Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York September, 2008

Prepared for:

Town of Huntington Department of Environmental Waste Management 100 Main Street Huntington, New York 11743

Prepared by:

R & C Formation, Ltd. 705 Bedford Ave., Suite 2B Bellmore, New York 11710

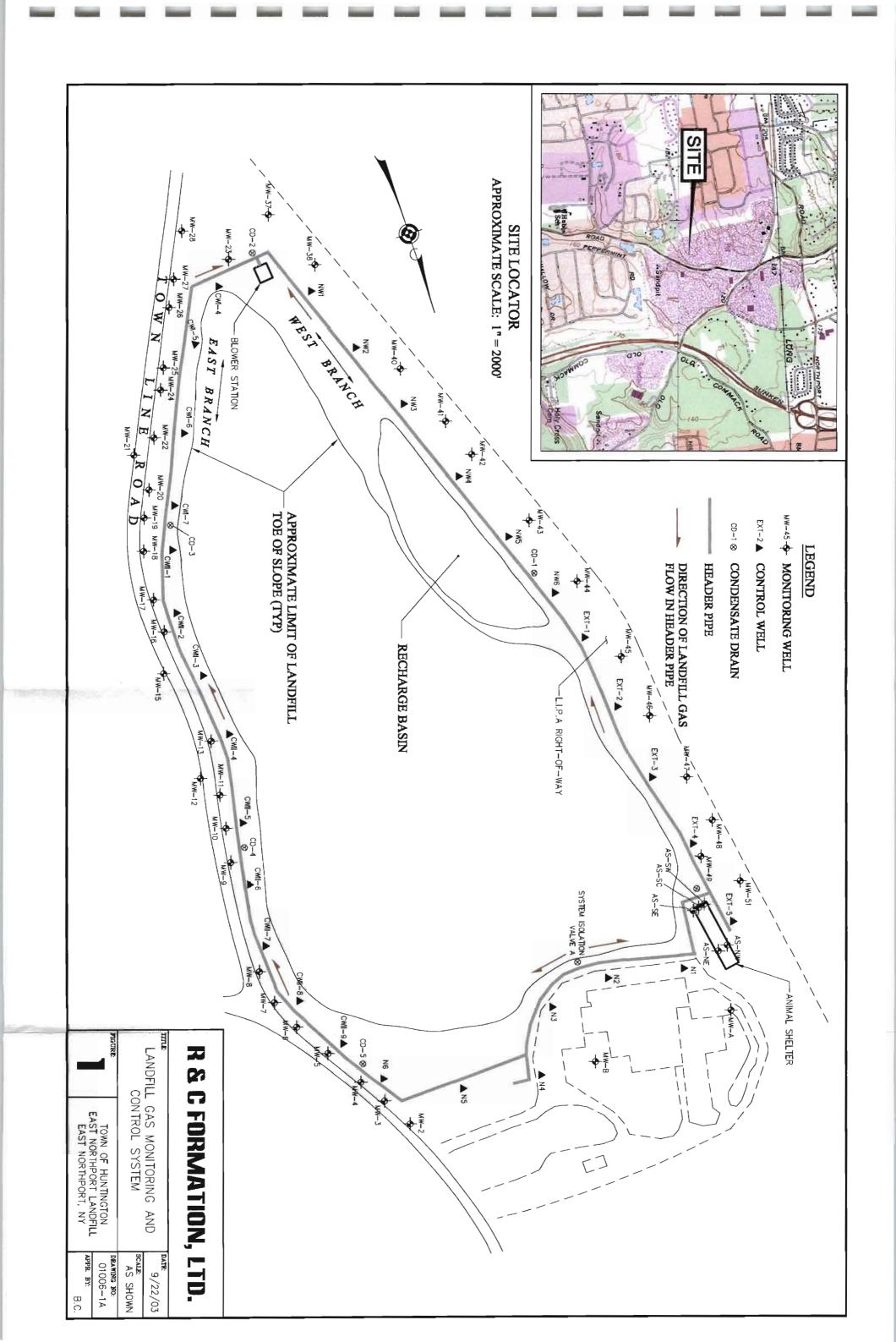
TABLE OF CONTENTS

	I	Page
Scope of Work Summary of I Gener Monit LFG O Blowe Conde Discussion Metha	Results al oring Wells Control Wells er Station Outlet ensate Traps and Monitoring Data cal and Operating Condition	2 3 3 3 3
	Figure Following	Dage
Figure 1.	Landfill Gas Monitoring and Control System	1
	Summary Tables Following	Page
Table 1.	Landfill Gas Monitoring Well Data	4
Table 2.	Landfill Gas Control Well Data	4
Table 3.	Summary of Methane Detections	4
Table 4.	Landfill Gas Control Well Methane Data	4
	Appendix	
Appendix 1.	Summary of Analytical Results, Landfill Gas Sampled July 26, 20	07
Appendix 2.	Laboratory Analytical Data	
Appendix 3.	Landfill Gas Control Well Vacuum Data	

Landfill Gas and Control System Monitoring Town of Huntington East Northport Landfill East Northport, New York September, 2008

Introduction

This report presents the results of September, 2008 landfill gas and control system monitoring activities performed at the Town of Huntington East Northport Landfill, as stipulated by the New York State Department of Environmental Conservation.


The primary landfill gas migration control system consists of thirty active landfill gas control wells connected - via a single header pipe forming a complete loop around the 44 acre East Northport Landfill - to one blower station. Landfill gas monitoring wells (consisting of 3-4 probes screened from approximately 5-70 feet below grade), situated outside of the aforementioned header pipe, provide a means to verify the control system's efficacy. Separate landfill gas control and monitoring systems are located at adjacent Animal Control and Resource Recovery Facilities.

The landfill area and pertinent components of the landfill gas monitoring and control system are depicted in Figure 1. The scope-of-work completed (per our agreement with the Town of Huntington Department of Environmental Waste Management dated December 4, 2006) precedes a summary of results. A discussion of methane monitoring data - with an emphasis on trends and occurrence - and the system's physical and operating condition follows.

Scope-of-Work

The scope-of-work includes performance of the following on a monthly basis:

- 1) Monitoring of all probes in 41 landfill monitoring wells and up to 5 probes around the Town Animal Control Facility for methane gas and gas pressure.
- 2) Monitoring of 30 methane control wells and blower station for temperature, flow rate, vacuum, methane and oxygen (balance of the control system to be checked and adjustment to wells and to blower intake made, if necessary).

- 3) Examination of 5 condensate traps in the control system for proper operation and water accumulation.
- 4) Noting of any problems, damage, missing parts etc. at each monitoring well, methane control well, condensate trap, Animal Control Facility probes and blower station.

Summary of Results

General

Reported monthly monitoring activities were performed September 24, 2008. Climatic conditions for the monitoring period are as follows:

Temperature: 59 (°F); Barometric Pressure: 30.42 (in. Hg); Relative Humidity: 66.0%; Precipitation: 0.00 inches; Wind Speed & Direction: 6.0 mph, northerly.

Monitoring Wells

Table 1 presents a summary of measured and recorded landfill gas monitoring well data. As shown, methane was not detected throughout the entire monitoring well network.

LFG Control Wells

Table 2 presents a summary of measured and recorded landfill gas control well data; including the system's blower station where 2 "inlet" measuring points (Blower Station 1 & 2) and 1 "outlet" measuring point (Blower Station 3) are located. As shown on Table 2, control well vacuum values (i.e., negative pressure), a direct indicator of the system's balance, range from 0.0 - -2.1 (in. H_20). "Extracted" methane values range from 0.0 - 2.0%.

Blower Station Outlet

Analytical results in relation to landfill gas sampled at Blower Station outlet BS-3 (via a SUMMA canister using EPA Method TO-14) - in comparison to background levels developed from the Environmental Protection Agency's *Building Assessments and Survey Evaluation Database* (2001) – are summarized in Appendix 1. A copy of the original laboratory analytical report is presented in Appendix 2.

Condensate Traps

Standing water measured within condensate traps CD-1 (trace), CD-2 (3.9 feet), CD-3 (1.33 feet), CD-4 (7.9 feet) and CD-5 (4.9 feet) was evacuated, as per usual, upon the completion of monitoring activities.

Discussion

Methane Monitoring Data

A summary of measured and recorded methane concentrations detected at landfill gas monitoring wells throughout the period-of-record from January, 2006 through September, 2008 are presented on Table 3. As shown, methane has been detected sporadically and at low levels at 14 monitoring wells. The most elevated concentration detected throughout the entire landfill gas monitoring well network continues to be 5.0 %; as measured at Animal Control Facility monitoring well AS-NE during March, 2001 monitoring activities (see October, 2007 report).

Methane has not been detected at primary landfill gas migration control system monitoring wells since a nominal concentration (0.1%) was recorded at MW-49 during June, 2002 monitoring activities. The sporadic nature of low-level methane detections indicates that landfill gas control systems in relation to both the Animal Control Facility and East Northport Landfill continue to perform effectively.

Table 4 presents a summary of methane concentrations detected at landfill gas control wells during the period-of-record from January, 2006 through September, 2008. As shown on Table 4, reported values are generally consistent throughout the 33 month period.

Physical and Operating Condition

As indicated by current and historic landfill gas monitoring data summarized above, the East Northport Landfill's primary landfill gas control system continues to effectively negate the off-site migration of methane. Vacuum values remain comparatively low at the northern-most portion of the system, as they have throughout the monitoring period-of-record (see Appendix 3); however, more of a site-wide balance has developed in recent monitoring events.

The physical condition of system monitoring wells and control wells is noted on Table 1 and Table 2, respectively.

R & C Formation, Ltd.

Blower station pump # 2 was in operation during September monitoring activities and all control wells continue to be set in the full-open-position. This full-open-position will be maintained for an evaluation period and modified if/as necessary.

Recommendations

- * In the event that methane is detected at any monitoring well associated with the primary landfill gas migration control system, recommence the monitoring of off and on-site structures.
- * Assess occurrence of methane versus landfill area (i.e., identify dominant landfill gas production zones).
- * Continue assessment of potential impact of all control valves at full-open-position on system-wide vacuum/methane levels.
- * Maintain the inspection and, when necessary, pumpage periodicity of standing water within condensate traps CD-1 through CD-5 (e.g., semi-weekly).

Table 1
Landfill Gas Monitoring Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured September 24, 2008

F		_	_	_					_	$\overline{}$				_				_		_	_		_	_
	Condition																							
		D			0.0	0.0	0.0						0.0	0:0							0.0		0.0	
	Methane 0-100% (Volume)	c			0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0
	Met 0-100%	В	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Α	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0
		D			-0.1	0.0	0.0						0.0	0.0							0.0		-0.1	
	Probe Pressure (in. H2O)	၁			-0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	-0.2	-0.1	-0.2	-0.1	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1	-0.1
	Probe I (in. 1	В	-0.1	-0.2	0.0	-0.1	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	-0.2	-0.1	-0.1	-0.1	-0.2	0.0	0:0	-0.1	-0.2	0.0	-0.1
		Α	-0.1	-0.2	0.0	0.0	-0.1	0.0	0.0	0.0	-0.1	0.1	0.0	0.0	-0.1	0.0	-0.1	0.0	-0.1	0.0	-0.2	-0.2	-0.1	-0.1
	Well No.		MW-A	MW-B	MW-2	MW-3	MW-4	MW-5	9-WM	WM-7	WW-8	6-WW	MW-10	MW-11	MW-12	MW-13	MW-15	MW-16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22

Table 1 (continued)

		Prohe Pressure	94113994			Methane	aner		
Well No.		(in. H2O)	120)			0-100% (Volume)	Volume)		Condition
	A	В	О	D	A	В	၁	D	
MW-23	-0.2	-0.2	-0.2	-0.1	0.0	0.0	0.0	0.0	
MW-24	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-25	0.0	0.0	-0.3		0.0	0.0	0.0		
MW-26	-0.1	-0.2	-0.2	-0.2	0.0	0.0	0.0	0.0	
MW-27	0.0	-0.1	0.0		0.0	0.0	0.0		
MW-28	0.0	0.0	0.0		0.0	0.0	0.0		
MW-37	0.0	0.0	0.0		0.0	0.0	0.0	9	
MW-38	0.0	-0.1	-0.1		0.0	0.0	0.0		
MW-40	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	
MW-41	-0.1	0.0	0.0		0.0	0.0	0.0		
MW-42	0.0	0.0	0.0		0.0	0.0	0.0		
MW-43	0.0	0.0	0.0		0.0	0.0	0.0		
MW-44	0.0	0.0	0.0		0.0	0.0	0.0		
MW-45	0.0	0.0	0.0		0.0	0.0	0.0		
MW-46	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	
MW-47	0.0	0.0	0.0		0.0	0.0	0.0		
MW-48	0.0	0.0	-0.1		0.0	0.0	0.0		
MW-49	-0.1	0.0	0.0		0.0	0.0	0.0		
MW-51	-0.1	-0.1	0.0		0.0	0.0	0.0		
AS-NW	0.0				0.0				
AS-NE	0.0				0.0				
AS-SW	0.0				0.0				
AS-SC	0.0				0.0				
AS-SE	0.0				0.0		1.		
A - Shallow Probe	eqo.	B - Middle Probe	eq.	C - Deep Probe	6	D - Deepest Probe	robe		

A - Shallow Probe B - Middle Probe C - Deep Probe Shading indicates the well is not equipped with that particular probe.

NA - Not Available

Table 2
Landfill Gas Control Well Data
Town of Huntington East Northport Landfill, East Northport, New York
Measured September 24, 2008

Well No.	Temp (°F)	Flow Rate (ft3/min)	Vacuum	Methane	Oxygen	Condition
	(T) dimen		(in. H2O)	0-100 % (Volume)	% in Air	
CWI-4	70.7	208.00	-1.9	0.0	19.7	
CWI-5	72.8	109.00	-2.1	0.2	18.6	
CW1-6	80.1	21.60	-2.1	0.2	18.8	
CWI-7	85.7	20.00	-2.0	8.0	17.3	
CWII-1	92.4	23.00	-2.0	1.8	15.4	
CWII-2	6.06	57.50	-2.0	0.4	16.6	
CWII-3	86.5	12.20	-2.0	0.3	16.4	
CWII-4	80.1	30.60	-1.9	0.7	16.8	
CWII-5	83.2	09.6	-1.9	0.2	16.3	
CWII-6	85.4	24.90	-1.6	9:0	15.1	
CWII-7	73.7	19.20	-1.1	0.0	17.2	
CWII-8	84.1	0.20	0.0	0.0	19.7	
CWII-9	77.2	23.80	-0.8	0.1	18.1	
NW-1	58.9	63.50	-1.9	0.0	20.8	
NW-2	61.2	29.40	-2.0	0.0	20.8	
NW-3	58.7	73.50	-1.8	0.0	20.7	
NW-4	59.9	32.30	-1.7	0.0	20.5	
NW-5	57.9	82.00	-1.5	0.0	20.7	
9-MN	58.3	54.50	-1.4	0.0	20.7	
Ext-1	62.9	4.57	0.0	0.0	20.8	
Ext-2	0.69	28.80	-0.5	0.0	19.8	
Ext-3	68.7	35.80	-1.4	0.0	18.3	
Ext-4	74.2	27.10	-1.5	0.0	18.7	
Ext-5	65.7	52.10	-1.2	0.0	19.7	
N-1	77.4	0.15	-0.2	0.0	20.9	
N-2	83.1	1.52	-0.5	2.0	9.5	
N-3	72.6	5.05	-0.1	0.0	20.5	
N-4	74.7	0.10	-0.1	0.0	20.2	
N-5	72.1	1.00	-0.1	0.0	20.1	
N-6	74.0	15.30	-0.8	0.0	19.6	
Blower Station - 1	0.69	1,140.00	-3.0	0.1	19.1	
Blower Station - 2	71.7	2,240.00	-18.9	0.1	19.1	
Blower Station - 3	82.2	1,190.00	-0.1	0.1	19.1	

Town of Huntington East Northport Landfill, East Northport, New York for period of record between January, 2006 and September, 2008 Summary of Methane Detections Landfill Gas Monitoring Wells Table 3

Well	1/06	2/06	90/8	4/06	90/9	90/9	90/2	90/8	90/6	10/06	11/06	12/06	1/07	2/07	3/07	4/07
MW-7C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-8C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-9A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-9B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-9C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-11A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-12A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-12C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-18A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-19A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-24C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-38B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-39A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-49A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-49B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-49C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AS-SW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AS-SC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AS-NE	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0

Measured in % Volume

Table 3 (continued)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	00	0.0	0.0	3	֓֞֝֞֜֜֞֜֞֜֜֜֜֜֟֜֜֜֜֟֜֜֟֜֜֟֜֟֜֟֓֓֓֓֓֟֜֜֟֓֓֓֓֓֓֡֜֟֜֜֜֞֓֓֡֡֡֞֜֜	3	ľ	3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0		?		;	0.0	0:0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-39A NA NA NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-49A 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-49B 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MW-49C 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AS-SW 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AS-SC 0.0 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AS-NE 0.0 0.0 0.0 0.0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Measured in % Volume

Table 3 (continued)

Well	80/6					-		
MW-7C	0.0							
MW-8C	0.0							
MW-9A	0.0							
MW-9B	0.0							
MW-9C	0.0							
MW-11A	0.0				,			!
MW-12A	0.0							
MW-12C	0.0							
MW-18A	0.0							
MW-19A	0.0							,
MW-24C	0.0							
MW-38B	0.0							
MW-39A	NA							
MW-49A	0.0							
MW-49B	0.0	ļ						
MW-49C	0.0							
AS-SW	0.0							
AS-SC	0.0	į						
AS-NE	0.0							
AIA AILE AILE	1-1-1							

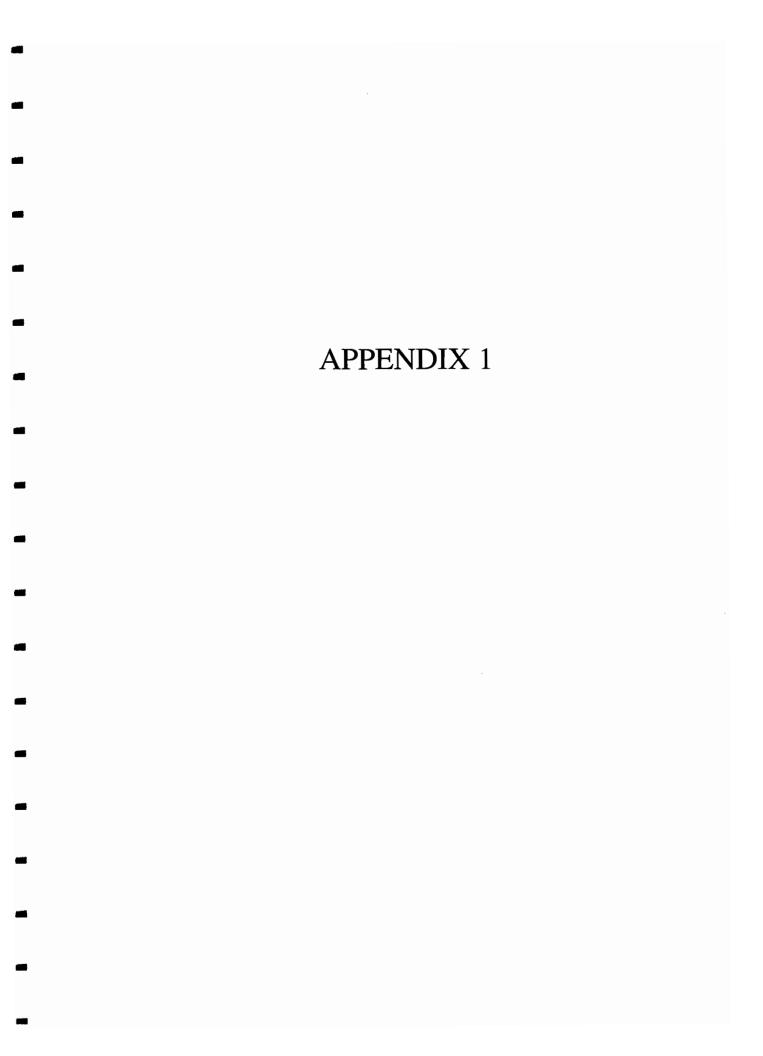
NA - Not Available Measured in % Votume

Town of Huntington East Northport Landfill, East Northport, New York for period of record between January, 2006 and September, 2008 Landfill Gas Control Well Methane Data Table 4

7	ے اا ہے	- -	90/8	90/8 2/06 8/06	6/06 7/06 8/06 9	5 5/06 6/06 7/06 8/06	02 01 03 01 00
0.0	2:	+	+	0.3 0.1 0.0	0.3 0.1 0.0	0.1 0.3 0.1 0.0	0.2 0.1 0.3 0.1 0.0
_	0.0	\dashv	0.0	1.5 0.2 0.0	1.5 0.2 0.0	0.8 1.5 0.2 0.0	1.5 0.8 1.5 0.2 0.0
0.0 0.0	0.0	0.0		0.9 0.2 0.0	0.9 0.2 0.0	1.0 0.9 0.2 0.0	0.4 1.0 0.9 0.2 0.0
0.0 0.2	0.0	0.0		0.0 0.0 0.0	0.0 0.0 0.0	0.1 0.7 0.6 0.0	5.0 0.1 0.7 0.6 0.0
0.0 0.3	0.0			2.6 7.0	2.4 2.6 7.0	2.4 2.6 7.0	1.6 2.4 2.6 7.0
0.0	0.0	2.2		2.2	1.9 1.0 2.2	2.7 1.9 1.0 2.2	3.4 2.7 1.9 1.0 2.2
0.0	0.0	1.7		1.7	1.5 1.5 1.7	1.8 1.5 1.7	0.9 1.8 1.5 1.5 1.7
	0.0		4.7	0.8 4.7	1.3 0.8 4.7	4.0 1.3 0.8 4.7	1.0 4.0 1.3 0.8 4.7
	0.0	1.5		1.5	0.6 0.4 1.5	0.7 0.6 0.4 1.5	0.5 0.7 0.6 0.4 1.5
0.0	0.0	0.5	1.1 0.5	1.1	0.6 1.1	2.0 0.6 1.1	0.8 2.0 0.6 1.1
	0.0	0.2		0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
0.0 0.0	0.0	0.0		0.2	0.0 0.2	0.0 0.0 0.2	0.0 0.0 0.0 0.2
0.0 0.0	0.0	0.4	0.5 0.4		0.2 0.5	0.6 0.2 0.5	0.7 0.6 0.2 0.5
	0.0	0.0		0.0	0.0	0.0 0.0	0.0 0.0 0.0
0.0 0.0	0.0	0.0			0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
	0.0	0.0		0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
0.0 0.0	0.0	0.0	0.0 0.0		0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
0.0 0.0	0.0	2.0	0.0 2.0		0.0	0.0 0.0	0.0 0.0 0.0 0.0
	0.0	0.0	0.0 0.0	0.0	0.1 0.0	0.0 0.1 0.0	0.0 0.0 0.1 0.0
	0.0	0.2	0.1 0.2		0.1 0.1	0.0 0.1 0.1	0.0 0.0 0.1 0.1
0.0	0.0	0.2		8.0	8.0	0.2 0.0 0.8	0.0 0.2 0.0 0.8
	0.0	0.1			0.2 0.4	0.4 0.2 0.4	0.0 0.4 0.2 0.4
0.0 0.0	0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0 0.0
0.0 0.0	0.0	0.1	0.0 0.1	0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
	0.8	0.0	4.8 0.0		0.0 4.8	NA 0.0 4.8	11.0 NA 0.0 4.8
0.0 0.0	0.0	0.0	0.0 0.0		0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0
	0.0	0.0	0.0 0.0		0.0	0.0 0.0	0.0 0.0 0.0 0.0
	0.0	0.0		0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
	0.0	0.1	0.1 0.1		0.7 0.1	NA 0.7 0.1	0.1 NA 0.7 0.1

Measured in % Volume

Table 4 (continued)


Well 5	2/02	20/9	2/07	8/02	9/07	10/01	11/07	12/07	1/08	2/08	3/08	4/08	2/08	80/9	2/08	8/08
	0.2	0.5	0.5	0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.1
	8.0	6.0	8.0	0.7	8.0	8.0	0.0	0.7	0.5	0.5	2.5	0.4	0.2	0.3	0.4	0.0
	0.7	1.1	1.3	8.0	1.0	0.8	0.1	0.5	9.0	6.0	0.5	0.4	0.3	0.5	0.7	0.3
	2.3	2.4	2.3	2.0	3.0	2.6	0.2	2.0	2.2	2.1	1.3	1.1	6.0	1.2	1.3	0.5
	4.6	9.0	8.0	5.0	5.0	1.3	5.0	7.0	7.0	10.0	4.0	3.3	2.2	3.8	3.8	1.0
	1.9	2.3	2.0	1.5	1.8	0.9	1.4	1.0	1:1	1.2	0.7	6.0	9.0	0.7	6.0	2.5
	NA	3.8	2.7	4.0	3.5	1.8	2.8	0.3	1.5	2.2	1.4	1.0	0.5	1.0	1.4	0.7
	5.6	3.5	3.3	3.1	3.5	2.6	3.5	2.5	2.1	2.7	2.0	1.5	1.1	1.5	1.5	1.0
	6.0	1.7	1.3	1.7	1.8	6.0	1.0	0.2	0.3	0.4	2.5	0.3	0.3	0.5	8.0	1.2
	1.7	2.5	2.0	2.0	2.9	1.7	2.1	0.3	1.0	0.7	0.7	0.7	9.0	8.0	0.0	0.5
CWII-7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1:1
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.5	0.5	0.5	0.4	9.0	0.4	0.5	0.3	4.5	0.2	0.2	0.2	0.2	0.2	0.1	0.3
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-3	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NW-5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	1.5	1.5	0.2	0.0	0.0	0.0	0.0	0.0
	0.3	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2.8	3.4	3.3	3.0	3.4	4.7	0.3	3.5	2.0	NA	1.5	2.8	2.2	2.4	2.3	2.2
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4-N	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0:0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	0.5	0.7	0.4	0.7	0.7	9.0	0.0	0.5	0.4	0.5	0.3	0.3	0.2	0.3	0.3	0.3

NA - Not Available Measured in % Volume

Table 4 (continued)

Mell	80/6				-		
CWI-4	0.0						
CWI-5	0.2						
CWI-6	0.2						
CWI-7	0.8						
СМП-1	1.8						
CWII-2	0.4						
CWII-3	0.3						
СМП-4	0.7						
CWII-5	0.2						
CWII-6	0.6						
CWII-7	0.0						
CWII-8	0.0						
CWII-9	0.1						
NW-1	0.0						
NW-2	0.0						
NW-3	0.0		-				
NW-4	0.0						
NW-5	0.0						
9-MN	0.0						
Ext-1	0.0						
Ext-2	0.0						-
Ext-3	0.0						
Ext-4	0.0						
Ext-5	0.0						
N-1	0.0						
N-2	2.0						
N-3	0.0					-	
N.4	0.0						
N-5	0.0						
9-N	0.0						
BS-1	0.1					\dashv	
NA - Not Available	aldalia						

NA - Not Available Measured in % Volume

Summary of Analytical Results Landfill Gas Sampled September 24, 2008 Volitile Organic Compounds Reported in Micrograms Per Cubic Meter

		EPA BASE	EPA BASE
	BS-3	Outdoor	Outdoor
Parameter		minimum *	maximum *
Benzene	8.0	ND(1.2)	13.0
Bromomethane	ND(2.0)	ND(0.6)	4.5
Carbon Tetrachloride	ND(3.2)	ND(0.6)	1.5
Chlorobenzene	14.0	ND(0.4)	1.1
Chloroethane	ND(1.4)	ND(0.6)	3.5
Chloroform	5.1	ND(0.2)	13.8
Chloromethane	ND(1.1)	0.9	10.6
1,2-Dibromoethane	ND(3.8)	ND(0.8)	ND(2.0)
1,2-Dichlorobenzene	ND(3.0)	ND(0.6)	1.1
1,3-Dichlorobenzene	ND(3.0)	ND(0.6)	ND(2.8)
1,4-Dichlorobenzene	5.1	ND(0.6)	6.1
Dichlorodifluoromethane	28.0	ND(4.4)	183.7
1,1-Dichloroethane	ND(2.1)	ND(0.4)	ND(0.8)
1,2-Dichloroethane	ND(2.0)	ND(0.4)	0.8
1,1-Dichloroethylene	ND(2.0)	ND(0.8)	ND(1.6)
cis-1,2-Dichloroethylene	ND(2.0)	ND(0.6)	1.1
1,2-Dichloropropane	ND(2.3)	ND(0.6)	ND(1.8)
cis-1,3-Dichloropropene	ND(2.3)	ND(1.4)	ND(2.6)
trans-1,3-Dichloropropene	ND(2.3)	ND(0.6)	ND(1.4)
1,2-Dichlorotetrafluoroethane (114)	100.0	ND(1.6)	ND(7.8)
Ethylbenzene	ND(2.2)	ND(0.8)	7.8
Hexachlorobutadiene	ND(5.4)	ND(1.4)	ND(7.8)
Methylene Chloride	7.7	ND(1.0)	78.5
Styrene	ND(2.2)	ND(0.6)	58.0
1,1,2,2-Tetrachloroethane	ND(3.4)	NA	NA
Tetrachloroethylene	13.0	ND(0.8)	27.6
Toluene	ND(1.9)	2.1	93.1
1,2,4-Trichlorobenzene	ND(3.7)	ND(0.6)	ND(7.8)
1,1,1-Trichloroethane	ND(2.7)	ND(0.4)	8.7
1,1,2-Trichloroethane	ND(2.7)	ND(0.6)	ND(1.8)
Trichloroethylene	ND(2.7)	ND(0.6)	13.5
Trichlorofluoromethane	9.3	ND(2.0)	132.5
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND(3.8)	ND(1.2)	5.4
1,2,4-Trimethylbenzene	ND(2.5)	ND(0.4)	24.2
1,3,5-Trimethylbenzene	ND(2.5)	ND(0.8)	8.9
Vinyl Chloride	3.0	ND(0.6)	ND(2.6)
m/p-Xylene	ND(4.4)	ND(1.4)	26.8
o-Xylene	ND(2.2)	ND(0.6)	11.1

ND() = Not detected at the method detection limit

^{*} Background levels per United States Environmental Protection Agency Building Assessments and Survey Evaluation Database (BASE 2001)

APPENDIX 2

REPORT DATE 10/3/2008

R&C FORMATION 705 BEDFORD AVENUE, SUITE 2B BELLMORE, NY 11710 ATTN: BOB CASSON

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #:

LIMT-20057

JOB NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. Results are based on samples as submitted to the laboratory and relate only to the items collected and tested.

PROJECT LOCATION: EAST NORTHPORT

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	Subcontract Lab (If any) Cert. Nos.
200					
B\$-3	08B39177	AIR	Not Specified	to-14 ppbv	
BS-3	08B39177	AIR	Not Specified	to-14 ug/m3	
Comments:					

LIMS BATCH NO.: LIMT-20057

In method TO-14, any reported result for trichlorofluoromethane is estimated and likely to be biased on the high side based on continuing calibration bias.

In method TO-14, any reported result for trichlorofluoromethane or dichlordifluoromethane is likely to be biased on the high side based on laboratory fortified blank recovery bias.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations. AIHA accreditations only apply to NIOSH methods and Environmental Lead Analyses.

AIHA 100033

MASSACHUSETTS MA0100

NEW HAMPSHIRE NELAP 2516

NORTH CAROLINA CERT. #652 NEW JERSEY NELAP NJ MA007 (AIR)

CONNECTICUT PH-0567

VERMONT DOH (LEAD) No. LL015036

FLORIDA DOH E871027 (AIR)

NEW YORK ELAP/NELAP 10899

RHODE ISLAND (LIC. No. 112)

AIHA ELLAP (LEAD) 100033

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Edward Demon 10/3/28

Tod Kopyscinski Air Laboratory Manager Douglas Sheeley Laboratory Manager

SIGNATURE

Edward Denson

Daren Damboragian

Technical Director

Organics Department Supervisor

^{*} See end of data tabulation for notes and comments pertaining to this sample

BOB CASSON

R&C FORMATION

705 BEDFORD AVENUE, SUITE 2B

BELLMORE, NY 11710

Purchase Order No.:

10/3/2008 Page 1 of 4

Project Location: EAST NORTHPORT Date Received: 9/25/2008

LIMS-BAT #: LIMT-20057

Job Number: -

Field Sample #: BS-3

Sample ID:

08B39177

\$Sampled: 9/24/2008

Not Specified

Sample Matrix:

AIR

Sample Medium : SUMMA

Technology Tec		Units	Results	RL	Method	Date Analyzed	Analyst
Bromomethane PPBv ND 0.50 10/01/08 WSD Carbon Tetrachloride PPBv ND 0.50 10/01/08 WSD Chloroethane PPBv 3.1 0.50 10/01/08 WSD Chloroethane PPBv ND 0.50 10/01/08 WSD Chloromethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichromethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1-Dichlorobethjene PPBv <td>to-14 ppbv</td> <td></td> <td></td> <td></td> <td>EPA TO-14A</td> <td></td> <td></td>	to-14 ppbv				EPA TO-14A		
Carbon Tetrachloride PPBv ND 0.50 10/01/08 WSD Chlorobenzene PPBv 3.1 0.50 10/01/08 WSD Chloroethane PPBv ND 0.50 10/01/08 WSD Chloromethane PPBv ND 0.50 10/01/08 WSD Chloromethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,3-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1-Dichlorobenzene PPBv<	Benzene	PPBv	2.5	0.50		10/01/08	WSD
Chlorobenzene PPBv 3.1 0.50 10/01/08 WSD Chloroethane PPBv ND 0.50 10/01/08 WSD Chloromethane PPBv 1.1 0.50 10/01/08 WSD Chloromethane PPBv ND 0.50 10/01/08 WSD 1,2-Dibromoethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv <td>Bromomethane</td> <td>PPBv</td> <td>ND</td> <td>0.50</td> <td></td> <td>10/01/08</td> <td>WSD</td>	Bromomethane	PPBv	ND	0.50		10/01/08	WSD
Chloroethane PPBv ND 0.50 10/01/08 WSD Chloroform PPBv 1.1 0.50 10/01/08 WSD Chloromethane PPBv ND 0.50 10/01/08 WSD 1,2-Dibromoethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,3-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD Dichlorodifluoromethane PPBv 0.85 0.50 10/01/08 WSD 1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane <t< td=""><td>Carbon Tetrachloride</td><td>PPBv</td><td>ND</td><td>0.50</td><td></td><td>10/01/08</td><td>WSD</td></t<>	Carbon Tetrachloride	PPBv	ND	0.50		10/01/08	WSD
Chloroform PPBv 1.1 0.50 10/01/08 WSD Chloromethane PPBv ND 0.50 10/01/08 WSD 1,2-Dibromoethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,3-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv 5.7 0.50 10/01/08 WSD Dichlorodifluoromethane PPBv ND 0.50 10/01/08 WSD 1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroptopane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropr	Chlorobenzene	PPBv	3.1	0.50		10/01/08	WSD
Chloromethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv 0.85 0.50 10/01/08 WSD 1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD 1,1-Dichlorotetrafluoroe	Chloroethane	PPBv	ND	0.50		10/01/08	WSD
1,2-Dibromoethane PPBV ND 0.50 10/01/08 WSD 1,2-Dichlorobenzene PPBV ND 0.50 10/01/08 WSD 1,3-Dichlorobenzene PPBV ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBV 0.85 0.50 10/01/08 WSD Dichlorodiflooromethane PPBV ND 0.50 10/01/08 WSD 1,1-Dichloroethane PPBV ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBV ND 0.50 10/01/08 WSD 1,1-Dichloroethylene PPBV ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBV ND 0.50 10/01/08 WSD 1,2-Dichloropropene PPBV ND 0.50 10/01/08 WSD 1,2-Dichloropropene PPBV ND 0.50 10/01/08 WSD Ethylbenzene PPBV ND 0.50 10/01/08 WSD Ethylbenzene	Chloroform	PPBv	1.1	0.50		10/01/08	WSD
1,2-Dichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,3-Dichlorobenzene PPBv 0.85 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBv 0.85 0.50 10/01/08 WSD Dichlorodifluoromethane PPBv ND 0.50 10/01/08 WSD 1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,1-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroptoplene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroptopene PPBv ND 0.50 10/01/08 WSD 1,2-Dichl	Chloromethane	PPBv	ND	0.50		10/01/08	WSD
1,3-Dichlorobenzene PPBV ND 0.50 10/01/08 WSD 1,4-Dichlorobenzene PPBV 0.85 0.50 10/01/08 WSD Dichlorodifluoromethane PPBV 5.7 0.50 10/01/08 WSD 1,1-Dichloroethane PPBV ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBV ND 0.50 10/01/08 WSD 1,1-Dichloroethylene PPBV ND 0.50 10/01/08 WSD 1,2-Dichloroptopane PPBV ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBV ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBV ND 0.50 10/01/08 WSD	1,2-Dibromoethane	PPBv	ND	0.50		10/01/08	WSD
1,4-Dichlorobenzene PPBv 0.85 0.50 10/01/08 WSD Dichlorodifluoromethane PPBv 5.7 0.50 10/01/08 WSD 1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD cis-1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD	1,2-Dichlorobenzene	PPBv	ND	0.50		10/01/08	WSD
Dichlorodifluoromethane PPBv 5.7 0.50 10/01/08 WSD 1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,1-Dichloroethylene PPBv ND 0.50 10/01/08 WSD cis-1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropane PPBv ND 0.50 10/01/08 WSD tcs-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD </td <td>1,3-Dichlorobenzene</td> <td>PPBv</td> <td>ND</td> <td>0.50</td> <td></td> <td>10/01/08</td> <td>WSD</td>	1,3-Dichlorobenzene	PPBv	ND	0.50		10/01/08	WSD
1,1-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,2-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,1-Dichloroethylene PPBv ND 0.50 10/01/08 WSD cis-1,2-Dichloropthylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloroptropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD	1,4-Dichlorobenzene	PPBv	0.85	0.50		10/01/08	WSD
1,2-Dichloroethane PPBv ND 0.50 10/01/08 WSD 1,1-Dichloroethylene PPBv ND 0.50 10/01/08 WSD cis-1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD <td< td=""><td>Dichlorodifluoromethane</td><td>PPBv</td><td>5.7</td><td>0.50</td><td></td><td>10/01/08</td><td>WSD</td></td<>	Dichlorodifluoromethane	PPBv	5.7	0.50		10/01/08	WSD
1,1-Dichloroethylene PPBv ND 0.50 10/01/08 WSD cis-1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafilooroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv ND 0.50 10/01/08 WSD	1,1-Dichloroethane	PPBv	ND	0.50		10/01/08	WSD
cis-1,2-Dichloroethylene PPBv ND 0.50 10/01/08 WSD 1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD	1,2-Dichloroethane	PPBv	ND	0.50		10/01/08	WSD
1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2-2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Tri	1,1-Dichloroethylene	PPBv	ND	0.50		10/01/08	WSD
1,2-Dichloropropane PPBv ND 0.50 10/01/08 WSD cis-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichloroebnzene PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethylene PPBv ND 0.50 10/01/08 WSD	cis-1,2-Dichloroethylene	PPBv	ND	0.50		10/01/08	WSD
trans-1,3-Dichloropropene PPBv ND 0.50 10/01/08 WSD 1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv ND 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv ND 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichloroebnzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichlorofluorom		PPBv	ND	0.50		10/01/08	WSD
1,2-Dichlorotetrafluoroethane (114) PPBv 15 0.50 10/01/08 WSD Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv 2.2 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv ND 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD	cis-1,3-Dichloropropene	PPBv	ND	0.50		10/01/08	WSD
Ethylbenzene PPBv ND 0.50 10/01/08 WSD Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv 2.2 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv 1.9 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,	trans-1,3-Dichloropropene	PPBv	ND	0.50		10/01/08	WSD
Hexachlorobutadiene PPBv ND 0.50 10/01/08 WSD Methylene Chloride PPBv 2.2 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv ND 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	1,2-Dichlorotetrafluoroethane (114)	PPBv	15	0.50		10/01/08	WSD
Methylene Chloride PPBv 2.2 0.50 10/01/08 WSD Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv 1.9 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Ethylbenzene	PPBv	ND	0.50		10/01/08	WSD
Styrene PPBv ND 0.50 10/01/08 WSD 1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv 1.9 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Hexachlorobutadiene	PPBv	ND	0.50		10/01/08	WSD
1,1,2,2-Tetrachloroethane PPBv ND 0.50 10/01/08 WSD Tetrachloroethylene PPBv 1.9 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Methylene Chloride	PPBv	2.2	0.50		10/01/08	WSD
Tetrachloroethylene PPBv 1.9 0.50 10/01/08 WSD Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Styrene	PPBv	ND	0.50		10/01/08	WSD
Toluene PPBv ND 0.50 10/01/08 WSD 1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	1,1,2,2-Tetrachloroethane	PPBv	ND	0.50		10/01/08	WSD
1,2,4-Trichlorobenzene PPBv ND 0.50 10/01/08 WSD 1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv 1.7 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Tetrachloroethylene	PPBv	1.9	0.50		10/01/08	WSD
1,1,1-Trichloroethane PPBv ND 0.50 10/01/08 WSD 1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv 1.7 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Toluene	PPBv	ND	0.50		10/01/08	WSD
1,1,2-Trichloroethane PPBv ND 0.50 10/01/08 WSD Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv 1.7 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	1,2,4-Trichlorobenzene	PPBv	ND	0.50		10/01/08	WSD
Trichloroethylene PPBv ND 0.50 10/01/08 WSD Trichlorofluoromethane (Freon 11) PPBv 1.7 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	1,1,1-Trichloroethane	PPBv	ND	0.50		10/01/08	WSD
Trichlorofluoromethane (Freon 11) PPBv 1.7 0.50 10/01/08 WSD 1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	1,1,2-Trichloroethane	PPBv	ND	0.50		10/01/08	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane PPBv ND 0.50 10/01/08 WSD 1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Trichloroethylene	PPBv	ND	0.50		10/01/08	WSD
1,2,4-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	Trichlorofluoromethane (Freon 11)	PPBv	1.7	0.50		10/01/08	WSD
()	1,1,2-Trichloro-1,2,2-Trifluoroethane	PPBv	ND	0.50		10/01/08	WSD
1,3,5-Trimethylbenzene PPBv ND 0.50 10/01/08 WSD	1,2,4-Trimethylbenzene	PPBv	ND	0.50		10/01/08	WSD
	1,3,5-Trimethylbenzene	PPBv	ND	0.50		10/01/08	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

BOB CASSON

R&C FORMATION

705 BEDFORD AVENUE, SUITE 2B

BELLMORE, NY 11710

Purchase Order No.:

10/3/2008 Page 2 of 4

Project Location: EAST NORTHPORT

9/25/2008

LIMS-BAT #: LIMT-20057

Job Number: -

Field Sample #: BS-3

Sample ID:

Date Received:

08B39177

‡Sampled: 9/24/2008

Not Specified

Sample Matrix: AIR

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-14 ppbv				EPA TO-14A		
Vinyl Chloride	PPBv	1.2	0.50		10/01/08	WSD
m/p-Xylene	PPBv	ND	1.0		10/01/08	WSD
o-Xylene	PPBv	ND	0.50		10/01/08	WSD
to-14 ug/m				EPA TO-14A		
Benzene	ug/m3	8.0	1.6		10/01/08	WSD
Bromomethane	ug/m3	ND	2.0		10/01/08	WSD
Carbon Tetrachloride	ug/m3	ND	3.2		10/01/08	WSD
Chlorobenzene	ug/m3	14	2.3		10/01/08	WSD
Chloroethane	ug/m3	ND	1.4		10/01/08	WSD
Chloroform	ug/m3	5.1	2.5		10/01/08	WSD
Chloromethane	ug/m3	ND	1.1		10/01/08	WSD
1,2-Dibromoethane	ug/m3	ND	3.8		10/01/08	WSD
1,2-Dichlorobenzene	ug/m3	ND	3.0		10/01/08	WSD
1,3-Dichlorobenzene	ug/m3	ND	3.0		10/01/08	WSD
1,4-Dichlorobenzene	ug/m3	5.1	3.0		10/01/08	WSD
Dichlorodifluoromethane	ug/m3	28	2.5		10/01/08	WSD
1,1-Dichloroethane	ug/m3	ND	2.1		10/01/08	WSD
1,2-Dichloroethane	ug/m3	ND	2.0		10/01/08	WSD
1,1-Dichloroethylene	ug/m3	ND	2.0		10/01/08	WSD
cis-1,2-Dichloroethylene	ug/m3	ND	2.0		10/01/08	WSD
1,2-Dichloropropane	ug/m3	ND	2.3		10/01/08	WSD
cis-1,3-Dichloropropene	ug/m3	ND	2.3		10/01/08	WSD
trans-1,3-Dichloropropene	ug/m3	ND	2.3		10/01/08	WSD
1,2-Dichlorotetrafluoroethane (114)	ug/m3	100	3.5		10/01/08	WSD
Ethylbenzene	ug/m3	ND	2.2		10/01/08	WSD
Hexachlorobutadiene	ug/m3	ND	5.4		10/01/08	WSD
Methylene Chloride	ug/m3	7 .7	1.8		10/01/08	WSD
Styrene	ug/m3	ND	2.2		10/01/08	WSD
1,1,2,2-Tetrachloroethane	ug/m3	ND	3.4		10/01/08	WSD
Tetrachloroethylene	ug/m3	13	3.4		10/01/08	WSD
Toluene	ug/m3	ND	1.9		10/01/08	WSD
1,2,4-Trichlorobenzene	ug/m3	ND	3.7		10/01/08	WSD
1,1,1-Trichloroethane	ug/m3	ND	2.7		10/01/08	WSD
1,1,2-Trichloroethane	ug/m3	ND	2.7		10/01/08	WSD
Trichloroethylene	ug/m3	ND	2.7		10/01/08	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] See attached chain-of-custody record for time sampled

BOB CASSON

R&C FORMATION

10/3/2008

705 BEDFORD AVENUE, SUITE 2B

Purchase Order No.:

Page 3 of 4

BELLMORE, NY 11710

Project Location: EAST NORTHPORT

LIMS-BAT #: LIMT-20057

Date Received:

9/25/2008

Job Number:

Field Sample #: BS-3

Sample ID:

08B39177

‡Sampled: 9/24/2008

Not Specified

Sample Matrix:

AIR

Sample Medium : SUMMA

	Units	Results	RL	Method	Date Analyzed	Analyst
to-14 ug/m				EPA TO-14A		
Trichlorofluoromethane	ug/m3	9.3	2.8		10/01/08	WSD
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	ND	3.8		10/01/08	WSD
1,2,4-Trimethylbenzene	ug/m3	ND	2.5		10/01/08	WSD
1,3,5-Trimethylbenzene	ug/m3	ND	2.5		10/01/08	WSD
Vinyl Chloride	ug/m3	3.0	1.3		10/01/08	WSD
m/p-Xylene	ug/m3	ND	4.4		10/01/08	WSD
o-Xylene	ug/m3	ND	2.2		10/01/08	WSD

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ See attached chain-of-custody record for time sampled

BOB CASSON

R&C FORMATION

10/3/2008

705 BEDFORD AVENUE, SUITE 2B

Project Location: EAST NORTHPORT

BELLMORE, NY 11710

Date Received: 9/25/2008

Page 4 of 4

Purchase Order No.:

LIMS-BAT #: LIMT-20057

Job Number: -

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ See attached chain-of-custody record for time sampled

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Standard Reference Materials and Duplicates

CH-15218 sis	QC Analysis			
sis	OC Analysis			
	QO Milalyolo	Values	Units	Limits
ene	Sample Amount	8.01	ug/m3	
	Duplicate Value	8.04	ug/m3	
•	Duplicate RPD	0.39	%	
oform	Sample Amount	5.12	ug/m3	
	Duplicate Value	5.05	ug/m3	
	Duplicate RPD	1.33	%	
chlorobenzene	Sample Amount	5.12	ug/m3	
	Duplicate Value	5.11	ug/m3	
	Duplicate RPD	0.23	%	
chloroethylene	Sample Amount	13.07	ug/m3	
	Duplicate Value	13.48	ug/m3	
	Duplicate RPD	3.11	%	
orofluoromethane	Sample Amount	9.29	ug/m3	
	Duplicate Value	9.04	ug/m3	
	Duplicate RPD	2.75	%	
Chloride	Sample Amount	2.95	ug/m3	
	Duplicate Value	2.71	ug/m3	
	Duplicate RPD	8.48	%	
lene Chloride	Sample Amount	7.74	ug/m3	
	Duplicate Value	7.66	ug/m3	
	Duplicate RPD	1.12	%	
benzene	Sample Amount	14.27	ug/m3	
	Duplicate Value	14.86	ug/m3	
	Duplicate RPD	4.04	%	
rodifluoromethane	•	28.05	ug/m3	
		27.25	•	
	•	2.87	%	
mofluorobenzene		112.75	%	70-130
	•	101.44	ug/m3	
•	Duplicate Value	96.60	ug/m3	
	Duplicate RPD	4.88	%	
	·			
ene	Blank	<1.6	ug/m3	
n Tetrachloride	Blank	<3.2	ug/m3	
oform	Blank	<2.5	ug/m3	
chloroethane	Blank	<2.0	ug/m3	
chlorobenzene	Blank	<3.0	ug/m3	
enzene	Blank	<2.2	ug/m3	
ne	Blank	<2.2	ug/m3	
chloroethylene	Blank	<3.4	ug/m3	
	Blank	<1.9	ug/m3	
	Blank	<2.7	ug/m3	
	Blank	<2.7	ug/m3	
	oform chlorobenzene chloroethylene orofluoromethane chloride dene Chloride obenzene orodifluoromethane	Duplicate Value Duplicate RPD Sample Amount Duplicate RPD Sample Amount Duplicate RPD Sample Amount Duplicate RPD Sample Amount Duplicate Value Duplicate RPD Sample Amount Duplicate RPD Sample Amount Duplicate Value Duplicate RPD Sample Amount Duplicate RPD Sample Amount Duplicate Value Duplicate RPD Sample Amount Duplicate Value Duplicate RPD Surrogate Recovery Sample Amount Duplicate Value Duplicate Value Duplicate Value Duplicate RPD Surrogate Recovery Sample Amount Duplicate Value Duplica	Duplicate Value	Duplicate Value

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/3/2008 Lims B	at # : LIMT-20057		Page 2	of 7
QC Batch Number:					
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-124512					
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Blank	<3.8	ug/m3	
	Trichlorofluoromethane	Blank	<2.8	ug/m3	
	o-Xylene	Blank	<2.2	ug/m3	
	m/p-Xylene	Blank	<4.4	ug/m3	
	1,2-Dichlorobenzene	Blank	<3.0	ug/m3	
	1,3-Dichlorobenzene	Blank	<3.0	ug/m3	
	1,1-Dichloroethane	Blank	<2.1	ug/m3	
	1,1-Dichloroethylene	Blank	<2.0	ug/m3	
	Vinyl Chloride	Blank	<1.3	ug/m3	
	Methylene Chloride	Blank	<1.8	ug/m3	
	Chlorobenzene	Blank	<2.3	ug/m3	
	Chloromethane	Blank	<1.1	ug/m3	
	Bromomethane	Blank	<2.0	ug/m3	
	Chloroethane	Blank	<1.4	ug/m3	
	cis-1,3-Dichloropropene	Blank	<2.3	ug/m3	
	trans-1,3-Dichloropropene	Blank	<2.3	ug/m3	
	1,1,2-Trichloroethane	Blank	<2.7	ug/m3	
	1,1,2,2-Tetrachloroethane	Blank	<3.4	ug/m3	
	Hexachlorobutadiene	Blank	<5.4	ug/m3	
	1,2,4-Trichlorobenzene	Blank	<3.7	ug/m3	
	1,2,4-Trimethylbenzene	Blank	<2.5	ug/m3	
	1,3,5-Trimethylbenzene	Blank	<2.5	ug/m3	
	cis-1,2-Dichloroethylene	Blank	<2.0	ug/m3	
	1,2-Dichloropropane	Blank	<2.3	ug/m3	
	Dichlorodifluoromethane	Blank	<2.5	ug/m3	
	1,2-Dibromoethane	Blank	<3.8	ug/m3	
	1,2-Dichlorotetrafluoroethane (114)	Blank	<3.5	ug/m3	
FBLANK-86279	,			Ü	
	Benzene	Lab Fort Blank Amt.	15.95	ug/m3	
		Lab Fort Blk. Found	12.06	ug/m3	
		Lab Fort Blk. % Rec.	75.63	%	70-130
	Carbon Tetrachloride	Lab Fort Blank Amt.	31.45	ug/m3	
		Lab Fort Blk. Found	43.85	ug/m3	
		Lab Fort Blk. % Rec.	139.44	%	70-130
	Chloroform	Lab Fort Blank Amt.	24.33	ug/m3	
		Lab Fort Blk. Found	26.35	ug/m3	
		Lab Fort Blk. % Rec.	108.28	%	70-130
	1,2-Dichloroethane	Lab Fort Blank Amt.	20.24	ug/m3	
	,	Lab Fort Blk. Found	27.26	ug/m3	
		Lab Fort Blk. % Rec.	134.68	%	70-130
	1,4-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
	.,	Lab Fort Blk. Found	36.40	ug/m3	
			000	-3	

39 Spruce Street $^\circ$ East Longmeadow, MA 01028 $^\circ$ FAX 413/525-6405 $^\circ$ TEL. 413/525-2332

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/3/2008 Lims	Bat # : LIMT-20057		Page 3	3 of 7
C Batch Number	: BATCH-15218				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-86279					
	Ethylbenzene	Lab Fort Blank Amt.	21.67	ug/m3	
		Lab Fort Blk. Found	21.40	ug/m3	
		Lab Fort Blk. % Rec.	98.74	%	70-130
	Styrene	Lab Fort Blank Amt.	21.26	ug/m3	
		Lab Fort Blk. Found	19.62	ug/m3	
		Lab Fort Blk. % Rec.	92.25	%	70-130
	Tetrachloroethylene	Lab Fort Blank Amt.	33.90	ug/m3	
		Lab Fort Blk. Found	36.91	ug/m3	
		Lab Fort Blk. % Rec.	108.88	%	70-130
	Toluene	Lab Fort Blank Amt.	18.81	ug/m3	
		Lab Fort Blk. Found	16.44	ug/m3	
		Lab Fort Blk. % Rec.	87.40	%	70-130
	1,1,1-Trichloroethane	Lab Fort Blank Amt.	27.28	ug/m3	
		Lab Fort Blk. Found	34.85	ug/m3	
		Lab Fort Blk. % Rec.	127.78	%	70-130
	Trichloroethylene	Lab Fort Blank Amt.	26.87	ug/m3	
		Lab Fort Blk. Found	28.59	ug/m3	
		Lab Fort Blk. % Rec.	106.40	%	70-130
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Lab Fort Blank Amt.	38.31	ug/m3	
		Lab Fort Blk. Found	48.78	ug/m3	
		Lab Fort Blk. % Rec.	127.32	%	70-130
	Trichlorofluoromethane	Lab Fort Blank Amt.	28.09	ug/m3	
		Lab Fort Blk. Found	43.50	ug/m3	
		Lab Fort Blk. % Rec.	154.84	%	70-130
	o-Xylene	Lab Fort Blank Amt.	21.71	ug/m3	
		Lab Fort Blk. Found	23.41	ug/m3	
		Lab Fort Blk. % Rec.	107.80	%	70-130
	m/p-Xylene	Lab Fort Blank Amt.	43.43	ug/m3	
		Lab Fort Blk. Found	44.67	ug/m3	
		Lab Fort Blk. % Rec.	102.86	%	70-130
	1,2-Dichloroberizene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	36.93	ug/m3	70.400
	4000	Lab Fort Blk. % Rec.	122.86	%	70-130
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk, Found	36.63	ug/m3	70 100
		Lab Fort Blk. % Rec.	121.86	%	70-130
	1,1-Dichloroethane	Lab Fort Blank Amt.	20.24	ug/m3	
		Lab Fort Blk. Found	18.81	ug/m3	70.100
		Lab Fort Blk. % Rec.	92.92	%	70-130
	1,1-Dichloroethylene	Lab Fort Blank Amt.	19.83	ug/m3	
		Lab Fort Blk. Found	26.05	ug/m3	70 120
	Visual Obligada	Lab Fort Black Aret	131.34	% 	70-130
	Vinyl Chloride	Lab Fort Blank Amt.	12.78	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Standard Reference Materials and Duplicates

Report Date:	10/3/2008	Lims Bat #: LIMT-20057		Page 4	of 7
QC Batch Number:				11-2	
Sample Id	Analysis	QC Analysis	Values	Units	Limits
FBLANK-86279	V/2-1-011-11-		10.50		
	Vinyl Chloride	Lab Fort Blk. Found	12.52	ug/m3	70.400
	Mark to a Otto 11	Lab Fort Blk. % Rec.	97.96	%	70-130
	Methylene Chloride	Lab Fort Blank Amt.	17.36	ug/m3	
		Lab Fort Blk. Found	21.06	ug/m3	
	Oldersker	Lab Fort Blk. % Rec.	121.32	%	70-130
	Chlorobenzene	Lab Fort Blank Amt.	23.02	ug/m3	
		Lab Fort Blk. Found	21.84	ug/m3	70.400
	Oblesses	Lab Fort Black Arch	94.86	%	70-130
	Chloromethane	Lab Fort Blank Amt.	10.32	ug/m3	
		Lab Fort Blk. Found	10.50	ug/m3	70 120
	Dramamathar -	Lab Fort Blk. % Rec.	101.72	% ua/m3	70-130
	Bromomethane	Lab Fort Blank Amt. Lab Fort Blk. Found	19.40	ug/m3	
		Lab Fort Blk. % Rec.	20.94 107.92	ug/m3 %	70-130
	Chlorosthoon	Lab Fort Blank Amt.	107.92		70-130
	Chloroethane	Lab Fort Blk. Found	13.63	ug/m3	
				ug/m3	70-130
,	sis 4.0 Diablessans	Lab Fort Black Arct	103.37	%	70-130
	cis-1,3-Dichloropropene	Lab Fort Blank Amt. Lab Fort Blk. Found	22.69 21.07	ug/m3	
		Lab Fort Blk. % Rec.	92.86	ug/m3 %	70-130
	trans 1.2 Diableronrenene	Lab Fort Blank Amt.	22.69	⁷⁶ ug/m3	70-130
	trans-1,3-Dichloropropene	Lab Fort Blk, Found	24.25	ug/m3	
		Lab Fort Blk. % Rec.	106.86	w %	70-130
	1.1.2 Trichlaraethana	Lab Fort Blank Amt,	27.28	⁷⁶ ug/m3	70-130
	1,1,2-Trichloroethane	Lab Fort Blk. Found	24.12	ug/m3	
		Lab Fort Blk. % Rec.	88.41	%	70-130
	1,1,2,2-Tetrachloroethane	Lab Fort Blank Amt.	34.33	ug/m3	70-130
	1, 1,2,2-160140110106014116	Lab Fort Blk. Found	31.92	ug/m3	
		Lab Fort Blk. % Rec.	92.98	%	70-130
	Hexachlorobutadiene	Lab Fort Blank Amt.	53.33	ug/m3	. 0 100
	. Total introduction in	Lab Fort Blk. Found	89.08	ug/m3	
		Lab Fort Blk. % Rec.	167.04	%	70-130
	1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	37.10	ug/m3	
	.,_,	Lab Fort Blk. Found	60.13	ug/m3	
		Lab Fort Blk. % Rec.	162.06	%	70-130
	1,2,4-Trimethylbenzene	Lab Fort Blank Amt.	24.58	ug/m3	
	, , ,	Lab Fort Blk. Found	28.49	ug/m3	
		Lab Fort Blk. % Rec.	115.92	%	70-130
	1,3,5-Trimethylberizene	Lab Fort Blank Amt.	24.58	ug/m3	
	•	Lab Fort Blk. Found	28.47	ug/m3	
		Lab Fort Blk. % Rec.	115.86	%	70-130
	cis-1,2-Dichloroethylene	Lab Fort Blank Amt.	19.82	ug/m3	
	,	Lab Fort Blk. Found	19.96	ug/m3	

39 Spruce Street $^\circ$ East Longmeadow, MA $\,$ 01028 $^\circ$ FAX 413/525-6405 $^\circ$ TEL. 413/525-2332 $\,$

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

40.92

117.08

ug/m3

70-130

%

Method Blanks

Report Date:	10/3/2008	Lims Bat # : LiMT-20057		Page 5	of 7
QC Batch Numl	ber: BATCH-15218				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-8627	'9				
	cis-1,2-Dichloroethylene	Lab Fort Blk. % Rec.	100.70	%	70-130
	1,2-Dichloropropane	Lab Fort Blank Amt.	23.10	ug/m3	
		Lab Fort Blk. Found	17.42	ug/m3	
		Lab Fort Blk. % Rec.	75.39	%	70-130
	Dichlorodifluoromethane	Lab Fort Blank Amt.	24.72	ug/m3	
		Lab Fort Blk. Found	33.17	ug/m3	
		Lab Fort Blk. % Rec.	134.18	%	70-130
	1,2-Dibromoethane	Lab Fort Blank Amt.	38.42	ug/m3	
		Lab Fort Blk. Found	38.06	ug/m3	
		Lab Fort Blk. % Rec.	99.06	%	70-130
	1,2-Dichlorotetrafluoroethane (11	Lab Fort Blank Amt.	34.95	ug/m3	

Lab Fort Blk. Found

Lab Fort Blk. % Rec.

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date:

10/3/2008

Lims Bat #: LIMT-20057 Page 6 of 7

NOTES:

QC Batch No.: Sample ID

BATCH-15218 LFBLANK-86279

Analysis

1,1-Dichloroethylene

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC Batch No.: Sample ID

BATCH-15218

LFBLANK-86279

Analysis

1,2,4-Trichlorobenzene

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC Batch No.:

BATCH-15218

Sample ID

LFBLANK-86279

Analysis

1,2-Dichloroethane

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC Batch No.:

BATCH-15218

Sample ID

LFBLANK-86279

Analysis

Carbon Tetrachloride

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC Batch No. :

BATCH-15218

Sample ID

LFBLANK-86279

Dichlorodifluoromethane

LABORATORY FORTIFIED BLANK RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANY REPORTED VALUE FOR THIS COMPOUND IS LIKELY TO BE BIASED ON THE HIGH SIDE.

QC Batch No.:

BATCH-15218

Sample ID

LFBLANK-86279

Analysis

Hexachlorobutadiene

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC Batch No.:

BATCH-15218

Sample ID

LFBLANK-86279

Analysis

Trichlorofluoromethane

LABORATORY FORTIFIED BLANK RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANY REPORTED VALUE FOR THIS COMPOUND IS LIKELY TO BE BIASED ON THE HIGH SIDE.

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date:

10/3/2008

Lims Bat #: LIMT-20057

Page 7 of 7

OUALITY CONTROL DEFINITIONS AND ABBREVIATIONS

QC BATCH NUMBER

This is the number assigned to all samples analyzed together that would be subject to comparison with a particular set of Quality Control Data.

Contro

LIMITS

Upper and Lower Control Limits for the QC ANALYSIS Reported. All values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY REPORT. Not all QC results will have Limits defined.

Sample Amount

Amount of analyte found in a sample.

Blank

Method Blank that has been taken though all the steps of the

analysis.

LFBLANK

Laboratory Fortified Blank (a control sample)

STDADD

Standard Added (a laboratory control sample)

Matrix Spk Amt Added MS Amt Measured

MS Amt Measured Matrix Spike % Rec. Amount of analyte spiked into a sample

Amount of analyte found including amount that was spiked

% Recovery of spiked amount in sample.

Duplicate Value Duplicate RPD

The result from the Duplicate analysis of the sample.

The Relative Percent Difference between two Duplicate Analyses.

Surrogate Recovery

The % Recovery for non-environmental compounds (surrogates) spiked into samples to determine the performance of the

analytical methods.

Sur. Recovery (ELCD) Sur. Recovery (PID) Surrogate Recovery on the Electrolytic Conductivity Detector.

Surrogate Recovery on the Photoionization Detector.

Standard Measured Standard Amt Added Standard % Recovery Amount measured for a laboratory control sample Known value for a laboratory control sample

% recovered for a laboratory control sample with a known value.

Lab Fort Blank Amt
Lab Fort Blk. Found
Lab Fort Blk % Rec
Dup Lab Fort Bl Amt
Dup Lab Fort Bl Fnd
Dup Lab Fort Bl % Rec

Lab Fort Blank Range

Laboratory Fortified Blank Amount Added Laboratory Fortified Blank Amount Found Laboratory Fortified Blank % Recovered

Duplicate Laboratory Fortified Blank Amount Added
Duplicate Laboratory Fortified Blank Amount Found
Duplicate Laboratory Fortified Blank % Recovery
Laboratory Fortified Blank % Recovery

Laboratory Fortified Blank Range (Absolute value of difference between recoveries for Lab Fortified Blank and Lab Fortified Blank Duplicate).

Lab Fort Bl. Av. Rec.

Laboratory Fortified Blank Average Recovery

Duplicate Sample Amt MSD Amount Added MSD Amt Measured Sample Value for Duplicate used with Matrix Spike Duplicate Matrix Spike Duplicate Amount Added (Spiked)

Matrix Spike Duplicate Amount Measured

Matrix Spike Duplicate % Recovery

Absolute difference between Matrix Spike and Matrix Spike Duplicate Recoveries

MSD % Recovery
MSD Range

÷

Phone: 413-525-2332 AIR SAMPLE CHAIN OF CUSTODY

RECORD AM - 20057

Fax: 413-525-6405
Email: info@contestlabs.com

39 SPRUCE ST
EAST LONGMEADOW, MA 01028

928

ELY OR IS	MPLETE	OT CC	LLED	M IS NOT FI	HIS FOR	IF T	CHAIN	ANO NO	ESTIONS	RE ARE QU	LESS THE	CEIPT U	SAMPLE RE	DAY AFTER	M. THE	TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS	UND TIME S	" TURNARC
	O = Other_	0 =		O = other							tuired	Approval Required	À.	ı				
	C=cassette	ငှု	^	BL = BLANK						Other:		□ *72-Hr □ *4-Day		Date/Time:	0		(signature)	Received by: (signature)
	F= filter	7		D = DUP	l			imits:	Detection L	Required Detection Limits:		☐ .24-Hr ☐ .48-Hr			_			
	be	T≂tube	ŠĽAB	SS = SUB SLAB				Applies)	(Surchage Applies)			HUSH •	ì	Date/Time:	0.	re)	by: (Signatur	Relinquished by: (signature)
	P =PUF	₽	ENT	AMB=AMBIENT			O Z	αge 🗅 Y	Data Pack	Enhanced Data Package 🛛 Y	1		C471	9/25/08	0			Br
Ö /	TB ≔tedlar bag	18	RAIR	IA= INDOOR AIR		~	Y 0 Z	CP?	ncement/F	Data Enhancement/RCP? 🛛 Y	10-Day	-	7	ate/Time:		1	(Signature)	Received by (Signature)
5	S=summa can	SE	SAS	SG= SOIL GAS					S:	Regulations:	7-Day			127/08	is,		The state of the s	N. Carlot
<u> es:</u>	"Media Codes:	N.	ię.	*Matrix Code:		ts	emen	Requir	Special Requirements		und **	Turnaround			0	re)	by (signature)	Relinquished by
			·					AMENTS:	CLIENT COMMENTS:	C	***	į.					omments:	Laboratory Comments:
											. *		· .	, ··				
						\vdash						1.	i. · ·	:				
	·	+				\dashv	-						ş					
											; ;;			+A				
			_			-	-			4			-					
		-	+			+	+											
· .									:					:	٠			
			_				_			. 3								
		+	+	1		+	+							UMOS BOOK	1			
	***************************************										7			A STATE OF THE STATE OF				
•	1742						5				3/8/00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		125898	2	W	000	
ID	ID	6 -	0 -		,0	10	Code*	N ₃	L/Min.	Sampled			H	Lab#	Media L	escription	Sample Description	Field ID
	Summa	<u> </u>					-	Volume	Flow Rate	+=	ô	6.5		Maria di Maria		proposal date		☐ yes
	cleaning.	on on	v v		119	110	ıŏ	NG PUMPS	WHEN US	ONLY USE WHEN USING	Sampled	Date Sa		The section of the second section of the se		Proposal Provided? (For Billing purposes)	ovided? (Fo	Proposal P
sampling date prior to	samplin	~ 7	n	_		<u>'</u>	馬	OTHER	GIS KEY	X P	D EXCEL Y	Format:	F	į.	• '			
retained for a minimum	retained	, .	- T	_	(v~							Email:	II	JOHEFF	195 5	HOFFEC.	1: 841	Sampled By:
Summa canisters will be	Summa	• 5	-		7 (_				Fax#	21	027	DRUPOLT	EAST OU		Project Location:
will apply.	will apply.	- 0	-		007	_			CLIENT	DWEBSITE	. I	DFAX C	[[-				
returned within 14 days	returne.	0 B	<u> </u>		POG					(check one):		DATA DELIVERY	미	•	のを行っる	THO SOS	.	Attention:
Summa canisters and flow controllers must be	flow cor	33			~65							Client PO#	 ဂ	11710	とく	BELLMOKE,	5.	
copy for your record.	copy for	G >	-	והני	REQUESTED	 						Froject #		C 50.70	13 Buc	W KEAFOXB	2	Addless.
and retain the yellow	and reta	_			ANAL TOIS	71.			00	1/-/	relepnone:(\oldot \infty) \rightarrow \frac{777}{7}	ephone:		0.67	1/0/2	- 1	lame: 157	Addross:
Please fill out	Please fill out	-	ВН "	5	* · · ·			. `	, ,	,	į (www.contestlabs.com	. €		Š	Company Name 9+1

INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

AIHA, NELAC & WBE/DBE Certified

Home | About UPS | Contact UPS | Getting Started | Site Guide

UPS Uni

Tracking Freight Locations Support Business Solutions

Password:

Tracking

Track Shipments

Track by Reference Track by E-mail Signature Tracking Import Tracking Numbers

Wireless Tracking Track with Quantum View Access Flex Global View Integrate Tracking Tools Void a Shipment &

Search Support

Enter a keyword:

Track Shipments

Log-in User ID:

Track Packages & Freight

Quantum View

Flex Global View

SI | Eargot Password

Tracking Summary

Printer Friendi

Tracking Number:

1Z RR0 288 03 7178 881 2

* View package progress

Type: Status: Package

Delivered On:

Delivered [2] 09/25/2008

12:45 P.M.

Delivered To:

EAST LONGMEADOW, MA, US

Signed By:

MURPHY

Service:

GROUND

Tracking results provided by UPS: 09/26/2008 8:02 A.M. ET

Printer Friendly 🚨

NOTICE: UPS authorizes you to use UPS tracking systems solely to track shipme tendered by or for you to UPS for delivery and for no other purpose. Any other us tracking systems and information is strictly prohibited.

rfome | Shipping | Tracking | Freight | Lecations | Support | Business Solidions | About UPS | Contact UPS | Register | Manage E-mail Prefe: Getting Started | Site Guide | Advanced Search | UPS Global | UPS Corporate

Copyright © 1994-2008 United Parcel Service of America, Inc. All rights reserved. Web Site Terms of Use | Privacy Policy | Trademarks | UPS Tariff/Terms and Conditions www.contestlabs.com

Sample Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

> P: 413-525-2332 F: 413-525-6405

CLIENT NAME:/	(* C /	3/mither REC	EIVED BY:	Km D	ATE:	9/25/
1) Was the chain(s) of custod	ly relinquishe	d and signed?	Q.	s) No		
2) Does the chain agree with If not, explain:	the samples?		(Ye	≥s⊃ No		
3) Are all the samples in good If not, explain:	l condition?		Ye	No No		
4) How were the samples rece	eived:					
On Ice Direct from	n Sampling	Ambi	ent 🔲 In C	ooler(s)		
Were the samples received in	Temperature	Compliance of	(2-6°C)? Ye:	s No		
Femperature °C by Temp blank		Temp	erature °C by Tem	p gun		
) Are there Dissolved samples	s for the lab t	o filter?	Yes	No		
Who was notified	Date	эТ	ime			
) Are there any samples "On I			Yes	No Sto	red where):
Are there any RUSH or SHOF		TIME samples?	Yes			
Who was notified						
Location where samples are	ſ 	0 60	Permission t	o subcontrac	t samples	? Yes No
accation miles campios and	/	AILL	(Walk-in clie		. ,	
			ſ		it all oddy .	spp. 5 voa
ranga masakan penggilaga			Client Signat		Falls Artifu	
			to Con-Te	st		
	# of conta				# of	containers
1 Liter Amber			8 oz clear	jar		
500 mL Amber	4.		4 oz clear	jar		
050 1 4 1 40		4.5	2 oz clear	jar	i	
250 mL Amber (80z amber)	1			^		
1 Liter Plastic			Other glass	s jar		
1 Liter Plastic			Other glass	Ziploc		
1 Liter Plastic 500 mL Plastic 250 mL plastic			Other glass Plastic Bag /	Ziploc tte		
1 Liter Plastic 500 mL Plastic 250 mL plastic			Other glass Plastic Bag / Air Casse	Ziploc tte		
1 Liter Plastic 500 mL Plastic 250 mL plastic 0 mL Vial - type listed below			Other glass Plastic Bag / Air Casse Brass Slee	Ziploc tte ves		2
500 mL Plastic 250 mL plastic 0 mL Vial - type listed below Colisure / bacteria bottle			Other glass Plastic Bag / Air Casse Brass Sleet Tubes	Ziploc tte /es ns		2
1 Liter Plastic 500 mL Plastic 250 mL plastic 0 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle			Other glass Plastic Bag / Air Casse Brass Sleev Tubes Summa Ca	Ziploc tte /es ns		48.
1 Liter Plastic 500 mL Plastic 250 mL plastic 0 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore			Other glass Plastic Bag / Air Casse Brass Sleev Tubes Summa Ca Regulator	Ziploc tte /es ns		2
1 Liter Plastic 500 mL Plastic 250 mL plastic 0 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore			Other glass Plastic Bag / Air Casse Brass Sleev Tubes Summa Ca Regulator	Ziploc tte ves ns		48.
1 Liter Plastic 500 mL Plastic 250 mL plastic 0 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore ratory Comments:	£ Methanol		Other glass Plastic Bag / Air Casse Brass Sleev Tubes Summa Ca Regulator	Ziploc tte ves ns		48.
1 Liter Plastic 500 mL Plastic 250 mL plastic 0 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle			Other glass Plastic Bag / Air Casse Brass Sleen Tubes Summa Ca Regulator Other	Ziploc tte ves ns s		2

APPENDIX 3

Landfill Gas Control Well Vacuum Data
East Northport Landfill, East Northport, New York
for period of record between January, 2006 and September, 2008

Well	1/06	5/06	3/06	4/06	90/9	90/9	90/2	90/8	90/6	10/06	11/06	12/06	1/07	2/07	3/07	4/07	2/02	20/9	2/07
CWI-4	-2.9	-2.6	-2.6	-3.0	-2.6	-0.1	-3.3	-5.2	-1.2	-2.8	-3.9	-4.2	-3.0	-3.6	-3.0	-3.0	-2.8	-2.8	-2.6
CWI-5	-3.3	-3.1	-3.2	-2.6	-2.8	0.0	-2.8	-1.9	-3.4	-2.3	4.4	-4.5	-3.4	-3.6	-3.2	-3.2	-2.9	-2.9	-2.7
CWI-6	-3.5	-3.1	-3.0	-3.0	-2.9	-0.3	-4.0	-6.4	-2.9	-2.9	-4.7	-4.3	-3.5	-3.7	-3.2	-3.2	-3.0	-2.9	-2.7
CWI-7	-3.0	-3.0	-2.8	-2.8	-2.8	-0.4	-2.8	-2.4	-3.1	-2.8	-4.5	-4.1	-3.3	NA	-3.0	-2.9	-2.8	-2.7	-2.5
CWII-1	-3.1	-3.0	-3.0	-2.9	-2.7	0.0	-3.2	-6.3	-2.9	-2.6	-4.3	-4.3	-3.4	-3.4	-2.7	-3.0	-2.7	-2.6	-2.5
CWII-2	-3.0	-2.9	-2.7	-2.8	-2.7	-0.5	-3.5	-5.9	-5.4	-2.6	4.2	-3.9	-3.3	-3.4	-2.6	-2.8	-2.6	-2.5	-2.4
CWII-3	-3.0	-2.9	-2.9	-2.7	-2.5	0.0	-2.6	-6.8	9.0-	-2.7	-4.3	4.1	-3.1	-3.4	-2.7	NA	NA	-2.6	-2.4
CWII-4	-2.8	-2.8	-2.4	-2.6	-2.7	6.0-	-3.2	-6.8	-2.7	-2.6	-5.0	-4.0	-3.1	-3.7	-2.7	-2.6	-2.5	-2.5	-2.3
CWII-5	-2.8	-2.5	-2.6	-2.7	-2.1	0.0	-2.3	-7.0	-2.6	-2.6	-0.3	-4.2	-3.2	-3.6	-2.6	-2.7	-2.5	-2.4	-2.3
9-IIMO	-1.4	-1.4	-1.5	-1.6	-1.9	-0.1	-1.0	-0.2	-1.7	-1.4	-1.7	-2.3	-2.0	-0.2	-1.7	-1.6	-1.7	-1.7	-1.6
CWII-7	-1.2	-1.0	-1.1	-0.7	-1.4	-0.2	8.0-	-0.2	-1.3	-1.1	-1.5	-1.7	-1.7	-1.3	-1.4	-1.4	-1.2	-1.3	-1.1
CWII-8	0.0	0.0	-0.2	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.0	-0.1	-0.1	-0.1	0.0
CWII-9	-0.9	9.0-	-0.7	-1.0	-0.8	-0.9	9.0-	-0.2	-0.9	-0.8	-0.9	-1.2	-1.4	-1.0	-1.0	-1.1	-0.9	-0.9	-0.8
NW-1	-2.8	-2.8	-2.8	-2.6	-2.2	-2.4	-3.2	4.0	-3.7	-2.5	-3.2	-3.9	-2.9	-3.4	-3.0	-2.9	-2.8	-2.6	-2.1
NW-2	-3.3	-2.9	-2.7	-2.6	-2.9	-2.7	-3.4	-4.5	-3.4	-3.2	4.2	4.5	-3.3	-3.7	-3.2	-3.2	-3.1	-3.9	-2.8
NW-3	-2.8	-2.9	-2.8	-2.7	-2.7	-2.8	-3.2	-4.0	-3.2	-2.8	-4.0	4.0	-2.3	-3.4	-2.9	-3.0	-2.7	-2.6	-2.6
NW-4	-2.9	-3.0	-3.0	-3.0	-2.7	-2.6	-2.4	-3.6	-2.8	-2.6	-4.0	-3.6	-2.8	-3.3	-2.6	-2.9	-2.6	-2.4	-2.4
NW-5	-2.3	-2.9	-2.6	-2.6	-1.2	-2.5	-2.2	-2.6	-2.3	-2.1	-3.6	-2.9	-2.3	-3.0	-2.2	-2.6	-2.2	-1.9	-2.1
9-MN	-2.2	-3.0	-2.9	-3.0	-1.6	-2.1	-2.8	-2.8	-2.5	-2.8	-3.1	-3.0	-2.3	-2.6	-2.3	-1.6	-2.3	-2.1	-2.0
Ext-1	0.0	0.0	0.0	-0.2	-0.2	-0.3	0.0	-0.7	-0.1	-0.1	-3.6	-3.4	-2.7	-0.1	0.0	0.0	0.0	-1.7	-0.1
Ext-2	-0.6	-0.8	-0.9	-0.8	-0.8	9.0-	-0.1	-3.0	6.0-	-0.7	-3.4	NA	-2.1	-1.1	-0.8	-0.9	-0.9	-2.1	-0.9
Ext-3	-2.1	-2.8	-2.7	-2.6	-2.2	-1.9	-0.5	-3.3	-2.3	-2.1	-3.3	-3.2	-2.3	-2.9	-2.2	-2.5	-2.3	-2.3	-2.1
Ext-4	-2.0	-1.9	-1.8	-1.6	-2.1	-2.0	-0.6	-2.0	-2.0	-2.1	-3.2	-3.5	-2.0	-2.7	-2.2	-2.3	-2.1	-0.9	-2.0
Ext-5	-0.8	-1.6	-1.4	-1.6	-1.7	-1.5	-0.2	-0.1	-1.6	-1.6	-2.4	-2.6	-2.0	-2.3	-2.0	-2.1	-1.9	-0.1	-1.7
N-1	-0.3	-0.2	-0.4	-0.4	9:0-	0.0	-1.0	-2.8	-1.5	-0.2	-0.2	-0.2	0.0	0.1	0.0	-0.2	-0.1	0.0	-0.1
N-2	-0.4	-0.4	-0.8	-0.7	NA	0.0	-0.1	6.0-	-0.3	9.0-	-0.5	-0.4	-0.3	-0.4	-0.4	-0.6	-0.3	-0.3	-0.5
N-3	-0.1	-0.1	0.0	-0.2	-0.1	-0.1	0.0	-0.3	-0.1	-0.1	-0.1	-0.2	0.0	0.0	-0.1	-0.1	-0.1	-0.1	-0.1
N-4	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0	-0.2	-0.1	-0.2	-0.1	-0.1	0.0	-0.2	-0.8	-0.1	-0.1	0.0	-0.1
N-5	-0.1	-0.1	0.0	-1.0	-0.1	-0.1	-0.1	-0.2	-0.2	-0.1	-0.1	-0.2	0.0	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1
9-N	NA	-0.8	-0.1	-0.2	NA	0.0	-1.1	-0.2	-0.9	-1.0	NA	NA	NA	NA	NA	-1.1	-0.8	6.0-	6.0-
BS-1	4.9	4.2	-5.1	-4.6	-4.6	-3.1	-8.5	-10.1	-6.1	-5.1	-7.3	-7.2	4.0	-5.6	-5.0	-5.1	-4.8	-7.3	4.3

Measured in inches of H20 NA - Not Available

Landfill Gas Control Well Vacuum Data
East Northport Landfill, East Northport, New York
for period of record between January, 2006 and September, 2008

				1	_	-							_		_		-	_	-	-						_		-			_
80/6	-1.9	-2.1	-2.1	-2.0	-2.0	-2.0	-2.0	-1.9	-1.9	-1.6	-1.1	0.0	8.0-	-1.9	-2.0	-1.8	-1.7	-1.5	-1.4	0.0	-0.5	-1.4	-1.5	-1.2	-0.2	-0.5	-0.1	-0.1	-0.1	-0.8	-3.0
8/08	-1.6	-1.9	-1.8	-1.8	-1.7	-1.7	-1.6	-1.6	-1.6	-1.6	-1.2	0.0	9.0-	-1.8	-1.7	-1.3	-1.5	-1.2	-1.2	-1.1	-1.0	9.0-	-1.7	-0.9	-0.2	9.0-	-0.1	-0.1	-0.2	NA	0.1
2/08	-2.1	-2.3	-2.4	-2.4	-2.4	-2.4	-2.7	-2.4	-2.5	0.0	0.0	-0.1	0.0	-1.9	-2.4	-2.1	-1.9	-1.6	-1.6	-0.1	-0.7	-1.7	-1.1	-0.4	-0.2	-0.5	-0.3	-0.1	-0.1	NA	-3.2
80/9	-1.8	-1.8	-1.9	-1.8	-1.7	-1.6	-1.7	-1.6	-1.6	-1.2	6.0-	-0.1	9.0-	-1.6	-2.1	-1.8	-1.6	-1.4	-1.3	0.0	-0.9	-1.6	-1.4	-1.1	-0.3	-0.5	-0.1	-0.1	-0.2	NA	-2.8
2/08	-3.4	-2.9	-2.9	-2.3	-2.6	-2.5	-2.3	-2.1	-2.4	-1.7	-1.3	-0.1	-0.9	-2.8	-3.2	-2.1	-2.9	-0.9	-2.1	-0.1	-2.2	-2.2	-2.0	-1.8	-0.1	-0.7	-0.1	-0.1	-0.2	NA	-4.8
4/08	-1.8	-3.0	-3.1	-2.7	-2.6	-2.6	-3.1	-2.5	-2.8	-1.6	-1.2	0.0	-0.9	-2.7	-2.9	-2.7	-3.1	-2.2	-2.1	0.0	-0.9	-2.2	-1.9	-1.8	-0.2	9.0-	-0.1	-0.1	-0.1	NA	-4.2
3/08	-3.7	-3.5	-3.4	-3.3	-3.2	-3.6	-3.1	-3.5	-3.1	-2.2	-1.7	0.0	-0.2	-3.1	-3.8	-3.1	-2.8	-2.2	-2.4	-0.1	-1.0	-2.7	-2.3	-2.1	-0.2	-0.4	-0.1	0.0	-0.1	NA	-5.2
2/08	-3.7	-3.7	-3.3	-3.7	-4.1	-3.2	-3.7	-1.8	-3.0	-1.2	-1.2	-0.1	-0.2	-3.0	-3.4	4.3	-3.4	-2.5	-2.4	-0.1	-1.0	-2.6	-2.4	-2.0	-0.3	NA	-0.2	-0.2	-0.1	NA	-5.0
1/08	-2.9	-3.1	-3.2	-3.0	-2.9	-2.9	-2.9	-2.9	-2.9	-2.0	-1.5	0.0	-1:1	-2.8	-3.1	-2.7	-2.4	-2.1	-2.1	-2.1	-0.9	-2.2	-2.1	-1.8	-0.1	9.0-	-0.1	-0.1	-0.1	NA	-4.5
12/07	-3.0	-3.5	-3.4	-3.1	-3.0	-3.5	-2.9	-3.6	-3.5	-0.2	-0.3	0.0	9.0-	-2.9	-3.3	-2.8	-2.6	-2.1	-2.2	-0.1	-0.9	-2.3	-2.2	-1.9	-0.2	9.0-	-0.2	-0.2	-0.1	NA	-5.1
11/07	-3.1	-3.0	-2.9	-2.5	-2.4	-2.5	-2.4	-2.3	-2.6	-1.3	-1.1	0.0	-0.9	-2.5	-3.1	-2.5	-2.2	-2.0	-2.2	-0.1	-0.7	-1.9	-1.9	-1.5	-0.2	9.0-	0.0	0.0	0.0	NA	4.7
10/07	-2.5	-2.7	-2.4	-2.4	-2.4	-2.4	-2.3	-2.2	-2.2	-1.5	-1.2	-0.1	-0.9	-2.5	-2.9	-2.4	-2.3	-1.9	-1.9	0.0	-0.7	-1.9	-2.2	-1.7	-0.2	-0.7	-0.2	-0.1	-0.2	-0.9	4.4
20/6	-2.5	-2.8	-2.2	-2.5	-1.5	-2.3	-2.4	-2.1	-2.4	-1.5	-1:1	0.0	-0.9	-2.4	-1.7	-2.0	-2.2	-1.8	-1.8	0.0	-0.8	-2.0	-1.9	-1.5	-0.2	-0.5	-0.1	-0.1	-0.1	-0.8	0.3
8/07	-2.6	-2.7	-2.6	-2.5	-2.3	-2.3	-2.3	-3.2	-2.2	-1.6	-1.2	0.0	-0.2	-2.6	-2.8	-2.5	-2.2	-1.8	-1.8	-0.1	-0.7	-2.1	-1.9	-1.6	-0.3	9.0-	-0.2	-0.1	-0.1	-0.9	-5.6
Well	CWI-4	CWI-5	CWI-6	CMI-7	CWII-1	CWII-2	CWII-3	CWII-4	CWII-5	CWII-6	CWII-7	CWII-8	CWII-9	NW-1	NW-2	NW-3	NW4	NW-5	9-MN	Ext-1	Ext-2	Ext-3	Ext-4	Ext-5	N-1	N-2	N-3	X	N-5	9-N	BS-1

Measured in inches of H20 NA - Not Available