NORTH SEA LANDFILL 1370 MAJORS PATH SOUTHAMPTON, NEW YORK # 2ND – SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2019 ## **SUBMITTED TO:** New York State Department of Environmental Conservation Division of Environmental Remediation 50 Circle Road Stony Brook, New York 11790 # PREPARED FOR: Town of Southampton 1370 Majors Path Southampton, New York 11968 # PREPARED BY: P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705 PWGC Project Number: SHP1901 # 2ND – SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2019 1370 MAJORS PATH SOUTHAMPTON, NY | TABL | LE OF C | ONTENTS | PAGE | |-------|---------|--|------| | 1.0 | INTR | ODUCTION | 1 | | | 1.1 | Purpose and Scope | 1 | | | 1.2 | Site Location and Description | 1 | | 2.0 | GRO | UNDWATER MONITORING PLAN | 2 | | | 2.1 | Sampling Frequency | 2 | | | 2.2 | Leachate Monitoring | | | | 2.3 | Groundwater Monitoring | | | | 2.4 | Well Condition Report | | | | 2.5 | Sample Collection Procedures | | | | 2.6 | Decontamination and Quality Assurance Quality Control Procedures | | | | 2.7 | Groundwater Quality | | | | | 2.7.1 Inorganic Water Quality Results - October 2019 | 4 | | | | 2.7.2 Organic Water Quality Results – October 2019 | 5 | | | | 2.7.3 Well Cluster 4 & 11 Analysis | | | | 2.8 | Groundwater Flow & Migration of Leachate Plume | | | | 2.9 | Leachate Quality | 6 | | 3.0 | DAT | A VALIDATION AND USABILITY REPORT | 7 | | | 3.1 | Data Validation | 7 | | | | 3.1.1 Data Completeness | 7 | | | | 3.1.2 Metals Analyses | 7 | | | | 3.1.3 Wet Chemistry Analyses | 7 | | | | 3.1.4 VOC Analyses | 8 | | | 3.2 | Data Usability Report | 8 | | 4.0 | SUM | MARY | 9 | | 5.0 | | DMMENDATIONS | | | 3.0 | ILL C | 7.1.1.E.(D)111101(0 | | | TABL | LES | | | | TABL | Ε 1 | INORGANIC WATER QUALITY RESULTS - SECOND HALF 2019 | | | TABL | Ε 2 | ORGANIC WATER QUALITY RESULTS - SECOND HALF 2019 | | | TABL | Æ 3 | LEACHATE RESULTS – SECOND HALF 2019 | | | TABL | Ε 4 | GROUNDWATER ELEVATIONS – SECOND HALF 2019 | | | FIGU | RES | | | | FIGUI | RE 1 | GROUNDWATER CONTOUR MAP – OCTOBER 2019 | | | FIGUI | RE 2 | CROSS SECTION MW-11A - OCTOBER 2019 | | | FIGUI | RE 3 | CROSS SECTION MW-11B – OCTOBER 2019 | | $SHP1901-2^{nd}-Semi-Annual\ Post-Closure\ Groundwater\ Monitoring\ Report\ 2019$ Page i | FIGURE 4 | CROSS SECTION MW CLUSTER 4 – AMMONIA – OCTOBER 2019 | |-----------|--| | FIGURE 5 | CROSS SECTION MW CLUSTER 4 – CHLORIDE – OCTOBER 2019 | | FIGURE 6 | CROSS SECTION MW CLUSTER 4 – CONDUCTIVITY – OCTOBER 2019 | | FIGURE 7 | CROSS SECTION MW CLUSTER 4 – IRON – OCTOBER 2019 | | FIGURE 8 | CROSS SECTION MW CLUSTER 4 – MANGANESE – OCTOBER 2019 | | FIGURE 9 | CROSS SECTION MW CLUSTER 4 – NITRATE – OCTOBER 2019 | | FIGURE 10 | CROSS SECTION MW CLUSTER 4 – TDS – OCTOBER 2019 | # **APPENDICES** | APPENDIX A | LABORATORY ANALYTICAL REPORTS / DATA VALIDATION & USABILITY | |------------|---| | | REPORT | | APPENDIX B | WELL INSPECTION CHECKLISTS | | APPENDIX C | MONITORING WELL SAMPLING LOGS | | APPENDIX D | 6 NYCRR PART 360-2: LANDFILLS | ### 1.0 INTRODUCTION # **Purpose and Scope** P.W. Grosser Consulting Inc. (PWGC) has prepared the following post-closure groundwater monitoring report for the North Sea Landfill, Southampton, NY. This report is intended to satisfy the New York State Department of Environmental Conservation (NYSDEC) requirements for post-closure monitoring at the North Sea Landfill. The landfill is currently in post-closure and was removed from the United States Environmental Protection Agency (USEPA) Superfund National Priorities List (NPL) in 2005. The report provides a summary of the groundwater monitoring and results of groundwater and leachate samples collected during the Second Half of 2019. # **Site Location and Description** North Sea Landfill (the Landfill) was initially constructed in 1963 for the disposal of solid waste, refuse and septic system waste. The Landfill consisted of three cells (Cell No. 1, Cell No. 2 and Cell No. 3), sludge lagoons, a leachate collection system and a gas monitoring system. Cell No. 1 is an inactive, unlined landfill that has been capped and closed. Cell No. 2 is an inactive, lined landfill with a leachate collection system that was capped and closed in 1990. Cell No. 3 is a 6.6 acre, inactive, lined landfill with a leachate collection system that was capped and closed in 1997. The sludge lagoons were decommissioned in 1986. #### 2.0 GROUNDWATER MONITORING PLAN Groundwater monitoring and sampling is performed in accordance with the USEPA approved Operation and Maintenance (O&M) Manual dated November 1994. The groundwater monitoring plan for the site calls for the monitoring of both leachate and groundwater to confirm that the historic operation of the facility has not adversely impacted groundwater quality. The groundwater well network currently utilized for monitoring purposes at the Landfill consists of 20 groundwater monitoring wells that were installed as a part of the Remedial Investigation / Feasibility Study, the Cell No. 3 landfill expansion hydrogeologic investigation, and earlier monitoring activities. # 2.1 Sampling Frequency In accordance with the O&M Manual, groundwater monitoring well sampling was performed on a quarterly basis. In 2005, the USEPA and NYSDEC approved a reduction of the number of wells sampled and sampling frequency to semi-annual as detailed in the table below: | 1st Half Semi-Annual Sa | mpling (April) | 2 nd Half Semi-Annual Sa | mpling (October) | |-------------------------|---------------------|-------------------------------------|---------------------| | Analysis | Sample | Analysis | Sample Locations | | | Locations | | | | Baseline Parameters | 1A, 1B, 1C, 3A, | Routine Parameters | 1A, 1B, 1C, 3A, 3B, | | (6 NYCRR Part 360-2.11 | 3B, 3C, 4A, 4B, 4C, | (6 NYCRR Part 360-2.11 | 3C, 4A, 4B, 4C, | | (d)(6) | 11A, 11B, 12A, & | (d)(6)) | 6AR, 6B, 8, 9, 11A, | | | 12B | | 11B, 12A, 12B | | | | Baseline Parameters | 6AR, 6B, 11A, & | | | | (6 NYCRR Part 360-2.11 | 11B | | | | (d)(6)) | | | | | Metals Only | | | Routine Parameters + | LEA-Primary & | Baseline Parameters | 11A & 11B | | Arsenic | LEA-Secondary | (6 NYCRR Part 360-2.11 | | | (6 NYCRR Part 360-2.11 | | (d)(6)) | | | (d)(6) | | VOCs Only | | | Minus VOC Analysis | | Routine Parameters + | LEA-Primary & | | | | Arsenic | LEA-Secondary | | | | (6 NYCRR Part 360-2.11 | | | | | (d)(6)) | | | | | Minus VOC Analysis | | Note: Filtered metals analysis run on samples with turbidity in excess of 50 nephelometric turbidity units (NTUs). **Appendix D** includes list of analytes for 6 New York Codes, Rules and Regulations (NYCRR) Part 360-2.11 (d) (6). ## 2.2 Leachate Monitoring The objectives of the leachate monitoring program are to adequately characterize and monitor the composition of: - 1. Leachate in the primary leachate collection systems; - 2. Liquids detected in the secondary liquids collection systems, prior to off-site treatment and disposal. The Town of Southampton monitors the leachate storage system and submits monthly status reports, which includes the monthly summary tables of leachate volumes consisting of the amount of leachate trucked, storage tank levels and the volume of leachate removed from the storage tank. Leachate quantity removals and allowable leakage rate (ALR) calculations will be discussed in the Annual Report. ## 2.3 Groundwater Monitoring The groundwater monitoring well network for the Landfill consists of nine groundwater monitoring locations (MW-1A, B, C, MW-3A, B, C, MW-4A, B, C, MW-6AR, B, MW-7, MW-8, MW-9, MW-11A, B, and MW-12A, B) which are currently in use. Several of these locations are constructed with multiple wells which are screened at varying depths throughout the aquifer (A=shallow, B=intermediate, C=deep). Seventeen groundwater monitoring wells, as well as the primary and secondary leachate collection systems were sampled on October 21 and 22, 2019 as part of the Second Half 2019 sampling event. Samples collected as part of the Second Half 2019 sampling event were delivered to Pace Analytical Laboratories of Melville, New York and analyzed for the routine parameters. In addition, four samples (MW-6AR, MW-6B, MW-11A, and MW-11B) were analyzed for baseline metals and two samples (MW-11A and MW-11B) were analyzed for baseline volatile organic compounds (VOCs). Turbid groundwater samples were also analyzed for filtered metals (MW-11B). The data collected in the field and laboratory are summarized on **Tables 1** through **4** and the laboratory reports are attached in **Appendix A**. Depth to water and groundwater elevation data are summarized on **Table 4** and a water table flow map is shown on **Figure 1**. Analytical results from each monitoring well were compared to applicable standards and guidance values, as well as analytical results from the previous years. Compounds that exceed current NYSDEC groundwater standards or guidance values are indicated by shading on **Tables 1** through **3** and are discussed in the water quality section of this report. # 2.4 Well Condition Report During the Second Half 2019 sampling event, PWGC conducted an assessment of the monitoring wells. Well assessment checklists (**Appendix B**) were filled out appropriately in the field during the sampling event. The assessment checklist included well headspace readings, well conditions, and recommendations. The protective cover and well casing at grade of MW-11B was observed to be damaged and repairs are anticipated to be completed before the First Half 2020 sampling event. The J-plug for the well casing was observed to be missing from MW-6AR. Headspace readings were collected utilizing a photoionization detector (PID). No PID responses were observed. No other deficiencies with the
well conditions were noted. # 2.5 Sample Collection Procedures Prior to collection of each sample, a minimum of three casing volumes were evacuated (purged) from the well using a Grundfos, submersible pump and temperature, specific conductivity, pH, dissolved oxygen, oxygen reduction potential (ORP) and turbidity measurements were collected and recorded. Groundwater sampling logs are included in **Appendix C**. Groundwater samples were collected using disposable polyethylene bailers and Page 3 a dedicated polyethylene line. Primary and secondary leachate collection systems were also sampled using disposable polyethylene bailers and a dedicated polyethylene line. Additional sample volume was collected from groundwater monitoring wells where turbidity could not be reduced below 50 NTUs for laboratory filtering of metals. This included groundwater monitoring well MW-11B. ## 2.6 Decontamination and Quality Assurance Quality Control Procedures All non-disposable sampling equipment (i.e. submersible pump) were decontaminated prior to and between each well by using a distilled water and non-phosphate detergent wash followed by a distilled water rinse. # 2.7 Groundwater Quality During the Second Half 2019 (October) groundwater sampling event, samples from seventeen groundwater monitoring wells were collected and submitted for analysis of routine and/or baseline metals and VOC parameters. The inorganic portion of the analysis includes metals, nutrients, and the physical properties of the sample. Routine parameters include a condensed version of the baseline parameters. Routine metals are reduced to cadmium, calcium, iron, lead, magnesium, manganese, potassium, and sodium. In addition, VOCs, color and hexavalent chromium are not analyzed as part of the routine parameters. Specific conductivity, temperature, turbidity, and pH values were reported from field measurements. However, they are listed in **Table 1** and discussed in the inorganic water quality section below. The list of organic groundwater quality results (**Table 2**) is comprised of VOCs. Groundwater quality as it relates to inorganic metal concentrations is evaluated by looking at the total metal concentrations for samples with turbidity values below 50 NTUs and dissolved metal concentrations with turbidity values above 50 NTUs. The laboratory results are compared to NYSDEC's Class GA Groundwater Standards, 6NYCRR Part 703. Analytical results are discussed below. The locations of groundwater monitoring wells are illustrated on **Figure 1**. The wells are grouped into clusters consisting of varying depths (A=shallow, B=intermediate, C=deep). ### 2.7.1 Inorganic Water Quality Results – October 2019 Long Island groundwater generally has a low pH and is typically measured below the NYSDEC standard range of 6.5 to 8.5. Twelve of the seventeen samples had a measured pH level below 6.5. pH concentrations ranged from 4.75(MW-4A) to 6.83 (MW-4C). Iron was detected above method detection limits in each of the seventeen groundwater samples. Iron concentrations ranged from 0.0285 mg/L (MW-3C) to 35.6 mg/L (MW-11A). Iron was detected in ten of the seventeen groundwater samples (MW-1A, MW-3A, MW-3B, MW-4A, MW-4B, MW-4C, MW-8, MW-9, MW-11A, and MW-12A) at a concentration exceeding the NYSDEC groundwater standard (0.3 mg/L). Manganese was detected above method detection limits in fifteen of the seventeen groundwater samples. Manganese concentrations ranged from less than 0.01~mg/L to 5.40~mg/L (MW-11A). Manganese was detected in six of the seventeen groundwater samples Page 4 (MW-1A, MW-3A, MW-3B, MW-4B, MW-11A, and MW-12A) at a concentration exceeding the NYSDEC groundwater standard (0.3 mg/L). Sodium was detected above method detection limits in each of the seventeen groundwater samples. Sodium concentrations ranged from 7.82 mg/L (MW-6B) to 44.2 mg/L (MW-4C). Sodium was detected in three of the seventeen groundwater samples (MW-3A, MW-4B, and MW-4C) at a concentration exceeding the NYSDEC groundwater standard (20 mg/L). Ammonia was detected above method detection limits in eight of the seventeen groundwater samples. Ammonia concentrations ranged from less than 0.1 mg/L to 2.1 mg/L (MW-4B). Ammonia was detected in one of the seventeen groundwater samples (MW-4B) at a concentration exceeding the NYSDEC groundwater standard (2.0 mg/L). Phenols were detected above method detection limits in fifteen of the seventeen groundwater samples. Phenol concentrations ranged from less than 0.005 mg/L to 0.0176 mg/L (MW-9). Phenol was detected in fifteen of the seventeen groundwater samples (MW-1A, MW-1B, MW-1C, MW-3A, MW-3B, MW-3C, MW-4A, MW-4B, MW-4C, MW-6B, MW-9, MW-11A, MW-11B, MW-12A, and MW-12B) at a concentration exceeding the NYSDEC groundwater standard (0.001 mg/L). # 2.7.2 Organic Water Quality Results – October 2019 Groundwater samples collected from two of the wells (MW-11A and MW-11B) were analyzed for VOCs as part of the Second Half 2019 sampling program (**Table 2**). Analytical results indicate that no VOCs were detected in the groundwater sample collected from MW-11A. One VOC, Toluene, was detected in the groundwater sample collected from MW-11B at a concentration of 0.0554~mg/L, exceeding the NYSDEC groundwater standard (0.005~mg/L). The presence of Toluene has not been historically detected and will be monitored closely in future sampling events. ### 2.7.3 Well Cluster 4 & 11 Analysis Monitoring wells MW-4A, MW-4B, and MW-4C are located down-gradient of the Landfill along the edge of Fish Cove Pond. These wells represent the farthest down-gradient wells that are used to monitor the Landfill. Historical monitoring has shown that the leading edge of the leachate plume is migrating into Fish Cove Pond. In addition, there is an upward groundwater flow gradient from MW-4C to MW-4B. Concentrations of Conductivity, Chloride, and total dissolved solids (TDS), have been increasing in MW-4C. The increasing trends observed in MW-4C may be attributed to a former salt storage area. The former salt storage area was located at the southwestern portion of the North Sea Landfill. A monitoring well was installed in this area during the Remedial Investigation and Feasibility Study (RI/FS) performed under the USEPA and NYSDEC oversite. This well exhibited similar water quality of elevated chlorides as that exhibited in MW-4C. This area was not included as an operable unit at the time of the RI/FS and Remedial actions. These increasing trends are not coupled with any significant increases in iron and manganese which would indicate the presence of leachate that is being broken down. Iron and manganese are prevalent in MW-4B where the plume has been documented and concentrations are consistently fluctuating. Iron and manganese levels in MW-4C are gradually increasing. A steady increase in Nitrate has been observed in MW-4A in past sampling events. This is likely attributed to the increase in Page 5 development of the area up-gradient of this well by homes with onsite sanitary systems. Concentrations of Nitrate are lower in the onsite landfill wells with the exception of MW-1A, located adjacent to a compost storage area. Trend charts are included as **Figures 4** through **10** to depict historic trends in monitoring wells MW-4A, 4B, and 4C. Monitoring wells MW-11A and MW-11B are located down-gradient of Cell 3. These wells have been under close observation since March 1993. A graph of several leachate indicators detected in samples collected from monitoring wells MW-11A and MW-11B since 1997 are shown on **Figures 2** and **3**. Detected concentrations of certain constituents were noted in MW-11A and MW-11B during this sampling event. A review of the trends shows that concentrations have generally decreased over time indicating that the plume continues to degrade over time. Slightly elevated concentrations of iron, manganese, and lead are still detected in these wells. # 2.8 Groundwater Flow & Migration of Leachate Plume Groundwater elevation data and laboratory analytical results are utilized to determine groundwater flow and to map the horizontal and vertical migration of the leachate plume. Depth to water and groundwater elevation data are shown on **Table 4**. A groundwater contour map for October 2019 (**Figure 1**) was created with groundwater elevation data from seven water table monitoring wells (MW-1A, MW-3A, MW-4A, MW-7A, MW-8, MW-11A, and MW-12A). An evaluation of the water table elevation data indicates that groundwater flows from the landfill towards Fish Cove Pond. At Fish Cove Pond, an upward vertical flow component has been observed based upon head differential observed in the groundwater monitoring wells indicating groundwater is discharging into the pond. Based upon historical groundwater sampling results and previous remedial investigations, the leachate plume migrates from the landfill, specifically Cell No. 1, and travels horizontally towards the northwest and discharges into Fish Cove Pond. The plume has been observed at its deepest point vertically at the MW-3B depth interval. # 2.9 Leachate Quality The October 2019 analytical data indicate that contaminant concentrations in the leachate detection system (secondary) are lower when compared to those of the leachate collection system (primary). Concentrations observed in both the primary and secondary leachate are higher when compared to concentrations detected during the April 2019 sampling event. Total precipitation was greater during the First Half of 2019 (28.69 inches), from October 2018 through April 2019, when compared to the Second Half of 2019 (25.73 inches), from May 2019 through October 2019. The analytical results for the primary and secondary leachate are shown on **Table 3** and the laboratory report is attached as part of **Appendix A**. ### 3.0 DATA VALIDATION AND USABILITY REPORT #### 3.1 Data Validation In accordance with the contract, five percent of the groundwater analytical results were
validated by Premier Environmental Services, Merrick, New York. As part of the data validation process, all quality control (QC) issues were reviewed. A copy of the data validation and usability report is included in **Appendix A**. Compliance chart, re-submission communications, and the NYSDEC laboratory sample preparation and analysis summary forms are also included. In summary, sample processing was primarily conducted with compliance to protocol requirements and adherence to quality criteria. Sample results are usable as reported or usable with minor qualification as estimated or edited to non-detection with the exception of Iodomethane which was rejected. These issues are discussed in the following analytical section. Although only 5% of the samples underwent full validation review, recommended qualifications below are stated to include all project samples as pertains to general quality issues, and where otherwise evident. # 3.1.1 Data Completeness Data packages were complete as received: no additional documentation was required. ### 3.1.2 Metals Analyses Review was conducted for method compliance, holding times, calibration analysis, ICP CRDL standard, ICP interference check standard, matrix spike analysis, post digestion spike analysis, duplicate sample analysis, ICP serial dilution, blanks, laboratory control sample analysis, instrument QC data, compound identification, field duplicate sample analysis, and system performance and overall assessment to each procedure. All were found acceptable for the validated samples, unless noted specifically within this text. Site specific matrix spike and matrix spike duplicate (MS/MSD) analysis was performed on sample MW-8 (Total Metals). Percent recovery of target analytes met QC criteria with the exception of Iron and Silver. These target compounds have been estimated "*UJ*" qualified in the sample chosen for review. The ICP serial dilution analysis was performed for both Total and Dissolved metals. The site specific serial dilution analysis was performed on sample MW-11B8 for Dissolved metals. The recovery of reported analytes met QC criteria with the exception of Sodium. Sodium has been estimated "J"/"UJ" qualified in the sample chosen for review. # 3.1.3 Wet Chemistry Analyses Review was conducted for method compliance, holding times, calibration analysis, matrix spike analysis, duplicate sample analysis, blanks, laboratory control sample analysis, compound identification, field duplicate sample analysis, and system performance and overall assessment to each procedure. All were found acceptable for the validated samples, unless noted specifically within this text. Blank analyses are assessed to determine the existence and magnitude of contamination problems. The Equipment Blank sample was free from contamination of target analytes with the exception of Total Recoverable Phenolics (TRP). TRP has been negated "U" qualified in the sample chosen for review due to blank contamination. # 3.1.4 VOC Analyses Review was conducted for method compliance, holding times, surrogates, matrix spike/spike duplicate analysis, blank spike analysis, blank contamination, GC/MS calibration, GC/MS Internal Standards Performance, GC/MS mass spectrometer tuning, field duplicate analysis, compound identification and overall assessment. All were found acceptable for the validated samples, unless noted specifically within this text. All target analyte percent relative standard deviation (%RSD) criteria were met in the continuing calibration standard analysis associated with this data set with the exception of Acetone, Bromomethane, 2-Butanone, and Iodomethane. Acetone, Bromomethane, and 2-Butanone have been estimated "J"/"UJ" qualified. Iodomethane has been deemed unusable "R" qualified due to the high %RSD in the standard analysis. ## 3.2 Data Usability Report According to the Data Usability report, the analytical data were compliant with established protocols and met the project data quality objectives (DQO) and are usable, with the appropriate qualifiers, to determine the presence, absence, and magnitude of environmental contamination in the samples collected from the site with the exception of Iodomethane. A copy of the Data Usability report is included in **Appendix A**. ### 4.0 SUMMARY Review of the data for the Second Half 2019 indicates that previously implemented remedial actions continue to be effective at minimizing potential site impacts. In brief, the leachate quality has remained similar and the groundwater quality with regards to the inorganic constituents has improved when compared to the previous reporting periods. The groundwater quality with regards to the organic constituents has remained below laboratory detection levels except for toluene. The presence of toluene has not been historically detected and will be closely monitored in future sampling events. Several inorganic compounds are sporadically detected in wells MW-3A, 3B, 4A, 4B, 4C, 9, 11A, 11B, 12A, and 12B above groundwater standards. Sample results are usable, with the appropriate qualifiers, to determine the presence, absence, and magnitude of environmental contamination in the samples collected from the site with the exception of Iodomethane. Monitoring well cluster MW-4 has shown Nitrate and former salt storage impact. Nitrate concentrations in MW-4A have been trending upwards and are a potential result of development of the area upgradient. Conductivity, Chloride, and TDS concentrations have been trending upwards in MW-4C, indicating potential impact from the former salt storage area at the landfill. # **5.0 RECOMMENDATIONS** PWGC recommends that the post-closure monitoring and maintenance operations program be continued, and the groundwater and leachate sampling program be continued on a semi-annual basis. # **TABLES** | ANALYTICAL | UNITS | GW | | | | | | | | | | MW | /-1A | | | | | | | | | | |------------------------|---------|----------|-----------|---|------------|----|-----------|---|--------------|-----------|----|--------------|------------|---|--------------|-----------|----|------------|----|-----------|---|--------------| | PARAMETERS | | STND (1) | April 201 | 4 | October 20 | 14 | April 201 | 5 | October 2015 | April 201 | 16 | October 2016 | April 2017 | | October 2017 | April 201 | 8 | October 20 | 18 | April 201 | 9 | October 2019 | | Aluminum as Al | mg/L | NA | 0.00336 | В | PNA | | 0.0059 | U | PNA | 0.2 | U | PNA | 0.0576 | J | PNA | 0.0134 | UJ | PNA | | 0.2 | U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U | PNA | | 0.003 | U | PNA | 0.06 | U | PNA | 0.06 | Ú | PNA | 0.003 | U | PNA | | 0.06 | U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0011 | U | PNA | | 0.0033 | U | PNA | 0.01 | U | PNA | 0.01 | U | PNA | 0.0068 | U | PNA | | 0.01 | U | PNA | | Barium | mg/L | 1 | 0.0202 | В | PNA | | 0.0768 | В | PNA | 0.0246 | J | PNA | 0.0239 | J | PNA | 0.0218 | J | PNA | | 0.2 | U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | | 0.0001 | U | PNA | 0.005 | U | PNA | 0.005 | U | PNA | 0.0006 | U | PNA | | 0.005 | U | PNA | | Boron as B | mg/L | 1 | 0.027 | В | PNA | | 0.074 | В | PNA | 0.0291 | J | PNA | 0.0178 | J | PNA | 0.0324 | J | PNA | | 0.0917 | | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.00011 | U | 0.0003 | U | 0.0002 | U | 0.0001 U | 0.0025 | U | 0.0025 U | 0.0025 | U | 0.0025 U | 0.00011 | J | 0.0025 | U | 0.0025 | U | 0.0025 U | | Calcium as Ca | mg/L | NA | 18.2 | | 63.5 | | 51.8 | | 76.6 | 18.2 | | 60.5 | 8.44 | | 55.6 | 17.7 | | 63.9 | | 76.4 | | 63.4 | | Chromium as Cr | mg/L | 0.05 | 0.0031 | В | PNA | | 0.0011 | U | PNA | 0.01 | U | PNA | 0.0082 | J | PNA | 0.0016 | U | PNA | | 0.01 | U | PNA | | Cobalt | mg/L | NA | 0.00019 | U | PNA | | 0.0006 | U | PNA | 0.05 | U | PNA | 0.0021 | J | PNA | 0.0006 | U | PNA | | 0.05 | U | PNA | | Copper as Cu | mg/L | 0.2 | 0.00076 | U | PNA | | 0.0027 | В | PNA | 0.0019 | J | PNA | 0.0048 | J | PNA | 0.0025 | U | PNA | | 0.025 | U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | | 0.01 | U | PNA | 0.01 | U | PNA | 0.01 | U | PNA | 0.0029 | U | PNA | | 0.01 | U | PNA | | Iron as Fe | mg/L | 0.3 | 0.0297 | В | 0.163 | | 0.0371 | В | 0.0928 B | 0.0645 | J | 0.399 | 0.527 | | 0.0625 | 0.0109 | U | 0.0601 | | 0.0261 | | 0.742 | | Lead as Pb | mg/L | 0.025 | 0.0052 | | 0.0013 | U | 0.0022 | U | 0.0023 B | 0.0027 | J | 0.005 U | 0.0015 | J | 0.005 U | 0.0013 | U | 0.005 | UB | 0.005 | U | 0.005 U | | Magnesium | mg/L | 35 # | 7.54 | | 25.4 | | 25.4 | | 32.9 | 7.73 | | 23.8 | 3.280 | | 22.100 | 7.25 | J | 24.8 | | 28.7 | | 22.6 | | Manganese as Mn | mg/L | 0.3 | 0.0099 | В | 0.0218 | | 0.0075 | В | 0.008 B | 0.055 | | 0.258 | 0.290 | | 0.028 | 0.005 | U | 0.0196 | | 0.01 | U | 0.217 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | | 0.0001 | U | PNA | 0.0002 | U | PNA | 0.0002 | U | PNA | 0.000056 | U | PNA | | 0.0002 | U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0012 | В | PNA | | 0.0009 | В | PNA | 0.04 | U | PNA | 0.0042 | J | PNA | 0.0009 | UJ | PNA | | 0.04 | U | PNA | | Potassium | mg/L | NA | 5.17 | | 14.1 | | 6.62 | | 21.7 | 4.79 | J | 14.8 | 2.930 | J | 12.900 | 4 | J | 12.5 | | 13.9 | | 12.6 | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA | | 0.0038 | U | PNA | 0.01 | U | PNA | 0.01 | U | PNA | 0.0063 | U | PNA | | 0.01 | U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | | 0.0022 | U | PNA | 0.01 | U | PNA | 0.01 | U | PNA | 0.0036 | UJ | PNA | | 0.01 | U | PNA | | Sodium as Na | mg/L | 20 | 11.2 | | 14.7 | | 20.4 | | 17.4 | 10.7 | | 15.2 | 8.470 | | 13.400 | 11.1 | | 15.2 | | 15.4 | | 18.6 | | Thallium as Tl | mg/L | 0.0005# | 0.0013 | U | PNA | | 0.0038 | U | PNA | 0.01 | U | PNA | 0.01 | U | PNA | 0.0036 | U | PNA | | 0.01 | U | PNA | | Vanadium | mg/L | NA | 0.00039 | U | PNA | | 0.0009 | В | PNA | 0.05 | U | PNA | 0.05 | U | PNA | 0.0008 | U | PNA | | 0.05 | U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0162 | В | PNA | | 0.0121 | В | PNA | 0.02 | U | PNA | 0.02 | U | PNA | 0.0022 | UJ |
PNA | | 0.02 | U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 27.1 | | 119 | | 60.4 | | 131 H | 34.6 | | 115 | 23.2 | | 132 | 46.6 | | 98.4 | | 178 | | 127 | | Chloride as Cl | mg/L | 250 | 21.5 | | 27.4 | | 46.9 | | 30.6 | 21.9 | | 25 | 14.0 | | 22.6 | 18.3 | | 30.2 | | 39.6 | | 41.0 | | Sulfate as SO4 | mg/L | 250 | 41.3 | | 119 | | 139 | | 193 | 35.4 | | 100 | 8.9 | | 85.8 | 37.2 | | 125 | | 120 | | 106 | | Bromide | mg/L | 2 # | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | 0.5 | U | 0.5 U | | U | 0.5 U | 0.038 | J | 0.5 | U | 0.5 | U | 0.50 U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 U | 2 | U | 2 U | 1 | U | 2 U | 2 | U | 4.1 | | 2 | U | 2.0 U | | COD | mg/L | NA | 18.4 | | 10 | U | 17.4 | | 10 U | | U | 10 U | | U | 10 U | 10 | U | 15.5 | | 32.2 | | 10.2 | | Color | units | NA | 5 | U | PNA | | 10 | | PNA | 5 | U | PNA | 20 | | PNA | 5 | U | PNA | | 10 | | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA | | 0.02 | U | PNA | 0.02 | U | PNA | | U | PNA | 0.003 | U | PNA | | 0.02 | U | PNA | | Hardness as CaC03 | mg/L | NA | 76 | | 270 | | 500 | | 260 | 76 | | 212 | 40 | | 200 | 166 | | 187 | | 265 | | 220 | | Ammonia as N | mg/L | 2 | 0.11 | | 0.1 | U | 0.18 | U | 0.1 | 0.33 | | 0.1 U | | U | 0.1 U | 0.018 | J | 0.10 | U | 0.1 | U | 0.10 U | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 | U | 0.1 | U | 0.1 U | 0.1 | U | 0.1 U | | U | 0.05 U | 0.05 | U | 0.050 | U | 0.05 | U | 0.050 U | | Nitrate as N | mg/L | 10 | 3.09 | | 6.15 | | 6.95 | | 8.33 U | 2.82 | | 6.9 | 1.3 | | 6.4 | 4 | | 10.5 | | 11 | | 6.6 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.005 | U | 0.0062 | 0.0127 | | 0.005 U | 0.0564 | | 0.005 U | 0.0056 | | 0.005 | U | 0.005 | U | 0.0118 | | Tot Dissolved Solids | mg/L | NA | 107 | | 369 | | 377 | | 457 | 125 | | 328 | 73.0 | J | 305.0 | 144 | | 326 | | 390 | | 330 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.23 | | 0.1 | U | 0.94 | | 0.1 U | 0.1 | U | 0.1 U | 0.16 | | 0.38 | 0.1 | U | 0.10 | U | 0.1 | U | 0.10 U | | Tot Organic Carbon | mg/L | NA | 1.7 | | 32.8 | | 5.3 | | 5.21 | 1.6 | | 3.40 | 0.82 | J | 3.7 B | 1.2 | | 4.4 | | 6.2 | | 4.8 | | Turbidity | NTU | NA | 0 | | 0 | | 0 | | 1.04 | 10.9 | | 30 | 0.0 | | 2.8 | 5.4 | | 5.1 | | 0.0 | | 3.9 | | Temperature | deg.C | NA | 11.08 | | 12.57 | | 11.58 | | 12.51 | 11.79 | | 16.07 | 12.00 | | 12.26 | 11.42 | | 12.16 | | 12.01 | | 12.77 | | рН | units | 6.5-8.5 | 5.77 | | 6.14 | | 6.08 | | 6.24 | 5.93 | | 6.16 | 5.90 | | 6.09 | 5.54 | | 5.61 | | 6.73 | | 6.29 | | Spec. Cond | umho/cm | NA | 253 | | 735 | | 655 | | 741 | 231 | | 554 | 138 | | 568 | 244 | | 192 | | 373 | | 522 | #### NOTES: - (1) = NYSDEC, Class GA Groundwater Standards - Bold indicates update due to data validation. - # = Guidance value, no standard exists. - NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - $\it R$ $\it Data\ Validation\ Qualifier$ $\it Rejected.$ - U Indicates the compound was analyzed for, but not detected. - $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | ANALYTICAL | UNITS | GW | | | | | | | | | | | MV | V-1B | | | | | | | | | | | |------------------------|---------|----------|-----------|---|------------|----|-----------|---|------------|----|------------|---|--------------|------|-----------|---|--------------|--------|------|---|-------------|----|------------|--------------| | PARAMETERS | | STND (1) | April 201 | 4 | October 20 | 14 | April 201 | 5 | October 20 | 15 | April 2016 | | October 2016 | Ap | oril 2017 | | October 2017 | April | 2018 | | October 201 | 18 | April 2019 | October 2019 | | Aluminum as Al | mg/L | NA | 0.0283 | В | PNA | | 0.0059 | U | PNA | | 0.0906 | J | PNA | | 0.2 | U | PNA | 0.013 | 34 | U | PNA | | 0.2 U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U | PNA | | 0.003 | U | PNA | | 0.06 | Ú | PNA | 0 | 0.06 | U | PNA | 0.00 | 3 | U | PNA | | 0.06 U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0011 | U | PNA | | 0.0033 | U | PNA | | 0.01 | U | PNA | 0 | 0.01 | U | PNA | 0.006 | 58 | U | PNA | | 0.01 U | PNA | | Barium | mg/L | 1 | 0.0103 | В | PNA | | 0.0102 | В | PNA | | 0.2 | U | PNA | 0.0 | 0097 | J | PNA | 0.010 |)7 | J | PNA | | 0.2 U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | | 0.0001 | U | PNA | | 0.0002 | U | PNA | 0. | .005 | U | PNA | 0.000 |)6 | U | PNA | | 0.005 U | PNA | | Boron as B | mg/L | 1 | 0.0072 | В | PNA | | 0.0081 | В | PNA | | 0.0089 | J | PNA | 0 | 0.01 | J | PNA | 0.013 | 32 | J | PNA | | 0.05 U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.00011 | U | 0.0003 | U | 0.0002 | U | 0.0001 | U | 0.0002 | J | 0.0025 U | 0.0 | 0025 | U | 0.0025 U | 0.000 | 06 | U | 0.0025 | U | 0.0025 U | 0.0025 U | | Calcium as Ca | mg/L | NA | 4.07 | В | 4.37 | В | 3.77 | В | 4.45 | В | 3.93 | | 4.62 | 3 | 3.97 | | 4.46 | 4.29 |) | | 4.74 | | 4.44 | 3.13 | | Chromium as Cr | mg/L | 0.05 | 0.0053 | В | PNA | | 0.0038 | В | PNA | | 0.0078 | J | PNA | 0.0 | 0029 | J | PNA | 0.002 | 27 | J | PNA | | 0.01 U | PNA | | Cobalt | mg/L | NA | 0.00019 | U | PNA | | 0.0006 | U | PNA | | 0.05 | U | PNA | 0 | 0.05 | U | PNA | 0.000 |)6 | U | PNA | | 0.05 U | PNA | | Copper as Cu | mg/L | 0.2 | 0.001 | В | PNA | | 0.0012 | В | PNA | | 0.0035 | J | PNA | 0.0 | 0026 | J | PNA | 0.002 | 25 | U | PNA | | 0.025 U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | 0 | 0.01 | U | PNA | 0.002 | 29 | U | PNA | | 0.01 U | PNA | | Iron as Fe | mg/L | 0.3 | 0.0261 | В | 0.0658 | В | 0.0223 | Е | 0.0268 | U | 0.0488 | J | 0.1 U | 1 | 0.1 | U | 0.02 U | 0.010 |)9 | U | 0.02 | U | 0.02 U | 0.0528 | | Lead as Pb | mg/L | 0.025 | 0.0051 | | 0.0018 | В | 0.0022 | U | 0.0034 | | 0.0023 | J | 0.005 U | 0. | .005 | U | 0.005 U | 0.00 | 13 | U | 0.005 | U | 0.005 U | 0.005 U | | Magnesium | mg/L | 35 # | 1.74 | В | 1.83 | В | 1.6 | В | 1.99 | В | 1.68 | | 2.04 | 1. | .830 | | 1.94 | 1.98 | } | | 2.16 | | 1.85 | 1.25 | | Manganese as Mn | mg/L | 0.3 | 0.0049 | В | 0.0029 | В | 0.0024 | В | 0.0016 | BE | 0.015 | U | 0.01 U | 0.0 | 0013 | J | 0.01 U | 0.003 | 35 | J | 0.01 | U | 0.01 U | 0.01 U | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | | 0.0001 | U | PNA | | 0.0002 | U | PNA | 0.0 | 0002 | U | PNA | 0.0000 |)69 | J | PNA | | 0.0002 U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0117 | В | PNA | | 0.0102 | В | PNA | | 0.0147 | J | PNA | 0 | 0.01 | J | PNA | 0.013 | 39 | J | PNA | | 0.04 U | PNA | | Potassium | mg/L | NA | 0.954 | В | 2.19 | В | 1.89 | В | 0.898 | В | 0.615 | J | 5 U | | 5 | U | 5 U | 0.83 | } | U | 5 | U | 5 U | 5 U | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | 0 | 0.01 | U | PNA | 0.006 | 53 | U | PNA | | 0.01 U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | | 0.0022 | U | PNA | | 0.01 | U | PNA | 0 | 0.01 | U | PNA | 0.003 | 36 | U | PNA | | 0.01 U | PNA | | Sodium as Na | mg/L | 20 | 7.5 | | 7.71 | | 8.54 | | 9.32 | | 7.78 | | 8.53 | 7 | '.86 | | 8.44 | 8.42 | 2 | | 9.75 | | 9.18 | 9.04 | | Thallium as Tl | mg/L | 0.0005# | 0.0013 | U | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | 0 | 0.01 | U | PNA | 0.003 | 36 | U | PNA | | 0.01 U | PNA | | Vanadium | mg/L | NA | 0.00039 | U | PNA | | 0.0007 | U | PNA | | 0.05 | U | PNA | 0 | 0.05 | U | PNA | 0.000 |)8 | U | PNA | | 0.05 U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0232 | | PNA | | 0.0047 | В | PNA | | 0.02 | U | PNA | 0 | 0.02 | U | PNA | 0.002 | 2 | J | PNA | | 0.02 U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 10.4 | | 12.1 | | 971 | D | 12.5 | Н | 10.4 | | 12.5 | 1 | 0.6 | | 10.8 | 11 | | | 13.4 | | 11.4 | 5.4 | | Chloride as Cl | mg/L | 250 | 9.99 | | 10.5 | | 11.4 | | 9.54 | | 9.68 | | 12.8 | | 8.8 | | 11.2 | 9 | | | 16.3 | | 14.5 | 15.4 | | Sulfate as SO4 | mg/L | 250 | 7.21 | | 7.53 | | 8.03 | | 8.2 | | 7.25 | | 6.9 | | 7.5 | | 6.3 | 7.9 | | | 8.5 | | 7.9 | 8.7 | | Bromide | mg/L | 2 # | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 U | 0.02 | | J | 0.5 | U | 0.5 U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 U | | 1 | J | 2 U | 2 | | U | 2 | U | 2 U | 2 U | | COD | mg/L | NA | 10 | U | 10 | U | 10 | U | 10 | U | | U | 10 U | | | U | 10 U | 10 | | U | 10 | U | 38.9 | 10 U | | Color | units | NA | 5 | U | PNA | | 10 | | PNA | | Ţ. | U | PNA | | 5 | | PNA | 5 | | U | PNA | | 5 U | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA | | 0.02 | U | PNA | | | U | PNA | | | U | PNA | 0.00 | | U | PNA | | 0.02 U | PNA | | Hardness as CaC03 | mg/L | NA | 18 | | 20 | | 20 | D | 22 | D | 19 | | 17 | | 18 | | 18.7 | 15 | | | 14 | | 17 | 8.0 | | Ammonia as N | mg/L | 2 | 0.12 | U | 0.1 | U | 0.1 | U | 0.1 | U | 0.17 | | 0.2 | | .088 | J | 0.1 U | | | J | 0.1 | U | 0.1 U | 0.1 U | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 U | 0 | 0.05 | U | 0.5 U | 0.05 | 5 | U | 0.05 | U | 0.05 U | 0.05 U | | Nitrate as N | mg/L | 10 | 0.1 | U | 0.05 U | | | J | 0.05 U | 0.05 | | | 7.9 | | 0.05 U | 0.05 U | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.005 | U | 0.0079 | | | U | 0.0094 | | 0783 | | 0.005 U | 0.002 | 29 | J | 0.005 | U | 0.005 U | 0.0115 | | Tot Dissolved Solids | mg/L | NA | 48 | | 39 | | 54 | | 52 | | 38 | | 67 | | 42 | | 38 | 59 | | | 61 | | 26 | 59 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.37 | | 0.1 | U |
0.18 | | 0.1 | U | V | U | 0.36 | | | U | 0.1 U | 0.1 | | U | 0.1 | U | 0.42 | 0.1 U | | Tot Organic Carbon | mg/L | NA | 1 | U | 3.8 | | 1 | U | 0.5 | U | | U | 1 U | _ |).18 | J | 1 U | 0.23 | | U | 1 | U | 1 U | 1 U | | Turbidity | NTU | NA | 1.1 | | 0 | | 0 | | 0.32 | | 3.22 | | 0 | | 0 | | 0.7 | 3.2 | | | 0.0 | | 0.0 | 0.0 | | Temperature | deg.C | NA | 11.21 | | 11.59 | | 10.69 | | 11.51 | | 11.27 | | 12.89 | | 2.50 | | 11.38 | 11.6 | | | 12.38 | | 11.22 | 12.01 | | pН | units | 6.5-8.5 | 6.46 | | 6.26 | | 6.05 | | 5.95 | | 6.56 | | 6.43 | | 5.18 | | 6.54 | 6.17 | | | 6.31 | | 5.87 | 5.89 | | Spec. Cond | umho/cm | NA | 70 | | 92 | | 70 | | 86 | | 80 | | 91 | | 80 | | 96 | 84 | | | 96 | | 93 | 71 | #### NOTES: - (1) = NYSDEC, Class GA Groundwater Standards - Bold indicates update due to data validation. - # = Guidance value, no standard exists. - NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - $\it R$ $\it Data\ Validation\ Qualifier$ $\it Rejected.$ - U Indicates the compound was analyzed for, but not detected. - $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. - Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value | ANALYTICAL | UNITS | GW | | | | | | | | | | | MW | V-1C | | | | | | | | | | | | |------------------------|---------|----------|-----------|---|------------|----|-----------|----|------------|----|------------|---|--------------|------|-----------|---|--------------|-------|--------|---|------------|----|------------|---|--------------| | PARAMETERS | | STND (1) | April 201 | 4 | October 20 | 14 | April 201 | 5 | October 20 | 15 | April 2016 | | October 2016 | Aŗ | oril 2017 | | October 2017 | Apri | 1 2018 | 3 | October 20 | 18 | April 2019 | | October 2019 | | Aluminum as Al | mg/L | NA | 0.0358 | В | PNA | | 0.0059 | U | PNA | | 0.2 L | J | PNA | | 0.2 | U | PNA | 0.01 | 34 | U | PNA | | 0.2 | U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U | PNA | | 0.003 | U | PNA | | 0.06 U | - | PNA | + | | U | PNA | 0.00 | | U | PNA | | | U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0011 | U | PNA | | 0.0033 | U | PNA | | 0.01 U | J | PNA | C | 0.01 | U | PNA | 0.00 | 68 | U | PNA | | 0.01 | U | PNA | | Barium | mg/L | 1 | 0.01 | В | PNA | | 0.0112 | В | PNA | | 0.2 U | J | PNA | 0.0 | 0092 | ī | PNA | 0.01 | 01 | ī | PNA | | 0.2 | U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | | 0.0001 | U | PNA | | 0.005 U | J | PNA | 0. | .005 | Ú | PNA | 0.00 | 06 | Ú | PNA | | 0.005 | U | PNA | | Boron as B | mg/L | 1 | 0.0072 | В | PNA | | 0.0081 | В | PNA | | 0.0097 J | 1 | PNA | 0.0 | 0115 | J | PNA | 0.01 | 21 | J | PNA | | 0.05 | U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.00011 | U | 0.0003 | U | 0.0002 | U | 0.0001 | U | 0.0025 U | J | 0.0025 U | 0.0 | 0025 | U | 0.0025 U | 0.000 | 006 | U | 0.0025 | U | 0.0025 | U | 0.0025 U | | Calcium as Ca | mg/L | NA | 4.61 | В | 5.15 | | 4.87 | В | 4.7 | В | 4.45 | | 4.62 | 4 | 1.44 | | 4.14 | 4.6 | 3 | | 4.91 | | 4.77 | | 5.12 | | Chromium as Cr | mg/L | 0.05 | 0.0049 | В | PNA | | 0.0012 | В | PNA | | 0.01 U | J | PNA | 0.0 | 0041 | J | PNA | 0.00 | 48 | J | PNA | | 0.01 | U | PNA | | Cobalt | mg/L | NA | 0.00019 | U | PNA | | 0.0006 | U | PNA | | 0.05 U | J | PNA | 0 | 0.05 | U | PNA | 0.00 | 06 | U | PNA | | 0.05 | U | PNA | | Copper as Cu | mg/L | 0.2 | 0.0008 | В | PNA | | 0.0005 | В | PNA | | 0.0022 J | ſ | PNA | 0. | .025 | U | PNA | 0.00 | 25 | U | PNA | | 0.025 | U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.01 U | J | PNA | C | 0.01 | U | PNA | 0.00 | 29 | U | PNA | | 0.01 | U | PNA | | Iron as Fe | mg/L | 0.3 | 0.0492 | В | 0.998 | | 0.0086 | UE | 0.0268 | U | 0.1 U | J | 0.1 U | | 0.1 | U | 0.02 U | 0.03 | 01 | | 0.02 | U | 0.02 | U | 0.084 | | Lead as Pb | mg/L | 0.025 | 0.0042 | В | 0.0021 | В | 0.0022 | U | 0.0037 | | 0.0028 J | 1 | 0.005 U | 0. | .005 | U | 0.005 U | 0.00 | 13 | U | 0.005 | U | 0.005 | U | 0.005 U | | Magnesium | mg/L | 35 # | 2.28 | В | 2.58 | В | 2.43 | В | 2.32 | В | 2.21 | | 2.39 | 2 | 2.38 | | 2.17 | 2.4 | 5 | | 2.51 | | 2.42 | | 2.41 | | Manganese as Mn | mg/L | 0.3 | 0.0033 | В | 0.0263 | | 0.0005 | В | 0.0008 | BE | 0.015 U | J | 0.01 U | 0.0 | 0079 | J | 0.01 U | 0.00 | 37 | J | 0.01 | U | 0.01 | U | 0.011 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | | 0.0001 | U | PNA | | 0.0002 U | J | PNA | 0.0 | 0002 | U | PNA | 0.000 | 075 | J | PNA | | 0.0002 | U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0107 | В | PNA | | 0.0048 | В | PNA | | 0.0153 J | | PNA | 0.0 | 0248 | J | PNA | 0.01 | 29 | J | PNA | | 0.04 | U | PNA | | Potassium | mg/L | NA | 0.978 | В | 2.14 | В | 0.472 | U | 0.828 | В | 5 U | J | 5 U | | 5 | U | 5 U | 0.8 | 3 | U | 5 | U | 5 | U | 5 U | | Selenium as Se | mg/L | 0.01 | 0.0013 | В | PNA | | 0.0038 | U | PNA | | 0.01 U | J | PNA | 0.0 | 0100 | U | PNA | 0.00 | 63 | U | PNA | | 0.01 | U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | | 0.0022 | U | PNA | | 0.01 U | J | PNA | 0.0 | 0100 | U | PNA | 0.00 | 36 | U | PNA | | 0.01 | U | PNA | | Sodium as Na | mg/L | 20 | 8.24 | | 8.31 | | 8.34 | | 8.78 | | 7.99 | | 7.27 | 7 | 7.77 | | 7.48 | 7.8 | 3 | | 7.93 | | 8.23 | | 8.62 | | Thallium as Tl | mg/L | 0.0005# | 0.0013 | U | PNA | | 0.0038 | U | PNA | | 0.01 U | J | PNA | C | 0.01 | U | PNA | 0.00 | 36 | U | PNA | | 0.01 | U | PNA | | Vanadium | mg/L | NA | 0.00039 | U | PNA | | 0.0007 | U | PNA | | 0.05 U | J | PNA | C | 0.05 | U | PNA | 0.00 | 80 | U | PNA | | 0.05 | U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0256 | | PNA | | 0.0038 | В | PNA | | 0.02 U | J | PNA | C | 0.02 | U | PNA | 0.00 |)2 | J | PNA | | 0.02 | U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 12.5 | | 13.7 | | 12.9 | | 12.9 | Н | 12.7 | | 12 | 1 | 10.8 | | 12 | 13. | 2 | | 14.6 | | 14 | | 14.7 | | Chloride as Cl | mg/L | 250 | 214 | | 11.6 | | 12.3 | | 9.42 | | 10 | | 11 | | 9.0 | | 8.1 | 9.3 | 3 | | 10.7 | | 10.9 | | 11.4 | | Sulfate as SO4 | mg/L | 250 | 152 | | 8.62 | | 10.5 | | 8.35 | | 8.34 | | 8.4 | 1 | 8.2 | | 8.1 | 9.3 | 3 | | 10.9 | | 10.6 | | 10.6 | | Bromide | mg/L | 2 # | 10 | U | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | | 0.5 | U | 0.5 U | 0.02 | 23 | J | 0.5 | U | 0.5 | U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 U | J | 2.6 | | 1 | J | 2 U | 2 | | U | 2 | U | 2 | U | 2 U | | COD | mg/L | NA | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | J | 33.8 | | | U | 10 U | 10 | | U | 10 | U | | U | 10 U | | Color | units | NA | 5 | U | PNA | | 10 | U | PNA | | 5 U | J | PNA | | 5 | | PNA | 5 | | U | PNA | | 5 | U | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA | | 0.02 | U | PNA | | 0.02 U | J | PNA | | | U | PNA | 0.00 |)3 | U | PNA | | 0.02 | U | PNA | | Hardness as CaC03 | mg/L | NA | 18 | | 48 | | 44 | | 24 | | 25 | | 19 | | 22 | | 17.3 | 19 | 1 | | 16 | | 20 | | 16 | | Ammonia as N | mg/L | 2 | 0.1 | U | 0.1 | U | 0.11 | | 0.1 | U | 0.14 | | 22.9 | | .046 | J | 0.13 | 0.1 | | | 0.10 | U | | U | 0.10 U | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 | U | 0.1 | U | 0.1 | U | 0.1 U | J | 0.1 U | 0 | 0.05 | U | 0.1 U | 0.0 | 5 | U | 0.05 | U | 0.05 | U | 0.05 U | | Nitrate as N | mg/L | 10 | 0.35 | | 0.43 | | 0.42 | | 0.33 | | 0.24 | | 0.22 | C |).19 | | 0.17 | 0.2 | 4 | | 0.25 | | 0.26 | | 0.37 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.005 | U | 0.005 | U | 0.013 | _ | 0.0162 | 0.0 | 0396 | | 0.005 U | | | J | 0.005 | U | 0.005 | U | 0.0161 | | Tot Dissolved Solids | mg/L | NA | 31 | | 36 | | 53 | | 49 | | 45 | | 63 | | 50 | | 48 | 57 | | | 45 | | 49 | | 97 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.26 | | 0.1 | U | 0.2 | | 0.1 | U | 0.1 U | J | 18.7 | | 0.1 | U | 0.11 | 0.1 | L | U | 0.64 | | 0.1 | U | 0.1 U | | Tot Organic Carbon | mg/L | NA | 1 | U | 3.8 | | 1 | U | 0.5 | U | 1 U | J | 1 U | C | 0.16 | J | 1 U | 0.2 | | U | 1 | U | 1 | U | 1 U | | Turbidity | NTU | NA | 0.30 | | 18.60 | | 0.00 | | 0.57 | | 6.37 | | 0 | | 0 | | 1 | 2.2 | | | 0.0 | | 0.0 | | 0.0 | | Temperature | deg.C | NA | 10.12 | | 11.59 | | 10.45 | | 11.35 | | 11.24 | | 11.65 | | 2.24 | | 11.23 | 10.9 | | | 12.11 | | 11.41 | | 12.76 | | pH | units | 6.5-8.5 | 6.15 | | 6.14 | | 5.97 | | 6.18 | | 6.52 | ┸ | 6.26 | 6 | 5.07 | | 6.02 | 5.8 | 9 | | 6.10 | | 6.28 | | 6.56 | | Spec. Cond | umho/cm | NA | 89 | | 106 | | 98 | | 91 | | 90 | | 91 | | 86 | | 90 | 92 | | | 87 | | 100 | | 84 | #### NOTES: - (1) = NYSDEC, Class GA Groundwater Standards - Bold indicates update due to data validation. - # = Guidance value, no standard exists. - NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - $\it R$ $\it Data\ Validation\ Qualifier$ $\it Rejected.$ - U Indicates the compound was analyzed for, but not detected. - $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for,
but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | ANALYTICAL | UNITS | GW | | | | | | | | | | MW-3A | | | | | | | | | | |------------------------|---------|----------|-----------------------|---------------|---------|----------|------------|------------|------|------------|----------|------------|----------|----------|------------|----------|------------|------------|--------------|------------|--------------| | - | | | | | | | A | April 2016 | | Octobe | er 2016 | | 2017 | | October 20 | 017 | Apri | il 2018 | | | 1 | | PARAMETERS | | STND (1) | April 2014 October | 2014 April 20 | 15 Octo | oer 2015 | Unfiltered | l Filt | ered | Unfiltered | Filtered | Unfiltered | Filtered | Unfilte | ered | Filtered | Unfiltered | Filtered | October 2018 | April 2019 | October 2019 | | Aluminum as Al | mg/L | NA | 0.0391 U PNA | 0.0059 | U PN | IA | 0.2 | U 0.2 | U | PNA | PNA | 0.022 J | 0.2 | U PNA | | PNA | 0.127 J | 0.0327 J | PNA | 0.2 U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 U PNA | 0.0077 | B PN | IA | 0.06 | U 0.0 | 5 U | PNA | PNA | 0.06 U | 0.06 | U PNA | | PNA | 0.0089 J | 0.003 U | PNA | 0.06 U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0011 U PNA | 0.0033 | U PN | IA | 0.0038 | J 0.0 | 1 U | PNA | PNA | 0.01 U | 0.01 | U PNA | | PNA | 0.0068 U | 0.0068 U | PNA | 0.01 U | PNA | | Barium | mg/L | 1 | 0.055 B PNA | 0.0509 | B PN | IA | 0.048 | J 0.03 | 77 J | PNA | PNA | 0.0744 J | 0.0579 | J PNA | | PNA | 0.107 J | 0.0669 J | PNA | 0.2 U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 U PNA | 0.0001 | U PN | IA | 0.005 | U 0.00 | 5 U | PNA | PNA | 0.005 U | 0.005 | U PNA | | PNA | 0.0006 U | 0.0006 U | PNA | 0.005 U | PNA | | Boron as B | mg/L | 1 | 0.0291 B PNA | 0.0202 | B PN | IA | 0.0366 | J 0.03 | 48 J | PNA | PNA | 0.0211 J | 0.0253 | J PNA | | PNA | 0.0331 J | 0.0321 J | PNA | 0.05 U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.00011 U 0.0003 | U 0.0002 | U 0.00 | 001 U | 0.0002 | U 0.00 | 5 U | 0.0025 U | 0.0025 U | 0.00027 J | 0.00096 | J 0.0025 | U | 0.0025 U | 0.00006 U | 0.000063 U | 0.0025 U | 0.0025 U | 0.0025 U | | Calcium as Ca | mg/L | NA | 19.1 18 | 19.9 | 22 | .9 | 13.8 | 12. |) | 22 | 19.1 | 20.8 | 18.0 | 15.6 | | 14.4 | 19.5 | 19.4 | 22.9 | 20.3 | 18.2 | | Chromium as Cr | mg/L | 0.05 | 0.595 PNA | 0.786 | PN | IA | 0.825 | 0.00 | 63 J | PNA | PNA | 1.660 | 0.0141 | PNA | | PNA | 1.84 | 0.143 | PNA | 0.251 | PNA | | Cobalt | mg/L | NA | 0.0024 B PNA | 0.0029 | B PN | IA | 0.0015 | J 0.0 | 5 U | PNA | PNA | 0.0049 J | 0.05 | U PNA | | PNA | 0.0084 J | 0.00063 U | PNA | 0.05 U | PNA | | Copper as Cu | mg/L | 0.2 | 0.0164 B PNA | 0.0196 | B PN | IA | 0.0225 | J 0.03 | 22 | PNA | PNA | 0.024 J | 0.0078 | J PNA | | PNA | 0.0351 | 0.0097 J | PNA | 0.025 U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 U PNA | 0.01 | U PN | IA | 0.01 | U 0.1 | U | PNA | PNA | 0.01 U | PNA | PNA | | PNA | 0.0029 U | PNA | PNA | 0.01 U | PNA | | Iron as Fe | mg/L | 0.3 | 2.28 3.78 | 2.95 | E 2.3 | 27 | 2.92 | 0.1 | U | 4.66 | 0.1 U | 6.520 | 0.1 | U 2.460 | | 0.1 U | 7.37 | 0.514 | 2.52 | 0.953 | 3.63 | | Lead as Pb | mg/L | 0.025 | 0.0053 0.0013 | U 0.0022 | U 0.00 |)24 B | 0.001 | J 0.00 | 2 J | 0.005 U | 0.005 U | 0.005 U | 0.005 | U 0.005 | U | 0.005 U | 0.0024 J | 0.0013 U | 0.005 U | 0.005 U | 0.005 U | | Magnesium | mg/L | 35 # | 4.74 B 4.57 | В 5.06 | 6.4 | 12 | 3.68 | 3.4 | 1 | 6.34 | 5.53 | 5.51 | 5.01 | 4.88 | | 4.36 | 5.82 | 5.65 | 6.77 | 6.5 | 5.77 | | Manganese as Mn | mg/L | 0.3 | 0.255 0.2 | 0.211 | 0.1 | 13 E | 0.144 | 0.05 | 35 | 0.286 | 0.0611 | 0.359 | 0.0518 | 0.113 | | 0.0419 | 1.18 | 0.0483 | 0.19 | 0.0914 | 0.39 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 U PNA | 0.0001 | U PN | IA | 0.0002 | U 0.00 | 02 U | PNA | PNA | 0.0002 U | 0.0002 | U PNA | | 0.002 U | 0.000068 J | 0.0002 U | PNA | 0.0002 U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0735 PNA | 0.0962 | PN | IA | 0.114 | 0.0 | 3 | PNA | PNA | 0.132 | 0.0893 | PNA | | PNA | 0.181 | 0.0541 | PNA | 0.0416 | PNA | | Potassium | mg/L | NA | 6.58 J 6.99 | 4.4 | В 6.0 | 57 | 5.21 | 4.5 | J | 6.46 | 5.29 | 5.83 | 4.88 | J 5.0 | U | 5.0 U | 6.65 | 6.9 | 9.53 | 7.93 | 11.4 | | Selenium as Se | mg/L | 0.01 | 0.0016 B PNA | 0.0038 | U PN | IA | 0.01 | U 0.0 | 1 U | PNA | PNA | 0.01 U | 0.01 | U PNA | | PNA | 0.0063 U | 0.0062 U | PNA | 0.01 U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 UJ PNA | 0.0022 | U PN | IA | 0.01 | U 0.0 | 1 U | PNA | PNA | 0.01 U | 0.01 | U PNA | | PNA | 0.0036 U | 0.0036 U | PNA | 0.01 U | PNA | | Sodium as Na | mg/L | 20 | 33.6 18.9 | 37.6 | 43 | | 22.5 | 21 | | 25 | 21 | 82.9 | 70.2 | 43.1 | | 40.3 | 56.3 | 50.7 | 105 | 40.1 | 33 | | Thallium as Tl | mg/L | 0.0005# | 0.0013 U PNA | 0.0038 | U PN | IA | 0.01 | U 0.0 | 1 U | PNA | PNA | 0.01 U | 0.01 | U PNA | | PNA | 0.0036 U | 0.0036 U | PNA | 0.01 U | PNA | | Vanadium | mg/L | NA | 0.0019 B PNA | 0.0007 | U PN | IA | 0.05 | U 0.0 | | | PNA | 0.0023 J | 0.05 | U PNA | | PNA | 0.0052 J | 0.0008 U | PNA | 0.05 U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0267 PNA | 0.0154 | B PN | | 0.02 | U 0.0 | 2 U | | PNA | 0.02 U | 0.0107 | J PNA | | PNA | 0.0026 J | 0.0012 U | PNA | 0.02 U | | | Alkalinity tot CaCo3 | mg/L | NA | 41 61.3 | 38.5 | 61 | | 52 | PN | | 75.6 | PNA | 34.2 | PNA | 69.6 | | PNA | 47.4 | PNA | 78 | 69.4 | 83.8 | | Chloride as Cl | mg/L | 250 | 72.6 30.1 | 84.2 | 70 | | 24 | PN | | 40.8 | PNA | 154 | PNA | 58 | | PNA | 98.1 | PNA | 217 | 79.5 | 46.8 | | Sulfate as SO4 | mg/L | 250 | 5.58 10.7 | 5 | U 73 | | 7.5 | PN | | 12.6 | PNA | 8.7 | PNA | 5 | U | PNA | 5.6 | PNA | 9 | 5 U | | | Bromide | mg/L | 2 # | 0.5 U 0.5 | U 0.5 | U 0. | | 0.02 | J PN | | 0.5 U | PNA | 0.5 U | PNA | 0.5 | U | PNA | 0.021 J | PNA | 0.5 U | 0.5 U | 0.5 U | | BOD5 | mg/L | NA | 2 U 2 | U 2 | U 2 | : U | 2 | U PN | | 2 U | PNA | 1 J | PNA | 2 | U | PNA | 2 U | | 2 U | 2 U | 4 U | | COD | mg/L | NA | 12.7 12.7 | 10 | U 1 | | 10 | U PN | | 23.4 | PNA | 13 | PNA | 11.9 | | PNA | 10 U | PNA | 16.2 | 19 | 12.4 | | Color | units | NA | 30 PNA | 25 | PN | | 10 | PN | | PNA | PNA | 5 | PNA | PNA | | PNA | 5 U | PNA | PNA | 15 | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 U PNA | 0.02 | U PN | | 0.02 | U PN | | PNA | PNA | 0.0098 J | PNA | PNA | | PNA | 0.00003 U | PNA | PNA | 0.02 U | PNA | | Hardness as CaC03 | mg/L | NA | 68 100 | 75 | 7 | | 48 | PN | | 80 | PNA | 80 | PNA | 70 | | PNA | 68 | PNA | 72 | 53.3 | 70 | | Ammonia as N | mg/L | 2 | 0.22 0.1 | U 0.31 | 0. | | 0.29 | PN | | 0.24 | PNA | 0.1 | PNA | 0.1 | UB | PNA | 0.46 | PNA | 0.1 U | 0.1 U | | | Nitrite as N | mg/L | NA | 0.1 U 0.1 | U 0.1 | U 0. | | 0.1 | U PN | | 0.1 U | PNA | 0.05 U | PNA | 0.05 | U | PNA | 0.05 U | | 0.05 U | 0.05 U | | | Nitrate as N | mg/L | 10 | 1.05 0.21 | 0.29 | 0.2 | | 1.45 | PN | | 0.26 | PNA | 1.8 | PNA | 0.22 | | PNA | 2 | PNA | 0.34 | 0.58 | 0.33 | | Phenols as Phenol | mg/L | 0.001 | 0.005 U 0.005 | U 0.005 | U 0.00 | | 0.005 | U PN | | 0.0088 | PNA | 0.0026 J | PNA | 0.005 | U | PNA | 0.0034 J | PNA | 0.005 U | 0.005 U | 0.0007 | | Tot Dissolved Solids | mg/L | NA | 158 100 | 174 | 19 | | 106 | PN | | 152 | PNA | 317 | PNA | 165 | | PNA | 266 | PNA | 367 | 186 | 209 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.67 0.1 | U 0.54 | 0.: | | 0.5 | PN | | 0.26 | PNA | 0.34 | PNA | 0.37 | | PNA | 0.83 | PNA | 0.23 | 0.58 | 1.3 | | Tot Organic Carbon | mg/L | NA | 2.7 12.7 | 2.4 | 2. | | 2.9 | PN | | 3.29 | PNA | 2.6 J | PNA | 3.9 | | PNA | 3 | PNA | 4.8 | 4.9 | 5.5 | | Turbidity | NTU | NA | 11.5 26.8 | 11.5 | 38 | | 24 | PN | | 117 | PNA | 105 | PNA | 104 | | PNA | 86.6 | PNA | 32.0 | 12.8 | 36.7 | | Temperature | deg.C | NA | 12.62 11.23 | 11.06 | 8. | | 12.07 | PN | | 10.25 | PNA | 12.57 | PNA | 10.93 | | PNA | 11.79 | PNA | 11.17 | 10.39 | 10.14 | | рН | units | 6.5-8.5 | 6.28 6.49 | 6.16 | 6.0 | | 6.44 | PN | | 6.27 | PNA | 6.09 | PNA | 6.41 | | PNA | 5.79 | PNA | 6.66 | 6.47 | 6.55 | | Spec. Cond | umho/cm | NA | 349 269 | 390 | 40 | 1 | 209 | PN | A | 304 | PNA | 700 | PNA | 423 | | PNA | 487 | PNA | 504 | 420 | 303 | #### NOTES (1) = NYSDEC, Class GA Groundwater Standards Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit. - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | ANALYTICAL | UNITS | GW | | | | | | | | | | | MV | V-3B | | | | | | | | | |------------------------|---------|----------|-----------|---|------------|----|-----------|---|------------|----|-----------|---|--------------|-----------|---|--------------|------------|---|--------------|----------|----|--------------| | PARAMETERS | | STND (1) | April 201 | 4 | October 20 | 14 | April 201 | 5 | October 20 | 15 | April 201 | 6 | October 2016 | April 201 | 7 | October 2017 | April 2018 | 3 | October 2018 | April 20 | 19 | October 2019 | | Aluminum as Al | mg/L | NA | 0.0294 | В | PNA | | 0.0059 | U
 PNA | | 0.2 | U | PNA | 0.2 | U | PNA | 0.0134 | U | PNA | 0.2 | U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U | PNA | | 0.003 | U | PNA | | 0.06 | U | PNA | 0.06 | U | PNA | 0.003 | U | PNA | 0.06 | U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0058 | В | PNA | | 0.0106 | | PNA | | 0.0082 | J | PNA | 0.01 | U | PNA | 0.0068 | U | PNA | 0.01 | U | PNA | | Barium | mg/L | 1 | 0.039 | В | PNA | | 0.043 | В | PNA | | 0.0507 | J | PNA | 0.0347 | J | PNA | 0.0208 | J | PNA | 0.2 | U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | | 0.0001 | U | PNA | | 0.005 | U | PNA | 0.005 | U | PNA | 0.0006 | U | PNA | 0.005 | U | PNA | | Boron as B | mg/L | 1 | 0.042 | В | PNA | | 0.0409 | В | PNA | | 0.0587 | J | PNA | 0.0409 | J | PNA | 0.0409 | J | PNA | 0.05 | U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.00011 | U | 0.0008 | В | 0.0002 | U | 0.0001 | U | 0.0007 | J | 0.0025 U | 0.00029 | J | 0.0025 U | 0.00006 | U | 0.0025 U | 0.0025 | U | 0.0025 U | | Calcium as Ca | mg/L | NA | 11.8 | | 9.43 | | 12.3 | | 15 | | 14.4 | | 12.6 | 12.9 | | 11.7 | 8.64 | | 14 | 14.4 | | 18.9 | | Chromium as Cr | mg/L | 0.05 | 0.0025 | В | PNA | | 0.0055 | В | PNA | | 0.01 | U | PNA | 0.01 | U | PNA | 0.0016 | U | PNA | 0.01 | U | PNA | | Cobalt | mg/L | NA | 0.0056 | В | PNA | | 0.0084 | В | PNA | | 0.0076 | J | PNA | 0.0055 | J | PNA | 0.0035 | J | PNA | 0.05 | U | PNA | | Copper as Cu | mg/L | 0.2 | 0.003 | В | PNA | | 0.0086 | В | PNA | | 0.0029 | J | PNA | 0.025 | U | PNA | 0.0025 | U | PNA | 0.025 | U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | 0.01 | U | PNA | 0.0029 | U | PNA | 0.01 | U | PNA | | Iron as Fe | mg/L | 0.3 | 14.3 | | 16.2 | | 18.1 | Е | 18.8 | | 16.9 | | 11.8 | 12.1 | | 9.97 | 6.69 | | 9.99 | 8.71 | | 8.57 | | Lead as Pb | mg/L | 0.025 | 0.0023 | В | 0.013 | U | 0.0022 | U | 0.004 | | 0.00091 | J | 0.005 U | 0.005 | U | 0.005 U | 0.0013 | U | 0.005 U | 0.005 | U | 0.005 U | | Magnesium | mg/L | 35 # | 4.1 | В | 3.33 | В | 4.32 | В | 5.78 | | 5.25 | | 4.34 | 4.31 | | 3.98 | 3.08 | | 4.95 | 5.15 | | 6.81 | | Manganese as Mn | mg/L | 0.3 | 4.15 | | 4.89 | | 4.56 | | 5.01 | Е | 3.41 | | 3 | 3.79 | | 2.95 | 2.6 | | 3.7 | 2.92 | | 2.44 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | | 0.0001 | U | PNA | | 0.0002 | U | PNA | 0.0002 | U | PNA | 0.000063 | J | PNA | 0.0002 | U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.003 | В | PNA | | 0.003 | В | PNA | | 0.0031 | J | PNA | 0.0031 | J | PNA | 0.0025 | J | PNA | 0.04 | U | PNA | | Potassium | mg/L | NA | 4.23 | В | 4.81 | В | 3.02 | В | 3.45 | В | 5.28 | | 5 U | 4.2 | J | 5.0 U | 2.19 | J | 5 U | 5 | U | 5.94 | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | 0.01 | U | PNA | 0.0063 | U | PNA | 0.01 | U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | | 0.0027 | В | PNA | | 0.01 | U | PNA | 0.01 | U | PNA | 0.0036 | U | PNA | 0.01 | U | PNA | | Sodium as Na | mg/L | 20 | 13 | | 11.7 | | 13.9 | | 19.6 | | 15.3 | | 17.3 | 16.9 | | 12.0 | 9.37 | | 20.9 | 13.8 | | 11.4 | | Thallium as Tl | mg/L | 0.0005# | 0.0013 | U | PNA | | 0.0038 | U | PNA | | 0.0039 | J | PNA | 0.01 | U | PNA | 0.0036 | U | PNA | 0.01 | U | PNA | | Vanadium | mg/L | NA | 0.00039 | U | PNA | | 0.0007 | U | PNA | | 0.05 | U | PNA | 0.05 | U | PNA | 0.0008 | U | PNA | 0.05 | U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0087 | В | PNA | | 0.0047 | В | PNA | | 0.02 | U | PNA | 0.0023 | J | PNA | 0.0016 | J | PNA | 0.02 | U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 55.5 | | 61.2 | | 55 | | 74.8 | | 76.5 | | 55.6 | 44.4 | | 47 | 37.2 | | 48.3 | 59.4 | | 77.7 | | Chloride as Cl | mg/L | 250 | 17.1 | | 19 | | 22.5 | | 27.8 | | 19.9 | | 26.9 | 14.7 | | 14.7 | 11 | | 49.9 | 22.5 | | 20.1 | | Sulfate as SO4 | mg/L | 250 | 9.82 | | 7.96 | | 15.9 | | 10.1 | | 11.5 | | 10.8 | 13.8 | | 11 | 12.1 | | 7.5 | 10.1 | | 9.5 | | Bromide | mg/L | 2 # | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 | U | 0.13 | J | 0.5 U | 0.067 | J | 0.5 U | 0.038 | | 0.5 U | 0.5 | U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 U | 1 | J | 2 U | 2 | U | 2 U | 2 | U | 2 U | | COD | mg/L | NA | 12.1 | | 10.2 | | 10 | U | 11.6 | | 10 | U | 25.5 | 10.9 | | 10 U | 10 | U | 10 U | 12.4 | | 21.2 | | Color | units | NA | 55 | | PNA | | 100 | | PNA | | 45 | | PNA | 5 | | PNA | 5 | U | PNA | 5 | | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA | | 0.02 | U | PNA | | 0.02 | U | PNA | 0.02 | U | PNA | 0.003 | U | PNA | 0.02 | U | PNA | | Hardness as CaC03 | mg/L | NA | 72 | | 76 | | 100 | | 92 | | 68 | | 50 | 40 | | 60 | 34 | | 56 | 40 | | 90 | | Ammonia as N | mg/L | 2 | 2.54 | | 5.98 | | 2.54 | | 1.7 | | 2.78 | | 2.8 | 0.65 | | 1 | 0.39 | | 0.28 | 0.3 | | 0.3 | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 U | 0.031 | J | 0.05 U | 0.05 | U | 0.05 U | 0.05 | U | 0.05 U | | Nitrate as N | mg/L | 10 | 0.1 | U | 0.05 U | 0.05 | U | 0.25 | 0.74 | | 0.37 | 0.15 | | 0.43 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.005 | U | 0.0051 | | 0.005 | U | 0.005 U | | J | 0.005 U | 0.00084 | U | 0.005 U | 0.0074 | | 0.0116 | | Tot Dissolved Solids | mg/L | NA | 76 | | 83 | | 110 | | 114 | | 105 | | 106 | 102 | | 89 | 111 | | 142 | 168 | | 183 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 3.11 | | 6.2 | | 2.52 | | 1.73 | | 2.01 | | 2.4 | 1.4 | | 1.2 | 0.34 | | 0.37 | 0.62 | | 0.84 | | Tot Organic Carbon | mg/L | NA | 2 | | 14.3 | | 1.8 | | 3.39 | | 1.9 | | 2.33 | 1.8 | J | 1.4 B | 0.45 | J | 3.9 | 3.2 | | 6.8 | | Turbidity | NTU | NA | 0 | | 0 | | 0 | | 1.53 | | 0 | | 1.7 | 0.0 | | 4.9 | 1.2 | | 17.0 | 2.2 | | 0.0 | | Temperature | deg.C | NA | 11.36 | | 10.92 | | 11.44 | | 9.54 | | 11.46 | | 11.23 | 12.85 | | 11.52 | 11.61 | | 11.49 | 11.70 | | 8.61 | | рН | units | 6.5-8.5 | 6.39 | | 6.56 | | 6.14 | | 6.05 | | 6.58 | | 6.31 | 5.96 | | 6.12 | 5.95 | | 6.19 | 6.16 | | 6.11 | | Spec. Cond | umho/cm | NA | 244 | | 308 | | 262 | | 277 | | 276 | | 261 | 220 | | 220 | 156 | | 199 | 246 | | 281 | #### NOTES: - (1) = NYSDEC, Class GA Groundwater Standards - Bold indicates update due to data validation. - # = Guidance value, no standard exists. - NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | ANALYTICAL | UNITS | GW | | | | | | | | | | | MW-3C | | | | | | | | | | | |------------------------|---------|----------|------------|-----|-----------|----|------------|-----|-----------|----|------------|----|-----------|---|------------|----|------------|---|-------------|---|-----------|---|--------------| | | | | October 20 |)14 | April 201 | .5 | October 20 |)15 | April 201 | 16 | October 20 | 16 | April 201 | 7 | October 20 | 17 | April 2018 | | October 201 | 8 | April 201 | 9 | October 2019 | | PARAMETERS | | STND (1) | | | • | | | | • | | | | • | | | | • | | | | • | | | | Aluminum as Al | mg/L | NA | PNA | | 0.0059 | U | PNA | | 0.2 | U | PNA | | 0.2 | U | PNA | | 0.0134 | U | PNA | | 0.2 | U | PNA | | Antimony as Sb | mg/L | 0.003 # | PNA | | 0.003 | U | PNA | | 0.06 | U | PNA | | 0.06 | U | PNA | | 0.003 | U | PNA | | 0.06 | U | PNA | | Arsenic as As | mg/L | 0.025 | PNA | | 0.0033 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.0068 | U | PNA | | 0.01 | U | PNA | | Barium | mg/L | 1 | PNA | | 0.0228 | В | PNA | | 0.0201 | J | PNA | | 0.0183 | J | PNA | | 0.0185 | J | PNA | | 0.2 | U | PNA | | Beryllium as Be | mg/L | 0.003 | PNA | | 0.0001 | U | PNA | | 0.005 | U | PNA | | 0.005 | U | PNA | | 0.0006 | U | PNA | | 0.005 | U | PNA | | Boron as B | mg/L | 1 | PNA | | 0.0104 | В | PNA | | 0.0128 | J | PNA | | 0.0055 | J | PNA | | 0.0124 | J | PNA | | 0.05 | U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.0003 | U | 0.0002 | U | 0.0001 | U | 0.0025 | U | 0.0025 | U | 0.0025 | U | 0.0025 | U | 0.00006 | U | 0.0025 | U | 0.0025 | U | 0.0025 U | | Calcium as Ca | mg/L | NA | 10.1 | | 10.2 | | 9.36 | | 9.11 | | 8.31 | | 8.63 | | 7.35 | | 8.06 | | 8.68 | | 8.95 | | 8.8 | | Chromium as Cr | mg/L | 0.05 | PNA | | 0.0031 | В | PNA | | 0.0058 | J | PNA | | 0.0048 | J | PNA | | 0.022 | | PNA | | 0.0146 | | PNA | | Cobalt | mg/L | NA | PNA | | 0.0006 | U | PNA | | 0.05 | U | PNA | | 0.05 | U | PNA | | 0.0006 | U | PNA | | 0.05 | U | PNA | | Copper as Cu | mg/L | 0.2 | PNA | | 0.0007 | В | PNA | | 0.0021 | J | PNA | | 0.025 | U | PNA | | 0.0025 | U | PNA | | 0.025 | U | PNA | | Cyanide as CN | mg/L | 0.2 | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.0029 | U | PNA | | 0.01 | U | PNA | | Iron as Fe | mg/L | 0.3 | 0.0978 | В | 0.0295 | BE | 0.0268 | U | 0.1 | U | 0.1 | U | 0.0385 | J | 0.02 | U | 0.108 | | 0.1 | | 0.0862 | | 0.0285 | | Lead as Pb | mg/L | 0.025 | 0.0014 | В | 0.0022 | U | 0.0055 | | 0.004 | J | 0.005 | U | 0.005 | U | 0.005 | U | 0.0013 | U | 0.005 | U | 0.005 | U | 0.005 U | | Magnesium | mg/L | 35 # | 4.63 | В | 4.6 | В | 4.38 | В | 4.14 | | 3.88 | | 3.74 | | 3.52 | | 3.93 | | 3.98 | | 4.05 | | 4.08 | | Manganese as Mn | mg/L | 0.3 | 0.0153 | | 0.01 | В | 0.0067 | BE | 0.0034 | J | 0.01 | U | 0.0039 | J | 0.01 | U | 0.0063 | J | 0.0167 | | 0.01 | U |
0.01 U | | Mercury as Hg | mg/L | 0.0007 | PNA | | 0.0001 | U | PNA | | 0.0002 | U | PNA | | 0.0002 | U | PNA | | 0.000067 | J | PNA | | 0.0002 | U | PNA | | Nickel as Ni | mg/L | 0.1 | PNA | | 0.0027 | В | PNA | | 0.04 | U | PNA | | 0.0068 | J | PNA | | 0.0046 | J | PNA | | 0.04 | U | PNA | | Potassium | mg/L | NA | 1.32 | В | 0.472 | U | 0.937 | В | 0.786 | J | 5 | U | 0.874 | J | 5 | U | 0.841 | J | 5 | U | 5 | U | 5 U | | Selenium as Se | mg/L | 0.01 | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.0063 | U | PNA | | 0.01 | U | PNA | | Silver as Ag | mg/L | 0.05 | PNA | | 0.0022 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.0036 | U | PNA | | 0.01 | U | PNA | | Sodium as Na | mg/L | 20 | 13.5 | | 12.2 | | 14.2 | | 13.2 | | 11.7 | | 13.9 | | 10.1 | | 10.8 | | 11 | | 12.1 | | 12.1 | | Thallium as Tl | mg/L | 0.0005# | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.0036 | U | PNA | | 0.01 | U | PNA | | Vanadium | mg/L | NA | PNA | | 0.0007 | U | PNA | | 0.05 | U | PNA | | 0.05 | U | PNA | | 0.0012 | J | PNA | | 0.05 | U | PNA | | Zinc as Zn | mg/L | 2 # | PNA | | 0.0048 | В | PNA | | 0.02 | U | PNA | | 0.02 | U | PNA | | 0.0012 | U | PNA | | 0.02 | U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 49.8 | | 45.1 | | 44 | | 40 | | 41.8 | | 38.0 | | 41.6 | | 33 | | 42.8 | | 45 | | 45.8 | | Chloride as Cl | mg/L | 250 | 13.8 | | 15.4 | | 13.4 | | 11.9 | | 12.7 | | 10.6 | | 9.5 | | 10.7 | | 12.6 | | 12.4 | | 13 | | Sulfate as SO4 | mg/L | 250 | 5 | U | 5 | U | 5 | U | 3.24 | J | 5 | U | 3 | J | 5 | U | 3.2 | J | 5 | U | 5 | U | 5 U | | Bromide | mg/L | 2 # | 0.5 | U | 0.5 | U | 0.5 | U | 0.05 | J | 0.5 | U | 0.062 | J | 0.5 | U | 0.056 | J | 0.5 | U | 0.5 | U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 1 | J | 2 | U | 2 | U | 2 | U | 2 | U | 2 U | | COD | mg/L | NA | 10 | U | 10 | U | 10 | U | 10 | U | 19.2 | | 6.8 | J | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | | Color | units | NA | PNA | | 5 | | PNA | | 5 | U | PNA | | 5 | U | PNA | | 5 | U | PNA | | 5 | | PNA | | Chromium hex as Cr | mg/L | 0.05 | PNA | | 0.02 | U | PNA | | 0.02 | U | PNA | | 0.02 | U | PNA | | 0.003 | U | PNA | | 0.02 | U | PNA | | Hardness as CaC03 | mg/L | NA | 100 | | 40 | | 40 | | 38 | | 35 | | 35 | | 33 | | 32 | | 33 | | 24 | | 23.3 | | Ammonia as N | mg/L | 2 | 0.1 | U | 0.16 | | 0.1 | UB | 0.023 | J | 0.1 | U | 0.1 | U | 0.1 U | | Nitrite as N | mg/L | NA | 0.1 | U | 0.05 U | | Nitrate as N | mg/L | 10 | 0.1 | U | 0.16 | | 0.18 | | 0.17 | | 0.17 | | 0.2 | | 0.16 | | 0.21 | | 0.17 | | 0.18 | | 0.19 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.0058 | | 0.005 | U | 0.0428 | | 0.005 | U | 0.005 | U | 0.0038 | J | 0.005 | U | 0.005 | U | 0.0121 | | Tot Dissolved Solids | mg/L | NA | 75 | | 71 | | 81 | | 61 | | 135 | | 63 | | 41 | | 102 | | 65 | | 80 | | 102 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.1 | U | 0.2 | | 1 | U | 0.1 | U | 0.12 | | 0.046 | J | 0.1 | U | 0.1 | U | 0.1 | U | 0.14 | | 0.1 U | | Tot Organic Carbon | mg/L | NA | 11.6 | | 1 | U | 0.509 | | 1 | U | 1.10 | | 0.36 | J | 1 | UB | 0.24 | J | 1 | U | 1 | U | 1 U | | Turbidity | NTU | NA | 0 | | 0 | | 0.8 | | 2.2 | | 0.1 | | 0 | | 3.8 | | 1.9 | | 4.6 | | 0.0 | | 0.0 | | Temperature | deg.C | NA | 12.04 | | 11.35 | | 11.4 | | 11.77 | | 11.98 | | 12.75 | | 11.76 | | 11.79 | | 11.82 | | 11.86 | | 10.75 | | рН | units | 6.5-8.5 | 6.66 | | 6.32 | | 6.37 | | 6.82 | | 6.36 | | 6.75 | | 6.61 | | 6.19 | | 7.01 | | 6.64 | | 6.71 | | Spec. Cond | umho/cm | NA | 176 | | 137 | | 133 | | 130 | | 133 | | 130 | | 131 | | 127 | | 127 | | 142 | Ī | 126 | ## NOTES: (1) = NYSDEC, Class GA Groundwater Standards Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - $\label{thm:continuous} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | ANALYTICAL | UNITS | GW | | | | | | | | | | | | | | MW-4A | 1 | | | | | | | | | | | |------------------------|---------|----------|-----------|---|------------|--------|----------|---|----------------|-------|---------------|---|------------|----------|----|-----------|----|--------------|------|---------|----------|--------------|---|------------------|--------------|------------|--------------| | | | | A | | Octol | er 201 | 14 | | April | 2015 | | | Octob | er 2015 | | A:1 204 | | 0-1-12016 | | -1 2045 | | 0-1-12015 | | A! 2040 | 0-4-12010 | A1 2040 | 0-1-12010 | | PARAMETERS | | STND (1) | April 201 | 4 | Unfiltered |] | Filtered | | Unfiltered | Filt | ered | | Unfiltered | Filtered | | April 201 | 16 | October 2016 | Apr | il 2017 | <i>'</i> | October 2017 | / | April 2018 | October 2018 | April 2019 | October 2019 | | Aluminum as Al | mg/L | NA | 0.253 | | PNA |] | PNA | | 0.271 | 0.21 | 1 | | PNA | PNA | | 0.219 | | PNA | 0.2 | 42 | | PNA | | 0.187 J | PNA | 0.2 U | PNA | | Antimony as Sb | mg/L | 0.003# | 0.0019 | U | PNA |] | PNA | | 0.003 U | 0.00 | 3 U | J | PNA | PNA | | 0.06 | U | PNA | 0.0 | 06 | U | PNA | | 0.003 U | PNA | 0.06 U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0011 | U | PNA |] | PNA | | 0.0033 U | 0.00 | 3 U | J | PNA | PNA | | 0.01 | U | PNA | 0.0 | 01 | U | PNA | | 0.0068 U | PNA | 0.01 U | PNA | | Barium | mg/L | 1 | 0.183 | В | PNA |] | PNA | | 0.158 B | 0.14 | 4 B | 3 | PNA | PNA | | 0.17 | J | PNA | 0.1 | 28 | J | PNA | | 0.123 J | PNA | 0.2 U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.0006 | В | PNA | l | PNA | | 0.0003 B | 0.00 |)4 B | 3 | PNA | PNA | | 0.0004 | J | PNA | 0.0 | 05 | U | PNA | | 0.0006 U | PNA | 0.005 U | PNA | | Boron as B | mg/L | 1 | 0.0271 | В | PNA | l | PNA | | 0.0273 B | 0.02 | 8 B | 3 | PNA | PNA | | 0.0315 | J | PNA | 0.04 | 402 | J | PNA | | 0.0488 J | PNA | 0.05 U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.0002 | В | 0.0003 U | 0. | 0.0003 | U | 0.0002 U | 0.00 |)2 U | J | 0.0002 B | 0.0005 | В | 0.0004 | J | 0.0025 U | 0.00 | 036 | J | 0.0025 | U | 0.00015 J | 0.0025 U | 0.0025 U | 0.0025 U | | Calcium as Ca | mg/L | NA | 11.3 | | 11.6 | | 12.2 | | 10.6 | 10. | ' J | | 14.3 | 13.3 | | 11.7 | | 12.5 | 10 |).1 | | 10.9 | | 10.4 | 8.33 | 7.7 | 9.03 | | Chromium as Cr | mg/L | 0.05 | 0.0042 | В | PNA |] | PNA | | 0.0218 | 0.00 | 1 U | J | PNA | PNA | | 0.01 | U | PNA | 0.00 | 067 | J | PNA | | 0.0039 J | PNA | 0.01 U | PNA | | Cobalt | mg/L | NA | 0.00019 | U | PNA | l | PNA | | 0.0006 U | 0.00 |)6 U | J | PNA | PNA | | 0.05 | U | PNA | 0.0 | 05 | U | PNA | | 0.0006 U | PNA | 0.05 U | PNA | | Copper as Cu | mg/L | 0.2 | 0.00076 | U | PNA | 1 | PNA | | 0.0022 B | 0.00 | .4 B | 3 | PNA | PNA | | 0.0023 | J | PNA | 0.0 | 25 | U | PNA | | 0.0025 U | PNA | 0.025 U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | l | PNA | | 0.01 U | PNA | 1 | | PNA | PNA | | 0.01 | U | PNA | 0.0 | 01 | U | PNA | | 0.0029 U | PNA | 0.01 U | PNA | | Iron as Fe | mg/L | 0.3 | 0.0796 | В | 0.127 | 0. | 0.0714 | В | 0.257 J | 0.01 | 8 J | | 0.0268 U | 0.0268 | U | 0.1 | U | 0.112 | 0.1 | 29 | | 1.69 | | 0.0583 | 0.0302 | 0.02 U | 2.14 | | Lead as Pb | mg/L | 0.025 | 0.0038 | В | 0.002 E | 0. | 0.0016 | В | 0.0022 U | 0.00 | .2 U | J | 0.0044 | 0.0044 | N | 0.0028 | J | 0.005 U | 0.0 | 05 | U | 0.005 | U | 0.0013 U | 0.005 U | 0.005 U | 0.005 U | | Magnesium | mg/L | 35 # | 3.87 | В | 3.76 E | : : | 3.81 | В | 3.61 B | 3.60 | J | | 4.58 B | 4.34 | BE | 3.85 | | 4.46 | 3.0 | 50 | | 4.24 | | 3.82 | 3.17 | 2.96 | 3.19 | | Manganese as Mn | mg/L | 0.3 | 0.113 | | 0.086 | 0. | 0.0846 | | 0.122 | 0.10 | 4 J | | 0.119 E | 0.101 | | 0.142 | | 0.105 | 0.1 | 28 | | 0.219 | | 0.0702 | 0.0244 | 0.0225 | 0.224 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | 1 | PNA | | 0.0001 U | 0.00 |)1 U | J | PNA | PNA | | 0.0002 | U | PNA | 0.00 | 002 | U | PNA | | 0.000066 J | PNA | 0.0002 U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0051 | В | PNA | l | PNA | | 0.0044 B | 0.00 | 85 B | 3 | PNA | PNA | | 0.005 | J | PNA | 0.0 | 04 | J | PNA | | 0.0031 J | PNA | 0.04 U | PNA | | Potassium | mg/L | NA | 3.87 | В | 4.44 E | | 4.75 | В | 3.04 B | 2.6 | Б | 3 | 3.89 B | 2.75 | В | 4.01 | J | 5 U | 3.3 | 34 | J | 5 | U | 3.45 J | 5 U | 5 U | 5 U | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA |] | PNA | | 0.0038 U | 0.00 | 88 U J | I | PNA | PNA | | 0.01 | U | PNA | 0.0 | 01 | U | PNA | | 0.0063 U | PNA | 0.01 U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA |] | PNA | | 0.0022 U | 0.00 | .2 U | J | PNA | PNA | | 0.01 | U | PNA | 0.0 | 01 | U | PNA | | 0.0036 U | PNA | 0.01 U | PNA | | Sodium as Na | mg/L | 20 | 23 | | 19.3 | 2 | 20.7 | | 25.4 | 26.3 | J | | 23.7 | 22.8 | | 27 | | 22.1 | 31 | .6 | | 25.9 | | 29.8 | 24.4 | 25 | 19.2 | | Thallium as Tl | mg/L | 0.0005# | 0.0013 | U | PNA | 1 | PNA | | 0.0038 U | 0.003 | 88 U | J | PNA | PNA | | 0.01 | U | PNA | 0.0 | 01 | U | PNA | | 0.0036 U | PNA | 0.01 U | PNA | | Vanadium | mg/L | NA | 0.00039 | U | PNA |] | PNA | | 0.0007 U | 0.00 |)7 U | J | PNA | PNA | | 0.05 | U | PNA | 0.0 | 05 | U | PNA | | 0.0008 U | PNA | 0.05 U | PNA | | Zinc as Zn | mg/L | 2 # | 0.017 | В | PNA | 1 | PNA | | 0.0118 B | 0.013 | 32
U | 1 | PNA | PNA | | 0.0069 | J | PNA | 0.00 | 052 | J | PNA | | 0.006 J | PNA | 0.02 U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 6.5 | | 18.4 | 1 | PNA | | 6.4 | PNA | 1 | | 8.55 | PNA | | 3.5 | | 4.9 | 4. | .0 | | 50.4 | | 6.4 J | 12.7 | 7 | 4.8 | | Chloride as Cl | mg/L | 250 | 41.5 | | 33 | l | PNA | | 49.1 | PNA | 1 | | 44.5 | PNA | | 46.5 | | 41.3 | 47 | .0 | | 46.6 | | 42.9 | 39 | 49.4 | 37.1 | | Sulfate as SO4 | mg/L | 250 | 11.1 | | 14.7 | l | PNA | | 17.8 | PNA | 1 | | 10.5 | PNA | | 13.7 | | 12.2 | 16 | 5.6 | | 11.4 | | 14.4 | 8.5 | 16.7 | 19.5 | | Bromide | mg/L | 2 # | 0.5 | U | 0.5 U | 1 | PNA | | 0.5 U | PNA | 1 | | 0.5 U | PNA | | 0.02 | J | 0.5 U | 0.0 | 03 | J | 0.5 | U | 0.027 J | 0.5 U | 0.5 U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 U | 1 | PNA | | 2 U | PNA | 1 | | 2 U | PNA | | 2 | U | 2 U | 1 | L | J | 2 | U | 2 U | 2 U | 2 U | 4 U | | COD | mg/L | NA | 10 | U | 10 U | 1 | PNA | | 10 U | PNA | 1 | | 10 U | PNA | | 10 | U | 10 U | 1 | 0 | U | 10 | U | 10 U | 10 U | 10 U | 10 U | | Color | units | NA | 5 | U | PNA | l | PNA | | 5 U | PNA | 1 | | PNA | PNA | | 5 | U | PNA | 5 | 5 | | PNA | | 5 U | PNA | 5 U | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA |] | PNA | | 0.02 U | PNA | 1 | | PNA | PNA | | 0.02 | U | PNA | 0.0 | 02 | U | PNA | | 0.003 U | PNA | 0.02 U | PNA | | Hardness as CaC03 | mg/L | NA | 40 | | 64 | l | PNA | | 40 | PNA | 1 | | 56 | PNA | | 42 | | 45 | 4 | 0 | | 88 | | 41 | 29 | 23.3 | 34 | | Ammonia as N | mg/L | 2 | 0.1 | | 0.1 U | 1 | PNA | | 0.1 U | PNA | 1 | | 0.1 U | PNA | | 0.2 | | 0.1 U | 0.0 | 99 | J | 0.1 | U | 0.073 U | 0.1 U | 0.1 U | | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 U |]] | PNA | | 0.1 U | PNA | 1 | | 0.1 U | PNA | | 0.1 | U | | 0.0 | | U | | U | 0.05 U | | 0.05 U | | | Nitrate as N | mg/L | 10 | 8.25 | | 4.72 |] | PNA | | 4.6 | PNA | 1 | | 9.05 | PNA | | 7.53 | D | 8.9 | 5. | | | 0.29 | | 0.46 | 7.2 | 1.4 | 3.6 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 U |]] | PNA | | 0.005 U | PNA | 1 | | 0.008 | PNA | | 0.005 | U | 0.0068 | 0.0 | | U | 0.005 | U | 0.0043 <i>UJ</i> | 0.005 U | 0.005 U | | | Tot Dissolved Solids | mg/L | NA | 142 | | 121 |] | PNA | | 115 | PNA | 1 | | 146 | PNA | | 128 | | 127 | 13 | 37 | | 120 | | 166 | 117 | 97 | 126 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.18 | | 0.1 U |]] | PNA | | 0.1 U | PNA | 1 | | 1 U | PNA | | 0.1 | U | 0.1 U | 0. | .1 | U | 0.41 | | 0.1 U | 0.1 U | 0.01 U | 0.1 U | | Tot Organic Carbon | mg/L | NA | 1 | U | 5.3 |] | PNA | | 0.1 U | PNA | 1 | | 0.958 | PNA | | 1 | U | 1.00 U | 0.0 | 34 | J | 1 | U | 0.66 J | 1 U | 1 U | 1.8 | | Turbidity | NTU | NA | 1.1 | | 0 |] | PNA | | 0 | PNA | | | 0.29 | PNA | | 2.14 | | 0.2 | (|) | | 22.9 | | 1.4 | 14.88 | 0.0 | 48.2 | | Temperature | deg.C | NA | 10.41 | | 12.88 |] | PNA | | 10.57 | PNA | 1 | | 12.97 | PNA | | 12.34 | | 13.46 | 11. | .63 | | 13.31 | | 10.78 | 13.49 | 10.46 | 12.91 | | рН | units | 6.5-8.5 | 5.61 | | 5.54 | l | PNA | | 5.07 | PNA | 1 | | 5.32 | PNA | | 4.86 | | 5.16 | 4.9 | 93 | | 5.22 | | 4.89 | 5.4 | 5.26 | 4.75 | | Spec. Cond | umho/cm | NA | 244 | | 255 |] | PNA | | 221 | PNA | 1 | | 230 | PNA | | 257 | | 251 | 27 | 70 | | 272 | | 278 | 296 | 232 | 171 | ## NOTES: (1) = NYSDEC, Class GA Groundwater Standards Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - $\label{thm:continuous} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value | ANALYTICAL | UNITS | GW | | | | | | | | | | | | MW-4B | | | | | | | | | | | | |------------------------|---------|----------|------------|-----|------------|---------|---|------------|--------|----------|------------|----------|---|------------|----|--------------|-----|----------|---|--------------|---|------------|--------------|------------|--------------| | | | | | | Octobe | er 2014 | | Apri | il 201 | 15 | Octobe | r 2015 | | | _ | | | | | | | | 0.1.0010 | | 0.1.0010 | | PARAMETERS | | STND (1) | April 2014 | ۱ – | Unfiltered | Filtere | d | Unfiltered | | Filtered | Unfiltered | Filtered | | April 2016 | 6 | October 2016 | Ap | ril 2017 | | October 2017 | | April 2018 | October 2018 | April 2019 | October 2019 | | Aluminum as Al | mg/L | NA | 0.0511 | В | PNA | PNA | | 0.0059 U | | 0.024 B | PNA | PNA | | 0.2 | U | PNA | (| 0.2 | U | PNA | | 0.0137 J | PNA | 0.2 U | PNA | | Antimony as Sb | mg/L | 0.003# | 0.0019 | U | PNA | PNA | | 0.003 U | | 0.003 U | PNA | PNA | | 0.06 | U | PNA | 0 | .06 | U | PNA | | 0.0055 J | PNA | 0.06 U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0024 | В | PNA | PNA | | 0.0049 B | : | 0.0034 B | PNA | PNA | | 0.01 | U | PNA | 0 | .01 | U | PNA | | 0.0068 U | PNA | 0.01 U | PNA | | Barium | mg/L | 1 | 0.0921 | В | PNA | PNA | | 0.0728 B | | 0.0595 B | PNA | PNA | | 0.0578 | J | PNA | 0.0 |)403 | J | PNA | | 0.0589 J | PNA | 0.2 U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | PNA | | 0.001 U | | 0.0002 B | PNA | PNA | | 0.005 | U | PNA | 0. | 005 | U | PNA | | 0.0006 U | PNA | 0.005 U | PNA | | Boron as B | mg/L | 1 | 0.0779 | В | PNA | PNA | | 0.0714 B | | 0.0634 B | PNA | PNA | | 0.0703 | J | PNA | 0.0 |)582 | | PNA | | 0.0713 | PNA | 0.0569 | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.0002 | В | 0.0003 U | 0.0003 | U | 0.0002 U | | 0.0002 U | 0.0001 U | 0.0001 | U | 0.0004 | J | 0.0025 U | 0.0 | 0013 | J | 0.0025 U | J | 0.00006 U | 2.5 U | 0.0025 U | 0.0025 U | | Calcium as Ca | mg/L | NA | 19.8 | | 20.7 | 22 | | 20.9 | | 18.8 | 21.7 | 19.8 | | 20.8 | | 19.6 | 1 | 8.7 | | 16.9 | | 15.6 | 15.4 | 13.8 | 14.4 | | Chromium as Cr | mg/L | 0.05 | 0.0254 | | PNA | PNA | | 0.0021 B | | 0.0011 U | PNA | PNA | Ī | 0.01 | UJ | PNA | 0 | .01 | U | PNA | | 0.0055 J | PNA | 0.01 U | PNA | | Cobalt | mg/L | NA | 0.0041 | В | PNA | PNA | | 0.0037 B | | 0.0034 B | PNA | PNA | Ī | 0.0041 | J | PNA | 0.0 | 0024 | J | PNA | | 0.0046 J | PNA | 0.05 U | PNA | | Copper as Cu | mg/L | 0.2 | 0.0037 | В | PNA | PNA | | 0.0046 B | | 0.0016 B | PNA | PNA | Ī | 0.0021 | U | PNA | 0. | 025 | U | PNA | | 0.0025 U | PNA | 0.025 U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | PNA | | 0.01 U | | PNA | PNA | PNA | | 0.01 | U | PNA | 0 | .01 | U | PNA | | 0.0029 U | PNA | 0.01 U | PNA | | Iron as Fe | mg/L | 0.3 | 11.5 | | 0.133 | 0.0432 | В | 8.06 | | 1.29 | 8.37 | 1.05 | | 7.67 | | 7.66 | 1 | .28 | | 3.89 | | 9.32 | 10.6 | 4.8 | 5.43 | | Lead as Pb | mg/L | 0.025 | 0.0028 | В | 0.0014 B | 0.0021 | В | 0.0022 U | | 0.0022 U | 0.0055 | 0.0042 | N | 0.0029 | J | 0.005 U | 0. | 005 | U | 0.005 U | J | 0.0013 U | 0.005 U | 0.005 U | 0.005 U | | Magnesium | mg/L | 35 # | 9.62 | | 10.7 | 11 | | 10.3 | | 9.49 | 11.2 | 10.3 | Е | 10.3 | | 9.83 | 9 | .47 | | 8.31 | | 7.35 | 7.5 | 6.9 | 7.32 | | Manganese as Mn | mg/L | 0.3 | 1.64 | | 0.215 | 0.204 | | 1.45 | | 1.22 | 1.62 | 1.34 | | 1.14 | | 1.19 | 0. | 343 | | 0.633 | | 1.08 | 1.27 | 0.71 | 0.959 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | PNA | | 0.0001 U | | 0.0001 U | PNA | PNA | | 0.0002 | U | PNA | 0.0 | 0002 | U | PNA | | 0.000067 J | PNA | 0.0002 U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0052 | В | PNA | PNA | | 0.0037 B | : | 0.0035 B | PNA | PNA | | 0.0033 | J | PNA | 0.0 | 0041 | J | PNA | | 0.0034 J | PNA | 0.04 U | PNA | | Potassium | mg/L | NA | 5.97 | | 1.88 B | 1.73 | В | 3.91 B | | 3.19 B | 3.98 B | 2.69 | В | 3.25 | J | 5 U | 2 | .04 | J | 5 U | J | 3.74 J | 5 U | 5 U | 5 U | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA | PNA | | 0.0038 U | 1 | 0.0038 U | PNA | PNA | | 0.01 | U | PNA | 0 | .01 | U | PNA | | 0.0063 U | PNA | 0.01 U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | PNA | | 0.0022 U | | 0.0022 U | PNA | PNA | | 0.01 | U | PNA | 0 | .01 | U | PNA | | 0.0036 U | PNA | 0.01 U | PNA | | Sodium as Na | mg/L | 20 | 21.6 | | 19.5 | 21.5 | | 20.4 | | 18.9 | 21.9 | 21.7 | | 19.8 | J | 18.3 | 1 | 8.1 | | 16.6 | | 17.8 | 16.7 | 23 | 26 | | Thallium as Tl | mg/L | 0.0005# | 0.0014 | В | PNA | PNA | | 0.0038 U | 1 | 0.0038 U | PNA | PNA | | 0.01 | U | PNA | 0 | .01 | U | PNA | | 0.0036 U | PNA | 0.01 U | PNA | | Vanadium | mg/L | NA | 0.0017 | В | PNA | PNA | | 0.0007 U | ſ | 0.0007 U | PNA | PNA | | 0.05 | U | PNA | 0 | .05 | U | PNA | | 0.0008 U | PNA | 0.05 U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0174 | В | PNA | PNA | | 0.006 B | | 0.123 B | PNA | PNA | | 0.02 | U | PNA | 0 | .02 | U | PNA | | 0.0022 J | PNA | 0.02 U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 107 | | 106 | PNA | | 93.6 | | PNA | 92.6 | PNA | | 101 | | 93 | 7 | 2.4 | | 91.4 | | 68.6 | 79.6 | 77.8 | 68.6 | | Chloride as Cl | mg/L | 250 | 23 | | 20.7 | PNA | | 28.3 | | PNA | 35.5 | PNA | | 21.1 | | 27.3 | 1 | 5.2 | | 22.4 | | 19.2 | 20.4 | 30.4 | 43.4 | | Sulfate as SO4 | mg/L | 250 | 11.3 | | 6.76 | PNA | | 12.7 | | PNA | 10.4 | PNA | | 11.1 | J | 10.7 | Ç | 9.9 | | 10.3 | | 14.7 | 15.2 | 10.4 | 14.9 | | Bromide | mg/L | 2 # | 0.5 | U | 0.5 U | PNA | | 0.5 U | 1 | PNA | 0.5 U | PNA | | 0.1 | J | 0.5 U
| 0. | 077 | J | 0.5 U | J | 0.09 J | 0.5 U | 0.5 U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 U | PNA | | 2 U | | PNA | 2 U | PNA | | 2 | U | 2 U | | 1 | J | 2 U | J | 2 U | 4 U | 2 U | 2 U | | COD | mg/L | NA | 11.4 | | 10 U | PNA | | 10 U | | PNA | 10 U | PNA | | 10 | U | 10.9 | 3 | 3.8 | J | 10 U | J | 10 U | 10 U | 10 U | 10 U | | Color | units | NA | 100 | | PNA | PNA | | 75 | | PNA | PNA | PNA | | 15 | | PNA | | 25 | | PNA | | 5 U | PNA | 6 | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA | PNA | | 0.02 U | | PNA | PNA | PNA | | 0.02 | UJ | PNA | 0 | .02 | U | PNA | | 0.015 U | PNA | 0.02 U | PNA | | Hardness as CaC03 | mg/L | NA | 92 | | 100 | PNA | | 140 | | PNA | 120 | PNA | | 86 | | 86 | | 85 | | 74 | | 70 | 60 | 50 | 66.7 | | Ammonia as N | mg/L | 2 | 5.32 | | 0.1 U | PNA | | 2.98 | | PNA | 1.92 | PNA | | 1.7 | | 2.1 | 0 | .34 | | 2.3 | | 2.5 | 2.8 | 1.4 | 2.1 | | Nitrite as N | mg/L | NA | 0.10 | U | 0.1 U | PNA | | 0.1 U | | PNA | 0.1 U | PNA | | 0.1 | U | 0.05 U | 0 | .05 | U | 0.05 U | J | 0.05 U | 0.05 U | 0.05 U | 0.05 U | | Nitrate as N | mg/L | 10 | 0.11 | | 0.22 | PNA | | 0.1 U | | PNA | 0.1 U | PNA | | 0.1 | U | 0.052 | 0 | .11 | | 0.069 | | 0.13 | 0.11 | 0.16 | 0.21 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 U | PNA | | 0.005 U | | PNA | 0.0059 | PNA | | 0.005 | U | 0.0115 | 0. | 005 | U | 0.005 U | J | 0.0029 J | 0.005 U | 0.005 U | 0.014 | | Tot Dissolved Solids | mg/L | NA | 154 | | 133 | PNA | | 140 | | PNA | 144 | PNA | | 144 | | 152 | 1 | .33 | | 137 | | 161 | 114 | 144 | 216 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 5.95 | | 0.1 U | PNA | | 3.05 | | PNA | 1.64 | PNA | | 1.27 | J | 1.7 | 0 | .83 | | 2.5 | | 2.7 | 3 | 1.3 | 2.4 | | Tot Organic Carbon | mg/L | NA | 3 | | 25.7 | PNA | | 2.1 | | PNA | 2.01 | PNA | | 1.8 | | 1.87 | | 1.3 | | 1.5 | | 1.6 | 1.9 | 1.3 | 1.4 | | Turbidity | NTU | NA | 0 | | 0 | PNA | | 0 | | PNA | 0.37 | PNA | | 8.37 | | 0 | | 0 | | 2.7 | | 2.2 | 0.0 | 0.0 | 0.0 | | Temperature | deg.C | NA | 11.86 | | 12.95 | PNA | | 12.14 | | PNA | 12.91 | PNA | | 14.34 | | 13.02 | 12 | 2.75 | | 12.73 | | 12.04 | 12.55 | 12.1 | 12.48 | | рН | units | 6.5-8.5 | 6.6 | | 6.55 | PNA | | 6.19 | | PNA | 6.66 | PNA | | 6.32 | | 6.6 | 6 | .51 | | 6.41 | | 6.31 | 6.4 | 6.58 | 6.29 | | Spec. Cond | umho/cm | NA | 359 | | 314 | PNA | | 292 | | PNA | 310 | PNA | | 290 | | 314 | 2 | 250 | | 283 | | 281 | 285 | 270 | 252 | #### NOTES: (1) = NYSDEC, Class GA Groundwater Standards Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - $\label{thm:continuous} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value | ANALYTICAL | UNITS | GW | | | | | | | | | | | | MW-4C | | | | | | | | | | |---|----------------|---------------|--------------|------|-----------------|------------|-----|------------------|------------|---|------------|------------|---|--------------|----|--------------|-------------|------|--------------|------------|-------------------|-----------------|--------------| | | | - | 4 | | Octob | er 2014 | | Apri | l 2015 | | Octob | er 2015 | | A11 204 / | | 0-1-12016 | A | 2045 | 0-1-12017 | 4 | 0-1-12010 | 4 | 0-1-12010 | | PARAMETERS | | STND (1) | April 201 | 4 | Unfiltered | Filte | red | Unfiltered | Filtered | | Unfiltered | Filtered | | April 2016 | 6 | October 2016 | April | 2017 | October 2017 | April 2018 | October 2018 | April 2019 | October 2019 | | Aluminum as Al | mg/L | NA | 0.0354 | В | PNA | PNA | | 0.0059 U | 0.132 | | PNA | PNA | | 0.20 | U | PNA | 0.20 |) U | PNA | 0.0134 | J PNA | 0.20 U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U | PNA | PNA | | 0.0069 B | 0.003 U | U | PNA | PNA | | 0.060 | U | PNA | 0.06 | 0 U | PNA | 0.0052 | PNA | 0.060 U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0046 | В | PNA | PNA | | 0.0033 U | 0.0033 U | U | PNA | PNA | | 0.010 | U | PNA | 0.01 | 0 U | PNA | 0.0068 | J PNA | 0.010 U | PNA | | Barium | mg/L | 1 | 0.0504 | В | PNA | PNA | | 0.0468 B | 0.0424 I | В | PNA | PNA | | 0.0519 | J | PNA | 0.053 | | PNA | 0.0491 | PNA | 0.20 U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | PNA | | 0.0001 U | 0.0001 U | U | PNA | PNA | | 0.0050 | U | PNA | 0.005 | 0 U | PNA | 0.0006 | J PNA | 0.0050 U | PNA | | Boron as B | mg/L | 1 | 0.0083 | В | PNA | PNA | | 0.0069 B | | В | PNA | PNA | | 0.0116 | J | PNA | 0.05 | | PNA | 0.0011 | PNA | 0.050 U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.00011 | U | 0.0003 U | 0.000 | 3 U | 0.0002 U | | U | 0.0001 U | 0.0001 | U | 0.0025 | U | 0.0025 U | 0.002 | | 0.0025 U | 0.00000 | J 2.5 U | 0.0025 U | 0.0025 U | | Calcium as Ca | mg/L | NA | 26.2 | | 30.1 | 31.9 | J | 27.0 | 25.0 | | 29.1 | 27.8 | | 29.7 | | 30.4 | 28.0 | | 30.4 | 25.3 | 25.8 | 24.6 | 25.3 | | Chromium as Cr | mg/L | 0.05 | 1.31 | | PNA | PNA | | 0.184 | | В | PNA | PNA | | 0.396 | | PNA | 0.30 | | PNA | 0.564 | PNA | 0.367 | PNA | | Cobalt | mg/L | NA | 0.0228 | В | PNA | PNA | | 0.0049 B | 0.0010 | _ | PNA | PNA | | 0.0077 | J | PNA | 0.012 | | PNA | 0.0099 | PNA | 0.050 U | | | Copper as Cu | mg/L | 0.2 | 0.0225 | В | PNA | PNA | | 0.0027 B | | U | PNA | PNA | | 0.0053 | J | PNA | 0.02 | | PNA | 0.0104 | PNA | 0.025 U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.010 | U | PNA | PNA | | 0.010 U | PNA | | PNA | PNA | | 0.010 | U | PNA | 0.01 | | PNA | 0.0029 | J PNA | 0.010 U | PNA | | Iron as Fe | mg/L | 0.3 | 3.97 | | 0.873 | 0.085 | | 0.715 | | В | 1.50 | 0.0268 | U | 1.68 | | 0.734 | 1.50 | | 1.41 | 2.15 | 4.16 | 1.45 | 2.64 | | Lead as Pb | mg/L | 0.025 | 0.0097 | | 0.0016 J | 0.002 | 4 B | 0.0022 U | 0.0022 | В | 0.0054 | 0.0049 | N | 0.0036 | J | 0.0050 U | 0.005 | | 0.0050 U | 0.0013 | 0.0000 | 0.0050 U | 0.0050 U | | Magnesium | mg/L | 35 # | 11.9 | | 13.4 | 14.1 | J | 11.9 | 11.5 | | 13.3 | 12.8 | Е | 13.3 | | 13.8 | 12.5 | | 13.9 | 11.7 | 11.7 | 11.1 | 11.4 | | Manganese as Mn | mg/L | 0.3 | 0.154 | | 0.0436 | 0.036 | 2 J | 0.0407 | 0.0336 | | 0.0662 E | 0.0307 | | 0.0561 | | 0.0368 | 0.078 | | 0.0479 | 0.070 | 0.108 | 0.0417 | 0.0933 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | PNA | | 0.0001 U | | U | PNA | PNA | | 0.0002 | U | PNA | 0.000 | | PNA | 0.00007 | PNA | 0.0002 U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.359 | | PNA | PNA | | 0.273 | 0.233 | | PNA | PNA | | 0.349 | | PNA | 0.42 | | PNA | 0.274 | PNA | 0.288 | PNA | | Potassium | mg/L | NA | 1.60 | В | 1.95 B | 1.96 | В | 1.09 B | 0.691 I | В | 1.50 B | 0.562 | В | 1.40 | J | 5.00 U | 1.75 | | 5.00 U | 1.51 | 5.00 U | 5.00 U | 5.00 U | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA | PNA | | 0.0038 U | 0.0038 U | U | PNA | PNA | | 0.010 | U | PNA | 0.01 | | PNA | 0.0063 | J PNA | 0.010 U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | PNA | | 0.0022 U | | U | PNA | PNA | | 0.010 | U | PNA | 0.01 | | PNA | 0.0036 | J PNA | 0.010 U | PNA | | Sodium as Na | mg/L | 20 | 28.7 | | 36.1 | 37.3 | J | 28.8 | 27.3 | | 32.7 | 32.9 | _ | 34.2 | | 39.3 | 39.3 | | 44.6 | 34.1 | 37.4 | 39.7 | 44.2 | | Thallium as Tl | mg/L | 0.0005# | 0.0013 | U | PNA | PNA | | 0.0038 U | | U | PNA | PNA | | 0.010 | U | PNA | 0.01 | | PNA | 0.0036 | | 0.010 U | PNA | | Vanadium | mg/L | NA | 0.0033 | В | PNA | PNA | | 0.0007 U | | U | PNA | PNA | | 0.050 | U | PNA | 0.000 | | PNA | 0.0017 | PNA | 0.050 U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0178 | В | PNA | PNA | | 0.0057 B | | В | PNA | PNA | | 0.020 | U | PNA | 0.02 | | PNA | 0.0015 | PNA | 0.020 U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 33.9 | | 38.0 | PNA | | 38.5 | PNA | _ | 45.0 | PNA | | 41.9 | | 44.0 | 34.2 | | 47.4 | 43.0 | 46.6 | 45.3 | 44.2 | | Chloride as Cl | mg/L | 250 | 100 | | 135 | PNA | | 107 D | PNA | _ | 113 | PNA | | 99.0 | - | 140 | 106 | | 125 | 101 | 122 | 125 | 134 | | Sulfate as SO4 | mg/L | 250 | 5.00 | U | 5.00 U | PNA | | 5.00 U | PNA | _ | 67.6 | PNA | | 3.67 | J | 5.00 U | 4.20 | | 5.00 U | 4.60 | 5.90 | 5.20 | 6.60 | | Bromide | mg/L | 2 # | 0.50 | U | 0.50 U | PNA | | 0.50 U | PNA | _ | 0.50 U | | | 0.08 | J | 0.50 U | 0.07 | | 0.50 U | 0.072 | 0.50 U | 0.50 U | 0.50 U | | BOD5 | mg/L | NA | 2.0 | U | 2.0 U | 1 | | 2.0 U | PNA | _ | 2.0 U | PNA | | 2.0 | U | 2.0 U | 1.0 | | 2.0 U | | J 4.0 U | 2.0 U | 2.0 U | | COD | mg/L | NA | 10.0 | U | 10.0 U | PNA | | 10.0 U | PNA
PNA | _ | 10.0 U | | | 10.0 | U | 19.2 | 21.3 | | 10.0 U | | J 10.0 U
J PNA | 10.0 U
30.0 | 10.0 U | | Color | units | NA
0.05 | 5.0 | U | PNA | PNA | | 15.0
0.020 II | - | | PNA | PNA | | 5.0 | ** | PNA | 25.0 | | PNA | | | | PNA | | Chromium hex as Cr
Hardness as CaC03 | mg/L
mg/L | 0.05
NA | 0.020
108 | U | PNA
160 | PNA
PNA | | 0.020 U
120 | PNA
PNA | | PNA
120 | PNA
PNA | | 0.020
114 | U | PNA
120 | 0.02
170 | | PNA
120 | 0.015 | J PNA
96.0 | 0.020 U
80.0 | PNA
90.0 | | Ammonia as N | mg/L | 2 | 0.15 | | 0.10 U | PNA | | 0.10 U | PNA | | 0.10 U | PNA | | 0.12 | | 0.10 | 0.13 | | 0.10 U | 0.021 |
96.0
0.10 U | 0.10 U | 0.10 U | | Nitrite as N | mg/L | NA | 0.13 | п | 0.10 U | PNA | | 0.10 U | PNA | _ | 0.10 U | PNA | | 0.12 | U | 0.050 U | 0.15 | | 0.050 U | | J 0.050 U | 0.050 U | 0.050 U | | Nitrate as N | mg/L | 10 | 0.10 | II U | 0.10 U | PNA | | 0.10 U | PNA | _ | 0.10 U | PNA | | 0.10 | U | 0.050 U | 0.03 | | 0.050 U | 0.030 | 0.062 | 0.050 U | 0.050 U | | Phenols as Phenol | mg/L | 0.001 | 0.0050 | II | 0.0050 U | PNA | | 0.0050 U | PNA | | 0.0050 U | PNA | | 0.0050 | 11 | 0.0088 | 0.04 | | 0.0050 U | 0.0020 | 0.002
0.0050 U | 0.0050 U | 0.0114 | | Tot Dissolved Solids | mg/L
mg/L | 0.001
NA | 298 | U | 337 | PNA | | 258 | PNA | + | 227 | PNA | | 239 | U | 305 | 309 | | 230 | 307 | 234 | 266 | 300 | | Tot. Kjeldahl Nitrogen | mg/L | NA
NA | 0.29 | | 0.10 U | PNA | | 0.18 | PNA | + | 0.10 U | PNA | | 0.10 | U | 0.10 U | 0.13 | | 0.17 | 0.10 | J 0.10 U | 0.30 | 0.10 U | | Tot Organic Carbon | mg/L | NA
NA | 1.0 | U | 9.6 | PNA | | 1.0 U | PNA | + | 0.50 U | | | 1.0 | U | 1.0 U | 0.13 | | 1.0 U | | J 1.0 U | | | | Turbidity | NTU | NA
NA | 1.5 | 0 | 0 | PNA | | 0 | PNA | + | 10.1 | PNA | | 13.6 | J | 0.8 | 0.2. | ,) | 8.3 | 18.3 | 5.6 | 8.4 | 12.5 | | Temperature | deg.C | NA
NA | 11.54 | | 12.73 | PNA | | 11.88 | PNA | + | 12.68 | PNA | | 14.7 | | 12.97 | 13.6 | 1 | 12.67 | 12.14 | 13.22 | 12.16 | 12.65 | | nH | ueg.c
units | 6.5-8.5 | 7.95 | | 6.97 | PNA | | 6.57 | PNA | + | 6.59 | PNA | | 7.01 | | 6.94 | 6.84 | | 6.85 | 6.7 | 6.74 | 6.87 | 6.83 | | Spec. Cond | umho/cm | 0.5-6.5
NA | 311 | | 1 | PNA | | 383 | PNA | + | 430 | PNA | | 408 | | 546 | 479 | | 566 | 437 | 543 | 485 | 412 | | spec. Cond | ummo/cill | INA | 311 | | 1 | PNA | | 303 | FINA | | 430 | ΓIVA | | 700 | | 340 | 4/9 | | 300 | 437 | 343 | 403 | 414 | #### NOTES: (1) = NYSDEC, Class GA Groundwater Standards Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. B - Analyte was detected in the associated method blank. H - Received / analyzed outside of analytical holding time J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. ${\it J-Data\ Validation\ Qualifier-The\ analyte\ was\ positively\ identified; the\ associated\ numerical\ value\ is\ the\ approximate\ concentration\ of\ the\ analyte\ in\ the\ sample.}$ R - Data Validation Qualifier - Rejected. U - Indicates the compound was analyzed for, but not detected. $U-Data\ Validation\ Qualifier\ -\ The\ analyte\ was\ analyzed\ for,\ but\ was\ not\ detected\ above\ the\ reported\ sample\ quantitation\ limit.$ UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value | ANALYTICAL | UNITS | GW | October 2014 October 2015 | | | | | MW | -6A | | | | | | | | N | IW- | -6B | | | | | |------------------------|---------|----------|---------------------------|----|------------|----|------------|----|------------|----|--------------|---|--------------|--------|------|--------------|--------------|-----|-------------|----|------------|----|--------------| | PARAMETERS | | STND (1) | October 20 | 14 | October 20 | 15 | October 20 | 16 | October 20 | 17 | October 2018 | 3 | October 2019 | Octobe | 2014 | October 2015 | October 2016 | | October 201 | ۱7 | October 20 | 18 | October 2019 | | Aluminum as Al | mg/L | NA | 0.0543 | В | 0.0166 | В | 0.2 | U | 0.2 | U | 0.2 | U | 0.2 U | 0.092 | В | 0.0076 B | 0.2 | IJ | 0.2 | U | 0.2 | U | 0.2 U | | Antimony as Sb | mg/L | 0.003 # | 0.0044 | В | 0.0006 | U | 0.06 | U | 0.06 | U | | U | 0.06 U | | В | 0.0006 U | - | U | 0.06 | U | 0.06 | U | 0.06 U | | Arsenic as As | mg/L | 0.025 | 0.0009 | U | 0.0022 | U | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | 0.000 | U | 0.0022 U | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | | Barium | mg/L | 1 | 0.056 | В | 0.058 | В | 0.2 | U | 0.2 | U | 0.2 | U | 0.2 U | 0.012 | l B | 0.0127 B | 0.2 | IJ | 0.2 | U | 0.2 | U | 0.2 U | | Beryllium as Be | mg/L | 0.003 | 0.0002 | U | 0.0002 | U | 0.005 | U | 0.005 | U | 0.005 | U | 0.005 U | 0.000 | 2 U | 0.0002 U | | U | 0.005 | U | 0.005 | U | 0.005 U | | Boron as B | mg/L | 1 | 0.0182 | В | 0.0171 | В | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | 0.010 | i В | 0.0089 B | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | | Cadmium as Cd | mg/L | 0.005 | 0.0003 | U | 0.0001 | U | 0.0025 | U | 0.0025 | U | 0.0025 | U | 0.0025 U | 0.000 | B U | 0.0001 U | 0.0025 | U | 0.0025 | U | 0.0025 | U | 0.0025 U | | Calcium as Ca | mg/L | NA | 19.3 | | 20.5 | | 24.1 | | 7.93 | | 6.51 | | 8.69 | 3.47 | В | 3.87 B | 3.92 | | 3.98 | | 4.42 | | 4.54 | | Chromium as Cr | mg/L | 0.05 | 0.0017 | В | 0.002 | В | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | 0.025 | ļ | 0.0046 B | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 | | Cobalt | mg/L | NA | 0.0002 | U | 0.0003 | В | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | 0.000 | . U | 0.0004 B | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | | Copper as Cu | mg/L | 0.2 | 0.0011 | В | 0.0007 | В | 0.025 | U | 0.025 | U | 0.025 | U | 0.025 U | 0.001 | В | 0.0005 U | 0.025 | U | 0.025 | U | 0.025 | U | 0.025 U | | Cyanide as CN | mg/L | 0.2 | PNA | PNA | | PNA | PNA | | PNA | | PNA | | PNA | | Iron as Fe | mg/L | 0.3 | 0.128 | | 0.0297 | В | 0.237 | | 0.0201 | | 0.0361 | | 0.261 | 0.282 | | 0.0412 B | 0.1 | U | 0.0254 | | 0.108 | | 0.100 | | Lead as Pb | mg/L | 0.025 | 0.0013 | U | 0.0046 | | 0.005 | U | 0.0005 | U | 0.005 | U | 0.005 U | 0.001 | B U | 0.0036 | 0.005 | U | 0.005 | U | 0.005 | U | 0.005 U | | Magnesium | mg/L | 35 # | 7.54 | | 8.12 | | 9.87 | | 3.38 | | 2.73 | | 4.34 | 1.9 | В | 2.24 B | 2.27 | | 2.32 | | 2.54 | | 2.65 | | Manganese as Mn | mg/L | 0.3 | 0.0136 | В | 0.0072 | В | 0.0287 | | 0.01 | U | 0.01 | U | 0.0405 | 0.0093 | В | 0.0053 B | 0.01 | U | 0.01 | U | 0.01 | U | 0.02 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | 0.0001 | U | 0.0002 | U | 0.0002 | U | 0.0002 | U | 0.0002 U | 0.000 | . U | 0.0001 U | 0.0002 | U | 0.0002 | UB | 0.0002 | U | 0.0002 U | | Nickel as Ni | mg/L | 0.1 | 0.0008 | В | 0.003 | В | 0.04 | U | 0.04 | U | 0.04 | U | 0.04 U | 0.027 | 2 B | 0.0278 B | 0.04 | U | 0.04 | U | 0.04 | U | 0.04 U | | Potassium | mg/L | NA | 2.86 | В | 1.46 | В | 5 | U | 5 | U | 5 | U | 5 U | 2.12 | В | 0.745 B | 5 1 | U | 5 | U | 5 | U | 5 U | | Selenium as Se | mg/L | 0.01 | 0.0014 | U | 0.0022 | U | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | 0.001 | . U | 0.0022 U | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | | Silver as Ag | mg/L | 0.05 | 0.0007 | U | 0.0024 | В | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | 0.000 | ' U | 0.0013 B | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | | Sodium as Na | mg/L | 20 | 9.16 | | 11.3 | | 10.7 | J | 6.52 | | 7.68 | | 8.60 | 7.5 | | 8.97 | 11.7 | | 8.21 | | 7.80 | | 7.82 | | Thallium as Tl | mg/L | 0.0005# | 0.001 | U | 0.0019 | U | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | 0.001 | U | 0.0019 U | 0.01 | U | 0.01 | U | 0.01 | U | 0.01 U | | Vanadium | mg/L | NA | 0.0007 | U | 0.0028 | U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | 0.000 | ' U | 0.0028 U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | | Zinc as Zn | mg/L | 2 # | 0.0086 | В | 0.0051 | В | 0.02 | U | 0.02 | U | 0.02 | U | 0.02 U | 0.006 | 2 B | 0.0041 B | 0.02 | U | 0.02 | UB | 0.02 | U | 0.02 U | | Alkalinity tot CaCo3 | mg/L | NA | 66.8 | | 63.2 | | 78.4 | | 23.6 | | 16.3 | | 29.9 | 10.7 | | 12.8 | 12.6 | | 11 | | 12.2 | | 13 | | Chloride as Cl | mg/L | 250 | 12 | | 13.2 | | 14.5 | | 10.3 | | 16.2 | | 17 | 10.9 | | 11.1 | 11.5 | | 9.8 | | 12.9 | | 13.2 | | Sulfate as SO4 | mg/L | 250 | 10.9 | | 11.3 | | 12 | | 6.4 | | 8.2 | | 10.2 | 7.53 | | 7.08 | 7.2 | | 6.9 | | 9 | | 9.7 | | Bromide | mg/L | 2 # | 0.5 | U | 0.5 U | 0.5 | U | 0.5 U | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 U | 2 | U | 2 U | 2 1 | U | 2 | U | 2 | U | 2 U | | COD | mg/L | NA | 10 | U | 10 U | 10 | U | 10 U | 10 | U | 10 | U | 10 | U | 10 U | | Color | units | NA | PNA | PNA | | PNA | PNA | | PNA | | PNA | | PNA | | Chromium hex as Cr | mg/L | 0.05 | PNA | PNA | | PNA | PNA | | PNA | | PNA | | PNA | | Hardness as CaC03 | mg/L | NA | 120 | | 80 | | 84 | | PNA | | 23 | | 36.7 | 48 | | 24 | 18 | | PNA | | 16 | | 17.5 | | Ammonia as N | mg/L | 2 | 0.1 | U | 0.1 U | 0.1 | U | 0.1 U | 0.14 | | 0.1 | | 0.1 | U | 0.1 U | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 | U | 0.05 | UJ | 0.05 | U | 0.05 | U | 0.05 U | 0.1 | U | 0.1 U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | | Nitrate as N | mg/L | 10 | 1.74 | | 2.25 | | 1.6 | J | 0.091 | | 0.38 | | 0.79 | 0.1 | U | 0.14 | 1.4 | | 0.36 | | 0.36 | | 0.42 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.0101 | | 0.0052 | | 0.0005 | U | 0.0054 | | 0.005 U | 0.005 | U | 0.005 U | 0.0104 | | 0.005 | U | 0.005 | U | 0.013 | | Tot Dissolved Solids | mg/L | NA | 107 | | 92 | | 147 | J | 52 | | 62 | | 76 | 39 | | 23 | 63 | | 43 | | 38 | | 142 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.1 | U | 1 | U | 0.1 | U | 0.2 | | 0.1 | U | 0.1 U | 0.1 | U | 0.1 U | 0.1 | U | 0.3 | | 0.1 | U | 0.1 U | | Tot Organic Carbon | mg/L | NA | 16.4 | | 0.672 | | 1 | U | 1 | U | _ | U | 1 U | 2.8 | | 0.596 | 1 1 | IJ | 1 | U | 1 | U | 1 U | | Turbidity | NTU | NA | 1.6 | | 12.3 | | 105 | | 9 | | 23 | | 10.5 | 3.9 | | 0.71 | 0 | | 3.5 | | 2.6 | | 0 | | Temperature | deg.C | NA | 12.18 | | 12.11 | | 12.4 | | 12.02 | | 12.04 | | 12.39 | 11.36 | | 11.4 | 11.96 | | 11.41 | | 12.25 | | 12.00 | | рН | units | 6.5-8.5 | 5.86 | | 5.73 | | 5.70 | | 5.83 | | 5.96 | | 5.55 | 6.29 | | 6.27 | 5.81 | | 5.94 | | 5.89 | | 5.60 | | Spec. Cond | umho/cm | NA | 230 | | 201 | | 253 | | 114 | | 112 | | 124 | 87 | | 76 | 89 | 1 | 94
| | 112 | | 84 | #### NOTES: - (1) = NYSDEC, Class GA Groundwater Standards - Bold indicates update due to data validation. - # = Guidance value, no standard exists. - NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - $\label{eq:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$ - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. - Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value # TOWN OF SOUTHAMPTON NORTH SEA LANDFILL # TABLE 1 INORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2019 | Calcium as Ca mg/L NA 8.57 10.7 13.9 10.5 13.3 16 Chromium as Cr mg/L 0.05 PNA PNA PPNA | ANALYTICAL | UNITS | GW | | | | | | MV | V-8 | | | | | | |---|------------------------|---------|----------|------------|-----|------------|----|------------|-----|-----------|-----|------------|-----|-----------|-----| | Aluminum as Al | PARAMETERS | | STND (1) | October 20 |)14 | October 20 | 15 | October 20 | 016 | October 2 | 017 | October 20 | 018 | October 2 | 019 | | Marsenic as As | Aluminum as Al | mg/L | | PNA | | | Barium | Antimony as Sb | mg/L | 0.003# | PNA | | | Beryllium as Be | Arsenic as As | mg/L | 0.025 | PNA | | | Beryllium as Be | Barium | mg/L | 1 | PNA | | | Cadmium as Cd mg/L 0.005 0.0003 U 0.0009 B 0.0025 U 0.003 | Beryllium as Be | | 0.003 | PNA | | | Calcium as Ca mg/L NA 8.57 10.7 13.9 10.5 13.3 16 Chromium as Cr mg/L NA PNA </td <td>Boron as B</td> <td>mg/L</td> <td>1</td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> | Boron as B | mg/L | 1 | PNA | | | Chromium as Cr mg/L 0.05 PNA | Cadmium as Cd | mg/L | 0.005 | 0.0003 | U | 0.0009 | В | 0.0025 | U | 0.0025 | U | 0.0025 | U | 0.0025 | U | | Cobalt mg/L NA PNA PNA< | Calcium as Ca | mg/L | NA | 8.57 | | 10.7 | | 13.9 | | 10.5 | | 13.3 | | 16 | | | Cobalt mg/L NA PNA PNA< | Chromium as Cr | mg/L | 0.05 | PNA | | | Cyanide as CN mg/L 0.2 PNA | Cobalt | | NA | PNA | | | Iron as Fe | Copper as Cu | mg/L | 0.2 | PNA | | | From as Fe | Cyanide as CN | mg/L | 0.2 | PNA | | | Magnesium mg/L 35 # 3.43 B 4.53 B 6.11 4.47 5.11 6.74 Manganese as Mn mg/L 0.3 0.0771 0.0361 E 0.0288 0.014 0.0128 0.126 Mercury as Hg mg/L 0.0007 PNA PN | Iron as Fe | | 0.3 | 2.15 | | 0.516 | | 0.702 | | 0.421 | | 0.14 | | 10.3 | | | Magnesium mg/L 35 # 3.43 B 4.53 B 6.11 4.47 5.11 6.74 Manganese as Mn mg/L 0.03 0.0771 0.0361 E 0.0288 0.014 0.0128 0.126 Mercury as Hg mg/L 0.01 PNA | Lead as Pb | Ο, | 0.025 | 0.0013 | U | 0.005 | | 0.005 | U | 0.005 | U | 0.005 | U | 0.005 | U | | Manganese as Mn mg/L 0.3 0.0771 0.0361 E 0.0288 0.014 0.0128 0.126 Mercury as Hg mg/L 0.0007 PNA | | - U | | | В | 4.53 | В | 6.11 | | 4.47 | | 5.11 | | 6.74 | | | Nickel as Ni | | - U | 0.3 | 0.0771 | | | Е | 0.0288 | | 0.014 | | 0.0128 | | 0.126 | | | Nickel as Ni | Mercury as Hg | mg/L | 0.0007 | PNA | | | Selenium as Se | Nickel as Ni | | 0.1 | PNA | | | Selenium as Se | Potassium | mg/L | NA | 2.47 | В | 1.03 | В | 5 | U | 5 | U | 5 | U | 5 | U | | Silver as Ag mg/L 0.05 PNA | Selenium as Se | 0, | 0.01 | PNA | | | Sodium as Na mg/L 20 7.44 9.01 9.79 8.44 8.37 8.85 Thallium as TI mg/L 0.0005 # PNA <t< td=""><td>Silver as Ag</td><td>Ο,</td><td>0.05</td><td>PNA</td><td></td><td>PNA</td><td></td><td>PNA</td><td></td><td>PNA</td><td></td><td>PNA</td><td></td><td>PNA</td><td></td></t<> | Silver as Ag | Ο, | 0.05 | PNA | | | Vanadium mg/L NA PNA PN | Sodium as Na | mg/L | 20 | 7.44 | | 9.01 | | 9.79 | | 8.44 | | 8.37 | | 8.85 | | | Vanadium mg/L NA PNA PN | Thallium as Tl | mg/L | 0.0005# | PNA | | | Alkalinity tot CaCo3 mg/L NA 24.9 30.9 H 47.7 37 45.7 52 Chloride as Cl mg/L 250 10.6 10.6 13.8 11.4 13.1 13.8 Sulfate as S04 mg/L 250 8.68 7.85 8.2 7.7 10 13.4 Bromide mg/L 2# 0.5 U | Vanadium | | NA | PNA | | | Chloride as Cl mg/L 250 10.6 10.6 13.8 11.4 13.1 13.8 Sulfate as SO4 mg/L 250 8.68 7.85 8.2 7.7 10 13.4 Sulfate as SO4 mg/L 2# 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 SU | Zinc as Zn | mg/L | 2 # | PNA | | | Sulfate as SO4 mg/L 250 8.68 7.85 8.2 7.7 10 13.4 Bromide mg/L 2 # 0.5 U 4 1 12.4 0.0 < | Alkalinity tot CaCo3 | mg/L | NA | 24.9 | | 30.9 | Н | 47.7 | | 37 | | 45.7 | | 52 | | | Bromide | Chloride as Cl | mg/L | 250 | 10.6 | | 10.6 | | 13.8 | | 11.4 | | 13.1 | | 13.8 | | | BOD5 mg/L NA 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 4 11.4 12.4 COD mg/L NA 10 U 10 U 11.9 11.4 12.4 Color units NA PNA 9.0 9.0 PNA PNA | Sulfate as SO4 | mg/L | 250 | 8.68 | | 7.85 | | 8.2 | | 7.7 | | 10 | | 13.4 | | | COD mg/L NA 10 U 10 U 10 U 11.9 11.4 12.4 Color units NA PNA 0.1 0.1 0.1 0.1 0.1 0.1 | Bromide | mg/L | 2 # | 0.5 | U | | Color units NA PNA 0.1 0.1 0.1 0.1< | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 4 | U | | Chromium hex as Cr mg/L 0.05 PNA BD Ammonia as N mg/L NA 0.1 U 0.1 U 0.05 0.005 U 0.005 U 0.005 U | COD | mg/L | NA | 10 | U | 10 | U | 10 | U | 11.9 | | 11.4 | | 12.4 | | | Hardness as CaC03 mg/L NA 48 52 56 50 48 80 Ammonia as N mg/L 2 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.01 U 0.01 U 0.01 U 0.05 0.005 <td>Color</td> <td>units</td> <td>NA</td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> <td>PNA</td> <td></td> | Color | units | NA | PNA | | | Ammonia as N mg/L 2 0.1 U Nitrite as N mg/L NA 0.1 U 0.1 U 0.05 U 0.05 U 0.05 U 0.05 Nitrate as N mg/L 10 0.78 1.25 0.2 1.2 0.71 0.65 Nitrate as N mg/L 0.001 0.005 U | Chromium hex as Cr | mg/L | 0.05 | PNA | | | Nitrite as N mg/L NA 0.1 U 0.1 U 0.05 0.005 | Hardness as CaC03 | mg/L | NA | 48 | | 52 | | 56 | | 50 | | 48 | | 80 | | | Nitrate as N mg/L 10 0.78 1.25 0.2 1.2 0.71 0.65 7 Phenols as Phenol mg/L 0.001 0.005 U 0.005 U 0.0057 0.005 U <td< td=""><td>Ammonia as N</td><td>mg/L</td><td>2</td><td>0.1</td><td>U</td><td>0.1</td><td>U</td><td>0.1</td><td>U</td><td>0.1</td><td>U</td><td>0.1</td><td>U</td><td>0.1</td><td>U</td></td<> | Ammonia as N | mg/L | 2 | 0.1 | U | | Phenols as Phenol mg/L 0.001 0.005 U 0.005 U 0.0057 0.005 U 0.01 0.01 0.01 0.01< | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 | U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 | U | | Tot Dissolved Solids mg/L NA 39 83 100 79 78 103 Tot. Kjeldahl Nitrogen mg/L NA 0.1 0.2 0.1 U 0.14 0.1 U 0.1 U Tot Organic Carbon mg/L NA 6.7 0.581 1 U 1 UB 1 U 1.3 Turbidity NTU NA 75.0 31.2 13.1 25.1 29.9 42.8 Temperature deg.C NA 11.68 11.94 11.85 11.85 12.11 12.14 pH units 6.5-8.5 6.06 5.53 5.61 5.55 5.61 5.86 | Nitrate as N | mg/L | 10 | 0.78 | | 1.25 | | 0.2 | | 1.2 | | 0.71 | | 0.65 | J | | Tot. Kjeldahl Nitrogen mg/L NA 0.1 0.2 0.1 U 0.14 0.1 U 0.1 Tot Organic Carbon mg/L NA 6.7 0.581 1 U 1 UB 1 U 1.3 Turbidity NTU NA 75.0 31.2 13.1 25.1 29.9 42.8 Temperature deg.C NA 11.68 11.94 11.85 11.85 12.11 12.14 pH units 6.5-8.5 6.06 5.53 5.61 5.55 5.61 5.86 | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.0057 | | 0.005 | U | 0.005 | U | 0.005 | U | | Tot Organic Carbon mg/L NA 6.7
0.581 1 U 1 UB 1 U 1.3 Turbidity NTU NA 75.0 31.2 13.1 25.1 29.9 42.8 Temperature deg.C NA 11.68 11.94 11.85 11.85 12.11 12.14 pH units 6.5-8.5 6.06 5.53 5.61 5.55 5.61 5.86 | Tot Dissolved Solids | mg/L | NA | 39 | | 83 | | 100 | | 79 | | 78 | | 103 | | | Turbidity NTU NA 75.0 31.2 13.1 25.1 29.9 42.8 Temperature deg.C NA 11.68 11.94 11.85 11.85 12.11 12.14 pH units 6.5-8.5 6.06 5.53 5.61 5.55 5.61 5.86 | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.1 | | 0.2 | | 0.1 | U | 0.14 | | 0.1 | U | 0.1 | U | | Turbidity NTU NA 75.0 31.2 13.1 25.1 29.9 42.8 Temperature deg.C NA 11.68 11.94 11.85 11.85 12.11 12.14 pH units 6.5-8.5 6.06 5.53 5.61 5.55 5.61 5.86 | Tot Organic Carbon | mg/L | NA | 6.7 | | 0.581 | | 1 | U | 1 | UB | 1 | U | 1.3 | | | pH units 6.5-8.5 6.06 5.53 5.61 5.55 5.61 5.86 | | NTU | NA | 75.0 | | 31.2 | | 13.1 | | 25.1 | | 29.9 | | 42.8 | | | | Temperature | deg.C | NA | 11.68 | | 11.94 | | 11.85 | | 11.85 | | 12.11 | | 12.14 | | | Spec. Cond umho/cm NA 123 139 179 151 148 156 | рН | units | 6.5-8.5 | 6.06 | | 5.53 | | 5.61 | | 5.55 | | 5.61 | | 5.86 | | | <u> </u> | Spec. Cond | umho/cm | NA | 123 | | 139 | | 179 | | 151 | | 148 | | 156 | | # NOTES: (1) = NYSDEC, Class GA Groundwater Standards ### $Bold\ indicates\ update\ due\ to\ data\ validation.$ # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - $\label{lem:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$ - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - $\ensuremath{\text{U}}$ Indicates the compound was analyzed for, but not detected. - $U-Data\ Validation\ Qualifier-The\ analyte\ was\ analyzed\ for, but\ was\ not\ detected\ above\ the\ reported\ sample\ quantitation\ limit.$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. #### TOWN OF SOUTHAMPTON NORTH SEA LANDFILL TABLE 1 # INORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2019 | ANALYTICAL | UNITS | GW | | | ОСТОІ | JLK 2 | 017 | MV | V-9 | | | | | | |---------------------------|---------|----------------|-----------|-----|------------|-------|------------|-----|------------|-----|-----------|-----|------------|-----| | DAD AMERIDA | | (1) | October 2 | 014 | October 20 | 15 | October 20 | 016 | October 20 | 017 | October 2 | 018 | October 20 | 019 | | PARAMETERS Aluminum as Al | ma/I | STND (1)
NA | PNA | | | Antimony as Sb | mg/L | 0.003 # | PNA | | | | mg/L | | PNA | | | Arsenic as As | mg/L | 0.025 | PNA | | | Barium | mg/L | | PNA | | PNA | | | | PNA | | | | | | | Beryllium as Be | mg/L | 0.003 | | | PNA | | PNA | | | | PNA | | PNA | | | Boron as B | mg/L | 1 | PNA | 11 | | ** | PNA | IJ | PNA | 11 | PNA | 11 | PNA | 11 | | Cadmium as Cd | mg/L | 0.005 | 0.0003 | U | 0.0001 | U | 0.0025 | U | 0.0025 | U | 0.0025 | U | 0.0025 | U | | Calcium as Ca | mg/L | NA | 7.5 | | 4.63 | В | 5.96 | | 5.24 | | 8.99 | | 7.43 | | | Chromium as Cr | mg/L | 0.05 | PNA | | | Cobalt | mg/L | NA | PNA | | | Copper as Cu | mg/L | 0.2 | PNA | | | Cyanide as CN | mg/L | 0.2 | PNA | | | Iron as Fe | mg/L | 0.3 | 1.37 | | 0.394 | | 1.31 | - | 0.188 | | 1.4 | | 1.16 | | | Lead as Pb | mg/L | 0.025 | 0.0013 | U | 0.0046 | | 0.005 | U | 0.005 | U | 0.005 | U | 0.005 | U | | Magnesium | mg/L | 35 # | 3.72 | В | 2.4 | В | 3.13 | | 2.74 | | 8.83 | | 2.94 | | | Manganese as Mn | mg/L | 0.3 | 0.0269 | | 0.0163 | Е | 0.0359 | | 0.011 | | 0.0776 | | 0.0986 | | | Mercury as Hg | mg/L | 0.0007 | PNA | | | Nickel as Ni | mg/L | 0.1 | PNA | | | Potassium | mg/L | NA | 2.65 | В | 0.96 | В | 5 | U | 5 | U | 5 | U | 5 | U | | Selenium as Se | mg/L | 0.01 | PNA | | | Silver as Ag | mg/L | 0.05 | PNA | | | Sodium as Na | mg/L | 20 | 8.72 | | 8.67 | | 13.4 | | 10.2 | | 11.1 | | 8.71 | | | Thallium as Tl | mg/L | 0.0005# | PNA | | | Vanadium | mg/L | NA | PNA | | | Zinc as Zn | mg/L | 2 # | PNA | | | Alkalinity tot CaCo3 | mg/L | NA | 25.8 | | 11.9 | Н | 16.6 | | 19 | | 52.6 | | 14 | | | Chloride as Cl | mg/L | 250 | 12.5 | | 10.7 | | 19.8 | | 17.9 | | 17.5 | | 18.7 | | | Sulfate as SO4 | mg/L | 250 | 8.89 | | 6.82 | | 7.4 | | 5.8 | | 8.6 | | 9.0 | | | Bromide | mg/L | 2 # | 0.5 | U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | | COD | mg/L | NA | 10 | U | 10 | U | 21.3 | | 10 | U | 10 | U | 10 | U | | Color | units | NA | PNA | | | Chromium hex as Cr | mg/L | 0.05 | PNA | | | Hardness as CaC03 | mg/L | NA | 76 | | 44 | | 27 | | 22 | | 40 | | 28 | | | Ammonia as N | mg/L | 2 | 0.1 | U | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 | U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 | U | | Nitrate as N | mg/L | 10 | 0.43 | | 0.23 | | 0.12 | | 0.18 | | 0.81 | | 0.24 | | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.0068 | | 0.005 | U | 0.005 | U | 0.0176 | | | Tot Dissolved Solids | mg/L | NA | 50 | | 55 | | 65 | | 61 | | 70 | | 74 | | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.1 | U | 0.1 | U | 0.1 | U | 0.14 | | 0.1 | U | 0.1 | U | | Tot Organic Carbon | mg/L | NA | 4.2 | | 0.5 | U | 1 | U | 1 | UB | 1 | U | 1 | U | | Turbidity | NTU | NA | 11.6 | | 8.18 | | 35.2 | | 5.5 | | 0.0 | | 42.8 | | | Temperature | deg.C | NA | 12.74 | | 13.03 | | 13.02 | | 12.73 | | 12.88 | | 12.82 | | | рН | units | 6.5-8.5 | 5.37 | | 5.58 | | 5.51 | | 5.21 | | 5.27 | | 6.14 | | | Spec. Cond | umho/cm | NA | 133 | | 90 | | 123 | | 122 | | 126 | | 92 | | #### NOTES: (1) = NYSDEC, Class GA Groundwater Standards ### Bold indicates update due to data validation. - # = Guidance value, no standard exists. - NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - $U-Data\ Validation\ Qualifier-The\ analyte\ was\ analyzed\ for,\ but\ was\ not\ detected\ above\ the\ reported\ sample\ quantitation\ limit.$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. | ANALYTICAL | UNITS | GW | | | | | | | | | | | | MW- | 11Δ | | | | | | | | | | | |----------------------------|--------------|----------------|-----------------------|-----------------------|------------------|------------------|----------------------|----------------------|--------------------|------------------|----------------|----------|------|----------------|------------------|----------------|------------------|----------------|---------------|------------------|--|------------|------------------|---------------|----------------| | ANALET FIGHE | 0.4115 | a | Apri | il 2014 | Octob | ber 2014 | April | 12015 | Octob | per 2015 | Apr | il 2016 | | | | 2017 | Octol | per 2017 | April | 2018 | October 201 | .8 | April | 2019 | October 2019 | | PARAMETERS | | STND (1) | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered | Filter | ed 0 | October 2016 | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered I | Filtered I | Unfiltered | Filtered | | | Aluminum as Al | mg/L | NA | 0.0329 B | 0.0224 <i>U</i> | J 0.153 B | 0.0276 B | 0.0059 U | 0.0952 I | 3 0.0179 B | 0.0145 B | 0.2 U | J 0.2 | U | 0.2 U | 1.01 | 0.2 U | 0.2 U | J 0.2 U | 0.0975 J | 0.0239 J | 0.2 U | 0.2 U | 0.2 U | 0.2 U | U 0.2 U | | Antimony as Sb | mg/L | 0.003# | 0.0019 U | 0.0019 U | J 0.001 U | J 0.0010 U | 0.003 U | 0.003 U | J 0.0059 B | 0.0006 U | 0.06 U | J 0.06 | U | 0.06 U | 0.06 U | 0.06 U | 0.06 U | J 0.06 U | 0.003 U | 0.003 U | 0.06 U (| 0.06 U | 0.06 U | 0.06 U | 0.06 U | | Arsenic as As | mg/L | 0.025 | 0.0021 B | 0.0011 U | J 0.0568 | 0.0009 U | 0.0079 B | 0.0033 U | J 0.0022 U | U 0.0022 U | 0.01 U | J 0.01 | U | 0.0115 | 0.0759 | 0.01 U | 0.0188 U | U 0.01 U | 0.0068 U | 0.0068 U | 0.01 U (| 0.01 U (| 0.0651 | 0.01 U | 0.01 U | | Barium | mg/L | 1 | 0.089 B | 0.0714 B | 3 1.77 | 0.0767 B | 0.267 | 0.0686 I | 0.236 | 0.1340 B | 0.24 | 0.0694 | J | 0.301 | 1.1 | 0.0416 J | 1.03 | 0.2 U | 0.0891 J | 0.0717 J | 0.2 U | 0.2 U | 0.721 | 0.2 U | 0.2 U | | Beryllium as Be | mg/L | 0.003 | 0.00014 U | 0.00014 U | J 0.0002 U | J 0.00020 U | 0.0001 U | 0.0005 I | 3 0.0002 U | 0.00050 B | 0.005 U | J 0.005 | U | 0.005 U | 0.005 U | 0.005 U | 0.005 U | J 0.005 U | 0.0006 U | 0.0006 U | 0.005 U 0 | 0.005 U | 0.005 U | 0.005 U | 0.005 U | | Boron as B | mg/L | 1 | 0.0304 B | 0.0360 B | 3 0.0495 B | B 0.0404 B | 0.0323 B | 0.0399 I | 3 0.0376 B | 0.0387 B | 0.0512 J | 0.0551 | J | 0.05 U | 0.0387 J | 0.0378 J | 0.05 U | J 0.05 U | 0.0324 J | 0.0288 J | 0.05 U (| 0.05 U | 0.05 U | 0.05 U | 0.05 U | | Cadmium as Cd | mg/L | 0.005 | 0.0004 B | 0.00020 B | 0.113 | 0.00030 U | 0.0025 B | 0.0005 I | 3 0.0001 U | U 0.00060 B | 0.0035 | 0.0002 | J | 0.0025 U | 0.0278 | 0.000063 J | 0.0121 U | J 0.0025 U | 0.00006 U | 0.000063 U | 0.0025 U 0. | .0025 U (| 0.0048 | 0.0025 U | 0.0025 U | | Calcium as Ca | mg/L | NA |
25.6 | 24.4 | 66.1 | 57.4 | 37.5 | 36.6 I | E 44.6 | 41.4 | 47.7 | 46.5 | | 54.5 | 56.6 | 35.5 | 60.5 | 43.1 | 25.3 | 25.7 | | | 49.4 | 32.9 | 36.5 | | Chromium as Cr | mg/L | 0.05 | 0.002 B | 0.0011 U | J 0.103 | 0.0027 B | 0.0411 | 0.0011 U | J 0.0091 B | 0.0005 U | 0.01 U | J 0.01 | U | 0.01 U | 0.0418 J | 0.01 U | 0.1 U | J 0.01 U | 0.003 J | 0.0016 U | | | 0.136 | 0.01 U | 0.01 U | | Cobalt | mg/L | NA | 0.0384 B | 0.0338 B | 3 0.0312 B | 0.0011 B | 0.0234 B | 0.0119 I | 3 0.0144 B | 0.0099 B | 0.0127 J | 0.0058 | J | 0.05 U | 0.0183 J | 0.05 U | 0.05 U | J 0.05 U | 0.0237 J | 0.0216 J | 0.05 U (| 0.05 U | 0.05 U | 0.05 U | 0.05 U | | Copper as Cu | mg/L | 0.2 | 0.0052 B | 0.0014 B | 3 0.069 | 0.0039 B | 0.0562 | 0.0019 I | 3 0.0253 | 0.0528 * | 0.0317 | 0.0203 | J | 0.0532 | 0.0707 | 0.0179 J | 0.25 U | J 0.025 U | 0.0067 J | 0.0025 U | | | 0.025 U | 0.025 U | 0.025 U | | Cyanide as CN | mg/L | 0.2 | 0.01 U | PNA | PNA | PNA | 0.01 U | PNA | PNA | PNA | 0.01 U | J PNA | | PNA | 0.01 U | PNA | PNA | PNA | 0.0029 U | PNA | | | 0.01 U | PNA | PNA | | Iron as Fe | mg/L | 0.3 | 13.4 | 0.1460 | 1,020 | 2.4 | 117 E | 0.0508 I | 54.1 | 0.0268 U | 63 | 0.0747 | | 96.5 | 775 | 0.1 U | 539 | 0.1 U | 11.3 | 0.127 | | | 306 | 0.326 | 35.6 | | Lead as Pb | mg/L | 0.025 | 0.0041 B | 0.0149 | 0.13 U | J 0.0013 U | 0.0022 U | 0.0033 | 0.0065 | 0.0040 N | 0.0017 J | 0.0029 | J | 0.005 U | 0.0193 | 0.005 U | 0.0052 | 0.005 U | 0.0024 J | 0.0013 U | | | 0.0095 | 0.005 U | 0.005 U | | Magnesium | mg/L | 35 # | 9.44 | 9.03 | 14.5 | 15.20 | 10.5 | 11.4 I | E 16.9 | 16.00 E | 15.7 | 16.0 | | 19.0 | 11.2 | 9.92 | 16.6 | 14.4 | 9.07 | 8.93 | | | 12.6 | 10.8 | 12.7 | | Manganese as Mn | mg/L | 0.3 | 1.08 | 0.871 | 70.9 | 1.13 | 5.14 | 1.32 I | E 3.98 E | 2.49 | 4.12 | 2.13 | | 3.55 | 35.9 | 0.0346 | 15.2 | 1.49 | 1.32 | 1.13 | | | 24.6 | 1.56 | 5.40 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 U | 0.0001 U | J 0.0001 U | J 0.0001 U | 0.0001 U | 0.0001 U | J 0.0001 U | 0.0001 UN | . 0.0002 0 | J 0.0002 | | 0.0002 U | 0.0002 U | 0.0002 U | PNA | 0.0002 U | 0.000079 J | 0.0002 U | + | | 0.00024 | 0.0002 U | 0.0002 U | | Nickel as Ni | mg/L | 0.1 | 0.0198 B | 0.0215 B | 3 0.0138 B | 0.0038 B | 0.0038 B | 0.008 I | 3 0.0051 B | 0.0079 B | 0.0036 J | 0.0066 | J | 0.04 U | 0.04 U | 0.007 J | 0.04 U | J 0.04 U | 0.0136 J | 0.023 J | | | 0.04 U | 0.04 U | 0.04 U | | Potassium | mg/L | NA
0.01 | 3.67 B | 3.85 B | 5.5 | 4.88 B | 4.12 B | 3.71 I | 6.43 | 5.10 | 4.95 J | 4.37 | J | 7.06 | 14.3 | 3.48 J | 10.2 | 5.0 U | 2.77 J | 2.99 J | | 5 U | 5 U | 5 U | 5 U | | Selenium as Se | mg/L | 0.01 | 0.0011 U | 0.0026 B | 0.32 B | 0.0014 B | 0.0038 U | 0.0038 U | J 0.0022 U | 0.0022 UN | . 0.01 | J 0.0072 | J | 0.01 U | 0.0085 J | 0.01 U | 0.01 U | U 0.01 U | 0.0063 U | 0.0062 U | | | 0.01 U | 0.01 u | 0.01 U | | Silver as Ag | mg/L | 0.05 | 0.00043 U | 0.00043 U | J 0.0151 | 0.00070 U | 0.0137 | 0.0022 U | J 0.0104 | 0.00200 Bi | 0.0001 | 0.01 | U | 0.01 U | 0.01 U | 0.01 U | 0.0525 | 0.01 U | 0.0036 U | 0.0036 U | | | 0.01 U | 0.01 U | 0.01 U | | Sodium as Na | mg/L | 20
0.0005 # | 8.54 | 8.34
0.0013 U | 9.16
J 0.0252 | 9.25
0.0010 U | 10.8 | 11.4 I
0.0038 I | E 10.3
J 0.0149 | 9.29
0.0086 B | 13.9
0.0053 | 13.7 | | 12.2
0.01 U | 18.7
0.0438 I | 9.95
0.01 U | 11
0.0254 | 9.81
0.01 U | 9
0.0036 U | 8.74
0.0036 U | | | 10.4
0.0261 | 9.7
0.01 U | 8.96
0.01 U | | Thallium as Tl
Vanadium | mg/L
mg/L | 0.0005 #
NA | 0.0013 U
0.00039 U | 0.0013 U | J 0.00252 | J 0.0010 U | 0.0038 U
0.0007 U | 0.0038 U | J 0.0028 U | U.0086 B | 0.0053 J | J 0.05 | U | 0.01 U | 0.0438 J | 0.01 U | 0.0254
0.05 U | U 0.05 U | 0.0036 U | 0.0036 U | | | 0.0261
0.05 U | 0.01 U | 0.01 U | | Zinc as Zn | O, | 2 # | 0.00039 0 | 0.00039 0
0.0117 B | 3 0.178 | 0.0498 | 0.0463 | 0.0007 0
0.0172 I | E 0.0497 | 0.0028 0 | 0.03 | 0.0065 | U I | 0.05 | 0.0206 | 0.0508 | 0.03 | 0.03 U | 0.0008 0 | 0.00063 J | | | 0.05 0 | 0.03 U | 0.03 U | | Alkalinity tot CaCo3 | mg/L
mg/L | NA | 96.8 | PNA | 234 | PNA | 120 | PNA | 170 H | I PNA | 168 | PNA | J | 205 | 135 | PNA | 195 <i>I</i> | PNA | 87.2 | PNA | | | 131 | PNA | 141 | | Chloride as Cl | mg/L | 250 | 12.4 | PNA | 13.5 | PNA | 14.5 | PNA | 11.2 | PNA | 13.8 | PNA | _ | 12.1 | 14.2 | PNA | 11.3 | PNA | 14.8 | PNA | | | 16.7 | PNA | 14.3 | | Sulfate as SO4 | mg/L | 250 | 7.03 | PNA | 27.2 | PNA | 10.3 | PNA | 6.1 | PNA | 18.5 | PNA | | 5.2 | 12.2 | PNA | 6.6 | PNA | 23.9 | PNA | | | 18.8 | PNA | 14 | | Bromide | mg/L | 2 # | 0.5 U | PNA | 0.5 U | J PNA | 0.5 U | PNA | 0.5 U | J PNA | 0.5 U | J PNA | | 0.5 U | 0.037 J | PNA | 0.5 U | J PNA | 0.032 J | PNA | | | 0.5 U | PNA | 0.5 U | | BOD5 | mg/L | NA | 8 S | PNA | 13 | PNA | 2 U | PNA | 2 U | J PNA | 4 U | J PNA | | 2 U | 2.3 I | PNA | 4 U | J PNA | 2 U | PNA | | | 4 U | PNA | 4 U | | COD | mg/L | NA | 10 U | PNA | 24.2 | PNA | 10 U | PNA | 10 U | J PNA | 10 U | J PNA | | 17.2 | 85.8 | PNA | 30.9 | PNA | 10 U | PNA | | | 27.8 | PNA | 10.2 | | Color | units | NA | 10 | PNA | PNA | PNA | 45 | PNA | PNA | PNA | 5 U | J PNA | | PNA | 300 | PNA | PNA | PNA | 40 | PNA | + | | 5 U | PNA | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 U | PNA | PNA | PNA | 0.02 U | PNA | PNA | PNA | 0.2 U | J PNA | | PNA | 0.02 U | PNA | PNA | PNA | 0.003 U | PNA | PNA I | PNA | 0.02 U | PNA | PNA | | Hardness as CaC03 | mg/L | NA | 164 | PNA | 500 | PNA | 150 | PNA | 60 DI | H PNA | 136 | PNA | | 240 | 150 | PNA | 133 | PNA | PNA | PNA | 120 | PNA | 150 | PNA | 200 | | Ammonia as N | mg/L | 2 | 0.23 | PNA | 0.53 | PNA | 0.25 | PNA | 0.97 | PNA | 0.71 | PNA | | 0.39 | 0.54 | PNA | 0.69 U | PNA | 0.19 | PNA | 0.28 I | PNA | 0.15 | PNA | 1 | | Nitrite as N | mg/L | NA | 0.1 U | PNA | 0.1 U | J PNA | 0.1 U | PNA | 0.1 U | J PNA | 0.1 U | J PNA | | 0.1 U | 0.05 U | PNA | 0.5 U | J PNA | 0.05 U | PNA | 0.51 | PNA | 0.05 U | PNA | 0.05 U | | Nitrate as N | mg/L | 10 | 0.11 | PNA | 0.19 | PNA | 0.24 | PNA | 0.1 | PNA | 0.25 | PNA | | 1.1 | 0.50 | PNA | 0.25 | PNA | 0.33 | PNA | 0.51 | PNA | 0.39 | PNA | 0.11 | | Phenols as Phenol | mg/L | 0.001 | 0.005 U | PNA | 0.005 U | J PNA | 0.005 U | PNA | 0.005 U | J PNA | 0.005 U | J PNA | | 0.0057 | 0.0062 J | PNA | 0.005 U | J PNA | 0.0038 J | PNA | 0.005 U I | PNA (| 0.0084 | PNA | 0.0054 | | Tot Dissolved Solids | mg/L | NA | 137 | PNA | 170 | PNA | 167 | PNA | 215 | PNA | 224 | PNA | | 210 | 186 | PNA | 222 | PNA | 152 | PNA | 173 I | PNA | 240 | PNA | 171 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.63 | PNA | 1.18 | PNA | 0.62 | PNA | 0.85 | PNA | 0.73 | PNA | | 0.64 | 2.7 | PNA | 1.5 J | PNA | 0.16 | PNA | 0.43 I | PNA | 0.86 | PNA | 0.99 | | Tot Organic Carbon | mg/L | NA | 1.4 | PNA | 39.8 | PNA | 3.8 | PNA | 3.36 | PNA | 6.3 | PNA | | 3.81 | 13.8 | PNA | 20.2 | PNA | 1.9 | PNA | 2.9 I | PNA | 4.2 | PNA | 3 | | Turbidity | NTU | NA | 23.6 | PNA | >1,000 | PNA | 541 | PNA | 935 | PNA | 1000 | PNA | | 1000 | >1,000 | PNA | >1,000 | PNA | 573 | PNA | 198 I | PNA | 298 | PNA | 35.2 | | Temperature | deg.C | NA | 12.39 | PNA | 13.55 | PNA | 12.66 | PNA | 13.73 | PNA | 13.11 | PNA | | 13.63 | 13.76 | PNA | 13.31 | PNA | 12.91 | PNA | 14.00 I | PNA | 12.70 | PNA | 13.05 | | рН | units | 6.5-8.5 | 5.94 | PNA | 6.04 | PNA | 6.27 | PNA | 6.11 | PNA | 6.62 | PNA | | 6.33 | 6.47 | PNA | 6.13 | PNA | 5.7 | PNA | 6.15 | PNA | 6.06 | PNA | 6.09 | | Spec. Cond | umho/cm | NA | 279 | PNA | 398 | PNA | 329 | PNA | 420 | PNA | 447 | PNA | | 489 | 325 | PNA | 453 | PNA | 267 | PNA | 470 I | PNA | 356 | PNA | 315 | # NOTES: (1) = NYSDEC, Class GA Groundwater Standards Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. B - Analyte was detected in the associated method blank. H - Received / analyzed outside of analytical holding time J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. J-Data Validation Qualifier-The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. R - Data Validation Qualifier - Rejected. U - Indicates the compound was analyzed for, but not detected. $\textbf{\textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}\\$ UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. ## TOWN OF SOUTHAMPTON NORTH SEA LANDFILL TABLE 1 # INORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2019 | ANALYTICAL | INTEG | CM | | | | | | | | | | | | | OCTOBER 2019 | MW 11D | | | | | | | | | | | | | | |---------------------------------|--------------|-------------|----------------|------------------|---------------|----------------|--------|---------------|----------------|--------|----------|-----|----------------|------|--------------------|--------------------|------------------|----------------|-----|----------------------|----------------|--------|----------------|---------|----------------|----|----------------|----------|--------------| | ANALYTICAL | UNITS | GW | | | | | | Oatob | er 2015 | | | | | | Anni | MW-11B
I 2017 | Oatob | er 2017 | | | | | | April 2 | 2010 | | Oato | ber 2019 | | | DADAMETERS | | STND (1) | April 2014 | October | r 2014 | April 2015 | 114 | | | | April 20 | 16 | October 2 | 2016 | _ | 1 | | 1 | | April 2018 | Octobe | r 2018 | IIElko | | | | | 1 | | | PARAMETERS | /1 | | 0.0000 | 444 | | 0.405 | _ | filtered | Filtere | u | 0.050 | | 0.555 | | Unfiltered | Filtered | Unfiltered | Filtered | ** | 0.040 | 0.0 | ** | Unfilter | ea | Filtered | ** | Unfiltered | _ | ltered | | Aluminum as Al | mg/L |
NA | 0.0339 | 1.11 | | 0.425 | 0.4 | | 0.0057 | U
D | 0.253 | 7.7 | 0.575 | | 0.902 | 0.2 U | 0.994 | 0.2 | U | 0.312 | 0.2 | U | 7.78 | | * | U | 3.54 | | .2 U | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U 0.0033 | | 0.003 | U 0.00 | | 0.002 | В | 0.06 | U | 0.06 | U | 0.06 U | 0.06 U | 0.06 U | 0.06 | U | 0.003 U | 0.06 | U | 0.06 | U | 0.06 | Ü | 0.06 | U 0.0 | - | | Arsenic as As | mg/L | 0.025 | 0.0011 | U 0.0009 | | 0.0033 | U 0.00 | | 0.0022 | U | 0.01 | U | 0.01 | U | 0.01 U | 0.01 U | 0.01 U | 0.01 | U | 0.0068 U | 0.01 | U | 0.01 | U | | U | 0.01 | U 0.0 | | | Barium | mg/L | 0.002 | 0.026 | B 0.019 | | 0.0157 | B 0.01 | | 0.0125 | В | 0.0169 | J | 0.2 | U | 0.026 J | 0.0078 J | 0.2 U | 0.2 | U | 0.0155 J | 0.2 | U | 0.2 | U | | U | 0.2 | U 0. | | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U 0.0002 | | 0.0001 | U 0.00 | | 0.0002 | U
D | 0.005 | U | 0.005 | U | 0.005 U | 0.005 U | 0.005 U | 0.005 | U | 0.0006 U | 0.005 | U | 0.005 | U | | U | 0.005 | U 0.0 | | | Boron as B | mg/L | 0.005 | 0.0101 | B 0.0128 | | 0.0117 | B 0.01 | | 0.012 | В | 0.0125 | J | 0.05 | U | 0.0186 J | 0.0198 J | 0.05 U | 0.05 | U | 0.0133 J | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 | 0.0 | | | Cadmium as Cd | mg/L | 0.005
NA | 0.00011 | U 0.0003
7.87 | | 0.0002
8.61 | U 0.00 | | 0.0001
9.27 | U | 7.23 | J | 0.0025
16.8 | U | 0.000099 J
13.6 | 0.000081 J
10.0 | 0.0025 U
7.43 | 0.0025
6.95 | U | 0.00006 U
6.83 | 0.0025
6.95 | U | 0.0025
30.3 | U | 0.0025
22.4 | U | 0.0025
16.8 | U 0.00 | | | Calcium as Ca
Chromium as Cr | mg/L | 0.05 | 11.1
0.0069 | B 0.0134 | | 0.0076 | B 0.00 | | 0.0006 | D | 0.0046 | T | 0.016 | | 0.017 U | 0.01 U | 0.01 U | 0.93 | IJ | 0.0082 | 0.93 | U | 0.0198 | | | U | 0.019 | _ | 01 U | | Cobalt | mg/L | NA | 0.0009 | В 0.0004 | | 0.0076 | U 0.00 | | 0.0008 | D
D | 0.0046 | J | 0.016 | П | 0.00088 | 0.01 U | 0.01 U | 0.01 | II. | 0.0002 J
0.0006 U | 0.01 | U | 0.0198 | U | | IJ | 0.019 | U 0.0 | | | | mg/L
mg/L | 0.2 | 0.0002 | В 0.0052 | | 0.0005 | B 0.00 | | 0.0003 | ı | 0.0004 | J | 0.025 | 11 | 0.00088 J | 0.004 I | 0.025 U | 0.03 | II. | 0.0005 U | 0.025 | II | 0.0322 | U | | U | 0.03 | U 0.0 | | | Copper as Cu
Cyanide as CN | mg/L | 0.2 | 0.0043 | U PNA | | 0.0033 | U PN | | PNA | , | 0.0031 | II | PNA | U | 0.0073 J | PNA | PNA | PNA | U | 0.0023 U | PNA | 0 | 0.0322 | II | PNA | U | PNA | PN | | | Iron as Fe | mg/L | 0.2 | 3.65 | 5.53 | | 3.97 | E 3.9 | | 0.0268 | II | 1.96 | J | 10.2 | | 9.95 | 0.1 U | 14.6 | 0.1 | II | 3.4 | 2.17 | | 14.4 | U | 0.241 | | 11.6 | 0.03 | | | Lead as Pb | mg/L | 0.025 | 0.0072 | 0.0034 | | 0.005 | 0.00 | | 0.0208 | I | 0.0048 | ī | 0.005 | II | 0.0063 | 0.1 U | 0.0065 | 0.005 | II | 0.0014 J | 0.005 | IJ | 0.0413 | | 0.241 | IJ | 0.0195 | 0.03 | | | Magnesium | mg/L | 35 # | 4.46 | В 3.22 | | 3.08 | B 4.0 | | 3.58 | 1 | 3.02 | , | 5.23 | 0 | 4.64 | 3.42 | 2.9 | 2.47 | - | 2.99 | 3.16 | - 0 | 7.7 | | 4.01 | | 6.21 | 4.1 | | | Manganese as Mn | mg/L | 0.3 | 0.156 | 0.167 | | 0.131 | 0.1 | | 0.0275 | , | 0.0414 | | 0.271 | | 0.345 | 0.0076 I | 0.603 | 0.01 | П | 0.0676 | 0.057 | | 0.5 | | 0.13 | | 0.369 | 0.1 | | | Mercury as Hg | mg/L
mg/L | 0.0007 | 0.0001 | U 0.0001 | | 0.0001 | U 0.00 | | 0.0001 | ı | 0.0002 | II | 0.0002 | II | 0.0002 U | 0.0000 U | 0.0003 U | | UB | 0.000073 I | 0.0002 | . II | 0.0002 | U | | IJ | 0.0002 | U 0.00 | | | Nickel as Ni | mg/L | 0.1 | 0.0034 | B 0.005 | | 0.0031 | B 0.00 | | 0.0076 | B | 0.04 | II | 0.04 | II | 0.0099 I | 0.0019 J | 0.04 U | 0.04 | II | 0.0034 J | 0.04 | II | 0.04 | U | 0.04 | II | 0.04 | U 0.0 | | | Potassium | mg/L | NA | 1.71 | B 2.37 | | 0.874 | B 1.5 | | 0.417 | B | 1.09 | I | 5.0 | II | 1.65 J | 1.24 J | 5.0 U | 5.0 | II | 1.12 J | 5 | II | 5 | U | | U | 5 | - | 5 U | | Selenium as Se | mg/L | 0.01 | 0.0011 | U 0.0014 | | 0.0038 | U 0.00 | | 0.0022 | I | 0.01 | IJ | 0.01 | U | 0.01 U | 0.01 U | 0.01 U | 0.01 | IJ | 0.0063 U | 0.01 | U | 0.01 | U | | U | 0.01 | U 0.0 | | | Silver as Ag | mg/L | 0.05 | 0.00043 | U 0.0007 | | 0.0022 | U 0.00 | | 0.0011 | 1 | 0.01 | U | 0.01 | U | 0.01 U | 0.01 U | 0.01 U | 0.01 | IJ | 0.0036 U | 0.01 | U | 0.01 | U | | U | 0.01 <i>l</i> | _ | | | Sodium as Na | mg/L | 20 | 11.5 | 8.78 | | 7.89 | 10 | | 9.04 | | 8.74 | | 12.3 | - | 8.3 | 7.63 | 8.21 | 7.04 | | 8.77 | 8.68 | | 10.4 | | 9.36 | | 10.5 | - |).3 / | | Thallium as Tl | mg/L | 0.0005# | 0.0013 | U 0.001 | | 0.0038 | U 0.00 | | 0.0019 | U | 0.01 | U | 0.01 | U | 0.01 U | 0.01 U | 0.01 U | 0.01 | U | 0.0036 U | 0.01 | U | 0.01 | U | | U | 0.01 | U 0.0 | | | Vanadium | mg/L | NA | 0.0017 | B 0.0027 | | 0.0012 | В 0.00 | | 0.0028 | U | 0.05 | U | 0.05 | U | 0.0023 I | 0.05 U | 0.05 U | 0.05 | U | 0.0008 U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 | U 0.0 | | | Zinc as Zn | mg/L | 2 # | 0.0218 | 0.0177 | | 0.0102 | B 0.01 | 111 B | 0.0107 | I | 0.005 | J | 0.02 | U | 0.0089 J | 0.02 U | 0.02 U | 0.02 | U | 0.0062 J | 0.02 | U | 0.0774 | | 0.02 | U | 0.0394 | _ | 02 U | | Alkalinity tot CaCo3 | mg/L | NA | 30.8 | 22.3 | | 23.2 | 31 | .4 H J | PNA | | 18.2 | | 60.9 | | 43.6 | PNA | 26.8 | PNA | | 21.8 | 26.6 | | 59.6 | | PNA | | 40.4 | PN | NA | | Chloride as Cl | mg/L | 250 | 12.8 | 11.3 | | 12.2 | 9.8 | 87 | PNA | | 11 | | 10.9 | | 9.3 | PNA | 8.8 | PNA | | 11.4 | 12.1 | | 14 | | PNA | | 13.9 | PN | NA | | Sulfate as SO4 | mg/L | 250 | 14.9 | 12.7 | | 9.39 | 9.4 | 44 | PNA | | 9.27 | | 6.5 | | 7.1 | PNA | 7.2 | PNA | | 8.9 | 12.5 | | 19.9 | | PNA | | 20 | PN | NA | | Bromide | mg/L | 2 # | 0.5 | U 0.5 | U | 0.5 | U 0. | .5 U | PNA | | 0.03 | J | 0.5 | U | 0.029 J | PNA | 0.5 U | PNA | | 0.032 J | 0.5 | U | 0.5 | U | PNA | | 0.5 | U PN | NA | | BOD5 | mg/L | NA | 2 | U 2 | U | 2 | U 2 | 2 U | PNA | | 2 | U | 2 | U | 4 U | PNA | 4 U | PNA | | 2 U | 4 | U | 6.7 | U | PNA | | 4 | U PN | NA | | COD | mg/L | NA | 10 | U 10 | U | 10 | U 1 | 0 U | PNA | | 10 | U | 10 | U | 8.8 J | PNA | 18.2 | PNA | | 10 U | 10 | U | 266 | | PNA | | 165 | PN | NA | | Color | units | NA | 10 | PNA | | 35 | PN | NΑ | PNA | | 5 | | PNA | | 50 | PNA | PNA | PNA | | 5 U | PNA | | 5 | | PNA | | PNA | PN | NA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U PNA | | 0.02 | U PN | NΑ | PNA | | 0.02 | U | PNA | | 0.02 U | PNA | PNA | PNA | | 0.003 U | PNA | | 0.02 | U | PNA | | PNA | PN | NA | | Hardness as CaC03 | mg/L | NA | 48 | 84 | | 48 | 48 | 8 | PNA | | 31 | | 64 | | 58 | PNA | 32 | PNA | | 30 | 30 | | 90 | | PNA | | 70 | PN | NA | | Ammonia as N | mg/L | 2 | 0.13 | 0.1 | U | 0.1 | U 0. | .1 U | PNA | | 0.1 | U | 0.1 | U | 0.14 | PNA | 0.1 UB | PNA | | 0.021 J | 0.1 | U | 0.14 | | PNA | | 0.87 | PN | NA | | Nitrite as N | mg/L | NA | 0.1 | U 0.1 | U | 0.1 | U 0. | .1 UJ | PNA | | 0.1 | U | 0.05 | U | 0.05 U | PNA | 0.05 U | PNA | | 0.05 U | 0.05 | U | 0.05 | U | PNA | | 0.05 | U PN | NA | | Nitrate as N | mg/L | 10 | 0.43 | 0.25 | | 0.25 | 0.4 | 44 | PNA | | 0.19 | | 0.82 | | 0.41 | PNA | 0.29 | PNA | | 0.3 | 0.5 | | 0.72 | | PNA | | 0.69 | I PN | NA | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U 0.005 | U | 0.005 | U 0.0 | 05 U | PNA | | 0.005 | U | 0.0099 | | 0.0135 | PNA | 0.005 U | PNA | | 0.0043 J | 0.0064 | | 0.039 | | PNA | | 0.0116 | PN | NA | | Tot Dissolved Solids | mg/L | NA | 86 | 30 | | 73 | 8 | 1 | PNA | | 47 | | 108 | | 75 | PNA | 57 | PNA | | 83 | 58 | | 121 | | PNA | | 94 | PN | NA | | Tot. Kjeldahl Nitrogen | mg/L | NA | 0.57 | 0.23 | | 0.26 | 0. | .1 UJ | PNA | | 0.1 | U | 0.32 | | 0.41 | PNA | 0.43 | PNA | | 0.11 | 0.1 | U | 0.58 | | PNA | | 0.59 | PN | NA | | Tot Organic Carbon | mg/L | NA | 1 | U 5.9 | | 0.1 | U 0.9 | 27 | PNA | | 1 | U | 1.92 | | 1.7 J | PNA | 1.7 B | PNA | | 0.59 J | 1 | U | 23.9 | | PNA | | 16.7 | PN | NA | | Turbidity | NTU | NA | 19.5 | 34.3 | | 11.1 | 42 | 2.8 | PNA | | 40.6 | | 41.3 | | 136 | PNA | 115 | PNA | | 34.4 | 26.5 | | 1,000 | | PNA | | 587 | PN | NA | | Temperature | deg.C | NA | 11.5 | 12.7 | | 11.85 | 12. | .94 | PNA | | 13.22 | | 13.1 | | 13.42 | PNA | 12.7 | PNA | | 12.02 | 12.85 | | 12.22 | | PNA | | 12.42 | PN | NA | | рН | units | 6.5-8.5 | 6.28 | 6.24 | | 6.25 | 6.2 | 25 | PNA | | 6.19 | | 6.24 | | 6.2 | PNA | 6.4 | PNA | | 5.79 | 6.24 | | 6.57 | | PNA | | 6.62 | PN | NA | | Spec. Cond | umho/cm | NA | 191 | 128 | | 123 | 14 | 10 | PNA | | 101 | | 220 | - | 160 | PNA | 129 | PNA | | 109 | 144 | | 183 | - | PNA | | 156 | PN | NA | # NOTES: (1) = NYSDEC, Class GA Groundwater Standards ### Bold indicates update due to data validation. - # = Guidance value, no standard exists. NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - U -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit. - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. #### RGANIC GROUNDWATER QUAL OCTOBER 2019 | ANALYTICAL | UNITS | GW | | | | | | | | | | - | TOBER 2019 | | MW-12A | | | | | | | | | | | |------------------------|---------|----------|-----------|---|------------|----|------------|---|------------|----|-----------|---|------------|-----|------------|---|-----------|--------------|------------|---|--------------|-----|------------|---|--------------| | ANALITICAL | UNITS | GW | | | | | | | | 1 | | | | | | | 2017 | | | |
| | | | | | PARAMETERS | | STND (1) | April 201 | 4 | October 20 | 14 | April 2015 | 5 | October 20 | 15 | April 201 | 6 | October 20 |)16 | Unfiltered | - | Filtered | October 2017 | April 2018 | 8 | October 2018 | i A | April 2019 | • | October 2019 | | Aluminum as Al | mg/L | NA | 0.0616 | В | PNA | | 0.369 | | PNA | | 0.022 | J | PNA | | 0.0449 | J | 0.2 U | PNA | 0.0134 | U | PNA | | 0.2 | U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U | PNA | | 0.003 | U | PNA | | 0.06 | U | PNA | | 0.06 | U | 0.06 U | PNA | 0.003 | U | PNA | | 0.06 | U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0011 | U | PNA | | 0.0097 | В | PNA | | 0.01 | U | PNA | | 0.01 | U | 0.01 U | PNA | 0.0068 | U | PNA | | 0.01 | U | PNA | | Barium | mg/L | 1 | 0.0432 | В | PNA | | 0.0514 | В | PNA | | 0.0522 | J | PNA | | 0.0290 | J | 0.0238 J | PNA | 0.0442 | J | PNA | | 0.2 | U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | | 0.0001 | U | PNA | | 0.005 | U | PNA | | 0.005 | U | 0.005 U | PNA | 0.0006 | U | PNA | | 0.005 | U | PNA | | Boron as B | mg/L | 1 | 0.0539 | В | PNA | | 0.0488 | В | PNA | | 0.0776 | J | PNA | | 0.0407 | J | 0.0389 J | PNA | 0.0541 | | PNA | | 0.068 | | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.0002 | В | 0.0004 | В | 0.0003 | В | 0.0002 | В | 0.0002 | J | 0.0025 | U | 0.0025 | U | 0.00064 J | 0.0025 U | 0.00006 | U | 0.0025 | U (| 0.0025 | U | 0.0025 U | | Calcium as Ca | mg/L | NA | 24.4 | | 15.5 | | 21.1 | | 32 | | 30.4 | | 13 | | 15.1 | | 13.8 | 22.2 | 20.4 | | 25.3 | | 23.8 | | 29.1 | | Chromium as Cr | mg/L | 0.05 | 0.0047 | В | PNA | | 0.0092 | В | PNA | | 0.01 | U | PNA | | 0.0021 | J | 0.01 U | PNA | 0.0016 | U | PNA | | 0.01 | U | PNA | | Cobalt | mg/L | NA | 0.0064 | В | PNA | | 0.0062 | В | PNA | | 0.0046 | J | PNA | | 0.0046 | J | 0.0025 J | PNA | 0.006 | J | PNA | | 0.05 | U | PNA | | Copper as Cu | mg/L | 0.2 | 0.0026 | В | PNA | | 0.0098 | В | PNA | | 0.0035 | J | PNA | | 0.0027 | J | 0.0078 J | PNA | 0.0025 | U | PNA | | 0.025 | U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | PNA | 0.0029 | U | PNA | | 0.01 | U | PNA | | Iron as Fe | mg/L | 0.3 | 3.26 | | 9.63 | | 8.95 | E | 3.06 | | 0.769 | | 5.83 | | 1.56 | | 0.1 U | 18.7 | 1.48 | | 2.56 | | 1.42 | | 4.1 | | Lead as Pb | mg/L | 0.025 | 0.0024 | В | 0.0013 | U | 0.0022 | U | 0.0038 | | 0.0024 | J | 0.005 | U | 0.005 | U | 0.005 U | 0.005 U | 0.0013 | U | 0.005 | U | 0.005 | U | 0.005 U | | Magnesium | mg/L | 35# | 6.18 | | 4.18 | В | 5.69 | | 9 | | 8.45 | | 3.4 | | 4.24 | | 3.68 | 6.15 | 6.08 | | 7.78 | | 7.25 | | 8.07 | | Manganese as Mn | mg/L | 0.3 | 4.16 | | 1.22 | | 2.69 | | 3.06 | Е | 3.51 | | 1.76 | | 2.69 | | 2.23 | 3.37 | 1.98 | | 2.54 | | 1.5 | | 2.27 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | | 0.0001 | U | PNA | | 0.0002 | U | PNA | | 0.0002 | U | 0.0002 U | PNA | 0.000056 | U | PNA | (| 0.0002 | U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0104 | В | PNA | | 0.0139 | В | PNA | | 0.0065 | J | PNA | | 0.0055 | J | 0.0071 J | PNA | 0.0035 | J | PNA | | 0.04 | U | PNA | | Potassium | mg/L | NA | 5.8 | | 5.39 | | 5.25 | | 7.56 | | 7.44 | | 5 | U | 3.98 | J | 3.8 J | 6.46 | 7.74 | | 5.66 | | 9.37 | | 9.11 | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | 0.01 U | PNA | 0.0063 | U | PNA | | 0.01 | U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | | 0.0022 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | 0.01 U | PNA | 0.0036 | U | PNA | | 0.01 | U | PNA | | Sodium as Na | mg/L | 20 | 11.3 | | 8.43 | | 9.47 | | 15.3 | | 12.4 | | 8.2 | | 8.65 | | 8.25 | 9.02 | 13.3 | | 11.9 | | 13.9 | | 11.7 | | Thallium as Tl | mg/L | 0.0005# | 0.0014 | В | PNA | | 0.0038 | U | PNA | | 0.0048 | J | PNA | | 0.0041 | J | 0.01 U | PNA | 0.0036 | U | PNA | | 0.01 | U | PNA | | Vanadium | mg/L | NA | 0.0029 | В | PNA | | 0.0092 | В | PNA | | 0.05 | U | PNA | | 0.0013 | J | 0.05 U | PNA | 0.0012 | J | PNA | | 0.05 | U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0329 | | PNA | | 0.0107 | В | PNA | | 0.0038 | J | PNA | | 0.0012 | J | 0.0083 J | PNA | 0.0049 | J | PNA | | 0.02 | U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 76 | | 45.8 | | 60.7 | | 106 | Н | 104 | | 44.5 | | 47 | | PNA | 80 | 59.4 | | 79.7 | | 88.3 | | 114 | | Chloride as Cl | mg/L | 250 | 13.9 | | 12 | | 14.1 | | 15.1 | | 15.1 | | 11.2 | | 11.0 | | PNA | 11.5 | 15.7 | | 16.8 | | 17.3 | | 17.1 | | Sulfate as SO4 | mg/L | 250 | 20.7 | | 14.5 | | 22.4 | | 23.3 | | 22.2 | | 11.2 | | 14.5 | | PNA | 16 | 32 | | 31.2 | | 32.4 | | 26.8 | | Bromide | mg/L | 2 # | 0.5 | U | 0.057 | J | PNA | 0.5 U | 0.13 | J | 0.5 | U | 0.5 | U | 0.5 U | | BOD5 | mg/L | NA | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 1 | J | PNA | 11.3 | 2 | U | 2 | U | 2 | U | 2 U | | COD | mg/L | NA | 10 | U | 8.8 | J | PNA | 14 | 10 | U | 10 | U | 10 | U | 10 U | | Color | units | NA | 10 | | PNA | | 65 | | PNA | j | 10 | | PNA | | 125 | | PNA | PNA | 15 | | PNA | | 5 | | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA | | 0.02 | U | PNA | j | 0.02 | U | PNA | | 0.02 | U | PNA | PNA | 0.003 | U | PNA | | 0.01 | U | PNA | | Hardness as CaC03 | mg/L | NA | 100 | | 130 | | 110 | | 180 | | 108 | | 54 | | 66 | | PNA | 88.0 | PNA | | 66.7 | | 66.7 | | 110 | | Ammonia as N | mg/L | 2 | 1.24 | | 1.63 | | 2.73 | | 3.43 | | 4.18 | | 1.7 | | 0.31 | | PNA | 2.9 | 2.8 | | 0.53 | | 3.2 | | 6.1 | | Nitrite as N | mg/L | NA | 0.1 | U | 0.1 | U | 0.1 | | 0.1 | U | 0.1 | U | 0.1 | U | 0.05 | U | PNA | 0.05 U | 0.05 | U | 0.05 | U | 0.05 | U | 0.05 U | | Nitrate as N | mg/L | 10 | 0.72 | | 1.93 | | 0.5 | | 0.97 | İ | 0.81 | | 0.6 | | 0.52 | | PNA | 0.23 | 0.46 | | 0.75 | | 0.48 | | 0.16 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.005 | U | 0.005 | U | 0.0111 | | 0.0057 | | 0.0135 | | PNA | 0.005 U | 0.0051 | | 0.005 | U | 0.005 | U | 0.0144 | | Tot Dissolved Solids | mg/L | NA | 141 | | 105 | | 132 | | 168 | Ī | 157 | | 95 | | 93 | | PNA | 107 | 136 | | 136 | | 146 | | 157 | | Tot. Kjeldahl Nitrogen | mg/L | NA | 1.84 | | 2.45 | | 2.73 | | 3.41 | İ | 3.4 | | 1.4 | | 0.93 | | PNA | 3.3 | 2.7 | | 0.72 | | 3.8 | | 7.6 | | Tot Organic Carbon | mg/L | NA | 1.7 | | 10.5 | | 1.9 | | 2 | | 2.4 | | 1.16 | | 1.2 | J | PNA | 1.9 | 1.6 | | 2.2 | | 1.6 | | 2.4 | | Turbidity | NTU | NA | 16.9 | | 40.3 | | 47.2 | | 44.3 | | 5.12 | | 38.9 | | 571 | | PNA | 106 | 43 | | 5.2 | | 11.7 | | 27.5 | | Temperature | deg.C | NA | 11.17 | | 12.7 | | 11.83 | | 12.5 | | 12.12 | | 12.7 | | 9.48 | | PNA | 12.55 | 11.94 | | 13.21 | | 12.26 | | 12.63 | | рН | units | 6.5-8.5 | 6.03 | | 6.04 | | 6.13 | | 5.81 | | 6.3 | | 6.17 | | 5.55 | | PNA | 6.36 | 6.1 | | 6.39 | | 6.44 | | 6.14 | | Spec. Cond | umho/cm | NA | 263 | | 201 | | 268 | | 342 | | 329 | | 170 | | 200 | | PNA | 261 | 280 | | 275 | | 314 | | 306 | | | | | | | | | | | | | | | | | | | 1 | | | | • | | | | | #### NOTES: (1) = NYSDEC, Class GA Groundwater Standards ## $Bold\ indicates\ update\ due\ to\ data\ validation.$ - # = Guidance value, no standard exists. - NA = Not available. - PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - $\label{lem:concentration} \textbf{J-Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$ - ${\it J-Data\ Validation\ Qualifier-The\ analyte\ was\ positively\ identified; the\ associated\ numerical\ value\ is\ the\ approximate\ concentration\ of\ the\ analyte\ in\ the\ sample.}$ - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit. - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. #### TOWN OF SOUTHAMPTON NORTH SEA LANDFILL TABLE 1 # INORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2019 | ANALYTICAL | UNITS | GW | | | | | | | | | | | M | IW- | 12B | | | | | | | | |------------------------|------------------|---------------|-------------|----|--------------|-----|------------|----|---------------|----|-----------|----|-------------|-----|------------|---------------|------|--------------|-----|--------------|--------------|--------------| | | | | April 201 | 4. | October 2014 | 1 | April 2015 | - | October 201 | 15 | April 201 | 16 | October 201 | 6 | April 2017 | October 2 | 2017 | April 201 | Ω | October 2018 | April 2019 | October 2019 | | PARAMETERS | | STND (1) | • | | | • | • | | | | • | | | , | • | | 1017 | • | | | • | | | Aluminum as Al | mg/L | NA | 0.0402 | В | PNA | | 0.0059 | U | PNA | | 0.2 | U | PNA | | 0.0136 J | | | 0.0134 | U | PNA | 0.2 U | PNA | | Antimony as Sb | mg/L | 0.003 # | 0.0019 | U | PNA | | 0.003 | U | PNA | | 0.06 | U | PNA | | 0.06 U | | | 0.0035 | J | PNA | 0.06 U | PNA | | Arsenic as As | mg/L | 0.025 | 0.0011 | U | PNA | | 0.0033 | U | PNA | | 0.01 | U | PNA | | 0.01 U | | | 0.0068 | U | PNA | 0.01 U | PNA | | Barium | mg/L | 1 | 0.0694 | В | PNA | | 0.0482 | В | PNA | | 0.0582 | J | PNA | | 0.017 J | | | 0.0119 | J | PNA | 0.2 U | PNA | | Beryllium as Be | mg/L | 0.003 | 0.00014 | U | PNA | | 0.0001 | U | PNA | | 0.005 | U | PNA | | 0.005 U | | | 0.0006 | U | PNA | 0.005 U | PNA | | Boron as B | mg/L | 1 | 0.0689 | В | PNA | | 0.0725 | В | PNA | | 0.0863 | J | PNA | | 0.0328 J | PNA | | 0.0133 | J | PNA | 0.05 U | PNA | | Cadmium as Cd | mg/L | 0.005 | 0.00011 | U | 0.000 | U | 0.0002 | U | 0.0001 | U | 0.0002 | J | | U | 0.0025 U | | U | 0.00006 | U | 0.0025 U | 0.0025 U | 0.0025 U | | Calcium as Ca | mg/L | NA | 28.5 | | 30.6 | | 20.2 | | 22.4 | | 34.9 | | 27.4 | | 11.3 | 19.5 | | 10 | | 9.35 | 11.7 | 34.4 | | Chromium as Cr | mg/L | 0.05 | 0.0017 | В | PNA | |
0.0011 | U | PNA | | 0.01 | U | PNA | | 0.01 U | | | 0.0016 | U | PNA | 0.01 U | PNA | | Cobalt | mg/L | NA | 0.0006 | В | PNA | | 0.0006 | U | PNA | | 0.05 | U | PNA | | 0.05 U | | | 0.0006 | U | PNA | 0.05 U | PNA | | Copper as Cu | mg/L | 0.2 | 0.0021 | В | PNA | | 0.0026 | В | PNA | | 0.0027 | J | PNA | | 0.025 U | | | 0.0025 | U | PNA | 0.025 U | PNA | | Cyanide as CN | mg/L | 0.2 | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.01 | U | PNA | | 0.01 U | | | 0.0029 | U | PNA | 0.01 U | PNA | | Iron as Fe | mg/L | 0.3 | 0.0922 | В | 0.177 | | 0.0856 | BE | 0.0268 | U | 0.1 | U | | U | 0.0393 J | 0.02 | U | 0.0109 | U | 0.0232 | 0.02 U | 0.0499 | | Lead as Pb | mg/L | 0.025 | 0.0036 | В | 0.0013 | U | 0.0022 | U | 0.0041 | | 0.0033 | J | 0.005 | U | 0.005 U | | U | 0.0013 | U | 0.005 U | 0.005 U | 0.005 U | | Magnesium | mg/L | 35 # | 8.86 | | 8.38 | | 5.85 | | 6.32 | | 10.6 | | 8.06 | | 3.92 | 5.89 | | 4.3 | | 3.7 | 6.34 | 14 | | Manganese as Mn | mg/L | 0.3 | 0.981 | | 1.68 | | 0.934 | | 0.872 | Е | 0.235 | | 0.675 | | 0.0937 | 0.01 | U | 0.0086 | J | 0.01 U | 0.01 U | 0.0256 | | Mercury as Hg | mg/L | 0.0007 | 0.0001 | U | PNA | | 0.0001 | U | PNA | | 0.0002 | U | PNA | | 0.0002 U | | | 0.000056 | U | PNA | 0.0002 U | PNA | | Nickel as Ni | mg/L | 0.1 | 0.0146 | В | PNA | | 0.0105 | В | PNA | | 0.0099 | J | PNA | | 0.0026 J | | | 0.0018 | J | PNA | 0.04 U | PNA | | Potassium | mg/L | NA | 6.37 | | 10.3 | | 4.7 | В | 9.54 | | 4.93 | J | 8.27 | | 2.62 J | | | 1.64 | J | 5 U | 5 U | 6.99 | | Selenium as Se | mg/L | 0.01 | 0.0011 | U | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | | 0.01 U | | | 0.0063 | U | PNA | 0.01 U | PNA | | Silver as Ag | mg/L | 0.05 | 0.00043 | U | PNA | | 0.0022 | U | PNA | | 0.01 | U | PNA | | 0.01 U | | | 0.0036 | U | PNA | 0.01 U | PNA | | Sodium as Na | mg/L | 20 | 13.5 | | 12.9 | | 11.1 | | 14.3 | | 18.1 | | 15 | | 8.93 | 12.1 | | 9.23 | | 8.15 | 10.8 | 19.9 | | Thallium as Tl | mg/L | 0.0005# | 0.0001 | U | PNA | | 0.0038 | U | PNA | | 0.01 | U | PNA | | 0.01 U | | | 0.0036 | U | PNA | 0.01 U | PNA | | Vanadium | mg/L | NA | 0.0013 | В | PNA | | 0.0007 | U | PNA | | 0.05 | U | PNA | | 0.05 U | | | 0.00092 | J | PNA | 0.05 U | PNA | | Zinc as Zn | mg/L | 2 # | 0.0176 | В | PNA | | 0.0083 | В | PNA | | 0.02 | U | PNA | | 0.02 U | | | 0.0016 | J | PNA | 0.02 U | PNA | | Alkalinity tot CaCo3 | mg/L | NA | 78.9 | | 103 | | 50.7 | | 65.4 | Н | 92.6 | | 88.2 | | 24.6 | 56.6 | | 25.2 | | 24.6 | 45.6 | 114 | | Chloride as Cl | mg/L | 250 | 17.5 | | 16.8 | | 16.5 | | 15.3 | | 22 | | 20.5 | | 11.3 | 15.8 | | 13.4 | | 13.8 | 16.1 | 28 | | Sulfate as SO4 | mg/L | 250 | 36 | | 32.5 | | 29 | | 28.5 | | 44.5 | | 39.2 | | 14.0 | 26.5 | | 9.7 | | 12.1 | 11.3 | 49.3 | | Bromide | mg/L | 2 # | 0.5 | U | | U | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.05 J | 0.0 | U | 0.03 | J | 0.5 U | 0.5 U | 0.5 U | | BOD5 | mg/L | NA | 2 | UJ | | U | 2 | U | 2 | U | 2 | U | | U | 1 J | 2 | U | 2 | U | 2 U | 2 U | 2 U | | COD | mg/L | NA | 10.8 | | | U | 10 | U | 10 | U | 10 | U | | U | 8.8 J | 10 | U | 10 | U | 10 U | 10 U | 12.4 | | Color | units | NA | 5 | U | PNA | | 10 | | PNA | | 5 | U | PNA | | 10 | PNA | | 5 | U | PNA | 5 | PNA | | Chromium hex as Cr | mg/L | 0.05 | 0.02 | U | PNA | | 0.02 | U | PNA | | 0.02 | U | PNA | | 0.02 U | | | 0.003 | U | PNA | 0.02 U | PNA | | Hardness as CaC03 | mg/L | NA | 100 | | 200 | | 110 | | 85 | | 121 | | 92 | | 45 | 60 | | PNA | _ | 34 | 44 | 127 | | Ammonia as N | mg/L | 2 | 1 | | 3.16 | | 1.47 | | 2.19 | | 0.3 | | 4.8 | | 0.063 J | 1.1 | | 0.068 | J | 0.1 U | 0.1 U | 1.8 | | Nitrite as N | mg/L | NA | 0.1 | U | | U | 0.1 | U | 0.1 | U | 0.1 | U | | U | 0.05 U | 0.00 | U | 0.05 | U | 0.05 U | 0.05 U | 0.05 U | | Nitrate as N | mg/L | 10 | 0.89 | | 0.8 | | 2.09 | | 1.0 | | 0.27 | | 0.06 | | 1.2 | 1.2 | | 0.75 | | 1.3 | 0.97 | 0.41 | | Phenols as Phenol | mg/L | 0.001 | 0.005 | U | 0.005 | U | 0.005 | U | 0.005 | U | 0.0067 | | 0.0099 | _ | 0.0375 | 0.006 | | 0.006 | | 0.005 U | 0.005 U | 0.0109 | | Tot Dissolved Solids | mg/L | NA
NA | 173 | | 161 | | 142 | | 142 | | 189 | | 157 | | 86 | 150 | | 85 | 7.7 | 70 | 84 | 238 | | Tot. Kjeldahl Nitrogen | mg/L | NA
NA | 1.46 | | 3.24 | | 2.32 | | 2.1 | - | 0.26 | | 2.1 | | 0.1 U | | | 0.1 | U | 0.1 U | 0.33 | 2.9 | | Tot Organic Carbon | mg/L | NA
NA | 1.7 | | 26.8 | | 1.3 | | 1.48 | - | 2.8 | | 2.04 | | 0.54 J | 1.4 | | 0.23 | U | 1 0 | 1 U | 3 | | Turbidity | NTU
dog C | NA
NA | 0.4
10.9 | | 1.4
12.16 | - | 0
11.54 | | 0.13
12.17 | | 0
12 | | 12.4 | | 0
12.87 | 13.8
12.05 | | 0.2
11.83 | | 8
12.85 | 0.2
11.84 | 0.0
12.57 | | Temperature
pH | deg.C | 6.5-8.5 | 6.24 | | 6.2 | _ | 6.27 | | 5.64 | | 6.24 | | 6.04 | _ | 5.76 | 5.81 | | 6.00 | | 5.76 | 6.26 | 6.26 | | Spec. Cond | units
umho/cm | 0.5-8.5
NA | 312 | | 381 | | 264 | | 280 | | 370 | | 332 | | 129 | 261 | | 140 | | 25 | 180 | 30 | | opec. Gona | uninio/ cili | 11/1 | 314 | | 201 | - 1 | 207 | | 200 | | 370 | | 334 | | 147 | 201 | | 170 | | 43 | 100 | 30 | #### MOTES. (1) = NYSDEC, Class GA Groundwater Standards ### Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. - $\label{thm:continuous} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$ - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. # TOWN OF SOUTHAMPTON NORTH SEA LANDFILL TABLE 2 ### ORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2019 | Parameters | Units | GW Standard (1) | MW-11 | A | MW-11 | B | |-----------------------------|-------|-----------------|--------|---|--------|----| | 1,1,1,2-Tetrachloroethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | 1,1,1-Trichloroethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | 1,1,2,2-Tetrachloroethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | 1,1,2-Trichloroethane | mg/L | 0.001 | 0.0050 | U | 0.0050 | U | | 1,1-Dichloroethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | 1,1-Dichloroethene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | 1,2-Dibromo-3-chloropropane | mg/L | 0.0004 | 0.0050 | U | 0.0050 | U | | 1,2-Dibromoethane | mg/L | NA | 0.0050 | U | 0.0050 | U | | 1,2-Dichlorobenzene | mg/L | 0.003 | 0.0050 | U | 0.0050 | U | | 1,2-Dichloroethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | 1,2-Dichloropropane | mg/L | 0.001 | 0.0050 | U | 0.0050 | U | | 1,4-Dichlorobenzene | mg/L | 0.003 | 0.0050 | U | 0.0050 | U | | 2-Butanone | mg/L | 0.005 | 0.0050 | U | 0.0050 | UJ | | 2-Hexanone | mg/L | NA | 0.0050 | U | 0.0050 | UJ | | 4-Methyl-2-pentanone | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Acetone | mg/L | NA | 0.0050 | U | 0.0050 | U | | Acrylonitrile | mg/L | 0.005 | 0.0050 | U | 0.0050 | UJ | | Benzene | mg/L | 0.001 | 0.0050 | U | 0.0050 | U | | Bromochloromethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Bromodichloromethane | mg/L | NA | 0.0050 | U | 0.0050 | U | | Bromoform | mg/L | NA | 0.0050 | U | 0.0050 | U | | Bromomethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | UJ | | Carbon disulfide | mg/L | NA | 0.0050 | U | 0.0050 | U | | Carbon tetrachloride | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Chlorobenzene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Chloroethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Chloroform | mg/L | 0.007 | 0.0050 | U | 0.0050 | U | | Chloromethane | mg/L | NA | 0.0050 | U | 0.0050 | U | | cis-1,2-Dichloroethene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | cis-1,3-Dichloropropene | mg/L | 0.0004 | 0.0050 | U | 0.0050 | U | | Dibromochloromethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Dibromomethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Ethylbenzene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Iodomethane | mg/L | NA
2.22 | 0.0050 | U | 0.0050 | R | | Methylene chloride | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Styrene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Tetrachloroethene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Toluene | mg/L | 0.005 | 0.0050 | U | 0.0554 | | | trans-1,2-Dichloroethene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | trans-1,3-Dichloropropene | mg/L | 0.0004 | 0.0050 | U | 0.0050 | U | | trans-1,4-Dichloro-2-butene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Trichloroethene | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Trichlorofluoromethane | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Vinyl acetate | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | | Vinyl chloride | mg/L | 0.002 | 0.0050 | U | 0.0050 | UJ | | Xylene (total) | mg/L | 0.005 | 0.0050 | U | 0.0050 | U | ## NOTES: (1) = NYSDEC, Class GA Groundwater Standards ## Bold indicates update due to data validation. # = Guidance value, no standard exists. NA = Not available. PNA = parameter not analyzed for. - B Analyte was detected in the associated method blank. - H Received / analyzed outside of analytical holding time - J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. - J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - R Data Validation Qualifier Rejected. - U Indicates the compound was analyzed for, but not detected. -
U -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit. - UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. #### TOWN OF SOUTHAMPTON NORTH SEA LANDFILL #### TABLE 3 LEACHATE QUALITY RESULTS October 2019 | Analytical Parameter | | | | | | Leachate Collec | tion (Primary) | | | | | | |---|---|---|--|--|--|--|---|--|--|---|---|--| | Units mg/L | April | October | April | October | April | October | April | October | April | October | April | October | | | 2014 | 2014 | 2015 | 2015 | 2016 | 2016 | 2017 | 2017 | 2018 | 2018 | 2019 | 2019 | | Arsenic as As | 0.00011 U | 0.134 B | 0.0033 U | 0.0022 U | 0.01 U | 0.0144 | 0.01 U | 0.01 U | 0.0068 U | 0.01 U | 0.01 U | 0.01 U | | Cadmium as Cd | 0.00011 U | 0.252 | 0.0002 U | 0.0001 U | 0.0009 J | 0.0025 U | 0.00021 J | 0.0025 U | 0.00006 U | 0.0025 U | 0.0025 U | 0.0025 U | | Calcium as Ca | 52.6 | 374 | 54.1 | 73.8 | 51 | 106 | 60.2 | 84.8 | 38.0 | 59.3 | 78.8 | 107 | | Iron as Fe | 13.8 | 6,260 | 13 E | 171 | 12.8 | 45.1 | 29.9 | 47.9 | 11.3 | 17.0 | 34.6 | 1.0 | | Lead as Pb | 0.0019 U | 1.3 U | 0.0022 U | 0.0194 | 0.0019 J | 0.005 U | 0.0014 J | 0.005 U | 0.0013 U | 0.005 U | 0.005 U | 0.005 U | | Magnesium as Mg | 10.2 | 41.5 B | 11.3 | 14.1 | 10.6 | 36.3 | 8.93 | 27 | 5.37 | 13.3 | 12.0 | 19.6 | | Manganese as Mn | 1.26 | 23.2 | 2.27 | 3.15 E | 1.82 | 2.23 | 2.2 | 2.03 | 0.966 | 1.78 | 2.28 | 0.85 | | Potassium as K | 29.8 | 152 | 34.2 | 45.2 | 34.1 | 180 | 18 | 134 | 7.22 | 48.0 | 33.1 | 87.2 | | Sodium as Na | 58.6 | 397 | 81 | 104 | 77.7 | 472 | 37.9 | 352 | 9.39 | 122 | 76 | 225 | | Alkalinity total CaCO3 | 380 | 1,740 | 409 | 490 H | 428 | 1,250 | 231 | 995 | 110 | 583 | 512 | 793 | | BOD5 | 13 | 127 | 2 U | 15 | 11 | 23.1 | 5 | 20.9 | 4.0 U | 28.6 U | 13.3 U | 8.9 | | COD | 33 | 522 | 68 | 180 | 66.2 | 510 | 60.9 | 425 | 15.5 | 136 | 74.2 | 231 | | Chloride as Cl | 78.4 | 495 | 90 | 92.1 | 78 | 609 | 42.5 | 446 | 11 | 170 | 99.1 | 332 | | Hardness as CaCO3 | 310 | 1,800 | 240 | 250 | 160 | 410 | 204 | 200 | 116 | 180 | 200 | 320 | | Ammonia as N | 60.7 | 315 | 69.2 | 82.1 | 67.7 | 394 | 9.5 | 280 | 3 | 86.2 | 57.9 | 83.7 | | Nitrite as N | 0.1 U | 0.1 U | | 0.1 U | 0.1 U | 0.16 | 0.05 U | 0.056 | 0.067 | 0.05 U | 0.05 U | 1.4 | | Nitrate as N | 0.38 | 0.1 U | 0.59 | 0.47 | 0.97 | 12.3 | 0.036 J | 0.22 | 1 | 0.19 | 0.074 | 12 | | Bromide | 0.5 U | 2.44 | 0.5 U | 0.5 U | 0.5 U | 3 | 0.18 J | 1.8 | 0.034 J | 0.91 | 0.05 U | 1.7 | | Total Recoverable Phenolics | 0.0055 | 0.0076 | 0.0101 | 0.0151 | 0.0167 | 0.0183 | 0.0282 | 0.0213 | 0.0137 | 0.0110 | 0.0064 | 0.0148 | | Sulfate as SO4 | 12.8 | 44.3 | 11.1 | 11.6 | 12.3 | 45.6 | 52.2 | 24.2 | 3.7 J | 8.1 | 5 II | 44.7 | | Total Dissolved Solids | 400 | 1,770 | 424 | 542 | 396 | 1,970 | 363 | 1,610 | 191 | 658 | 440 | 648 | | Total Organic Carbon | 37.3 | 530 / | 23.9 | 36.9 | 22.3 | 1,970 | 12.2 | 130 | 8.6 | 44.5 | 22 | 69 | | Total Kjeldahl Nitorgen | 60.5 | 340 | 63.9 | 75.7 | 54.1 | 323 | 23.6 | 305 | 3.8 | 99.8 | 54.3 | 127 | | Turbidity NTU | 50.5 | >1,000 | 14.4 | 186 | 152 | >50 | 88.5 | 130 | 85.6 | 92.0 | >50 | >50 | | Analytical Parameter | 50.5 | >1,000 | 14.4 | 100 | 132 | Leachate Detect | | 130 | 03.0 | 32.0 | >30 | -30 | | Units mg/L | April | October | April | October | April | October | April | October | April | October | April | October | | Olits lig/ L | 2014 | 2014 | 2015 | 2015 | 2016 | 2016 | 2017 | 2017 | 2018 | 2018 | 2019 | 2019 | | Arsenic as As | 0.0013 B | 0.0009 U | | 0.0022 U | 0.01 U | 0.01 U | 0.01 U | 0.01 U | 0.0068 U | 0.01 U | 0.01 U | 0.01 U | | Cadmium as Cd | 0.00013 U | 0.0003 U | 0.00034 B | 0.0022 U | 0.0025 U | 0.0025 U | 0.00022 J | 0.0025 U | 0.00006 U | 0.0025 U | 0.0025 U | 0.0025 U | | Calcium as Ca | 63.6 | 98.9 | 56.2 | 92 | 57.3 | 118 | 73 | 70.6 | 53.1 | 76.8 | 76.1 | 84.4 | | | 2.32 | 0.351 | 0.424 E | 1.53 | | 110 | /3 | 70.0 | 33.1 | 70.0 | 70.1 | 04.4 | | Iron as Fe
Lead as Pb | 0.0104 | 0.551 | | | | 1.2 | 22.4 | 0.407 | 1 17 | 1.62 | 200 | 2.0 | | | | 0.0012 | | | 0.829 | 1.3 | 32.4 | 0.407 | 1.17 | 1.62 | 2.88 | 2.0 | | | | 0.0013 U | 0.0058 | 0.0443 | 0.0025 J | 0.005 U | 0.0015 J | 0.005 U | 0.0013 U | 0.005 U | 0.005 U | 0.005 U | | Magnesium as Mg | 9 | 11.7 | 0.0058
9.94 | 0.0443 | 0.0025 J
10.1 | 0.005 U
29.2 | 0.0015 J
12.6 | 0.005 U
9.66 | 0.0013 U
5.64 | 0.005 U
11.60 | 0.005 U
12.00 | 0.005 U
13.9 | | Manganese as Mn | 9 | 11.7
0.261 | 0.0058
9.94
0.322 | 0.0443
15
0.588 E | 0.0025 J
10.1
0.164 | 0.005 U
29.2
0.765 | 0.0015 J
12.6
8.16 | 0.005 U
9.66
1.82 | 0.0013 U
5.64
2.75 | 0.005 U
11.60
1.07 | 0.005 U
12.00
3.33 | 0.005 U
13.9
0.23 | | Manganese as Mn
Potassium as K | 9
1.22
22 | 11.7
0.261
29.6 | 0.0058
9.94
0.322
35.6 | 0.0443
15
0.588 E
48.8 | 0.0025 J
10.1
0.164
33.8 | 0.005 U
29.2
0.765
151 | 0.0015 J
12.6
8.16
31.9 | 0.005 U
9.66
1.82
30.2 | 0.0013 U
5.64
2.75
9.81 | 0.005 U
11.60
1.07
34.40 | 0.005 U
12.00
3.33
31.70 | 0.005 U
13.9
0.23
48.2 | | Manganese as Mn
Potassium as K
Sodium as Na | 9
1.22
22
14.6 | 11.7
0.261
29.6
33.2 | 0.0058
9.94
0.322
35.6
87.1 | 0.0443
15
0.588 E
48.8
90.2 | 0.0025 J
10.1
0.164
33.8
76.3 | 0.005 U
29.2
0.765
151
380 | 0.0015 J
12.6
8.16
31.9
62.2 | 0.005 U
9.66
1.82
30.2
47.4 | 0.0013 U
5.64
2.75
9.81
17.4 | 0.005 U
11.60
1.07
34.40
77.8 | 0.005 U
12.00
3.33
31.70
70.1 | 0.005 U
13.9
0.23
48.2 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 | 9
1.22
22
14.6
164 | 11.7
0.261
29.6
33.2
259 | 0.0058
9.94
0.322
35.6
87.1 | 0.0443
15
0.588 E
48.8
90.2
389 H | 0.0025 J
10.1
0.164
33.8
76.3
209 | 0.005 U 29.2 0.765 151 380 930 | 0.0015 J
12.6
8.16
31.9
62.2
381 | 0.005 U 9.66 1.82 30.2 47.4 427 | 0.0013 U 5.64 2.75 9.81 17.4 195 | 0.005 U
11.60
1.07
34.40
77.8
460 | 0.005 U
12.00
3.33
31.70
70.1
483 | 0.005 U 13.9 0.23 48.2 75 368 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 | 9
1.22
22
14.6
164
7 S | 11.7
0.261
29.6
33.2
259 |
0.0058
9.94
0.322
35.6
87.1
199
44 | 0.0443
15
0.588 E
48.8
90.2
389 H | 0.0025 J
10.1
0.164
33.8
76.3
209 | 0.005 U 29.2 0.765 151 380 930 14.7 | 0.0015 J
12.6
8.16
31.9
62.2
381
11.6 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U | 0.005 U
11.60
1.07
34.40
77.8
460
71.2 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 | 0.005 U 13.9 0.23 48.2 75 368 9.0 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD | 9
1.22
22
14.6
164
7 S
97.2 | 11.7
0.261
29.6
33.2
259
22
94.7 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7 | 0.0443
15
0.588 E
48.8
90.2
389 H
12
93.5 | 0.0025 J
10.1
0.164
33.8
76.3
209
8
48.4 | 0.005 U 29.2 0.765 151 380 930 14.7 281 | 0.0015 J
12.6
8.16
31.9
62.2
381
11.6 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 | 0.005 U
11.60
1.07
34.40
77.8
460
71.2
84.9 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 | 0.005 U 13.9 0.23 48.2 75 368 9.0 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl | 9
1.22
22
14.6
164
7 S
97.2
33.4 | 11.7
0.261
29.6
33.2
259
22
94.7
57.9 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8 | 0.0443
15
0.588 E
48.8
90.2
389 H
12
93.5
94.2 | 0.0025 J
10.1
0.164
33.8
76.3
209
8
48.4
73.8 | 0.005 U 29.2 0.765 151 380 930 14.7 281 | 0.0015 J 12.6 8.16 31.9 62.2 381 11.6 117 71.7 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 | 0.005 U 13.9 0.23 48.2 75 368 9.0 125 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 | 9
1.22
22
14.6
164
7 S
97.2
33.4
200 | 11.7
0.261
29.6
33.2
259
22
94.7
57.9
750 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220 | 0.0443
15
0.588 E
48.8
90.2
389 H
12
93.5
94.2
400 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 | 0.0015 12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 | 0.005 U 13.9 0.23 48.2 75 368 9.0 125 113 240 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N | 9
1.22
22
14.6
164
7 S
97.2
33.4
200 | 11.7
0.261
29.6
33.2
259
22
94.7
57.9
750
15.9 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220 | 0.0443
15
0.588 E
48.8
90.2
389 H
12
93.5
94.2
400
28.2 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 | 0.0015 12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 | 0.005 U 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 | | Manganese as Mn Potassium as K Sodium as Na Alkalininty total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N | 9
1.22
22
14.6
164
7 S
97.2
33.4
200
0.8 | 11.7
0.261
29.6
33.2
259
22
94.7
57.9
750
15.9
0.14 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42 | 0.0443
15
0.588 E
48.8
90.2
389 H
12
93.5
94.2
400
28.2
0.22 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U | 0.0015 12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 J | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 | 0.005 U 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N | 9
1.22
22
14.6
164
7 S
97.2
33.4
200
0.8
0.1 | 11.7
0.261
29.6
33.2
259
22
94.7
57.9
750
15.9
0.14
3.97 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42
0.63 | 0.0443
15
0.588 E
48.8
90.2
389 H
12
93.5
94.2
400
28.2
0.22
4.55 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 1.27 | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U 0.05 U | 0.0015 12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 5.4.2 45.9 2.30 20.7 0.064 5.3 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 | 0.005 U 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 8.2 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N Nitrite as N Bromide | 9
1.22
22
14.6
164
7 S
97.2
33.4
200
0.8
0.1 | 11.7 0.261 29.6 33.2 259 22 94.7 57.9 750 15.9 0.14 3.97 0.5 U | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42
0.63
9.18 | 0.0443
15
0.588 E
48.8
90.2
389 H
12
93.5
94.2
400
28.2
0.22
4.55 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 1.27 13.3 0.5 U | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U 0.05 U | 0.0015 12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 J | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 | 0.005 t 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 8.2 0.5 1 13.9 1.3 1.3 1.3 1.3 1.4 1.5 1 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BODS COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics | 9
1.22
22
14.6
164
7.5
97.2
33.4
200
0.8
0.1
0.58
0.5 U | 11.7 0.261 29.6 33.2 259 22 94.7 57.9 750 15.9 0.14 3.97 0.5 U 0.0066 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42
0.63
9.18
0.5 U | 0.0443 15 0.588 E 48.8 90.2 389 H 12 93.5 94.2 400 28.2 0.22 4.55 0.56 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 1.27 13.3 0.5 U 0.0050 U | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U 0.05 U 2.3 0.0308 | 0.0015 12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 0.0135 | 0.00S U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 J | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151 | 0.005 t 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 82 0.0050 t 1 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BODS COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Bromide Total Recoverable Phenolics Sulfate as SO4 | 9 1.22 22 14.6 164 7 \$ 97.2 33.4 200 0.8 0.1 0.58 0.5 U 0.0087 | 11.7 0.261 29.6 33.2 259 22 94.7 57.9 750 15.9 0.14 3.97 0.5 U 0.0066 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42
0.63
9.18
0.5 U
0.0085 | 0.0443 15 0.588 E 48.8 90.2 389 H 12 93.5 94.2 400 28.2 0.22 4.55 0.56 0.0115 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 1.27 13.3 0.5 U 0.0050 U | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U 0.05 U 2.3 0.0308 | 0.0015 12.6 8.16 31.9 62.2 381 11.6 11.7 71.7 320 16.0 0.0058 0.0058 0.0058 0.0058 0.0135 6.4 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 207 0.064 5.3 0.5 U 0.0083
 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 J 6 | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151 | 0.005 1 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 8.2 0.5 1.5 58.7 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BODS COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Bromide Total Recoverable Phenolics Sulfate as SO4 | 9 1.22 22 14.6 164 7 S 97.2 33.4 200 0.8 0.1 0.58 0.5 U 0.0087 16.8 299 | 11.7 0.261 29.6 33.2 259 22 94.7 57.9 750 15.9 0.14 3.97 0.5 U 0.0066 26.1 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42
0.63
9.18
0.5 U
0.0085
14.7 | 0.0443 15 0.588 E 48.8 90.2 389 H 12 93.5 94.2 400 28.2 0.22 4.55 0.56 0.0115 30.4 627 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 1.27 13.3 0.5 U 0.0050 U 11.5 | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U 0.05 U 2.3 0.0308 34.3 | 0.0015 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083 8.2 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 J | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115 19.8 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151 6.9 | 0.005 t 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 82 0.0050 t 1 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics | 9 1.22 22 14.6 164 7 \$ 97.2 33.4 200 0.8 0.1 0.58 0.5 U 0.0087 | 11.7 0.261 29.6 33.2 259 22 94.7 57.9 750 15.9 0.14 3.97 0.5 U 0.0066 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42
0.63
9.18
0.5 U
0.0085 | 0.0443 15 0.588 E 48.8 90.2 389 H 12 93.5 94.2 400 28.2 0.22 4.55 0.56 0.0115 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 1.27 13.3 0.5 U 0.0050 U | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U 0.05 U 2.3 0.0308 | 0.0015 12.6 8.16 31.9 62.2 381 11.6 11.7 71.7 320 16.0 0.0058 0.0058 0.0058 0.0058 0.0135 6.4 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 207 0.064 5.3 0.5 U 0.0083 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 J 6 | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151 | 0.005 t 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 8.2 0.0050 t 15.8 58.7 | | Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Nitrite as N Bromide Total Recoverable Phenolics Sulfate as SO4 Total Dissolved Solids | 9 1.22 22 14.6 164 7 S 97.2 33.4 200 0.8 0.1 0.58 0.5 U 0.0087 16.8 299 | 11.7 0.261 29.6 33.2 259 22 94.7 57.9 750 15.9 0.14 3.97 0.5 U 0.0066 26.1 | 0.0058
9.94
0.322
35.6
87.1
199
44
61.7
98.8
220
42
0.63
9.18
0.5 U
0.0085
14.7 | 0.0443 15 0.588 E 48.8 90.2 389 H 12 93.5 94.2 400 28.2 0.22 4.55 0.56 0.0115 30.4 627 | 0.0025 J 10.1 0.164 33.8 76.3 209 8 48.4 73.8 172 14.6 1.27 13.3 0.5 U 0.0050 U 11.5 | 0.005 U 29.2 0.765 151 380 930 14.7 281 350 420 94.1 0.05 U 0.05 U 2.3 0.0308 34.3 | 0.0015 | 0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083 8.2 | 0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 I 6 6.3 | 0.005 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115 19.8 | 0.005 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151 6.9 | 0.005 13.9 0.23 48.2 75 368 9.0 125 113 240 32.3 0.81 8.2 0.5 0.0050 58.7 | - NOTES: Bold indicates update due to data validation. B Analyte was detected in the associated method blank. H Received / analyzed outside of analytical holding time E Serial dilution is not within acceptance criteria or the reported value is estimated because of the presence of interference. J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. U Indicates the compound was analyzed for, but not detected. U Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit. U Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit. U Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value # TOWN OF SOUTHAMPTON NORTH SEA LANDFILL # TABLE 4 # GROUNDWATER ELEVATIONS OCTOBER 2019 | Monitoring | * Casing | April | 2014 | Octobe | er 2014 | April | 2015 | Octobe | r 2015 | April | 2016 | Octobe | r 2016 | April | 2017 | Octobe | r 2017 | April | 2018 | Octobe | r 2018 | April | 2019 | Octobe | r 2019 | |-------------|-----------|--------|-------|--------|---------|--------|------|--------|--------|--------|------|--------|--------|--------|------|--------|--------|--------|------|--------|--------|--------|-------|--------|--------| | Well Number | Elevation | DTW | GWE | MW-1A | 113.87 | 104.58 | 9.29 | 105.50 | 8.37 | 104.10 | 9.77 | 105.12 | 8.75 | 104.79 | 9.08 | 105.28 | 8.59 | 105.42 | 8.45 | 105.28 | 8.59 | 104.37 | 9.50 | 104.72 | 9.15 | 102.40 | 11.47 | 103.10 | 10.77 | | MW-1B | 115.09 | 105.78 | 9.31 | 106.50 | 8.59 | 105.32 | 9.77 | 106.10 | 8.99 | 106.02 | 9.07 | 106.70 | 8.39 | 106.60 | 8.49 | 106.50 | 8.59 | 105.70 | 9.39 | 108.80 | 6.29 | 103.57 | 11.52 | 104.30 | 10.79 | | MW-1C | 114.99 | 106.36 | 8.63 | 106.91 | 8.08 | 105.92 | 9.07 | 107.00 | 7.99 | 106.56 | 8.43 | 107.43 | 7.56 | 106.95 | 8.04 | 106.28 | 8.71 | 106.10 | 8.89 | 106.88 | 8.11 | 104.45 | 10.54 | 105.60 | 9.39 | | MW-2 | 74.8 | NM | | NM | - | NM | - | NM | | MW-3A | 55.3 | 47.51 | 7.79 | 48.67 | 6.63 | 49.20 | 6.10 | 48.49 | 6.81 | 47.96 | 7.34 | 48.93 | 6.37 | 47.99 | 7.31 | 48.88 | 6.42 | 47.50 | 7.80 | 48.43 | 6.87 | 46.56 | 8.74 | 47.35 | 7.95 | | MW-3B | 51.9 | 44.25 | 7.65 | 45.15 | 6.75 | 44.23 | 7.67 | 45.20 | 6.70 | 44.68 | 7.22 | 46.02 | 5.88 | 45.03 | 6.87 | 45.47 | 6.43 | 44.20 | 7.70 | 44.96 | 6.94 | 45.24 | 6.66 | 44.00 | 7.90 | | MW-3C | 51.4 | NM | | 44.88 | 6.52 | 43.98 | 7.42 | 44.85 | 6.55 | 44.24 | 7.16 | 45.17 | 6.23 | 44.46 | 6.94 | 45.07 | 6.33 | 43.78 | 7.62 | 44.40 | 7.00 | 44.98 | 6.42 | 44.80 | 6.60 | | MW-4A | 16 | 13.31 | 2.69 | 13.34 | 2.66 | 13.81 | 2.19 | 13.28 | 2.72 | 13.74 | 2.26 | 13.75 | 2.25 | 13.04 | 2.96 | 13.99 | 2.01 | 13.40 | 2.60 | 12.75 | 3.25 | 13.58 | 2.42 | 13.30 | 2.70 | | MW-4B | 16.1 | 13.45 | 2.65 | 13.57 | 2.53 | 14.00 | 2.10 | 13.57 | 2.53 | 13.36 | 2.74 | 14.09 | 2.01 | 13.40 | 2.70 | 14.15 | 1.95 | 13.60 | 2.50 | 12.74 | 3.36 | 13.49 | 2.61 | 13.54 | 2.56 | | MW-4C | 16 | 9.31 | 6.69 | 9.73 | 6.27 | 9.29 | 6.71 | 9.90 | 6.10 | 9.89 | 6.11 | 10.24 | 5.76 | 9.68 | 6.32 | 10.31 | 5.69 | 9.80 | 6.20 | 9.51 | 6.49 | 8.57 | 7.43 | 9.12 | 6.88 | | MW-5A | 74.27 | NM | | MW-5B | 75.25 | NM | | MW-5C | 74.33 | NM | | MW-6A | NS | NM | | MW-6AR | 100.72 | 89.89 | 10.83 | 92.37 | 8.35 | 91.65 | 9.07 | 93.81 | 6.91 | 92.16 | 8.56 | 92.26 | 8.46 | 92.61 | 8.11 | 92.89 | 7.83 | 91.81 | 8.91 | 93.71 | 7.01 | 88.85 | 11.87 | 90.70 | 10.02 | | MW-6B | 103.46 | 94.29 | 9.17 | 94.52 | 8.94 | 93.93 | 9.53 | 94.79 | 8.67 | 93.72 | 9.74 | 95.80 | 7.66 | 94.99 | 8.47 | 95.20 | 8.26 | 94.12 | 9.34 | 94.46 | 9.00 | 92.19 | 11.27 | 93.20 | 10.26 | | MW-7A | 92.83 | 83.89 | 8.94 | 84.25 | 8.58 | 83.99 | 8.84 | 83.92 | 8.91 | 83.63 | 9.20 | 84.40 | 8.43 | 84.88 | 7.95 | 84.98 | 7.85 | 83.15 | 9.68 | 83.55 | 9.28 | 81.50 | 11.33 | 82.43 | 10.40 | | MW-7B | 92.72 | 83.83 | 8.89 | 85.14 | 7.58 | 83.40 | 9.32 | 84.21 | 8.51 | 83.76 | 8.96 | 84.91 | 7.81 | 84.45 | 8.27 | 84.67 | 8.05 | 83.54 | 9.18 | 83.70 | 9.02 | 81.68 | 11.04 | 82.50 | 10.22 | | MW-7C | 93.31 | 83.61 | 9.70 | 84.96 | 8.35 | 85.01 | 8.30 | 86.00 | 7.31 | 85.13 | 8.18 | 88.33 | 4.98 | 85.64 | 7.67 | 86.20 | 7.11 | 84.69 | 8.62 | 84.08 | 9.23 | 83.51 | 9.80 | 83.81 | 9.50 | | MW-8 | 86.02 | 76.88 | 9.14 | 78.00 | 8.02 | 76.98 | 9.04 | 77.38 | 8.64 | 77.18 | 8.84 | 77.99 | 8.03 | 77.71 | 8.31 | 77.76 | 8.26 | 76.75 | 9.27 | 77.13 | 8.89 | 74.97 | 11.05 | 76.80 | 9.22 | | MW-9 | 82.56 | 73.79 | 8.77 | 74.96 | 7.60 | 74.10 | 8.46 | 74.41 | 8.15 | 74.04 | 8.52 | 74.89 | 7.67 | 74.58 | 7.98 | 74.73 | 7.83 | 73.60 | 8.96 | 74.10 | 8.46 | 72.00 | 10.56 | 73.90 | 8.66 | | MW-11A | 80.78 | 72.75 | 8.03 | 73.41 | 7.37 | 72.77 | 8.01 | 73.84 | 6.94 | 73.50 | 7.28 | 73.38 | 7.40 | 73.68 | 7.10 | 73.69 | 7.09 | 73.40 | 7.38 | 74.00 | 6.78 | 71.19 | 9.59 | 71.40 | 9.38 | | MW-11B | 78.32 | 73.51 | 4.81 | 74.12 | 4.20 | 73.27 | 5.05 | 74.25 | 4.07 | 73.84 | 4.48 | 74.84 | 3.48 | 74.35 | 3.97 | 74.56 | 3.76 | 73.38 | 4.94 | 74.10 | 4.22 | 66.88 | 11.44 | 68.80 | 9.52 | | MW-12A | 87.95 | 79.73 | 8.22 | 80.58 | 7.37 | 80.66 | 7.29 | 80.54 | 7.41 | 80.21 | 7.74 | 81.12 | 6.83 | 80.60 | 7.35 | 81.88 | 6.07 | 79.66 | 8.29 | 80.40 | 7.55 | 78.57 | 9.38 | 79.20 | 8.75 | | MW-12B | 88.28 | 80.34 | 7.94 | 81.17 | 7.11 | 80.22 | 8.06 | 81.14 | 7.14 | 80.81 | 7.47 | 81.64 | 6.64 | 81.21 | 7.07 | 81.47 | 6.81 | 80.20 | 8.08 | 80.12 | 8.16 | 79.36 | 8.92 | 78.00 | 10.28 | # NOTES: * = SURVEYED TO MEAN SEA LEVEL GWE = GROUNDWATER ELEVATION DTW = DEPTH TO WATER NM = NOT MONITORED NS = NOT SURVEYED # **FIGURES** SHP1901 –
2nd – Semi-Annual Post-Closure Groundwater Monitoring Report 2019 Figure 2 Monitoring Well 11A (1997 - 2019) Figure 3 Monitoring Well 11B (1997 - 2019) # APPENDIX A LABORATORY ANALYTICAL REPORTS/DATA VALIDATION & USABILITY REPORT SHP1901 – 2nd – Semi-Annual Post-Closure Groundwater Monitoring Report 2019 November 06, 2019 Christine Fetten Town of Southampton 116 Hampton Road Waste Management Division Southampton, NY 11968 RE: Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 # Dear Christine Fetten: Enclosed are the analytical results for sample(s) received by the laboratory between October 22, 2019 and October 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report. If you have any questions concerning this report, please feel free to contact me. Sincerely, Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040 Project Manager Enclosures cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting Amanda Lauth, PW Grosser # **CERTIFICATIONS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Long Island Certification IDs 575 Broad Hollow Rd, Melville, NY 11747 New York Certification #: 10478 Primary Accrediting Body New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Maryland Certification #: 208 Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 6010C Description: 6010 MET ICP Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ## **Sample Preparation:** The samples were prepared in accordance with EPA 3005A with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. # **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 135967 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109260008 M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - MS (Lab ID: 650717) - Aluminum - Iron - Silver QC Batch: 136635 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109826001 M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - MS (Lab ID: 653733) - Calcium - Iron # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. ## Additional Comments: Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 6010C Description: 6010 MET ICP, Dissolved Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 2 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. # Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. # Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 136159 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109260006 M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - MS (Lab ID: 651776)Antimony, Dissolved - Silver, Dissolved # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 7470A Description: 7470 Mercury Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 4 samples were analyzed for EPA 7470A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 7470A with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 7470A **Description:** 7470 Mercury, Dissolved **Client:** Town of Southampton **Date:** November 06, 2019 #### **General Information:** 1 sample was analyzed for EPA 7470A. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. ## Sample Preparation: The samples were prepared in accordance with EPA 7470A with any exceptions noted below. #### Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. ## Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 8260C/5030C Description: 8260C Volatile Organics Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 4 samples were analyzed for EPA 8260C/5030C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. # Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. QC Batch: 135589 IC: The initial calibration for this compound was outside of method control limits. The result is estimated. - 11A (Lab ID: 70109260005) - Acetone - 11B (Lab ID: 70109260006) - Acetone - BLANK (Lab ID: 648736) - Acetone - DUP (Lab ID: 649102) - Acetone - LCS (Lab ID: 648737) - Acetone - STORAGE BLANK (Lab ID: 70109260013) - Acetone - TRIP BLANK (Lab ID: 70109260012) - Acetone IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value. - 11A (Lab ID: 70109260005) - 2-Butanone (MEK) - 11B (Lab ID: 70109260006) - 2-Butanone (MEK) - BLANK (Lab ID: 648736) - 2-Butanone (MEK) - DUP (Lab ID: 649102) 2-Butanone (MEK) - LCS (Lab ID: 648737) - 2-Butanone (MEK) - STORAGE BLANK (Lab ID: 70109260013) - 2-Butanone (MEK) - TRIP BLANK (Lab ID: 70109260012) - 2-Butanone (MEK) # **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 8260C/5030C
Description: 8260C Volatile Organics Client: Town of Southampton Date: November 06, 2019 QC Batch: 135589 CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high. - LCS (Lab ID: 648737) - Acetone - Bromomethane - Iodomethane CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. - 11A (Lab ID: 70109260005) - 2-Butanone (MEK) - 11B (Lab ID: 70109260006) - 2-Butanone (MEK) - BLANK (Lab ID: 648736) - 2-Butanone (MEK) - DUP (Lab ID: 649102) - 2-Butanone (MEK) - STORAGE BLANK (Lab ID: 70109260013) - 2-Butanone (MEK) - TRIP BLANK (Lab ID: 70109260012) - 2-Butanone (MEK) #### Internal Standards: All internal standards were within QC limits with any exceptions noted below. # Surrogates: All surrogates were within QC limits with any exceptions noted below. # Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. QC Batch: 135589 L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high. - LCS (Lab ID: 648737) - lodomethane # Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. ## **Additional Comments:** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 8260 Description: TIC MSV Water Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 4 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. # Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below. #### **Continuing Calibration:** All criteria were within method requirements with any exceptions noted below. #### **Internal Standards:** All internal standards were within QC limits with any exceptions noted below. #### Surrogates All surrogates were within QC limits with any exceptions noted below. # Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method:SM22 2320BDescription:2320B AlkalinityClient:Town of SouthamptonDate:November 06, 2019 #### **General Information:** 21 samples were analyzed for SM22 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: SM22 2340C Description: 2340C Hardness, Total Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for SM22 2340C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: SM22 2540C Description: 2540C Total Dissolved Solids Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for SM22 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. QC Batch: 135871 D6: The precision between the sample and sample duplicate exceeded laboratory control limits. - DUP (Lab ID: 650338) - Total Dissolved Solids Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 410.4 Description: 410.4 COD Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for EPA 410.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 410.4 with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### Laboratory Control Spike: All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. ## **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: SM22 5210B Description: 5210B BOD, 5 day Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for SM22 5210B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with SM22 5210B with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### Laboratory Control Spike: All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 300.0 Description: 300.0 IC Anions 28 Days Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. # **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 351.2
Description: 351.2 Total Kjeldahl Nitrogen Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for EPA 351.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### **Sample Preparation:** The samples were prepared in accordance with EPA 351.2 with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### Laboratory Control Spike: All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 137115 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109807002,70110012001 M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. - MS (Lab ID: 656261) - Nitrogen, Kjeldahl, Total QC Batch: 137116 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109260008,70109385002 M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. - MS (Lab ID: 656267) - Nitrogen, Kjeldahl, Total - MS (Lab ID: 656269) - Nitrogen, Kjeldahl, Total # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. ## **Additional Comments:** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 353.2 Description: 353.2 Nitrogen, NO2/NO3 unpres Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. H1: Analysis conducted outside the EPA method holding time. • DUP (Lab ID: 70109260004) #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. # Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 135456 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109260001,70109260008 M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - MS (Lab ID: 648280) - Nitrate-Nitrite (as N) M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. - MS (Lab ID: 648282) - Nitrate-Nitrite (as N) # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 353.2 Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:November 06, 2019 #### **General Information:** 21 samples were analyzed for EPA 353.2. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 135450 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109260008,70109301001 M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. - MS (Lab ID: 648259) - Nitrite as N QC Batch: 135655 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109471001,70109472001 M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - MS (Lab ID: 649241) - Nitrite as N - MS (Lab ID: 649243) - Nitrite as N #### **Duplicate Sample** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: EPA 420.1 Description: Phenolics, Total Recoverable Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for EPA 420.1. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Sample Preparation: The samples were prepared in accordance with EPA 420.1 with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. #### Laboratory Control Spike: All laboratory control spike compounds were within QC limits with any exceptions noted below. #### **Matrix Spikes** All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. QC Batch: 136531 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109826004 M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - MS (Lab ID: 653288) - Phenolics, Total Recoverable QC Batch: 136946 A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70109260008 M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - MS (Lab ID: 655497) - Phenolics, Total Recoverable ## **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. QC Batch: 136531 D6: The precision between the sample and sample duplicate exceeded laboratory control limits. - DUP (Lab ID: 653289) - Phenolics, Total Recoverable # **Additional Comments:** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: SM22 4500 NH3 H Description: 4500 Ammonia Water Client: Town of Southampton Date: November 06, 2019 #### **General Information:** 21 samples were analyzed for SM22 4500 NH3 H. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. #### **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Method: SM22 5310B Description:5310B TOC as NPOCClient:Town of SouthamptonDate:November 06, 2019 #### **General Information:** 21 samples were analyzed for SM22 5310B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report. #### **Hold Time:** The samples were analyzed within the method required hold times with any exceptions noted below. #### Method Blank: All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below. ## **Laboratory Control Spike:** All laboratory control spike compounds were within QC limits with any exceptions noted below. #### Matrix Spikes: All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below. # **Duplicate Sample:** All duplicate sample results were within method acceptance criteria with any exceptions noted below. # **Additional Comments:** This data package has been reviewed for quality and completeness and is approved for release. # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 1A | Lab ID: 7010 | 09260001 | Collected: 10/21/ | 19 13:15 | Received: 10 |)/22/19 11:54 | Matrix: Water | | |--------------------------------|-----------------|--------------|---------------------|-----------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparation M | ethod: El | PA
3005A | | | | | Cadmium | <2.5 | ug/L | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 14:40 | 7440-43-9 | | | Calcium | 63400 | ug/L | 200 | 1 | 10/25/19 10:19 | 10/28/19 14:40 | 7440-70-2 | | | ron | 742 | ug/L | 20.0 | 1 | | 10/28/19 14:40 | | | | Lead | <5.0 | ug/L | 5.0 | 1 | | 10/28/19 14:40
10/28/19 14:40 | | | | Magnesium
Manganese | 22600
217 | ug/L
ug/L | 200
10.0 | 1
1 | | 10/28/19 14:40 | | | | Potassium | 12600 | ug/L | 5000 | 1 | | 10/28/19 14:40 | | | | Sodium | 18600 | ug/L | 5000 | 1 | | 10/28/19 14:40 | | | | 320B Alkalinity | Analytical Meth | nod: SM22 | 2320B | | | | | | | Alkalinity, Total as CaCO3 | 127 | mg/L | 1.0 | 1 | | 10/24/19 19:06 | 5 | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 220 | mg/L | 5.0 | 1 | | 11/05/19 17:28 | 1 | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | otal Dissolved Solids | 330 | mg/L | 20.0 | 1 | | 10/24/19 09:54 | ļ | | | 10.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Preparation Me | thod: EP | A 410.4 | | | | | Chemical Oxygen Demand | 10.2 | mg/L | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:38 | 3 | | | 210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Preparation | Method: | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | 2.0 | 1 | 10/22/19 17:04 | 10/27/19 09:28 | 3 | | | 00.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.50 | 1 | | 10/26/19 03:38 | 24959-67-9 | | | Chloride | 41.0 | mg/L | 2.0 | 1 | | 10/26/19 03:38 | 16887-00-6 | | | Sulfate | 106 | mg/L | 25.0 | 5 | | 10/26/19 04:28 | 14808-79-8 | | | 851.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Preparation Me | thod: EP | A 351.2 | | | | | litrogen, Kjeldahl, Total | <0.10 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:16 | 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | Nitrate as N | 6.6 | mg/L | 0.50 | | | 10/23/19 03:12 | | | | Nitrate-Nitrite (as N) | 6.6 | mg/L | 0.50 | 10 | | 10/23/19 03:12 | 7727-37-9 | M6 | | 53.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | Nitrite as N | <0.050 | mg/L | 0.050 | 1 | | 10/22/19 23:06 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparation Me | thod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 11.8 | ug/L | 5.0 | 1 | 10/31/19 06:28 | 10/31/19 11:25 | i | | | 1500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | 0.10 | 1 | | 11/01/19 15:37 | 7664-41-7 | | | | | | | | | | | | (631)694-3040 # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 1A | Lab ID: 7010 | 9260001 | Collected: 10/21/ | 19 13:15 | Received: 10 | /22/19 11:54 | Matrix: Water | | |----------------------|-----------------|------------|-------------------|----------|--------------|---------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Meth | od: SM22 5 | 5310B | | | | | | | Total Organic Carbon | 4.8 | mg/L | 1.0 | 1 | | 10/31/19 18:0 | 5 7440-44-0 | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 1B | Lab ID: 701 | 09260002 | Collected: | 10/21/1 | 9 13:00 | Received: 10 | 0/22/19 11:54 | Matrix: Water | | |-------------------------------|----------------|--------------|--------------|--------------|-----------|----------------|----------------------------------|---------------|------| | Parameters | Results | Units | Repor | t Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 6010 MET ICP | Analytical Met | hod: EPA 60 | 010C Prepar | ation Me | ethod: EF | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 14:43 | 3 7440-43-9 | | | Calcium | 3130 | ug/L | | 200 | 1 | | 10/28/19 14:43 | | | | on | 52.8 | ug/L | | 20.0 | 1 | | 10/28/19 14:43 | | | | ead | <5.0 | ug/L | | 5.0 | 1 | | 10/28/19 14:43 | | | | lagnesium | 1250 | ug/L | | 200 | 1 | | 10/28/19 14:43 | | | | Manganese
Potassium | <10.0
<5000 | ug/L
ug/L | | 10.0
5000 | 1
1 | | 10/28/19 14:43
10/28/19 14:43 | | | | odium | 9040 | ug/L | | 5000 | 1 | | 10/28/19 14:43 | | | | 320B Alkalinity | Analytical Met | hod: SM22 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 5.4 | mg/L | | 1.0 | 1 | | 10/24/19 19:11 | | | | 340C Hardness, Total | Analytical Met | hod: SM22 | 2340C | | | | | | | | ot Hardness asCaCO3 (SM 2340B | 8.0 | mg/L | | 5.0 | 1 | | 11/05/19 17:30 |) | | | 2540C Total Dissolved Solids | Analytical Met | hod: SM22 | 2540C | | | | | | | | otal Dissolved Solids | 59.0 | mg/L | | 10.0 | 1 | | 10/24/19 09:56 | 3 | | | 10.4 COD | Analytical Met | hod: EPA 41 | 10.4 Prepara | ation Met | hod: EP | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:39 |) | | | 210B BOD, 5 day | Analytical Met | hod: SM22 | 5210B Prepa | aration M | Method: S | SM22 5210B | | | | | OD, 5 day | <2.0 | mg/L | | 2.0 | 1 | 10/22/19 17:04 | 10/27/19 09:30 |) | | | 00.0 IC Anions 28 Days | Analytical Met | hod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/26/19 04:45 | 24959-67-9 | | | Chloride | 15.4 | mg/L | | 2.0 | 1 | | 10/26/19 04:45 | 16887-00-6 | | | sulfate | 8.7 | mg/L | | 5.0 | 1 | | 10/26/19 04:45 | 14808-79-8 | | | 51.2 Total Kjeldahl Nitrogen | Analytical Met | hod: EPA 35 | 51.2 Prepara | ation Met | hod: EP | A 351.2 | | | | | litrogen, Kjeldahl, Total | <0.10 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:17 | 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Met | hod: EPA 35 | 53.2 | | | | | | | | litrate as N | <0.050 | mg/L | | 0.050 | 1 | | 10/23/19 03:18 | | | | litrate-Nitrite (as N) | <0.050 | mg/L | -0.0 | 0.050 | 1 | | 10/23/19 03:18 | 3 1121-31-9 | | | 53.2 Nitrogen, NO2 | Analytical Met | | 53.2 | | | | | | | | litrite as N | <0.050 | mg/L | | 0.050 | 1 | | 10/22/19 23:07 | 7 14797-65-0 | | | henolics, Total Recoverable | Analytical Met | | 20.1 Prepara | | | A 420.1 | | | | | henolics, Total Recoverable | 11.5 | ug/L | | 5.0 | 1 | 10/31/19 06:28 | 10/31/19 11:26 | 5 | | | 500 Ammonia Water | Analytical Met | hod: SM22 | 4500 NH3 H | | | | | | | | litrogen, Ammonia | <0.10 | mg/L | | 0.10 | 1 | | 11/01/19 15:38 | 7664-41-7 | | | | | | | | | | | | | (631)694-3040 # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 1B | Lab ID: 701 | 09260002 | Collected: 10/21/ | 19 13:00 | Received: 10 | /22/19 11:54 | Matrix: Water | | |----------------------|----------------|-------------|-------------------|----------|--------------|---------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Met | hod: SM22 s | 5310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 10/31/19 18:1 | 6 7440-44-0 | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 1C | Lab ID: 701 | 09260003 | Collected: | 10/21/1 | 9 12:35 | Received: 10 | 0/22/19 11:54 | Matrix: Water | | |-------------------------------|----------------|--------------|--------------|--------------|------------|----------------|----------------------------------|---------------|------| | Parameters | Results | Units | Repor | t Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 6010 MET ICP | Analytical Met | hod: EPA 60 | 010C Prepar | ation Me | ethod: EF | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 14:45 | 7440-43-9 | | | Calcium | 5120 | ug/L | | 200 | 1 | | 10/28/19 14:45 | | | | on . | 84.0 | ug/L | | 20.0 | 1 | | 10/28/19 14:45 | | | | ead | <5.0 | ug/L | | 5.0 | 1 | | 10/28/19 14:45 | | | | Magnesium | 2410 | ug/L | | 200 | 1 | | 10/28/19 14:45
10/28/19 14:45 | | | | Manganese
Potassium | 11.0
<5000 | ug/L
ug/L | | 10.0
5000 | 1
1 | | 10/28/19 14:45 | | | | Sodium | 8620 | ug/L
ug/L | | 5000 | 1 | | 10/28/19 14:45 | | | | 320B Alkalinity | Analytical Met | hod: SM22 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 14.7 | mg/L | | 1.0 | 1 | | 10/24/19 19:17 | 7 | | | 340C Hardness, Total | Analytical Met | hod: SM22 | 2340C | | | | | | | | ot Hardness asCaCO3 (SM 2340B | 16.0 | mg/L | | 5.0 | 1 | | 11/05/19 18:59 |) | | | 540C Total Dissolved Solids | Analytical Met | hod: SM22 | 2540C | | | | | | | | otal Dissolved Solids | 97.0 | mg/L | | 10.0 | 1 | | 10/24/19 09:56 | 3 | | | 10.4 COD | Analytical Met | hod: EPA 41 | 10.4 Prepara | ition Met | hod: EP | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:39 |) | | | 210B BOD, 5 day | Analytical Met | hod: SM22 | 5210B Prepa | aration M | lethod: \$ | SM22 5210B | | | | | SOD, 5 day | <2.0 | mg/L | | 2.0 | 1 | 10/22/19 17:04 | 10/27/19 09:33 | 3 | | | 00.0 IC Anions 28 Days | Analytical Met | hod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/26/19 05:02 | 24959-67-9 | | | Chloride | 11.4 | mg/L | | 2.0 | 1 | | 10/26/19 05:02 | 2 16887-00-6 | | | Sulfate | 10.6 | mg/L | | 5.0 | 1 | | 10/26/19 05:02 | 2 14808-79-8 | | | 51.2 Total Kjeldahl Nitrogen | Analytical Met | hod: EPA 35 | 51.2 Prepara | ition Met | hod: EP | A 351.2 | | | | | litrogen, Kjeldahl, Total | <0.10 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:18 | 3 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Met | hod: EPA 35 | 53.2 | | | | | | | | Nitrate as N | 0.37 | mg/L | | 0.050 | 1 | | 10/23/19 03:19 | | | | litrate-Nitrite (as N) | 0.37 | mg/L | | 0.050 | 1 | | 10/23/19 03:19 | 9 7727-37-9 | | | 53.2 Nitrogen, NO2 | Analytical Met | hod: EPA 35 | 53.2 | | | | | | | | litrite as N |
<0.050 | mg/L | | 0.050 | 1 | | 10/22/19 23:11 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Met | hod: EPA 42 | 20.1 Prepara | ition Met | hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 16.1 | ug/L | | 5.0 | 1 | 10/31/19 06:28 | 10/31/19 11:29 |) | | | 500 Ammonia Water | Analytical Met | hod: SM22 | 4500 NH3 H | | | | | | | | litrogen, Ammonia | <0.10 | mg/L | | 0.10 | 1 | | 11/01/19 15:39 | 7664-41-7 | | | | | | | | | | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. (631)694-3040 # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 1C | Lab ID: 70 | 0109260003 | Collected: 10/21/ | 19 12:35 | Received: 10 | 0/22/19 11:54 | Matrix: Water | | |----------------------|---------------|---------------|-------------------|----------|--------------|---------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Me | ethod: SM22 5 | 5310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 10/31/19 18:2 | 8 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: DUP | Lab ID: 701 | 09260004 | Collected: 1 | 0/21/19 | 00:00 | Received: 10 |)/22/19 11:54 I | Matrix: Water | | |--------------------------------|-----------------|--------------|-----------------|-------------|--------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report L | imit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparati | on Meth | od: EF | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 14:52 | 7440-43-9 | | | Calcium | 5280 | ug/L | | 200 | 1 | | 10/28/19 14:52 | | | | Iron | 40.7 | ug/L | | 20.0 | 1 | | 10/28/19 14:52 | | | | Lead | <5.0 | ug/L | | 5.0 | | | 10/28/19 14:52 | | | | Magnesium
Manganese | 2510
13.0 | ug/L
ug/L | | 200
10.0 | 1 | | 10/28/19 14:52
10/28/19 14:52 | | | | Potassium | <5000 | ug/L
ug/L | | 5000 | 1 | | 10/28/19 14:52 | | | | Sodium | 8880 | ug/L | | 5000 | 1 | | 10/28/19 14:52 | | | | 2320B Alkalinity | Analytical Meth | nod: SM22 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 15.1 | mg/L | | 1.0 | 1 | | 10/24/19 19:22 | ! | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 20.0 | mg/L | | 5.0 | 1 | | 11/05/19 19:00 | | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | | Total Dissolved Solids | 60.0 | mg/L | | 10.0 | 1 | | 10/24/19 10:07 | • | | | 110.4 COD | Analytical Meth | nod: EPA 41 | 10.4 Preparatio | n Metho | d: EPA | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:39 |) | | | 5210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Prepara | ation Met | hod: S | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | | 2.0 | 1 | 10/22/19 17:04 | 10/27/19 09:35 | i | | | 300.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/26/19 05:18 | 24959-67-9 | | | Chloride | 11.4 | mg/L | | 2.0 | 1 | | 10/26/19 05:18 | 16887-00-6 | | | Sulfate | 10.5 | mg/L | | 5.0 | 1 | | 10/26/19 05:18 | 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 35 | 51.2 Preparatio | n Metho | d: EPA | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | 0.28 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:21 | 7727-37-9 | В | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 35 | 53.2 | | | | | | | | Nitrate as N | 0.35 | mg/L | | | 1 | | 10/23/19 03:20 | | | | Nitrate-Nitrite (as N) | 0.35 | mg/L | 0 | .050 | 1 | | 10/23/19 03:20 | 7727-37-9 | H1 | | 353.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 35 | 53.2 | | | | | | | | Nitrite as N | <0.050 | mg/L | 0 | .050 | 1 | | 10/22/19 23:12 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparatio | n Metho | d: EPA | A 420.1 | | | | | Phenolics, Total Recoverable | 11.6 | ug/L | | 5.0 | 1 | 10/31/19 06:28 | 10/31/19 11:29 | | | | 4500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | | 0.10 | 1 | | 11/01/19 15:40 | 7664-41-7 | | | | | | | | | | | | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: DUP | Lab ID: 701 | 109260004 | Collected: 10/21/ | 19 00:00 | Received: 10 | /22/19 11:54 | Matrix: Water | | |----------------------|----------------|--------------|-------------------|----------|--------------|---------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Met | thod: SM22 s | 5310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 10/31/19 18:3 | 9 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Lab ID: 70 | 0109260005 | Collected: | 10/21/1 | 9 08:50 | Received: 10 | /22/19 11:54 I | Matrix: Water | | |--|--|---------------------------------|--|---|----------------|--|--|---| | Results | Units | Report | Limit | DF | Prepared | Analyzed | CAS No. | Qua | | Analytical Mo | ethod: EPA 60 | 10C Prepara | ation Me | thod: EF | PA 3005A | | | | | <200 | ug/L | | 200 | 1 | 10/25/19 10:19 | 10/28/19 14:54 | 7429-90-5 | | | <60.0 | ug/L | | 60.0 | 1 | 10/25/19 10:19 | 10/28/19 14:54 | 7440-36-0 | | | <10.0 | ug/L | | 10.0 | 1 | 10/25/19 10:19 | 10/28/19 14:54 | 7440-38-2 | | | <200 | - | | 200 | 1 | 10/25/19 10:19 | 10/28/19 14:54 | 7440-39-3 | | | <5.0 | - | | 5.0 | 1 | 10/25/19 10:19 | 10/28/19 14:54 | 7440-41-7 | | | | | | | | | | | | | | - | - | | | | | | | | | | - | | | | | | | | | | _ | | | | | | | | | | - | | | | | | | | | | - | | | | | | | | | | - | | | | | | | | | | - | | | | | | | | | | _ | | | | | | | | | | - | - | | | | | | | | | | - | | | | | | | | | | _ | | | | | | | | | | - | | 10.0 | | | | | | | | ug/L | | 50.0 | 1 | | | | | | <20.0 | ug/L | | 20.0 | 1 | 10/25/19 10:19 | 10/28/19 14:54 | 7440-66-6 | | | Analytical Me | ethod: EPA 74 | 70A Prepara | ition Me | thod: EP | A 7470A | | | | | <0.20 | ug/L | | 0.20 | 1 | 11/01/19 11:56 | 11/01/19 16:38 | 7439-97-6 | | | Analytical Mo | ethod: FPA 82 | 60C/5030C | | | | | | | | | ouriou. Er 710E | 000/30300 | | | | | | | | <5.0 | ug/L | 000/30300 | 5.0 | 1 | | 10/23/19 16:04 | 67-64-1 | IC | | <5.0
<5.0 | | 000/30300 | 5.0
5.0 | 1
1 | | 10/23/19 16:04
10/23/19 16:04 | | IC | | | ug/L | 000/30300 | | | | | 107-13-1 | IC | | <5.0 | ug/L
ug/L | 000/30300 | 5.0 | 1 | | 10/23/19 16:04 | 107-13-1
71-43-2 | IC | | <5.0
<5.0 | ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0 | 1
1 | | 10/23/19 16:04
10/23/19 16:04 | 107-13-1
71-43-2
74-97-5 | IC | | <5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0 | 1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 107-13-1
71-43-2
74-97-5
75-27-4 | IC | | <5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0 | 1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 71-43-1
71-43-2
74-97-5
75-27-4
75-25-2 | IC | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0 | 1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 71-43-1
71-43-2
74-97-5
75-27-4
75-25-2
74-83-9 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 107-13-1
71-43-2
74-97-5
75-27-4
75-25-2
74-83-9
78-93-3 | IC
CL,IL | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19
16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0
156-23-5 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0
156-23-5
108-90-7 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0
156-23-5
108-90-7
175-00-3 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0
156-23-5
108-90-7
175-00-3
167-66-3 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0
156-23-5
108-90-7
175-00-3
167-66-3
174-87-3 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0
156-23-5
108-90-7
175-00-3
167-66-3
174-87-3
196-12-8 | | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 000/30300 | 5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0 | 1
1
1
1
1
1
1
1
1
1
1
1
1 | | 10/23/19 16:04
10/23/19 16:04 | 107-13-1
171-43-2
174-97-5
175-27-4
175-25-2
174-83-9
178-93-3
175-15-0
156-23-5
108-90-7
175-00-3
167-66-3
174-87-3
196-12-8
124-48-1 | | | - | Analytical Moscondinary (200) <60.0 <10.0 <200 <50.0 <50.0 <2.5 36500 <10.0 <50.0 35600 <50.0 12700 5400 <40.0 <5000 <10.0 <10.0 8960 <10.0 <50.0 Analytical Moscondinary (20.20) | Analytical Method: EPA 60 <200 | Results | Results Units Report Limit Analytical Method: EPA 6010C Preparation Me <200 | Results | Results Units Report Limit DF Prepared Analytical Method: EPA 6010C Preparation Method: EPA 3005A <200 | Results | Results Units Report Limit DF Prepared Analyzed CAS No. | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 11A | Lab ID: 70 | 109260005 | Collected: 10/21/1 | 9 08:50 | Received: 10/22/19 11:54 Mat | trix: Water | | |-------------------------------------|------------------|---------------|--------------------|---------|------------------------------|-------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared Analyzed | CAS No. | Qual | | 8260C Volatile Organics | Analytical Me | ethod: EPA 82 | 60C/5030C | | | | | | 1,2-Dichlorobenzene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 9 | 15-50-1 | | | 1,4-Dichlorobenzene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 06-46-7 | | | rans-1,4-Dichloro-2-butene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 10-57-6 | | | 1,1-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 5-34-3 | | | 1,2-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 07-06-2 | | | 1,1-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 5-35-4 | | | cis-1,2-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 56-59-2 | | | rans-1,2-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 56-60-5 | | | 1,2-Dichloropropane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 8-87-5 | | | cis-1,3-Dichloropropene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 0061-01-5 | | | rans-1,3-Dichloropropene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 0061-02-6 | | | Ethylbenzene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 00-41-4 | | | 2-Hexanone | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 5 | 91-78-6 | | | odomethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | '4-88-4 L1 | | | Methylene Chloride | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 5-09-2 | | | 4-Methyl-2-pentanone (MIBK) | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 08-10-1 | | | Styrene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 00-42-5 | | | ,1,1,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 6 | 30-20-6 | | | 1,1,2,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 9-34-5 | | | Tetrachloroethene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 27-18-4 | | | Toluene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | | | | 1,1,1-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 1-55-6 | | | 1,1,2-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 9-00-5 | | | Trichloroethene | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 9-01-6 | | | Trichlorofluoromethane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | 5-69-4 | | | 1,2,3-Trichloropropane | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 9 | 6-18-4 | | | √inyl acetate | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 08-05-4 | | | Vinyl chloride | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 7 | | | | Xylene (Total)
Surrogates | <5.0 | ug/L | 5.0 | 1 | 10/23/19 16:04 1 | 330-20-7 | | | 1,2-Dichloroethane-d4 (S) | 89 | % | 68-153 | 1 | 10/23/19 16:04 1 | 7060-07-0 | | | 4-Bromofluorobenzene (S) | 95 | % | 79-124 | 1 | 10/23/19 16:04 4 | 60-00-4 | | | Toluene-d8 (S) | 94 | % | 69-124 | 1 | 10/23/19 16:04 2 | :037-26-5 | | | FIC MSV Water | Analytical Me | ethod: EPA 82 | 60 | | | | | | ΓIC Search | No TICs
Found | | | 1 | 10/28/19 16:39 | | | | 2320B Alkalinity | Analytical Me | ethod: SM22 2 | 2320B | | | | | | Alkalinity, Total as CaCO3 | 141 | mg/L | 1.0 | 1 | 10/24/19 19:31 | | | | 2340C Hardness, Total | Analytical Me | ethod: SM22 2 | 2340C | | | | | | Tot Hardness asCaCO3 (SM 2340B | 200 | mg/L | 5.0 | 1 | 11/05/19 20:15 | | | | 2540C Total Dissolved Solids | Analytical Me | ethod: SM22 2 | 2540C | | | | | | Total Dissolved Solids | 171 | mg/L | 10.0 | 1 | 10/24/19 10:08 | | | | | | | | | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 11A | Lab ID: 7010 | 9260005 | Collected: 10/21/ | 19 08:50 | Received: 10 |)/22/19 11:54 | Matrix: Water | | |--|-----------------------|----------------------|---------------------|-------------|----------------|--|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 410.4 COD | Analytical Meth | od: EPA 4 | 10.4 Preparation Me | thod: EP | PA 410.4 | | | | | Chemical Oxygen Demand | 10.2 | mg/L | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:39 |) | | | 5210B BOD, 5 day | Analytical Meth | od: SM22 | 5210B Preparation I | Method: | SM22 5210B | | | | | BOD, 5 day | <4.0 | mg/L | 4.0 | 2 | 10/22/19 17:04 | 10/27/19 09:38 | 3 | | | 300.0 IC Anions 28 Days | Analytical Meth | od: EPA 30 | 0.00 | | | | | | | Bromide
Chloride
Sulfate | <0.50
14.3
14.0 | mg/L
mg/L
mg/L | 0.50
2.0
5.0 | 1
1
1 | | 10/29/19 00:48
10/29/19 00:48
10/29/19 00:48 | 16887-00-6 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | od: EPA 3 | 51.2 Preparation Me | thod: EP | PA 351.2 | | | | | Nitrogen, Kjeldahl, Total | 0.99 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:21 | 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | od: EPA 3 | 53.2 | | | | | | | Nitrate as N
Nitrate-Nitrite (as N) | 0.11
0.11 | mg/L
mg/L | 0.050
0.050 | 1
1 | | 10/23/19 03:21
10/23/19 03:21 | | | | 353.2 Nitrogen, NO2 | Analytical Meth | od: EPA 3 | 53.2 | | | | | | | Nitrite as N | <0.050 | mg/L | 0.050 | 1 | | 10/22/19 23:13 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | od: EPA 42 | 20.1 Preparation Me | thod: EP | PA 420.1 | | | | | Phenolics, Total Recoverable | 5.4 | ug/L | 5.0 | 1 | 10/31/19 06:28 | 10/31/19 11:30 | 1 | | | 4500 Ammonia Water | Analytical Meth | od: SM22 | 4500 NH3 H | | | | | | | Nitrogen, Ammonia | 1.0 | mg/L | 0.10 | 1 | | 11/01/19 15:42 | 7664-41-7 | | | 5310B TOC as NPOC | Analytical Meth | od: SM22 | 5310B | | | | | | | Total Organic Carbon | 3.0 | mg/L | 1.0 | 1 | | 10/31/19 19:00 | 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Date: 11/06/2019 02:57 PM | Sample: 11B | Lab ID: 7010 | 09260006 | Collected: 10/21/ | 19 09:20 | Received: 10 |)/22/19 11:54 l | Matrix: Water | | |-------------------------|-----------------|-------------|--------------------
-----------|----------------|--------------------|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparation M | ethod: EF | PA 3005A | | | | | Aluminum | 3540 | ug/L | 200 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7429-90-5 | | | Antimony | <60.0 | ug/L | 60.0 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-36-0 | | | Arsenic | <10.0 | ug/L | 10.0 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-38-2 | | | Barium | <200 | ug/L | 200 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-39-3 | | | Beryllium | <5.0 | ug/L | 5.0 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-41-7 | | | Boron | <50.0 | ug/L | 50.0 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-42-8 | | | Cadmium | <2.5 | ug/L | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-43-9 | | | Calcium | 16800 | ug/L | 200 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-70-2 | | | Chromium | 19.0 | ug/L | 10.0 | 1 | 10/25/19 10:19 | 10/28/19 14:57 | 7440-47-3 | | | Cobalt | <50.0 | ug/L | 50.0 | 1 | | 10/28/19 14:57 | | | | Copper | <25.0 | ug/L | 25.0 | 1 | | 10/28/19 14:57 | | | | ron | 11600 | ug/L | 20.0 | 1 | | 10/28/19 14:57 | | | | _ead | 19.5 | ug/L | 5.0 | 1 | | 10/28/19 14:57 | | | | Magnesium | 6210 | ug/L | 200 | 1 | | 10/28/19 14:57 | | | | Manganese | 369 | ug/L | 10.0 | 1 | | 10/28/19 14:57 | | | | Nickel | <40.0 | ug/L | 40.0 | 1 | | 10/28/19 14:57 | | | | Potassium | <5000 | ug/L | 5000 | 1 | | 10/28/19 14:57 | | | | Selenium | <10.0 | ug/L | 10.0 | 1 | | 10/28/19 14:57 | | | | Silver | <10.0 | ug/L | 10.0 | 1 | | 10/28/19 14:57 | | | | Sodium | 10500 | ug/L | 5000 | 1 | | 10/28/19 14:57 | | | | Fhallium | <10.0 | ug/L | 10.0 | 1 | | 10/28/19 14:57 | | | | /anadium | <50.0 | ug/L | 50.0 | 1 | | 10/28/19 14:57 | | | | Zinc | 39.4 | ug/L | 20.0 | 1 | | 10/28/19 14:57 | | | | 6010 MET ICP, Dissolved | Analytical Meth | • | | | | | | | | · | | | | | | 44/00/40 40 04 | 7400 00 5 | | | Aluminum, Dissolved | <200 | ug/L | 200 | 1 | | 11/06/19 13:04 | | | | Antimony, Dissolved | <60.0 | ug/L | 60.0 | 1 | | 11/06/19 13:04 | | M1 | | Arsenic, Dissolved | <10.0 | ug/L | 10.0 | 1 | | 11/06/19 13:04 | | | | Barium, Dissolved | <200 | ug/L | 200 | 1 | | 11/06/19 13:04 | | | | Beryllium, Dissolved | <5.0 | ug/L | 5.0 | 1 | | 11/06/19 13:04 | - | | | Boron, Dissolved | <50.0 | ug/L | 50.0 | 1 | | 11/06/19 13:04 | | | | Cadmium, Dissolved | <2.5 | ug/L | 2.5 | 1 | | 11/06/19 13:04 | | | | Calcium, Dissolved | 13500 | ug/L | 200 | 1 | | 11/06/19 13:04 | | | | Chromium, Dissolved | <10.0 | ug/L | 10.0 | 1 | | 11/06/19 13:04 | | | | Cobalt, Dissolved | <50.0 | ug/L | 50.0 | 1 | | 11/06/19 13:04 | | | | Copper, Dissolved | <25.0 | ug/L | 25.0 | 1 | | 11/06/19 13:04 | | | | ron, Dissolved | 32.5 | ug/L | 20.0 | 1 | | 11/06/19 13:04 | | | | ead, Dissolved | <5.0 | ug/L | 5.0 | 1 | | 11/06/19 13:04 | | | | Magnesium, Dissolved | 4150 | ug/L | 200 | 1 | | 11/06/19 13:04 | | | | Manganese, Dissolved | 181 | ug/L | 10.0 | 1 | | 11/06/19 13:04 | | | | Nickel, Dissolved | <40.0 | ug/L | 40.0 | 1 | | 11/06/19 13:04 | | | | Potassium, Dissolved | <5000 | ug/L | 5000 | 1 | | 11/06/19 13:04 | | | | Selenium, Dissolved | <10.0 | ug/L | 10.0 | 1 | | 11/06/19 13:04 | 7782-49-2 | | | Silver, Dissolved | <10.0 | ug/L | 10.0 | 1 | | 11/06/19 13:04 | | M1 | | Sodium, Dissolved | 10300 | ug/L | 5000 | 1 | | 11/06/19 13:04 | 7440-23-5 | | | Thallium, Dissolved | <10.0 | ug/L | 10.0 | 1 | | 11/06/19 13:04 | | | | Vanadium, Dissolved | <50.0 | ug/L | 50.0 | 1 | | 11/06/19 13:04 | 7440-62-2 | | Project: NORTH SEA LANDFILL 10/21 Date: 11/06/2019 02:57 PM | Pace Project No.: 70109260 | | | | | | | | | | |-----------------------------|-----------------|--------------|-------------|---------|----------|----------------|----------------|---------------|-------| | Sample: 11B | Lab ID: 7010 | 9260006 | Collected: | 10/21/1 | 9 09:20 | Received: 10 |)/22/19 11:54 | Matrix: Water | | | Parameters | Results | Units | Report | Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP, Dissolved | Analytical Meth | od: EPA 60 | 10C | | | | | | | | Zinc, Dissolved | <20.0 | ug/L | | 20.0 | 1 | | 11/06/19 13:04 | 7440-66-6 | | | 7470 Mercury | Analytical Meth | od: EPA 74 | 70A Prepara | tion Me | thod: EF | PA 7470A | | | | | Mercury | <0.20 | ug/L | | 0.20 | 1 | 11/01/19 11:56 | 11/01/19 16:40 | 7439-97-6 | | | 7470 Mercury, Dissolved | Analytical Meth | od: EPA 74 | 70A Prepara | tion Me | thod: EF | PA 7470A | | | | | Mercury, Dissolved | <0.20 | ug/L | | 0.20 | 1 | 10/31/19 11:19 | 10/31/19 17:41 | 7439-97-6 | | | 8260C Volatile Organics | Analytical Meth | od: EPA 82 | 60C/5030C | | | | | | | | Acetone | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 8 67-64-1 | IC | | Acrylonitrile | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 107-13-1 | | | Benzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 71-43-2 | | | Bromochloromethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 74-97-5 | | | Bromodichloromethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 75-27-4 | | | Bromoform | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 75-25-2 | | | Bromomethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 74-83-9 | | | 2-Butanone (MEK) | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | CL,IL | | Carbon disulfide | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | 0_, | | Carbon tetrachloride | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | Chlorobenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | Chloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | Chloroform | 5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | Chloromethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | 1,2-Dibromo-3-chloropropane | <5.0 | ug/L
ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | | <5.0 | • | | 5.0 | 1 | | 10/23/19 16:23 | | | | Dibromochloromethane | | ug/L | | | 1 | | 10/23/19 16:23 | | | | 1,2-Dibromoethane (EDB) | <5.0 | ug/L | | 5.0 | | | | | | | Dibromomethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | 1,2-Dichlorobenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | 1,4-Dichlorobenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | trans-1,4-Dichloro-2-butene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | 1,1-Dichloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | 1,2-Dichloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | 1,1-Dichloroethene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | cis-1,2-Dichloroethene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | trans-1,2-Dichloroethene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 156-60-5 | | | 1,2-Dichloropropane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 8 78-87-5 | | | cis-1,3-Dichloropropene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 10061-01-5 | | | trans-1,3-Dichloropropene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 10061-02-6 | | | Ethylbenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 100-41-4 | | | 2-Hexanone | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 591-78-6 | | | lodomethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 74-88-4 | L1 | | Methylene Chloride | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 75-09-2 | | | 4-Methyl-2-pentanone (MIBK) | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 108-10-1 | | | Styrene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 3 100-42-5 | | | 1,1,1,2-Tetrachloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | 1,1,2,2-Tetrachloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 11B | Lab ID: 701 | 09260006 | Collected: 10/21/ | 19 09:20 | Received: 1 | 0/22/19 11:54 | Matrix: Water | | |--------------------------------|------------------|-------------|---------------------|-----------|----------------|---------------|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 8260C Volatile Organics | Analytical Meth | nod: EPA 82 | 260C/5030C | | | | | | | Tetrachloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | 3 127-18-4 | | | Toluene | 55.4 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | 3 108-88-3 | | | 1,1,1-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | 3 71-55-6 | | | 1,1,2-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | | | | Trichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | | | | Trichlorofluoromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | | | | 1,2,3-Trichloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | | | | /inyl acetate | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | | | | /inyl chloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | | | | (ylene (Total) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:2 | 3 1330-20-7 | | | Surrogates | 00 | 0/ | 00.450 | 4 | | 40/00/40 40:0 | 0 47000 07 0 | | | I,2-Dichloroethane-d4 (S) | 89 | % | 68-153
79-124 | 1 | | | 3 17060-07-0 | | | 4-Bromofluorobenzene (S) | 94 | % | | 1 | | 10/23/19 16:2 | | | | Toluene-d8 (S) | 95 | % | 69-124 | 1 | | 10/23/19 16:2 | 3 2037-26-5 | | | TIC MSV Water | Analytical Meth | nod: EPA 82 | 260 | | | | | | | TC Search | No TICs
Found | | | 1 | | 10/28/19 16:3 | 9 | | | 2320B Alkalinity | Analytical Meth | nod: SM22 2 | 2320B | | | | | | | Alkalinity, Total as CaCO3 | 40.4 | mg/L | 1.0 | 1 | | 10/24/19 19:3 | 8 | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 70.0 | mg/L | 5.0 | 1 | | 11/05/19 20:1 | 7 | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | Total Dissolved Solids | 94.0 | mg/L | 10.0 | 1 | | 10/24/19 10:0 | 8 | | | 110.4 COD | Analytical Meth | nod: EPA 41 | 0.4 Preparation Me | thod: EPA | A 410.4 | | | | | Chemical Oxygen Demand | 165 | mg/L | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:4 | 0 | | | 5210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Preparation N | Method: S | SM22 5210B |
| | | | BOD, 5 day | <4.0 | mg/L | 4.0 | 2 | 10/22/19 17:05 | 10/27/19 09:4 | 0 | | | 300.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.50 | 1 | | 10/29/19 01:3 | 8 24959-67-9 | | | Chloride | 13.9 | mg/L | 2.0 | 1 | | 10/29/19 01:3 | 8 16887-00-6 | | | Sulfate | 20.0 | mg/L | 5.0 | 1 | | 10/29/19 01:3 | 8 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 35 | 51.2 Preparation Me | thod: EPA | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | 0.59 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:2 | 2 7727-37-9 | В | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 35 | 53.2 | | | | | | | Nitrate as N | 0.69 | mg/L | 0.050 | 1 | | 10/23/19 03:2 | 2 14797-55-8 | | | Nitrate-Nitrite (as N) | 0.69 | mg/L | 0.050 | 1 | | 10/23/19 03:2 | 2 7727-37-9 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 11B | Lab ID: 7010 | 9260006 | Collected: | 10/21/1 | 19 09:20 | Received: 1 | 0/22/19 11:54 | Matrix: Water | | |------------------------------|-------------------|------------|--------------|----------|----------|----------------|------------------------------|---------------|------| | Parameters | Results | Units | Report | t Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 353.2 Nitrogen, NO2 | Analytical Metho | od: EPA 35 | 53.2 | | | | | | | | Nitrite as N | <0.050 | mg/L | | 0.050 | 1 | | 10/22/19 23:1 | 5 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Metho | od: EPA 42 | 20.1 Prepara | tion Met | thod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 11.6 | ug/L | | 5.0 | 1 | 10/31/19 06:28 | 8 10/31/19 11:3 ⁻ | 1 | | | 4500 Ammonia Water | Analytical Metho | od: SM22 4 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | 0.87 | mg/L | | 0.10 | 1 | | 11/01/19 15:4 | 5 7664-41-7 | | | 5310B TOC as NPOC | Analytical Methor | od: SM22 | 5310B | | | | | | | | Total Organic Carbon | 16.7 | mg/L | | 1.0 | 1 | | 10/31/19 19:2 | 3 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: MW-9 | Lab ID: 701 | 09260007 | Collected: | 10/21/1 | 9 10:25 | Received: 10 | 0/22/19 11:54 | Matrix: Water | | |-------------------------------|-----------------|--------------|--------------|--------------|-----------|----------------|----------------------------------|---------------|------| | Parameters | Results | Units | Repor | t Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 6010 MET ICP | Analytical Metl | nod: EPA 60 | 010C Prepar | ation Me | ethod: EF | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 14:59 | 7440-43-9 | | | Calcium | 7430 | ug/L | | 200 | 1 | 10/25/19 10:19 | 10/28/19 14:59 | 7440-70-2 | | | ron | 1160 | ug/L | | 20.0 | 1 | | 10/28/19 14:59 | | | | ead | <5.0 | ug/L | | 5.0 | 1 | | 10/28/19 14:59 | | | | lagnesium | 2940 | ug/L | | 200 | 1 | | 10/28/19 14:59 | | | | Manganese
Potassium | 98.6
<5000 | ug/L
ug/L | | 10.0
5000 | 1
1 | | 10/28/19 14:59
10/28/19 14:59 | | | | Sodium | 8710 | ug/L | | 5000 | 1 | | 10/28/19 14:59 | | | | 320B Alkalinity | Analytical Metl | nod: SM22 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 14.0 | mg/L | | 1.0 | 1 | | 10/24/19 19:44 | 1 | | | 340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | | ot Hardness asCaCO3 (SM 2340B | 28.0 | mg/L | | 5.0 | 1 | | 11/05/19 20:19 |) | | | 540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | | otal Dissolved Solids | 74.0 | mg/L | | 10.0 | 1 | | 10/24/19 10:09 |) | | | 10.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Prepara | ation Met | hod: EP | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:40 |) | | | 210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Prepa | aration M | Method: S | SM22 5210B | | | | | SOD, 5 day | <2.0 | mg/L | | 2.0 | 1 | 10/22/19 17:05 | 10/27/19 09:42 | 2 | | | 00.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/29/19 01:55 | 24959-67-9 | | | Chloride | 18.7 | mg/L | | 2.0 | 1 | | 10/29/19 01:5 | | | | sulfate | 9.0 | mg/L | | 5.0 | 1 | | 10/29/19 01:55 | 5 14808-79-8 | | | 51.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Prepara | ation Met | hod: EP | A 351.2 | | | | | litrogen, Kjeldahl, Total | <0.10 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:23 | 3 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | Vitrate as N | 0.24 | mg/L | | 0.050 | 1 | | 10/23/19 03:24 | | | | litrate-Nitrite (as N) | 0.24 | mg/L | | 0.050 | 1 | | 10/23/19 03:24 | 1 1121-31-9 | | | 53.2 Nitrogen, NO2 | Analytical Meth | | 53.2 | | | | | | | | litrite as N | <0.050 | mg/L | | 0.050 | 1 | | 10/22/19 23:16 | 3 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Prepara | ation Met | hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 17.6 | ug/L | | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:04 | ļ | | | 500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | | litrogen, Ammonia | <0.10 | mg/L | | 0.10 | 1 | | 11/01/19 15:46 | 7664-41-7 | | | | | | | | | | | | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: MW-9 | Lab ID: 701 | 09260007 | Collected: 10/21/ | 19 10:25 | Received: 10 | /22/19 11:54 | Matrix: Water | | |----------------------|----------------|-------------|-------------------|----------|--------------|---------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Met | hod: SM22 5 | 5310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 10/31/19 19:3 | 3 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: MW-8 | Lab ID: 701 | 109260008 | Collected: 10/21/ | 19 11:00 | Received: 10 |)/22/19 11:54 N | Matrix: Water | | |--------------------------------|----------------|--------------|---------------------|----------|----------------|-----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 6010 MET ICP | Analytical Met | thod: EPA 60 | 010C Preparation Mo | ethod: E | PA 3005A | | | | | Cadmium | <2.5 | ug/L | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 15:01 | 7440-43-9 | | | Calcium | 16000 | ug/L | 200 | 1 | 10/25/19 10:19 | 10/28/19 15:01 | 7440-70-2 | | | Iron | 10300 | ug/L | 20.0 | 1 | | 10/28/19 15:01 | | M1 | | Lead | <5.0 | ug/L | 5.0 | 1 | | 10/28/19 15:01 | | | | Magnesium | 6740 | ug/L | 200 | 1 | | 10/28/19 15:01 | | | | Manganese | 126 | ug/L | 10.0 | 1 | | 10/28/19 15:01 | | | | Potassium
Sodium | <5000
8850 | ug/L | 5000 | 1
1 | | 10/28/19 15:01 | | | | | | ug/L | 5000 | ı | 10/25/19 10:19 | 10/28/19 15:01 | 7440-23-5 | | | 2320B Alkalinity | Analytical Met | | 2320B | | | | | | | Alkalinity, Total as CaCO3 | 52.0 | mg/L | 1.0 | 1 | | 10/24/19 20:20 | | | | 2340C Hardness, Total | Analytical Met | thod: SM22 | 2340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 80.0 | mg/L | 5.0 | 1 | | 11/05/19 20:40 | | | | 2540C Total Dissolved Solids | Analytical Met | thod: SM22 | 2540C | | | | | | | Total Dissolved Solids | 103 | mg/L | 10.0 | 1 | | 10/24/19 10:09 | | | | 410.4 COD | Analytical Met | thod: EPA 4 | 10.4 Preparation Me | thod: EF | PA 410.4 | | | | | Chemical Oxygen Demand | 12.4 | mg/L | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:42 | | | | 5210B BOD, 5 day | Analytical Met | thod: SM22 | 5210B Preparation N | Method: | SM22 5210B | | | | | BOD, 5 day | <4.0 | mg/L | 4.0 | 2 | 10/22/19 17:05 | 10/27/19 09:44 | | | | 300.0 IC Anions 28 Days | Analytical Met | thod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.50 | 1 | | 10/29/19 02:11 | 24959-67-9 | | | Chloride | 13.8 | mg/L | 2.0 | 1 | | 10/29/19 02:11 | 16887-00-6 | | | Sulfate | 13.4 | mg/L | 5.0 | 1 | | 10/29/19 02:11 | 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Met | thod: EPA 3 | 51.2 Preparation Me | thod: EF | PA 351.2 | | | | | Nitrogen, Kjeldahl, Total | <0.10 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:26 | 7727-37-9 | B,M6 | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Met | thod: EPA 3 | 53.2 | | | | | | | Nitrate as N | 0.65 | mg/L | 0.050 | 1 | | 10/23/19 03:25 | 14797-55-8 | | | Nitrate-Nitrite (as N) | 0.65 | mg/L | 0.050 | 1 | | 10/23/19 03:25 | | M1 | | 353.2 Nitrogen, NO2 | Analytical Met | • | | | | | | | | Nitrite as N | <0.050 | | | 1 | | 10/22/19 23:17 | 1/707 65 0 | | | | | mg/L | 0.050 | | 24 400 4 | 10/22/18 23.17 | 14131-00-0 | | | Phenolics, Total Recoverable | • | | 20.1 Preparation Me | | | | | | | Phenolics, Total Recoverable | <5.0 | ug/L | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:05 | | M1 | | 4500 Ammonia Water | Analytical Met | thod: SM22 | 4500 NH3 H | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | 0.10 | 1 | | 11/01/19 15:47 | 7664-41-7 | | | | | | | | | | | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: MW-8 | Lab ID: 7 | 0109260008 | Collected: 10/21/ | 19 11:00 | Received: | 10/22/19 11:54 | Matrix: Water | | |----------------------|--------------|--------------|-------------------|----------|-----------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical M | lethod: SM22 | 5310B | | | | | | | Total Organic Carbon | 1.3 | mg/L | 1.0 | 1 | | 10/31/19 19: | 53 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 12A | Lab ID: 7010 | 09260009 | Collected: 10/2 | 1/19 14:30 | Received: 10 | 0/22/19 11:54 | Matrix: Water | |
--------------------------------|-----------------|--------------|-------------------|------------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report Lim | t DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparation | Method: E | PA 3005A | | | | | Cadmium | <2.5 | ug/L | 2 | 5 1 | 10/25/19 10:19 | 10/28/19 15:13 | 3 7440-43-9 | | | Calcium | 29100 | ug/L | 20 | 0 1 | 10/25/19 10:19 | 10/28/19 15:13 | 3 7440-70-2 | | | ron | 4100 | ug/L | 20 | | | 10/28/19 15:13 | | | | _ead | <5.0 | ug/L | | .0 1 | | 10/28/19 15:13 | | | | Magnesium | 8070 | ug/L | 20 | | | 10/28/19 15:1: | | | | Manganese | 2270
9110 | ug/L | 10 | | | 10/28/19 15:1:
10/28/19 15:1: | | | | Potassium
Sodium | 11700 | ug/L
ug/L | 500
500 | | | 10/28/19 15:13 | | | | | Analytical Meth | • | | 0 1 | 10/23/19 10.19 | 10/20/19 13.10 | 3 7440-25-5 | | | 2320B Alkalinity | | | | 0 4 | | 40/04/40 00 44 | 2 | | | Alkalinity, Total as CaCO3 | 114 | mg/L | | .0 1 | | 10/24/19 20:4: | 2 | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 110 | mg/L | 5 | .0 1 | | 11/05/19 21:14 | 4 | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | Total Dissolved Solids | 157 | mg/L | 10 | .0 1 | | 10/24/19 10:20 | 0 | | | 110.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Preparation | Лethod: EF | PA 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | 10 | .0 1 | 10/28/19 11:24 | 10/28/19 13:43 | 3 | | | 5210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Preparation | n Method: | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | 2 | .0 1 | 10/22/19 17:05 | 10/27/19 09:49 | 9 | | | 300.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.5 | 0 1 | | 10/29/19 03:0 | 1 24959-67-9 | | | Chloride | 17.1 | mg/L | 2 | .0 1 | | 10/29/19 03:0 | 1 16887-00-6 | | | Sulfate | 26.8 | mg/L | 5 | .0 1 | | 10/29/19 03:0 | 1 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Preparation | Лethod: EF | PA 351.2 | | | | | Nitrogen, Kjeldahl, Total | 7.6 | mg/L | 0.8 | 0 1 | 11/05/19 06:05 | 11/05/19 12:28 | 8 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | Nitrate as N | 0.16 | mg/L | 0.05 | 0 1 | | 10/23/19 03:28 | 8 14797-55-8 | | | Nitrate-Nitrite (as N) | 0.16 | mg/L | 0.08 | 0 1 | | 10/23/19 03:28 | 8 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | Nitrite as N | <0.050 | mg/L | 0.08 | 0 1 | | 10/22/19 23:20 | 0 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparation | Лethod: EF | PA 420.1 | | | | | Phenolics, Total Recoverable | 14.4 | ug/L | 5 | .0 1 | 11/04/19 08:14 | 11/04/19 12:08 | 3 | | | 1500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | Nitrogen, Ammonia | 6.1 | mg/L | 0.6 | 0 5 | | 11/01/19 16:2 | 5 7664-41-7 | | | 5 , | *** | · 3 – | 0 | - | | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 12A | Lab ID: 701 | 09260009 | Collected: 10/21/ | 19 14:30 | Received: 10 | /22/19 11:54 I | Matrix: Water | | |----------------------|-----------------|-------------|-------------------|----------|--------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Meth | hod: SM22 5 | 5310B | | | | | | | Total Organic Carbon | 2.4 | mg/L | 1.0 | 1 | | 10/31/19 21:41 | 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 12B | Lab ID: 7010 | 09260010 | Collected: 10/21 | /19 14:15 | Received: 10 | 0/22/19 11:54 | Matrix: Water | | |--------------------------------|-----------------|--------------|--------------------|------------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparation I | /lethod: E | PA 3005A | | | | | Cadmium | <2.5 | ug/L | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 15:20 | 7440-43-9 | | | Calcium | 34400 | ug/L | 200 | 1 | 10/25/19 10:19 | 10/28/19 15:20 | 7440-70-2 | | | ron . | 49.9 | ug/L | 20.0 | | | 10/28/19 15:20 | | | | _ead | <5.0 | ug/L | 5.0 | | | 10/28/19 15:20 | | | | Magnesium
Manganese | 14000
25.6 | ug/L
ug/L | 200
10.0 | | | 10/28/19 15:20
10/28/19 15:20 | | | | Potassium | 6990 | ug/L | 5000 | | | 10/28/19 15:20 | | | | Sodium | 19900 | ug/L | 5000 | | | 10/28/19 15:20 | | | | 2320B Alkalinity | Analytical Meth | nod: SM22 | 2320B | | | | | | | Alkalinity, Total as CaCO3 | 114 | mg/L | 1.0 | 1 | | 10/24/19 20:5 | 1 | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 127 | mg/L | 5.0 | 1 | | 11/05/19 20:58 | 3 | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | Total Dissolved Solids | 238 | mg/L | 10.0 | 1 | | 10/24/19 10:20 |) | | | 110.4 COD | Analytical Meth | nod: EPA 41 | 10.4 Preparation M | ethod: EP | A 410.4 | | | | | Chemical Oxygen Demand | 12.4 | mg/L | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:43 | 3 | | | 5210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Preparation | Method: | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | 2.0 | 1 | 10/22/19 17:05 | 10/27/19 09:52 | 2 | | | 800.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.50 | 1 | | 10/29/19 03:18 | 3 24959-67-9 | | | Chloride | 28.0 | mg/L | 2.0 | 1 | | 10/29/19 03:18 | 3 16887-00-6 | | | Sulfate | 49.3 | mg/L | 5.0 | 1 | | 10/29/19 03:18 | 3 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 35 | 51.2 Preparation M | ethod: EP | PA 351.2 | | | | | Nitrogen, Kjeldahl, Total | 2.9 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:31 | 1 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 35 | 53.2 | | | | | | | Nitrate as N | 0.41 | mg/L | 0.050 | | | 10/23/19 03:32 | | | | Nitrate-Nitrite (as N) | 0.41 | mg/L | 0.050 | 1 | | 10/23/19 03:32 | 2 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 35 | 53.2 | | | | | | | Nitrite as N | <0.050 | mg/L | 0.050 | 1 | | 10/22/19 23:22 | 2 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparation M | ethod: EP | PA 420.1 | | | | | Phenolics, Total Recoverable | 10.9 | ug/L | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:08 | 3 | | | 4500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | Nitrogen, Ammonia | 1.8 | mg/L | 0.10 | 1 | | 11/01/19 15:52 | 2 7664-41-7 | | | | | | | | | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 12B | Lab ID: 70 | 0109260010 | Collected: 10/21/ | 19 14:15 | Received: 1 | 10/22/19 11:54 | Matrix: Water | | |----------------------|---------------|---------------|-------------------|----------|-------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Me | ethod: SM22 5 | 5310B | | | | | | | Total Organic Carbon | 3.2 | mg/L | 1.0 | 1 | | 10/31/19 22:3 | 5 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: EQUIPMENT BLANK | Lab ID: 7010 | 09260011 | Collected: 10/21/ | 19 15:00 | Received: 10 |)/22/19 11:54 | Matrix: Water | | |--------------------------------|-----------------|--------------|---------------------|------------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparation Me | ethod: El | PA 3005A | | | | | Cadmium | <2.5 | ug/L | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 15:22 | 2 7440-43-9 | | | Calcium | <200 | ug/L | 200 | 1 | | 10/28/19 15:22 | | | | ron | <20.0 | ug/L | 20.0 | 1 | | 10/28/19 15:22 | | | | ead | <5.0
<200 | ug/L | 5.0
200 | 1
1 | | 10/28/19 15:22
10/28/19 15:22 | | | | /lagnesium
/langanese | <200
<10.0 | ug/L
ug/L | 10.0 | 1 | | 10/28/19 15:22 | | | | Potassium | <5000 | ug/L | 5000 | 1 | | 10/28/19 15:22 | | | | Sodium | <5000 | ug/L | 5000 | 1 | | 10/28/19 15:22 | | | | 320B Alkalinity | Analytical Meth | nod: SM22 | 2320B | | | | | | | Alkalinity, Total as CaCO3 | <1.0 | mg/L | 1.0 | 1 | | 10/24/19 20:55 | 5 | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | <5.0 | mg/L | 5.0 | 1 | | 11/05/19 20:59 |) | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | otal Dissolved Solids | <10.0 | mg/L | 10.0 | 1 | | 10/24/19 10:20 |) | | | 10.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Preparation Me | thod: EP | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | 10.0 | 1 | 10/28/19 11:24 | 10/28/19 13:44 | 1 | | | 210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Preparation N | Method: \$ | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | 2.0 | 1 | 10/22/19 17:05 | 10/27/19 09:55 | 5 | | | 00.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.50 | 1 | | 10/29/19 03:35 | 24959-67-9 | | | Chloride | <2.0 | mg/L | 2.0 | 1 | |
10/29/19 03:35 | 16887-00-6 | | | Sulfate | <5.0 | mg/L | 5.0 | 1 | | 10/29/19 03:35 | 14808-79-8 | | | 51.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Preparation Me | thod: EP | A 351.2 | | | | | litrogen, Kjeldahl, Total | <0.10 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:32 | 2 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | Nitrate as N | <0.050 | mg/L | 0.050 | 1 | | 10/23/19 03:33 | | | | litrate-Nitrite (as N) | <0.050 | mg/L | 0.050 | 1 | | 10/23/19 03:33 | 3 7727-37-9 | | | 53.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | litrite as N | <0.050 | mg/L | 0.050 | 1 | | 10/22/19 23:25 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparation Me | thod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 7.7 | ug/L | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:09 |) | | | 500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | 0.10 | 1 | | 11/01/19 15:53 | 7664-41-7 | | | | | | | | | | | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: EQUIPMENT BLANK | Lab ID: 701 | 09260011 | Collected: 10/21/ | 19 15:00 | Received: 10 | /22/19 11:54 | Matrix: Water | | |-------------------------|----------------|-------------|-------------------|----------|--------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Met | hod: SM22 s | 5310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 10/31/19 23:40 | 0 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: TRIP BLANK | Lab ID: 701 | 09260012 | Collected: 10/21/1 | 9 00:00 | Received: | 10/22/19 11:54 | Matrix: Water | | |-----------------------------|-----------------|-------------|--------------------|---------|-----------|--------------------------------|---------------|-------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 3260C Volatile Organics | Analytical Meth | nod: EPA 82 | 260C/5030C | | | | | | | Acetone | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 67-64-1 | IC | | Acrylonitrile | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 107-13-1 | | | Benzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 71-43-2 | | | Bromochloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 74-97-5 | | | Bromodichloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 75-27-4 | | | Bromoform | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 75-25-2 | | | Bromomethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 74-83-9 | | | 2-Butanone (MEK) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 78-93-3 | CL,IL | | Carbon disulfide | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 75-15-0 | | | Carbon tetrachloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 56-23-5 | | | Chlorobenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 108-90-7 | | | Chloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Chloroform | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 67-66-3 | | | Chloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 74-87-3 | | | 1,2-Dibromo-3-chloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Dibromochloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,2-Dibromoethane (EDB) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Dibromomethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,2-Dichlorobenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,4-Dichlorobenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | rans-1,4-Dichloro-2-butene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,1-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,2-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,1-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | cis-1,2-Dichloroethene | <5.0
<5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | rans-1,2-Dichloroethene | <5.0 | _ | 5.0 | 1 | | 10/23/19 14:5 | | | | • | <5.0
<5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,2-Dichloropropane | <5.0
<5.0 | ug/L | 5.0 | 1 | | | 5 10061-01-5 | | | cis-1,3-Dichloropropene | <5.0
<5.0 | ug/L | 5.0 | 1 | | | 5 10061-01-5 | | | rans-1,3-Dichloropropene | | ug/L | | 1 | | | | | | Ethylbenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 2-Hexanone
odomethane | <5.0
<5.0 | ug/L | 5.0
5.0 | 1 | | 10/23/19 14:5 | | L1 | | | | ug/L | | 1 | | 10/23/19 14:5 | | LI | | Methylene Chloride | <5.0 | ug/L | 5.0 | | | 10/23/19 14:5
10/23/19 14:5 | | | | 4-Methyl-2-pentanone (MIBK) | <5.0 | ug/L | 5.0 | 1 | | | | | | Styrene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,1,1,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,1,2,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Tetrachloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Toluene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,1,1-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | 1,1,2-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Trichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Trichlorofluoromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | I,2,3-Trichloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | /inyl acetate | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Vinyl chloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | | | | Xylene (Total) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:5 | 5 1330-20-7 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: TRIP BLANK | Lab ID: 701 | 109260012 | Collected: 10/21/1 | 9 00:00 | Received: 1 | 0/22/19 11:54 I | Matrix: Water | | |---------------------------|------------------|--------------|--------------------|---------|-------------|-----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 8260C Volatile Organics | Analytical Met | thod: EPA 82 | 260C/5030C | | | | | | | Surrogates | | | | | | | | | | 1,2-Dichloroethane-d4 (S) | 89 | % | 68-153 | 1 | | 10/23/19 14:55 | 17060-07-0 | | | 4-Bromofluorobenzene (S) | 94 | % | 79-124 | 1 | | 10/23/19 14:55 | 460-00-4 | | | Toluene-d8 (S) | 94 | % | 69-124 | 1 | | 10/23/19 14:55 | 2037-26-5 | | | TIC MSV Water | Analytical Met | thod: EPA 82 | 260 | | | | | | | TIC Search | No TICs
Found | | | 1 | | 10/28/19 16:39 |) | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Carbon disulfide 45.0 ug/L 5.0 1 10/23/19 15:41 75-15-0 Carbon tetrachloride 45.0 ug/L 5.0 1 10/23/19 15:41 75-15-0 Chlorobenzene 45.0 ug/L 5.0 1 10/23/19 15:41 76-03-5 Chlorochethane 45.0 ug/L 5.0 1 10/23/19 15:41 76-66-3 Chloromethane 45.0 ug/L 5.0 1 10/23/19 15:41 76-66-3 Chloromethane 45.0 ug/L 5.0 1 10/23/19 15:41 76-66-3 Chloromethane 45.0 ug/L 5.0 1 10/23/19 15:41 76-66-3 Dibromomethane 45.0 ug/L 5.0 1 10/23/19 15:41 76-68-3 Dibromomethane 45.0 ug/L 5.0 1 10/23/19 15:41 76-68-3 1,2-Dichlorobentane 45.0 ug/L 5.0 1 10/23/19 15:41 76-53-3 1,1-Dichlorochethane 45.0 ug/L 5.0 | Sample: STORAGE BLANK | Lab ID: 70 | 109260013 | Collected: 10/21/1 | 9 00:00 | Received: | 10/22/19 11:54 | Matrix: Water | | |--|-------------------------|---------------|--------------|--------------------|---------|-----------|----------------|---------------|-------| | Acetone | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | Acrylontrile | 8260C Volatile Organics | Analytical Me | thod: EPA 82 | 260C/5030C | | | | | | | Berizene | Acetone | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:4 | 1 67-64-1 | IC | | Bromochloromethane | Acrylonitrile | <5.0 | ug/L | 5.0 | 1 | |
10/23/19 15:4 | 1 107-13-1 | | | Bromodichloromethane | Benzene | <5.0 | _ | 5.0 | 1 | | 10/23/19 15:4 | 1 71-43-2 | | | Stromotichloromethane 4.5.0 ug/L 5.0 1 10/23/19 15.41 75-27-4 | Bromochloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:4 | 1 74-97-5 | | | Bromordorm | Bromodichloromethane | <5.0 | _ | 5.0 | 1 | | 10/23/19 15:4 | 1 75-27-4 | | | Bromomethane | Bromoform | <5.0 | - | 5.0 | 1 | | 10/23/19 15:4 | 1 75-25-2 | | | Carbon disulfide | Bromomethane | <5.0 | - | 5.0 | 1 | | 10/23/19 15:4 | 1 74-83-9 | | | Carbon disulfide | 2-Butanone (MEK) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:4 | 1 78-93-3 | CL,IL | | Carbon tetrachloride | Carbon disulfide | <5.0 | _ | 5.0 | 1 | | 10/23/19 15:4 | 1 75-15-0 | | | Chloroethane | Carbon tetrachloride | <5.0 | _ | 5.0 | 1 | | | | | | Chloroethane | Chlorobenzene | <5.0 | - | 5.0 | 1 | | 10/23/19 15:4 | 1 108-90-7 | | | Chloroform | | | - | | 1 | | | | | | Chloromethane | Chloroform | <5.0 | - | 5.0 | 1 | | | | | | | Chloromethane | | _ | 5.0 | | | | | | | Dibromochloromethane | | | _ | | | | | | | | | | | - | | | | | | | | Sibromomethane | | | - | | | | | | | | | , , , | | - | | | | | | | | A-Dichlorobenzene | | | _ | | | | | | | | rans-1,4-Dichloro-2-butene | • | | _ | | | | | | | | 1,1-Dichloroethane | | | - | | | | | | | | 1,2-Dichloroethane | · | | - | | | | | | | | 1,1-Dichloroethene <5.0 ug/L 5.0 1 10/23/19 15:41 75-35-4 cis-1,2-Dichloroethene <5.0 ug/L 5.0 1 10/23/19 15:41 156-59-2 rans-1,2-Dichloroethene <5.0 ug/L 5.0 1 10/23/19 15:41 156-60-5 1,2-Dichloropropane <5.0 ug/L 5.0 1 10/23/19 15:41 1066-05-1 2is-1,3-Dichloropropene <5.0 ug/L 5.0 1 10/23/19 15:41 10061-01-5 rans-1,3-Dichloropropene <5.0 ug/L 5.0 1 10/23/19 15:41 10061-02-6 Ethylbenzene <5.0 ug/L 5.0 1 10/23/19 15:41 100-41-4 2-Hexanone <5.0 ug/L 5.0 1 10/23/19 15:41 100-41-4 2-Hexanone <5.0 ug/L 5.0 1 10/23/19 15:41 75-9-2 4-Methylene Chloride <5.0 ug/L 5.0 1 10/23/19 15:41 75-9-2 4-Methyl-2-pentanone (MIBK) <5.0 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | - | | | | | | | | 25.0 | • | | _ | | | | | | | | rans-1,2-Dichloroethene | • | | _ | | | | | | | | 1,2-Dichloropropane <5.0 | • | | - | | | | | | | | Sis-1,3-Dichloropropene Sis-1,3-Dichloro | • | | - | | | | | | | | rans-1,3-Dichloropropene | • • | | - | | | | | | | | Ethylbenzene | | | _ | | | | | | | | 2-Hexanone | | | _ | | | | | | | | odomethane <5.0 ug/L 5.0 1 10/23/19 15:41 74-88-4 L1 Methylene Chloride <5.0 | • | | - | | | | | | | | Wethylene Chloride <5.0 | | | - | | | | | | I 1 | | 4-Methyl-2-pentanone (MIBK) 5.0 ug/L 5.0 1 10/23/19 15:41 108-10-1 Styrene 5.0 ug/L 5.0 1 10/23/19 15:41 100-42-5 1,1,1,2-Tetrachloroethane 5.0 ug/L 5.0 1 10/23/19 15:41 630-20-6 1,1,2,2-Tetrachloroethane 5.0 ug/L 5.0 1 10/23/19 15:41 79-34-5 Tetrachloroethene 5.0 ug/L 5.0 1 10/23/19 15:41 127-18-4 Toluene 5.0 ug/L 5.0 1 10/23/19 15:41 108-88-3 1,1,1-Trichloroethane 5.0 ug/L 5.0 1 10/23/19 15:41 71-55-6 1,1,2-Trichloroethane 5.0 ug/L 5.0 1 10/23/19 15:41 79-00-5 Trichloroethene 5.0 ug/L 5.0 1 10/23/19 15:41 79-01-6 Trichlorofluoromethane 5.0 ug/L 5.0 1 10/23/19 15:41 79-01-6 Trichlorofluoromethane 5.0 ug/L 5.0 1 10/23/19 15:41 75-69-4 1,2,3-Trichloropropane 75-01-4 | | | - | | | | | | | | Styrene <5.0 ug/L 5.0 1 10/23/19 15:41 100-42-5 1,1,1,2-Tetrachloroethane <5.0 | | | - | | | | | | | | 1,1,1,2-Tetrachloroethane <5.0 | | | - | | | | | | | | 1,1,2,2-Tetrachloroethane | • | | • | | - | | | | | | Tetrachloroethene <5.0 ug/L 5.0 1 10/23/19 15:41 127-18-4 Toluene <5.0 | | | _ | | | | | | | | Toluene <5.0 ug/L 5.0 1 10/23/19 15:41 108-88-3 1,1,1-Trichloroethane <5.0 | | | - | | | | | | | | I,1,1-Trichloroethane <5.0 | | | | | | | | | | | 1,1,2-Trichloroethane <5.0 | | | _ | | | | | | | | Frichloroethene <5.0 ug/L 5.0 1 10/23/19 15:41 79-01-6 Frichlorofluoromethane <5.0 | | | - | | | | | | | | Trichlorofluoromethane <5.0 ug/L 5.0 1 10/23/19 15:41 75-69-4 1,2,3-Trichloropropane <5.0 | | | - | | | | | | | | 1,2,3-Trichloropropane <5.0 | | | - | | | | | | | | Vinyl acetate <5.0 ug/L 5.0 1 10/23/19 15:41 108-05-4 Vinyl chloride <5.0 ug/L 5.0 1 10/23/19 15:41 75-01-4 | | | | | | | | | | | Vinyl chloride <5.0 ug/L 5.0 1 10/23/19 15:41 75-01-4 | | | _ | | | | | | | | , | | | - | | | | | | | | Xylene (Total) <5.0 ug/L 5.0 1 10/23/19 15:41 1330-20-7 | • | | - | | | | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: STORAGE BLANK | Lab ID: 7010 | 09260013 | Collected: 10/21/1 | 9 00:00 | Received: 1 | 10/22/19 11:54 | Matrix: Water | | |---------------------------|------------------|-------------|--------------------|---------|-------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 8260C Volatile Organics | Analytical Meth | nod: EPA 82 | e60C/5030C | | | | | | | Surrogates | | | | | | | | | | 1,2-Dichloroethane-d4 (S) | 90 | % | 68-153 | 1 | | 10/23/19 15:4 | 1 17060-07-0 | | | 4-Bromofluorobenzene (S) | 94 | % | 79-124 | 1 | | 10/23/19 15:4 | 1 460-00-4 | | | Toluene-d8 (S) | 94 | % | 69-124 | 1 | | 10/23/19 15:4 | 1 2037-26-5 | | | TIC MSV Water | Analytical Meth | nod: EPA 82 | 260 | | | | | | | TIC Search | No TICs
Found | | | 1 | | 10/28/19 16:39 | e | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 4C | Lab ID: 701 | 09260014 | Collected: | 10/22/1 | 9 14:00 | Received: 10 |)/23/19 11:25 I | Matrix: Water | | |--------------------------------|-----------------|--------------|---------------|------------|------------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report | Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Prepara | ation Me | thod: Ef | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 15:25 | 7440-43-9 | | | Calcium | 25300 | ug/L | | 200 | 1 | | 10/28/19 15:25 | | | | ron | 2640 | ug/L | | 20.0 | 1 | | 10/28/19 15:25 | | | | Lead
Magnasium | <5.0
11400 | ug/L | | 5.0
200 | 1 | | 10/28/19 15:25
10/28/19 15:25 | | | | Magnesium
Manganese | 93.3 | ug/L
ug/L | | 10.0 | 1
1 | | 10/28/19 15:25 | | | | Potassium | <5000 | ug/L | | 5000 | 1 | | 10/28/19 15:25 | | | | Sodium | 44200 | ug/L | | 5000 | 1 | | 10/28/19 15:25 | | | | 2320B Alkalinity | Analytical Meth | nod: SM22 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 44.2 | mg/L | | 1.0 | 1 | | 10/29/19 16:23 | 3 | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 90.0 | mg/L | | 5.0 | 1 | | 11/05/19 21:16 | i | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | | Total Dissolved Solids | 300 | mg/L | | 20.0 | 1 | | 10/25/19 10:33 | 3 | | | 110.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Preparat | tion Met | hod: EP | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:53 | ŀ | | | 5210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Prepa | ration M | lethod: \$ | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | | 2.0 | 1 | 10/23/19 15:56 | 10/28/19 11:38 | ŀ | | | 300.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/29/19 03:52 | 24959-67-9 | | | Chloride | 134 | mg/L | | 10.0 | 5 | | 10/29/19 20:03 | 16887-00-6 | | | Sulfate | 6.6 | mg/L | | 5.0 | 1 | | 10/29/19 03:52 | 2 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Preparat | tion Met | hod: EP | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | <0.10 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:33 | 7727-37-9 | В | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | Nitrate as N | <0.050 | mg/L | | 0.050 | 1 | | 10/23/19 22:25 | | | | Nitrate-Nitrite (as N) | <0.050 | mg/L | | 0.050 | 1 | | 10/23/19 22:25 | 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | Nitrite as N | <0.050 | mg/L | | 0.050 | 1 | | 10/23/19 19:58 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparat | tion Met | hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 11.4 | ug/L | | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:10 | 1 | | | 1500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | | 0.10 | 1 | | 11/01/19 15:55 | 7664-41-7 | | | | | | | | | | | | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 4C | Lab ID: 70 | 0109260014 | Collected: 10/22/ | 19 14:00 | Received: 1 | 0/23/19 11:25 | Matrix: Water | | |----------------------|---------------|---------------|-------------------|----------|-------------|---------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Me | ethod: SM22 5 | 5310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 10/31/19 23:5 | 2 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 4B | Lab ID: 701 | 09260015 | Collected: 10/22 | /19 14:30 | Received: 10 |)/23/19 11:25 | Matrix: Water | | |--------------------------------|-----------------|----------------|--------------------|-----------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparation N | lethod: E | PA 3005A | | | | | Cadmium | <2.5 | ug/L | 2.5
 1 | 10/25/19 10:19 | 10/28/19 15:27 | 7440-43-9 | | | Calcium | 14400 | ug/L | 200 | 1 | 10/25/19 10:19 | 10/28/19 15:27 | 7 7440-70-2 | | | ron | 5430 | ug/L | 20.0 | | | 10/28/19 15:27 | | | | _ead | <5.0 | ug/L | 5.0 | | | 10/28/19 15:27 | | | | Magnesium | 7320 | ug/L | 200 | | | 10/28/19 15:27 | | | | Manganese
Potassium | 959 | ug/L | 10.0 | | | 10/28/19 15:27 | | | | Sodium | <5000
26000 | ug/L
ug/L | 5000
5000 | | | 10/28/19 15:27
10/28/19 15:27 | | | | | Analytical Meth | • | | ' | 10/23/19 10.19 | 10/20/19 13.27 | 7440-25-5 | | | 2320B Alkalinity | | | | 4 | | 40/00/40 40:04 | • | | | Alkalinity, Total as CaCO3 | 68.6 | mg/L | 1.0 | 1 | | 10/29/19 16:31 | ļ | | | 2340C Hardness, Total | Analytical Meth | | | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 66.7 | mg/L | 5.0 | 1 | | 11/05/19 21:19 |) | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | Total Dissolved Solids | 216 | mg/L | 10.0 | 1 | | 10/28/19 13:42 | 2 | | | 110.4 COD | Analytical Meth | nod: EPA 41 | 10.4 Preparation M | ethod: EP | 'A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:54 | ļ. | | | 5210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Preparation | Method: | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | 2.0 | 1 | 10/23/19 15:59 | 10/28/19 11:40 |) | | | 300.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.50 | 1 | | 10/29/19 04:08 | 3 24959-67-9 | | | Chloride | 43.4 | mg/L | 2.0 | 1 | | 10/29/19 04:08 | 3 16887-00-6 | | | Sulfate | 14.9 | mg/L | 5.0 | 1 | | 10/29/19 04:08 | 3 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 35 | 51.2 Preparation M | ethod: EP | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | 2.4 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:33 | 3 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 35 | 53.2 | | | | | | | Nitrate as N | 0.21 | mg/L | 0.050 | 1 | | 10/23/19 22:28 | 3 14797-55-8 | | | Nitrate-Nitrite (as N) | 0.22 | mg/L | 0.050 | 1 | | 10/23/19 22:28 | 3 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 35 | 53.2 | | | | | | | Nitrite as N | <0.050 | mg/L | 0.050 | 1 | | 10/23/19 20:00 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparation M | ethod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 14.0 | ug/L | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:11 | | | | 1500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | Nitrogen, Ammonia | 2.1 | mg/L | 0.10 | 1 | | 11/01/19 15:56 | 7664-41-7 | | | 5 , | | · 3 · – | 3 | - | | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 4B | Lab ID: 70 | 109260015 | Collected: 10/22/ | 19 14:30 | Received: | 10/23/19 11:25 | Matrix: Water | | |----------------------|---------------|------------|-------------------|----------|-----------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Me | thod: SM22 | 5310B | | | | | | | Total Organic Carbon | 1.4 | mg/L | 1.0 | 1 | | 11/01/19 00:1 | 12 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 4A | Lab ID: 7010 | 09260016 | Collected: | 10/22/1 | 9 15:00 | Received: 10 |)/23/19 11:25 | Matrix: Water | | |--------------------------------|-----------------|--------------|----------------|-------------|-----------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report | Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Prepara | ition Me | thod: EF | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 15:31 | 7440-43-9 | | | Calcium | 9030 | ug/L | | 200 | 1 | 10/25/19 10:19 | 10/28/19 15:31 | 7440-70-2 | | | ron | 2140 | ug/L | | 20.0 | 1 | | 10/28/19 15:31 | | | | ead | <5.0 | ug/L | | 5.0 | 1 | | 10/28/19 15:31 | | | | /lagnesium
/langanese | 3190
224 | ug/L
ug/L | | 200
10.0 | 1
1 | | 10/28/19 15:31
10/28/19 15:31 | | | | Potassium | <5000 | ug/L | | 5000 | 1 | | 10/28/19 15:31 | | | | Sodium | 19200 | ug/L | | 5000 | 1 | | 10/28/19 15:31 | | | | 320B Alkalinity | Analytical Meth | nod: SM22 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 4.8 | mg/L | | 1.0 | 1 | | 10/29/19 16:34 | Į. | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 34.0 | mg/L | | 5.0 | 1 | | 11/05/19 21:29 |) | | | 540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | | otal Dissolved Solids | 126 | mg/L | | 10.0 | 1 | | 10/28/19 13:42 | 2 | | | 10.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Preparati | ion Metl | hod: EP/ | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:54 | ŀ | | | 210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Prepar | ration M | lethod: S | SM22 5210B | | | | | BOD, 5 day | <4.0 | mg/L | | 4.0 | 2 | 10/23/19 16:00 | 10/28/19 11:42 | 2 | | | 00.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/29/19 04:59 | 24959-67-9 | | | Chloride | 37.1 | mg/L | | 2.0 | 1 | | 10/29/19 04:59 | 16887-00-6 | | | Sulfate | 19.5 | mg/L | | 5.0 | 1 | | 10/29/19 04:59 | 14808-79-8 | | | 51.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Preparati | ion Metl | hod: EP/ | A 351.2 | | | | | litrogen, Kjeldahl, Total | <0.10 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:34 | 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | Nitrate as N | 3.6 | mg/L | | 0.50 | 10 | | 10/23/19 22:32 | | | | litrate-Nitrite (as N) | 3.6 | mg/L | | 0.50 | 10 | | 10/23/19 22:32 | 2 7727-37-9 | | | 53.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | litrite as N | <0.050 | mg/L | | 0.050 | 1 | | 10/23/19 20:01 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparati | ion Metl | hod: EP/ | A 420.1 | | | | | Phenolics, Total Recoverable | 16.1 | ug/L | | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:12 | 2 | | | 500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | | litrogen, Ammonia | 0.20 | mg/L | | 0.10 | 1 | | 11/01/19 15:59 | 7664-41-7 | | | | | | | | | | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 4A | Lab ID: 70 | 109260016 | Collected: 10/22/ | 19 15:00 | Received: 1 | 10/23/19 11:25 | Matrix: Water | | |----------------------|---------------|------------|-------------------|----------|-------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Me | thod: SM22 | 5310B | | | | | | | Total Organic Carbon | 1.8 | mg/L | 1.0 | 1 | | 11/01/19 00:4 | 4 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: LEA-SECONDARY | Lab ID: 7 | 0109260017 | Collected: | 10/22/1 | 9 08:10 | Received: 10 | 0/23/19 11:25 | Matrix: Water | | |---------------------------------------|--------------|----------------|--------------|-----------|------------|----------------|-----------------|---------------|-----| | Parameters | Results | Units | Repor | t Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical M | lethod: EPA 60 | 010C Prepar | ation Me | ethod: EF | PA 3005A | | | | | Arsenic | <10.0 | ug/L | | 10.0 | 1 | 10/25/19 10:19 | 10/28/19 15:3 | 3 7440-38-2 | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/25/19 10:19 | 10/28/19 15:3 | 3 7440-43-9 | | | Calcium | 84400 | ug/L | | 200 | 1 | 10/25/19 10:19 | 10/28/19 15:3 | 3 7440-70-2 | | | ron | 2010 | ug/L | | 20.0 | 1 | | 10/28/19 15:3 | | | | ead | <5.0 | ug/L | | 5.0 | 1 | | 10/28/19 15:3 | | | | Magnesium | 13900 | ug/L | | 200 | 1 | | 10/28/19 15:3 | | | | Manganese | 231 | ug/L | | 10.0 | 1 | | 10/28/19 15:3: | | | | Potassium | 48200 | ug/L | | 5000 | 1 | | 10/28/19 15:3: | | | | Sodium | 74600 | ug/L | | 5000 | 1 | 10/25/19 10:19 | 10/28/19 15:3 | 3 7440-23-5 | | | 2320B Alkalinity | Analytical M | lethod: SM22 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 368 | mg/L | | 1.0 | 1 | | 10/29/19 16:5 | 1 | | | 2340C Hardness, Total | Analytical M | lethod: SM22 | 2340C | | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 240 | mg/L | | 5.0 | 1 | | 11/05/19 21:38 | 3 | | | 2540C Total Dissolved Solids | Analytical M | lethod: SM22 | 2540C | | | | | | | | otal Dissolved Solids | 634 | mg/L | | 20.0 | 1 | | 10/28/19 13:5 | 1 | | | 110.4 COD | Analytical M | lethod: EPA 41 | I0.4 Prepara | ation Met | hod: EP | A 410.4 | | | | | Chemical Oxygen Demand | 125 | mg/L | | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:54 | 1 | | | 5210B BOD, 5 day | Analytical M | lethod: SM22 | 5210B Prepa | aration N | Method: \$ | SM22 5210B | | | | | BOD, 5 day | 9.0 | mg/L | | 4.0 | 2 | 10/23/19 16:02 | 10/28/19 11:45 | 5 | | | 300.0 IC Anions 28 Days | Analytical M | lethod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/29/19 05:1 | 5 24959-67-9 | | | Chloride | 113 | mg/L | | 20.0 | 10 | | | 2 16887-00-6 | | | Sulfate | 58.7 | mg/L | | 50.0 | 10 | | | 2 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical M | lethod: EPA 35 | 51.2 Prepara | ation Met
 hod: EP | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | 43.5 | mg/L | | 5.0 | 10 | | 11/05/19 12:3 | 5 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | | lethod: EPA 35 | 53.2 | | | | | | | | Nitrate as N | 8.2 | mg/L | <u>-</u> | 0.50 | 10 | | 10/23/19 22:3 | 3 14797-55-8 | | | Nitrate-Nitrite (as N) | 9.1 | mg/L | | 0.50 | 10 | | 10/23/19 22:33 | | | | 353.2 Nitrogen, NO2 | Analytical M | lethod: EPA 35 | 53.2 | | | | | | | | Nitrite as N | 0.81 | mg/L | | 0.050 | 1 | | 10/23/19 20:02 | 2 14797-65-0 | | | Phenolics, Total Recoverable | Analytical M | lethod: EPA 42 | 20.1 Prepara | ation Met | hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | <5.0 | ug/L | | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:14 | 1 | | | 1500 Ammonia Water | Analytical M | lethod: SM22 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | 32.3 | mg/L | | 2.0 | 20 | | 11/01/19 16:28 | 3 7664-41-7 | | | 3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | 52.0 | 9/ = | | | | | , 5 ., 10 10.20 | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: LEA-SECONDARY | Lab ID: 701 | 09260017 | Collected: 10/22/ | 19 08:10 | Received: | 10/23/19 11:25 | Matrix: Water | | |-----------------------|----------------|-----------|-------------------|----------|-----------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Met | hod: SM22 | 5310B | | | | | | | Total Organic Carbon | 41.9 | mg/L | 1.0 | 1 | | 11/01/19 01:0 | 6 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: LEA-PRIMARY | Lab ID: 701 | 09260018 | Collected: | 10/22/1 | 19 08:00 | Received: 10 |)/23/19 11:25 | Matrix: Water | | |--------------------------------|----------------|----------------|--------------|-----------|-----------|----------------|----------------|---------------|-----| | Parameters | Results | Units | Report | t Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Met | hod: EPA 60 | 010C Prepara | ation Me | ethod: EF | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/31/19 10:00 | 11/01/19 11:09 | 7440-43-9 | | | Calcium | 108000 | ug/L | | 200 | 1 | 10/31/19 10:00 | 11/01/19 11:09 | 7440-70-2 | | | ron | 1020 | ug/L | | 20.0 | 1 | 10/31/19 10:00 | 11/01/19 11:09 | 7439-89-6 | | | _ead | <5.0 | ug/L | | 5.0 | 1 | 10/31/19 10:00 | | | | | Magnesium | 19600 | ug/L | | 200 | 1 | 10/31/19 10:00 | | | | | Manganese | 848 | ug/L | | 10.0 | 1 | 10/31/19 10:00 | | | | | Potassium | 87200 | ug/L | | 5000 | 1 | 10/31/19 10:00 | | | | | Sodium | 225000 | ug/L | | 5000 | 1 | 10/31/19 10:00 | 11/01/19 11:09 | 7440-23-5 | | | 6010 MET ICP, Dissolved | Analytical Met | hod: EPA 60 |)10C | | | | | | | | Arsenic, Dissolved | <10.0 | ug/L | | 10.0 | 1 | | 11/06/19 13:14 | | | | Cadmium, Dissolved | <2.5 | ug/L | | 2.5 | 1 | | 11/06/19 13:14 | | | | Calcium, Dissolved | 107000 | ug/L | | 200 | 1 | | 11/06/19 13:14 | | | | ron, Dissolved | 484 | ug/L | | 20.0 | 1 | | 11/06/19 13:14 | | | | _ead, Dissolved | <5.0 | ug/L | | 5.0 | 1 | | 11/06/19 13:14 | | | | Magnesium, Dissolved | 19000 | ug/L | | 200 | 1 | | 11/06/19 13:14 | | | | Manganese, Dissolved | 763 | ug/L | | 10.0 | 1 | | 11/06/19 13:14 | | | | Potassium, Dissolved | 85300 | ug/L | | 5000 | 1 | | 11/06/19 13:14 | | | | Sodium, Dissolved | 210000 | ug/L | | 5000 | 1 | | 11/06/19 13:14 | 1 1440-23-3 | | | 2320B Alkalinity | Analytical Met | hod: SM22 2 | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 793 | mg/L | | 1.0 | 1 | | 10/29/19 17:20 |) | | | 2340C Hardness, Total | Analytical Met | hod: SM22 | 2340C | | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 320 | mg/L | | 5.0 | 1 | | 11/05/19 21:40 |) | | | 2540C Total Dissolved Solids | Analytical Met | hod: SM22 | 2540C | | | | | | | | Total Dissolved Solids | 648 | mg/L | | 20.0 | 1 | | 10/28/19 13:5 | I | | | 110.4 COD | Analytical Met | hod: EPA 41 | 0.4 Prepara | ition Me | thod: EP | A 410.4 | | | | | Chemical Oxygen Demand | 231 | mg/L | | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:54 | 1 | | | 5210B BOD, 5 day | Analytical Met | hod: SM22 : | 5210B Prepa | aration N | Method: 9 | SM22 5210B | | | | | BOD, 5 day | 8.9 | mg/L | | 6.7 | 3.33 | 10/23/19 16:07 | 10/28/19 11:52 | 2 | | | 300.0 IC Anions 28 Days | Analytical Met | hod: EPA 30 | 0.00 | | | | | | | | Bromide | 1.7 | mg/L | | 0.50 | 1 | | 10/29/19 05:49 | 9 24959-67-9 | | | Chloride | 332 | mg/L | | 20.0 | 10 | | 10/29/19 06:0 | | | | Sulfate | 44.7 | mg/L | | 5.0 | 1 | | 10/29/19 05:49 | | | | 351.2 Total Kjeldahl Nitrogen | Analytical Met | hod: EPA 35 | 51.2 Prepara | ition Me | thod: EP | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | 127 | mg/L | | 5.0 | 10 | 11/05/19 06:05 | 11/05/19 12:36 | 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Met | hod: EPA 35 | 53.2 | | | | | | | | Nitrate as N | 12.0 | mg/L | | 0.50 | 10 | | 10/23/19 22:34 | 14797-55-8 | | | | | · . | | | - | | | | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | . 400 | | | | | | | | | | |--------------------------------|-----------------|------------|-------------|-----------|---------|---------------|-----------------|---------------|------| | Sample: LEA-PRIMARY | Lab ID: 7010 | 9260018 | Collected: | 10/22/1 | 9 08:00 | Received: | 10/23/19 11:25 | Matrix: Water | | | Parameters | Results | Units | Repor | t Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | od: EPA 35 | 53.2 | | | | | | | | Nitrate-Nitrite (as N) | 13.4 | mg/L | | 0.50 | 10 | | 10/23/19 22:3 | 4 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Meth | od: EPA 35 | 53.2 | | | | | | | | Nitrite as N | 1.4 | mg/L | | 0.050 | 1 | | 10/23/19 20:0 | 3 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | od: EPA 42 | 0.1 Prepara | ition Met | hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 14.8 | ug/L | | 5.0 | 1 | 11/04/19 08:1 | 4 11/04/19 12:1 | 5 | | | 4500 Ammonia Water | Analytical Meth | od: SM22 4 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | 83.7 | mg/L | | 5.0 | 50 | | 11/01/19 16:29 | 9 7664-41-7 | | | 5310B TOC as NPOC | Analytical Meth | od: SM22 5 | 5310B | | | | | | | | Total Organic Carbon | 69.0 | mg/L | | 2.0 | 2 | | 11/01/19 02:14 | 4 7440-44-0 | | | | | | | | | | | | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 3A | Lab ID: 701 | 09260019 | Collected: | 10/22/1 | 9 13:00 | Received: 10 |)/23/19 11:25 | Matrix: Water | | |--------------------------------|----------------|--------------|--------------|--------------|------------|----------------------------------|----------------|---------------|-----| | Parameters | Results | Units | Repor | t Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Met | hod: EPA 60 | 010C Prepar | ation Me | ethod: Ef | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/31/19 10:00 | 11/01/19 11:12 | 7440-43-9 | | | Calcium | 18200 | ug/L | | 200 | 1 | 10/31/19 10:00 | 11/01/19 11:12 | 2 7440-70-2 | | | ron | 3630 | ug/L | | 20.0 | 1 | | 11/01/19 11:12 | | | | _ead | <5.0 | ug/L | | 5.0 | 1 | | 11/01/19 11:12 | | | | Magnesium | 5770 | ug/L | | 200 | 1 | 10/31/19 10:00 | | | | | Manganese
Potassium | 390
11400 | ug/L
ug/L | | 10.0
5000 | 1
1 | 10/31/19 10:00
10/31/19 10:00 | | | | | Sodium | 33000 | ug/L
ug/L | | 5000 | 1 | 10/31/19 10:00 | | | | | 320B Alkalinity | Analytical Met | • | 2320B | | | | | | | | Alkalinity, Total as CaCO3 | 83.8 | mg/L | | 1.0 | 1 | | 10/29/19 17:28 | 3 | | | 2340C Hardness, Total | Analytical Met | hod: SM22 | 2340C | | | | | | | | Fot Hardness asCaCO3 (SM 2340B | 70.0 | mg/L | | 5.0 | 1 | | 11/05/19 21:44 | 1 | | | 2540C Total Dissolved Solids | Analytical Met | hod: SM22 | 2540C | | | | | | | | Total Dissolved Solids | 209 | mg/L | | 10.0 | 1 | | 10/28/19 13:5 | 1 | | | 10.4 COD | Analytical Met | hod: EPA 41 | 10.4 Prepara | ation Met | hod: EP | A 410.4 | | | | | Chemical Oxygen Demand | 12.4 | mg/L | | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:55 | 5 | | | 210B BOD, 5 day | Analytical Met | hod: SM22 | 5210B Prepa | aration M | Method: \$ | SM22 5210B | | | | | BOD, 5 day | <4.0 | mg/L | | 4.0 | 2 | 10/23/19 16:10 | 10/28/19 11:54 | 1 | | | 00.0 IC Anions 28 Days | Analytical Met | hod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/29/19 06:22 | 2 24959-67-9 | | | Chloride | 46.8 | mg/L | | 2.0 | 1 | | 10/29/19 06:22 | 2 16887-00-6 | | | Sulfate | 9.4 | mg/L | | 5.0 | 1 | | 10/29/19 06:22 | 2 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Met | hod: EPA 35 | 51.2 Prepara | ation Met | hod: EP | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | 1.3 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:37 | 7 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Met | hod: EPA 35 | 53.2 | | | | | | | | Nitrate as N | 0.33 | mg/L | | 0.050 | 1 | | 10/23/19 22:35 | 5 14797-55-8 | | | Nitrate-Nitrite (as N) | 0.34 | mg/L | | 0.050 | 1 | | 10/23/19 22:35 | 5 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Met | hod: EPA 35 | 53.2 | | | | | | | | Nitrite as N | <0.050 | mg/L | | 0.050 | 1 | | 10/23/19 20:14 | 1 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Met | hod: EPA 42 | 20.1 Prepara | ation Met | hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 9.9 | ug/L | | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:16 | 3 | | | 1500 Ammonia Water | Analytical Met | hod: SM22 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | 0.53 | mg/L | | 0.10 | 1 | | 11/01/19 16:03 | 3 7664-41-7 | | | | | | | | | | | | | # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project
No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 3A | Lab ID: 701 | 09260019 | Collected: 10/22/ | 19 13:00 | Received: 1 | 10/23/19 11:25 | Matrix: Water | | |----------------------|----------------|-----------|-------------------|----------|-------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Met | hod: SM22 | 5310B | | | | | | | Total Organic Carbon | 5.5 | mg/L | 1.0 | 1 | | 11/01/19 02:3 | 5 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 6AR | Lab ID: 70° | 09260020 | Collected: 10/22/ | 19 09:30 | Received: 10 |)/23/19 11:25 | Matrix: Water | | |--------------------------------|----------------|--------------|---------------------|------------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Me | hod: EPA 60 | 10C Preparation M | ethod: El | PA 3005A | | | | | Aluminum | <200 | ug/L | 200 | 1 | 10/31/19 10:00 | 11/01/19 11:14 | 7429-90-5 | В | | Antimony | <60.0 | ug/L | 60.0 | 1 | 10/31/19 10:00 | 11/01/19 11:14 | 7440-36-0 | | | Arsenic | <10.0 | ug/L | 10.0 | 1 | | 11/01/19 11:14 | | | | Barium | <200 | ug/L | 200 | 1 | | 11/01/19 11:14 | | | | Beryllium | <5.0 | ug/L | 5.0 | 1 | | 11/01/19 11:14 | | | | Boron | <50.0 | ug/L | 50.0 | 1 | | 11/01/19 11:14 | | | | Cadmium
Calcium | <2.5
8690 | ug/L | 2.5
200 | 1
1 | | 11/01/19 11:14
11/01/19 11:14 | | | | Chromium | <10.0 | ug/L
ug/L | 10.0 | 1 | | 11/01/19 11:14 | | | | Cobalt | <50.0 | ug/L | 50.0 | 1 | | 11/01/19 11:14 | | | | Copper | <25.0 | ug/L | 25.0 | 1 | | 11/01/19 11:14 | | | | Iron | 261 | ug/L | 20.0 | 1 | | 11/01/19 11:14 | | | | Lead | <5.0 | ug/L | 5.0 | 1 | 10/31/19 10:00 | 11/01/19 11:14 | 7439-92-1 | | | Magnesium | 4340 | ug/L | 200 | 1 | 10/31/19 10:00 | 11/01/19 11:14 | 7439-95-4 | | | Manganese | 40.5 | ug/L | 10.0 | 1 | 10/31/19 10:00 | 11/01/19 11:14 | 7439-96-5 | | | Nickel | <40.0 | ug/L | 40.0 | 1 | | 11/01/19 11:14 | | | | Potassium | <5000 | ug/L | 5000 | 1 | | 11/01/19 11:14 | | | | Selenium | <10.0 | ug/L | 10.0 | 1 | | 11/01/19 11:14 | | | | Silver | <10.0 | ug/L | 10.0 | 1 | | 11/01/19 11:14 | | | | Sodium | 8600 | ug/L | 5000 | 1 | | 11/01/19 11:14 | | | | Thallium
Vanadium | <10.0
<50.0 | ug/L
ug/L | 10.0
50.0 | 1
1 | | 11/01/19 11:14
11/01/19 11:14 | | | | Zinc | <20.0 | ug/L
ug/L | 20.0 | 1 | | 11/01/19 11:14 | | | | 7470 Mercury | | • | 70A Preparation Me | | | | | | | Mercury | <0.20 | ug/L | 0.20 | 1 | | 11/01/19 16:42 | 2 7439-97-6 | | | 2320B Alkalinity | Analytical Me | • | 2320B | | | | | | | Alkalinity, Total as CaCO3 | 29.9 | mg/L | 1.0 | 1 | | 10/29/19 17:33 | 3 | | | 2340C Hardness, Total | Analytical Me | hod: SM22 | 2340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 36.7 | mg/L | 5.0 | 1 | | 11/05/19 21:52 | 2 | | | 2540C Total Dissolved Solids | Analytical Me | hod: SM22 | 2540C | | | | | | | Total Dissolved Solids | 76.0 | mg/L | 10.0 | 1 | | 10/28/19 13:5 | 1 | | | 410.4 COD | Analytical Me | hod: EPA 41 | 0.4 Preparation Me | thod: EP | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:55 | 5 | | | 5210B BOD, 5 day | Analytical Me | hod: SM22 | 5210B Preparation I | Method: \$ | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | 2.0 | 1 | 10/23/19 16:12 | 10/28/19 11:56 | 5 | | | 300.0 IC Anions 28 Days | Analytical Me | hod: EPA 30 | 0.00 | | | | | | | Bromide | <0.50 | mg/L | 0.50 | 1 | | 10/29/19 06:39 | 9 24959-67-9 | | | Chloride | 17.0 | mg/L | 2.0 | 1 | | 10/29/19 06:39 | | | | Sulfate | 10.2 | mg/L | 5.0 | 1 | | 10/29/19 06:39 | 14000 70 0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 6AR | Lab ID: 7010 | 9260020 | Collected: 10/22/ | 19 09:30 | Received: 10 | 0/23/19 11:25 | Matrix: Water | | |--|-----------------|--------------|--------------------|-----------|----------------|----------------------------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | od: EPA 35 | 1.2 Preparation Me | ethod: EF | PA 351.2 | | | | | Nitrogen, Kjeldahl, Total | <0.10 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:38 | 3 7727-37-9 | В | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | od: EPA 35 | 3.2 | | | | | | | Nitrate as N
Nitrate-Nitrite (as N) | 0.79
0.82 | mg/L
mg/L | 0.050
0.050 | | | 10/23/19 22:37
10/23/19 22:37 | | | | 353.2 Nitrogen, NO2 | Analytical Meth | od: EPA 35 | 3.2 | | | | | | | Nitrite as N | <0.050 | mg/L | 0.050 | 1 | | 10/23/19 20:08 | 3 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | od: EPA 42 | 0.1 Preparation Me | ethod: EF | PA 420.1 | | | | | Phenolics, Total Recoverable | <5.0 | ug/L | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:16 | 5 | | | 4500 Ammonia Water | Analytical Meth | od: SM22 4 | 500 NH3 H | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | 0.10 | 1 | | 11/01/19 16:04 | 7664-41-7 | | | 5310B TOC as NPOC | Analytical Meth | od: SM22 5 | 310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 11/01/19 02:49 | 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Date: 11/06/2019 02:57 PM | Pace Project No.: 70109260 | | | | | | | | | |-------------------------------|-----------------|--------------|---------------------|------------|----------------|----------------|---------------|-----| | Sample: 6B | Lab ID: 7010 | 09260021 | Collected: 10/22/ | 19 10:00 | Received: 10 |)/23/19 11:25 | Matrix: Water | | | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 010 MET ICP | Analytical Meth | od: EPA 60 | 110C Preparation M | ethod: EF | PA 3005A | | | | | Aluminum | <200 | ug/L | 200 | 1 | 10/31/19 10:00 | 11/01/19 11:16 | 7429-90-5 | В | | Antimony | <60.0 | ug/L | 60.0 | 1 | 10/31/19 10:00 | 11/01/19 11:16 | 7440-36-0 | | | Arsenic | <10.0 | ug/L | 10.0 | 1 | 10/31/19 10:00 | 11/01/19 11:16 | 7440-38-2 | | | Barium | <200 | ug/L | 200 | 1 | | 11/01/19 11:16 | | | | Beryllium | <5.0 | ug/L | 5.0 | 1 | 10/31/19 10:00 | 11/01/19 11:16 | 7440-41-7 | | | Boron | <50.0 | ug/L | 50.0 | 1 | | 11/01/19 11:16 | | | | Cadmium | <2.5 | ug/L | 2.5 | 1 | | 11/01/19 11:16 | | | | Calcium | 4540 | ug/L | 200 | 1 | | 11/01/19 11:16 | | | | Chromium | 13.7 | ug/L | 10.0 | 1 | | 11/01/19 11:16 | | | | Cobalt | <50.0 | ug/L | 50.0 | 1 | | 11/01/19 11:16 | | | | Copper | <25.0 | ug/L | 25.0 | 1 | | 11/01/19 11:16 | | | | ron | 100 | ug/L | 20.0 | 1 | | 11/01/19 11:16 | | | | ead | <5.0 | ug/L | 5.0 | 1 | | 11/01/19 11:16 | | | | /lagnesium | 2650 | ug/L | 200 | 1 | | 11/01/19 11:16 | | | | /langanese | 15.4 | ug/L | 10.0 | 1 | | 11/01/19 11:16 | | | | lickel | <40.0 | ug/L | 40.0 | 1 | | 11/01/19 11:16 | | | | Potassium | <5000 | ug/L | 5000 | 1 | | 11/01/19 11:16 | | | | Selenium | <10.0 | ug/L | 10.0 | 1 | | 11/01/19 11:16 | | | | Silver | <10.0 | ug/L | 10.0 | 1 | | 11/01/19 11:16 | | | | Sodium | 7820 | ug/L | 5000 | 1 | | 11/01/19 11:16 | | | | hallium | <10.0 | ug/L | 10.0 | 1 | | 11/01/19 11:16 | | | | /anadium | <50.0 | ug/L | 50.0 | 1
1 | | 11/01/19 11:16 | | | | inc | <20.0 | ug/L | 20.0 | | | 11/01/19 11:16 | 7440-00-0 | | | 7470 Mercury | - | | 70A Preparation Me | | | | | | | Mercury | <0.20 | ug/L | 0.20 | 1 | 11/01/19 11:56 | 11/01/19 16:43 | 3 7439-97-6 | | | 320B Alkalinity | Analytical Meth | od: SM22 2 | 2320B | | | | | | | Alkalinity, Total as CaCO3 | 13.0 | mg/L | 1.0 | 1 | | 10/29/19 17:38 | 3 | | | 340C Hardness, Total | Analytical Meth | od: SM22 | 2340C | | | | | | | ot Hardness asCaCO3 (SM 2340B | 17.5 | mg/L | 5.0 | 1 | | 11/05/19 21:54 | ļ. | | | 540C Total Dissolved Solids | Analytical Meth | od: SM22 2 | 2540C | | | | | | | otal Dissolved Solids | 142 | mg/L | 10.0 | 1 | | 10/28/19 13:51 | I | | | 10.4 COD | Analytical Meth | od: EPA 41 | 0.4 Preparation Me | thod: EP | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:55 | 5 | | | 210B BOD, 5 day | Analytical Meth | od: SM22 s | 5210B Preparation I | Method: \$ | SM22 5210B | | | | | SOD, 5 day | <2.0 | mg/L | 2.0 | 1 | 10/23/19 16:18 | 10/28/19 11:58 | 3 | | | 00.0 IC Anions 28 Days | Analytical Meth | od: EPA 30 | 0.0 | | | | | | | -
Bromide | <0.50 | ma/l | 0.50 | 1 | | 10/20/10 06:56 | 3 24050 67 0 | | | Bromide
Chloride | <0.50
13.2 | mg/L
mg/l | 0.50 | 1
1 | | 10/29/19 06:56 | | | | | | mg/L | 2.0 | | | 10/29/19 06:56 | | | | Sulfate | 9.7 | mg/L | 5.0 | 1 | | 10/29/19 06:56 | 14000-79-8 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 6B | Lab ID: 7010 | 09260021 | Collected: 10/22/1 | 9 10:00 | Received: 10 | 0/23/19 11:25 | Matrix: Water | | |--------------------------------|-----------------|-------------|--------------------|---------|----------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | od: EPA 351 | .2 Preparation Met | hod: EP | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | <0.10 | mg/L | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:39 | 7727-37-9 | В | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | od: EPA 353 | .2 | | | | | | | Nitrate as N | 0.42 | mg/L | 0.050 | 1 | | 10/23/19 22:38 | 3 14797-55-8 | | | Nitrate-Nitrite (as N) | 0.43 | mg/L | 0.050 | 1 | | 10/23/19 22:38 | 3 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Meth | od: EPA 353 | .2 | | | | | | | Nitrite as N | <0.050 | mg/L | 0.050 | 1 | | 10/23/19 20:09 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | od: EPA 420 | .1 Preparation Met
| hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 13.0 | ug/L | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:17 | • | | | 4500 Ammonia Water | Analytical Meth | od: SM22 45 | 500 NH3 H | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | 0.10 | 1 | | 11/01/19 16:05 | 7664-41-7 | | | 5310B TOC as NPOC | Analytical Meth | od: SM22 53 | 310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 11/01/19 03:01 | 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 3C | Lab ID: 701 | 09260022 | Collected: 10 | /22/19 12 | 2:00 | Received: 10 | 0/23/19 11:25 | Matrix: Water | | |-------------------------------|-----------------|--------------|------------------|----------------|-------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report Lir | mit DI | F | Prepared | Analyzed | CAS No. | Qua | | 010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Preparation | n Method | d: EP | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 1 | | 10/31/19 10:00 | 11/01/19 11:23 | 7440-43-9 | | | Calcium | 8800 | ug/L | : | 200 1 | | 10/31/19 10:00 | 11/01/19 11:23 | 7440-70-2 | | | ron | 28.5 | ug/L | 2 | 20.0 1 | | | 11/01/19 11:23 | | | | ead | <5.0 | ug/L | | 5.0 1 | | | 11/01/19 11:23 | | | | /lagnesium | 4080 | ug/L | | 200 1 | | | 11/01/19 11:23 | | | | Manganese
Potassium | <10.0 | ug/L | | 0.0 1 | | | 11/01/19 11:23
11/01/19 11:23 | | | | Sodium | <5000
12100 | ug/L
ug/L | | 000 1
000 1 | | | 11/01/19 11:23 | | | | | Analytical Meth | • | | 000 1 | | 10/31/19 10:00 | 11/01/19 11.20 | 7440-23-3 | | | 320B Alkalinity | | | 2320B | 40 4 | | | 40/00/40 47 4 | i | | | Alkalinity, Total as CaCO3 | 45.8 | mg/L | | 1.0 1 | | | 10/29/19 17:44 | • | | | 340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | | ot Hardness asCaCO3 (SM 2340B | 23.3 | mg/L | | 5.0 1 | | | 11/05/19 21:56 | i | | | 540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | | otal Dissolved Solids | 102 | mg/L | 1 | 0.0 1 | | | 10/28/19 13:51 | | | | 10.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Preparation | n Method: | EP/ | A 410.4 | | | | | Chemical Oxygen Demand | <10.0 | mg/L | 1 | 0.0 1 | | 10/30/19 09:31 | 10/30/19 11:56 | i | | | 210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Preparat | tion Meth | od: S | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | | 2.0 1 | | 10/23/19 16:21 | 10/28/19 12:01 | | | | 00.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | C |).50 1 | | | 10/29/19 07:12 | 2 24959-67-9 | | | Chloride | 13.0 | mg/L | | 2.0 1 | | | 10/29/19 07:12 | 16887-00-6 | | | Sulfate | <5.0 | mg/L | | 5.0 1 | | | 10/29/19 07:12 | 14808-79-8 | | | 51.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Preparation | n Method: | : EP/ | A 351.2 | | | | | litrogen, Kjeldahl, Total | <0.10 | mg/L | C |).10 1 | | 11/05/19 06:05 | 11/05/19 12:41 | 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | Nitrate as N | 0.19 | mg/L | 0.0 | 050 1 | | | 10/23/19 22:39 | 14797-55-8 | | | litrate-Nitrite (as N) | 0.20 | mg/L | 0.0 | 050 1 | | | 10/23/19 22:39 | 7727-37-9 | | | 53.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | litrite as N | <0.050 | mg/L | 0.0 | 050 1 | | | 10/23/19 20:10 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparation | n Method: | : EP/ | A 420.1 | | | | | Phenolics, Total Recoverable | 12.1 | ug/L | | 5.0 1 | | 11/04/19 08:14 | 11/04/19 12:18 | } | | | 500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | <0.10 | mg/L | |).10 1 | | | 11/01/19 16:09 | 7664-41-7 | | | | | | | | | | | | | (631)694-3040 # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 3C | Lab ID: 7 | 0109260022 | Collected: 10/22/ | 19 12:00 | Received: 1 | 0/23/19 11:25 | Matrix: Water | | |----------------------|--------------|---------------|-------------------|----------|-------------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical M | ethod: SM22 s | 5310B | | | | | | | Total Organic Carbon | <1.0 | mg/L | 1.0 | 1 | | 11/01/19 03:44 | 4 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 3B | Lab ID: 701 | 09260023 | Collected: | 10/22/1 | 9 12:40 | Received: 10 | 0/23/19 11:25 | Matrix: Water | | |--------------------------------|-----------------|--------------|----------------|--------------|-----------|----------------|----------------------------------|---------------|-----| | Parameters | Results | Units | Report | Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Meth | nod: EPA 60 | 010C Prepara | ition Me | thod: EF | PA 3005A | | | | | Cadmium | <2.5 | ug/L | | 2.5 | 1 | 10/31/19 10:00 | 11/01/19 11:26 | 7440-43-9 | | | Calcium | 18900 | ug/L | | 200 | 1 | 10/31/19 10:00 | 11/01/19 11:26 | 7440-70-2 | | | ron | 8570 | ug/L | | 20.0 | 1 | | 11/01/19 11:26 | | | | _ead | <5.0 | ug/L | | 5.0 | 1 | | 11/01/19 11:26 | | | | Magnesium | 6810 | ug/L | | 200 | 1 | | 11/01/19 11:26 | | | | Manganese
Potassium | 2440
5940 | ug/L | | 10.0 | 1 | | 11/01/19 11:26 | | | | Sodium | 11400 | ug/L
ug/L | | 5000
5000 | 1
1 | | 11/01/19 11:26
11/01/19 11:26 | | | | | Analytical Meth | • | 2220P | 3000 | ' | 10/31/19 10:00 | 11/01/19 11.20 | 7440-23-3 | | | 2320B Alkalinity | | | 232UD | 4.0 | | | 40/00/40 47 50 | | | | Alkalinity, Total as CaCO3 | 77.7 | mg/L | | 1.0 | 1 | | 10/29/19 17:52 | <u>′</u> | | | 2340C Hardness, Total | Analytical Meth | nod: SM22 | 2340C | | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 90.0 | mg/L | | 5.0 | 1 | | 11/05/19 22:17 | • | | | 2540C Total Dissolved Solids | Analytical Meth | nod: SM22 | 2540C | | | | | | | | Total Dissolved Solids | 183 | mg/L | | 10.0 | 1 | | 10/28/19 13:58 | 3 | | | 110.4 COD | Analytical Meth | nod: EPA 4 | 10.4 Preparati | ion Metl | hod: EP | A 410.4 | | | | | Chemical Oxygen Demand | 21.2 | mg/L | | 10.0 | 1 | 10/30/19 09:31 | 10/30/19 11:56 | 5 | | | 5210B BOD, 5 day | Analytical Meth | nod: SM22 | 5210B Prepar | ration M | lethod: S | SM22 5210B | | | | | BOD, 5 day | <2.0 | mg/L | | 2.0 | 1 | 10/23/19 16:25 | 10/28/19 12:03 | 3 | | | 800.0 IC Anions 28 Days | Analytical Meth | nod: EPA 30 | 0.00 | | | | | | | | Bromide | <0.50 | mg/L | | 0.50 | 1 | | 10/29/19 07:29 | 24959-67-9 | | | Chloride | 20.1 | mg/L | | 2.0 | 1 | | 10/29/19 07:29 | 16887-00-6 | | | Sulfate | 9.5 | mg/L | | 5.0 | 1 | | 10/29/19 07:29 | 14808-79-8 | | | 351.2 Total Kjeldahl Nitrogen | Analytical Meth | nod: EPA 3 | 51.2 Preparati | ion Metl | hod: EP | A 351.2 | | | | | Nitrogen, Kjeldahl, Total | 0.84 | mg/L | | 0.10 | 1 | 11/05/19 06:05 | 11/05/19 12:42 | 7727-37-9 | | | 353.2 Nitrogen, NO2/NO3 unpres | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | Nitrate as N | 0.43 | mg/L | | 0.050 | 1 | | 10/23/19 22:42 | 2 14797-55-8 | | | Nitrate-Nitrite (as N) | 0.47 | mg/L | | 0.050 | 1 | | 10/23/19 22:42 | 7727-37-9 | | | 353.2 Nitrogen, NO2 | Analytical Meth | nod: EPA 3 | 53.2 | | | | | | | | Nitrite as N | <0.050 | mg/L | | 0.050 | 1 | | 10/23/19 20:15 | 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | nod: EPA 42 | 20.1 Preparati | ion Metl | hod: EP | A 420.1 | | | | | Phenolics, Total Recoverable | 11.6 | ug/L | | 5.0 | 1 | 11/04/19 08:14 | 11/04/19 12:19 |) | | | 4500 Ammonia Water | Analytical Meth | nod: SM22 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | 0.30 | mg/L | | 0.10 | 1 | | 11/01/19 16:10 | 7664-41-7 | | | | 0.00 | 9/ = | | 0.10 | • | | ,, | | | # **REPORT OF LABORATORY ANALYSIS** (631)694-3040 # **ANALYTICAL RESULTS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 3B | Lab ID: 70 | 109260023 | Collected: 10/22/ | 19 12:40 | Received: | 10/23/19 11:25 | Matrix: Water | | |----------------------|---------------|--------------|-------------------|----------|-----------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 5310B TOC as NPOC | Analytical Me | thod: SM22 s | 5310B | | | | | | | Total Organic Carbon | 6.8 | mg/L | 1.0 | 1 | | 11/01/19 04:5 | 1 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM QC Batch: 136159 Analysis Method: EPA 6010C QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved Associated Lab Samples: 70109260006, 70109260018 METHOD BLANK: 651772 Matrix: Water Associated Lab Samples: 70109260006, 70109260018 | | | Blank | Reporting | | | |----------------------|-------|--------|-----------|----------------|------------| | Parameter | Units | Result | Limit | Analyzed | Qualifiers | | Aluminum, Dissolved | ug/L | <200 | 200 | 11/06/19 13:00 | | | Antimony, Dissolved | ug/L | <60.0 | 60.0 | 11/06/19 13:00 | | | Arsenic, Dissolved | ug/L | <10.0 | 10.0 | 11/06/19 13:00 | | | Barium, Dissolved | ug/L | <200 | 200 | 11/06/19 13:00 | | | Beryllium, Dissolved | ug/L | <5.0 | 5.0 | 11/06/19 13:00 | | | Boron, Dissolved | ug/L | <50.0 | 50.0 | 11/06/19 13:00 | | | Cadmium, Dissolved | ug/L | <2.5 | 2.5 | 11/06/19 13:00 | | | Calcium, Dissolved | ug/L | <200 | 200 | 11/06/19 13:00 | | | Chromium, Dissolved | ug/L | <10.0 | 10.0 | 11/06/19 13:00 | | | Cobalt, Dissolved | ug/L | <50.0 | 50.0 | 11/06/19 13:00 | | | Copper, Dissolved | ug/L | <25.0 | 25.0 | 11/06/19 13:00 | | | Iron, Dissolved | ug/L | <20.0 | 20.0 | 11/06/19 13:00 | | | Lead, Dissolved | ug/L | <5.0 | 5.0 | 11/06/19 13:00 | | | Magnesium, Dissolved | ug/L | <200 | 200 | 11/06/19 13:00 | | | Manganese, Dissolved | ug/L | <10.0 | 10.0
 11/06/19 13:00 | | | Nickel, Dissolved | ug/L | <40.0 | 40.0 | 11/06/19 13:00 | | | Potassium, Dissolved | ug/L | <5000 | 5000 | 11/06/19 13:00 | | | Selenium, Dissolved | ug/L | <10.0 | 10.0 | 11/06/19 13:00 | | | Silver, Dissolved | ug/L | <10.0 | 10.0 | 11/06/19 13:00 | | | Sodium, Dissolved | ug/L | < 5000 | 5000 | 11/06/19 13:00 | | | Thallium, Dissolved | ug/L | <10.0 | 10.0 | 11/06/19 13:00 | | | Vanadium, Dissolved | ug/L | <50.0 | 50.0 | 11/06/19 13:00 | | | Zinc, Dissolved | ug/L | <20.0 | 20.0 | 11/06/19 13:00 | | | LABORATORY CONTROL SAMPLE: | 651773 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Aluminum, Dissolved | ug/L | 5000 | 4980 | 100 | 80-120 | | | Antimony, Dissolved | ug/L | 750 | 733 | 98 | 80-120 | | | Arsenic, Dissolved | ug/L | 500 | 489 | 98 | 80-120 | | | Barium, Dissolved | ug/L | 500 | 498 | 100 | 80-120 | | | Beryllium, Dissolved | ug/L | 50 | 50.2 | 100 | 80-120 | | | Boron, Dissolved | ug/L | 2500 | 2520 | 101 | 80-120 | | | Cadmium, Dissolved | ug/L | 50 | 50.0 | 100 | 80-120 | | | Calcium, Dissolved | ug/L | 25000 | 25100 | 100 | 80-120 | | | Chromium, Dissolved | ug/L | 250 | 251 | 100 | 80-120 | | | Cobalt, Dissolved | ug/L | 500 | 503 | 101 | 80-120 | | | Copper, Dissolved | ug/L | 250 | 251 | 100 | 80-120 | | | Iron, Dissolved | ug/L | 2000 | 2030 | 101 | 80-120 | | | Lead, Dissolved | ug/L | 500 | 503 | 101 | 80-120 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 | LABORATORY CONTROL SAMPLE: | 651773 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Magnesium, Dissolved | ug/L | 25000 | 24700 | 99 | 80-120 | | | Manganese, Dissolved | ug/L | 250 | 251 | 100 | 80-120 | | | Nickel, Dissolved | ug/L | 250 | 250 | 100 | 80-120 | | | Potassium, Dissolved | ug/L | 50000 | 48900 | 98 | 80-120 | | | Selenium, Dissolved | ug/L | 750 | 755 | 101 | 80-120 | | | Silver, Dissolved | ug/L | 250 | 247 | 99 | 80-120 | | | Sodium, Dissolved | ug/L | 50000 | 51600 | 103 | 80-120 | | | Thallium, Dissolved | ug/L | 750 | 753 | 100 | 80-120 | | | Vanadium, Dissolved | ug/L | 500 | 502 | 100 | 80-120 | | | Zinc, Dissolved | ug/L | 1000 | 1020 | 102 | 80-120 | | | MATRIX SPIKE SAMPLE: | 651776 | | | | | | | |----------------------|--------|-------------|-------|--------|-------|--------|------------| | | | 70109260006 | Spike | MS | MS | % Rec | | | Parameter | Units | Result | Conc. | Result | % Rec | Limits | Qualifiers | | Aluminum, Dissolved | ug/L | <200 | 5000 | 4620 | 92 | 75-125 | | | Antimony, Dissolved | ug/L | <60.0 | 750 | 538 | 72 | 75-125 | M1 | | Arsenic, Dissolved | ug/L | <10.0 | 500 | 459 | 92 | 75-125 | | | Barium, Dissolved | ug/L | <200 | 500 | 482 | 92 | 75-125 | | | Beryllium, Dissolved | ug/L | <5.0 | 50 | 46.2 | 92 | 75-125 | | | Boron, Dissolved | ug/L | <50.0 | 2500 | 2300 | 92 | 75-125 | | | Cadmium, Dissolved | ug/L | <2.5 | 50 | 46.5 | 93 | 75-125 | | | Calcium, Dissolved | ug/L | 13500 | 25000 | 37100 | 94 | 75-125 | | | Chromium, Dissolved | ug/L | <10.0 | 250 | 233 | 93 | 75-125 | | | Cobalt, Dissolved | ug/L | <50.0 | 500 | 466 | 93 | 75-125 | | | Copper, Dissolved | ug/L | <25.0 | 250 | 234 | 93 | 75-125 | | | ron, Dissolved | ug/L | 32.5 | 2000 | 1920 | 94 | 75-125 | | | _ead, Dissolved | ug/L | <5.0 | 500 | 467 | 93 | 75-125 | | | Magnesium, Dissolved | ug/L | 4150 | 25000 | 27700 | 94 | 75-125 | | | Manganese, Dissolved | ug/L | 181 | 250 | 407 | 90 | 75-125 | | | Nickel, Dissolved | ug/L | <40.0 | 250 | 242 | 91 | 75-125 | | | Potassium, Dissolved | ug/L | <5000 | 50000 | 41700 | 81 | 75-125 | | | Selenium, Dissolved | ug/L | <10.0 | 750 | 705 | 94 | 75-125 | | | Silver, Dissolved | ug/L | <10.0 | 250 | 63.5 | 25 | 75-125 | M1 | | Sodium, Dissolved | ug/L | 10300 | 50000 | 55800 | 91 | 75-125 | | | Γhallium, Dissolved | ug/L | <10.0 | 750 | 692 | 92 | 75-125 | | | Vanadium, Dissolved | ug/L | <50.0 | 500 | 469 | 94 | 75-125 | | | Zinc, Dissolved | ug/L | <20.0 | 1000 | 968 | 96 | 75-125 | | SAMPLE DUPLICATE: 651775 Date: 11/06/2019 02:57 PM | | | 70109260006 | Dup | | | |---------------------|-------|-------------|--------|-----|------------| | Parameter | Units | Result | Result | RPD | Qualifiers | | Aluminum, Dissolved | ug/L | <200 | <200 | | | | Antimony, Dissolved | ug/L | <60.0 | <60.0 | | | | Arsenic, Dissolved | ug/L | <10.0 | <10.0 | | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM SAMPLE DUPLICATE: 651775 70109260006 Dup Parameter Units Result Result **RPD** Qualifiers <200 Barium, Dissolved ug/L <200 < 5.0 Beryllium, Dissolved ug/L < 5.0 <50.0 Boron, Dissolved ug/L <50.0 Cadmium, Dissolved <2.5 <2.5 ug/L Calcium, Dissolved 13500 13400 1 ug/L Chromium, Dissolved ug/L <10.0 <10.0 Cobalt, Dissolved <50.0 ug/L <50.0 Copper, Dissolved <25.0 <25.0 ug/L Iron, Dissolved 32.5 32.1 1 ug/L < 5.0 Lead, Dissolved ug/L < 5.0 4150 0 Magnesium, Dissolved ug/L 4160 181 Manganese, Dissolved ug/L 181 0 <40.0 Nickel, Dissolved ug/L <40.0 Potassium, Dissolved ug/L <5000 <5000 ug/L Selenium, Dissolved <10.0 <10.0 Silver, Dissolved <10.0 <10.0 ug/L Sodium, Dissolved ug/L 10300 10000 3 <10.0 Thallium, Dissolved ug/L <10.0 <50.0 Vanadium, Dissolved ug/L < 50.0 Zinc, Dissolved <20.0 <20.0 ug/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136839 Analysis Method: EPA 7470A QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury Associated Lab Samples: 70109260005, 70109260006, 70109260020, 70109260021 METHOD BLANK: 654874 Matrix: Water Associated Lab Samples: 70109260005, 70109260006, 70109260020, 70109260021 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Mercury ug/L <0.20 0.20 11/01/19 16:33 LABORATORY CONTROL SAMPLE: 654875 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 0.93 93 80-120 MATRIX SPIKE SAMPLE: 654876 70109314004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.20 0.97 1 96 75-125 Mercury ug/L SAMPLE DUPLICATE: 654877 Date: 11/06/2019 02:57 PM Parameter Units 70109314004 Result Dup Result RPD Qualifiers Mercury ug/L <0.20</td> <0.20</td> Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136699 Analysis Method: EPA 7470A QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury Dissolved Associated Lab Samples: 70109260006 METHOD BLANK: 654082 Matrix: Water Associated Lab Samples: 70109260006 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Mercury, Dissolved ug/L <0.20 0.20 10/31/19 17:38 LABORATORY CONTROL SAMPLE: 654083 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury, Dissolved ug/L 0.93 93 80-120 MATRIX SPIKE SAMPLE: 654084 70109260006 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <0.20 0.89 Mercury, Dissolved 1 89 75-125 ug/L SAMPLE DUPLICATE: 654085 Date: 11/06/2019 02:57 PM Parameter Units Result Result RPD Qualifiers Mercury, Dissolved ug/L <0.20</td> <0.20</td> Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM QC Batch: 135967 Analysis Method: EPA 6010C QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017 METHOD BLANK: 650714 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017 | Parameter | Units | Blank
Result | Reporting
Limit | Analyzed | Qualifiers | |-----------|-------|-----------------|--------------------|----------------|------------| | Aluminum | ug/L | <200 | 200 | 10/28/19 14:24 | | | Antimony | ug/L | <60.0 | 60.0 | 10/28/19 14:24 | | | Arsenic | ug/L | <10.0 | 10.0 | 10/28/19 14:24 | | | Barium | ug/L | <200 | 200 | 10/28/19 14:24 | | | Beryllium | ug/L | <5.0 | 5.0 | 10/28/19 14:24 | | | Boron | ug/L | <50.0 | 50.0 | 10/28/19 14:24 | | | Cadmium | ug/L | <2.5 | 2.5 | 10/28/19 14:24 | | | Calcium | ug/L | <200 | 200 | 10/28/19 14:24 | | | Chromium | ug/L | <10.0 | 10.0 | 10/28/19 14:24 | | | Cobalt | ug/L | <50.0 | 50.0 | 10/28/19 14:24 | | | Copper | ug/L | <25.0 | 25.0 | 10/28/19 14:24 | | | Iron | ug/L | <20.0 | 20.0 | 10/28/19 14:24 | | | Lead | ug/L | <5.0 | 5.0 | 10/28/19 14:24 | | | Magnesium | ug/L | <200 | 200 | 10/28/19 14:24 | | | Manganese | ug/L | <10.0 | 10.0 | 10/28/19 14:24 | | | Nickel | ug/L | <40.0 | 40.0 | 10/28/19 14:24 | | | Potassium | ug/L | < 5000 | 5000 | 10/28/19 14:24 | | | Selenium | ug/L | <10.0 | 10.0 | 10/28/19 14:24 | | | Silver | ug/L | <10.0 | 10.0 | 10/28/19 14:24 | | | Sodium | ug/L | < 5000 | 5000 | 10/28/19 14:24 | | | Thallium | ug/L | <10.0 | 10.0 | 10/28/19 14:24 | | | Vanadium | ug/L | <50.0 | 50.0 | 10/28/19
14:24 | | | Zinc | ug/L | <20.0 | 20.0 | 10/28/19 14:24 | | | LABORATORY CONTROL SAMPLE: | 650715 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Aluminum | ug/L | 5000 | 5130 | 103 | 80-120 | | | Antimony | ug/L | 750 | 775 | 103 | 80-120 | | | Arsenic | ug/L | 500 | 528 | 106 | 80-120 | | | Barium | ug/L | 500 | 518 | 104 | 80-120 | | | Beryllium | ug/L | 50 | 52.6 | 105 | 80-120 | | | Boron | ug/L | 2500 | 2590 | 104 | 80-120 | | | Cadmium | ug/L | 50 | 51.6 | 103 | 80-120 | | | Calcium | ug/L | 25000 | 26000 | 104 | 80-120 | | | Chromium | ug/L | 250 | 259 | 104 | 80-120 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | LABORATORY CONTROL SAMPLE: | 650715 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Cobalt | ug/L | 500 | 519 | 104 | 80-120 | | | Copper | ug/L | 250 | 260 | 104 | 80-120 | | | ron | ug/L | 2000 | 2090 | 104 | 80-120 | | | ead | ug/L | 500 | 519 | 104 | 80-120 | | | 1agnesium | ug/L | 25000 | 25600 | 102 | 80-120 | | | langanese | ug/L | 250 | 260 | 104 | 80-120 | | | ickel | ug/L | 250 | 260 | 104 | 80-120 | | | otassium | ug/L | 50000 | 50400 | 101 | 80-120 | | | elenium | ug/L | 750 | 762 | 102 | 80-120 | | | lver | ug/L | 250 | 255 | 102 | 80-120 | | | odium | ug/L | 50000 | 52200 | 104 | 80-120 | | | nallium | ug/L | 750 | 778 | 104 | 80-120 | | | anadium | ug/L | 500 | 523 | 105 | 80-120 | | | inc | ug/L | 1000 | 1040 | 104 | 80-120 | | | MATRIX SPIKE SAMPLE: | 650717 | | | | | | | |----------------------|--------|-------------|-------|--------|-------|--------|------------| | | | 70109260008 | Spike | MS | MS | % Rec | | | Parameter | Units | Result | Conc. | Result | % Rec | Limits | Qualifiers | | Aluminum | ug/L | 1030 | 5000 | 7550 | 130 | 75-125 | M1 | | Antimony | ug/L | <60.0 | 750 | 807 | 107 | 75-125 | | | Arsenic | ug/L | <10.0 | 500 | 552 | 110 | 75-125 | | | Barium | ug/L | <200 | 500 | 607 | 109 | 75-125 | | | Beryllium | ug/L | <5.0 | 50 | 54.0 | 108 | 75-125 | | | Boron | ug/L | <50.0 | 2500 | 2690 | 107 | 75-125 | | | Cadmium | ug/L | <2.5 | 50 | 52.8 | 106 | 75-125 | | | Calcium | ug/L | 16000 | 25000 | 42700 | 107 | 75-125 | | | Chromium | ug/L | 78.1 | 250 | 327 | 100 | 75-125 | | | Cobalt | ug/L | <50.0 | 500 | 547 | 107 | 75-125 | | | Copper | ug/L | <25.0 | 250 | 275 | 106 | 75-125 | | | ron | ug/L | 10300 | 2000 | 11600 | 67 | 75-125 | M1 | | _ead | ug/L | <5.0 | 500 | 535 | 107 | 75-125 | | | Magnesium | ug/L | 6740 | 25000 | 33300 | 106 | 75-125 | | | Manganese | ug/L | 126 | 250 | 390 | 106 | 75-125 | | | Nickel | ug/L | 70.6 | 250 | 333 | 105 | 75-125 | | | Potassium | ug/L | <5000 | 50000 | 52900 | 103 | 75-125 | | | Selenium | ug/L | <10.0 | 750 | 787 | 105 | 75-125 | | | Silver | ug/L | <10.0 | 250 | 352 | 141 | 75-125 | M1 | | Sodium | ug/L | 8850 | 50000 | 62600 | 108 | 75-125 | | | Гhallium | ug/L | <10.0 | 750 | 795 | 106 | 75-125 | | | /anadium | ug/L | <50.0 | 500 | 546 | 108 | 75-125 | | | Zinc | ug/L | <20.0 | 1000 | 1080 | 107 | 75-125 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | SAMPLE DUPLICATE: 650716 | | 70109260008 | Dup | | | |--------------------------|-------|-------------|--------|-----|------------| | Parameter | Units | Result | Result | RPD | Qualifiers | | Aluminum | ug/L | 1030 | 991 | 4 | | | Antimony | ug/L | <60.0 | <60.0 | | | | Arsenic | ug/L | <10.0 | <10.0 | | | | Barium | ug/L | <200 | <200 | | | | Beryllium | ug/L | <5.0 | <5.0 | | | | Boron | ug/L | <50.0 | <50.0 | | | | Cadmium | ug/L | <2.5 | <2.5 | | | | Calcium | ug/L | 16000 | 15800 | 1 | | | Chromium | ug/L | 78.1 | 73.8 | 6 | | | Cobalt | ug/L | <50.0 | <50.0 | | | | Copper | ug/L | <25.0 | <25.0 | | | | Iron | ug/L | 10300 | 9770 | 5 | | | Lead | ug/L | <5.0 | <5.0 | | | | Magnesium | ug/L | 6740 | 6690 | 1 | | | Manganese | ug/L | 126 | 124 | 2 | | | Nickel | ug/L | 70.6 | 67.7 | 4 | | | Potassium | ug/L | <5000 | <5000 | | | | Selenium | ug/L | <10.0 | <10.0 | | | | Silver | ug/L | <10.0 | <10.0 | | | | Sodium | ug/L | 8850 | 8770 | 1 | | | Thallium | ug/L | <10.0 | <10.0 | | | | Vanadium | ug/L | <50.0 | <50.0 | | | | Zinc | ug/L | <20.0 | <20.0 | | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM QC Batch: 136635 Analysis Method: EPA 6010C QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water Associated Lab Samples: 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 653730 Matrix: Water Associated Lab Samples: 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 | | | Blank | Reporting | | | |-----------|-------|--------|-----------|----------------|------------| | Parameter | Units | Result | Limit | Analyzed | Qualifiers | | Aluminum | ug/L | <200 | 200 | 11/01/19 11:02 | | | Antimony | ug/L | <60.0 | 60.0 | 11/01/19 11:02 | | | Arsenic | ug/L | <10.0 | 10.0 | 11/01/19 11:02 | | | Barium | ug/L | <200 | 200 | 11/01/19 11:02 | | | Beryllium | ug/L | <5.0 | 5.0 | 11/01/19 11:02 | | | Boron | ug/L | <50.0 | 50.0 | 11/01/19 11:02 | | | Cadmium | ug/L | <2.5 | 2.5 | 11/01/19 11:02 | | | Calcium | ug/L | <200 | 200 | 11/01/19 11:02 | | | Chromium | ug/L | <10.0 | 10.0 | 11/01/19 11:02 | | | Cobalt | ug/L | <50.0 | 50.0 | 11/01/19 11:02 | | | Copper | ug/L | <25.0 | 25.0 | 11/01/19 11:02 | | | Iron | ug/L | <20.0 | 20.0 | 11/01/19 11:02 | | | Lead | ug/L | <5.0 | 5.0 | 11/01/19 11:02 | | | Magnesium | ug/L | <200 | 200 | 11/01/19 11:02 | | | Manganese | ug/L | <10.0 | 10.0 | 11/01/19 11:02 | | | Nickel | ug/L | <40.0 | 40.0 | 11/01/19 11:02 | | | Potassium | ug/L | <5000 | 5000 | 11/01/19 11:02 | | | Selenium | ug/L | <10.0 | 10.0 | 11/01/19 11:02 | | | Silver | ug/L | <10.0 | 10.0 | 11/01/19 11:02 | | | Sodium | ug/L | <5000 | 5000 | 11/01/19 11:02 | | | Thallium | ug/L | <10.0 | 10.0 | 11/01/19 11:02 | | | Vanadium | ug/L | <50.0 | 50.0 | 11/01/19 11:02 | | | Zinc | ug/L | <20.0 | 20.0 | 11/01/19 11:02 | | | LABORATORY CONTROL SAMPL | LE: 653731 | | | | | | |--------------------------|------------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Aluminum | ug/L | 5000 | 5150 | 103 | 80-120 | | | Antimony | ug/L | 750 | 808 | 108 | 80-120 | | | Arsenic | ug/L | 500 | 513 | 103 | 80-120 | | | Barium | ug/L | 500 | 513 | 103 | 80-120 | | | Beryllium | ug/L | 50 | 51.2 | 102 | 80-120 | | | Boron | ug/L | 2500 | 2560 | 102 | 80-120 | | | Cadmium | ug/L | 50 | 49.5 | 99 | 80-120 | | | Calcium | ug/L | 25000 | 25700 | 103 | 80-120 | | | Chromium | ug/L | 250 | 255 | 102 | 80-120 | | | Cobalt | ug/L | 500 | 520 | 104 | 80-120 | | | Copper | ug/L | 250 | 257 | 103 | 80-120 | | | Iron | ug/L | 2000 | 2110 | 105 | 80-120 | | | Lead | ug/L | 500 | 515 | 103 | 80-120 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 | LABORATORY CONTROL SAMPLE: | 653731 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Magnesium | ug/L | 25000 | 25500 | 102 | 80-120 | | | Manganese | ug/L | 250 | 258 | 103 | 80-120 | | | Nickel | ug/L | 250 | 260 | 104 | 80-120 | | | Potassium | ug/L | 50000 | 48900 | 98 | 80-120 | | | Selenium | ug/L | 750 | 738 | 98 | 80-120 | | | Silver | ug/L | 250 | 254 | 102 | 80-120 | | | Sodium | ug/L | 50000 | 52100 | 104 | 80-120 | | | Thallium | ug/L | 750 | 776 | 103 | 80-120 | | | Vanadium | ug/L | 500 | 517 | 103 | 80-120 | | | Zinc | ug/L | 1000 | 1020 | 102 | 80-120 | | | MATRIX SPIKE SAMPLE: | 653733 | | | | | | | |----------------------|--------|-------------|-------|--------|-------|----------|------------| | | | 70109826001 | Spike | MS | MS | % Rec | | | Parameter | Units | Result | Conc. | Result | % Rec | Limits | Qualifiers | | Aluminum | ug/L | <200 | 5000 | 5090 | 99 | 75-125 | | | Antimony | ug/L | <60.0 | 750 | 810 | 108 | 75-125 | | | Arsenic | ug/L | <10.0 | 500 | 510 | 101 | 75-125 | | | Barium | ug/L | 1080 | 500 | 1540 | 92 | 75-125 | | | Beryllium | ug/L | <5.0 | 50 | 49.3 | 99 | 75-125 | | | Boron | ug/L | <50.0 | 2500 | 2570 | 102 | 75-125 | | | Cadmium | ug/L | <2.5 | 50 | 47.7 | 95 | 75-125 | | | Calcium | ug/L | 221000 | 25000 | 236000 | 60 | 75-125 ľ | /11 | | Chromium | ug/L | <10.0 | 250 | 247 | 99 | 75-125 | | | Cobalt | ug/L | <50.0 | 500 | 508 | 102 | 75-125 | | | Copper | ug/L | <25.0 | 250 | 254 | 97 | 75-125 | | | Iron | ug/L | 28000 | 2000 | 29300 | 62 | 75-125 I | /11 | | Lead | ug/L | <5.0 | 500 | 496 | 99 | 75-125 | | | Magnesium | ug/L | 46600 | 25000 | 69500 | 92 | 75-125 | | | Manganese | ug/L | 759 | 250 | 985 | 90 | 75-125 | | | Nickel | ug/L | <40.0 | 250 | 274 | 103 | 75-125 | | | Potassium | ug/L | 8070 | 50000 | 56000 | 96 | 75-125 | | | Selenium | ug/L | <10.0 | 750 | 728 | 97 | 75-125 | | | Silver | ug/L | <10.0 | 250 | 235 | 94 | 75-125 | | | Sodium | ug/L | 38600 | 50000 | 88700 | 100 | 75-125 | | | Thallium | ug/L | <10.0 | 750 |
755 | 101 | 75-125 | | | √anadium | ug/L | <50.0 | 500 | 510 | 102 | 75-125 | | | Zinc | ug/L | <20.0 | 1000 | 977 | 97 | 75-125 | | Date: 11/06/2019 02:57 PM | | | 70109826001 | Dup | | | |-----------|-------|-------------|--------|-----|------------| | Parameter | Units | Result | Result | RPD | Qualifiers | | Aluminum | ug/L | <200 | <200 | | | | Antimony | ug/L | <60.0 | <60.0 | | | | Arsenic | ug/L | <10.0 | <10.0 | | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM SAMPLE DUPLICATE: 653732 70109826001 Dup Parameter Units Result Result **RPD** Qualifiers 1080 Barium ug/L 1090 1 < 5.0 Beryllium ug/L < 5.0 <50.0 Boron ug/L <50.0 Cadmium <2.5 <2.5 ug/L Calcium 221000 223000 1 ug/L Chromium ug/L <10.0 <10.0 <50.0 Cobalt ug/L < 50.0 Copper ug/L <25.0 <25.0 28000 Iron ug/L 28500 2 < 5.0 Lead ug/L < 5.0 46600 1 Magnesium ug/L 47100 759 Manganese ug/L 769 1 <40.0 Nickel ug/L <40.0 Potassium ug/L 8070 7940 2 Selenium ug/L <10.0 <10.0 Silver ug/L <10.0 <10.0 Sodium ug/L 38600 39500 2 <10.0 Thallium ug/L <10.0 <50.0 Vanadium ug/L < 50.0 <20.0 Zinc <20.0 ug/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM QC Batch: 135589 Analysis Method: EPA 8260C/5030C QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV Associated Lab Samples: 70109260005, 70109260006, 70109260012, 70109260013 METHOD BLANK: 648736 Matrix: Water Associated Lab Samples: 70109260005, 70109260006, 70109260012, 70109260013 | _ | | Blank | Reporting | | | |-----------------------------|-------|--------|-----------|----------------|------------| | Parameter | Units | Result | Limit | Analyzed | Qualifiers | | 1,1,1,2-Tetrachloroethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,1,1-Trichloroethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,1,2,2-Tetrachloroethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,1,2-Trichloroethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,1-Dichloroethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,1-Dichloroethene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,2,3-Trichloropropane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,2-Dibromo-3-chloropropane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,2-Dibromoethane (EDB) | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,2-Dichlorobenzene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,2-Dichloroethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,2-Dichloropropane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,4-Dichlorobenzene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 2-Butanone (MEK) | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | CL,IL | | 2-Hexanone | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 4-Methyl-2-pentanone (MIBK) | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Acetone | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | IC | | Acrylonitrile | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Benzene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Bromochloromethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Bromodichloromethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Bromoform | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Bromomethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Carbon disulfide | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Carbon tetrachloride | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Chlorobenzene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Chloroethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Chloroform | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Chloromethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | cis-1,2-Dichloroethene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | cis-1,3-Dichloropropene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Dibromochloromethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Dibromomethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Ethylbenzene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | lodomethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Methylene Chloride | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Styrene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Tetrachloroethene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Toluene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | trans-1,2-Dichloroethene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | trans-1,3-Dichloropropene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. ### **REPORT OF LABORATORY ANALYSIS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM METHOD BLANK: 648736 Matrix: Water Associated Lab Samples: 70109260005, 70109260006, 70109260012, 70109260013 | Parameter | Units | Blank
Result | Reporting
Limit | Analyzed | Qualifiers | |-----------------------------|-------|-----------------|--------------------|----------------|------------| | trans-1,4-Dichloro-2-butene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Trichloroethene | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Trichlorofluoromethane | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Vinyl acetate | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Vinyl chloride | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | Xylene (Total) | ug/L | <5.0 | 5.0 | 10/23/19 11:34 | | | 1,2-Dichloroethane-d4 (S) | % | 93 | 68-153 | 10/23/19 11:34 | | | 4-Bromofluorobenzene (S) | % | 94 | 79-124 | 10/23/19 11:34 | | | Toluene-d8 (S) | % | 93 | 69-124 | 10/23/19 11:34 | | | LABORATORY CONTROL SAMPLE: | 648737 | | | | | | |-----------------------------|--------|-------|--------|-------|-----------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | 1,1,1,2-Tetrachloroethane | ug/L | 50 | 42.1 | 84 | 74-113 | | | 1,1,1-Trichloroethane | ug/L | 50 | 43.6 | 87 | 65-118 | | | 1,1,2,2-Tetrachloroethane | ug/L | 50 | 49.9 | 100 | 74-121 | | | 1,1,2-Trichloroethane | ug/L | 50 | 48.6 | 97 | 80-117 | | | 1,1-Dichloroethane | ug/L | 50 | 49.8 | 100 | 83-151 | | | 1,1-Dichloroethene | ug/L | 50 | 46.0 | 92 | 45-146 | | | 1,2,3-Trichloropropane | ug/L | 50 | 44.1 | 88 | 71-123 | | | 1,2-Dibromo-3-chloropropane | ug/L | 50 | 44.8 | 90 | 74-119 | | | 1,2-Dibromoethane (EDB) | ug/L | 50 | 44.9 | 90 | 83-115 | | | 1,2-Dichlorobenzene | ug/L | 50 | 46.2 | 92 | 74-113 | | | 1,2-Dichloroethane | ug/L | 50 | 49.4 | 99 | 74-129 | | | 1,2-Dichloropropane | ug/L | 50 | 48.2 | 96 | 75-117 | | | 1,4-Dichlorobenzene | ug/L | 50 | 45.5 | 91 | 71-113 | | | 2-Butanone (MEK) | ug/L | 50 | 38.9 | 78 | 44-162 II | _ | | 2-Hexanone | ug/L | 50 | 45.3 | 91 | 32-183 | | | 4-Methyl-2-pentanone (MIBK) | ug/L | 50 | 47.2 | 94 | 69-132 | | | Acetone | ug/L | 50 | 47.1 | 94 | 23-188 C | H,IC | | Acrylonitrile | ug/L | 50 | 58.0 | 116 | 59-148 | | | Benzene | ug/L | 50 | 47.0 | 94 | 73-119 | | | Bromochloromethane | ug/L | 50 | 51.4 | 103 | 81-116 | | | Bromodichloromethane | ug/L | 50 | 46.8 | 94 | 78-117 | | | Bromoform | ug/L | 50 | 39.2 | 78 | 65-122 | | | Bromomethane | ug/L | 50 | 69.5 | 139 | 52-147 C | H | | Carbon disulfide | ug/L | 50 | 41.2 | 82 | 41-144 | | | Carbon tetrachloride | ug/L | 50 | 47.2 | 94 | 59-120 | | | Chlorobenzene | ug/L | 50 | 46.2 | 92 | 75-113 | | | Chloroethane | ug/L | 50 | 45.5 | 91 | 49-151 | | | Chloroform | ug/L | 50 | 52.7 | 105 | 72-122 | | | Chloromethane | ug/L | 50 | 47.0 | 94 | 46-144 | | | cis-1,2-Dichloroethene | ug/L | 50 | 50.8 | 102 | 72-121 | | | cis-1,3-Dichloropropene | ug/L | 50 | 45.3 | 91 | 78-116 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. # **REPORT OF LABORATORY ANALYSIS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Benzene Bromoform Bromochloromethane Bromodichloromethane Date: 11/06/2019 02:57 PM | LABORATORY CONTROL SAMPLE: | 648737 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Dibromochloromethane | ug/L | 50 | 43.3 | 87 | 70-120 | | | Dibromomethane | ug/L | 50 | 45.9 | 92 | 75-125 | | | thylbenzene | ug/L | 50 | 46.0 | 92 | 70-113 | | | odomethane | ug/L | 50 | 115 | 230 | 61-144 | CH,L1 | | ethylene Chloride | ug/L | 50 | 52.6 | 105 | 61-142 | | | yrene | ug/L | 50 | 45.6 | 91 | 72-118 | | | trachloroethene | ug/L | 50 | 43.1 | 86 | 60-128 | | | uene | ug/L | 50 | 47.7 | 95 | 72-119 | | | ns-1,2-Dichloroethene | ug/L | 50 | 49.3 | 99 | 56-142 | | | ns-1,3-Dichloropropene | ug/L | 50 | 42.8 | 86 | 79-116 | | | ns-1,4-Dichloro-2-butene | ug/L | 50 | 55.6 | 111 | 71-121 | | | chloroethene | ug/L | 50 | 45.3 | 91 | 69-117 | | | chlorofluoromethane | ug/L | 50 | 44.1 | 88 | 27-173 | | | nyl acetate | ug/L | 50 | 46.5 | 93 | 20-158 | | | nyl chloride | ug/L | 50 | 44.4 | 89 | 43-143 | | | ene (Total) | ug/L | 150 | 136 | 90 | 71-109 | | | -Dichloroethane-d4 (S) | % | | | 88 | 68-153 | | | romofluorobenzene (S) | % | | | 94 | 79-124 | | | uene-d8 (S) | % | | | 95 | 69-124 | | | SAMPLE DUPLICATE: 649102 | | | | | | |-----------------------------|-------|-----------------------|---------------|-----|------------| | Parameter | Units | 70109294003
Result | Dup
Result | RPD | Qualifiers | | 1,1,1,2-Tetrachloroethane | ug/L | <1.0 | <5.0 | | | | 1,1,1-Trichloroethane | ug/L | <1.0 | <5.0 | | | | 1,1,2,2-Tetrachloroethane | ug/L | <1.0 | < 5.0 | | | | 1,1,2-Trichloroethane | ug/L | <1.0 | < 5.0 | | | | 1,1-Dichloroethane | ug/L | <1.0 | <5.0 | | | | 1,1-Dichloroethene | ug/L | <1.0 | <5.0 | | | | 1,2,3-Trichloropropane | ug/L | <1.0 | <5.0 | | | | 1,2-Dibromo-3-chloropropane | ug/L | <1.0 | < 5.0 | | | | 1,2-Dibromoethane (EDB) | ug/L | <1.0 | < 5.0 | | | | 1,2-Dichlorobenzene |
ug/L | <1.0 | < 5.0 | | | | 1,2-Dichloroethane | ug/L | <1.0 | < 5.0 | | | | 1,2-Dichloropropane | ug/L | <1.0 | < 5.0 | | | | 1,4-Dichlorobenzene | ug/L | <1.0 | < 5.0 | | | | 2-Butanone (MEK) | ug/L | <5.0 | <5.0 | | CL,IL | | 2-Hexanone | ug/L | <5.0 | <5.0 | | | | 4-Methyl-2-pentanone (MIBK) | ug/L | <5.0 | <5.0 | | | | Acetone | ug/L | <5.0 | <5.0 | | IC | | Acrylonitrile | ug/L | <1.0 | <5.0 | | | ug/L ug/L ug/L ug/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. < 5.0 < 5.0 < 5.0 < 5.0 <1.0 <1.0 <1.0 <1.0 # **REPORT OF LABORATORY ANALYSIS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM SAMPLE DUPLICATE: 649102 70109294003 Dup Parameter Units Result Result **RPD** Qualifiers Bromomethane ug/L <1.0 <5.0 <1.0 Carbon disulfide ug/L < 5.0 Carbon tetrachloride ug/L <1.0 <5.0 Chlorobenzene <1.0 <5.0 ug/L Chloroethane <1.0 <5.0 ug/L Chloroform ug/L <1.0 <5.0 Chloromethane <1.0 ug/L < 5.0 cis-1,2-Dichloroethene <1.0 <5.0 ug/L cis-1,3-Dichloropropene <1.0 < 5.0 ug/L <1.0 Dibromochloromethane ug/L < 5.0 <1.0 Dibromomethane ug/L < 5.0 <1.0 Ethylbenzene ug/L < 5.0 Iodomethane ug/L <1.0 < 5.0 Methylene Chloride <1.0 <5.0 ug/L Styrene <1.0 <5.0 ug/L Tetrachloroethene <1.0 < 5.0 ug/L Toluene <1.0 < 5.0 ug/L <1.0 trans-1,2-Dichloroethene ug/L < 5.0 <1.0 trans-1,3-Dichloropropene ug/L < 5.0 <1.0 trans-1,4-Dichloro-2-butene ug/L < 5.0 <1.0 Trichloroethene ug/L < 5.0 <1.0 Trichlorofluoromethane ug/L < 5.0 <1.0 Vinyl acetate ug/L < 5.0 Vinyl chloride ug/L <1.0 < 5.0 Xylene (Total) ug/L <3.0 < 5.0 1,2-Dichloroethane-d4 (S) % 89 88 4-Bromofluorobenzene (S) % 93 94 % 93 Toluene-d8 (S) 94 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 135811 Analysis Method: SM22 2320B QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011 METHOD BLANK: 649947 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, $70109260008,\,70109260009,\,70109260010,\,70109260011$ Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Alkalinity, Total as CaCO3 mg/L <1.0 1.0 10/24/19 18:17 LABORATORY CONTROL SAMPLE: 649948 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 mg/L 23.3 93 85-115 25 MATRIX SPIKE SAMPLE: 649950 70109260008 Spike MS MS % Rec Result Result % Rec Limits Qualifiers Parameter Units Conc. 52.0 Alkalinity, Total as CaCO3 25 75.0 92 75-125 mg/L SAMPLE DUPLICATE: 649949 Date: 11/06/2019 02:57 PM Parameter Units Result Result Result RPD Qualifiers Alkalinity, Total as CaCO3 mg/L 52.0 50.5 3 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136348 Analysis Method: SM22 2320B QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 652404 Matrix: Water Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Alkalinity, Total as CaCO3 mg/L <1.0 1.0 10/29/19 16:00 LABORATORY CONTROL SAMPLE: 652405 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 26.0 104 85-115 mg/L 25 MATRIX SPIKE SAMPLE: 652407 70109317003 Spike MS MS % Rec Result % Rec Limits Qualifiers Parameter Units Conc. Result 5.7 Alkalinity, Total as CaCO3 25 33.3 111 75-125 mg/L SAMPLE DUPLICATE: 652406 Date: 11/06/2019 02:57 PM Parameter Units Result Result Result RPD Qualifiers Alkalinity, Total as CaCO3 mg/L 5.7 5.7 0 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 137276 Analysis Method: SM22 2340C QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022 METHOD BLANK: 656867 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022 <5.0 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers LABORATORY CONTROL SAMPLE: 656868 0000 mg/L Spike LCS , 11/05/19 17:24 % Rec Limits Qualifiers Parameter Units Conc. Result % Rec Limits Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 100 90-110 MATRIX SPIKE SAMPLE: Parameter Tot Hardness asCaCO3 (SM 2340B 656869 70109260008 Units Result Spike Conc. MS Result LCS MS % Rec % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 80.0 500 575 99 75-125 SAMPLE DUPLICATE: 656870 Date: 11/06/2019 02:57 PM Parameter Units 70109260008 Result Dup Result RPD Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 80.0 70.0 13 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 137305 QC Batch Method: SM22 2340C Analysis Method: Analysis Description: SM22 2340C 2340C Hardness, Total Associated Lab Samples: 70109260023 METHOD BLANK: 657116 Matrix: Water Associated Lab Samples: 70109260023 Blank Reporting Units Parameter Result mg/L Units mg/L Units mg/L Limit Analyzed Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L <5.0 5.0 11/05/19 22:12 LABORATORY CONTROL SAMPLE: Parameter Spike Units Conc. LCS Result 90.0 90.0 LCS % Rec % Rec Limits Qualifiers Parameter Parameter Tot Hardness asCaCO3 (SM 2340B Tot Hardness asCaCO3 (SM 2340B MATRIX SPIKE SAMPLE: Tot Hardness asCaCO3 (SM 2340B 657118 70109260023 Result 100 Spike Conc. 1000 90.0 100 MS Result 100 1090 0 MS % Rec 100 90-110 % Rec Limits 75-125 Qualifiers SAMPLE DUPLICATE: 657119 70109260023 Result Dup Result RPD Qualifiers Date: 11/06/2019 02:57 PM Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 **Total Dissolved Solids** Date: 11/06/2019 02:57 PM QC Batch: 135688 Analysis Method: SM22 2540C mg/L QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, Associated Lab Samples: 70109260008, 70109260009, 70109260010, 70109260011 METHOD BLANK: 649501 Matrix: Water 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, Associated Lab Samples: 70109260008, 70109260009, 70109260010, 70109260011 Blank Reporting Qualifiers Parameter Units Result Limit Analyzed **Total Dissolved Solids** 10/24/19 09:41 LABORATORY CONTROL SAMPLE: 649502 <10.0 10.0 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** 111 500 554 85-115 mg/L MATRIX SPIKE SAMPLE: 649504 70109260001 Spike MS MS % Rec % Rec Limits Parameter Units Result Conc. Result Qualifiers 330 **Total Dissolved Solids** 600 978 108 75-125 mg/L MATRIX SPIKE SAMPLE: 649506 70109260008 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Total Dissolved Solids mg/L 103 300 432 110 75-125 SAMPLE DUPLICATE: 649503 70109260001 Dup **RPD** Parameter Units Result Result Qualifiers **Total Dissolved Solids** 330 330 0 mg/L SAMPLE DUPLICATE: 649505 70109260008 Dup Result Result **RPD** Qualifiers Parameter Units mg/L 103 103 0 ### REPORT OF LABORATORY ANALYSIS Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 135871 QC Batch Method: SM22 2540C Associated Lab Samples: 70109260014 Analysis Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids Qualifiers METHOD BLANK: 650334 Matrix: Water Associated Lab Samples: 70109260014 Blank Reporting Parameter Units Result Limit Analyzed Total Dissolved Solids mg/L <10.0 10.0 10/25/19 09:41 LABORATORY CONTROL SAMPLE: 650335 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 500 482 96 85-115 MATRIX SPIKE SAMPLE: 650337 70109650001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 502 **Total Dissolved Solids** 600 1250 124 75-125 mg/L MATRIX SPIKE SAMPLE: 650339 70109314004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 370 **Total Dissolved Solids** mg/L 600 1070 116 75-125 SAMPLE DUPLICATE: 650336 Parameter Units Parameter Units Dup Result Result RPD Qualifiers Total Dissolved Solids mg/L 502 486 3 SAMPLE DUPLICATE: 650338 Date: 11/06/2019 02:57 PM Parameter Units Result Result Result RPD Qualifiers Total Dissolved Solids mg/L 370 436 16 D6 Results presented on this page are in the units indicated by the "Units" column
except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM QC Batch: 136065 Analysis Method: SM22 2540C QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids Associated Lab Samples: 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 651343 Matrix: Water Associated Lab Samples: 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 | Parameter | Units | Blank
Result | Reporting
Limit | Analyzed | Qualifie | ers | | |----------------------------|--------|-----------------------|--------------------|--------------|-----------------|-----------------|------------| | Total Dissolved Solids | mg/L | <10.0 | 10.0 | 10/28/19 13: | 42 | | | | LABORATORY CONTROL SAMPLE: | 651344 | | | | | | | | Parameter | Units | • | LCS
Result | LCS
% Rec | % Rec
Limits | Qualifiers | | | Total Dissolved Solids | mg/L | 500 | 510 | 102 | 85-115 | | | | MATRIX SPIKE SAMPLE: | 651346 | | | | | | | | Parameter | Units | 70109260015
Result | Spike
Conc. | MS
Result | MS
% Rec | % Rec
Limits | Qualifiers | | Total Dissolved Solids | mg/L | 21 | 6 300 | 554 | 113 | 75-125 | | | MATRIX SPIKE SAMPLE: | 651348 | | | | | | | | Parameter | Units | 70109461004
Result | Spike
Conc. | MS
Result | MS
% Rec | % Rec
Limits | Qualifiers | | Total Dissolved Solids | mg/L | 13 | | 442 | 101 | 75-125 | | | SAMPLE DUPLICATE: 651345 | | | | | | | | | Parameter | Units | 70109260015
Result | Dup
Result | RPD | Qualifiers | | | | Total Dissolved Solids | mg/L | 216 | 212 | 2 | 2 | | | | SAMPLE DUPLICATE: 651347 | | | | | | | | | Parameter | Units | 70109461004
Result | Dup
Result | RPD | Qualifiers | | | | Total Dissolved Solids | mg/L | 139 | 141 | 1 | 1 | _ | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. ### **REPORT OF LABORATORY ANALYSIS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 LABORATORY CONTROL SAMPLE: Date: 11/06/2019 02:57 PM QC Batch: 136082 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011 METHOD BLANK: 651393 Matrix: Water 651394 Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Chemical Oxygen Demand mg/L <10.0 10.0 10/28/19 13:35 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand 108 90-110 mg/L 500 542 MATRIX SPIKE SAMPLE: 651395 70109826004 Spike MS MS % Rec % Rec Result Limits Parameter Units Conc. Result Qualifiers 41.1 Chemical Oxygen Demand 1000 1080 103 90-110 mg/L MATRIX SPIKE SAMPLE: 651397 70109260008 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 12.4 1000 1040 103 90-110 SAMPLE DUPLICATE: 651396 Parameter Units 70109826004 Result Dup Result RPD Qualifiers Chemical Oxygen Demand mg/L 41.1 36.7 11 SAMPLE DUPLICATE: 651398 Parameter Units Result Result RPD Qualifiers Chemical Oxygen Demand mg/L 12.4 14.6 16 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. NORTH SEA LANDFILL 10/21 Project: Pace Project No.: 70109260 QC Batch: 136440 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, Associated Lab Samples: 70109260021, 70109260022, 70109260023 METHOD BLANK: 652918 Matrix: Water 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, Associated Lab Samples: 70109260021, 70109260022, 70109260023 Blank Reporting Units Qualifiers Parameter Result Limit Analyzed Spike Chemical Oxygen Demand mg/L <10.0 10.0 10/30/19 11:52 LABORATORY CONTROL SAMPLE: 652919 Parameter Units Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand 105 90-110 mg/L 500 527 70109260014 MATRIX SPIKE SAMPLE: 652920 Date: 11/06/2019 02:57 PM % Rec Result Limits Parameter Units Conc. Result Qualifiers <10.0 Chemical Oxygen Demand 1000 1050 105 90-110 mg/L Spike LCS LCS MS % Rec MS % Rec MATRIX SPIKE SAMPLE: 652922 70109314004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L <10.0 1000 1030 102 90-110 SAMPLE DUPLICATE: 652921 70109260014 Dup Qualifiers **RPD** Parameter Units Result Result <10.0 <10.0 Chemical Oxygen Demand mg/L SAMPLE DUPLICATE: 652923 70109314004 Dup Result Parameter Result **RPD** Qualifiers Units <10.0 Chemical Oxygen Demand 10.2 mg/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 135404 Analysis Method: SM22 5210B QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011 METHOD BLANK: 647706 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011 Blank Reporting Blank Reporting Parameter Units Result Limit Analyzed Qualifiers BOD, 5 day mg/L <2.0 2.0 10/27/19 08:26 LABORATORY CONTROL SAMPLE: 647707 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers BOD, 5 day 94 84.5-115.4 mg/L 198 187 SAMPLE DUPLICATE: 647708 Parameter Units 70109242001 Result Dup Result RPD Qualifiers BOD, 5 day mg/L 529 540 2 SAMPLE DUPLICATE: 648019 Date: 11/06/2019 02:57 PM Parameter Units Result Result Result RPD Qualifiers BOD, 5 day mg/L <4.0</td> <4.0</td> Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 135600 Analysis Method: SM22 5210B QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 648890 Matrix: Water Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 Blank Parameter Units Result Result Limit Limit Analyzed Analyzed Qualifiers BOD, 5 day mg/L <2.0</td> 2.0 10/28/19 12:05 LABORATORY CONTROL SAMPLE: 648891 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers BOD, 5 day 98 84.5-115.4 mg/L 198 194 SAMPLE DUPLICATE: 648892 Date: 11/06/2019 02:57 PM Parameter Units 70109360001 Result Dup Result RPD Qualifiers BOD, 5 day mg/L 226 234 3 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM QC Batch: 136000 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004 METHOD BLANK: 650847 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004 Blank Reporting | Parameter | Units | Result | Limit | Analyzed | Qualifiers | |-----------|-------|--------|-------|----------------|------------| | Bromide | mg/L | <0.50 | 0.50 | 10/25/19 18:59 | | | Chloride | mg/L | <2.0 | 2.0 | 10/25/19 18:59 | | | Sulfate | mg/L | <5.0 | 5.0 | 10/25/19 18:59 | | | LABORATORY CONTROL SAMPLE: | 650848 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Bromide | mg/L | 1 | 1.1 | 110 | 90-110 | | | Chloride | mg/L | 10 | 10.9 | 109 | 90-110 | | | Sulfate | mg/L | 10 | 10.4 | 104 | 90-110 | | | MATRIX SPIKE SAMPLE: | 650849 | | | | | | | |----------------------|--------|-------------|-------|--------|-------|--------|------------| | | | 70109323003 | Spike | MS | MS | % Rec | | | Parameter | Units | Result | Conc. | Result | % Rec | Limits | Qualifiers | | Bromide | mg/L | 0.079 | 1 | 1.1 | 103 | 80-120 | | | Chloride | mg/L | 21.7 | 10 | 31.6 | 99 | 80-120 | | | Sulfate | mg/L | 30.5 | 10 | 39.5 | 91 | 80-120 | | | MATRIX SPIKE & MATRIX SPIR | MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 650851 650884 | | | | | | | | | | | |----------------------------|--|--------------|-------------|--------------|--------|--------|-------|-------|--------|-----|------| | | 701 | 108807012 | MS
Spike | MSD
Spike | MS | MSD | MS | MSD | % Rec | | | | Parameter | Units | Result | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | Qual | | Bromide | mg/L | 87.2
ug/L | 1 | 1 | 1.1 | 1.1 | 104 | 103 | 80-120 | 1 | | | Chloride | mg/L | 376 | 10 | 10 | 387 | 385 | 102 | 92 | 80-120 | 0 | | | Sulfate | mg/L | 68.0 | 10 | 10 | 76.7 | 76.1 | 87 | 81 | 80-120 | 1 | | | SAMPLE DUPLICATE: 650850 | | | | | | |--------------------------|-------|-------------|--------|-----|------------| | | | 70109323003 | Dup | | | | Parameter | Units | Result | Result | RPD | Qualifiers | | Bromide | mg/L |
0.079 | <0.50 | | | | Chloride | mg/L | 21.7 | 21.7 | 0 | | | Sulfate | mg/L | 30.5 | 30.4 | 0 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136175 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions Associated Lab Samples: 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 651898 Matrix: Water Associated Lab Samples: 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 | Parameter | Units | Biank
Result | Reporting
Limit | Analyzed | Qualifiers | |-----------|-------|-----------------|--------------------|----------------|------------| | | | | | | | | Bromide | mg/L | < 0.50 | 0.50 | 10/28/19 19:13 | | | Chloride | mg/L | <2.0 | 2.0 | 10/28/19 19:13 | | | Sulfate | mg/L | < 5.0 | 5.0 | 10/28/19 19:13 | | | LABORATORY CONTROL SAMPLE: | 651899 | | | | | | |----------------------------|--------|-------|--------|-------|--------|------------| | | | Spike | LCS | LCS | % Rec | | | Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers | | Bromide | mg/L | 1 | 1.1 | 107 | 90-110 | _ | | Chloride | mg/L | 10 | 10.9 | 109 | 90-110 | | | Sulfate | mg/L | 10 | 10.8 | 108 | 90-110 | | | MATRIX SPIKE SAMPLE: | 651900 | | | | | | | |----------------------|--------|-----------------------|----------------|--------------|-------------|-----------------|------------| | Parameter | Units | 70109260008
Result | Spike
Conc. | MS
Result | MS
% Rec | % Rec
Limits | Qualifiers | | Bromide | mg/L | <0.50 | 1 | 1.0 | 98 | 80-120 | | | Chloride | mg/L | 13.8 | 10 | 25.7 | 119 | 80-120 | | | Sulfate | mg/L | 13.4 | 10 | 24.3 | 109 | 80-120 | | | MATRIX SPIKE SAMPLE: | 651902 | | | | | | | |----------------------|--------|-------------|-------|--------|-------|--------|------------| | | | 70109818001 | Spike | MS | MS | % Rec | | | Parameter | Units | Result | Conc. | Result | % Rec | Limits | Qualifiers | | Bromide | mg/L | <0.50 | 1 | 1.1 | 106 | 80-120 | | | Chloride | mg/L | <2.0 | 10 | 10.5 | 105 | 80-120 | | | Sulfate | mg/L | <5.0 | 10 | 9.7 | 96 | 80-120 | | | | | | | | | | | | SAMPLE | DUPLICATE: | 651901 | | |--------|------------|--------|--| | | | | | Date: 11/06/2019 02:57 PM | | | 70109260008 | Dup | | | |-----------|-------|-------------|--------|-----|------------| | Parameter | Units | Result | Result | RPD | Qualifiers | | Bromide | mg/L | <0.50 | <0.50 | | | | Chloride | mg/L | 13.8 | 13.7 | 1 | | | Sulfate | mg/L | 13.4 | 13.4 | 0 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM SAMPLE DUPLICATE: 651903 | Parameter Parameter | Units | 70109818001
Result | Dup
Result | RPD | Qualifiers | |---------------------|-------|-----------------------|---------------|-----|------------| | Bromide | mg/L | <0.50 | <0.50 | | | | Chloride | mg/L | <2.0 | <2.0 | | | | Sulfate | mg/L | <5.0 | <5.0 | | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 LABORATORY CONTROL SAMPLE: Parameter Nitrogen, Kjeldahl, Total Date: 11/06/2019 02:57 PM QC Batch: 137115 Analysis Method: EPA 351.2 QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007 METHOD BLANK: 656259 Matrix: Water 656260 Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007 Blank Reporting ParameterUnitsResultLimitAnalyzedQualifiersNitrogen, Kjeldahl, Totalmg/L<0.10</td>0.1011/05/19 11:58 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 4 4.3 109 90-110 MATRIX SPIKE SAMPLE: 656261 70109807002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.79 4 Nitrogen, Kjeldahl, Total 5.6 119 90-110 M6 mg/L MATRIX SPIKE SAMPLE: 656263 70110012001 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 0.29 Nitrogen, Kjeldahl, Total mg/L 4.4 102 90-110 SAMPLE DUPLICATE: 656262 70109807002 Dup Parameter Units Result Result RPD Qualifiers Nitrogen, Kjeldahl, Total mg/L 0.79 0.81 3 SAMPLE DUPLICATE: 656264 70110012001 Dup Units mg/L Result 0.29 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Result 0.26 **RPD** 12 Qualifiers Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Nitrogen, Kjeldahl, Total Date: 11/06/2019 02:57 PM QC Batch: 137116 Analysis Method: EPA 351.2 QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN Associated Lab Samples: 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 656265 Matrix: Water Associated Lab Samples: 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersNitrogen, Kjeldahl, Totalmg/L<0.10</td>0.1011/05/19 12:24 LABORATORY CONTROL SAMPLE: 656266 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 4.2 104 90-110 Nitrogen, Kjeldahl, Total mg/L 4 MATRIX SPIKE SAMPLE: 656267 70109260008 Spike MS MS % Rec % Rec Limits Result Parameter Units Conc. Result Qualifiers < 0.10 Nitrogen, Kjeldahl, Total 4 4.6 113 90-110 M6 mg/L MATRIX SPIKE SAMPLE: 656269 70109385002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 2.0 4 7.0 126 90-110 M6 SAMPLE DUPLICATE: 656268 70109260008 Dup **RPD** Parameter Units Result Result Qualifiers < 0.10 < 0.10 Nitrogen, Kjeldahl, Total mg/L SAMPLE DUPLICATE: 656270 70109385002 Dup Result Result **RPD** Qualifiers Parameter Units Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. 2.0 mg/L 2.1 4 NORTH SEA LANDFILL 10/21 Project: Pace Project No.: 70109260 QC Batch: 135450 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres. 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, Associated Lab Samples: 70109260008, 70109260009, 70109260010, 70109260011 METHOD BLANK: 648255 Matrix: Water 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, Associated Lab Samples: Blank 70109260008, 70109260009, 70109260010, 70109260011 Reporting Qualifiers Parameter Units Result Limit Analyzed Nitrite as N mg/L < 0.050 0.050 10/22/19 22:47 Spike LABORATORY CONTROL SAMPLE: 648256 Parameter Units Conc. Result % Rec Limits Qualifiers 1 Nitrite as N 0.96 96 90-110 mg/L MATRIX SPIKE SAMPLE: 648257 70109260008 Result Units Parameter % Rec Limits Conc. Result Qualifiers < 0.050 Nitrite as N 0.5 0.54 108 90-110 mg/L Spike LCS LCS MS % Rec MS % Rec MATRIX SPIKE SAMPLE: 648259 70109301001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L 2.0 0.5 6.8 963 90-110 M6 SAMPLE DUPLICATE: 648258 70109260008 Dup **RPD** Parameter Units Result Result Qualifiers < 0.050 < 0.050 Nitrite as N mg/L SAMPLE DUPLICATE: 648260 Date: 11/06/2019 02:57 PM 70109301001 Dup Result Result **RPD** Qualifiers Parameter Units 2.0 Nitrite as N 2.0 0 mg/L Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM QC Batch: 135654 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres. Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022 METHOD BLANK: 649231 Matrix: Water Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022 | 70109260 | 0021, 70109260022 | | | | | | | |----------------------------|-------------------|-----------------------|--------------------|--------------|-----------------|-----------------|------------| | Parameter | Units | Blank
Result | Reporting
Limit | Analyzed | Qualific | ers | | | Nitrite as N | mg/L | <0.050 | 0.050 | 10/23/19 19: | 36 | | | | LABORATORY CONTROL SAMPLE: | 649232 | | | | | | | | Parameter | Units | Spike
Conc. | LCS
Result | LCS
% Rec | % Rec
Limits | Qualifiers | | | Nitrite as N | mg/L | 1 | 0.97 | 97 | 90-110 | | | | MATRIX SPIKE SAMPLE: | 649233 | | | | | _ | | | Parameter | Units | 70109461001
Result | Spike
Conc. | MS
Result | MS
% Rec | % Rec
Limits | Qualifiers | | Nitrite as N | mg/L | <0.0 | 50 0.5 | 0.49 | 96 | 90-110 | | | MATRIX SPIKE SAMPLE: | 649235 | | | | | _ | | | Parameter | Units | 70109456001
Result | Spike
Conc. | MS
Result | MS
% Rec | % Rec
Limits | Qualifiers | | Nitrite as N | mg/L | <0.0 | 50 0.5 | 0.50 | 98 | 90-110 | | | SAMPLE DUPLICATE: 649234 | | | | | | | | | Parameter |
Units | 70109461001
Result | Dup
Result | RPD | Qualifiers | | | | Nitrite as N | mg/L | <0.050 | <0.050 |) | | | | | SAMPLE DUPLICATE: 649236 | | | | | | | | | Parameter | Units | 70109456001
Result | Dup
Result | RPD | Qualifiers | | | | Nitrite as N | mg/L | <0.050 | <0.050 | | | | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 135655 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres. Associated Lab Samples: 70109260023 METHOD BLANK: 649239 Matrix: Water Associated Lab Samples: 70109260023 Parameter Units Result Limit Analyzed Qualifiers Nitrite as N mg/L <0.050 0.050 10/23/19 20:11 LABORATORY CONTROL SAMPLE: 649240 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L 0.96 96 90-110 MATRIX SPIKE SAMPLE: 649241 70109471001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.083 0.5 0.43 69 90-110 M1 Nitrite as N mg/L MATRIX SPIKE SAMPLE: 649243 70109472001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.42 84 90-110 M1 SAMPLE DUPLICATE: 649242 Parameter Units 70109471001 Result Dup Result RPD Qualifiers Nitrite as N mg/L 0.083 0.083 0 SAMPLE DUPLICATE: 649244 Date: 11/06/2019 02:57 PM Parameter Units Result Result Result RPD Qualifiers Nitrite as N mg/L <0.050</td> <0.050</td> Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. NORTH SEA LANDFILL 10/21 Project: Pace Project No.: 70109260 SAMPLE DUPLICATE: Date: 11/06/2019 02:57 PM 648283 QC Batch: 135456 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres. 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, Associated Lab Samples: 70109260008, 70109260009, 70109260010, 70109260011 METHOD BLANK: 648278 Matrix: Water 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, Associated Lab Samples: 70109260008, 70109260009, 70109260010, 70109260011 Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Nitrate-Nitrite (as N) mg/L < 0.050 0.050 10/23/19 03:09 LABORATORY CONTROL SAMPLE: 648279 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) 1 1.1 107 90-110 mg/L MATRIX SPIKE SAMPLE: 648280 70109260008 Spike MS MS % Rec % Rec Limits Parameter Units Result Conc. Result Qualifiers 0.65 Nitrate-Nitrite (as N) 0.5 1.2 115 90-110 M1 mg/L MATRIX SPIKE SAMPLE: 648282 70109260001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 6.6 5 13.1 130 90-110 M6 SAMPLE DUPLICATE: 648281 70109260008 Dup **RPD** Qualifiers Parameter Units Result Result 0.65 0 Nitrate-Nitrite (as N) mg/L 0.64 70109260001 Dup Result Result **RPD** Qualifiers Parameter Units 6.6 Nitrate-Nitrite (as N) 6.7 1 mg/L ### REPORT OF LABORATORY ANALYSIS Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 135664 Analysis Method: EPA 353.2 QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres. Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 649420 Matrix: Water Associated Lab Samples: 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrate-Nitrite (as N) mg/L <0.050 0.050 10/23/19 22:22 LABORATORY CONTROL SAMPLE: 649421 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 1 1.0 100 90-110 MATRIX SPIKE SAMPLE: 649424 70109260015 Spike MS MS % Rec Result % Rec Limits Qualifiers Parameter Units Conc. Result 0.22 Nitrate-Nitrite (as N) 0.5 0.69 94 90-110 mg/L SAMPLE DUPLICATE: 649425 Date: 11/06/2019 02:57 PM Parameter Units Result Result Result RPD Qualifiers Nitrate-Nitrite (as N) mg/L 0.22 0.22 1 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136531 Analysis Method: EPA 420.1 QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006 METHOD BLANK: 653286 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Phenolics, Total Recoverable ug/L <5.0 5.0 10/31/19 11:17 LABORATORY CONTROL SAMPLE: 653287 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable ug/L 100 95.4 95 90-110 MATRIX SPIKE SAMPLE: 653288 70109826004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 18.7 Phenolics, Total Recoverable 20 33.0 72 75-125 M1 ug/L SAMPLE DUPLICATE: 653289 Date: 11/06/2019 02:57 PM Parameter Units 70109826004 Result Dup Result RPD Qualifiers Phenolics, Total Recoverable ug/L 18.7 14.6 25 D6 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136946 Analysis Method: EPA 420.1 QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro Associated Lab Samples: 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 METHOD BLANK: 655495 Matrix: Water Associated Lab Samples: 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021, 70109260022, 70109260023 Phenolics, Total RecoverableUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersPhenolics, Total Recoverableug/L<5.0</td>5.011/04/19 12:03 LABORATORY CONTROL SAMPLE: 655496 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable ug/L 100 104 104 90-110 MATRIX SPIKE SAMPLE: 655497 70109260008 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers ug/L Phenolics, Total Recoverable < 5.0 33.3 159 75-125 M1 20 SAMPLE DUPLICATE: 655498 Date: 11/06/2019 02:57 PM Phenolics, Total Recoverable Total Recoverable Parameter Units Total Recoverable Visit Total Recoverable Total Recoverable Total Recoverable Visit Total Recoverable Total Recoverable Total Recoverable Total Recoverable Visit Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136824 Analysis Method: SM22 4500 NH3 H QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021 METHOD BLANK: 654725 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009, 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021 ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersNitrogen, Ammoniamg/L<0.10</td>0.1011/01/19 15:33 LABORATORY CONTROL SAMPLE: 654726 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers 101 Nitrogen, Ammonia mg/L 1.0 90-110 MATRIX SPIKE SAMPLE: 654727 Spike 70109260008 MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers mg/L Nitrogen, Ammonia < 0.10 1.1 108 75-125 SAMPLE DUPLICATE: 654728 Date: 11/06/2019 02:57 PM Parameter Units Result Result Result RPD Qualifiers Nitrogen, Ammonia mg/L <0.10</td> <0.10</td> Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136825 Analysis Method: SM22 4500 NH3 H QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia Associated Lab Samples: 70109260022, 70109260023 METHOD BLANK: 654735 Matrix: Water Associated Lab Samples: 70109260022, 70109260023 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Nitrogen, Ammonia mg/L <0.10 0.10 11/01/19 16:07 LABORATORY CONTROL SAMPLE: 654736 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Ammonia mg/L 1.0 102 90-110 MATRIX SPIKE SAMPLE: 654737 70109909001 MS Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 106 Nitrogen, Ammonia 1 1.1 75-125 mg/L SAMPLE DUPLICATE: 654738 Date: 11/06/2019 02:57 PM Parameter Units Result Result RPD Qualifiers Nitrogen, Ammonia mg/L <0.10</td> <0.10</td> Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136675 Analysis Method: SM22 5310B QC Batch Method: SM22 5310B
Analysis Description: 5310B TOC Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009 METHOD BLANK: 653926 Matrix: Water Associated Lab Samples: 70109260001, 70109260002, 70109260003, 70109260004, 70109260005, 70109260006, 70109260007, 70109260008, 70109260009 ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersTotal Organic Carbonmg/L<1.0</td>1.010/31/19 17:10 Spike LABORATORY CONTROL SAMPLE: 653927 Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/L 10 9.7 97 85-115 MATRIX SPIKE SAMPLE: 653929 LCS LCS % Rec 70109260008 MS Spike MS % Rec Units Result Result % Rec Limits Qualifiers Parameter Conc. 1.3 **Total Organic Carbon** mg/L 10 11.3 100 75-125 SAMPLE DUPLICATE: 653928 Date: 11/06/2019 02:57 PM | | | 70109260008 | Dup | | | |----------------------|-------|-------------|--------|-----|------------| | Parameter | Units | Result | Result | RPD | Qualifiers | | Total Organic Carbon | mg/L | 1.3 | 1.5 | 9 | | Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136677 Analysis Method: SM22 5310B QC Batch Method: SM22 5310B Analysis Description: 5310B TOC Associated Lab Samples: 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021 METHOD BLANK: 653932 Matrix: Water Associated Lab Samples: 70109260010, 70109260011, 70109260014, 70109260015, 70109260016, 70109260017, 70109260018, 70109260019, 70109260020, 70109260021 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers ganic Carbon mg/L <1.0 1.0 10/31/19 21:51 Total Organic Carbon mg/L <1.0 1.0 10/31/19 21:5 LABORATORY CONTROL SAMPLE: 653933 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Organic Carbon** mg/L 9.7 97 85-115 10 MATRIX SPIKE SAMPLE: 653935 MS 70109260010 Spike MS % Rec Result Result % Rec Limits Qualifiers Parameter Units Conc. 3.2 **Total Organic Carbon** 10 13.1 100 75-125 mg/L SAMPLE DUPLICATE: 653934 Date: 11/06/2019 02:57 PM Parameter Units Parameter Units Dup Result RPD Qualifiers Total Organic Carbon mg/L 3.2 3.3 5 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 QC Batch: 136678 Analysis Method: SM22 5310B QC Batch Method: SM22 5310B Analysis Description: 5310B TOC Associated Lab Samples: 70109260022, 70109260023 METHOD BLANK: 653941 Associated Lab Samples: 70109260022, 70109260023 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Total Organic Carbon mg/L <1.0 Matrix: Water 1.0 11/01/19 03:11 LABORATORY CONTROL SAMPLE: Parameter 653942 Spike Conc. LCS Result LCS % Rec % Rec Limits Qualifiers **Total Organic Carbon** Units mg/L Units mg/L 10 9.6 96 11.5 MATRIX SPIKE SAMPLE: 653944 Parameter 70109260022 Result Spike Conc. 10 MS Result MS % Rec 85-115 % Rec Limits 75-125 Qualifiers SAMPLE DUPLICATE: **Total Organic Carbon** 653943 70109260022 Units Result Dup RPD Result Qualifiers 115 Parameter **Total Organic Carbon** Date: 11/06/2019 02:57 PM mg/L <1.0 <1.0 <1.0 Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result. ### **QUALIFIERS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 ### **DEFINITIONS** DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot. ND - Not Detected at or above adjusted reporting limit. TNTC - Too Numerous To Count J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. MDL - Adjusted Method Detection Limit. PQL - Practical Quantitation Limit. RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix. S - Surrogate 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration. Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values. LCS(D) - Laboratory Control Sample (Duplicate) MS(D) - Matrix Spike (Duplicate) **DUP - Sample Duplicate** RPD - Relative Percent Difference NC - Not Calculable. SG - Silica Gel - Clean-Up U - Indicates the compound was analyzed for, but not detected. N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration. Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes. TNI - The NELAC Institute. # **ANALYTE QUALIFIERS** Date: 11/06/2019 02:57 PM | B Analyte was detected in the as | ssociated method blank. | |----------------------------------|-------------------------| |----------------------------------|-------------------------| - CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high. - CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. - D6 The precision between the sample and sample duplicate exceeded laboratory control limits. - H1 Analysis conducted outside the EPA method holding time. - IC The initial calibration for this compound was outside of method control limits. The result is estimated. - IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value. - L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high. - M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery. - M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Lab ID | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytical
Batch | | |-------------|-----------------|-----------------|----------|-------------------|---------------------|--| | 70109260001 | 1A | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 70109260002 | 1B | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260003 | 1C | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260004 | DUP | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260005 | 11A | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260006 | 11B | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260007 | MW-9 | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260008 | MW-8 | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260009 | 12A | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260010 | 12B | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260011 | EQUIPMENT BLANK | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260014 | 4C | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260015 | 4B | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260016 | 4A | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0109260017 | LEA-SECONDARY | EPA 3005A | 135967 | EPA 6010C | 135974 | | | 0.002000 | | 2.71000071 | 100007 | 217100100 | 100071 | | | 0109260018 | LEA-PRIMARY | EPA 3005A | 136635 | EPA 6010C | 136644 | | | 0109260019 | 3A | EPA 3005A | 136635 | EPA 6010C | 136644 | | | 0109260020 | 6AR | EPA 3005A | 136635 | EPA 6010C | 136644 | | | 0109260021 | 6B | EPA 3005A | 136635 | EPA 6010C | 136644 | | | 0109260022 | 3C | EPA 3005A | 136635 | EPA 6010C | 136644 | | | 0109260023 | 3B | EPA 3005A | 136635 | EPA 6010C | 136644 | | | 0109260006 | 11B | EPA 6010C | 136159 | | | | | 0109260018 | LEA-PRIMARY | EPA 6010C | 136159 | | | | | 0103200010 | | El A 00 100 | 100100 | | | | | 0109260005 | 11A | EPA 7470A | 136839 | 136839 EPA 7470A | | | | 0109260006 | 11B | EPA 7470A | 136839 | EPA 7470A | 136849 | | | 0109260020 | 6AR | EPA 7470A | 136839 | EPA 7470A | 136849 | | | 0109260021 | 6B | EPA 7470A | 136839 | EPA 7470A | 136849 | | | 0109260006 | 11B | EPA 7470A | 136699 | EPA 7470A | 136706 | | | 0109260005 | 11A | EPA 8260C/5030C | 135589 | | | | | 0109260006 | 11B | EPA 8260C/5030C | 135589 | | | | | 0109260012 | TRIP BLANK | EPA 8260C/5030C | 135589 | | | | | 0109260013 | STORAGE BLANK | EPA 8260C/5030C | 135589 | | | | | | | | | | | | | 0109260005 | 11A | EPA 8260 | | | | | | 0109260006 | 11B | EPA 8260 | | | | | | 0109260012 | TRIP BLANK | EPA 8260 | | | | | | 0109260013 | STORAGE BLANK | EPA 8260 | | | | | | 0109260001 | 1A | SM22 2320B | 135811 | | | | | 0109260002 | 1B | SM22 2320B | 135811 | | | | | 0109260003 | 1C | SM22 2320B | 135811 | | | | | 0109260004 | DUP | SM22 2320B | 135811 | | | | | 0109260005 | 11A | SM22 2320B | 135811 | | | | | 0109260006 | 11B | SM22 2320B | 135811 | | | | | 0109260007 | MW-9 | SM22 2320B | 135811 | | | | | 0109260007 | MW-8 | SM22 2320B | 135811 | | | | | 0109260009 | 12A | SM22 2320B | 135811 | | | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Lab ID | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytica
Batch | |-------------|------------------------|--------------------------|------------|-------------------|--------------------| | 70109260010 | | SM22 2320B |
135811 | _ | | | 70109260011 | EQUIPMENT BLANK | SM22 2320B | 135811 | | | | 70109260014 | 4C | SM22 2320B | 136348 | | | | 70109260014 | 4B | SM22 2320B | 136348 | | | | 70109260016 | 4A | SM22 2320B | 136348 | | | |
70109260017 | LEA-SECONDARY | SM22 2320B | 136348 | | | | 70109260018 | LEA-PRIMARY | SM22 2320B | 136348 | | | | 70109260019 | 3A | SM22 2320B | 136348 | | | | 0109260019 | 6AR | SM22 2320B | 136348 | | | | 0109260020 | 6B | SM22 2320B | 136348 | | | | 70109260021 | 3C | SM22 2320B
SM22 2320B | 136348 | | | | 70109260022 | 3B | SM22 2320B
SM22 2320B | 136348 | | | | 0109260023 | 36 | SIVI22 2320B | 130346 | | | | 70109260001 | 1A | SM22 2340C | 137276 | | | | 0109260002 | 1B | SM22 2340C | 137276 | | | | 0109260003 | 1C | SM22 2340C | 137276 | | | | 0109260004 | DUP | SM22 2340C | 137276 | | | | 0109260005 | 11A | SM22 2340C | 137276 | | | | 0109260006 | 11B | SM22 2340C | 137276 | | | | 0109260007 | MW-9 | SM22 2340C | 137276 | | | | 0109260008 | MW-8 | SM22 2340C | 137276 | | | | 0109260009 | 12A | SM22 2340C | 137276 | | | | 0109260010 | 12B | SM22 2340C | 137276 | | | | 0109260011 | EQUIPMENT BLANK | SM22 2340C | 137276 | | | | 0109260014 | 4C | SM22 2340C | 137276 | | | | 0109260015 | 4B | SM22 2340C | 137276 | | | | 0109260016 | 4A | SM22 2340C | 137276 | | | | 0109260017 | LEA-SECONDARY | SM22 2340C | 137276 | | | | 0109260018 | LEA-PRIMARY | SM22 2340C | 137276 | | | | 0109260019 | 3A | SM22 2340C | 137276 | | | | 0109260020 | 6AR | SM22 2340C | 137276 | | | | 0109260021 | 6B | SM22 2340C | 137276 | | | | 0109260022 | 3C | SM22 2340C | 137276 | | | | 0103200022 | 30 | SIVIZZ 2540C | 137270 | | | | 70109260023 | 3B | SM22 2340C | 137305 | | | | 0109260001 | 1A | SM22 2540C | 135688 | | | | 0109260002 | 1B | SM22 2540C | 135688 | | | | 0109260003 | 1C | SM22 2540C | 135688 | | | | 0109260004 | DUP | SM22 2540C | 135688 | | | | 0109260005 | 11A | SM22 2540C | 135688 | | | | 0109260006 | 11B | SM22 2540C | 135688 | | | | 0109260007 | MW-9 | SM22 2540C | 135688 | | | | 0109260007 | MW-8 | SM22 2540C | 135688 | | | | 0109260009 | 12A | SM22 2540C | 135688 | | | | 0109260009 | 12B | SM22 2540C
SM22 2540C | 135688 | | | | 0109260010 | EQUIPMENT BLANK | SM22 2540C
SM22 2540C | 135688 | | | | 0109200011 | EQUIFINENT BLANK | 31VIZZ Z34UC | 133000 | | | | 70109260014 | 4C | SM22 2540C | 135871 | | | | 70109260015 | 4B | SM22 2540C | 136065 | | | | | ·= | 2 20.00 | | | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Lab ID | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytica
Batch | |-------------|-----------------|-----------------|----------|-------------------|--------------------| | 70109260016 | | SM22 2540C | 136065 | _ | | | 70109260017 | LEA-SECONDARY | SM22 2540C | 136065 | | | | 70109260018 | LEA-PRIMARY | SM22 2540C | 136065 | | | | 0109260019 | 3A | SM22 2540C | 136065 | | | | 0109260020 | 6AR | SM22 2540C | 136065 | | | | 0109260021 | 6B | SM22 2540C | 136065 | | | | 0109260022 | 3C | SM22 2540C | 136065 | | | | 0109260023 | 3B | SM22 2540C | 136065 | | | | 0109260001 | 1A | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260002 | 1B | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260003 | 1C | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 109260004 | DUP | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260005 | 11A | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260006 | 11B | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260007 | MW-9 | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260008 | MW-8 | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 109260009 | 12A | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260010 | 12B | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260011 | EQUIPMENT BLANK | EPA 410.4 | 136082 | EPA 410.4 | 136115 | | 0109260014 | 4C | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 0109260015 | 4B | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 109260016 | 4A | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 109260017 | LEA-SECONDARY | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 109260018 | LEA-PRIMARY | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 0109260019 | 3A | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 109260020 | 6AR | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 0109260021 | 6B | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 0109260022 | 3C | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 0109260023 | 3B | EPA 410.4 | 136440 | EPA 410.4 | 136462 | | 0109260001 | 1A | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260002 | 1B | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260003 | 1C | SM22 5210B | 135404 | SM22 5210B | 136239 | | 109260004 | DUP | SM22 5210B | 135404 | SM22 5210B | 136239 | | 109260005 | 11A | SM22 5210B | 135404 | SM22 5210B | 136239 | | 109260006 | 11B | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260007 | MW-9 | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260008 | MW-8 | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260009 | 12A | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260010 | 12B | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260011 | EQUIPMENT BLANK | SM22 5210B | 135404 | SM22 5210B | 136239 | | 0109260014 | 4C | SM22 5210B | 135600 | SM22 5210B | 136460 | | 0109260015 | 4B | SM22 5210B | 135600 | SM22 5210B | 136460 | | 0109260016 | 4A | SM22 5210B | 135600 | SM22 5210B | 136460 | | 0109260017 | LEA-SECONDARY | SM22 5210B | 135600 | SM22 5210B | 136460 | | 0109260018 | LEA-PRIMARY | SM22 5210B | 135600 | SM22 5210B | 136460 | | 0109260019 | 3A | SM22 5210B | 135600 | SM22 5210B | 136460 | | | 6AR | SM22 5210B | . 55555 | <u>-</u> | . 50 100 | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Lab ID | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytical
Batch | | |-------------|------------------------|-----------------|----------|-------------------|---------------------|--| | 70109260021 | 6B | SM22 5210B | 135600 | SM22 5210B | 136460 | | | 70109260022 | 3C | SM22 5210B | 135600 | SM22 5210B | 136460 | | | 70109260023 | 3B | SM22 5210B 1 | | SM22 5210B | 136460 | | | 0109260001 | 1A | EPA 300.0 | 136000 | | | | | 70109260002 | 1B | EPA 300.0 | 136000 | | | | | 0109260003 | 1C | EPA 300.0 | 136000 | | | | | 0109260004 | DUP | EPA 300.0 | 136000 | | | | | 0109260005 | 11A | EPA 300.0 | 136175 | | | | | 0109260006 | 11B | EPA 300.0 | 136175 | | | | | 0109260007 | MW-9 | EPA 300.0 | 136175 | | | | | 0109260008 | MW-8 | EPA 300.0 | 136175 | | | | | 0109260009 | 12A | EPA 300.0 | 136175 | | | | | 0109260010 | 12B | EPA 300.0 | 136175 | | | | | 0109260011 | EQUIPMENT BLANK | EPA 300.0 | 136175 | | | | | 0109260014 | 4C | EPA 300.0 | 136175 | | | | | 0109260015 | 4B | EPA 300.0 | 136175 | | | | | 0109260016 | 4A | EPA 300.0 | 136175 | | | | | 0109260017 | LEA-SECONDARY | EPA 300.0 | 136175 | | | | | 0109260018 | LEA-PRIMARY | EPA 300.0 | 136175 | | | | | 0109260019 | 3A | EPA 300.0 | 136175 | | | | | 0109260020 | 6AR | EPA 300.0 | 136175 | | | | | 0109260021 | 6B | EPA 300.0 | 136175 | | | | | 0109260022 | 3C | EPA 300.0 | 136175 | | | | | 0109260023 | 3B | EPA 300.0 | 136175 | | | | | 0109260001 | 1A | EPA 351.2 | 137115 | EPA 351.2 | 137132 | | | 0109260002 | 1B | EPA 351.2 | 137115 | EPA 351.2 | 137132 | | | 0109260003 | 1C | EPA 351.2 | 137115 | EPA 351.2 | 137132 | | | 0109260004 | DUP | EPA 351.2 | 137115 | EPA 351.2 | 137132 | | | 0109260005 | 11A | EPA 351.2 | 137115 | EPA 351.2 | 137132 | | | 0109260006 | 11B | EPA 351.2 | 137115 | EPA 351.2 | 137132 | | | 0109260007 | MW-9 | EPA 351.2 | 137115 | EPA 351.2 | 137132 | | | 0109260008 | MW-8 | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260009 | 12A | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260010 | 12B | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260011 | EQUIPMENT BLANK | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260014 | 4C | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260015 | 4B | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260016 | 4A | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260017 | LEA-SECONDARY | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260018 | LEA-PRIMARY | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260019 | 3A | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260020 | 6AR | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260021 | 6B | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260022 | 3C | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | 0109260022 | 3B | EPA 351.2 | 137116 | EPA 351.2 | 137134 | | | | | | | | | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Lab ID | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytica
Batch | | |-------------|------------------------|-----------------|----------|-------------------|--------------------|--| | 70109260002 | 1B | EPA 353.2 | 135456 | | | | | 0109260003 | 1C | EPA 353.2 | 135456 | | | | | 0109260004 | DUP | EPA 353.2 | 135456 | | | | | 0109260005 | 11A | EPA 353.2 | 135456 | | | | | 0109260006 | 11B | EPA 353.2 | 135456 | | | | | 0109260007 | MW-9 | EPA 353.2 | 135456 | | | | | 0109260008 | MW-8 | EPA 353.2 | 135456 | | | | | 0109260009 | 12A | EPA 353.2 | 135456 | | | | | 0109260010 | 12B | EPA 353.2 | 135456 | | | | | 0109260011 | EQUIPMENT BLANK | EPA 353.2 | 135456 | | | | | 0109260014 | 4C | EPA 353.2 | 135664 | | | | | 0109260015 | 4B | EPA 353.2 | 135664 | | | | | 0109260016 | 4A | EPA 353.2 | 135664 | | | | | 0109260017 | LEA-SECONDARY | EPA 353.2 | 135664 | | | | | 0109260018 | LEA-PRIMARY | EPA 353.2 | 135664 | | | | | 0109260019 | 3A | EPA 353.2 | 135664 | | | | | 0109260020 | 6AR | EPA 353.2 | 135664 | | | | | 0109260021 | 6B | EPA 353.2 | 135664 | | | | | 0109260022 | 3C | EPA 353.2 | 135664 | | | | | 0109260023 | 3B | EPA 353.2 | 135664 | | | | | 0109260001 | 1A | EPA 353.2 | 135450 | | | | | 0109260002 |
1B | EPA 353.2 | 135450 | | | | | 0109260003 | 1C | EPA 353.2 | 135450 | | | | | 0109260004 | DUP | EPA 353.2 | 135450 | | | | | 0109260005 | 11A | EPA 353.2 | 135450 | | | | | 0109260006 | 11B | EPA 353.2 | 135450 | | | | | 0109260007 | MW-9 | EPA 353.2 | 135450 | | | | | 0109260008 | MW-8 | EPA 353.2 | 135450 | | | | | 0109260009 | 12A | EPA 353.2 | 135450 | | | | | 0109260010 | 12B | EPA 353.2 | 135450 | | | | | 0109260011 | EQUIPMENT BLANK | EPA 353.2 | 135450 | | | | | 0109260014 | 4C | EPA 353.2 | 135654 | | | | | 0109260015 | 4B | EPA 353.2 | 135654 | | | | | 0109260016 | 4A | EPA 353.2 | 135654 | | | | | 0109260017 | LEA-SECONDARY | EPA 353.2 | 135654 | | | | | 0109260018 | LEA-PRIMARY | EPA 353.2 | 135654 | | | | | 0109260019 | 3A | EPA 353.2 | 135654 | | | | | 0109260020 | 6AR | EPA 353.2 | 135654 | | | | | 0109260021 | 6B | EPA 353.2 | 135654 | | | | | 0109260022 | 3C | EPA 353.2 | 135654 | | | | | 0109260023 | 3B | EPA 353.2 | 135655 | | | | | 0109260001 | 1A | EPA 420.1 | 136531 | EPA 420.1 | 136587 | | | 0109260002 | 1B | EPA 420.1 | 136531 | EPA 420.1 | 136587 | | | 0109260003 | 1C | EPA 420.1 | 136531 | EPA 420.1 | 136587 | | | 0109260004 | DUP | EPA 420.1 | 136531 | EPA 420.1 | 136587 | | | 70109260005 | 11A | EPA 420.1 | 136531 | EPA 420.1 | 136587 | | # **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC. Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | _ab ID | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytica
Batch | | |---------------------|-----------------|------------------------|----------|-------------------|--------------------|--| | 70109260006 | 11B | EPA 420.1 | 136531 | EPA 420.1 | 136587 | | | 70109260007 | MW-9 | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 70109260008 | MW-8 | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 70109260009 | 12A | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260010 | 12B | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260011 | EQUIPMENT BLANK | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260014 | 4C | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260015 | 4B | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260016 | 4A | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260017 | LEA-SECONDARY | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260018 | LEA-PRIMARY | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260019 | 3A | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260020 | 6AR | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260020 | 6B | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260021 | 3C | EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0109260022 | 3B | EPA 420.1
EPA 420.1 | 136946 | EPA 420.1 | 137026 | | | 0103200023 | | | | LFA 420.1 | 13/020 | | | 0109260001 | 1A | SM22 4500 NH3 H | 136824 | | | | | 0109260002 | 1B | SM22 4500 NH3 H | 136824 | | | | | 0109260003 | 1C | SM22 4500 NH3 H | 136824 | | | | | 0109260004 | DUP | SM22 4500 NH3 H | 136824 | | | | | 0109260005 | 11A | SM22 4500 NH3 H | 136824 | | | | | 0109260006 | 11B | SM22 4500 NH3 H | 136824 | | | | | 0109260007 | MW-9 | SM22 4500 NH3 H | 136824 | | | | | 0109260008 | MW-8 | SM22 4500 NH3 H | 136824 | | | | | 0109260009 | 12A | SM22 4500 NH3 H | 136824 | | | | | 0109260010 | 12B | SM22 4500 NH3 H | 136824 | | | | | 0109260011 | EQUIPMENT BLANK | SM22 4500 NH3 H | 136824 | | | | | 0109260014 | 4C | SM22 4500 NH3 H | 136824 | | | | | 0109260015 | 4B | SM22 4500 NH3 H | 136824 | | | | | 0109260016 | 4A | SM22 4500 NH3 H | 136824 | | | | | 0109260017 | LEA-SECONDARY | SM22 4500 NH3 H | 136824 | | | | | 0109260017 | LEA-PRIMARY | SM22 4500 NH3 H | 136824 | | | | | 0109260018 | 3A | SM22 4500 NH3 H | 136824 | | | | | 0109260019 | 6AR | SM22 4500 NH3 H | 136824 | | | | | 0109260020 | 6B | SM22 4500 NH3 H | 136824 | | | | | | | | | | | | | 0109260022 | 3C | SM22 4500 NH3 H | 136825 | | | | | 0109260023 | 3B | SM22 4500 NH3 H | 136825 | | | | | 0109260001 | 1A | SM22 5310B | 136675 | | | | | 0109260002 | 1B | SM22 5310B | 136675 | | | | | 0109260003 | 1C | SM22 5310B | 136675 | | | | | 0109260004 | DUP | SM22 5310B | 136675 | | | | | 0109260005 | 11A | SM22 5310B | 136675 | | | | | 0109260006 | 11B | SM22 5310B | 136675 | | | | | 0109260007 | MW-9 | SM22 5310B | 136675 | | | | | 0109260007 | MW-8 | SM22 5310B | 136675 | | | | | 0 1 U 3 E U U U U U | 14144-0 | 018127 00 LOD | 100070 | | | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Lab ID | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytical
Batch | |-------------|------------------------|-----------------|----------|-------------------|---------------------| | 70109260010 | | SM22 5310B | 136677 | | | | 70109260011 | EQUIPMENT BLANK | SM22 5310B | 136677 | | | | 70109260014 | 4C | SM22 5310B | 136677 | | | | 70109260015 | 4B | SM22 5310B | 136677 | | | | 70109260016 | 4A | SM22 5310B | 136677 | | | | 70109260017 | LEA-SECONDARY | SM22 5310B | 136677 | | | | 70109260018 | LEA-PRIMARY | SM22 5310B | 136677 | | | | 70109260019 | 3A | SM22 5310B | 136677 | | | | 70109260020 | 6AR | SM22 5310B | 136677 | | | | 70109260021 | 6B | SM22 5310B | 136677 | | | | 70109260022 | 3C | SM22 5310B | 136678 | | | | 70109260023 | 3B | SM22 5310B | 136678 | | | | Pace Analytical | | | STODY Analyti | | | | | | LAB | USE O | NLY- A | .fi | NO#: | 70 | 10926 | 60 | | |---|---|---------------------------|---|------------------------------------|-----------------------|-------------------------|---------|------------|------------|----------|-----------|----------|--|----------|---|--|---| | Company: P.W. Grosser Con. Address: Report To: Derew E. | | | Billing Information: | | | | | | Con | tale or | ALL | | Ulfuaseu | | | | | | Report To: | Sale 7 | M | Email To: | 3 | | | ** 0 | | | | | | | 1 | Lab i rojectivit | unugeii | 15F | | Copy To: | BLAN | | Email To: Derek E Site Collection Info/A | & Pwareis | r.im | | (6) n | nethand | ol, (7) sc | odium b | isulfate, | . (8) so | uifuric acid, (3) f
lium thiosulfate,
preserved, (O) C | (9) hexa | ioric acid, (4) sodiui
ane, (A) ascorbic ac | m hydroxide, (5) zinc
cid, (B) ammonium su | acetate,
Ifate, | | Customer Project Name/Number:
SHP1901 - 川かり | - Seal- | nefil! | State: County/Ci | ty: Time Z | one Collect | ed:
CT [/ ET | | | | | Analy | ses | # E | T | Lab Profile/Lin | e:
e Receipt Check | dist: | | Phone: 31-58-1-6355 Email: DeckEe August Con Collected By (print): | Site/Facility ID | #: | - Ja | Compliance N | | | No | | 5 | | | | dhes | | Custody S:
Collector | eals Present/Ir
ignatures Prese
Signature Pres | ent ON NA
sent ON NA | | NRICA | Purchase Orde
Quote #: | er #: | | DW PWS ID #: | Code: | | Tos | - > | Hardness | | | | # | | Bottles In
Correct Bo
Sufficient | ottles
t Volume | ON NA
ON NA
NA | | Non Com | Turnaround Da | ate Requir | ed. | | [] No | | FIK.T | 1 1 | H | | | | 4 | | VOA - Head
USDA Regul | eceived on Ice
dspace Acceptab
lated Soils
n Holding Time | ole NA NA NA NA | | Sample Disposal: [] Dispose as appropriate [] Return [] Archive: | [] 2 Day [|] 3 Day | [] Next Day
[] 4 Day [] 5 Day
arges Apply) | Field Filtered ([] Yes Analysis: | (if applicable | <u>-</u> }; | SCH. Al | | metals + | | | meka | Metils | | Residual (
Cl Strips:
Sample pH
pH Strips: | Chlorine Preser
:
Acceptable
: HCSO344 | YN NA | | * Matrix Codes (Insert in Matrix box
Product (P), Soil/Solid (SL), Oil (OL | (below): Drink
), Wipe (WP), <i>A</i> | ing Water
Air (AR), Ti | (DW), Ground Water (
ssue (TS), Bioassay (B) | GW), Wastewa
, Vapor (V), Oth | ter (WW),
ier (OT) | | ี | t3. No | יוול לע | | 34145 | 200 | Seline 1 | | Sulfide Pr
Lead Aceta | ate Strips: | Y N NC | | Customer Sample ID | Matrix * | Comp /
Grab | Collected (or Composite Start) Date Time | Composite
Date | ⊦nd I | es # of
Ctns | | 150
150 | Routing | tot | 70 | 4111 | Bryl | | | e # / Comments: | 0 | | \ A- | G-W | G. | 10.21.19 13.15 | | | 6 | X | X | X | X | | | | | oul | | To A S. | | 1 B | - | - | 1300 | | | 6 | X | X | X | × | | | | | 002 | - 1-5 | En | | 10 | - | -+ | (235 | \ <u></u> | $\overline{}$ | 6 | X | × | X | × | _ | _ | | | 003 | 5.0 | | | DUP | | - | ×× | () | | 6 | × | × | × | × | | _ | E . | | 004 | | | | 114 | | | 850 | (M | 0 | 8 | × | X | _ | | × | | < | | 05 | 100 | | | II B | | | 920 | | - | 9 | × | > | - | | \times | \times | * | | 006 | | | | MW-9 | | | 1025 | | 1 | C | X | \sim | × | \times | | - | | | 007 | | | | MW-8/NIS/14 | | | 1100 | | | 18 | X | × | X | X | | | | | 0046 | | | | IZA | | | 0541 | | | に | 7 | × | 7 | X | | | 벌 | | 009 | | | | 123 | V | M | W 1415 | | | C | ~ | 7 | 7 | X | | | 8 | | 010 | 11.48 | 1 2 2 | | Customer Remarks / Special Condition | ons / Possible H | lazards: | Type of Ice Used: | Wet Blue | Dry | None | | SHOR | RT HOI | DS PR | ESENT | (<72 h | ours): (Y) N | N/A | | Sample Temperatu | ure Info: | | | | | Packing Material Use | 9 1 | | | | 8 | rackin | g#: | viə: | 24 | 0430 | 14 | 1 | Temp Blank Receive
Therm ID#: TH
Cooler 1 Temp Upo | n Receipt: 5,6 o | | Reling u ished by/Company: (Signatur | ·a) | Inati | Radchem sample(s) s | | | N (A |) | F | EDEX | UP | | lient | Courier | _ | Courier C | Cooler 1 Therm Cor
Cooler 1 Corrected | T. Factor: <u>0.7</u> 0
Temp: <u>5.4</u> 0 | | In My | puce | | 21.19 16 16 | Received
by/Go | mpany: (Sig | nature) | | | Date/T | | 11 | 22 | MTJL LA
Table #: | R OSE | ONLY | Comments: | | | Relin Simed by/Company: (Signatur | re) | Date | | Received by/Co | mpany: (Sig | nature) | | ľ | Date/T | 211 | 115 | Sti | Acctnum:
Template: | | | rip Blank Received | | | Kelinquished by/Company: (Signatur | re) | Date | | Received by/Co | mpany: (Sig | nature) | | | Date/T | | Ĭ1. | 7 | Prelogin:
PM: | | | on Conformance(s): | rsp Other | | CHAIN-OF-C | USTODY Analyti | ical Request Document | LAB | WO#:7010 | 9260 | r Number or | |--|---|--|----------------------|--|----------------------------|---| | Pace Analytical | • | NT - Complete all relevent fields | | PM: JSA Due Da | | | | P.W. Gross Consulty | Billing Information: | | | CLIENT: TOS | 1 11/00/19 | .Y | | Address: 675 Johan an St. 7 Bolum NY | 1 som 9 | - Southampton | Contai | ner Preservative Type | | J5A | | Report To: Deren Ersbau | Email To Dereix | E@ Augrosser con | | (1) nitric acid, (2) sulfuric acid, (3) h
im bisulfate, (8) sodium thiosulfate, | | | | Сору То: | Site Collection Info/ | Address: | (C) ammonium hydroxi | ide, (D) TSP, (U) Unpreserved, (O) C Analyses | Lab Profile/Line: | | | Customer Project Name/Number: 5HP 1701-North Sen Landfill | State: County/C | City: Time Zone Collected: [] PT [] MT [] CT [] ET | 2 2 2 | | Lab Sample | Receipt Checklist: | | Phone: 631-589-6353 Site/Facility ID #: Email: Denot Bro Miron J | | Compliance Monitoring? [] Yes [] No | TDS. A | 8 | Custody Sig | natures Present N NA Signature Present N NA | | Collected By (print): Purchase Order #: Own Kyw CA Quote #: | | DW PWS ID #:
DW Location Code: | 一道生 | 1 - 3 5 | Correct Bot
Sufficient | tles ON NA | | Collected By (signature): Turnaround Date Rec | uired: | Immediately Packed on Ice: [] Yes [] No | 740 | | VOA - Heads
USDA Regula | space Acceptable ON NA | | Sample Disposal: Rush: [] Dispose as appropriate [] Return [] Archive: [] 2 Day [] 3 Day | y [] Next Day ay [] 4 Day [] 5 Day Charges Apply) | Field Filtered (if applicable): [] Yes [] No Analysis: | R Nos | 6 | Residual Ch | nlorine Present Y N (A) Acceptable (Y) N NA | | * Matrix Codes (Insert in Matrix box below): Drinking Wa
Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR | 1 " | , ,, | Dr. ON | 2116 | Lead Acetat | e Strips: | | Customer Sample ID Matrix * Gra | ' ' | Composite End Res Cl Ctns | 603 | | Lab Sample | # / Comments: | | Equiphora Blance OT G | 10.51.11 12.00 | | | | 011 | 10.15 | | Tro Blank of G | 9 | 2 | 8 5 | X | 012 | | | | | | | | 4 6 1 | | | | | 1/20 | 8 8 | | i gar | | | | | | | | 8 2 1 3 | | | | | | 24 | | EE IE | | | | | | | E 5 | 1 2 2 - 2 | | | Customer Remarks / Special Conditions / Possible Hazard | Type of Ice Used: | (Wet) Blue Dry None | SHORT HOLD | S PRESENT (<72 hours): Y | | ample Temperature Info: | | | Packing Material Us | sed: | Lab Tracking | ^{#:} 243427 | 7 7 Th | emp Blank Received: Y 6 NA
nerm ID#: THOA! NA
poler 1 Temp Upon Receipt: 5.6 oC | | | Radchem sample(s) | screened (<500 cpm): Y N | Samples recei | | Co | poler 1 Term Corr. Factor 0.2 oC
poler 1 Corrected Temp: 5.8 oC | | V W / / / / / / - | Date/Time: 10-21-17 1000 | Received by/Company: (Signature) | Date/Tim | ne: MTJL L | | omments: | | 1020 | 10-21-11 1000
Date/Time: | Recejved by/Company: (Signature) | 0/22
 Date/Tim | Acctnum: | Tei | ip Blank Received: (T) N NA | | Con the | 10/22/19 11:59 | | 10/22 | rreiogii. | (FC | | | Belinduished by/Company: (Signature) | Date/Time: | Received by/Company: (Signature) | Date/Tim | PM:
PB: | Nor | Conformance(s): Page: YES / NO of: | WO#:70109260 PM: JSA Due Date: 11/05/19 CLIENT: TOS # Pace Analytical # CHAIN-OF-CUSTODY / Analytical Request Doci The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed acc | www.pacerans.tum | | | | | | | | | | Pa | Page: // of / | | | | | | | | | | | |---|-------------------------------------|----------------------------|-------|---------------|----------------|--------------------------------|--|-------|---|-------------------|---------------|------------------------|---|-------------------------|------------------------------|------------------|----------------|--------------|----------|---------|----------| | Section A Required Client Information: | | | | | | Section C Invoice Information: | | | | | | | | l a | ge. | | | | | | | | Company: P.W. Grosser Consiling. | Report To: Attention: | Address: 630 Johan ave. 31.2 | Copy To: | | | | | | Company Name: 5 Southern pton REGULATORY AGI | | | | | | | Y AGENC | Y | | | | | | | | Q | L 41.4 | | | | | | Address | | | | | | | | BROUND WATER DRINKING WATER | | | | | | | | Bahana NY 1171C Email To: Purchase Order No.: | | | | | | \dashv | Pace Quote | | | | | | | | | | | | | | | | Phone: Fax: | relien fulgrasse.com | | | | | Reference: | | | | | | \rightarrow | | | | | | | | | | | 100"+1 PE | | | | | 9 t 111 | Manager Pace Profile #: | | | | | | | SITATE: | | | | | | | | | | Requested Due Date/TAT: Project Number: 54919 | | | | | | | | | | | | | 111111111111111111111111111111111111111 | | | | | | | | | | | | | _ | | | | | | Reques | sted A | nalys | is Filter | ed (Y/N) | _ | | | | | | | | | Section D Matrix (Required Client Information MATRIX | Codes (F) (A) | | | COLLECTED | | | Preservatives | | | | N i | | | | | | | | | | | | Drinking Wa | ter DW g S | | | | | | | | | 3 / | | | - | 3 | | ++ | 1 | | | | | | Water
Waste Wate | WT . | 0 0 | COMP | OSITE | COMPOSITE | COLLECTION | | | | | | AIKE | 15 | 7 | 1 | | | _ | | | | | Product
Soil/Solid | SL S O | | | RT ENDIGRAB | | | . \ | | 11111 | | | | 5 | - U - | | | ocitical (N/X) | | | | | | SAMPLE ID Oil Wipe | OI . | š <u>5</u> | | | | AT C | # OF CONTAINERS
Unpreserved | | | | Test | 204 | 97 | M | mets. | | 11. | e l | | | | | (A-Z, 0-9 / ,-) Air
Sample IDs MUST BE UNIQUE Tissue | WP
AR
TS
OT | TYPE | 1 | | | TEMP / | A A | | | | | -12 | है है | 75 | 1 5 | | | | | | | | Other | OT S | × | | | \ | | O No | | ြို | <u> </u> | Şisi | 25 | * 2 | 0 3 | in a | | | <u>8</u> | | | | | ## | | MATRIX CODE
SAMPLE TYPE | | | \ \ \ | SAMPLE | # OF CONTA
Unpreserved | HINO, | NaOH
Na ₂ S ₂ O ₃ | Methanol
Other | Analysis | 0 0 | + 7 | 0= | Paseline
Prsen | | : | sidu | | | | | | | | DATE | TIME | DATE TIME | δŞ | # 5 £ | 宜兰 | z z | žὄ | | 2 F 3 | 93 | 1-11 | W. | | | ਨੂੰ Pa | ace Proj | ect No. | Lab I.D. | | 1 4C | 3 | 4 6 | 19-55 | 1400 | | | | | | | | XXX | 4X | X | | | | 0 | 14 | | | | 2 4B | | | 1 | 1430 | 1 | | | 1 | | Ш | | XXX | - × | X | | | | 0 | 15 | | | | 3 YA | | | | 1500 | (CO) | \Box | | A | 7 | |] [| ××× | X | × | | | | 0 | | | | | 4 IEA-Secondary | | | | 810 | | | | | | | | $\times \times \times$ | X | \prec | X | | | 0 | 17 | | | | 5 LEA- Primart | | 111 | | 800 | 1 | | | | | | | \times | X | XX | L X | | | 0 | 14 | | | | 6 3A | | 111 | | 1300 | - 1 | | | | | | 1 1 | XXX | X | × | | | | 0 | | | | | 7 GAR | | 11 | | 930 | 1 | | | | | | | (XX | | X | X | | | 00 | io_ | | | | 8 63 | | | | 1000 | 1 | | | | | 1 | 1 | VX X | | 1 | X | | | 0.5 | | | | | 9 3C | | 111 | | 1200 | | | | | | 1 | | $\times \times \times$ | < × | 4 | | | | 07 | 22 | | | | 10 3 6 | | $\Psi \Psi$ | V | 1240 | | | | | | | 4 1 | 777 | - 4 | × | | | | 07 | 13 | | | | 11 | | _ | | - | 1 | | | Ш | | | 1 1 | | \perp | 4 | | | | | 0271 | | | | 12 | | | | | ON DATE | \Box | | | | | | | | _ | | | | | | | | | ADDITIONAL COMMENTS | ADDITIONAL COMMENTS RELINQUISHED BY | | | | | | TIME ACCEPTED BY / AFFILIATION | | | | | ON | | DATE | TIME | | SA | AMPLE CO | ONDITION | S | | | | | | | | | 9 | 1600 WiEly | | | | | 101 | 23/19 | 1030 | > | | | | | | | | | | 10 k3/10 | 2 | 1/25 dun Pett | | | | | 10/23/14 11.25 | | | | 0 | | | | | | | | | | | | | | | 9 1-211 | | 100000 | | | | | | 11.00 | 2. | | | | | | | | | | - | | | | | - | - | | | | | | | - | | | Z. | 4 | | -4- | | | | | | | Tanner - | | | <u> </u> | | | | _ | | | | | | - | - | | _ | ** | | | SAMPLER NAME AND SIGNATURE | | | | | | | | | ا
ئ | uo pa | Custody | | Samples Infact
(Y/N) | | | | | | | | | | | PRINT Name of SAMPI | _ER: | 100 CIE | 16 | 455 | ell | | | | | | | Temp in °C | Received or | Susto Car | 38 | ples
(Y/N | | | | | SIGNATURE of SAMPLER: | | | | | | | DATE Signed | | | | | | | l e | Rec | = ³ | 2 | E S | | | | # Sample Condition Upon Receipt | | Client | Name: | | | Pr | NO#:70109260 | |--|------------------|----------------|-------------|------------------|------------------|---| | | Pu |) G. | 2055 | 3600 | | PM: JSA Due Date: 11/05/19 | | Courier: ₄ Fed Ex ⊌PS USPS (| | 7 | | | | CLIENT: TOS | | Tracking #: | 9 | | | | | JEIEMI. 100 | | Custody Seal on Cooler/Box Present: | Yes No | Sea | ıls intact: | Yes No | | Temperature Blank Present: Yes No | | Packing Material: Bubble Wrap Bubb | ile Bags 🔲 Zip | oloc ZNo | ne Du | ner | | Type of Ice: Wet Blue None | | Thermometer Used: 1409) | | /
tion Fact | 100 | 2.2 | | Samples on ice, cooling process has begun | | Cooler Temperature (°C): $3.0/2$. | | | | cted (°C): 3 | 2/2 | 3 Date/Time 5035A kits placed in freezer | | Temp should be above freezing to 6.0°C | | | | _ | 101 | | | USDA Regulated
Soil (N/A, water sam | ple) | | | Date and | Initials of | of person examining contents: | | Did samples originate in a quarantine zone within the | | : AL, AR, C | A, FL, GA, | | | Did samples orignate from a toreign source (international | | NM, NY, OK, OR, SC, TN, TX, or VA (check map)? | YES | <u></u> ио | | | | including Hawaii and Paerlo Rico)? Yes No | | If Yes to either question | , fill out a Reg | gulated S | oil Check | dist (F-LI-C-01 | 10) and it | nclude with SCUR/COC paperwork. | | | | | | | | COMMENTS: | | Chain of Custody Present: | ØYes
ØYes | □No | | 1. | | | | Chain of Custody Filled Out: | | □No | | 3. | | | | Chain of Custody Relinquished: | ØYes
ØYes | | □N/A | | | 30 | | Sampler Name & Signature on COC: | ZiYes
ZiYes | □No | LINIA | 5. | | | | Samples Arrived within Hold Time: | ZYes | | | 6. | | | | Short Hold Time Analysis (<72hr): | -/ | , | | 7. | | | | Rush Turn Around Time Requested: | □Yes | | | 8. | | | | Sufficient Volume: (Triple volume provided for MS/N | Yes | | | 9. | | | | Correct Containers Used: | ØYes
ØYes | | | 3.5 | | | | -Pace Containers Used: | DY'es | | | 10. | | | | Containers Intact: Filtered volume received for Dissolved tests | □Yes | □No | □p¶/A | | le if sedim | ent is visible in the dissolved container. | | Sample Labels match COC: | □Yes | □No | - Upin | 12. | te ii sediiii | ent is visible in the dissolved container. | | -Includes date/time/ID/Analysis Matrix SL | - | | | | | | | All containers needing preservation have been check | 7400- | □No | □N/A | 13. | HNO ₃ | □ H₂SO₄ □ NaOH □ HCl | | pH paper Lot # 4/4/24/3 | <i>P</i> 103 | 34) | 6 | | | ☐ H ₂ SO₄ ☐ NaOH ☐ HCI | | All containers needing preservation are found to be in | (0)
1 | | | Sample # | | | | compliance with EPA recommendation? | | - | | | | | | (HNO ₃ , H₂SO ₄ , HCI, NaOH>9 Sulfide,
NAOH>12 Cyanide) | Yes | □No | □N/A | | | | | Exceptions: VOA, Coliform, OODOC, Oil and Greas DRO/8015 (water). | se, | | | Initial when co | mololod | Lot 4 of -d. L L | | Per Method, VOA pH is checked after analysis | | | | William Wrien Co | impleted_ | Lot # of added preservative: Date/Time preservative added | | Samples checked for dechlorination: | □Yes | □No | ZNIA | 14 | | | | KI starch test strips Lot # | | | • | | | 9 | | Residual chlorine strips Lot # | | | | Posit | tive for Res | c. Chlorine? Y N | | Headspace in VOA Vials (>6mm); | □Yeş | □No | ZN/A | 15. | | | | Trip Blank Present: | □Yes | □No | ØN/A | 16. | | | | Frip Blank Custody Seals Present | □Yes | □No | PÁIA | | | | | Pace Trip Blank Lot # (if applicable) | | | | | | | | Client Notification/ Resolution: | | | | Field Data Red | quired? | Y / N | | Person Contacted: | | | | Date | e/Time _ | | | Comments/ Resolution; | # PREMIER ENVIRONMENTAL SERVICES, INC. DATA VALIDATION REPORT OF THE TOWN OF SOUTHAMPTON NORTH SEA LANDFILL ORGANIC AND INORGANIC ANALYSES OF AQUEOUS SAMPLES PACE ANALYTICAL SERVICES, INC. MELVILLE, NEW YORK LABORATORY REPORT NUMBER: 70109260 December 2019 Prepared for P.W. Grosser Consulting Bohemia, New York Prepared by Premier Environmental Services 2815 Covered Bridge Road Merrick, New York 11566 (516)223-9761 # NYS DEC Data Usability Summary Report DATA VALIDATION FOR: Volatile Organic Analyses SITE: North Sea Landfill-Town of Southampton CONTRACT LAB: Pace Analytical Services, Inc. Melville, New York REPORT NO.: 70109260 REVIEWER: Renee Cohen DATE REVIEW COMPLETED: November 2019 MATRIX: Aqueous The data validation was performed according to the guidelines in the described in the New York State Department of Environmental Conservation, Division of Environmental Remediation, Guidance for the Development of Data Usability Summary Reports (DUSR). In addition, the data has been reviewed using the protocol specified in the NYS Analytical Services Protocol ('05). All data are considered valid and acceptable except those analytes which have been rejected "R" (unusable). Due to various QC problems, some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material, "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All actions are detailed on the attached sheets. Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use. This data reports includes twenty (20) aqueous samples including one (1) field duplicate sample. In addition, one (1) Equipment Blank sample and one (1) Trip Blank sample were submitted with these field samples. The samples associated with this data set were collected October 21, 2019 and October 22, 2019. The samples were received at Pace Analytical Services, Inc. located in Melville, New York on October 22, 2019 and October 23, 2019 for the analyses listed on the chain of custody documents that accompanied these samples to the laboratory. The cooler temperatures were within QC limits upon receipt. The samples were analyzed for Volatile Organic Analytes (EPA Method 8260C), Total and Dissolved Metals and Miscellaneous Wet Chemistry analytes as specified on the Chain of Custody (COC) documentation that accompanied the samples to the laboratory. A cross-reference between Field Sample ID and Laboratory Sample ID is located in Table 1 of this report. Copies of the definitions that may be used to qualify data results are located in Appendix A of this report. Copies of qualified data result pages are located in Appendix B of this report and a copy of Chain of Custody (COC) documentation associated with sampling event is located in Appendix C. This review is for the subset of samples that were marked on the Chain of Custody for Volatile Organic Analytes. A subset of these samples was also analyzed for Total and Dissolved Metals and miscellaneous wet chemistry analytes. The review of these inorganic analytes is located in stand-alone data review reports within this validation report. ### 1. OVERVIEW: The client requested that five (5) percent (%) of the samples in this data set be reviewed. One (1) discreet sample points was chosen for Volatile Organic Data review (VOA). A full data review of the sample chosen will be performed. The samples in this data set were analyzed using EPA Test Methods for the Evaluation of Solid Waste (SW 846), Method 8260C. The project target analytes were reported by the laboratory. Proper custody transfer of the samples was documented in the laboratory reports. Cooler temperatures were within QC limits. Sample preservation was checked prior to analysis. The samples in this data set were properly preserved. The following aqueous sample was chosen for the 5 % data review in the VOA fraction: 11B (70109260006). ### 2. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Preserved volatile organic analyses are required to be analyzed within 10 days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly preserved aqueous samples is 14 days from collection. The samples in this data set were collected on October 21, 2019 and October 22, 2019 and received at the laboratory on October 22, 2019 and October 23, 2019. The sample analyses associated with this data set was completed on October 23, 2019. The sample chosen for data review and the associated QC samples were prepared and analyzed within ten (10) days of VTSR. # 3. SURROGATES: Each of the samples reported in this data set have been fortified with the method specified surrogate compounds prior to sample preparation/analysis to evaluate the overall laboratory performance and the efficiency of the analytical technique. If the measured surrogate concentrations are outside the QC limits, qualifiers were applied to the effected samples. Each of the samples in this data set was spiked with the three (3) surrogate compounds 1, 2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene. In house-surrogate recovery limits were utilized by the laboratory. The percent recovery of each surrogate compound met QC criteria in the sample chosen for review. # 4. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD: The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data. Site specific and/or Batch QC MS/MSD is not reported in this data set. No action was taken based on this QC outlier. ### 5. BLANK SPIKE ANALYSIS: The NY ASP protocol requires that a blank spike analysis be performed with each sample batch. The blank spike analysis is used to ensure that the analytical system is in control. The laboratory applied in-house recovery limits for each analyte. The laboratory performed one (1) laboratory control sample (LCS) analysis is reported with this data set. The LCS was fortified with the complete list of reported target analytes. In-house spike recovery limits were reported for each of target analyte. The percent recovery of target analytes met QC criteria in the reported LCS sample. ### 6. BLANK CONTAMINATION: Quality assurance (QA) blanks, such as the method, trip, field, or rinse blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks and Equipment Blank samples are used to measure
cross-contamination of samples during field operations. Samples are then qualified based on blank contamination when detected. # A) Method Blank contamination One (1) aqueous method blank sample is associated with the sample chosen for review. The method blank sample was free from contamination of target and non-target (TIC) analytes. # B) Equipment Blank contamination An Equipment Blank sample is not associated with this data set. # C) Trip Blank contamination One (1) Trip Blank sample is associated with this data set. The Trip Blank sample is free from contamination of target analytes. # D) Storage Blank contamination One (1) Storage Blank sample is associated with this data set. The Storage Blank sample is free from contamination of target analytes. ### 7. GC/MS CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. # A) RESPONSE FACTOR The response factor measures the instrument's response to specific chemical compounds. Region II data review requires that the response factor of all analytes be greater than or equal to 0.05 in both initial and continuing calibration analyses. A value less than 0.05 indicates a serious detection and quantitation problem (poor sensitivity). Region II data validation criteria states that if the minimum RRF criteria are not met in an initial calibration the positive results are qualified "J". Non-detect results in the initial calibration with an RRF <0.05 are qualified "R", unusable. If RRF criteria is not met in the continuing calibration curve analysis, affected positive analytes will be qualified "J" estimated. Those analytes not detected are not qualified. The SW-846 Methods cite specific analytes known as System Performance Check Compounds (SPCC). Minimum response criteria are set for these analytes. If the minimum criteria are not met, analyses must stop, and the source of problems must be found and corrected. Data associated with this set has been reviewed for the criteria in the cited in the EPA Method and the Region II criteria. One (1) initial calibration curve analysis is associated with the aqueous samples in this data set. The laboratory performed one aqueous initial multilevel calibration on July 3, 2019 (Inst 70MSV8). The RRF of target compounds met QC criteria in this initial calibration curve analysis. One (1) ICV standard was analyzed following the initial calibration analysis (File ID: 11945633, 7/3/19). RRF of target analytes met QC criteria in the ICV standard analysis. One (1) continuing calibration standard is associated with the sample chosen for data review. The CCV standard associated with the sample chosen for review was analyzed on October 23, 2019 (File ID 102319.B/P19488.D. The RRF of target compounds met QC criteria in this continuing calibration standard analysis. # B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the compounds in the continuing calibration standard to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Region II data validation criteria states that the percent RSD of the initial calibration curve must be less than or equal to 20% (30% CCC compounds). The %D must be <20% in the continuing calibration standard. These criteria have been applied to all target analytes. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects may be flagged "UJ", based on professional judgment. If %RSD and %D grossly exceed QC criteria (>90%), non-detects data may be qualified "R", unusable. Data associated with this set has been reviewed for the criteria in the cited in the USEPA Data Validation Guidelines and the USEPA Region II criteria. One (1) aqueous initial calibration standard analysis is associated with this data set. The laboratory analyzed an aqueous initial calibration curve on July 3, 2019 (70MSV8). The laboratory reported the Relative Standard Deviation (%RSD) of each target compound on a summary form that was included in the report. Target analyte %RSD criteria were met in the initial calibration curve analysis. An initial calibration verification standard (ICV) was analyzed (19945633, 7/3/19). Target analytes met QC criteria in the ICV standard analysis with the exception of Bromomethane (24.7%), 2-Butanone (49.3%) and Vinyl Chloride (26.3%) ### 7. GC/MS CALIBRATION: # B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D) (cont'd): One (1) continuing calibration standard analysis is associated with the aqueous sample chosen for data review. This CCV standard was analyzed on October 23, 2019 (File ID: 102319.B/P19488.D). The % Difference of reported target compounds met QC criteria in the continuing calibration standard with the exception of Acetone (22.3%), Bromomethane (44.0%), 2-Butanone (20.7%) and Iodomethane (>100%). Acetone, Bromomethane and 2-Butanone have been estimated "J"/"UJ" qualified in the sample chosen for review. Iodomethane has been deemed unusable "R" qualified due to the high %Difference in the CCV standard analysis. Qualified data result pages are located in Appendix B of this report. # 8. GC/MS INTERNAL STANDARDS PERFORMANCE: Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50%to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non-detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard area count evaluation criteria are applied to all field and QC samples. The samples in this data set were spiked with the internal standards Pentafluorobenzene, 1, 4-Difluorobenzene, Chlorobenzene-d5 and 1, 4-Dichlorobenzene-d4 prior to analysis. The area counts, and retention time of each internal standard met QC criteria in the field samples and QC samples associated with this data set. # 9. GC/MS MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is Bromofluorobenzene (BFB). If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R". The tune criteria listed in the data report met or exceeded that required by the method. Tuning criteria associated with these sample analyses were met. # 10. GC/MS INTERNAL STANDARDS PERFORMANCE: Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non-detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard area count evaluation criteria are applied to all field and QC samples. The samples in this data set were fortified with the internal standards Chlorobenzene-d5, 1,4-Fluorobenzene, 1,4-Dichlorobenzene-d4 and Pentafluorobenzene prior to analysis. The area counts, and retention time of each internal standard met QC criteria in each of the field samples and QC samples associated with this data set. ### 11. FIELD DUPLICATE ANALYSIS: Field duplicate samples are taken and analyzed as an indication of overall precision. These measure both field and lab precision, therefore, the results may have more variability than lab duplicate samples. Soil samples are also expected to have a greater variance due to the difficulties associated with collecting exact duplicate soil samples. Data was not qualified based on the results of the field duplicate sample data. Field duplicate sample analysis is not associated with the sample chosen for data review. The laboratory prepared and analyzed a Batch QC Laboratory Duplicate sample and reported it in this data set. Target analytes were not detected in the sample and/or laboratory duplicate sample analysis. No action was taken. # 12. COMPOUND IDENTIFICATION: Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the
results to be a positive hit, the sample peak must be within ± 0.06 RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary ion intensities with 20% of that in the standard compound. Twenty (20) field samples, inc. one (1) Field Duplicate, one (1) Equipment Blank and one (1) Trip Blank sample were marked on the COC for volatile organic analyses. One (1) aqueous sample was chosen for data review and DUS preparation. Sample MW-11B (70109260006) was analyzed for Volatile Organic analytes by EPA Method 8260C. Chloroform (5.0 ug/L) and Toluene (55.4 ug/L) were detected in the sample chosen for data review. Tentatively Identified Compounds (TIC's) were analyzed for, none were detected in this sample. The samples were analyzed in accordance with the cited method. Detected analyte results reported between the method detection limit and the reporting limit are "J" qualified by the laboratory. Sample MW-11B (70109260006) was analyzed for Volatile Organic analytes by EPA Method 8260C. Chloroform (5.0 ug/L) and Toluene (55.4 ug/L) were detected in the sample chosen for data review. Sample MW-11B was analyzed without dilution. The laboratory provided the quantitation report, chromatogram and analyte spectra in the New York Sate DEC ASP Category B deliverable that was reported for this data set. ### 13. OVERALL ASSESSMENT: The aqueous samples associated with this data set were collected October 21, 2019 and October 22, 2019. The COC documents that accompanied the samples to the laboratory and indicated which samples were to be analyzed Volatile Organic compounds. The data reported agrees with the raw data provided in the final report. The laboratory provided a complete ASP Category B data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package. One (1) sample was reviewed to meet the Quality Assurance Plan requirements. The Volatile Organic analytes/sample results associated with sample MW-11B are reported to the laboratory reporting limit or Practical Quantitation Limit (PQL). These Volatile Organic data results are acceptable for use with the noted data qualifiers. Data qualification is described in the above report. Qualified data result pages are located in Appendix B of this report. # **NYS DEC Data Usability Summary Report** DATA VALIDATION FOR: Target Analyte List of Metals (TAL) SITE: North Sea Landfill CONTRACT LAB: Pace Analytical Services, Inc. Melville, New York PROJECT NO.: 70109260 REVIEWER: Renee Cohen DATE REVIEW COMPLETED: December 2019 MATRIX: Aqueous The Chain of Custody (COC) documentation associated with this data set listed twenty (20) aqueous samples (inc. one Duplicate sample) and one (1) equipment blank sample. One (1) Trip Blank sample was listed on the COC documents. The TB sample was not analyzed for TAL Metals. Samples in this data set were analyzed for the Total TAL metals (inc. Boron), Filtered TAL metals (inc. Boron) or a subset of metals in accordance with the COC documents that accompanied the samples to the laboratory. The samples in this data set were collected October 21, 2019 and October 22, 2019 and received at Pace Analytical Services, LLC located in Melville, New York on October 22, 2019 and October 23, 2019. The data evaluation was performed according to the guidelines noted in the "National Functional Guidelines for Inorganic Data Review", January 2010 and the NYSDEC ASP. A Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines of the Division of Environmental Remediation. Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use. Table 1 of this report contains a cross reference between the Field Sample ID's and the Laboratory Sample ID's. Appendix A of this Data Usability Summary Report (DUSR) contains a summary of the data qualifiers that may be used in the report. Appendix B contains the qualified data result pages. Appendix C contains the Chain of Custody (COC) documents associated with this data set. The samples in this data set were also analyzed for Volatile Organic Analytes and Miscellaneous Wet Chemistry analytes. The data review associated with these analyses are located in stand-alone Data Usability Reports (DUSR). This data review is associated with these Metals Analyses. # DATA USABILITY SUMMARY REPORT (DUSR) Inorganic Data Assessment # 1. OVERVIEW This data report includes the analysis of 5% of the aqueous samples that were collected October 21, 2019 and October 22, 2019. The samples were received at the laboratory on October 22, 2019 and October 23, 2019. The samples were prepared and analyzed for the parameters indicated on the COC documents that accompanied the samples to the laboratory. Table 1 of this report is a cross reference between the Field Sample ID and Laboratory Sample ID. Sample MW-11B (70109260006) was reviewed for Total and Dissolved ICP Metals (Inc. Hg). # 2. HOLDING TIME The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Metals with the exception of Mercury, is required to be digested and analyzed within 180 days of Verified Time of Sample Receipt (VTSR). Mercury samples are to be digested and analyzed within 26 days of VTSR. The Total ICP metal aqueous sample (sample 11B) chosen for review was prepared/digested for ICP metals in one (1) batch on October 16, 2018. The Dissolved ICP metal aqueous sample (sample 11B) chosen for review was prepared/digested for ICP metals in one (1) batch on October 26, 2018. Sample 11B was chosen for the Total Mercury and Dissolved Mercury data review. Total sample 11B was prepared in one sample batch on October 31, 2019 (Batch 654082-Total). Dissolved sample 11B was prepared in one sample Batch on November 1, 2019 (Batch 654874-Dissolved). Sample 11B was prepared/digested and analyzed within the Mercury method holding time. # 3. CALIBRATION ANALYSIS Inductively Coupled Plasma (ICP) was utilized for these analyses. The ICP was calibrated using the calibration standards required by the manufacturer. An initial calibration verification (ICV) standard is then analyzed to verify instrument calibration. One (1) continuing calibration standard was analyzed after each ten (10) field samples. Three (3) ICP analytical sequences are associated with this data set. The ICP analyses were performed on October 28, 2019, November 1, 2019 and November 6, 2019. One (1) ICP analytical sequence is associated with the sample chosen for data review. The sample chosen for review (1A) was analyzed for ICP metals on April 24, 2018. Two (2) Mercury (Hg) analytical sequences are associated with these Total and Dissolved Mercury analyses. Sample 11B was analyzed on October 31, 2019 and November 1, 2019. The ICV and CCV standards associated with these analytical sequences met QC criteria. #### 4. ICP CRDL STANDARD The CRDL standard is used for the verification of instrument linearity near the CRDL. The CRDL standard control limits are 70%-130% recovery. If the CRDL standard falls outside of the control limits, associated data less than or equal to the 10X the CRDL are qualified estimated (J or UJ) or rejected (R) depending on the recovery of the CRDL standard and the concentration of the analyte in the sample. When the CRDL standard exceeds the control limit, indicating a high bias samples are qualified estimated (J or UJ). The laboratory analyzed one (1) CRDL standard with each of the Total and Dissolved/Filtered ICP analytical sequences associated with this data set. This validator applied limits of 70-130% to review each target analyte. CRDL recovery of the target analytes met QC criteria in the opening and closing CRDL standard. #### 5. ICP INTERFERENCE CHECK STANDARD The Interference Check Standard (ICS) is used to verify the laboratory interelement and background correction factors of the ICP. Two solutions comprise the ICS A and ICS AB. Solution A consists of the interferent metals while solution AB is the group of target analytes and the interferent metals. An ICS analysis consists of analyzing both solutions consecutively for all wavelengths used for each analyte reported by ICP. The ICP ICS standards are to be analyzed at the beginning and end of each analytical run. The results are to fall within control limits of +/-20% of the true value. Total Metal Analyses - The laboratory analyzed one (1) ICSA and one (1) ICSAB standard at the beginning and end of the ICP analytical sequence reported with this data set. These QC samples are used to verify the laboratories interelement and background correction factors of the ICP. The recovery of the ICSA/AB standards met QC criteria in the analytical sequence associated with these data sets on October 16, 2018 (Total) and October 26, 2018 (Dissolved). #### 6. MATRIX SPIKE (MS) ANALYSIS The spike sample analysis provides information about the effect of the sample matrix upon the digestion and measurement methodology. The spike control limits are 75%-125% when the sample concentration is less than four (4) times the spike added. If the matrix spike recoveries fall in the range of 30%-74%, the sample results are may be biased low and are qualified as estimated (J or UJ). If the matrix spike recoveries fall in the range of 126%-200%, sample results may be biased high. Positive results are qualified estimated (J). If the spike recovery is greater than 125% and the reported sample result is less than the IDL the data point is acceptable for use. If the matrix spike recovery is greater than 200%, the associated
sample data are unusable and are rejected (R). If matrix spike results are less than 30%, the associated non-detect results are qualified unusable and rejected (R), and the results reported above the IDL are qualified estimated (J). MS/MSD was prepared and analyzed on sample MW-8 (Total Metals). Percent recovery met QC limit for the reported target analytes with the exception of Iron (67%) and Silver (141%). Iron and Silver have been estimated "UJ" qualified in the sample chosen for review. Batch QC Mercury (Total) matrix spike (MS) analyses was reported in this data set. Sample data has not been qualified based on the results of Batch QC MS analysis. Site specific sample 11B (70109260006) was prepared and analyzed as the Dissolved Mercury matrix spike sample analysis. The percent (%) recovery of Dissolved Mercury met QC criteria in the site-specific matrix spike analyses. #### 7. POST DIGESTION SPIKE ANALYSIS The post digestion spike sample analysis provides additional information about the effect of the sample matrix upon the digestion and measurement methodology. The post digestion spike is performed for each analyte that the predigestion spike recovery falls outside the 75-125% control limit. Total Metal Analyses - Post digestion spike (PDS) analysis was not performed on the site-specific sample (MW-11B), no further action was taken. PDS analysis was performed on sample MW-8. Iron was recovered outside QC limit in the PDS sample. Qualified data result pages are located in Appendix B of this report. Filtered Metal Analyses - The sample chosen for data review was not prepared and/or analyzed for filtered/dissolved metal analyses #### 8. <u>DUPLICATE SAMPLE ANALYSIS</u> The laboratory duplicate sample analysis is used to evaluate the laboratory precision of the method for each analyte. If the duplicate sample analysis results for a particular analyte fall outside the control windows of 20% RPD or +/- CRDL, whichever is appropriate depending upon the concentration of the sample, the associated sample results are qualified "J" estimated. Total Metals Analyses – Batch QC duplicate analysis is reported with this data set. Sample data has not been qualified based on Batch QC duplicate analyses. Filtered Metal Analyses - Batch QC duplicate analysis is reported with this data set. Sample data has not been qualified based on Batch QC duplicate analyses. #### 9. ICP SERIAL DILUTION The serial dilution analysis indicates whether significant physical or chemical interferences exist due to the sample matrix. If the concentration of any analyte in the original sample is greater than 50 times the instrument detection limit (IDL), an analysis of a 5-fold dilution samples must yield results which have a percent difference (%D) of less than or equal to 10 with the original sample results. If the %D of the serial dilution exceeds the 10% (and is not greater than 100%) for a particular analyte, all the associated sample results are qualified estimated (J). Total Metal Analysis – Site specific serial dilution analysis was performed on sample 11B. The recovery of reported target analytes met QC criteria. Filtered Metal Analyses - Site specific serial dilution analysis was performed on sample 11B. The recovery of reported analytes met QC criteria with the exception of Sodium (Na). Sodium has been estimated "J"/"UJ" qualified in sample 11B. #### 10. BLANKS Blank analyses are assessed to determine the existence and magnitude of contamination problems. The criteria for the evaluation of blanks applies to all blanks, including but not limited to reagent blanks, method blanks and field blanks. The responsibility for action in the case of an unsuitable blank result depends upon the circumstances and the origin of the blank itself. If the problem with any blank exists, then all associated data must be carefully evaluated to determine whether there is inherent variability in the data for that case, or the problem is an isolated occurrence not affecting other data. The laboratory provided a summary report form for the method blank associated with each of the preparation batches. The ICP method blank sample associated with the Total and Dissolved sample (11B) chosen for review was free from contamination of target analytes with the exception of the reported target analytes. The preparation blank associated with the Total Mercury and Dissolved Mercury sample analyses were free from contamination above the laboratory reporting limit. The laboratory provided summary forms to report the ICB and CCB analyses for all the ICP and Mercury analytical sequences reported in this data set. All QC criteria were met in each of the ICB/CCB analyses reported in this data set. #### 11. LABORATORY CONTROL SAMPLE ANALYSIS (LCS) The laboratory control sample (LCS) analysis provides information about the efficiency of the laboratory digestion procedure. If the recovery of any analyte is outside the established control limits, then laboratory performance and method accuracy are in question. Professional judgment is used to determine of data should be qualified or rejected. One (1) Laboratory Control Sample (LCS) was prepared and analyzed with each preparation batch. Each of the LCS samples was fortified with the associated target analytes. A recovery limit of 80%-120% was applied to each target analyte. The recovery of target analytes met QC criteria in the ICP LCS sample and the Hg LCS sample associated with this data set. #### 12. INSTRUMENT QC DATA The laboratory provided the required annual and semiannual ICP and Mercury Instrument QC summary report forms in this data report. All annual and semiannual QC studies were performed by the laboratory within the proper time frame. #### 13. COMPOUND IDENTIFICATION The samples in this data set were reported as Total Metals and Filtered/Dissolved Metals. Samples were filtered upon receipt at the laboratory as per the documentation that accompanied the samples to the laboratory. Samples in this data set were analyzed for ICP metals and mercury as specified by the COC documents that accompanied the samples to the laboratory. Five (5) percent (%) of these samples were chosen for data review. Sample 11B (70109260-006) was chosen for the review of Total and Dissolved Metals. The samples in this data set were analyzed in accordance with the required methods as specified by the COC documents that accompanied the samples to the laboratory. All sample data was reported in ug/l. #### 14. FIELD DUPLICATE SAMPLE ANALYSIS Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Soil samples have more variability than aqueous samples due to the non-homogeneity of the soil. The total metal sample chosen for data review (11B) is not associated with the field duplicate sample included in this data set. #### 15. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT This data set included the reporting of Total and Filtered Metals as required by the Chain of Custody Documentation that accompanied the samples to the laboratory. The samples were analyzed for the Total/Filtered TAL Metals and Boron or a subset of metals designated by the associated COC documents. The Chain of Custody documents noted what samples were analyzed for specified analytes. A copy of the Chain of Custody is located in Appendix C of this report. The sample results are reported in accordance with the cited methods. The sample chosen for Total Metals data review in this data set is acceptable for use with the noted data qualifiers. Qualified data results are located in Appendix B of this report. #### **NYS DEC Data Usability Summary Report** DATA VALIDATION FOR: Miscellaneous Wet Chemistry SITE: North Sea Landfill - Town of Southampton CONTRACT LAB: Pace Analytical Services, Inc. Melville, NY REPORT NO.: 70109260 REVIEWER: Renee Cohen DATE REVIEW COMPLETED: November 2019 MATRIX: Aqueous The Chain of Custody (COC) documentation associated with this data set listed twenty (20) samples (inc. 1 Field Duplicate sample) and one (1) Equipment Blank sample and one (1) Trip Blank (TB) sample was listed on the COC documents that accompanied the samples to the laboratory. The samples in this data set were collected October 21, 2019 and October 22, 2019 and received at Pace Analytical Services, Inc. located in Melville, New York on October 22, 2019. The data evaluation was performed according to the guidelines and QC criteria cited in the miscellaneous wet chemistry methods that were used for this data set. A Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines of the Division of Environmental Remediation. Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use. Table 1 of this report contains a cross reference between the Field Sample ID's and the Laboratory Sample ID's. Appendix A of this Data Usability Summary Report (DUSR) contains a summary of the data qualifiers that may be used in the report. Appendix B contains the qualified data result pages. Appendix C contains the Chain of Custody (COC) documents associated with this data set. The laboratory performed these wet chemistry analyses based on the COC documentation that accompanied the samples to the laboratory. In addition, these samples were analyzed for Volatile Organic Analytes and Metals (Total and Filtered). The review of these various analyses is reported in stand-alone DUSR reports. This data review is associated with the Miscellaneous Wet Chemistry Analyses. #### DATA USABILITY SUMMARY REPORT (DUSR) NORTH SEA LANDFILL #### 1. OVERVIEW This data report includes
the review of 5% of the aqueous samples that were collected October 21, 2019 and October 22, 2019 and received at the laboratory on October 22, 2019. Table 1 of this report is a cross reference between the field sample ID and laboratory sample ID. A total of nineteen (19) field samples, one (1) Field Duplicate sample, one (1) Equipment Blank sample and one (1) Trip Blank sample were submitted to the laboratory for the analyses listed on the COC documents. In addition, one (1) site specific matrix spike and one (1) site specific matrix spike duplicate (MS/MSD) was listed on the COC documents that accompanied the samples to the laboratory. One (1) of the samples in this data set was chosen for review. The sample chosen for review was sample 11B (70109260006). The samples in this data set were analyzed for the parameters listed on the COC documents. A full data deliverable was generated to report these sample results. The aqueous samples in this data set were analyzed for the Wet Chemistry analytes listed on the COC documents that accompanied the samples to the laboratory. #### 2. HOLDING TIME The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. The laboratory chronicles list the date of analysis for each of the Miscellaneous Wet Chemistry analyses. Sample 11B (70109260006) was chosen for data review. The holding time for each of the reported analyses performed within the method holding time. #### 3. CALIBRATION ANALYSIS The laboratory summarized the initial and continuing calibration data associated with each of the wet chemistry analytes where applicable. The initial and continuing calibration standard analyses associated with this data set met QC criteria for each of the analytes reported in this data set. #### 4. MATRIX SPIKE (MS) ANALYSIS The spike sample analysis provides information about the effect of the sample matrix upon the digestion and measurement methodology. The spike control limits are designated by Pace Analytical Laboratories. The in-house recovery limits are cited on the QC summary report pages for each analyte where applicable. Site specific matrix spike analysis was performed on samples MW-8 (Nitrite as N, Nitrate-Nitrite as N), TOC, Total Hardness, Alkalinity, 4C (COD), 3B (Hardness), 12B, 3C (TOC) and 1A (Nitrate-nitrite as N). In addition, Batch QC MS/MSD is reported in this data set with these wet chemistry analyses where applicable. Percent recovery was reviewed in these Batch QC MS analysis. No action was taken based on the results of Batch QC MS (MS/MSD) analyses. ### DATA USABILITY SUMMARY REPORT (DUSR) NORTH SEA LANDFILL #### 5. <u>DUPLICATE SAMPLE ANALYSIS</u> The laboratory duplicate sample analysis is used to evaluate the laboratory precision of the method for each analyte. If the duplicate sample analysis results for a particular analyte fall outside the control windows of 20% RPD depending upon the concentration of the sample, the associated sample results are qualified "J" estimated. Laboratory duplicate analysis was analyzed with each sample batch. Batch QC laboratory duplicate analysis is reported in this data set. RPD (%) was met in each of the reported Batch QC duplicate analyses. #### 6. BLANKS Blank analyses are assessed to determine the existence and magnitude of contamination problems. The criteria for the evaluation of blanks applies to all blanks, including but not limited to reagent blanks, method blanks and field blanks. The responsibility for action in the case of an unsuitable blank result depends upon the circumstances and the origin of the blank itself. If the problem with any blank exists, then all associated data must be carefully evaluated to determine whether there is inherent variability in the data for that case, or the problem is an isolated occurrence not affecting other data. The laboratory provided Method Blank data results for each of the Wet Chemistry analytes reported in this data set. The method blank and/or preparation blank associated with these miscellaneous Wet Chemistry methods were free from contamination of the target analyte above the reporting limit. One (1) Equipment Blank (EB) sample is associated with this data set. The EB sample was free from contamination of target analytes with the exception of Phenolics, Total. Recoverable (TRP). Phenolics, Total (TRP) were detected at a concentration of 7.7 ug/L. TRP was reviewed in each of the field samples reported in this data set. When the concentration of TRP in the field sample can be attributed to the EB concentration, TRP has been negated "U" qualified in the field sample. #### 7. LABORATORY CONTROL SAMPLE ANALYSIS (LCS) The laboratory control sample (LCS) analysis provides information about the efficiency of the laboratory digestion procedure. If the recovery of any analyte is outside the established control limits, then laboratory performance and method accuracy are in question. Professional judgment is used to determine of data should be qualified or rejected. The laboratory reported in-house LCS recoveries for each of the wet chemistry analyses. The recovery of each of the LCS samples met QC criteria. #### 8. COMPOUND IDENTIFICATION Sample results are reported in accordance with the cited methods. A review of the raw data was performed for these wet chemistry analyses. Sample 11B (70109260006) was the sample chosen for complete review. Sample results were reported in accordance with the analytical method. Sample results are reported to the base reporting limit for the reported target analytes. #### DATA USABILITY SUMMARY REPORT (DUSR) NORTH SEA LANDFILL #### 9. FIELD DUPLICATE DATA RESULTS: Field duplicate samples are taken and analyzed as an indication of overall precision. The field duplicate sample analyses measure both field and laboratory precision; therefore, the results may have more variability than lab duplicate samples. The duplicate sample (DUP) in this data set was not chosen within the 5% sample review. No further action was taken. #### 10. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT The inorganic analyses associated with this data set included the reporting of twenty (20) aqueous samples (inc. 1 field duplicate sample) and one (1) Equipment Blank sample per the COC documents that accompanied the samples to the laboratory. The samples were analyzed for miscellaneous Wet Chemistry analytes as noted on the COC documents that accompanied the data set. Five percent (5%) of the sample set was to be reviewed. The sample chosen for review was sample 11B (70109260006). A copy of the associated Chain of Custody documents is located in Appendix C of this report. The sample results are reported in accordance with the cited methods. The miscellaneous wet chemistry analyte results in sample 11B are acceptable for use with the noted data qualifiers. Data qualifiers "J"/"UJ" are detailed in the above text. Qualified data result pages are located in Appendix B of this report. ### TABLE 1 ### **CLIENT SAMPLE ID** ### **LABORATORYSAMPLE ID** MW-11B 70109260006 - VOA MW-11B 70109260006 – TAL Metals MW-11B 70109260006 – Misc. Wet **Chemistry Analytes** ### APPENDIX A #### DATA QUALIFIER DEFINITIONS - U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. - J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. - N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification." - NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. - UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. - R The sample results are unreliable/unusable. The presence or absence of the analyte cannot be verified. ### APPENDIX B Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 | Sample: 11B | Lab ID: 701 | 09260006 | Collected: 10 | 0/21/19 09:2 | 20 Received: | 10/22/19 11:54 | Matrix: Water | | |-------------------------|-----------------|-------------|------------------|--------------|---------------|------------------|---------------|-----| | Parameters | Results | Units | Report Li | mit DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP | Analytical Met | nod: EPA 60 | 010C Preparation | on Method: | EPA 3005A | | | | | Aluminum | 3540 | ug/L | | 200 1 | 10/25/19 10:1 | 19 10/28/19 14:5 | 7 7429-90-5 | | | Antimony | <60.0 | ug/L | (| 30.0 1 | 10/25/19 10:1 | 19 10/28/19 14:5 | 7 7440-36-0 | | | Arsenic | <10.0 | ug/L | | 10.0 1 | 10/25/19 10:1 | 9 10/28/19 14:5 | 7 7440-38-2 | | | Barium | <200 | ug/L | | 200 1 | | 9 10/28/19 14:5 | | | | Beryllium | <5.0 | ug/L | | 5.0 1 | | 9 10/28/19 14:5 | | | | Boron | <50.0 | ug/L | | 50.0 1 | | 9 10/28/19 14:5 | | | | Cadmium | <2.5 | ug/L | | 2.5 1 | | 9 10/28/19 14:5 | | | | Calcium | 16800 | ug/L | | 200 1 | | 9 10/28/19 14:5 | | | | Chromium | 19.0 | ug/L | | 10.0 1 | | 9 10/28/19 14:5 | | | | Cobalt | <50.0 | ug/L | | 50.0 1 | | 9 10/28/19 14:5 | | | | Copper | <25.0 | ug/L | | 25.0 1 | | 9 10/28/19 14:5 | | | | ron | 11600 🍑 | - | | 20.0 1 | | 9 10/28/19 14:5 | | | | Lead | 19.5 | ug/L | 4 | 5.0 1 | | 9 10/28/19 14:5 | | | | Magnesium | 6210 | ug/L | | 200 1 | | 9 10/28/19 14:5 | | | | Manganese | 369 | ug/L | | 10.0 1 | | 9 10/28/19 14:5 | | | | Vickel | <40.0 | ug/L | | 10.0 1 | | 9 10/28/19 14:5 | | | | Potassium | <5000 | ug/L | | 000 1 | | 9 10/28/19 14:5 | | | | Selenium | <10.0 | | | 10.0 1 | | 9 10/28/19 14:5 | | | | ilver | <10.0 | ug/L | | | | 9 10/28/19 14:5 | | | | odium | | - | | 10.0 1
| | 9 10/28/19 14:5 | | | | | 10500 | ug/L | | 000 1 | | | | | | 「hallium | <10.0 | ug/L | | 10.0 1 | | 9 10/28/19 14:5 | | | | /anadium | <50.0 | ug/L | | 50.0 1 | | 9 10/28/19 14:5 | | | | Zinc | 39.4 | ug/L | | 20.0 1 | 10/25/19 10:1 | 9 10/28/19 14:5 | 7 7440-00-0 | | | 6010 MET ICP, Dissolved | Analytical Meth | 100: EPA 60 | 100 | | | | | | | Aluminum, Dissolved | <200 | ug/L | | 200 1 | | 11/06/19 13:04 | 7429-90-5 | | | Antimony, Dissolved | <60.0 ∪ 3 | √ ug/L | 6 | 60.0 1 | | 11/06/19 13:04 | 7440-36-0 | M1 | | Arsenic, Dissolved | <10.0 | ug/L | 1 | 10.0 | | 11/06/19 13:04 | 7440-38-2 | | | Barium, Dissolved | <200 | ug/L | | 200 1 | | 11/06/19 13:04 | 7440-39-3 | | | Beryllium, Dissolved | <5.0 | ug/L | | 5.0 1 | | 11/06/19 13:04 | 7440-41-7 | | | Boron, Dissolved | <50.0 | ug/L | 5 | 50.0 1 | | 11/06/19 13:04 | 7440-42-8 | | | Cadmium, Dissolved | <2.5 | ug/L | | 2.5 1 | | 11/06/19 13:04 | 7440-43-9 | | | Calcium, Dissolved | 13500 | ug/L | | 200 1 | | 11/06/19 13:04 | 7440-70-2 | | | Chromium, Dissolved | <10.0 | ug/L | 1 | 10.0 | | 11/06/19 13:04 | 7440-47-3 | | | Cobalt, Dissolved | <50.0 | ug/L | 5 | 50.0 1 | | 11/06/19 13:04 | 7440-48-4 | | | Copper, Dissolved | <25.0 | ug/L | 2 | 25.0 1 | | 11/06/19 13:04 | 7440-50-8 | | | ron, Dissolved | 32.5 | ug/L | 2 | 20.0 1 | | 11/06/19 13:04 | 7439-89-6 | | | ead, Dissolved | <5.0 | ug/L | | 5.0 1 | | 11/06/19 13:04 | | | | Magnesium, Dissolved | 4150 | ug/L | | 200 1 | | 11/06/19 13:04 | 7439-95-4 | | | Manganese, Dissolved | 181 | ug/L | 1 | 0.0 1 | | 11/06/19 13:04 | 7439-96-5 | | | lickel, Dissolved | <40.0 | ug/L | | 10.0 | | 11/06/19 13:04 | | | | Potassium, Dissolved | <5000 | ug/L | | 000 1 | | 11/06/19 13:04 | | | | Selenium, Dissolved | <10.0 | ug/L | | 0.0 1 | | 11/06/19 13:04 | | | | Silver, Dissolved | <10.0 🔱 | | | 0.0 1 | | 11/06/19 13:04 | | M1 | | Sodium, Dissolved | 10300 🏅 | | | 000 1 | | 11/06/19 13:04 | | | | Thallium, Dissolved | <10.0 | ug/L | | 0.0 1 | | 11/06/19 13:04 | | | | | | -9,- | | | | , | | | #### REPORT OF LABORATORY ANALYSIS Project: NORTH SEA LANDFILL 10/21 | Sample: 11B | Lab ID: 7010 | 9260006 | Col | lected: 10/21/1 | 9 09:2 | 0 Received: 10 | /22/19 11:54 N | latrix: Water | | |----------------------------|------------------|------------|-------|-----------------|---------|----------------|----------------|---------------|-------| | Parameters | Results | Units | | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 6010 MET ICP, Dissolved | Analytical Meth | od: EPA 60 |)10C | | | | | | | | Zinc, Dissolved | <20.0 | ug/L | | 20.0 | 1 | | 11/06/19 13:04 | 7440-66-6 | | | 7470 Mercury | Analytical Meth | od: EPA 74 | 170A | Preparation Me | thod: E | EPA 7470A | | | | | Mercury | <0.20 | ug/L | | 0.20 | 1 | 11/01/19 11:56 | 11/01/19 16:40 | 7439-97-6 | | | 470 Mercury, Dissolved | Analytical Meth | od: EPA 74 | 70A | Preparation Me | thod: E | PA 7470A | | | | | Mercury, Dissolved | <0.20 | ug/L | | 0.20 | 1 | 10/31/19 11:19 | 10/31/19 17:41 | 7439-97-6 | | | 260C Volatile Organics | Analytical Meth- | od: EPA 82 | 260C/ | 5030C | | | | | | | Acetone | <5.0 | ug/L 🐛 | 1 | 5.0 | 1 | | 10/23/19 16:23 | 67-64-1 | IC | | Acrylonitrile | <5.0 | ug/L | 100 | 5.0 | 1 | | 10/23/19 16:23 | | | | Benzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | Bromochloromethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | romodichloromethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | romoform | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | romomethane | <5.0 | ug/L | 7 | 5.0 | 1 | | 10/23/19 16:23 | | | | -Butanone (MEK) | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | CL,IL | | arbon disulfide | <5.0 | ug/L | 4 | 5.0 | 1 | | 10/23/19 16:23 | | CL,IL | | arbon tetrachloride | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | chlorobenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | hloroethane | <5.0 | ug/L | | 5.0 | 1 | | | | | | hloroform | 5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | hloromethane | <5.0 | | | 5.0 | 1 | | 10/23/19 16:23 | | | | 2-Dibromo-3-chloropropane | <5.0 | ug/L | | | | | 10/23/19 16:23 | | | | ibromochloromethane | | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ,2-Dibromoethane (EDB) | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ibromomethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ,2-Dichlorobenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ,4-Dichlorobenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ans-1,4-Dichloro-2-butene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ,1-Dichloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ,2-Dichloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 107-06-2 | | | ,1-Dichloroethene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 75-35-4 | | | is-1,2-Dichloroethene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 156-59-2 | | | ans-1,2-Dichloroethene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 156-60-5 | | | 2-Dichloropropane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 78-87-5 | | | s-1,3-Dichloropropene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 10061-01-5 | | | ans-1,3-Dichloropropene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 10061-02-6 | | | thylbenzene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | 100-41-4 | | | -Hexanone | <5.0 | ug/L\ | I | 5.0 | 1 | | 10/23/19 16:23 | 591-78-6 | | | odomethane | <5.0 | ug/L 🖡 | | 5.0 | 1 | | 10/23/19 16:23 | 74-88-4 | L1 | | lethylene Chloride | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | -Methyl-2-pentanone (MIBK) | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | tyrene | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ,1,1,2-Tetrachloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | | ,1,2,2-Tetrachloroethane | <5.0 | ug/L | | 5.0 | 1 | | 10/23/19 16:23 | | | #### REPORT OF LABORATORY ANALYSIS Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 11B | Lab ID: 701 | 09260006 | Collected: 10/21 | /19 09:20 | Received: | 10/22/19 11:54 | Matrix: Water | | |--------------------------------------|------------------|-------------|--------------------|-----------|---------------|------------------|---------------|---------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 8260C Volatile Organics | Analytical Meth | nod: EPA 82 | 60C/5030C | 310 | | | | | | Tetrachloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:23 | 127-18-4 | | | Toluene | 55.4 | ug/L | 5.0 | 1 | | 10/23/19 16:23 | 108-88-3 | | | 1,1,1-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:23 | 71-55-6 | | | 1,1,2-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:23 | 79-00-5 | | | Trichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:23 | 79-01-6 | | | Trichlorofluoromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:23 | 75-69-4 | | | 1,2,3-Trichloropropane | <5.0 | ug/L | 5.0 | | | 10/23/19 16:23 | | | | Vinyl acetate | <5.0 | ug/L | 5.0 | | | 10/23/19 16:23 | | | | Vinyl chloride | <5.0 | ug/L 🔾 | | 1 | | 10/23/19 16:23 | | | | Kylene (Total)
S <i>urrogates</i> | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 16:23 | 1330-20-7 | | | 1,2-Dichloroethane-d4 (S) | 89 | % | 68-153 | 1 | | 10/23/19 16:23 | 17060-07-0 | | | 4-Bromofluorobenzene (S) | 94 | % | 79-124 | 1 | | 10/23/19 16:23 | 460-00-4 | | | Toluene-d8 (S) | 95 | % | 69-124 | 1 | | 10/23/19 16:23 | 2037-26-5 | | | TIC MSV Water | Analytical Meth | od: EPA 82 | 60 | | | | | | | TIC Search | No TICs
Found | | | 1 | | 10/28/19 16:39 | | | | 320B Alkalinity | Analytical Meth | od: SM22 2 | 320B | | | | | | | Alkalinity, Total as CaCO3 | 40.4 | mg/L | 1.0 | 1 | | 10/24/19 19:38 | | | | 2340C Hardness, Total | Analytical Meth | od: SM22 2 | 340C | | | | | | | Tot Hardness asCaCO3 (SM 2340B | 70.0 | mg/L | 5.0 | 1 | | 11/05/19 20:17 | | | | 2540C Total Dissolved Solids | Analytical Meth | od: SM22 2 | 540C | | | | | | | Total Dissolved Solids | 94.0 | mg/L | 10.0 | 1 | | 10/24/19 10:08 | | | | 110.4 COD | Analytical Meth | od: EPA 41 | 0.4 Preparation Me | thod: EP | A 410.4 | | | | | Chemical Oxygen Demand | 165 | mg/L | 10.0 | 1 | 10/28/19 11:2 | 4 10/28/19 13:40 | | | | 5210B BOD, 5 day | Analytical Meth | od: SM22 5 | 210B Preparation | Method: S | SM22 5210B | | | | | BOD, 5 day | <4.0 | mg/L | 4.0 | 2 | 10/22/19 17:0 | 5 10/27/19 09:40 | | | | 00.0 IC Anions 28 Days | Analytical Meth | od: EPA 30 | 0.0 | | | | | | | Bromide | < 0.50 | mg/L | 0.50 | 1 | | 10/29/19 01:38 | 24959-67-9 | 104 | | Chloride | 13.9 | mg/L | 2.0 | 1 | | 10/29/19 01:38 | | no dum | | Sulfate | 20.0 | mg/L | 5.0 | 1 | | 10/29/19 01:38 | 14808-79-8 | no data | | 51.2 Total Kjeldahl Nitrogen | Analytical Metho | od: EPA 35 | 1.2 Preparation Me | thod: EPA | A 351.2 | | | | | litrogen, Kjeldahl, Total | 0.59 | mg/L | 0.10 | 1 | 11/05/19 06:0 | 5 11/05/19 12:22 | 7727-37-9 | В | | 53.2 Nitrogen, NO2/NO3 unpres | Analytical Metho | od: EPA 353 | 3.2 | | | | | | | litrate as N | 0.69 | mg/L | 0.050 | 1 | | 10/23/19 03:22 | 14797-55-8 | | | litrate-Nitrite (as N) | 0.69 | | 0.050 | 1 | | 10/23/19 03:22 | | | #### REPORT OF LABORATORY ANALYSIS Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: 11B | Lab ID: 7010 | 9260006 | Collected: 10/ | 21/19 0 | 9:20 | Received: 10 | 0/22/19 11:54 | Matrix: Water | | |------------------------------|-----------------|------------|-----------------|-------------|------|----------------|---------------|---------------|------| | Parameters | Results | Units | Report Lin | nit D | F | Prepared | Analyzed | CAS No. | Qual | | 353.2 Nitrogen, NO2 | Analytical Meth | od: EPA 35 | 53.2 | | | | | | | | Nitrite as N | <0.050 | mg/L | 0.0 | 50 1 | l | | 10/22/19 23:1 | 5 14797-65-0 | | | Phenolics, Total Recoverable | Analytical Meth | od: EPA 42 | 0.1 Preparation | Method | : EP | A 420.1 | | | | | Phenolics, Total Recoverable | 11.6 | ug/L | ! | 5.0 1 | ı | 10/31/19
06:28 | 10/31/19 11:3 | 1 | | | 4500 Ammonia Water | Analytical Meth | od: SM22 4 | 4500 NH3 H | | | | | | | | Nitrogen, Ammonia | 0.87 | mg/L | 0 | 10 1 | I | | 11/01/19 15:4 | 5 7664-41-7 | | | 5310B TOC as NPOC | Analytical Meth | od: SM22 | 5310B | | | | | | | | Total Organic Carbon | 16.7 | mg/L | , | 1.0 1 | l | | 10/31/19 19:2 | 3 7440-44-0 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: TRIP BLANK | Lab ID: 701 | 09260012 | Collected: 10/21/1 | 19 00:00 | Received: 1 | 10/22/19 11:54 I | Matrix: Water | | |----------------------------|-----------------|--------------|--------------------|----------|-------------|------------------|---------------|-------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | | 260C Volatile Organics | Analytical Meth | nod: EPA 82 | 260C/5030C | | | | | | | cetone | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 67-64-1 | IC | | crylonitrile | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 107-13-1 | | | enzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 71-43-2 | | | romochloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 74-97-5 | | | romodichloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 75-27-4 | | | romoform | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 75-25-2 | | | romomethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 74-83-9 | | | -Butanone (MEK) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 78-93-3 | CL,IL | | arbon disulfide | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 75-15-0 | | | arbon tetrachloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 56-23-5 | | | hlorobenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 108-90-7 | | | hloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 75-00-3 | | | hloroform | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 67-66-3 | | | hloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 74-87-3 | | | ,2-Dibromo-3-chloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 96-12-8 | | | ibromochloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | 124-48-1 | | | ,2-Dibromoethane (EDB) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | ibromomethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 2-Dichlorobenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 4-Dichlorobenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | ans-1,4-Dichloro-2-butene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 1-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 2-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 1-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | s-1,2-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | ans-1,2-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 2-Dichloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | s-1,3-Dichloropropene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | ans-1,3-Dichloropropene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | thylbenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | -Hexanone | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | domethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | L1 | | ethylene Chloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | Methyl-2-pentanone (MIBK) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | tyrene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 1,1,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 1,2,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | etrachloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | oluene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 1,1-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 1,2-Trichloroethane | <5.0 | ug/L | 5.0
5.0 | 1 | | 10/23/19 14:55 | | | | richloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | richlorofluoromethane | <5.0 | ug/L
ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | 2,3-Trichloropropane | <5.0 | ug/L
ug/L | 5.0
5.0 | 1 | | 10/23/19 14:55 | | | | nyl acetate | <5.0 | ug/L
ug/L | 5.0 | 1 | | 10/23/19 14:55 | | | | nyl chloride | <5.0
<5.0 | ug/L
ug/L | 5.0
5.0 | 1 | | 10/23/19 14:55 | | | | ,, | ~5.0 | ug/L | 5.0 | | | 10123118 14.33 | 1 3+U 1+4 | | #### **REPORT OF LABORATORY ANALYSIS** Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: TRIP BLANK | Lab ID: 70 | 0109260012 | Collected: 10/21/1 | 9 00:00 | Received: | 10/22/19 11:54 | Matrix: Water | | |---------------------------|------------------|---------------|--------------------|---------|-----------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 8260C Volatile Organics | Analytical Me | ethod: EPA 82 | 60C/5030C | | | | | | | Surrogates | | | | | | | | | | 1,2-Dichloroethane-d4 (S) | 89 | % | 68-153 | 1 | | 10/23/19 14:59 | 5 17060-07-0 | | | 4-Bromofluorobenzene (S) | 94 | % | 79-124 | 1 | | 10/23/19 14:59 | 5 460-00-4 | | | Toluene-d8 (S) | 94 | % | 69-124 | 1 | | 10/23/19 14:55 | 5 2037-26-5 | | | TIC MSV Water | Analytical Mo | ethod: EPA 82 | 260 | | | | | | | TIC Search | No TICs
Found | | | 1 | | 10/28/19 16:39 | 9 | | Project: NORTH SEA LANDFILL 10/21 Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qua | |-----------------------------|----------------|-------------|--------------|----|----------|----------------|------------|-------| | 3260C Volatile Organics | Analytical Met | hod: EPA 82 | 860C/5030C | | | | | | | Acetone | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 67-64-1 | IC | | Acrylonitrile | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 107-13-1 | | | Benzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 71-43-2 | | | Bromochloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 74-97-5 | | | Bromodichloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 75-27-4 | | | Bromoform | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 75-25-2 | | | Bromomethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 74-83-9 | | | 2-Butanone (MEK) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 78-93-3 | CL,IL | | Carbon disulfide | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 75-15-0 | · | | Carbon tetrachloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | Chlorobenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | Chloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | Chloroform | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | Chloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | I,2-Dibromo-3-chloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | Dibromochloromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,2-Dibromoethane (EDB) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | Dibromomethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | .2-Dichlorobenzene | <5.0 | - | 5.0 | 1 | | | | | | ,4-Dichlorobenzene | <5.0 | ug/L | | | | 10/23/19 15:41 | | | | | | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | rans-1,4-Dichloro-2-butene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,1-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,2-Dichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,1-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | is-1,2-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | rans-1,2-Dichloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,2-Dichloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | is-1,3-Dichloropropene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 10061-01-5 | | | rans-1,3-Dichloropropene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 10061-02-6 | | | Ethylbenzene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 100-41-4 | | | -Hexanone | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 591-78-6 | | | odomethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 74-88-4 | L1 | | Methylene Chloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 75-09-2 | | | -Methyl-2-pentanone (MIBK) | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 108-10-1 | | | Styrene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 100-42-5 | | | ,1,1,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 630-20-6 | | | ,1,2,2-Tetrachloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 79-34-5 | | | etrachloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | 127-18-4 | | | oluene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,1,1-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,1,2-Trichloroethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | richloroethene | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | richlorofluoromethane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | ,2,3-Trichloropropane | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | inyl acetate | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | inyl chloride | <5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | | , | <5.0
<5.0 | ug/L | 5.0 | 1 | | 10/23/19 15:41 | | | #### **REPORT OF LABORATORY ANALYSIS** Project: **NORTH SEA LANDFILL 10/21** Pace Project No.: 70109260 Date: 11/06/2019 02:57 PM | Sample: STORAGE BLANK | Lab ID: 70 | 109260013 | Collected: 10/21/1 | 9 00:00 | Received: | 10/22/19 11:54 | Matrix: Water | | |---------------------------|------------------|---------------|--------------------|---------|-----------|----------------|---------------|------| | Parameters | Results | Units | Report Limit | DF | Prepared | Analyzed | CAS No. | Qual | | 8260C Volatile Organics | Analytical Me | ethod: EPA 82 | 260C/5030C | | | | | | | Surrogates | | | | | | | | | | 1,2-Dichloroethane-d4 (S) | 90 | % | 68-153 | 1 | | 10/23/19 15:4 | 1 17060-07-0 | | | 4-Bromofluorobenzene (S) | 94 | % | 79-124 | 1 | | 10/23/19 15:4° | 1 460-00-4 | | | Toluene-d8 (S) | 94 | % | 69-124 | 1 | | 10/23/19 15:4 | 1 2037-26-5 | | | TIC MSV Water | Analytical Me | ethod: EPA 82 | 260 |
| | | | | | TIC Search | No TICs
Found | | | 1 | | 10/28/19 16:39 | 9 | | #### MSV - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET | 1 | 1 | В | | | | |---|---|---|--|--|--| | | | | | | | .o Name: Pace Analytical - New York Contract: NORTH SEA LANDFILL 10/21 Date Received: 10/22/2019 11:54 Matrix: Water SDG No.: 70109260 Date Extracted: 10/23/2019 16:23 Lab Sample ID: 70109260006 Date Analyzed: 10/23/2019 16:23 Lab File ID: 102319.B\P19501.D Initial wt/vol: 5 mL Final wt/vol: 5 mL Dilution: 1 | CAS NO. | COMPOUND | CONCENTRATION UNITS: ug/L | Q | | |--------------------------|-----------------------------|---------------------------|---|--------| | 67-64-1 | Acetone | <5.0 | U | | | 107-13-1 | Acrylonitrile | <5.0 | U | | | 71-43-2 | Benzene | <5.0 | U | | | 74-97-5 | Bromochloromethane | <5.0 | U | | | 75-27-4 | Bromodichloromethane | <5.0 | U | | | 75-25-2 | Bromoform | <5.0 | U | | | 74-83-9 | Bromomethane | <5.0 | U | (| | 78-93-3 | 2-Butanone (MEK) | <5.0 | U | | | 75-15-0 | Carbon disulfide | <5.0 | U | | | 56-23-5 | Carbon tetrachloride | <5.0 | U | | | 108-90-7 | Chlorobenzene | <5.0 | U | | | 75-00-3 | Chloroethane | <5.0 | U | | | 67-66-3 | Chloroform | 5.0 | | | | ™1-87-3 | Chloromethane | <5.0 | U | | | ა მ-12 - 8 | 1,2-Dibromo-3-chloropropane | <5.0 | U | | | 124-48-1 | Dibromochloromethane | <5.0 | U | | | 106-93-4 | 1,2-Dibromoethane (EDB) | <5.0 | U | | | 74-95-3 | Dibromomethane | <5.0 | U | | | 95-50-1 | 1,2-Dichlorobenzene | <5.0 | U | | | 106-46-7 | 1,4-Dichlorobenzene | <5.0 | U | | | 110-57-6 | trans-1,4-Dichloro-2-butene | <5.0 | U | | | 75-34-3 | 1,1-Dichloroethane | <5.0 | U | | | 107-06-2 | 1,2-Dichloroethane | <5.0 | U | \Box | | 75-35-4 | 1,1-Dichloroethene | <5.0 | U | | | 156-59-2 | cis-1,2-Dichloroethene | <5.0 | U | | | 156-60-5 | trans-1,2-Dichloroethene | <5.0 | U | | | 78-87-5 | 1,2-Dichloropropane | <5.0 | U | | | 10061-01-5 | cis-1,3-Dichloropropene | <5.0 | U | | | 10061-02-6 | trans-1,3-Dichloropropene | <5.0 | U | | | 100-41-4 | Ethylbenzene | <5.0 | U | \neg | | 591-78-6 | 2-Hexanone | <5.0 | U | \neg | | 74-88-4 | Iodomethane | <5.0 | U | | | 75-09-2 | Methylene Chloride | <5.0 | U | | | 108-10-1 | 4-Methyl-2-pentanone (MIBK) | <5.0 | U | \neg | | 100-42-5 | Styrene | <5.0 | U | | | 0-20-6 | 1,1,1,2-Tetrachloroethane | <5.0 | U | | | 79-34-5 | 1,1,2,2-Tetrachloroethane | <5.0 | U | | #### SAMPLE NO. #### MSV - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET 11B Lab Name: Pace Analytical - New York Contract: NORTH SEA LANDFILL 10/21 Date Received: 10/22/2019 11:54 Matrix: Water SDG No.: 70109260 Date Extracted: 10/23/2019 16:23 Lab Sample ID: 70109260006 Date Analyzed: 10/23/2019 16:23 Lab File ID: 102319.B\P19501.D Initial wt/vol: 5 mL Final wt/vol: 5 mL Dilution: 1 | CAS NO. | COMPOUND | CONCENTRATION UNITS: ug/L | Q | |-----------|------------------------|---------------------------|---| | 127-18-4 | Tetrachloroethene | <5.0 | U | | 108-88-3 | Toluene | 55.4 | | | 71-55-6 | 1,1,1-Trichloroethane | <5.0 | U | | 79-00-5 | 1,1,2-Trichloroethane | <5.0 | υ | | 79-01-6 | Trichloroethene | <5.0 | U | | 75-69-4 | Trichlorofluoromethane | <5.0 | U | | 96-18-4 | 1,2,3-Trichloropropane | <5.0 | U | | 108-05-4 | Vinyl acetate | <5.0 | U | | 75-01-4 | Vinyl chloride | <5.0 | U | | 1330-20-7 | Xylene (Total) | <5.0 | U | SAMPLE NO. #### MSV - FORM I VOA-TIC-1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS | AMPLE NO. | | |-----------|--| | 11B | | | Lab Name: Pace Analytical - New York Contract: NORTH SEA LANDFILL 10/21 | | | ct: NORTH SEA LANDFILL 10/21 | | |---|---|------------------------------|-------------------------------|--| | Date Received: | 10/22/2019 11:54 | Matrix: | Water SDG No.: 70109260 | | | Date Extracted: | : 10/23/2019 16:23 Lab Sample ID: 70109260006 | | mple ID: 70109260006 | | | Date Analyzed: | 10/23/2019 16:23 | 3/2019 16:23 Lab File ID: 10 | | | | Initial wt/vol: | 5 mL Final wt/vol: 5 mL Dilution: 1 | Instrum | ent: 70MSV8 Percent Moisture: | | | CAS NO. | COMPOUND | RT | EST. CONC. UNITS: ppbv Q | | | | No TICs Found | | | | #### FORM I INORGANIC-1 INORGANIC ANALYSIS DATA SHEET 11B Lab Name: Pace Analytical - New York Lab Sample ID: 70109260006 SDG No.: 70109260 Contract: NORTH SEA LANDFILL 10/21 Percent Moisture: | CAS No. | Analyte | Concentration | Q | Units | DF | Analysis Date/Time | | |-----------|----------------------|---------------|---|-------|----|--------------------|----| | 7429-90-5 | Aluminum | 3540 | | ug/L | 1 | 10/28/2019 14:57 | | | 7429-90-5 | Aluminum, Dissolved | <200 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7440-36-0 | Antimony | <60.0 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-36-0 | Antimony, Dissolved | <60.0 | U | ug/L | 1 | 11/06/2019 13:04 | UJ | | 7440-38-2 | Arsenic | <10.0 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-38-2 | Arsenic, Dissolved | <10.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7440-39-3 | Barium | <200 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-39-3 | Barium, Dissolved | <200 | U | ug/L | 1 | 11/06/2019 13:04 | 1 | | 7440-41-7 | Beryllium | <5.0 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-41-7 | Beryllium, Dissolved | <5.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7440-42-8 | Boron | <50.0 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-42-8 | Boron, Dissolved | <50.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7440-43-9 | Cadmium | <2.5 | U | ug/L | 1 | 10/28/2019 14:57 | 1 | | 7440-43-9 | Cadmium, Dissolved | <2.5 | U | ug/L | 1 | 11/06/2019 13:04 | 1 | | 7440-70-2 | Calcium | 16800 | | ug/L | 1 | 10/28/2019 14:57 | | | 7440-70-2 | Calcium, Dissolved | 13500 | | ug/L | 1 | 11/06/2019 13:04 | | | 7440-47-3 | Chromium | 19.0 | | ug/L | 1 | 10/28/2019 14:57 | | | 7440-47-3 | Chromium, Dissolved | <10.0 | U | ug/L | 1 | 11/06/2019 13:04 | 1 | | 7440-48-4 | Cobalt | <50.0 | U | ug/L | 1 | 10/28/2019 14:57 | 1 | | 7440-48-4 | Cobalt, Dissolved | <50.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7440-50-8 | Copper | <25.0 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-50-8 | Copper, Dissolved | <25.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7439-89-6 | Iron | 11600 | | ug/L | 1 | 10/28/2019 14:57 | I | | 7439-89-6 | Iron, Dissolved | 32.5 | | ug/L | 1 | 11/06/2019 13:04 | | | 7439-92-1 | Lead | 19.5 | | ug/L | 1 | 10/28/2019 14:57 | | | 7439-92-1 | Lead, Dissolved | <5.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7439-95-4 | Magnesium | 6210 | | ug/L | 1 | 10/28/2019 14:57 | | | 7439-95-4 | Magnesium, Dissolved | 4150 | | ug/L | 1 | 11/06/2019 13:04 | | | 7439-96-5 | Manganese | 369 | | ug/L | 1 | 10/28/2019 14:57 |] | | 7439-96-5 | Manganese, Dissolved | 181 | | ug/L | 1 | 11/06/2019 13:04 | | | 7440-02-0 | Nickel | <40.0 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-02-0 | Nickel, Dissolved | <40.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7440-09-7 | Potassium | <5000 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7440-09-7 | Potassium, Dissolved | <5000 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7782-49-2 | Selenium | <10.0 | U | ug/L | 1 | 10/28/2019 14:57 | | | 7782-49-2 | Selenium, Dissolved | <10.0 | U | ug/L | 1 | 11/06/2019 13:04 | | | 7440-22-4 | Silver | <10.0 | U | ug/L | 1 | 10/28/2019 14:57 | UJ | | 7440-22-4 | Silver, Dissolved | <10.0 | U | ug/L | 1 | 11/06/2019 13:04 | TU | | 7440-23-5 | Sodium | 10500 | | ug/L | 1 | 10/28/2019 14:57 | | | 7440-23-5 | Sodium, Dissolved | 10300 | | ug/L | 1 | 11/06/2019 13:04 | 丁 | SAMPLE NO. # FORM I INORGANIC-2 INORGANIC ANALYSIS DATA SHEET | <u> </u> | | | 110. | | |----------|---|----|------|--| | | | | | | | | 1 | 1B | | | | | | | | | | ગ Name: <u>Pace Analytical - New York</u> | SDG No. : 70109260 | Contract: NORTH SEA LANDFILL 10/21 | |---|--------------------|------------------------------------| | Lab Sample ID: 70109260006 | | Percent Moisture: | | CAS No. | Analyte | Concentration | Q | Units | DF | Analysis Date/Time | |-----------|---------------------|---------------|---|-------|----|--------------------| | 7440-28-0 | Thallium | <10.0 | U | ug/L | 1 | 10/28/2019 14:57 | | 7440-28-0 | Thallium, Dissolved | <10.0 | U | ug/L | 1 | 11/06/2019 13:04 | | 7440-62-2 | Vanadium | <50.0 | U | ug/L | 1 | 10/28/2019 14:57 | | 7440-62-2 | Vanadium, Dissolved | <50.0 | U | ug/L | 1 | 11/06/2019 13:04 | | 7440-66-6 | Zinc | 39.4 | | ug/L | 1 | 10/28/2019 14:57 | | 7440-66-6 | Zinc, Dissolved | <20.0 | U | ug/L | 1 | 11/06/2019 13:04 | # FORM I INORGANIC-1 INORGANIC ANALYSIS DATA SHEET | 11B | | |-----|--| | .o Name: Pace | e Analytical - New York | SDG No.: 70109260 | Contract: | NORTH SEA LANDFILL 10/21 | |----------------|-------------------------|-------------------|-----------|--------------------------| | Lab Sample ID: | 70109260006 | | Percent M | loisture: | | CAS No. | Analyte | Concentration | Q | Units | DF | Analysis Date/Time | |------------|--------------------------------|---------------|---|-------|----|--------------------| | | Alkalinity, Total as CaCO3 | 40.4 | | mg/L | 1 | 10/24/2019 19:38 | | | BOD, 5 day | <4.0 | U | mg/L | 2 | 10/27/2019 09:40 | | | Chemical Oxygen Demand | 165 | | mg/L | 1 | 10/28/2019 13:40 | | 14797-55-8 | Nitrate as N | 0.69 | | mg/L | 1 | 10/23/2019 03:22 | | 7727-37-9 | Nitrate-Nitrite (as N) | 0.69 | | mg/L | 1 | 10/23/2019 03:22 | | 14797-65-0 | Nitrite as N | <0.050 | U | mg/L | 1 | 10/22/2019 23:15 | | 7664-41-7 | Nitrogen, Ammonia | 0.87 | | mg/L | 1 | 11/01/2019 15:45 | | 7727-37-9 | Nitrogen, Kjeldahl, Total | 0.59 | В | mg/L | 1 | 11/05/2019 12:22 | | | Phenolics, Total | 11.6 | | ug/L | 1 | 10/31/2019 11:31 | | | Tot Hardness asCaCO3 (SM 2340B | 70.0 | | mg/L | 1 | 11/05/2019 20:17 | | 7440-44-0 | Total Organic Carbon | 16.7 | | mg/L | 1 | 10/31/2019 19:23 | SAMPLE NO. # FORM I INORGANIC-1 INORGANIC ANALYSIS DATA SHEET | 1 | 1B | | |---|----|--| | 1 | ID | | | Name: Pace Analytical - New York | SDG No.: 70109260 | Contract:
 NORTH SEA LANDFILL 10/21 | |----------------------------------|-------------------|-----------|--------------------------| | Lab Sample ID: 70109260006 | | Percent M | oisture: | | CAS No. | Analyte | Concentration | Q | Units | DF | Analysis Date/Time | |------------|----------|---------------|---|-------|----|--------------------| | 24959-67-9 | Bromide | <0.50 | U | mg/L | 1 | 10/29/2019 01:38 | | 16887-00-6 | Chloride | 13.9 | | mg/L | 1 | 10/29/2019 01:38 | | 14808-79-8 | Sulfate | 20.0 | | mg/L | 1 | 10/29/2019 01:38 | SAMPLE NO. # FORM I INORGANIC-1 INORGANIC ANALYSIS DATA SHEET | _ | == | | |---|------|--| | | MW-8 | | | o Name: Pace Analytical - New York | SDG No.: 70109260 | Contract: NORTH SEA LANDFILL 10/21 | |------------------------------------|-------------------|------------------------------------| | Lab Sample ID: 70109260008 | | Percent Moisture: | | CAS No. | Analyte | Concentration | Q | Units | DF | Analysis Date/Time | | |------------|--------------------------------|---------------|----|-------|----|--------------------|---| | | Alkalinity, Total as CaCO3 | 52.0 | | mg/L | 1 | 10/24/2019 20:20 | 1 | | | BOD, 5 day | <4.0 | U | mg/L | 2 | 10/27/2019 09:44 | 1 | | | Chemical Oxygen Demand | 12.4 | | mg/L | 1 | 10/28/2019 13:42 | 1 | | 14797-55-8 | Nitrate as N | 0.65 | | mg/L | 1 | 10/23/2019 03:25 | 1 | | 7727-37-9 | Nitrate-Nitrite (as N) | 0.65 | | mg/L | 1 | 10/23/2019 03:25 | - | | 14797-65-0 | Nitrite as N | <0.050 | U | mg/L | 1 | 10/22/2019 23:17 | | | 7664-41-7 | Nitrogen, Ammonia | <0.10 | U | mg/L | 1 | 11/01/2019 15:47 | 1 | | 7727-37-9 | Nitrogen, Kjeldahl, Total | <0.10 | UB | mg/L | 1 | 11/05/2019 12:26 | 1 | | | Phenolics, Total | <5.0 | U | ug/L | 1 | 11/04/2019 12:05 | 1 | | | Tot Hardness asCaCO3 (SM 2340B | 80.0 | | mg/L | 1 | 11/05/2019 20:40 | 1 | | 7440-44-0 | Total Organic Carbon | 1.3 | | mg/L | 1 | 10/31/2019 19:53 | 1 | # FORM I INORGANIC-1 INORGANIC ANALYSIS DATA SHEET | SAMPLE NO. | | |------------|--| | MW-8 | | | ab Name: Pace | e Analytical - New York | SDG No.: 70109260 | Contract: | NORTH SEA LANDFILL 10/21 | |----------------|-------------------------|-------------------|-----------|--------------------------| | Lab Sample ID: | 70109260008 | | Percent M | oisture: | | CAS No. | Analyte | Concentration | Q | Units | DF | Analysis Date/Time | |---------|------------------------|---------------|---|-------|----|--------------------| | | Total Dissolved Solids | 103 | | mg/L | 1 | 10/24/2019 10:09 | data ### APPENDIX C | 000 | CHAIN- | OF-CU | STO | Y Analyt | ical Reg | uest Do | ocume | nt | T | | LAB | USE C | ONLY- A | Afi | WC |)# : | : 70 | 110 |)9260 | | |---|--|-------------------------|--------------------------------|--------------------------------|----------------------------|---------------------------|--|----------|----------|---------|------------------------|------------------------|------------------|-------------------|----------------|----------|------------|--|---|-----------------------| | Pace Analytical | | | | SAL DOCUMEN | | | | | | | | | | | | | | | 0200 | | | Company: P.W Grosser Con | | | Billing | Information: | | | | | 1 | | | | ALL | | | | | | | | | P.W Grosser Con
Address Sobnies are.
Report Tois | solting | سمينوري | 100 | nn of | Jouth | nmpt-e | in_ | | | | Con | stainer | | | 701.C | 1026 | | | | | | Report To: | Sile 7 | <u>tu</u> | Fmail | To: | | | | | | | | | | | | | | 7 | | 5A | | Report To: Denew E | rsklud | | Cine C | To:
Derek E | @ Pwgs | 6jlf.io | <u> </u> | | _[(6) m | rethano | ıl, (7) sc | odium b | oisulfate | 2. (8) sc | idium tl | hiosulfa | te. (9) he | nloric aci
kane, (A | id, (4) sodium hydroxide, (5) zinc acetate,
) ascorbic acid, (8) ammonium sulfate, | | | | | | l | | | | | | (C) a | mmoniı | ım hyd | lroxide, | (D) TSP
Analy |), (U) U | npreser | rved, (O | Other _ | | Profile/Line: | ** | | SHP1901 - JJary | n Senlin | nefil! | State: | County/C | City: Time Zone Collected: | | | | | | | | A 1801) | yses | 7 | | | L | ab Sample Receipt Checklist: | | | Phone: 631-581-6353 Site/Facility ID #: Compliance Monitoring? | | | | | | | | S
S | | ا ا | | | | N S | | | C | ustody Seals Present/Intact Y No. No. 10 | IA | | | Email: Denek E e proposition Con Collected By (print): | Purchase Order | - н- | | | | |) | | 1 | - > | 9 | | | ŀ | 司 | | | | ollector Signature Present ON N
ottles Intact ON N | | | | Quote #: | 7 . | DW PWS ID #: DW Location Code: | | | | | 5 | TKN | 10526 | | | | 3 | l | | | orrect Bottles ON N
ufficient Volume ON N | A | | | Collected By (signature). | Turnaround Dat | te Requir | ed: | | Immediat | ely Packed | on ice: | | 13 | l 1 | اخسہ ۔ | | | \- <u>,</u> | # | | | S | amples Received on Ice 🛮 🕰 N | | | Now I am | Standa | rd | | | (Yes | [] No |) | | | | | | | 10 | 4 | | | US | SDA Regulated Soils YN | Å
D | | Sample Disposal: | Rush: | | | | | red (if appl | | | 불 | Phonols | + | | | 집 | ~ | | | | amples in Holding Time (X) N
esidual Chlorine Present Y N | | | Dispose as appropriate Return
 Archive: | [] 2 Day [| ne Day
] 3 Day | | | [] Yes | I./No |) | | 1 | 4 | 구 | 1 | ļ | mex | 1 | İ | | C: | l Strips: | | | Hold: | (Ex | pedite Cha | arges App | ly) | Analysis: | | ······································ | | 15CH | Nos | metals | | | | E | 1 | | pl | ample pH Acceptable H Strips: HCH3443 ulfide Present Y N N | | | Matrix Codes (Insert in Matrix bo) Product (P), Soil/Solid (SL), Oil (OL | k below): Drinkir
.), Wipe (WP), Ai | ng Water
ir (AR), Ti | (DW), G
ssue (TS | round Water
), Bioassay (B) | (GW), Wasi
, Vapor (V) | tewater (W
, Other (OT | /W),
⁻) | | ט | 3.10 | | | OLAHES | 1000 | 4 | | | Le | ead Acetate Strips: | | | Customer Sample ID | Matrix * | Comp /
Grab | I . | llected (or | Compo | osite End | Res | # of | 8 | COD VH3 | Routing | ر | 4 | याप | 13 | İ | | | AB USE ONLY:
ab Sample # / Comments: | | | 1 | W.C. | Grau | Date | posite Start) Time | Date | Time | CI | Ctns | É | 8 | 2 | 10 | 70 | iil | à | | ı | l | | | | 3 \ A. | G.W | G. | | 19 13 15 | 1 | | † | 6 | X | Y | X | X | \exists | | - | _ | \dashv | +, | oul | | | ÌB | | | | 13.00 | | | | 6 | X | X | X | X | 一十 | | | | | | 02 | | | 10 | | | | 1235 | | | | 6 | X | × | × | X | $\neg \uparrow$ | | 寸 | | | | 03 | | | DUP | | | | ×× | | 100 | | 6 | × | | × | × | $\neg \dagger$ | 1 | | 一十 | | 00 | | | | 114 | | | | 850 | 1 | WU | | 8 | × | X | | | x | | X | \dashv | _ | ω | | | | 11 B | | | | 920 | — | | 1 | 9 | X | 25 | | | X | | × | -+ | | 00 | | | | MW-9 | | | | 1025 | | 1 | 1 | 6 | | | | X | - | \hookrightarrow | ' ' | \dashv | _ | | | | | MW-8/NIS/1:08 | | | | 1100 | | + | | 18 | x | X | \frac{1}{2} | X | -+ | \dashv | | | | $\frac{\omega}{\omega}$ | | | | 12 A | | | | 1430 | | \ | | C | بخر | 77 | 7 | X | | \dashv | - | \dashv | | 100 | | | | 12B | V | W | $\Box \forall$ | 1415 | | 1 | | <u>c</u> | | ᅱ | 3 | \mathbf{x}^{\dagger} | | \dashv | \dashv | | \dashv | 0 | | | | Customer Remarks / Special Condition | ons / Possible Ha | azards: | Type of | Ice Used: | (Vey) | Blue Dr | ry No: | | | | | | ESENT | (<72 | nours): | A | N N/ | | Lab Sample Temperature Info: | | | | | | Packing | Material Use | d: | | | | | Lab T | | | | | | | | | | NA | | | | | | | | | | | | ĺ | | | | 24 | 404 | 43 | 04 | | Temp Blank Received: Y N
Therm ID#: HOU | 7 | | | | | Radche | m sample(s) s | creened (< | 500 cam): | Y N | Ā |) | Samp | les rec | ceived | via: | | | | | $\overline{}$ | Cooler 1 Temp Upon Receipt: 5
Cooler 1 Therm
Corr. Factor: O | <u>(</u> coc
.7 oc | | Relinguished by/Company: (Signatur | | | L | | | | | | | | | UP | s (| Client | _ | urier | | Courier | Cooler 1 Corrected Temp: 5.3 | oc | | 1// 8 | <u> </u> | Date | e/Time: | - A I | Received b | y/gompany | y: (Signatu
بمر | ite) | | P | ate/Ti | ime: | | | | | LAB USE | ONLY | Comments: | | | | puce | 10.4 | 4.19 | 1690 | Jost | | 6 | | | | | 2/18 | : //. | 08 | Table | | | | | | | Reliniosistical by/Company: (Signatur | ·e) | | /Time: | | () | y/Company | y: (Signatu | ire) | | - 1 | áte/T | | 7. | | Acctn
Temp | | | | Trip Blank Received: N | NA | | Relincuished by Bany: (Signatur | | | | 19 1154 | Alm | | M | | | | 0/2 | 2/14 | 11: | :54 | Prelo | | | | ACI. MeOH TSP Other | | | Malindushed by pany: (Signatur | ·e) | Date | /Time: | | Received b | y/Company | y: (Signatu | ite) | | D | ate/Ti | ime: | | \neg | PM: | | | | Non Conformance(s): | | | | | | | | | | | V | J | | | | | | PB: | | | | YES /(NO) OF 7 | _ | WO#:70109260 PM: JSA Due Date: 11/05/19 CLIENT: TOS ### CHAIN-OF-CUSTODY / Analytical Request Doct The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed ac- | Section A | Pag | 10: | | ı | of | , | |--|----------------------------|---------------------------|------------|------------------|--|------------|--|--|--|---------------|----------|---|----------------|----------------------------|-----------|--------------|--|------------------------|--|-----------------------------------|--|------------|-------------|-------------------------|--------------------------|---------------------------------|-------------------------| | Required Client Information: | Section B
Required P | | formation | | | | | | ion C
:e Infor | nation: | | | | | | | | | | | | | | | <u> </u> | | · | | Company: P.W. Grosser Conblish. | Repert To: | | | | | | | Atten | | | | | | | | | | 7 | | | | | | | | | | | Address: 620 Jelange ado. 31.7 | Copy To: | | | | | | | Comp | Ded/ | ime: | <u>c</u> | 55. | 1+6 | han phan REGULATORY AGENCY | | | | | | | | | | | | | | | Bahama NY 11716 | | | | | | | | Addre | OCVA | 57 | 1. | • | ·- | | ,, , | | | + | | NPDES GROUND WATER DRINKING WATER | | | | | | | | | Email To: | Purchase O | rder No | .: | | | | | Pace | Quale | | <u> </u> | | | | | | | \mathbf{H} | | | | | | | | | | | Phone | Project Nam | e. 11 | | | | | | Refere | nce:
Project | | | | | | | | | ╄ | US | OTHER | | | | | | | | | Phone Fax: F | Project Nam | JVr. | rin 3 | en Lan | 9 t ;;; | | | Manag | ger | | | | | | | _ | | SI | te Lo | cation | | ./ | | - 1 | | | | | Requested Dua Date/TAT: | Project Num | ber: S | HPI | 901 | | | | Pace I | Proble #: | | | | | | | | | | S | TATE: | - | <i>N</i> у | | - | R | eque | stec | Ana | lysi | Filte | red (\ | (/N) | | | | | 7,000 | | Section D Matrix C | | € 6 | | 00111 | OTED | | | (| | _ | | | | N/A | | Т | Т | Τ | П | | П | | | | | | | | Required Client Information MATRIX / Drinking Wat | | ş ş | ₹ ├ | COLLI | CTED | | ١, | | <u></u> | Pres | erval | ives | _ | ٤ | | | <u>.</u> | _ | \sqcup | 4 | $\vdash \vdash$ | | \sqcup | _. - | | | | | Water
Waste Waste | WT
WW | (see valid codes to left) | ے ا | UMPOSITE | COMPO | u1e | Ę | \ | | | | П | | | AIK | ' | 11 | 3 | | 7 | | | | | | | | | Product | Pi | valid | 8 | START | ENDIGA | FA | Ä | | ľΙ | | | | | 1 | | | 4 | 된 | 1 | Ŧ | | | | 3 | | | | | Sail/Solid | SL
OL | (see valid codes to left) | } | | | | TEMP AT COLLECTION | SS. | | | | | | = | 202 | อ | | - | McHil | 104/21 F | | 1 | | 2 | | | | | (A-Z, 0-9/,-) Wipe | OL
WP
AR
TS
OT | 111 | | | | | P A | 뽛 | 171 | | | | İ | Tes | | 5. | | 3 | | ये . |) | 1 | | į | | | | | Sample IDs MUST BE UNIQUE Tissue
Other | TS
OT | 8 8 | | | \ | | Į. | ۱ĕ | 18 | | | 11. | _ | iš | 딕 | _ | CD | ٦, |]] | 3 5 | 1 1 | 1 | | 핑 | | | | | | | ¥ 1 | 2 | | \ | | ۳ | 8 | | | - | o
[| 티 | 츻 | 2.7 | 4: | ž | جا د
ح | 1.2 | ∄: | 1 | 1 | H | g | | | | | тем# | | MATRIX CODE | DAT | E TIME | DATE | TIME | SAMPLE | # OF CONTAINERS | Unpreserved | ₩ | | Na ₂ S ₂ O ₃ | Metha
Other | Analysis Test | 137 | 17: | \$ | J. | F. Lerel | Brehme | ŀl | | | Residual Chlorine (Y/N) | Pace | Project N | No./ Lab I.D. | | 1 40 | 3 | W 6 | 10-2 | EP 1400 | | | | | | \mathcal{N} | | | | П | - | 又, | χĺΧ | 11 | Ħ | 十 | \sqcap | 十 | П | 十 | 014 | | | | 2 48 | | ill | 1 | 1430 | | <i>k</i> ' | | | | $\Box \chi$ | | П | | 1 | X | ~ × | ₹ | $\langle \chi \rangle$ | \Box | | | 丁 | П | \neg | 015 | | | | 3 4A | | | | 1500 | | | Т | | П | T | V-7 | XT. | | 1 | X | 7/7 | $< \times$ | र्र | | \top | | | П | 十 | 016 | | | | 4 IEA- YERON dans | Ĩ | $\Pi\Pi$ | | 810 | | T | 1 | | П | 11 | 1 | 1 | \top | 1 | 딗 | × | XX | 117 | Ħ | \forall | | | \Box | 十 | 017 | | | | 5 LEA- Primary | | Π | | Car | | 1 | 1 | | Ħ | | 7 | | \top | 1 | Ž | X. | <u>, </u> | X | V | Τχ | | +- | П | 十 | 014 | , | | | 6 3A | | | | 1370 | | | ╁ | | \sqcap | 11 | Τ | M | \top | 1 | Ü | ZK | | 文 | 11 | 1/3 | | \top | П | 十 | 014 | · | | | 7 CAR | | 711 | | 930 | | 1 | \top | T | $\dagger \dagger$ | 11 | 1 | 14 | \top | 1 | $^{\sim}$ | <u> </u> | 7 | 1 | H | \mathbf{x}^{\dagger} | | \top | Н | + | 020 | | | | 8 63 | | TT | | 1000 | | _ | \dagger | \vdash | TT | †† | \top | H | 4 | 1 | | Ĵ | \top | 1 | 1 1 | \ | \vdash | + | Н | 十 | 021 | <i></i> | | | 9 30 | | 11 | | 120) | | | T | 1 | \vdash | ++ | + | H | \star | 1 | Y | | | K | ╁┼ | 4 | \vdash | + | Н | | | | | | 10 7 67 | 1 | 1/1 | 71.17 | 1240 | | | ╁ | | | ++ | ╁ | H | + | 1 | × | , | | _ | \vdash | + | \vdash | | \vdash | | 022 | | | | 11 | | * | - | 1210 | | - | + | | + | ╂╌┼╴ | +- | H | + | 1 | ۴ | 7 | + | + | Н | + | \vdash | + | Н | ┰ | 0.2.2 | 2 | | | 12 | | _ | + | | | | ₩- | | ╁┼ | ╅┼ | ┿ | \vdash | ┿ | 1 | ┝╾┥ | + | + | ┿ | \vdash | + | \vdash | +- | Н | \dashv | | | | | ADDITIONAL COMMENTS | | RELING | QUISHED | BY / AFFILIATI | ON | DAT | <u>} </u> | ١, | IME | ╁╌┸ | | ACC | EPTE | D BY | | ILIAT | ION. | 1 | ╁ | ATE | ᆣ | ME | ┦ | | CAND | LE CONDIT | TONE | | | | | | | (C-C | | | <u> </u> | | + | | | | | 1 | ILIPAT | 10.1 | | | - | <u> </u> | | - | | SAMP | LE CONDIT | IONS | | | | | Kyn | , , , , | | 12,22 | | + | <u>20</u> | | ــــــ | <u>د ر</u> | 16 | لځ | <u>\\</u> | 1 | | | 0/2 | 3/19 | 10 | 230 | 1_ | | | | | | | \mathcal{U} | 2/6 | 5/14 | | , | + k3/1 | 4 | 111 | スゾ | | i
Una | m | _ 1 | DA | ~ | • (| | 10 | 123 | IH | 11: | 25 | 3. | 0 | | | | | | | | 1 | | | | | | | 11 | X | | | | | | | | | , · , | | | 2. | 1 | | | | | | | | | | | | | T | | † | | - | | | | | | | ┢ | | \vdash | | 12 | ++ | | | | | | | | | SAMPLE | R NAME A | ND SIGN | ATUR | E | | | | | | | | | | | <u></u> | ···· | <u></u> | | - | + | <u> </u> | . | ğ | | | | | | | PRINT Nam | | | | Ji c.u | , | /L. | ىزى | , 11 | | | | | | | | | | J. G. G. | | (Y/N) | Custody
saled Coder
(Y/N) | es fin | | ` | | | | | SIGNATUR | E of SAM | PLER | | اربح | // | 7 | ~ | <u>``</u> | | DA | TE SI | gned | 10 | . 2 3 | ١٠٤: | ή | | 1 . | | Received on
Ice (Y/N) | Cus
Sealed | Samples Intact
(Y/N) | | 'Important Note: By signing this form you are accep | ing Pace's NE | Т 30 дау | payment te | rms and agreeing | to late charge | of 1 5% pr | r mani |
<u>a-</u> | olco | s not pr | id with | in 30 d | lays | | 1,74 | | | | | • | | | F-/ | ALL-C | | 07, 15-May | | | | | | | | | | | | | | | _ 1 | -10 | | | | | _ | | | | | |---|-------------------|--|------------------|------------------------|----------------|--|---------------|--------------|-----------|---------|----------------|--------------|-----------|-----------------------|------------|---|----------|------------------|---------------------------|-----------------------------|---------------------------------------|---------------------------------------| | | CHAIN- | OF-CU | STODY | Analyti | cal Requ | est Do | cumer | nt | T | | LAB | ī V | VU | #: | 10 | 10 | 92 | 60 | | r Numb | er) |) | | Pace Analytical | Chain-o | f-Custody | is a LEGAL | DOCUMEN | T - Complete | ali releve | nt fields | | | | | | M: . | | Du | e Dat | te: | 11/05/ | 10 | | | | | Company: | | • | Billing Info | | ' ' | , | | | | | | C | LIEN | IT: | TOS | | | , 00, | 13 | .ү | | | | P.W. Grosse Cons | HH | | To | | 5.1 | h | 01 | | | | | - | D | | | | | | | .1 | | | | Address: | Boren N | 7 | 1 800 | v d | - Soul | -, 1474 | itter | <u> </u> | | | Con | tainer | Preser | vative | туре | -1 | T | 1- | | | | J5A | | Dana 7 | sbu. | | Email To: | bes is E | O DAG | ا مالاح | C450 | | ** Pr | eservat | ive Typ | es: (1) | nitric ac | id, (2) s | ulfuric ad | id, (3) hy | droch!c | ric acid, (4) | sodium hydrox | ride, (5) zinc a | cetate, | | | Сору То: | | | Site Collec | tion Info/ | Address: | 17 | | | (C) an | nmonic | ım hydi | roxide, | (D) TSP | , (a) soc
, (U) Un | breserve | d, (O) Ot | her | ne, (A) ascor | bic acid, (8) an
 | nmonium sum | ate, | | | Customer Project Name/Number: | 1 | C 11 | State: | County/C | ity: Tim | ne Zone Co | llected: | | | | | | Analy | ses | | | | Lab Profil | e/Line:
umple Rece | int Chack | 10+· | | | Customer Project Name/Number: 5+P 1701 - North | | | 1 1 | | | PT[]M | ן]כז [| } ET | 2 | Z | | | | | | - | | | ly Seals P | • | _ | DNA | | | Site/Facility ID | #: | | | Compliance | e Monitor | • | | | TRA | 2 | . | 1 | ı | | | ı | Custo | y Signatu | res Preser | it ØN | NA . | | Collected By (print): | Purchase Orde | r #· | | | [] Yes | | | | 105 | | clne | 1 | l | | | | 1 | Bottle | s Intact | | ØN | NA . | | Now Risenica | Quote #: | | | | DW Location | | | | ٦. | · (5) | 1 | 1 | - 1 | | | | 1 | Suffic | cient Volu | me | Ø N
Ø N | AN! | | Callected By (signature). | Turnaround Da | te Requir | ed: | | Immediate | ly Packed | on Ice: | | 当 | (hens) | + | | ĺ | | | | ŀ | VOA - | es Receive
Headspace | Acceptabl | Le 📆 N | | | MV | str. | لأحد | <u> </u> | | [] Yes | [] No | | | 1 4 | |] | | - 1 | | | | 1 | Sample | Regulated :
es in Hold | ing Time | O N | I MA | | Sample Disposal:
 Dispose as appropriate [] Return | Rush: | me Day | [] Next Da | аγ | Field Filter | ea (it appi
No [] | | | Š | Na | .9 | | - 1 | | | | | Cl St | al Chlori | | | (B) | | [] Archive: | [] 2 Day [| | [] 4 Day | [] 5 Day | Analysis: _ | | | | じ | 4 | MR | | 4 | , | l | | | Sample
pH Str | pH Acceptions: HC | 603463 | ₹ N | | | Matrix Codes (Insert in Matrix bo | <u></u> | | | ınd Water | (GW), Waste | water (W | W). | | 1 " 4 | · 7 | | | = 1 | 1 | | ŀ | | Sulfic | ie Present
Acetate St | 1 | YH | NO | | Product (P), Soil/Solid (SL), Oil (Ol | | | | | | | | | 4 | 当 | <u> </u> | J | \sim | | | | | LAB US | SE ONLY: | | | - | | လို်
OCustomer Sample ID | Matrix * | Comp /
Grab | | ted (or
site Start) | Compos | site End | Res
Cl | # of
Ctns | 9 | 8 | JA She | Я | 3 | | | İ | | Lab Sa | imple # / | Comments: | | | | <u> </u> | | 5,55 | Date | Time | Date | Time | 1 ~ | | Roge | ان | × | +- | _ | l | | 1 | | | | | | | | E Equiphor Blanc | 70 | G | 1021-19 | 12.99 | | | | 6 | × | × | X | X | | | | | T | 011 | ÷ | | | | | Trip Blank | 778 | 6 | 14 | _ | | | | 12 | | | | | ヌ | | | | | OR | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | * | an Maria | | | | | | | | | | | <u> </u> | ļ | | 1/ 1/ | Q_{-} | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | | | ļ | <u> </u> | <u> </u> | | 7 | ļ | | | | | | | | | | ļ | | | | | | | | - | | <u> </u> | <u> </u> | | 1 | ļ | ļ | | | | | | | _ | | ļ | | | | | · · · · · · · · · · · · · · · · · · · | | | | ļ | | <u> </u> | | | | | | | | | | | _ | _ | <u> </u> | | | | | | | | | | 1 | <u> </u> | | + | | | | | | | | | | | _ | | | | · · · · · · · · · · · · · · · · · · · | | | Customer Remarks / Special Condit | ions / Possible I | l | Type of Ic | e Head: | (XVet) B | lue Di | ry No | | <u></u> _ | Isun | DT HO | DS DB | ESENIT | 1672 1 | 20112571 | (Y)N | N/A | | Lab Sample | Temperatu | ro Info. | | | Costomer Remarks / Special Conditi | ions / Possible i | nazarus: | | laterial Use | <u> </u> | | · · · · · · · | 110 | | + | Frackin | | COEIVI | | | <u> </u> | | | Temp BI | lank Receive | d: Y A | ₹Ô NA | | | | | | idiciidi Osi | | | | | | | · · ockii | ·6 ··· | | 24 | 134 | 27 | 2 | | Therm II | D#: | 1091 | | | | | | Radchem | cample(s) | screened (<5 | (00 cnm): | V N | Æ | | | oles re | | | | | | _ | | Cooler 1 | l Temp Upon
l Therm Corr | · Receipt:
· Factor (| 5,2 oc | | Polin-lished h. Ar | .rol | —————————————————————————————————————— | <u> L</u> | semple(3) | · | | | |) | | FEDEX | | PS (| Client | | | Pace C | | Cooler 1 | Corrected T | | | | Relinguished by Company: (Signatu | 1re)
V(s-C- | 1 | e/Time: | . 100.4 | Received by | //Company | y: (Signati | ure) | | | Date/T | , | | | Table # | MTJL LAE | USE (| JNLY | Comme | iitS: | | | | Relinant Policy (Signature) | | | ·21·11 | | | 150000 | 4 | | | | 10/2 | 2/1 | p // | 104 | Acctnu | *************************************** | | | | | | | | Reinvaristred by/Company: (signati | Ties | | e/Time: | | Received by | | y: (Signati | ure) | | | 0ate/1
 0/2 | | 4 11 | ريع. | Templa | ste: | | | | k Received: | | NA | | Belinduished by/Company: (Signatu | ure) | Dati | 27/19
e/Time: | 11.39 | Received by | | v: (Signati | nte) | | | Date/T | | 1 11. | :34 | Prelogi | n: | | | | | | ther | | 7, 55, 55, 55, 55, 55, 55, 55, 55, 55, 5 | 1 | 1000 | -, ······ | | The convention | ,, compan | ,. 10.0110tt | , | | | Parc/ I | ·····c. | | | PM: | | | | Non Confe | ormance(s): | Page:
of: | 2 | | 1 | | | | | I | | | | | - 1 | | | | | PB: | | | | 1 163 | رسون ر | 101: — | | # APPENDIX B WELL INSPECTION CHECKLISTS SHP1901 – 2nd – Semi-Annual Post-Closure Groundwater Monitoring Report 2019 #### **WELL INSPECTION CHECKLIST** | Well No. | 1A | Da | | 10/21/2019 | | | | | |-------------------|----------------|------------|-------------------|----------------|--|--|--|--| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 50 F | | | | | | | WELL EX | TERIOR CON | IDITIONS | | | | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | | | | Intact: | | X | | | | | | | | Cracked: | | | X | | | | | | | Missing: | | | X | | | | | | | PONDING OF WATE | R AROUND WELL | | X | | | | | | | PROTECTIVE CASING | G/MANHOLE/LOCK | X | | | | | | | | Casing/Manh | nole - Intact: | X | | | | | | | | Lock - Intact: | | X | | | | | | | | WELL CASING (STIC | KUP) STRAIGHT | X | | | | | | | | DESIGNATED MEASI | URING POINT | X | | | | | | | | WELL IS PROTECTED |) | X | | | | | | | | WELL IS CLEARLY M | ARKED | X | | | | | | | | | INTERIO | R WELL CON | DITIONS | | | | | | | DEPTH TO WATER (| FEET) 103.1 | | | | | | | | | DEPTH TO BOTTOM | I (FEET)110.0 |) | | | | | | | | PID (ppm) | 0.0 | | | | | | | | | Well No. | 1 B | Da | te | 10/21/2019 | |----------------------|--------------|------------|-------------------|----------------| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 60 F | | | WELL EX | TERIOR CON | IDITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | X | | | Missing: | | | X | | | PONDING OF WATER AI | ROUND WELL | | X | | | PROTECTIVE CASING/M | IANHOLE/LOCK | X | | | | Casing/Manhole | - Intact: | X | | | | Lock - Intact: | | X | | | | WELL CASING (STICKUP |) STRAIGHT | X | | | | DESIGNATED MEASURIN | NG POINT | X | | | | WELL IS PROTECTED | | X | | | | WELL IS CLEARLY MARK | ŒD | X | | | | | INTERIO | R WELL CON | DITIONS | | | DEPTH TO WATER (FEE | Γ) 104.3 | | | | | DEPTH TO BOTTOM (FE | ET) 200.0 | <u> </u> | | | | PID (ppm) | 0.0 | | | | | Well No. | 1C | Da | ite | 10/21/2019 | |-------------------|----------------|-------------|-------------------|----------------| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 60 F | | | WELL EX | CTERIOR CON | IDITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | <u> </u> | | | | Cracked: | | | <u>X</u> | | | Missing: | | | <u>X</u> | | | PONDING OF WATE | R AROUND WELL | | X | | | PROTECTIVE CASIN | G/MANHOLE/LOCK | <u> </u> | | | | Casing/Manh | nole - Intact: | X | | | | Lock - Intact: | | X | | | | WELL CASING (STIC | KUP) STRAIGHT | X | | | | DESIGNATED MEAS | URING POINT | X | | | | WELL IS PROTECTED |) | X | | | | WELL IS CLEARLY M | ARKED | X | | | | | INTERIO | OR WELL CON | IDITIONS | | | DEPTH TO WATER (| FEET) 105.6 | 5 | | | | DEPTH TO BOTTOM | 1 (FEET) |) | | | | PID (ppm) | 0.0 | | | | | Well No. | 3A | Da | te | 10/22/2019 | |----------------------|--------------|------------|-------------------|----------------| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | WELL EX | TERIOR CON | IDITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | X | | | Missing: | | | X | | | PONDING OF WATER AI | ROUND WELL | | X | | | PROTECTIVE CASING/M | IANHOLE/LOCK | X | | |
 Casing/Manhole | - Intact: | X | | | | Lock - Intact: | | X | | | | WELL CASING (STICKUP |) STRAIGHT | X | | | | DESIGNATED MEASURIN | NG POINT | X | | | | WELL IS PROTECTED | | X | | | | WELL IS CLEARLY MARK | ŒD | X | | | | | INTERIO | R WELL CON | DITIONS | | | DEPTH TO WATER (FEE | Γ) 47.35 | | | | | DEPTH TO BOTTOM (FE | ET) 60.52 | | | | | PID (ppm) | 0.0 | | | | | Well No. | 3B | Da | te | 10/22/2019 | |-----------------------|------------------|------------|-------------------|----------------| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | WELL EX | TERIOR CON | DITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | X | | | Missing: | | | X | | | PONDING OF WATER AR | OUND WELL | | X | | | PROTECTIVE CASING/M | ANHOLE/LOCK | X | | | | Casing/Manhole | - Intact: | X | | | | Lock - Intact: | | X | | | | WELL CASING (STICKUP) | STRAIGHT | X | | | | DESIGNATED MEASURIN | IG POINT | | X | | | WELL IS PROTECTED | | X | | | | WELL IS CLEARLY MARK | ED | X | | | | | INTERIO | R WELL CON | DITIONS | | | DEPTH TO WATER (FEET | 44.00 | | | | | DEPTH TO BOTTOM (FE | ET) <u>113.0</u> | | | | | PID (ppm) | 0.0 | | | | | Well No. | 3C | Da | te | 10/22/2019 | | |--------------------|----------------|--|------------------|----------------|---| | Inspected By | NR/CA | We | ather Conditions | Cloudy, 55 F | | | | WELL EX | CTERIOR CON | DITIONS | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | Intact: | | <u> X</u> | | | | | Cracked: | | | X | | | | Missing: | | | X | | | | PONDING OF WATER | R AROUND WELL | | X | | _ | | PROTECTIVE CASINO | G/MANHOLE/LOCK | <u> X</u> | | | | | Casing/Manh | ole - Intact: | <u> X</u> | | | | | Lock - Intact: | | <u> </u> | | | _ | | WELL CASING (STICK | (UP) STRAIGHT | X | | | _ | | DESIGNATED MEASU | IRING POINT | | X | | | | WELL IS PROTECTED | | X | | | | | WELL IS CLEARLY MA | ARKED | X | | | | | | INTERIO | OR WELL CON | DITIONS | | | | DEPTH TO WATER (F | EET) 44.80 |) | | | | | DEPTH TO BOTTOM | (FEET) 180.0 | <u>) </u> | | | | | PID (ppm) | 0.0 | | | | | | Well No. | 4A | Da | te | 10/22/2019 | |----------------------|--------------|------------|------------------|----------------| | Inspected By | NR/CA | We | ather Conditions | Cloudy, 55 F | | | WELL EX | TERIOR CON | DITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | X | | | Missing: | | | X | | | PONDING OF WATER AF | ROUND WELL | | X | | | PROTECTIVE CASING/M | IANHOLE/LOCK | X | | | | Casing/Manhole | - Intact: | X | | | | Lock - Intact: | | X | | | | WELL CASING (STICKUP |) STRAIGHT | X | | | | DESIGNATED MEASURIN | NG POINT | | X | | | WELL IS PROTECTED | | X | | | | WELL IS CLEARLY MARK | ŒD | X | | | | | INTERIO | R WELL CON | DITIONS | | | DEPTH TO WATER (FEET | Γ) 13.30 | <u> </u> | | | | DEPTH TO BOTTOM (FE | ET) 30.83 | | | | | PID (ppm) | 0.0 | | | | | Well No. | 4B | Da | | 10/22/2019 | | |-------------------------|------------|------------|-------------------|----------------|--| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | | WELL EX | TERIOR CON | IDITIONS | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | Intact: | | <u> </u> | | | | | Cracked: | | | X | | | | Missing: | | | X | | | | PONDING OF WATER AROU | UND WELL | | X | | | | PROTECTIVE CASING/MAN | IHOLE/LOCK | X | | | | | Casing/Manhole - I | ntact: | X | | | | | Lock - Intact: | | X | | | | | WELL CASING (STICKUP) S | TRAIGHT | X | | | | | DESIGNATED MEASURING | POINT | <u> </u> | | | | | WELL IS PROTECTED | | X | | | | | WELL IS CLEARLY MARKED |) | X | | | | | | INTERIO | R WELL CON | IDITIONS | | | | DEPTH TO WATER (FEET) | 13.54 | | | | | | DEPTH TO BOTTOM (FEET | 80.50 | | | | | | PID (ppm) | 0.0 | | | | | | Well No. | 4C | Da | te | 10/22/2019 | |-----------------------|------------------|--|-------------------|----------------| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | WELL EX | TERIOR CON | DITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | X | | | Missing: | | | X | | | PONDING OF WATER AR | OUND WELL | | X | | | PROTECTIVE CASING/MA | ANHOLE/LOCK | X | | | | Casing/Manhole | - Intact: | X | | | | Lock - Intact: | | <u> </u> | | | | WELL CASING (STICKUP) | STRAIGHT | X | | | | DESIGNATED MEASURIN | G POINT | | X | | | WELL IS PROTECTED | | X | | | | WELL IS CLEARLY MARK | ED | X | | | | | INTERIC | OR WELL CON | DITIONS | | | DEPTH TO WATER (FEET | 9.12 | | | | | DEPTH TO BOTTOM (FE | ET) <u>151.5</u> | <u>; </u> | | | | PID (ppm) | 0.0 | | | | | Well No. | 6AR | Da | ate | 10/22/2019 | |-------------------|----------------|------------------|-------------------|----------------| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | WELL EX | TERIOR CON | IDITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | X | | | Missing: | | | X | | | PONDING OF WATE | R AROUND WELL | | X | | | PROTECTIVE CASIN | G/MANHOLE/LOCK | X | | | | Casing/Manl | nole - Intact: | X | | | | Lock - Intact: | : | X | | | | WELL CASING (STIC | KUP) STRAIGHT | X | | missing J-Plug | | DESIGNATED MEAS | URING POINT | | X | | | WELL IS PROTECTED | O | X | | | | WELL IS CLEARLY M | ARKED | X | | | | | INTERIC | OR WELL CON | IDITIONS | | | DEPTH TO WATER (| FEET) 90.70 |) | | | | DEPTH TO BOTTOM | 1 (FEET) 111.5 | <u>i </u> | | | | PID (ppm) | 0.0 | | | | | Well No. | 5B | Date | 2 | 10/22/2019 | |------------------------------|------------|---------------------|-----------|----------------------------| | Inspected By NR | /CA | Weather Conditions_ | | Cloudy, 55 F | | | WELL EXTER | RIOR CONE | ITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | <u> </u> | | | Missing: | | | X | | | PONDING OF WATER AROUND W | /ELL | | X | | | PROTECTIVE CASING/MANHOLE | /LOCK | X | | | | Casing/Manhole - Intact: | | X | | | | Lock - Intact: | | X | | | | WELL CASING (STICKUP) STRAIG | нт | X | | | | DESIGNATED MEASURING POINT | - | | <u> X</u> | | | WELL IS PROTECTED | | X | | | | WELL IS CLEARLY MARKED | | <u>X</u> | | Clear overgrown vegetation | | | INTERIOR W | ELL COND | ITIONS | | | DEPTH TO WATER (FEET) | 93.20 | | | | | DEPTH TO BOTTOM (FEET) | 145.0 | | | | | PID (ppm) | 0.0 | | | | | Well No. | 7A | Da | te | 10/22/2019 | |-----------------------|-------------|------------|------------------|----------------| | Inspected By | NR/CA | We | ather Conditions | Cloudy, 60 F | | | WELL EX | TERIOR CON | DITIONS | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | Intact: | | X | | | | Cracked: | | | X | | | Missing: | | | X | | | PONDING OF WATER AR | ROUND WELL | | X | | | PROTECTIVE CASING/M | ANHOLE/LOCK | X | | | | Casing/Manhole | - Intact: | X | | | | Lock - Intact: | | | X | | | WELL CASING (STICKUP) | STRAIGHT | X | | | | DESIGNATED MEASURIN | IG POINT | | X | | | WELL IS PROTECTED | | X | | | | WELL IS CLEARLY MARK | ED | X | | | | | INTERIO | R WELL CON | DITIONS | | | DEPTH TO WATER (FEET | 82.43 | | | | | DEPTH TO BOTTOM (FE | ET) 96.30 | <u> </u> | | | | PID (ppm) | 0.0 | | | | | Well No. | 7B | Da | te | 10/22/2019 | _ | |--------------------|----------------|-------------|------------------|----------------|---| | Inspected By | NR/CA | We | ather Conditions | Cloudy, 55 F | | | | WELL EX | CTERIOR CON | DITIONS | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | Intact: | | X | | | | | Cracked: | | | X | | | | Missing: | | | X | | | | PONDING OF WATE | R AROUND WELL | | X | | | | PROTECTIVE CASING | G/MANHOLE/LOCK | X | | | | | Casing/Manh | ole - Intact: | X | | | | | Lock - Intact: | | | X | | _ | | WELL CASING (STIC | KUP) STRAIGHT | X | | | _ | | DESIGNATED MEASI | JRING POINT | X | | | _ | | WELL IS PROTECTED |) | X | | | _ | | WELL IS CLEARLY M. | ARKED | X | | | _ | | | INTERIO | OR WELL CON | DITIONS | | | | DEPTH TO WATER (I | FEET) 82.50 |) | | | | | DEPTH TO BOTTOM | (FEET) 140.7 | 7 | | | | | PID (ppm) | 0.0 | | | | | | Well No. | 7C | Da | te | 10/22/2019 | | | | |-----------------------|-----------------|------------|-------------------|----------------|--|--|--| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | | | | WELL EX | TERIOR CON | IDITIONS | | | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | | | Intact: | | X | | | | | | | Cracked: | | | X | | | | | | Missing: | | | X | | | | | | PONDING OF WATER AR | OUND WELL | | X | | | | | | PROTECTIVE CASING/MA | ANHOLE/LOCK | X | | | | | | | Casing/Manhole - | Intact: | X | | | | | | | Lock - Intact: | | | X | | | | | | WELL CASING (STICKUP) | STRAIGHT | X | | | | | | | DESIGNATED MEASURING | G POINT | | X | | | | | | WELL IS PROTECTED | | X | | | | | | | WELL IS CLEARLY MARKE | ED | X | | | | | | | | INTERIO | R WELL CON | DITIONS | | | | | | DEPTH TO WATER (FEET) | 83.81 | | | | | | | | DEPTH TO BOTTOM (FEE | T) <u>180.1</u> | | | | | | | | PID (ppm) | 0.0 | | | | | | | | Well No. | 8 | Da | | 10/21/2019 | | | | |-------------------------|------------|------------|-------------------|----------------|--|--|--| | Inspected By | NR/CA | We | eather Conditions | Clear, 60 F | | | | | | WELL EX | TERIOR CON | IDITIONS | | | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | | | Intact: | | X | | | | | | | Cracked: | | | X | | | | | | Missing: | | | X | | | | | | PONDING OF WATER ARO | UND WELL | | X | | | | | | PROTECTIVE CASING/MAI | NHOLE/LOCK | X | | | | | | | Casing/Manhole - I | Intact: | X | | | | | | | Lock - Intact: | | X | | | | | | | WELL CASING (STICKUP) S | TRAIGHT | X | | | | | | | DESIGNATED MEASURING | POINT | X | | | | | | | WELL IS PROTECTED | | X | | | | | | | WELL IS CLEARLY MARKED
| O | X | | | | | | | | INTERIO | R WELL CON | IDITIONS | | | | | | DEPTH TO WATER (FEET) | 76.80 | | | | | | | | DEPTH TO BOTTOM (FEET | 83.90 | | | | | | | | PID (ppm) | 0.0 | | | | | | | | Well No. | 9 | Da | | 10/21/2019 | | | | | |-------------------|----------------|-------------|-------------------|----------------|--|--|--|--| | Inspected By | NR/CA | We | eather Conditions | Clear, 60 F | | | | | | | WELL EX | CTERIOR CON | IDITIONS | | | | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | | | | Intact: | | <u> </u> | | | | | | | | Cracked: | | | <u> </u> | | | | | | | Missing: | | | X | | | | | | | PONDING OF WATE | R AROUND WELL | | X | | | | | | | PROTECTIVE CASIN | G/MANHOLE/LOCK | <u> </u> | | | | | | | | Casing/Manh | nole - Intact: | X | | | | | | | | Lock - Intact: | : | X | | | | | | | | WELL CASING (STIC | KUP) STRAIGHT | X | | | | | | | | DESIGNATED MEAS | URING POINT | X | | | | | | | | WELL IS PROTECTED |) | X | | | | | | | | WELL IS CLEARLY M | ARKED | <u> </u> | | | | | | | | | INTERIO | OR WELL CON | DITIONS | | | | | | | DEPTH TO WATER (| FEET) 73.90 |) | | | | | | | | DEPTH TO BOTTOM | 1 (FEET) 85.20 |) | | | | | | | | PID (ppm) | 0.0 | | | | | | | | | Well No. | 11A | Da | te | 10/21/2019 | | | | |----------------------|--------------|------------|-------------------|----------------|--|--|--| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | | | | WELL EX | TERIOR CON | IDITIONS | | | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | | | Intact: | | X | | | | | | | Cracked: | | | X | | | | | | Missing: | | | X | | | | | | PONDING OF WATER A | ROUND WELL | | X | | | | | | PROTECTIVE CASING/M | IANHOLE/LOCK | X | | | | | | | Casing/Manhole | - Intact: | X | | | | | | | Lock - Intact: | | X | | | | | | | WELL CASING (STICKUP |) STRAIGHT | X | | | | | | | DESIGNATED MEASURIN | NG POINT | X | | | | | | | WELL IS PROTECTED | | X | | | | | | | WELL IS CLEARLY MARK | KED | X | | | | | | | | INTERIO | R WELL CON | DITIONS | | | | | | DEPTH TO WATER (FEE | Т)71.40 | | | | | | | | DEPTH TO BOTTOM (FE | EET) 84.50 | | | | | | | | PID (ppm) | 0.0 | | | | | | | | Well No. | 11B | | Date | | 10/21/2019 | |-------------------|------------------|------------|----------|---------------|----------------| | Inspected By | NR/CA | | Weath | er Conditions | Clear, 60 F | | | WELL | EXTERIOR | CONDIT | TONS | | | CONCRETE PAD | | <u>Yes</u> | | <u>No</u> | <u>Remarks</u> | | Intact: | | | | X | | | Cracked: | | X | | | | | Missing: | | | _ | X | | | PONDING OF WATE | R AROUND WELL | | _ | X | | | PROTECTIVE CASIN | G/MANHOLE/LOCK | | _ | X | | | Casing/Manl | hole - Intact: | | _ | X | | | Lock - Intact | : | | | X | | | WELL CASING (STIC | KUP) STRAIGHT | | | | Not Stickup | | DESIGNATED MEAS | URING POINT | X | | | | | WELL IS PROTECTE | ס | | <u> </u> | X | | | WELL IS CLEARLY M | IARKED | | <u> </u> | X | | | | INTE | RIOR WELL | CONDIT | TIONS | | | DEPTH TO WATER (| (FEET) <u>68</u> | .80 | | | | | DEPTH TO BOTTOM | M (FEET) 12 | 4.4 | | | | | PID (ppm) | 0 | .0 | | | | | | | | | | | | Well No. | 12A | Da | te | 10/21/2019 | | | | |--------------------|----------------|-------------|------------------|----------------|--|--|--| | Inspected By | NR/CA | We | ather Conditions | Cloudy, 55 F | | | | | | WELL EX | CTERIOR CON | DITIONS | | | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | | | Intact: | | <u> </u> | | | | | | | Cracked: | | | X | | | | | | Missing: | | | X | | | | | | PONDING OF WATER | AROUND WELL | | X | | | | | | PROTECTIVE CASING | J/MANHOLE/LOCK | X | | | | | | | Casing/Manho | ole - Intact: | X | | | | | | | Lock - Intact: | | X | | | | | | | WELL CASING (STICK | (UP) STRAIGHT | X | | | | | | | DESIGNATED MEASU | RING POINT | | X | | | | | | WELL IS PROTECTED | | X | | | | | | | WELL IS CLEARLY MA | ARKED | X | | | | | | | | INTERIO | OR WELL CON | DITIONS | | | | | | DEPTH TO WATER (F | EET) 79.20 |) | | | | | | | DEPTH TO BOTTOM | (FEET) 91.10 |) | | | | | | | PID (ppm) | 0.0 | | | | | | | | Well No. | 12B | Da | te | 10/21/2019 | | | | |----------------------|--------------|-------------|-------------------|----------------|--|--|--| | Inspected By | NR/CA | We | eather Conditions | Cloudy, 55 F | | | | | | WELL EX | TERIOR CON | IDITIONS | | | | | | CONCRETE PAD | | <u>Yes</u> | <u>No</u> | <u>Remarks</u> | | | | | Intact: | | X | | | | | | | Cracked: | | | X | | | | | | Missing: | | | X | | | | | | PONDING OF WATER A | ROUND WELL | | X | | | | | | PROTECTIVE CASING/N | MANHOLE/LOCK | X | | | | | | | Casing/Manhole | e - Intact: | X | | | | | | | Lock - Intact: | | X | | | | | | | WELL CASING (STICKUI | P) STRAIGHT | X | | | | | | | DESIGNATED MEASURI | NG POINT | | X | | | | | | WELL IS PROTECTED | | X | | | | | | | WELL IS CLEARLY MAR | KED | <u> </u> | | | | | | | | INTERIC | OR WELL CON | DITIONS | | | | | | DEPTH TO WATER (FEE | TT) 78.00 |) | | | | | | | DEPTH TO BOTTOM (F | EET) 108.8 | 3 | | | | | | | PID (ppm) | 0.0 | | | | | | | # APPENDIX C MONITORING WELL SAMPLING LOGS SHP1901 – 2nd – Semi-Annual Post-Closure Groundwater Monitoring Report 2019 | CLIENT/PROJECT N | 0. | | Town of Southhampton / SHP1901 | | | | | - | |-------------------------------|-------------|----------------|--------------------------------|------------------|--------------|------------|---------|---| | WELL No./OWNER | | | 1A / | Town of Southhar | mpton | | | | | SAMPLE I.D. | • | | | MW-1A | | | | | | SAMPLING POINT | | тос | | SAMPLED BY | _ | | NR/CA | | | DATE SAMPLED | | 10/21/2019 | | TIME SAMPLED | | 13:15 | | | | WELL USE | | Monitoring | | | | | | | | STATIC WATER ELE | VATION | 103.1 | | FT. BELOW MEASU | RING POINT | | тос | _ | | WELL DIAMETER 4 | | | Inches | | | | | | | TOTAL WELL DEPTH 110.0 | | | FT. BELOW MEASURING POINT TOC | | | | | _ | | SAMPLING INFORMATION | | | | | | | | | | PURGE METHOD Submersible Pump | | | | SAMPLE METHOD | Subm | ersib | le Pump | | | PURGE RATE | 5 gall | ons per minute | PURGE TIME 2 min | | | mini | utes | | | CASING VOLUMES F | REMOVED | 3 | GALLONS | | | 11 | | | | SAMPLE APPEARAN | CE | Clear | · | ODORS OBSERVED | _ | N/A | | | | PID (ppm) | | 0.0 | | | | | | | | ANALYSIS | | Routine | | DATE SHIPPED | 10 | 10/22/2019 | | | | | | | | | | | | | | | | SAMPLIN | | | | | | | | | Initial | 1 Vol | 2 Vol | | Pre-sampling | l | | | | pH | 6.35 | 6.37 | 6.32 | 6.30 | 6.29 | | | | | COND | 0.473 | 0.528 | 0.528 | 0.524 | 0.522 | | | | | T | 13.88 | 13.24 | 12.91 | 12.77 | 12.77 | | | | | ORP | 118 | 118
5.2 | 119 | 119 | 119 | | | | | TURB
D.O. | 5.6
9.01 | 5.2
8.63 | 5.3
8.51 | 5.4
8.32 | 3.9
8.24 | | | | | D.O. | 3.01 | 0.05 | ו כ.ט | 0.32 | 0.44 | | | | | CLIENT/PROJECT N | ١٥ | | Town of | Town of Southhampton / SHP1901 | | | | | | |-------------------------------|-----------------|-------------------|-----------|--------------------------------|--------------|--------------|--|--|--| | WELL No./OWNER | _ | | 1B / T | own of Southham | pton | | | | | | SAMPLE I.D. | _ | | | MW-1B | | | | | | | SAMPLING POINT | _ | TOC | _ | SAMPLED BY | | NR/CA | | | | | DATE SAMPLED 10/21/2019 | | | _ | TIME SAMPLED 13:00 | | | | | | | WELL USE | L USEMonitoring | | | | | | | | | | STATIC WATER ELEVATION 104.3 | | | | FT. BELOW MEAS | URING POINT | TOC | | | | | WELL DIAMETER 4 | | | Inches | | | | | | | | TOTAL WELL DEPTH 200.0 | | | | FT. BELOW MEASURING POINT TO | | | | | | | SAMPLING INFORMATION | | | | | | | | | | | PURGE METHOD Submersible Pump | | | | SAMPLE METHOD | Subm | ersible Pump | | | | | PURGE RATE | 5 g | allons per minute | | PURGE TIME | l minutes | | | | | | CASING VOLUMES | REMOVE |)3 | | GALLONS | | 106 | | | | | SAMPLE APPEARAN | NCE _ | Clear | | ODORS OBSERVE | D | N/A | | | | | PID (ppm) | | 0.0 | | | | | | | | | ANALYSIS | | Routine | | DATE SHIPPED | 10 | /22/2019 | | | | | | | | _ | | | | | | | | | | <u>SAMF</u> | LING PARA | METERS | | | | | | | | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-sampling |] | | | | | pH | 6.01 | 6.07 | 5.97 | 5.69 | 5.89 | | | | | | COND | 0.070 | 0.064 | 0.071 | 0.070 | 0.07 | | | | | | T | 12 | 12.12 | 12.16 | 12.13 | 12 | | | | | | ORP | 116 | 130 | 140 | 154 | 143 | | | | | | TURB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | D.O. | 9.71 | 9.80 | 8.89 | 8.95 | 9.48 | | | | | | CLIENT/PROJECT N | 0. | | | Town | Town of Southhampton / SHP1901 | | | | | | |-------------------------------|----------|----------|-----------|-------------------------------|--------------------------------|------------|------------|--------|--|--| | WELL No./OWNER | | | | 1C | / Town of Southha | mpton | | | | | | SAMPLE I.D. | | | | MW-1C / DUP001 | | | | | | | | SAMPLING POINT | _ | | тос | | SAMPLED BY | | | NR/CA | | | | DATE SAMPLED | <u>-</u> | 10, | /21/2019 | <u></u> | TIME SAMPLED | | | 12:35 | | | | WELL USE | | Мо | onitoring | _ | | | | | | | | STATIC WATER ELE | VATION | _ | 105.6 | | FT. BELOW MEASURING POINT TOC | | | | | | | WELL DIAMETER 4 | | | Inches | | | | | | | | | TOTAL WELL DEPTH 200.0 | | | | FT. BELOW MEASURING POINT TOC | | | | | | | | | | | SAMPL | ING INFO | RMATION_ | | | | | | | PURGE METHOD Submersible Pump | | | _ | SAMPLE METHOD | Sub | mers | ible Pump | | | | | PURGE RATE | 5 ga | ıllons p | er minute | | PURGE TIME | | 38 minutes | | | | | CASING VOLUMES | REMOVE |) _ | 3 | | GALLONS | | 190 | | | | | SAMPLE APPEARAN | CE | | Clear | | ODORS OBSERVED |) | | N/A | | | | PID (ppm) | | 0. | 0 | | | | | | | | | ANALYSIS | | Rout | ine | | DATE SHIPPED | | 10/22 | 2/2019 | ING PARA | | | | | | | | | Initial | | 1 Vol | 2 Vol | 3 Vol | Pre-sampli | ng | | | | | pH | 6.00 | | 6.49 | 6.52 | 6.57 | 6.56 | | | | | | COND | 0.085 | | 0.084 | 0.084 | 0.084 | 0.084 | | | | | | T | 12.68 | | 12.80 | 12.84 | 12.78 | 12.76 | | | | | | ORP | 34 | | 24 | 95 | 91 | 96 | | | | | | TURB | 13.0 | | 6.4 | 0.0 | 0.0 | 0.0 | | | | | | D.O. | 10.16 | | 10.41 | 9.29 | 8.48 |
8.38 | | | | | | CLIENT/PROJECT No. | | | | Town of | Town of Southhampton / SHP1901 | | | | | | | |-------------------------------|------------|-----------|------------|-----------|--------------------------------|--------------------------|-------|------------|-------|----|-----| | WELL No./OWNER | | | | 3A / | Town of | f Southha | mpto | n | | | | | SAMPLE I.D. | • | | | | М | W-3A | | | | | | | SAMPLING POINT | | | тос | <u></u> | SAMPLED BY | | | _ | | NR | /CA | | DATE SAMPLED 10/22/2019 | | | /22/2019 | <u> </u> | TIME S | SAMPLED | | <u>-</u> | | 13 | :00 | | WELL USE | | Мс | onitoring | <u> </u> | | | | | | | | | STATIC WATER ELEVATION | | | 47.35 | <u> </u> | FT. BEI | LOW MEA | SURIN | IG POIN | Т | | тос | | WELL DIAMETER | | | 4 | Inches | | | | | | | | | TOTAL WELL DEPTH | | | 60.52 | | | FT. BELOW MEASURING POIN | | | Т | | тос | | SAMPLING INFORMATION | | | | | | | | | | | | | PURGE METHOD Submersible Pump | | | SAMPL | E METHO | D _ | Sub | mers | sible | Pump | | | | PURGE RATE | 5 ga | allons pe | r minute | | PURGE TIME 5 i | | | 5 m | inute | es | | | CASING VOLUMES RE | MOVED | | 3 | | GALLONS | | | | 25 | | | | SAMPLE APPEARANC | E . | | Clear | | ODORS OBSERVED | | | | N/A | | | | PID (ppm) | | 0.0 | | | | | | | | | | | ANALYSIS | | Routir | ne | | DATE SHIPPED | | 1 | 10/23/2019 | LING PAR | AMETER | | | | | | | | | Initial | | 1 Vol | 2 Vol | | 3 Vol | Pre | samplii | ng | | | | pH | 6.63 | | 6.83 | 6.70 | | 6.58 | | 6.55 | | | | | COND | 0.313 | | 0.306 | 0.304 | | 0.303 | | 0.303 | | | | | T | 9.66 | | 9.91 | 10.04 | | 10.10 | | 10.14 | | | | | ORP
TURB | -34
306 | | -22
144 | 2
76.1 | | 22
48.6 | | 24
36.7 | | | | | D.O. | 9.61 | | 7.81 | 5.90 | | 4.80 | | 4.82 | | | | | | J. J. | | | 3.55 | | | | | | | | | CLIENT/PROJECT N | 0. | | | Town of | Town of Southhampton / SHP1901 | | | | | | | |-------------------------------|---------|------------|-----------|------------------------------|--------------------------------|--------|-------------|----------|-------|---|--| | WELL No./OWNER | - | | | 3B / | Town of South | nhampt | on | | | | | | SAMPLE I.D. | - | | | | MW-3B | | | | | | | | SAMPLING POINT | - | | тос | | SAMPLED BY | | | | NR/CA | | | | DATE SAMPLED | - | 10 | /22/2019 | | TIME SAMPLED | | | | 13:45 | | | | WELL USE | - | Monitoring | | | | | | | | | | | STATIC WATER ELE | VATION | _ | 44.00 | | FT. BELOW MEASURING POINT TOC | | | | | | | | WELL DIAMETER 4 | | | Inches | | | | | | | | | | TOTAL WELL DEPTH 113.0 | | | | FT. BELOW MEASURING POINT TO | | | | | | | | | SAMPLING INFORMATION | | | | | | | | | = | | | | PURGE METHOD Submersible Pump | | | | SAMPLE MET | HOD | Subm | ersib | ole Pump | | | | | PURGE RATE | 5 g | jallons p | er minute | | PURGE TIME 27 m | | | ' mir | nutes | | | | CASING VOLUMES F | REMOVE |) _ | 3 | | GALLONS | | | 136 | | | | | SAMPLE APPEARAN | CE | | Clear | | ODORS OBSE | RVED | | | N/A | | | | PID (ppm) | | 0. | .0 | | | | | | | | | | ANALYSIS | | Rou | tine | | DATE SHIPPE | :D | 10 | /23/ | 2019 | | | | | | | | | | | | | | - | | | | | | | PLING PAR. | | | | | | = | | | | Initial | | 1 Vol | 2 Vol | 3 Vol | | re-sampling | | | | | | pH | 6.28 | | 6.15 | 6.10 | 6.12 | | 6.11 | | | | | | COND | 0.227 | | 0.253 | 0.283 | 0.282 | | 0.281 | | | | | | T | 7.81 | | 7.78 | 8.51 | 8.52 | | 8.61 | | | | | | ORP | -9 | | -28 | -53 | -55 | | -54 | | | | | | TURB | 242 | | 44.1 | 0.0 | 0.0 | _ | 0.0 | | | | | | D.O. | 0.48 | | 0.40 | 0.46 | 0.045 |) | 0.044 | | | | | | CLIENT/PROJECT No |) | Town of Southhampton / SHP1901 | | | | | | | | | | |-------------------------------|---------------|--------------------------------|--------------|-------------------------------|--------------|-----------------|--|--|--|--|--| | WELL No./OWNER | _ | | 3C / | Town of Sout | hhampton | | | | | | | | SAMPLE I.D. | _ | | | MW-3C/MS/I | MSD | | | | | | | | SAMPLING POINT | _ | TOC | SA | AMPLED BY | | NR/CA | | | | | | | DATE SAMPLED | _ | 10/22/2019 | | ME SAMPLED | | 12:00 | | | | | | | WELL USE | Monitoring | | | | | | | | | | | | STATIC WATER ELEVATION 44.80 | | | F1 | Γ. BELOW MEAS | SURING POINT | ТОС | | | | | | | WELL DIAMETER | | 4 | Inches | | | | | | | | | | TOTAL WELL DEPTH 180.0 | | | F1 | FT. BELOW MEASURING POINT TOC | | | | | | | | | SAMPLING INFORMATION | | | | | | | | | | | | | PURGE METHOD Submersible Pump | | | SA | AMPLE METHOI | D <u>Sı</u> | ıbmersible Pump | | | | | | | PURGE RATE | 5 ga | allons per minute | Pl | JRGE TIME | | 55 minutes | | | | | | | CASING VOLUMES R | EMOVED | 3 | G. | ALLONS | | 272 | | | | | | | SAMPLE APPEARANC | CE _ | Clear | _ 0 | DORS OBSERVE | ED | N/A | | | | | | | PID (ppm) | | 0.0 | _ | | | | | | | | | | ANALYSIS | | Routine | D. | ATE SHIPPED | | 10/23/2019 | ING PARAM | | _ | | | | | | | | .11 | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-sampling | 9 | | | | | | | pH | 6.46 | 6.23 | 6.69 | 6.70 | 6.71 | | | | | | | | COND
T | 0.126
7.79 | 0.128 | 0.135 | 0.128 | 0.126 | | | | | | | | ORP | 7.79
160 | 9.55
162 | 10.55
100 | 10.74
144 | 10.75
147 | | | | | | | | TURB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | D.O. | 4.02 | 1.87 | 2.30 | 3.15 | 3.22 | | | | | | | | CLIENT/PROJECT N | 0. | - | Town of Southhampton / SHP1901 | | | | | | | | | |------------------------------|-----------------------|-------------------|--------------------------------|---------------------------|---------------|--------------|----|--|--|--|--| | WELL No./OWNER | - | | 4A / | Town of Southham | pton | | | | | | | | SAMPLE I.D. | - | | | MW-4A | | | | | | | | | SAMPLING POINT | - | TOC | | SAMPLED BY | _ | NR/CA | | | | | | | DATE SAMPLED | - | 10/22/2019 | | TIME SAMPLED | _ | 15:00 | | | | | | | WELL USE | - | Monitoring | Monitoring | | | | | | | | | | STATIC WATER ELEVATION 13.30 | | | FT. BELOW MEASURING POINT TOC | | | | | | | | | | WELL DIAMETER | | 4 | Inches | | | | | | | | | | TOTAL WELL DEPTH | OTAL WELL DEPTH 30.83 | | | FT. BELOW MEASURING POINT | | | | | | | | | | | SAMPLIN | G INFOF | RMATION | | | | | | | | | PURGE METHOD | Sı | ıbmersible Pump | | SAMPLE METHOD | Subr | mersible Pur | np | | | | | | PURGE RATE | 5 g | allons per minute | | PURGE TIME | | 7 minutes | | | | | | | CASING VOLUMES F | REMOVE | D3 | | GALLONS | 35 | | | | | | | | SAMPLE APPEARAN | CE . | Clear | | ODORS OBSERVED | N/A | N/A | | | | | | | PID (ppm) | | 0.0 | | | | | | | | | | | ANALYSIS | | Routine | | DATE SHIPPED | 1 | 0/23/2019 | <u>AMETERS</u> | | | | | | | | | | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-samplin | ng | | | | | | | pH | 6.63 | 5.49 | 5.22 | 4.91 | 4.75 | | | | | | | | COND | 0.173 | 0.173 | 0.172 | 0.172 | 0.171 | | | | | | | | T | 12.49 | 12.48 | 12.66 | 12.84 | 12.91 | | | | | | | | ORP
TURB | -22
20.3 | 34
43.5 | 85
22.2 | 0.310
58.2 | 0.570
48.2 | | | | | | | | D.O. | 20.3
6.18 | 43.5
4.96 | 22.2
5.04 | 38.2
4.55 | 48.2
4.69 | | | | | | | | 5.0. | 0.10 | 7.50 | J.∪ 1 | 7.77 | 7.03 | | | | | | | | CLIENT/PROJECT N | o. <u> </u> | | Town of Southhampton / SHP1901 | | | | | | | | | |------------------|--------------|-----------|--------------------------------|-----------------------------|---------------------------|-------|-------------|-------|----------|--|--| | WELL No./OWNER | - | | | 4B / | Town of South | hampt | on | | | | | | SAMPLE I.D. | - | | | | MW-4B | | | | | | | | SAMPLING POINT | - | | тос | | SAMPLED BY | | _ | | NR/CA | | | | DATE SAMPLED | - | 10, | /22/2019 | | TIME SAMPLE | :D | _ | | 14:30 | | | | WELL USE | - | Мс | Monitoring | | | | | | | | | | STATIC WATER ELE | VATION | | 13.54 | | FT. BELOW MEASURING POINT | | | ТОС | | | | | WELL DIAMETER | | | 4 | Inches | nes | | | | | | | | TOTAL WELL DEPTH | 1 | _ | 80.50 | 0 FT. BELOW MEASURING POINT | | | | TOC | | | | | | | | SAMP | LING INFO | RMATION_ | | | | | | | | PURGE METHOD | Su | bmersib | le Pump | | SAMPLE METH | HOD | Subm | nersi | ble Pump | | | | PURGE RATE | 5 g | allons pe | er minute | | PURGE TIME 25 i | | | 5 mi | nutes | | | | CASING VOLUMES F | REMOVED | · | 3 | | GALLONS | | | 13 | 34 | | | | SAMPLE APPEARAN | CE _ | | Clear | | ODORS OBSE | RVED | | | N/A | | | | PID (ppm) | | 0.0 |) | | | | | | | | | | ANALYSIS | | Rout | ine | | DATE SHIPPEI | D | 1(|)/23 | /2019 | PLING PARA | | | | | | | | | | Initial | | 1 Vol | 2 Vol | 3 Vol | Pi | re-sampling | g | | | | | рН | 6.9 | | 6.28 | 6.28 | 6.28 | | 6.29 | | | | | | COND | 0.016 | |).156 | 0.204 | 0.251 | | 0.252 | | | | | | T | 12.18 | 1 | 2.44 | 12.45 | 12.47 | • | 12.48 | | | | | | ORP | 0 | | 50 | -20 | -49 | | -50 | | | | | | TURB
D.O. | 0.0
0.600 | , | 0.0
0.000 | 0.0
0.000 | 0.0
0.000 | | 0.0 | | | | | | D.U. | 0.000 | <u> </u> | 7.000 | 0.000 | 0.000 | 1 | 0.000 | | | | | | CLIENT/PROJECT N | 0. | | Town of Southhampton / SHP1901 | | | | | | | | |-------------------------------|--------------|-----------------|--------------------------------|--------------|--------------|------------|--------------|------------|--------|--| | WELL No./OWNER | - | | | 4C / | Town of S | Southha | mpton | | | | | SAMPLE I.D. | - | | | | MW | -4C | | | | | | SAMPLING POINT | - | тос | | _ | SAMPLED | BY | - | | NR/CA | | | DATE SAMPLED | - | 10/22/20 | 19 | _ | TIME SAM | 1PLED | - | 14:00 | | | | WELL USE | - | Monitorin | nitoring | | | | | | | | | STATIC WATER ELEVATION 9.12 | | | FT. BELOW MEASURING POINT TOC | | | | |] | | | | WELL DIAMETER | | 4 | | Inches | | | | | | | | TOTAL WELL DEPTH | 4 | 151 | 151.5 FT. BELOW MEASURING POIN | | | Г | TO0 | | | | | SAMPLING INFORMATION | | | | | | | | | | | | PURGE METHOD Submersible Pump | | | _ | SAMPLE N | иЕТНОD | Sub | mers | ible Pump |) | | | PURGE RATE | 5 ga | allons per minu | ıte | _ | PURGE TI | ME | | 56 m | inutes | | | CASING VOLUMES I | REMOVED | 3 | | _ |
GALLONS | | | 282 | | | | SAMPLE APPEARAN | CE _ | Clear | | _ | ODORS O | BSERVE | D _ | N/A | | | | PID (ppm) | | 0.0 | | _ | | | | | | | | ANALYSIS | | Routine | | _ | DATE SHIPPED | | 1 | 10/23/2019 | | | | | | | | | | | | | | | | | | | AMPLII | | METERS | | | | | | | | Initial | 1 Vol | | 2 Vol | | Vol | Pre-samplin | ng | | | | pH | 6.77 | 6.59 | | 6.65 | | .80 | 6.83 | | | | | COND | 0.381 | 0.379 | | 0.410 | | 417 | 0.412 | | | | | T | 12.17 | 12.76 | | 12.69 | | 2.64 | 12.65 | | | | | ORP | 41 | 54 | | 40 | | -8
4 2 | -7 | | | | | TURB
D.O. | 4.90
1.65 | 20.0
0.420 | | 32.2
18.8 | | 4.2
3.3 | 12.5
3.13 | | | | | D.U. | 1.05 | 0.420 | | 10.0 | ٥. | ٥.٥ | 5.15 | | | | | CLIENT/PROJECT No. | | Town of Southhampton / SHP1901 | | | | | | | | | |------------------------|-----------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------------|---------------|--|--|--|--| | WELL No./OWNER | | | 6AR / 7 | Town of Southhamp | oton | | | | | | | SAMPLE I.D. | | | | MW-6AR | | | | | | | | SAMPLING POINT | | TOC | _ | SAMPLED BY | _ | NR/CA | | | | | | DATE SAMPLED | | 10/22/2019 | TIME SAMPLED 9:30 | | | | | | | | | WELL USE | | Monitoring | _ | | | | | | | | | STATIC WATER ELEVATION | | 90.70 | _ | FT. BELOW MEASUR | RING POINT | TOC | | | | | | WELL DIAMETER | | 2 | Inches | | | | | | | | | TOTAL WELL DEPTH 111 | | | _ | FT. BELOW MEASUR | RING POINT | тос | | | | | | | | SAMPLIN | NG INFOR | MATION | | | | | | | | PURGE METHOD | Subi | mersible Pump | _ | SAMPLE METHOD | Subm | nersible Pump | | | | | | PURGE RATE | 5 gal | ons per minute | _ | PURGE TIME | | ' minutes | | | | | | CASING VOLUMES REMOVED |) | 3 | _ | GALLONS | | 35 | | | | | | SAMPLE APPEARANCE | | Clear | _ | ODORS OBSERVED | _ | N/A | | | | | | PID (ppm) | | 0.0 | _ | | | | | | | | | ANALYSIS | | ne Parameters +
seline Metals | -
- | DATE SHIPPED | 10 |)/23/2019 | | | | | | | | | NG PARA | | | | | | | | | pH
COND
T | Initial
6.04
0.134
11.94 | 1 Vol
6.17
0.128
12.30 | 2 Vol
6.32
0.126
12.40 | 3 Vol
5.66
0.124
12.39 | Pre-samplir
5.55
0.124
12.39 | ig | | | | | | ORP
TURB
D.O. | 11.94
159
22.9
11.02 | 12.30
150
212
7.47 | 145
39.5
7.39 | 170
8.30
6.88 | 12.59
124
10.5
6.91 | | | | | | | CLIENT/PROJECT No. | - | Town of Southhampton / SHP1901 | | | | | | | | |------------------------------|---------------------|--------------------------------|---------------|-------------------------------|---------------|---------|----------|--|--| | WELL No./OWNER | - | | 6B | / Town of Southhar | npton | | | | | | SAMPLE I.D. | _ | | | MW-6B | | | | | | | SAMPLING POINT | - | TOC | | SAMPLED BY | _ | ١ | NR/CA | | | | DATE SAMPLED | - | 10/22/2019 | | TIME SAMPLED | _ | | 10:40 | | | | WELL USE | - | Monitoring | Monitoring | | | | | | | | STATIC WATER ELEVATION 93.20 | | | | FT. BELOW MEASURI | NG POINT | | TOC | | | | WELL DIAMETER | | 4 | Inches | | | | | | | | TOTAL WELL DEPTH | AL WELL DEPTH 145.0 | | | FT. BELOW MEASURING POINT TOO | | | | | | | | | SAMPLIN | G INFO | <u>RMATION</u> | | | | | | | PURGE METHOD | Su | bmersible Pump | | SAMPLE METHOD | Su | bmersib | ole Pump | | | | PURGE RATE | 5 ga | allons per minute | | PURGE TIME | | 20 mir | nutes | | | | CASING VOLUMES REMO | VED | 3 | | GALLONS | | 100 | | | | | SAMPLE APPEARANCE | _ | Clear | | ODORS OBSERVED | _ | | N/A | | | | PID (ppm) | | 0.0 | | | | | | | | | ANALYSIS | | tine Parameters + | | DATE SHIPPED | | 10/23/ | 2019 | | | | | В | Baseline Metals | | | | | | | | | | 1.202.1 | SAMPLIN | | | D | | | | | | nU | Initial | 1 Vol | 2 Vol | | Pre-samplin | ıg | | | | | pH
COND | 5.59
0.084 | 5.60
0.084 | 5.67
0.085 | 5.62
0.085 | 5.60
0.084 | | | | | | T | | 11.94 | 11.99 | 12.03 | 12.00 | | | | | | ORP | 11.83
171 | 169 | 170 | 12.03 | 12.00 | | | | | | TURB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | D.O. | 10.62 | 10.75 | 10.77 | 10.61 | 10.64 | | | | | | CLIENT/PROJECT No. | | Town of Southhampton / SHP1901 | | | | | | | |---------------------|------------|--------------------------------|----------|-------------------|--------------|--------------|--|--| | WELL No./OWNER | - | | MW-8 | / Town of Southha | ımpton | | | | | SAMPLE I.D. | - | | | MW-8 | | | | | | SAMPLING POINT | - | TOC | <u>-</u> | SAMPLED BY | | NR/CA | | | | DATE SAMPLED | 10/21/2019 | TIME SAMPLED11:0 | | | | | | | | WELL USE | - | Monitoring | <u>-</u> | | | | | | | STATIC WATER ELEVAT | TON | 76.80 | - | FT. BELOW MEASU | IRING POINT | TOC | | | | WELL DIAMETER | | 4 | Inches | | | | | | | TOTAL WELL DEPTH | | 83.90 | - | FT. BELOW MEASU | IRING POINT | TOC | | | | | | SAMPLIN | G INFOR | RMATION | | | | | | PURGE METHOD | Su | bmersible Pump | <u>.</u> | SAMPLE METHOD | Subme | ersible Pump | | | | PURGE RATE | 5 ga | allons per minute | _ | PURGE TIME | | minutes | | | | CASING VOLUMES REM | OVED | 3 | _ | GALLONS | | 15 | | | | SAMPLE APPEARANCE | - | Clear | - | ODORS OBSERVED | | None | | | | PID (ppm) | | 0.0 | _ | | | | | | | ANALYSIS | Rot | utine Parameters | _ | DATE SHIPPED | 10, | /22/2019 | | | | | | | | | | | | | | | | SAMPLIN | | METERS | | | | | | | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-sampling | | | | | pH | 6.12 | 6.22 | 5.86 | 5.82 | 5.86 | | | | | COND | 0.152 | 0.134 | 0.154 | 0.154 | 0.156 | | | | | T | 12.20 | 12.21 | 12.17 | 12.14 | 12.14 | | | | | ORP | 85 | 93 | 100 | 106 | 92 | | | | | TURB | 0.031 | 10.8 | 47.3 | 38.2 | 42.8 | | | | | D.O. | 7.20 | 6.70 | 6.34 | 6.24 | 6.46 | | | | | CLIENT/PROJECT No. | | Town of Southhampton / SHP1901 | | | | | | | | | |------------------------------|---------|--------------------------------|------------------------------|--------------------|--------------|--------------|--|--|--|--| | WELL No./OWNER | | | MW-9 | / Town of Southhar | npton | | | | | | | SAMPLE I.D. | | | | MW-9 | | | | | | | | SAMPLING POINT | | TOC | | SAMPLED BY | | NR/CA | | | | | | DATE SAMPLED | | 10/21/2019 | | TIME SAMPLED | | 10:25 | | | | | | WELL USE | | Monitoring | | | | | | | | | | STATIC WATER ELEVATION 73.90 | | 73.90 | FT. BELOW MEASURING POINT TO | | | | | | | | | WELL DIAMETER | | 4 | Inches | | | | | | | | | TOTAL WELL DEPTH | | 85.70 | • | FT. BELOW MEASUR | RING POINT | TOC | | | | | | | | SAMPLIN | G INFO | RMATION_ | | | | | | | | PURGE METHOD | Sub | mersible Pump | | SAMPLE METHOD | Subme | ersible Pump | | | | | | PURGE RATE | 5 gal | lons per minute | | PURGE TIME | 5 | minutes | | | | | | CASING VOLUMES REI | MOVED | 3 | | GALLONS | | 22 | | | | | | SAMPLE APPEARANCE | | Clear | | ODORS OBSERVED | | None | | | | | | PID (ppm) | | 0.0 | | | | | | | | | | ANALYSIS | Rou | tine Parameters | ī | DATE SHIPPED | 10/ | /22/2019 | SAMPLIN | IG PARA | AMETERS | | | | | | | | | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-sampling | 1 | | | | | | pH | 6.47 | 6.48 | 6.26 | 6.10 | 6.14 | | | | | | | COND | 0.100 | 0.097 | 0.094 | 0.090 | 0.092 | | | | | | | T | 12.34 | 12.61 | 12.75 | 12.81 | 12.82 | | | | | | | ORP | 28 | 39 | 58 | 75
72.7 | 72 | | | | | | | TURB | 650 | 300 | 135 | 73.7 | 42.8 | | | | | | | D.O. | 8.91 | 8.53 | 8.33 | 8.33 | 8.28 | | | | | | | CLIENT/PROJECT N | lo. | Town of Southhampton / SHP1901 | | | | | | | | |---------------------|---------|--------------------------------|--------------------|---------------------------|------------|-------|-----------|---|--| | WELL No./OWNER | | | 11A / ⁻ | Town of Southhar | mpton | | | | | | SAMPLE I.D. | | | | MW-11A | | | | | | | SAMPLING POINT | | ТОС | _ | SAMPLED BY | _ | NR/CA | | | | | DATE SAMPLED | | 10/21/2019 | _ | TIME SAMPLED | _ | | 8:50 | | | | WELL USE Monitoring | | | _ | | | | | | | | STATIC WATER ELE | EVATION | 71.40 | _ | FT. BELOW MEASURING POINT | | | | | | | WELL DIAMETER | | 4 | Inches | | | | | | | | TOTAL WELL DEPT | Н | 84.50 | _ | FT. BELOW MEASURIN | | | ТОС | | | | | | SAMPLI | NG INFOR | MATION | | | | = | | | PURGE METHOD | Su | bmersible Pump | _ | SAMPLE METHO | D Sub | mers | ible Pump | | | | PURGE RATE | 5 ga | allons per minute | _ | PURGE TIME | | 25 m | inutes | | | | CASING VOLUMES | REMOVED | 4 | _ | GALLONS | | 125 | | | | | SAMPLE APPEARAN | ICE | Clear/Slight red tinge | _ | ODORS OBSERVI | ED _ | | N/A | | | | PID (ppm) | | 0.0 | _ | | | | | | | | ANALYSIS | | ne & Baseline VOCs | _ | DATE SHIPPED | 1 | 10/22 | 2/2019 | | | | | F | iltered Metals | | | | | | | | | | | <u>SAMPL</u> | ING PARA | METERS_ | | | | - | | | | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-sampli | ng | | | | | pH | 6.22 | 6.14 | 6.31 | 6.07 | 6.09 | | | | | | COND | 0.332 | 0.330 | 0.310 | 0.31 | 0.32 | | | | | | T | 13.22 | 13.24 | 13.02 | 13 | 13.1 | | | | | | ORP | 61 | 33 | 2 | 8 | -5 | | | | | | TURB | 0.0 | 0.0 | 129 | 48.2 | 35.2 | | | | | | D.O. | 2.24 | 2.08 | 4.04 | 3.11 | 4.28 | | | | | | | Town of Southhampton / SHP1901 | | | | | | | | | |------------------------------|--------------------------------|-------------------------|--|-------------|------------|----------|--|--|--| | | | 118/ | Town of Southhai | mpton | | | | | | | | | | MW-11B | | | | | | | | | TOC | _ | SAMPLED BY | _ | | NR/CA | | | | | | 10/21/2019 | _ | TIME SAMPLED | _ | | 9:20 | | | | | | Monitoring | _ | | | | | | | | | STATIC WATER ELEVATION 68.80 | | | FT. BELOW MEASU | JRING POINT | • | TOC | | | | | | 4 | _Inches | | | | | | | | | TOTAL WELL DEPTH 124.4 | | | FT. BELOW MEASURING POINT | | | | | | | | | SAMPLII | NG INFO | RMATION | | | | | | | | Sub | mersible Pump | _ | SAMPLE METHOD | Subr | nersil | ole Pump | | | | | 5 ga | llons per minute | _ |
PURGE TIME | | | nutes | | | | | VED | 3 | _ | GALLONS | | | 100 | | | | | | Clear | _ | ODORS OBSERVED | o _ | | N/A | | | | | | 0.0 | _ | | | | | | | | | Routin | e & Baseline VOCs | _ | DATE SHIPPED | 1 | 10/22/2019 | ıg | _ | Sub
5 ga
OVED | 10/21/2019 Monitoring | TOC 10/21/2019 Monitoring ON 68.80 4 Inches 124.4 SAMPLING INFO Submersible Pump 5 gallons per minute OVED 3 Clear 0.0 Routine & Baseline VOCs SAMPLING PARA Initial 1 Vol 2 Vol 6.31 6.80 6.97 0.239 0.136 0.140 12.20 12.33 12.34 -137 -127 -94 12.8 514.0 535.0 | NW-11B | NW-11B | NW-11B | | | | | CLIENT/PROJECT N | 0. | | Town of Southhampton / SHP1901 | | | | | | | | |------------------------------|----------------|-------------------|--------------------------------|------------------------------|--------------|------------|-------|--|--|--| | WELL No./OWNER | - | | 12A / | Town of Southh | ampton | | | | | | | SAMPLE I.D. | - | | | MW-12A | | | | | | | | SAMPLING POINT | - | TOC | | SAMPLED BY | - | | NR/CA | | | | | DATE SAMPLED | - | 10/21/2019 | | TIME SAMPLED | _ | 15:40 | | | | | | WELL USE | - | Monitoring | | | | | | | | | | STATIC WATER ELEVATION 79.20 | | | | FT. BELOW MEAS | SURING POINT | Γ | TOC | | | | | WELL DIAMETER | | 4 | Inches | Inches | | | | | | | | TOTAL WELL DEPTH | 1 | 91.10 | | FT. BELOW MEASURING POINT TO | | | | | | | | | | SAMP | LING INFOR | RMATION | | | | | | | | PURGE METHOD | bmersible Pump | | SAMPLE METHO | D Sub | mersik | ole Pump | | | | | | PURGE RATE | 5 ga | allons per minute | <u></u> | PURGE TIME 6 m | | | utes | | | | | CASING VOLUMES I | REMOVEI | D3 | | GALLONS | | | 22 | | | | | SAMPLE APPEARAN | CE | Clear | | ODORS OBSERVI | ED | | N/A | | | | | PID (ppm) | • | 0.0 | | | _ | | | | | | | ANALYSIS | | Routine | | DATE SHIPPED | 1 | 10/22/2019 | | | | | | | | | | | - | | | | | | | | | | PLING PARA | | | | | | | | | | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-samplir | ng | | | | | | pH | 6.32 | 6.37 | 6.32 | 6.20 | 6.14 | | | | | | | COND | 0.332 | 0.315 | 0.310 | 0.307 | 0.306 | | | | | | | T | 12.53 | 12.52 | 12.59 | 12.61 | 12.63 | | | | | | | ORP | 51 | 58 | 68 | 78 | 81 | | | | | | | TURB | 456 | 62.5 | 31.4 | 27.3 | 27.5 | | | | | | | D.O. | 1.63 | 0.89 | 0.44 | 0.66 | 0.68 | | | | | | #### **WELL SAMPLING LOG** | CLIENT/PROJECT N | 0. | Town of Southhampton / SHP1901 | | | | | _ | | |------------------|---------|--------------------------------|---------|------------------|-------------|---------|---------|---| | WELL No./OWNER | ./OWNER | | | Town of Southhar | npton | | | | | SAMPLE I.D. | | | | MW-12B | | | | | | SAMPLING POINT | | TOC | _ | SAMPLED BY | _ | NR/CA | | | | DATE SAMPLED | | 10/21/2019 | _ | TIME SAMPLED | _ | 1 | 4:15 | | | WELL USE | | Monitoring | - | | | | | | | STATIC WATER ELE | VATION | 78.00 | _ | FT. BELOW MEASU | RING POINT | _ | TOC | | | WELL DIAMETER | | 4 | Inches | | | | | | | TOTAL WELL DEPTH | 4 | 108.8 | _ | FT. BELOW MEASU | IRING POINT | _ | TOC | | | | | SAMPLIN | G INFOR | RMATION_ | | | | = | | PURGE METHOD | Su | bmersible Pump | _ | SAMPLE METHOD | Subn | nersibl | le Pump | | | PURGE RATE | 5 ga | allons per minute | _ | PURGE TIME | 1 | 1 min | utes | | | CASING VOLUMES I | REMOVED | 3 | _ | GALLONS 55 | | | | | | SAMPLE APPEARAN | CE | Clear | | ODORS OBSERVED | _ | | N/A | | | PID (ppm) | | 0.0 | | | | | | | | ANALYSIS | | Routine | - | DATE SHIPPED | 10 | 0/22/2 | 2019 | | | | | | - | | | | | | | | | SAMPLIN | NG PARA | METERS | | | | ٠ | | | Initial | 1 Vol | 2 Vol | 3 Vol | Pre-samplin | g | | | | pH | 6.28 | 6.36 | 6.35 | 6.29 | 6.26 | | | | | COND | 0.325 | 0.334 | 0.343 | 0.346 | 0.343 | | | | | T | 12.74 | 12.69 | 12.54 | 12.56 | 12.57 | | | | | ORP | 66 | 74 | 79 | 87 | 93 | | | | | TURB | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | D.O. | 0.450 | 0.440 | 0.350 | 0.120 | 0.030 | | | | #### **WELL SAMPLING LOG** | CLIENT/PROJECT No. | | Towr | of Southhampton , | / SHP1901 | | |--|---|-------------|---------------------------------------|--|-----------| | WELL No./OWNER | | LEA- | PRI / Town of South | nhampton | | | SAMPLE I.D. | | | LEA-PRI | | | | SAMPLING POINT | TOC | _ | SAMPLED BY | _ | NR/CA | | DATE SAMPLED | 10/22/2019 | _ | TIME SAMPLED | _ | 8:00 | | WELL USE | NA | _ | | | | | STATIC WATER ELEVATION | NA | _ | FT. BELOW MEASUR | ING POINT | TOC | | WELL DIAMETER | NA | Inches | | | | | TOTAL WELL DEPTH | NA | _ | FT. BELOW MEASUR | ING POINT | ТОС | | | SAMPLIN | IG INFOR | MATION | | | | PURGE METHOD | NA | _ | SAMPLE METHOD | | Bailer | | PURGE RATE | NA | _ | PURGE TIME | | NA | | CASING VOLUMES REMOVE | D NA | _ | GALLONS | | NA | | SAMPLE APPEARANCE | Slightly turbid | _ | ODORS OBSERVED | _ | N/A | | PID (ppm) | 0.0 | = | | | | | | ameters + Arsenic | _ | DATE SHIPPED | 10 | /23/2019 | | Filtered | Metals | | | | | | Initial | | NG PARA | | Pre-sampling | | | рН | 1 401 | 2 001 | 3 701 | 6.91 | | | COND | | | | 1.75 | | | | | | | | | | | | | | | | | D.O. | | | | 3.56 | | | CASING VOLUMES REMOVED SAMPLE APPEARANCE PID (ppm) ANALYSIS Routine Para Filtered Initial pH COND T ORP TURB | NA Slightly turbid 0.0 ameters + Arsenic Metals | -
-
- | GALLONS ODORS OBSERVED DATE SHIPPED | Pre-sampling
6.91
1.75
16.84
-38
0.00 | NA
N/A | #### **WELL SAMPLING LOG** | CLIENT/PROJECT No. | | Towr | n of Southhampton , | / SHP1901 | | |------------------------|-------------------------|-----------------|-------------------------|---------------|----------| | WELL No./OWNER | | LEA- | SEC / Town of Sout | hhampton | | | SAMPLE I.D. | | | LEA-SEC | | | | SAMPLING POINT | TOC | _ | SAMPLED BY | | NR/CA | | DATE SAMPLED | 10/22/2019 | _ | TIME SAMPLED | | 8:10 | | WELL USE | NA | _ | | | | | STATIC WATER ELEVATION | N NA | _ | FT. BELOW MEASUR | RING POINT | TOC | | WELL DIAMETER | NA | Inches | | | | | TOTAL WELL DEPTH | NA | - | FT. BELOW MEASUR | RING POINT | TOC | | | <u>SAMPLIN</u> | IG INFO | RMATION | | | | PURGE METHOD | NA | _ | SAMPLE METHOD | | Bailer | | PURGE RATE | NA | _ | PURGE TIME | | NA | | CASING VOLUMES REMOV | ED NA | = | GALLONS | | NA | | SAMPLE APPEARANCE | Slightly turbid | _ | ODORS OBSERVED | | N/A | | PID (ppm) | 0.0 | _ | | | | | ANALYSIS Routine Par | ameters + Arsenic | _ | DATE SHIPPED | 10/ | /23/2019 | | | | | | | | | Initial | <u>SAMPLII</u>
1 Vol | NG PAR
2 Vol | <u>AMETERS</u>
3 Vol | Pre-sampling | | | pH
COND | | | | 7.06
0.009 | | | T | | | | 19.27 | | | ORP
TURB | | | | 117
0.00 | | | D.O. | | | | 9.00 | | # APPENDIX D 6 NYCRR PART 360-2: LANDFILLS SHP1901 – 2nd – Semi-Annual Post-Closure Groundwater Monitoring Report 2019 Division of Solid & Hazardous Materials # 6 NYCRR Part 360 Solid Waste Management Facilities Title 6 of the Official Compilation of Codes, Rules and Regulations Revised November 24, 1999 Reprinted March 2001 New York State Department of Environmental Conservation George E. Pataki, Governor Erin M. Crotty, Acting Commissioner #### 6 NYCRR PART 360 #### SOLID WASTE MANAGEMENT FACILITIES #### TABLE OF CONTENTS | | | Page | |------------------------|---|------| | SUBPART 360-1 | GENERAL PROVISIONS | | | Section 360-1.1 | Purpose and applicability | 1-1 | | (a) Purpose | | | | (b) Applicability | | | | Section 360-1.2 | Definitions | 1-1 | | (a) Solid waste and | d related terms | | | (b) Other definition | ns of general applicability | | | Section 360-1.3 | References | 1-14 | | (a) Federal | | | | (b) Other | | | | Section 360-1.4 | Enforcement, inspection and reporting | 1-15 | | (a) Enforcement | | | | (b) Inspection | | | | (c) Reporting | | | | Section 360-1.5 | Prohibited disposal | 1-16 | | (a) Solid waste dis | sposal facilities | | | (b) Hazardous was | ste disposal facilities | | | Section 360-1.6 | Severability | 1-17 | | Section 360-1.7 | Permit requirements, exemptions and variances | 1-17 | | (a) Permit require | ments | | | (b) Exemptions | | | | (c) Variances | | | | Section 360-1.8 | Permit application and registration procedures, | | | | generally | 1-22 | | (a) Uniform Proce | edures Act | | | (b) SEQRA review | w | | | (c) Preapplication | - | | | (d) Permits, gener | | | | (e) Permit modifie | | | | (f) Permit renewa | | | | | aste management plan | | | (h) Registration o | | | | Section 360-1.9 | Contents of applications, generally | 1-24 | | • • | and level of detail | | | (b) Nonspecific fa | acilities | | | (c) Modification applications | | |---|------| | (d) Renewal applications | | | (e) Engineering plans, reports and specifications | | | (f) Comprehensive recycling analysis | | | (g) Inactive hazardous waste disposal and corrective action sites | | | (h) Contingency plan | | | (i) Signature and verification of applications | | | Section 360-1.10 Permit issuance criteria | 1-30 | | (a) Construction | | | (b) Operation | | | Section 360-1.11 Permit provisions | 1-48 | | (a) Mitigation of adverse impacts | | | (b) Transferability | | | (c) Duration of construction | | | (d) Duration of permits | | | (e) Supervision and certification of construction | | | (f) Cessation of construction or operation activities | | | (g) Department inspection of activities | | | (h) Recyclables recovery | | | (i) Approved design capacity | | | Section 360-1.12 Financial assurance | 1-32 | | (a) Applicability | | | (b) Liability coverage | | | (c) Forms of financial assurance | | | Section 360-1.13 Research, development and demonstration permits | 1-32 | | (a) Permit | | | (b) Permit application | | | (c)
Permit restrictions | | | (d) Renewal | | | Section 360-1.14 Operational requirements for all solid waste | | | management facilities | 1-33 | | (a) Applicability | | | (b) Water | | | (c) Public access | | | (d) Control of access | | | (e) Control program for unauthorized waste | | | (f) Maintenance and operation | | | (g) Contingency plan | | | (h) Monitoring samples and results | | | (i) Recordkeeping | | | (j) Confinement of solid waste | | | (k) Dust control | | | (l) Vector control | | #### TABLE OF CONTENTS #### TOC-3 | | (m) Odor control | | | |---|------------------------|---|------| | | (n) On-site roads | | | | | (o) Equipment shel | ter | | | | (p) Noise levels | | | | | (q) Open burning | | | | | (r) Department-app | roved facilities | | | | (s) Emergency num | nbers | | | | (t) Facilities | | | | | (u) Facility operato | or requirements | | | | (v) Salvaging | | | | | (w) Closure | | | | | Section 360-1.15 | Beneficial use | 1-36 | | | (a) Applicability | | | | | (b) Solid waste ces | | | | | (c) Special reporting | - | | | | (d) Casc-specific b | cnoficial use determinations | | | | | | | | | SUBPART 360-2 | LANDFILLS | | | • | Section 360-2.1 | Applicability | 2-1 | | | Section 360-2.2 | Transition | 2-1 | | | Section 360-2.3 | Permit application requirements | 2-2 | | | Section 360-2.4 | Engineering drawings | 2-3 | | | Section 360-2.5 | Operation drawings | 2-4 | | | Section 360-2.6 | Landscape plan | 2-4 | | | Section 360-2.7 | Engineering report | 2-4 | | | Section 360-2.8 | Construction quality assurance/construction | | | | | quality control plan | 2-7 | | | (a) Responsibilitie | | | | | (b) Personnel quali | | | | | (c) Inspection activ | | | | | (d) Sampling strate | - | | | | (e) Documentation | | | | | Section 360-2.9 | Operation and maintenance manual | 2-8 | | | (a) Landfill dispos | | | | | (b) Personnel requ | | | | | (c) Machinery and | | | | | (d) Landfill operat | | | | | (e) Fill progression | | | | | | and characterization | | | | (g) Solid waste rec | ~ . | | | | (h) Cover material | | | | | (i) Environmental | monitoring plan | | | (j) Leachate management plan | | |---|------| | (k) Gas monitoring program | | | (1) Winter and inclement weather operations | | | (m) Convenience station operation | | | (n) First lift placement procedures | | | (o) Fire prevention plan | | | Section 360-2.10 Contingency plan | 2-10 | | (a) Construction related contingency plan | | | (b) Operation related contingency plan | | | (c) Post-closure contingency plan | | | Section 360-2.11 Hydrogeologic report | 2-11 | | (a) Requirements of the site investigation plan | | | (b) Site investigation report | | | (c) Environmental monitoring plan | | | (d) Site analytical plan | | | (d)(6) Water Quality Analysis Tables | 2-26 | | Section 360-2.12 Landfill siting | 2-47 | | (a) Applicability | | | (b) Exceptions | | | (c) Landfill siting restrictions | | | Section 360-2.13 Landfill construction requirements | 2-51 | | (a) Horizontal separation requirements | | | (b) Survey control | | | (c) Location coordinates | | | (d) Groundwater separation | | | (e) Bedrock separation | | | (f) Liner system description | | | (g) Leachate collection and removal system design | | | (h) Leachate collection pipe network design | | | (i) Landfill subgrade | | | (j) Soil component of the liner system | | | (k) Geomembrane liners | | | (l) Soil drainage layers | | | (m) Leachate collection pipes | | | (n) Geosynthetic drainage layers | | | (o) Filter layer criteria | | | (p) Gas venting layer | | | (q) Low permeability barrier soil covers | | | (r) Geomembrane covers | | | (s) Composite covers | | | (t) Topsoil | | | (u) Construction certification report | | | (v) Waste quantification | | | (w) Equivalent design | gn | | |-----------------------|---|------| | Section 360-2.14 | Industrial/commercial waste monofills and | | | | solid waste incinerator ash residue monofills | 2-63 | | (a) Industrial/comm | ercial waste monofills | | | (b) Solid waste incir | nerator ash residue monofills | | | Section 360-2.15 | Landfill closure and post-closure criteria | 2-65 | | (a) Closure site inve | stigation | | | (b) Conceptual closs | ıre plan | | | (c) Final closure pla | | | | (d) Final cover syste | | | | (e) Landfill gas cont | | | | (f) Perimeter gas co | - | | | (g) Gas control usin | • | | | • • | n gas processing or control systems | | | (i) Leachate collecti | on system | | | (j) Vectors | | | | • • | ration and maintenance | | | | -closure registration report | | | Section 360-2.16 | Landfill gas recovery facilities | 2-71 | | (a) Purpose | | | | (b) Applicability | | | | (c) Application requ | | | | (d) Permit renewals | | | | (e) Operational requ | | 0.50 | | Section 360-2.17 | Landfill operation requirements | 2-72 | | (a) Water quality m | J. J | | | (b) Waste placemen | t requirements | | | (c) Daily cover | | | | (d) Intermediate cov | | | | (e) Final cover syste | | | | (f) Decomposition g | | | | (g) Leachate genera | | | | | nedule for primary leachate collection | | | and removal systems | dule for secondary leachate collection | | | and removal syste | | | | (j) Leachate recircu | | | | (k) Bulk liquids | | • | | (l) Industrial/comm | ercial wastes | | | | te and low-level radioactive waste | | | (n) Sludge disposal | waste | | | (o) Sludge and othe | r solid waste | | | (p) Asbestos waste | | | | (P) Assesses waste | arahosar | | | (q) Inspection of un | authorized waste | | |----------------------------------|---|------| | (r) Tank disposal | | | | (s) Perimeter access | road | | | (t) Annual report | | | | (u) Weight scales | | | | (v) Tires | | | | (w) Lead acid batte | ries | | | (x) Air criteria | | | | Section 360-2,18 | Landfill reclamation | 2-76 | | (a) Applicability | | 2.0 | | (b) Feasibility study | work plans | | | | field investigation and report | | | (d) Landfill reclama | | | | (e) Landfill footprir | • | | | (f) Contingency pla | | | | Section 360-2.19 | Financial assurance criteria | 2-78 | | (a) Applicability an | d effective date | 2.0 | | (b) Financial assura | | | | | nce for post-closure care | | | | nce for corrective measures | | | | cial assurance mechanisms | | | Section 360-2.20 | Corrective measures report | 2-84 | | (a) Corrective meas | | | | (b) Corrective meas | | | | | ures implementation | | | Section 360-2.21 | Landfill gas collection and control systems | | | | for certain municipal solid waste landfills | 2-89 | | | • | 2 00 | | | | | | | D WASTE INCINERATORS OR REFUSE-DER | | | | CESSING FACILITIES OR SOLID WASTE PYF | | | Section 360-3.1 | Applicability | 3-1 | | (a) Applicability | | | | (b) Exemptions | | | | (c) Registration Section 360-3.2 | Definitions | 2 1 | | Section 360-3.2 | | 3-1 | | Section 200-2.2 | Application requirements for a permit to | 2.0 | | (a) Engineering son | construct and operate | 3-2 | | (a) Engineering rep | ort
ns and specifications | | | | <u>-</u> | | | (c) Comprehensive (d) Landfill | recycling analysis | | | • • | n of refuse-derived fuel | | | (e) Littiat atabositiot | i ot tethae-geliaeg inel | | | (f) Facility operation | on and maintenance manual | | |------------------------|--|------| | (g) Personnel traini | ng plan | | | (h) Facility mainter | nance, monitoring and inspection plan | | | (i) Staffing plan | | | | (j) Waste control pl | lan | | | (k) Contingency pla | | | | (l) Closure plan | | | | (m) Additional requ | uirements | | | (n) Operation and r | naintenance manual submission review | | | Section 360-3.4 | Operational requirements | 3-9 | | (a) Operation and n | naintenance manual | | | (b) Receipt and har | ndling of solid waste | | | (c) Drainage | · · | | | (d) Process change | S | | | (e) Access | | | | (f) Reporting | | | | (g) Preparedness at | nd prevention | | | Section 360-3.5 | Ash residue requirements | 3-11 | | (a) General | • | | | (b) Additional requ | irements | | | (c) Testing require | | | | (d) Testing procedu | ures | | | (e) Management re | equirement | | | (f) Ash residue ma | | | | (g) Disposal | • | | | (h) Landfill applica | ations | | | (i) Ash residue ben | | | | ., | | | | | • | | | SUBPART 360-4 | LAND APPLICATION FACILITIES | | | Section 360-4.1 | Applicability and exemptions | 4-1 | | Section 360-4.2 | Sewage sludge and septage: department review | 4-2 | | Section 360-4.3 | Sewage sludge and septage: permit application | 4-2 | | Section 360-4.4 | Sewage sludge and septage: operational | | | | requirements | 4-6 | | Section 360-4.5 | Sludge and other solid waste: applicability | | | | and department review | 4-9 | | Section 360-4.6 | Sludge and other solid waste: permit application | 4-9 | | Section 360-4.7 | Sludge and other solid waste: operational | | | | requirements | 4-10 | | Section 360-4.8 | Research projects | 4-10 | | Section 360-4.9 | Storage facilities: permit application | 4-10 | | Section 360-4.10 | Storage facilities: operational requirements | 4-11 | #### TABLE OF CONTENTS TOC-8 | SUBPART 360-5 | COMPOSTING FACILITIES | | |---------------------|--|----------| | Section 360-5.1 | Applicability and exemptions | 5-1 | | (a) Applicability | | | | (b) Exemptions | | | | Section 360-5.2 | Permit application: sludge and solid waste | 5-1 | | Section 360-5.3 | Operational requirements: sludge and solid waste | 5-3 | | Section 360-5.4 | Permit application: yard waste | 5-6 | | Section 360-5.5 | Operational requirements: yard waste | 5-7 | | | - | | | SUBPART 360-6 | LIQUID STORAGE | | | Section 360-6.1 | Applicability | 6-1 | | Section 360-6.2 | General requirements | 6-1 | | Section 360-6.3 | Aboveground and on-ground tank
requirements | 6-1 | | Section 360-6.4 | Underground tank requirements | 6-2 | | Section 360-6.5 | Surface impoundment requirements | 6-2 | | Section 360-6.6 | Closure of liquid storage facilities | 6-3 | | SUBPART 360-7 | CONSTRUCTION AND DEMOLITION DEBRIS L | andfili. | | Section 360-7.1 | Applicability, exemptions and definitions | 7-1 | | (a) Applicability | Applicability, excliptions and actuations | , - | | (b) Exemptions | | | | (c) Definitions | | | | (d) Landfill expan | sions | | | Section 360-7.2 | Registration | 7-2 | | (a) Land clearing | | | | (b) Location restri | | | | | erational requirements | | | Section 360-7.3 | C&D debris landfills three acres or less | 7-2 | | (a) Permit applica | | | | (b) Construction r | | | | Section 360-7.4 | C&D debris landfills greater than three acres | 7-6 | | (a) Permit applica | - | | | (b) Construction r | | | | Section 360-7.5 | Operation requirements | 7-10 | | | monitoring program | | | (b) Annual report | - • - | | | | placement requirements | | | (d) Cover | - home accounts washing a contract. | | | (e) Final cover sy | stem | | | (f) Vegetative cov | | | | (g) Leachate | , OA | | | (g) Leachaie | | | | (h) Unauthorized w | aste - | | |------------------------|--|-------------| | (i) Public access | | | | (j) Recordkeeping | | | | Section 360-7.6 | Closure and post-closure criteria | 7-12 | | (a) Final closure pla | an - | | | (b) Landfills withou | it an approved closure plan | | | (c) Landfills where | maximum slope exceeds 33 percent | | | (d) Maintenance | | | | (e) Post-closure mo | nitoring and maintenance manual | | | (f) Transfer of own | ership | | | (g) Closure and pos | st-closure registration report | | | Section 360-7.7 | Corrective measures | 7-13 | | SUBPART 360-8 | LONG ISLAND LANDFILLS | | | Section 360-8.1 | Applicability | 8-1 | | Section 360-8.2 | Definitions | 8-1 | | (a) Definitions | | | | (b) General definiti | ons | | | Section 360-8.3 | General landfill requirements | 8-1 | | (a) Site prohibition | s | | | (b) Financial guara | ntee | | | (c) Methane gas | | | | (d) Operational lim | itations | | | (e) Existing landfil | l liner requirements | | | Section 360-8.4 | Landfills in deep flow recharge areas | 8-2 | | Section 360-8.5 | Landfills outside deep flow recharge areas | 8-3 | | Section 360-8.6 | Disposal of clean fill | 8-3 | | (a) Clean fill dispo | sal requirements | | | (b) Exemptions | | | | • • • • • | nents for clean fill sites two acres or less | | | (d) Permit requirer | nents for clean fill sites larger than two acres | | | | ATE ASSISTANCE AND LOANS FOR MUNICIPA | AL LANDFILI | | | OSURE PROJECTS | 0.1 | | Section 360-9.1 | Purpose and applicability | 9-1 | | (a) Purpose | | | | (b) Applicability | | | | (c) | Th. 60-141 | 9-1 | | Section 360-9.2 | Definitions | 7-1 | | • • | m Environmental Conservation Law | | | (b) Other definitio | ns . | | #### TABLE OF CONTENTS #### TOC-10 | Section 360-9.3 | Application eligibility | 9-3 | |-----------------------|---|-------------| | (a) Ownership | • | | | (b) Population | | | | (c) Additional requir | rements | | | (d) Applicable regul | ations | | | (e) Obligation to clo | se | | | (f) Closure investiga | tion report | | | (g) Waiver of assista | | | | (h) Phased landfill c | losure | | | Section 360-9.4 | Application procedure | 9-4 | | (a) Application form | | | | (b) Necessary inform | nation | | | (c) Central office su | bmission | | | (d) Regional office s | submission | | | Section 360-9.5 | Department review | 9-4 | | (a) Receipt of applic | eations | | | (b) Initial review | | | | (c) Award of State a | ssistance and loans | | | Section 360-9.6 | Eligible and ineligible costs for State | | | | assistance payments and loans | 9-5 | | (a) Eligible costs | | | | (b) Ineligible costs | | | | Section 360-9.7 | State assistance progress reviews and | | | | reimbursement schedule | 9-6 | | (a) Approval process | S | | | (b) Requirements for | r reimbursement | | | (c) Department revie | | | | (d) Revision of awar | rd amount | | | Section 360-9.8 | Loan approvals | 9-6 | | (a) Loan requiremen | its | | | (b) Loan amount | | | | (c) Loan schedule | | | | Section 360-9.9 | State assistance contract | 9- 7 | | Section 360-9.10 | Return of State assistance for nonperformance | 9-7 | | (a) Failure to comply | | | | (b) Violation of con- | | | | Section 360-9.11 | Loan contract | 9-8 | | Section 360-9.12 | Return of loan for nonperformance | 9-8 | | (a) Failure to make | • • | | | (b) Loan contract de | fault | | | SUBPART 360-10 RE | GULATED MEDICAL WASTE STORAGE, TRANSFI | E R | |----------------------|---|------------| | AN | D DISPOSAL | | | Section 360-10.1 | Applicability and exemptions | 10-1 | | (a) Applicability | | | | (b) Exemptions | | | | Section 360-10.2 | Definitions | 10-1 | | Section 360-10.3 | Permit to construct and operate application | | | | requirements | 10-1 | | (a) Regional plan o | - | | | (b) Engineering pla | | | | (c) Engineering rep | ort | | | (d) Surety | | | | · · · | nents for storage and transfer facilities | | | (f) Operation plan | | | | (g) Contingency pla | | | | (h) Personnel traini | - . | 40.0 | | Section 360-10.4 | Operational requirements | 10-3 | | Section 360-10.5 | Disposal | 10-4 | | | | | | SUBPART 360-11 | TRANSFER STATIONS | | | Section 360-11.1 | Applicability and registration | 11-1 | | (a) Applicability | | | | (b) Registration | | | | Section 360-11.2 | Additional permit application requirements | 11-1 | | (a) Application req | | | | (b) Other requirem | | 11.0 | | Section 360-11.3 | Design requirements | 11-2 | | (a) Unloading and | loading areas | | | (b) On-site roads | On and the all an ambiguity | 11.2 | | Section 360-11.4 | Operational requirements | 11-3 | | (a) Acceptable was | | | | (b) Ultimate dispos | sal of waste | | | (c) Signs | | | | (d) Public access | , insects, odors and vectors | | | (f) Drainage | , insects, odors and vectors | | | (g) Storage area | | | | (h) Recoverable so | lid weste | | | (i) Operational rec | | | | (j) Annual report | oraș | | | (k) Fire protection | | | | (l) Removal of was | nta. | | | (1) Veilloval of Mas | SIC SIC | | #### TABLE OF CONTENTS (m) Asbestos waste (n) Additional operational requirements #### TOC-12 | | ECYCLABLES HANDLING AND RECOVERY FA | CHITIES | |----------------------|--|---------| | Section 360-12.1 | Applicability | 12- | | (a) Facilities regul | | | | (b) Exempt faciliti | | | | • • | smantlers reporting requirements | | | (d) Registration | | | | (e) Other recycling | | | | Section 360-12.2 | Operational requirements | 12-2 | | ` ' | ndling of solid waste | | | (b) Storage | | | | (c) Access | | | | (d) Reporting and | recordkeeping | | | SUBPART 360-13 | WASTE TIRE STORAGE FACILITIES | | | Section 360-13.1 | Applicability | 13-1 | | (a) Storage | | | | (b) Temporary sto | rage | | | (c) Agricultural so | ils | | | (d) Registration | | | | (e) Other uses | | | | (f) Waste tire disp | osal | | | (g) Transition | | | | Section 360-13.2 | Additional application requirements for an | | | | initial permit to construct and operate | 13-3 | | (a) Report | | | | (b) Site plan | | | | (c) Market analysi | | | | (d) Plans and spec | | | | (e) Monitoring an | d inspection plan | | | (f) Closure plan | | | | (g) Surety | | | | (h) Contingency p | lan | | | (i) Storage plan | | | | (j) Vector control | | | | Section 360-13.3 | Operational requirements | 13-6 | | | maintenance manual | | | (b) Sorting of was | | | | (c) Fire prevention | n and control | | (d) Access (e) Reporting and recordkeeping | (f) Receipt and har | adling | | |------------------------|---|--------------| | | | | | SUBPART 360-14 | USED OIL | | | Section 360-14.1 | Applicability | 14-1 | | (a) Applicable requ | | | | (b) Waste oil comp | pared to used oil | | | (c) Prohibitions | | | | (d) Exemptions | | | | Section 360-14.2 | Definitions | 14-4 | | Section 360-14.3 | Additional application requirements for an initial | | | | permit to construct and operate a used oil transfer, | | | | storage or processing facility | 14-6 | | (a) Other applicable | - | | | (b) EPA identification | tion number | | | (c) Transition | | | | (d) Municipal requ | | | | • • | s: Compliance with Petroleum Bulk Storage | | | | ulations and Federal Underground Tank Regulations | | | (f) Containers | | | | | on versus on-specification | | | | iner sign requirements | | | (i) Engineering rep | | | | (j) Used oil quality | • | | | (k) Contingency p | lan | | | (1) Closure plan | | | | | ns and maintenance manual | | | (n) Records and re | - | | | Section 360-14.4 | Used engine lubricating oil retention facilities | 14-13 | | | bricating oil retention facilities | | | (b) Service establi | | | | • • | ment collection facilities | | | , , | nments that elect not to maintain collection facilities | 1415 | | Section 360-14.5 | Transportation requirements for used oil facilities | 14-15 | | (a) Shipping used | | | | (b) Receipt of used | d oil by a facility | | | CIIDDADT 240 15 CA | OMPREHENSIVE SOLID WASTE MANAGEMENT P | T A BIRITA T | | Section 360-15.1 | Purpose and overview | 15-1 | | Section 360-15.1 | • | 15-1 | | つたいいひ フロハーエン・フ | Denutions | 17-1 | | Section 360-15.3 | Grant application | 15-2 | |-----------------------|---|-------| | Section 360-15.4 | Department grant application review | 15-2 | | Section 360-15.5 | Contract content | 15-3 | | Section 360-15.6 | Payments under contract | 15-3 | | Section 360-15.7 | Eligible costs | 15-3 | | Section 360-15.8 | Ineligible costs | 15-3 | | Section 360-15.9 | Plan contents | 15-4 | | Section
360-15.10 | Plan approval | 15-5 | | Section 360-15.11 | Plan modification/update | 15-6 | | Section 360-15.12 | Plan compliance reports | 15-70 | | SUBPART 360-16 | CONSTRUCTION AND DEMOLITION DEBRIS | | | | PROCESSING FACILITIES | | | Section 360-16.1 | Applicability | 16-1 | | (a) Processing and | disposal | | | (b) Exempt facilities | es | | | (c) Prohibition | | | | (d) Registration | | | | Section 360-16.2 | Definitions | 16-1 | | Section 360-16.3 | Additional application requirements for a | | | | permit to construct and operate | 16-2 | | (a) Regional map | | | | (b) Vicinity map | | | | (c) Site plan | | | | (d) Engineering rep | port | | | (e) Fire protection : | and control | | | (f) Unloading, load | ling and storage areas | | | (g) On-site roads | | | | (h) Draft operation | and maintenance manual | | | (i) Residue disposa | | | | (j) Daily cover use | | | | Section 360-16.4 | Operational requirements | 16-4 | | (a) O&M manual | | | | (b) Receipt and har | ndling of waste | | | · · · | cessed C&D debris | | | | bris as an alternative daily cover material | | | at a landfill | | | | (e) Beneficial uses | | | | (f) Storage requirer | | | | | gement and drainage | | | (h) Access | | | | (i) Reporting and re | ecordkeeping | | #### TABLE OF CONTENTS TOC-15 | (j) Closure requirer | ments | | |-----------------------|---|-----------| | (k) On-site environ | | | | (l) Tracking docum | | | | | | | | SUBPART 360-17 RE | GULATED MEDICAL WASTE TREATMENT F. | ACILITIES | | Section 360-17.1 | Applicability | 17-1 | | (a) Applicability | | | | (b) Approved treats | ment methods | | | (c) Exemption | | | | (d) Existing faciliti | les | | | (e) New York State | e Department of Health approvals | | | Section 360-17.2 | Definitions | 17-2 | | Section 360-17.3 | Application requirements for a permit to | | | | construct and operate | 17-4 | | (a) Engineering rep | port | | | (b) Engineering pla | ans and specifications | | | (c) Treatment, dest | ruction and disposal facility | | | (d) Validation testi | ng program | | | (e) Surety | | | | (f) Facility plans | | | | (g) Operation plan | | | | (h) Maintenance ar | nd monitoring plan | | | (i) Personnel staffin | ng and training plan | | | (j) Waste control p | lan | | | (k) Contingency pl | | | | (l) Closure and fina | ancial assurance plans | | | (m) Security plan | | | | Section 360-17.4 | Operational requirements | 17-13 | | (a) General | | | | | ndling of solid waste | | | (c) Drainage | | | | (d) Process change | es es | | | (e) Reporting | | | | (f) Odor and volati | ile organic control | | | (g) Certification | | | | Section 360-17.5 | Requirements for treatment of regulated | | | | medical waste | 17-15 | | | meters for autoclaves | | | (b) Validation testi | | | | (c) Challenge testing | • | | | (d) Operating para | meters for other RMW treatment technologies | | #### PREFACE Organization and Numbering of Statutes and Regulations The Environmental Conservation Law (ECL) is Chapter 43-B of the Consolidated Laws of New York. Numbering system in the ECL: Example Article 25 Title 19 Section 25-1910 subdivision 25-1910.5 paragraph 25-1910.5(a) This may be written as ECL 25-1910.5(a) The regulations of the department are Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (NYCRR). Numbering system in the department's regulations: Example Title 6 Part 360 Subpart 360-2 section 360-2.13 subdivision 360-2.13(k) paragraph 360-2.13(k)(3) subparagraph 360-2.13(k)(3)(iii) clause 360-2.13(k)(3)(iii)(b) subclause 360-2.13(k)(3)(iii)(b)(1) item 360-2.13(k)(3)(iii)(b)(1)(i) This may be written as 6 NYCRR Part 360-2.13(k)(3)(iii)(\underline{b})(\underline{l})(\underline{i}) This numbering system is described in the preface to the department's regulations, and in the regulations of the Department of State (19 NYCRR 261.4(b)). service area under local laws or ordinances adopted or to be adopted under section 120-aa of the General Municipal Law. - (e) Supervision and certification of construction. The construction of a solid waste management facility and each stage of one must be undertaken under the supervision of an individual licensed to practice engineering in the State of New York. Upon completion of construction, that individual must certify in writing that the construction is in accordance with the terms of the applicable permit and tested in accordance with generally accepted engineering practices. Except as specified elsewhere in this Part, this certification must be submitted to the department within three months after completion of construction and must include as-built plans. The operator must notify the department, in writing, of the date when solid waste will be first received at the facility. - (f) Cessation of construction or operation activities. If construction or operation activities started under a permit issued pursuant to this Part cease for a period of 12 consecutive months, the permit automatically expires on the last day of the 12th month following cessation of activities. There is no automatic expiration when the cessation of construction or operation is caused by factors beyond the reasonable control of the permittee, as determined by the department, or when such cessation is in accordance with the provisions of the permit. - (g) Department inspection of activities. The permittee must authorize the commissioner or authorized department staff, after presentation of department credentials, to undertake inspections in accordance with subdivision 360-1.4(b) of this Part. - (h) Recyclables recovery. In the case of a permit relating to a landfill (other than one used exclusively for ash residue, clean fill or construction and demolition debris), a solid waste incinerator (other than one used exclusively to incinerate regulated medical waste), a refuse-derived fuel processing facility, a construction and demolition debris processing facility, a mixed solid waste composting facility or a transfer station (other than one used exclusively for transfer of regulated medical waste), the permit must contain a condition that the permittee must not accept at the facility solid waste which was generated within a municipality that has either not completed a comprehensive recycling analysis or is not included in another municipality's comprehensive recycling analysis satisfying the requirements of subdivision 360-1.9(f) of this Part which has been approved by the department and implemented the recyclables recovery program determined to be feasible by the analysis. (i) Approved design capacity. Every permit must set forth the facility's approved design capacity. #### Section 360-1.12 Financial assurance, - (a) Applicability. - (1) In addition to any financial assurance requirements specifically addressed in a Subpart of this Part, the department may require a form of financial assurance, acceptable to the department, from a permit holder, and conditioned upon compliance with the terms of the permit issued to such holder pursuant to this Part. - (2) A form of financial assurance, acceptable to the department, will be required to cover the cost of having the facility properly closed for facilities where the operator and the owner are not the same person. - (3) A form of financial assurance, acceptable to the department, may be required from registered facilities. - (b) Liability coverage. A form of financial assurance for claims arising out of injury to persons or property, relative to either sudden and accidental occurrences or non-sudden and accidental occurrences, may be required for solid waste management facilities. Such financial assurance may be in the form of liability insurance, self-insurance or other form acceptable to the department. The amount of such financial assurance is to be set by the department. - (c) Forms of financial assurance. Section 373-2.8 of this Title provides guidance on the criteria and wording of financial assurance instruments that the department will consider in assessing the acceptability of financial assurance mechanisms. ## Section 360-1.13 Research, development and demonstration permits. (a) Permit. The department may issue a research, development and demonstration permit for any solid waste management facility proposing to utilize an innovative and experimental solid waste management technology or process, including a beneficial use demonstration project. The application for such permit must clearly demonstrate adequate protection of public health and the environment and be consistent with federal and State laws and regulations and this Part. A permit issued under this section must not be for an activity of a continuing nature. The department may, at its discretion, waive or modify some or all of the application requirements for permits issued under this section. - (b) Permit application. An application for a permit issued under this section must: - (1) describe the proposed activity in detail; - (2) describe how the applicant intends to provide for the receipt and treatment or disposal by the proposed facility of only those types and quantities of solid waste necessary to determine the efficiency and performance capabilities of the technology or process and the effects of such technology or process on human health and the environment; and how the applicant intends to protect human health and the environment in the conduct of the project; and - (3) state that the applicant will provide, on a timely basis, the department with any information obtained as a result of the activity undertaken under the permit. The information must be submitted in accordance with schedules identified in the permit. - (c) Permit restrictions. The permit must: - (1) provide for the construction of facilities as necessary, and for the operation of the facility for not longer than one year (unless renewed as provided in subdivision (d) of this section); - (2) provide
for the receipt and treatment or disposal by the facility of only those types and quantities of solid waste that the department determines necessary to determine, the efficiency and performance capabilities of the technology or process and the effects of such technology or process on human health and the environment; - (3) include such requirements as the department determines necessary to protect human health and the environment (including, but not limited to requirements regarding monitoring, operation, financial assurance and closure, and such requirements as the department deems necessary regarding testing and providing of information to the commissioner about the operation of the facility); and - (4) provide that the commissioner, without affording the permittee a prior opportunity for a hearing, may order an immediate termination of all operations at the facility at any time the commissioner determines that termination is necessary to protect human health and the environment, provided that the permittee is provided an opportunity for a hearing on the termination issue no later than 10 days after the issuance of the order and a decision is rendered no more than 20 days after the close of the hearing record. Nothing in this Part shall preclude or affect the commissioner's authority to issue summary abatement orders under section 71-0301 of the ECL or to take emergency actions summarily suspending a permit under section 401.3 of the State Administrative Procedure Act. (d) Renewal. Permits issued under this section may be renewed not more than three times, unless the permittee demonstrates to the satisfaction of the department that a longer time period is required to adequately assess the long-term environmental effects of the technology or process being studied under authority of the permit. Each renewal period will not exceed one year and will be conditioned upon compliance with this section. ## Section 360-1.14 Operational requirements for all solid waste management facilities. - (a) Applicability. Except as elsewhere provided in this Part, any person who designs, constructs, maintains or operates any solid waste management facility subject to this Part must do so in conformance with the requirements of this section. - (b) Water. - Solid waste must not be deposited in, and must be prevented from, entering surface waters or groundwaters. - (2) Leachate. All solid waste management facilities must be constructed, operated and closed in a manner that minimizes the generation of leachate that must be disposed of and prevent the migration of leachate into surface and groundwaters. Leachate must not be allowed to drain or discharge into surface water except pursuant to a State Pollutant Discharge Elimination System permit and must not cause or contribute to contravention of groundwater quality standards established by the department pursuant to ECL section 17-0301. - (c) Public access. Public access to facilities and receipt of solid waste may occur only when an attendant is on duty. This provision does not apply to combustion-powered equipment used at the facility. Sound levels for such equipment must not exceed 80 decibels (A) at a distance of 50 feet from the operating equipment. - (q) Open burning. Open burning at a solid waste management facility is prohibited, except for the infrequent burning of agricultural wastes, silvicultural wastes, land clearing debris (excluding stumps), diseased trees or debris from emergency cleanup operation, pursuant to a restricted burning permit issued by the department. Measures must be taken immediately to extinguish any non-permitted open burning and the department must be notified that it has occurred. - (r) Department-approved facilities. Solid waste resulting from industrial or commercial operations, sludge, and septage must be processed, disposed, used or otherwise managed only at facilities that the department has specifically approved for such management of that specific waste. - (s) Emergency numbers. Telephone numbers to emergency response agencies such as the local police department, fire department, ambulance and hospital must be conspicuously posted in all areas where telephones are available for use at the facility. - (t) Facilities. Where operating personnel are required, certain facilities must be provided (except in the case of composting facilities using aerated static pile or windrow techniques and land application facilities). These facilities include adequately heated and lighted shelters, a safe drinking water supply, sanitary toilet facilities and radio or telephone communication. - (u) Facility operator requirements. - (1) Except as otherwise specified in a Subpart of this Part pertaining to a specific type of solid waste management facility, the facility operator, during all hours of operation, must have available for use, a copy of the permit issued pursuant to this Part, including conditions, a copy of the operation and maintenance report, the contingency plan and the most recent annual report. - (2) Operation of every landfill, and other solid waste management facilities as directed by the department, must be conducted under the direction of a facility operator. The facility operator must attend and successfully complete within 12 months from their date of employment. a course of instruction in solid waste management procedures relevant to the facility at which the facility operator is employed. The course must be provided or approved by the department. The department will issue a certificate of attendance to each individual successfully completing the course. Attendance at a department-approved course before the effective date of this Part will adequately satisfy these training requirements. - (v) Salvaging. Salvaging, if permitted by the facility owner or operator, must be controlled by the facility owner or operator within a designated salvage area and must not interfere with facility operations or create hazards or nuisances. - (w) Closure. The owner or operator of any active or inactive solid waste management facility must, upon termination of use, properly close that facility and must monitor and maintain such closure so as to minimize the need for further maintenance or corrective actions and to prevent or remedy adverse environmental or health impacts such as, but not limited to, contravention of surface water and groundwater quality standards, gas migration, odors and vectors. Termination of use includes those situations where a facility has not received solid waste for more than one year, unless otherwise provided by permit, or if the permit has expired. Termination of use also results from permit denial or order of the commissioner or of a court. Specific closure measures which may also include corrective actions as specified in this Part are subject to approval by the department. #### Section 360-1.15 Beneficial use. - (a) Applicability. - (1) This section applies to materials that, before being beneficially used (as determined by the department), were solid waste. This section does not apply to solid wastes subject to regulation under Subpart 360-4 of this Part, except in the manner identified in subdivision 360-1.15(b) of this Part. - (2) Beneficial use determinations granted by the department before the effective date of this section shall remain in effect, subject to all conditions contained therein, unless specifically addressed by subsequent department action. - (b) Solid waste cessation. The following items are not considered solid waste for the purposes of this Part when used as described in this subdivision: - (1) materials identified in subparagraphs 371.1(e)(1)(vi)-(viii) of this Title that cease to be solid waste under the conditions identified in those subparagraphs: - (2) compost and other distribution and marketing (D&M) products that satisfy the applicable requirements under Subpart 360-5 of this Part; - (3) unadulterated wood, wood chips, or bark from land clearing, logging operations, utility line clearing and maintenance operations, pulp and paper production, and wood products manufacturing, when these materials are placed in commerce for service as mulch, landscaping, animal bedding, erosion control, wood fuel production, and bulking agent at a compost facility operated in compliance with Subpart 360-5 of this Part: - (4) uncontaminated newspaper or newsprint when used as animal bedding; - (5) uncontaminated glass when used as a substitute for conventional aggregate in asphalt or subgrade applications: - (6) tire chips when used as an aggregate for road base materials or asphalt pavements in accordance with New York State Department of Transportation standard specifications, or whole tires or tire chips when used for energy recovery; - (7) uncontaminated soil which has been excavated as part of a construction project, and which is being used as a fill material, in place of soil native to the site of disposition; - (8) nonhazardous, contaminated soil which has been excavated as part of a construction project, other than a department-approved or undertaken inactive hazardous waste disposal site remediation program, and which is used as backfill for the same excavation or excavations containing similar contaminants at the same site. Excess materials on these projects are subject to the requirements of this Part. (Note: use of in-place and stockpiled soil from a site being converted to a realty subdivision, as defined by the Public Health Law (10 NYCRR 72), must be approved by the local health department.); - (9) nonhazardous petroleum contaminated soil which has been decontaminated to the satisfaction of the department and is being used in a manner acceptable to the department; - (10) solid wastes which are approved in advance, in writing, by the department for use as daily cover material or other landfill liner or final cover system components pursuant to the provisions of subdivision 360-2.13(w) of this Part when
these materials are received at the landfill; - (11) recognizable, uncontaminated concrete and concrete products, asphalt pavement, brick, glass, soil and rock placed in commerce for service as a substitute for conventional aggregate; - (12) nonhazardous petroleum contaminated soil when incorporated into asphalt pavement products by a producer authorized by the department; - (13) unadulterated wood combustion bottom ash. fly ash, or combined ash when used as a soil amendment or fertilizer, provided the application rate of the wood ash is limited to the nutrient need of the crop grown on the land on which the wood ash will be applied and does not exceed 16 dry tons per acre per year; - (14) coal combustion bottom ash placed in commerce to serve as a component in the manufacture of roofing shingles or asphalt products; or as a traction agent on roadways, parking lots and other driving surfaces; - (15) coal combustion fly ash or gas scrubbing by-products placed in commerce to serve as an ingredient to produce light weight block, light weight aggregate, low strength backfill material, manufactured gypsum or manufactured calcium chloride; and - (16) coal combustion fly ash or coal combustion bottom ash placed in commerce to serve as a cement or aggregate substitute in concrete or concrete products; as raw feed in the manufacture of cement; or placed in commerce to serve as structural fill within building foundations when placed above the seasonal high groundwater table. - (c) Special reporting requirements. No later than 60 days after the first day of January following each year of operation, the generator of coal combustion ash must submit a report to the department that identifies the respective quantities of coal combustion bottom ash, fly ash, and gas scrubbing by-products it generated during the calendar year to which it pertains and, with respect to coal combustion bottom ash, how much was sent to a manufacturer of roofing shingles or asphalt products, how much was used as a traction agent on roadways, parking lots, and other driving surfaces, how much was sent to a manufacturer of cement, concrete or concrete products, and how much was used as structural fill; and, with respect to coal combustion fly ash and to gas scrubbing by-products, how much was used to produce light weight block, light weight aggregate, low strength backfill material (flowable fill), manufactured gypsum or manufactured calcium chloride. - (d) Case-specific beneficial use determinations. - (1) The generator or proposed user of a solid waste may petition the department, in writing, for a determination that the solid waste under review in the petition may be beneficially used in a manufacturing process to make a product or as an effective substitute for a commercial product. Unless otherwise directed by the department, the department may not consider any such petition unless it provides the following: - (i) a description of the solid waste under review and its proposed use; - (ii) chemical and physical characteristics of the solid waste under review and of each type of proposed product; - (iii) a demonstration that there is a known or reasonably probable market for the intended use of the solid waste under review and of all proposed products by providing one or more of the following: - (a) a contract to purchase the proposed product or to have the solid waste under review used in the manner proposed; - (b) a description of how the proposed product will be used; - (c) a demonstration that the proposed product complies with industry standards and specifications for that product; or - (d) other documentation that a market for the proposed product or use exists; and - (iv) a demonstration that the management of the solid waste under review will not adversely affect human health and safety, the environment, and natural resources by providing: - (a) a solid waste control plan that describes the following: - (1) the source of the solid waste under review, including contractual arrangements with the supplier; - (2) procedures for periodic testing of the solid waste under review and the proposed product to ensure that the proposed product's composition has not changed significantly; - (3) the disposition of any solid waste which may result from the manufacture of the product into which the solid waste under review is intended to be incorporated; - (4) a description of the type of storage (e.g., tank or pile) and the maximum anticipated inventory of the solid waste under review (not to exceed 90 days) before being used; - (5) procedures for run-on and run-off control of the storage areas for the solid waste under review; and - (6) a program and implementation schedule of best management practices designed to minimize uncontrolled dispersion of the solid waste under review before and during all aspects of its storage as inventory and/or during beneficial use; and - (b) a contingency plan that contains the information and is prepared in accordance with subdivision 360-1.9(h) of this Part. - (2) The department will determine in writing, on a case-by-case basis, whether the proposal constitutes a beneficial use based on a showing that all of the following criteria have been met: - (i) the essential nature of the proposed use of the material constitutes a reuse rather than disposal; - (ii) the proposal is consistent with the solid waste management policy contained in section 27-0106 of the ECL; - (iii) the material under review must be intended to function or serve as an effective substitute for an analogous raw material or fuel. When used as a fuel, the material must meet the requirements of paragraph 360-3.1(c)(4) of this Part and the facility combusting the material must comply with the registration requirements in subdivision 360-3.1(c) of this Part, if appropriate; - (iv) for a material which is proposed for incorporation into a manufacturing process, the material must not be required to be decontaminated or otherwise specially handled or processed before such incorporation, in order to minimize loss of material or to provide adequate protection, as needed, of public health, safety or welfare, the environment or natural resources; - (v) whether a market is existing or is reasonably certain to be developed for the proposed use of the material under review or the product into which the solid waste under review is proposed to be incorporated; and - (vi) other criteria as the department shall determine in its discretion to be appropriate. - (3) The department will either approve the petition, disapprove it, or allow the proposed use of the solid waste under review subject to such conditions as the department may impose. When granting a beneficial use determination, the department shall determine, on a case-by-case basis, the precise point at which the solid waste under review ceases to be solid waste. Unless otherwise determined for the particular solid waste under review, that point occurs when it is used in a manufacturing process to make a product or used as an effective substitute for a commercial product or used as a fuel for energy recovery. As part of its petition, the petitioner may request that such point occur elsewhere. In such a request, the petitioner must include a demonstration that there is little potential for improper disposal of the material or little potential for the handling, transportation, or storage of the solid waste under review to have an adverse impact upon the public health, safety or welfare, the environment or natural resources. - (4) The department may revoke any determination made under this subdivision if it finds that one or more of the matters serving as the basis for the department's determination was incorrect or is no longer valid or the department finds that there has been a violation of any condition that the department attached to such determination. perform in the same manner as the component specified in this section. When the equivalent design involves the substitution of waste materials for components of the landfill's liner or final cover system; and where it can be demonstrated that these material substitutions are within the landfill's environmental containment system (i.e. below the upper most layer of the barrier layer of the final cover and above the secondary composite liner), such equivalency determinations are not subject to the variance requirements of this Part and this use is consistent with the beneficial use provision of paragraph 360-1.15(b)(10) of this Part. It is highly recommended that the applicant discuss equivalent component design proposals with the department in a preapplication conference. # Section 360-2.14 Industrial/commercial waste monofills and solid waste incinerator ash residue monofills. - (a) Industrial/commercial waste monofills. Monofills used solely for the disposal of solid waste resulting from industrial or commercial operations are subject to all requirements of this Subpart, unless the applicant demonstrates that specific landfill requirements in this Subpart are not necessary for the solid waste to be disposed of at the subject facility. The requirements in this Subpart may be modified on a case-specific basis. The department may impose additional or less stringent requirements on these monofills, based on the pollution potential of the waste. Pollution potential shall be based upon the volume and the physical, chemical, and biological properties of the solid waste, and, its variability. Changes in the monofill's design may include, but not be limited to, modifications to the leachate collection system, low permeability liners, and low permeability cover system designs. For those facilities where the applicant can demonstrate to the department that a specific regulatory requirement contained in either sections 360-2.13, 2.15 or 2.17 of this Subpart are not applicable as discussed in this subdivision, the need for a formal variance is waived. Alternative liner
system designs for industrial waste monofills must demonstrate the following: - (1) In the case where an alternative liner system is proposed for an industrial waste monofill, a demonstration must be made as to the proposed liner's ability to adequately prevent a negative impact on groundwater and must address the following factors: the volume and physical and chemical composition of the leachate that will be generated at the disposal facility; the climatological conditions in the vicinity of the proposed site; and the hydrogeologic - characteristics of the proposed site. The demonstration must include an assessment of leachate quality and quantity, anticipated liner system leakage to the subsurface and related contaminant transport to the closest environmental monitoring point. The demonstration should focus on developing an accurate profile of leachate quality and production rates sufficient to be used in evaluating its fate and transport from the point of release to the first point of environmental monitoring in order to determine whether leachate constituents can be expected to exceed the State's groundwater quality standards. It must be demonstrated that the industrial wastes' chemical characterization be accurately defined and that there are no reasons to anticipate significant changes in the concentrations of compounds that could increase the wastes' pollution potential in the future. demonstration must include chemical compatibility test data run on the proposed liner and/or leachate collection and removal system materials with representative waste leachate, using an appropriate permeameter test to determine potential changes in the permeability of the proposed liner. The demonstration must include an estimate of the volumetric release of leachate from the proposed liner design based on analytical approaches supported by empirical data and/or be verified from other existing operational facilities of similar design. A dilution calculation must then be modelled to evaluate the impacts of the characterized leachate on groundwater quality based upon the calculated liner system's leakage rate. - (2) Paper mill sludge monofills. The minimum components of the liner system, monofill closure, operation requirements and the environmental monitoring plan for paper mill sludge landfills must consist of the following: - (i) Components of liner system. A single composite liner system is the minimal level of containment that the department will accept for paper mill sludge monofills. The composite liner system must consist of a minimum of two components, an upper geomembrane liner placed directly above a low permeability soil layer. A leachate collection and removal system must be located over the composite liner. The construction of each of the components must be in conformance with the appropriate requirements of section 360-2.13 of this Subpart unless expressly stated otherwise in this paragraph. The department may require additional liner components to the single composite liner or other restrictions depending upon the waste expected to be produced, monitorability of the site and/or other site conditions. - (ii) The soil component of the composite ## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS ACTIVE SOLID WASTE FACILITIES NYS DEC REGION 1 COUNTY Suffolk Babylon Southern Ashfill52A01360 PERMIT NUMBER:
PERMIT ISSUED:
PERMIT ISSUED:
PERMIT EXPIRES:
05/03/02OWNER TYPE:
REGULATORY STATUS:
OWNER:Municipal
PermitPERMIT EXPIRES:
PERMIT EXPIRES:
OS/03/02 OWNER: Town of Babylon CONTACT: Ronald Kluesener ADDRESS: 200 East Sunrise Hwy ADDRESS: Gleam Street (MAILING) Lindenhurst NY 11757 West Babylon NY 11704 PHONE: (516) 957-3072 PHONE: (631) 422-7640 WASTE TYPE: RR Ash UTMEAST: 636645 UTMNORTH: 4510592 **Brookhaven SLF Cell 5** 52A03 360 PERMIT NUMBER: 1472200030000040 OWNER TYPE: Municipal PERMIT ISSUED: 11/17/98 REGULATORY STATUS: Permit PERMIT EXPIRES: 08/31/05 REGULATORY STATUS: Permit PERMIT EXPIRES: 08/31/05 OWNER: Town of Brookhaven CONTACT: Dennis Lynch ADDRESS: 3233 Route 112 ADDRESS: 3233 Route 112 (MAILING) Medford NY 11763 Medford NY 11763 PHONE: (516) 451-6224 PHONE: (516) 451-6224 WASTE TYPE: RR Ash UTMEAST: 674593 UTMNORTH: 4518097 Northern U 52A39 360 PERMIT NUMBER: 1472000628000010 OWNER TYPE: Municipal PERMIT ISSUED: 10/19/94 REGULATORY STATUS: Permit PERMIT EXPIRES: 04/30/05 OWNER: Town of Babylon CONTACT: Ronald Kluesener ADDRESS: 200 East Sunrise Highway ADDRESS: 200 East Sunrise Highway ADDRESS: 200 East Sunrise Highway (MAILING) Lindenhurst NY 11757 ADDRESS: 200 East Sunrise Highway Lindenhurst NY 11757 Lindenhurst NY 117 (MAILING) Lindenhurst NY 11757 Lindenhurst NY 11757 PHONE: (516) 957-3072 PHONE: (631) 422-7640 WASTE TYPE: RR Ash UTMEAST: 637078 UTMNORTH: 4510803 NYS DEC REGION 3 Westchester COUNTY Sprout Brook LF 60A20 360 PERMIT NUMBER: 3552200097000020 OWNER TYPE: County PERMIT ISSUED: 10/01/97 PEGUI ATORY STATUS: PERMIT EXPIRES: 10/01/02 REGULATORY STATUS: Permit PERMIT EXPIRES: 10/01/02 OWNER: Westchester County DPW CONTACT: mario Parise ADDRESS: 270 North Avenue ADDRESS: Old Albany Post Road (MAILING) New Rochelle NY 10801 Peekskill NY 10601 PHONE: (914) 637-3000 PHONE: (914) 637-3000 WASTE TYPE: Bottom Ash, Fly Ash, RR Ash UTMEAST: 590560 UTMNORTH: 4573986 10965 # NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS ACTIVE SOLID WASTE FACILITIES NYS DEC REGION 3 COUNTY Orange Central Hudson Gas & Elec 36N01 360 PERMIT NUMBER: 3334600011000018 OWNER TYPE: Private PERMIT ISSUED: 05/09/00 REGULATORY STATUS: Permit PERMIT EXPIRES: 05/09/05 OWNER: Central Hudson Gas & Elec CONTACT: Mark McLean ADDRESS: 992 River Road ADDRESS: 992 River Road (MAILING) Newburgh NY 12550 Newburgh NY 12550 PHONE: (914) 452-2000 PHONE: (914) 563-4805 WASTE TYPE: Coal Ash UTMEAST: 585953 UTMNORTH: 4603521 COUNTY Rockland Tomkins Cove Ash Facility 44N07 360 PERMIT NUMBER: 3392800039000010 OWNER TYPE: Private PERMIT ISSUED: 06/30/94 REGULATORY STATUS: None PERMIT EXPIRES: 06/30/99 OWNER: Orange & Rockland Utility CONTACT: C.A. Herbst ADDRESS: One Blue Hill Plaza ADDRESS: One Blue Hill Plaza (MAILING) Pearl River NY 10965 Pearl River NY 10965 PHONE: (914) 577-2582 PHONE: (914) 786 8150 WASTE TYPE: Coal Ash, Ash Residue UTMEAST: 585526 UTMNORTH: 4567869 NYS DEC REGION 6 COUNTY Jefferson **Deferict Paper** 23N06 360 PERMIT NUMBER: 6224000030000000 OWNER TYPE: Private PERMIT ISSUED: 02/15/94 REGULATORY STATUS: Permit PERMIT EXPIRES: 11/01/03 OWNER: Deferiet Paper Company CONTACT: Todd Furnia ADDRESS: 400 Anderson Avenue ADDRESS: 400 Anderson Avenue (MAILING) Deferiet NY 13628 Deferiet NY 13628 PHONE: (315) 493-3540 PHONE: (315) 493-3540 WASTE TYPE: Caol Ash, Paper Sludge, Coal Rejects, Wood Yard Debris UTMEAST: 439729 UTMNORTH: DANC Landfill 23S13 360 PERMIT NUMBER: 6225200007000006 OWNER TYPE: Municipal PERMIT ISSUED: 02/27/96 REGULATORY STATUS: Permit PERMIT EXPIRES: 02/27/06 OWNER: Develop. Authority N. Country CONTACT: E. William Seifried ADDRESS: 317 Washington Street ADDRESS: NYS Route 177 (MAILING) Watertown NY 13601 Rodman NY 13682 PHONE: (315) 785-2592 PHONE: (315) 232-3236 WASTE TYPE: Residential, Demo, Asbestos, Indus, Coal Ash, Cont. Soil, Sludge UTMEAST: 427037 UTMNORTH: 4852232 NYS DEC REGION 7 COUNTY Broome Weber Ash Disposal Site 04N08 360 PERMIT NUMBER: 7033200020000010 OWNER TYPE: Private PERMIT ISSUED: 10/01/80 REGULATORY STATUS: Consent Order PERMIT EXPIRES: 09/30/83 OWNER: AES Creative Resources CONTACT: Peter Huff ADDRESS: 720 Riverside Dr. ADDRESS: 720 Riverside Dr. (MAILING) Johnson City NY 13790 Johnson City NY 13790 PHONE: (607) 729-6950 PHONE: (607) 729-6950 WASTE TYPE: Coal Ash, Studge UTMEAST: 431941 UTMNORTH: 4673115 4884523 COUNTY **Tompkins** 360 PERMIT NUMBER: 7503200069000010 55N02 Cayuga PERMIT ISSUED: OWNER TYPE: Private 04/17/97 PERMIT EXPIRES: REGULATORY STATUS: 04/17/02 Permit OWNER: AES Cayuga, L.L.C. CONTACT: Daniel Hill ADDRESS: 228 Cayuga Drive ADDRESS: Milliken Road (MAILING) NY 14882 NY Lansing (607) 533-7913 PHONE: PHONE: (607) 533-7913 WASTE TYPE: Coal Ash, Sludge UTMEAST: 366998 UTMNORTH: 4718715 NYS DEC **REGION 9** COUNTY Chautauqua 360 PERMIT NUMBER: 906360000600013 Chautauqua Landfill 07S12 PERMIT ISSUED: 07/22/99 OWNER TYPE: County REGULATORY STATUS: PERMIT EXPIRES: 07/23/09 Permit OWNER: CONTACT: Theodore Osborne County of Chautauqua DPW ADDRESS: 3889 Towerville Road ADDRESS: Grace Office Building Jamestown NY 14701-9653 (MAILING) Mayville NY 14757 PHONE: (716) 985-4785 PHONE: (716) 985-4211 WASTE TYPE: Residential, C&D, Asbestos, Sludge, Industrial, Cont.Soil, Coal Ash UTMEAST: 143329 UTMNORTH: 4681819 COUNTY Niagara 360 PERMIT NUMBER: 9291100119000050 32S11 Niagara Recycling Inc. PERMIT ISSUED: 04/25/95 OWNER TYPE: Private REGULATORY STATUS: PERMIT EXPIRES: 04/30/05 Permit OWNER: CONTACT: David Hanson BFI (Allied Waste) ADDRESS: P.O. Box 344 LPO ADDRESS: 56th St. & Niagara Falls Blvd. Niagara Falls (MAILING) ΝV 14304-0344 Niagara Falls NY 14304-0344 PHONE: PHONE: (716) 285-3344 (716) 285-3344 WASTE TYPE: Industrial, C&D, RR & Coal Ash, Sludge, Asbestos, Cont. Soil, MSW UTMEAST: 175230 UTMNORTH: 4779955 360 PERMIT NUMBER: 9292400016000310 Modern Landfill 32S30 PERMIT ISSUED: 12/29/95 Private OWNER TYPE: REGULATORY STATUS: PERMIT EXPIRES: 12/31/05 Permit OWNER: CONTACT: James Goehrig Modern Landfill, Inc. ADDRESS: P.O. Box 209 ADDRESS: Pletcher & Harold Roads Model City NY (MAILING) NY 14107-0209 14107-0209 Model City PHONE: (716) 754-8226 PHONE: (716) 754-8226 WASTE TYPE: MSW, Industrial, Asbestos, Sludge, RR & Coal Ash, C&D, Cont. Soil UTMEAST: 176999 UTMNORTH- 4792194 DEC | FACILITY L1 | | LINER | TYPE | <u> </u> | | |-------------|---------------------------|-------|------|----------|-----| | NUMBER | FACILITY NAME | s | SC | D | DC | | 36N01 | Central Hudson Gas & Elec | .F. | .F. | .F. | .T. | | 44N07 | Tomkins Cove Ash Facility |
.F. | .F. | .F. | .F. | | 23N06 | Deferiet Paper | .F. | .T. | .F. | .F. | | 23S13 | DANC Landfill | .F. | .F. | .F. | .T. | | 04N08 | Weber Ash Disposal Site | .т. | .F. | .F. | .F. | | 55N02 | Cayuga | .F. | .F. | .F. | .T. | | 07S12 | Chautauqua Landfill | .F. | .F. | .F. | .т. | | 32511 | Niagara Recycling Inc. | .F. | .F. | .F. | .T. | | 32530 | Modern Landfill | .F. | .F. | .F. | .T. | ➡ Printer-friendly | A-Z Subject Index | ■ Enter search words Search DEC Home » Regulations and Enforcement » Regulations » Chapter IV- Quality Services » Subpart 360-2: Landfills - Page 2 Outdoor Activities Animals, Plants, Aquatic Life Chemical and Pollution Control **Energy and Climate** Lands and Waters Education Permits and Licenses Public Involvement and News Regulations and Enforcement #### Regulations Chapter IV- Quality Services Subpart 360-2: Landfills -Page 2 Publications, Forms, Maps About DEC ## Subpart 360-2: Landfills - Page 2 (Statutory authority: Environmental Conservation Law, Sections 1-0101, 3-0301, 8-0113, 19-0301, 19-0306, 23-2305, 23-2307, 27-0101, 27-0106, 27-0107, 27-0109, 27-0305, 27-0703, 27-0704, 27-0705, 27-0911, 27-1317, 27-1515, 52-0107, 52-0505, and 70-0107) [Effective Date December 31, 1988] [Amendment Dates: Revised Effective March 27, 1990; with promulgation of new Subpart 15: Grants for Comprehensive Solid Waste Management Planning. Revised Effective May 28, 1991; With repeal of existing Subpart 9 and promulgation of new Subpart 9: State Assistance for Municipal Landfill Closure Projects Revised Effective January 25, 1992; With repeal of existing Subpart 10 and promulgation of new Subpart10: Regulated Medical Waste Storage, Transfer, and Disposal, and new Subpart 17 Regulated Medical Waste Treatment Facilities. Revised/Enhanced Effective October 9, 1993; with adoption of amendments to existing Subparts 1 through 17 Revised Effective December 14, 1994; with adoption of amendments to existing Subpart 9: State Assistance for Municipal Landfill Closure Projects Revised Effective January 14, 1995; With repeal of existing Subpart 14 and promulgation of new Subpart Revised Effective November 26, 1996; With adoption of amendments to existing Subparts 1, 2, 3, 7, 11, 14, and 17 Revised Effective September 29, 1997; With adoption of amendments to existing Subpart 9 Revised Effective November 21, 1998; With adoption of amendments to existing Subpart 2 Revised Effective November 24, 1999; With adoption of amendments to existing Subparts 2, 3, 4, 5, 9, 11, 14, and 16] [This is page 2 of 3 of this Subpart. A complete list of Subparts in this regulation appears in the Chapter 4 contents page.] #### Contents: Sec. 360-2.11 Hydrogeologic report. 360-2.12 Landfill siting. ### §360-2.11 Hydrogeologic report. The hydrogeologic report must define the landfill site geology and hydrology and relate these factors to regional and local hydrogeologic patterns; define the critical stratigraphic section for the site; provide an understanding of groundwater and surface water flow at the site sufficient to determine the suitability of the site for a landfill; establish an environmental monitoring system capable of readily detecting a contaminant release from the facility and determining whether the site is contaminating surface or subsurface waters; and form the basis for design of the facility and contingency plans relating to ground or surface water contamination or gas migration as required in section 360-2.10 of this Subpart. The scope and extent of investigations necessary in the hydrogeologic report will vary based upon the hydrogeologic complexity of the site and the ability of the site to restrict contaminant migration. Additionally, the hydrogeologic report must define the engineering properties of the site as necessary for proper design and construction of any facilities proposed to be built at the site. - (a) Requirements of the site investigation plan. The site investigation plan must clearly define all methods used in investigating the hydrogeologic conditions of the site, the scope of the intended investigation, and any specific hydrogeologic questions to be addressed. The applicant is strongly encouraged to develop a draft version of the plan for review by the department before starting the hydrogeologic investigation that begins to define the critical stratigraphic section, and to keep the department informed of the findings and subsequent investigative proposals as the study proceeds. The final version of the plan, included in the hydrogeologic report section of the permit application, must fully describe all methods of investigation used. Unless otherwise approved by the department, the plan must comply with the following: - (1) General requirements for all methods used. In obtaining the required hydrogeologic information, the applicant must employ current, standard, and generally accepted procedures. All work must be done in accordance with applicable American Society for Testing Materials standards or current and appropriate U.S. Environmental Protection Agency and department guidance documents. Alternative or innovative methodologies may be approved by the department; however, the department may initially require redundant technologies to prove the reliability of a new methodology. All procedures must be conducted under the supervision of a qualified groundwater scientist having experience in similar hydrogeologic investigations, in a manner that ensures accuracy of the data and precludes environmental degradation. The location of all installations, geophysical and geochemical surveys, and seismic lines for the proposed investigation must be shown on a map with the same scale and coordinate grid system used on the engineering plans (see section 360-1.9[e] of this Part). - (2) Literature search. A comprehensive search must be made for pertinent and reliable information concerning regional and site specific hydrogeologic conditions. The literature search must include, as available, records and reports of the New York State Department of Health, the New York State Department of Transportation, the U.S. Soil Conservation Service, and the New York State Geological Survey; basin planning reports, groundwater bulletins, water supply papers, professional papers and other open file reports of the U.S. Geological Survey; bulletins, circulars, map and chart series, memoirs and other publications of the New York State Geologic Survey; publications and bulletins of the Geological Society of America and other professional organizations; and publications of the U.S. Environmental Protection Agency and the department, college and university reports; and aerial photography or remotely sensed imagery. - (3) Surficial geologic mapping. The site must be mapped to determine the distribution of surficial deposits on and surrounding the site based upon information from the hydrogeologic investigation, field evaluations, and field confirmation of all interpretations made on the site itself. - (4) Test pits. Test pits may be used to determine shallow stratigraphy. The test pits must not create a health or safety hazard and must be logged by a geologist or geotechnical engineer with experience in similar hydrogeologic investigations. Logs must include: elevations; surface features before excavation; depth of the test pit and of all relevant horizons or features; moisture content of units; standard soil classifications (including the Unified Soil Classification System), stratigraphy, soil structure, bedrock lithology, brittle, or secondary structures in soil and bedrock; and a sketch showing these features for each test pit constructed. Test pits must be promptly backfilled and compacted with excavated materials. The department may require that, if a test pit is dug, undisturbed soil samples be taken and tested in accordance with subparagraph (9)(ii) of this subdivision. - (5) Water well surveys. A survey of public and private water wells within one mile downgradient and one-quarter mile upgradient of the proposed site must be conducted. Surveys must obtain, where available, the location of wells, which must be shown on a map with their approximate elevation and depth, name of owner, age and usage of the well; stratigraphic unit screened; well construction; static water levels; well yield; perceived water quality; and any other relevant data which can be obtained. - (6) Geophysical and geochemical surveys. The department may require the use of geophysical and geochemical methods, such as electromagnetic, resistivity, seismic surveys, remote sensing surveys, downhole geophysics, isotope geochemistry, and soil gas analysis, where necessary to justify the interpretations and conclusions of the site investigation report and to provide information between boreholes, and aid in the siting of wells. - (7) Tracer studies. The department may require the use of tracer studies to aid in understanding groundwater flow or to otherwise assist in devising an effective environmental monitoring plan. - (i) Where sites overlie weathered limestone or dolostone bedrock or where karst environments cannot be avoided, the department may require tracer studies before finalizing the bedrock monitoring plan. Tracer studies must identify, in specific detail, areas of groundwater flow from the facility attributed to secondary permeability, recharge and discharge areas on and surrounding the site, storage of groundwater, and variations of water quality seasonally and during high and low flow periods. - (ii) Where a site is otherwise unmonitorable because of existing contamination, the department may allow the use of tracers to aid in monitoring. - (8) Monitoring wells and piezometers. - (i) Construction in general. - (a) Monitoring wells and piezometers must define the three-dimensional flow system within the critical stratigraphic section to justify the interpretations and conclusions of the hydrogeologic report. - (b) Construction techniques must
be appropriate to ensure that groundwater samples and head level measurements characterize discrete stratigraphic intervals; and to prevent leakage of groundwater or contaminants along the well annulus. If leakage is detected, it must be corrected or the well abandoned. - (c) Monitoring wells and piezometers may be placed individually or as well clusters. Well clusters consist of individual wells at varying depths in close proximity, each installed in its own boring. Multiple wells placed into one large borehole are prohibited unless prior department approval in writing is obtained. - (d) Soil borings, soil samples, and rock cores must characterize each stratigraphic unit within the critical stratigraphic section to justify the interpretations and conclusions of the hydrogeologic report. - (e) Every precaution must be taken during drilling and construction of monitoring wells to avoid introducing contaminants into a borehole. Only potable water of known chemistry may be used in drilling monitoring wells or piezometers unless otherwise approved by the department. - (f) All equipment placed into the boring must be properly decontaminated before use at the site and between boreholes. The initial cleaning at the site must ensure that no contaminants from the last site drilled will be introduced into the borings. All equipment must be steam cleaned between holes. Where possible, upgradient wells should be drilled first. - (g) Use of drilling muds is to be avoided unless prior department approval in writing is granted. If drilling muds are used, the material used must avoid the introduction of stray contaminants. Drilling muds must not be used within 10 feet of the screened interval. - (h) Air systems and drilling lubricants must not introduce contaminants into the borehole. - (i) Well borings must have an inside diameter at least two inches larger than the outside diameter of the casing and screen to ensure that a tremie may be properly used. - (j) Wells and borings must not be placed through or into waste unless prior department approval has been granted and sufficient safety precautions are employed. If waste is encountered unexpectedly during drilling, drilling of that boring must cease, the hole properly abandoned with cuttings properly disposed of and the department notified. - (ii) Construction of monitoring wells and piezometers. - (a) Well screens and risers must be constructed of materials selected to last for the required monitoring period of the facility without contributing contaminants to, or removing contaminants from, the groundwater. All materials used are subject to department approval. Joints, caps, and end plugs are to be secured by welds, threads with teflon tape, or force fittings. Solvents and glues or other adhesives are prohibited. Caps must be vented to allow for proper pressure equalization. The inside diameter of each well screen or riser pipe must be nominally two inches in diameter and must allow for proper development, survey and sampling equipment to be used within the screen and casing. A permanent mark should be made at the top of the riser pipe to provide a datum for subsequent water level measurements. - (b) Unless otherwise approved by the department, well screens are required for all wells and piezometers. All screens used must be factory constructed non-solvent welded/bonded continuous slot wire wrap screens of a material appropriate for long-term monitoring without contributing contaminants to or removing contaminants from the groundwater. The slot size of the screen must be compatible with the sand pack. Water table variations, site stratigraphy, expected contaminant behavior, and groundwater flow must be considered in determining the screen length, materials, and position. Where existing contamination is suspected or known, down hole geophysical techniques may be required by the department to aid in selecting well screen elevations. - (c) The sand pack surrounding the well screen must consist of clean, inert, siliceous material. Grain size must be based upon a representative sieve analysis of the zone to be screened. The sand pack must minimize the amount of fine materials entering the well and must not inhibit water inflow to the well. The sand pack must be placed in the annular space around the well screen and extend two feet or 20 percent of the screen length (whichever is greater) above the top, and six inches below the bottom, of the screen. The sand pack material must be placed using the tremie method or another method approved by the department and must avoid bridging. The sand pack must be checked for proper placement. A finer grained sand pack material (100 percent passing the No. 30 sieve and less than two percent passing the No. 200 sieve) six inches thick must be placed at the top of the sand pack between the sand and the bentonite seal. - (d) Bentonite must be placed above the sand pack using the tremie or other approved method to form a seal at least three feet thick. A 6 to 12 inch fine grained sand pack must be placed above the bentonite seal to minimize grout infiltration. If pellets or chips are used, sufficient time should be allotted to allow for full hydration of the bentonite prior to emplacement of overlying materials. - (e) Grout of cement/bentonite, bentonite alone, or other suitable, low permeability material, if approved by the department, must completely fill the remaining annular space to the surface seal. The grout mixture must set up without being diluted by formation water, and must displace water in the annular space to ensure a continuous seal. The grout mixture must be placed under pressure using a tremie or other method approved by the department. Auger flights or casing must be left in the hole before grouting to prevent caving. The cement used must be appropriate for the groundwater chemistry of the site. - (f) A protective steel casing, at least two inches larger in diameter than the well casing, must be placed over the well casing or riser pipe and secured in a surface well seal to adequately protect the well casing. A distinctive, readily visible marker must be permanently affixed to the protective casing or near the well to identify the well number and ensure visibility even in periods of high snow cover. A drain hole must be drilled at the base of the protective casing. A vent hole must be located near the top of the protective casing to prevent explosive gas build up and to allow water levels to respond naturally to barometric pressure changes. The annulus of the protective casing should be filled with gravel. A locking cap must be installed with one to two inches clearance between the top of the well cap and the bottom of the locking cap when in the locked position and a weather resistant padlock must be placed on the protective casing and duplicate keys provided to the department. - (g) A concrete surface seal designed to last throughout the planned life of the monitoring well must be constructed. The surface seal must extend below the frost depth to prevent potential well damage. The top of the seal must be constructed by pouring the concrete into a pre-built form with a minimum of three foot long sides. The seal must be designed to prevent surface runoff from ponding and entering the well casing. In areas where traffic may cause damage to the well, bumperguards or other suitable protection for the well is required. Any damaged or deteriorated surface seals must be reported to the department and repaired or replaced in an appropriate manner. The department may allow alternate designs when documentation is presented which demonstrates the intent of the regulations. - (h) Where under the circumstances of a particular situation the department believes that the methods identified in this section are inadequate, it may require that additional measures be taken to prevent migration of contaminants along the annulus of the well or to protect the well. - (i) Alternative construction methods for piezometers and wells which are not to be part of the environmental monitoring plan may be approved by the department if those methods meet the requirements set forth in clause (i)(b) of this paragraph. - (iii) Well and piezometer development. All wells and piezometers must be developed as soon as possible after installation, but not before the well seal and grout have set. Water must not be introduced into the well for development, except with approval of the department. Any contaminated water withdrawn during development must be properly managed. Development must not disturb the strata above the water-bearing zone or damage the well. The entire saturated screened interval must be developed. The department may require multiple attempts at well development to increase the likelihood that sediment free water can be obtained. Development methods should be appropriate for conditions/stratigraphy encountered. Placement of screens in a fine grained strata may require gentle development techniques to avoid pulling sediment into the well. The selected method must minimize to the greatest extent possible the amount of turbidity in the well. - (iv) Survey. The locations and elevations of all existing and abandoned test pits, soil borings, monitoring wells, and piezometers must be surveyed to obtain their precise location and plotted on a map in the hydrogeologic report. The vertical location of the ground surface and the mark made on the top of the monitoring well and piezometer risers must be accurately measured to the nearest 100th foot. - (v) Replacement of wells. All wells must be properly protected to ensure their integrity throughout the active and post-closure period of the facility. If, in the opinion of the department, water quality or other data show that the integrity of a well is lost, the well must be replaced and sampled within a time period acceptable to the department (but not to exceed 120 days) after written notification by the
department. The initial sample for the replacement well must be analyzed for baseline parameters in the Water Quality Analysis Tables in this section. - (vi) Abandonment of wells. All soil borings or rock cores which are not completed as monitoring wells or piezometers and other abandoned wells must be fully sealed in a manner appropriate for the geologic conditions to prevent contaminant migration through the borehole. Generally, such sealing must include: - (a) Overboring or removal of the casing to the greatest extent possible, followed by perforation of any casing left in place. All casing and well installations in the upper five feet of the boring, or within five feet of the proposed level of excavation, must be removed. - (b) Sealing by pressure injection with cement bentonite grout, using a tremie pipe or other method acceptable to the department, must extend the entire length of the boring to five feet below the ground surface or the proposed excavation level. The screened interval of the borehole must be sealed separately and tested to ensure its adequacy before sealing the remainder of the borehole. Where the surrounding geologic deposits are highly permeable, alternate methods of sealing may be required to prevent the migration of the grout into the surrounding geologic formation. The upper five feet must be backfilled with appropriate native materials compacted to avoid settlement. (c) The sealed site must be restored to a safe condition. The site must be inspected periodically after sealing for settlement or other conditions which require remediation. # (9) Geologic sampling. - (i) All borings and rock cores must be sampled continuously to the base of the critical stratigraphic section. For well clusters, continuous samples must be collected from the surface to the base of the deepest well. Other wells in the cluster must be sampled at all stratigraphic changes, and at the screened interval. At sites where the geology is not of a complex nature the department may allow a reduction in the number of wells requiring continuous sampling. Soil borings must be sampled using the split spoon method and bedrock or boulders must be sampled by coring with standard size NX or larger diameter core bits. Samples must be retained in labeled glass jars or wooden core boxes. All samples must be securely stored and accessible throughout the life of the facility. The location of the storage area must be designated in the operation and maintenance plan for the facility. - (ii) A representative number of undisturbed samples must be collected from test pits and soil borings using appropriate methods to identify the soil characteristics of all cohesive soil units. Such samples must be analyzed in the laboratory for: Atterberg limits; gradation curves by sieve or hydrometer analysis or both, as appropriate; undisturbed permeabilities; and visual descriptions of undisturbed soil structures and lithologies. # (10) Logs. - (i) Complete and accurate drilling logs must be provided to the department for all soil borings. These logs must provide detailed soil classification according to the Unified Soil Classification System (USCS). The USCS visual method must be used on all samples supplemented by the USCS laboratory tests on a representative number of samples from each stratigraphic unit and each screened interval. Logs also must contain a description of matrix and clasts, mineralogy, roundness, color, appearance, odor, and behavior of materials using an appropriate descriptive system. A clear description of the system used must be included with the logs. When undisturbed samples have been taken, the interval tested and the test results must be clearly shown on the logs. All well logs must contain drilling information as observed in the field including: moisture content, location of the water table during drilling, water loss during drilling; depth to significant changes in material and rock; sample recovery measured in tenths of a foot; hammer blow counts, and other pertinent comments; the method of drilling, anomalous features such as gas in the well, and the use and description of drilling fluids or additives, including the source, and calculated and actual amounts of materials used. - (ii) Rock core logs must describe the lithology, mineralogy, degree of cementation, color, grain size, and any other physical characteristics of the rock; percent recovery and the rock quality designation (RQD); other primary and secondary features, and contain all drilling observations and appropriate details required for soil boring logs. A clear photograph of all labeled cores must also be taken and submitted with the logs. - (iii) Well completion logs must contain a diagram of the completed well, all pertinent details on well construction, a description of the materials used, and elevations of all well features. - (iv) Copies of original field logs must be submitted to the department upon request. - (11) In situ hydraulic conductivity testing. In situ hydraulic conductivity testing must be done in all monitoring wells and piezometers, unless other methods that are approved by the department, are used. The testing method used must not introduce contaminants into the well. If contamination is known or suspected to exist, all water removed must be properly managed. Hydraulic conductivities may be determined using pump tests, slug tests, packer tests, tracer studies, isotopic geochemistry, thermal detection, or other suitable methods. - (b) Site investigation report. The site investigation report must include a final version of the site investigation plan, raw field data, analytical calculations, maps, flow nets, cross-sections, interpretations (and alternative interpretations where applicable), and conclusions. All maps, drawings and diagrams must have a minimum scale of 1:24,000, unless otherwise acceptable to the department. Such report must comprehensively describe: - (1) Regional geology. The discussion of regional geology must demonstrate how the regional geology relates to the formation of on-site geologic materials, the potential for and effects of off-site contaminant migration, and the location of nearby sensitive environments. This discussion must include available and appropriate information to describe: - (i) bedrock stratigraphy and structural features (represented on maps and columnar diagrams) constructed from field exposures and the geologic literature, describing formation and member names, geologic ages, rock types, thicknesses, the units' mineralogic and geochemical compositions and variabilities, rock fabrics, porosities and bulk permeabilities, including karst development, structural geology, including orientation and density or spacing of folds, faults, joints, and other features; - (ii) glacial geology, including a discussion of the formation, timing, stages, and distribution of glacial deposits, advances and retreats, hydrologic characteristics of the surficial deposits, such as kames, eskers, outwash moraines, etc.; - (iii) major topographic features, their origin and influence upon drainage basin characteristics; and - (iv) surface water and groundwater hydrologic features, including surface drainage patterns, recharge and discharge areas, wetlands and other sensitive environments, inferred regional groundwater flow directions, aquifers, aquitards and aquicludes, known primary water supply and principal aquifers, public water supply wells, and private water supply wells identified in the water supply well survey, any known peculiarities in surface water and groundwater geochemistry, and any other relevant features. - (2) Site-specific geology. The site investigation report must define site hydrogeologic conditions in three dimensions and their relationship to the proposed landfill. The report must define site geology, surface water and groundwater flow, and must relate site-specific conditions to the regional geology. The report must describe the potential impact the landfill may have on surface and groundwater resources and other receptors, including future hydrogeologic conditions, which may occur with site development, and it must describe the hydrogeologic conditions in sufficient detail to construct a comprehensive understanding of groundwater flow, which can be quantified and verified through hydrologic, geochemical, and geophysical measurements. The report must provide sufficient data to specify the location and sampling frequency for environmental monitoring points; form the basis for contingency plans regarding groundwater and surface water contamination and explosive gas migration; and support the engineering design of the landfill. The site- specific hydrogeologic evaluation must specifically discuss all units in the critical stratigraphic section. Such evaluation must include maps, cross- sections, other graphical representations, and a detailed written analysis of the following: - (i) all hydrogeologic units such as aquifers, aquitards and aquicludes, and how they relate to surface water and groundwater flow. This must include all hydrogeologic data collected during the site investigation and explain and evaluate the hydrologic and engineering properties of the site and each specific unit; and - (ii) local groundwater recharge and discharge areas, high and low groundwater tables and potentiometric surfaces for each hydrologic unit, vertical and horizontal hydraulic gradients, groundwater flow directions and velocities, groundwater boundary conditions, surface water and groundwater interactions, and an evaluation of existing water quality. - (c) Environmental monitoring plan. The environmental monitoring plan must describe all proposed on-site and off-site monitoring, including the location of all environmental, facility, and other monitoring points, sampling schedule, analyses to be performed, statistical methods, and reporting requirements. The plan must also include a schedule for construction of
the groundwater monitoring wells based on site-specific hydrogeology and the sequencing of construction of landfill cells; a schedule for initiation of the existing water quality and operational water quality monitoring programs and a contingency water quality monitoring plan which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the plan must comply with the following: - (1) Groundwater sampling. Groundwater monitoring wells must be capable of detecting landfill-derived groundwater contamination within the critical stratigraphic section. - (i) Horizontal well spacing. - (a) Horizontal spacing of wells must be based upon site-specific conditions including groundwater flow rates, estimated longitudinal and transverse dispersivity rates, proximity to or presence of sensitive environments and groundwater users, the nature of contaminants disposed of at the site, and the proposed design and size of the landfill. - (b) In the first water-bearing unit of the critical stratigraphic section, monitoring well spacing must not exceed 500 feet along the downgradient perimeter of the facility. In sensitive environments or geologically complex environments, closer well spacing may be required. Upgradient or crossgradient well spacing must not exceed 1,500 feet and may be less in sensitive environments, or where up-gradient sources of contamination are known to exist. Subsequent water-bearing units must be monitored, as required by the department, based upon the potential for contaminant migration to that unit. Well spacing must provide at least one upgradient and three downgradient monitoring wells or well clusters for each water- bearing unit of the critical stratigraphic section. - (c) Sensitive environments or areas where public health concerns exist may be subject to more intensive groundwater monitoring requirements. In addition, the department may require the applicant to develop acceptable computer models of contaminant plume behavior from hypothetical leaks in the liner system, if necessary to determine optimum monitoring well spacing. - (d) In areas where waterflow is irregular and unpredictable and where otherwise determined to be appropriate, the applicant may be required to conduct spring, sinkhole, or other sampling to enhance the monitoring. - (e) All downgradient monitoring wells must be located as close as practical to but not more than 50 feet from the waste boundary, unless otherwise approved by the department due to site specific conditions, to ensure early detection of any contaminant plume. - (f) All upgradient and crossgradient monitoring wells must be placed far enough from the waste boundary to avoid any facility derived impacts. - (ii) Well screen placement. - (a) Well screens must be located to readily detect groundwater contamination within the saturated thickness of the first water-bearing unit, and must be installed at a representative number of points at each subsequent permeable unit throughout the critical stratigraphic section. Well screens must not act as conduits through impermeable layers. Wells monitoring the water table should be screened to ensure that the water table can be sampled at all times. - (b) Upgradient and crossgradient wells must monitor the same hydrologic units whenever possible within the critical stratigraphic section as the downgradient monitoring wells. - (iii) Screen length. Well screens must not exceed 20 feet in length, unless otherwise approved by the department. The applicant must provide technical justification for the actual screen length chosen. - (iv) Geophysical and geochemical techniques. Where existing contamination is suspected, the department may require the use of geophysical and geochemical techniques to locate contaminated zones before selecting well locations and screen depths for environmental monitoring points. - (v) If a groundwater suppression system exists at a facility, the department may require representative sampling points to be designated as environmental monitoring points. Existing water quality monitoring at these points may not be required. - (2) Surface water and sediment sampling. The environmental monitoring plan must designate monitoring points, for use in operational or contingency monitoring or both of the facility pursuant to subparagraphs (5)(ii) and (iii) of this subdivision, for all surface water bodies that may be significantly impacted by a contaminant release from the facility. Sampling activities at these monitoring points shall be for surface water and sediment. The department may require the sampling and analysis of surface water and sediment sampling points during a site investigation to understand site hydrogeology or existing patterns of contamination. In bodies of standing water, these points must be located at the closest point to the facility and must be included in existing water quality monitoring. In flowing water bodies, these points must include sufficient upgradient and downgradient locations to allow the facility's impact to be measured. These points, however, do not require existing water quality analysis. The detailed analysis requirements of these points must be specified in the contingency monitoring plan and the detailed sampling requirements must be specified in the site analytical plan. - (3) Leachate sampling. The environmental monitoring plan must specify the location of facility leachate sampling points and parameters to be analyzed so as to obtain a representative characterization of the leachate composition in the primary leachate collection and removal system and to determine the nature of liquids detected in the secondary leachate collection and removal system. The following must be included: - (i) Sampling points. All sampling points should be located to minimize pumping of leachate before sampling. Sampling points in the secondary leachate collection system should be adequate to sample liquids beneath each discrete leachate collection area or landfill cell. - (ii) Analysis required. Except as allowed by the department when a specific waste stream and its leachate are already well defined, analysis of the leachate in the primary and secondary leachate collection and removal systems must be performed semi-annually for expanded parameters. The department may require the use of specific analytical methods in these analyses when minimum detection levels are determined inadequate to fully characterize leachate. - (4) Water supply well sampling. If sampling and analysis of water supply wells is to be performed, the analytical requirements must be in accordance with those specified in the site analytical plan. Sampling frequency and analysis shall be at least quarterly for baseline parameters. Sampling methods must be consistently applied each time a well is sampled and before sampling any residential well, the New York State Department of Health and/or local health department must be notified. - (5) Water quality monitoring program. A water quality monitoring program must be implemented for all environmental monitoring points specified in the environmental monitoring plan. This program must be tailored to the site to establish existing water quality for the site prior to landfilling, operational water quality during operation of the site and the post-closure period, and contingency water quality, if contamination is detected at the site. These programs must meet the following minimum requirements: - (i) Existing water quality. The applicant must establish an existing water quality database to characterize the site geochemistry. - (a) The permit application must contain a preliminary evaluation of water quality, consisting of the first two rounds of sampling and analyses for a representative number of monitoring points at both upgradient and downgradient locations, in each water bearing hydrogeologic unit within the critical stratigraphic section, with a minimum of two samples taken from each well during the first round of sampling, unless otherwise approved by the department. The first round of these samples must be analyzed for the expanded parameters. The second round must be analyzed for the baseline parameters, except as specified in clause (d) of this subparagraph. These samples should be taken in early spring and late summer, or equivalent, to approximate periods of high and low groundwater flow. The department may require sampling and analysis of additional monitoring points as necessary to define site hydrogeology and geochemistry in support of the interpretations and conclusions of the site investigation report. - (b) Before deposition of waste in the facility, all environmental monitoring points not previously sampled must be sampled and analyzed for four rounds of quarterly sampling. The first of these sampling rounds must be analyzed for expanded parameters and the other three rounds must be analyzed for baseline parameters. Those environmental monitoring points which were sampled in accordance with clause (a) of this subparagraph must be sampled and analyzed for baseline parameters for two rounds of samples. The samples shall be obtained at different times of the year than when the sampling required by clause (a) of this subparagraph was performed. If elevated contaminant levels were detected during the preliminary evaluation of water quality, then the sampling required in this clause shall be as specified in clause (d) of this subparagraph. The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed. The sampling of these phased monitoring points shall commence at least one year prior to solid waste deposition and shall be in conformance with the requirements of clause (b) of this subparagraph or as approved by the department. As these phased monitoring points are added to the monitoring program, the procedures contained in clause (c) of this subparagraph shall be followed to
reestablish existing water quality at the facility and recompute the standard deviation. - (c) Prior to facility operation, existing water quality must be established for each hydrogeologic flow regime being monitored at the site. Existing water quality for each hydrogeologic flow regime shall be the arithmetic mean, per parameter, of the analytical results of the samples obtained from those environmental monitoring points within that flow regime prior to deposition of solid waste; provided there is no reason to believe that the distribution of the analytical results was non-uniform. The standard deviation of the analytical results for each parameter within each flow regime shall also be established at that time. Should the department determine that the sampling results are non-representative of existing water quality or do not constitute a normal, uniform distribution, then the department shall specify such additional sampling and analyses as it deems necessary to confidently establish existing water quality at the site. For those facilities where solid waste has been placed previously in other than a contiguous landfill cell, the existing water quality may be based on only some of the environmental monitoring points, subject to the approval of the department. - (d) If elevated contaminant levels are detected and additional detailed information is needed to establish a complete existing water quality database, the department may require one or more rounds of baseline or expanded parameter sampling and analysis in any sampling point, using the procedure specified for contingency monitoring required in subparagraph (iii) of this paragraph when contamination is detected. - (e) Additional sampling and analysis beyond the site boundaries may be required to determine the nature and extent of contamination and the source, if possible. This evaluation may include construction, sampling, and analysis of any additional monitoring wells, and surface water sampling points required by the department. Based upon the results of this additional data, the department may require analysis for any and all expanded parameters, to be included in quarterly or annual operational water quality sampling. - (ii) Operational water quality. The environmental monitoring plan must include a plan for operational water quality monitoring to be conducted during the operation, closure, and post-closure periods of the facility. The operational water quality monitoring plan must be able to distinguish landfill-derived contamination from the existing water quality at the site. The plan must also describe trigger mechanisms for initiating contingency water quality monitoring. The department may require modification of this plan as additional sampling data becomes available during the life of the facility. The minimum requirements for operational water quality monitoring are: - (a) Except as provided below, in each calendar year sampling and analysis must be performed at least quarterly, once for baseline parameters and three times for routine parameters. The baseline sampling event must be rotated quarterly; one round of baseline parameters to be analyzed in each calendar year will be sufficient unless a pattern of contamination exists which may require the department to change the sampling frequency. For double lined landfills, the department may allow omission of the winter sampling once a complete understanding of water chemistry has been obtained, provided that a demonstration of acceptable liner performance is made to the department. The department will require sampling and analysis on a quarterly basis, alternately analyzing for routine and baseline parameters, at all landfills which do not have a liner system constructed in accordance with section 360-2.13(f) of this Subpart. - (b) The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed or as post-closure monitoring is completed as specified in section 360-2.15(i) of this Subpart. With department approval, sampling of specific environmental monitoring points which are not potentially impacted by the portions of the landfill already constructed, may be deferred, provided that scheduled sampling commences at least one year before landfill construction in the vicinity. The department may withdraw this approval at any time, based upon a change in facility design, operation, or performance. - (c) Operational water quality analysis must include at least those parameters specified in the Water Quality Analysis Tables for routine and baseline parameters. The department may modify these tables before granting a permit for the facility, or during the duration of the permit, if leachate composition so warrants. If subsequent leachate compositions vary or if the waste disposed of at the facility changes, the department may adjust analytical requirements accordingly. - (d) Within 90 days of completing the quarterly field sampling activities, the facility owner/operator must determine whether or not there is a significant increase from existing water quality levels established for each parameter pursuant to clause (c)(5)(i) (c) of this section. - (1) In determining whether a significant increase has occurred, the facility owner/operator must compare the groundwater quality of each parameter at each monitoring well to the existing water quality value of that parameter. - (2) A significant increase has occurred if: - (i) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section, by three standard deviations; or - (ii) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section and exceeds the water quality standards for that parameter as specified in Part 701, 702, or 703 of this Title. (e) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the routine parameters, excluding the field parameters, at any monitoring well, the facility owner/operator: - (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and - (2) must sample and analyze all monitoring points for the baseline parameters during the next quarterly sampling event. Subsequent sampling and analysis for baseline parameters must be conducted at least semiannually until the significant increase is determined not to be landfill-derived or the department determines such monitoring is not needed to protect public health or the environment. - (f) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the baseline parameters, excluding the field parameters, at any monitoring well, the facility owner/operator: - (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and - (2) must establish a contingency monitoring program meeting the requirements of subparagraph (iii) of this paragraph within 90 days except as provided for in subclause (3) of this clause. - (3) The facility owner/operator may attempt to demonstrate to the department that a source other than the facility caused the contamination or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. A report documenting this demonstration must be submitted to the department for approval. If a successful demonstration is made, documented and approved by the department, the facility owner/operator may continue operational water quality monitoring as specified in this subparagraph. If, after 90 days, a successful demonstration is not made, the owner/operator must initiate a contingency monitoring program as required in subparagraph (iii) of this paragraph. - (iii) Contingency water quality. The environmental monitoring plan must include a plan for contingency water quality monitoring, as described in this subparagraph, which must be conducted when a significant increase over existing water quality has been detected pursuant to clause (c)(5)(ii)(d) of this section for one or more of the baseline parameters listed in the Water Quality Analysis Tables. All contingency water quality monitoring plans are subject to department approval, may be modified at any time by the department when necessary to protect public health and the environment, and must include the following: - (a) Within 90 days of triggering a contingency water quality monitoring program, the facility owner/operator must sample and analyze the groundwater for the expanded parameters listed in the Water Quality Analysis Tables. A minimum of one sample from each monitoring well (upgradient and downgradient) must be collected and analyzed during this sampling. If any constituents are detected in the downgradient wells as a result of the expanded parameter analysis, a minimum of two independent samples from each well (upgradient and downgradient) must be collected within 30 days of obtaining the results of the expanded parameter analysis and analyzed for the detected constituents. These samples must be collected within two weeks of each other and then compared to the existing groundwater quality values established pursuant to subparagraph (c)(5)(i) of this section. If an increase in the existing water quality values in the upgradient wells is indicated by this comparison, the existing water quality values for these parameters shall be revised to be
the arithmetic mean of the results of each parameter for which analyses were performed in the upgradient wells within each hydrogeologic flow regime. The department may delete any of the expanded parameters if it can be shown that the removed parameters are not reasonably expected to be in, or derived from, the waste contained in the landfill based on the leachate sampling being performed pursuant to paragraph (c)(3) of this section. - (b) After obtaining the results from the initial or subsequent sampling required in clause (a) of this subparagraph, the facility owner/operator must: - (1) within 14 days, notify the department to identify the expanded parameters that have been detected: - (2) within 90 days, and on a quarterly basis thereafter, resample all wells, conduct analyses for all baseline parameters, and for those expanded parameters that are detected in response to clause (a) of this subparagraph. In addition, the facility owner/operator shall sample and conduct analyses annually on all wells for the expanded parameters. At least one sample from each upgradient and downgradient well must be collected and analyzed during these sampling events. The department may reduce the requirements of this subclause based on site specific conditions; and - (3) establish groundwater protection standards for all parameters detected pursuant to clause (a) of this subparagraph. The groundwater protection standards must be established in accordance with clause (f) of this subparagraph. - (c) If the concentrations of any of the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department of this finding and, if approved by the department, may remove that parameter from the contingency water quality monitoring program. If the concentrations of all the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department and, if approved by the department, may return to operational water quality monitoring. - (d) If the concentrations of any expanded parameters are above existing water quality values, but all concentrations are below the groundwater protection standard established under clause (f) of this subparagraph, the owner/operator must continue contingency monitoring in accordance with this subparagraph. - (e) If one or more expanded parameters are detected at significant levels above the groundwater protection standard established under clause (f) of this subparagraph in any sampling event, the facility owner/operator must, within 14 days of this finding, notify the department to identify the expanded parameters that have exceeded the groundwater protection standard, and notify all appropriate local government officials identified in the Contingency Plan, required pursuant to section 360-2.10 of this Subpart, that the notice has been sent to the department. The owner/operator must also: - (1) characterize the nature and extent of the release by installing additional monitoring wells as necessary: - (2) install at least one additional monitoring well at the facility boundary in the direction of contaminant migration, and sample this well in accordance with subparagraph (c) (5)(i) of this section; - (3) notify all persons who own the land or reside on the land that is directly over any part of the plume of contamination if contaminants have migrated off-site as indicated by sampling of wells in accordance with subclause (1) of this clause; and - (4) initiate an assessment of corrective measures as required by section 360-2.20 of this Subpart within 90 days; or - (5) demonstrate that a source other than the landfill caused the contamination, or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. This report must be submitted for approval by the department. If a successful demonstration is made, the facility owner/operator must continue monitoring in accordance with the contingency water quality monitoring program pursuant to subparagraph (c)(3)(iii) of this section, and may return to operational monitoring if the expanded parameters are at or below existing water quality as specified in subparagraph (c)(5)(i) of this section. Unless and until a successful demonstration is made, the owner/operator must comply with this clause, including initiating an assessment of corrective measures. - (f) The owner/operator must establish a groundwater protection standard for each expanded parameter detected in the groundwater. The groundwater protection standard shall be: - (1) for parameters for which a maximum contaminant level (MCL) has been established in section 1412 of the Safe Drinking Water Act under 40 CFR part 141 (see section 360-1.3 of this Part) or for which standard has been established pursuant to Part 701, 702, or 703 of this Title, whichever is more stringent when the parameters are the same, the MCL or standard for that constituent; - (2) for parameters for which MCLs or standards have not been established, the existing water quality concentration for the parameter established from wells in accordance with subparagraph (c)(5)(i) of this section; or - (3) for parameters for which the existing water quality level is higher than the MCL or standard identified under subclause (1) of this clause, the existing water quality concentration. - (iv) Reporting of data. Unless more rapid reporting is required to address an imminent environmental or public health concern, the owner or operator of the facility must report all water quality monitoring results to the department within 90 days of the conclusion of the sample collection. The report must include: - (a) A table showing the sample collection date, the analytical results (including all peaks even if below method detection limits [MDL]), designation of upgradient wells and location number for each environmental monitoring point sampled, applicable water quality standards, and groundwater protection standards if established, MDL's, and Chemical Abstracts Service (CAS) numbers on all parameters. - (b) In addition, tables or graphical representations comparing current water quality with existing water quality and with upgradient water quality must be presented. These comparisons may include Piper diagrams, Stiff diagrams, tables, or other analyses. - (c) A summary of the contraventions of State water quality standards, significant increases in concentrations above existing water quality, any exceedances of groundwater protection standards, and discussion of results, and any proposed modifications to the sampling and analysis schedule necessary to meet the requirements of subparagraphs (i) through (iii) of this paragraph. - (d) All AQA/AQC documentation must be submitted to the department in a form acceptable to the department. - (e) The annual report must contain a summary of the water quality information presented in clauses (b) and (c) of this subparagraph with special note of any changes in water quality which have occurred throughout the year. - (f) The data quality assessment report required pursuant to paragraph (d)(5) of this section. - (d) Site analytical plan. The site analytical plan must describe the method of sample collection and preservation, chain of custody documentation, analyses to be performed, analytical methods, data quality objectives, procedures for corrective actions, and procedures for data reduction, validation and reporting. The site analytical plan will pertain to existing water quality monitoring programs, operational water quality monitoring programs, and a contingency water quality monitoring program which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the site analytical plan must comply with the following: - Data quality objectives. - (i) The data quality objectives for the data generation activity must be established prior to the initiation of any sampling. - (ii) The data quality objectives shall define the goals of each phase of the water quality monitoring program, including, but not limited to, the following: - (a) reasons for the analytical program; - (b) identification of any regulatory programs and standards applicable to the analytical program; and - (c) minimum detection limits for each of the parameters listed in the Water Quality Analysis Tables. - (iii) The data quality objectives shall be the basis for the development of all other portions of the site analytical plan. - (2) Analytic quality assurance (AQA)/analytic quality control (AQC). - (i) The site analytical plan must include a discussion of the AQA/AQC for the sampling program associated with the facility and shall be sufficient to ensure that the data generated by the sampling and analysis activities are of a quality commensurate with their intended use and the requirements of the department. The discussion shall detail the AQA/AQC goals and protocols for each type of environmental monitoring to be performed at the facility. Elements must include a discussion of the quality objectives of the project, identification of the qualifications of those persons who will be performing the work and their responsibilities and authorities, enumeration of AQC procedures to be followed, and reference to the specific standard operating procedures that will be followed for all aspects of the environmental monitoring program. - (3) Field sampling procedures. - (i) All field sampling procedures shall be described in detail in the site analytical plan. All field quality control procedures shall be described including types and frequency of field quality control samples to be collected such as field blanks, trip blanks, field duplicates, reference materials and material blanks. - (ii) All samples must be collected and stored in the order of the parameter's volatilization sensitivity using
methods, consistently applied, which ensure sample integrity. - (iii) All sampling equipment must be constructed of inert materials designed to obtain samples with minimal agitation and contact with the atmosphere; be cleaned and protected during transport to avoid contamination; and checked before use. Dedicated equipment must be constructed of appropriate inert materials and must be appropriate for the types of sampling to be performed. - (iv) Samples must be properly preserved and delivered to the laboratory with proper chain of custody within all appropriate holding times for the parameters to be analyzed. - (v) The sampling procedures and frequencies must be protective of human health and the environment. - (vi) Monitoring well sampling techniques. Monitoring well sampling techniques must be consistently performed each time a well is sampled, and must comply with the following: - (a) In areas where the presence of explosive or organic vapors is suspected, ambient air in the well must be checked for their presence before the well is evacuated. - (b) For wells with documented contamination, where contamination by non-aqueous phase liquids may be present, standing water in the well must be checked for immiscible layers or other contaminants that are lighter or heavier than water (floaters or sinkers). If present, floaters or sinkers must be sampled and analyzed separately by a method described in the site analytical plan. - (c) Evacuation of the well must replace stagnant water in the well and the sand pack with fresh water representative of the formation. Evacuation methods, including pumping rate, depth of pump intake, and method of determining sufficiency of evacuation must be consistently applied each time the well is sampled. Evacuation methods must create the least possible turbidity in the well and must not lower the water in the well below the top of the sand pack whenever feasible. Evacuated water must be properly managed. - (d) After evacuation of the well, volatile organic samples must be collected. - (e) analysis must be performed after volatile organic samples have been collected, either within the borehole using a probe or from the next sample collected. All field test equipment must be calibrated at the beginning of each sampling day and checked and recalibrated according to the manufacturer's specifications. Calibration data must be reported with the analytical results. - (f) Groundwater samples shall not be filtered, unless otherwise approved by the department. If, due to site-specific conditions, sample turbidity cannot be reduced to 50 nephelometric turbidity units (NTUs) or less by good sampling technique or well redevelopment, the department may approve collection of both filtered and unfiltered samples for analyses of the inorganic parameters. All other analyses required will be on the unfiltered samples. - (vii) Surface water and sediment sampling techniques. Surface water and sediment sampling methods must be consistently applied to all samples, and must comply with the following: - (a) Surface water samples collected from shallow water should not include bottom sediment. In shallow moving water, downstream samples must be collected first to avoid disturbances from the bottom sediments. - (b) Each water body over three feet deep that is sampled must be checked for stratification, and each stratum must be checked for contamination using field parameters. Each stratum showing evidence of contamination must be separately analyzed. If no stratum shows such evidence, a composite sample having equal parts of water from each stratum must be analyzed. - (c) Sediment samples must be taken at each location from which surface water samples are taken, and should consist of the upper five centimeters of sediment. - (viii) Water supply well sampling techniques. Sampling methods must be consistently applied each time a well is sampled and must comply with the following: - (a) Samples should be collected directly from the well so as to yield water representative of the formations supplying the well. If this is not possible, samples must be collected as near to the well as possible and before the water is softened, filtered, or heated. - (b) If possible, samples must be collected before the water enters the pressure tank, otherwise the water must run long enough to flush water stored in the tank and pipes. - (c) Before sampling, water must be evacuated from the well to ensure a fresh sample of aquifer water. - (d) If samples are collected from a tap, aerators, filters, or other devices must be removed before sampling. - (ix) Corrective action. Standard operating procedures must be established which describe the procedures used to identify and correct deficiencies in the sample collection process. The standard operating procedure shall specify that each corrective action must be documented in the sampling report submitted to the department, with a description of the deficiency, the corrective action taken, and the persons responsible for implementing the corrective action. Any alterations to the field sampling procedures shall be included as an amendment to the site analytical plan. - (4) Laboratory procedures. - (i) Laboratory analyses must be performed by a laboratory currently certified under the appropriate approval categories by the New York State Department of Health's Environmental Laboratory Approval Program (ELAP). - (ii) The site analytical plan should contain the standard operating procedures of all laboratory activities related to the environmental monitoring plan. Any revisions to these standard operating procedures must be documented. Standard operating procedures should be available for the following, at a minimum: - (a) receipt, storage and handling of samples; - (b) sample scheduling to ensure that holding time requirements are met; - (c) reagent/standard preparation; - (d) general laboratory techniques such as glassware cleaning procedures, operation of analytical balances, pipetting techniques and use of volumetric glassware; - (e) description of how analytical methods are actually to be performed including precise reference to the analytical method used; and not a simple reference to standard methods; and - (f) standard operating procedures for equipment calibration and maintenance to ensure that laboratory equipment and instrumentation are in working order, including, but not limited to procedures and schedules for calibration and maintenance in accordance with manufacturers' specifications; and - (g) for a corrective action, standard operating procedures must be established for identifying and correcting deficiencies in the laboratory procedures. The standard operating procedure shall specify that each corrective action must be documented in the sampling event report submitted to the department with a description of the deficiency, the corrective action taken, and the person responsible for implementing the corrective action. Any alterations to the laboratory procedures shall be included as an amendment to the site analytical plan. - (5) Data quality assessment. At the conclusion of each sampling event and analysis of the samples collected, data quality assessment shall occur. A data quality assessment report must be submitted with the results from each sampling event. Data quality assessment shall occur in two phases. - (i) Data validation. - (a) For those sampling events for which only routine parameters are analyzed, the data validation shall be performed by the laboratory that performed the sample analyses. - (b) For those sampling events for which baseline or expanded parameters are analyzed, the data validation shall be performed by a person other than the laboratory that performed the analyses and that is acceptable to the department. - (c) The data validation shall be performed on all analytical data for the facility at a rate acceptable to the department, but not less than five percent of the data generated, and shall consist, at a minimum, of the following: - (1) field records and analytical data are reviewed to determine whether the data are accurate and defensible. All AQA/AQC information shall be reviewed along with any corrective actions taken during that sampling event; and - (2) all data summaries shall be clearly marked to identify any data that are not representative of environmental conditions at the site, or that were not generated in accordance with the site analytical plan. - (ii) Data usability analysis. - (a) The data usability analysis shall be performed on all analytical data for the facility and shall consist of the following: - (1) an assessment to determine if the data quality objectives were met; - (2) for consistency, comparison of the analytical data with the results from previous sampling events; - (3) evaluation of field duplicate results to indicate the samples are representative; - (4) comparison of the results of all field blanks, trip blanks, equipment rinsate blanks, and method blanks with full data sets to provide information concerning contaminants that may have been introduced during sampling, shipping, or analyzing; - (5) evaluation of matrix effects to assess the performance of the analytical method with respect to the sample matrix, and determine whether the data have been biased high or low due to matrix effects; - (6) integration of the field and laboratory data with geological, hydrogeological, and meteorological data to provide information about the extent of contamination, if it occurs; and - (7) comparison of precision, accuracy, representativeness, comparability, completeness, and defensibility of the data generated with that required to meet the data quality objectives established in the site analytical plan. - (6) The following Water Quality Analysis Tables in this section list the routine, baseline, and expanded parameters for analysis of all monitoring samples. ## WATER QUALITY ANALYSIS TABLES # ROUTINE PARAMETERS¹ | Common
Name2 | CAS RN3 | Suggested Methods | PQL4 (µg/I) | |---|--------------------|--|---------------------------------| | Field Parameters: | | | | | Static water level(in wells and sumps) | | | | | Specific Conductance | | 9050 | | | Temperature | | | | | Floaters or Sinkers5 | | | | | Temperature | | | | | рН | | 9040 | | | Eh | | 9041 | | | Dissolved Oxygen6 | | | | | Field Observations7 | | | | | Turbidity | | 180.1 | | | Leachate Indicators: | | | | | Total Kjeldahl Nitrogen | | 351.1
351.2
351.3 | 60 | | Ammonia | 7664-41-7 | 351.4
350.1
350.2 | 200
60 | | Nitrate | | 350.3 | 100 | | Chemical Oxygen Demand | | 9200
410.1
410.2
410.3
410.4 | 50000
50000
5000
80000 | | Biochemical Oxygen Demand (BOD ₅) | · · | 405.1 | 2000 | | Total Organic Carbon | | | | | Total Dissolved Solids | | 9060 | | | Sulfate | | 160.1
9035 | 40000 | | Alkalinity | | 9036
9038 | | | Phenols | | 310.1 | 20000 | | Chloride | 108-95-2 | 310.2
8040
9250 | 6000 | | Bromide | | 9251 | | | Total hardness as CaCO ₃ | | 9252
320.1
130.1
130.2 | 2000
20000
30000 | | Inorganic Parameters: | | | | | Cadmium | (Total) | 3010
7130 | 40
50 | | Calcium | | 7131 | 1 | | Iron | (Total)
(Total) | 7140
7380 | 40
100 | | Lead | (Total) | 7381
6010 | 4
400 | | | | 7420 | 1000 | |-----------|--------------------|--------------|---------| | Magnesium | | 7421 | 10 | | Manganese | (Total)
(Total) | 7450
7460 | 4
40 | | Potassium | | 7461 | 0.8 | | Sodium | (Total)
(Total) | 7610
7770 | 40
8 | The department may modify this list as necessary. ### Notes ¹This list contains parameters for which possible analytical procedures are provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4. ²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals. ³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included. ⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation. ⁵Any floaters or sinkers found must be analyzed separately for baseline parameters. ⁶Surface water only. ⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported. # BASELINE PARAMETERS¹ | Common Name2 | CAS
RN3 | Suggested
Methods | PQL4
(µg/I) | |--|------------|----------------------|----------------| | Field Parameters: | | | | | Static water level
(in wells and sumps) | | | | | Specific Conductance | | 9050 | | | Temperature | | | | | Floaters or Sinkers5 | | | | | pH | | 9040
9041 | | | | E | T. | 10 | |---|--------------------|--|------------------------------| | Eh | | | | | Dissolved Oxygen6 | | | | | Field Observations7 | | 180.1 | | | Turbidity | | | | | Leachate Indicators: | | | | | Total Kjeldahl Nitrogen | | 351.1
351.2
351.3 | 60 | | Ammonia | 7664-41-
7 | 351.4
350.1
350.2 | 200
30 | | Nitrate | | 350.3 | 100 | | Chemical Oxygen Demand | 1 | 9200
410.1
410.2
410.3 | 50000
50000
50000 | | Biochemical Oxygen Demand (BOD ₅) | | 410.4
405.1 | 80000
2000 | | Total Organic Carbon | | 25 | | | Total Dissolved Solids | 76 | 9060 | | | Sulfate | | 160.1
9035 | 40000 | | Alkalinity | | 9036
9038 | | | Phenols | | 310.1 | 20000 | | Chloride | * | 310.2
9250 | 6000 | | Bromide | | 9251 | | | Total hardness as CaCO ₃ | | 9252 | | | Color | | 320.1
130.1
130.2
110.1
110.2
110.3 | 2000
20000
30000
80 | | Boron | 7440-42-
8 | | | | Inorganic Parameters: | | | | | Aluminum | | | | | Antimony | (total)
(total) | 7020
6010
7040 | 10
300
2000 | | Arsenic | (total) | 7041
6010
7060 | 30
500
10 | | Barium | (total) | 7061
6010 | 20
20 | | Beryllium | (total) | 7080
6010
7090 | 1000
3
50 | | Cadmium | (total) | 7091
6010
7130 | 2
40
50 | | | Ĺ | 1 | 1 | |-----------------------|--------------------|--------------------------------------|-------------------------------| | Calcium | | 7131 | 1 | | Chromium | (total)
(total) | 7140
6010
7190 | 40
70
500 | | Chromium(Hexavalent)* | 18540-
29-9 | 7191
7195
7196 | 10 600 | | Cobalt | (total) | 7197
7198
6010 | 30
70 | | Copper | (total) | 7200
7201
6010 | 500
10
60 | | Cyanide | | 7210 | 200 | | Iron | (total) | 7211
9010 | 10
200 | | Lead | (total)
(total) | 7380
7381
6010 | 100
4
400 | | Magnesium | | 7420 | 1000 | | Manganese | (total) | 7421
7450 | 10
4 | | Mercury | (total) | 7460 | 40 | | Nickel | (total) | 7461
7470 | 0.8 | | Potassium | (total)
(total) | 6010
7520
7610 | 150
400
40 | | Selenium | (total) | 6010
7740 | 750
20 | | Silver | (total) | 7741
6010 | 20
70 | | Sodium | | 7760 | 100 | | Thallium | (total)
(total) | 7761
7770
6010 | 10
8
400 | | Vanadium | (total) | 7840
7841
6010 | 1000
10
80 | | Zinc | (total) | 7910
7911
6010
7950
7951 | 2000
40
20
50
0.5 | | Organic Parameters: | | | | | Acetone | 67-64-1 | 8260 | 100 | | Acrylonitrile | 107-13-1 | 8030
8260 | 5
200 | | Benzene | 71-43-2 | 8020
8021
8260 | 2
0.1
5 | | Bromochloromethane | 74-97-5 | 8021
8260 | 0.1
5 | | Bromodichloromethane | 75-27-4 | 8010
8021 | 1 0.2 | | | | 8260 | 5 | |---|---------------------|--|--------------------------------| | Bromoform; Tribromomethane | 75-25-2 | 8010
8021
8260 | 2
15
5 | | Carbon disulfide | 75-15-0 | 8260 | 100 | | Carbon tetrachloride | 56-23-5 | 8010
8021
8260 | 1
0.1
10 | | Chlorobenzene | 108-90-7 | 8010
8020
8021
8260 | 2
2
0.1
5 | | Chloroethane;
Ethyl chloride | 75-00-3 | 8010
8021 | 5
1 | | Chloroform; Trichloromethane | 67-66-3 | 8010
8021 | 0.5
0.2 | | Dibromochloromethane; Chlorodibromomethane | 124-48-1 | 8260
8010
8021 | 5
1
0.3 | | 1,2-Dibromo-3-chloropro-pane; DBCP | 96-12-8 | 8260
8011
8021 | 5
0.1
30 | | 1,2-Dibromoethane; Ethyl-ene dibromide; EDB | 106-96-4 | 8260
8011
8021 | 25
0.1
10 | | o-Dichlorobenzene;
1,2-Dichlorobenzene | 95-50-1 | 8026
8010
8020
8021
8120
8260 | 5
2
5
0.5
10
5 | | p-Dichlorobenzene;
1,4-Dichlorobenzene | 106-46- | 8270
8010
8020
8021
8120
8260 | 10
2
5
0.1
15
5 | | trans-1,4-Dichloro-2-bu- tene | | 8270 | 10 | | 1,1-Dichloroethane;
Ethylidene chloride | 110-57-6
75-34-3 | 8260
8010
8021 | 100
1
0.5 | | 1,2-Dichloroethane; Ethylene dichloride | 107-06-2 | 8260
8010
8021 | 8
0.5
0.3 | | 1,1-Dichloroethylene; | | 8260 | 5 | | 1,1-Dichloroethene; | | 8010 | 1 | | Vinylidene chloride | 75-35-4 | 8021 | 0.5 | | cis-1,2-Dichloroethylene; | | 8260 | 5 | | cis-1,2-Dichloroethene | | 8021 | 0.2 | | trans-1,2-Dichloroethyl-ene; | 156-59-2 | 8260 | 5 | | trans-1,2-Dichloro-
ethene | 156-60-5 | 8010
8021 | 1
0.5 | | 1,2-Dichloropropane; | | 8260 | 5 | | Pro-pylene dichloride | 78-87-5 | 8010
8021 | 0.5
0.05 | | cis-1,3-Dichloropropene | | 8260 | 5 | | | 86 | 8010 | 20 | |--|----------------------------------|------------------------------|---------------------| | trans-1,3-Dichloropropene. | 10061-
01-5
10061-
02-6 | 8260
8010
8260 | 10
5
10 | | Ethylbenzene | 100-41-4 | 8020
8221
8260 | 2
0.05
5 | | 2-Hexanone; Methyl butyl ketone | 591-78-6 | 8260 | 50 | | Methyl bromide; Bromo- methane | 74-83-9 | 8010
8021 | 20
10 | | Methyl chloride; Chloro- methane | 74-87-3 | 8010
8021 | 1 0.3 | | Methylene bromide; Dibro- momethane | 74-95-3 | 8010
8021 | 15
20 | | Methylene chloride; Dichloromethane | 75-09-02 | 8260
8010
8021 | 5
0.2
10 | | Methyl ethyl ketone; MEK; 2-Butanone | 78-93-3 | 8260
8010 | 100
40 | | 4-Methyl-2-pentanone; Methyl isobutyl ketone | 108-10-1 | 8260
8015 | 10
5 | | Styrene | 100-42-5 | 8260
8020
8021 | 100
1
0.1 | | 1,1,1,2-Tetrachloroethane. | 630-20-6 | 8260
8010
8021 | 10
5
5 | | 1,1,2,2-Tetrachloroethane | 79-34-5 | 8260
8010
8021 | 0.5
0.1
0.05 | | Tetrachloroethylene; Tet- rachloroethene; Per-chloroethylene | 127-18-4 | 8260
8010
8021 | 5
0.5
0.5 | | Toluene | 108-88-3 | 8260
8020
8021 | 5
2
0.1 | | 1,1,1-Trichloroethane; Methylchloroform | 71-55-6 | 8260
8010
8021 | 5
0.3
0.3 | | 1,1,2-Trichloroethane | 79-00-5 | 8260
8010 | 5
0.2 | | Trichloroethylene; Tri- chloroethene | 79-01-6 | 8260
8010
8021 | 5
1
0.2 | | Trichlorofluoromethane;
CFC-11 | 75-69-4 |
8260
8010
8021
8260 | 5
10
0.3
5 | | 1,2,3-Trichloropropane | 96-18-4 | 8010
8021
8260 | 10
5
15 | | Vinyl acetate | 108-05-4 | 8260 | 50 | | Vinyl chloride; Chloro- ethene | 75-01-4 | 810
8021
8260 | 2
0.4
10 | | Xylenes | 1330-20-
7 | 8020
8021 | 5
0.2 | | | 8260 | 5 | |--|------|---| The department may modify this list as necessary. #### Notes ¹This list contains 47 volatile organics for which possible analytical procedures provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, includes Method 8260; 25 metals for which SW-846 provides either Method 6010 or a method from the 7000 series of methods; and additional parameters for which possible procedures are provided in *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4. ²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals. ³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included. ⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation. ⁵Any floaters or sinkers found must be analyzed separately for baseline parameters. ⁶Surface water only. ⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported. *The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0 .05 mg/l. # EXPANDED PARAMETERS¹ | Common Name2 | CAS
RN3 | Suggested
Methods | PQL4
(µg/l) | |--|------------|----------------------|----------------| | Field Parameters: | | | | | Static water level
(in wells and sumps) | | | | | Specific Conductance | | 9050 | | | Temperature | | | | | Floaters or Sinkers5 | | | | | pH | | 9040
9041 | | | Eh | | | 1 | |---|----------------|--|----------------------------------| | Dissolved Oxygen6 | | | | | Field Observations7 | | 180.1 | | | Turbidity | | | | | Leachate Indicators: | | (I | | | Total Kjeldahl Nitrogen | | 351.1
351.2
351.3 | 60 | | Ammonia | 7664-41-
7 | 351.4
350.1
350.2 | 200
30 | | Nitrate | 1 | 350.3 | 100 | | Chemical Oxygen Demand | | 9200
410.1
410.2
410.3
410.4 | 50000
50000
50000
80000 | | Biochemical Oxygen Demand (BOD ₅) | | 405.1 | 2000 | | Total Organic Carbon | | | | | Total Dissolved Solids | | 9060 | | | Sulfate | | 160.1
9035 | 40000 | | Alkalinity | | 9036
9038 | | | Phenols | | 310.1 | 20000 | | Chloride | 108-95-2 | 310.2
8040
9250 | 6000 | | Bromide | | 9251 | | | Total hardness as CaCO ₃ | 24959-
67-9 | 9252
320.1
130.1
130.2 | 2000
20000
30000 | | Color | | 110.1
110.2
110.3 | 80 | | Boron | 7440-42-
8 | | | | Inorganic Parameters: | | | | | Aluminum | (total) | 7020 | 10 | | Antimony | (total) | 6010
7040
7041 | 300
2000
30 | | Arsenic | (total) | 6010
7060
7061 | 500
10
20 | | Barium | (total) | 6010 | 20 | | Beryllium | (total) | 7080
6010
7090 | 1000
3
50 | | Cadmium | (total) | 7091
6010
7130 | 2
40
50 | | Calcium | | 7131 | 1 | |------------------------------|--------------------|------------------------------|-------------------| | Chromium | (total)
(total) | 7140
6010
7190 | 40
70
500 | | Chromium(Hexavalent)* | 18540-
29-9 | 7191
7195
7196
7197 | 10
600
30 | | Cobalt | (total) | 7198
6010
7200 | 70
500 | | Copper | (total) | 7201
6010 | 10
60 | | Cyanide | | 7211 | 10 | | Iron | (total)
(total) | 9010
7380 | 200
100 | | Lead | (total) | 7381
6010
7420 | 4
400
1000 | | Magnesium | | 7421 | 10 | | Manganese | (total)
(total) | 7450
7460 | 4 40 | | Mercury | (total) | 7461
7470 | 0.8 | | Nickel | (total) | 6010
7520 | 150
400 | | Potassium | (total) | 7610 | 40 | | Selenium | (total) | 6010
7740
7741 | 750
20
20 | | Silver | (total) | 6010
7760
7761 | 70
100
10 | | Sodium | (total) | 7770 | 8 | | Thallium | (total) | 6010
7840
7841 | 400
1000
10 | | Гіп | (total) | 6010 | 40 | | √anadium | (total) | 6010
7910
7911 | 80
2000
40 | | Zinc | (total) | 6010
7950
7951 | 20
50
0.5 | | Organic Parameters: | 4 | | | | Acenaphthene | 83-32-9 | 8100
8270 | 200
10 | | Acemaphthylene | 208-96-8 | 8100
8270 | 200
10 | | Acetone | 67-64-1 | 8260 | 100 | | Acetonitrile; Methyl cyanide | 75-05-8 | 8015 | 100 | | Acetophenone | 98-86-2 | 8270 | 10 | | 2-Acetylaminofluorene; 2-AAF | 53-96-3 | 8270 | 20 | | Acrolein | 107-02-8 | 8030
8260 | 5
100 | |--|---------------------|----------------------|----------------| | Acrylonitrile | 107-13-1 | 8030
8260 | 5
200 | | Aldrin | 309-00-2 | 8080
8270 | 10
5 | | Ally chloride | 107-05-1 | 8010
8260 | 5
10 | | 4- aminobiphenyl | 92-67-1 | 8270 | 20 | | Anthracene | 120-12-7 | 8100
8270 | 200
10 | | Benzene | 71-43-2 | 8020
8021
8260 | 2
0.1
5 | | Benzo[a]anthracene; Benzanthracene | 56-55-3 | 8100
8270 | 200
10 | | Benzo[b]fluoranthene | 205-99-2 | 8100
8270 | 200
10 | | Benzo[k]fluoranthene | 207-08-9 | 8100
8270 | 200
10 | | Benzo[ghi]perylene | 191-24-2 | 8100
8270 | 200
10 | | Benzo[a]pyrene | 50-32-8 | 8100
8270 | 200
10 | | Benzyl alcohol | 100-51-6 | 8270 | 20 | | alpha-BHC | 319-84-6 | 8080
8270 | 0.05
10 | | beta-BHC | 319-85-7 | 8080
8270 | 0.05
10 | | delta-BHC | 31986-
8 | 8080
8270 | 0.1
20 | | gamma-BHC; Lindane | 58-89-9 | 8080
8270 | 0.05
20 | | Bis(2-chloroethoxy)methane | 111-91-1 | 8110
8270 | 5
10 | | Bis(2-chloroethyl) ether; Dichloroethyl ether | 111-44-4 | 8110
8270 | 3
10 | | Bis-(2-chloro-1-methyl-ethyl)
ether; 2,21-Di- chlorodiisopropyl ether | 108-60-1 | 8110
8270 | 10
10 | | DCIP, See note 9 | | | | | Bis(2-ethylhexyl)phthalate Bromochloromethane;
Chlorobromomethane | 117-81-7
74-97-5 | 8060
8021
8260 | 20
0.1
5 | | Bromodichloromethane; Dibromochloromethane | 75-27-4 | 8010
8021 | 1 0.2 | | Bromoform; Tribromomethane | 75-25-2 | 8260
8010
8021 | 5
2
15 | | 4-Bromophenyl phenyl ether | 101-55-3 | 8260
8110 | 5
25 | | Butyl benzyl phthalate; Benzyl butyl phthalate | 85-68-7 | 8270
8060 | 10
5 | | Carbon disulfide | | 8270 | 10 | | Carbon tetrachloride | 75-15-0
56-23-5 | 8260
8010
8021
8260 | 100
1
0.1
10 | |--|---------------------------------|--|----------------------------------| | Chlordane | See
Note 10 | 8080
8270 | 0.1
50 | | p-Chloroaniline | 106-47-8 | 8270 | 20 | | Chlorobenzene | 108-90-7 | 8010
8020
8021
8260 | 2
2
0.1
5 | | Chlorobenzilate | 510-15-6 | 8270 | 10 | | p-Chloro-m-cresol; 4-Chloro-3-methylphenol | 59-50-7 | 8040
8270 | 5
20 | | Chloroethane; Ethyl chloride | 75-00-3 | 8010
8021
8260 | 5
1
10 | | Chloroform; Trichloromethane | 67-66-3 | 8010
8021
8260 | 0.5
0.2
5 | | 2-Chloronaphthalene | 91-58-7 | 8120
8270 | 10
10 | | 2-Chlorophenol | 95-57-8 | 8040
8270 | 5
10 | | 4-Chlorophenyl phenyl ether | 7005-72-
3 | 8110
8270 | 40
10 | | Chloroprene | 126-99-8 | 8010
8260 | 50
20 | | Chrysene | 218-01-9 | 8100
8270 | 200
10 | | m-Cresol; 3-methylphenol | 108-39-4 | 8270 | 10 | | o-Cresol; 2-methylphenol | 95-48-7 | 8270 | 10 | | p-Cresol; 4-methylphenol | 106-44-5 | 8270 | 10 | | 2,4-D; 2,4-Dichlorophen- oxyacetic acid | 94-75-7 | 8150 | 10 | | 4,41-DDD | 72-54-8 | 8080 | 0.1 | | 4,41-DDE | | 8270 | 10 | | 4,41-DDT | 72-55-9 | 8080 | 0.05 | | Diallate | | 8270 | 10 | | Dibenz[a,h]anthracene | 50-29-3 | 8080
8270 | 0.1
10 | | Dibenzofuran | 2303-16-
4 | 8270 | 10 | | Dibromochloromethane; Chlorodibromomethane | 53-70-3
132-64-9
124-48-1 | 8100
8270
8270
8010
8021
8260 | 200
10
10
1
0.3
5 | | 1,2-Dibromo-3-chloro- propane; DBCP | 96-12-8 | 8011
8021
8260 | 0.1
30
25 | | 1,2-Dibromoethane; Ethylene dibromide; EDB | 106-93-4 | 8011
8021
8260 | 0.1
10
5 | | | | | + | |--|---------------------|--|--------------------------------| | Di-n-butyl phthalate | 84-74-2 | 8060 | 5 | | o-Dichlorobenzene; 1,2-Dichlorobenzene | 95-50-1 | 8270
8010
8020
8021
8120
8260 | 10
2
5
0.5
10
5 | | m-Dichlorobenzene; 1,3-Dichlorobenzene | 541-73-1 | 8270
8010
8020
8021
8120
8260 | 10
5
5
0.2
10
5 | | p-Dichlorobenzene; 1,4-dichlorobenzene | 106-46-7 | 8270
8010
8020
8021
8120
8260 | 10
2
5
0.1
15
5 | | 3,31-Dichlorobenzidine | | 8270 | 10 | | trans-1,4-Dichloro- 2-butene | 91-94-1 | 8270 | 10 | |
Dichlorodifluoromethane; CFC 12 | 110-57-6
75-71-8 | 8260
8021 | 100
0.5 | | 1,1-Dichloroethane; Ethyldidene chloride | 75-34-3 | 8260
8010 | 5
1 | | 1,2-Dichloroethane; Ethylene dichloride | 107-06 | 8021
8260
8010 | 0.5
5
.05 | | 1,1-Dichloroethylene;
1,1-Dichloroethene; Vinylidene chloride | 75-35-4 | 8021
8260
8010 | 0.3
5
1 | | cis-1,2-Dichloroethylene; cis-1,2-Dichloroethene | | 8021
8260 | 0.5
5 | | trans-1,2-Dichloroethylene | 156-59-2 | 8021
8260 | 0.2
5 | | trans-1,2-Dichloroethene | 156-60-5 | 8260
8010 | 5
1 | | 2,4-Dichlorophenol | 120-83-2 | 8021
8260
8040
8270 | 0.5
5
5
10 | | 2,6-Dichlorophenol | 87-65-0 | 8270 | 10 | | 1,2-Dichloropropane; Propylene dichloride | 78-87-5 | 8010
8021
8260 | 0.5
0.05
5 | | 1,3-Dichloropropane; Trimethylene dichloride. | 142-28-9 | 8021
8260 | 0.3
5 | | 2,2-Dichloropropane; Isopropylidene chloride. | 594-20-7 | 8021
8260 | 0.5
15 | | 1,1-Dichloropropene | 563-58-6 | 8021 | 0.2 | | cis-1,3-Dichloropropene | 10061-
01-5 | 8260
8010 | 5
20 | | trans-1,3-Dichloropropene | 10061-
02-6 | 8260
8010 | 10
5 | | Dieldrin | 60-57-1 | 8260
8080 | 10
0.05 | | Diethyl phthalate | 84-66-2 | 8270 | 10 | | | | 8060 | 5 | |--|----------------------|------------------------------|---------------------| | 0,0-Diethyl 0-2-pyrazinyl phosphorothioate;
Thionazin | 297-97-2 | 8270
8141
8270 | 10
5
20 | | Dimethoate | 60-51-5 | 8141 | 3 | | p-(Dimethylamino)azo- benzene | | 8270 | 20 | | 7,12-Dimethylbenz[a]- anthracene | 60-11-7 | 8270 | 10 | | 3,31-Dimethylbenzidine | 57-97-6 | 8270 | 10 | | 2,4-Dimethylphenol; m-Xylenol | 199-93-7
105-67-9 | 8270
8040 | 10
5 | | Dimethyl phthalate | | 8270 | 10 | | m-Dinitrobenzene | 131-11-3 | 8060 | 5 | | 4,6-Dinitro-o-cresol 4,6- Dinitro-2-methylphenol | 99-65-0 | 8270
8270 | 10
20 | | 2,4-Dinitrophenol | 534-52-1 | 8040
8270 | 150
50 | | 2,4-Dinitrotoluene | 51-28-5 | 8040
8270 | 150
50 | | 2,6-Dinitrotoluene | 121-14-2 | 8090
8270 | 0.2
10 | | Dinoseb; DNBP; 2-sec- Butyl-4,6-dinitrophenol. | 606-20-2 | 8090
8270 | 0.1
10 | | Di-n-octyl phthalate | 88-85-7
117-84-0 | 8150
8270
8060
8270 | 1
20
30
10 | | 11 Diphenylamine | 122-39-4 | 8270 | 10 | | Disulfoton | 298-04-4 | 8140
8141 | 2
0.5 | | Endosulfan I | 959-98-8 | 8270
8080 | 10
0.1 | | Endosulfan II | 33213-
65-9 | 8270
8080 | 20
005 | | Endosulfan sulfate | | 8270 | 20 | | Endrin | 1031-07-
8 | 8080
8270 | 0.5
10 | | Endrin aldehyde | 72-20-8 | 8080 | 0.1 | | Ethylbenzene | 7421-93-
4 | 8270
8080
8270 | 20
0.2
10 | | Ethyl methacrylate | 100-41-4 | 8020
8021 | 2
0.05 | | Ethyl methanesulfonate | | 8260 | 5 | | Famphur | 97-63-2 | 8015 | 5 | | Fluoranthene | | 8260
8270 | 10
10 | | Fluorene | 62-50-0
52-85-7 | 8270
8270 | 20
20 | | Heptachlor | 206-44-0 | 8100
8270 | 200
10 | | Heptachlor epoxide | 86-73-7 | 8100 | 200 | | | | 8270 | 10 | |--|---------------------------------------|--------------------------------------|-----------------------------| | Hexachlorobenzene | 76-44-8 | 8080
8270 | 0.05
10 | | Hexachlorobutadiene | 1024-57-
3
118-74-1 | 8080
8270
8120 | 1
10
0.5 | | Hexachlorocyclopentadiene | 87-68-3 | 8270
8021
8120 | 10
0.5
5 | | Hexachloroethane | 77-47-7 | 8260
8270
8120 | 10
10
5 | | Hexachloropropene | | 8270 | 10 | | 2-Hexanone; Methyl butyl ketone | 67-72-1 | 8120
8260 | 0.5
10 | | Indeno(1,2,3-cd)pyrene | 1888-71-
7
591-78-6
193-39-5 | 8270
8270
8260
8100
8270 | 10
10
50
200
10 | | Isobutyl alcohol | 78-83-1 | 8015
8240 | 50
100 | | Isodrin | 465-73-6 | 8270
8260 | 20
10 | | Isophorone | 78-59-1 | 8090
8270 | 60
10 | | Isosafrole | 120-58-1 | 8270 | 10 | | Kepone | 143-50-0 | 8270 | 20 | | Methacrylonitrile | 126-98-7 | 8015
8260 | 5
100 | | Methapyrilene | 91-80-5 | 8270 | 100 | | Methoxychlor | 72-43-5 | 8080
8270 | 2
10 | | Methyl bromide; Bromomethane | 74-83-9 | 8010
8021 | 20
10 | | Methyl chloride; Chloromethane | 74-87-3 | 8010
8021 | 1 0.3 | | 3-Methylcholanthrene | 56-49-5 | 8270 | 10 | | Methyl ethyl ketone; MEK; 2-Butanone | 78-93-3 | 8015
8260 | 10
100 | | Methyl iodide;lodomethane | 74-88-4 | 8010
8260 | 40
10 | | Methyl methacrylate | 80-62-6 | 8015
8260 | 2 30 | | Methyl methanesulfonate | 66-27-3 | 8270 | 10 | | 2-Methylnaphthalene | 91-57-6 | 8270 | 10 | | Methyl parathion; Parathion methyl | 298-00-0 | 8140
8141
8270 | 0.5
1
10 | | 4-Methyl-2-pentanone; Methyl isobutyl ketone | 108-10-1 | 8015
8260 | 5
100 | | Methylene bromide; Dibromomethane | 74-95-3 | 8010
8021
8260 | 15
20
10 | | Methylene chloride; Dichloromethane | 75-09-2 | 8010
8021
8260 | 5
0.2
10 | |---|----------------|------------------------------|-----------------------| | Naphthalene | 91-20-3 | 8021
8100
8260
8270 | 0.5
200
5
10 | | 1,4-Naphthoquinone | 130-15-4 | 8270 | 10 | | 1-Naphthylamine | 134-32-7 | 8270 | 10 | | 2-Naphthylamine | 91-59-8 | 8270 | 10 | | o-Nitroaniline; 2-Nitroaniline | 88-74-4 | 8270 | 50 | | m-Nitroaniline; | | | | | 3-Nitroaniline | 99-09-2 | 8270 | 50 | | p-Nitroaniline; 4-Nitroaniline | 100-01-6 | 8270 | 20 | | Nitrobenzene | 98-95-3 | 8090
8270 | 40
10 | | o-Nitrophenol;
2-Nitrophenol | 88-75-5 | 8040
8270 | 5
10 | | p-Nitrophenol;
4-Nitrophenol | 100-02-7 | 8040
8270 | 10
50 | | N-Nitrosodi-n-butylamine. | 924-16-3 | 8270 | 10 | | N-Nitrosodiethylamine | 55-18-5 | 8270 | 20 | | N-Nitrosodimethylamine | 62-75-9 | 8070 | 2 | | N-Nitrosodiphenylamine | 86-30-6 | 8070 | 5 | | N-Nitrosodipropylamine; N-Nitroso-N-dipropyl- amine; Di-n-propylni- trosamine | 621-64-7 | 8070 | 10 | | N-Nitrosomethylethalamine | 10595-
95-6 | 8270 | 10 | | N-Nitrosopiperidine | 100-75-4 | 8270 | 20 | | N-Nitrosopyrrolidine | 930-55-2 | 8270 | 40 | | 5-Nitro-o-toluidine | 99-55-8 | 8270 | 10 | | Parathion | 56-38-2 | 8141
8270 | 0.5
10 | | Pentachlorobenzene | 608-93-5 | 8270 | 10 | | Pentachloronitrobenzene | 82-68-8 | 8270 | 20 | | Pentachlorophenol | 87-86-5 | 8040
8270 | 5
50 | | Phenacetin | 62-44-2 | 8270 | 20 | | Phenanthrene | 85-01-8 | 8100
8270 | 200
10 | | Phenol | 108-95-2 | 8040 | 1 | | p-Phenylenediamine | 106-50-3 | 8270 | 10 | | Phorate | 298-02-2 | 8140
8141
8270 | 2
0.5
10 | | Polychlorinated biphenyls; PCB's; Aroclors | See
Note 11 | 8080
8270 | 50
200 | | Polychlorinated dibenzo-p-dioxins; PCDD's | See
Note 12 | 8280 | 0.01 | | Polychlorinated dibenzo-
furans; PCDF's | See
Note 13 | 8280 | 0.01 | |--|--------------------------------------|------------------------------|------------------| | Pronamide | 23950-
58-8 | 8270 | 10 | | Propionitrile;
Ethyl cyanide | 107-12-0 | 8015
8260 | 60
150 | | Pyrene | 129-00-0 | 8100
8270 | 200
10 | | Safrole | 94-59-7 | 8270 | 10 | | Silvex; 2,4,5-TP | 93-72-1 | 8150 | 2 | | Styrene | 100-42-5 | 8020
8021
8260 | 1
0.1
10 | | 2,4,5-T; 2,4,5-trichloro- phenoxyacetic acid | 93-76-5 | 8150 | 2 | | 1,2,4,5-Tetrachlorobenzene 2,3,7,8-Tetrachlorodi-
benzo-p-dioxin;
2,3,7,8-TCDD | 95-94-3
1746-01-
6
630-20-6 | 8270
8280 | 10
0.005 | | 1,1,1,2-Tetrachloroethane. | 79-34-5 | 8010
8021
8260 | 5
0.05
5 | | 1,1,2,2-Tetrachloroethane. | 127-18-4 | 8010
8021
8260 | 0.5
0.1
5 | | Tetrachloroethylene; Tetrachloroethene; Perchloroethylene | 58-90-2 | 8010
8021
8260 | 0.5
0.5
5 | | 2,3,4,6-Tetrachlorophenol. | 108-88-3 | 8270 | 10 | | Toluene | 95-53-4 | 8020
8021
8260 | 2
01
5 | | o-Toluidine | See
Note 14 | 8270 | 10 | | Toxaphene | 120-82-1 | 8080 | 2 | | 1,2,4-Trichlorobenzene | 71-55-6 | 8021
8120
8260
8270 | 0.3
0.5
10 | | 1,1,1-Trichloroethane; Methylchloroform | 79-00-5 | 8010
8021
8260 | 0.3
0.3
5 | | 1,1,2-Trichloroethane | 79-01-6 | 8010
8260 | 0.2
5 | | Trichloroethylene; Trichloroethene | 75-69-4 | 8010
8021
8260 | 1
0.2
5 | | Trichlorofluoromethane;
CFC-11 | 95-95-4
88-06-2 | 8010
8021
8260 | 10
0.3
5 | | 2,4,5-Trichlorophenol | | 8270 | 10 | | 2,4,6-Trichlorophenol | 96-18-4 | 8040
8270 | 5
10 | | 1,2,3-Trichloropropane | - | 8010
8021
8260 | 10
5
15 | | 0,0,0-Triethyl phosphoro- | 126-68-1 | 8270 | 10 | | thioate | | | | |------------------------------|----------------|----------------------|----------------| | sym-Trinitrobenzene | 99-35-4 | 8270 | 10 | | Vinyl acetate | 108-05-4 | 8260 | 50 | | Vinyl chloride; Chloroethene | 75-01-4 | 8010
8021
8260 | 2
0.4
10 | | Xylene (total) | See
Note 15 | 8020
8021
8260 | 5
0.2
5 | The department may modify this list as necessary. EXPANDED PARAMETERS¹ #### Notes ¹The regulatory requirements pertain only to the list of substances; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnotes 4 and 5. ²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals. ³Chemical Abstracts Service registry number. Where "Total" is entered, all species in the groundwater that contain this element are included. ⁴Suggested Methods refer to analytical procedure numbers used in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised, December 1987 and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600-4/79-020, March, 1979. CAUTION:
The methods listed are representative procedures and may not always be the most suitable method(s) for monitoring an analyte under the regulations. ⁵Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation. ⁶Any floaters or sinkers found must be analyzed separately for baseline parameters. ⁷Surface water only. ⁸Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported. ⁹This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2"-oxybis[2]-chloro- (CAS RN 39638-32-9). ¹⁰Chlordane: This entry includes alpha-chlordane (CAS RN 5103-71-9), beta-chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 5566-34-7), and constituents of chlordane (CAS RN 57-74-9 and CAS RN 12789-03-6). PQL shown is for technical chlordane. PQLs of specific isomers are about 20 μg/l by method 8270. ¹¹Polychlorinated biphenyls (CAS RN 1336-36-3): This category contains congener chemicals, including constituents of Aroclor 1016 (CAS RN 12674-11-2), Aroclor 1221 (CAS RN 11104-28-2), Aroclor 1232 (CAS RN 11141-16-5), Aroclor 1242 (CAS RN 53469-21-9), Aroclor 1248 (CAS RN 12672-29-6), Aroclor 1254 (CAS RN 11097-69-1), and Aroclor 1260 (CAS RN 11096-82-5). The PQL shown is an average value for PCB congeners. ¹²Polychlorinated dibenzo-p-dioxins: This category contains congener chemicals, including tetrachlorodibenzo-p-dioxins (see also 2,3,7,8-TCDD), pentachlorodibenzo-p-dioxins, and hexachlorodibenzo-p-dioxins. The PQL shown is an average value for PCDD congeners. Upon request of the applicant, the department may waive the requirement to analyze for dioxins, where appropriate. ¹³Polychlorinated dibenzofurans: This category contains congener chemicals, including tetrachlrodibenzofurans, pentachlorodibenzofurans, and hexachlorodibenzofurans. The PQL shown is an average value for PCDF congeners. Upon request of the applicant, the department may waive the requirement to analyze for furans, where appropriate. ¹⁴Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene. ¹⁵Xylene (total): This entry includes o-xylene (CAS RN 96-47-6), m-xylene (CAS RN 108-38-3), p-xylene (CAS RN 106-42-3), and unspecified xylenes (dimethylbenzenes) (CAS RN 1330-20-7). PQLs for method 8021 are 0.2 for o-xylene and 0.1 for m- or p-xylene. The PQL for m-xylene is 2.0 μg/L by method 8020 or 8260. *The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0.05 mg/l. # §360-2.12 Landfill siting. - (a) Applicability. New landfills and lateral or vertical expansions of existing active landfills must be located on a site that exhibits the following characteristics unless the requirements of subdivision (b) of this section are met. A site selection study will be required only if the applicant proposes a site that does not exhibit all of the characteristics identified in either paragraph (1) or (2) of this subdivision. - (1) In the case of new landfills and lateral or vertical expansions of existing landfills: - (i) the site is not located in an area identified in section 360-1.7(a)(2) of this Part; - (ii) the site complies with the siting restrictions identified in subdivision (c) of this section; - (iii) bedrock subject to rapid or unpredictable groundwater flow must be avoided, unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system; - (iv) the site must not be in proximity of any mines, caves or other anomalous features that may alter groundwater flow; - (v) unconsolidated deposits underlying the proposed landfill must either exist or be constructed to be 20 feet or greater in thickness as measured from the base of the constructed liner system; and - (vi) the upper 20 feet of the unconsolidated deposits on the site must consist predominantly (greater than 50 percent) of soils throughout the vertical section, with a maximum in situ coefficient of permeability of 5 x 10-6 centimeters per second, with no appreciable continuous deposits having a maximum coefficient of permeability of 5 x 10-4 centimeters per second. - (2) In the case of an existing landfill active on or after November 4, 1992 operating under and in compliance with a current Part 360 permit or order on consent, the department may allow lateral or vertical expansions if the site has less than 20 feet of unconsolidated deposits provided that: - (i) the proposed landfill expansion is identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed landfill expansion must be consistent with the goals and objectives of such plan; - (ii) the unconsolidated deposits underlying the proposed landfill exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system; - (iii) the applicant demonstrates that the expansion site will have no significant adverse impact on human health, safety, or welfare, the environment, or natural resources; and - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision. - (3) Except in Nassau and Suffolk Counties, in the case of ash monofills for the disposal offly ash treated in a manner consistent with section 360- 3.6(g)(3) of this Part, combined ash, or bottom ash, the department may allow ash monofill development at sites that have less than 20 feet of unconsolidated deposits provided that: - (i) the proposed monofill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed monofill must be consistent with the goals and objectives of such plan; - (ii) the unconsolidated deposits underlying the proposed landfill on the site exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system; - (iii) the applicant demonstrates that the monofill site will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources; and - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision. - (b) Exceptions. New landfills and lateral or vertical expansions of existing landfills may be located on sites that do not exhibit the characteristics identified in subdivision (a) of this section provided that the requirements of paragraphs (1) and (2) of this subdivision are met. The department may impose additional requirements to assure that the permitted activity will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources for any site selected pursuant to this subdivision. - (1) The proposed landfill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located, and the proposed landfill must be consistent with the goals and objectives of such plan. - (2) The applicant must perform a site selection study and submit a site selection report as part of a complete application. This report must describe the factors that prevent the applicant from using a site exhibiting the characteristics identified in subdivision (a) of this section. Such factors may include, but are not limited to, the proximity to receiving waters or proximity to sewer lines or POTWs to ensure proper management of leachate during the operational and post-closure period of the landfill. The site selection report must also demonstrate that the chosen site will have no significant adverse impact on public health, safety, or welfare, the environment or natural resources, and will be consistent with the provisions of the ECL. - (i) The site selection process must be comprehensive and must identify and evaluate a reasonable range of alternative sites which are feasible considering the capabilities and objectives of the applicant. All of the criteria used to eliminate and evaluate the suitability of the potential sites must be clearly defined and consistently applied. A phased approach must be used, in which a more detailed evaluation of sites occurs as the number of potential sites is reduced. - (a) The applicant must exclude inappropriate siting areas by avoiding the prohibited siting areas identified in section 360-1.7(a)(2) of this Part and applying the landfill siting restrictions identified in subdivision (c) of this section. - (b) The applicant must evaluate potential siting areas to identify alternative sites that are suitable for landfill development. When applying the siting criteria, the evaluation must include the use of the type of data listed in section 360-2.11(a)(2) of this Subpart. Field reconnaissance to confirm the published information and a morphologic evaluation of landforms must be performed to identify the areas which are likely to have thick low permeable soils available within the study area. The applicant
must use the following criteria in the landfill site selection study: - (1) Unconsolidated deposits on the site must be those most likely to minimize the migration of contaminants from the landfill. In evaluating the sites, preferred sites should have the greatest possible thickness of these materials to provide a barrier to contaminant migration into bedrock; - (2) bedrock subject to rapid or unpredictable groundwater flow must be avoided unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system resulting in a contravention of groundwater standards; - (3) probable groundwater flow patterns and water quality must be considered in finding areas where containment failure would do the least environmental damage and would be easiest to correct; - (4) proximity and hydrogeologic relationship to water supply sources; - (5) natural topography and its impacts upon the proposed facility; and - (6) relationship to mines, caves, or other anomalous hydrogeologic features that might alter groundwater flow. - (c) Preliminary field investigations must be conducted at the highest ranking available site or sites, to identify any major obstacles to site development, and to provide sufficient data to differentiate among the preferred sites and support a siting decision. - (ii) The report must describe the process used to select the proposed site, including evaluation criteria, deferral (elimination) criteria, assumptions, data sources, decisionmaking means (such as numerical ranking systems) and other factors used to make the siting decisions. The report must demonstrate that, considering the capabilities and objectives of the applicant, a reasonable range of alternative sites available throughout the planning unit in which the project is proposed were evaluated and that the selected site is the most appropriate alternative. The decisionmaking process must be described to provide a clear understanding of how and why the siting decisions were made, and at a level of detail sufficient to provide for a comparative assessment of the alternatives discussed. The report must also include maps of sites and describe the results of the field investigations, the comparative advantages and disadvantages of the highest ranked sites, and the basis for selecting the proposed sites. - (c) Landfill siting restrictions. In addition to the provisions of section 360-1.7(a)(2) of this Part, the following landfill siting restrictions apply. - (1) Primary water supply, and principal aquifers: - (i) Except in Nassau and Suffolk Counties, and except as provided in subparagraph (ii) of this paragraph, no new landfill and no lateral or vertical expansion of an existing landfill may be constructed over primary water supply aquifers, principal aquifers, within a public water supply stabilized cone of depression area, or within a minimum distance of 100 feet to surface waters that are actively used as sources of municipal supply. Greater separation distances may be required in accordance with subparagraph (iii) of this paragraph. - (ii) The commissioner may allow lateral or vertical expansions of landfills, in operation pursuant to a valid Part 360 permit to operate or Order on Consent as of December 31, 1988, that are on principal aguifers, if there is a demonstrated public need for the capacity provided by the expansion that cannot be reasonably provided elsewhere, and that outweighs the potential risk of contamination to the aquifer. Additionally, the landfill expansion must promote the implementation of the State's solid waste management policy set forth in ECL 27-0106 and must be an integral part of any local solid waste management plan that may be in effect for the planning unit (as defined in ECL 27-0107) within which the facility is located; and the expansion must comply with all other requirements of this Part. However, the maximum time period allocated by the commissioner for any such expansion must not allow operation beyond December 31, 1995. In granting any expansion pursuant to this subparagraph, the department must impose specific conditions that are reasonably necessary to assure that the expansion will, to the extent practicable, have no significant adverse impact on public health or safety, welfare, the environment ornatural resources, and such approval contributes to the proper management of solid waste at the earliest possible time. - (iii) The required horizontal separation between deposited solid waste, and primary water supply aquifers, principal aquifers, public water supply stabilized cone of depression areas, or surface waters that are actively used as sources of municipal supply must be sufficient (based on the rate and direction of groundwater and surface water flow, landfill design and requirements for corrective action in the event of failure of the landfill's containment system) to preclude contravention of groundwater standards in the aquifer and surface water standards in waters that are currently used as a source of municipal drinking water supply. (2) Floodplains. Owners or operators of new landfill units, existing landfill units, and lateral expansions located in 100-year floodplains must demonstrate that the unit will not restrict the flow of the 100-year flood, reduce the temporary water storage capacity of the floodplain, or result in washout of solid waste so as to pose a hazard to human health and the environment. # (3) Aircraft safety. - (i) A landfill or landfill subcell into which putrescible solid waste is to be disposed must be located no closer than 5,000 feet from any airport runway end used by piston-powered fixed-wing aircraft and no closer than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft. - (ii) A landfill or landfill subcell into which putrescible solid waste is to be disposed, which is located within five miles of any airport runway end, must not, in the opinion of the Federal Aviation Administration, pose a potential bird or obstruction hazard to aircraft. - (iii) The permittee of an existing landfill or landfill subcell that is authorized to dispose of putrescible solid waste and that is located less than 10,000 feet from any airport runway end used by turbine-powered fixed- wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft must provide in its permit renewal application documentation that the Federal Aviation Administration believes the landfill or landfill subcell does not pose a bird hazard to aircraft. - (iv) Landfills containing only nonputrescible solid waste may be located less than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft, if in the opinion of the Federal Aviation Administration they will not present a safety hazard to air traffic. - (v) The final elevation of a new landfill or expansion of an existing landfill must not extend more than 200 feet above the highest elevation of the land surface that existed prior to landfill development, unless the Federal Aviation Administration believes that the proposed fill height in excess of 200 feet will not present a safety hazard to air traffic. - (4) Unstable areas. A landfill must not be located in unstable areas where inadequate support for the structural components of the landfill exists or where changes in the substrate below or adjacent to the landfill are capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. An application for expansion of an existing landfill must demonstrate that adequate support for the structural components of the landfill exists or can be engineered to support any additional loads that may be generated by continued operation of the facility. For purposes of this paragraph: - (i) Unstable area means a location that is susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. Unstable areas can include poor foundation conditions, areas susceptible to mass movements, and karst terrains. - (ii) Structural components means liners, leachate collection systems, final covers, runon/run-off systems, and any other component used in the construction and operation of the landfill that is necessary for protection of human health and the environment. - (iii) Poor foundation conditions means those areas where features exist which indicate that a natural or human-induced event may result in inadequate foundation support for the structural components of a landfill. - (iv) Areas susceptible to mass movement means those areas of influence (i.e., areas characterized as having an active or substantial possibility of mass movement) where the movement of earth material at, beneath, or adjacent to the landfill because of natural or human-induced events, results in the downslope transport of soil and rock material by means of gravitational influence. Areas of mass movement include, but are not limited to, landslides, avalanches, debris slides and flows, soil fluctuation, block sliding and rock fall. - (v) Karst terrains means areas where karst topography, with its characteristic surface and subterranean features, is developed as the result of dissolution of limestone, dolomite, or other soluble rock. Characteristic physiographic features present in karst terrains include, but are not limited to sinkholes, sinking streams, caves, large springs and blind valleys. - (5) Unmonitorable or unremediable areas. New landfills must not be located in areas where environmental monitoring and site remediation cannot be conducted. Identification of these areas must be based upon ability to sufficiently characterize
groundwater and surface water flow to locate upgradient and downgradient directions; ability to place environmental monitoring points which will detect releases from the landfill; ability to characterize and define a release from the landfill and determine what corrective actions may be necessary; and the ability to carry out those corrective actions. Lateral expansions adjacent to existing landfills which are already contaminating groundwater may be allowed by the department if the proposed expansion area can be constructed in a way that demonstrates compliance with the regulations. This may be demonstrated using remedial actions at the existing site resulting in a demonstrated improvement in groundwater quality; and any additional monitoring requirements that the department needs to ensure the integrity of the expansion area, such as leakage detection lysimeters installed beneath the new liner, statistical triggers of groundwater monitoring, tracers, additional monitoring wells surrounding the entire site, and any other monitoring methods required by the department. - (6) Fault areas. New landfills and lateral expansions shall not be located within 200 feet of a fault that has had displacement in Holocene time unless the owner or operator demonstrates to the department that an alternative setback distance of less than 200 feet will not result in damage to the structural integrity of the landfill unit and will be protective of human health and the environment. - (7) Seismic impact zones. New landfills and lateral expansions shall not be located in seismic impact zones, unless the owner or operator demonstrates to the department that all permanent containment structures, including liners, leachate collection systems, and surface water control systems, are designed to resist the maximum horizontal acceleration in lithified earth material for the site pursuant to the provisions of section 360-2.7(b)(7) of this Subpart. - (8) Federally regulated wetlands. For the purpose of this Subpart, federally regulated wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marsh, bogs and similar areas. New landfills and lateral expansions shall not be located in federally regulated wetlands, unless the appropriate permits are obtained from the U.S. Army Corps of Engineers, and unless the owner or operator can make the following demonstrations to the department, to the extent required under federal or State law. - (i) The presumption that a practicable alternative to the proposed landfill is available, which does not involve federally regulated wetlands, is clearly rebutted. - (ii) The construction and operation of the landfill will not: - (a) cause or contribute to violations of any applicable water quality standard; - (b) violate any applicable toxic effluent standard or prohibition; - (c) jeopardize the continued existence of endangered or threatened species or result in the destruction or adverse modification of a critical habitat; and - (d) violate any requirement for the protection of a marine sanctuary. - (iii) The landfill will not cause or contribute to significant degradation of federally regulated wetlands. The owner or operator must demonstrate the integrity of the landfill and its ability to protect ecological resources by addressing the following factors: - (a) erosion, stability and migration potential of native wetland soils, muds, and deposits used to support the landfill; - (b) erosion, stability and migration potential of dredged and fill materials used to support the landfill; - (c) the volume and chemical nature of the waste managed in the landfill; - (d) impacts from release of the solid waste on fish, wildlife, and other aquatic resources and their habitat; - (e) the potential effects on catastrophic release of waste to the federally regulated wetland and the resulting impacts on the environment; and - (f) any additional factors, as necessary, to demonstrate that ecological resources in the federally regulated wetland are sufficiently protected. - (iv) Steps have been taken to attempt to achieve no net loss of federally regulated wetlands to the extent required under federal or State law (as defined by acreage and function) by first avoiding impacts to federally regulated wetlands to the maximum extent practicable, then minimizing unavoidable impacts to the maximum extent practicable, and finally by offsetting remaining unavoidable wetland impacts through all appropriate and practicable compensatory mitigation actions (e.g. restoration of existing degraded wetlands or creation of new wetlands). (v) Sufficient information is available to make a reasonable determination with respect to these demonstrations. Privacy Policy | Website Usage and Policies | Website Accessibility | Employment | Contact Us | Website Survey Copyright © 2013 New York State Department of Environmental Conservation