TOWN OF HUNTINGTON

FRANK P. PETRONE, Supervisor

November 12, 2004

ENVIRONMENTAL WASTE MANAGEMENT

John Strang, P. E Environmental Engineer NYS Dept. of Environmental Conservation Division of Environmental Remediation Bureau of Hazardous Site Control, 11th Floor 625 Broadway Albany, New York 12233-7014

Re. Huntington/East Northport Landfill NYSDEC Site # 1-52-040

entington/Fast Northnort I andfill

Dear John,

Truly Yours,

Please do not hesitate to call me if you have any questions or comments.

Richard C. Koopmann

Sr. Environmental Analyst

cc: M. Laux, Deputy Director, DEWM, w/encl.(1)

B. Tuohey, DEWM, w/encl.(1)

H. Zeiss, DEWM, w/encl.(1)

J.J. Anastasia II, TOH, Director, DMS

P. Wolpensinger, TOH, Director, DES, w/encl.(1)

T. Chambers, Covanta Energy, w/encl.(1)

S. Farkas, NYSDEC, w/encl.(2)

RCK:rk

Encl. (2)

TOWN OF HUNTINGTON

FRANK P. PETRONE, Supervisor

ENVIRONMENTAL WASTE MANAGEMENT

February 3, 2005

Mr. John Strang, P. E. NYS Dept. of Environmental Conservation Division of Environmental Remediation Bureau of Hazardous Site Control, 11th Floor 625 Broadway Albany, New York 12233-7014

Re. Huntington/East Northport Landfill NYSDEC Site # 1-52-040

FEB 7 2005

Dear John,

As required by the Record of Decision for the above referenced site, transmitted herewith please find a copy of the "Landfill Gas and Control System Monitoring Report" for the East Northport Landfill for the months of November and December 2004.

Please do not hesitate to call me if you have any questions or comments.

Richard C. Koopmann

Sr. Environmental Analyst

RCK:rk Encl. (2)

cc: M. Laux, Deputy Director, DEWM, w/encl.(2)

B. Tuohey, DEWM, w/encl.(2)

H. Zeiss, DEWM, w/encl.(2)

J.J. Anastasia II, TOH, Director, DMS

P. Wolpensinger, TOH, Director, DES, w/encl.(2)

T. Chambers, Covanta Energy, w/encl.(2)

S. Farkas, NYSDEC, w/encl.(2)

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York July, 2004

Prepared for:

Town of Huntington Department of Environmental Waste Management 100 Main Street Huntington, New York 11743

Prepared by:

R & C Formation, Ltd. 30 Broadway, Suite 6 Massapequa, New York 11758

TABLE OF CONTENTS

	P	age
Scope of Wor Summary of F Genera Monite LFG C Conde Discussion Metha	Results al oring Wells Control Wells consate Traps The Monitoring Data al Operating Condition	3
	Figure Following I	Page
Figure 1.	Landfill Gas Monitoring and Control System	1
	Summary Tables Following	Page
Table 1.	Landfill Gas Monitoring Well Data	4
Table 2.	Landfill Gas Control Well Data	4
Table 3.	Summary of Methane Detections	4
Table 4.	Landfill Gas Control Well Methane Data	4
	Appendix	
Appendix 1.	Landfill Gas Contol Well Vacuum Data	

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York July, 2004

Introduction

Presented herein are the results of landfill gas and control system monitoring activities performed July, 2004 at the Town of Huntington East Northport Landfill (as stipulated by the New York State Department of Environmental Conservation).

The primary landfill gas migration control system consists of thirty active landfill gas control wells connected - via a single header pipe forming a complete loop around the 44 acre East Northport Landfill - to one blower station. Landfill gas monitoring wells (consisting of 3-4 probes screened from approximately 5-70 feet below grade) are situated outside of the aforementioned header pipe, thereby providing a means to verify the control system's efficacy. Separate landfill gas control and monitoring systems are located at adjacent Animal Control and Resource Recovery Facilities.

Figure 1 illustrates the landfill area and pertinent components of the landfill gas monitoring and control system. The scope-of-work completed (per our agreement with the Town of Huntington Department of Environmental Waste Management dated August 15, 2003) precedes a summary of results. A discussion of methane monitoring data - with an emphasis on trends and occurrence - and the system's physical and operating condition, follows.

Scope-of-Work

The scope-of-work includes performance of the following on a monthly basis:

- 1) Monitoring of all probes in 43 landfill monitoring wells and up to 5 probes around the Town Animal Control Facility for methane gas and gas pressure.
- 2) Monitoring of 30 methane control wells and blower station for temperature, flow rate, vacuum, methane and oxygen (balance of the control system to be checked and adjustment to wells and to blower intake made, if necessary).

- 3) Examination of 5 condensate traps in the control system for proper operation and water accumulation.
- 4) Noting of any problems, damage, missing parts etc. at each monitoring well, methane control well, condensate trap, Animal Control Facility probes and blower station.

Summary of Results

General

Reported monthly monitoring activities were performed July 30, 2004. Climatic conditions for the monitoring period are as follows:

Temperature: 74 (°F); Barometric pressure: 30.13 (in. Hg); Relative Humidity: 91.0%; Precipitation: 0.00 inches; Wind Speed & Direction: 7.8 mph, southwesterly.

Monitoring Wells

A summary of measured and recorded landfill gas monitoring well data is presented on Table 1. As shown, methane was not detected throughout the entire monitoring well network.

LFG Control Wells

Table 2 presents a summary of measured and recorded landfill gas control well data - including the system's blower station where 2 "inlet" measuring points (Blower Station 1 & 2) and 1 "outlet" measuring point (Blower Station 3) are located. As shown on Table 2, control well vacuum values (i.e., negative pressure), a direct indicator of the system's balance, range from -0.2 - -4.0 (in. $\rm H_20$). "Extracted" methane values range from 0.0 - 8.1 %.

Condensate Traps

Standing water measured within condensate traps CD-1 (1.1 feet), CD-2 (1.7 feet), CD-3 (1.4 feet), CD-4 (7.2 feet) and CD-5 (0.1 feet) was evacuated, as per usual, upon the completion of monitoring activities.

Discussion

Methane Monitoring Data

Table 3 summarizes methane concentrations detected at landfill gas monitoring wells throughout the period of record from October, 1999 through July, 2004. As shown on Table 3, methane has been detected sporadically and at low levels at 14 monitoring wells, including at Animal Control Facility monitoring well AS-NE, where, it was last detected at a concentration of 0.1 % during April, 2004 monitoring activities. The highest recorded value of 5.0 % was measured at this well during March, 2001 monitoring activities.

Methane has not been detected at monitoring wells associated with the primary landfill gas migration control system since a slight concentration (0.1 %) was recorded at monitoring well MW-49 during June, 2002 monitoring activities. The sporadic nature of low-level methane detections indicates that landfill gas control systems relative to both the Animal Control Facility and East Northport Landfill continue to function effectively.

Table 4 summarizes methane concentrations detected at landfill gas control wells during the above-mentioned period of record. As shown on Table 4, with the exception of minor anomalies (e.g., control well N-2: October, 2001; February, 2002), measured values are generally consistent throughout the 58 month period.

Physical and Operating Condition

As evidenced by measured and recorded landfill gas monitoring well data, the Town of Huntington East Northport Landfill primary landfill gas control system continues to successfully negate the off-site migration of methane. Although vacuum values at the northern-most portion of the system remain comparatively low, this state, as indicated by historic data presented in Appendix 1, has existed throughout the period of record.

As reported previously, apparent water accumulation within laterals of "northern" control wells N-1 and N-2 was corrected July 3, 2002 (by way of lowering respective well-heads). As shown in Appendix 1, an initial vacuum increase at these control wells, decreased for a period (January-June, 2003). The previously reported return to increased vacuum levels, indicated during July, 2003 monitoring activities, remains.

R & C Formation, Ltd.

The physical condition of system monitoring wells and control wells is noted on Tables 1 and 2, respectively. As shown on Tables 1 and 2, neither monitoring nor control wells are currently damaged.

Alternate blower station pump # 2 was in operation during this reported event and all control wells continue to be set in the full-open-position (since April, 2003). As previously reported, this full-open-position will be maintained for an evaluation period and modified if/as necessary.

Recommendations

- * In the event that methane is detected at any monitoring well associated with the primary landfill gas migration control system, recommence the monitoring of off and on-site structures.
- * Continue monitoring control wells N-1 and N-2 on a monthly basis, to assess the long-term affect of previously reported well-head modifications on future vacuum levels at the northern-most portion of the primary landfill gas system.
- * Assess occurrence of methane versus landfill area (i.e., identify dominant landfill gas production zones).
- * Continue assessment of potential impact of all control valves at full-open-position on system-wide vacuum/methane levels.

Table 1
Landfill Gas Monitoring Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured July 30, 2004

Well No.			Pressure H2O)				thane (Volume)		Condition
	A	В	C	D	A	В	C	D	
MW-A	-0.1	0.0			0.0	0.0			
MW-B	-0.1	-0.1			0.0	0.0			
MW-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-4	-0.1	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	
MW-5	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-6	0.0	0.0	0.0		0.0	0.0	0.0		
MW-7	0.0	-0.2	0.0		0.0	0.0	0.0		_
MW-8	0.0	0.0	0.0		0.0	0.0	0.0		
MW-9	-0.2	0.0	-0.2		0.0	0.0	0.0		
MW-10	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	
MW-11	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-12	0.0	0.0	0.0		0.0	0.0	0.0		
MW-13	0.0	-0.1	-0.3		0.0	0.0	0.0		
MW-15	-0.1	-0.1	0.0		0.0	0.0	0.0		
MW-16	-0.1	0.0	0.0		0.0	0.0	0.0		
MW-17	0.0	0.0	0.0		0.0	0.0	0.0		
MW-18	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-19	-0.3	-0.3	0.0	-0.3	0.0	0.0	0.0	0.0	
MW-20	-0.3	-0.3	-0.3		0.0	0.0	0.0		
MW-21	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	
MW-22	-0.2	0.0	0.0		0.0	0.0	0.0		

Table 1 (continued)

Well No.		Probe Pressure (in. H2O)	ressure 120)			Met 0-100%	Methane 0-100% (Volume)		Condition
	Α	В	C	D	A	В	C	D	
MW-23	0.0	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0	
MW-24	0.0	0.0	-0.1		0.0	0.0	0.0		
MW-25	-0.4	-0.2	-0.1		0.0	0.0	0.0		
MW-26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-27	-0.1	0.0	0.0		0.0	0.0	0.0		
MW-28	0.0	0.0	0.0		0.0	0.0	0.0		
MW-37	0.0	0.0	0.0		0.0	0.0	0.0		
MW-38	0.0	0.0	0.0		0.0	0.0	0.0		
MW-39	0.0	0.0	0.0		0.0	0.0	0.0		
MW-40	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	
MW-41	0.0	0.0	0.0		0.0	0.0	0.0		
MW-42	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-43	0.0	0.0	0.0		0.0	0.0	0.0		
MW-44	0.0	0.0	0.0		0.0	0.0	0.0		
MW-45	-0.1	-0.2	-0.2		0.0	0.0	0.0		
MW-46	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-47	0.0	0.0	0.0		0.0	0.0	0.0		
MW-48	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-49	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-51	0.0	-0.2	0.0		0.0	0.0	0.0		
AS-NW	0.0				0.0				
AS-NE	0.0				0.0				
AS-SW	0.0				0.0				
AS-SC	-0.1				0.0				
AS-SE	-0.1				0.0				
A Challon Dacks	.1.	D Middle Desk	4.	C Dan Droke		D Dagage Dec	140		

A - Shallow Probe B - Middle Probe C - Deep Probe Shading indicates the well is not equipped with that particular probe.

D - Deepest Probe

Table 2
Landfill Gas Control Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured July 30, 2004

Well No.	Temp (°F)	Flow Rate (ft ³ /min)	Vacuum (in. H2O)	Methane 0-100 % (Volume)	Oxygen % in Air	Condition
CWI-4	80.5	158.4	-2.4	0.2	18.0	
CWI-5	84.1	40.9	-2.5	0.4	15.2	
CW1-6	77.3	44.2	-2.8	0.4	15.8	
CW1-7	89.3	32.7	-2.7	0.6	13.5	
CWII-1	85.4	65.3	-4.0	8.1	13.6	
CWI1-2	93.2	59.7	-2.2	0.7	12.5	
CW11-3	90.5	33.8	-2.4	3.1	14.8	
CWII-4	84.3	18.9	-2.6	0.6	18.0	
CWII-5	82.7	19.6	-2.3	0.6	16.8	
CWII-6	85.1	37.6	-1.7	2.2	15.2	
CW11-7	80.1	31.4	-1.0	0.2	16.2	
CWI1-8	81.2	39.2	-0.5	0.2	18.0	
CWII-9	79.3	45.9	-0.9	0.6	17.0	
NW-1	61.6	97.2	-2.2	0.0	19.8	
NW-2	60.1	95.1	-2.8	0.0	18.5	
NW-3	59.2	155.0	-2.1	0.0	19.0	
NW-4	60.3	161.0	-1.9	0.0	19.2	
NW-5	60.6	185.0	-1.6	0.0	20.9	
NW-6	68.2	176.2	-2.0	0.0	20.6	
Ext-1	58.9	10.8	-0.9	0.9	20.0	
Ext-2	71.3	34.2	-0.9	0.0	18.5	
Ext-3	72.4	49.8	-1.6	0.0	18.5	
Ext-4	71.2	51.0	-1.7	0.1	18.5	
Ext-5	68.9	62.0	-1.3	0.0	19.7	
N-1	73.2	41.4	-0.8	0.0	19.0	
N-2	80.6	32.1	-0.8	0.0	19.0	
N-3	69.1	20.9	-0.2	0.0	20.6	
N-4	71.4	25.6	-0.2	0.0	20.6	
N-5	74.0	22.7	-0.3	0.0	19.8	
N-6	71.7	31.2	-0.9	0.0	19.0	
Blower Station - 1	72.3	3,020.0	-3.9	0.7	18.6	
Blower Station - 2	72.3	3,110.0	-18.0	0.7	18.6	
Blower Station - 3	84.9	5,000.0	+1.9	0.7	18.6	

CW704.WKS

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York August, 2004

Prepared for:

Town of Huntington Department of Environmental Waste Management 100 Main Street Huntington, New York 11743

Prepared by:

R & C Formation, Ltd. 30 Broadway, Suite 6 Massapequa, New York 11758

TABLE OF CONTENTS

	I	Page
Scope of Wor Summary of R Genera Monito LFG C Conde Discussion Metha	Results Al Oring Wells Control Wells Insate Traps In Monitoring Data In Operating Condition	2 . 3 . 3 . 3
	Figure Following	Page
Figure 1.	Landfill Gas Monitoring and Control System	1
	Summary Tables Following	Page
Table 1.	Landfill Gas Monitoring Well Data	4
Table 2.	Landfill Gas Control Well Data	4
Table 3.	Summary of Methane Detections	4
Table 4.	Landfill Gas Control Well Methane Data	4
	Appendix	

Appendix 1. Landfill Gas Contol Well Vacuum Data

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York August, 2004

Introduction

This report presents the results of landfill gas and control system monitoring activities performed August, 2004 at the Town of Huntington East Northport Landfill (as stipulated by the New York State Department of Environmental Conservation).

The primary landfill gas migration control system consists of thirty active landfill gas control wells connected - via a single header pipe forming a complete loop around the 44 acre East Northport Landfill - to one blower station. Landfill gas monitoring wells (consisting of 3-4 probes screened from approximately 5-70 feet below grade) are situated outside of the aforementioned header pipe, thereby providing a means to verify the control system's efficacy. Separate landfill gas control and monitoring systems are located at adjacent Animal Control and Resource Recovery Facilities.

The landfill area and pertinent components of the landfill gas monitoring and control system are depicted in Figure 1. The scope-of-work completed (per our agreement with the Town of Huntington Department of Environmental Waste Management dated August 15, 2003) precedes a summary of results. A discussion of methane monitoring data - with an emphasis on trends and occurrence - and the system's physical and operating condition, follows.

Scope-of-Work

The scope-of-work includes performance of the following on a monthly basis:

- 1) Monitoring of all probes in 43 landfill monitoring wells and up to 5 probes around the Town Animal Control Facility for methane gas and gas pressure.
- 2) Monitoring of 30 methane control wells and blower station for temperature, flow rate, vacuum, methane and oxygen (balance of the control system to be checked and adjustment to wells and to blower intake made, if necessary).

- 3) Examination of 5 condensate traps in the control system for proper operation and water accumulation.
- 4) Noting of any problems, damage, missing parts etc. at each monitoring well, methane control well, condensate trap, Animal Control Facility probes and blower station.

Summary of Results

General

Reported monthly monitoring activities were performed August 31, 2004. Climatic conditions for the monitoring period are as follows:

Temperature: 77 (°F); Barometric pressure: 29.96 (in. Hg); Relative Humidity: 78.5%; Precipitation: 0.65 inches; Wind Speed & Direction: 8.9 mph, northerly.

Monitoring Wells

Table 1 presents a summary of measured and recorded landfill gas monitoring well data. As shown on Table 1, methane was not detected throughout the entire monitoring well network.

LFG Control Wells

A summary of measured and recorded landfill gas control well data - including the system's blower station where 2 "inlet" measuring points (Blower Station 1 & 2) and 1 "outlet" measuring point (Blower Station 3) are located - is presented on Table 2. As shown on Table 2, control well vacuum values (i.e., negative pressure), a direct indicator of the system's balance, range from -0.1 - -4.2 (in. $\rm H_20$). "Extracted" methane values range from 0.0 - 8.0 %.

Condensate Traps

The minimal volume of standing water measured within condensate traps CD-1 (trace), CD-2 (trace), CD-3 (trace), CD-4 (0.3 feet) and CD-5 (trace) was evacuated, as per usual, upon the completion of monitoring activities.

Discussion

Methane Monitoring Data

A summary of methane concentrations detected at landfill gas monitoring wells throughout the period of record from October, 1999 through August, 2004 is presented on Table 3. As shown on Table 3, methane has been detected sporadically and at low levels at 14 monitoring wells, including at Animal Control Facility monitoring well AS-NE, where, it was last detected at a concentration of 0.1 % during April, 2004 monitoring activities. The highest recorded methane concentration of 5.0 % was measured at this well during March, 2001 monitoring activities.

Methane has not been detected at monitoring wells associated with the primary landfill gas migration control system since a slight concentration (0.1 %) was recorded at monitoring well MW-49 during June, 2002 monitoring activities. The sporadic nature of low-level methane detections indicates that landfill gas control systems relative to both the Animal Control Facility and East Northport Landfill continue to function effectively.

Table 4 summarizes methane concentrations detected at landfill gas control wells during the above-mentioned period of record. As shown, with the exception of minor anomalies (e.g., control well N-2: October, 2001; February, 2002), measured values are generally consistent throughout the 59 month period.

Physical and Operating Condition

As evidenced by measured and recorded landfill gas monitoring well data, the Town of Huntington East Northport Landfill primary landfill gas control system continues to successfully negate the off-site migration of methane. Although vacuum values at the northern-most portion of the system remain comparatively low, this state, as indicated by historic data presented in Appendix 1, has existed throughout the period of record.

As reported previously, apparent water accumulation within laterals of "northern" control wells N-1 and N-2 was corrected July 3, 2002 (by way of lowering respective well-heads). As shown in Appendix 1, an initial vacuum increase at these control wells, decreased for a period (January-June, 2003). A return to increased vacuum levels, indicated during July, 2003 monitoring activities, continues.

R & C Formation, Ltd.

The physical condition of system monitoring wells and control wells is noted on Tables 1 and 2, respectively. As shown on Tables 1 and 2, neither monitoring nor control wells are currently damaged.

Alternate blower station pump # 2 was in operation during this reported event and all control wells continue to be set in the full-open-position (since April, 2003). As reported previously, this full-open-position will be maintained for an evaluation period and modified if/as necessary.

Recommendations

- * In the event that methane is detected at any monitoring well associated with the primary landfill gas migration control system, recommence the monitoring of off and on-site structures.
- * Continue monitoring control wells N-1 and N-2 on a monthly basis, to assess the long-term affect of previously reported well-head modifications on future vacuum levels at the northern-most portion of the primary landfill gas system.
- * Assess occurrence of methane versus landfill area (i.e., identify dominant landfill gas production zones).
- * Continue assessment of potential impact of all control valves at full-open-position on system-wide vacuum/methane levels.

Table 1
Landfill Gas Monitoring Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured August 31, 2004

Well No.			Pressure H2O)				thane (Volume)		Condition
	A	В	С	D	A	В	C	D	
MW-A	0.0	0.0			0.0	0.0			
MW-B	0.0	-0.1			0.0	0.0			
MW-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-4	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	-
MW-5	0.0	0.0	-0.1		0.0	0.0	0.0		
MW-6	0.0	0.0	0.0		0.0	0.0	0.0		
MW-7	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-8	0.0	0.0	0.0		0.0	0.0	0.0		
MW-9	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-10	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	
MW-11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-12	0.0	0.0	0.0		0.0	0.0	0.0		
MW-13	0.0	-0.1	-0.2		0.0	0.0	0.0		
MW-15	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-16	0.0	0.0	0.0		0.0	0.0	0.0		
MW-17	0.0	0.0	0.0		0.0	0.0	0.0		
MW-18	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-19	-0.1	-0.1	0.0	-0.2	0.0	0.0	0.0	0.0	
MW-20	-0.2	-0.3	-0.3		0.0	0.0	0.0		
MW-21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-22	-0.1	0.0	0.0		0.0	0.0	0.0		

Table 1 (continued)

0.1	Well No.		Probe Pressu	ressure			Met	Methane		Condition
-0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		A		_	Q	A	B	C	D	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-23	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-24	0.0	-0.1	-0.1		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-25	-0.3	-0.1	-0.1		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-27	0.0	0.0	0.0	TOTAL	0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-28	0.0	0.0	0.0	THE TOTAL PARTY OF THE TOTAL PAR	0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-37	0.0	0.0	0.0		0.0	0.0	0.0	11111111111111111111111111111111111111	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-38	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-39	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-40	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-41	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-42	0.0	-0.1	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-43	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Deep Probe 0.0 0.0	MW-44	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Deep Probe D - Deepest Probe	MW-45	-0.1	-0.1	-0.1		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-46	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-47	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-48	0.0	0.0	-0.1		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-49	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 0.0 Deep Probe	MW-51	0.0	-0.1	0.0		0.0	0.0	0.0		
0.0 0.0 0.0 Deep Probe	AS-NW	0.0				0.0				
0.0 0.0 0.0 Deep Probe	AS-NE	-0.1		77771111111111111111111111111111111111		0.0				
0.0 0.0 Deep Probe	AS-SW	0.0				0.0				
0.0 Deep Probe	AS-SC	0.0				0.0				
Deep Probe	AS-SE	-0.1				0.0				
	A - Shallow Prot	pe	B - Middle Prot)4e	C - Deep Probe		D - Deepest Pro	pe		

LFG804.WKS

Table 2
Landfill Gas Control Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured August 31, 2004

Well No.	Temp (°F)	Flow Rate (ft³/min)	Vacuum (in. H2O)	Methane 0-100 % (Volume)	Oxygen % in Air	Condition
CWI-4	81.2	121.3	-2.8	0.8	18.4	
CWI-5	85.6	16.7	-2.0	1.2	16.5	
CW1-6	78.2	38.2	-2.5	1.0	16.8	
CWI-7	88.2	30.1	-2.6	0.8	14.0	
CWII-1	86.3	62.6	-4.2	8.0	14.0	
CWII-2	90.5	50.2	-2.4	0.8	13.2	
CWII-3	89.7	32.4	-2.0	4.2	15.3	
CWII-4	81.2	19.1	-2.7	1.0	18.0	
CWII-5	80.1	15.4	-2.5	0.8	17.2	
CWII-6	84.2	38.0	-2.0	2.8	16.0	
CWII-7	82.1	29.6	-1.0	0.4	17.0	
CW11-8	80.7	41.2	-0.6	0.2	17.8	
CWII-9	78.2	44.1	-1.0	0.4	16.8	
NW-1	69.1	98.1	-2.4	0.0	19.8	
NW-2	61.4	97.1	-2.6	0.0	19.8	
NW-3	60.1	152.0	-2.0	0.0	19.8	
NW-4	60.0	85.5	-1.9	0.0	20.0	
NW-5	60.1	125.7	-1.8	0.0	20.0	
NW-6	60.6	101.0	-1.8	0.0	19.9	
Ext-1	57.3	12.5	-0.8	1.0	20.0	
Ext-2	70.5	29.3	-1.0	0.0	19.0	
Ext-3	71.5	48.2	-1.8	0.0	19.0	
Ext-4	70.3	49.2	-1.8	0.1	19.0	
Ext-5	66.3	58.3	-1.5	0.0	19.8	
N-1	72.1	40.3	-1.0	0.0	19.0	
N-2	78.6	30.2	-0.8	0.0	19.0	
N-3	68.2	19.0	-0.1	0.0	20.8	
N-4	70.1	22.4	-0.2	0.0	20.8	
N-5	71.9	20.2	-0.4	0.0	20.0	
N-6	69.9	29.3	-1.0	0.0	19.8	
Blower Station - 1	73.4	2,187.0	-3.8	0.8	18.5	
Blower Station - 2	73.4	3,200.0	-15.6	0.8	18.5	
Blower Station - 3	85.1	4,200.0	1.7	0.8	18.5	

CW804.WKS

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York September, 2004

Prepared for:

Town of Huntington Department of Environmental Waste Management 100 Main Street Huntington, New York 11743

Prepared by:

R & C Formation, Ltd. 30 Broadway, Suite 6 Massapequa, New York 11758

R & C Formation, Ltd.

TABLE OF CONTENTS

	P	age
Scope of Wor Summary of F Genera Monito LFG O Blowe Conde Discussion Metha	Results al oring Wells Control Wells or Station Outlet onsate Traps one Monitoring Data cal Operating Condition	3
	Figure	
	Following	Page
Figure 1.	Landfill Gas Monitoring and Control System	1
	Summary Tables Following	Page
Table 1.	Landfill Gas Monitoring Well Data	4
Table 2.	Landfill Gas Control Well Data	4
Table 3.	Summary of Methane Detections	4
Table 4.	Landfill Gas Control Well Methane Data	4
	Appendices	
Appendix 1.	Summary of Analytical Results, Landfill Gas Sampled August 31,	2004
Appendix 2.	Laboratory Analytical Data	
Appendix 3.	Landfill Gas Contol Well Vacuum Data	

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York September, 2004

Introduction

Presented herein are the results of landfill gas and control system monitoring activities performed September, 2004 at the Town of Huntington East Northport Landfill (as stipulated by the New York State Department of Environmental Conservation).

The primary landfill gas migration control system consists of thirty active landfill gas control wells connected - via a single header pipe forming a complete loop around the 44 acre East Northport Landfill - to one blower station. Landfill gas monitoring wells (consisting of 3-4 probes screened from approximately 5-70 feet below grade) are situated outside of the aforementioned header pipe, thereby providing a means to verify the control system's efficacy. Individual landfill gas control and monitoring systems are located at adjacent Animal Control and Resource Recovery Facilities.

Figure 1 depicts the landfill area and pertinent components of the landfill gas monitoring and control system. The scope-of-work completed (per our agreement with the Town of Huntington Department of Environmental Waste Management dated August 15, 2003) precedes a summary of results. A discussion of methane monitoring data - with an emphasis on trends and occurrence - and the system's physical and operating condition, follows.

Scope-of-Work

The scope-of-work includes performance of the following on a monthly basis:

- 1) Monitoring of all probes in 43 landfill monitoring wells and up to 5 probes around the Town Animal Control Facility for methane gas and gas pressure.
- 2) Monitoring of 30 methane control wells and blower station for temperature, flow rate, vacuum, methane and oxygen (balance of the control system to be checked and adjustment to wells and to blower intake made, if necessary).

- 3) Examination of 5 condensate traps in the control system for proper operation and water accumulation.
- 4) Noting of any problems, damage, missing parts etc. at each monitoring well, methane control well, condensate trap, Animal Control Facility probes and blower station.

Summary of Results

General

Reported monthly monitoring activities were performed September 23, 2004. Climatic conditions for the monitoring period are as follows:

Temperature: 72 (°F); Barometric pressure: 30.19 (in. Hg); Relative Humidity: 69.5%; Precipitation: 0.0 inches; Wind Speed & Direction: 6.1 mph, northerly.

Monitoring Wells

A summary of measured and recorded landfill gas monitoring well data is presented on Table 1. As shown, methane was not detected throughout the entire monitoring well network.

LFG Control Wells

A summary of measured and recorded landfill gas control well data - including the system's blower station where 2 "inlet" measuring points (Blower Station 1 & 2) and 1 "outlet" measuring point (Blower Station 3) are located - is presented on Table 2. As shown on Table 2, control well vacuum values (i.e., negative pressure), a direct indicator of the system's balance, range from 0.0 - -3.1 (in. H_20). "Extracted" methane values range from 0.0 - 3.7%.

Blower Station Outlet

Analytical results relative to landfill gas sampled at Blower Station outlet "BS-3" (via a SUMMA canister using EPA Method TO-14) are summarized in Appendix 1. A copy of the original laboratory analytical report is presented in Appendix 2.

Condensate Traps

Standing water measured within condensate traps CD-1 (trace), CD-2 (1.9 feet), CD-3 (6.5 feet), CD-4 (5.8 feet) and CD-5 (0.3 feet) was evacuated, as per usual, upon the completion of monitoring activities.

Discussion

Methane Monitoring Data

Table 3 presents a summary of methane concentrations detected at landfill gas monitoring wells throughout the period of record from October, 1999 through September, 2004. As shown, methane has been detected sporadically and at low levels at 14 monitoring wells, including at Animal Control Facility monitoring well AS-NE, where it was last detected at a concentration of 0.1 % during April, 2004 monitoring activities. The highest recorded methane concentration of 5.0 % was measured at this well during March, 2001 monitoring activities.

Methane has not been detected at monitoring wells associated with the primary landfill gas migration control system since a slight concentration (0.1 %) was recorded at monitoring well MW-49 during June, 2002 monitoring activities. The sporadic nature of low-level methane detections indicates that landfill gas control systems relative to both the Animal Control Facility and East Northport Landfill continue to function effectively.

Table 4 summarizes methane concentrations detected at landfill gas control wells during the above-mentioned period of record. As shown, with the exception of minor anomalies (e.g., control well N-2: October, 2001; February, 2002), measured values are generally consistent throughout the 60 month period.

Physical and Operating Condition

As evidenced by measured and recorded landfill gas monitoring well data, the Town of Huntington East Northport Landfill primary landfill gas control system continues to successfully negate the off-site migration of methane. Although vacuum values at the northern-most portion of the system remain comparatively low, this state, as indicated by historic data presented in Appendix 3, has existed throughout the period of record.

As reported previously, apparent water accumulation within laterals of "northern" control wells N-1 and N-2 was corrected July 3, 2002 (by way of lowering respective well-

R & C Formation, Ltd.

heads). As shown in Appendix 3, an initial vacuum increase at these control wells, decreased for a period (January-June, 2003). A return to increased vacuum levels, indicated during July, 2003 monitoring activities, continues.

The physical condition of system monitoring wells and control wells is noted on Tables 1 and 2, respectively. As shown on the aforementioned Tables, neither monitoring nor control wells are currently damaged.

Alternate blower station pump # 2 was in operation during this reported event and all control wells continue to be set in the full-open-position (since April, 2003). As reported previously, this full-open-position will be maintained for an evaluation period and modified if/as necessary.

Recommendations

- * In the event that methane is detected at any monitoring well associated with the primary landfill gas migration control system, recommence the monitoring of off and on-site structures.
- * Continue monitoring control wells N-1 and N-2 on a monthly basis, to assess the long-term affect of previously reported well-head modifications on future vacuum levels at the northern-most portion of the primary landfill gas system.
- * Assess occurrence of methane versus landfill area (i.e., identify dominant landfill gas production zones).
- * Continue assessment of potential impact of all control valves at full-open-position on system-wide vacuum/methane levels.

Landfill Gas Monitoring Well Data Town of Huntington East Northport Landfill, East Northport, New York Measured September 23, 2004 Table 1

	1	Me 0-100%	Methane 0-100% (Volume)		Condition
D	-	В	C	D	
0.0	,	0.0			
0.0		0.0	Wildlife Co.		
0.0 0.0		0.0	0.0	0.0	
0.0 0.0		0.0	0.0	0.0	
0.0 0.0		0.0	0.0	0.0	
0.0		0.0	0.0		
0.0		0.0	0.0		
0.0		0.0	0.0		
0.0		0.0	0.0		
0.0		0.0	0.0		
-0.1 0.0		0.0	0.0	0.0	
0.0 0.0		0.0	0.0	0.0	
0.0		0.0	0.0		
0.0		0.0	0.0		
0.0		0.0	0.0		
0.0		0.0	0.0		
0.0		0.0	0.0		
0.0		0.0	0.0		
-0.4 0.0		0.0	0.0	0.0	
0.0		0.0	0.0		
0.0 0.0		0.0	0.0	0.0	
0.0		0.0	0.0		

Table 1 (continued)

C D A 0.2 -0.1 0.0 0.0 0.0 0.0 0.2 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <th>Well No.</th> <th></th> <th>Probe Pressi (in. H2O)</th> <th>Probe Pressure (in. H2O)</th> <th></th> <th></th> <th>Met 0-100%</th> <th>Methane 0-100% (Volume)</th> <th></th> <th>Condition</th>	Well No.		Probe Pressi (in. H2O)	Probe Pressure (in. H2O)			Met 0-100%	Methane 0-100% (Volume)		Condition
0.0 -0.1 -0.2 -0.1 0.0<		А			D	¥	В	C	D	
0.0 -0.2 0.0 0.0 0.0 0.0 -0.5 0.0 -0.2 0.0 0.0 0.0 0.0 -0.2 -0.2 -0.2 -0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.0	MW-23	0.0	-0.1	-0.2	-0.1	0.0	0.0	0.0	0.0	
-0.5 0.0 -0.5 0.0 </td <td>MW-24</td> <td>0.0</td> <td>-0.2</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td>	MW-24	0.0	-0.2	0.0		0.0	0.0	0.0		
-0.2 -0.2 -0.2 0.0<	MW-25	-0.5	0.0	-0.5		0.0	0.0	0.0	Hart Control of the C	
0.0 -0.1 0.0 <td>MW-26</td> <td>-0.2</td> <td>-0.2</td> <td>-0.2</td> <td>-0.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td>	MW-26	-0.2	-0.2	-0.2	-0.2	0.0	0.0	0.0	0.0	
-0.1 0.0	MW-27	0.0	-0.1	0.0		0.0	0.0	0.0		
-0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.2 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-28	-0.1	0.0	0.0		0.0	0.0	0.0	20000000000000000000000000000000000000	
-0.1 -0.1 -0.2 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0	MW-37	-0.1	-0.1	0.0		0.0	0.0	0.0		
-0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0	MW-38	-0.1	-0.1	-0.2		0.0	0.0	0.0		
0.0 0.0 -0.1 -0.1 -0.1 0.0 <t< td=""><td>MW-39</td><td>-0.1</td><td>-0.1</td><td>-0.1</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td></td></t<>	MW-39	-0.1	-0.1	-0.1		0.0	0.0	0.0		
-0.1 -0.1 -0.1 -0.0 <	MW-40	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	
0.0 -0.1 -0.1 -0.1 -0.0 <	MW-41	-0.1	-0.1	-0.1		0.0	0.0	0.0		
0.0 0	MW-42	0.0	-0.1	-0.1		0.0	0.0	0.0		
-0.1 0.0 -0.0 0.0 <td< td=""><td>MW-43</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td></td></td<>	MW-43	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0	MW-44	-0.1	0.0	-0.1		0.0	0.0	0.0		
0.0 0	MW-45	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 0	MW-46	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	
0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0	MW-47	0.0	0.0	0.0		0.0	0.0	0.0		
0.0 -0.1 -0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 -0.6 -0.6 0.0 0.0 0.0	MW-48	0.0	-0.1	-0.1		0.0	0.0	0.0		
-0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MW-49	0.0	-0.1	-0.1		0.0	0.0	0.0		
-0.1 -0.1 -0.6 -0.6	MW-51	-0.1	-0.1	0.0		0.0	0.0	0.0		
-0.1 -0.6 -0.0	AS-NW	-0.1				0.0		Parameter of the control of the cont		
-0.1	AS-NE	-0.1				0.0				
9.0-	AS-SW	-0.1				0.0				
0.0	AS-SC	9.0-				0.0				
	AS-SE	0.0				0.0				

A - Shallow Probe B - Middle Probe C - Deep Probe
Shading indicates the well is not equipped with that particular probe.

D - Deepest Probe

-	
-	APPENDIX 1
-	APPENDIA
•	
-	
•	
-	

Summary of Analytical Results Landfill Gas Sampled August 31, 2004 Volitile Organic Compounds Reported in Micrograms Per Cubic Meter

Parameter	BS-3
Benzene	7.5
Bromomethane	ND(1.9)
Carbon Tetrachloride	ND(3.1)
Chlorobenzene	16.0
Chloroethane	ND(1.3)
Chloroform	ND(2.4)
Chloromethane	3.2
1,2-Dibromoethane	ND(3.8)
1,2-Dichlorobenzene	ND(3.0)
1,3-Dichlorobenzene	ND(3.0)
1,4-Dichlorobenzene	ND(3.0)
Dichlorodiflouromethane	88.6
1,1-Dichloroethane	ND(2.0)
1,2-Dichloroethane	ND(2.0)
1,1-Dichloroethylene	ND(2.0)
cis-1,2-Dichloroethylene	ND(2.0)
1,2-Dichloropropane	ND(2.3)
cis-1,3-Dichloropropene	ND(2.3)
trans-1,3-Dichloropropene	ND(2.3)
1,2-Dichlorotetrafluoroethane (114)	21.3
Ethylbenzene	28.9
Hexachlorobutadiene	ND(5.3)
Methylene Chloride	ND(1.7)
Styrene	ND(2.1)
1,1,2,2-Tetrachloroethane	ND(3.4)
Tetrachloroethylene	14.9
Toluene	10.6
1,2,4-Trichlorobenzene	ND(3.7)
1,1,1-Trichloroethane	ND(2.7)
1,1,2-Trichloroethane	ND(2.7)
Trichloroethylene	ND(2.7)
Trichlorofluoromethane	ND(2.8)
1,1,2-Trichloro-1,2,2-Trifluoroethane	
1,2,4-Trimethylbenzene	11.0
1,3,5-Trimethylbenzene	34.9
Vinyl Chloride	ND(1.3)
m/p-Xylene	77.6
o-Xylene	53.4

ND() = Not detected at the method detection limit

REPORT DATE 9/13/2004

R&C FORMATION 30 BROADWAY MASSPEQUA, NY 11758 ATTN: BOB CASSON

CONTRACT NUMBER:

PURCHASE ORDER NUMBER:

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #:

LIMS-81818

JOB NUMBER: -

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: EAST NORTHPORT

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	
BS-3	04B27482	AIR	NOT SPECIFIED	to-14 ppbv	
BS-3	04B27482	AIR	NOT SPECIFIED	to-14 ug/m3	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

AIHA 100033

AIHA ELLAP (LEAD) 100033

MASSACHUSETTS MA0100

NEW HAMPSHIRE NELAP 2516

NEW JERSEY NELAP NJ MA007 (AIR)

CONNECTICUT PH-0567

VERMONT DOH (LEAD) No. LL015036

ARIZONA AZ0648

NEW YORK ELAP/NELAP 10899

RHODE ISLAND (LIC. No. 112)

ARIZONA AZ0654 (AIR)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod Kopyscinski

Sondra S. Kocot

Sondras, Kocat 09/14/04

Director of Operations Quality Control Coordinator

Edward Denson

Technical Director

BOB CASSON

R&C FORMATION

MASSPEQUA, NY 11758

30 BROADWAY

Purchase Order No.:

9/13/2004

Page 1 of 5

Project Location: EAST NORTHPORT

LIMS-BAT #: LIMS-81818

Date Received: Field Sample #: BS-3

9/2/2004

Job Number: -

Sample ID:

04B27482

Sampled: 8/31/2004

NOT SPECIFIED

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Jnits Results	Date	Analyst	RL	SPEC	SPEC Limit	
			Analyzed			Lo	Hi	
Benzene	PPBv	2.4	09/10/04	WSD	0.5			
Bromomethane	PPBv	ND	09/10/04	WSD	0.5			
Carbon Tetrachloride	PPBv	ND	09/10/04	WSD	0.5			
Chlorobenzene	PPBv	3.5	09/10/04	WSD	0.5			
Chloroethane	PPBv	ND	09/10/04	WSD	0.5			
Chloroform	PPBv	ND	09/10/04	WSD	0.5			
Chloromethane	PPBv	1.6	09/10/04	WSD	0.5			
1,2-Dibromoethane	PPBv	ND	09/10/04	WSD	0.5			
1,2-Dichlorobenzene	PPBv	ND	09/10/04	WSD	0.5			
1,3-Dichlorobenzene	PPBv	ND	09/10/04	WSD	0.5			
1,4-Dichlorobenzene	PPBv	ND	09/10/04	WSD	0.5			
Dichlorodifluoromethane	PPBv	17.9	09/10/04	WSD	0.5			
1,1-Dichloroethane	PPBv	ND	09/10/04	WSD	0.5			
1,2-Dichloroethane	PPBv	ND	09/10/04	WSD	0.5			
1,1-Dichloroethylene	PPBv	ND	09/10/04	WSD	0.5			
cis-1,2-Dichloroethylene	PPBv	ND	09/10/04	WSD	0.5			
1,2-Dichloropropane	PPBv	ND	09/10/04	WSD	0.5			
cis-1,3-Dichloropropene	PPBv	ND	09/10/04	WSD	0.5			
trans-1,3-Dichloropropene	PPBv	ND	09/10/04	WSD	0.5			
1,2-Dichlorotetrafluoroethane (114)	PPBv	3.0	09/10/04	WSD	0.5			
Ethylbenzene	PPBv	6.7	09/10/04	WSD	0.5			
Hexachlorobutadiene	PPBv	ND	09/10/04	WSD	0.5			
Methylene Chloride	PPBv	ND	09/10/04	WSD	0.5			
Styrene	PPBv	ND	09/10/04	WSD	0.5			
1,1,2,2-Tetrachloroethane	PPBv	ND	09/10/04	WSD	0.5			
Tetrachloroethylene	PPBv	2.2	09/10/04	WSD	0.5			
Toluene	PPBv	2.8	09/10/04	WSD	0.5			
1,2,4-Trichlorobenzene	PPBv	ND	09/10/04	WSD	0.5			
1,1,1-Trichloroethane	PPBv	ND	09/10/04	WSD	0.5			
1,1,2-Trichloroethane	PPBv	ND	09/10/04	WSD	0.5			

RL = Reporting Limit

ND = Not Detected

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{• =} See end of report for comments and notes applying to this sample

Purchase Order No.:

BOB CASSON

R&C FORMATION 30 BROADWAY

MASSPEQUA, NY 11758

9/13/2004

Page 2 of 5

Project Location: EAST NORTHPORT

LIMS-BAT #: LIMS-81818

Date Received: Field Sample #: BS-3

9/2/2004

Job Number: -

Sample ID:

Sampled: 8/31/2004

04B27482

NOT SPECIFIED

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Results D	Date Analyst		RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
Trichloroethylene	PPBv	ND	09/10/04	WSD	0.5			
Trichlorofluoromethane (Freon 11)	PPBv	ND	09/10/04	WSD	0.5			
1,1,2-Trichloro-1,2,2-Trifluoroethane	PPBv	ND	09/10/04	WSD	0.5			
1,2,4-Trimethylbenzene	PPBv	2.2	09/10/04	WSD	0.5			
1,3,5-Trimethylbenzene	PPBv	7.1	09/10/04	WSD	0.5			
Vinyl Chloride	PPBv	ND	09/10/04	WSD	0.5			
m/p-Xylene	PPBv	17.9	09/10/04	WSD	0.5			
o-Xylene	PPBv	12.3	09/10/04	WSD	0.5			

Analytical Method:

EPA TO-14A

SAMPLES ARE TAKEN IN SUMMA CANISTERS AND ANALYZED BY GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION. (GC/MS)

RL = Reporting Limit

ND = Not Detected

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

BOB CASSON

R&C FORMATION

MASSPEQUA, NY 11758

30 BROADWAY

Purchase Order No.:

9/13/2004 Page 3 of 5

LIMS-BAT #: LIMS-81818

Job Number:

Project Location: EAST NORTHPORT

Date Received:

Sample ID:

9/2/2004

Field Sample #: BS-3

04B27482

Sampled: 8/31/2004

NOT SPECIFIED

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	C Limit Hi	P/F
Benzene	ug/m3	7.5	09/10/04	WSD	1.6			
Bromomethane	ug/m3	ND	09/10/04	WSD	1.9			
Carbon Tetrachloride	ug/m3	ND	09/10/04	WSD	3.1			
Chlorobenzene	ug/m3	16.0	09/10/04	WSD	2.3			
Chloroethane	ug/m3	ND	09/10/04	WSD	1.3			
Chloroform	ug/m3	ND	09/10/04	WSD	2.4			
Chloromethane	ug/m3	3.2	09/10/04	WSD	1.0			
1,2-Dibromoethane	ug/m3	ND	09/10/04	WSD	3.8			
1,2-Dichlorobenzene	ug/m3	ND	09/10/04	WSD	3.0			
1,3-Dichlorobenzene	ug/m3	ND	09/10/04	WSD	3.0			
1,4-Dichlorobenzene	ug/m3	ND	09/10/04	WSD	3.0			
Dichlorodifluoromethane	ug/m3	88.6	09/10/04	WSD	2.5			
1,1-Dichloroethane	ug/m3	ND	09/10/04	WSD	2.0			
1,2-Dichloroethane	ug/m3	ND	09/10/04	WSD	2.0			
1,1-Dichloroethylene	ug/m3	ND	09/10/04	WSD	2.0			
cis-1,2-Dichloroethylene	ug/m3	ND	09/10/04	WSD	2.0			
1,2-Dichloropropane	ug/m3	ND	09/10/04	WSD	2.3			
cis-1,3-Dichloropropene	ug/m3	ND	09/10/04	WSD	2.3			
trans-1,3-Dichloropropene	ug/m3	ND	09/10/04	WSD	2.3			
1,2-Dichlorotetrafluoroethane (114)	ug/m3	21.3	09/10/04	WSD	3.5			
Ethylbenzene	ug/m3	28.9	09/10/04	MSD	2.2			
Hexachlorobutadiene	ug/m3	ND	09/10/04	WSD	5.3			
Methylene Chloride	ug/m3	ND	09/10/04	WSD	1.7			
Styrene	ug/m3	ND	09/10/04	WSD	2.1			
1,1,2,2-Tetrachloroethane	ug/m3	ND	09/10/04	WSD	3.4			
Tetrachloroethylene	ug/m3	14.9	09/10/04	WSD	3.4			
Toluene	ug/m3	10.6	09/10/04	WSD	1.9			
1,2,4-Trichlorobenzene	ug/m3	ND	09/10/04	WSD	3.7			
1,1,1-Trichloroethane	ug/m3	ND	09/10/04	WSD	2.7			
1,1,2-Trichloroethane	ug/m3	ND	09/10/04	WSD	2. 7			

RL = Reporting Limit

ND = Not Detected

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

BOB CASSON

R&C FORMATION

30 BROADWAY

9/13/2004

Page 4 of 5

MASSPEQUA, NY 11758

Purchase Order No.:

LIMS-BAT #: LIMS-81818

Date Received:

Project Location: EAST NORTHPORT 9/2/2004

Job Number:

Field Sample #: BS-3 Sample ID:

04B27482

Sampled: 8/31/2004

NOT SPECIFIED

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Results	Date Analyst		RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
Trichloroethylene	ug/m3	ND	09/10/04	WSD	2.7			
Trichlorofluoromethane	ug/m3	ND	09/10/04	WSD	2.8			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	ND	09/10/04	WSD	3.8			
1,2,4-Trimethylbenzene	ug/m3	11.0	09/10/04	WSD	2.5			
1,3,5-Trimethylbenzene	ug/m3	34.9	09/10/04	WSD	2.5			
Vinyl Chloride	ug/m3	ND	09/10/04	WSD	1.3			
m/p-Xylene	ug/m3	77.6	09/10/04	WSD	2.2			
o-Xylene	ug/m3	53.4	09/10/04	WSD	2.2			

Analytical Method:

EPA TO-14A

SAMPLES ARE TAKEN IN SUMMA CANISTERS AND ANALYZED BY GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION. (GC/MS)

RL = Reporting Limit

ND = Not Detected

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

39 Spruce Street ° 2nd Floor ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

BOB CASSON

R&C FORMATION

30 BROADWAY

Date Received:

Purchase Order No.:

Project Location: EAST NORTHPORT

9/2/2004

MASSPEQUA, NY 11758

LIMS-BAT #: LIMS-81818

9/13/2004

Page 5 of 5

Job Number: -

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{• =} See end of report for comments and notes applying to this sample

39 Spruce Street ° 2nd Floor ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date:	9/13/2004 Lims B	at # : LIMS-81818	Page 1 of 2				
QC Batch Number	: BATCH-7219						
Sample Id	Analysis	QC Analysis	Values	Units	Limits		
4B27482							
	4-Bromofluorobenzene	Surrogate Recovery	124.4	%	70-130		
BLANK-64213							
	Benzene	Blank	<1.6	ug/m3			
	Carbon Tetrachloride	Blank	<3.1	ug/m3			
	Chloroform	Blank	<2.4	ug/m3			
	1,2-Dichloroethane	Blank	<2.0	ug/m3			
	1,4-Dichlorobenzene	Blank	<3.0	ug/m3			
	Ethylbenzene	Blank	<2.2	ug/m3			
	Styrene	Blank	<2.1	ug/m3			
	Tetrachloroethylene	Blank	<3.4	ug/m3			
	Toluene	Blank	<1.9	ug/m3			
	1,1,1-Trichloroethane	Blank	<2.7	ug/m3			
	Trichloroethylene	Blank	<2.7	ug/m3			
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Blank	<3.8	ug/m3			
	Trichlorofluoromethane	Blank	<2.8	ug/m3			
	o-Xylene	Blank	<2.2	ug/m3			
	m/p-Xylene	Blank	<2.2	ug/m3			
	1,2-Dichlorobenzene	Blank	<3.0	ug/m3			
	1,3-Dichlorobenzene	Blank	<3.0	ug/m3			
	1,1-Dichloroethane	Blank	<2.0	ug/m3			
	1,1-Dichloroethylene	Blank	<2.0	ug/m3			
	Vinyl Chloride	Blank	<1.3	ug/m3			
	Methylene Chloride	Blank	<1.7	ug/m3			
	Chlorobenzene	Blank	<2.3	ug/m3			
	Chloromethane	Blank	<1.0	ug/m3			
	Bromomethane	Blank	<1.9	ug/m3			
	Chloroethane	Blank	<1.3	ug/m3			
	cis-1,3-Dichloropropene	Blank	<2.3	ug/m3			
	trans-1,3-Dichloropropene	Blank	<2.3	ug/m3			
	1,1,2-Trichloroethane	Blank	<2.7	ug/m3			
	1,1,2,2-Tetrachloroethane	Blank	<3.4	ug/m3			
	Hexachlorobutadiene	Blank	<5.3	ug/m3			
	1,2,4-Trichlorobenzene	Blank	<3.7	ug/m3			
	1,2,4-Trimethylbenzene	Blank	<2.5	ug/m3			
	1,3,5-Trimethylbenzene	Blank	<2.5	ug/m3			
	cis-1,2-Dichloroethylene	Blank	<2.0	ug/m3			
	1,2-Dichloropropane	Blank	<2.3	ug/m3			
	Dichlorodifluoromethane	Blank	<2.5	ug/m3			
	1,2-Dibromoethane	Blank	<3.8	ug/m3			
	1,2-Dichlorotetrafluoroethane (114)	Blank	<3.5	ug/m3			

39 Spruce Street ° 2nd Floor ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates
Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates
Standard Reference Materials and Duplicates
Method Blanks

Report Date:

9/13/2004

Lims Bat #: LIMS-81818

Page 2 of 2

OUALITY CONTROL DEFINITIONS AND ABBREVIATIONS

QC BATCH NUMBER

This is the number assigned to all samples analyzed together that would be subject to comparison with a particular set of Quality Control Data.

LIMITS

Upper and Lower Control Limits for the QC ANALYSIS Reported. All values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY REPORT. Not all QC results will have Limits defined.

Sample Amount

Amount of analyte found in a sample.

Blank

Method Blank that has been taken though all the steps of the analysis.

LFBLANK

Laboratory Fortified Blank (a control sample)

STDADD

Standard Added (a laboratory control sample)

Matrix Spk Amt Added

MS Amt Measured

S Amt Measured Amount of anal

Matrix Spike % Rec.

Amount of analyte spiked into a sample

Amount of analyte found including amount that was spiked

% Recovery of spiked amount in sample.

Duplicate Value
Duplicate RPD

The result from the Duplicate analysis of the sample.

The Relative Percent Difference between two Duplicate Analyses.

Surrogate Recovery

The % Recovery for non-environmental compounds (surrogates) spiked into samples to determine the performance of the analytical methods.

Sur. Recovery (ELCD)
Sur. Recovery (PID)

Surrogate Recovery on the Electrolytic Conductivity Detector. Surrogate Recovery on the Photoionization Detector.

Standard Measured Standard Amt Added Standard % Recovery Amount measured for a laboratory control sample Known value for a laboratory control sample

Known value for a laboratory control sample * recovered for a laboratory control sample with a known value.

Lab Fort Blank Amt
Lab Fort Blk. Found
Lab Fort Blk % Rec
Dup Lab Fort Bl Amt
Dup Lab Fort Bl Fnd
Dup Lab Fort Bl % Rec
Lab Fort Blank Range

Laboratory Fortified Blank Amount Added Laboratory Fortified Blank Amount Found Laboratory Fortified Blank & Recovered

Duplicate Laboratory Fortified Blank Amount Added
Duplicate Laboratory Fortified Blank Amount Found
Duplicate Laboratory Fortified Blank % Recovery
Laboratory Fortified Blank Range (Absolute value of difference

between recoveries for Lab Fortified Blank and Lab Fortified Blank Duplicate).

Lab Fort Bl. Av. Rec.

Laboratory Fortified Blank Average Recovery

Duplicate Sample Amt
MSD Amount Added
MSD Amt Measured
MSD % Recovery
MSD Range

Sample Value for Duplicate used with Matrix Spike Duplicate Matrix Spike Duplicate Amount Added (Spiked)

Matrix Spike Duplicate Amount Measured

Matrix Spike Duplicate % Recovery

Absolute difference between Matrix Spike and Matrix Spike Duplicate Recoveries

Phone: 413-525-2332 Fax: 413-525-6405

39 SPRUCE ST, 2ND FLOOR EAST LONGMEADOW, MA 01028 Page _____ of _____

AILLI	ANALYTICAL LABORATO	RY Email: info@contestlat	os.com														
4411.								\overline{i}									# of containers
Company	Name: // / /	CAMADON LO	Telephone	e:(<i>516</i>) _	791	- 7	<u> 330 </u>										**Preservation
Address:	30 BREADE	1AY SUITE 6	Project #								<u> </u>			<u> </u>			~Cont.Code
	MASSAPEQUE	www.contestlabs.com CRMATION LID VAY SV. 12 6 1, NY 11758	Client PO							AN	ALYS	SIS A	EQU	EST	ED		<u>~Cont. Code:</u> A=amber glass
Attention:	KOB I'M	\mathcal{L}	DATA DE	LIVERY (c	heck o	ne):						l					G=glass
Project Lo	ocation: Ex T N	DADADORT	Fax # : (5	MEMAIL 76) 76	OWEB	SITE (7 み 3	CLIENT G				}						P=plastic ST=sterile
Sampled E	By: Ros Hais	CAPTHONT		CFORM.		@ Y.A	HOD. COM	6/.									V= viai S≔summa can
Proposal F	Provided? (For Billing purpo	ses) State Form Required?									ł			ļ			T=tedlar bag
yes	proposal da	te	Date S	ampled	<u> </u>			15									O =Other
Field ID	Sample Description	Lab#	Start Date/Time	Stop Date/Time	Comp- osite	Grab	*Matrix Code] ! _									
	B5-3		6/31/04			×	A	×									Comments:
						}											
			-													_	1
<u> </u>				 -	-				_					\vdash	+		_
			<u> </u>			<u> </u>					<u> </u>			<u> </u>	-		_
_														L			
			in.												\vdash		-
											-			\vdash	$\vdash \vdash$	+	
			ây	(c.w		ļ								L			
				go/#/													
							_										
Relinquishe	ed/by: (signature)	Date/Time: 4/1/01/10:00	Turnar	ound **	Dete	ction	Limit Requi	reme	nts	*Matr	ix Co	de:		**Pre	servat	ion Cod	les:
2/1	W D PN		1	*5-Day	Regulat	tion s ?				_	groun		1	I = Ice			: Na hydroxide
Received by	y: (signature)	Date/Time: 91210-2 1400	1	7-Day 10-Day	Data Er		ment Project?	7 V		- 1	waste drinkir		ļ	H = F	dCL Methano		Na thiosulfate
Relinguishe	ed by: (signature)	Date/Time:	_	10-Day SH *	(MA M		•		_) IT	A = a		iy wal	- 1		vietnano Vitric Ac		
<u> </u>			□ *24-Hr □	_ J *48-Hr	1.		ements or DL's	:		_ S = s	oil/soli	d	- 1		Sulfuric .		
Received b	y: (signature)	Date/Time:	☐ •72-Hr ☐	J *4-Day		_				SL =	sludge	÷		B = S	3odium	bisulfate	e
			* Require l	ab approval						0 = 0	ther_			O = 0	Other		

**Turnaround time begins at 9:00 a.m. the day after sample receipt (unless received before 2:00 p.m.)

Con-Test Laboratory is the ONLY independent laboratory in all of New England with both prestigious AIHA and NELAC Certifications and WBE/DBE Certified!

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York October, 2004

Prepared for:

Town of Huntington Department of Environmental Waste Management 100 Main Street Huntington, New York 11743

Prepared by:

R & C Formation, Ltd. 30 Broadway, Suite 6 Massapequa, New York 11758

TABLE OF CONTENTS

	P	age
Scope of Wor Summary of R Genera Monito LFG C Conde Discussion Metha Physic	Results	
	Figure Following l	Page
Figure 1.	Landfill Gas Monitoring and Control System	1
	Summary Tables Following	Page
Table 1.	Landfill Gas Monitoring Well Data	4
Table 2.	Landfill Gas Control Well Data	4
Table 3.	Summary of Methane Detections	4
Table 4.	Landfill Gas Control Well Methane Data	4
	Appendix	
Appendix 1.	Landfill Gas Contol Well Vacuum Data	

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York October, 2004

Introduction

This report presents the results of October, 2004 landfill gas and control system monitoring activities performed at the Town of Huntington East Northport Landfill, as stipulated by the New York State Department of Environmental Conservation.

The primary landfill gas migration control system consists of thirty active landfill gas control wells connected - via a single header pipe forming a complete loop around the 44 acre East Northport Landfill - to one blower station. Landfill gas monitoring wells (consisting of 3-4 probes screened from approximately 5-70 feet below grade) are situated outside of the aforementioned header pipe, thereby providing a means to verify the control system's efficacy. Separate landfill gas control and monitoring systems are located at adjacent Animal Control and Resource Recovery Facilities.

The landfill area and pertinent components of the landfill gas monitoring and control system are depicted in Figure 1. The scope-of-work completed (per our agreement with the Town of Huntington Department of Environmental Waste Management dated August 15, 2003) precedes a summary of results. A discussion of methane monitoring data - with an emphasis on trends and occurrence - and the system's physical and operating condition, follows.

Scope-of-Work

The scope-of-work includes performance of the following on a monthly basis:

- 1) Monitoring of all probes in 43 landfill monitoring wells and up to 5 probes around the Town Animal Control Facility for methane gas and gas pressure.
- 2) Monitoring of 30 methane control wells and blower station for temperature, flow rate, vacuum, methane and oxygen (balance of the control system to be checked and adjustment to wells and to blower intake made, if necessary).

- 3) Examination of 5 condensate traps in the control system for proper operation and water accumulation.
- 4) Noting of any problems, damage, missing parts etc. at each monitoring well, methane control well, condensate trap, Animal Control Facility probes and blower station.

Summary of Results

General

Reported monthly monitoring activities were performed October 27, 2004. Climatic conditions for the monitoring period are as follows:

Temperature: 54 (°F); Barometric pressure: 30.17 (in. Hg); Relative Humidity: 68.0%; Precipitation: 0.0 inches; Wind Speed & Direction: 6.9 mph, northerly.

Monitoring Wells

Table 1 presents a summary of measured and recorded landfill gas monitoring well data. As shown on Table 1, methane was not detected throughout the entire monitoring well network.

LFG Control Wells

A summary of measured and recorded landfill gas control well data - including the system's blower station where 2 "inlet" measuring points (Blower Station 1 & 2) and 1 "outlet" measuring point (Blower Station 3) are located - is presented on Table 2. As shown on Table 2, control well vacuum values (i.e., negative pressure), a direct indicator of the system's balance, range from -0.1 - -2.6 (in. $\rm H_20$). "Extracted" methane values range from 0.0 - 6.0 %.

Condensate Traps

Standing water measured within condensate traps CD-1 (0.7), CD-2 (2.4 feet), CD-3 (3.6 feet), CD-4 (0.9 feet) and CD-5 (0.5 feet) was evacuated, as per usual, upon the completion of monitoring activities.

Discussion

Methane Monitoring Data

A summary of methane concentrations detected at landfill gas monitoring wells throughout the period of record from October, 1999 through October, 2004 is presented on Table 3. As shown, methane has been detected sporadically and at low levels at 14 monitoring wells, including at Animal Control Facility monitoring well AS-NE, where it was last detected at a concentration of 0.1 % during April, 2004 monitoring activities. The highest recorded methane concentration of 5.0 % was measured at this well during March, 2001 monitoring activities.

Methane has not been detected at monitoring wells associated with the primary landfill gas migration control system since a slight concentration (0.1 %) was recorded at monitoring well MW-49 during June, 2002 monitoring activities. The sporadic nature of low-level methane detections indicates that landfill gas control systems relative to both the Animal Control Facility and East Northport Landfill continue to function effectively.

Table 4 summarizes methane concentrations detected at landfill gas control wells during the above-mentioned period of record. As shown, with the exception of minor anomalies (e.g., control well N-2: October, 2001; February, 2002), measured values are generally consistent throughout the 61 month period.

Physical and Operating Condition

As evidenced by measured and recorded landfill gas monitoring well data, the Town of Huntington East Northport Landfill primary landfill gas control system continues to successfully negate the off-site migration of methane, although vacuum values at the northern-most portion of the system remain comparatively low. This state, as indicated by historic control well vacuum data presented in Appendix 1, has existed throughout the period of record.

As reported previously, apparent water accumulation within laterals of "northern" control wells N-1 and N-2 was corrected July 3, 2002 (by way of lowering respective well-heads). As shown in Appendix 1, an initial vacuum increase at these control wells, decreased for a period (January-June, 2003). A return to increased vacuum levels, indicated during July, 2003 monitoring activities, continues.

The physical condition of system monitoring wells and control wells is noted on Tables 1 and 2, respectively. As shown on Tables 1 and 2, with the exception of a pile

of stones and cobbles overlying monitoring well MW-15 (removal anticipated prior to November monitoring activities), neither monitoring nor control wells are currently damaged.

Alternate blower station pump # 2 was in operation during this reported event and all control wells continue to be set in the full-open-position (since April, 2003). As reported previously, this full-open-position will be maintained for an evaluation period and modified if/as necessary.

Recommendations

- * In the event that methane is detected at any monitoring well associated with the primary landfill gas migration control system, recommence the monitoring of off and on-site structures.
- * Continue monitoring control wells N-1 and N-2 on a monthly basis, to assess the long-term affect of previously reported well-head modifications on future vacuum levels at the northern-most portion of the primary landfill gas system.
- * Assess occurrence of methane versus landfill area (i.e., identify dominant landfill gas production zones).
- * Continue assessment of potential impact of all control valves at full-open-position on system-wide vacuum/methane levels.

Town of Huntington East Northport Landfill, East Northport, New York Measured October 27, 2004 Landfill Gas Monitoring Well Data Table 1

Condition																Buried beneath stones & cobbles							
	D			0.0	0.0	0.0						0.0	0.0							0.0		0.0	
Methane 0-100% (Volume)	၁			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mei 0-100%	В		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ΝA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	A		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	D			-0.1	0.0	0.0		Transit				-0.2	-0.1							-0.4		-0.2	
obe Pressure (in. H2O)	၁			0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	-0.2	0.0	-0.2	-0.2	-0.3	NA	-0.1	-0.2	-0.2	0.0	-0.3	-0.3	-0.2
Probe Pressu (in. H2O)	В		-0.3	-0.1	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	-0.2	-0.1	-0.4	NA	-0.2	-0.1	0.0	-0.4	-0.4	-0.2	-0.3
	A		-0.2	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	-0.2	-0.2	-0.1	1.0-	-0.2	NA	-0.1	0.0	0.0	-0.4	-0.3	-0.1	0.0
Well No.		MW-A	MW-B	MW-2	MW-3	MW-4	MW-5	9-MW	MW-7	8-WM	6-WM	MW-10	MW-11	MW-12	MW-13	MW-15	MW-16	MW-17	MW-18	61-MW	MW-20	MW-21	MW-22

Table 1 (continued)

Well No.		Probe F (in. I					thane (Volume)		Condition
	A	В	С	D	A	В	C	D	
MW-23	-0.1	-0.2	-0.1	-0.2	0.0	0.0	0.0	0.0	
MW-24	0.0	0.0	0.0		0.0	0.0	0.0		
MW-25	-0.3	0.0	-0.4		0.0	0.0	0.0		
MW-26	-0.2	-0.2	-0.2	-0.2	0.0	0.0	0.0	0.0	
MW-27	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-28	0.0	0.0	0.0		0.0	0.0	0.0		-
MW-37	-0.1	0.0	0.0		0.0	0.0	0.0		
MW-38	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-39	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-40	0.0	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0	
MW-41	-0.1	0.0	-0.1		0.0	0.0	0.0		
MW-42	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-43	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-44	0.0	0.0	0.0		0.0	0.0	0.0		
MW-45	0.0	0.0	0.0		0.0	0.0	0.0		
MW-46	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-47	0.0	0.0	0.0		0.0	0.0	0.0		
MW-48	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-49	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-51	0.0	-0.1	0.0		0.0	0.0	0.0		
AS-NW	-0.1				0.0				
AS-NE	0.0				0.0				
AS-SW	-0.2				0.0				
AS-SC	-0.4				0.0				
AS-SE	0.0				0.0				

A - Shallow Probe

B - Middle Probe

C - Deep Probe

D - Deepest Probe

Shading indicates the well is not equipped with that particular probe.

Table 2
Landfill Gas Control Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured October 27, 2004

Well No.	Temp (°F)	Flow Rate (ft³/min)	Vacuum (in. H2O)	Methane 0-100 % (Volume)	Oxygen % in Air	Condition
CWI-4	71.8	183.0	-2.5	0.1	20.7	
CW1-5	78.1	98.6	-2.6	0.8	20.1	
CW1-6	84.8	56.0	-2.5	0.8	20.2	
CWI-7	86.9	58.5	-2.4	1.6	20.4	
CWII-1	95.1	102.0	-2.3	6.0	18.6	
CWII-2	96.7	57.5	-2.3	1.6	19.1	
CWII-3	87.4	33.2	-2.3	1.8	18.8	
CWII-4	81.5	69.0	-2.2	3.2	18.7	
CWII-5	82.1	29.5	-2.2	0.2	18.9	
CWII-6	83.2	19.2	-1.4	0.1	17.7	
CWII-7	71.1	13.9	-1.0	0.0	18.6	
CWII-8	67.8	0.0	-0.1	0.0	20.1	
CWII-9	80.0	28.1	-0.7	0.3	18.5	
NW-1	60.9	102.0	-2.4	0.0	20.9	
NW-2	59.8	60.5	-2.6	0.0	20.8	
NW-3	59.1	58.0	-2.3	0.0	20.6	
NW-4	58.7	78.5	-2.1	0.0	20.6	
NW-5	59.6	104.0	-1.8	0.0	20.8	
NW-6	59.8	102.0	-1.8	0.0	20.9	
Ext-1	63.6	5.75	-0.1	0.0	20.8	
Ext-2	64.5	23.3	-0.7	0.0	20.4	
Ext-3	68.4	43.4	-1.7	0.1	19.6	
Ext-4	73.3	34.3	-1.6	0.1	19.0	
Ext-5	61.7	63.0	-1.4	0.0	20.1	<u></u>
N-1	71.8	44.9	-0.4	0.0	20.7	
N-2	86.5	11.3	-0.5	3.9	11.9	
N-3	60.9	6.05	-0.1	0.0	20.6	
N-4	62.7	2.85	-0.1	0.0	20.8	
N-5	62.2	5.75	-0.1	0.0	20.2	
N-6	69.5	23.0	-0.8	0.0	19.4	
Blower Station - 1	64.3	3,000.0	-4.0	0.6	20.3	
Blower Station - 2	64.3	2,990.0	-16.8	0.6	20.3	
Blower Station - 3	79.7	4,200.0	1.7	0.6	20.1	

CW1004.WKS

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York November, 2004

Prepared for:

Town of Huntington Department of Environmental Waste Management 100 Main Street Huntington, New York 11743

Prepared by:

R & C Formation, Ltd. 30 Broadway, Suite 6 Massapequa, New York 11758

TABLE OF CONTENTS

	P	age
Scope of Wor Summary of F Genera Monito LFG C Conde Discussion Metha	Results al oring Wells Control Wells ensate Traps ne Monitoring Data cal Operating Condition	3
Figure 1.	Figure Following I Landfill Gas Monitoring and Control System	Page
	Summary Tables Following	Page
Table 1.	Landfill Gas Monitoring Well Data	4
Table 2.	Landfill Gas Control Well Data	4
Table 3.	Summary of Methane Detections	4
Table 4.	Landfill Gas Control Well Methane Data	4
	Appendix	
Appendix 1.	Landfill Gas Contol Well Vacuum Data	

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York November, 2004

Introduction

Presented herein are the results of November, 2004 landfill gas and control system monitoring activities performed at the Town of Huntington East Northport Landfill, as stipulated by the New York State Department of Environmental Conservation.

The primary landfill gas migration control system consists of thirty active landfill gas control wells connected - via a single header pipe forming a complete loop around the 44 acre East Northport Landfill - to one blower station. Landfill gas monitoring wells (consisting of 3-4 probes screened from approximately 5-70 feet below grade) are situated outside of the aforementioned header pipe, thereby providing a means to verify the control system's efficacy. Separate landfill gas control and monitoring systems are located at adjacent Animal Control and Resource Recovery Facilities.

Figure 1 depicts the landfill area and pertinent components of the landfill gas monitoring and control system. The scope-of-work completed (per our agreement with the Town of Huntington Department of Environmental Waste Management dated August 15, 2003) precedes a summary of results. A discussion of methane monitoring data - with an emphasis on trends and occurrence - and the system's physical and operating condition, follows.

Scope-of-Work

The scope-of-work includes performance of the following on a monthly basis:

- 1) Monitoring of all probes in 43 landfill monitoring wells and up to 5 probes around the Town Animal Control Facility for methane gas and gas pressure.
- 2) Monitoring of 30 methane control wells and blower station for temperature, flow rate, vacuum, methane and oxygen (balance of the control system to be checked and adjustment to wells and to blower intake made, if necessary).

- 3) Examination of 5 condensate traps in the control system for proper operation and water accumulation.
- 4) Noting of any problems, damage, missing parts etc. at each monitoring well, methane control well, condensate trap, Animal Control Facility probes and blower station.

Summary of Results

General

Reported monthly monitoring activities were performed November 30, 2004. Climatic conditions for the monitoring period are as follows:

Temperature: 41 (°F); Barometric pressure: 30.24 (in. Hg); Relative Humidity: 64.0%; Precipitation: 0.0 inches; Wind Speed & Direction: 3.1 mph, southerly.

Monitoring Wells

A summary of measured and recorded landfill gas monitoring well data is presented on Table 1. As shown on Table 1, methane was not detected throughout the entire monitoring well network.

LFG Control Wells

Table 2 presents a summary of measured and recorded landfill gas control well data including the system's blower station where 2 "inlet" measuring points (Blower Station 1 & 2) and 1 "outlet" measuring point (Blower Station 3) are located. As shown on Table 2, control well vacuum values (i.e., negative pressure), a direct indicator of the system's balance, range from 0.0 - -3.4 (in. H_20). "Extracted" methane values range from 0.0 - 6.0%.

Condensate Traps

Standing water measured within condensate traps CD-1 (3.4), CD-2 (2.6 feet), CD-3 (7.1 feet), CD-4 (0.9 feet) and CD-5 (4.6 feet) was evacuated, as per usual, upon the completion of monitoring activities.

Discussion

Methane Monitoring Data

A summary of methane concentrations detected at landfill gas monitoring wells throughout the period of record from October, 1999 through November, 2004 is presented on Table 3. As shown, methane has been detected sporadically and at low levels at 14 monitoring wells, including at Animal Control Facility monitoring well AS-NE, where it was last detected at a concentration of 0.1 % during April, 2004 monitoring activities. The highest recorded methane concentration of 5.0 % was measured at this well during March, 2001 monitoring activities.

Methane continues to absent at monitoring wells associated with the primary landfill gas migration control system since a slight concentration (0.1 %) was recorded at monitoring well MW-49 during June, 2002 monitoring activities. The sporadic nature of low-level methane detections indicates that landfill gas control systems relative to both the Animal Control Facility and East Northport Landfill continue to function effectively.

Table 4 summarizes methane concentrations detected at landfill gas control wells during the above-mentioned period of record. As shown, with the exception of minor anomalies (e.g., control well N-2: October, 2001; February, 2002), measured values are generally consistent throughout the 62 month period.

Physical and Operating Condition

As evidenced by measured and recorded landfill gas monitoring well data, the Town of Huntington East Northport Landfill primary landfill gas control system continues to successfully negate the off-site migration of methane, although vacuum values at the northern-most portion of the system remain comparatively low. This state, as indicated by historic control well vacuum data presented in Appendix 1, has existed throughout the period of record.

As reported previously, apparent water accumulation within laterals of "northern" control wells N-1 and N-2 was corrected July 3, 2002 (by way of lowering respective well-heads). As shown in Appendix 1, an initial vacuum increase at these control wells, decreased for a period (January-June, 2003). Following a return to increased vacuum levels, indicated during July, 2003 monitoring activities, the vacuum level at monitoring well N-1 has, once again, decreased.

R & C Formation, Ltd.

The physical condition of system monitoring wells and control wells is noted on Tables 1 and 2, respectively. As shown on Tables 1 and 2, neither monitoring nor control wells are currently damaged.

Alternate blower station pump # 2 was in operation during this reported event and all control wells continue to be set in the full-open-position (since April, 2003). As reported previously, this full-open-position will be maintained for an evaluation period and modified if/as necessary.

Recommendations

- * In the event that methane is detected at any monitoring well associated with the primary landfill gas migration control system, recommence the monitoring of off and on-site structures.
- * Continue monitoring control wells N-1 and N-2 on a monthly basis, to assess the long-term affect of previously reported well-head modifications on future vacuum levels at the northern-most portion of the primary landfill gas system.
- * Assess occurrence of methane versus landfill area (i.e., identify dominant landfill gas production zones).
- * Continue assessment of potential impact of all control valves at full-open-position on system-wide vacuum/methane levels.

Table 1
Landfill Gas Monitoring Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured November 30, 2004

Well No.			Pressure H2O)				thane (Volume)		Condition
	A	В	C	D	A	B_	C	D	
MW-A	-0.2	-0.6			0.0	0.0			
MW-B	-0.0	-0.2			0.0	0.0			
MW-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-5	0.0	0.0	0.1		0.0	0.0	0.0		
MW-6	0.0	0.0	0.0		0.0	0.0	0.0		
MW-7	0.0	0.0	0.0		0.0	0.0	0.0		
MW-8	0.0	0.0	0.0		0.0	0.0	0.0		
MW-9	0.0	0.0	0.0		0.0	0.0	0.0		
MW-10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
MW-12	0.0	0.0	0.0		0.0	0.0	0.0		
MW-13	-0.3	0.0	-0.3		0.0	0.0	0.0		
MW-15	-0.1	-0.1	0.0		0.0	0.0	0.0		
MW-16	-0.1	-0.1	0.0		0.0	0.0	0.0		
MW-17	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-18	0.0	0.0	-0.1		0.0	0.0	0.0		
MW-19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-20	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-22	-0.2	-0.2	-0.3		0.0	0.0	0.0		

Table 1 (continued)

Well No.		Probe Pressur	ressure			Met	Methane		Condition
	•	(m. H2O)	(OZE	-	•	0-100%	B C		
MW-23	-0.1	-0.2	-0.1	-0.2	0.0	0.0	0.0	0.0	
MW-24	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-25	-0.5	0.0	-0.5		0.0	0.0	0.0		
MW-26	-0.2	-0.2	-0.2	-0.2	0.0	0:0	0.0	0.0	
MW-27	0.0	0.0	0.0		0.0	0.0	0.0		
MW-28	0.0	0.0	0.0		0.0	0:0	0.0		
MW-37	0.0	0.0	0.0		0.0	0.0	0.0		
MW-38	-0.1	-0.2	-0.2		0.0	0.0	0.0		
MW-39	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-40	-0.1	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	
MW-41	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-42	0.0	0.0	-0.1		0.0	0.0	0.0		
MW-43	0.0	0.0	0.0		0.0	0.0	0.0		
MW-44	0.0	0.0	0.0		0.0	0.0	0.0		
MW-45	0.0	0.0	0.0		0.0	0.0	0.0		
MW-46	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-47	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-48	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-49	0.0	-0.2	0.0		0.0	0.0	0.0		
MW-51	0.0	-0.1	0.0		0.0	0.0	0.0		
AS-NW	0.0				0.0				
AS-NE	0.0				0.0				
AS-SW	0.0				0.0				
AS-SC	9.0-				0.0				
AS-SE	0.0				0.0				
A - Shallow Probe	ıbe	B - Middle Probe	pe	C - Deep Probe		D - Deepest Probe	be		
Shading indicate	es the well is n	Shading indicates the well is not equipped with that particular probe	hat particular _l	probe.					

LFG404.WKS

Table 2
Landfill Gas Control Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured November 30, 2004

Well No.	Temp (°F)	Flow Rate (ft³/min)	Vacuum (in. H2O)	Methane 0-100 % (Volume)	Oxygen % in Air	Condition
CWI-4	71.7	169.0	-3.0	0.1	19.8	
CW1-5	76.7	67.0	-3.2	1.0	19.0	
CW1-6	83.2	40.1	-3.4	0.7	18.7	
CW1-7	85.8	38.6	-3.3	2.6	17.7	
CWII-1	94.1	52.5	-3.1	6.0	6.3	
CWII-2	94.0	78.5	-3.1	1.5	16.6	
CWI1-3	87.4	18.3	-3.3	1.8	17.3	
CWII-4	80.7	39.3	-3.3	3.9	15.2	
CWII-5	59.5	0.0	-0.1	0.1	16.5	
CWII-6	65.2	0.0	0.0	0.1	16.0	
CWII-7	62.4	2.0	0.0	0.1	16.6	
CW1I-8	60.3	0.0	0.0	0.0	18.6	
CWII-9	62.5	0.0	0.0	0.1	16.3	
NW-1	60.1	103.0	-2.6	0.0	20.7	
NW-2	59.2	63.0	-2.9	0.0	20.7	
NW-3	58.6	59.5	-2.5	0.0	20.1	777
NW-4	58.4	103.0	-2.4	0.0	19.6	
NW-5	58.7	165.0	-2.1	0.0	19.9	
NW-6	58.9	121.0	-2.0	0.0	20.4	
Ext-1	57.3	4.0	0.0	0.9	20.4	
Ext-2	61.1	28.8	-0.8	0.1	18.9	
Ext-3	67.4	54.5	-2.1	0.7	18.2	
Ext-4	72.6	43.0	-2.0	0.3	16.3	<u> </u>
Ext-5	59.6	72.0	-1.6	0.0	20.0	
N-1	67.0	10.8	-0.1	0.0	18.9	
N-2	85.7	12.2	-0.6	3.5	7.9	
N-3	57.2	1.3	0.0	0.0	20.3	
N-4	58.3	0.5	-0.1	0.0	20.6	
N-5	56.5	1.7	0.0	0.0	19.4	
N-6	56.0	0.0	0.0	0.1	18.2	
Blower Station - 1	59.2	2,870.0	-4.6	0.7	18.4	
Blower Station - 2	58.6	2,850.0	-16.0	0.7	18.6	
Blower Station - 3	68.7	2,100.0	2.0	0.7	18.7	<u>-</u>

CW1104.WKS

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York December, 2004

Prepared for:

Town of Huntington Department of Environmental Waste Management 100 Main Street Huntington, New York 11743

Prepared by:

R & C Formation, Ltd. 30 Broadway, Suite 6 Massapequa, New York 11758

TABLE OF CONTENTS

	P	age
Scope of Wor Summary of I Gener Monit LFG C Conde Discussion Metha	Results al oring Wells Control Wells ensate Traps ane Monitoring Data cal Operating Condition	3
	Figure Following F	Page
Figure 1.	Landfill Gas Monitoring and Control System	1
	Summary Tables Following	Page
Table 1.	Landfill Gas Monitoring Well Data	4
Table 2.	Landfill Gas Control Well Data	4
Table 3.	Summary of Methane Detections	4
Table 4.	Landfill Gas Control Well Methane Data	4
	Appendix	
Appendix 1.	Landfill Gas Contol Well Vacuum Data	

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York December, 2004

Introduction

Presented herein are the results of December, 2004 landfill gas and control system monitoring activities performed at the Town of Huntington East Northport Landfill, as stipulated by the New York State Department of Environmental Conservation.

The primary landfill gas migration control system consists of thirty active landfill gas control wells connected - via a single header pipe forming a complete loop around the 44 acre East Northport Landfill - to one blower station. Landfill gas monitoring wells (consisting of 3-4 probes screened from approximately 5-70 feet below grade) are situated outside of the aforementioned header pipe, thereby providing a means to verify the control system's efficacy. Separate landfill gas control and monitoring systems are located at adjacent Animal Control and Resource Recovery Facilities.

Figure 1 illustrates the landfill area and pertinent components of the landfill gas monitoring and control system. The scope-of-work completed (per our agreement with the Town of Huntington Department of Environmental Waste Management dated August 15, 2003) precedes a summary of results. A discussion of methane monitoring data - with an emphasis on trends and occurrence - and the system's physical and operating condition follows.

Scope-of-Work

The scope-of-work includes performance of the following on a monthly basis:

- 1) Monitoring of all probes in 43 landfill monitoring wells and up to 5 probes around the Town Animal Control Facility for methane gas and gas pressure.
- 2) Monitoring of 30 methane control wells and blower station for temperature, flow rate, vacuum, methane and oxygen (balance of the control system to be checked and adjustment to wells and to blower intake made, if necessary).

- 3) Examination of 5 condensate traps in the control system for proper operation and water accumulation.
- 4) Noting of any problems, damage, missing parts etc. at each monitoring well, methane control well, condensate trap, Animal Control Facility probes and blower station.

Summary of Results

General

Reported monthly monitoring activities were performed December 29 - 30, 2004. Climatic conditions for the monitoring period are as follows:

<u>December 29</u> - Temperature: 38 (°F); Barometric Pressure: 30.21 (in. Hg); Relative Humidity: 56.0%; Precipitation: 0.0 inches; Wind Speed & Direction: 8.5 mph, westerly.

<u>December 30</u> – Temperature: 37 (°F); Barometric Pressure: 30.46 (in. Hg); Relative Humidity: 68.0%; Precipitation: 0.00 inches; Wind Speed & Direction: 4.1 mph, northwesterly.

Monitoring Wells

A summary of measured and recorded landfill gas monitoring well data is presented on Table 1. As shown, methane was not detected throughout the entire monitoring well network.

LFG Control Wells

Table 2 presents a summary of measured and recorded landfill gas control well data - including the system's blower station where 2 "inlet" measuring points (Blower Station 1 & 2) and 1 "outlet" measuring point (Blower Station 3) are located. As shown on Table 2, control well vacuum values (i.e., negative pressure), a direct indicator of the system's balance, range from 0.0 - -7.4 (in. H₂0). "Extracted" methane values range from 0.0 6.0%.

Condensate Traps

Standing water measured within condensate traps CD-1 (trace), CD-2 (2.1 feet), CD-3 (0.7 feet), CD-4 (1.5 feet) and CD-5 (0.3 feet) was evacuated, as per usual, upon the completion of monitoring activities.

Discussion

Methane Monitoring Data

Table 3 presents a summary of methane concentrations detected at landfill gas monitoring wells throughout the period of record from October, 1999 through December, 2004. As shown, methane has been detected sporadically and at low levels at 14 monitoring wells, including at Animal Control Facility monitoring well AS-NE, where it was last detected at a concentration of 0.1 % during April, 2004 monitoring activities. The highest recorded methane concentration of 5.0 % was measured at this well during March, 2001 monitoring activities.

Methane has not been detected at monitoring wells associated with the primary landfill gas migration control system since a slight concentration (0.1 %) was recorded at monitoring well MW-49 during June, 2002 monitoring activities. The sporadic nature of low-level methane detections indicates that landfill gas control systems relative to both the Animal Control Facility and East Northport Landfill continue to function effectively.

A summary of methane concentrations, as detected during the above-mentioned period-of-record at landfill gas control wells, is presented on Table 4. As shown, with the exception of minor anomalies (e.g., control well N-2: October, 2001; February, 2002), measured values are generally consistent throughout the 63 month period.

Physical and Operating Condition

As evidenced by measured and recorded landfill gas monitoring well data, the Town of Huntington East Northport Landfill primary landfill gas control system continues to successfully negate the off-site migration of methane. Vacuum values, however, continue to remain comparatively low at the northern-most portion of the system. As indicated by historic control well vacuum data (Appendix 1), this state has existed throughout the monitoring period-of-record.

As reported previously, apparent water accumulation within laterals of "northern" control wells N-1 and N-2 was corrected July 3, 2002 (by way of lowering respective well-heads). As shown in Appendix 1, an initial vacuum increase at these control wells, decreased for a period (i.e., January-June, 2003). With the exception of a recent (i.e., November, 2004) decrease at "northern" control well N-1, this increase continues.

The physical condition of system monitoring wells and control wells is noted on Tables 1 and 2, respectively. As shown, neither monitoring nor control wells are currently damaged.

Alternate blower station pump # 1 was in operation during this reported event and all control wells continue to be set in the full-open-position (since April, 2003). As reported previously, this full-open-position will be maintained for an evaluation period and modified if/as necessary.

Recommendations

- * In the event that methane is detected at any monitoring well associated with the primary landfill gas migration control system, recommence the monitoring of off and on-site structures.
- * Continue to assess the long-term affect of well-head modifications at control wells N-1 and N-2 on future vacuum levels at the northern-most portion of the primary landfill gas migration control system.
- * Assess occurrence of methane versus landfill area (i.e., identify dominant landfill gas production zones).
- * Continue assessment of potential impact of all control valves at full-open-position on system-wide vacuum/methane levels.

Table 1
Landfill Gas Monitoring Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured December 29 - 30, 2004

Well No.			Pressure H2O)				hane (Volume)		Condition
	A	В	C	D	A	В	C	D	
MW-A	-0.1	-0.3		7.1	0.0	0.0		27,000	
MW-B	0.0	-0.1			0.0	0.0			
MW-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-4_	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-5	0.0	0.0	0.0		0.0	0.0	0.0		
MW-6	0.0	0.0	0.0		0.0	0.0	0.0		
MW-7	-0.1	-0.1	-0.1		0.0	0.0	0.0		
MW-8	0.0	0.0	0.0		0.0	0.0	0.0		
MW-9	0.0	0.0	0.0		0.0	0.0	0.0		
MW-10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-12	0.0	0.0	0.0		0.0	0.0	0.0	an fara	
MW-13	0.0	0.0	0.0		0.0	0.0	0.0		
MW-15	0.0	0.0	0.0		0.0	0.0	0.0		
MW-16	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-17	0.0	0.0	0.0		0.0	0.0	0.0		
MW-18	0.0	0.0	0.0		0.0	0.0	0.0		
MW-19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-20	0.0	0.0	0.0		0.0	0.0	0.0	Musey	
MW-21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-22	0.0	0.0	0.0	Sirigija '	0.0	0.0	0.0	årsy t	

Table 1 (continued)

Well No.	,	Probe Press (in. H2O)	Probe Pressure (in. H2O)			Methane 0-100% (Volume)	hane Volume)		Condition
	A	B	O	D	V	[B]	С	O	
MW-23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-24	0.0	0.0	0.0		0.0	0.0	0.0		
MW-25	0.0	0.0	0.0		0.0	0.0	0.0	rup S	
MW-26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-27	0.0	0.0	0.0		0.0	0.0	0.0		
MW-28	0.0	0.0	0:0		0.0	0.0	0.0		
MW-37	0.0	0.0	0.0		0.0	0.0	0.0		
MW-38	0.0	0.0	0.0		0.0	0.0	0.0		
MW-39	0.0	0.0	-0.1		0.0	0.0	0.0		
MW-40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-41	0.0	0.0	0.0		0.0	0.0	0.0		
MW-42	0.0	0.0	0.0		0.0	0.0	0.0		
MW-43	0.0	0.0	0.0		0.0	0.0	0.0		
MW-44	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-45	0.0	0.0	0.0		0.0	0.0	0.0		
MW-46	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	
MW-47	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-48	0.0	0.0	0.0		0.0	0.0	0.0		
MW-49	0.0	0.0	0.0		0.0	0.0	0.0		
MW-51	-0.1	-0.1	-0.1		0.0	0.0	0.0		
AS-NW	0.0				0.0				
AS-NE	0.0				0.0				
AS-SW	0.0				0.0				
AS-SC	0.0				0.0				
AS-SE	0.0				0.0				

A - Shallow Probe B - Middle Probe C - Deep Probe Shading indicates the well is not equipped with that particular probe.

D - Deepest Probe

TABLE1Dec04.XLS

Table 2
Landfill Gas Control Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured December 29 - 30, 2004

Well No.	Temp (°F)	Flow Rate (ft³/min)	Vacuum	Methane	Oxygen	Condition
		Flow Rate (It /IIIII)	(in. <u>H2O)</u>	0-100 % (Volume)	<u>% in Air</u>	Condition
CWI-4	70.4	179.0	-2.4	0.1	20.5	
CWI-5	76.2	99.3	-2.6	0.6	20.0	
CW1-6	82.6	55.0	-2.5	0.7	20.4	
CWI-7	83.1	59.4	-7.4	1.5	19.8	
CWI1-1	93.6	101.0	-2.3	6.0	19.4	
CWII-2	94.2	59.6	-2.2	1.6	18.8	
CWII-3	81.5	35.2	-3.0	0.1	17.4	
CWII-4	47.0	0.0	-0.1	0.0	20.2	
CWII-5	48.9	0.0	-0.1	0.0	19.8	
CWII-6	50.6	0.0	0.0	0.1	16.5	
CWII-7	47.2	0.0	0.0	0.0	16.6	
CWII-8	46.2	0.0	-0.1	0.0	19.2	
CWII-9	50.7	19.2	-0.9	0.1	16.1	
NW-1	59.8	58.8	-2.5	0.0	20.3	
NW-2	58.4	60.4	-2.6	0.0	20.5	
NW-3	57.2	57.2	-2.3	0.0	20.5	
NW-4	59.0	76.4	-2.3	0.0	20.5	
NW-5	58.5	107.0	-1.8	0.0	20.7	
NW-6	58.6	109.0	-1.8	0.0	20.3	
Ext-1	61.5	5.5	-1.7	0.0	20.5	
Ext-2	62.4	15.6	-1.6	0.0	20.8	
Ext-3	63.1	22.4	-1.6	0.1	20.8	
Ext-4	62.3	23.6	-1.5	0.1	20.1	
Ext-5	61.0	54.0	-1.3	0.0	19.6	
N-1	65.4	38.5	-0.3	0.0	18.8	
N-2	62.4	10.2	-0.7	1.4	15.4	
N-3	50.2	2.3	-0.1	0.0	20.2	
N-4	49.6	1.3	-0.2	0.0	21.2	
N-5	48.7	1.0	-0.2	0.0	19.6	
N-6	48.1	1.1	-0.1	0.0	17.5	
Blower Station - 1	63.6	2950.0	-6.0	0.6	19.8	
Blower Station - 2	63.6	3100.0	-20.6	0.6	19.8	
Blower Station - 3	76.4	4000.0	1.8	0.6	19.8	

TABLE2Dec04.XLS

Town of Huntington East Northport Landfill, East Northport, New York for period of record between October, 1999 and December, 2004 Summary of Methane Detections Landfill Gas Monitoring Wells Table 3

Well	10/99	11/99	12/99	1/00	2/00	3/00	4/00	2/00	00/9	2/00	8/00	00/6	10/00	11/00	12/00	1/01
MW-7C	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.1	па	0.0	0.0	0.0	0.0	0.0
MW-8C	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.1	БП	0.0	0.0	0.0	0.0	0.0
MW-9A	0.0	0.0	0.2	0.0	Па	0.0	0.0	0.0	0.0	0.0	па	0.0	0.0	0.0	0.0	0.0
MW-9B	0.1	0.4	0.2	0.8	na	0.0	0.0	0.0	0.0	0.1	па	0.0	0.0	0.0	0.0	0.0
MW-9C	0.0	0.3	0.2	6.0	Па	0.0	0.0	0.0	0.0	0.0	па	0.0	0.0	0.0	0.0	0.0
MW-11A	0.0	0.0	0.0	0.0	na	0.0	0.0	0.1	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0
MW-12A	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.1	па	0.0	0.0	0.0	0.0	0.0
MW-12C	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.1	па	0.0	0.0	0.0	0.0	0.0
MW-18A	0.4	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	па	0.0	0.0	0.0	0.0	0.0
MW-19A	0.0	0.0	0.3	4.0	na	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0
MW-24C	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.3	0.0	па	0.0	0.0	0.0	0.0	0.0
MW-38B	1.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0
MW-39A	0.0	0.2	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0
MW-49A	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	па	0.1	0.0	0.0	0.0	0.0
MW-49B	0.0	0.0	0.0	0.0	na	0'0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0
MW-49C	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	па	0.1	0.0	0.0	0.0	0.0
AS-SW	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	па	0.0	1.0	1.0	0.0	0.0
AS-SC	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	na	0.2	0.0	0.0	0.0	0.0
AS-NE	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0	па	0.0	0.0	0.0	0.0	0.0

na - not available

Measured in % Volume

Table 3 (continued)

MW-7C 0.0 </th <th>Well</th> <th>2/01</th> <th>3/01</th> <th>4/01</th> <th>5/01</th> <th>6/01</th> <th>7/01</th> <th>8/01</th> <th>9/01</th> <th>10/01</th> <th>11/01</th> <th>12/01</th> <th>1/02</th> <th>2/02</th> <th>3/02</th> <th>4/02</th> <th>5/02</th>	Well	2/01	3/01	4/01	5/01	6/01	7/01	8/01	9/01	10/01	11/01	12/01	1/02	2/02	3/02	4/02	5/02
0.0 0.0 <th>MW-7C</th> <th>0.0</th>	MW-7C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-8C</th> <th>0.0</th>	MW-8C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>A6-WM</th> <th>0.0</th>	A6-WM	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-9B</th> <th>0.0</th>	MW-9B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-9C</th> <th>0.0</th>	MW-9C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-11A</th> <th>0.0</th>	MW-11A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-12A</th> <th>0.0</th>	MW-12A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-12C</th> <th>0.0</th>	MW-12C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-18A</th> <th>0.0</th>	MW-18A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-19A</th> <th>0.0</th>	MW-19A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-24C</th> <th>0.0</th>	MW-24C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-38B</th> <th>0.0</th>	MW-38B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-39A</th> <th>0.0</th>	MW-39A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-49A</th> <th>0.0</th>	MW-49A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-49B</th> <th>0.0</th>	MW-49B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>MW-49C</th> <th>0.0</th>	MW-49C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 <th>AS-SW</th> <th>0.0</th>	AS-SW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 5.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0	AS-SC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	AS-NE	0.0	5.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0

Table 3 (continued)

Well	6/02	7/02	8/02	9/02	10/02	11/02	12/02	1/03	2/03	3/03	4/03	5/03	6/03	7/03	8/03	9/03
MW-7C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-8C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-9A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-9B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-9C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-11A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-12A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-12C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-18A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-19A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-24C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-38B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0
MW-39A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0
MW-49A	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0
MW-49B	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0
MW-49C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0
AS-SW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	na	0.0	0.0	0.0
AS-SC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	, na	0.0	0.0	0.0
AS-NE	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	па	0.0	0.0	0.0

na - not available Measured in % Volume

Table 3 (continued)

Well	10/03	11/03	12/03	1/04	2/04	3/04	4/04	5/04	6/04	7/04	8/04	9/04	10/04	11/04	12/04	1/05
MW-7C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-8C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-9A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
MW-9B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-9C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-11A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-12A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-12C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-18A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-19A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-24C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-38B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-39A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-49A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-49B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
MW-49C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
AS-SW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
AS-SC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
AS-NE	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	.0'0	0.0	0.0	0.0	0.0	0.0	

Town of Huntington East Northport Landfill, East Northport, New York for period of record between October, 1999 and December, 2004 Landfill Gas Control Well Methane Data Table 4

Well	10/99	11/99	12/99	1/00	2/00	3/00	4/00	2/00	9/00	2/00	8/00	00/6	10/00	11/00	12/00	1/01
CWI-4	0.2	0.3	0.3	0.0	ΑΝ	0.0	0.0	9.0	9.0	2.3	ΑN	0.2	0.2	0.2	0.9	0.2
CWI-5	1.6	3.2	1.5	0.0	¥	0.7	0.7	0.7	0.8	0.4	ΑΝ	1.4	3.4	1.6	1.1	1.6
CWI-6	8.0	3.6	0.7	0.0	¥	0.7	0.3	6.0	0.8	4 .	¥	1.3	9.0	1.0	0.8	1.4
CWI-7	1.9	1.9	1.9	0.0	NA	na	0.8	1.2	1.3	2.7	ΑN	3.0	2.0	2.8	0.0	2.2
CWII-1	5.0	10.0	5.0	5.1	ΝA	4.3	3.0	1.3	1.2	5.6	¥	5.5	6.0	10.0	4.8	8.0
CWII-2	3.0	5.4	3.1	7.0	¥	9.0	2.3	1.0	1.0	4.3	¥	5.2	3.2	4.0	3.0	4.4
CWII-3	6.8	12.5	7.2	11.2	¥	10.7	7.3	5.5	4.9	7.2	Ϋ́	0.9	5.5	12.5	10.0	8.4
CWII 4	5.3	8.5	7.4	6.9	ΑN	5.0	5.0	0.0	0.0	8.4	¥	5.5	4.9	0.9	0.2	0.9
CWII-5	0.0	1.0	0.0	0.0	NA	0.0	0.0	0.5	0.0	1.0	¥	0.0	0.0	0.0	0.2	0.0
CWII-6	3.5	0.9	0.8	0.0	NA	0.0	1.5	0.1	0.0	5.4	₹	6.0	4.0	5.0	6.0	0.0
CWII-7	6.0	1.3	0.0	0.0	¥	0.0	0.0	0.5	0.3	0.0	Ϋ́	0.2	0.1	0.2	0.1	0.0
CWII-8	0.0	0.0	0.0	0.0	ΑN	0.0	0.0	0.3	0.4	0.0	Ϋ́	0.0	0.0	0.0	0.2	0.0
CWII-9	8.0	2.2	0.0	0.0	¥	0.0	0.0	0.2	0.1	6.0	Ϋ́	1.6	1.0	1.6	0.3	0.0
NW-1	0.0	0.0	0.0	na	¥	0.0	0.0	0.0	0.0	0.2	¥	0.0	0.0	0.0	0.0	0.0
NW-2	0.0	0.0	0.1	0.0	Α̈́	0.0	0.0	0.0	0.0	4.0	¥	0.1	0.0	0.0	0.0	0.0
NW-3	0.0	0.0	0.0	0.0	¥	0.2	0.0	0.0	0.0	0.5	¥	0.1	0.0	0.0	0.1	0.0
NW-4	0.4	0.3	0.1	0.0	ΑN	0.0	0.0	0.0	0.0	6.0	¥	0.0	0.0	0.0	0.0	0.0
NW-5	0.0	0.0	0.1	0.0	ΑN	0.0	0.0	0.0	0.0	0.5	Ϋ́	0.0	0.0	0.0	0.0	0.0
9-MN	0.0	0.1	0.2	0.0	¥	0.0	0.0	0.0	0.0	0.0	Ϋ́	0.0	0.0	0.0	0.0	0.0
Ext-1	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.8	6.0	0.4	¥	0.0	0.0	0.0	0.0	0.0
Ext-2	0.0	9.0	0.0	0.0	ΑN	0.0	1.2	1.	6.0	0.7	¥	9.0	0.2	0.5	0.3	9.0
Ext-3	0.0	3.1	0.0	0.0	ΑN	1.0	1.8	0.0	0.0	0.5	NA	2.3	0.1	2.0	0.0	2.2
Ext-4	0.0	14	0.0	0.0	ΑN	0.5	0.0	1.1	6.0	0.1	ΑN	1.4	0.3	8.0	0.4	9.
Ext-5	0.0	0.0	0.0	0.0	ΑN	0.0	0.0	0.0	0.0	0.2	NA	0.0	0.0	0.0	0.0	0.0
N-1	0.0	Α	0.0	0.0	Ϋ́	0.0	0.0	0.0	0.0	0.0	ΑN	0.1	0.0	0.0	0.0	0.0
N-2	NA	NA	AN	A	ΑN	ΑN	AN	¥	₹	ΑĀ	¥	0.0	5.0	0.2	5.0	0.0
N-3	0.0	0.0	0.0	0.0	¥	0.0	0.0	na	0.0	0.0	₹	0.0	0.0	0.0	0.0	a
Z	0.0	0.0	0.0	0.0	ΑN	0.0	0.0	0.1	0.1	0.0	ΑN	0.0	0.0	0.0	0.0	0.0
N-5	0.2	0.3	0.0	0.0	ΑN	0.0	0.0	0.0	0.0	0.0	Ν	0.1	0.0	0.0	0.0	0.0
N-6	0.0	0.0	0.0	0.0	AN	0.0	0.0	0.0	0.0	0.0	۷V	0.3	0.2	0.1	0.0	0.0
BS-1	1.0	1.6	ر. ن	8.0	ΑN	6.0	6.0	0.5	0.4	5.6	¥	1.8	9.0	9.0	0.1	4.

Table 4 (continued)

<u>Well</u>	2/01	3/01	4/01	5/01	6/01	7/01	8/01	9/01	10/01	11/01	12/01	1/02	2/02	3/02	4/02	5/02
CWI-4	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.3	0.2	0.4	0.0	0.1	1.0
CWI-5	1.2	1.0	1.2	1.0	1.2	1.2	1.2	1.0	1.4	1.2	1.2	1.0	1.0	1.0	1.2	0.0
CWI-6	0.9	0.5	1.0	1.4	1.2	1.6	2.0	1.1	1.0	1.0	0.8	2.0	1.5	1.0	1.1	2.0
CWI-7	1.8	1.4	1.6	2.4	3.0	3.4	2.8	2.6	3.0	1.6	0.0	2.0	2.0	1.8	0.0	1.6
CWII-1	8.0	4.4	6.0	8.0	8.0	8.0	8.0	8.0	12.0	5.0	4.8	8.0	5.0	6.0	4.0	5.0
CWII-2	3.8	3.0	3.8	4.0	3.8	4.4	6.0	4.0	4.2	2.5	2.8	2.5	2.8	2.5	2.5	2.8
CWII-3	4.6	12.0	6.0	4.6	4.8	10.0	4.8	4.6	12.0	10.0	NA	NA	10.0	9.8	8.0	7.0
CWII-4	5.0	10.0	7.0	10.0	8.0	8.0	10.0	8.0	10.0	5.0	3.0	8.0	8.0	6.8	5.0	5.0
CWII-5	0.0	0.0	0.0	0.3	0.0	0.3	0.3	0.0	0.2	0.0	0.2	0.1	0.0	0.0	0.0	0.1
CWII-6	0.0	0.2	0.0	3.8	4.8	6.0	4.8	5.0	7.0	3.6	0.8	3.0	3.0	3.4	3.4	5.0
CWII-7	0.0	0.3	0.0	0.0	0.1	0.0	0.2	0.1	0.2	0.2	0.0	0.2	0.0	0.2	0.2	0.2
CWII-8	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CWII-9	0.2	0.0	0.2	1.3	1.0	1.2	1.3	1.3	1.6	1.1	0.6	1.0	1.0	1.0	0.9	0.6
NW-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
NW-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ext-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ext-2	0.2	0.4	0.1_	0.4	0.0	0.2	0.0	0.1	0.0	0.0	0.2	0.3	0.4	0.1	0.0	0.3
Ext-3	0.0	1.8	0.1	1.2	0.0	0.0	0.0	0.4	0.2	0.2	0.0	1.8	1.8	1.4	0.2	2.5
Ext-4	0.2	1.8	0.4	1.4	0.0	0.2	0.0	0.6	0.4	0.2	0.5	1.4	1.5	1.1	0.4	3.1
Ext-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9_
N-1	0.0	0.0	0.0	0.0	0.1	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-2	0.0	0.0	0.0	0.0	0.5	0.0	6.0	0.0	18.0	2.5	2.8	2.4	10.0	3.4	2.8	1.7
N-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0
N-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N-6	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.2	1.0	0.3	0.0	0.0
BS-1	1.0	0.8	0.8	1.0	1.2	1.4	0.5	1.2	1.3	0.6	1.0	1.0	1.0	1.1	1.0	1.0

Table 4 (continued)

Well	6/02	7/02	8/02	9/02	10/02	11/02	12/02	1/03	2/03	3/03	4/03	5/03	6/03	7/03	8/03	9/03
CWI4	0.0	0.2	0.8	0.2	0.3	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.0	0.1	0.1	0.1
CMI-5	0.7	0.2	1.0	6.0	6.0	8.0	6.0	0.8	6.0	9.0	0.7	0.8	0.1	8.0	9.0	0.7
CWI-6	6.0	1.0	7.	7.	1.1	0.3	6.0	0.2	0.8	9.0	0.7	1.0	0.0	1.0	0.8	9.0
CMI-7	1.3	1.5	1.6	1.5	1.3	6.0	9.0	9.0	0.7	0.4	9.0	6.0	0.1	1.8	1.0	1.2
CWII-1	5.0	5.0	2.0	7.0	3.0	8.0	8.0	8.0	0.9	0.9	7.0	8.0	0.1	7.0	7.0	7.2
CWII-2	0.1	1.8	1.6	1.3	1.0	2.0	2.6	1.6	2.2	2.3	3.2	3.3	0.1	2.4	2.3	2.6
CWII-3	0.3	0.9	5.0	7.0	3.5	0.9	11.0	5.5	7.0	7.0	8.0	12.0	0.0	0.9	3.8	3.6
CWII-4	0.2	5.0	2.0	2.0	0.9	7.0	7.0	6.2	AN	0.9	6.0	7.0	0.0	5.0	6.0	0.9
CWII-5	0.4	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.1	0.1	9.0	0.0	0.3	0.2	0.3
CWII-6	3.9	4.7	4.6	4.8	3.8	2.1	1.0	1.3	0.1	1.1	0.4	2.8	0.0	2.7	2.3	2.4
CWII-7	0.2	0.2	0.3	0.2	0.2	0.1	0.0	0.1	NA	0.1	0.1	0.1	0.0	0.1	0.1	0.2
CWII-8	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.0	ΑN	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6-IIMO	1.2	1.2	1.0	1.0	1.0	1.0	0.1	9.0	0.0	0.7	0.5	1.1	0.1	0.7	0.8	6.0
NW-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ΑA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-3	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW 4	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9-MN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ext-1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ΝA	0.0	0.0	0.0
Ext-2	0.0	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2	0.2	Ϋ́	0.1	0.2	0.1
Ext-3	0.1	0.4	0.4	0.7	0.2	1.8	0.2	1.6	1.4	1.4	0.8	9.0	NA	0.7	9.0	0.7
Ext-4	0.3	2.0	1.8	0.7	0.3	1.9	0.5	1.7	1.0	9.0	1.2	1.0	¥	1.0	1.0	1.0
Ext-5	2.1	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	ΑĀ	0.0	0.0	0.0
N-1	0.0	0.3	0.2	0.2	0.1	0.1	0.1	0.1	NA	0.0	0.0	0.0	NA	0.0	0.0	0.0
N-2	2.5	0.0	3.8	3.4	3.5	3.7	3.5	3.5	Ϋ́	0.0	0.0	0.0	NA	3.5	2.5	2.0
N-3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	NA	0.0	0.0	0.0
Z A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	Ϋ́	0.0	0.0	0.0
9-N	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	NA	0.0	0.0	0.0
9-V	0.1	0.2	0.1	0.2	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.1	ΝA	0.1	0.1	0.1
BS-1	1.0	1.2		- -	1.2	<u>+</u> -	4.	1.0	1.0	0.8	6.0	<u></u>	0.0	0.9	6.0	0.8

Table 4 (continued)

1/05																															
12/04	0.1	9.0	0.7	1.5	0.9	1.6	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	1.4	0.0	0.0	0.0	0.0	9.0
11/04	0.1	1.0	0.7	2.6	6.0	1.5	1.8	3.9	0.1	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.1	0.7	0.3	0.0	0.0	3.5	0.0	0.0	0.0	0.1	0.7
10/04	0.1	0.8	8.0	1.6	6.0	1.6	1.8	3.2	0.2	0.1	0.0	0.0	0.3	0.0	0.0	0.0	0.0.	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	3.9	0.0	0.0	0.0	0.0	9.0
9/04	0.2	0.5	1.2	1.5	3.7	1.7	2.5	3.5	0.7	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	9.0
8/04	8.0	1.2	1.0	8.0	8.0	8.0	4.2	1.0	8.0	2.8	0.4	0.2	0.4	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0
7/04	0.2	0.4	0.4	9.0	8.1	0.7	3.1	9.0	9.0	2.2	0.2	0.2	9.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7
6/04	0.2	0.5	0.4	0.7	0.6	8.0	7.5	8.0	0.5	1 .8	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4
5/04	0.1	0.4	0.4	8.0	9.0	9.0	7.0	1.7	0.5	2.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.3
4/04	0.3	1.2	1.0	1.3	10.0	1.8	8.0	5.2	0.2	2.0	0.1	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	9.0
3/04	0.4	1.0	0.8	2.3	12.0	9.1	7.0	٨	9.0	1.6	0.1	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0	AN	1.0
2/04	0.2	1.9	6.0	1.7	7.0	1.2	1.7	3.1	0.1	0.8	0.1	0.1	0.4	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.0	3.8	0.0	0.0	0.0	0.1	0.7
1/04	0.1	8.0	9.0	0.	0.9	2.3	1.2	Ϋ́	0.0	0.1	0.1	0.1	0.1	0.0	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	AA	A	¥	NA	0.0	0.8
12/03	0.1	0.5	0.5	1.2	7.2	2.3	0.4	5.1	0.2	2.3	0.1	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.0	0.1	0.1	0.0	0.1	0.8
11/03	0.1	9.0	0.5	1.1	7.0	2.5	4.0	5.2	0.2	2.4	0.1	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	0.0	0.0	0.0	0.0	0.7
10/03	0.1	0.5	0.7	1.0	7.5	2.0	4.0	5.5	0.1	2.5	0.1	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	2.4	0.0	0.0	0.0	0.0	9.0
Well	CWI-4	CWI-5	CWI-6	CWI-7	CWII-1	CWII-2	CWII-3	CWII4	CWII-5	CWII-6	CWII-7	CWII-8	CWII-9	NW-1	NW-2	NW-3	NW-4	NW-5	9-MN	Ext-1	Ext-2	Ext-3	Ext-4	Ext-5	N-1	N-2	N-3	†	N-5	9-N	BS-1

APPENDIX 1

Landfill Gas Control Well Vacuum Data
East Northport Landfill, East Northport, New York
for period of record between October, 1999 and December, 2004

2.9 4.3 4.0 NA 4.4 -5.0 -5.4 -6.4 -5.2 NA 2.7 4.4 4.0 NA 4.8 -5.6 -3.7 -4.7 -5.2 NA 3.6 -3.7 -4.4 NA -5.6 -3.7 -3.6 -3.3 NA -2.4 -4.0 -3.8 NA -5.7 -3.6 -3.7 -3.6 -3.8 NA -2.4 -4.0 -3.8 NA -6.2 -3.7 -3.6 -3.6 -3.6 NA -3.1 -4.4 -4.4 NA -6.1 -5.7 -3.6 -3.6 -3.6 NA -3.1 -4.4 -4.4 -4.4 -4.8 -6.2 -3.0 -3.1 NA -3.1 -4.4 -4.4 -4.4 -4.8 -6.2 -3.0 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1	Well	10/99	11/99	12/99	1/00	2/00	3/00	4/00	2/00	9/00	2/00	8/00	9/00	10/00	11/00	12/00	1/01	2/01	3/01	4/01
2.7 44 40 NA 4.8 56 3.7 47 31 NA 3.0 -50 -46 NA -5.1 -5.7 -3.6 -3.6 NA -3.6 -3.0 -4.6 NA -5.1 -5.7 -3.6 -3.6 NA -3.6 -3.7 -4.2 -3.0 -3.1 -4.6 NA -3.1 -4.4 -4.4 NA -5.1 -4.8 -5.2 -3.0 -3.1 -4.6 NA -3.0 -4.4 -4.4 NA -5.1 -4.8 -5.2 -3.0 -3.1 -4.6 NA -3.0 -4.4 -4.4 NA -5.1 -4.8 -5.2 -3.0 -3.6 -3.1 -3.4 -4.6 NA -3.0 -4.4 -4.9 -4.6 -3.0 -3.6 -3.1 -3.6 -3.1 -3.8 NA -3.1 -4.4 -4.9 -4.6 -3.0 -3.6 -		-3.7	-2.9	4.3	4.0	¥	4.4	-5.0	-5.4	-6.4	-5.2	¥	-3.8	-3.8	-3.9	4.7	4.5	4 .0	4.4	4.3
3.0 -5.0 -4.6 NA -5.1 -5.7 -3.6 -3.6 -3.6 NA -3.6 -3.7 -4.2 NA -6.1 -5.7 -3.6 -3.6 -3.9 NA -2.4 -4.0 -3.8 NA -4.3 -2.8 -2.8 -2.6 -3.3 NA -3.1 -4.4 -4.4 NA -4.9 -6.2 -3.0 -3.1 -4.6 NA -3.4 -4.6 -4.6 NA -5.1 -4.4 -3.7 -3.8 NA -3.1 -4.4 -3.6 NA -4.9 -4.6 -3.0 -3.1 -4.4 -3.8 NA -2.2 0.0 0.3 NA -0.0 -2.9 -3.6 -3.6 NA -1.9 0.0 0.2 NA 0.0 -2.9 -3.6 -3.0 -3.6 -3.0 NA -1.9 0.0 0.1 0.0 0.0 -0.0 -2.9 <td< th=""><th></th><td>-3.7</td><td>-2.7</td><td>4.4</td><td>4.0</td><td>¥</td><td>4.8</td><td></td><td>-3.7</td><td>-4.7</td><td>-3.1</td><td>¥</td><td>-3.8</td><td>-3.6</td><td>-3.8</td><td>-5.0</td><td>-4.9</td><td>-4.2</td><td>-4.7</td><td>4.5</td></td<>		-3.7	-2.7	4.4	4.0	¥	4.8		-3.7	-4.7	-3.1	¥	-3.8	-3.6	-3.8	-5.0	-4.9	-4.2	-4.7	4.5
3.6 -3.7 -4.2 NA -6.5 -3.7 -3.5 -3.3 NA -2.4 -4.0 -3.8 NA -4.3 -4.5 -2.6 -3.3 NA -3.1 -4.4 -4.4 NA -4.3 -4.5 -2.6 -3.0 -3.1 -4.6 NA -3.0 -4.4 -4.4 -4.4 -4.4 -4.4 -3.1 -4.4 -3.3 NA -3.0 -4.4 -4.6 -4.6 -4.6 -3.0 -3.1 -4.4 -3.3 NA -3.0 -4.4 -3.6 -4.6 -3.0 -3.6 -3.6 -3.7 -3.1 -4.4 -3.3 NA -2.2 -0.0 0.3 NA -0.0 -1.8 -1.8 -1.8 -3.6 -3.6 -0.9 NA -1.9 -0.0 0.2 NA -0.0 -2.8 -1.8 -3.6 -3.6 -3.6 -0.9 NA -2.0 -0.1 <th></th> <td>-3.8</td> <td>-3.0</td> <td>-5.0</td> <td>4.6</td> <td>¥</td> <td>-5.1</td> <td></td> <td>-3.6</td> <td>-3.6</td> <td>-3.6</td> <td>ΑΝ</td> <td>4.0</td> <td>4.</td> <td>-4.2</td> <td>5.1</td> <td>-5.3</td> <td>4.4</td> <td>4.8</td> <td>4.6</td>		-3.8	-3.0	-5.0	4.6	¥	-5.1		-3.6	-3.6	-3.6	ΑΝ	4.0	4.	-4.2	5.1	-5.3	4.4	4.8	4.6
2.4 4.0 -3.8 NA -4.5 -2.6 -3.9 NA -3.1 -4.4 -4.4 NA -4.8 -5.2 -3.0 -3.1 -4.6 NA -3.1 -4.4 -4.4 NA -6.2 -3.0 -3.1 -4.6 NA -3.0 -4.6 -4.6 NA -5.1 -4.8 -3.1 -4.6 -NA -3.1 -4.4 -4.3 NA -3.8 -4.8 -3.1 -4.6 -8.0 -3.1 -4.4 -3.6 NA -3.8 -4.8 -3.1 -4.6 -3.0 -3.1 -3.1 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -4.8 -3.1 -3.1 -3.2 -3.6 -3.8 -4.8 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1 -3.1		-3.7	-3.6	-3.7	-4.2	¥	Ą	5.5	-3.7	-3.5	-3.3	Ϋ́	-3.9	-3.2	-3.1	-3.8	-5.3	4.3	-3.8	-3.7
3.1 4.4 AA AA 4.8 -5.2 -3.0 -3.1 -4.6 NA -3.4 -4.6 -4.6 NA -5.1 -4.8 -3.1 -4.4 -3.3 NA -3.0 -4.4 -4.6 NA -5.1 -4.8 -3.1 -4.4 -3.3 NA -3.1 -4.4 -3.6 NA -3.8 -4.8 -1.8 -3.7 -3.8 NA -2.2 0.0 0.3 NA 0.0 -2.8 -2.9 -2.9 -0.9 NA -1.9 0.0 0.1 0.2 NA 0.0 -1.6 -2.9 -0.9 NA -2.4 0.0 0.3 NA 0.0 -2.7 -1.2 -1.8 -0.4 NA -2.4 0.0 0.8 NA -3.1 -3.1 -3.7 -3.0 NA -3.1 -3.2 -3.6 NA -2.3 -2.7 -2.6 NA -3.1	_	-3.1	-2.4	4.0	-3.8	ΑN	4.3	-4.5	-2.8	-2.6	-3.3	AN	-3.4	-3.3	-3.4	4.3	4.5	-3.7	4.1	-3.9
3.4 4.6 A.6 NA -5.1 -4.8 -3.1 -4.4 -3.3 NA -3.0 -4.4 -4.3 NA -4.9 -4.6 -3.0 -3.6 -3.1 NA -3.1 -4.4 -3.6 NA -3.8 -4.8 -1.8 -3.7 -3.8 NA -2.2 0.0 0.3 NA 0.0 -2.8 -1.8 -2.9 -3.6 -3.6 NA -1.9 0.0 0.2 NA 0.0 -2.8 -1.8 -2.9 -3.6 NA -2.2 0.0 0.1 0.2 -1.8 -2.9 -3.6 NA NA -3.6 -2.9 -3.6 -3.9 NA NA -3.7 -3.8 NA -3.9 -3.6 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9 -3.9		-3.4	-3.1	4.4	4.4	¥	4.8		-3.0	-3.1	4.6	ΑΝ	-3.5	-3.6	-3.7	4.6	4.9	-3.9	4.4	4.1
-3.0 -4.4 -4.3 NA -4.6 -3.0 -3.6 -3.1 NA -3.1 -4.4 -4.3 NA -4.8 -4.6 -3.6 -3.7 -3.8 NA -2.2 0.0 0.3 NA 0.0 -2.8 -1.8 -2.9 -3.6 -3.6 NA -1.9 0.0 0.2 NA 0.0 -2.9 -3.6 -3.6 NA 0.0 0.1 0.2 NA 0.0 -2.9 -3.6 -3.6 NA 0.0 0.1 0.3 NA 0.0 -1.6 -2.0 0.0 NA -2.4 0.0 -0.8 NA 0.0 -2.7 -1.2 -1.8 -0.4 NA -2.4 0.0 -0.8 NA -3.1 -3.1 -3.7 -3.0 NA -2.3 0.0 -0.8 NA -3.1 -3.1 -3.4 -2.8 NA -2.3 -3.2		-3.4	-3.4	4.6	4.6	ΑN	-5.1		-3.1	4.4	-3.3	ΑN	-3.6	-3.7	-3.7	4.8	-5.1	4.0	4.4	4.2
-3.1 -4.4 -3.6 NA -3.8 -4.8 -1.8 -3.7 -3.8 NA -2.2 0.0 0.3 NA 0.0 -3.3 -2.9 -3.6 -3.6 NA -1.9 0.0 0.2 NA 0.0 -2.8 -1.8 -2.9 -0.9 NA 0.0 0.1 0.3 NA 0.0 -1.6 -2.0 0.0 NA -2.4 0.0 -0.8 NA 0.0 -1.6 -2.0 0.0 NA -2.4 0.0 -0.8 NA 0.0 -1.2 -1.8 -0.4 NA -2.4 0.0 -0.8 NA 4.0 -3.6 -3.7 -3.0 NA -2.3 -3.6 NA -3.1 -3.1 -3.7 -3.0 NA -2.9 -3.5 -3.6 NA -3.1 -3.1 -3.1 -3.0 NA -2.3 -3.6 NA -3.2	ı	-3.3	-3.0	4.4	4.3	¥	6.4		-3.0	-3.6	-3.1	¥	-3.5	-3.6	-3.6	4.6	-5.1	-3.9	4.3	4.1
-2.2 0.0 0.3 NA 0.0 -3.3 -2.9 -3.6 -3.6 NA -1.9 0.0 0.2 NA 0.0 -2.8 -1.8 -2.9 -0.9 NA 0.0 0.1 0.3 NA 0.0 -1.6 -2.0 0.0 NA -2.4 0.0 -0.8 NA 0.0 -2.7 -1.2 -1.8 -0.4 NA -2.4 0.0 -0.8 NA 0.0 -2.7 -1.2 -1.8 -0.4 NA -2.3 -2.7 -2.6 NA -3.1 -3.7 -3.7 -3.0 NA -2.3 -2.7 -2.6 NA -4.1 -4.2 -3.7 -3.6 -2.9 NA -2.9 -3.5 -4.0 NA -4.1 -4.2 -3.1 -3.1 -3.0 NA -2.9 -3.5 -3.6 -4.4 -5.1 -3.4 -2.8 NA -2.1		-3.4	-3.1	4.4	-3.6	¥	-3.8		-1.8	-3.7	-3.8	¥	-3.6	-3.6	-3.7	4.	-0.4 4.0	4.0	4.4	4.2
-1.9 0.0 0.2 NA 0.0 -2.8 -1.8 -2.9 -0.9 NA 0.0 0.1 0.3 NA 0.0 -1.6 -2.0 0.0 NA -2.4 0.0 -0.8 NA 4.0 -2.7 -1.2 -1.8 -0.4 NA -3.1 -3.1 -3.6 NA -4.0 -3.6 -3.7 -3.7 -3.0 NA -2.3 -2.7 -2.6 NA -4.1 -4.2 -3.7 -3.6 NA -2.9 -3.2 -3.6 -4.0 -4.4 -5.1 -3.4 -2.9 NA -2.9 -3.6 -4.0 -4.4 -5.1 -3.4 -2.8 NA -2.9 -3.6 -4.4 -5.1 -3.4 -2.8 NA -2.1 -0.0 -3.8 -1.4 -5.1 -3.4 -2.8 NA -2.1 -0.0 -3.2 -3.6 -2.9 -3.0 <t< th=""><th></th><td>-2.4</td><td>-2.2</td><td>0.0</td><td>0.3</td><td>¥</td><td>0.0</td><td></td><td>-2.9</td><td>-3.6</td><td>-3.6</td><td>¥</td><td>-2.7</td><td>-2.6</td><td>-2.6</td><td>ó L</td><td>0.0</td><td>-3.0</td><td>-3.2</td><td>-3.1</td></t<>		-2.4	-2.2	0.0	0.3	¥	0.0		-2.9	-3.6	-3.6	¥	-2.7	-2.6	-2.6	ó L	0.0	-3.0	-3.2	-3.1
0.0 0.1 0.3 NA 0.3 0.0 -1.6 -2.0 0.0 NA -2.4 0.0 -0.8 NA 0.0 -2.7 -1.2 -1.8 -0.4 NA -3.1 -3.3 NA 0.0 -2.7 -1.2 -1.8 -0.4 NA -2.3 -2.7 -2.6 NA -3.1 -3.1 -3.0 NA -2.9 -3.2 -2.6 NA -3.1 -3.1 -3.0 NA -2.9 -3.2 -3.6 -4.0 -4.2 -3.1 -3.0 NA -2.9 -3.0 -3.6 -4.2 -3.1 -3.0 NA -2.8 -2.7 -3.8 -4.4 -5.1 -3.4 -2.8 NA -2.7 -3.0 -3.3 NA -3.6 -4.0 -4.0 -2.9 -3.0 -3.0 NA -2.1 -0.0 -3.2 -1.6 -3.0 -3.0 -3.0 <td< th=""><th></th><td>-2.0</td><td>-1.9</td><td>0.0</td><td>0.2</td><td>¥</td><td>0.0</td><td>-2.8</td><td>-1.8</td><td>-2.9</td><td>6.0-</td><td>¥</td><td>-2.2</td><td>-2.1</td><td>-2.1</td><td>-0. 4.0</td><td>0.0</td><td>-2.3</td><td>-1.7</td><td>-2.4</td></td<>		-2.0	-1.9	0.0	0.2	¥	0.0	-2.8	-1.8	-2.9	6.0-	¥	-2.2	-2.1	-2.1	-0. 4.0	0.0	-2.3	-1.7	-2.4
-2.4 0.0 -0.8 NA 0.0 -2.7 -1.2 -1.8 -0.4 NA -3.1 -3.3 NA NA -4.0 -3.6 -3.7 -3.7 -3.0 NA -2.3 -2.7 -2.6 NA -3.1 -3.1 -3.6 -2.9 NA -2.9 -3.2 -3.6 NA -4.1 -4.2 -3.1 -3.0 NA -2.9 -3.2 -3.6 NA -4.1 -4.2 -3.1 -3.1 -3.0 NA -2.8 -3.6 -4.0 NA -4.2 -5.1 -3.4 -2.9 NA -2.8 -3.6 -4.0 -4.2 -2.1 -3.0 -2.9 -3.0 NA -2.7 -3.8 NA -3.2 -3.6 -2.9 -3.0 -2.9 NA -2.1 -2.0 NA -3.9 -3.6 -3.0 -2.6 NA -2.6 NA -3.6		0.0	0.0	0.1	0.3	¥	0.3	0.0	-1.6	-2.0	0.0	ΑN	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1
-3.1 -3.3 NA NA -4.0 -3.6 -3.7 -3.7 -3.0 NA -2.3 -2.7 -2.6 NA -3.1 -3.1 -3.6 -3.0 NA -2.9 -3.2 -3.6 NA -4.1 -4.2 -3.1 -3.1 -3.0 NA -3.2 -3.6 NA -4.1 -4.2 -3.1 -3.1 -3.0 NA -2.8 -3.0 -4.0 NA -3.2 -3.6 -2.9 -3.0 -3.9 NA -2.7 -3.0 -3.3 NA -3.6 0.0 -3.0 -3.0 NA -3.0 -3.0 -3.0 NA -2.7 -3.0 -3.2 NA -3.9 -3.6 -3.0 -3.0 -3.0 NA -1.1 NA -2.8 0.0 -3.2 NA -3.9 -3.6 -3.0 -2.9 NA -3.0 -2.0 NA -2.8 0.0		-1.4	-2.4	0.0	-0.8	¥	0.0	-2.7	-1.2	-1.8	-0.4	ΑN	-1.3	-1.4	-1.3	0.0	0.0	-1.5	-2.6	-1.7
-2.3 -2.7 -2.6 NA -3.1 -3.6 -3.6 -2.9 NA -2.9 -3.2 -3.6 NA -4.1 -4.2 -3.1 -3.1 -3.0 NA -2.9 -3.2 -3.6 NA -4.1 -4.2 -3.1 -3.0 NA -2.8 -2.9 -3.0 -3.0 -2.9 -3.0 -2.9 NA -2.7 -3.0 -3.3 NA -3.6 0.0 -3.0 -2.9 NA -2.1 0.0 -2.5 NA -3.9 -3.6 -2.0 -3.0 -2.9 NA -2.1 0.0 -2.5 NA -3.9 -3.6 -3.0 -3.0 NA NA -2.8 0.0 -2.5 NA -3.9 -3.6 -3.0 -2.4 NA -2.8 0.0 -2.6 NA -3.9 -3.6 -3.0 -2.4 NA -2.8 0.0 -2.6 NA		-3.0	-3.1	-3.3	A A	¥	4.0	-3.6	-3.7	-3.7	-3.0	Ϋ́	-3.3	-3.3	-3.4	-5.3	-3.9	-3.5	-3.7	-3.9
-2.9 -3.2 -3.6 NA -4.1 -4.2 -3.1 -3.1 -3.0 NA -3.2 -3.6 -4.0 NA -4.3 -4.4 -5.1 -3.4 -2.8 NA -2.8 -2.7 -3.8 NA -3.2 -3.6 -2.9 -3.0 -2.9 NA -2.7 -3.0 -3.3 NA -3.6 0.0 -3.0 -2.9 NA -2.9 NA -2.1 0.0 -2.5 NA -3.6 -3.0 -2.9 -3.0 NA NA -3.0 -2.5 NA -3.6 -3.9 -3.6 -1.1 NA NA NA -3.9 -3.6 -3.0 -2.9 NA NA NA -3.9 -3.6 -3.0 -2.1 1.1 NA NA -4.4 -3.3 -3.0 -2.1 NA NA NA NA NA -3.6 -2.9 -3.9 -2.6 NA -2.0 -2.0<		-2.2	-2.3	-2.7	-2.6	NA	-3.1		-3.6	-3.6	-2.9	Ā	-2.7	-2.6	-2.7	-5.3	-3.1	-3.0	-3.4	-3.4
-3.2 -3.6 -4.0 NA -4.3 -4.4 -5.1 -3.4 -2.8 NA -2.8 -2.7 -3.8 NA -3.2 -3.6 -2.9 -3.0 -2.9 NA -2.7 -3.0 -3.3 NA -3.6 0.0 -3.0 -2.9 NA -2.1 0.0 -2.5 NA -4.0 -2.2 -1.6 -1.1 NA -3.0 0.0 -2.5 NA -3.9 -3.9 -3.8 -1.4 -1.3 NA -2.8 0.0 -3.2 NA -3.9 -3.9 -3.8 -1.4 -1.3 NA -2.8 0.0 -2.6 NA -3.6 -3.9 -3.8 -1.4 -1.3 NA -2.8 0.0 -2.6 NA -3.6 -3.9 -3.9 -2.9 NA -2.1 0.0 -2.6 NA -3.6 -2.9 -2.9 NA -2.1 0.0		-2.7	-2.9	-3.2	-3.6	¥	4.		-3.1	-3.1	-3.0	¥	-3.6	-3.4	-3.5	4.9	4.0	-3.7	4.1	4.1
-2.8 -2.7 -3.8 NA -3.2 -3.6 -2.9 -3.0 -2.9 NA -2.7 -3.0 -3.3 NA -3.6 0.0 -3.0 -3.0 -2.9 NA -2.1 0.0 -2.5 NA -4.0 -2.2 -1.6 -1.1 NA -3.0 0.0 -3.2 NA -3.9 -3.9 -3.9 -1.4 -1.1 NA -2.8 0.0 -2.6 NA -3.9 -3.9 -3.9 -3.0 -2.1 -2.4 NA -2.6 NA -3.9 -3.9 -3.9 -3.0 -2.1 NA NA -2.6 NA -3.6 -3.6 -3.0 -2.1 -2.4 NA -2.1 0.0 -1.0 NA -3.6 -3.6 -2.9 -2.9 -2.6 NA -2.1 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA		-2.9	-3.2	-3.6	4.0	¥	4.3		-5.1	-3.4	-2.8	¥	4.0	-3.7	-3.8	4.2	4.4	4.	4.4	4.4
-2.7 -3.0 -3.3 NA -3.6 0.0 -3.0 -3.0 NA -2.1 0.0 -2.5 NA -4.0 -2.2 -1.6 -1.1 NA -3.0 0.0 -2.5 NA -3.9 -3.9 -3.8 -1.4 -1.3 NA -2.8 0.0 -2.6 NA -3.9 -3.6 -3.0 -2.1 -2.4 NA -2.6 0.0 -2.6 NA -3.6 -3.6 -3.0 -2.1 NA NA -2.1 0.0 -2.6 NA -3.6 -3.6 -3.0 -2.6 NA -2.1 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA NA 0.0 0.0 0.0 0.0 0.0 -2.0 NA NA NA NA NA NA 0.0 0.0 0.0 -0.0 0.0 -0.0 -0.0 -0.0		-2.2	-2.8	-2.7	-3.8	¥	-3.2		-2.9	-3.0	-2.9	¥	-3.4	-3.1	-3.0	-3.6	-3.5	-3.0	-3.4	-3.4
-2.1 0.0 -2.5 NA -4.0 -2.2 -1.6 -1.1 NA -3.0 0.0 -3.2 NA -3.9 -3.9 -3.8 -1.4 -1.3 NA -2.8 0.0 -2.6 NA -3.9 -3.6 -3.0 -2.1 -2.4 NA -2.6 0.0 -2.6 NA -3.6 -3.9 -3.0 -2.6 NA -2.1 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA NA 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA NA NA NA -0.0 -0.6 na -3.7 -0.1 NA NA NA NA NA 0.0 0.0 0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0		-2.2	-2.7	-3.0	-3.3	¥	-3.6	0.0	-3.0	-3.0	3.0	¥	-3.2	-3.1	-3.1	-3.6	-3.6	-3.6	-3.9	-3.6
-3.0 0.0 -3.2 NA -3.9 -3.9 -3.8 -1.4 -1.3 NA -2.8 0.0 -2.6 NA -3.9 -3.6 -3.0 -2.1 -2.4 NA -2.6 0.0 -2.6 NA -3.9 -3.6 -3.0 -2.1 NA NA -2.1 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA NA 0.0 0.0 -0.6 na -3.7 -0.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.0		-2.6	-2.1	0.0	-2.5	¥	4.0	-4.0	-2.2	-1.6	-1.1	AN	-3.6	-3.5	-3.6	-3.9	-3.7	-3.9	-4.0	6 .1
-2.8 0.0 -2.6 NA -3.9 -3.6 -3.0 -2.1 -2.4 NA -2.6 0.0 -2.6 NA -3.6 -4.4 -3.3 -3.0 -2.6 NA -2.1 0.0 -1.0 NA -3.6 -4.4 -3.3 -3.0 -2.6 NA NA 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA NA NA -0.2 -0.6 na -3.7 -0.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA -0.0 -0.0 0.0 -0.7 NA NA -0.1 -0.2 -1.2 0.0 -1.8 NA -1.6 0.0 -1.6 0.0 -1.6 0.0 -1.6 0.0 -1.6 0.0 -1.6 0.0 -1.6 0.0 -1.6 0.0 -1.6		-3.0	-3.0	0.0	-3.2	NA	-3.9	-3.9	-3.8	-1.4	-1.3	AA	-3.4	-3.5	-3.5	-3.9	-3.5	-3.7	-1.3	-1.4
2.6 0.0 -2.6 NA -3.6 -4.4 -3.3 -3.0 -2.6 NA -2.1 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA NA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA NA NA 0.0		-2.9	-2.8	0.0	-2.6	¥	-3.9	-3.6	-3.0	-2.1	-2.4	AN	-3.4	-3.4	-3.4	-3.8	-3.5	-3.5	-3.8	-3.7
-2.1 0.0 -1.0 NA -3.7 -3.6 -2.9 -2.8 -2.7 NA		-2.5	-2.6	0.0	-2.6	¥	-3.6	4.4	-3.3	-3.0	-2.6	A	-3.2	-3.1	-3.1	-3.7	-3.4	-3.4	-3.6	-3.7
NA 0.0 0.0 NA -0.2 -0.6 na -3.7 -0.1 NA NA NA NA NA NA NA NA NA 0.0 -0.3 0.0 NA 0.0 0.0 0.0 -0.6 NA 0.0 0.0 0.0 0.0 0.0 0.0 -0.7 NA -0.1 0.2 0.4 NA -0.4 -0.2 -1.2 0.0 -1.8 NA 0.0 0.0 0.0 0.0 -3.2 -1.6 NA		-1.9	-2.1	0.0	-1.0	W	-3.7	-3.6	-2.9	-2.8	-2.7	Ą	-2.9	-2.7	-2.7	-2.8	-2.9	-2.8	-3.3	-3.0
NA NA<		0.0	¥	0.0	0.0	¥	-0.2	-0.6	na	-3.7	0.1	¥	6.0-	-0.7	-0.2	-0.7	-0.3	-0.5	-0.3	0.0
0.0 -0.3 0.0 NA 0.0 0.0 na 0.0 -0.6 NA 0.0 0.0 0.0 0.0 0.0 0.0 -0.7 NA -0.1 0.2 0.4 NA -0.4 -0.2 -1.2 0.0 -1.8 NA 0.0 0.0 0.0 -1.6 0.0 -1.6 NA		AN	ΑĀ	¥	¥	¥	¥	Ą	¥	¥	¥	¥	0.0	-0.1	0.0	-0.4 4.0	0.1	-0.2	-0.1	-0.2
0.0 0.0 <th></th> <td>0.4</td> <td>0.0</td> <td>-0.3</td> <td>0.0</td> <td>Ą</td> <td>0.0</td> <td>0.0</td> <td>na</td> <td>0.0</td> <td>9.0-</td> <td>¥</td> <td>-0.2</td> <td>0.0</td> <td>0.0</td> <td>-0.2</td> <td>ž</td> <td>0.0</td> <td>-0.1</td> <td>0.1</td>		0.4	0.0	-0.3	0.0	Ą	0.0	0.0	na	0.0	9.0-	¥	-0.2	0.0	0.0	-0.2	ž	0.0	-0.1	0.1
-0.1 0.2 0.4 NA -0.4 -0.2 -1.2 0.0 -1.8 NA 0.0 0.0 0.2 0.0 NA -1.0 -1.6 0.0 -3.2 -1.6 NA		0.0	0.0	0.0	0.0	¥	0.0	0.0	0.0	0.0	-0.7	A	-0.1	0.0	0.0	-0.2	0.0	-0.1	-0.1	-0.1
0.0 0.2 0.0 NA -1.0 -1.6 0.0 -3.2 -1.6 NA		6.0	-0.1	0.2	0.4	¥	-0.4	-0.2	-1.2	0.0	-1.8	A	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1
		0.0	0.0	0.2	0.0	Ą	-1.0	-1.6	0.0	-3.2	-1.6	A	-1.4	-1.4	-1.3	0.0	0.0	-1.4	-1.7	-1.5
-6.6 -7.3 -7.4 NA -7.4 -9.2 -6.7 -7.4 -7.2 NA		9.9-	-6.6	-7.3	-7.4	¥	-7.4	-9.2	-6.7	-7.4	-7.2	¥	-6.7	-6.8	-6.8	-7.4	-7.6	-7.0	-7.6	-7.5

Measured in inches of H20

na = not available

Landfill Gas Control Well Vacuum Data East Northport Landfill, East Northport, New York for period of record between October, 1999 and December, 2004

Well	5/01	6/01	7/01_	8/01	9/01	10/01	11/01	12/01	1/02	2/02_	3/02	4/02	5/02	6/02	7/02	8/02	9/02	10/02	11/02
CWI-4	-3.9	-3.8	-3.7	-4.7	-1.7	-5.2	-5.1	-4.9	-4.4	-4.3	-4.3	-5.9	-6.5	-5.8	-5.5	-5.6	-5.9	-3.7	-6.3
CWI-5	-4.1	-3.8	-3.9	-4.9	-1.7	-5.5	-5.1	-5.0	-4.5	-4.3	-4.5	-6.0	-6.0	-5.9	-5.5	-5.9	-5.8	-3.8	-6.8
CWI-6	-4.5	-4.1	-4.5	-5.1	-1.9	-5.6	-5.4	-5.1	-4.9	-1.6	-4.8	-6.5	-6.4	-6.3	-6.1	-6.2	-6.3	-4.1	-7.1
CWI-7	-3.4	-3.2	-3.3	-3.9	-1.8	-4.2	-4.1	-4.2	-3.6	-3.4	-3.5	-4.8	-4.8	-4.8	-4.4	-4.9	-4.7	-2.8	-5.6
CWII-1	-3.8	-2.9	-3.8	-4.3	-1.6	-4.8	-4.4	-4.5	-4.1	-3.9	-3.9	-5.1	-5.0	-5.1	-4.5	-4.8	-4.9	-2.6	-5.8
CWII-2	-3.9	-3.7	-4.2	-4.6	-1.7	-4.9	-4.7	-4.6	-4.2	-4.0	-4.1	-5.5	-5.6	-5.7	-4.7	-4.8	-5.0	-3.0	-6.2
CWII-3	-3.9	-3.7	-3.9	-4.7	-1.9	-5.2	-5.0	NA	NA	-4.2	-4.2	-5.7	-6.0	-5.7	-5.0	-5.6	-5.6	-2.6	-6.5
CWII-4	-4.6	-3.6	-3.7	-4.6	-1.9	-5.1	-4.6	-4.6	-4.2	-4.1	-4.0	-5.6	-5.5	-5.4	-5.0	-5.4	-5.3	-2.0	-6.2
CWII-5	-3.9	-3.7	-4.1	-4.6	-1.9	-5.0	-4.7	-4.6	-4.3	-4.0	-4.2	-5.6	-5.6	-5.6	-5.1	-5.4	-5.5	-2.0	-6.2
CWI1-6	-3.1	-2.9	-1.3	-3.6	-1.2	-2.2	-3.4	-2.9	-3.2	-3.0	-3.0	-4.2	-4.0	-4.0	-3.9	-3.8	-4.0	-4.2	-4.6
CWII-7	-2.2	-1.7	-0.9	-2.6	-0.9	-1.5	-2.7	-0.3	-2.4	-2.4	-2.3	-3.3	-3.1	-3.1	-2.5	-2.4	-3.2	-3.5	-3.6
CWII-8	-1.6	-0.1	0.0	-0.2	0.0	0.0	-0.1	-0.2	0.0	0.0	0.0	-0.1	-0.2	-0.1	-0.1	-0.1	-0.1	0.0	0.0
CWII-9	-1.4	-1.4	-0.6	-1.6	-0.6	-1.0	-1.7	-1.4	1.6	-1.5	-1.5	-2.0	<i>-</i> 1.8	-1.9	-1.7	-1.4	-2.0	2.1	-2.0
NW-1	-3.7	-3.3	-3.3	-4.0	-0.7	-4.6	-4.5	-4.3	-4.0	-3.9	-3.8	-4.1	-3.8	-5.1	-3.5	-5.1	5.1	-4.0	-5.5
NW-2	-3.0	-2.6	-2.4	-2.9	-1.1	-3.9	-3.3	-3.8	-3.1	-3.0	-2.9	-3.9	-3.6	-5.5	-4.9	-3.7	-3.7	-3.5	-4.0
NW-3	-3.9	-3.2	-3.6	-4.0	-1.5	-4.2	-4.2	-4.3	-3.9	-3.9	-3.8	-3.9	-3.7	-4.7	-4.7	-4.7	-4.9	-4.6	-5.6
NW-4	-4.1	-3.7	-3.6	-4.4	-1.2	-4.9	-5.0	4.6	-4.3	-4.1	-4.0	-5.4	-4.9	-5.8	- 5.5	-5.5	-5.6	-4.1	-6.5
NW-5	-3.3	-2.9	-2.9	-3.6	-1.5	-3.7	-4.0	-4.1	-3.5	-3.3	-3.2	-4.5	-3.9	-3.9	-4.1	-4.0	-4.4	-4.0	-4.8
NW-6	-3.4	-3.0	-3.0	-3.6	-1.2	-4.3	-4.0	-3.9	-3.5	-3.3	-3.3	-4.1	-3.9	-4.6	-4.2	-4.2	-4.4	-4.2	-5.0
Ext-1	-0.2	0.0	-0.1	-0.1	-0.1	-0.2	-0.2	-1.3	-0.2	-0.2	-0.1	-0.2	-0.2	-1.8	-0.1	-0.1	-0.2	-0.3	-0.1
Ext-2	-1.4	-1.2	-1.2	-1.4	-0.5	-1.4	-1.6	-2.1	-1.4	-1.4	-1.3	-1.8	-1.8	-0.2	-1,6	-1.6	-1.5	-1.6	-1.7
Ext-3	-3.6	-3.3	-3.2	-3.6	-1.4	-4.1	-4.1	-4.0	-3.7	-3.6	3.6	-5.0	-4.9	-5.0	-4.6	-4.8	-4.4	-4.9	-5.3
Ext-4	-3.6	-2.9	-3.0	-3.5	-1.1	-3.9	-4.1	-4.1	-3.6	-3.6	-3.4	-4.8	-3.9	-4.9	-4.0	-4.0	-4.2	-4.7	-4.9
Ext-5	-2.9	-2.5	-2.5	-2.9	-1.1	-3.6	-3.6	-3.7	3.2	-3.2	-3.1	-4.2	-3.7	-3.8	-3.2	-3.4	-3.8	-3.9	-4.2
N-1	-0.2	-1.1	-1.6	2.1	-0.3	-0.3	-0.2	-0.3	-0.3	-0.4	-0.4	-0.3	-0.3	-0.3	-2.1	-2.3	-2.1	-1.3	-1.0
N-2	-0.3	-0.2	0.0	-0.4	-0.1	-0.5	-0.5	-0.5	-0.8	-0.6	-0.7	-0.5	-0.2	-0.4	-0.6	-0.9	-0.9	-0.6	-0.5
N-3	-0.2	-0.1	-0.1	-0.2	-0.1	-0.1	-0.2	-0.3	-0.2	-0.1	-0.1	-0.2	0.0	-0.2	0.0	-0.2	-0.2	-0.2	-0.2
N-4	-0.2	-0.2	-0.1	-0.2	-0.2	-0.1	-0.2	-0.1	-0.1	-0.1	-0.2	-0.2	0.0	0.0	-0.1	-0.2	-0.2	-0.2	-0.2
N-5	-0.2	-0.1	-0.1	-0.2	-0.1	-0.1	-0.2	-0.2	-0.3	-3.4	-3.4	-0.4	-0.5	-0.2	-0.1	-0.3	-0.2	-0.8	-0.6
N-6	-1.4	-1.3	-0.3	-1.6	-0.7	-1.1	-1.7	-1.3	-1.5	-1.5	-1.5	-1.8	-2.0	-1.9	-1.8	1.2	-1.0	-2.1	-2.2
BS-1	-7.1	-6.8	-6.9	-8.6	-2.7	-9.9	-9.8	-9.1	-8.5	-8.3	-8.1	-12.1	-12.0	-11.8	-11.5	-11.5	-11.8	-8.2	-12.0

Measured in inches of H20 na = not available

Landfill Gas Control Well Vacuum Data East Northport Landfill, East Northport, New York for period of record between October, 1999 and December, 2004

Well	12/02	1/03	2/03	3/03	4/03	5/03	6/03	7/03	8/03	9/03	10/03_	11/03	12/03	1/04	2/04	3/04	4/04	5/04	6/04
CWI-4	-7.2	-6.3	-7.4	-6.8	-6.5	-6.4	NA	-4.1	-4.1	-4.0	-4.2	-4.1	-4.2	-4.3	-2.7	-3.2	-3.1	-2.3	-2.4
CWI-5	-8.0	-6.6	-8.3	-7.2	-7.0	-7.2	NA	-4.6	-4.5	-4.4	-4.6	-2.8	-3.0	-3.4	-3.0	-3.5	-3.6	-2.4	-2.5
CWI-6	-8.7	-6.8	-8.9	-7.4	-7.1	-7.2	NA	-4.5	-4.4	-4.2	-4.4	-3.7	-3.2	-3.7	-2.9	-3.5	-3.4	-2.5	-2.5
CWI-7	-7.4	-5.5	-7.8	-6.3	-6.2	-6.9	NA	-4.2	-4.2	-4.0	-4.3	-2.6	-2.9	-2.7	-2.9	-3.5	-2.8	-2.3	-2.4
CWII-1	-7.6	-5.7	-8.0	-6.4	-6.4	-6.1	NA	-4.2	-3.6	-3.8	-3.5	-3.0	-2.8	-3.1	-2.6	-3.9	-4.0	-3.7	-3.8
CWII-2	-8.5	-6.2	-8.5	-6.5	-6.5	-6.2	NA	-4.0	-3.5	-3.6	-3.5	-3.2	-3.3	-3.1	-2.7	-3.4	-3.4	-1.9	-2.0
CWII-3	-8.7	-6.3	-9.2	-6.9	-6.7	-6.5	NA	-4.1	-3.9	-3.8	-3.7	-3.6	-3.7	-3.3	-2.7	-3.6	-3.5	-2.1	-2.2
CWII-4	-8.3	-6.6	NA	-6.7	-6.5	-6.1	NA	-3.9	-3.7	-3.6	-3.6	-3.5	-3.0	N/A	-2.6	N/A	-3.3	-2.1	-2.5
CWII-5	-0.1	-6.8	0.0	-7.3	-6.6	-6.3	NA	-3.9	-3.9	-3.8	-3.7	-2.4	-2.5	-2.6	-2.7	-3.6	-2.6	-2.0	-1.9
CWII-6	-0.1	-4.3	0.0	-4.8	-4.7	-4.5	NA	-3.1	-3.5	-3.5	-3.6	-3.2	-3.1	-0.1	-1.2	-0.2	-0.3	-0.4	-0.8
CWII-7	0.0	-3.8	NA	-3.9	-3.8	-3.5	NA	-2.2	-2.8	-2.7	-2.5	-3.1	-3.1	-0.2	-1.1	-0.1	-0.2	-0.4	-0.7
CWII-8	0.0	0.0	NA	-0.2	-0.1	0.0	NA	-0.1	-0.1	0.0	-0.2	-0.1	-0.2	0.0	-0.1	0.0	0.0	0.1	-0.2
CWII-9	0.0	-2.2	0.0	-2.3	-2.3	-2.2	NA	-1.5	-1.5	-1.4	-1.5	-1.5	-1.3	-0.1	-0.8	-0.2	-0.1	0.0	-0.2
NW-1	-6.1	-5.7	NA	-6.2	-5.9	-6.4	NA	-4.0	-4.0	-3.8	-4.0	-4.0	-4.0	-0.1	-0.1	-3.1	-3.4	-1.8	-2.2
NW-2	-4.8	-4 .1	-5.2	-5.0	-4.7	-4.2	NA	-4.7	-4.2	-4.5	-4.7	-2.7	-3.1	N/A	-3.1	-3.5	-3.1	-2.4	-2.8
NW-3	-7.0	-6.4	-6.9	-6.2	-6.0	-6.9	NA	-4.1	-4.0	-4.0	-4.1	-4.0	-3.9	-2.5	-2.8	-3.1	-3.1	-2.2	-2.1
NW-4	-6.3	-4.7	-8.0	-7.0	6.7	-6.6	NA	-3.9	-3.8	-3.6	-3.8	-3.9	-3.9	-2.6	-2.8	-2.9	-2.6	-1.9	-1.8
NW-5	-5.5	<u>-4.</u> 7	NA	-5.7	-5.1	-4.9	NA	-3.1	-3.0	-3.0	-3.1	-3.5	-3.5	-2.3	-2.1	-2.7	-3.0	-1.7	-1.6
NW-6	-5.6	-5.6	-6.5	-5.7	-5.3	-5.3	NA	-3.2	-3.1	-3.0	-3.1	-1.9	-2.1	-2.4	-2.1	-2.5	-2.2	-2.1	-1.9
Ext-1	-0.3	-0.1	-0.2	-0.6	-0.1	-0.1	NA	-0.1	-0.1	-0.1	-0.1	-0.2	-0.1	-0.6	-0.2	-0.6	-0.4	-0.3	-0.9
Ext-2	-2.0	-1.6	-1.8	-1.6	-2.0	-1.5	NA	-2.0	-2.0	-2.0	-2.0	-0.8	-0.8	-1.0	-1.0	-1.2	-1.0	-1.0	-0.7
Ext-3	5.7	-5.4	-5.2	-4.8	-5.8	-6.0	NA_	-5.1	-5.0	-4.8	-3.2	-2.0	-2.2	-2.2	-2.3	-2.5	-2.8	-3.0	-1.7
Ext-4	-5.7	-5.0	-6.2	-5.9	-5.8	-5.5	NA	-5.3	-5.2	-5.0	-3.0	-1.8	-2.0	-1.9	-2.0	-2.1	-2.2	-2.3	-1.5
Ext-5	-4.3	-4.9	-4.2	-3.9	-4.8	-5.0	NA	-4.5	-4.3	-4.2	-4.2	-1.5	-1.9	-1.6	-1.8	-1.9	-1.9	-2.0	-2.2
N-1	-1.5	0.0	NA	-0.1	-0.1	0.0	NA	-1.2	-1.1	-1.0	-1.0	-1.0	-0.9	N/A	-0.7	-0.6	-1.0	-0.7	-0.9
N-2	-1.7	-0.1	NA	-0.1	-0.1	0.0	NA .	-0.8	-0.9	-0.9	-0.8	-0.6	-0.8	N/A	-0.6	-0.8	-0.7	-0.5	-0.8
N-3	-0.8	-0.2	NA_	-0.2	0.1	-0.1	NA_	-0.2	-0.2	-0.1	-0.2	-0.2	-0.2	N/A	-0.2	-0.2	-0.3	-0.1	-0.1
N-4	-0.3	-0.2	NA_	-0.2	-0.1	-0.1	NA	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	N/A	-0.2	-0.2	-0.3	-0.1	-0.1
N-5	-0.3	0.6	NA	-0.2	-0.1	-0.1	NA	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	N/A	-0.2	-0.2	-0.2	-0.1	-0.2
N-6	0.0	-2.1	0.0	-2.4	-2.3	-2.1	NA	-1.5	-1.3	-1.3	-1.2	-1.0	-0.9	-0.9	-0.8	N/A	-0.9	0.0	-0.8
BS-1	-13.3	-12.6	-13.4	-12.8	-12.5	-12.2	-10.5	-7.6	-7.4	-7.0	-7.8	-11.0	-14.4	-4.3	-4.4	-4.8	-4.4	-3.9	-3.9

Measured in inches of H20 na = not available

Landfill Gas Control Well Vacuum Data East Northport Landfill, East Northport, New York for period of record between October, 1999 and December, 2004

Well	7/04	8/04	9/04	10/04	11/04	12/04	1/05	2/05	3/05	4/05	5/05	6/05	7/05	8/05	9/05	10/05	11/05	12/05	1/06
CWI-4	-2.4	-2.8	-2.5	-2.5	-3.0	-2.4		_			-	_							
CWI-5	-2.5	-2.0	-3.0	-2.6	-3.2	-2.6			_										
CWI-6	-2.8	-2.5	-3.1	-2.5	-3.4	-2.5			_										
CWI-7	-2.7	-2.6	-3.0	-2.4	-3.3	-7.4	_		_										
CWII-1	-4.0	-4.2	-3.0	-2.3	-3.1	-2.3					-				_		-		
CWII-2	-2.2	-2.4	-3.0	-2.3	-3.1	-2.2													
CWII-3	-2.4	-2.0	-3.1	-2.3	-3.3	-3.0												-	
CWII-4	-2.6	-2.7	-3.0	-2.2	-3.3	-0.1		_											
CWII-5	-2.3	-2.5	-3.0	-2.2	-0.1	-0.1													
CWII-6	-1.7	-2.0	0.0	-1.4	0.0	0.0										Į			
CWII-7	-1.0	-1.0	0.0	-1.0	0.0	0.0													
CWII-8	-0.5	-0.6	0.0	-0.1	0.0	-0.1													
CWII-9	-0.9	-1.0	0.0	-0.7	0.0	-0.9		_	-					_					
NW-1	-2.2	-2.4	-2.3	-2.4	-2.6	-2.5					_								
NW-2	-2.8	-2.6	-2.9	-2.6	-2.9	-2.6								-					
NW-3	2.1	-2.0	-2.1	-2.3	-2.5	-2.3									-				
NW-4	-1.9	-1.9	-2.2	-2.1	-2.4	-2.3													
NW-5	-1.6	-1.8	-2.2	-1.8	-2.1	-1.8													
NW-6	-2.0	-1.8	-1.8	-1.8	-2.0	-1.8													
Ext-1	-0.9	-0.8	-0.1	-0.1	0.0	-1.7													
Ext-2	-0.9	-1.0	-0.8	-0.7	-0.8	-1.6													
Ext-3	-1.6	-1.8	-1.9	-1.7	-2.1	-1.6													
Ext-4	-1.7	-1.8	-1.7	-1.6	-2.0	-1.5													
Ext-5	-1.3	-1.5	-1.4	-1.4	-1.6	-1.3													
N-1	-0.8	-1.0	-1.0	-0.4	-0.1	-0.3													
N-2	-0.8	-0.8	-0.6	-0.5	-0.6	-0.7												ĺ	
N-3	-0.2	-0.1	-0.2	-0.1	0.0	-0.1													
N-4	-0.2	-0.2	-0.3	-0.1	-0.1	-0.2													
N-5	-0.3	-0.4	-0.2	-0.1	0.0	-0.2													
N-6	-0.9	-1.0	0.0	-0.8	0.0	-0.1							,						
BS-1	-3.9	-3.8	-4.3	-4.0	-4.6	-6.0													

Measured in inches of H20 na = not available

TOHLGCWDEC04.XLS