dzus F	astene	rs, West I	slip, N۱	/ #1-52-0	33				11/12/08	11/12/08	
CLIENT	ork Sta	te Departi	mont of	Environn	nontal (Concor	ation		NAME OF INSPECTOR MA / SC		
		te Depart			nemar	JUIISEIN	allon		SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :	3.8	Gallons	N	WELL TD:	28.8	ft	PUMP INTAKE DEPTH:	11.0 ft	
	Denth						NTO				
	Depth to	Purge		FIE	LD MEAS	SUREME	INTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS	
-	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	•	-	(ntu)		-	
07:25	5.66								Static water level		
08:55	5.68	1.6	18.5	293	9.86	5.92	25	12	Pump on		
09:00	5.70		21.5	179	9.46	6.09	64	40			
9:05	5.70		22	192	9.45	6.25	34	1			
9:10	5.70		21	186	9.81	6.16	100	1	Purged approx 12 g	al	
9:15	5.70	1.6	20.8	185	9.35	6.08	108	3			
9:20									Collect sample DMV	V-15A	
				L							
									1		
									1		
									1		
I					1			1	ł		
Pump	Type:	Centrifug	al pum	p with bla	ck polv	tubina					
) - . .										
Analvti	cal Par	ameters:		VOCs, T	AL meta	als					
				,							

WELL NO. MW- 15B

				PROJECT					PROJECT No.	SHEET	SHEETS
		LING FOR	RM	Multi Site	e G				95900	1 оғ	1
		ers, West I		/ #1_52 A	33				date well started 11/12/08	DATE WELL COMPL 11/12/08	_ETED
DZUS F	asterie		isiip, ivi	#1-52-0	33				NAME OF INSPECTOR	11/12/00	
New Y	ork Sta	te Depart	ment of	Environn	nental (Conserv	vation		MA / SC		
DRILLING	COMPANY	•							SIGNATURE OF INSPECTOR		
		ELL VOLUME :	12.9	Gallons		WELL TD:	84.7	ft	PUMP INTAKE DEPTH:	9.0 ft	
	Depth	D		FIE	LD MEAS	SUREME	NTS				
Time	to Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS	
Time	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	pri	OI	(ntu)		ANNO	
	,	(0 /	. ,		(U /			. ,			
7:25	5.62								Static water level		
8:10	5.69	0.6	11.01	267	11.8	7.2	42	20	Pump on		
8:15	6.85		15.63	345	10.05	5.77	77	6			
8:20	7.10		15.92	356	9.67	5.59	102	5			
8:25	7.10		14.26	350	9.5	5.54	91	11	Purged approx 40 g	al	
8:30	7.08		15.35	347	9.31	5.61	94	9			
8:35	7.88	0.6	15.12	342	9.61	5.52	93	1			
8:40									Collect sample DMV	V-15B	
		_									
Pump	Type:	Centrifug	al pum	p with bla	ck poly	tubing					
	. –										
Analyti	cal Par	ameters:		TAL meta	als						

WELL NO. MW- 18

		•		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOI		Multi Site	G				95900	1 оғ	1
LOCATION									DATE WELL STARTED	DATE WELL COMP	
Dzus F	astene	rs, West I	slip, N۱	Y #1-52-0	33				11/11/08	11/11/08	
									NAME OF INSPECTOR		
	ork Sta	te Depart	ment of	Environn	nental	Conser	ation		MA / SC SIGNATURE OF INSPECTOR		
DRILLING	COMPANY								SIGNATORE OF INSPECTOR		
	ONE WE	ILL VOLUME :	1.4	Gallons	١	WELL TD:	13.5	ft	PUMP INTAKE DEPTH:	9.0 ft	
	Depth to	Purge		FIE	LD MEA	SUREME	NTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	RFM	ARKS	
	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	pri	0.11	(ntu)			
	. ,		. ,	. , ,	,			. ,			
15:55	4.98								Static water level		
16:00	5.00	0.3	20.9	250	9.22	6.64	33	29	Pump on		
16:05	5.03		22.5	214	9.42	6.55	58	86			
16:10	5.03		22.63	203	9.3	6.55	88	10			
16:15	5.03	0.3	23	209	8.28	6.6	91	7	Purged approx 5 ga	Ī	
16:20									Collect sample DMV	V-18	
Pump	Туре:	Centrifug	al pum	p with bla	ck poly	tubing					
Analyti	cal Par	ameters:		TAL meta	als						

WELL NO. MW- 22A

		-		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOR		Multi Site	e G				95900	1 оғ	1
LOCATION	l						DATE WELL STARTED	DATE WELL COMPL	ETED		
Dzus F	astene	rs, West I	slip, N۱)	Y #1-52-0	33				11/12/08	11/12/08	
CLIENT	ork Sta	to Doport	mont of	f Environn	~ontol (Concon	ration		NAME OF INSPECTOR MA / SC		
DRILLING	COMPANY	te Depart	ment of	Environi	nemarc	-0115ei v	allon		IVIA / SC SIGNATURE OF INSPECTOR		
			1.0				44.4	~		14.0.4	
	ONE WE	ELL VOLUME :	1.3	Gallons	V	WELL TD:	14.4	ft	PUMP INTAKE DEPTH:	11.0 ft	
	Depth			FIE	LD MEAS	SUREME	NTS				
T :ma	to Water	Purge	-	Canduat	- <u></u>			Turkidity	- DEM		
Time	Water (ft)	Rate (gal/min)	Temp. (°C)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	KEIWI	ARKS	
	('''	(gai, iiii)		(µ3/011)	('	(11.4)			
09:50	6.4		├ ───┤		├ ───┦		'		Static water level		
10:10	6.4	0.3	18.93	374	10.04	6.53	27	210	Pump on		
10:15	6.48		21	481	9.24	6.55	-37	170			
10:20	6.6		22.2	483	9.08	6.67	-58	40	1		
10:25	6.58	0.3	21.87	504	8.84	6.65	-72	19	Purged approx 5 gal	1	
-	_				-						
10:30									Collect sample DMV	V-22A	
									MS/MSD		
									Duplicate DMW-72		
						\square					
						$\Box $					
						\square					
						\Box					
					<u>[</u>						
					<u>[</u>						
			<u> </u>		<u> </u>	<u> </u>					_
			['		[!	[!	Ē'				
			['		[!	[!	Ē'				
			<u> </u>		<u> </u>	<u> </u>	<u> </u>				
			<u> </u>	'	<u> </u>	<u> </u>	 '				
			<u> </u>	'	<u> </u>	<u> </u>	 '				
			<u> </u>		<u> </u>	<u> </u>	 '				
			<u> </u>		<u> </u>	<u> </u>	 '				
			<u> </u>		<u> </u>	<u> </u>	 '				
			<u> </u>	'	<u> </u>	<u> </u>	 '				
			<u> </u>		<u> </u>	<u> </u>	 '				
			<u> </u>	'	<u> </u>	<u> </u>	 '				
			<u> </u>	ļ'	<u> </u>	<u> </u>	 '				
			<u> </u>				Ľ'				
	_		_								
Pump	Туре:	Centrifug	jal pum	p with bla	ck poly	tubing					
		1		.							
Analyti	cal Par	ameters:		TAL meta	ais						

WELL NO. MW- 22B

		<u> </u>	· · · · · · · · · · · · · · · · · · ·	PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOF		Multi Site	∋ G				95900	1 оғ	1
LOCATION	l						DATE WELL STARTED	DATE WELL COMPL	.ETED		
Dzus F	astene	ers, West I	Islip, NY	/ #1-52-0	33				11/12/08	11/12/08	
CLIENT	ork Sta	ite Departi	mont of	Environr	mantal (200000	ration		NAME OF INSPECTOR MA / SC		
DRILLING	COMPANY	е реран	ment or	Environi	lientai c	2011261	/auon		SIGNATURE OF INSPECTOR		
	ONE WE	ELL VOLUME :	6.2	Gallons	١	WELL TD:	44.5	ft	PUMP INTAKE DEPTH:	10.0 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	INTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	-		(ntu)			
		[!	<u> </u>		<u>[</u>						
09:50	6.23	<u> </u>	<u> </u>		<u> </u>		<u> </u>		Static water level		
10:40	6.22	1	21.6	348	9.1	7.06	-105	49	Pump on		
10:45	6.31	<u> </u>	18.25	258	9.63	7.01	-84	23			
10:50	6.31	<u> </u>	16.7	251	8.5	6.36	23	10			
10:55	6.31		17	253	8.7	6.31	58	3	Purged approx 20 g	al	
11:00	6.31	1	17.14	254	9.2	6.35	62	6			
		[!	[!	['	<u>['</u>		['				
11:05		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Collect sample DMV	V-22B	
<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>				
		<u> </u>	<u> </u>		<u> </u>		<u> </u>				
		<u> </u>	<u> </u>		<u> </u>		<u> </u>				
	I	[!	[!	['	['	['	['	<u>[</u>			
			[[]	['	['				
			[[]	['	['				
		<u>[</u> '	<u> </u>								
		,	ı				· · · ·				
		· · · ·									
		,	ر		· · · ·		· · · ·				
		, , , , , , , , , , , , , , , , , , ,							1		
		,							1		
									1		
		 			i				1		
									1		
		!			1				1		
		·	·	<u> </u>	·	·	·	·	<u>.</u>		
Pump ⁻	Tvpe:	Centrifug	al pum	p with bla	ck poly	tubing					
		- U									
Analyti	cal Par	rameters:		TAL meta	als						

WELL NO. MW- 23A

		<u> </u>		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOR		Multi Site	∋ G				95900	1 оғ	1
LOCATION							DATE WELL STARTED	DATE WELL COMPL			
Dzus F	astene	rs, West I	slip <u>, N</u>	Y #1-52-0	33				11/12/08	11/12/08	
CLIENT						-			NAME OF INSPECTOR		
New Y	ork Sta	te Depart	ment of	f Environn	nental (Conserv	/ation		MA / SC		
DRILLING	COMPANY								SIGNATURE OF INSPECTOR		
I	ONE WE	ELL VOLUME :	1.6	Gallons	,	WELL TD:	14.3	ft	PUMP INTAKE DEPTH:	10.0 ft	
Ļ											
1	Depth	Derrore		FIE	LD MEAS	SUREME	NTS				
Time	to Water	Purge Rate	Temp.	Conduct.	DO		ORP	Turbidity	- DEM	ARKS	
Time	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	рН	UKF	(ntu)		AKNO	
	(17	(90,000)		(µ3/011)	(!	├ ───┦	(inco)	<u> </u>		
13:05	4.64		<u> </u>	 	<u> </u>	┟───┦	i────′		Static water level		
13:20	4.64	0.4	20.16	252	8.75	6.27	49	10	Pump on		
13:25	4.7	01	20.10	513	8.12	6.54	-43	27			
13:30	4.7		22.5	580	8.18	6.69	-70	40	1		
13:35	4.7	0.4	23.4	618	8.02	6.72	-83	60	Purged approx 6 gal	I	
10.00	4.7	U. T	20.7	010	0.02	0.72	-00	00	Fuiged approx o gai	1	
13:40			 '	 '	 '	┟───┦	┟──── ┘		Collect sample DMV	N-23∇	
13.40			┢────┘	 '	┢────┘	┢───┦				V-23A	
			┢────┘	 '	┢────┘	┢───┦			<u> </u>		
				'		┢────┦			1		
			┟────┘	 '	┟────┘	┟───┦	┢────┘				
			┟────┘	 '	┟────┘	┟───┦	┢────┘				
			┟────┘	 '	┟────┘	┟───┦	┟────┘		 		
			┟────┘		┟────┘	├ ───┦	┟────┘				
			┟────┘	 '	┟───┘	┟─── ┦	┟────┘				
			───	'	───	├ ───┦	┢────┘				
			┟────┘		┟────┘	├ ───┦	┟────┘				
			───┘	 '	───┘	↓ /	┢────┘				
			┟────┘	 '	───′	├ ───┦	┢────┘				
			───	'	───	├ ───┦	┢────┘				
			───┘	ļ'	───┘	↓ !	┢────┘		<u> </u>		
			───′	ļ!	───┘	↓ !	└───┘				
			───′		───′	├ ───┦	├ ────┘				
			───┘	ļ'	───┘	↓ !	┢────┘		<u> </u>		
			───┘	ļ'	───┘	↓ !	┢────┘		<u> </u>		
			───′	ļ!	───┘	↓ !	└───┘				
			┟────┘	ļ'	┟────┘	└─── ┦	┢────┘		<u> </u>		
			┟────┘	ļ'	┟────┘	└─── ┦	┢────┘		<u> </u>		
			───′	ļ!	───┘	↓ !	└───┘				
			┟────┘	ļ'	┟────┘	└─── ┦	┢────┘		<u> </u>		
			 '	 '	 '	↓ ′	└──── ′		<u> </u>		
			───′	i	───′	↓ !	┢────┘				
			┟────┘	i	┟────┘	└─── ┦	┢────┘		1		
	<u> </u>		<u> </u>		<u> </u>						
D	T	0				4 I					
Pump	Type:	Centritug	jai pum	p with bla	ск роіу	tubing					
د. ۱۰ مارین				TAL meta							
Anaiyu	cai rai	ameters:		TAL Meta	315						

WELL NO. MW- 23B

		<u> </u>		PROJECT					PROJECT No.	SHEET	SHEETS
WELL	SAMP	LING FOR		Multi Site	e G				95900	1 оғ	1
LOCATION	1			•			DATE WELL STARTED	DATE WELL COMPL	ETED		
Dzus F	astene	ers, West I	slip, N)	<u>í #1-52-0</u>	33				11/12/08	11/12/08	
CLIENT	ork Sta	to Doport	mont of	f Environr	~ontol (Concon	ration		NAME OF INSPECTOR MA / SC		
	COMPANY	te Depart	ment of	Environi	nentar	JUNSEIN	allon		IVIA / SC SIGNATURE OF INSPECTOR		
				2			44.5	*.	•	10.0.4	
	ONE WE	ELL VOLUME :	6.5	Gallons	١	WELL TD:	44.5	ft	PUMP INTAKE DEPTH:	10.0 ft	
	Depth			FIE	LD MEA	SUREME	NTS		1		
	to	Purge									
Time	Water	Rate	Temp.	Conduct.		рН	ORP	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(°C)	(µs/cm)	(mg/L)	↓ ′	 '	(ntu)	 		
12:05	4 50	ļ'	↓ ′	ļ'	 '	───┦	'	 	Otatia watar laval		
13:05	4.58	1	01.96	450	0.00	6.74	52	22	Static water level		
13:50 13:55	4.58 4.70	1	21.86		8.23 9	6.74 7.07	-53	33 24	Pump on		
13:55	4.70	 '	22.08 28.38		9.21	6.34	-85 -29	24	<u> </u>		
14:00	4.75	 '	20.30	201	9.21	6.34 5.9	-29 50	41	Purged approx 20 g		
14:05	4.75	1	16.8	213	8.8	5.9 5.83	50 70	8	Puigeu appiox 20 g	al	
14.10	4.75		10.0	212	0.0	0.00	10	0	<u> </u>		
14:15		 '	┟────┘	 '	 '	├ ───┦	 '		Collect sample DMV	1/_22R	
14.10		<u> </u>	├─── ′	<u> </u>	├ ───'	┨────┦	<u> </u> '			V-23D	
					┝───┘	┟───┦	'		1		
		 	}/	 	┠────┘	┠───┦	i'		1		
		 '	}/	 '	├ ────'	┠───┦	i'		1		
		 	├ ───┦	 	┣────	┟───┦	'		<u>+</u>		
		 	├ ───┦	 	┣────	┟───┦	'		<u>+</u>		
			├ ───┦		├ ────	├ ──┦			+		
					<u> </u>	├ ──┦			+		
			├ ───┤		├ ────	├ ──┦					
			├ ──┤		'	├ ──┦					
			├ ──┤		'	├ ──┦					
			├ ───┤		'	├ ── /	'		1		
		<u> </u>	├ ───	<u> </u>	'	├ ── /	'		1		
			├ ──┤		'	├ ──┦					
			├ ──┤		'	├ ──┦					
		<u> </u>	├ ───	<u> </u>	'	├ ── /	'		1		
			├ ───┤		'	├ ── /			1		
									1		
									1	-	
		 		 				1	1		
									1	-	
										-	
									1		
									1		
									1		
	J	<u>.</u>			,				4		
Pump ⁻	Type:	Centrifug	al pum	p with bla	ck poly	tubing					
		-				•					
Analyti	cal Par	rameters:		TAL meta	als						

		THEOD								R SAMPLE: SW-1
SURF	ACE W	ATER SA		G FORM		project Multi S			PROJECT №. 95900	SHEET SHE 1 of 1
OCATION									DATE WELL STARTED	DATE WELL COMPLETED
Dzus F	astene	ers, West I	slip, N۱	(#1-52-0	33				11/14/08 NAME OF INSPECTOR	11/14/08
	ork Sta	te Depart	ment of	Environn	nental (Conserv	vation		MA / SC	
UBCONT	RACTOR C	te Depart		LINIOII		5011301			SIGNATURE OF INSPECTOR	ł
	Depth of	Durge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	RE	MARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	P	••••	(ntu)		
	8		13.45	185	12.13	6.42	95	12		
									40º 41.851 N	
									73º 18.071 W	
14:40									Collect comple SM	V 1
14.40									Collect sample SV Collected MS/MSE	
									Duplicate SW-51 a	
14:30									Collected sedimen	nt SED-1
Dumo		Dippod b	ottloc ir	to the we	tor for			d a nonor	dredge for sedimer	
unp	туре.	Dipped p				conectio	use, use	u a ponar	ureage for searcher	
nalyti	cal Par	ameters:		TAL meta	als					
-										

						PROJECT			PROJECT No.	SHEET SHEE	
	ACE W	ATER SA	MPLIN	G FORM		Multi S	Site G		95900 date well started	1 of 1 DATE WELL COMPLETED	
Dzus F		rs, West I	slip, N	7 #1-52-0	33				11/14/08	11/14/08	
LIENT						- - - -	ation		NAME OF INSPECTOR MA / SC		
UBCONT	OFK Sta	te Departi	ment of	Environn	nentar	Jonsen	ation		SIGNATURE OF INSPECTOR		
	Depth of	Purge		FIE	LD MEAS	SUREME	INTS				
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REI	MARKS	
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)			
	8		13.89	196	11.44	6.59	89	9			
	0		13.09	190	11.44	0.59	09	3			
									40º 41.844 N		
									73º 18.049 W		
14.00										or comple OM/ O	
14:20				ļ					Collect surface wat	er sample SW-2	
14:10									Collect sediment sa	ample SED-2	
										ł	
-		Dipped b ameters:		nto the wa		collectio	on, use	d a ponar	dredge for sedimen	t collection	

2 41.756 N 2 18.044 W	MARKS ter sample SW-3
14/08 E OF INSPECTOR A / SC ATURE OF INSPECTOR RE 9 41.756 N 9 18.044 W llect surface wat	11/14/08 MARKS ter sample SW-3
E OF INSPECTOR A / SC ATURE OF INSPECTOR RE 41.756 N 18.044 W llect surface wat	MARKS ter sample SW-3
RE 9 41.756 N 9 18.044 W 1 18.044 W	MARKS ter sample SW-3
RE 2 41.756 N 2 18.044 W llect surface wat	MARKS ter sample SW-3
9 41.756 N 9 18.044 W llect surface wat	ter sample SW-3
9 41.756 N 9 18.044 W llect surface wat	ter sample SW-3
9 41.756 N 9 18.044 W llect surface wat	ter sample SW-3
9 18.044 W	•
llect surface wat	•
	•
llect sediment s	ample SED-3
nect sealment S	ample SED-3
	ge for sedimer

Eurth		•				^{project} Multi S			PROJECT No.	SHEET SHEE	
SURF/	ACE W	ATER SA	MPLIN	G FORM			95900				
ocation Dzus F		ers, West I	slip. N	(#1-52-0	33				date well started 11/14/08	DATE WELL COMPLETED 11/14/08	
LIENT									NAME OF INSPECTOR		
Vew Y	Ork Sta	te Depart	ment of	Environn	nental (Conser	/ation		MA / SC SIGNATURE OF INSPECTOR		
		-									
	Depth	Dumme		FIE	LD MEAS	SUREME	NTS				
Time	of Water	Purge Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	RE	MARKS	
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	Ľ	_	(ntu)		-	
	8		13.25	197	11.71	6.29	89	35			
									40º 41.735 N		
									73º 17.985 W		
15:20									Collect surface wat	ter sample SW-4	
15:30									Collect sediment sa	ample SED 4	
10.00										ample SED-4	
				ļ							
-		Dipped b ameters:		nto the wa		collectio	on, use	d a ponar	dredge for sedimen	t collection	

SURF	ACE W	ATER SA	MPLIN	g form		^{project} Multi S			PROJECT №. 95900	SHEET 1 OI	
LOCATION		rs, West I	slin NN	(#1 - 52-0'		date well started 11/12/08	DATE WELL CO 11/12/08	MPLETED			
CLIENT									NAME OF INSPECTOR	11/12/00	
New Y	ork Sta	te Depart	ment of	Environn	nental C	Conser	ation/		MA / SC SIGNATURE OF INSPECTOR		
SUBCONT	RACIORC	OWPANT							SIGNATURE OF INSPECTOR		
	Depth of	Purge			LD MEAS		-				
Time	Water (ft)	Rate (mL/min)	Temp. (°C)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REN	IARKS	
	3		10.91	196	9.41	6.88	11	1.6			
									40º 42.085 N		
									73º 18.036 W		
15:30									Collect surface wat	er sample S	W-5
15:40									Collect sediment sa	mole SED-F	5
13.40									Collect Sediment Se		,
Pump [*] Analyti		Dipped b ameters:		nto the wa		collectio	on, use	d a ponar	dredge for sediment	collection	

						PROJECT			PROJECT No.	SHEET SHE
SURFACE WATER SAMPLING FORM Multi Site G						95900	1 OF 1			
LOCATION Dzus Fasteners, West Islip, NY #1-52-033						date well started 11/12/08	DATE WELL COMPLETED 11/12/08			
CLIENT New York State Department of Environmental Conservation SUBCONTRACTOR COMPANY							NAME OF INSPECTOR			
IEW Y	ork Sta ractor c	te Depart	ment of	Environn	nental C	Conser	ation/		MA / SC SIGNATURE OF INSPECTO	R
	Depth of	Purge		FIE	LD MEAS	SUREME	NTS			
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	R	EMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)		
	1		11.97	316	5.2	6.5	-4	2.3		
			11.57	010	0.2	0.0	т	2.0		
4:30									Collect surface wa	ater sample SW-6
4:20									Collect sediment	sample SED-6
17.20									MS & MSD	
									SED-56 (Duplicat	e) at 14:25
									40º 42.458 N	
									73º 17.949 W	
-		Dipped b ameters:		nto the wa		collectio	on, use	d a ponar	dredge for sedime	nt collection

APPENDIX B

NYSDEC MONITORING WELL FIELD INSPECTION LOGS

SITE NAME: Dzus Fasteners	SITE ID.: <u>1-52-033</u>
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: <u>SC/MA</u> DATE/TIME: <u>11/11/08 12:00</u> WELL ID.: <u>MW-01</u>
WELL VISIBLE? (If not, provide directions below)	18.10 See Report
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
HEADSPACE READING (ppm) AND INSTRUMENT USED: TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applical PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	ole) F <u>lushmount</u> SS
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe bel WELL MEASURING POINT VISIBLE?	ow)
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
	····· <u>-</u>

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Located in grassy area at the southwest corner of parking lot

Located near front of building on grassy area east of parking lot at building corner

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

REMARKS:

The well is broken (see picture). ET was informed by Dzus, that the well was apparently destroyed during snow removal operations in December 2007.

MONITORING WELL INSPECTION LOG

Project: Dzus Fasteners

SITE NAME:	Dzus Fasteners
------------	----------------

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: 1-52-033

INSPECTOR: SC/MA

DATE/TIME: 11/11/08 11:30 WELL ID.: MW-2

		YES	S NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 40° 42.49	NYTM Y 73º 18.10	X See Rep	oort
PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or Magellan	Satelites:		
WELL I.D. VISIBLE?		YES	S NO X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual local	tion on back) Move back 30 ft		Х
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WE	LL:	YES	X SINO
SURFACE SEAL PRESENT?	,	X X X	
HEADSPACE READING (ppm) AND INSTRUMENT USED: TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP II	Mini RAE 2000 N FEET (If applicable)	0.0 F	Ishmount
LOCK PRESENT?		YES	
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?			X X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (x	X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		14.	-
/	<i>,</i>	8.3	2
		PVC GOC	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MA		-	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		yes.	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Power line along Union Avenue, Accessible by truck mounted rig

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located in grassy area at the southwest corner of parking lot

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

Needs new lock and well cap

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: 1-52-033

INSPECTOR: SC/MA

DATE/TIME: 11/11/08 10:30 WELL ID.: MW-3

		YES	NO
WELL VISIBLE? (If not, provide directions below)	••	Х	
WELL COORDINATES? NYTM X 40° 42.49 NYTM Y 73° 18.02	S	ee Rep	ort
PDOP Reading from Trimble pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan			
		YES	
WELL I.D. VISIBLE?			Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		N/A	
		YES	NO
SURFACE SEAL PRESENT?		Х	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	••	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED:		0.0 P	ID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Flu	shmount
PROTECTIVE CASING MATERIAL TYPE:		SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		6	
		YES	NO
LOCK PRESENT?			Х
LOCK FUNCTIONAL?			Х
DID YOU REPLACE THE LOCK?			Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)			Х
WELL MEASURING POINT VISIBLE?	••	Х	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		15	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		6.25	
MEASURE WELL DIAMETER (Inches):		2	
WELL CASING MATERIAL:		PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:		GOO	D
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	••	-	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	••		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck, Power lines along Union Blvd

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. In a grassy area along Union blvd

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

Needs new lock and well cap

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: 1-52-033 INSPECTOR: MKC/SB

DATE/TIME: 11/11/08 10:40

WELL ID.: MW-9

	YES NO
WELL VISIBLE? (If not, provide directions below)	Х
WELL COORDINATES? NYTM X 40° 42.50 NYTM Y 73° 18.02	See Report
PDOP Reading from Trimble pathfinder: Satelites:	
GPS Method (circle) Trimble And/Or Magellan	
	YES NO
WELL I.D. VISIBLE?	Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	Х
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: N/A wrongly numbered on	
road	YES NO
SURFACE SEAL PRESENT?	Х
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	Х
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х
HEADSPACE READING (ppm) AND INSTRUMENT USED:	0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	. Flushmount
PROTECTIVE CASING MATERIAL TYPE:	SS
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6
	YES NO
LOCK PRESENT?	Х
LOCK FUNCTIONAL?	Х
DID YOU REPLACE THE LOCK?	Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	. X
WELL MEASURING POINT VISIBLE?	Х
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	11.5
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	5.01
MEASURE WELL DIAMETER (Inches):	2
WELL CASING MATERIAL:	-
PHYSICAL CONDITION OF VISIBLE WELL CASING:	GOOD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Building corner

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS: Needs new lock and rubber cap

MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11		40
	WELL ID.: M	W-9B	
		YES	NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 40° 42.49 NYTM Y 73° 18.01		. X See Repo	ort
PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan			
WELL I.D. VISIBLE?		YES . X	NO
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) Move		. <u>^</u> X	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: N/A written of	on road		
SURFACE SEAL PRESENT?		YES . X	NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)			
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		. X	
HEADSPACE READING (ppm) AND INSTRUMENT USED:		0.0 P	ID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)			shmount
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):			
		YES	NO
LOCK PRESENT?		. X	
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?			X X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)			^ X
WELL MEASURING POINT VISIBLE?			
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		. 44.5	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):			
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:			
PHYSICAL CONDITION OF VISIBLE WELL CASING:			D
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE			
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES			

SITE ID.: 1-52-033 INSPECTOR: SC/MA

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Building corner

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Located on side walk near parking lot on the east of building

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): N/A

REMARKS:

SITE NAME:

Dzus Fasteners

Needs new well cap (rubber), broken well cover needs to be replaced, missing screws.

MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/11/08 9:20 WELL ID.: MW-13A
WELL VISIBLE? (If not, provide directions below)	
WELL COORDINATES? NYTM X 40° 42.44 NYTM Y 73° 17.100 PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan	See Report
WELL I.D. VISIBLE? On pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT?	YES NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X X X
HEADSPACE READING (ppm) AND INSTRUMENT USED:	F <u>lushmount</u> SS
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	X X X X X X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	2.90 2 PVC GOOD -
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obst	

SITE ID.: 1-52-033 INSPECTOR: SC/MA

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. In parking lot, side of Long John silver (closed shop)

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Behind the building

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

SITE NAME:

Dzus Fasteners

Needs new lock, well cap and casing cover

SITE NAME: Dzus Fasteners	SITE ID.: 1-	52-033	
	INSPECTOR: S	C/MA	
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 1	1/11/08 9:20	C
	WELL ID.: M	W-13B	
		YES	NO
WELL VISIBLE? (If not, provide directions below)			
WELL COORDINATES? NYTM X 40° 42.43 NYTM Y 73° 17		See Repo	ort
PDOP Reading from Trimble pathfinder: Satelites:		000110	
GPS Method (circle) Trimble And/Or Magellan			
		YES	NO
WELL I.D. VISIBLE? On pavement (spray paint)		Х	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		· · · · ·	
WELL I.D. AS IT AFFEARS ON PROTECTIVE CASING OR WELL.		YES	NO
SURFACE SEAL PRESENT?		-	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)			
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)			
HEADSPACE READING (ppm) AND INSTRUMENT USED:	Mini DAE 2000	0.0 P	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applic			ishmoun ⁻
PROTECTIVE CASING AND HEIGHT OF STICKOF IN FEET (II applic PROTECTIVE CASING MATERIAL TYPE:	,		SIIIIOUII
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):			
		YES	NO
LOCK PRESENT?		. X	
LOCK FUNCTIONAL?			Х
DID YOU REPLACE THE LOCK?			Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe b			Х
WELL MEASURING POINT VISIBLE?		. X	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		. 44.3	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):			
MEASURE WELL DIAMETER (Inches):			
WELL CASING MATERIAL:			
PHYSICAL CONDITION OF VISIBLE WELL CASING:			D
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE			
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		. <u>-</u>	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig. nature	al obstructions overhe	ad	

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. In parking lot, side of Long John silver (closed shop)

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Behind the building

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

Needs new lock, well cap and casing cover

MONITORING WELL FIELD INSPECTION L	DATE/TIME: 11/ WELL ID.: MW		
WELL COORDINATES? NYTM X 40° 42.49 PDOP Reading from Trimble pathfinder:	NYTM Y <u>73° 17.97</u> Satelites:		YES NO X See Report
GPS Method (circle) Trimble And/Or Magellan WELL I.D. VISIBLE? On pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual loc WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WI	ation on back)		YES NO X X
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., deso PROTECTIVE CASING IN GOOD CONDITION? (If damaged, c	cribe below)		YES NO X X X
HEADSPACE READING (ppm) AND INSTRUMENT USED: TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches	IN FEET (If applicable)		0.0 PID Flushmount SS 8 YES NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? WELL MEASURING POINT VISIBLE?			X X X X X X X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (F MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY M PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	Feet):		28.8 5.64 2 PVC GOOD - -
DESCRIBE ACCESS TO WELL: (Include accessibility to truck n	nounted rig, natural obs	structions, overhea	d

SITE ID.: 1-52-033

INSPECTOR: SC/MA

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Opposite to ACE hardware store in the parking lot on asphalt pavement

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS: Needs new lock and well cap

SITE NAME:

Dzus Fasteners

MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/11/08 9:10 WELL ID.: MW-15B
WELL VISIBLE? (If not, provide directions below)	YES NO X
WELL COORDINATES? NYTM X 40° 42.50 NYTM Y 73° 17.96 PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or	See Report
WELL I.D. VISIBLE? On asphalt pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED:	Flushmount
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	X X X X X X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	5.58 2 PVC GOOD -
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obst	tructions, overhead

SITE ID.: <u>1-52-033</u> INSPECTOR: SC/MA

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Opposite to ACE hardware store in the parking lot on asphalt pavement

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

Needs new lock, well cap and screws for cover plate

SITE NAME: Dzus Fasteners

SITE NAME: Dzus Fasteners	SITE ID.: 1-52-033
	INSPECTOR: SC/MA
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/11/08 09:45
	WELL ID.: MW-18
	YESNO
WELL VISIBLE? (If not, provide directions below)	X
WELL COORDINATES? NYTM X NYTM Y	See Report
	tes:
GPS Method (circle) Trimble And/Or Magellan	
	YESNO
WELL I.D. VISIBLE? On pavement (spray paint)	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on bac	ck) X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	Х
	YES NO
SURFACE SEAL PRESENT?	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below	ow)X
HEADSPACE READING (ppm) AND INSTRUMENT USED:	Mini RAE 2000 0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If	
	<u>SS</u>
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
	YES NO
LOCK PRESENT?	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,desc	
WELL MEASURING POINT VISIBLE?	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	GOOD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TY	PE
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	<u>-</u>
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig.	natural obstructions, overhead

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Near fence (western fence of high school parking lot)

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): In grassy area

REMARKS:

Needs new lock and well casing cover screws

MONITORING WELL FIELD INSPECTIO	N LOG	DATE/TIME: 11/ [,] WELL ID.: MW			
WELL VISIBLE? (If not, provide directions below)			YES NO X		
WELL COORDINATES? NYTM X 40° 42.491	NYTM Y 73° 17 Satelites:	7.941	See Report		
WELL I.D. VISIBLE? On concrete pad (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actu	al location on back)		X X		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING C	DR WELL:		N/A YES NO		
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., PROTECTIVE CASING IN GOOD CONDITION? (If damag	, describe below)		X X X X		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (II	KUP IN FEET (If application of the second se	able)	0.0 PID Flushmount SS 6 YES NO X		
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CAS WELL MEASURING POINT VISIBLE?		elow)	X X X X		
MEASURE WELL DEPTH FROM MEASURING POINT (F MEASURE DEPTH TO WATER FROM MEASURING POI MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTI PROXIMITY TO UNDERGROUND OR OVERHEAD UTILI	eet): NT (Feet): FY MARKER TYPE		14.40 6.38 2 PVC GOOD - -		
DESCRIBE ACCESS TO WELL: (Include accessibility to tr	ruck mounted rig, natura	al obstructions, overhea	d		

SITE ID.: 1-52-033

INSPECTOR: SC/MA

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. In the grassy area next to blockbuster, accessible by drill rigs

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

See above

SITE NAME:

Dzus Fasteners

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

Needs new well cap and lock

MONITORING WELL FIELD INSPECTION L	.OG	DATE/TIME: 11/		5
		WELL ID.: MV	V-22 B	
			YES	NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 40° 42.491	NYTM Y 73° 17.94		X See Repo	ort
PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or Magellan	Satelites:			
WELL I.D. VISIBLE? On concrete pad WELL LOCATION MATCH SITE MAP? (if not, sketch actual loc	ation on back)		YES I X X	NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WI			N/A	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., deso PROTECTIVE CASING IN GOOD CONDITION? (If damaged, c	cribe below)		YES X X X	NO
HEADSPACE READING (ppm) AND INSTRUMENT USED: TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	IN FEET (If applicable s):	ə)	SS 6 YES X	shmount
WELL MEASURING POINT VISIBLE?			X	^
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (F MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: MTTACH ID MARKER (if well ID is confirmed) and IDENTIFY M PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	Feet):		44.50 6.2 2 PVC GOOI -	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck r				

SITE ID.: 1-52-033

INSPECTOR: SC/MA

power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. In the grassy area next to blockbuster, accessible by drill rigs

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

See above

SITE NAME: Dzus Fasteners

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

Needs new lock

MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/111/08 9:15
	WELL ID.: MW-23A
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 40° 42.402 NYTM Y 73° 17.991	YES NO X See Report
PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan	
WELL I.D. VISIBLE? On asphalt pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
HEADSPACE READING (ppm) AND INSTRUMENT USED:	F <u>lushmount</u> SS
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	X X X X X X X X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	4.62 2 PVC GOOD

SITE ID.: 1-52-033 INSPECTOR: SC/MA

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. Behind the building

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS:

SITE NAME:

Dzus Fasteners

Needs new lock and well cap

	INSPECTOR: SC/MA
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/11/08 9:15
	WELL ID.: MW-23B
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 40° 42.403 PDOP Reading from Trimble pathfinder: NYTM Y 73° 17.987	Se See Report
GPS Method (circle) Trimble And/Or Magellan	YESNO
WELL I.D. VISIBLE? On asphalt pavement (spray paint) WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	X YESI NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X X
HEADSPACE READING (ppm) AND INSTRUMENT USED: TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	F <u>lushmount</u> SS
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	x x x x
WELL MEASURING POINT VISIBLE?	Х
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	<u>4.59</u> 2
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	<u>-</u>

SITE ID.: 1-52-033

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):

REMARKS: Needs new lock and well cap

SITE NAME:

Dzus Fasteners

APPENDIX C

DATA SUMMARY PACKAGES

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-9	MW-9B
Sample ID	Class GA		DMW-2	DMW-3	DMW-9	DMW-9B
laboratory ID	Groundwater	(destroyed)	G2114-01	G2114-04	G2114-02	G2114-03
Sample Date	Criteria		11/11/08	11/11/08	11/11/08	11/11/08
Matrix	water		water	water	water	water
Units	µg/L		µg/L	µg/L	µg/L	µg/L
	1.3		Conc. Q	Conc. Q	Conc. Q	
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	5	NA	NA	5 U	NA	NA
1,1,1-Trichloroethane	5	NA	NA	5 U	NA	NA
1,1,2,2-Tetrachloroethane	5	NA	NA	5 U	NA	NA
1,1,2-Trichloroethane	1	NA	NA	5 U	NA	NA
1,1-Dichloroethane	5	NA	NA	5 U	NA	NA
1,1-Dichloroethene	5	NA	NA	5 U	NA	NA
1,1-Dichloropropene	5	NA	NA	5 U	NA	NA
1,2,3-Trichlorobenzene	5	NA	NA	5 U	NA	NA
1,2,3-Trichloropropane	0.04	NA	NA	5 U	NA	NA
1,2,4-Trichlorobenzene	5	NA	NA	5 U	NA	NA
1,2,4-Trimethylbenzene	5	NA	NA	5 U	NA	NA
1,2-Dibromo-3-chloropropane	0.04	NA	NA	5 U	NA	NA
1,2-Dibromoethane	NC	NA	NA	5 U	NA	NA
1,2-Dichlorobenzene	3	NA	NA	5 U	NA	NA
1,2-Dichloroethane	0.6	NA	NA	5 U	NA	NA
1,2-Dichloropropane	1	NA	NA	5 U	NA	NA
1,3,5-Trimethylbenzene	5	NA	NA	5 U	NA	NA
1,3-Dichlorobenzene	3	NA	NA	5 U	NA	NA
1,3-Dichloropropane	5	NA	NA	5 U	NA	NA
1,4-Dichlorobenzene	3	NA	NA	5 U	NA	NA
2,2-Dichloropropane	5	NA	NA	5 U	NA	NA
2-Butanone	50	NA	NA	5 U	NA	NA
2-Chlorotoluene	5	NA	NA	5 U	NA	NA
2-Hexanone	50	NA	NA	5 U	NA	NA
4-Chlorotoluene	5	NA	NA	5 U	NA	NA
4-Isopropyltoluene	5	NA	NA	5 U	NA	NA
4-Methyl-2-pentanone	50	NA	NA	5 U	NA	NA
Acetone	50	NA	NA	5 U	NA	NA
Benzene	1	NA	NA	5 U	NA	NA
Bromobenzene	5	NA	NA	5 U	NA	NA
Bromochloromethane	5	NA	NA	5 U	NA	NA
Bromodichloromethane	50	NA	NA	5 U	NA	NA
Bromoform	50 50	NA	NA	5 U	NA	NA
Bromomethane	5	NA	NA	5 U 5 U	NA	NA
Carbon disulfide	60	NA	NA	5 U	NA	NA
Carbon tetrachloride	5	NA	NA	5 U 5 U	NA	NA
Chlorobenzene	5 5	NA	NA	5 U 5 U	NA NA	NA
Chloroethane	5 5	NA	NA	5 U 5 U	NA NA	NA
	5 7					
Chloroform		NA	NA	5 U	NA	NA
Chloromethane	NC	NA	NA	5 U	NA	NA

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-9	MW-9B
Sample ID	Class GA		DMW-2	DMW-3	DMW-9	DMW-9B
laboratory ID	Groundwater	(destroyed)	G2114-01	G2114-04	G2114-02	G2114-03
Sample Date	Criteria	, , , , , , , , , , , , , , , , , , ,	11/11/08	11/11/08	11/11/08	11/11/08
Matrix	water		water	water	water	water
Units	µg/L		µg/L	µg/L	µg/L	µg/L
	1.2		Conc. Q	Conc. Q	Conc. Q	Conc. Q
cis-1,2-Dichloroethene	5	NA	NA	5 U	NA	NA
cis-1,3-Dichloropropene	0.4	NA	NA	5 U	NA	NA
Dibromochloromethane	50	NA	NA	5 U	NA	NA
Dibromomethane	5	NA	NA	5 U	NA	NA
Dichlorodifluoromethane	5	NA	NA	5 U	NA	NA
Ethylbenzene	5	NA	NA	5 U	NA	NA
Hexachlorobutadiene	0.5	NA	NA	5 U	NA	NA
lodomethane	NC	NA	NA	5 U	NA	NA
Isopropylbenzene	5	NA	NA	5 U	NA	NA
m,p-Xylene	5	NA	NA	5 U	NA	NA
Methyl tert-butyl ether	10	NA	NA	5 U	NA	NA
Methylene chloride	5	NA	NA	5 U	NA	NA
n-Butylbenzene	5	NA	NA	5 U	NA	NA
n-Propylbenzene	5	NA	NA	5 U	NA	NA
Naphthalene	10	NA	NA	5 U	NA	NA
o-Xylene	5	NA	NA	5 U	NA	NA
sec-Butylbenzene	5	NA	NA	5 U	NA	NA
Styrene	5	NA	NA	5 U	NA	NA
tert-Butylbenzene	5	NA	NA	5 U	NA	NA
Tetrachloroethene	5	NA	NA	5 U	NA	NA
Toluene	5	NA	NA	5 U	NA	NA
trans-1,2-Dichloroethene	5	NA	NA	5 U	NA	NA
trans-1,3-Dichloropropene	0.4	NA	NA	5 U	NA	NA
Trichloroethene	5	NA	NA	4.2 J	NA	NA
Trichlorofluoromethane	5	NA	NA	5 U	NA	NA
Vinyl acetate	NC	NA	NA	5 U	NA	NA
Vinyl chloride	2	NA	NA	5 U	NA	NA
Xylene (Total)	5	NA	NA	5 U	NA	NA

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-9	MW-9B
Sample ID	Class GA		DMW-2	DMW-3	DMW-9	DMW-9B
laboratory ID	Groundwater	(destroyed)	G2114-01	G2114-04	G2114-02	G2114-03
Sample Date	Criteria		11/11/08	11/11/08	11/11/08	11/11/08
Matrix	water		water	water	water	water
Units	µg/L		µg/L	µg/L	µg/L	µg/L
			Conc. Q	Conc. Q		Conc. Q
TAL Metals						
Aluminum	NC	NA	242	314	611	56 U
Antimony	3	NA	4.6 U	4.6 U	4.6 U	4.6 U
Arsenic	25	NA	5.3 U	5.3 U	5.3 U	5.3 U
Barium	1,000	NA	38.7 B	28.3 B	30.2 B	27.1 B
Beryllium	3	NA	0.27 B	0.13 U	0.21 B	0.13 U
Cadmium	5	NA	2.7 B	70.8	15.5	0.23 B
Calcium	NC	NA	14,500	11,800	10,800	8,180
Chromium	50	NA	1.1 U	1.1 U	35.3	1.1 U
Cobalt	NC	NA	13.8 B	1.2 U	1.5 B	1.2 U
Copper	200	NA	12.6 B	5 U	17.3 B	5 U
Iron	300	NA	23,300	253	3670	134 B
Lead	25	NA	5.2 B	2.7 B	5.9 B	2.2 U
Magnesium	35,000	NA	2,700	2,650	2,690	1,330
Manganese	300	NA	2,150	262	62.6	171
Mercury	0.7	NA	0.016 U	0.016 U	0.016 U	0.016 U
Nickel	100	NA	4.7 B	1.6 B	3.3 B	1.5 U
Potassium	NC	NA	1,880	1,420	1,720	1,940
Selenium	10	NA	6.6 U	6.6 U	6.6 U	6.6 U
Silver	50	NA	0.59 U	0.59 U	0.59 U	0.59 U
Sodium	20,000	NA	18,600	25,000	16,100	11,800
Thallium	0.5	NA	4.2 U	4.2 U	4.2 U	4.2 U
Vanadium	NC	NA	0.96 U	0.96 U	5.5 B	0.96 U
Zinc	2,000	NA	64.3	26.2 B	55.9	35.3 B

Notes:

NC - No criterion

NA - Not analyzed

J - Estimated value, organics

U - Not detected

B - Estimated value, metals

Sample Location	NYSDEC	MW-13A	MW-13B	MW-15A	MW-15B	MW-18
Sample ID				DMW-15A	DMW-15B	DMW-18
laboratory ID	Groundwater	G2114-12	G2114-13	G2114-08	G2114-07	G2114-06
Sample Date	Criteria	11/12/08	11/12/08	11/12/08	11/12/08	11/11/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	₩ <i>9</i> ′ −		Conc. Q	Conc. Q	Conc. Q	
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	5	5 U	NA	5 U	NA	NA
1,1,1-Trichloroethane	5	5 U	NA	5 U	NA	NA
1,1,2,2-Tetrachloroethane	5	5 U	NA	5 U	NA	NA
1,1,2-Trichloroethane	1	5 U	NA	5 U	NA	NA
1,1-Dichloroethane	5	5 U	NA	5 U	NA	NA
1,1-Dichloroethene	5	5 U	NA	5 U	NA	NA
1,1-Dichloropropene	5	5 U	NA	5 U	NA	NA
1,2,3-Trichlorobenzene	5	5 U	NA	5 U	NA	NA
1,2,3-Trichloropropane	0.04	5 U	NA	5 U	NA	NA
1,2,4-Trichlorobenzene	5	5 U	NA	5 U	NA	NA
1,2,4-Trimethylbenzene	5	5 U	NA	5 U	NA	NA
1,2-Dibromo-3-chloropropane	0.04	5 U	NA	5 U	NA	NA
1,2-Dibromoethane	NC	5 U	NA	5 U	NA	NA
1,2-Dichlorobenzene	3	5 U	NA	5 U	NA	NA
1,2-Dichloroethane	0.6	5 U	NA	5 U	NA	NA
1,2-Dichloropropane	1	5 U	NA	5 U	NA	NA
1,3,5-Trimethylbenzene	5	5 U	NA	5 U	NA	NA
1,3-Dichlorobenzene	3	5 U	NA	5 U	NA	NA
1,3-Dichloropropane	5	5 U	NA	5 U	NA	NA
1,4-Dichlorobenzene	3	5 U	NA	5 U	NA	NA
2,2-Dichloropropane	5	5 U	NA	5 U	NA	NA
2-Butanone	50	5 U	NA	5 U	NA	NA
2-Chlorotoluene	5	5 U	NA	5 U	NA	NA
2-Hexanone	50	5 U	NA	5 U	NA	NA
4-Chlorotoluene	5	5 U	NA	5 U	NA	NA
4-Isopropyltoluene	5	5 U	NA	5 U	NA	NA
4-Methyl-2-pentanone	50	5 U	NA	5 U	NA	NA
Acetone	50	5 U	NA	5 U	NA	NA
Benzene	1	5 U	NA	5 U	NA	NA
Bromobenzene	5	5 U	NA	5 U	NA	NA
Bromochloromethane	5	5 U	NA	5 U	NA	NA
Bromodichloromethane	50	5 U	NA	5 U	NA	NA
Bromoform	50	5 U	NA	5 U	NA	NA
Bromomethane	5	5 U	NA	5 U	NA	NA
Carbon disulfide	60	5 U	NA	5 U	NA	NA
Carbon tetrachloride	5	5 U	NA	5 U	NA	NA
Chlorobenzene	5	5 U	NA	5 U	NA	NA
Chloroethane	5	5 U	NA	5 U	NA	NA
Chloroform	7	5 U	NA	5 U	NA	NA
Chloromethane	NC	5 U	NA	5 U	NA	NA
II	I		I	1	I	I I

Sample Location	NYSDEC	MW-13A	MW-13B	MW-15A	MW-15B	MW-18
Sample ID	Class GA	DMW-13A	DMW-13B		DMW-15B	-
laboratory ID	Groundwater		G2114-13	G2114-08	G2114-07	G2114-06
Sample Date	Criteria	11/12/08	11/12/08	11/12/08	11/12/08	11/11/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
OTING	μg/L	Conc. Q				
cis-1,2-Dichloroethene	5	5 U	NA	5 U	NA	NA
cis-1,3-Dichloropropene	0.4	5 U	NA	5 U	NA	NA
Dibromochloromethane	50	5 U	NA	5 U	NA	NA
Dibromomethane	5	5 U	NA	5 U	NA	NA
Dichlorodifluoromethane	5	5 U	NA	5 U	NA	NA
Ethylbenzene	5	5 U	NA	5 U	NA	NA
Hexachlorobutadiene	0.5	5 U	NA	5 U	NA	NA
lodomethane	NC	5 U	NA	5 U	NA	NA
Isopropylbenzene	5	5 U	NA	5 U	NA	NA
m,p-Xylene	5	5 U	NA	5 U	NA	NA
Methyl tert-butyl ether	10	5 U	NA	5 U	NA	NA
Methylene chloride	5	5 U	NA	5 U	NA	NA
n-Butylbenzene	5	5 U	NA	5 U	NA	NA
n-Propylbenzene	5	5 U	NA	5 U	NA	NA
Naphthalene	10	5 U	NA	5 U	NA	NA
o-Xylene	5	5 U	NA	5 U	NA	NA
sec-Butylbenzene	5	5 U	NA	5 U	NA	NA
Styrene	5	5 U	NA	5 U	NA	NA
tert-Butylbenzene	5	5 U	NA	5 U	NA	NA
Tetrachloroethene	5	5 U	NA	5 U	NA	NA
Toluene	5	5 U	NA	5 U	NA	NA
trans-1,2-Dichloroethene	5	5 U	NA	5 U	NA	NA
trans-1,3-Dichloropropene	0.4	5 U	NA	5 U	NA	NA
Trichloroethene	5	5 U	NA	5 U	NA	NA
Trichlorofluoromethane	5	5 U	NA	5 U	NA	NA
Vinyl acetate	NC	5 U	NA	5 U	NA	NA
Vinyl chloride	2	5 U	NA	5 U	NA	NA
Xylene (Total)	5	5 U	NA	5 U	NA	NA

Sample Location	NYSDEC	MW-13A	MW-13B	MW-15A	MW-15B	MW-18
Sample ID	Class GA	DMW-13A				
laboratory ID	Groundwater		G2114-13	G2114-08	G2114-07	G2114-06
-		11/12/08	11/12/08	11/12/08	11/12/08	11/11/08
Sample Date	Criteria					
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
TAL Metals						
Aluminum	NC	258	56 U	56 U	56 U	88.1 B
Antimony	3	4.6 U	4.6 U	4.6 U	4.6 U	5.1 B
Arsenic	25	5.3 U				
Barium	1,000	185 B	33.4 B	20.1 B	45 B	166 B
Beryllium	3	0.13 U	0.13 U	0.13 U	0.19 B	0.13 U
Cadmium	5	67.7	2.3 B	33.9	0.29 B	9.8
Calcium	NC	19,900	11,700	12,100	13,700	12,600
Chromium	50	1.1 U	22.3	1.1 U	1.1 U	1.1 U
Cobalt	NC	35.4 B	1.2 U	1.2 U	1.9 B	2 B
Copper	200	5 U	5 U	5 U	5 U	11.1 B
Iron	300	300	106 B	61 U	875	114 B
Lead	25	2.2 U	3.1 B	2.2 U	3.6 B	2.2 U
Magnesium	35,000	2,630	1,910	1,890	5,240	2,440
Manganese	300	16,400	153	895	267	2,870
Mercury	0.7	0.016 U				
Nickel	100	1.5 U	1.5 U	1.5 U	2.2 B	29.3 B
Potassium	NC	3,680	2,100	1,610	1,980	1,540
Selenium	10	6.6 U				
Silver	50	0.59 U	0.59 U	0.59 U	1 B	0.59 U
Sodium	20,000	21,700	9,280	9,040	43,900	12,100
Thallium	0.5	11.7 B	4.2 U	4.2 U	4.2 U	4.2 U
Vanadium	NC	0.96 U				
Zinc	2,000	20.8 B	24.3 B	24.3 B	38.9 B	265

Notes:

NC - No criterion

NA - Not analyzed

J - Estimated value, organics

U - Not detected

B - Estimated value, metals

APPENDIX C TABLE 1 DZUS FASTENERS (SITE # 1-52-033) SUMMARY OF VOLATILE ORGANICS AND TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22A	MW-22B	MW-23A	MW-23B
Sample ID	Class GA	DMW-22A		DMW-23A	DMW-23B
laboratory ID	Groundwater		G2114-11	G2114-14	G2114-15
Sample Date	Criteria	11/12/08	11/12/08	11/12/08	11/12/08
Matrix	water	water	water	water	water
Units	μg/L	µg/L	µg/L	µg/L	µg/L
	P9/ -		Conc. Q	Conc. Q	
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	5	NA	NA	NA	NA
1,1,1-Trichloroethane	5	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	5	NA	NA	NA	NA
1,1,2-Trichloroethane	1	NA	NA	NA	NA
1,1-Dichloroethane	5	NA	NA	NA	NA
1,1-Dichloroethene	5	NA	NA	NA	NA
1,1-Dichloropropene	5	NA	NA	NA	NA
1,2,3-Trichlorobenzene	5	NA	NA	NA	NA
1,2,3-Trichloropropane	0.04	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5	NA	NA	NA	NA
1,2,4-Trimethylbenzene	5	NA	NA	NA	NA
1,2-Dibromo-3-chloropropane	0.04	NA	NA	NA	NA
1,2-Dibromoethane	NC	NA	NA	NA	NA
1,2-Dichlorobenzene	3	NA	NA	NA	NA
1,2-Dichloroethane	0.6	NA	NA	NA	NA
1,2-Dichloropropane	1	NA	NA	NA	NA
1,3,5-Trimethylbenzene	5	NA	NA	NA	NA
1,3-Dichlorobenzene	3	NA	NA	NA	NA
1,3-Dichloropropane	5	NA	NA	NA	NA
1,4-Dichlorobenzene	3	NA	NA	NA	NA
2,2-Dichloropropane	5	NA	NA	NA	NA
2-Butanone	50	NA	NA	NA	NA
2-Chlorotoluene	5	NA	NA	NA	NA
2-Hexanone	50	NA	NA	NA	NA
4-Chlorotoluene	5	NA	NA	NA	NA
4-Isopropyltoluene	5	NA	NA	NA	NA
4-Methyl-2-pentanone	50	NA	NA	NA	NA
Acetone	50	NA	NA	NA	NA
Benzene	1	NA	NA	NA	NA
Bromobenzene	5	NA	NA	NA	NA
Bromochloromethane	5	NA	NA	NA	NA
Bromodichloromethane	50	NA	NA	NA	NA
Bromoform	50	NA	NA	NA	NA
Bromomethane	5	NA	NA	NA	NA
Carbon disulfide	60	NA	NA	NA	NA
Carbon tetrachloride	5	NA	NA	NA	NA
Chlorobenzene	5	NA	NA	NA	NA
Chloroethane	5	NA	NA	NA	NA
Chloroform	7	NA	NA	NA	NA
Chloromethane	NC	NA	NA	NA	NA
Chloromethane	NC	NA	NA	NA	NA

APPENDIX C TABLE 1 DZUS FASTENERS (SITE # 1-52-033) SUMMARY OF VOLATILE ORGANICS AND TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22A	MW-22B	MW-23A	MW-23B
Sample ID	Class GA	DMW-22A	DMW-22B	DMW-23A	DMW-23B
laboratory ID	Groundwater	G2114-09	G2114-11	G2114-14	G2114-15
Sample Date	Criteria	11/12/08	11/12/08	11/12/08	11/12/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q		Conc. Q
cis-1,2-Dichloroethene	5	NA	NA	NA	NA
cis-1,3-Dichloropropene	0.4	NA	NA	NA	NA
Dibromochloromethane	50	NA	NA	NA	NA
Dibromomethane	5	NA	NA	NA	NA
Dichlorodifluoromethane	5	NA	NA	NA	NA
Ethylbenzene	5	NA	NA	NA	NA
Hexachlorobutadiene	0.5	NA	NA	NA	NA
lodomethane	NC	NA	NA	NA	NA
Isopropylbenzene	5	NA	NA	NA	NA
m,p-Xylene	5	NA	NA	NA	NA
Methyl tert-butyl ether	10	NA	NA	NA	NA
Methylene chloride	5	NA	NA	NA	NA
n-Butylbenzene	5	NA	NA	NA	NA
n-Propylbenzene	5	NA	NA	NA	NA
Naphthalene	10	NA	NA	NA	NA
o-Xylene	5	NA	NA	NA	NA
sec-Butylbenzene	5	NA	NA	NA	NA
Styrene	5	NA	NA	NA	NA
tert-Butylbenzene	5	NA	NA	NA	NA
Tetrachloroethene	5	NA	NA	NA	NA
Toluene	5	NA	NA	NA	NA
trans-1,2-Dichloroethene	5	NA	NA	NA	NA
trans-1,3-Dichloropropene	0.4	NA	NA	NA	NA
Trichloroethene	5	NA	NA	NA	NA
Trichlorofluoromethane	5	NA	NA	NA	NA
Vinyl acetate	NC	NA	NA	NA	NA
Vinyl chloride	2	NA	NA	NA	NA
Xylene (Total)	5	NA	NA	NA	NA

APPENDIX C TABLE 1 DZUS FASTENERS (SITE # 1-52-033) SUMMARY OF VOLATILE ORGANICS AND TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-22A	MW-22B	MW-23A	MW-23B	
Sample ID	Class GA	DMW-22A	DMW-22B	DMW-23A	DMW-23B	
laboratory ID	Groundwater	G2114-09	G2114-11	G2114-14	G2114-15	
Sample Date	Criteria	11/12/08	11/12/08	11/12/08	11/12/08	
Matrix	water	water	water	water	water	
Units	µg/L	µg/L	µg/L	µg/L	µg/L	
		Conc. Q	Conc. Q	Conc. Q	Conc. Q	
TAL Metals						
Aluminum	NC	2,620	56 U	3,200	406	
Antimony	3	4.6 U	4.6 U	4.6 U	4.6 U	
Arsenic	25	7.2 B	5.3 U	5.8 B	5.3 U	
Barium	1,000	69.6 B	41.3 B	40.1 B	64.6 B	
Beryllium	3	0.21 B	0.13 U	0.29 B	0.13 B	
Cadmium	5	13.5	1.2 B	1080	42.2	
Calcium	NC	55,700	27,200	31,000	15,700	
Chromium	50	13 B	1.1 U	3.6 B	4.3 B	
Cobalt	NC	1.2 U	1.5 B	1.2 U	1.2 U	
Copper	200	19.3 B	5 U	47.6	24.6 B	
Iron	300	22,000	518	13,100	1,270	
Lead	25	11.3	2.4 B	9.5 B	17.7	
Magnesium	35,000	7,860	5,090	9,020	1,590	
Manganese	300	1,030	775	1,390	52.1	
Mercury	0.7	0.016 U	0.016 U	0.016 U	0.016 U	
Nickel	100	2.6 B	6.5 B	2.2 B	20.5 B	
Potassium	NC	3,980	1,910	6,780	1,660	
Selenium	10	6.6 U	6.6 U	6.6 U	6.6 U	
Silver	50	0.59 U	0.59 U	0.59 U	0.81 B	
Sodium	20,000	39,900	11,300	37,800	2,200	
Thallium	0.5	4.2 U	4.2 U	4.2 U	4.2 U	
Vanadium	NC	7 B	0.96 U	20.5 B	5.9 B	
Zinc	2,000	714	29.8 B	42.7 B	198	

Notes:

NC - No criterion

NA - Not analyzed

J - Estimated value, organics

U - Not detected

B - Estimated value, metals

APPENDIX C TABLE 2 DZUS FASTENERS (SITE # 1-52-033) SUMMARY OF TAL METALS IN SURFACE WATER SAMPLES

Sample Logation	NYSDEC	SW-1	SW-2	SW-3	SW-4	SW-5	SW-6
Sample Location		-			-		
Sample ID	Class A	SW-1	SW-2	SW-3	SW-4	DSW-5	DSW-6
Laboratory ID		G2136-11	G2136-09	G2136-13	G2136-15	G2114-20	G2114-16
Sample Date	Criteria	11/14/08	11/14/08	11/14/08	11/14/08	11/12/08	11/12/08
Matrix	water						
Units	µg/L						
		conc. Q					
Aluminum	NC	56 U	190 B				
Antimony	3	6 B	4.6 U				
Arsenic	50	5.3 U					
Barium	1,000	31.8 B	32.4 B	38.6 B	31.9 B	26.2 B	37.7 B
Beryllium	3	0.13 U					
Cadmium	5	1.5 B	2 B	0.97 B	0.63 B	3 B	75.4
Calcium	NC	14,300	14,300	14,000	14,000	12,500	20,100
Chromium	50	1.1 U	7.2 B				
Cobalt	5	1.2 U					
Copper	200	5 U	5 U	5 U	5 U	5 U	5 U
Iron	300	598	675	772	741	1,060	4,010
Lead	50	2.2 U	2.4 B	2.2 U	2.2 U	2.2 U	9.8 B
Magnesium	35,000	3,570	3,530	3,440	3,490	3,100	4,080
Manganese	300	1,610	1,560	1,790	1,630	956	1,040
Mercury	0.7	0.016 U					
Nickel	100	1.5 U					
Potassium	NC	2,250	2,320	2,290	2,310	1,780	2,830
Selenium	10	6.6 U					
Silver	50	0.98 B	0.59 U	0.64 B	0.59 U	0.59 U	0.59 U
Sodium	20,000	19,000	19,500	17,700	17,800	18,100	26,000
Thallium	0.5	4.2 U					
Vanadium	14	0.96 U	1.1 B	0.96 U	0.96 U	0.99 B	1.6 B
Zinc	2,000	22.3 B	21 B	16.4 B	9.7 B	10.4 B	48.2 B

NC - No Criterion

U - Below method detection limit

B - Estimated value

APPENDIX C TABLE 3 DZUS FASTENERS (SITE # 1-52-033) SUMMARY OF TAL METALS IN SEDIMENT SAMPLES

Sample Location	NYS	DEC	SED-1	SED-2	SED-3	SED-4	SED-5	SED-6
Sample ID	Tech		SED-1	SED-2	SED-3	SED-4	DSED-5	DSED-6
laboratory ID		nce for	G2136-10	G2136-08	G2136-14	G2136-16	G2114-21	G2114-17
Sample Date			11/14/08	11/14/08	11/14/08	11/14/08	11/12/08	11/12/08
Matrix	••••	• • • • • • • • • •	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment
Units	Lowest	Highest		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Effect	Effect	Conc. Q					
Aluminum	NC	NC	7,630 *	2,800 *	5,860 *	1,790 *	5,150	7,700
Antimony	2.0	25	2.2 BN	0.19 BN	0.63 BN	0.42 BN	1.1 BN	
Arsenic	6.0	33	8.7	1.8	4.2 B	3.9	8.2	6.4
Barium	NC	NC	67.7 B*E	40.8 *E	88.2 *E	177 *E	96.6	89.7
Beryllium	NC	NC	0.64 B	0.16 B	0.3 B	0.13 B	0.34 B	0.36 B
Cadmium	0.6	9	61.4 N*E	12.5 N*E	1.7 N*E	15.8 N*E	52	101
Calcium	NC	NC	3,140 *	1,400 *	11,700 *	8,090 *	4,150	7,690
Chromium	26	110	27.1 E	6.5 E	9.6 E	6.8 E	33.3	41.8
Cobalt	NC	NC	20.2 E	3 BE	12.6 E	7 E	7.8	8.1
Copper	16	110	65.7	15.6	32.4	17.1	103	77.3
Iron	2%	4%	19,700 E	3,850 E	10,900 E	7,280 E	23,900	25,600
Lead	31	110	176 N*E	25.8 N*E	34 N*E	34.3 N*E	215 E	109 E
Magnesium	NC	NC	1,260 *E	305 *E	4,200 *E	653 *E	1,370	1,980
Manganese	460	1,100	181 *	769 *	908 *	11,700 *	2,140	978
Mercury	0.15	1.3	0.34	0.018 B	0.074 B	0.21	0.48	0.15
Nickel	16	50	19.4	3.2 B	8.5 B	6.3	19.2	17.2
Potassium	NC	NC	465 *	123 *	1,010 *	281 *	320	528
Selenium	NC	NC	4.2 U	0.79 U	2.7 U	3.3	1.6 U	1.4 U
Silver	1.0	2.2	0.77 U	0.15 U	0.49 U	1.1 B	0.29 U	0.26 U
Sodium	NC	NC	136 B	46.5 B	528	131	204	414
Thallium	NC	NC	2.5 U	0.46 U	1.6 U	2.8	2.1 B	0.98 B
Vanadium	NC	NC	39.9 E	5.8 E	36.4 E	7.4 E	54.2	42.4
Zinc	120	270	445 *E	67.9 *E	71.3 *E	110 *E	290 E	409 E

Notes:

NC - No criterion

N - Spike recoveries were not within QC limits

B - Estimated value

E - Replicate RPDs were not within QC limits

* - Percent recovery for duplicates were not within QC limits

U - Not detected

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

December 12, 2008

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

RE: Client Project: Multi Site G—Liberty, DZUS Lab Work Order #: G2114

Dear Mr. Kareth:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

And en Shirley Ng NC

Project Manager

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : Multi Site G

		Analytical Requirements						
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other		
DMW-2	G2114-01				SW6010_W			
DMW-2	G2114-01				SW7470			
DMW-9	G2114-02				SW6010_W			
DMW-9	G2114-02	·····			SW7470			
DMW-9B	G2114-03		1106 - P10 - P		SW6010_W			
DMW-9B	G2114-03				SW7470			
DMW-3	G2114-04	SW8260_W			SW6010_W			
DMW-3	G2114-04				SW7470			
DMW-53	G2114-05	SW8260_W			SW6010_W			
DMW-53	G2114-05				SW7470			
DMW-18	G2114-06				SW6010_W			
DMW-18	G2114-06				SW7470			
DMW-15B	G2114-07				SW6010_W			
DMW-15B	G2114-07				SW7470			
DMW-15A	G2114-08	SW8260_W			SW6010_W			
DMW-15A	G2114-08				SW7470			
DMW-22A	G2114-09				SW6010_W			
DMW-22A	G2114-09				SW7470			
DMW-72	G2114-10				SW6010_W			
DMW-72	G2114-10				SW7470			
DMW-22B	G2114-11				SW6010_W			
DMW-22B	G2114-11				SW7470			
DMW-13A	G2114-12	SW8260_W	<u></u>		SW6010_W			
DMW-13A	G2114-12				SW7470			
DMW-13B	G2114-13				SW6010_W			
DMW-13B	G2114-13		······································		 SW7470			
DMW-23A	G2114-14				SW6010_W			
DMW-23A	G2114-14				 SW7470			
DMW-23B	G2114-15				SW6010_W			
DMW-23B	G2114-15				SW7470			
DSW-6	G2114-16	•			SW6010_W			
DSW-6	G2114-16			1	SW7470			
DSED-6	G2114-17			· · · · · · · · · · · · · · · · · · ·	SW6010_S			
DSED-6	G2114-17				SW7471			
DSED-56	G2114-17 G2114-18				SW6010_S			
DSED-56	G2114-18				SW0010_3			
TB		SW8260_W						
DSW-5	G2114-19 G2114-20	5**6200_**			SW6010_W			

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : Multi Site G

SDG : <u>G2114</u>

Customer Sample ID		Analytical Requirements						
	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other		
DSW-5	G2114-20	AA/A**********************************			SW7470			
DSED-5	G2114-21				SW6010_S			
DSED-5	G2114-21	and the state of the		······································	SW7471			

12/12/2008 12:56

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Multi Site G

Laboratory Sample ID	Matrix	Date Collected	Date Received By Lab	Date Extracted	Date Analyzed
SW8260_W			- I		
G2114-04A	AQ	11/11/2008	11/13/2008	NA	11/19/2008
G2114-05A	AQ	11/11/2008	11/13/2008	NA	11/19/2008
G2114-08A	AQ	11/12/2008	11/13/2008	NA	11/19/2008
G2114-12A	AQ	11/12/2008	11/13/2008	NA	11/18/2008
G2114-19A	AQ	11/12/2008	11/13/2008	NA	11/19/2008

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Multi Site G

Matrix	Analytical Protocol	Extraction Method	Low/Medium Level	Dil/Conc Factor
AQ	SW8260_W	NA	LOW	1
AQ	SW8260_W	NA	LOW	1
AQ	SW8260_W	NA	LOW	1
AQ	SW8260_W	NA	LOW	1
AQ	SW8260_W	NA	LOW	1
	AQ AQ AQ AQ	MatrixProtocolAQSW8260_WAQSW8260_WAQSW8260_WAQSW8260_WAQSW8260_W	MatrixProtocolMethodAQSW8260_WNAAQSW8260_WNAAQSW8260_WNAAQSW8260_WNAAQSW8260_WNA	MatrixProtocolMethodLevelAQSW8260_WNALOWAQSW8260_WNALOWAQSW8260_WNALOWAQSW8260_WNALOW

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : Multi Site G

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010_S				
 G2114-17A	SL	SW6010_S	11/13/2008	12/1/2008
G2114-17ADUP	SL	SW6010_S	11/13/2008	12/1/2008
G2114-17AMS	SL	SW6010_S	11/13/2008	12/1/2008
G2114-18A	SL	SW6010_S	11/13/2008	12/1/2008
G2114-16/	SL	SW6010_S	11/13/2008	12/1/2008
SW6010_W				
G2114-01A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-01A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-02A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-03A G2114-04B	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-04B	AQ		11/13/2008	11/26/2008
G2114-05B G2114-06A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-06A G2114-07A	AQ	SW6010_W	11/13/2008	11/26/2008
	AQ		11/13/2008	11/26/2008
G2114-08B G2114-09A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-09A G2114-09ADUP	AQ		11/13/2008	11/26/2008
G2114-09ADOP G2114-09AMS	AQ	SW6010_W	11/13/2008	11/26/2008
	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-10A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-11A		SW6010_W	11/13/2008	11/26/2008
G2114-12B	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-13A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-14A	AQ		11/13/2008	11/26/2008
G2114-15A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-16A	AQ	SW6010_W	11/13/2008	11/26/2008
G2114-20A	AQ	SW6010_W	11/13/2000	11/20/2000
SW7470				
G2114-01A	AQ	SW7470	11/13/2008	11/24/2008
G2114-02A	AQ	SW7470	11/13/2008	11/24/2008
G2114-03A	AQ	SW7470	11/13/2008	11/24/2008
G2114-04B	AQ	SW7470	11/13/2008	11/24/2008
G2114-05B	AQ	SW7470	11/13/2008	11/24/2008
G2114-06A	AQ	SW7470	11/13/2008	11/24/2008
G2114-07A	AQ	SW7470	11/13/2008	11/24/2008
G2114-08B	AQ	SW7470	11/13/2008	11/24/2008
G2114-09A	AQ	SW7470	11/13/2008	11/24/2008
G2114-09ADUP	AQ	SW7470	11/13/2008	11/24/2008
G2114-09AMS	AQ	SW7470	11/13/2008	11/24/2008
G2114-10A	AQ	SW7470	11/13/2008	11/24/2008
G2114-11A	AQ	SW7470	11/13/2008	11/24/2008
G2114-12B	AQ	SW7470	11/13/2008	11/24/2008
G2114-13A	AQ	SW7470	11/13/2008	11/24/2008
G2114-14A	AQ	SW7470	11/13/2008	11/24/2008
G2114-15A	AQ	SW7470	11/13/2008	11/24/2008
G2114-16A	AQ	SW7470	11/13/2008	11/24/2008
G2114-20A	AQ	SW7470	11/13/2008	11/24/2008

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : Multi Site G

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
G2114-17A	SL	SW7471	11/13/2008	11/25/2008
G2114-17ADUP	SL	SW7471	11/13/2008	11/25/2008
G2114-17AMS	SL	SW7471	11/13/2008	11/25/2008
G2114-18A	SL	SW7471	11/13/2008	11/25/2008
G2114-21A	SL	SW7471	11/13/2008	11/25/2008

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: Multi Site G-Liberty, DZUS

SDG# MG2114

Mitkem Work Order ID: G2114

December 12, 2008

Prepared For:

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to Earth Tech Northeast, Inc.'s Multi Site G—Liberty, DZUS project. Under this deliverable, analysis results are presented for three soil and eighteen aqueous samples that were received on November 13, 2008. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for crossreferencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries and replicate RPDs were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

3. Metals analysis:

Lab control sample: percent recoveries were within the QC limits.

Matrix spike analysis: matrix spikes were performed on samples DMW-22A and DSED-6. Spike recoveries were within the QC limits with the exception of antimony in DSED-6. This element is flagged with an "N" on the data reporting forms. A post digestion spike was performed on this sample and reported.

Duplicate analysis: duplicate analyses were performed on samples DMW-22A and DSED-6. Percent recoveries were within the QC limits.

Sample analysis: serial dilutions were performed on samples DMW-22A and DSED-6. Percent differences were within the QC limits with the exception of lead and zinc in DSED-6. These elements are flagged with an "E" on the data reporting forms. No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Shirley Ng N

Project Manager 12/12/08

CLIENT SAMPLE NO.

DMW-3

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABOR	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:	<u> </u>		Mod. Ref No.:	SDG No.:	MG2114
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2114-04A	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1689.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/13/2008	· · ·
% Moisture: not dec.	· ·			Date Analyzed:	11/19/2008	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	:
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	, (uL
Purge Volume: 5.0			(mL)			· ·

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
			-
	Dichlorodifluoromethane	5.0	U
	Chloromethane	5.0	U
	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
	Chloroethane	5.0	U
	Trichlorofluoromethane	5.0	U
	1,1-Dichloroethene	5.0	U
	Acetone	5.0	U
	Iodomethane	5.0	U
	Carbon disulfide	5.0	υ
	Methylene chloride	5.0	ט
	trans-1,2-Dichloroethene	5.0	U
	Methyl tert-butyl ether	5.0	U
	1,1-Dichloroethane	-5.0	ט
	Vinyl acetate	5.0	U
	2-Butanone	5.0	U
	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	υ
	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	4.2	J
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	Ū

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DMW-3

Lab Name: MITKEM LABORATO	DRIES		Contract:		
Lab Code: MITKEM Ca	ase No.:		Mod. Ref No.:	SDG No.: MG2114	
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2114-04A	
Sample wt/vol: 5.00	(g/mL) ML		Lab File ID:	V1K1689.D	,
Level: (TRACE/LOW/MED)	WC		Date Received:	11/13/2008	
% Moisture: not dec.			Date Analyzed:	11/19/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Volu	(uL)
Purge Volume: 5.0		(mL)		· · · · · · · · · · · · · · · · · · ·	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	
106-93-4	1,2-Dibromoethane	5.0	U
	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	
100-42-5		5.0	
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobénzene	5.0	
96-18-4	1,2,3-Trichloropropane	5.0	
103-65-1	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

1J - FORM I VOA-TIC

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

DMW-3

Lab Name:	MITKEM LABORA	TORIES		Contract:		
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.:	MG2114
Matrix: (S	OIL/SED/WATER)	WATER		Lab Sample ID:	G2114-04A	
Sample wt/	vol:5.0	0 (g/mL) ML		Lab File ID:	V1K1689.D	
Level: (TR	ACE or LOW/MEE)) LOW		Date Received:	11/13/2008	
% Moisture	: not dec.	· · · · · · · · · · · · · · · · · · ·	-	Date Analyzed:	11/19/2008	
GC Column:	DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRAT	ION UNITS: (ug	/L or ug/Kg) U	JG/L	Purge Volume: 5.	0	(mL)
CAS NUM	IBER	COMPOUND NAME		RT	EST. CONC.	Q
01	Unknown-	01		12.742	27	J

N/A

E966796¹Total Alkanes ¹EPA-designated Registry Number.

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DMW-53

Lab Name: MITKEM LABORATORIES		Contract:	L
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2114-05A
Sample wt/vol: 5.00 (g/mL)	ML	Lab File ID:	V1K1690.D
Level: (TRACE/LOW/MED) LOW	· · · · · · · · · · · · · · · · · · ·	Date Received:	11/13/2008
% Moisture: not dec.		Date Analyzed:	11/19/2008
GC Column: DB-624 ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0	(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) U	G/L	Q
	Dichlorodifluoromethane		5.0	Ū
74-87-3	Chloromethane		5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U .
75-09-2	Methylene chloride		5.0	
	trans-1,2-Dichloroethene		5.0	U
	Methyl tert-butyl ether		5.0	
75-34-3	1,1-Dichloroethane		5.0	U
	Vinyl acetate		5.0	σ
	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		,.0 ,.0	U
	2,2-Dichloropropane		.0	U
74-97-5	Bromochloromethane		.0	U
67-66-3	Chloroform		.0	U
71-55-6	1,1,1-Trichloroethane		.0	U
	1,1-Dichloropropene		.0	U
	Carbon tetrachloride		_	U
	1,2-Dichloroethane			U
71-43-2				U U
79-01-6	Trichloroethene			J
	1,2-Dichloropropane			υ.
74-95-3	Dibromomethane			<u>ប</u>
	Bromodichloromethane			U U
	cis-1,3-Dichloropropene			U U
108-10-1	4-Methyl-2-pentanone			<u>U</u>
108-88-3				-
	trans-1,3-Dichloropropene			U
	1,1,2-Trichloroethane			U
	1,3-Dichloropropane			U
172 20-9.	r, 5 prentoropropane	5	.0	U .

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DMW-53	

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2114-05A
Sample wt/vol: 5.00) (g/mL) <u>ML</u>		Lab File ID:	V1K1690.D
Level: (TRACE/LOW/MED)	JOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/19/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	·	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG	/L Q
127-18-4	Tetrachloroethene		.0 U
	2-Hexanone		.0 U
	Dibromochloromethane		.0 U
	1,2-Dibromoethane		.0 U
	Chlorobenzene		.0 U
630-20-6	1,1,1,2-Tetrachloroethane		.0 U
	Ethylbenzene		.0 U
1330-20-7	m,p-Xylene		.0 U
95-47-6	o-Xylene		.0 U
	Xylene (Total)		.0 U
100-42-5			.0 Ū
	Bromoform		.0 0
98-82-8	Isopropylbenzene		.0 U
79-34-5	1,1,2,2-Tetrachloroethane		.0 U
108-86-1	Bromobenzene		.0 U
96-18-4	1,2,3-Trichloropropane		.0 0
103-65-1	n-Propylbenzene		.0 U
95-49-8	2-Chlorotoluene		.0 U
108-67-8	1,3,5-Trimethylbenzene		.0 U
106-43-4	4-Chlorotoluene		.0 U
	tert-Butylbenzene		.0 U
95-63-6	1,2,4-Trimethylbenzene		.0 U
	sec-Butylbenzene		.0 Ū
	4-Isopropyltoluene	5.	.0 U
	1,3-Dichlorobenzene	5.	
	1,4-Dichlorobenzene	5.	-
	n-Butylbenzene	5.	
95-50-1	1,2-Dichlorobenzene	5.	
96-12-8	1,2-Dibromo-3-chloropropane	5.	
120-82-1	1,2,4-Trichlorobenzene	5.	
87-68-3	Hexachlorobutadiene	5.	
	1,2,3-Trichlorobenzene	5.	
91-20-3	Naphthalene	5.	

8888

1J - FORM I VOA-TIC

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

DMW-53

Lab Name:	MITKEM LABORAT	ORIES		Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code:	MITKEM C	ase No.:		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SC	DIL/SED/WATER)	WATER		Lab Sample ID:	G2114-05A
Sample wt/v	vol: 5.00	(g/mL) ML		Lab File ID:	V1K1690.D
Level: (TRA	ACE or LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture:	not dec.			Date Analyzed:	11/19/2008
GC Column:	DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	ct Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
CONCENTRATI	ION UNITS: (ug/	Lorug/Kg)	JG/L	Purge Volume: 5.	0 (mL)
CAS NUM	BER	COMPOUND NAME	<u> </u>	RT	EST. CONC. Q
01	Unknown-01			12.743	24 J

N/A

E966796¹Total Alkanes ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DMW-15A

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER	WATER	Lab Sample ID:	G2114-08A
Sample wt/vol: 5.	00 (g/mL) ML	Lab File ID:	V1K1691.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/13/2008
% Moisture: not dec.		Date Analyzed:	11/19/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume:(uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) t	JG/L	° Q
	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane		5.0	Ū
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	υ
67-64-1	Acetone		5.0	υ
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	U
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	Ū
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
	Dibromometháne		5.0	U
	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
	4-Methyl-2-pentanone		5.0	U
108-88-3	Toluene		5.0	Ū
10061-02-6	trans-1,3-Dichloropropene		5.0	U
	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DMW-15A

Lab Name: MITKEM LABORA	TORIES	Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2114-08A
Sample wt/vol: 5.0	0 (g/mL) ML	Lab File ID:	V1K1691.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/13/2008
% Moisture: not dec.		Date Analyzed:	11/19/2008
GC Column: DB-624	ID: 0.25 (m	m) Dilution Factor:	1.0
Soil Extract Volume:	(ບ	L) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(m	L)	

		CONCENTRATION UNITS	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	- U
591-78-6	2-Hexanone		5.0	U
	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	······································	5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	υ
95-47-6	o-Xylene		5.0	Ū
1330-20-7	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	Ū
75-25-2	Bromoform		5.0	σ
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene		5.0	U ·
	1,2,3-Trichloropropane		5.0	U
103-65-1	n-Propylbenzene		5.0	U
	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
	4-Chlorotoluene		5.0	U
	tert-Butylbenzene		5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U
	sec-Butylbenzene	a to the second s	5.0	U
	4-Isopropyltoluene		5.0	U
	1,3-Dichlorobenzene		5.0	U
	1,4-Dichlorobenzene		5.0	U
	n-Butylbenzene		5.0	U
	1,2-Dichlorobenzene		5.0	U
	1,2-Dibromo-3-chloropropane		5.0	U
	1,2,4-Trichlorobenzene		5.0	Ū -
	Hexachlorobutadiene	ſ	5.0	U
	1,2,3-Trichlorobenzene		5.0	U
91-20-3	Naphthalene		5.0	Ū

1J - FORM I VOA-TIC

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

DMW-15A

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	G2114-08A
Sample wt/vol: 5.	00 (g/mL) ML	Lab File ID:	V1K1691.D
Level: (TRACE or LOW/ME	D) LOW	Date Received:	11/13/2008
% Moisture: not dec.		Date Analyzed:	11/19/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume:(uL)
CONCENTRATION UNITS: (ue	J/L or ug/Kg) UG/L	Purge Volume: 5.	0 (mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC. Q
01 Unknown-	01	12.747	24 J

N/A

E966796¹Total Alkanes

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DMW-13A

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2114-12A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1667.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/18/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	σ
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75 - 69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Bútanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	υ
594-20-7	2,2-Dichloropropane	5.0	Ū
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	υ
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DMW-13A

Lab Name: MITKEM LABORAT	FORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2114-12A
Sample wt/vol: 5.00) (g/mL) ML		Lab File ID:	V1K1667.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/18/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:		- 1
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	-	5.0	U
	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
	1,1,2,2-Tetrachloroethane		5.0	U
	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	Ū
103-65-1	n-Propylbenzene		5.0	U
	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	U
	1,2,4-Trimethylbenzene	· · · · · · · · · · · · · · · · · · ·	5.0	U
	sec-Butylbenzene		5.0	U
99-87-6	4-Isopropyltoluene		5.0	U
541-73-1	1,3-Dichlorobenzene		5.0	U
	1,4-Dichlorobenzene		5.0	U
	n-Butylbenzene		5.0	U
95-50-1	1,2-Dichlorobenzene		5.0	U
96-12-8	1,2-Dibromo-3-chloropropane		5.0	U
	1,2,4-Trichlorobenzene		5.0	U
	Hexachlorobutadiene		5.0	U
	1,2,3-Trichlorobenzene		5.0	Ū
91-20-3	Naphthalene		5.0	U

1J - FORM I VOA-TIC

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

DMW-13A

Lab Name:	MITKEM LABORA	ATORIES		Contract:		
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.: 1	MG2114
Matrix: (S	OIL/SED/WATER	WATER		Lab Sample ID:	G2114-12A	
Sample wt/	vol: 5.0	00 (g/mL)	ML	Lab File ID:	V1K1667.D	· · · · ·
Level: (TR	ACE or LOW/ME)) LOW		Date Received:	11/13/2008	
% Moisture	: not dec.			Date Analyzed:	11/18/2008	
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0	
Soil Extrac	ct Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRATI	ION UNITS: (ug	/L or ug/Kg) UG/L	Purge Volume: 5.	. 0	(mL)
CAS NUM	BER	COMPOUND N	JAME	RT	EST. CONC.	Q
01	Unknown-	01		12.757	43	J
E960	6796 ¹ Total Al	kanes		N/A		

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

ΤB

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABORATORIES		Contract:	
Lab Code: MITKEM Case No.:	-	Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2114-19A
Sample wt/vol: 5.00 (g/mL) ML		Lab File ID:	V1K1688.D
Level: (TRACE/LOW/MED) LOW		Date Received:	11/13/2008
% Moisture: not dec.		Date Analyzed:	11/19/2008
GC Column: DB-624 ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	
	Chloromethane	5.0	
	Vinyl chloride	5.0	-
	Bromomethane	5.0	
	Chloroethane	5.0	
	Trichlorofluoromethane	5.0	
	1,1-Dichloroethene	5.0	
	Acetone	5.0	
	Iodomethane	5.0	
	Carbon disulfide	5.0	
75-09-2	Methylene chloride	5.0	
156-60-5	trans-1,2-Dichloroethene	5.0	
1634-04-4	Methyl tert-butyl ether	5.0	
75-34-3	1,1-Dichloroethane	5.0	
108-05-4	Vinyl acetate	5.0	_
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
	Chloroform	5.0	U
	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	Ū
	Carbon tetrachloride	5.0	U
	1,2-Dichloroethane	5.0	U
71-43-2		5.0	U
	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	. U .
108-88-3	1	5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

ΤB

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABORA	TORIES			Contract:	L
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2114-19A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K1688.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/19/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
	Tetrachloroethene	5.0	- 0
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ū
	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	0
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	0
106-43-4	4-Chlorotoluene	5.0	- U
98-06-6	tert-Butylbenzene	5.0	0
	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	- U
	1,2-Dichlorobenzene	5.0	u
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	Ū
	Naphthalene	5.0	U

1J - FÖRM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

TENTATIVELY IDENTIFIED COMPOUNDS

ΤB

Lab Name:	MITKEM LABOR	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG211	4
Matrix: (S	OIL/SED/WATER) WATER			Lab Sample ID:	G2114-19A	
Sample wt/	vol: 5.0)0 (g/mL)	Mī		Lab File ID:	V1K1688.D	
Level: (TR	ACE or LOW/ME	D) LOW			Date Received:	11/13/2008	
% Moisture	: not dec.	-			Date Analyzed:	11/19/2008	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRAT	ION UNITS: (uc	g/L or ug/H	(g) [UG/L	Purge Volume: 5.	0	(mL)
CAS NUM	4BER	COMPOUNE	NAME		RT	EST. CONC.	Q
01	Unknown-	01			12.753	24 J	

N/A

01 |

E966796¹Total Alkanes

¹EPA-designated Registry Number.

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

VISLCS

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2114
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: LCS-40116
Sample wt/vol: (g/mL) ML	Lab File ID: V1K1652.D
Level: (TRACE/LOW/MED) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 11/18/2008
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0
Soil Extract Volume:(uI) Soil Aliquot Volume: (uL)
Purge Volume: 5.0 (mI)

· · · · · · ·		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		49	
74-87-3	Chloromethane		50	
75-01-4	Vinyl chloride		51	
74-83-9	Bromomethane		50	
75-00-3	Chloroethane		54	
75-69-4	Trichlorofluoromethane	· · · · · · · · · · · · · · · · · · ·	54	
75-35-4	1,1-Dichloroethene		54	
	Acetone		46	
	Iodomethane		53	
	Carbon disulfide		52	
	Methylene chloride		53	
156-60-5	trans-1,2-Dichloroethene		49	
	Methyl tert-butyl ether		51	
	1,1-Dichloroethane		53	٠.
	Vinyl acetate		52	
	2-Butanone		46	
	cis-1,2-Dichloroethene		51	
594-20-7	2,2-Dichloropropane		41	
	Bromochloromethane		49	
	Chloroform		51	
71-55-6	1,1,1-Trichloroethane		53	
	1,1-Dichloropropene		49	
	Carbon tetrachloride		51	
	1,2-Dichloroethane		53	
	Benzene		52	
	Trichloroethene		51	
	1,2-Dichloropropane		53	
	Dibromomethane		53	
	Bromodichloromethane		51	
	cis-1,3-Dichloropropene		50	
	4-Methyl-2-pentanone		52	
108-88-3			51	
	trans-1,3-Dichloropropene		50	
	1,1,2-Trichloroethane		51	
142-28-9	1,3-Dichloropropane	· · · ·	52	

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

V1SLCS

Lab Name: MITKEM LABORA	TORIES			Contract:	
· · · · · · · · · · · · · · · · · · ·	Case No.:	· · · · · · · · · · · · · · · · · · ·		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCS-40116
Sample wt/vol: 5.00) (g/mL)	ML		Lab File ID:	V1K1652.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	11/18/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uĹ)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS	:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		52	
591-78-6	2-Hexanone		50	· · · · ·
124-48-1	Dibromochloromethane		51	
106-93-4	1,2-Dibromoethane		51	
108-90-7	Chlorobenzene		51	
630-20-6	1,1,1,2-Tetrachloroethane		52	
100-41-4	Ethylbenzene		51	·•
1330-20-7	m,p-Xylene		100	
	o-Xylene		51	
	Xylene (Total)		150	
100-42-5			52	
75-25-2	Bromoform		49	
	Isopropylbenzene		51	
79 - 34-5	1,1,2,2-Tetrachloroethane		49	
	Bromobenzene		50	
96-18-4	1,2,3-Trichloropropane		47	
	n-Propylbenzene		49	
	2-Chlorotoluene		50	
	1,3,5-Trimethylbenzene		50	
	4-Chlorotoluene		50	
	tert-Butylbenzene		51	
95-63-6	1,2,4-Trimethylbenzene		51	
135-98-8	sec-Butylbenzene		49	
99-87-6	4-Isopropyltoluenė		50	
	1,3-Dichlorobenzene		48	
	1,4-Dichlorobenzene		48	
	n-Butylbenzene	۰ دم •	48	
	1,2-Dichlorobenzene		49	
	1,2-Dibromo-3-chloropropane		47	
	1,2,4-Trichlorobenzene		44	
87-68-3	Hexachlorobutadiene		45	
	1,2,3-Trichlorobenzene		38	
91-20-3	Naphthalene		39	· · · · ·

CLIENT SAMPLE NO.

VISLCSD

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABORATOR	IES Contr	ract:
		Ref No.: SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	JATER Lab S	ample ID: LCSD-40116
Sample wt/vol: 5.00	g/mL) ML Lab F	ile ID: V1K1653.D
Level: (TRACE/LOW/MED) LOW	Date 1	Received:
% Moisture: not dec.	Date 2	Analyzed: 11/18/2008
GC Column: DB-624	ID: 0.25 (mm) Dilut:	ion Factor: 1.0
Soil Extract Volume:	(uL) Soil A	Aliquot Volume: (uL)
Purge Volume: 5.0	(mL)	

		CONCENTRATION UNIT	'S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		49	
74-87-3	Chloromethane		49	
75-01-4	Vinyl chloride		52	
74-83-9	Bromomethane		51	
75-00-3	Chloroethane		54	
75-69-4	Trichlorofluoromethane		54	
	1,1-Dichloroethene		54	
	Acetone		47	
74-88-4	Iodomethane		54	
	Carbon disulfide		75	
75-09-2	Methylene chloride		52	
156-60-5	trans-1,2-Dichloroethene		50	
1634-04-4	Methyl tert-butyl ether		51	
75-34-3	1,1-Dichloroethane		51	
	Vinyl acetate		52	
78-93-3	2-Butanone		49.	
	cis-1,2-Dichloroethene		51	
	2,2-Dichloropropane		40	
	Bromochloromethane		51	
	Chloroform		51	
	1,1,1-Trichloroethane		54	
563-58-6	1,1-Dichloropropene		49	
	Carbon tetrachloride		52	
	1,2-Dichloroethane		52	
	Benzene		52	· · · · · · · · · · · ·
	Trichloroethene	· · · · · · · · · · · · · · · · · · ·	51	· · ·
	1,2-Dichloropropane		52	·
	Dibromomethane		53	
	Bromodichloromethane		53	
10061-01-5	cis-1,3-Dichloropropene		50	
108-10-1	4-Methyl-2-pentanone		51	
108-88-3			51	
10061-02-6	trans-1,3-Dichloropropene		50	· · · · · · · · · · · · · · · · · · ·
	1,1,2-Trichloroethane		52	
142-28-9	1,3-Dichloropropane		52	

CLIENT SAMPLE NO.

VISLCSD

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2114 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: LCSD-40116 Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V1K1653.D Level: (TRACE/LOW/MED) LOW Date Received: % Moisture: not dec. Date Analyzed: 11/18/2008 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 5.0 (mL)

-		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	53	
591-78-6	2-Hexanone	50	
124-48-1	Dibromochloromethane	51	1
106-93-4	1,2-Dibromoethane	51	
108-90-7	Chlorobenzene	51	1
630-20-6	1,1,1,2-Tetrachloroethane	51	
	Ethylbenzene	51	
	m,p-Xylene	100	
	o-Xylene	51	
	Xylene (Total)	150	
100-42-5		52	1
	Bromoform	48	
	Isopropylbenzene	52	
	1,1,2,2-Tetrachloroethane	49	
	Bromobenzene	51	1
	1,2,3-Trichloropropane	48	
	n-Propylbenzene	49	· ·
	2-Chlorotoluene	52	
	1,3,5-Trimethylbenzene	51	1
	4-Chlorotoluene	51	
	tert-Butylbenzene	51	
	1,2,4-Trimethylbenzene	52	
135-98-8	sec-Butylbenzene	51	
	4-Isopropyltoluene	51	
541-73-1	1,3-Dichlorobenzene	49	
	1,4-Dichlorobenzene	50	
	n-Butylbenzene	49	
	1,2-Dichlorobenzene	. 50	
	1,2-Dibromo-3-chloropropane	50	
	1,2,4-Trichlorobenzene	47	
	Hexachlorobutadiene	45	
	1,2,3-Trichlorobenzene	43	
91-20-3	Naphthalene	44	

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

V1TLCS .

Lab Name: MITKEM LABORATOR	RIES		Contract:	
Lab Code: MITKEM Ca.	se No.:		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	LCS-40154
Sample wt/vol: 5.00	(g/mL) ML		Lab File ID:	V1K1674.D
Level: (TRACE/LOW/MED) LOW	N		Date Received:	· · · · · · · · · · · · · · · · · · ·
% Moisture: not dec.			Date Analyzed:	11/18/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		- (uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0		(mL)		· · · · · · · · · · · · · · · · · · ·

CAS NO.	COMPOSIND		CONCENTRATION UNITS:		
	COMPOUND	(ug/L or ug/Kg)	UG/L	Q	
	Dichlorodifluoromethane		38		
	Chloromethane		42		
	Vinyl chloride		41		
	Bromomethane		43		
	Chloroethane		43		
	Trichlorofluoromethane		46		
75-35-4	1,1-Dichloroethene		45		
	Acetone		47		
	Iodomethane		41		
75-15-0	Carbon disulfide		41		
75-09-2	Methylene chloride		45		
156-60-5	trans-1,2-Dichloroethene		43		
1634-04-4	Methyl tert-butyl ether		50		
75-34-3	1,1-Dichloroethane		45		
	Vinyl acetate		45		
	2-Butanone		50		
156-59-2	cis-1,2-Dichloroethene		46		
	2,2-Dichloropropane		45		
74-97-5	Bromochloromethane		47		
	Chloroform		47		
71-55-6	1,1,1-Trichloroethane		46		
563-58-6	1,1-Dichloropropene		4.3		
56-23-5	Carbon tetrachloride		44	·	
	1,2-Dichloroethane		49		
71-43-2			46		
	Trichloroethene		44		
78-87-5	1,2-Dichloropropane		48		
74-95-3	Dibromomethane		48		
	Bromodichloromethane		48		
L0061-01-5	cis-1,3-Dichloropropene		48		
108-10-1	4-Methyl-2-pentanone		53		
108-88-3	Toluene		46		
10061-02-6	trans-1,3-Dichloropropene		49		
79-00-5	1,1,2-Trichloroethane		50		
142-28-9	1,3-Dichloropropane		51		

1B - FORM I VOA-2

CLIENT SAMPLE NO.

VITLCS

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	LCS-40154
Sample wt/vol: 5.	00 (g/mL) <u>ML</u>		Lab File ID:	V1K1674.D
Level: (TRACE/LOW/MED)	LOW	. <u></u>	Date Received:	
% Moisture: not dec.			Date Analyzed:	11/18/2008
GC Column: DB-624	ID: 0.2	25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	·	(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0	-	(mL)		

		CONCENTRATION UNIT	rs:	1	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q	
127-18-4	Tetrachloroethene		48		
591-78-6	2-Hexanone		54		
124-48-1	Dibromochloromethane		50		
106-93-4	1,2-Dibromoethane		50		
108-90-7	Chlorobenzene		48		
630-20-6	1,1,1,2-Tetrachloroethane		48		
100-41-4	Ethylbenzene		46		
1330-20-7	m,p-Xylene	· · · · · ·	94		
95-47-6	o-Xylene		47		
	Xylene (Total)		140		
100-42-5	Styrene		49		
75-25-2	Bromoform		51		
98-82-8	Isopropylbenzene		46		
79-34-5	1,1,2,2-Tetrachloroethane		50		
108-86-1	Bromobenzene		47		
96-18-4	1,2,3-Trichloropropane		49		
103-65-1	n-Propylbenzene		45		
95-49-8	2-Chlorotoluene	· · · · · · · · · · · · · · · · · · ·	47		
108-67-8	1,3,5-Trimethylbenzene		46		
106-43-4	4-Chlorotoluene	······································	46		
98-06-6	tert-Butylbenzene		47		
95-63-6	1,2,4-Trimethylbenzene		46		
	sec-Butylbenzene		45	·	
99-87-6	4-Isopropyltoluene		45		
541-73-1	1,3-Dichlorobenzene		44		
106-46-7	1,4-Dichlorobenzene		46		
104-51-8	n-Butylbenzene		45		
	1,2-Dichlorobenzene		47		
96-12-8	1,2-Dibromo-3-chloropropane	· · · · · · · · · · · · · · · · · · ·	49		
	1,2,4-Trichlorobenzene		44		
87-68-3	Hexachlorobutadiene		42		
. 87-61-6	1,2,3-Trichlorobenzene		40		
	Naphthalene		43		

1A - FORM I VOA-1

CLIENT SAMPLE NO.

V1TLCSD

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABOR	ATORIES			Contract:			
Lab Code: MITKEM	Case No.:			Mod. Ref No.:		SDG No.:	MG2114
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	LCSD-4015	4	
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K1675.D		
Level: (TRACE/LOW/MED)	LOW			Date Received:			÷
% Moisture: not dec.				Date Analyzed:	11/18/200	8	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0		
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:		(uL)
Purge Volume: 5.0			(mL)				

		CONCENTRATION UNIT	'S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
	Dichlorodifluoromethane		33	
	Chloromethane		39	
75-01-4	Vinyl chloride		37	<u>.</u>
74-83-9	Bromomethane		40	
75-00-3	Chloroethane		41	
75-69-4	Trichlorofluoromethane		39	
75-35-4	1,1-Dichloroethene		40	••• •
67-64-1	Acetone		44	
74-88-4	Iodomethane		40	
75-15-0	Carbon disulfide		37	
75-09-2	Methylene chloride		45	
156-60-5	trans-1,2-Dichloroethene		41	
1634-04-4	Methyl tert-butyl ether		50	
75-34-3	1,1-Dichloroethane		43	
108-05-4	Vinyl acetate		43	
78-93-3	2-Butanone		52	
156-59-2	cis-1,2-Dichloroethene		43	
594-20-7	2,2-Dichloropropane		40	<u> </u>
74-97-5	Bromochloromethane		46	
67-66-3	Chloroform		44	
71-55-6	1,1,1-Trichloroethane		4.2	
563-58-6	1,1-Dichloropropene		39	
56-23-5	Carbon tetrachloride		40	
107-06-2	1,2-Dichloroethane		48	
71-43-2	Benzene		43	
79-01-6	Trichloroethene		41	
78-87-5	1,2-Dichloropropane		46	· · · · ·
	Dibromomethane		49	
	Bromodichloromethane		46	
10061-01-5	cis-1,3-Dichloropropene		47	
108-10-1	4-Methyl-2-pentanone		52	
108-88-3	Toluene		43	
10061-02-6	trans-1,3-Dichloropropene		48	
	1,1,2-Trichloroethane		49	
142-28-9	1,3-Dichloropropane		50	

SW846-

1B - FORM I VOA-2

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

V1TLCSD

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2114
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCSD-40154
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K1675.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	11/18/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	, Q
127-18-4	Tetrachloroethene		44	
591-78-6	2-Hexanone		55	
124-48-1	Dibromochloromethane		49	
106-93-4	1,2-Dibromoethane		51	
108-90-7 (Chlorobenzene		46	
630-20-6	1,1,1,2-Tetrachloroethane		47	
	Ethylbenzene		45	1
1330-20 - 7 r	m,p-Xylene		90	
95-47-6	o-Xylene		45	
1330-20-7 2	Xylene (Total)		130	
100-42-5			47	
75-25-2 I	Bromoform		50	· · · · · · -
	Isopropylbenzene		43	
79-34-5	1,1,2,2-Tetrachloroethane		50	
108-86-1 H	Bromobenzene		46	
	1,2,3-Trichloropropane		49	
	n-Propylbenzene		41	
	2-Chlorotoluene		44	
108-67-8 1	.,3,5-Trimethylbenzene		43	
106-43-4 4	-Chlorotoluene		44	· · · · · · · · · · · · · · · · · · ·
98-06-6 t	ert-Butylbenzene		44	·
95-63-6 1	,2,4-Trimethylbenzene		44	
	sec-Butylbenzene		42	
	-Isopropyltoluene		43	
	,3-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	44	
	,4-Dichlorobenzene		· 44	
	-Butylbenzene		42	
	,2-Dichlorobenzene		46	
	,2-Dibromo-3-chloropropane	· · · ·	51	
	,2,4-Trichlorobenzene		44	
	exachlorobutadiene		41	
	,2,3-Trichlorobenzene		43	
91-20-3 N	aphthalene		46	

- SW846

EPA	SAMPLE	NO.
		1.0.

	INORGANIC	ANALYSIS	DATA	SHEET	
atorios		Cont	ract.	95900	

		INORGANIC ANA	LYSIS DATA SHEET		DMW-13A
Lab Name:	Mitkem Laborator	ries	Contract: 959	00	
Lab Code:	MITKEM Case	e No.:	SAS No.:		SDG No.: MG2114
Matrix (soi	l/water): WATEF	<u> </u>	Lab Sample ID:	G2114-1	.2
Level (low/	(med): MED		Date Received:	11/13/2	2008
% Solids: ().0				

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	258			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	185	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	67.7			P
7440-70-2	Calcium	19900		`	P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	35.4	В		P
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	300			P
7439-92-1	Lead	2.2	U		P
7439-95-4	Magnesium	2630	1		P
7439-96-5	Manganese	16400			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	U		P
7440-09-7	Potassium	3680			P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	21700			Р
7440-28-0	Thallium	11.7	В		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	20.8	В		P

Comments:

		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	DMW-13B
Lab Name:	Mitkem Laboratories	Contract: 95900	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID: G2	2114-13
Level (low	/med): MED	Date Received: 11	/13/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		Р
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	33.4	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	2.3	В		P
7440-70-2	Calcium	11700	1		P
7440-47-3	Chromium	22.3			P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	106	В		P
7439-92-1	Lead	3.1	В		Р
7439-95-4	Magnesium	1910			P
7439-96-5	Manganese	153			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	U		Р
7440-09-7	Potassium	2100			Р
7782-49-2	Selenium	6.6	υ		Р
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	9280			P
7440-28-0	Thallium	4.2	υ		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	24.3	в		P

Comments:

		U.S. E	PA - CLP	
			1	EPA SAMPLE NO.
		INORGANIC ANAL	YSIS DATA SHEET	DMW-15A
Lab Name:	Mitkem Laboratories	· · · · · · · · · · · · · · · · · · ·	Contract: 959	00
Lab Code:	MITKEM Case No.:		SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER		Lab Sample ID:	G2114-08
Level (low	/med): MED		Date Received:	11/13/2008
% Solids:	0.0			

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		Р
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	20.1	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	33.9			P
7440-70-2	Calcium	12100			P
7440-47-3	Chromium	1.1	U		Р
7440-48-4	Cobalt	1.2	υ		P
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	61.0	U		Р
7439-92-1	Lead	2.2	υ		P
7439-95-4	Magnesium	1890			P
7439-96-5	Manganese	895			Р
7439-97-6	Mercury	0.016	U	- <u>-</u>	CV
7440-02-0	Nickel	1.5	U		P
7440-09-7	Potassium	1610			Р
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.59	U		Р
7440-23-5	Sodium	9040			P
7440-28-0	Thallium	4.2	U		Р
7440-62-2	Vanadium	0.96	υ		Р
7440-66-6	Zinc	24.3	в		P

Comments:

		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	DMW-15B
Lab Name:	Mitkem Laboratories	Contract: 95900)
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID:	G2114-07
Level (low	/med): MED	Date Received:	11/13/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	45.0	В		P
7440-41-7	Beryllium	0.19	В		P
7440-43-9	Cadmium	0.29	В		P
7440-70-2	Calcium	13700			P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.9	В		P
7440-50-8	Copper	5.0	υ		P
7439-89-6	Iron	875			P
7439-92-1	Lead	3.6	В		P
7439-95-4	Magnesium	5240			P
7439-96-5	Manganese	267			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	2.2	В		P
7440-09-7	Potassium	1980			Р
7782-49-2	Selenium	6.6	U	<u></u>	P
7440-22-4	Silver	1.0	В		P
7440-23-5	Sodium	43900			P
7440-28-0	Thallium	4.2	υ		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	38.9	В		P

Comments:

		1	EPA SAMPLE NO.
	INORGANI	C ANALYSIS DATA SHEET	DMW-18
Lab Name:	Mitkem Laboratories	Contract: 95900	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID: G2	114-06
Level (low	/med): MED	Date Received: 11	/13/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	88.1	в		P
7440-36-0	Antimony	5.1	В		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	166	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	9.8			P
7440-70-2	Calcium	12600			P
7440-47-3	Chromium	1.1	υ		P
7440-48-4	Cobalt	2.0	В		P
7440-50-8	Copper	11.1	В		P
7439-89-6	Iron	114	В		P
7439-92-1	Lead	2.2	U		P
7439-95-4	Magnesium	2440			F
7439-96-5	Manganese	2870			P
7439-97-6	Mercury	0.016	υ		C
7440-02-0	Nickel	29.3	в		F
7440-09-7	Potassium	1540			F
7782-49-2	Selenium	6.6	U		F
7440-22-4	Silver	0.59	υ		F
7440-23-5	Sodium	12100			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	0.96	υ		F
7440-66-6	Zinc	265			P

Comments:

			1	EPA SAMPLE NO.
		INORGANI	C ANALYSIS DATA SHEET	DMW-2
Lab Name:	Mitkem La	boratories	Contract: 9590	0
Lab Code:	MITKEM	Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water):	WATER	Lab Sample ID:	G2114-01
Level (low	/med): MED		Date Received:	11/13/2008
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	242			Р
7440-36-0	Antimony	4.6	U		Р
7440-38-2	Arsenic	5.3	U		Р
7440-39-3	Barium	38.7	В		Р
7440-41-7	Beryllium	0.27	В		P
7440-43-9	Cadmium	2.7	В		Р
7440-70-2	Calcium	14500			Р
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	13.8	в		P
7440-50-8	Copper	12.6	В		Р
7439-89-6	Iron	23300			Р
7439-92-1	Lead	5.2	В		Р
7439-95-4	Magnesium	2700			Р
7439-96-5	Manganese	2150			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	4.7	в		P
7440-09-7	Potassium	1880			Р
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.59	υ		Р
7440-23-5	Sodium	18600			Р
7440-28-0	Thallium	4.2	υ		Р
7440-62-2	Vanadium	0.96	υ		Р
7440-66-6	Zinc	64.3			P
L			· ·		تسسيا

Comments:

	Ű	J.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANI	C ANALYSIS DATA SHEET	DMW-22A
Lab Name:	Mitkem Laboratories	Contract: 95900	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so:	il/water): WATER	Lab Sample ID: G21	14-09
Level (low,	/med): MED	Date Received: 11/2	13/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	2620			P
7440-36-0	Antimony	4.6	U		Р
7440-38-2	Arsenic	7.2	В		P
7440-39-3	Barium	69.6	В		P
7440-41-7	Beryllium	0.21	В		Р
7440-43-9	Cadmium	13.5			P
7440-70-2	Calcium	55700			Р
7440-47-3	Chromium	13.0	В		P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	19.3	В		Р
7439-89-6	Iron	22000			Р
7439-92-1	Lead	11.3			P
7439-95-4	Magnesium	7860			P
7439-96-5	Manganese	1030			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	2.6	В		Р
7440-09-7	Potassium	3980			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	39900			Р
7440-28-0	Thallium	4.2	U		Р
7440-62-2	Vanadium	7.0	В		Р
7440-66-6	Zinc	714		10 <u>0</u>	P

Comments:

		U.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGA	ANIC ANALYSIS DATA SHEET	DMW-22B
Lab Name:	Mitkem Laboratories	Contract: 95900	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so:	il/water): WATER	Lab Sample ID: 0	G2114-11
Level (low,	/med): MED	Date Received: 1	1/13/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	υ		P
7440-39-3	Barium	41.3	В		P
7440-41-7	Beryllium	0.13	υ		P
7440-43-9	Cadmium	1.2	В		Р
7440-70-2	Calcium	27200			P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.5	В		Р
7440-50-8	Copper	5.0	U		Р
7439-89-6	Iron	518			Р
7439-92-1	Lead	2.4	В		P
7439-95-4	Magnesium	5090			P
7439-96-5	Manganese	775			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	6.5	В		P
7440-09-7	Potassium	1910			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	11300			P
7440-28-0	Thallium	4.2	υ		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	29.8	В	····.	P

Comments:

		1	
	INORGANIC A	ANALYSIS DATA SHEET	DMW-23A
Lab Name:	Mitkem Laboratories	Contract: 9590	0
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID:	G2114-14
Level (low	/med): MED	Date Received:	11/13/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Analyte	Concentration	C	Q	1
7429-90-5 Aluminum	3200			1
7440-36-0 Antimony	4.6	υ]
7440-38-2 Arsenic	5.8	в		
7440-39-3Barium	40.1	в		
7440-41-7 Beryllium	0.29	В		
7440-43-9Cadmium	1080			-
7440-70-2Calcium	31000			
7440-47-3 Chromium	3.6	В		
7440-48-4 Cobalt	1.2	U		1
7440-50-8 Copper	47.6			
7439-89-6 Iron	13100			
7439-92-1 Lead	9.5	В		
7439-95-4 Magnesium	9020			
7439-96-5Manganese	1390		~	
7439-97-6 Mercury	0.016	υ		0
7440-02-0Nickel	2.2	в		
7440-09-7 Potassium	6780			
7782-49-2 Selenium	6.6	U		
7440-22-4 Silver	0.59	U		
7440-23-5 Sodium	37800			1
7440-28-0 Thallium	4.2	U		
7440-62-2Vanadium	20.5	В		1
7440-66-6Zinc	42.7	В		1

Comments:

	U.	S. EPA - CLP	
1		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	DMW-23B
Lab Name:	Mitkem Laboratories	Contract: 95900	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID:	G2114-15
Level (low,	/med): MED	Date Received:	11/13/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	406			P
7440-36-0	Antimony	4.6	U		Р
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	64.6	В		P
7440-41-7	Beryllium	0.13	В		P
7440-43-9	Cadmium	42.2			P
7440-70-2	2 Calcium	15700			Р
7440-47-3	Chromium	4.3	В		Р
7440-48-4	Cobalt	1.2	U		Р
7440-50-8	Copper	24.6	В		P
7439-89-6	Iron	1270			Р
7439-92-1	Lead	17.7			Р
7439-95-4	Magnesium	1590	†		Р
7439-96-5	Manganese	52.1			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	20.5	В		P
7440-09-7	Potassium	1660			P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.81	В		P
7440-23-5	Sodium	2200	<u> </u> †-		P
7440-28-0)Thallium	4.2	U		P
7440-62-2	Vanadium	5.9	В		P
7440-66-6	Zinc	198			P

Comments:

		1	1		IPLE NO.	
		INORGANIC AN	ALYSIS DATA SHEET		DMW-3	
Lab Name:	Mitkem Laborator	ies	Contract: 95	900	<u> </u>	
Lab Code:	MITKEM Case	No.:	SAS No.:		SDG No.:	MG2114
Matrix (so	il/water): WATER		Lab Sample ID:	G2114-	04	
Level (low	/med): MED		Date Received:	11/13/	2008	
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	314			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		Р
7440-39-3	Barium	28.3	В		Р
7440-41-7	Beryllium	0.13	U		Р
7440-43-9	Cadmium	70.8			P
7440-70-2	Calcium	11800			P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.2	υ		P
7440-50-8	Copper	5.0	ΰ		P
7439-89-6	Iron	253			P
7439-92-1	Lead	2.7	В		P
7439-95-4	Magnesium	2650			P
7439-96-5	Manganese	262			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.6	В		P
7440-09-7	Potassium	1420			P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	25000			P
7440-28-0	Thallium	4.2	υ		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	26.2	В		P

Comments:

		EPA SAMPLE NO.	
	INORGANIC A	NALYSIS DATA SHEET	DMW-53
Lab Name:	Mitkem Laboratories	Contract: 95900)
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID:	G2114-05
Level (low	/med): MED	Date Received:	11/13/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	381			P
7440-36-0	Antimony	4.6	υ		P
7440-38-2	Arsenic	5.3	U		Р
7440-39-3	Barium	33.2	В		P
7440-41-7	Beryllium	0.13	υ		Р
7440-43-9	Cadmium	84.7			Р
7440-70-2	Calcium	12400			P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.2	υ		Р
7440-50-8	Copper	5.0	U		Р
7439-89-6	Iron	288			Р
7439-92-1	Lead	2.7	в		P
7439-95-4	Magnesium	2740			Р
7439-96-5	Manganese	298			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.7	В		Р
7440-09-7	Potassium	1450			Р
7782-49-2	Selenium	6.6	υ		Р
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	28100			Р
7440-28-0	Thallium	4.2	υ		Р
7440-62-2	Vanadium	0.96	υ		P
7440-66-6	Zinc	23.5	В		P

Comments:

	U.	.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	DMW-72
Lab Name:	Mitkem Laboratories	Contract: 9590	0
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID:	G2114-10
Level (low	/med): MED	Date Received:	11/13/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	462			P
7440-36-0	Antimony	4.6	υ		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	61.0	В		P
7440-41-7	Beryllium	0.16	В		P
7440-43-9	Cadmium	11.4			P
7440-70-2	Calcium	51100			P
7440-47-3	Chromium	4.6	В		P
7440-48-4	Cobalt	1.4	в		P
7440-50-8	Copper	13.8	В		Р
7439-89-6	Iron	13600			Р
7439-92-1	Lead	8.8	В		Р
7439-95-4	Magnesium	7080			P
7439-96-5	Manganese	946			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.8	В		P
7440-09-7	Potassium	3400			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	38800		-	P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	2.8	B		P
7440-66-6	Zinc	558			P

Comments:

U.S.	EPA -	CLP
------	-------	-----

		1	1		EPA SAMPLE NO.		
		INORGAN	IC ANALYSIS DATA S	HEET		DMW-9	
Lab Name:	Mitkem Lab	oratories	Contract:	9590)0		
Lab Code:	MITKEM	Case No.:	SAS No.:			SDG No.:	MG2114
Matrix (so:	il/water):	WATER	Lab Sample	ID:	G2114-0)2	
Level (low,	/med): MED		Date Receiv	ved:	11/13/2	2008	
% Solids:	0.0						

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	611			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	υ		P
7440-39-3	Barium	30.2	в		P
7440-41-7	Beryllium	0.21	в		P
7440-43-9	Cadmium	15.5	1		Р
7440-70-2	Calcium	10800			P
7440-47-3	Chromium	35.3			P
7440-48-4	Cobalt	1.5	В		P
7440-50-8	Copper	17.3	В		P
7439-89-6	Iron	3670			Р
7439-92-1	Lead	5.9	В		P
7439-95-41	Magnesium	2690			Р
7439-96-51	Manganese	62.6			P
7439-97-61	Mercury	0.016	υ		CV
7440-02-01	Nickel	3.3	в		P
7440-09-71	Potassium	1720			P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	16100	·		P
7440-28-07	Thallium	4.2	υ		P
7440-62-2	Vanadium	5.5	В		P
7440-66-62	Zinc	55.9			P

Comments:

			1		EPA SAMPI	LE NO.
		INORGANIC	ANALYSIS DATA SHEET		DMW-9B	
Lab Name:	Mitkem Laborator	ies	Contract: 959	00	_	
Lab Code:	MITKEM Case	No.:	SAS No.:	<u></u>	SDG No.: M	G2114
Matrix (so	il/water): WATER		Lab Sample ID:	G2114-	03	
Level (low	/med): MED		Date Received:	11/13/	2008	
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		Р
7440-38-2	Arsenic	5.3	υ		Р
7440-39-3	Barium	27.1	В		P
7440-41-7	Beryllium	0.13	υ		P
7440-43-9	Cadmium	0.23	В		P
7440-70-2	Calcium	8180			P
7440-47-3	Chromium	1.1	U		Р
7440-48-4	Cobalt	1.2	υ		P
7440-50-8	Copper	5.0	υ		P
7439-89-6	Iron	134	в		P
7439-92-1	Lead	2.2	U		Р
7439-95-4	Magnesium	1330			Р
7439-96-5	Manganese	171			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	υ		P
7440-09-7	Potassium	1940			P
7782-49-2	Selenium	6.6	υ		Р
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	11800			Р
7440-28-0	Thallium	4.2	U		Р
7440-62-2	Vanadium	0.96	U		Р
7440-66-6	Zinc	35.3	В		P

Comments:

		U.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGAN	NIC ANALYSIS DATA SHEET	DSED-5
Lab Name:	Mitkem Laboratories	Contract: 95900	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): SOIL	Lab Sample ID: G211	4-21
Level (low	/med): MED	Date Received: 11/1	.3/2008
% Solids:	35.0		

CAS No.	Analyte	Concentration	C		Q	M
7429-90-5	Aluminum	5150				P
7440-36-0	Antimony	1.1	В	N		P
7440-38-2	Arsenic	8.2				P
7440-39-3	Barium	96.6		+		P
7440-41-7	Beryllium	0.34	В			P
7440-43-9	Cadmium	52.0				P
7440-70-2	Calcium	4150				P
7440-47-3	Chromium	33.3				P
7440-48-4	Cobalt	7.8				P
7440-50-8	Copper	103				P
7439-89-6	Iron	23900				P
7439-92-1	Lead	215		E		P
7439-95-4	Magnesium	1370	+	†		P
7439-96-5	Manganese	2140	+	1		P
7439-97-6	Mercury	0.48	-	1		CV
7440-02-0	Nickel	19.2	+	1		P
7440-09-7	Potassium	320	1			P
7782-49-2	Selenium	1.6	U			P
7440-22-4	Silver	0.29	U			P
7440-23-5	Sodium	204	+			P
7440-28-0	Thallium	2.1	В			P
7440-62-2	Vanadium	54.2		 		P
7440-66-6	Zinc	290	+	E		P

Comments:

			U.S. E	PA - CLP				
				1			EPA SAM	IPLE NO.
			INORGANIC ANAL	LYSIS DATA S	HEET		DSED-56	
Lab Name:	Mitkem Lab	oratories		Contract:	9590	00		
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.:	MG2114
Matrix (so	il/water):	SOIL		Lab Sample	ID:	G2114-3	18	
Level (low,	/med): MED			Date Receiv	ved:	11/13/2	2008	
<pre>% Solids: 1</pre>	27.0	-						

CAS No.	Analyte	Concentration	С	Q	М
7429-90-57	Aluminum	8440			P
7440-36-07	Antimony	2.7	В	N	P
7440-38-27	Arsenic	6.9			P
7440-39-3E	Barium	105			P
7440-41-71	Beryllium	0.38	В		P
7440-43-90	Cadmium	112			P
7440-70-20	Calcium	10600			Р
7440-47-30	Chromium	35.4			P
7440-48-40	Cobalt	9.2			P
7440-50-80	Copper	73.8			P
7439-89-6	Iron	25800			P
7439-92-1	Lead	108		E	Р
7439-95-41	Magnesium	2320			P
7439-96-51	Manganese	1500			Р
7439-97-61	Mercury	0.18			CV
7440-02-01	Nickel	18.3			P
7440-09-71	Potassium	716			Р
7782-49-2	Selenium	1.9	U		P
7440-22-45	Silver	0.35	U		P
7440-23-55	Sodium	521			Р
7440-28-07	Thallium	1.6	В		P
7440-62-21	Vanadium	41.1			P
7440-66-62	Zinc	412		E	P
1				L	

Comments:

		U.S. E	PA - CLP			
			1		EPA SAM	IPLE NO.
		INORGANIC ANA	LYSIS DATA SHEET		DSED-6	
Lab Name:	Mitkem Laboratories	ter to the state of the state o	Contract: 959	00		
Lab Code:	MITKEM Case No	.:	SAS No.:		SDG No.:	MG2114
Matrix (so	il/water): SOIL		Lab Sample ID:	G2114-	17	
Level (low	/med): MED		Date Received:	11/13/	2008	
% Solids:	33.0					

CAS No.	Analyte	Concentration		Q	М
7429-90-5	Aluminum	7700			P
7440-36-0	Antimony	2.6		N	P
7440-38-2	Arsenic	6.4			P
7440-39-3	Barium	89.7	1		P
7440-41-7	Beryllium	0.36	В		P
7440-43-9	Cadmium	101		1	P
7440-70-2	Calcium	7690			P
7440-47-3	Chromium	41.8			P
7440-48-4	Cobalt	8.1	1		Р
7440-50-8	Copper	77.3			P
7439-89-6	Iron	25600			P
7439-92-1	Lead	109		Е	Р
7439-95-4	Magnesium	1980			P
7439-96-5	Manganese	978			P
7439-97-6	Mercury	0.15			CV
7440-02-0	Nickel	17.2			P
7440-09-7	Potassium	528			Р
7782-49-2	Selenium	1.4	U		P
7440-22-4	Silver	0.26	U		P
7440-23-5	Sodium	414			Р
7440-28-0	Thallium	0.98	В		P
7440-62-2	Vanadium	42.4			P
7440-66-6	Zinc	409		E	·P

Comments:

EPA SAMPLE NO.

		1	EPA SAMPLE NO.
	INORGANIC A	ANALYSIS DATA SHEET	DSW-5
Lab Name:	Mitkem Laboratories	Contract: 95900	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2114
Matrix (so	il/water): WATER	Lab Sample ID: G2	114-20
Level (low	/med): MED	Date Received: 11	/13/2008
<pre>% Solids:</pre>	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	56.0	υ		P
7440-36-0	Antimony	4.6	υ		Р
7440-38-2	Arsenic	5.3	υ		P
7440-39-3	Barium	26.2	В		P
7440-41-7	Beryllium	0.13	U		Р
7440-43-9	Cadmium	3.0	В		P
7440-70-2	Calcium	12500			P
7440-47-3	Chromium	1.1	υ		Р
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	U		Р
7439-89-6	Iron	1060			P
7439-92-1	Lead	2.2	υ		Р
7439-95-4	Magnesium	3100		·	P
7439-96-5	Manganese	956			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	U		P
7440-09-7	Potassium	1780			P
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.59	U		Р
7440-23-5	Sodium	18100			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	0.99	В		Р
7440-66-6	Zinc	10.4	В		P

Comments:

				1		EPA SAMPLE NO.
			INORGANIC ANAL	YSIS DATA SH	IEET	DSW-6
Lab Name:	Mitkem Labo	ratories		Contract:	95900	
Lab Code:	MITKEM	Case No.:		SAS No.:		SDG No.: MG2114
Matrix (so	il/water):	WATER	а. 	Lab Sample	ID: <u>G2114</u>	-16
Level (low	/med): MED			Date Receiv	ed: <u>11/13</u>	/2008
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	190	В		P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	37.7	В		P
7440-41-7	Beryllium	0.13	U		Р
7440-43-9	Cadmium	75.4			Р
7440-70-2	Calcium	20100			P
7440-47-3	Chromium	7.2	В		P
7440-48-4	Cobalt	1.2	U		Р
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	4010			Р
7439-92-1	Lead	9.8	в		P
7439-95-4	Magnesium	4080			P
7439-96-5	Manganese	1040			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	υ	· · · · · · · · · · · · · · · · · · ·	Р
7440-09-7	Potassium	2830			Р
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.59	U		Р
7440-23-5	Sodium	26000			Р
7440-28-0	Thallium	4.2	υ		P
7440-62-2	Vanadium	1.6	В		Р
7440-66-6	Zinc	48.2	в		Р

Comments:

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

December 17, 2008

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

RE: Client Project: Multi Site G—Liberty, DZUS Lab Work Order #: G2136

Dear Mr. Kareth:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Shirley Ng

Project Manager

* Data Summary Pack *

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : Multi Site G - Liberty, DZUS

SDG : <u>G2136</u>

		Analytical Requirements						
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other		
LMW-19	G2136-01				SW6010_W			
LMW-19	G2136-01		· · · ·		SW7470			
LMW-18	G2136-02				SW6010_W			
LMW-18	G2136-02				SW7470			
LMW-68	G2136-03	· · · · · · · · · · · · · · · · · · ·			SW6010_W			
LMW-68	G2136-03				SW7470			
LMW-20	G2136-04				SW6010_W			
LMW-20	G2136-04				SW7470			
LMW-21	G2136-05				SW6010_W			
LMW-21	G2136-05				SW7470			
LMW-6	G2136-06				SW6010_W	·		
LMW-6	G2136-06				SW7470			
LMW-5	G2136-07				SW6010_W			
LMW-5	G2136-07				SW7470			
SED-2	G2136-08	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	SW6010_S			
SED-2	G2136-08				SW7471			
SW-2	G2136-09				SW6010_W			
SW-2	G2136-09				SW7470			
SED-1	G2136-10			· · · · · · · · · · · · · · · · · · ·	SW6010_S			
SED-1	G2136-10				SW7471			
SW-1	G2136-11			· · · · · · · · · · · · · · · · · · ·	SW6010_W			
SW-1	G2136-11				SW7470			
SW-51	G2136-12				SW6010_W			
SW-51	G2136-12				SW7470			
SW-3	G2136-13				SW6010_W			
SW-3	G2136-13	and 1 and 1 and 1 and 1 and 1			SW7470			
SED-3	G2136-14				SW6010_S			
SED-3	G2136-14				SW7471			
SW-4	G2136-15				SW6010_W			
SW-4	G2136-15				SW7470			
SED-4	G2136-16		· · · ·	<u></u>	SW6010_S			
SED-4	G2136-16				SW7471			
FB 111408	G2136-17				SW6010_W			
FB 111408	G2136-17				SW7470			

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : <u>Multi Site G – Liberty, DZUS</u>

```
SDG: <u>G2136</u>
```

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010_S		·····		
	SL	SW6010_S	11/15/2008	12/4/2008
G2136-10A	SL	SW6010_S	11/15/2008	12/4/2008
G2136-14A	SL	SW6010_S	11/15/2008	12/4/2008
G2136-16A	SL	SW6010_S	11/15/2008	12/4/2008
G2136-16ADUP	SL	SW6010_S	11/15/2008	12/4/2008
G2136-16AMS	SL	SW6010_S	11/15/2008	12/4/2008
SW6010_W				
G2136-01A	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-01ADUP	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-01AMS	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-02A	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-03A	AQ		11/15/2008	12/4/2008
G2136-04A	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-05A	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-06A	AQ	SW6010 W	11/15/2008	12/4/2008
G2136-07A	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-09A	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-11A	AQ		11/15/2008	12/4/2008
G2136-11ADUP	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-11AMS	AQ	SW6010_W	11/15/2008	12/4/2008
G2136-12A	AQ		11/15/2008	12/4/2008
G2136-13A	AQ		11/15/2008	12/4/2008
G2136-15A	AQ		11/15/2008	12/4/2008
G2136-17A	AQ		11/15/2008	12/4/2008
SW7470		······································	<u>I</u>	, <u>,</u> , ,
G2136-01A	AQ	SW7470	11/15/2008	12/4/2008
G2136-01ADUP	AQ	SW7470	11/15/2008	12/4/2008
G2136-01AMS	AQ	SW7470	11/15/2008	12/4/2008
G2136-02A	AQ	SW7470	11/15/2008	12/4/2008
G2136-03A	AQ	SW7470	11/15/2008	12/4/2008
G2136-04A	AQ	SW7470	11/15/2008	12/4/2008
G2136-05A	AQ	SW7470	11/15/2008	12/4/2008
G2136-06A	AQ	SW7470	11/15/2008	12/4/2008
G2136-07A	AQ	SW7470	11/15/2008	12/4/2008
G2136-09A	AQ	SW7470	11/15/2008	12/4/2008
G2136-11A	AQ	SW7470	11/15/2008	12/4/2008
G2136-11ADUP	AQ	SW7470	11/15/2008	12/4/2008
G2136-11AMS	AQ	SW7470	11/15/2008	12/4/2008
G2136-12A	AQ	SW7470	11/15/2008	12/4/2008
G2136-13A	AQ	SW7470	11/15/2008	12/4/2008
G2136-15A	AQ	SW7470	11/15/2008	12/4/2008
G2136-17A	AQ	SW7470	11/15/2008	12/4/2008
SW7471	I	· · · · · · · · · · · · · · · · · · ·	I	
G2136-08A	SL	SW7471	11/15/2008	12/3/2008
G2136-10A	SL	SW7471	11/15/2008	12/3/2008
G2136-14A	SL	SW7471	11/15/2008	12/3/2008
G2136-14A	SL	SW7471	11/15/2008	12/3/2008

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: Multi Site G-Liberty, DZUS

SDG# MG2136

Mitkem Work Order ID: G2136

December 17, 2008

Prepared For:

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to Earth Tech Northeast, Inc.'s Multi Site G—Servall project. Under this deliverable, analysis results are presented for seventeen aqueous samples that were received on November 15, 2008. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Metals analysis:

Lab control sample: percent recoveries were within the QC limits.

Matrix spike analysis: matrix spikes were performed on samples LMW-19 and SW-1, on also sample SED-4 for ICP only. Spike recoveries were within the QC limits with the exception of antimony, cadmium and lead in SED-4. These elements are flagged with an "N" on the data reporting forms. A post digestion spike was performed on sample SED-4 with improved recoveries and reported.

Duplicate analysis: duplicate analyses were performed on samples LMW-19 and SW-1, on also sample SED-4 for ICP only. Percent recoveries were within the QC limits with the exception of aluminum, barium, cadmium, calcium, lead, magnesium, manganese, potassium and zinc. These elements are flagged with a "*" on the data reporting forms.

Sample analysis: serial dilutions were performed on samples LMW-19, SW-1 and SED-4. Percent differences were within the QC limits with the exception of barium, cadmium, chromium, cobalt, iron, lead, magnesium, vanadium and zinc in SED-4. These elements are flagged with an "E" on the data reporting forms. No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Shirley Ng

Project Manager 12/17/08

		U.S. H	EPA - CLP					
			1			EPA SAM	IPLE NO.	
		INORGANIC ANA	LYSIS DATA SI	HEET		FB 111408	<u></u>	
Lab Name:	Mitkem Laboratorie	S	Contract:	95900-	04	·		
Lab Code:	MITKEM Case N	0.:	SAS No.:			SDG No.:	MG2136	
Matrix (soi	l/water): WATER		Lab Sample	ID: G	2136-1	7		
Level (low,	/med): MED		Date Receiv	ved: 11	1/15/2	008		
% Solids:	0.0			r.				

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	8.5	U		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	0.33	в		P
7440-70-2	Calcium	130	U		P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	υ		P
7439-89-6	Iron	61.0	υ		P
7439-92-1	Lead	2.2	υ		Р
7439-95-4	Magnesium	77.0	U		P
7439-96-5	Manganese	13.8	В		Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	U		P
7440-09-7	Potassium	41.0	U		P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	57.9	В		P
7440-28-0	Thallium	4.2	U		Р
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	12.0	в	-	P
	1				1

Comments:

		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	LMW-18
Lab Name:	Mitkem Laboratories	Contract: 95900-	04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136
Matrix (so	il/water): WATER	Lab Sample ID: G2	2136-02
Level (low	/med): MED	Date Received: 1	1/15/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

7429-90-5 Aluminum 196 B P 7440-36-0 Antimony 9.0 B P 7440-38-2 Arsenic 5.3 U P 7440-39-3 Barium 86.4 B P 7440-41-7 Beryllium 0.13 U P 7440-43-9 Cadmium 0.92 B P 7440-70-2 Calcium 13500 P 7440-47-3 Chromium 5.4 B P 7440-48-4 Cobalt 1.2 U P 7440-50-8 Copper 11.0 B P 7439-89-6 Iron 307 P P 7439-92-1 Lead 2.5 B P 7439-92-1 Lead 2.5 B P 7439-95-4 Magnesium 4960 P P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 3.2 B P 7440-02-7 Potassium 10200 P P	CAS No.	Analyte	Concentration	С	Q	М
7440-38-2 Arsenic 5.3 U P 7440-39-3 Barium 86.4 B P 7440-41-7 Beryllium 0.13 U P 7440-43-9 Cadmium 0.92 B P 7440-70-2 Calcium 13500 P 7440-47-3 Chromium 5.4 B P 7440-48-4 Cobalt 1.2 U P 7440-50-8 Copper 11.0 B P 7439-89-6 Iron 307 P P 7439-92-1 Lead 2.5 B P 7439-95-4 Magnesium 4960 P P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 3.2 B P 7440-02-7 Potassium 10200 P P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7429-90-5	Aluminum	196	В		P
7440-39-3 Barium 86.4 B P 7440-41-7 Beryllium 0.13 U P 7440-43-9 Cadmium 0.92 B P 7440-70-2 Calcium 13500 P 7440-47-3 Chromium 5.4 B P 7440-48-4 Cobalt 1.2 U P 7440-50-8 Copper 11.0 B P 7439-89-6 Iron 307 P P 7439-92-1 Lead 2.5 B P 7439-95-4 Magnesium 4960 P 7439-96-5 Manganese 122 P 7440-02-0 Nickel 3.2 B P 7440-02-0 Nickel 3.2 B P 7440-23-5 Sodium 6.6 U P 7440-23-5 Sodium 29600 P P 7440-23-0 Thallium 4.2 U P	7440-36-0	Antimony	9.0	В		Р
7440-41-7Beryllium0.13UP7440-43-9Cadmium0.92BP7440-70-2Calcium13500P7440-47-3Chromium5.4BP7440-48-4Cobalt1.2UP7440-50-8Copper11.0BP7439-89-6Iron307P7439-92-1Lead2.5BP7439-95-4Magnesium4960P7439-96-5Manganese122P7440-02-0Nickel3.2BP7440-02-7Potassium10200P7440-22-4Silver1.6BP7440-23-5Sodium29600P7440-28-0Thallium4.2UP7440-62-2Vanadium0.96UP	7440-38-2	Arsenic	5.3	U		Р
7440-43-9 Cadmium 0.92 B P 7440-70-2 Calcium 13500 P 7440-47-3 Chromium 5.4 B P 7440-47-3 Chromium 5.4 B P 7440-48-4 Cobalt 1.2 U P 7440-50-8 Copper 11.0 B P 7439-89-6 Iron 307 P 7439-92-1 Lead 2.5 B P 7439-95-4 Magnesium 4960 P P 7439-96-5 Manganese 122 P P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 3.2 B P 7440-02-0 Nickel 3.2 B P 7440-02-7 Potassium 10200 P P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P P 7440-28-0 Thallium 4.2 U P	7440-39-3	Barium	86.4	В		Р
7440-70-2 Calcium 13500 P 7440-47-3 Chromium 5.4 B P 7440-48-4 Cobalt 1.2 U P 7440-50-8 Copper 11.0 B P 7439-89-6 Iron 307 P 7439-92-1 Lead 2.5 B P 7439-95-4 Magnesium 4960 P 7439-96-5 Manganese 122 P 7440-02-0 Nickel 3.2 B P 7440-09-7 Potassium 10200 P P 7440-22-4 Silver 1.6 P P 7440-28-0 Thallium 4.2 U P	7440-41-7	Beryllium	0.13	υ		P
7440-47-3Chromium5.4BP7440-48-4Cobalt1.2UP7440-50-8Copper11.0BP7439-89-6Iron307IP7439-92-1Lead2.5BP7439-95-4Magnesium4960P7439-96-5Manganese122IP7439-97-6Mercury0.016UCV7440-02-0Nickel3.2BP7440-02-7Potassium10200P7440-22-4Silver1.6BP7440-23-5Sodium29600P7440-28-0Thallium4.2UP7440-62-2Vanadium0.96UP	7440-43-9	Cadmium	0.92	в		Р
7440-48-4Cobalt1.2UP7440-50-8Copper11.0BP7439-89-6Iron307VP7439-92-1Lead2.5BP7439-95-4Magnesium4960VP7439-96-5Manganese122VP7439-97-6Mercury0.016UCV7440-02-0Nickel3.2BP7440-09-7Potassium10200P7440-22-4Silver1.6BP7440-23-5Sodium29600VP7440-28-0Thallium4.2UP7440-62-2Vanadium0.96UP	7440-70-2	Calcium	13500			Р
7440-50-8 Copper 11.0 B P 7439-89-6 Iron 307 P 7439-92-1 Lead 2.5 B P 7439-95-4 Magnesium 4960 P 7439-95-5 Magnesium 4960 P 7439-96-5 Magnese 122 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 3.2 B P 7440-09-7 Potassium 10200 P P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P P 7440-28-0 Thallium 4.2 U P	7440-47-3	Chromium	5.4	В		Р
7439-89-6 Iron 307 P 7439-92-1 Lead 2.5 B P 7439-92-1 Lead 2.5 B P 7439-92-4 Magnesium 4960 P 7439-95-4 Magnesium 4960 P 7439-96-5 Manganese 122 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 3.2 B P 7440-02-7 Potassium 10200 P P 7440-22-4 Selenium 6.6 U P 7440-22-5 Sodium 29600 P P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7440-48-4	Cobalt	1.2	υ		P
7439-92-1 Lead 2.5 B P 7439-95-4 Magnesium 4960 P 7439-96-5 Manganese 122 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 3.2 B P 7440-09-7 Potassium 10200 P 7782-49-2 Selenium 6.6 U P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7440-50-8	Copper	11.0	В		P
7439-95-4Magnesium4960P7439-96-5Manganese122P7439-97-6Mercury0.016UCV7440-02-0Nickel3.2BP7440-09-7Potassium10200P7782-49-2Selenium6.6UP7440-22-4Silver1.6BP7440-23-5Sodium29600P7440-28-0Thallium4.2UP7440-62-2Vanadium0.96UP	7439-89-6	Iron	307			P
7439-96-5 Manganese 122 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 3.2 B P 7440-09-7 Potassium 10200 P 7782-49-2 Selenium 6.6 U P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7439-92-1	Lead	2.5	в		Р
7439-97-6Mercury0.016UCV7440-02-0Nickel3.2BP7440-09-7Potassium10200P7782-49-2Selenium6.6UP7440-22-4Silver1.6BP7440-23-5Sodium29600P7440-28-0Thallium4.2UP7440-62-2Vanadium0.96UP	7439-95-4	Magnesium	4960			Р
7440-02-0 Nickel 3.2 B P 7440-09-7 Potassium 10200 P 7782-49-2 Selenium 6.6 U P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7439-96-5	Manganese	122			Р
7440-09-7 Potassium 10200 P 7782-49-2 Selenium 6.6 U P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7439-97-6	Mercury	0.016	U		CV
7782-49-2 Selenium 6.6 U P 7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7440-02-0	Nickel	3.2	В		P
7440-22-4 Silver 1.6 B P 7440-23-5 Sodium 29600 P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7440-09-7	Potassium	10200			P
7440-23-5 Sodium 29600 P 7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7782-49-2	Selenium	6.6	U		Р
7440-28-0 Thallium 4.2 U P 7440-62-2 Vanadium 0.96 U P	7440-22-4	Silver	1.6	В		Р
7440-62-2 Vanadium 0.96 U P	7440-23-5	Sodium	29600			P
	7440-28-0	Thallium	4.2	U		P
7440-66-6Zinc 86.7 P	7440-62-2	Vanadium	0.96	U		Р
	7440-66-6	Zinc	86.7			Р

Comments:

		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	LMW-19
Lab Name:	Mitkem Laboratories	Contract: 9590	0-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136
Matrix (so	il/water): WATER	Lab Sample ID:	G2136-01
Level (low	/med): MED	Date Received:	11/15/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

.

CAS No.	Analyte	Concentration	С	0	M
7429-90-5	-	56.0	U	*	P
7440-36-0		4.6	U		P
7440-38-2	-	5.3	U		P
7440-39-3		20.0	B		P
		0.13	U U		P
	Beryllium		<u> </u>		
7440-43-9	Cadmium	0.14	U		P
7440-70-2	Calcium	9700			P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	61.0	υ		P
7439-92-1	Lead	2.2	U		P
7439-95-4	Magnesium	3970			Р
7439-96-5	Manganese	14.9	В		P
7439-97-6	Mercury	0.016	υ		CV
7440-02-0	Nickel	1.5	U		Р
7440-09-7	Potassium	947	В		P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	1.1	в		Р
7440-23-5	Sodium	13400			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	0.96	U		Р
7440-66-6	Zinc	30.5	в		P

Comments:

	U.S.	EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANIC AN	NALYSIS DATA SHEET	LMW-20
Lab Name:	Mitkem Laboratories	Contract: 95900	0-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136
Matrix (soi	l/water): WATER	Lab Sample ID:	G2136-04
Level (low,	(med): MED	Date Received:	11/15/2008
% Solids: (0.0		

CAS No.	Analyte	Concentration	С	0	M
7429-90-5	-	81.6	в		P
7440-36-0	Antimony	4.6	υ		P
7440-38-2		5.3	υ		P
7440-39-3	Barium	48.8	в		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	0.74	В		P
7440-70-2	Calcium	4420			P
7440-47-3	Chromium	2.1	в		P
7440-48-4	Cobalt	1.2	U	· · ·	P
7440-50-8	Copper	5.0	υ		P
7439-89-6	Iron	164	в		P
7439-92-1	Lead	2.2	U	-	Р
7439-95-4	Magnesium	3400			P
7439-96-5	Manganese	35.0	В		P
7439-97-6	Mercury	0.016	υ		CV
7440-02-0	Nickel	1.8	в		P
7440-09-7	Potassium	8190			Р
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.60	В		P
7440-23-5	Sodium	29700			P
7440-28-0	Thallium	4.2	υ		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	28.5	В		P

Comments:

	U	.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	LMW-21
Lab Name:	Mitkem Laboratories	Contract: 95900-	-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136
Matrix (so	il/water): WATER	Lab Sample ID: G	2136-05
Level (low	/med): MED	Date Received: 1	1/15/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	457			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	58.2	В		Р
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	4.8	В		P
7440-70-2	Calcium	11900			P
7440-47-3	Chromium	2.3	В		P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	6.6	В		Р
7439-89-6	Iron	198	В		P
7439-92-1	Lead	2.6	В		P
7439-95-4	Magnesium	2960	1		P
7439-96-5	Manganese	627			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	6.9	в		P
7440-09-7	Potassium	6250			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	19200			Р
7440-28-0	Thallium	4.2	υ		Р
7440-62-2	Vanadium	0.96	υ		P
7440-66-6	Zinc	69.1			Р

Comments:

			1	EPA SAMPLE NO.
		INORGANI	C ANALYSIS DATA SHEET	LMW-5
Lab Name:	Mitkem Lab	oratories	Contract: 9590	00-04
Lab Code:	MITKEM	Case No.:	SAS No.:	SDG No.: MG2136
Matrix (so	il/water):	WATER	Lab Sample ID:	G2136-07
Level (low/med): MED		Date Received:	11/15/2008	
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	45.7	В	an a	P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	0.14	υ		P
7440-70-2	Calcium	16900			P
7440-47-3	Chromium	7.3	В		P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	61.0	U		P
7439-92-1	Lead	· 2.2	U		P
7439-95-4	Magnesium	2040			P
7439-96-5	Manganese	6.8	В		P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	U		P
7440-09-7	Potassium	4380			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	7570		A	P
7440-28-0		4.2	U		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	13.7	в		P

Comments:

	U.	S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	LMW-6
Lab Name:	Mitkem Laboratories	Contract: 95900-0	4
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136
Matrix (so	il/water): WATER	Lab Sample ID: G2	136-06
Level (low/med): MED		Date Received: 11	/15/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	56.0	U		Р
7440-36-0	Antimony	4.6	U	444-7 F 11	P
7440-38-2	Arsenic	5.3	U		Р
7440-39-3	Barium	15.7	В		Р
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	0.55	В		P
7440-70-2	Calcium	8300			Р
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	υ		P
7439-89-6	Iron	147	В		Р
7439-92-1	Lead	2.2	υ		P
7439-95-4	Magnesium	2590			P
7439-96-5	Manganese	40.8	В		P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	2.2	В		P
7440-09-7	Potassium	2060			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	11600			P
7440-28-0	Thallium	4.2	U	- · ·	P
7440-62-2	Vanadium	0.96	U		Р
7440-66-6	Zinc	21.9	В		P

Comments:

		1		
	INORGANIC AN	ALYSIS DATA SHEET	LMW-68	
Lab Name:	Mitkem Laboratories	Contract: 959	00-04	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136	
Matrix (so	il/water): WATER	Lab Sample ID:	G2136-03	
Level (low/med): MED		Date Received:	11/15/2008	

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5A	luminum	214			P
7440-36-0A	ntimony	5.3	В		P
7440-38-2A	rsenic	5.3	U		P
7440-39-3B	arium	86.3	В		Р
7440-41-7B	eryllium	0.13	U		P
7440-43-9C	admium	1.2	В		P
7440-70-2C	alcium	13800			Р
7440-47-3C	hromium	5.6	В		Р
7440-48-4C	obalt	1.2	U		P
7440-50-8C	opper	10.1	В		P
7439-89-6I	ron	266			Р
7439-92-1L	ead	2.5	В	-	Р
7439-95-4M	lagnesium	4960			Р
7439-96-5M	anganese	126			P
7439-97-6M	lercury	0.016	υ		CV
7440-02-0N	ickel	3.2	В		P
7440-09-7P	otassium	10400			Р
7782-49-2 S	elenium	6.6	U		P
7440-22-4 S	ilver	0.91	В		P
7440-23-5S	odium	30000			P
7440-28-0 T	hallium	4.2	U		Р
7440-62-2V	anadium	0.96	U		P
7440-66-6Z	inc	83.8			P

Comments:

			U.S. E	PA - CLP				
				1			EPA SAM	IPLE NO.
			INORGANIC ANAL	YSIS DATA SI	HEET		SED-1	
Lab Name:	Mitkem Lab	oratories		Contract:	9590	00-04		
Lab Code:	MITKEM	Case No.:		SAS No.:	. <u></u>		SDG No.:	MG2136
Matrix (so	il/water):	SOIL		Lab Sample	ID:	G2136-	10	
Level (low,	/med): MED			Date Receiv	ved:	11/15/	2008	
% Solids:	12.0							

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5A1	uminum	7630		*	Р
7440-36-0Ar	ntimony	2.2	B	N	Р
7440-38-2A1	rsenic	8.7			P
7440-39-3Ba	arium	67.7	В	*E	P
7440-41-7Be	eryllium	0.64	В		Р
7440-43-9 Ca	admium	61.4		N*E	P
7440-70-2 Ca	alcium	3140		*	P
7440-47-3 Ch	nromium	27.1	-	E	P
7440-48-4 Co	obalt	20.2		Е	P
7440-50-8 Co	opper	65.7			Р
7439-89-611	ron	19700		E	P
7439-92-1 Le	ead	176	1	N*E	P
7439-95-4 Ma	agnesium	1260		*E	P
7439-96-5Ma	anganese	181		*	P
7439-97-6M	ercury	0.34			CV
7440-02-0N:	ickel	19.4			Р
7440-09-7 Pc	otassium	465		*	P
7782-49-2 Se	elenium	4.2	υ		Р
7440-22-4 S:	ilver	0.77	U		Р
7440-23-5 Sc	odium	136	В		P
7440-28-0 TI	nallium	2.5	U		P
7440-62-2Va	anadium	39.9	-	E	P
7440-66-6Z:	inc	445		*E	Р

Comments:

			U.S. E	PA - CLP				
				1			EPA SAM	IPLE NO.
			INORGANIC ANAL	LYSIS DATA SI	HEET		SED-2	
Lab Name:	Mitkem Lab	oratories		Contract:	9590	0-04		
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.:	MG2136
Matrix (so	il/water):	SOIL		Lab Sample	ID:	G2136-	08	
Level (low	/med): MED			Date Receiv	ved:	11/15/	2008	
% Solids:	62.0							

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	2800		*	Р
7440-36-0	Antimony	0.19	В	N	P
7440-38-2	Arsenic	1.8	ļ		Р
7440-39-3	Barium	40.8		*E	P
7440-41-7	Beryllium	0.16	В		P
7440-43-9	Cadmium	12.5		N*E	P
7440-70-2	Calcium	1400		*	Р
7440-47-3	Chromium	6.5		E	P
7440-48-4	Cobalt	3.0	В	E	Р
7440-50-8	Copper	15.6			P
7439-89-6	Iron	3850		E	P
7439-92-1	Lead	25.8		N*E	P
7439-95-4	Magnesium	305		*E	P
7439-96-5	Manganese	769		*	Р
7439-97-6	Mercury	0.018	В		CV
7440-02-0	Nickel	3.2	в		P
7440-09-7	Potassium	123	1	*	P.
7782-49-2	Selenium	0.79	U		Р
7440-22-4	Silver	0.15	U	-	Р
7440-23-5	Sodium	46.5	В		P
7440-28-0	Thallium	0.46	U		P
7440-62-2	Vanadium	5.8	<u> </u>	E	P
7440-66-6	Zinc	67.9		*E	P

Comments:

		1	EPA SAMPLE NO.
	INORGANI	C ANALYSIS DATA SHEET	SED-3
Lab Name:	Mitkem Laboratories	Contract: 95900-	-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136
Matrix (so	il/water): SOIL	Lab Sample ID: G	2136-14
Level (low/med): MED		Date Received: 1	1/15/2008
% Solids:	20.0		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	5860		*	P
7440-36-0	Antimony	0.63	В	N	P
7440-38-2	Arsenic	4.2	В	,	P
7440-39-3	Barium	88.2		*E	P
7440-41-7	Beryllium	0.30	В		Р
7440-43-9	Cadmium	1.7		N*E	Р
7440-70-2	Calcium	11700		*	Р
7440-47-3	Chromium	9.6		E	P
7440-48-4	Cobalt	12.6		E	P
7440-50-8	Copper	32.4			Р
7439-89-6	5 Iron	10900		E	P
7439-92-1	Lead	34.0		N*E	P
7439-95-4	Magnesium	4200		*E	P
7439-96-5	Manganese	908		*	Р
7439-97-6	Mercury	0.074	В		CV
7440-02-0	Nickel	8.5	В		P
7440-09-7	Potassium	1010		*	P
7782-49-2	Selenium	2.7	U		P
7440-22-4	Silver	0.49	U		P
7440-23-5	Sodium	528		· · ·	P
7440-28-0)Thallium	1.6	U		P
7440-62-2	Vanadium	36.4		E	P
7440-66-6	Zinc	71.3		*E	P

Comments:

מסית	SAMPLE	NO
LPA	SAMPLE	NO

				1			EPA SAM	IPLE NO.
			INORGANIC ANAI	YSIS DATA SI	HEET		SED-4	
Lab Name:	Mitkem Lab	poratories		Contract:	9590	0-04		
Lab Code:	MITKEM	Case No.:	,	SAS No.:			SDG No.:	MG2136
Matrix (so	il/water):	SOIL		Lab Sample	ID:	G2136-1	16	
Level (low	/med): MED			Date Receiv	red:	11/15/2	2008	
% Solids:	38.0							

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-54	Aluminum	1790		*	Р
7440-36-07	Antimony	0.42	В	N	P
7440-38-27	Arsenic	3.9			Р
7440-39-3E	Barium	177		*E	P
7440-41-7E	Beryllium	0.13	B		P
7440-43-90	Cadmium	15.8		N*E	P
7440-70-20	Calcium	8090		*	P
7440-47-30	Chromium	6.8		E	P
7440-48-40	Cobalt	7.0	1	E	P
7440-50-80	Copper	17.1			P
7439-89-6	Iron	7280		E	P
7439-92-11	Lead	34.3		N*E	P
7439-95-41	Magnesium	653	1	*E	P
7439-96-51	Manganese	11700		*	Р
7439-97-61	Mercury	0.21			CV
7440-02-01	Nickel	6.3			Р
7440-09-71	Potassium	281		*	P
7782-49-2	Selenium	3.3			Р
7440-22-4	Silver	1.1	В		P
7440-23-5	Sodium	131			Р
7440-28-07	Thallium	2.8		+	P
7440-62-2	Vanadium	7.4		E	P
7440-66-62	Zinc	110		*E	P

Comments:

			U.S. E	PA - CLP				
				1			EPA SAM	IPLE NO.
			INORGANIC ANAL	LYSIS DATA SH	IEET		SW-1	
Lab Name: M	Mitkem Lab	oratories		Contract:	9590	0-04	_	
Lab Code: M	MITKEM	Case No.:		SAS No.:			SDG No.:	MG2136
Matrix (soil	/water):	WATER		Lab Sample	ID:	G2136-	11	
Level (low/m	ned): MED			Date Receiv	ed:	11/15/	2008	

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	6.0	В		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	31.8	В		P
7440-41-7	Beryllium	0.13	υ		Р
7440-43-9	Cadmium	1.5	В		P
7440-70-2	Calcium	14300			P
7440-47-3	Chromium	1.1	U		Р
7440-48-4	Cobalt	1.2	υ		P
7440-50-8	Copper	5.0	υ		Р
7439-89-6	Iron	598			P
7439-92-1	Lead	2.2	U		P
7439-95-4	Magnesium	3570			P
7439-96-5	Manganese	1610			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	U		P
7440-09-7	Potassium	2250			P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.98	в		P
7440-23-5	Sodium	19000			P
7440-28-0	Thallium	4.2	υ		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	22.3	в		P

Comments:

SW846

۰.

- 1

EPA SAMPLE N

INORGANIC	ANALYSIS	DATA	SHEET	
			05000	~ 4

			INORGANIC ANA	LYSIS DATA SI	HEET		S₩-2	
Lab Name:	Mitkem La	boratories		Contract:	959	00-04	~	
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.:	MG2136
Matrix (so	il/water):	WATER		Lab Sample	ID:	G2136-	09	
Level (low	/med): MED			Date Receiv	ved:	11/15/	2008	
% Solids:	0.0							

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	0	M
		56.0	U	~~~	P
7429-90-5					
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		Р
7440-39-3	Barium	32.4	в		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	2.0	В		P
7440-70-2	Calcium	14300			P
7440-47-3	Chromium	1.1	U		P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	675			P
7439-92-1	Lead	2.4	В		P
7439-95-4	Magnesium	3530			P
7439-96-5	Manganese	1560			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1.5	U		P
7440-09-7	Potassium	2320			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	19500			P
7440-28-0)Thallium	4.2	U		Р
7440-62-2	Vanadium	1.1	В		P
7440-66-6	Zinc	21.0	В		P
	1		L	L	

Comments:

EPA SAMPLE NO.

	INORGANIC ANAI	YSIS DATA SHEET		SW-3
Lab Name:	Mitkem Laboratories	Contract: 9590	00-04	
Lab Code:	MITKEM Case No.:	SAS No.:		SDG No.: MG2136
Matrix (soi	l/water): WATER	Lab Sample ID:	G2136-1	3
Level (low,	/med): MED	Date Received:	11/15/2	008
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	56.0	υ		P
7440-36-0	Antimony	4.6	υ		P
7440-38-2	Arsenic	5.3	υ		P
7440-39-3	Barium	38.6	В		E
7440-41-7	Beryllium	0.13	U		F
7440-43-9	Cadmium	0.97	В		E
7440-70-2	Calcium	14000			E
7440-47-3	Chromium	1.1	υ		F
7440-48-4	Cobalt	1.2	U		1
7440-50-8	Copper	5.0	U		1
7439-89-6	Iron	772			I
7439-92-1	Lead	2.2	υ		
7439-95-4	Magnesium	3440]
7439-96-5	Manganese	1790			
7439-97-6	Mercury	0.016	U		С
7440-02-0	Nickel	1.5	U		
7440-09-7	Potassium	2290			.]
7782-49-2	Selenium	6.6	U		1
7440-22-4	Silver	0.64	В		1
7440-23-5	Sodium	17700	1		1
7440-28-0	Thallium	4.2	υ		
7440-62-2	Vanadium	0.96	U	/w	1
7440-66-6	Zinc	16.4	в		I

Comments:

EPA	SAMPLE	NO.
-----	--------	-----

		IN	ORGANIC ANA	LYSIS DATA SI	HEET		SW-4	
Lab Name:	Mitkem Lab	oratories		Contract:	959	00-04	_	
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.:	MG2136
Matrix (soil/water): WATER		Lab Sample	ID:	G2136-	-15			
Level (low/med): MED		Date Received: 11/		11/15/	/15/2008			
% Solids:	0.0							

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	υ		P
7440-39-3	Barium	31.9	в		Р
7440-41-7	Beryllium	0.13	υ		P
7440-43-9	Cadmium	0.63	В		P
7440-70-2	Calcium	14000			Р
7440-47-3	Chromium	1.1	υ		Р
7440-48-4	Cobalt	1.2	υ		P
7440-50-8	Copper	5.0	υ		P
7439-89-6	Iron	741			P
7439-92-1	Lead	2.2	U		Р
7439-95-4	Magnesium	3490			P
7439-96-5	Manganese	1630			Р
7439-97-6	Mercury	0.016	υ		CV
7440-02-0	Nickel	1.5	υ		P
7440-09-7	Potassium	2310			P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	17800			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	9.7	В		Р

Comments:

	· U.	S. EPA - CLP	
		EPA SAMPLE NO.	
	INORGANIC	ANALYSIS DATA SHEET	SW-51
Lab Name:	Mitkem Laboratories	Contract: 95900-04	4
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2136
Matrix (soil/water): WATER		Lab Sample ID: G21	136-12
Level (low/med): MED		Date Received: 11/	/15/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5A1	uminum	56.0	υ		P
7440-36-0An	timony	5.9	в		Р
7440-38-2Ar	senic	5.6	В		Р
7440-39-3Ba	rium	33.4	В		P
7440-41-7Be	eryllium	0.13	U		P
7440-43-9Ca	Idmium	1.7	В		P
7440-70-2 Ca	lcium	14300			P
7440-47-3 Ch	iromium	1.1	υ		P
7440-48-4 Cc	balt	1.2	υ		P
7440-50-8 Cc	opper	5.0	υ		Р
7439-89-6Ir	ion i	657			P
7439-92-1 Le	ad	2.3	В	- <u></u>	P
7439-95-4 Ma	Ignesium	3550			P
7439-96-5 Ma	inganese	1540			Р
7439-97-6Me	ercury	0.016	U		CV
7440-02-0Ni	ckel	1.5	υ		P
7440-09-7 Pc	otassium	2330			P
7782-49-2 Se	elenium	6.6	υ		P
7440-22-4 Si	lver	0.90	B		P
7440-23-5 Sc	dium	19300			Р
7440-28-0Th	allium	4.2	U		P
7440-62-2Va	nadium	1.4	в		P
7440-66-6Zi	nc	22.0	в		P

Comments: