1ST - SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2020

SUBMITTED TO:

New York State Department of Environmental Conservation Division of Environmental Remediation 50 Circle Road Stony Brook, New York 11790

PREPARED FOR:

Town of Southampton 1370 Majors Path Southampton, New York 11968

PREPARED BY:

P.W. Grosser Consulting, Inc. 630 Johnson Ave., Suite 7 Bohemia, NY 11716 Phone: 631-589-6353

PWGC Project Number: SHP2001

1ST - SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2020 1370 MAJORS PATH SOUTHAMPTON, NEW YORK

TABL	E OF C	ONTENTS	PAGE
1.0	INTF	RODUCTION	1
	1.1	Purpose and Scope	1
	1.2	Site Location and Description	1
2.0	GRC	DUNDWATER MONITORING PLAN	2
	2.1	Sampling Frequency	2
	2.2	Leachate Monitoring	2
	2.3	Groundwater Monitoring	3
	2.4	Well Condition Report	3
	2.5	Sample Collection Procedures	3
	2.6	Decontamination and Quality Assurance / Quality Co	ntrol
	Proce	edures	4
	2.7	Groundwater Quality	4
		2.7.1 Inorganic Water Quality Results - April 2020	4
		2.7.2 Organic Water Quality Results - April 2020	5
		2.7.3 Well Cluster 4 & 11 Analysis - April 2020	5
	2.8	Groundwater Flow & Migration of Leachate Plume	6
	2.9	Leachate Quality	6
3.0	DAT	A VALIDATION AND USABILITY REPORT	7
	3.1	Data Validation	7
		3.1.1 Metals Analysis	7
		3.1.2 Wet Chemistry Analysis	7
		3.1.3 VOC Analysis	7
	3.2	Data Usability Report	7
4.0	SUM	1MARY	9
5.0	REC	OMMENDATIONS	10
TABLE			
TABLE Table		Inorganic Groundwater Quality Results - April 2020	
Table	2	Organic Groundwater Quality Results - April 2020	
Table Table		Leachate Quality Results - April 2020 Groundwater Elevations - April 2020	
FIGUR	ES	•	
Figure	1	Site Plan - April 2020	
Figure Figure		Monitoring Well 11A - April 2020 Monitoring Well 11B - April 2020	
Figure		Monitoring Well IIB - April 2020 Monitoring Well Cluster 4 - Ammonia Trends - April 2020	

SHP2001 - 1ST SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2020

Page i

Monitoring Well Cluster 4 - Chloride Trends - April 2020 Monitoring Well Cluster 4 - Chromium Trends - April 2020 Figure 5 Figure 6 Figure 7

Figure 8

Monitoring Well Cluster 4 - Conductivity Trends - April 2020 Monitoring Well Cluster 4 - Iron Trends - April 2020 Monitoring Well Cluster 4 - Manganese Trends - April 2020 Monitoring Well Cluster 4 - Nitrate Trends - April 2020 Figure 9 Figure 10

Figure 11 Monitoring Well Cluster 4 - Total Dissolved Solids Trends - April 2020

APPENDICES

Appendix A	Laboratory Ana	lytical Reports /	Data Validation & Usability Report

Well Inspection Checklist Appendix B

Appendix C Monitoring Well Sampling Logs Appendix D 6 NYCRR Part 360-2: Landfills

1.0 INTRODUCTION

Purpose and Scope

P.W. Grosser Consulting Inc. (PWGC) has prepared the following post-closure groundwater monitoring report for the North Sea Landfill, Southampton, New York. This report is intended to satisfy the New York State Department of Environmental Conservation (NYSDEC) requirements for post-closure monitoring at the North Sea Landfill. The landfill is currently in post-closure and was removed from the United States Environmental Protection Agency (USEPA) Superfund National Priorities List (NPL) in 2005. The report provides a summary of the groundwater monitoring and results of groundwater and leachate samples collected during the First Half of 2020.

Site Location and Description

North Sea Landfill (the Landfill) was initially constructed in 1963 for the disposal of solid waste, refuse and septic system waste. The Landfill consisted of three cells (Cell No. 1, Cell No. 2 and Cell No. 3), sludge lagoons, a leachate collection system and a gas monitoring system. Cell No. 1 is an inactive, unlined landfill that has been capped and closed. Cell No. 2 is an inactive, lined landfill with a leachate collection system that was capped and closed in 1990. Cell No. 3 is a 6.6 acre, inactive, lined landfill with a leachate collection system that was capped and closed in 1997. The sludge lagoons were decommissioned in 1986.

2.0 GROUNDWATER MONITORING PLAN

Groundwater monitoring and sampling is performed in accordance with the USEPA approved Operation and Maintenance (O&M) Manual dated November 1994 and subsequent amendments.

The groundwater monitoring plan for the site calls for the monitoring of both leachate and groundwater to confirm that the historic operation of the facility has not adversely impacted groundwater quality. The groundwater well network currently utilized for monitoring purposes at the Landfill consists of 20 groundwater monitoring wells that were installed as a part of the Remedial Investigation / Feasibility Study, the Cell No. 3 landfill expansion hydrogeologic investigation, and earlier monitoring activities.

2.1 Sampling Frequency

In accordance with the O&M Manual, groundwater monitoring well sampling was performed on a quarterly basis. In 2005, the USEPA and NYSDEC approved a reduction of the number of wells sampled and sampling frequency to semi-annual as detailed in the table below:

1st Half Semi-Annual Sa	mpling (April)	2 nd Half Semi-Annual Sa	mpling (October)
Analysis	Sample Locations	Analysis	Sample Locations
Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6)	1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 11A, 11B, 12A, & 12B	Routine Parameters (6 NYCRR Part 360-2.11 (d)(6)	1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 6AR, 6B, 8, 9, 11A, 11B, 12A, 12B
		Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6) Metals Only	6AR, 6B, 11A, & 11B
Routine Parameters + Arsenic (6 NYCRR Part 360-2.11 (d)(6)	LEA-Primary & LEA-Secondary	Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6) VOCs Only	11A & 11B
Minus VOC Analysis		Routine Parameters + Arsenic (6 NYCRR Part 360-2.11 (d)(6) Minus VOC Analysis	LEA-Primary & LEA-Secondary

Note: Filtered metals analysis run on samples with turbidity in excess of 50 nephelometric turbidity units (NTUs).

Appendix D includes list of analytes for 6 New York Codes, Rules and Regulations (NYCRR) Part 360-2.11 (d) (6).

2.2 Leachate Monitoring

The objectives of the leachate monitoring program are to adequately characterize and monitor the composition of:

- 1. Leachate in the primary leachate collection systems;
- 2. Liquids detected in the secondary liquids collection systems, prior to offsite treatment and disposal.

The Town of Southampton monitors the leachate storage system and submits monthly status reports, which includes the monthly summary tables of leachate

volumes consisting of the amount of leachate trucked, storage tank levels and the volume of leachate removed from the storage tank. Leachate quantity removals and allowable leakage rate (ALR) calculations will be discussed in the Annual Report.

2.3 Groundwater Monitoring

The groundwater monitoring well network for the Landfill consists of nine groundwater monitoring locations (MW-1A, B, C, MW-3A, B, C, MW-4A, B, C, MW-6A, B, MW-7, MW-8, MW-9, MW-11A, B, and MW-12A, B) which are currently in use. Several of these locations are constructed with multiple wells which are screened at varying depths throughout the aquifer (A=shallow, B=intermediate, C=deep).

Thirteen groundwater monitoring wells, as well as the primary and secondary leachate collection systems were sampled on April 1, 2 and 3, 2020 as part of the First Half 2020 sampling event. Samples collected as part of the First Half 2020 sampling event were delivered to Pace Analytical Laboratories of Melville, New York and analyzed for the baseline parameters. Turbid groundwater samples were also analyzed for filtered metals. The data collected in the field and laboratory are summarized on Tables 1 through 4 and the laboratory reports are attached in **Appendix A**. Depth to water and groundwater elevation data are summarized on **Table 4** and a water table flow map is shown on **Figure 1**.

Analytical results from each monitoring well were compared to applicable standards and guidance values, as well as analytical results from the previous years. Compounds that exceed NYSDEC groundwater standards or guidance values are indicated by shading on **Tables 1** through **3** and are discussed in the water quality section of this report.

2.4 Well Condition Report

During the First Half 2020 sampling event, PWGC assessed the monitoring wells. Well assessment checklists (Appendix B) were filled out appropriately in the field during the sampling event. The assessment checklist included well headspace readings, well conditions, and recommendations. Headspace readings were collected utilizing a photoionization detector (PID). No PID responses were observed. Well Cluster 7 has become buried with surrounding soil and it is recommended to clear accumulated soil or install risers and protective casings around these wells to access for future monitoring. No other deficiencies with the well conditions were noted.

2.5 Sample Collection Procedures

Prior to collection of each sample, a minimum of three casing volumes were evacuated (purged) from the well using a Grundfos, submersible pump and temperature, specific conductivity, pH, dissolved oxygen, oxygen reduction potential (ORP) and turbidity measurements were collected and recorded. Groundwater sampling logs are included in **Appendix C**. Groundwater samples were collected using a submersible pump and dedicated polyethylene tubing. Primary and secondary leachate collection systems were also sampled using disposable polyethylene bailers and a dedicated polyethylene line.

Additional sample volume was collected from groundwater monitoring wells where turbidity could not be reduced below 50 NTUs for laboratory filtering of

metals. This included groundwater monitoring wells MW-1B, MW-3A, MW-11A, and MW-11B.

2.6 Decontamination and Quality Assurance / Quality Control Procedures

All non-disposable sampling equipment (i.e. submersible pump) were decontaminated prior to and between each well by using a distilled water and non-phosphate detergent wash followed by a distilled water rinse.

2.7 Groundwater Quality

During the First Half 2020 (April) groundwater sampling event, samples from thirteen groundwater monitoring wells were collected and submitted for analysis of baseline parameters. The inorganic portion of the analysis includes metals, nutrients, and the physical properties of the sample. Specific conductivity, temperature, turbidity, and pH values were reported from field measurements. However, they are listed in **Table 1** and discussed in the inorganic water quality section below. The list of organic groundwater quality results (**Table 2**) is comprised of volatile organic compounds (VOCs).

Groundwater quality as it relates to inorganic metal concentrations is evaluated at looking at the total metal concentrations for samples with turbidity values below 50 NTUs and dissolved metal concentrations with turbidity values above 50 NTUs.

The laboratory results are compared to NYSDEC's Class GA Groundwater Standards, 6NYCRR Part 703. Analytical results are discussed below. The locations of groundwater monitoring wells are illustrated on **Figure 1**. The wells are grouped into clusters consisting of varying depths (A=shallow, B=intermediate, C=deep).

2.7.1 Inorganic Water Quality Results - April 2020

Long Island groundwater generally has a low pH and is typically measured below the NYSDEC standard range of 6.5 to 8.5. Four of the thirteen samples had a measured pH level below 6.5. pH concentrations ranged from 6.0 (MW-4A) to 7.1 (MW-4C).

Chromium was detected above method detection limits in three of the thirteen groundwater samples. Chromium concentrations ranged from less than 0.01 mg/L to 0.345 mg/L (MW-4C). Chromium was detected in two of the thirteen groundwater samples (MW-4B and MW-4C) at concentrations exceeding the NYSDEC groundwater standard (0.05 mg/L). Hexavalent chromium, the toxic form of chromium, was not detected above method detection limits in the thirteen groundwater samples.

Iron was detected above method detection limits in ten of the thirteen groundwater samples. Iron concentrations ranged from less than 0.02 mg/L to 5.86 mg/L (MW-3B). Iron was detected in four of the thirteen groundwater samples (MW-3B, MW-4B, MW-4C and MW-12A) at concentrations exceeding the NYSDEC groundwater standard (0.3 mg/L).

Manganese was detected above method detection limits in eight of the thirteen groundwater samples. Manganese concentrations ranged from less than 0.01 mg/L to 1.77 mg/L (MW-12A). Manganese was detected in four of the thirteen

groundwater samples (MW-3B, MW-4B, MW-11A, and MW-12A) at a concentration exceeding the NYSDEC groundwater standard (0.3 mg/L).

Nickel was detected above method detection limits in two of the thirteen groundwater samples. Nickel concentrations ranged from less than 0.04 mg/L to 0.203 mg/L (MW-4C). Nickel was detected in one of the thirteen groundwater samples (MW-4C) at a concentration exceeding the NYSDEC groundwater standard (0.1 mg/L).

Sodium was detected above method detection limits in each of the thirteen groundwater samples. Sodium concentrations ranged from 8.08 mg/L (MW-1C) to 168 mg/L (MW-3A). Sodium was detected in two of the thirteen groundwater samples (MW-3A and MW-4C) at a concentration exceeding the NYSDEC groundwater standard (20 mg/L).

2.7.2 Organic Water Quality Results - April 2020

Groundwater samples collected from the wells were analyzed for VOCs as part of the First Half 2020 sampling program. Analytical results indicate that no VOCs were detected in the samples collected at concentrations exceeding the laboratory detection limits with the exception of chloroform in MW-1B, MW-1C, MW-4A, and MW-11B and toluene in MW-11B. Chloroform did not exceed its NYSDEC groundwater standard of 0.007 mg/L. Toluene was detected at a concentration of 0.0114 mg/L in MW-11B which exceeds the NYSDEC groundwater standard of 0.005 mg/L. Toluene was also detected in MW-11B during the April 2019 (0.005 mg/L) and October 2019 (0.0554 mg/L) sampling events. Toluene had not been detected prior to 2019.

2.7.3 Well Cluster 4 & 11 Analysis - April 2020

Monitoring wells MW-4A, MW-4B, and MW-4C are located down-gradient of the Landfill along the edge of Fish Cove Pond. These wells represent the farthest down-gradient wells that are used to monitor the Landfill. Historical monitoring has shown that the leading edge of the leachate plume is migrating into Fish Cove Pond. In addition, there is an upward groundwater flow gradient from MW-4C to MW-4B. Concentrations of Conductivity, Chloride, Chromium, and total dissolved solids (TDS), have been increasing in MW-4C. The increasing trends observed in MW-4C may be attributed to a former salt storage area. The former salt storage area was located at the southwestern portion of the North Sea Landfill. A monitoring well was installed in this area during the Remedial Investigation and Feasibility Study (RI/FS) performed under the USEPA and NYSDEC oversite. This well exhibited similar water quality of elevated chlorides and trivalent chromium as that exhibited in MW-4C. This area was not included as an operable unit at the time of the RI/FS and Remedial actions. These increasing trends are not coupled with any significant increases in iron and manganese which would indicate the presence of leachate that is being broken down. Iron and manganese are prevalent in MW-4B where the plume has been documented. Iron and manganese levels in MW-4C are at background levels when compared to MW-4B. A steady increase in Nitrate has been observed in MW-4A. This is likely attributed to the increase in development of the area upgradient of this well by homes with onsite sanitary systems. Concentrations of Nitrate are lower in the onsite landfill wells with the exception of MW-1A, located

adjacent to a compost storage area. Trend charts are included as **Figures 4** through **11** to depict historic trends in monitoring wells MW-4A, 4B, and 4C.

Monitoring wells MW-11A and MW-11B are located down-gradient of Cell 3. These wells have been under close observation since March 1993. A graph of several leachate indicators detected in samples collected from monitoring wells MW-11A and MW-11B since 1997 are shown on **Figures 2** and **3**. Detected concentrations of certain constituents were noted in MW-11A and MW-11B during this sampling event. A review of the trends shows that concentrations have generally decreased over time indicating that the plume continues to degrade over time. Slightly elevated concentrations of iron and manganese are still detected in these wells.

2.8 Groundwater Flow & Migration of Leachate Plume

Groundwater elevation data and laboratory analytical results are utilized to determine groundwater flow and to map the horizontal and vertical migration of the leachate plume. Depth to water and groundwater elevation data are shown on **Table 4**.

A groundwater contour map for April 2020 (**Figure 1**) was created with groundwater elevation data from six water table monitoring wells (MW-1A, MW-3A, MW-4A, MW-6AR, MW-11A, and MW-12A). An evaluation of the water table elevation data indicates that groundwater flows from the landfill towards Fish Cove Pond. At Fish Cove Pond, an upward vertical flow component has been observed based upon head differential observed in the groundwater monitoring wells indicating groundwater is discharging into the pond.

Based upon historical groundwater sampling results and previous remedial investigations, the leachate plume migrates from the landfill, specifically Cell No. 1, and travels horizontally towards the northwest and discharges into Fish Cove Pond. The plume has been observed at its deepest point vertically at the MW-3B depth interval.

2.9 Leachate Quality

The April 2020 analytical data indicate that contaminant concentrations in the leachate detection system (secondary) are similar when compared to those of the leachate collection system (primary). Concentrations observed in both the primary and secondary leachate are similar when compared to concentrations detected during the October 2019 sampling event. The analytical results for the primary and secondary leachate are shown on **Table 3** and the laboratory report is attached as part of **Appendix A**.

3.0 DATA VALIDATION AND USABILITY REPORT

3.1 Data Validation

In accordance with the contract, five percent of the groundwater analytical results were validated by Premier Environmental Services, Merrick, New York. As part of the data validation process, all quality control (QC) issues were reviewed. A copy of the data validation and usability report is included in Appendix A. Compliance chart, re-submission communications, and the NYSDEC laboratory sample preparation and analysis summary forms are also included.

In summary, sample processing was primarily conducted with compliance to protocol requirements and adherence to quality criteria. Sample results are usable as reported or usable with minor qualification as estimated or edited to non-detection. These issues are discussed in the following analytical section. Although only 5% of the samples underwent full validation review, recommended qualifications below are stated to include all project samples as pertains to general quality issues, and where otherwise evident.

Data Completeness

Data packages were complete as received: no additional documentation was required.

3.1.1 Metals Analysis

Review was conducted for method compliance, holding times, calibration analysis, ICP CRDL standard, ICP interference check standard, matrix spike analysis, post digestion spike analysis, duplicate sample analysis, ICP serial dilution, blanks, laboratory control sample analysis, instrument QC data, compound identification, field duplicate sample analysis, and system performance and overall assessment to each procedure. All were found acceptable for the validated samples.

3.1.2 Wet Chemistry Analysis

Review was conducted for method compliance, holding times, calibration analysis, matrix spike analysis, duplicate sample analysis, blanks, laboratory control sample analysis, compound identification, field duplicate sample analysis, and system performance and overall assessment to each procedure. All were found acceptable for the validated samples.

3.1.3 VOC Analysis

Review was conducted for method compliance, holding times, surrogates, matrix spike/spike duplicate analysis, blank spike analysis, blank contamination, GC/MS calibration, GC/MS mass spectrometer tuning, field duplicate analysis, compound identification and overall assessment. All were found acceptable for the validated samples.

3.2 Data Usability Report

According to the Data Usability report, the analytical data were compliant with established protocols and met the project data quality objectives (DQO) and are usable, with the appropriate qualifiers, to determine the presence, absence,

and magnitude of environmental contamination in the samples collected from the site. A copy of the Data Usability Report is included in **Appendix A**.

4.0 SUMMARY

Review of the data for the First Half 2020 indicates that previously implemented remedial actions continue to be effective at minimizing potential site impacts. In brief, the leachate quality has remained similar and the groundwater quality with regards to the inorganic constituents has improved when compared to the previous reporting periods. One organic, Toluene, has been detected in MW-11B since April 2019 and at concentrations slightly above the NYSDEC groundwater standard of 0.005 mg/L in the last two sampling events. The groundwater quality with regards to other organic constituents has improved when compared to the previous reporting periods with concentrations remaining below laboratory detection levels with the exception of chloroform (MW-1B, MW-1C, MW-4A, and MW-11B). Several inorganic compounds are sporadically detected in wells MW-1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 11A, 11B, 12A, and 12B. Contaminants detected in wells MW-3A, 3B, 3C, 4A, 4B, and 4C may be due to the expansion of the recharge basin, which is now located up-gradient of these wells.

Monitoring well cluster MW-4 has shown Nitrate and potential former salt storage impact. Nitrate concentrations in MW-4A have been trending upwards and are a potential result of development of the area upgradient. Conductivity, Chloride, Chromium, and TDS concentrations have been trending upwards in MW-4C, indicating potential impact from the former salt storage area at the landfill.

All sample results are usable as reported or usable with minor qualification as estimated or edited to non-detection to determine the presence, absence, and magnitude of environmental contamination in the samples collected from the site.

5.0 RECOMMENDATIONS

PWGC recommends that the Post-closure monitoring and maintenance operations program be continued and the groundwater and leachate sampling program be continued on a semi-annual basis. PWGC recommends that maintenance is performed on Well Cluster 7 to clear accumulated soil around wells or install risers and protective casings and continued monitoring of Toluene in MW11B.

TABLES

ANALYTICAL	UNITS	GW													MW-1A							
PARAMETERS		STND (1)	April 2014	1	October 20	14	April 201	5	October 20)15	April 201	6	October 20	16	April 2017		October 2017	April 2018	October 2018	April 2019	October 2019	April 2020
Aluminum as Al	mg/L	NA	0.00336	В	PNA		0.0059	U	PNA		0.2	U	PNA		0.0576	J	PNA	0.0134 <i>UJ</i>	PNA	0.200 U	PNA	0.200 U
Antimony as Sb	mg/L	0.003#	0.0019	U	PNA		0.003	U	PNA		0.06	U	PNA		0.06	Ú	PNA	0.003 U	PNA	0.0600 U	PNA	0.0600 U
Arsenic as As	mg/L	0.025	0.0011	U	PNA		0.0033	U	PNA		0.01	U	PNA		0.01	U	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U
Barium	mg/L	1	0.0202	В	PNA		0.0768	В	PNA		0.0246	ī	PNA		0.0239	Ī	PNA	0.0218 J	PNA	0.200 U	PNA	0.200 U
Beryllium as Be	mg/L	0.003	0.00014	U	PNA		0.0001	U	PNA		0.005	Ú	PNA		0.005	Ú	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U
Boron as B	mg/L	1	0.027	В	PNA		0.074	В	PNA		0.0291	ī	PNA		0.0178	Ī	PNA	0.0324 <i>I</i>	PNA	0.0917	PNA	0.0807
Cadmium as Cd	mg/L	0.005	0.00011	U	0.0003	U	0.0002	U	0.0001	U	0.0025	Ú	0.0025	U	0.0025	Ú	0.0025 U	0.00011 <i>I</i>	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	18.2		63.5		51.8		76.6		18.2		60.5		8.44		55.6	17.7	63.9	76.400	63.400	46.700
Chromium as Cr	mg/L	0.05	0.0031	В	PNA		0.0011	U	PNA		0.01	U	PNA		0.0082	Ī	PNA	0.0016 U	PNA	0.0100 U	PNA	0.0100 U
Cobalt	mg/L	NA	0.00019	U	PNA		0.0006	U	PNA		0.05	U	PNA		0.0021	j	PNA	0.0006 U	PNA	0.0500 U	PNA	0.0500 U
Copper as Cu	mg/L	0.2	0.00076	U	PNA		0.0027	В	PNA		0.0019	Ţ	PNA		0.0048	j	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U
Cyanide as CN	mg/L	0.2	0.01	U	PNA		0.01	U	PNA		0.01	Ü	PNA		0.01	Ú	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U
Iron as Fe	mg/L	0.3	0.0297	В	0.163		0.0371	В	0.0928	В	0.0645	Ţ	0.399		0.527		0.0625	0.0109 U	0.0601	0.0261	0.742	0.0291
Lead as Pb	mg/L	0.025	0.0052		0.0013	U	0.0022	U	0.0023	В	0.0027	J	0.005	U	0.0015	J	0.005 U	0.0013 U	0.005 UB	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35#	7.54		25.4		25.4		32.9		7.73		23.8		3.280		22.100	7.25 J	24.8	28.700	22.600	19.000
Manganese as Mn	mg/L	0.3	0.0099	В	0.0218		0.0075	В	0.008	В	0.055		0.258		0.290		0.028	0.005 U	0.0196	0.0100 U	0.217	0.0100 U
Mercury as Hg	mg/L	0.0007	0.0001	U	PNA		0.0001	U	PNA		0.0002	U	PNA		0.0002	U	PNA	0.000056 U	PNA	0.00020 U	PNA	0.00020 U
Nickel as Ni	mg/L	0.1	0.0012	В	PNA		0.0009	В	PNA		0.04	U	PNA		0.0042	J	PNA	0.0009 UJ	PNA	0.0400 U	PNA	0.0400 U
Potassium	mg/L	NA	5.17		14.1		6.62		21.7		4.79	J	14.8		2.930	J	12.900	4 J	12.5	13.900	12.600	6.820
Selenium as Se	mg/L	0.01	0.0011	U	PNA		0.0038	U	PNA		0.01	U	PNA		0.01	U	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U
Silver as Ag	mg/L	0.05	0.00043	U	PNA		0.0022	U	PNA		0.01	U	PNA		0.01	U	PNA	0.0036 UJ	PNA	0.0100 U	PNA	0.0100 U
Sodium as Na	mg/L	20	11.2		14.7		20.4		17.4		10.7		15.2		8.470		13.400	11.1	15.2	15.400	18.600	14.400
Thallium as Tl	mg/L	0.0005#	0.0013	U	PNA		0.0038	U	PNA		0.01	U	PNA		0.01	U	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U
Vanadium	mg/L	NA	0.00039	U	PNA		0.0009	В	PNA		0.05	U	PNA		0.05	U	PNA	0.0008 U	PNA	0.0500 U	PNA	0.0500 U
Zinc as Zn	mg/L	2 #	0.0162	В	PNA		0.0121	В	PNA		0.02	U	PNA		0.02	U	PNA	0.0022 UJ	PNA	0.0200 U	PNA	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	27.1		119		60.4		131	Н	34.6		115		23.2		132	46.6	98.4	178	127	55.5
Chloride as Cl	mg/L	250	21.5		27.4		46.9		30.6		21.9		25		14.0		22.6	18.3	30.2	39.6	41.0	26.6
Sulfate as SO4	mg/L	250	41.3		119		139		193		35.4		100		8.9		85.8	37.2	125	120	106	91.9
Bromide	mg/L	2 #	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	0.038 J	0.5 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2	U	2	U	2	U	2	U	2	U	2	U	1 1	U	2 U	2 U	4.1	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	18.4		10	U	17.4		10	U	10	U	10	U	10	U	10 U	10 U	15.5	32.2	10.2	16.7
Color	units	NA	5	U	PNA		10		PNA		5	U	PNA		20		PNA	5 U	PNA	10.0	PNA	5.0
Chromium hex as Cr	mg/L	0.05	0.02	U	PNA		0.02	U	PNA		0.02	U	PNA		0.02	U	PNA	0.003 U	PNA	0.020 U		0.020 U
Hardness as CaC03	mg/L	NA	76		270		500		260		76		212		40		200	166	187	265	220	130
Ammonia as N	mg/L	2	0.11		0.1	U	0.18	U	0.1		0.33		0.1	U	0.04	U	0.1 U	0.018 J	0.10 U	0.10 U	0.10 U	0.18
Nitrite as N	mg/L	NA	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.05	U	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	
Nitrate as N	mg/L	10	3.09		6.15		6.95		8.33	U	2.82		6.9		1.3		6.4	4	10.5	11.0	6.6	9.2
Phenols as Phenol	mg/L	0.001	0.005	U	0.005	U	0.005	U	0.0062		0.0127		0.005	U	0.0564		0.005 U	0.0056	0.005 U	0.0050 U		0.0050 U
Tot Dissolved Solids	mg/L	NA	107		369		377		457		125		328		73.0	J	305.0	144	326	390	330	286
Tot. Kjeldahl Nitrogen	mg/L	NA	0.23		0.1	U	0.94		0.1	U	0.1	U	0.1	U	0.16		0.38	0.1 U	0.10 U	0.10 U	0.10 U	
Tot Organic Carbon	mg/L	NA	1.7		32.8		5.3		5.21		1.6		3.40		0.82	J	3.7 B		4.4	6.2	4.8	4.0
Turbidity	NTU	NA	0		0		0		1.04		10.9		30		0.0		2.8	5.4	5.1	0.0	3.9	32.4
Temperature	deg.C	NA	11.08		12.57		11.58		12.51		11.79		16.07		12.00		12.26	11.42	12.16	12.01	12.77	11.7
рН	units	6.5-8.5	5.77		6.14		6.08		6.24		5.93		6.16		5.90		6.09	5.54	5.61	6.73	6.29	6.3
Spec. Cond	umho/cm	NA	253		735		655		741		231		554		138		568	244	192	373	522	384

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{eq:concentration} \textbf{J-Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ANALYTICAL	UNITS	GW							MW	V-1B						
			April 2014	October 2014	April 2015	October 2015	April 2016	October 2016	April 2017	October 2017	April 2018 Oct	tober 2018	April 2019	October 2019	-	12020
PARAMETERS		STND (1)	11p111 2011	October 2011	11p111 2015	October 2015	11p111 2010	October 2010	11p111 2017	October 2017	11p111 2010 000	10001 2010	11p111 2019	October 2019	Unfiltered	Filtered
Aluminum as Al	mg/L	NA	0.0283 B	PNA	0.0059 U	PNA	0.0906 J	PNA	0.2 U	PNA	0.0134 U I	PNA	0.200 U	PNA	0.200 U	0.200 U
Antimony as Sb	mg/L	0.003 #	0.0019 U	PNA	0.003 U	PNA	0.06 U	PNA	0.06 U	PNA	0.003 U	PNA	0.0600 U	PNA	0.0600 U	
Arsenic as As	mg/L	0.025	0.0011 U	PNA	0.0033 U	PNA	0.01 U	PNA	0.01 U	PNA	0.0068 U I	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Barium	mg/L	1	0.0103 B	PNA	0.0102 B	PNA	0.2 U	PNA	0.0097 J	PNA	0.0107 J	PNA	0.200 U	PNA	0.200 U	00
Beryllium as Be	mg/L	0.003	0.00014 U	PNA	0.0001 U	PNA	0.0002 U	PNA	0.005 U	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	
Boron as B	mg/L	1	0.0072 B	PNA	0.0081 B	+	0.0089 J	PNA	0.01 J	PNA		PNA	0.0500 U	PNA	0.0500 U	
Cadmium as Cd	mg/L	0.005	0.00011 U	0.0003 U	0.0002 U		0.0002 J	0.0025 U		0.0025 U		.0025 U	0.0025 U		0.0025 U	
Calcium as Ca	mg/L	NA	4.07 B	4.37 B	3.77 B	4.45 B	3.93	4.62	3.97	4.46		4.74	4.440	3.130	3.830	3.750
Chromium as Cr	mg/L	0.05	0.0053 B	PNA	0.0038 B	PNA	0.0078 J	PNA	0.0029 J	PNA	· · · · · · · · · · · · · · · · · · ·	PNA	0.010 U	PNA	0.0303	0.010 U
Cobalt	mg/L	NA	0.00019 U	PNA	0.0006 U		0.05 U	PNA	0.05 U	PNA		PNA	0.0500 U	PNA	0.0500 U	
Copper as Cu	mg/L	0.2	0.001 B	PNA	0.0012 B		0.0035 J	PNA	0.0026 J	PNA		PNA	0.0250 U	PNA	0.0250 U	
Cyanide as CN	mg/L	0.2	0.01 U	PNA	0.01 U		0.01 U	PNA	0.01 U	PNA		PNA	0.0100 U	PNA	0.0100 U	
Iron as Fe	mg/L	0.3	0.0261 B	0.0658 B	0.0223 E		0.0488 J	0.1 U	1	0.02 U		.0200 U	0.0200 U	0.0528	0.114	0.0200 U
Lead as Pb	mg/L	0.025	0.0051	0.0018 B	0.0022 U	0.0034	0.0023 J	0.005 U		0.005 U		.0050 U	0.0050 U	0.0050 U	0.0050 U	
Magnesium	mg/L	35 #	1.74 B	1.83 B	1.6 B	1.99 B	1.68	2.04	1.830	1.94		2.160	1.850	1.250	1.620	1.570
Manganese as Mn	mg/L	0.3	0.0049 B	0.0029 B			0.015 U	0.01 U	, ,	0.01 U	, , , ,	.0100 U	0.0100 U	0.0100 U	0.0100 U	
Mercury as Hg	mg/L	0.0007	0.0001 U	PNA	0.0001 U	PNA	0.0002 U	PNA	0.0002 U	PNA	, , , , , , , , , , , , , , , , , , , ,	PNA	0.00020 U	PNA	0.00020 U	
Nickel as Ni	mg/L	0.1	0.0117 B	PNA	0.0102 B	PNA	0.0147 J	PNA	0.01 J	PNA		PNA	0.0400 U	PNA	0.0400 U	
Potassium	mg/L	NA	0.954 B	2.19 B	1.89 B	0.898 B	0.615 J	5 U	5 U	5 U	l	5.000 U	5.000 U	5.000 U	5.000 U	
Selenium as Se	mg/L	0.01	0.0011 U	PNA	0.0038 U	PNA	0.01 U	PNA	0.01 U	PNA		PNA	0.0100 U	PNA	0.0100 U	
Silver as Ag	mg/L	0.05	0.00043 U	PNA	0.0022 U		0.01 U	PNA	0.01 U	PNA		PNA	0.0100 U	PNA	0.0100 U	
Sodium as Na	mg/L	20	7.5	7.71	8.54	9.32	7.78	8.53	7.86	8.44		9.750	9.180	9.040	8.370	8.480
Thallium as Tl	mg/L	0.0005#	0.0013 U	PNA	0.0038 U		0.01 U	PNA	0.01 U	PNA		PNA	0.0100 U	PNA	0.0100 U	
Vanadium	mg/L	NA	0.00039 U	PNA	0.0007 U		0.05 U	PNA	0.05 U	PNA		PNA	0.0500 U	PNA	0.0500 U	
Zinc as Zn	mg/L	2#	0.0232	PNA	0.0047 B		0.02 U	PNA	0.02 U	PNA		PNA	0.0200 U	PNA	0.0200 U	
Alkalinity tot CaCo3	mg/L	NA	10.4	12.1	971 D		10.4	12.5	10.6	10.8		13.4	11.4	5.4	8.5	PNA
Chloride as Cl	mg/L	250	9.99	10.5	11.4	9.54	9.68	12.8	8.8	11.2		16.3	14.5	15.4	9.0	PNA
Sulfate as SO4	mg/L	250	7.21	7.53	8.03	8.2	7.25	6.9	7.5	6.3		8.5	7.9	8.7	8.3	PNA
Bromide	mg/L	2#	0.5 U	0.5 U 2 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U		0.50 U	0.50 U	0.50 U	0.50 U	
BOD5	mg/L	NA NA	2 U		-		2 U	2 U	,			2.0 U	2.0 U	2.0 U	2.0 U	
COD Color	mg/L units	NA NA	10 U 5 U	10 U PNA	10 U	10 U PNA	10 U 5 U	10 U PNA	10 U	10 U PNA		10.0 U PNA	38.9 5.0 U	10.0 U PNA	14.6 5.0 U	PNA PNA
Chromium hex as Cr		0.05	0.02 U	PNA	0.02 U		0.02 U	PNA	0.02 U	PNA		PNA	0.020 U		0.020 U	
Hardness as CaC03	mg/L mg/L	NA	18	20	20 D		19	17	18	18.7		14.0	17.0	8.0	12.0	PNA
	mg/L	2	0.12 U	0.1 U	0.1 U		0.17	0.2	0.088 [0.1 U		0.10 U	0.10 U	-	0.13	PNA
Ammonia as N Nitrite as N	mg/L	NA	0.12 U	0.1 U		0.1 U	0.1 U	0.2 0.1 U	,	0.1 U		0.10 U	0.050 U	0.10 U	0.050 U	
Nitrate as N	mg/L	10	0.1 U	0.1 U		0.1 U	0.1 U	0.05 U		0.05 U		7.9	0.050 U	0.050 U	0.030 0	PNA
Phenols as Phenol	mg/L	0.001	0.005 U	0.005 U		0.0079	0.005 U	0.0094	0.0783	0.005 U		.0050 U	0.0050 U	0.0115	0.0050 U	
Tot Dissolved Solids	mg/L	NA	48	39	54	52	38	67	42	38		61.0	26.0	59.0	65.0	PNA
Tot. Kjeldahl Nitrogen	mg/L	NA NA	0.37	0.1 U	0.18	0.1 U	0.1 U	0.36	0.1 U	0.1 U		0.10 U	0.42	0.10 U	0.24	PNA
Tot Organic Carbon	mg/L	NA NA	1 U	3.8	1 U	0.1 U	1 U	1 11	0.18 J	1 11	l	1.0 U	1.0 U	1.0 U	1.0 U	
Turbidity	NTU	NA NA	1.1	0	0	0.32	3.22	0	0.16	0.7		0.0	0.0	0.0	64.4	PNA
Temperature	deg.C	NA NA	11.21	11.59	10.69	11.51	11.27	12.89	12.50	11.38		12.38	11.22	12.01	11.68	PNA
nH	units	6.5-8.5	6.46	6.26	6.05	5.95	6.56	6.43	6.18	6.54		6.31	5.87	5.89	6.4	PNA
Spec. Cond	umho/cm	0.3-8.3 NA	70	92	70	86	80	91	80	96		96	93	71	63	PNA
opec. cond	ammo/ cill	ш	7.0	76	7.0	00	00	7.1	00	,,,	01	, 0	70	/ 1	0.5	1 11/1

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

$Bold\ indicates\ update\ due\ to\ data\ validation.$

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- ${\it R-Data\ Validation\ Qualifier-Rejected}.$
- U Indicates the compound was analyzed for, but not detected.
- $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$
- $U\!J\text{-}Data\ Validation\ Qualifier\text{-}The\ analyte\ was\ not\ detected\ above\ the\ reported\ gample\ quantitation\ limit\ is\ approximate\ and\ may\ or\ may\ not\ represent\ the\ accurately\ and\ precisely\ measure\ the\ analyte\ in\ the\ sample\ detected\ properties of\ the\ properties of\ properties$

ANALYTICAL	UNITS	GW													MW-1C									
PARAMETERS		STND (1)	April 201	4	October 20	14	April 2015	5	October 20	15	April 201	6	October 20	016	April 2017	,	October 201	17	April 2018	October 2018	April 2019	October 2	2019	April 2020
Aluminum as Al	mg/L	NA	0.0358	В	PNA		0.0059	U	PNA		0.2	U	PNA		0.2	U	PNA		0.0134 U	PNA	0.200 U	PNA		0.200 U
Antimony as Sb	mg/L	0.003#	0.0019	U	PNA		0.003	U	PNA		0.06	U	PNA		0.06	U	PNA		0.003 U	PNA	0.0600 U	PNA		0.0600 U
Arsenic as As	mg/L	0.025	0.0011	U	PNA		0.0033	U	PNA		0.01	U	PNA			U	PNA		0.0068 U	PNA	0.0100 U			0.0100 U
Barium	mg/L	1	0.01	В	PNA		0.0112	В	PNA		0.2	U	PNA		0.0092	ī	PNA		0.0101 J	PNA	0.200 U	PNA		0.200 U
Beryllium as Be	mg/L	0.003	0.00014	U	PNA		0.0001	U	PNA		0.005	U	PNA		0.005	Ú	PNA		0.0006 U	PNA	0.0050 U	PNA		0.0050 U
Boron as B	mg/L	1	0.0072	В	PNA		0.0081	В	PNA		0.0097	ī	PNA		0.0115	Ī	PNA		0.0121 J	PNA	0.0500 U	PNA		0.0500 U
Cadmium as Cd	mg/L	0.005	0.00011	U	0.0003	U	0.0002	U	0.0001	U	0.0025	Ú	0.0025	U	0.0025	Ú	0.0025	U	0.00006 U	0.0025 U	0.0025 U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	4.61	В	5.15		4.87	В	4.7	В	4.45		4.62		4.44		4.14		4.63	4.910	4.770	5.120		4.640
Chromium as Cr	mg/L	0.05	0.0049	В	PNA		0.0012	В	PNA		0.01	U	PNA		0.0041	Ī	PNA		0.0048 I	PNA	0.0100 U	PNA		0.0100 U
Cobalt	mg/L	NA	0.00019	U	PNA		0.0006	U	PNA		0.05	U	PNA		0.05	Ú	PNA		0.0006 U	PNA	0.0500 U	PNA		0.0500 U
Copper as Cu	mg/L	0.2	0.0008	В	PNA		0.0005	В	PNA		0.0022	J	PNA		0.025	U	PNA		0.0025 U	PNA	0.0250 U	PNA		0.0250 U
Cyanide as CN	mg/L	0.2	0.01	U	PNA		0.01	U	PNA		0.01	Ü	PNA		0.01	U	PNA		0.0029 U	PNA	0.0100 U	PNA		0.0100 U
Iron as Fe	mg/L	0.3	0.0492	В	0.998		0.0086	UE	0.0268	U	0.1	U	0.1	U	0.1	U	0.02	U	0.0301	0.0200 U	0.0200 U	0.0840		0.0200 U
Lead as Pb	mg/L	0.025	0.0042	В	0.0021	В	0.0022	U	0.0037		0.0028	J	0.005	U	0.005	U	0.005	U	0.0013 U	0.0050 U	0.0050 U	0.0050	U	0.0050 U
Magnesium	mg/L	35#	2.28	В	2.58	В	2.43	В	2.32	В	2.21		2.39		2.38		2.17		2.45	2.510	2.420	2.410		2.370
Manganese as Mn	mg/L	0.3	0.0033	В	0.0263		0.0005	В	0.0008	BE	0.015	U	0.01	U	0.00079	J	0.01	U	0.0037 J	0.0100 U	0.0100 U	0.0110		0.0100 U
Mercury as Hg	mg/L	0.0007	0.0001	U	PNA		0.0001	U	PNA		0.0002	U	PNA		0.0002	U	PNA		0.000075 J	PNA	0.00020 U	PNA		0.00020 U
Nickel as Ni	mg/L	0.1	0.0107	В	PNA		0.0048	В	PNA		0.0153	J	PNA		0.0248	J	PNA		0.0129 J	PNA	0.0400 U	PNA		0.0400 U
Potassium	mg/L	NA	0.978	В	2.14	В	0.472	U	0.828	В	5	U	5	U	5	U	5	U	0.83 U	5.000 U	5.000 U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	0.0013	В	PNA		0.0038	U	PNA		0.01	U	PNA		0.0100	U	PNA		0.0063 U	PNA	0.0100 U	PNA		0.0100 U
Silver as Ag	mg/L	0.05	0.00043	U	PNA		0.0022	U	PNA		0.01	U	PNA		0.0100	U	PNA		0.0036 U	PNA	0.0100 U	PNA		0.0100 U
Sodium as Na	mg/L	20	8.24		8.31		8.34		8.78		7.99		7.27		7.77		7.48		7.83	7.930	8.230	8.620		8.080
Thallium as Tl	mg/L	0.0005#	0.0013	U	PNA		0.0038	U	PNA		0.01	U	PNA		0.01	U	PNA		0.0036 U	PNA	0.0100 U	PNA		0.0100 U
Vanadium	mg/L	NA	0.00039	U	PNA		0.0007	U	PNA		0.05	U	PNA		0.05	U	PNA		0.0008 U	PNA	0.0500 U	PNA		0.0500 U
Zinc as Zn	mg/L	2 #	0.0256		PNA		0.0038	В	PNA		0.02	U	PNA		0.02	U	PNA		0.002 J	PNA	0.0200 U	PNA		0.0200 U
Alkalinity tot CaCo3	mg/L	NA	12.5		13.7		12.9		12.9	Н	12.7		12		10.8		12		13.2	14.6	14.0	14.7		13.4
Chloride as Cl	mg/L	250	214		11.6		12.3		9.42		10		11		9.0		8.1		9.3	10.7	10.9	11.4		8.9
Sulfate as SO4	mg/L	250	152		8.62		10.5		8.35		8.34		8.4		8.2		8.1		9.3	10.9	10.6	10.6		9.4
Bromide	mg/L	2 #	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.023 J	0.50 U	0.50 U	0.50	U	0.50 U
BOD5	mg/L	NA	2	U	2	U	2	U	2	U	2	U	2.6		1	J	2	U	2 U	2.0 U	2.0 U	2.0	U	2.0 U
COD	mg/L	NA	10	U	10	U	10	U	10	U	10	U	33.8			U	10	U	10 U	10.0 U	10.0 U	10.0	U	10.0 U
Color	units	NA	5	U	PNA		10	U	PNA		5	U	PNA		5		PNA		5 U	PNA	5.0 U	PNA		5.0 U
Chromium hex as Cr	mg/L	0.05	0.02	U	PNA		0.02	U	PNA		0.02	U	PNA			U	PNA		0.003 U	PNA	0.020 U	PNA		0.020 U
Hardness as CaC03	mg/L	NA	18		48		44		24		25		19		22		17.3		19	16.0	20.0	16.0		16.0
Ammonia as N	mg/L	2	0.1	U	0.1	U	0.11		0.1	U	0.14		22.9		0.046	J	0.13		0.11	0.10 U	0.10 U	0.10	U	0.10 U
Nitrite as N	mg/L	NA	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U		U	0.1	U	0.05 U	0.050 U	0.050 U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.35		0.43		0.42		0.33		0.24		0.22		0.19		0.17		0.24	0.25	0.26	0.37		0.24
Phenols as Phenol	mg/L	0.001	0.005	U	0.005	U	0.005	U	0.005	U	0.013		0.0162		0.0396		0.005	U	0.0043 J	0.0050 U	0.0050 U	0.0161		0.0050 U
Tot Dissolved Solids	mg/L	NA	31		36		53		49		45		63		50		48		57	45.0	49.0	97.0		62.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.26		0.1	U	0.2		0.1	U	0.1	U	18.7		0.1	U	0.11		0.1 U	0.64	0.10 U	0.10	U	0.10 U
Tot Organic Carbon	mg/L	NA	1	U	3.8		1	U	0.5	U	1	U	1	U	0.16	J	1	U	0.23 U	1.0 U	1.0 U	1.0	U	1.0 U
Turbidity	NTU	NA	0.30		18.60		0.00		0.57		6.37		0		0		1		2.2	0.0	0.0	0.0		36.2
Temperature	deg.C	NA	10.12		11.59		10.45		11.35		11.24		11.65		12.24		11.23		10.99	12.11	11.41	12.76		11.38
pH	units	6.5-8.5	6.15		6.14		5.97		6.18		6.52		6.26		6.07		6.02	_	5.89	6.1	6.28	6.56		6.6
Spec. Cond	umho/cm	NA	89		106		98		91		90		91		86		90		92	87	100	84		72

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{lem:concentration} \textbf{J-Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ANALYTICAL	UNITS	GW										MW-3A									
111111111111111111111111111111111111111	0.1110						April	12016	Octobe	er 2016	April 2		October	r 2017	April	2018				Apri	12020
PARAMETERS		STND (1)	April 2014	October 2014	April 2015	October 2015	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	October 2018	April 2019	October 2019	Unfiltered	Filtered
Aluminum as Al	mg/L	NA	0.0391 U	PNA	0.0059 U	PNA	0.2 U	0.2 U	PNA	PNA	0.022 I	0.2 I	J PNA	PNA	0.127 I	0.0327 I	PNA	0.200 U	PNA	0.200 U	
Antimony as Sb	mg/L	0.003#	0.0019 U	PNA	0.0077 B	PNA	0.06 U	0.06 U	PNA	PNA	0.06 U	0.06 U	J PNA	PNA	0.0089 I	0.003 U	PNA	0.0600 U	PNA	0.0600 U	+
Arsenic as As	mg/L	0.025	0.0011 U	PNA	0.0033 U	PNA	0.0038 I	0.01 U	PNA	PNA	0.01 U	0.01 U	J PNA	PNA	0.0068 U	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Barium	mg/L	1	0.055 B	PNA	0.0509 B	PNA	0.048 I	0.0377 J	PNA	PNA	0.0744 I	0.0579	PNA	PNA	0.107 I	0.0669 I	PNA	0.200 U	PNA	0.201	0.203
Beryllium as Be	mg/L	0.003	0.00014 U	PNA	0.0001 U	PNA	0.005 U	0.005 U	PNA	PNA	0.005 U	0.005 U	J PNA	PNA	0.0006 U	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	0.0050 U
Boron as B	mg/L	1	0.0291 B	PNA	0.0202 B	PNA	0.0366 J	0.0348 J	PNA	PNA	0.0211 J	0.0253	PNA	PNA	0.0331 J	0.0321 J	PNA	0.0500 U	PNA	0.0500 U	0.0500 U
Cadmium as Cd	mg/L	0.005	0.00011 U	0.0003 U	0.0002 U	0.0001 U	0.0002 U	0.005 U	0.0025 U	0.0025 U	0.00027 J	0.00096	0.0025 U	0.0025 U	0.00006 U	0.000063 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	19.1	18	19.9	22.9	13.8	12.9	22	19.1	20.8	18.0	15.6	14.4	19.5	19.4	22.900	20.300	18.200	27.800	28.700
Chromium as Cr	mg/L	0.05	0.595	PNA	0.786	PNA	0.825	0.0063 J	PNA	PNA	1.660	0.0141	PNA	PNA	1.84	0.143	PNA	0.251	PNA	0.506	0.0380
Cobalt	mg/L	NA	0.0024 B	PNA	0.0029 B	PNA	0.0015 J	0.05 U	PNA	PNA	0.0049 J	0.05 U	J PNA	PNA	0.0084 J	0.00063 U	PNA	0.0500 U	PNA	0.0500 U	0.0500 U
Copper as Cu	mg/L	0.2	0.0164 B	PNA	0.0196 B	PNA	0.0225 J	0.0322	PNA	PNA	0.024 J	0.0078	PNA	PNA	0.0351	0.0097 J	PNA	0.0250 U	PNA	0.0250 U	0.0250 U
Cyanide as CN	mg/L	0.2	0.01 U	PNA	0.01 U	PNA	0.01 U	0.1 U	PNA	PNA	0.01 U	PNA	PNA	PNA	0.0029 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Iron as Fe	mg/L	0.3	2.28	3.78	2.95 E	2.27	2.92	0.1 U	4.66	0.1 U	6.520	0.1 l	2.460	0.1 U	7.37	0.514	2.520	0.953	3.630	2.000	0.122
Lead as Pb	mg/L	0.025	0.0053	0.0013 U	0.0022 U	0.0024 B	0.001 J	0.002 J	0.005 U	0.005 U	0.005 U	0.005 U	J 0.005 U	0.005 U	0.0024 J	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	4.74 B	4.57 B	5.06	6.42	3.68	3.44	6.34	5.53	5.51	5.01	4.88	4.36	5.82	5.65	6.770	6.500	5.770	8.080	8.280
Manganese as Mn	mg/L	0.3	0.255	0.2	0.211	0.113 E	0.144	0.0585	0.286	0.0611	0.359	0.0518	0.113	0.0419	1.18	0.0483	0.190	0.0914	0.390	0.227	0.0951
Mercury as Hg	mg/L	0.0007	0.0001 U	PNA	0.0001 U	PNA	0.0002 U	0.0002 U	PNA	PNA	0.0002 U	0.0002 U	J PNA	0.002 U	0.000068 J	0.0002 U	PNA	0.00020 U	PNA	0.00020 U	0.00020 U
Nickel as Ni	mg/L	0.1	0.0735	PNA	0.0962	PNA	0.114	0.08	PNA	PNA	0.132	0.0893	PNA	PNA	0.181	0.0541	PNA	0.0416	PNA	0.0546	0.0490
Potassium	mg/L	NA	6.58 J	6.99	4.4 B	6.67	5.21	4.5 J	6.46	5.29	5.83	4.88	5.0 U	5.0 U	6.65	6.9	9.530	7.930	11.400	7.790	7.890
Selenium as Se	mg/L	0.01	0.0016 B	PNA	0.0038 U	PNA	0.01 U	0.01 U	PNA	PNA	0.01 U	0.01 l	J PNA	PNA	0.0063 U	0.0062 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Silver as Ag	mg/L	0.05	0.00043 UJ	PNA	0.0022 U	PNA	0.01 U	0.01 U	PNA	PNA	0.01 U	0.01 U	J PNA	PNA	0.0036 U	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Sodium as Na	mg/L	20	33.6	18.9	37.6	43.8	22.5	21	25	21	82.9	70.2	43.1	40.3	56.3	50.7	105.000	40.100	33.000	157.000	168.000
Thallium as Tl	mg/L	0.0005#	0.0013 U	PNA	0.0038 U	PNA	0.01 U	0.01 U	PNA	PNA	0.01 U	0.01 U	J PNA	PNA	0.0036 U	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Vanadium	mg/L	NA 0.#	0.0019 B	PNA	0.0007 U	PNA	0.05 U	0.05 U	PNA	PNA	0.0023 J	0.05 U	PNA	PNA	0.0052 J	0.0008 U	PNA	0.0500 U	PNA	0.0500 U	0.0500 U
Zinc as Zn	mg/L	2 #	0.0267	PNA	0.0154 B	PNA	0.02 U	0.02 U	PNA	PNA	0.02 U	0.0107	PNA	PNA	0.0026 J	0.0012 U	PNA	0.0200 U	PNA	0.0200 U	0.0200 U
Alkalinity tot CaCo3	mg/L	NA 250	41	61.3	38.5 84.2	61.7 70.9	52	PNA	75.6	PNA	34.2	PNA	69.6	PNA	47.4	PNA PNA	78.0	69.4	83.8 46.8	71.1	PNA
Chloride as Cl Sulfate as SO4	mg/L mg/L	250 250	72.6 5.58	30.1 10.7	84.2 5 U	70.9	7.5	PNA PNA	40.8 12.6	PNA PNA	154 8.7	PNA PNA	58 5 U	PNA PNA	98.1 5.6	PNA PNA	9.0	79.5 5.0 U	9.4	295 5.0 U	PNA PNA
Bromide	mg/L mg/L	250	0.5 U	0.5 U	0.5 U	73.7 0.5 U		PNA	0.5 U	PNA	0.5 U	PNA	0.5 U	PNA	0.021 I	PNA	9.0 0.50 U	0.50 U	0.50 U	0.50 U	
BOD5	mg/L	NA	2 11	2 U	2 11	2 U	,	PNA	2 II	PNA	1 I	PNA	2 II	PNA	2 []	PNA	2.0 U	2.0 U	4.0 U	2.0 U	ł
COD	mg/L	NA NA	12.7	12.7	10 U	10 U		PNA	23.4	PNA	13	PNA	11.9	PNA	10 U	PNA	16.2	19.0	12.4	27.3	PNA
Color	units	NA NA	30	PNA	25	PNA	10 0	PNA	PNA	PNA	5	PNA	PNA	PNA	5 U	PNA	PNA	15.0	PNA	40.0	PNA
Chromium hex as Cr	mg/L	0.05	0.02 U	PNA	0.02 U	PNA	0.02 U	PNA	PNA	PNA	0.0098 [PNA	PNA	PNA	0.00003 U	PNA	PNA	0.020 U	PNA	0.020 U	PNA
Hardness as CaC03	mg/L	NA	68	100	75	75	48	PNA	80	PNA	80	PNA	70	PNA	68	PNA	72.0	53.3	70.0	100	PNA
Ammonia as N	mg/L	2	0.22	0.1 U	0.31	0.1 U		PNA	0.24	PNA	0.1	PNA	0.1 UB	PNA	0.46	PNA	0.10 U	0.10 U	0.53	0.51	PNA
Nitrite as N	mg/L	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	PNA	0.1 U	PNA	0.05 U	PNA	0.05 U	PNA	0.05 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U	PNA
Nitrate as N	mg/L	10	1.05	0.21	0.29	0.25	1.45	PNA	0.26	PNA	1.8	PNA	0.22	PNA	2	PNA	0.34	0.58	0.33	0.70	PNA
Phenols as Phenol	mg/L	0.001	0.005 U	0.005 U	0.005 U	0.0087	0.005 U	PNA	0.0088	PNA	0.0026 J	PNA	0.005 U	PNA	0.0034 I	PNA	0.0050 U	0.0050 U	0.0099	0.0050 U	PNA
Tot Dissolved Solids	mg/L	NA	158	100	174	195	106	PNA	152	PNA	317	PNA	165	PNA	266	PNA	367	186	209	508	PNA
Tot. Kjeldahl Nitrogen	mg/L	NA	0.67	0.1 U	0.54	0.13	0.5	PNA	0.26	PNA	0.34	PNA	0.37	PNA	0.83	PNA	0.23	0.58	1.3	1.3	PNA
Tot Organic Carbon	mg/L	NA	2.7	12.7	2.4	2.5	2.9	PNA	3.29	PNA	2.6 J	PNA	3.9	PNA	3	PNA	4.8	4.9	5.5	5.2	PNA
Turbidity	NTU	NA	11.5	26.8	11.5	38.5	24	PNA	117	PNA	105	PNA	104	PNA	86.6	PNA	32.0	12.8	36.7	56.3	PNA
Temperature	deg.C	NA	12.62	11.23	11.06	8.18	12.07	PNA	10.25	PNA	12.57	PNA	10.93	PNA	11.79	PNA	11.17	10.39	10.14	11.59	PNA
pH	units	6.5-8.5	6.28	6.49	6.16	6.09	6.44	PNA	6.27	PNA	6.09	PNA	6.41	PNA	5.79	PNA	6.66	6.47	6.55	6.6	PNA
Spec. Cond	umho/cm	NA	349	269	390	401	209	PNA	304	PNA	700	PNA	423	PNA	487	PNA	504	420	303	1,350	PNA

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

 $\it U$ -Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ANALYTICAL	UNITS	GW													MW-3B												
PARAMETERS		STND (1)	April 2014		October 201	4	April 201	5	October 201	15	April 2016	5	October 2016	5	April 2017		October 2017	7	April 2018		October 20	18	April 201	9	October 20	19	April 2020
Aluminum as Al	mg/L	NA	0.0294 E	3	PNA		0.0059	U	PNA		0.2	U	PNA	t	0.2	U	PNA		0.0134	U	PNA		0.200	U	PNA		0.200 U
Antimony as Sb	mg/L	0.003 #	0.0019 U	_	PNA		0.003	U	PNA		0.06	U	PNA			U	PNA			U	PNA		0.0600	U	PNA		0.0600 U
Arsenic as As	mg/L	0.025	0.0058 E	3	PNA		0.0106		PNA		0.0082	Ţ	PNA		0.01	U	PNA		0.0068	U	PNA		0.0100	U	PNA		0.0100 U
Barium	mg/L	1	0.039 E	3	PNA		0.043	В	PNA		0.0507	Í	PNA		0.0347	Ī	PNA		0.0208	Ī	PNA		0.200	U	PNA		0.200 U
Beryllium as Be	mg/L	0.003	0.00014 U	J	PNA		0.0001	U	PNA		0.005	Ú	PNA		0.005	Ú	PNA		0.0006	Ú	PNA		0.0050	U	PNA		0.0050 U
Boron as B	mg/L	1	0.042 E	3	PNA		0.0409	В	PNA		0.0587	J	PNA		0.0409	J	PNA		0.0409	J	PNA		0.0500	U	PNA		0.0545
Cadmium as Cd	mg/L	0.005	0.00011 U	J	0.0008	В	0.0002	U	0.0001	U	0.0007	J	0.0025	U	0.00029	J	0.0025	U	0.00006	U	0.0025	U	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	11.8		9.43		12.3		15		14.4		12.6		12.9		11.7		8.64		14.000		14.400		18.900		15.500
Chromium as Cr	mg/L	0.05	0.0025 E	3	PNA		0.0055	В	PNA		0.01	U	PNA		0.01	U	PNA		0.0016	U	PNA		0.0100	U	PNA		0.0100 U
Cobalt	mg/L	NA	0.0056 E	3	PNA		0.0084	В	PNA		0.0076	J	PNA		0.0055	J	PNA		0.0035	J	PNA		0.0500	U	PNA		0.0500 U
Copper as Cu	mg/L	0.2	0.003 E	3	PNA		0.0086	В	PNA		0.0029	J	PNA		0.025	U	PNA		0.0025	U	PNA		0.0250	U	PNA		0.0250 U
Cyanide as CN	mg/L	0.2	0.01 U	J	PNA		0.01	U	PNA		0.01	U	PNA		0.01	U	PNA		0.0029	U	PNA		0.0100	U	PNA		0.0100 U
Iron as Fe	mg/L	0.3	14.3		16.2		18.1	Е	18.8		16.9		11.8		12.1		9.97		6.69		9.990		8.710		8.570		5.860
Lead as Pb	mg/L	0.025	0.0023 E	3	0.013	U	0.0022	U	0.004		0.00091	J	0.005	U	0.005	U	0.005	U	0.0013	U	0.0050	U	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35 #	4.1 E	3	3.33	В	4.32	В	5.78		5.25		4.34		4.31		3.98		3.08		4.950		5.150		6.810		5.530
Manganese as Mn	mg/L	0.3	4.15		4.89		4.56		5.01	Е	3.41		3		3.79		2.95		2.6		3.700		2.920		2.440		1.680
Mercury as Hg	mg/L	0.0007	0.0001 U	J	PNA		0.0001	U	PNA		0.0002	U	PNA		0.0002	U	PNA		0.000063	J	PNA		0.00020	U	PNA		0.00020 U
Nickel as Ni	mg/L	0.1	0.003 E	3	PNA		0.003	В	PNA		0.0031	J	PNA		0.0031	J	PNA		0.0025	J	PNA		0.0400	U	PNA		0.0400 U
Potassium	mg/L	NA	4.23 E	3	4.81	В	3.02	В	3.45	В	5.28		5	U	4.2	J	5.0	U	2.19	J	5.000	U	5.000	U	5.940		6.660
Selenium as Se	mg/L	0.01	0.0011 U	J	PNA		0.0038	U	PNA		0.01	U	PNA		0.01	U	PNA		0.0063	U	PNA		0.0100	U	PNA		0.0100 U
Silver as Ag	mg/L	0.05	0.00043 U	J	PNA		0.0027	В	PNA		0.01	U	PNA		0.01	U	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100 U
Sodium as Na	mg/L	20	13		11.7		13.9		19.6		15.3		17.3		16.9		12.0		9.37		20.900		13.800		11.400		13.400
Thallium as Tl	mg/L	0.0005#	0.0013 U	J	PNA		0.0038	U	PNA		0.0039	J	PNA		0.01	U	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100 U
Vanadium	mg/L	NA	0.00039 U	J	PNA		0.0007	U	PNA		0.05	U	PNA		0.05	U	PNA		0.0008	U	PNA		0.0500	U	PNA		0.0500 U
Zinc as Zn	mg/L	2#	0.0087 E	3	PNA		0.0047	В	PNA		0.02	U	PNA		0.0023	J	PNA		0.0016	J	PNA		0.0200	U	PNA		0.0200 U
Alkalinity tot CaCo3	mg/L	NA	55.5		61.2		55		74.8		76.5		55.6		44.4		47		37.2		48.3		59.4		77.7		74.0
Chloride as Cl	mg/L	250	17.1		19		22.5		27.8		19.9		26.9		14.7		14.7		11.0		49.9		22.5		20.1		12.8
Sulfate as SO4	mg/L	250	9.82		7.96		15.9		10.1		11.5		10.8		13.8		11		12.1		7.5		10.1		9.5		12.4
Bromide	mg/L	2 #	0.5 U	J		U	0.5	U	0.5	U	0.13	J		U	0.067	J	0.5	U	0.038		0.50	U	0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2 t	J	2	U	2	U	2	U	2	U	2	U	1	J	2	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0 U
COD	mg/L	NA	12.1		10.2		10	U	11.6		10	U	25.5		10.9			U		U	10.0	U	12.4		21.2		10.4
Color	units	NA	55		PNA		100		PNA		45		PNA		5		PNA			U	PNA		5.0		PNA		20.0
Chromium hex as Cr	mg/L	0.05	0.02 U	J	PNA		0.02	U	PNA		0.02	U	PNA			U	PNA			U	PNA		0.020	U	PNA		0.020 U
Hardness as CaC03	mg/L	NA	72	\perp	76	_	100		92		68		50		40		60		34.0		56.0		40.0		90.0		80.0
Ammonia as N	mg/L	2	2.54	_	5.98	_	2.54		1.7		2.78		2.8		0.65		1		0.39		0.28		0.30		0.30		0.12
Nitrite as N	mg/L	NA	0.1 U		-	U	0.1	U	0.1	U	0.1	U		U	0.031	J	0.00	U		U	0.050	U	0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.1 U	_		U	0.1	U	0.1	U	0.1	U		U		U	0.25		0.74	_	0.37		0.15		0.43		0.35
Phenols as Phenol	mg/L	0.001	0.005 L	J	0.000	U	0.005	U	0.0051		0.005	U		U	0.0021	J	0.005	U		U	0.0050	U	0.0074		0.0116		0.0050 U
Tot Dissolved Solids	mg/L	NA	76		83	_	110		114		105		106	_	102	_	89	_	111	_	142		168		183		147
Tot. Kjeldahl Nitrogen	mg/L	NA	3.11		6.2	_	2.52		1.73		2.01		2.4	_	1.4	_	1.2	_	0.34	_	0.37		0.62		0.84		0.48
Tot Organic Carbon	mg/L	NA	2		14.3	_	1.8		3.39		1.9		2.33	_	1.8	J		В	0.45	J	3.9		3.2		6.8		1.8
Turbidity	NTU	NA	0		0	_	0		1.53		0		1.7	_	0.0		4.9		1.2	_	17.0		2.2		0.0		22.0
Temperature	deg.C	NA	11.36		10.92		11.44		9.54		11.46		11.23		12.85		11.52		11.61	_	11.49		11.70		8.61		11.85
pH	units	6.5-8.5	6.39		6.56	_	6.14		6.05		6.58		6.31	-	5.96		6.12		5.95	4	6.19		6.16		6.11		6.5
Spec. Cond	umho/cm	NA	244		308		262		277		276		261		220		220		156		199		246		281		174

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ANALYTICAL	UNITS	GW											MW	V-3C										
PARAMETERS		STND (1)	October 2014	A	pril 2015	00	ctober 20	15	April 2016	October 20	016	April 2017		October 201	۱7	April 2018	Oc	tober 2018	3	April 201	9	October 20	19	April 2020
Aluminum as Al	mg/L	NA	PNA	0.	.0059 U		PNA		0.2 U	PNA		0.2	U	PNA		0.0134 U		PNA		0.200	U	PNA		0.200 U
Antimony as Sb	mg/L	0.003 #	PNA	C	0.003 U		PNA		0.06 U	PNA		0.06	U	PNA		0.003 U		PNA		0.0600	U	PNA		0.0600 U
Arsenic as As	mg/L	0.025	PNA	0.	.0033 U		PNA		0.01 U	PNA		0.01	U	PNA		0.0068 U		PNA		0.0100	U	PNA		0.0100 U
Barium	mg/L	1	PNA	0.	.0228 B		PNA		0.0201 J	PNA		0.0183	J	PNA		0.0185 J		PNA		0.200	U	PNA		0.200 U
Beryllium as Be	mg/L	0.003	PNA	0.	.0001 U		PNA		0.005 U	PNA		0.005	U	PNA		0.0006 U		PNA		0.0050	U	PNA		0.0050 U
Boron as B	mg/L	1	PNA	0.	.0104 B		PNA		0.0128 J	PNA		0.0055	J	PNA		0.0124 J		PNA		0.0500	U	PNA		0.0500 U
Cadmium as Cd	mg/L	0.005	0.0003 U	0.	.0002 U	(0.0001	U	0.0025 U	0.0025	U	0.0025	U	0.0025	U	0.00006 U	0	.0025	U	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	10.1		10.2		9.36		9.11	8.31		8.63		7.35		8.06		8.68		8.95		8.80		8.44
Chromium as Cr	mg/L	0.05	PNA	0.	.0031 B		PNA		0.0058 J	PNA		0.0048	J	PNA		0.022		PNA		0.0146		PNA		0.0100 U
Cobalt	mg/L	NA	PNA	0.	.0006 U		PNA		0.05 U	PNA		0.05	U	PNA		0.0006 U		PNA		0.0500	U	PNA		0.0500 U
Copper as Cu	mg/L	0.2	PNA	0.	.0007 B		PNA		0.0021 J	PNA		0.025	U	PNA		0.0025 U		PNA		0.0250	U	PNA		0.0250 U
Cyanide as CN	mg/L	0.2	PNA		0.01 U		PNA		0.01 U	PNA		0.01	U	PNA		0.0029 U		PNA		0.0100	U	PNA		0.0100 U
Iron as Fe	mg/L	0.3	0.0978 B	0.	.0295 BI	Ξ (0.0268	U	0.1 U	0.1	U	0.0385	J	0.02	U	0.108	(0.100		0.0862		0.0285		0.0868
Lead as Pb	mg/L	0.025	0.0014 B	0.	.0022 U	(0.0055		0.004 J	0.005	U	0.005	U	0.005	U	0.0013 U	0	.0050	U	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35 #	4.63 B		4.6 B		4.38	В	4.14	3.88		3.74		3.52		3.93	3	3.980		4.050		4.080		3.820
Manganese as Mn	mg/L	0.3	0.0153		0.01 B	(0.0067	BE	0.0034 J	0.01	U	0.0039	J	0.01	U	0.0063 J	0	.0167		0.0100	U	0.0100	U	0.0100 U
Mercury as Hg	mg/L	0.0007	PNA	0.	.0001 U		PNA		0.0002 U	PNA		0.0002	U	PNA		0.000067 J		PNA		0.00020	U	PNA		0.00020 U
Nickel as Ni	mg/L	0.1	PNA	0.	.0027 B		PNA		0.04 U	PNA		0.0068	J	PNA		0.0046 J		PNA		0.0400	U	PNA		0.0400 U
Potassium	mg/L	NA	1.32 B	0	0.472 U		0.937	В	0.786 J	5	U	0.874	J	5	U	0.841 J		5.000	U	5.000	U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.	.0038 U		PNA		0.01 U	PNA		0.01	U	PNA		0.0063 U		PNA		0.0100	U	PNA		0.0100 U
Silver as Ag	mg/L	0.05	PNA	0.	.0022 U		PNA		0.01 U	PNA		0.01	U	PNA		0.0036 U		PNA		0.0100	U	PNA		0.0100 U
Sodium as Na	mg/L	20	13.5		12.2		14.2		13.2	11.7		13.9		10.1		10.8	1	1.000		12.100		12.100		11.800
Thallium as Tl	mg/L	0.0005#	PNA	0.	.0038 U		PNA		0.01 U	PNA			U	PNA		0.0036 U		PNA		0.0100	U	PNA		0.0100 U
Vanadium	mg/L	NA	PNA	0.	.0007 U		PNA		0.05 U	PNA		0.05	U	PNA		0.0012 J		PNA		0.0500	U	PNA		0.0500 U
Zinc as Zn	mg/L	2 #	PNA	0.	.0048 B		PNA		0.02 U	PNA		0.02	U	PNA		0.0012 U		PNA		0.0200	U	PNA		0.0200 U
Alkalinity tot CaCo3	mg/L	NA	49.8		45.1		44		40	41.8		38.0		41.6		33		42.8		45.0		45.8		45.9
Chloride as Cl	mg/L	250	13.8		15.4		13.4		11.9	12.7		10.6		9.5		10.7		12.6		12.4		13.0		9.9
Sulfate as SO4	mg/L	250	5 U		5 U		5	U	3.24 J	5	U	3	J	5	U	3.2 J		5.0	U	5.0	U	5.0	U	5.0 U
Bromide	mg/L	2 #	0.5 U		0.5 U	_	0.5	U	0.05 J	0.5	U	0.062	J	0.5	U	0.056 J			U	0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2 U		2 U		2	U	2 U	2	U	1	J	2	U	2 U		2.0	U	2.0	U	2.0	U	2.0 U
COD	mg/L	NA	10 U		10 U		10	U	10 U	19.2		6.8	J	10	U	10 U			U	10.0	U	10.0	U	10.0 U
Color	units	NA	PNA		5		PNA		5 U	PNA			U	PNA		5 U	+	PNA		5.0		PNA		5.0 U
Chromium hex as Cr	mg/L	0.05	PNA		0.02 U		PNA		0.02 U	PNA			U	PNA		0.003 U		PNA		0.020	U	PNA		0.020 U
Hardness as CaC03	mg/L	NA	100		40		40		38	35		35		33		32	+	33.0		24.0		23.3		32.0
Ammonia as N	mg/L	2	0.1 U	+	0.1 U	_	0.1	U	0.1 U	0.1	U	0.16			UB	0.023 J			U	0.100	U	0.100	U	0.100 U
Nitrite as N	mg/L	NA	0.1 U	+	0.1 U		0.1	U	0.1 U	0.1	U		U	0.05	U	0.05 U	+		U	0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.1 U		0.16		0.18		0.17	0.17		0.2		0.16		0.21	_	0.17		0.18		0.19		0.18
Phenols as Phenol	mg/L	0.001	0.005 U	C	0.005 U	(0.0058		0.005 U	0.0428			U	0.005	U	0.0038 J	_		U	0.0050	U	0.0121		0.0050 U
Tot Dissolved Solids	mg/L	NA	75	ļ	71		81		61	135		63		41		102	+	65.0		80.0		102		94.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.1 U		0.2		1	U	0.1 U	0.12		0.046	J	0.1	U	0.1 U			U	0.14		0.10	U	0.29
Tot Organic Carbon	mg/L	NA	11.6	ļ	1 U		0.509		1 U	1.10		0.36	J	1	UB	0.24 J			U	1.0	U	1.0	U	1.0 U
Turbidity	NTU	NA	0	ļ	0		0.8		2.2	0.1		0		3.8		1.9		4.6		0.0		0.0		29.4
Temperature	deg.C	NA	12.04		11.35		11.4		11.77	11.98		12.75		11.76		11.79		1.82	$\perp \downarrow$	11.86		10.75		11.81
рН	units	6.5-8.5	6.66		6.32		6.37		6.82	6.36		6.75		6.61		6.19		7.01		6.64		6.71		6.9
Spec. Cond	umho/cm	NA	176		137		133		130	133		130		131		127		127		142		126		103

NOTES:

- (1) = NYSDEC, Class GA Groundwater Standards
- Bold indicates update due to data validation.
- # = Guidance value, no standard exists.
- NA = Not available.
- PNA = parameter not analyzed for.
- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{eq:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\textbf{\textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}\\$
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW								M	W-4A							
			A:1 2014	Octobe	er 2014	Apri	l 2015	Octo	ber 2015	April 2016	October 2016	April 2017	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020
PARAMETERS		STND (1)	April 2014	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	April 2016	October 2016	April 2017	October 2017	April 2016	October 2016	April 2019	October 2019	April 2020
Aluminum as Al	mg/L	NA	0.253	PNA	PNA	0.271	0.211	PNA	PNA	0.219	PNA	0.242	PNA	0.187 J	PNA	0.200 U	PNA	0.200 U
Antimony as Sb	mg/L	0.003 #	0.0019 U	PNA	PNA	0.003 U	0.003 U	PNA	PNA	0.06 U	PNA	0.06 U	PNA	0.003 U	PNA	0.0600 U	PNA	0.0600 U
Arsenic as As	mg/L	0.025	0.0011 U	PNA	PNA	0.0033 U	0.0033 U	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U
Barium	mg/L	1	0.183 B	PNA	PNA	0.158 B	0.144 B	PNA	PNA	0.17 J	PNA	0.128 J	PNA	0.123 J	PNA	0.200 U	PNA	0.200 U
Beryllium as Be	mg/L	0.003	0.0006 B	PNA	PNA	0.0003 B	0.0004 B	PNA	PNA	0.0004 J	PNA	0.005 U	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U
Boron as B	mg/L	1	0.0271 B	PNA	PNA	0.0273 B	0.0268 B	PNA	PNA	0.0315 J	PNA	0.0402 J	PNA	0.0488 J	PNA	0.0500 U	PNA	0.0500 U
Cadmium as Cd	mg/L	0.005	0.0002 B	0.0003 U	0.0003 U	0.0002 U	0.0002 U	0.0002	B 0.0005 B	0.0004 J	0.0025 U	0.00036 J	0.0025 U	0.00015 J	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	11.3	11.6	12.2	10.6	10.7 J	14.3	13.3	11.7	12.5	10.1	10.9	10.4	8.330	7.700	9.030	8.270
Chromium as Cr	mg/L	0.05	0.0042 B	PNA	PNA	0.0218	0.001 U	PNA	PNA	0.01 U	PNA	0.0067 J	PNA	0.0039 J	PNA	0.0100 U	PNA	0.0100 U
Cobalt	mg/L	NA	0.00019 U	PNA	PNA	0.0006 U	0.0006 U	PNA	PNA	0.05 U	PNA	0.05 U	PNA	0.0006 U	PNA	0.0500 U	PNA	0.0500 U
Copper as Cu	mg/L	0.2	0.00076 U	PNA	PNA	0.0022 B	0.0014 B	PNA	PNA	0.0023 J	PNA	0.025 U	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U
Cyanide as CN	mg/L	0.2	0.01 U	PNA	PNA	0.01 U	PNA	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U
Iron as Fe	mg/L	0.3	0.0796 B	0.127	0.0714 B	0.257 J	0.018 J	0.0268	U 0.0268 U	0.1 U	0.112	0.129	1.69	0.0583	0.0302	0.0200 U	2.140	0.0358
Lead as Pb	mg/L	0.025	0.0038 B	0.002 B	0.0016 B	0.0022 U	0.0022 U	0.0044	0.0044 N	0.0028 J	0.005 U	0.005 U	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	3.87 B	3.76 B	3.81 B	3.61 B	3.66 J	4.58	B 4.34 BE	3.85	4.46	3.60	4.24	3.82	3.170	2.960	3.190	2.810
Manganese as Mn	mg/L	0.3	0.113	0.086	0.0846	0.122	0.104 J	0.119	E 0.101	0.142	0.105	0.128	0.219	0.0702	0.0244	0.0225	0.224	0.0630
Mercury as Hg	mg/L	0.0007	0.0001 U	PNA	PNA	0.0001 U	0.0001 U	PNA	PNA	0.0002 U	PNA	0.0002 U	PNA	0.000066 J	PNA	0.00020 U	PNA	0.00020 U
Nickel as Ni	mg/L	0.1	0.0051 B	PNA	PNA	0.0044 B	0.0035 B	PNA	PNA	0.005 J	PNA	0.004 J	PNA	0.0031 J	PNA	0.0400 U	PNA	0.0400 U
Potassium	mg/L	NA	3.87 B	4.44 B	4.75 B	3.04 B	2.66 B	3.89	B 2.75 B	4.01 J	5 U	3.34 J	5 U	3.45 J	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	0.0011 U	PNA	PNA	0.0038 U	0.0038 UJ	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U
Silver as Ag	mg/L	0.05	0.00043 U	PNA	PNA	0.0022 U	0.0022 U	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U
Sodium as Na	mg/L	20	23	19.3	20.7	25.4	26.3 J	23.7	22.8	27	22.1	31.6	25.9	29.8	24.400	25.000	19.200	16.900
Thallium as Tl	mg/L	0.0005#	0.0013 U	PNA	PNA	0.0038 U	0.0038 U	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U
Vanadium	mg/L	NA	0.00039 U	PNA	PNA	0.0007 U	0.0007 U	PNA	PNA	0.05 U	PNA	0.05 U	PNA	0.0008 U	PNA	0.0500 U	PNA	0.0500 U
Zinc as Zn	mg/L	2 #	0.017 B	PNA	PNA	0.0118 B	0.0132 U	PNA	PNA	0.0069 J	PNA	0.0052 J	PNA	0.006 J	PNA	0.0200 U	PNA	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	6.5	18.4	PNA	6.4	PNA	8.55	PNA	3.5	4.9	4.0	50.4	6.4 J	12.7	7.0	4.8	5.6
Chloride as Cl	mg/L	250	41.5	33	PNA	49.1	PNA	44.5	PNA	46.5	41.3	47.0	46.6	42.9	39.0	49.4	37.1	27.5
Sulfate as SO4	mg/L	250	11.1	14.7	PNA	17.8	PNA	10.5	PNA	13.7	12.2	16.6	11.4	14.4	8.5	16.7	19.5	12.7
Bromide	mg/L	2 #	0.5 U	0.5 U	PNA	0.5 U	PNA	0.5	U PNA	0.02 J	0.5 U	0.03 J	0.5 U	0.027 J	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2 U	PNA	2 U		2	U PNA	2 U	_ 0	- ,	2 U	2 U		2.0 U	4.0 U	2.0 U
COD	mg/L	NA	10 U	10 U	PNA	10 U		10	U PNA	10 U		10 U	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U
Color	units	NA	5 U	PNA	PNA	5 U		PNA	PNA	5 U		5	PNA	5 U		5.0 U	PNA	5.0 U
Chromium hex as Cr	mg/L	0.05	0.02 U	PNA	PNA	0.02 U		PNA	PNA	0.02 U	PNA	0.02 U	PNA	0.003 U		0.020 U	PNA	0.020 U
Hardness as CaC03	mg/L	NA	40	64	PNA	40	PNA	56	PNA	42	45	40	88	41	29.0	23.3	34.0	32.0
Ammonia as N	mg/L	2	0.1	0.1 U	PNA	0.1 U	<u> </u>	0.1	U PNA	0.2	0.1 U	, ,	0.1 U	0.073 U		0.10 U	0.20	0.12
Nitrite as N	mg/L	NA	0.1 U	0.1 U	PNA	0.1 U	<u> </u>	0.1	U PNA	0.1 U	0.05 U	0.00	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	8.25	4.72	PNA	4.6	PNA	9.05	PNA	7.53 D	0.7	5.6	0.29	0.46	7.2	1.4	3.6	5.0
Phenols as Phenol	mg/L	0.001	0.005 U	0.005 U	PNA	0.005 U		0.008	PNA	0.005 U	0.0068	0.005 U	0.005 U	0.0043 UJ		0.0050 U	0.0161	0.0050 U
Tot Dissolved Solids	mg/L	NA	142	121	PNA	115	PNA	146	PNA	128	127	137	120	166	117	97.0	126	109
Tot. Kjeldahl Nitrogen	mg/L	NA	0.18	0.1 U	11111	0.1 U			U PNA	0.1 U	0.1	0.1	0.41	0.1 U	0.10	0.01 U	0.10 U	0.10 U
Tot Organic Carbon	mg/L	NA	1 U	5.3	PNA	0.1 U	1 1471	0.958	PNA	1 U	1.00 U	0.84 J	1 U	0.66 J	1.0 U	1.0 U	1.8	1.0 U
Turbidity	NTU	NA	1.1	0	PNA	0	PNA	0.29	PNA	2.14	0.2	0	22.9	1.4	14.88	0.0	48.2	18.4
Temperature	deg.C	NA	10.41	12.88	PNA	10.57	PNA	12.97	PNA	12.34	13.46	11.63	13.31	10.78	13.49	10.46	12.91	11.59
pН	units	6.5-8.5	5.61	5.54	PNA	5.07	PNA	5.32	PNA	4.86	5.16	4.93	5.22	4.89	5.4	5.26	4.75	6.0
Spec. Cond	umho/cm	NA	244	255	PNA	221	PNA	230	PNA	257	251	270	272	278	296	232	171	145

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

$Bold\ indicates\ update\ due\ to\ data\ validation.$

= Guidance value, no standard exists.

NA = Not available.

- \boldsymbol{B} Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

 J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- U -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

 Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW								MV	V-4B							
		•		Octobe	er 2014	April	2015	Octol	er 2015	1 11 204 6	0 . 1 . 2046	. "	0 . 1 . 004.	. "	0 . 1 . 2040	4 70040	0 . 1 . 2040	4 11 0000
PARAMETERS		STND (1)	April 2014	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	April 2016	October 2016	April 2017	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020
Aluminum as Al	mg/L	NA	0.0511 B	PNA	PNA	0.0059 U	0.024 B	PNA	PNA	0.2 U	PNA	0.2 U	PNA	0.0137 J	PNA	0.200 U	PNA	0.200 U
Antimony as Sb	mg/L	0.003 #	0.0019 U	PNA	PNA	0.003 U	0.003 U	PNA	PNA	0.06 U	PNA	0.06 U	PNA	0.0055 J	PNA	0.0600 U	PNA	0.0600 U
Arsenic as As	mg/L	0.025	0.0024 B	PNA	PNA	0.0049 B	0.0034 B	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U
Barium	mg/L	1	0.0921 B	PNA	PNA	0.0728 B	0.0595 B	PNA	PNA	0.0578 J	PNA	0.0403 J	PNA	0.0589 J	PNA	0.200 U	PNA	0.200 U
Beryllium as Be	mg/L	0.003	0.00014 U	PNA	PNA	0.001 U	0.0002 B	PNA	PNA	0.005 U	PNA	0.005 U	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U
Boron as B	mg/L	1	0.0779 B	PNA	PNA	0.0714 B	0.0634 B	PNA	PNA	0.0703 J	PNA	0.0582	PNA	0.0713	PNA	0.0569	PNA	0.0574
Cadmium as Cd	mg/L	0.005	0.0002 B	0.0003 U	0.0003 U	0.0002 U	0.0002 U	0.0001 U	0.0001 U	0.0004 J	0.0025 U	0.00013 J	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	19.8	20.7	22	20.9	18.8	21.7	19.8	20.8	19.6	18.7	16.9	15.6	15.400	13.800	14.400	13.800
Chromium as Cr	mg/L	0.05	0.0254	PNA	PNA	0.0021 B	0.0011 U	PNA	PNA	0.01 UJ	PNA	0.01 U	PNA	0.0055 J	PNA	0.0100 U	PNA	0.133
Cobalt	mg/L	NA	0.0041 B	PNA	PNA	0.0037 B	0.0034 B	PNA	PNA	0.0041 J	PNA	0.0024 J	PNA	0.0046 J	PNA	0.0500 U	PNA	0.0500 U
Copper as Cu	mg/L	0.2	0.0037 B	PNA	PNA	0.0046 B	0.0016 B	PNA	PNA	0.0021 U	PNA	0.025 U	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U
Cyanide as CN	mg/L	0.2	0.01 U	PNA	PNA	0.01 U	PNA	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U
Iron as Fe	mg/L	0.3	11.5	0.133	0.0432 B	8.06	1.29	8.37	1.05	7.67	7.66	1.28	3.89	9.32	10.600	4.800	5.430	4.020
Lead as Pb	mg/L	0.025	0.0028 B	0.0014 B	0.0021 B	0.0022 U	0.0022 U	0.0055	0.0042 N	0.0029 J	0.005 U	0.005 U	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	9.62	10.7	11	10.3	9.49	11.2	10.3 E	10.3	9.83	9.47	8.31	7.35	7.500	6.900	7.320	6.730
Manganese as Mn	mg/L	0.3	1.64	0.215	0.204	1.45	1.22	1.62	1.34	1.14	1.19	0.343	0.633	1.08	1.270	0.710	0.959	0.395
Mercury as Hg	mg/L	0.0007	0.0001 U	PNA	PNA	0.0001 U	0.0001 U	PNA	PNA	0.0002 U	PNA	0.0002 U	PNA	0.000067 J	PNA	0.00020 U	PNA	0.00020 U
Nickel as Ni	mg/L	0.1	0.0052 B	PNA	PNA	0.0037 B	0.0035 B	PNA	PNA	0.0033 J	PNA	0.0041 J	PNA	0.0034 J	PNA	0.0400 U	PNA	0.0400 U
Potassium	mg/L	NA	5.97	1.88 B	1.73 B	3.91 B	3.19 B	3.98 B	2.69 B	3.25 J	5 U	2.04 J	5 U	3.74 J	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	0.0011 U	PNA	PNA	0.0038 U	0.0038 U	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U
Silver as Ag	mg/L	0.05	0.00043 U	PNA	PNA	0.0022 U	0.0022 U	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U
Sodium as Na	mg/L	20	21.6	19.5	21.5	20.4	18.9	21.9	21.7	19.8 J	18.3	18.1	16.6	17.8	16.700	23.000	26.000	14.200
Thallium as Tl	mg/L	0.0005#	0.0014 B	PNA	PNA	0.0038 U	0.0038 U	PNA	PNA	0.01 U	PNA	0.01 U	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U
Vanadium	mg/L	NA	0.0017 B	PNA	PNA	0.0007 U	0.0007 U	PNA	PNA	0.05 U	PNA	0.05 U	PNA	0.0008 U	PNA	0.0500 U	PNA	0.0500 U
Zinc as Zn	mg/L	2 #	0.0174 B	PNA	PNA	0.006 B	0.123 B	PNA	PNA	0.02 U	PNA	0.02 U	PNA	0.0022 J	PNA	0.0200 U	PNA	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	107	106	PNA	93.6	PNA	92.6	PNA	101	93	72.4	91.4	68.6	79.6	77.8	68.6	69.2
Chloride as Cl	mg/L	250	23	20.7	PNA	28.3	PNA	35.5	PNA	21.1	27.3	15.2	22.4	19.2	20.4	30.4	43.4	13.8
Sulfate as SO4	mg/L	250	11.3	6.76	PNA	12.7	PNA	10.4	PNA	11.1 J	10.7	9.9	10.3	14.7	15.2	10.4	14.9	9.8
Bromide	mg/L	2 #	0.5 U	0.5 U	PNA	0.5 U	PNA	0.5 U	PNA	0.1 J	0.5 U	0.077 J	0.5 U	0.09 J	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2 U	PNA	2 U	PNA	2 U	PNA	2 U	2 U	1 J	2 U	2 U	4.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	11.4	10 U	PNA	10 U	PNA	10 U	PNA	10 U	10.9	8.8 J	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U
Color	units	NA	100	PNA	PNA	75	PNA	PNA	PNA	15	PNA	25	PNA	5 U	PNA	6.0	PNA	10.0
Chromium hex as Cr	mg/L	0.05	0.02 U	PNA	PNA	0.02 U	PNA	PNA	PNA	0.02 UJ	PNA	0.02 U	PNA	0.015 U	PNA	0.020 U	PNA	0.020 U
Hardness as CaC03	mg/L	NA	92	100	PNA	140	PNA	120	PNA	86	86	85	74	70	60.0	50.0	66.7	53.3
Ammonia as N	mg/L	2	5.32	0.1 U	PNA	2.98	PNA	1.92	PNA	1.7	2.1	0.34	2.3	2.5	2.8	1.4	2.1	0.62
Nitrite as N	mg/L	NA	0.10 U	0.1 U	PNA	0.1 U	PNA	0.1 U	PNA	0.1 U	0.05 U	0.05 U	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.11	0.22	PNA	0.1 U	PNA	0.1 U	PNA	0.1 U	0.052	0.11	0.069	0.13	0.11	0.16	0.21	0.27
Phenols as Phenol	mg/L	0.001	0.005 U	0.005 U	PNA	0.005 U	PNA	0.0059	PNA	0.005 U	0.0115	0.005 U	0.005 U	0.0029 J	0.0050 U	0.0050 U	0.014	0.0050 U
Tot Dissolved Solids	mg/L	NA	154	133	PNA	140	PNA	144	PNA	144	152	133	137	161	114	144	216	128
Tot. Kjeldahl Nitrogen	mg/L	NA	5.95	0.1 U	PNA	3.05	PNA	1.64	PNA	1.27 J	1.7	0.83	2.5	2.7	3.0	1.3	2.4	1.2
Tot Organic Carbon	mg/L	NA	3	25.7	PNA	2.1	PNA	2.01	PNA	1.8	1.87	1.3	1.5	1.6	1.9	1.3	1.4	1.0 U
Turbidity	NTU	NA	0	0	PNA	0	PNA	0.37	PNA	8.37	0	0	2.7	2.2	0.0	0.0	0.0	24.8
Temperature	deg.C	NA	11.86	12.95	PNA	12.14	PNA	12.91	PNA	14.34	13.02	12.75	12.73	12.04	12.55	12.1	12.48	12.42
рН	units	6.5-8.5	6.6	6.55	PNA	6.19	PNA	6.66	PNA	6.32	6.6	6.51	6.41	6.31	6.4	6.58	6.29	6.8
Spec. Cond	umho/cm	NA	359	314	PNA	292	PNA	310	PNA	290	314	250	283	281	285	270	252	155

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

$Bold\ indicates\ update\ due\ to\ data\ validation.$

= Guidance value, no standard exists.

NA = Not available.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- $\ensuremath{\text{U}}$ Indicates the compound was analyzed for, but not detected.
- U-Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

 Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW								M	W-4C							
	1 1		A	Octobe	er 2014	Apri	2015	Octo	ber 2015	A	Ontobar 2016	April 2017	Oatabar 2017	April 2018	Ontobar 2010	April 2019	O -t h 2010	A
PARAMETERS		STND (1)	April 2014	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	April 2016	October 2016	April 2017	October 2017	Aprii 2018	October 2018	April 2019	October 2019	April 2020
Aluminum as Al	mg/L	NA	0.0354 B	PNA	PNA	0.0059 U	0.132	PNA	PNA	0.20 U	PNA	0.20 U	PNA	0.0134 U	PNA	0.200 U	PNA	0.200 U
Antimony as Sb	mg/L	0.003 #	0.0019 U	PNA	PNA	0.0069 B	0.003 U	PNA	PNA	0.060 U	PNA	0.060 U	PNA	0.0052 J	PNA	0.0600 U	PNA	0.0600 U
Arsenic as As	mg/L	0.025	0.0046 B	PNA	PNA	0.0033 U	0.0033 U	PNA	PNA	0.010 U	PNA	0.010 U	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U
Barium	mg/L	1	0.0504 B	PNA	PNA	0.0468 B	0.0424 B	PNA	PNA	0.0519 J	PNA	0.0532 J	PNA	0.0491 J	PNA	0.200 U	PNA	0.200 U
Beryllium as Be	mg/L	0.003	0.00014 U	PNA	PNA	0.0001 U	0.0001 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U
Boron as B	mg/L	1	0.0083 B	PNA	PNA	0.0069 B	0.0077 B	PNA	PNA	0.0116 J	PNA	0.050 U	PNA	0.0011 J	PNA	0.0500 U	PNA	0.0500 U
Cadmium as Cd	mg/L	0.005	0.00011 U	0.0003 U	0.0003 U	0.0002 U	0.0002 U	0.0001 U	J 0.0001 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	26.2	30.1	31.9 J	27.0	25.0	29.1	27.8	29.7	30.4	28.0	30.4	25.3	25.800	24.600	25.300	19.600
Chromium as Cr	mg/L	0.05	1.31	PNA	PNA	0.184	0.0018 B	PNA	PNA	0.396	PNA	0.300	PNA	0.564	PNA	0.367	PNA	0.345
Cobalt	mg/L	NA	0.0228 B	PNA	PNA	0.0049 B	0.0016 B	PNA	PNA	0.0077 J	PNA	0.0122 J	PNA	0.0099 J	PNA	0.0500 U	PNA	0.0500 U
Copper as Cu	mg/L	0.2	0.0225 B	PNA	PNA	0.0027 B	0.0004 U	PNA	PNA	0.0053 J	PNA	0.025 U	PNA	0.0104 J	PNA	0.0250 U	PNA	0.0250 U
Cyanide as CN	mg/L	0.2	0.010 U	PNA	PNA	0.010 U		PNA	PNA	0.010 U		0.010 U	PNA	0.0029 U		0.0100 U	PNA	0.0100 U
Iron as Fe	mg/L	0.3	3.97	0.873	0.0853 J	0.715	0.0423 B	1.50	0.0268 U	1.68	0.734	1.50	1.41	2.15	4.160	1.450	2.640	1.470
Lead as Pb	mg/L	0.025	0.0097	0.0016 J	0.0024 B	0.0022 U		0.0054	0.0049 N	0.0036 J	0.0050 U		0.0050 U	0.0013 U		0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	11.9	13.4	14.1 J	11.9	11.5	13.3	12.8 E	13.3	13.8	12.5	13.9	11.7	11.700	11.100	11.400	8.640
Manganese as Mn	mg/L	0.3	0.154	0.0436	0.0362 J	0.0407	0.0336	0.0662 I	0.0307	0.0561	0.0368	0.0789	0.0479	0.070	0.108	0.0417	0.0933	0.0336
Mercury as Hg	mg/L	0.0007	0.0001 U	PNA	PNA	0.0001 U	0.0001 U	PNA	PNA	0.0002 U	PNA	0.0002 U	PNA	0.00007 J	PNA	0.00020 U	PNA	0.00020 U
Nickel as Ni	mg/L	0.1	0.359	PNA	PNA	0.273	0.233	PNA	PNA	0.349	PNA	0.426	PNA	0.274	PNA	0.288	PNA	0.203
Potassium	mg/L	NA	1.60 B	1.95 B	1.96 B	1.09 B	0.691 B	1.50 I	3 0.562 B	1.40 J	5.00 U	1.75 J	5.00 U	1.51 J	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	0.0011 U	PNA	PNA	0.0038 U	0.0038 U	PNA	PNA	0.010 U	PNA	0.010 U	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U
Silver as Ag	mg/L	0.05	0.00043 U	PNA	PNA	0.0022 U	0.0022 U	PNA	PNA	0.010 U	PNA	0.010 U	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U
Sodium as Na	mg/L	20	28.7	36.1	37.3 J	28.8	27.3	32.7	32.9	34.2	39.3	39.3	44.6	34.1	37.4	39.7	44.2	33.200
Thallium as Tl	mg/L	0.0005 #	0.0013 U	PNA	PNA	0.0038 U	0.0038 U	PNA	PNA	0.010 U	PNA	0.010 U	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U
Vanadium	mg/L	NA	0.0033 B	PNA	PNA	0.0007 U	0.0007 U	PNA	PNA	0.050 U	PNA	0.00083 J	PNA	0.0017 J	PNA	0.0500 U	PNA	0.0500 U
Zinc as Zn	mg/L	2 #	0.0178 B	PNA	PNA	0.0057 B	0.0139 B	PNA	PNA	0.020 U	PNA	0.020 U	PNA	0.0015 J	PNA	0.0200 U	PNA	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	33.9	38.0	PNA	38.5	PNA	45.0	PNA	41.9	44.0	34.2	47.4	43.0	46.6	45.3	44.2	50.0
Chloride as Cl	mg/L	250	100	135	PNA	107 D	PNA	113	PNA	99.0	140	106	125	101	122	125	134	84.6
Sulfate as SO4	mg/L	250	5.00 U	5.00 U	PNA	5.00 U	PNA	67.6	PNA	3.67 J	5.00 U	4.20 J	5.00 U	4.60 J	5.9	5.2	6.6	5.2
Bromide	mg/L	2 #	0.50 U	0.50 U	PNA	0.50 U		0.50 U	J PNA	0.08 J	0.50 U	0.070	0.50 U	0.072 J	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2.0 U	2.0 U	PNA	2.0 U		2.0 U	J PNA	2.0 U	2.0 0	1.0	2.0 U	10.0 U		2.0 U	2.0 U	2.0 U
COD	mg/L	NA	10.0 U	10.0 U		10.0 U		10.0 U		10.0 U		21.3	10.0 U	10.0 U		10.0 U	10.0 U	16.7
Color	units	NA 0.05	5.0 U	PNA	PNA	15.0	PNA	PNA	PNA	5.0	PNA	25.0	PNA	5.0 U	1 1 1 1 1	30.0	PNA	25.0
Chromium hex as Cr	mg/L	0.05	0.020 U	PNA 160	PNA PNA	0.020 U 120	PNA PNA	PNA 120	PNA PNA	0.020 U	PNA 120	0.020 U	PNA	0.015 U	PNA 96.0	0.020 U 80.0	PNA 90.0	0.020 U 80.0
Hardness as CaC03	mg/L	NA 2	108 0.15	0.10 U	PNA PNA	0.10 U		120 0.10 U	J PNA	114 0.12	0.10	170 0.13	120 0.10 U	110 0.021 J	96.0 0.10 U	0.10 U	90.0 0.10 U	0.10 U
Ammonia as N	mg/L	2 NA	0.15 0.10 U	0.10 U	PNA PNA	0.10 U		0.10 U	J PNA J PNA	0.12 0.10 U	0.10 0.050 U	1	0.10 U	0.021 J 0.050 U	0.10 U	0.10 U	0.10 U	0.10 U
Nitrite as N Nitrate as N	mg/L	10	0.10 U	0.10 U	PNA PNA	0.10 U		0.10 t		0.10 U	0.050 U		0.050 U	0.050 0	0.050 0	0.050 U	0.050 U	0.050 U
Phenols as Phenol	mg/L	0.001	0.0050 U	0.10 U	PNA	0.10 U	PNA	0.10 t	J PNA	0.10 U	0.0088	0.044 J	0.050 U	0.076 0.0020 I	0.062 0.0050 U	0.050 U	0.050 0	0.0050 U
	mg/L		298	337	PNA PNA	258	PNA PNA	227	PNA	239	305	309	230	307	234	266	300	212
Tot Dissolved Solids Tot. Kjeldahl Nitrogen	mg/L	NA NA	0.29	0.10 U	PNA PNA	0.18	PNA PNA	0.10 U	J PNA	0.10 U	0.10 U	0.13	0.17	0.10 U	0.10 U	0.30	0.10 U	0.20
, ,	mg/L	NA NA	1.0 U	9.6	PNA	1.0 U	PNA	0.10 t	J PNA	1.0 U	1.0 U	0.13 0.25	1.0 U	0.10 U	1.0 U	1.0 U	1.0 U	1.0 U
Tot Organic Carbon Turbidity	mg/L NTU	NA NA	1.0 0	9.6	PNA PNA	0	PNA PNA	10.1	PNA	13.6	0.8	0.25	8.3	18.3	5.6	8.4	1.0 0	1.0 0
<u> </u>	deg.C	NA NA	11.54	12.73	PNA	11.88	PNA	12.68	PNA	14.7	12.97	13.61	12.67	12.14	13.22	12.16	12.65	12.51
Temperature	units	6.5-8.5	7.95	6.97	PNA	6.57	PNA	6.59	PNA	7.01	6.94	6.84	6.85	6.7	6.74	6.87	6.83	7.1
Piii Cnoo Cond	units umho/cm	6.5-8.5 NA	7.95	0.97	PNA PNA	383		430		7.01 408	546		566	437	543	6.87 485	6.83	306
Spec. Cond	umno/cm	ΝA	311	1	PNA	383	PNA	430	PNA	408	546	479	566	43/	543	485	412	306

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

$Bold\ indicates\ update\ due\ to\ data\ validation.$

= Guidance value, no standard exists.

NA = Not available.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- U-Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

 Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

										AFRIL 2020							1
ANALYTICAL	UNITS	GW	A!! 204 F	0-1-1-	- 2015	A	1016		A	2045	MW-		A	0-1-12010	A	0-1-12010	-11 2020
DADAMETERC		cmvp (1)	April 2015 Unfiltered Filtered	Unfiltered	er 2015 Filtered	April 2 Unfiltered	Filtered	October 2016	April Unfiltered	Filtered	Octobe Unfiltered	Filtered	April 2018 Unfiltered Filtered	October 2018 Unfiltered Filtered	April 2019 Unfiltered Filtered	October 2019 Apr	ril 2020 Filtered
PARAMETERS Aluminum as Al	ma/I	STND (1) NA	0.0059 U 0.0952	B 0.0179 B	0.0145 B	0.2 U	0.2 U	0.2 U	1.01	0.2 U	0.2 U	0.2 U	0.0975 0.0239	0.200 U 0.200 U	0.200 U 0.200 U	0.200 U 0.200	U 0.200 U
Antimony as Sb	mg/L mg/L	0.003 #	0.0039 U 0.0932	U 0.0059 B	0.0143 B	0.2 U	0.2 U	0.2 U	0.06 U	0.2 U	0.2 U	0.2 U	0.0973 J 0.0239 J 0.003 U 0.003 U	0.0600 U 0.0600 U	0.0600 U 0.0600 U	0.0600 U 0.0600	U 0.0600 U
Arsenic as As	mg/L	0.003 #	0.003 8 0.003 0.0079 B 0.0033	U 0.0022 U	0.0000 U	0.00 U	0.00 U	0.0115	0.0759	0.00 U	0.0188 U	0.00 U	0.0068 U 0.0068 U	0.0100 U 0.0100 U	0.0651 0.0100 U	0.0100 U 0.0100	U 0.0100 U
Barium	mg/L	1	0.267 0.0686	B 0.236	0.1340 B	0.24	0.0694 I	0.301	1.1	0.0416 J	1.03	0.2 U	0.0891 0.0717	0.200 U 0.200 U	0.721 0.200 U	0.200 U 0.200	U 0.200 U
Beryllium as Be	mg/L	0.003	0.0001 U 0.0005	B 0.0002 U	0.00050 B	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.0006 U 0.0006 U	0.005 U 0.005 U	0.005 U 0.005 U	0.005 U 0.005	U 0.005 U
Boron as B	mg/L	1	0.0323 B 0.0399	B 0.0376 B	0.0387 B	0.0512 J	0.0551 J	0.05 U	0.0387 I	0.0378 I	0.05 U	0.05 U	0.0324 0.0288	0.0500 U 0.0500 U	0.0500 U 0.0500 U	0.0500 U 0.0500	U 0.0500 U
Cadmium as Cd	mg/L	0.005	0.0025 B 0.0005	B 0.0001 U	0.00060 B	0.0035	0.0002 J	0.0025 U	0.0278	0.000063 J	0.0121 U	0.0025 U	0.00006 U 0.000063 U	0.0025 U 0.0025 U	0.0048 0.0025 U	0.0025 U 0.0025	U 0.0025 U
Calcium as Ca	mg/L	NA	37.5 36.6	E 44.6	41.4	47.7	46.5	54.5	56.6	35.5	60.5	43.1	25.3 25.7	36.300 34.200 <i>I</i>	49.400 32.900	36.500 32.800	33.600
Chromium as Cr	mg/L	0.05	0.0411 0.0011	U 0.0091 B	0.0005 U	0.01 U	0.01 U	0.01 U	0.0418 J	0.01 U	0.1 U	0.01 U	0.003 J 0.0016 U	0.0100 U 0.0100 U	0.136 0.0100 U	0.0100 U 0.0100	0.0100 U
Cobalt	mg/L	NA	0.0234 B 0.0119	B 0.0144 B	0.0099 B	0.0127 J	0.0058 I	0.05 U	0.0183 J	0.05 U	0.05 U	0.05 U	0.0237 J 0.0216 J	0.0500 U 0.0500 U	0.0500 U 0.0500 U	0.0500 U 0.0500	U 0.0500 U
Copper as Cu	mg/L	0.2	0.0562 0.0019	B 0.0253	0.0528 *	0.0317	0.0203 J	0.0532	0.0707	0.0179 J	0.25 U	0.025 U	0.0067 J 0.0025 U	0.0250 U 0.0250 U	0.0250 U 0.0250 U	0.0250 U 0.0250	U 0.0250 U
Cyanide as CN	mg/L	0.2	0.01 U PNA	PNA	PNA	0.01 U	PNA	PNA	0.01 U	PNA	PNA	PNA	0.0029 U PNA	PNA PNA	0.0100 U PNA	PNA 0.0100	U PNA
Iron as Fe	mg/L	0.3	117 E 0.0508	В 54.1	0.0268 U	63	0.0747 I	96.5	775	0.1 U	539	0.1 U		26.300 I 0.243 I	306.000 0.326	35.600 17.200	0.0555
Lead as Pb	mg/L	0.025	0.0022 U 0.0033	0.0065	0.0040 N	0.0017 J	0.0029 I	0.005 U	0.0193	0.005 U	0.0052	0.005 U	0.0024 J 0.0013 U	0.0050 U 0.0050 U	0.0095 0.0050 U	0.0050 U 0.0050	U 0.0050 U
Magnesium	mg/L	35 #	10.5 11.4	E 16.9	16.00 E	15.7	16.0	19.0	11.2	9.92	16.6	14.4	9.07 8.93	13.000 12.500	12.600 10.800	12.700 10.400	11.300
Manganese as Mn	mg/L	0.3	5.14 1.32	E 3.98 E	2.49	4.12	2.13	3.55	35.9	0.0346	15.2	1.49	1.32 1.13	1.930 1.260	24.600 1.560	5.400 1.660	1.710
Mercury as Hg	mg/L	0.0007	0.0001 U 0.0001	U 0.0001 U	0.0001 UN	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	PNA	0.0002 U	0.000079 J 0.0002 U	0.00020 U 0.00020 U	0.00024 0.00020 U	0.00020 U 0.00020	U 0.00020 U
Nickel as Ni	mg/L	0.1	0.0038 B 0.008	B 0.0051 B	0.0079 B	0.0036 J	0.0066 J	0.04 U	0.04 U	0.007 J	0.04 U	0.04 U	0.0136 J 0.023 J	0.0400 U 0.0400 U	0.0400 U 0.0400 L	0.0400 U 0.0400	U 0.0400 U
Potassium	mg/L	NA	4.12 B 3.71	B 6.43	5.10	4.95 J	4.37 J	7.06	14.3	3.48 J	10.2	5.0 U	2.77 J 2.99 J	5.000 U 5.000 U	5.000 U 5.000 L	5.000 U 5.000	U 5.000 U
Selenium as Se	mg/L	0.01	0.0038 U 0.0038	U 0.0022 U	0.0022 UN	0.01 U	0.0072 J	0.01 U	0.0085 J	0.01 U	0.01 U	0.01 U	0.0063 U 0.0062 U	0.0100 U 0.0100 U	0.0100 U 0.0100 u	0.0100 U 0.0100	U 0.0100 U
Silver as Ag	mg/L	0.05	0.0137 0.0022	U 0.0104	0.00200 BN	0.0064 J	0.01 U	0.01 U	0.01 U	0.01 U	0.0525	0.01 U	0.0036 U 0.0036 U	0.0100 UJ 0.0100 U	0.0100 U 0.0100 U	0.0100 U 0.0100	U 0.0100 U
Sodium as Na	mg/L	20	10.8 11.4	E 10.3	9.29	13.9	13.7	12.2	18.7	9.95	11	9.81	9 8.74	10.200 10.500 J	10.400 9.700	8.960 9.690	9.720
Thallium as Tl	mg/L	0.0005#	0.0038 U 0.0038	U 0.0149	0.0086 B	0.0053 J	0.01 U	0.01 U	0.0438 J	0.01 U	0.0254	0.01 U	0.0036 U 0.0036 U	0.0100 U 0.0100 U	0.0261 0.0100 U	0.0100 U 0.0100	U 0.0100 U
Vanadium	mg/L	NA	0.0007 U 0.0007	U 0.0028 U	0.0028 U	0.05 U	0.05 U	0.05 U	0.0206 J	0.05 U	0.05 U	0.05 U	0.0008 U 0.00083 J	0.0500 U 0.0500 U	0.0500 U 0.0500 U	0.0500 U 0.0500	U 0.0500 U
Zinc as Zn	mg/L	2 #	0.0463 0.0172	E 0.0497	0.0391 *	0.023	0.0065 J	0.025	0.0664	0.0508	0.112	0.02 U	0.039 0.0173 J	0.0367 0.0200 U	0.0254 0.0200 U	0.0200 U 0.0200	U 0.0200 U
Alkalinity tot CaCo3	mg/L	NA	120 PNA	170 H	PNA	168	PNA	205	135	PNA	195 J	PNA	87.2 PNA	138 PNA	131 PNA	141 145	PNA
Chloride as Cl	mg/L	250	14.5 PNA	11.2	PNA	13.8	PNA	12.1	14.2	PNA	11.3	PNA	14.8 PNA	13.9 PNA	16.7 PNA	14.3 11.4	PNA
Sulfate as SO4	mg/L	250	10.3 PNA	6.1	PNA	18.5	PNA	5.2	12.2	PNA	6.6	PNA	23.9 PNA	9.7 PNA	18.8 PNA	14 10.8	PNA
Bromide	mg/L	2 #	0.5 U PNA	0.5 U	PNA	0.5 U	PNA	0.5 U	0.037 J	PNA	0.5 U	PNA	0.032 J PNA	0.50 U PNA	0.50 U PNA	0.50 U 0.50	U PNA
BOD5	mg/L	NA	2 U PNA	2 U	PNA	4 U	PNA	2 U	2.3 J	PNA	4 U	11121	2 U PNA	4.0 U PNA	4.0 U PNA	4.0 U 4.0	U PNA
COD	mg/L	NA	10 U PNA	10 U	PNA	10 U	PNA	17.2	85.8	PNA	30.9	PNA	10 U PNA	10.0 U PNA	27.8 PNA	10.2 18.8	PNA
Color	units	NA	45 PNA	PNA	PNA	5 U	PNA	PNA	300	PNA	PNA	PNA	40 PNA	PNA PNA	5.0 U PNA	PNA 40.0	PNA
Chromium hex as Cr	mg/L	0.05	0.02 U PNA	PNA	PNA	0.2 U	PNA	PNA	0.02 U	PNA	PNA	PNA	0.003 U PNA	PNA PNA	0.020 U PNA	PNA 0.020	PNA
Hardness as CaC03	mg/L	NA	150 PNA	60 DH		136	PNA	240	150	PNA	133	PNA	PNA PNA	120 PNA	150 PNA	200 150	PNA
Ammonia as N	mg/L	2	0.25 PNA	0.97	PNA	0.71	PNA	0.39	0.54	PNA	0.69 U	PNA	0.19 PNA	0.28 PNA	0.15 PNA	1.0 0.32	PNA
Nitrite as N	mg/L	NA	0.1 U PNA	0.1 U	PNA	0.1 U	PNA	0.1 U	0.05 U	PNA	0.5 U	PNA	0.05 U PNA	0.51 PNA	0.05 U PNA	0.05 U 0.05	U PNA
Nitrate as N	mg/L	10	0.24 PNA	0.1	PNA	0.25	PNA	1.1	0.50	PNA	0.25	PNA	0.33 PNA	0.51 PNA	0.39 PNA	0.11 0.075	PNA
Phenols as Phenol	mg/L	0.001	0.005 U PNA	0.005 U	PNA	0.005 U	PNA	0.0057	0.0062 J	PNA	0.005 U	PNA	0.0038 J PNA	0.0050 U PNA	0.0084 PNA	0.0054 0.0050	U PNA
Tot Dissolved Solids	mg/L	NA NA	167 PNA	215	PNA	224	PNA	210	186	PNA	222	PNA	152 PNA	173 PNA	240 PNA	171 166	PNA
Tot. Kjeldahl Nitrogen	mg/L	NA	0.62 PNA	0.85	PNA	0.73	PNA	0.64	2.7	PNA	1.5 J	PNA	0.16 PNA	0.43 PNA	0.86 PNA	0.99 0.74	PNA
Tot Organic Carbon	mg/L	NA NA	3.8 PNA	3.36	PNA	6.3	PNA	3.81	13.8	PNA	20.2	PNA	1.9 PNA	2.9 PNA	4.2 PNA	3.0 1.8	PNA
Turbidity	NTU	NA	541 PNA	935	PNA	1000	PNA	1000	>1,000	PNA	>1,000	PNA	573 PNA	198 PNA	298 PNA	35.2 313	PNA
Temperature	deg.C	NA 6 E O E	12.66 PNA	13.73	PNA	13.11	PNA PNA	13.63	13.76	PNA	13.31	PNA	12.91 PNA	14.00 PNA	12.70 PNA	13.05 12.53	PNA
pri Constant	units	6.5-8.5	6.27 PNA	6.11	PNA	6.62		6.33	6.47	PNA	6.13	PNA	5.7 PNA	6.15 PNA	6.06 PNA	6.09 6.45	PNA
Spec. Cond	umho/cm	NA	329 PNA	420	PNA	447	PNA	489	325	PNA	453	PNA	267 PNA	470 PNA	356 PNA	315 282	PNA

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.
NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{eq:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- U -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

			October 2015 April 2017 October 2017 April 2010 October 2019 April 2020														
ANALYTICAL	UNITS	GW		T	 						1						2020
PARAMETERS		STND (1)	April 2015	October 2015 Unfiltered Filtered	April 2016 Oct	ber 2016	Apri Unfiltered	2017 Filtered	Unfiltered	er 2017 Filtered	April 2018	October 2018	April : Unfiltered	2019 Filtered	October 2019 Unfiltered Filtered	April Unfiltered	2020 Filtered
	/T		0.425		0.252	75	0.902				0.212	0.200 II					
Aluminum as Al	mg/L	NA 0.002 #	0.425 0.003 U	0.466 0.0057 U 0.0006 U 0.002 B		06 U	0.902 0.06 U	0.2 U 0.06 U	0.994 0.06 U	0.2 U 0.06 U	0.312 0.003 U	0.200 U 0.0600 U	7.780 0.0600 U	0.200 U 0.0600 U	3.540 0.200 U 0.0600 U 0.0600 U	1.400 0.0600 U	0.200 U 0.0600 U
Antimony as Sb	mg/L mg/L	0.003 # 0.025	0.003 U	0.0008 U 0.002 B	0.06 U 0.		0.06 U	0.06 U	0.06 U	0.06 U	0.0068 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U 0.0100 U	0.0100 U	0.0100 U
Arsenic as As Barium	mg/L	1	0.0033 0 0.0157 B	0.0022 0 0.0022 0 0.0183 B 0.0125 B		.2 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0068 U	0.200 U	0.0100 U	0.0100 U	0.200 U 0.200 U		
Beryllium as Be	mg/L	0.003	0.0137 B	0.0183 B 0.0123 B 0.0002 U 0.0002 U	0.0169 J C		0.026 J	0.0078 J	0.005 U	0.005 U	0.0133 J	0.200 U	0.200 U	0.200 U	0.0050 U 0.0050 U	0.0050 U	0.200 U
Boron as B	mg/L	1	0.0001 B	0.0002		05 U	0.003 U	0.003 U	0.005 U	0.005 U	0.0000 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U 0.0500 U	0.0500 U	0.0500 U
Cadmium as Cd	mg/L	0.005	0.0117 B	0.0137 B 0.012 B			0.000099 I	0.00198 J	0.0025 U	0.0025 U	0.00006 U	0.0025 U	0.0300 U	0.0025 U	0.0025 U 0.0025 U	0.0300 U	0.0025 U
Calcium as Ca	mg/L	NA	8.61	10.1 9.27	· · · · · · · · · · · · · · · · · · ·	5.8	13.6	10.0	7.43	6.95	6.83	6.950	30.300	22.400	16.800 13.500	14.000	13.700
Chromium as Cr	mg/L	0.05	0.0076 B	0.0092 B 0.0006 B	0.0046 J 0.0		0.017 U	0.01 U	0.01 U	0.01 U	0.0082 J	0.0100 U	0.0198	0.0100 U	0.0190 0.0100 U	0.0100 U	0.0100 U
Cobalt	mg/L	NA	0.0006 U	0.0004 B 0.0003 B		05 U	0.00088	0.05 U	0.05 U	0.05 U	0.0002 J	0.0500 U	0.0500 U	0.0500 U	0.0500 U 0.0500 U	0.0500 U	0.0500 U
Copper as Cu	mg/L	0.2	0.0055 B	0.0052 BJ 0.026 J		25 U	0.0073 I	0.004 I	0.025 U	0.025 U	0.0025 U	0.0250 U	0.0322	0.0250 U	0.0250 U 0.0250 U	0.0250 U	0.0250 U
Cyanide as CN	mg/L	0.2	0.01 U	PNA PNA	0.01 U P		0.01 U	PNA	PNA	PNA	0.0029 U	PNA	0.0100 U	PNA	PNA PNA	0.0100 U	PNA
Iron as Fe	mg/L	0.3	3.97 E	3.98 0.0268 U		0.2	9.95	0.1 U	14.6	0.1 U	3.4	2.170	14.400	0.241	11.600 / 0.0325	5.950	0.0200 U
Lead as Pb	mg/L	0.025	0.005	0.0091 0.0032 I		05 U	0.0063	0.005 U	0.0065	0.005 U	0.0014 J	0.0050 U	0.0413	0.0050 U	0.0195 0.0050 U	0.0060	0.0050 U
Magnesium	mg/L	35 #	3.08 B	4.04 B 3.58 J	,	23	4.64	3.42	2.9	2.47	2.99	3.160	7.700	4.010	6.210 4.150	6.140	6.100
Manganese as Mn	mg/L	0.3	0.131	0.125 E J 0.0275		:71	0.345	0.0076 J	0.603	0.01 U	0.0676	0.0570	0.500	0.130	0.369 0.181	0.152	0.0100 U
Mercury as Hg	mg/L	0.0007	0.0001 U	0.0001 U 0.0001 /	0.0002 U 0.0	002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 UB	0.000073 J	0.00020 U	0.00020 U	0.00020 U	0.00020 U 0.00020 U	0.00020 U	0.00020 U
Nickel as Ni	mg/L	0.1	0.0031 B	0.0049 B 0.0076 B	0.04 U 0.	04 U	0.0099 J	0.0019 J	0.04 U	0.04 U	0.0034 J	0.0400 U	0.0400 U	0.0400 U	0.0400 U 0.0400 U	0.0400 U	0.0400 U
Potassium	mg/L	NA	0.874 B	1.57 B 0.417 B	1.09 J 5	.0 U	1.65 J	1.24 J	5.0 U	5.0 U	1.12 J	5.000 U	5.000 U	5.000 U	5.000 U 5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	0.0038 U	0.0022 U 0.0022 J	0.01 U 0.	01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0063 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U 0.0100 U	0.0100 U	0.0100 U
Silver as Ag	mg/L	0.05	0.0022 U	0.0033 B 0.0011 J	0.01 U 0.	01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0036 U	0.0100 U	0.0100 U	0.0100 U	0.0100 UJ 0.0100 U J	0.0100 U	0.0100 U
Sodium as Na	mg/L	20	7.89	10.2 9.04	8.74 1	2.3	8.3	7.63	8.21	7.04	8.77	8.680	10.400	9.360	10.500 10.300 J	12.400	12.500
Thallium as Tl	mg/L	0.0005#	0.0038 U	0.0019 U 0.0019 U	0.01 U 0	01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0036 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U 0.0100 U	0.0100 U	0.0100 U
Vanadium	mg/L	NA	0.0012 B	0.0028 U 0.0028 U	0.05 U 0	05 U	0.0023 J	0.05 U	0.05 U	0.05 U	0.0008 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U 0.0500 U	0.0500 U	0.0500 U
Zinc as Zn	mg/L	2 #	0.0102 B	0.0111 B 0.0107 J	0.005 J 0.	02 U	0.0089 J	0.02 U	0.02 U	0.02 U	0.0062 J	0.0200 U	0.0774	0.0200 U	0.0394 0.0200 U	0.0200 U	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	23.2	31.4 H J PNA	18.2).9	43.6	PNA	26.8	PNA	21.8	26.6	59.6	PNA	40.4 PNA	41.5	PNA
Chloride as Cl	mg/L	250	12.2	9.87 PNA	11 1).9	9.3	PNA	8.8	PNA	11.4	12.1	14.0	PNA	13.9 PNA	12.0	PNA
Sulfate as SO4	mg/L	250	9.39	9.44 PNA	9.27	.5	7.1	PNA	7.2	PNA	8.9	12.5	19.9	PNA	20.0 PNA	25.5	PNA
Bromide	mg/L	2 #	0.5 U	0.5 U PNA	0.03 J C	.5 U	0.029 J	PNA	0.5 U	PNA	0.032 J	0.50 U	0.50 U	PNA	0.50 U PNA	0.50 U	PNA
BOD5	mg/L	NA	2 U	2 U PNA	2 U	2 U	4 U	PNA	4 U	PNA	2 U	4.0 U	6.7 U	PNA	4.0 U PNA	4.0 U	PNA
COD	mg/L	NA	10 U	10 U PNA		0 U	8.8 J	PNA	18.2	PNA	10 U	10.0 U	266	PNA	165 PNA	61.0	PNA
Color	units	NA	35	PNA PNA	5 P		50	PNA	PNA	PNA	5 U	PNA	5.0	PNA	PNA PNA	20.0	PNA
Chromium hex as Cr	mg/L	0.05	0.02 U	PNA PNA	0.02 U P		0.02 U	PNA	PNA	PNA	0.003 U	PNA	0.020 U	PNA	PNA PNA	0.020 U	PNA
Hardness as CaC03	mg/L	NA	48	48 PNA		4	58	PNA	32	PNA	30	30.0	90.0	PNA	70.0 PNA	66.7	PNA
Ammonia as N	mg/L	2	0.1 U	0.1 U PNA		.1 U	0.14	PNA	0.1 UB	PNA	0.021 J	0.10 U	0.14	PNA	0.87 PNA	0.10	PNA
Nitrite as N	mg/L	NA	0.1 U	0.1 <i>UJ</i> PNA		05 U	0.05 U	PNA	0.05 U	PNA	0.05 U	0.050 U	0.050 U	PNA	0.050 U PNA	0.050 U	
Nitrate as N	mg/L	10	0.25	0.44 PNA	0.19 0.		0.41	PNA	0.29	PNA	0.3	0.50	0.72	PNA	0.69 J PNA	1.2	PNA
Phenols as Phenol	mg/L	0.001	0.005 U	0.005 U PNA	0.005 U 0.0		0.0135	PNA	0.005 U	PNA	0.0043 J	0.0064	0.0390	PNA	0.0116 PNA	0.0050 U	PNA
Tot Dissolved Solids	mg/L	NA	73	81 PNA	+	08	75	PNA	57	PNA	83	58	121	PNA	94 PNA	106	PNA
Tot. Kjeldahl Nitrogen	mg/L	NA	0.26	0.1 <i>UJ</i> PNA		32	0.41	PNA	0.43	PNA	0.11	0.10 U	0.58	PNA	0.59 PNA	1.2	PNA
Tot Organic Carbon	mg/L	NA	0.1 U	0.927 PNA		92	1.7 J	PNA	1.7 B	PNA	0.59 J	1.0 U	23.9	PNA	16.7 PNA	2.7	PNA
Turbidity	NTU	NA	11.1	42.8 PNA		3	136	PNA	115	PNA	34.4	26.5	1,000	PNA	587 PNA	58.0	PNA
Temperature	deg.C	NA	11.85	12.94 PNA		3.1	13.42	PNA	12.7	PNA	12.02	12.85	12.22	PNA	12.42 PNA	12.15	PNA
рН	units	6.5-8.5	6.25	6.25 PNA	6.19		6.2	PNA	6.4	PNA	5.79	6.24	6.57	PNA	6.62 PNA	6.83	PNA
Spec. Cond	umho/cm	NA	123	140 PNA	101 2	20	160	PNA	129	PNA	109	144	183	PNA	156 PNA	146	PNA

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

 ${\it J-Data\ Validation\ Qualifier-The\ analyte\ was\ positively\ identified;\ the\ associated\ numerical\ value\ is\ the\ approximate\ concentration\ of\ the\ analyte\ in\ the\ sample.}$

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U-Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL TABLE 1

INORGANIC GROUNDWATER QUALITY RESULTS

-								APRIL 2020 MW-12A April 2017																	
ANALYTICAL	UNITS	GW																							
			April 2014	October 201	14	April 2015	Octob	er 2015	April	2016	Octob	er 2016	_	oril 2		October 2	017	April 201	8	October 20	18	April 2019	Oct	tober 2019	April 2020
PARAMETERS		STND (1)	•			•							Unfiltered	_	Filtered			•				-			•
Aluminum as Al	mg/L	NA	0.0616 B	PNA		0.369	PN.		0.022		PN		0.0449	J	0.2 U	PNA		0.0134	U	PNA		0.200 U		PNA	0.200 U
Antimony as Sb	mg/L	0.003 #	0.0019 U	PNA		0.003 U	_		0.06	U				U	0.06 U	PNA		0.003	U	PNA		0.0600 U		PNA	0.0600 U
Arsenic as As	mg/L	0.025	0.0011 U	PNA		0.0097 B	-		0.01	U				U	0.01 U	PNA		0.0068	U	PNA		0.0100 U		PNA	0.0100 U
Barium	mg/L	1	0.0432 B	PNA		0.0514 B	-		0.0522		PNA		0.0290	J	0.0238 J	PNA		0.0442	J	PNA		0.200 U	+	PNA	0.200 U
Beryllium as Be	mg/L	0.003	0.00014 U	PNA		0.0001 U			0.005	U	_		0.005	U	0.005 U	PNA		0.0006	U	PNA		0.0050 U	-	PNA	0.0050 U
Boron as B	mg/L	1	0.0539 B	PNA		0.0488 B	PN.		0.077		PNA		0.0407	J	0.0389 J	PNA		0.0541		PNA		0.0680	_	PNA	0.0500 U
Cadmium as Cd	mg/L	0.005	0.0002 B	0.0004	В	0.0003 B			0.0002	<u>'</u>	0.00			U	0.00064 J	0.0025	U	0.00006	U	0.0025	U	0.0025 U		.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	24.4	15.5		21.1	32		30.4		13		15.1	_	13.8	22.2		20.4		25.3		23.800		9.100	15.600
Chromium as Cr	mg/L	0.05	0.0047 B	PNA		0.0092 B			0.01	U			0.0021	J	0.01 U	PNA		0.0016	U	PNA		0.0100 U		PNA	0.0100 U
Cobalt	mg/L	NA 0.2	0.0064 B	PNA		0.0062 B	_		0.004		PNA		0.0046	J	0.0025 J	PNA		0.006	J	PNA		0.0500 U	-	PNA	0.0500 U
Copper as Cu	mg/L	0.2	0.0026 B 0.01 U	PNA		0.0098 B	PN.		0.003		PNA		0.0027	J	0.0078 J	PNA		0.0025	U	PNA		0.0250 U	_	PNA	0.0250 U
Cyanide as CN	mg/L	0.2		PNA 9.63		0.01 U			0.01	U	5.83			U	PNA	PNA 18.7		0.0029	U	PNA 2.56		0.0100 U		PNA	0.0100 U
Iron as Fe	mg/L	0.3	3.26 0.0024 B	0.0013	11	8.95 E 0.0022 U			0.769	ī	0.00		1.56	11	0.1 U 0.005 U	0.005	U	1.48 0.0013	U	0.005	U	1.420		4.100 0.0050 U	0.445 0.0050 U
Lead as Pb	mg/L	0.025 35 #	6.18		U B		9	58	8.45	ł J	3.4			U	3.68	6.15	U	6.08	U		U	0.0050 U	-	0.0050 U 0.070	4.560
Magnesium	mg/L	0.3	4.16	4.18 1.22	В	5.69 2.69	3.0		8.45 E 3.51		1.7		4.24 2.69		2.23	3.37		1.98		7.78 2.54		7.250 1.500	_	2.270	1.770
Manganese as Mn	mg/L mg/L	0.0007	0.0001 U	PNA		0.0001 U			0.0002	2 U				IJ	0.0002 U	PNA		0.000056	IJ	PNA		0.00020 U		PNA	0.00020 U
Mercury as Hg Nickel as Ni	mg/L	0.0007	0.0104 B	PNA		0.0001 0 0.0139 B	+		0.006		PNA		0.0002	ı	0.0002 U	PNA		0.00035	ı	PNA		0.0400 U		PNA	0.0400 U
Potassium	mg/L	NA	5.8	5.39	-	5.25	7.5		7.44	, ,	5		3.98	ı	3.8 J	6.46		7.74	J	5.66		9.370		9.110	5.000 U
Selenium as Se	mg/L	0.01	0.0011 U	PNA		0.0038 U			0.01	U	+		0.01	IJ	0.01 U	PNA		0.0063	IJ	PNA	-	0.0100 U	+	PNA	0.0100 U
Silver as Ag	mg/L	0.05	0.00011 U	PNA		0.0022 U	+		0.01	U				U	0.01 U	PNA		0.0036	IJ	PNA		0.0100 U	+	PNA	0.0100 U
Sodium as Na	mg/L	20	11.3	8.43		9.47	15.		12.4	- 0	8.2		8.65	-	8.25	9.02		13.3	-	11.9		13.900	_	1.700	9.350
Thallium as Tl	mg/L	0.0005#	0.0014 B	PNA		0.0038 U	-		0.0048	} I	PNA		0.0041	ī	0.01 U	PNA		0.0036	IJ	PNA		0.0100 U		PNA	0.0100 U
Vanadium	mg/L	NA	0.0029 B	PNA		0.0092 B	-		0.05	U			0.0013	ī	0.05 U	PNA		0.0012	ī	PNA		0.0500 U		PNA	0.0500 U
Zinc as Zn	mg/L	2 #	0.0329	PNA		0.0107 B	+		0.0038		PNA		0.0012	ī	0.0083 J	PNA		0.0049	ī	PNA		0.0200 U	+	PNA	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	76	45.8		60.7	10		H 104	,	44.		47		PNA	80		59.4	,	79.7		88.3	+	114	56.1
Chloride as Cl	mg/L	250	13.9	12		14.1	15.		15.1		11.3		11.0		PNA	11.5		15.7		16.8		17.3	_	17.1	10.8
Sulfate as SO4	mg/L	250	20.7	14.5		22.4	23.		22.2		11.2		14.5		PNA	16		32		31.2		32.4		26.8	15.6
Bromide	mg/L	2 #	0.5 U	0.5	U	0.5 U	0.5	ı	J 0.5	U	0.5	5 U	0.057	J	PNA	0.5	U	0.13	J	0.5	U	0.50 U		0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2	U	2 U	2	Ţ	J 2	U	2	U	1	j	PNA	11.3		2	Ü	2	U	2.0 U		2.0 U	2.0 U
COD	mg/L	NA	10 U	10	U	10 U	10	I	J 10	U	10	U	8.8	J	PNA	14		10	U	10	U	10.0 U		10.0 U	18.8
Color	units	NA	10	PNA		65	PN.	1	10		PNA	A	125		PNA	PNA		15		PNA		5.0]	PNA	5.0 U
Chromium hex as Cr	mg/L	0.05	0.02 U	PNA		0.02 U	PN.	1	0.02	U	PNA	A	0.02	U	PNA	PNA		0.003	U	PNA		0.010 U		PNA	0.020 U
Hardness as CaC03	mg/L	NA	100	130		110	180		108		54	ļ	66		PNA	88.0		PNA		66.7		66.7		110	53.3
Ammonia as N	mg/L	2	1.24	1.63		2.73	3.4	3	4.18		1.7	7	0.31		PNA	2.9		2.8		0.53		3.2		6.1	1.0
Nitrite as N	mg/L	NA	0.1 U	0.1	U	0.1	0.1	J	J 0.1	U	0.1	L U	0.05	U	PNA	0.05	U	0.05	U	0.05	U	0.050 U	0	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.72	1.93		0.5	0.9	7	0.81		0.6	5	0.52		PNA	0.23		0.46		0.75		0.48		0.16	0.83
Phenols as Phenol	mg/L	0.001	0.005 U	0.005	U	0.005 U	0.00	5 I	J 0.011		0.00	57	0.0135		PNA	0.005	U	0.0051		0.005	U	0.0050 U	0.	.0144	0.0050 U
Tot Dissolved Solids	mg/L	NA	141	105		132	16		157		95	;	93		PNA	107		136		136		146		157	100
Tot. Kjeldahl Nitrogen	mg/L	NA	1.84	2.45		2.73	3.4		3.4		1.4	1	0.93		PNA	3.3	`	2.7		0.72		3.8		7.6	1.7
Tot Organic Carbon	mg/L	NA	1.7	10.5		1.9	2		2.4		1.10	6	1.2	J	PNA	1.9		1.6		2.2		1.6		2.4	1.0 U
Turbidity	NTU	NA	16.9	40.3		47.2	44.		5.12		38.		571		PNA	106	`	43		5.2		11.7	_	27.5	23.5
Temperature	deg.C	NA	11.17	12.7		11.83	12.	;	12.12		12.	7	9.48		PNA	12.55		11.94		13.21		12.26	1	12.63	12.06
рН	units	6.5-8.5	6.03	6.04		6.13	5.8		6.3		6.1		5.55		PNA	6.36		6.1		6.39		6.44		6.14	6.70
Spec. Cond	umho/cm	NA	263	201		268	34		329		170	0	200		PNA	261		280		275		314		306	146

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.

U -Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

APRIL 2020

ANALYTICAL	UNITS	GW													MW-12B									
PARAMETERS		STND (1)	April 2014		October 2014	A	pril 2015		October 20	15	April 201	6	October 20	16	April 2017	7	October 2017	A	pril 2018	3	October 2018	April 2019	October 2019	April 2020
Aluminum as Al	mg/L	NA	0.0402	В	PNA	0	.0059	U	PNA		0.2	IJ	PNA		0.0136	ī	PNA	0	.0134	U	PNA	0.200 U	PNA	0.200 U
Antimony as Sb	mg/L	0.003 #		IJ	PNA		0.003	U	PNA		0.06	IJ	PNA		0.06	Ü	PNA		.0035	I	PNA	0.0600 U		0.0600 U
Arsenic as As	mg/L	0.025		IJ	PNA		.0033	U	PNA		0.01	IJ	PNA		0.01	Ü	PNA		.0068	U	PNA	0.0100 U		0.0100 U
Barium	mg/L	1		В	PNA		.0482	В	PNA		0.0582	Ī	PNA		0.017	Ī	PNA		.0119	Ī	PNA	0.200 U		0.200 U
Beryllium as Be	mg/L	0.003		IJ	PNA		.0001	U	PNA		0.005	IJ	PNA		0.005	IJ	PNA		.0006	Ü	PNA	0.0050 U		0.0050 U
Boron as B	mg/L	1		В	PNA	_	.0725	В	PNA		0.0863	I	PNA		0.0328	Ī	PNA		.0133	ī	PNA	0.0500 U		0.0500 U
Cadmium as Cd	mg/L	0.005		U	0.0003 U	_	.0002	U	0.0001	II	0.0002	ī	0.0025	П	0.0025	IJ	0.0025 U		00006	U	0.0025 U			0.0025 U
Calcium as Ca	mg/L	NA	28.5	-	30.6		20.2	U	22.4		34.9		27.4		11.3	U	19.5	0.	10	0	9.35	11.700	34.400	13.700
Chromium as Cr	mg/L	0.05		В	PNA		0.0011	U	PNA		0.01	IJ	PNA		0.01	U	PNA	0	0.0016	U	PNA	0.0100 U		0.0100 U
Cobalt	mg/L	NA		В	PNA		.0001	U	PNA		0.05	IJ	PNA		0.05	IJ	PNA		0.0016	U	PNA	0.0500 U	PNA	0.0500 U
Copper as Cu	mg/L	0.2		В	PNA		.0026	В	PNA		0.0027	ı	PNA		0.025	U	PNA		.0025	U	PNA	0.0250 U		0.0250 U
Cyanide as CN	mg/L	0.2		U	PNA		0.01	U	PNA		0.0027	IJ	PNA		0.023	U	PNA		0.0029	U	PNA	0.0100 U		0.0100 U
Iron as Fe	mg/L	0.2		В	0.177	_	.0856	BE	0.0268	II	0.01	IJ	0.1	IJ	0.0393	ī	0.02 U		0.0109	U	0.0232	0.0100 U		0.0405
Lead as Pb	mg/L	0.025		В	0.0013 U	_	.0022	II	0.0200	0	0.0033	1	0.005	IJ	0.005	IJ	0.005 U		0.0013	IJ	0.0252 0.005 U			0.0050 U
Magnesium	mg/L	35 #	8.86	ь	8.38		5.85	U	6.32		10.6		8.06	0	3.92	U	5.89	0	4.3	U	3.7	6.340	14.000	5.630
Manganese as Mn	mg/L	0.3	0.981		1.68		0.934		0.32	Б	0.235		0.675		0.0937			J 0	0.0086	ī	0.01 U		0.0256	0.0116
Mercury as Hg	mg/L	0.0007		IJ	PNA		0.0001	П	PNA	Е	0.0002	П	PNA		0.0937	11	PNA		000056	IJ	PNA	0.0100 U		0.00110 0.00020 U
Nickel as Ni	mg/L	0.0007		В	PNA		0.0105	В	PNA		0.0002	ī	PNA		0.0002	ī	PNA		0.0018	ī	PNA	0.0400 U		0.0400 U
Potassium	mg/L	NA	6.37	ь	10.3		4.7	В	9.54		4.93	J T	8.27		2.62	J	5.14		1.64	J	5 U	5.000 U		5.640
Selenium as Se	mg/L	0.01		IJ	PNA		0.0038	U	PNA		0.01	U	PNA		0.01	U	PNA		0.0063	U	PNA	0.0100 U		0.0100 U
Silver as Ag	O/	0.01		U	PNA		.0022	U	PNA	-	0.01	U	PNA		0.01	U	PNA		0.0036	U	PNA	0.0100 U		0.0100 U
Sodium as Na	mg/L mg/L	20	13.5	U	12.9	_	11.1	U	14.3		18.1	U	15		8.93	U	12.1	_	9.23	U	8.15	10.800	19.900	10.600
Thallium as Tl	87	0.0005#		IJ	PNA		.0038	U	PNA		0.01	IJ	PNA		0.93	IJ	PNA		0.0036	U	PNA	0.0100 U	PNA	0.0100 U
	mg/L mg/L	0.0005 # NA		В	PNA		.0038	U	PNA		0.01	U	PNA		0.01	U	PNA		00092	T.	PNA	0.0100 U		0.0100 U
Vanadium	- 6/	2 #		В	PNA		.0007	В	PNA	-	0.05	IJ	PNA		0.03	U	PNA	_		J	PNA	0.0300 U		0.0300 U
Zinc as Zn Alkalinity tot CaCo3	mg/L mg/L	NA	0.0176 78.9	В	103		50.7	В	65.4	Н	92.6	U	88.2		24.6	U	56.6		25.2	J	24.6	45.6	114	49.8
Chloride as Cl	87	250	17.5		16.8	_	16.5		15.3	П	22		20.5		11.3		15.8		13.4		13.8	16.1	28.0	13.8
Sulfate as SO4	mg/L mg/L	250	36	_	32.5	_	29		28.5		44.5		39.2		14.0		26.5		9.7		12.1	11.3	49.3	20.8
	87	2 #		11	0.5 U	_	0.5	U	0.5	11	0.5	IJ	0.5	U	0.05	T		J	0.03	T	0.5 U	0.50 U		0.50 U
Bromide BOD5	mg/L	NA		U	2 U	_	2	IJ	2	U	2	IJ	2	IJ	0.05	J		J	2	U	2 U	2.0 U		2.0 U
	mg/L		10.8	UJ				IJ	10	II	10	U	10	IJ	8.8	J		J	10	U		10.0 U	12.4	12.5
COD Color	mg/L units	NA NA		IJ	10 U PNA	<u> </u>	10	U	PNA	U	10 5	U	PNA	U	10	J	PNA	,	5	U	10 U PNA	5.0	PNA	5.0 U
				IJ			0.02	11			0.02	IJ			0.02	IJ				U				0.020 U
Chromium hex as Cr	mg/L	0.05		U	PNA			U	PNA	-		U	PNA			U	PNA		0.003	U	PNA			
Hardness as CaC03 Ammonia as N	mg/L	NA 2	100	_	200 3.16		110		85 2.19		121 0.3		92 4.8		45 0.063	т	60 1.1		PNA 0.068	T	34 0.1 U	44.0 0.10 U	127 1.8	53.3 1.8
	mg/L			II	0.10	_		11	0.1	II	0.3	TT	0.1	11		IJ		_	0.068	U	0.1 U		_	0.050 U
Nitrite as N	mg/L	NA 10	0.1	U	0.1 U 0.8	_	2.09	U	1.0	U	0.1	U	0.1	U	0.05	U	0.05 t		0.05	U	1.3	0.050 0		1.7
Nitrate as N	mg/L	10		11		_		11		11					1.2 0.0375		0.006						0.41	
Phenols as Phenol	mg/L	0.001		U	0.005 U		0.005	U	0.005	U	0.0067		0.0099						0.006		0.005 U			
Tot Dissolved Solids	mg/L	NA	173		161		142		142	-	189		157		86	11	150	-	85	11	70	84.0	238	112
Tot. Kjeldahl Nitrogen	mg/L	NA NA	1.46		3.24		2.32		2.1	-	0.26		2.1		0.1	U	1.5	-	0.1	U	0.1 U		2.9	2.2
Tot Organic Carbon	mg/L	NA	1.7		26.8		1.3		1.48		2.8		2.04		0.54	J	1.4		0.23	U	1 U	1.0 U	3.2	1.0 U
Turbidity	NTU	NA	0.4		1.4	-	0		0.13		0		0		12.07		13.8	-	0.2		8	0.2	0.0	16.8
Temperature	deg.C	NA CF.O.F	10.9		12.16		11.54		12.17		12		12.4		12.87		12.05		11.83		12.85	11.84	12.57	11.81
рн	units	6.5-8.5	6.24	_	6.2	_	6.27		5.64		6.24		6.04		5.76		5.81	_	6.00		5.76	6.26	6.26	6.85
Spec. Cond	umho/cm	NA	312		381		264		280		370		332		129		261		140		25	180	30	223

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- U -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Parameters	Units	GW Standard (1)	MW-1A		MW-1E	3	MW-1C	Т	MW-3A	MW-3B	MW-3C		MW-4A	MW-4B	MW-4C	MW-11A	MW-11B	MW-12	A	MW-12B
1,1,1,2-Tetrachloroethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,1,1-Trichloroethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,1,2,2-Tetrachloroethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,1,2-Trichloroethane	mg/L	0.001	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,1-Dichloroethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,1-Dichloroethene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,2-Dibromo-3-chloropropane	mg/L	0.0004	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,2-Dibromoethane	mg/L	NA	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,2-Dichlorobenzene	mg/L	0.003	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,2-Dichloroethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,2-Dichloropropane	mg/L	0.001	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
1,4-Dichlorobenzene	mg/L	0.003	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
2-Butanone	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
2-Hexanone	mg/L	NA	0.0050	UJ	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
4-Methyl-2-pentanone	mg/L	0.005	0.0050	Ü	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Acetone	mg/L	NA	0.0050	UJ	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Acrylonitrile	mg/L	0.005	0.0050	Ú	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Benzene	mg/L	0.001	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Bromochloromethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Bromodichloromethane	mg/L	NA	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Bromoform	mg/L	NA	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Bromomethane	mg/L	0.005	0.0050	UI	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Carbon disulfide	mg/L	NA	0.0050	Ú	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Carbon tetrachloride	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Chlorobenzene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Chloroethane	mg/L	0.005	0.0050	UI	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Chloroform	mg/L	0.007	0.0050	Ü	0.0050		0.0050		0.0050 U	0.0050 U	0.0050 U	(0.0050	0.0050 U	0.0050 U	0.0050 U	0.0050	0.0050	U	0.0050 U
Chloromethane	mg/L	NA	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
cis-1,2-Dichloroethene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
cis-1,3-Dichloropropene	mg/L	0.0004	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Dibromochloromethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Dibromomethane	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Ethylbenzene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Iodomethane	mg/L	NA	0.0050	UJ	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Methylene chloride	mg/L	0.005	0.0050	Ú	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Styrene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Tetrachloroethene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Toluene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0114	0.0050	U	0.0050 U
trans-1,2-Dichloroethene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U		0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
trans-1,3-Dichloropropene	mg/L	0.0004	0.0050	U	0.0050	U	0.0050 U	T	0.0050 U	0.0050 U	0.0050 U		0.0050 U	0.0050	U	0.0050 U				
trans-1,4-Dichloro-2-butene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	Ť	0.0050 U	0.0050 U	0.0050 U	(0.0050 U	0.0050	U	0.0050 U				
Trichloroethene	mg/L	0.005	0.0050	U	0.0050	U	0.0050 U	Ť	0.0050 U	0.0050 U	0.0050 U		0.0050 U	0.0050	U	0.0050 U				
Trichlorofluoromethane	mg/L	0.005	0.0050	Ü	0.0050	Ü	0.0050 U	t	0.0050 U	0.0050 U	0.0050 U	_	0.0050 U	0.0050	U	0.0050 U				
Vinyl acetate	mg/L	0.005	0.0050	Ú	0.0050	Ü	0.0050 U	Ť	0.0050 U	0.0050 U	0.0050 U		0.0050 U	0.0050	U	0.0050 U				
Vinyl chloride	mg/L	0.002	0.0050	U	0.0050	U	0.0050 U	Ť	0.0050 U	0.0050 U	0.0050 U		0.0050 U	0.0050	U	0.0050 U				
Xylene (total)	mg/L	0.005	0.0050	U	0.0050	Ü	0.0050 U	t	0.0050 U	0.0050 U	0.0050 U		0.0050 U	0.0050	U	0.0050 U				

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{lem:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- \emph{U} -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 3

LEACHATE QUALITY RESULTS

April 2020

Analytical Parameter						Lead	nate Collection (Prin	narvì					
Units mg/L	April	October	April	October	April	October	April	October	April	October	April	October	April
	2014	2014	2015	2015	2016	2016	2017	2017	2018	2018	2019	2019	2020
Arsenic as As	0.00011 U	0.134 B	0.0033 U	0.0022 U	0.01 U	0.0144	0.01 U	0.01 U	0.0068 U	0.01 U	0.01 U	0.01 U	0.010 U
Cadmium as Cd	0.00011 U	0.252	0.0002 U	0.0001 U	0.0009 [0.0025 U	0.00021	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	52.6	374	54.1	73.8	51	106	60.2	84.8	38.0	59.3	78.8	107	49.8
Iron as Fe	13.8	6,260	13 E	171	12.8	45.1	29.9	47.9	11.3	17.0	34.6	1.0	13.5
Lead as Pb	0.0019 U	1.3 U	0.0022 U	0.0194	0.0019 J	0.005 U	0.0014	0.005 U	0.0013 U	0.005 U	0.005 U	0.005 U	0.005 U
Magnesium as Mg	10.2	41.5 B	11.3	14.1	10.6	36.3	8.93	27	5.37	13.3	12.0	19.6	10.5
Manganese as Mn	1.26	23.2	2.27	3.15 E	1.82	2.23	2.2	2.03	0.966	1.78	2.28	0.85	1.46
Potassium as K	29.8	152	34.2	45.2	34.1	180	18	134	7.22	48.0	33.1	87.2	31.6
Sodium as Na	58.6	397	81	104	77.7	472	37.9	352	9.39	122	76	225	82.4
Alkalinity total CaCO3	380	1,740	409	490 H	428	1,250	231	995	110	583	512	793	402
BOD5	13	127	2 U	15	11	23.1	5	20.9	4.0 U	28.6 U	13.3 U	8.9	12.4
COD	33	522	68	180	66.2	510	60.9	425	15.5	136	74.2	231	82.2
Chloride as Cl	78.4	495	90	92.1	78	609	42.5	446	11	170	99.1	332	92.8
Hardness as CaCO3	310	1,800	240	250	160	410	204	200	116	180	200	320	180
Ammonia as N	60.7	315	69.2	82.1	67.7	394	9.5	280	3	86.2	57.9	83.7	32.0
Nitrite as N	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.16	0.05 U	0.056	0.067	0.05 U	0.05 U	1.4	0.052
Nitrate as N	0.38	0.1 U	0.59	0.47	0.97	12.3	0.036 J	0.22	1	0.19	0.074	12	1.5
Bromide	0.5 U	2.44	0.5 U	0.5 U	0.5 U	3	0.18 J	1.8	0.034 J	0.91	0.05 U	1.7	0.50
Total Recoverable Phenolics	0.0055	0.0076	0.0101	0.0151	0.0167	0.0183	0.0282	0.0213	0.0137	0.0110	0.0064	0.0148	0.005 U
Sulfate as SO4	12.8	44.3	11.1	11.6	12.3	45.6	52.2	24.2	3.7 J	8.1	5 U	44.7	5.7
Total Dissolved Solids	400	1,770	424	542	396	1,970	363	1,610	191	658	440	648	416
Total Organic Carbon	37.3	530 J	23.9	36.9	22.3	146	12.2	130	8.6	44.5	22	69	23.5
Total Kjeldahl Nitorgen	60.5	340	63.9	75.7	54.1	323	23.6	305	3.8	99.8	54.3	127	69.9
Turbidity NTU	50.5	>1,000	14.4	186	152	>50	88.5	130	85.6	92.0	>50	>50	469
Analytical Parameter						Leachate Detect	ion (Secondary)						
Units mg/L	April	October	April	October	April	October	April	October	April	October	April	October	April
	2014	2014	2015	2015	2016	2016	2017	2017	2018	2018	2019	2019	2020
Arsenic as As	0.0013 B	0.0009 U	0.0034 B	0.0022 U	0.01 U	0.01 U	0.01 U	0.01 U	0.0068 U	0.01 U	0.01 U	0.01 U	0.0407
Cadmium as Cd	0.00011 U	0.0003 U	0.0002 U	0.0001 U	0.0025 U	0.0025 U	0.00022 J	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	63.6	98.9	56.2	92	57.3	118	73	70.6	53.1	76.8	76.1	84.4	65.6
Iron as Fe	2.32	0.351	0.424 E	1.53	0.829	1.3	32.4	0.407	1.17	1.62	2.88	2.0	65.5
Lead as Pb	0.0104	0.0013 U	0.0058	0.0443	0.0025 J	0.005 U	0.0015 J	0.005 U	0.0013 U	0.005 U	0.005 U	0.005 U	0.0104
Magnesium as Mg	9	11.7	9.94	15	10.1	29.2	12.6	9.66	5.64	11.60	12.00	13.9	9.69
Manganese as Mn	1.22	0.261	0.322	0.588 E	0.164	0.765	8.16	1.82	2.75	1.07	3.33	0.23	0.947
Potassium as K	22	29.6	35.6	48.8	33.8	151	31.9	30.2	9.81	34.40	31.70	48.2	27.8
Sodium as Na	14.6	33.2	87.1	90.2	76.3	380	62.2	47.4	17.4	77.8	70.1	75	75.7
Alkalinity total CaCO3	164	259	199	389 H	209	930	381	427	195	460	483	368	277
BOD5	7 S	22	44	12	8	14.7	11.6	5.2	4 U	71.2	7.4	9.0	46.4
COD	97.2	94.7	61.7	93.5	48.4	281	117	54.2	13.4	84.9	78.6	125	137
Chloride as Cl	33.4	57.9	98.8	94.2	73.8	350	71.7	45.9	22.2	90	87	113	79.2
Hardness as CaCO3	200	750	220	400	172	420	320	230	150	230	180	240	250
Ammonia as N	0.8	15.9	42	28.2	14.6	94.1	16.0	20.7	8.8	43.0	51.0	32.3	13.7
	0.1	0.14	0.63	0.22	1.27	0.05 U	0.0058 J	0.064	0.05 U	0.05 U	0.05 U	0.81	0.60
Nitrite as N				1	13.3	0.05 U	0.066	5.3	0.36	2.8	0.29	8.2	11.9
Nitrite as N Nitrate as N	0.58	3.97	9.18	4.55	10.0								
	0.58 0.5 U	3.97 0.5 U	0.5 U	4.55 0.56	0.5 U	2.3	0.32 J	0.5 U	0.1 J	0.57	0.5 U	0.5 U	0.50
Nitrate as N Bromide Total Recoverable Phenolics	0.58 0.5 U 0.0087	0.5 U 0.0066	0.5 U 0.0085	0.56 0.0115	0.5 U 0.0050 U	2.3 0.0308	0.0135	0.0083	6	0.0115	0.0151	0.0050 U	0.005 U
Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4	0.58 0.5 U 0.0087 16.8	0.5 U 0.0066 26.1	0.5 U 0.0085 14.7	0.56 0.0115 30.4	0.5 U 0.0050 U 11.5	2.3 0.0308 34.3	0.0135 6.4	0.0083 8.2	6 6.3	0.0115 19.8	0.0151 6.9	0.0050 U 58.7	0.005 U 46.6
Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4 Total Dissolved Solids	0.58 0.5 U 0.0087 16.8 299	0.5 U 0.0066 26.1 474	0.5 U 0.0085 14.7 476	0.56 0.0115 30.4 627	0.5 U 0.0050 U 11.5 442	2.3 0.0308 34.3 1,510	0.0135 6.4 472	0.0083 8.2 431	6 6.3 237	0.0115 19.8 554	0.0151 6.9 472	0.0050 U 58.7 634	0.005 U 46.6 471
Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4	0.58 0.5 U 0.0087 16.8 299 47.6	0.5 U 0.0066 26.1 474 36.3	0.5 U 0.0085 14.7 476 28,5	0.56 0.0115 30.4 627 33.5	0.5 U 0.0050 U 11.5 442 23.2	2.3 0.0308 34.3 1,510 79.6	0.0135 6.4 472 30.0	0.0083 8.2 431 19.5	6 6.3 237 6	0.0115 19.8 554 29.3	0.0151 6.9 472 24.2	0.0050 U 58.7 634 41.9	0.005 U 46.6 471 39.8
Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4 Total Dissolved Solids	0.58 0.5 U 0.0087 16.8 299	0.5 U 0.0066 26.1 474	0.5 U 0.0085 14.7 476	0.56 0.0115 30.4 627	0.5 U 0.0050 U 11.5 442	2.3 0.0308 34.3 1,510	0.0135 6.4 472	0.0083 8.2 431	6 6.3 237	0.0115 19.8 554	0.0151 6.9 472	0.0050 U 58.7 634	0.005 U 46.6 471

- NOTES: Bold indicates update due to data validation. B Analyte was detected in the associated method blank.
- H. Received / analyzed outside of analytical holding time
 E. Serial dilution is not within acceptance riteria or the reported value is estimated because of the presence of interference.
 J. Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 U Indicates the compound was analyzed for, but not detected.

- U-Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

 UJ- Data Validation Qualifier The analyte was and secretary of the control of the cont

trations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

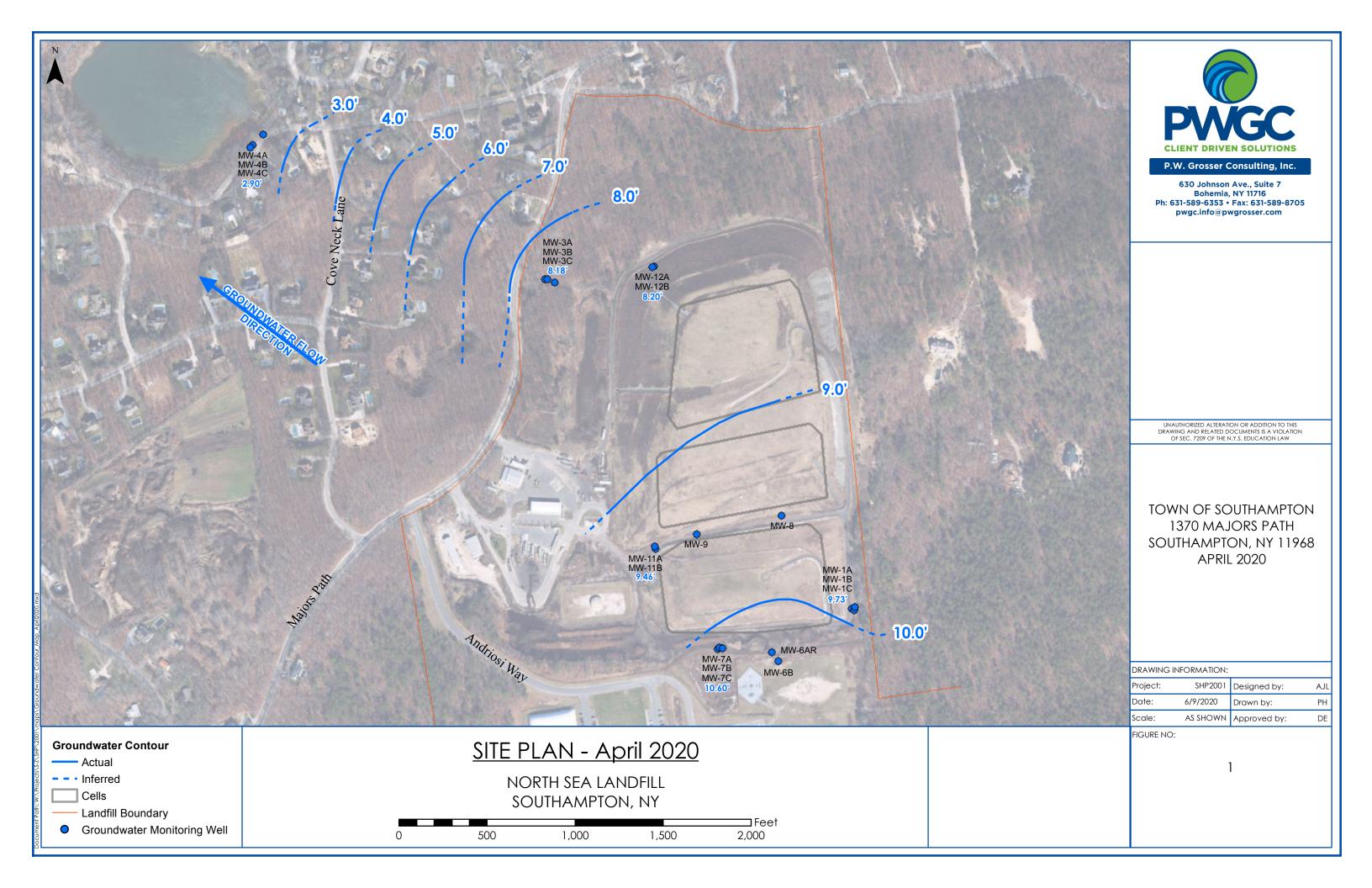
TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 4

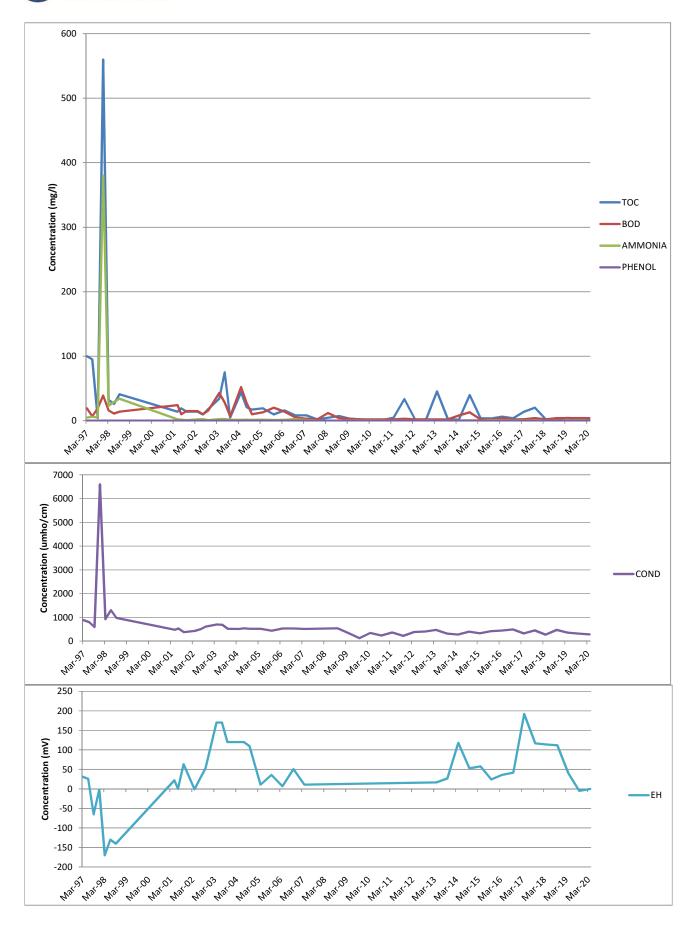
GROUNDWATER ELEVATIONS APRIL 2020

Monitoring	* Casing	April	2014	Octobe	er 2014	April	2015	Octobe	r 2015	April	2016	Octobe	r 2016	April	2017	Octobe	er 2017	April	2018	October	r 2018	April	2019	Octobe	r 2019	April	2020
Well Number	Elevation	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE
MW-1A	113.87	104.58	9.29	105.50	8.37	104.10	9.77	105.12	8.75	104.79	9.08	105.28	8.59	105.42	8.45	105.28	8.59	104.37	9.50	104.72	9.15	102.40	11.47	103.10	10.77	103.27	9.73
MW-1B	115.09	105.78	9.31	106.50	8.59	105.32	9.77	106.10	8.99	106.02	9.07	106.70	8.39	106.60	8.49	106.50	8.59	105.70	9.39	108.80	6.29	103.57	11.52	104.30	10.79	104.50	10.59
MW-1C	114.99	106.36	8.63	106.91	8.08	105.92	9.07	107.00	7.99	106.56	8.43	107.43	7.56	106.95	8.04	106.28	8.71	106.10	8.89	106.88	8.11	104.45	10.54	105.60	9.39	105.20	9.79
MW-2	74.8	NM		NM		NM		NM		NM		NM		NM		NM		NM	1	NM		NM	1	NM		NM	
MW-3A	55.3	47.51	7.79	48.67	6.63	49.20	6.10	48.49	6.81	47.96	7.34	48.93	6.37	47.99	7.31	48.88	6.42	47.50	7.80	48.43	6.87	46.56	8.74	47.35	7.95	47.12	8.18
MW-3B	51.9	44.25	7.65	45.15	6.75	44.23	7.67	45.20	6.70	44.68	7.22	46.02	5.88	45.03	6.87	45.47	6.43	44.20	7.70	44.96	6.94	45.24	6.66	44.00	7.90	43.92	7.98
MW-3C	51.4	NM		44.88	6.52	43.98	7.42	44.85	6.55	44.24	7.16	45.17	6.23	44.46	6.94	45.07	6.33	43.78	7.62	44.40	7.00	44.98	6.42	44.80	6.60	43.36	8.04
MW-4A	16	13.31	2.69	13.34	2.66	13.81	2.19	13.28	2.72	13.74	2.26	13.75	2.25	13.04	2.96	13.99	2.01	13.40	2.60	12.75	3.25	13.58	2.42	13.30	2.70	13.10	2.90
MW-4B	16.1	13.45	2.65	13.57	2.53	14.00	2.10	13.57	2.53	13.36	2.74	14.09	2.01	13.40	2.70	14.15	1.95	13.60	2.50	12.74	3.36	13.49	2.61	13.54	2.56	13.31	2.79
MW-4C	16	9.31	6.69	9.73	6.27	9.29	6.71	9.90	6.10	9.89	6.11	10.24	5.76	9.68	6.32	10.31	5.69	9.80	6.20	9.51	6.49	8.57	7.43	9.12	6.88	8.64	7.36
MW-5A	74.27	NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM	
MW-5B	75.25	NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM	
MW-5C	74.33	NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM	
MW-6A	NS	NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM	
MW-6AR	100.72	89.89	10.83	92.37	8.35	91.65	9.07	93.81	6.91	92.16	8.56	92.26	8.46	92.61	8.11	92.89	7.83	91.81	8.91	93.71	7.01	88.85	11.87	90.70	10.02	91.83	8.89
MW-6B	103.46	94.29	9.17	94.52	8.94	93.93	9.53	94.79	8.67	93.72	9.74	95.80	7.66	94.99	8.47	95.20	8.26	94.12	9.34	94.46	9.00	92.19	11.27	93.20	10.26	94.43	9.03
MW-7A	92.83	83.89	8.94	84.25	8.58	83.99	8.84	83.92	8.91	83.63	9.20	84.40	8.43	84.88	7.95	84.98	7.85	83.15	9.68	83.55	9.28	81.50	11.33	82.43	10.40	82.23	10.60
MW-7B	92.72	83.83	8.89	85.14	7.58	83.40	9.32	84.21	8.51	83.76	8.96	84.91	7.81	84.45	8.27	84.67	8.05	83.54	9.18	83.70	9.02	81.68	11.04	82.50	10.22	82.26	10.46
MW-7C	93.31	83.61	9.70	84.96	8.35	85.01	8.30	86.00	7.31	85.13	8.18	88.33	4.98	85.64	7.67	86.20	7.11	84.69	8.62	84.08	9.23	83.51	9.80	83.81	9.50	84.17	9.14
MW-8	86.02	76.88	9.14	78.00	8.02	76.98	9.04	77.38	8.64	77.18	8.84	77.99	8.03	77.71	8.31	77.76	8.26	76.75	9.27	77.13	8.89	74.97	11.05	76.80	9.22	77.41	8.61
MW-9	82.56	73.79	8.77	74.96	7.60	74.10	8.46	74.41	8.15	74.04	8.52	74.89	7.67	74.58	7.98	74.73	7.83	73.60	8.96	74.10	8.46	72.00	10.56	73.90	8.66	74.20	8.36
MW-11A	80.78	72.75	8.03	73.41	7.37	72.77	8.01	73.84	6.94	73.50	7.28	73.38	7.40	73.68	7.10	73.69	7.09	73.40	7.38	74.00	6.78	71.19	9.59	71.40	9.38	71.32	9.46
MW-11B	78.32	73.51	4.81	74.12	4.20	73.27	5.05	74.25	4.07	73.84	4.48	74.84	3.48	74.35	3.97	74.56	3.76	73.38	4.94	74.10	4.22	66.88	11.44	68.80	9.52	73.75	4.57
MW-12A	87.95	79.73	8.22	80.58	7.37	80.66	7.29	80.54	7.41	80.21	7.74	81.12	6.83	80.60	7.35	81.88	6.07	79.66	8.29	80.40	7.55	78.57	9.38	79.20	8.75	79.75	8.20
MW-12B	88.28	80.34	7.94	81.17	7.11	80.22	8.06	81.14	7.14	80.81	7.47	81.64	6.64	81.21	7.07	81.47	6.81	80.20	8.08	80.12	8.16	79.36	8.92	78.00	10.28	79.14	9.14

NOTES:


* = SURVEYED TO MEAN SEA LEVEL GWE = GROUNDWATER ELEVATION DTW = DEPTH TO WATER

NM = NOT MONITORED NS = NOT SURVEYED



FIGURES

SHP2001 - 1ST SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT

Figure 2 Monitoring Well 11A (1997 - 2020)

Figure 3 Monitoring Well 11B (1997 - 2020)

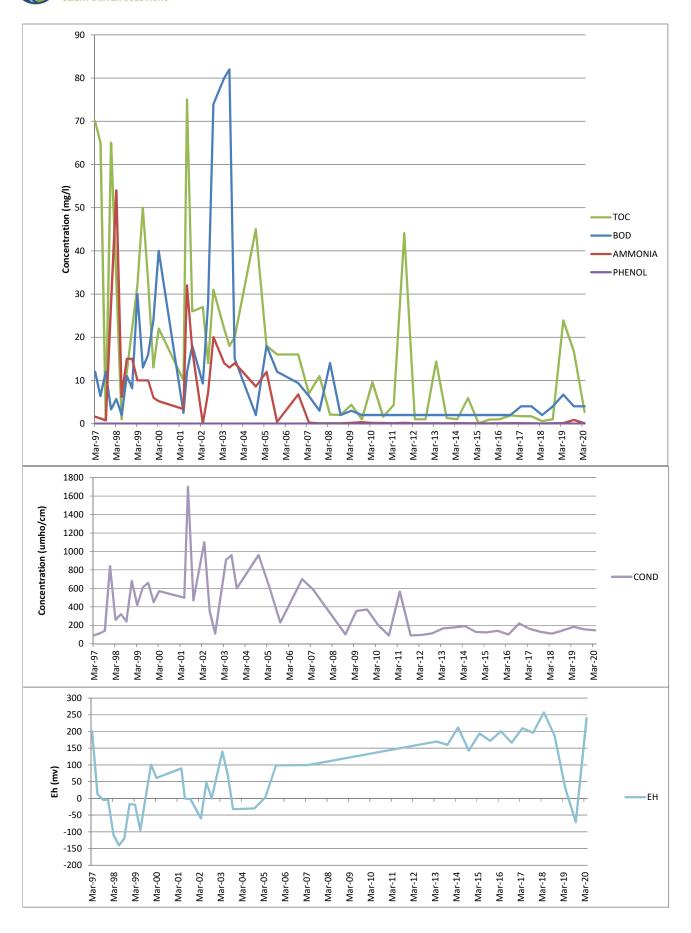


Figure 4
Monitoring Well Cluster 4
Ammonia Trends
(1993 - 2020)

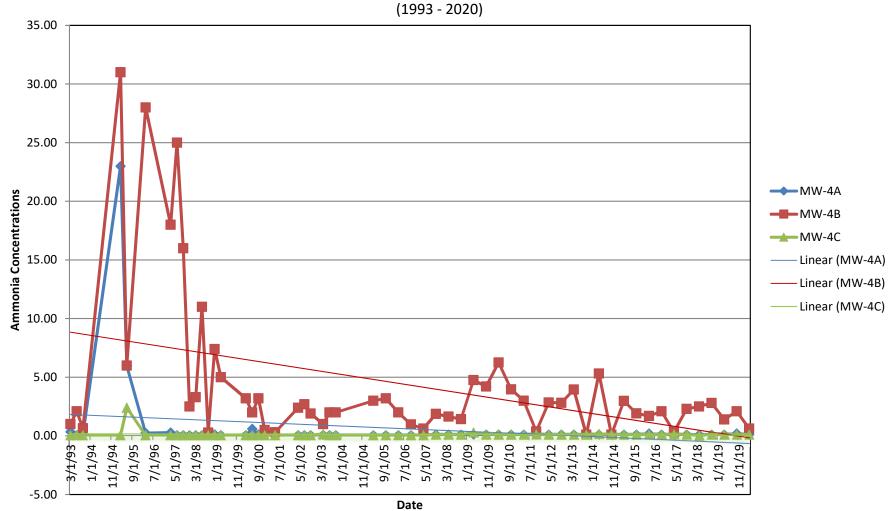


Figure 5 Monitoring Well Cluster 4 Chloride Trends (1995 - 2020)

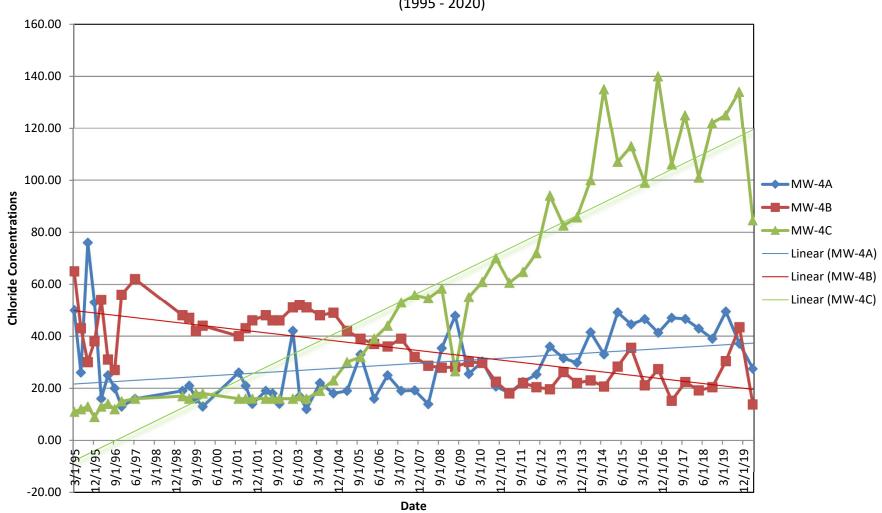


Figure 6
Monitoring Well Cluster 4
Chromium Trends
(1995 - 2020)

Figure 7
Monitoring Well Cluster 4
Conductivity Trends
(1995 - 2020)

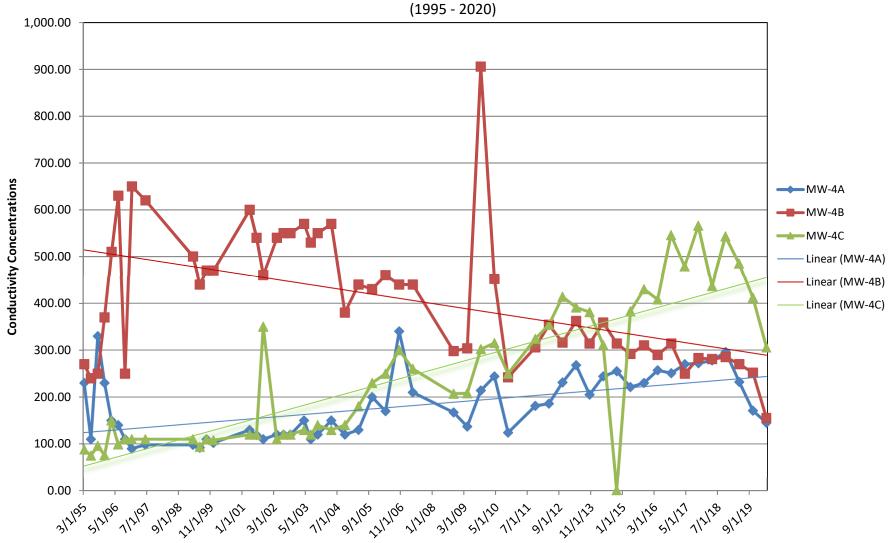


Figure 8
Monitoring Well Cluster 4
Iron Trends
(1993 - 2020)

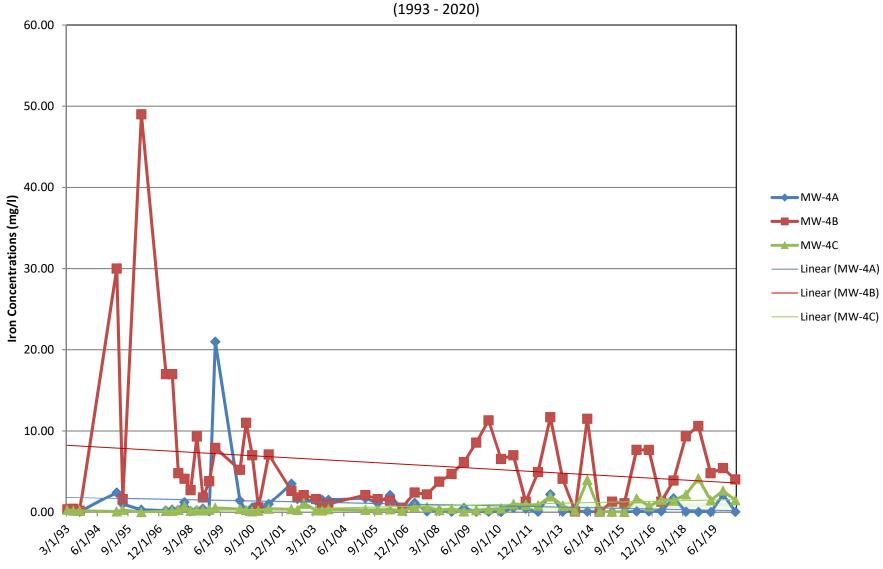


Figure 9
Monitoring Well Cluster 4
Manganese Trends

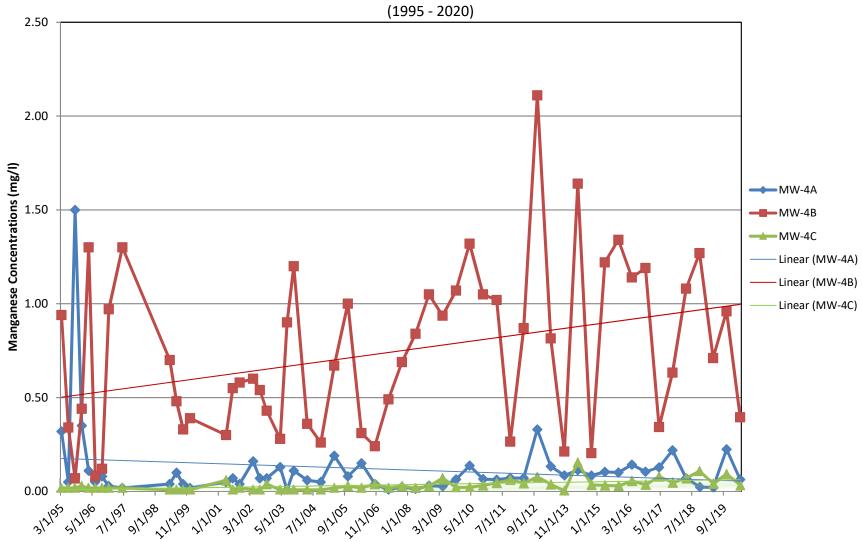


Figure 10 Monitoring Well Cluster 4 Nitrate Trends (1993 - 2020)

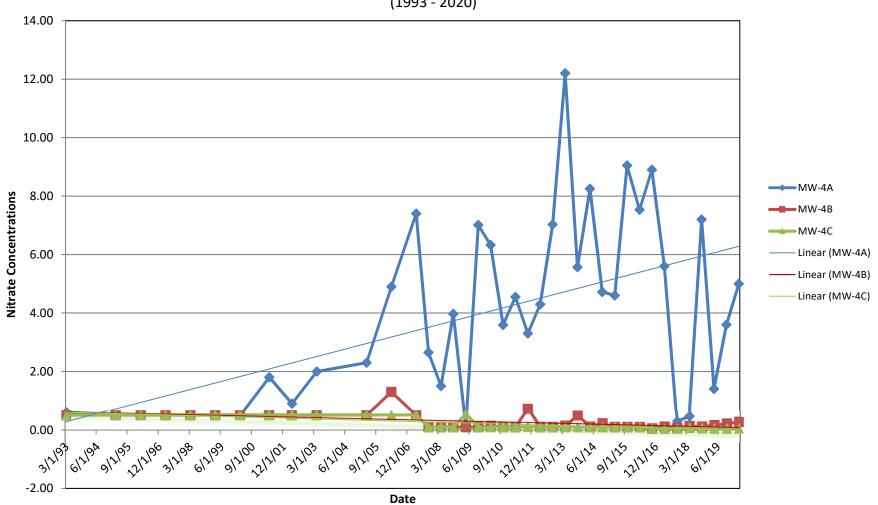
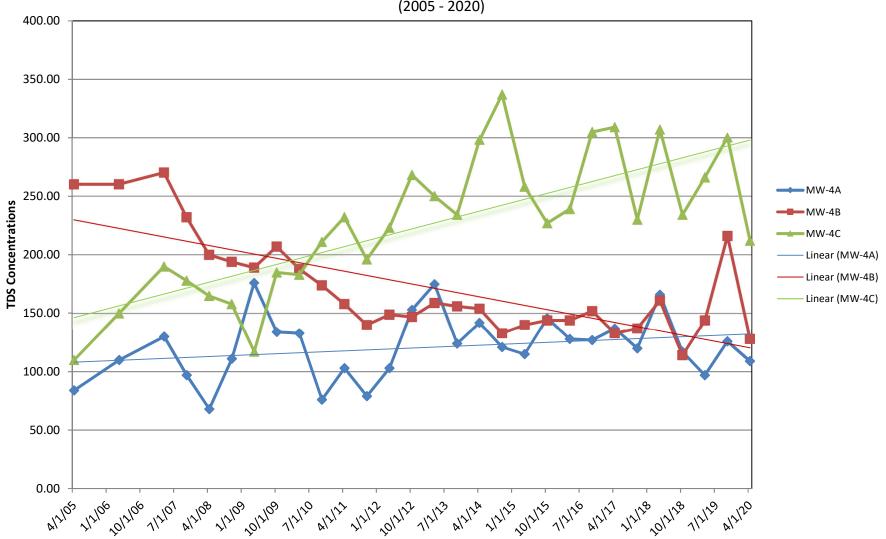



Figure 11
Monitoring Well Cluster 4
Total Dissolved Solids Trends
(2005 - 2020)

APPENDIX A LABORATORY ANALYTICAL REPORTS / DATA VALIDATION & USABILITY REPORT

SHP2001 - 1ST SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT

April 17, 2020

Christine Fetten
Town of Southampton
116 Hampton Road
Waste Management Division
Southampton, NY 11968

RE: Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Dear Christine Fetten:

Enclosed are the analytical results for sample(s) received by the laboratory on April 02, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting

Amanda Lauth, PW Grosser

Pace Analytical www.pacelabs.com

Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Maryland Certification #: 208

New York Certification #: 10478 Primary Accrediting Body

New Jersey Certification #: NY158 Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method:EPA 6010CDescription:6010 MET ICPClient:Town of SouthamptonDate:April 17, 2020

General Information:

2 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 156048

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126818004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 751335)
 - Manganese

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method:SM22 2320BDescription:2320B AlkalinityClient:Town of SouthamptonDate:April 17, 2020

General Information:

2 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: SM22 2340C

Description:2340C Hardness, TotalClient:Town of SouthamptonDate:April 17, 2020

General Information:

2 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: SM22 2540C

Description: 2540C Total Dissolved Solids **Client:** Town of Southampton

Date: April 17, 2020

General Information:

2 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: April 17, 2020

General Information:

2 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: SM22 5210B
Description: 5210B BOD, 5 day
Client: Town of Southampton
Date: April 17, 2020

General Information:

2 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Town of SouthamptonDate:April 17, 2020

General Information:

2 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen
Client: Town of Southampton
Date: April 17, 2020

General Information:

2 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 156663

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70127070002,70127576002

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 754869)
 - Nitrogen, Kjeldahl, Total
- MS (Lab ID: 754871)
 - Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 156663

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 754872)
 - Nitrogen, Kjeldahl, Total

Additional Comments:

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Town of Southampton

Date: April 17, 2020

General Information:

2 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 155726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126818004,70126855001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 749510)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:April 17, 2020

General Information:

2 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 155723

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126871001,70126874001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 749490)
 - Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: EPA 420.1

Description: Phenolics, Total Recoverable
Client: Town of Southampton

Date: April 17, 2020

General Information:

2 samples were analyzed for EPA 420.1 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 420.1 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Southampton
Date: April 17, 2020

General Information:

2 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Method: SM22 5310B

Description: 5310B TOC as NPOC
Client: Town of Southampton
Date: April 17, 2020

General Information:

2 samples were analyzed for SM22 5310B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Date: 04/17/2020 08:48 AM

Sample: LEA PRI	Lab ID: 7012	26874001	Collected: 04/01	/20 15:10	Received: 04	/02/20 10:32	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation I	lethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	04/07/20 12:19	04/08/20 23:48	3 7440-38-2	
Cadmium	<2.5	ug/L	2.5		04/07/20 12:19			
Calcium	49800	ug/L	200	1	04/07/20 12:19	04/08/20 23:48	3 7440-70-2	
ron	13500	ug/L	20.0	1	04/07/20 12:19	04/08/20 23:48	7439-89-6	
ead	<5.0	ug/L	5.0	1	04/07/20 12:19	04/08/20 23:48	7439-92-1	
1agnesium	10500	ug/L	200	1	04/07/20 12:19	04/08/20 23:48	7439-95-4	
Manganese	1460	ug/L	10.0	1	04/07/20 12:19	04/08/20 23:48	7439-96-5	
otassium	31600	ug/L	5000	1	04/07/20 12:19	04/08/20 23:48	3 7440-09-7	
Sodium	82400	ug/L	5000	1	04/07/20 12:19	04/08/20 23:48	7440-23-5	
320B Alkalinity	Analytical Meth	nod: SM22	2320B					
	Pace Analytica	l Services -	Melville					
Alkalinity, Total as CaCO3	402	mg/L	1.0	1		04/08/20 12:16	3	
2340C Hardness, Total	Analytical Meth	nod: SM22 2	2340C					
	Pace Analytica	l Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	180	mg/L	5.0	1		04/16/20 15:55	5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	2540C					
	Pace Analytica	l Services -	Melville					
Total Dissolved Solids	416	mg/L	10.0	1		04/07/20 10:37	,	
410.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation M	ethod: EF	PA 410.4			
	Pace Analytica	l Services -	Melville					
Chemical Oxygen Demand	82.2	mg/L	10.0	1	04/08/20 10:50	04/08/20 13:01	I	
5210B BOD, 5 day	Analytical Meth	nod: SM22 s	5210B Preparation	Method:	SM22 5210B			
	Pace Analytica	l Services -	Melville					
BOD, 5 day	12.4	mg/L	4.0	2	04/03/20 12:12	04/08/20 11:38	3	
800.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		04/15/20 06:07	24959-67-9	
Chloride	92.8	mg/L	10.0	_		04/16/20 06:47		
Sulfate	5.7	mg/L	5.0			04/15/20 06:07		
		•			DA 251 2	-		
351.2 Total Kjeldahl Nitrogen	Pace Analytica		1.2 Preparation M	ernoa: El	-A 351.2			
Nitrogen, Kjeldahl, Total	69.9	mg/L	5.0	10	04/13/20 09:02	04/16/20 11:5/	7727-27-0	
		_		10	04/13/20 09.02	0 4 /10/20 11.04	1121-31-3	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica							
	race Analytica	i Octalices -	INICIVIIIC					
Process All	. -		<u> </u>			04/00/00 00 00		
Nitrate as N Nitrate-Nitrite (as N)	1.5 1.5	mg/L mg/L	0.050 0.050			04/03/20 03:46 04/03/20 03:46		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Date: 04/17/2020 08:48 AM

Sample: LEA PRI	Lab ID: 7012	26874001	Collected:	04/01/2	0 15:10	Received:	04/02/20 10:32	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	0.052	mg/L		0.050	1		04/03/20 01:4	1 14797-65-0	M1
Phenolics, Total Recoverable	Analytical Meth	od: EPA 42	20.1 Prepara	ation Met	hod: EP	A 420.1			
	Pace Analytical	Services -	Melville						
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:3	86 04/16/20 15:4	1	
4500 Ammonia Water	Analytical Meth	od: SM22 4	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	32.0	mg/L		1.0	10		04/15/20 17:3	6 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	23.5	mg/L		1.0	1		04/04/20 01:0	5 7440-44-0	

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Date: 04/17/2020 08:48 AM

Sample: LEA SEC	Lab ID: 701	26874002	Collected: 04	4/01/20	14:35	Received: 04	/02/20 10:32 I	Matrix: Water	
Parameters	Results	Units	Report Lii	imit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation	on Met	hod: EF	PA 3005A			
	Pace Analytica	al Services -	Melville						
Arsenic	40.7	ug/L	1	10.0	1	04/07/20 12:19	04/08/20 23:54	7440-38-2	
Cadmium	<2.5	ug/L		2.5	1	04/07/20 12:19			
Calcium	65600	ug/L		200	1	04/07/20 12:19	04/08/20 23:54	7440-70-2	
ron	65500	ug/L	2	20.0	1	04/07/20 12:19	04/08/20 23:54	7439-89-6	
ead	10.4	ug/L		5.0	1	04/07/20 12:19	04/08/20 23:54	7439-92-1	
1agnesium	9690	ug/L		200	1	04/07/20 12:19	04/08/20 23:54	7439-95-4	
/langanese	947	ug/L	1	10.0	1	04/07/20 12:19	04/08/20 23:54	7439-96-5	
Potassium	27800	ug/L	5	5000	1	04/07/20 12:19	04/08/20 23:54	7440-09-7	
Sodium	75700	ug/L	5	5000	1	04/07/20 12:19	04/08/20 23:54	7440-23-5	
320B Alkalinity	Analytical Met	hod: SM22 2	2320B						
	Pace Analytica	al Services -	Melville						
Alkalinity, Total as CaCO3	277	mg/L		1.0	1		04/08/20 12:30		
2340C Hardness, Total	Analytical Met	hod: SM22 2	2340C						
	Pace Analytica								
ot Hardness asCaCO3 (SM 2340B	250	mg/L		5.0	1		04/16/20 15:55		
2540C Total Dissolved Solids	Analytical Met	hod: SM22 2	2540C						
	Pace Analytica								
otal Dissolved Solids	471	mg/L	1	10.0	1		04/07/20 10:51		
110.4 COD	Analytical Met	hod: EPA 41	0.4 Preparation	n Meth	od: EPA	\ 410.4			
	Pace Analytica								
Chemical Oxygen Demand	137	mg/L	1	10.0	1	04/08/20 10:50	04/08/20 13:02		
5210B BOD, 5 day	Analytical Met	hod: SM22 t	5210B Preparat	tion Me	ethod: S	SM22 5210B			
	Pace Analytica								
3OD, 5 day	46.4	mg/L		6.7	3.33	04/03/20 12:18	04/08/20 11:40		
800.0 IC Anions 28 Days	Analytical Met	hod: FPA 30	00.0						
2000 10 711110110 20 20,0	Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		04/15/20 06:24	24959-67-9	
Chloride	79.2	mg/L		10.0	5		04/16/20 07:04		
Sulfate	46.6	mg/L		25.0	5		04/16/20 07:04		
351.2 Total Kjeldahl Nitrogen	Analytical Met	_	51.2 Preparation	n Math	nd· FD/	\ 351 2			
o i.z rotai Njetuani Mili Ogen	Pace Analytica			II IVICIII	Ju. Li	1001.2			
Nitrogen, Kjeldahl, Total	21.0	mg/L		0.50	1	04/13/20 09:02	04/16/20 11:19	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met								
oos.z miirogen, NOZ/NOS unpres	Pace Analytica								
	,								
Nitrate as N	11.9	mg/L	ſ	0.50	10		04/03/20 03:48	14797-55-8	

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Date: 04/17/2020 08:48 AM

Sample: LEA SEC	Lab ID: 7012	26874002	Collected:	04/01/2	0 14:35	Received: 0	4/02/20 10:32	Matrix: Water	
Parameters	Results	Units	Repoi	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	0.60	mg/L		0.050	1		04/03/20 01:4	7 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	od: EPA 420	0.1 Prepara	ation Met	hod: EP	A 420.1			
	Pace Analytical	Services -	Melville						
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:36	6 04/16/20 15:42	2	
4500 Ammonia Water	Analytical Meth	od: SM22 4	500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	13.7	mg/L		1.0	10		04/15/20 17:38	3 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22 5	310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	39.8	mg/L		1.0	1		04/04/20 01:29	9 7440-44-0	

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 156048 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 751332 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	 ug/L	<10.0	10.0	04/08/20 21:07	
Cadmium	ug/L	<2.5	2.5	04/08/20 21:07	
Calcium	ug/L	<200	200	04/08/20 21:07	
Iron	ug/L	<20.0	20.0	04/08/20 21:07	
Lead	ug/L	< 5.0	5.0	04/08/20 21:07	
Magnesium	ug/L	<200	200	04/08/20 21:07	
Manganese	ug/L	<10.0	10.0	04/08/20 21:07	
Potassium	ug/L	<5000	5000	04/08/20 21:07	
Sodium	ug/L	<5000	5000	04/08/20 21:07	

LABORATORY	CONTROL	SAMPLE:	751333

Date: 04/17/2020 08:48 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	501	100	80-120	
Cadmium	ug/L	50	52.0	104	80-120	
Calcium	ug/L	25000	25300	101	80-120	
Iron	ug/L	2000	2090	104	80-120	
Lead	ug/L	500	506	101	80-120	
Magnesium	ug/L	25000	25200	101	80-120	
Manganese	ug/L	250	254	102	80-120	
Potassium	ug/L	50000	50400	101	80-120	
Sodium	ug/L	50000	52400	105	80-120	

751335						
Units	70126818004 Result	Spike Conc	MS Result	MS % Rec	% Rec	Qualifiers
						Qualificity
ug/L	17.5	500	515	100	75-125	
ug/L	<2.5	50	51.8	104	75-125	
ug/L	70000	25000	93900	96	75-125	
ug/L	3150	2000	5230	104	75-125	
ug/L	<5.0	500	495	99	75-125	
ug/L	10100	25000	34400	97	75-125	
ug/L	5410	250	5550	58	75-125 M	1
ug/L	2300J	50000	51800	99	75-125	
ug/L	6600	50000	61600	110	75-125	
	Units ug/L ug/L	Units 70126818004 Result Ug/L 17.5 ug/L <2.5 ug/L 70000 ug/L 3150 ug/L <5.0 ug/L 10100 ug/L 5410 ug/L 2300J	Units 70126818004 Result Spike Conc. ug/L 17.5 500 ug/L <2.5	Units 70126818004 Result Spike Conc. MS Result ug/L 17.5 500 515 ug/L <2.5	Units 70126818004 Result Spike Conc. MS Result MS Rec ug/L ug/L ug/L ug/L vg/L ug/L ug/L ug/L 3150 2000 25000 93900 96 ug/L ug/L 3150 2000 5230 104 ug/L vg/L 25.0 500 495 99 ug/L 10100 25000 34400 97 ug/L 5410 250 5550 58 ug/L 2300J 50000 51800 99	Units 70126818004 Result Spike Conc. MS Result MS Rec Limits ug/L ug/L ug/L ug/L ug/L ug/L ug/L 2.5 50 51.8 104 75-125 ug/L 3150 2000 93900 96 75-125 ug/L 3150 2000 5230 104 75-125 ug/L 3150 2000 5230 104 75-125 ug/L 3150 2000 34400 97 75-125 ug/L 10100 25000 34400 97 75-125 ug/L 5410 250 5550 58 75-125 M/ug/L 2300J 50000 51800 99 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Date: 04/17/2020 08:48 AM

SAMPLE DUPLICATE: 751334					
		70126818004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Arsenic	ug/L	17.5	16.3	7	
Cadmium	ug/L	<2.5	<2.5		
Calcium	ug/L	70000	66800	5	
Iron	ug/L	3150	3020	4	
Lead	ug/L	<5.0	< 5.0		
Magnesium	ug/L	10100	9740	4	
Manganese	ug/L	5410	5210	4	
Potassium	ug/L	2300J	<5000		
Sodium	ug/L	6600	6400	3	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 156150 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 752104 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 04/08/20 09:38

LABORATORY CONTROL SAMPLE: 752105

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 24.5 98 85-115

MATRIX SPIKE SAMPLE: 752107

MS MS % Rec 70127125004 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 29.8 Alkalinity, Total as CaCO3 mg/L 53.2 25 94 75-125

SAMPLE DUPLICATE: 752106

Date: 04/17/2020 08:48 AM

Parameter Units Parameter Units Dup Result Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 29.8 28.5 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SM22 2340C

2340C Hardness, Total

% Rec

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 157245

QC Batch Method: SM22 2340C Analysis Description:

Laboratory: Pace Analytical Services - Melville

Analysis Method:

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 757715 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L <2.5 2.5 04/16/20 15:55

LABORATORY CONTROL SAMPLE: 757716

Spike LCS LCS

ParameterUnitsConc.Result% RecLimitsQualifiersTot Hardness asCaCO3 (SM 2340Bmg/L10010110190-110

MATRIX SPIKE SAMPLE: 757717

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L 180 1000 1200 102 75-125

SAMPLE DUPLICATE: 757718

Date: 04/17/2020 08:48 AM

 Parameter
 Units
 70126874001 Result
 Dup Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 180
 170
 6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

NORTH SEA LANDFILL ROUTINE Project:

Pace Project No.: 70126874

QC Batch: 156014

Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 751128 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

> Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids <5.0 5.0 04/07/20 09:54 mg/L

LABORATORY CONTROL SAMPLE: 751129

> Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result

Total Dissolved Solids 500 568 114 85-115 mg/L

MATRIX SPIKE SAMPLE: 751131

MS % Rec 70126818008 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 363

Total Dissolved Solids mg/L 300 641 93 75-125

MATRIX SPIKE SAMPLE: 751133

70126830002 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers

Total Dissolved Solids 130 mg/L 300 437 102 75-125

SAMPLE DUPLICATE: 751130

70126818008 Dup RPD Parameter Units Result Result Qualifiers 363 3 Total Dissolved Solids mg/L 375

SAMPLE DUPLICATE: 751132

Date: 04/17/2020 08:48 AM

70126830002

Dup Units **RPD** Qualifiers Parameter Result Result 130 Total Dissolved Solids 126 3 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 156172 Analysis Method: EPA 410.4
QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 752163 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Chemical Oxygen Demand mg/L <10.0 10.0 04/08/20 13:01

LABORATORY CONTROL SAMPLE: 752164

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Chemical Oxygen Demand 500 511 102 90-110 mg/L

MATRIX SPIKE SAMPLE: 752165

MS MS % Rec 70126961002 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 Chemical Oxygen Demand mg/L 1000 1010 101 90-110

MATRIX SPIKE SAMPLE: 752167

70126875009 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers <10.0 Chemical Oxygen Demand mg/L 1000 1020 101 90-110

SAMPLE DUPLICATE: 752166

Parameter Units 70126961002 Dup Result RPD Qualifiers

Chemical Oxygen Demand mg/L <10.0 <10.0

SAMPLE DUPLICATE: 752168

Date: 04/17/2020 08:48 AM

 Parameter
 Units
 70126875009 Result
 Dup Result
 RPD
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 <10.0</td>
 <10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 155757 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 749597 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Parameter Units Blank Reporting
Result Limit Analyzed Qualifiers

BOD, 5 day mg/L <2.0 2.0 04/08/20 10:39

LABORATORY CONTROL SAMPLE: 749598

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 190 96 84.5-115.4

SAMPLE DUPLICATE: 749600

Date: 04/17/2020 08:48 AM

 Parameter
 Units
 70126818004 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 1.0J
 <2.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 156744 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 755471 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

LABORATORY CONTROL CAMPLE: 755472

Date: 04/17/2020 08:48 AM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	04/14/20 22:52	
Chloride	mg/L	<2.0	2.0	04/14/20 22:52	
Sulfate	ma/L	<5.0	5.0	04/14/20 22:52	

LABORATORY CONTROL SAMPLE.	755472					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	1	1.0	100	90-110	
Chloride	mg/L	10	9.3	93	90-110	
Sulfate	mg/L	10	9.1	91	90-110	

MATRIX SPIKE SAMPLE:	755473						
		70127629001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	0.078	1	1.1	97	90-110	
Chloride	mg/L	13.0	10	23.6	106	90-110	
Sulfate	mg/L	6.1	10	15.7	96	90-110	

MATRIX SPIKE SAMPLE:	755475						
		70126818004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	0.13J	1	1.1	97	90-110	
Chloride	mg/L	2.0	10	11.5	95	90-110	
Sulfate	mg/L	6.4	10	15.9	96	90-110	

SAMPLE DUPLICATE: 755474					
		70127629001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	0.078	<0.50		
Chloride	mg/L	13.0	12.9	0	
Sulfate	mg/L	6.1	6.0	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Date: 04/17/2020 08:48 AM

SAMPLE DUPLICATE: 755476

Parameter	Units	70126818004 Result	Dup Result	RPD	Qualifiers
Bromide	 mg/L	0.13J	<0.50		
Chloride	mg/L	2.0	2.0	0	
Sulfate	mg/L	6.4	6.3	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 156663 Analysis Method: EPA 351.2

QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 754867 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Kjeldahl, Total mg/L <0.094 0.094 04/13/20 14:31

LABORATORY CONTROL SAMPLE: 754868

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Kjeldahl, Total 4.3 107 90-110 mg/L

MATRIX SPIKE SAMPLE: 754869

MS MS % Rec 70127576002 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 26.7 Nitrogen, Kjeldahl, Total 90-110 M6 mg/L 4 28.5 44

MATRIX SPIKE SAMPLE: 754871

70127070002 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers 0.59 90-110 M6 Nitrogen, Kjeldahl, Total mg/L 4 8.2 189

SAMPLE DUPLICATE: 754870

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 26.7
 27.2
 2

SAMPLE DUPLICATE: 754872

Date: 04/17/2020 08:48 AM

 Parameter
 Units
 70127070002 Result
 Dup Result
 RPD
 Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 0.59
 1.0
 51
 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 155723 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 749488 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 04/03/20 01:10

LABORATORY CONTROL SAMPLE: 749489

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.0 100 90-110 mg/L

MATRIX SPIKE SAMPLE: 749490

MS % Rec 70126874001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.052 90-110 M1 Nitrite as N mg/L 0.5 0.67 123

MATRIX SPIKE SAMPLE: 749492 70126871001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.52 104 90-110

SAMPLE DUPLICATE: 749491

 Parameter
 Units
 70126874001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 0.052
 0.051
 1

SAMPLE DUPLICATE: 749493

Date: 04/17/2020 08:48 AM

 Parameter
 Units
 70126871001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 155726 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 749506 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 04/03/20 03:22

LABORATORY CONTROL SAMPLE: 749507

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 0.97 97 90-110 mg/L

MATRIX SPIKE SAMPLE: 749508

MS % Rec 70126818004 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.050 Nitrate-Nitrite (as N) mg/L 0.5 0.57 104 90-110

MATRIX SPIKE SAMPLE: 749510

70126855001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 6.6 90-110 M6 Nitrate-Nitrite (as N) mg/L 5 11.1 89

SAMPLE DUPLICATE: 749509

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.050
 <0.050</td>

SAMPLE DUPLICATE: 749511

Date: 04/17/2020 08:48 AM

 Parameter
 Units
 70126855001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 6.6
 6.6
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 157052 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 756809 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Phenolics, Total Recoverable ug/L <5.0 5.0 04/16/20 15:39

LABORATORY CONTROL SAMPLE: 756810

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Phenolics, Total Recoverable ug/L 100 109 109 90-110

MATRIX SPIKE SAMPLE: 756811

70126875009 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Phenolics, Total Recoverable ug/L <5.0 50 56.7 113 75-125

SAMPLE DUPLICATE: 756812

Date: 04/17/2020 08:48 AM

Phenolics, Total Recoverable

Total Recoverable

Parameter

Units

Total Result

Result

Result

Result

RPD

Qualifiers

Continuous State of the second sec

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 156974 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 756471 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.050 0.050 04/15/20 15:52

LABORATORY CONTROL SAMPLE: 756472

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Ammonia mg/L 0.99 99 90-110

MATRIX SPIKE SAMPLE: 756473

MS MS % Rec 70127799001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 mg/L 0.78 Nitrogen, Ammonia 78 75-125

SAMPLE DUPLICATE: 756474

Date: 04/17/2020 08:48 AM

Parameter Units Result Result RPD Qualifiers

Nitrogen, Ammonia mg/L <0.10 0.16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

QC Batch: 155770 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126874001, 70126874002

METHOD BLANK: 749651 Matrix: Water

Associated Lab Samples: 70126874001, 70126874002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <1.0 1.0 04/03/20 22:43

LABORATORY CONTROL SAMPLE: 749652

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** mg/L 10 9.8 98 85-115

MATRIX SPIKE SAMPLE: 749654

70126675007 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.78J **Total Organic Carbon** mg/L 20.6 20 99 75-125

SAMPLE DUPLICATE: 749653

Date: 04/17/2020 08:48 AM

Parameter Units 70126675007 Dup Result RPD Qualifiers

Total Organic Carbon mg/L 0.78J <1.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/17/2020 08:48 AM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: NORTH SEA LANDFILL ROUTINE

Pace Project No.: 70126874

Date: 04/17/2020 08:48 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch		
70126874001 70126874002	LEA PRI LEA SEC	EPA 3005A EPA 3005A	156048 156048	EPA 6010C EPA 6010C	156068 156068		
70126874001 70126874002	LEA PRI LEA SEC	SM22 2320B SM22 2320B	156150 156150				
70126874001 70126874002	LEA PRI LEA SEC	SM22 2340C SM22 2340C	157245 157245				
70126874001 70126874002	LEA PRI LEA SEC	SM22 2540C SM22 2540C	156014 156014				
70126874001 70126874002	LEA PRI LEA SEC	EPA 410.4 EPA 410.4	156172 156172	EPA 410.4 EPA 410.4	156211 156211		
70126874001 70126874002	LEA PRI LEA SEC	SM22 5210B SM22 5210B	155757 155757	SM22 5210B SM22 5210B	156588 156588		
70126874001 70126874002	LEA PRI LEA SEC	EPA 300.0 EPA 300.0	156744 156744				
70126874001 70126874002	LEA PRI LEA SEC	EPA 351.2 EPA 351.2	156663 156663	EPA 351.2 EPA 351.2	156686 156686		
70126874001 70126874002	LEA PRI LEA SEC	EPA 353.2 EPA 353.2	155726 155726				
70126874001 70126874002	LEA PRI LEA SEC	EPA 353.2 EPA 353.2	155723 155723				
70126874001 70126874002	LEA PRI LEA SEC	EPA 420.1 EPA 420.1	157052 157052	EPA 420.1 EPA 420.1	157159 157159		
70126874001 70126874002	LEA PRI LEA SEC	SM22 4500 NH3 H SM22 4500 NH3 H	156974 156974				
70126874001 70126874002	LEA PRI LEA SEC	SM22 5310B SM22 5310B	155770 155770				

W0#:70126874 70120074

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	/0126874								ectio																					1
Require. Company Tour of Sauthornton Merry Company							Invoice Information:												Pag	ge:	1		Of	_1_	1					
Company Town of Southampton Reput to Ferrent, Christine Address: Waste Management Division Copy To:							- A	Attention: Ameda bact																						
						- 0	Company Name: The Grosser consulting Address 130 John A Least 117 Kb, 6TE #7;																-910	-		1				
Southampton, NY 11968 Email: c_fetten@southamptontownry.gov Purchase Order #:							- P	are r	Junte:	0	- In	2	Ter	×	11	Mo	1	DIE	- LA	1				kegul	atory Ag	ency			1	
Email: c_fetten@southamptontownny.gov							_	Pace Quote: Pace Project Manager jennifer aracri@pacelabs.com,												IFW)			Ctate	/ Locat	ion	-	F 1/1	1		
	Due Date	Project #:		HOTH OCC L	ariann				Pace Profile # 5479 Line 1														Otali		- Contraction			1		
		711.57								_	_		,,,,,		100	E	F	Reque	ested	Analys	is Filt	ered ()	(/N)	14.		U SIN	1100	U. F	100	
1 2 3 4 5	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique MATRIX Drinking Water Waste \text{Vaste} \text{Vaste} \text{Vaste} \text{Vaste} \text{Vaste} \text{Vaste} \text{Vaste} \text{Vipe} \text{Air} Clher Tissue	CODE Waler DW WT Waler WW P	(see valid code	<u>_</u>	TIME	DATE 4/1/20	TIME S: O 好写	SAMPLE TEMP AT COLLECTION		Universal value of the control of th	Pres	ervai	tives	Methanol	Analyses Test Y/N	X BOD,Br,Cl,SO4,Alk,TDS,NO	COD, NH3, NO3, TKN, Phenot	x T0C	X Routine Metals+As & Hardne	Analys	is Fitt	ered (\)	(IN)		Residual Chlorine (Y/N)	NY				
6 7 8 9																														
11			Н												1	1					l l					1				
			+						+	-	-	+	+		\dashv		+		-	-		_	+		-	-				1
12											9.																			J
P. S.	ADDITIONAL COMMENTS	alex Es	RELINQ	UISHED BY /	AFFILIATIO	ON	DATE		TII	WE 2N			ACC	EPTED	BYIA	FFILL	ATION	1			DATE	39 6	TIMI	E		SAMPL	E CON	DITIONS		
Part 360 Rc LEA-Primate Page 37 of 38	utine + Arsenic		Est of	16			4/2/8			32	Ac.	7	-			1.		pe	61	4/	-	09		7						

Pace Analytical

Sample Condition Upon Receipt

Pace Analytical		611.32			ProjeLIO#: 70126874
	Client Na	ame:	- 50 0 %		Proje WO#: / U1205: 04/16/20
		W Gr			DM: JSH
Courier: Fed Ex UPS USPS C	lient Commer	cial Pac	eDther		CLIENT: TOS
Tracking #:	Yes \(\in No	Seals in	ntact: Y	es 🗌 No	No laure Blank Present: Yes No
Custody Seal on Cooler/Box Present: 🗹					Type of Ice: Wet Blue None
Packing Material: Bubble Wrap Bubble	le Bags [Zipio	C Disous	* (D)		Samples on ice, cooling process has begun
Thermometer Used: TH091	Correctio	n Factor.	00	(°C):	Contactions 5035A kits placed in freezer
Cooler Temperature (°C): 4.9	Cooler Ter	nperature	Confector	(U).	3.1 Baterillie 30334 kits places in 4/1/20
Temp should be above freezing to 6.0°C				Date and	I Initials of person examining contents: T.T. 10 132
USO 4 B 1-4-4 Coil (□ N/A water sam	ple)				totampionally.
	he United States: A	AL, AR, CA, F	EL, GA, ID, L	A, W.S. NC	including Hawaii and Puerto Rico)? [Yes No
NM. NY, OK, OR, SC, TN, TX, or VA (check map)	? Unita Regi	ا الالا ulated Soil	Checklist	(F-LI-C-C	010) and include with SCUR/COC paperwork. COMMENTS:
If Yes to either question	i, illi oat a reg				COMMENTS:
	Pyes	□No		1.	,
Chain of Custody Present	//Yes	□No		2.	
Chain of Custody Filled Out	ŻlYes	□ио		3.	
Chain of Custody Relinquished:	ØYes	□No	□N/A	4.	•
Sampler Name & Signature on COC:	ØYes			5.	
Samples Arrived within Hold Time:	ØYes	□No		6.	
Short Hold Time Analysis (<72hr):	□Yes	ØNo		7.	*
Rush Turn Around Time Requested:		□No		8.	
Sufficient Volume: (Triple volume provided for MS	//Yes	□No		9.	
Correct Containers Used:	y⊿ γes Øγes	□No			•
-Pace Containers Used:	Yes	□No		10.	
Containers Intact:	□Yes	□No	⊠ N⁄A	11.	Note if sediment is visible in the dissolved container.
Filtered volume received for Dissolved lests	DYes D	□No		12.	
Sample Labels match COC:	SL (V) OIL				
-Includes date/time/ID/Analysis Matrix All containers needing preservation have been ch		ŪNo	□N/A	13.	☐ HNO3 ☐ H2SO4 ☐ NaOH ☐ HCI
pH paper Lot # \$ C64 8032	9.00			1	
The state of the s	be in	*		Sample #	koel (iii e
All containers needing preservation are found to compliance with EPA recommendation?	/ 4	□No	□N/A	1	320 si
(HNO _s , H₂SO ₄ , HCl, NaOH>9 Sulfide,	/ M Yes	٥١١٥		1	· stad
NAOH>12 Cyanide) Exceptions: VOA, Coliform, TOC/DOC, Oil and C	Grease,			Initial wi	hen completed: Lot # of added preservative; Date/Time preservative added
DRO/8015 (water). Per Method, VOA pH is checked after analysis	5				
Samples checked for dechlorination:	□Yes	□No	PNA	14.	a
KI starch test strips Lot #			1	1	Positive for Rea, Chlorine? Y N
Residual dillorine ships Lul #			FRAMA	15.	
Headspace in VOA Vials (>6mm);	□Yes	□No	DIN/A	16.	
Trip Blank Present:	□Yes	□N ₀	DNA	1.0.	
Trip Blank Custody Seals Present	□Yes	□No	Time		
Pace Trip Blank Lot # (if applicable):				Field D	ata Required? Y / N
Client Notification/ Resolution:				i iciu D	Date/Time:
Person Contacted:					
Comments/ Resolution:					
			-		
	1.00 . 2.000	.0			

^{*} PM (Project Manager) review is documented electronically in LIMS.

April 22, 2020

Christine Fetten Town of Southampton 116 Hampton Road Waste Management Division Southampton, NY 11968

RE: Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Dear Christine Fetten:

Enclosed are the analytical results for sample(s) received by the laboratory between April 02, 2020 and April 03, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

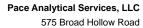
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Aracri jennifer.aracri@pacelabs.com (631)694-3040


Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting

Amanda Lauth, PW Grosser

Melville, NY 11747 (631)694-3040

CERTIFICATIONS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Maryland Certification #: 208

New York Certification #: 10478 Primary Accrediting Body New Jersey Certification #: NY158

Pennsylvania Certification #: 68-00350 Connecticut Certification #: PH-0435 Rhode Island Certification #: LAO00340 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved
Client: Town of Southampton
Date: April 22, 2020

General Information:

4 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 157565

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126875004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 759328)
 Silver, Dissolved

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 7470A

Description: 7470 Mercury

Client: Town of Southampton

Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 7470A

Description: 7470 Mercury, Dissolved Client: Town of Southampton Date: April 22, 2020

General Information:

4 samples were analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Southampton
Date: April 22, 2020

General Information:

18 samples were analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 155840

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- 1A (Lab ID: 70126875001)
 - Acetone
- BLANK (Lab ID: 749997)
 - Acetone
- LCS (Lab ID: 749998)
 - Acetone
- MS (Lab ID: 750715)
 - Acetone
- MSD (Lab ID: 750716)
 - Acetone
- STORAGE BLANK (Lab ID: 70126875003)
 - Acetone
- TRIP BLANK (Lab ID: 70126875002)
 - Acetone

QC Batch: 156370

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- 11A (Lab ID: 70126875018)
 - Acetone
- 11B (Lab ID: 70126875014)
 - Acetone
- 12A (Lab ID: 70126875015)
 - Acetone
- 12B (Lab ID: 70126875016)
 - Acetone
- 1B (Lab ID: 70126875004)
- Acetone1C (Lab ID: 70126875005)
- Acetone
- 3A (Lab ID: 70126875006)
- Acetone3B (Lab ID: 70126875007)
 - Acetone

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Southampton
Date: April 22, 2020

QC Batch: 156370

IC: The initial calibration for this compound was outside of method control limits. The result is estimated.

- 3C (Lab ID: 70126875008)
 - Acetone
- 4A (Lab ID: 70126875009)
 - Acetone
- 4B (Lab ID: 70126875010)
 - Acetone
- 4C (Lab ID: 70126875011)
 - Acetone
- BLANK (Lab ID: 753028)
 - Acetone
- DUP001 (Lab ID: 70126875012)
 - Acetone
- EB001 (Lab ID: 70126875017)
 - Acetone
- LCS (Lab ID: 753029)
 - Acetone
- MS (Lab ID: 753030)
 - Acetone
- MSD (Lab ID: 753031)
 - Acetone
- TRIP BLANK (Lab ID: 70126875013)
 - Acetone

IL: This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

- BLANK (Lab ID: 753028)
 - lodomethane

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 155840

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- 1A (Lab ID: 70126875001)
 - Acetone
- LCS (Lab ID: 749998)
 - 2-Hexanone
 - Acetone
- MS (Lab ID: 750715)
 - 2-Hexanone
 - Acetone
- MSD (Lab ID: 750716)
 - 2-Hexanone
 - Acetone

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Southampton
Date: April 22, 2020

QC Batch: 155840

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- 1A (Lab ID: 70126875001)
 - Bromomethane
 - Chloroethane
 - Iodomethane
- BLANK (Lab ID: 749997)
 - Bromomethane
 - Chloroethane
 - Iodomethane
- LCS (Lab ID: 749998)
 - Bromomethane
 - Chloroethane
 - lodomethane
- MS (Lab ID: 750715)
 - Bromomethane
 - Chloroethane
 - lodomethane
- MSD (Lab ID: 750716)
 - Bromomethane
 - Chloroethane
 - lodomethane
- STORAGE BLANK (Lab ID: 70126875003)
 - Bromomethane
 - Chloroethane
 - lodomethane
- TRIP BLANK (Lab ID: 70126875002)
 - Bromomethane
 - Chloroethane
 - lodomethane

QC Batch: 156370

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- 11A (Lab ID: 70126875018)
 - lodomethane
- 11B (Lab ID: 70126875014)
 - lodomethane
- 12A (Lab ID: 70126875015)
 - lodomethane
- 12B (Lab ID: 70126875016)
 - lodomethane
- 1B (Lab ID: 70126875004)
 - lodomethane
- 1C (Lab ID: 70126875005)
 - lodomethane
- 3A (Lab ID: 70126875006)

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:April 22, 2020

QC Batch: 156370

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- lodomethane
- 3B (Lab ID: 70126875007)
 - Iodomethane
- 3C (Lab ID: 70126875008)
 - lodomethane
- 4A (Lab ID: 70126875009)
 - Iodomethane
- 4B (Lab ID: 70126875010)
 - lodomethane
- 4C (Lab ID: 70126875011)
 - Iodomethane
- DUP001 (Lab ID: 70126875012)
 - lodomethane
- EB001 (Lab ID: 70126875017)
 - lodomethane
- LCS (Lab ID: 753029)
 - lodomethane
- MS (Lab ID: 753030)
 - lodomethane
- MSD (Lab ID: 753031)
 - Iodomethane
- TRIP BLANK (Lab ID: 70126875013)
 - lodomethane

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 156370

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 753029)
 - Dibromochloromethane
 - cis-1,3-Dichloropropene

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Southampton
Date: April 22, 2020

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 155840

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126818004

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 750715)Bromochloromethane

R1: RPD value was outside control limits.

MSD (Lab ID: 750716)Bromomethane

QC Batch: 156370

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126875009

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MSD (Lab ID: 753031)
 - Dibromochloromethane
 - cis-1,3-Dichloropropene

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MSD (Lab ID: 753031)
 - 1,1,1,2-Tetrachloroethane
 - Bromodichloromethane
 - Carbon tetrachloride
 - Ethylbenzene
 - Styrene

MS: Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.

- MSD (Lab ID: 753031)
 - Xylene (Total)

R1: RPD value was outside control limits.

- MSD (Lab ID: 753031)
 - lodomethane

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 8260
Description: TIC MSV Water
Client: Town of Southampton
Date: April 22, 2020

General Information:

17 samples were analyzed for EPA 8260 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: SM22 2120B

Description: 2120B W Apparent Color Client: Town of Southampton Date: April 22, 2020

General Information:

15 samples were analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

• DUP001 (Lab ID: 70126875012)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: SM22 2320B
Description: 2320B Alkalinity
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

(631)694-3040

PROJECT NARRATIVE

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: SM22 2540C

Description: 2540C Total Dissolved Solids
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- 11A (Lab ID: 70126875018)
- 11B (Lab ID: 70126875014)
- 12A (Lab ID: 70126875015)
- 12B (Lab ID: 70126875016)
- 3A (Lab ID: 70126875006)
- 4A (Lab ID: 70126875009)
- 4B (Lab ID: 70126875010)
- 4C (Lab ID: 70126875011)

H3: Sample was received or analysis requested beyond the recognized method holding time.

- 1A (Lab ID: 70126875001)
- 1B (Lab ID: 70126875004)
- 1C (Lab ID: 70126875005)
- 3B (Lab ID: 70126875007)
- 3C (Lab ID: 70126875008)
- DUP001 (Lab ID: 70126875012)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: SM22 5210B
Description: 5210B BOD, 5 day
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

• 1A (Lab ID: 70126875001)

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 157088

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126875009,70127207001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 757234)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 156965

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126875009,70127309002

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 756449)
 - Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 156965

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 756452)
 - Nitrogen, Kjeldahl, Total

Additional Comments:

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Town of Southampton

Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 155726

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126818004,70126855001

M6: Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

- MS (Lab ID: 749510)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:April 22, 2020

General Information:

15 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 420.1

Description: Phenolics, Total Recoverable
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 420.1 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 420.1 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method:SM22 4500 NH3 HDescription:4500 Ammonia WaterClient:Town of SouthamptonDate:April 22, 2020

General Information:

15 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 156975

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70126875009

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 756477)Nitrogen, Ammonia

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 9014 Total Cyanide
Description: 9014 Cyanide, Total
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Method: EPA 9060A

Description: 9060A TOC as NPOC
Client: Town of Southampton
Date: April 22, 2020

General Information:

15 samples were analyzed for EPA 9060A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1A	Lab ID:	70126875001	Collected:	04/01/2	0 08:45	Received: 04	1/02/20 10:32	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical N	Method: EPA 60	010C Prepara	ation Me	thod: EF	PA 3005A			
	Pace Analy	rtical Services -	Melville						
Aluminum	<200	ug/L		200	1	04/09/20 09:00	04/13/20 14:28	8 7/20-00-5	
Antimony	<60.0	J		60.0	1		04/13/20 14:28		
Arsenic	<10.0	0		10.0	1		04/13/20 14:28		
Barium	<200	_		200	1		04/13/20 14:28		
Beryllium	<5.0	0		5.0	1		04/13/20 14:28		
Boron	80.7	0		50.0	1		04/13/20 14:28		
Cadmium	<2.5	J		2.5	1		04/13/20 14:28		
Calcium	46700	0		200	1		04/13/20 14:28		
Chromium	<10.0	_		10.0	1		04/13/20 14:28		
Cobalt	<50.0	0		50.0	1		04/13/20 14:28		
Copper	<25.0	0		25.0	1		04/13/20 14:28		
ron	29.1	J		20.0	1		04/13/20 14:28		
Lead	<5.0	0		5.0	1		04/13/20 14:28		
Magnesium	19000	J		200	1		04/13/20 14:28		
Manganese	<10.0	- 3		10.0	1		04/13/20 14:28		
Nickel	<40.0	0		40.0	1		04/13/20 14:28		
Potassium	6820	J		5000	1		04/13/20 14:28		
Selenium	<10.0	0		10.0	1		04/13/20 14:28		
Silver	<10.0	0		10.0	1		04/13/20 14:28		
Sodium	14400	0		5000	1		04/13/20 14:28		
Thallium	<10.0	0		10.0	1		04/13/20 14:28		
Vanadium	<50.0	J		50.0	1		04/13/20 14:28		
Zinc	<20.0	J		20.0	1		04/13/20 14:28		
7470 Mercury	Analytical N	Method: EPA 74	1704 Prepara	ation Me	thod: EE	ο 7470Δ			
7470 Mercury	•	tical Services -	•	ation ivic	uioa. Li	ATTOA			
Mercury	<0.20	ug/L		0.20	1	04/07/20 21:22	04/08/20 05:13	3 7439-97-6	
3260C Volatile Organics	Analytical N	Method: EPA 82	260C/5030C						
Ü	-	rtical Services -							
Acetone	<5.0	ug/L		5.0	1		04/03/20 21:23	7 67-64-1	CH,IC
Acrylonitrile	<5.0	ug/L		5.0	1		04/03/20 21:27	7 107-13-1	
- Benzene	<5.0			5.0	1		04/03/20 21:27	7 71-43-2	
Bromochloromethane	<5.0	ug/L		5.0	1		04/03/20 21:27	7 74-97-5	
Bromodichloromethane	<5.0	ug/L		5.0	1		04/03/20 21:27	7 75-27-4	
Bromoform	<5.0	_		5.0	1		04/03/20 21:27	7 75-25-2	
Bromomethane	<5.0	_		5.0	1		04/03/20 21:27	7 74-83-9	CL
2-Butanone (MEK)	<5.0	_		5.0	1		04/03/20 21:27	7 78-93-3	
Carbon disulfide	<5.0	•		5.0	1		04/03/20 21:27		
Carbon tetrachloride	<5.0	_		5.0	1		04/03/20 21:27		
Chlorobenzene	<5.0	-		5.0	1		04/03/20 21:23		
Chloroethane	<5.0	•		5.0	1		04/03/20 21:23		CL
		Ū		5.0	1		04/03/20 21:23		
Chloroform	<ວ.ບ	uu/L		ე.0					
Chloroform Chloromethane	<5.0 <5.0	•		5.0	1		04/03/20 21:23		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1A	Lab ID: 701	26875001	Collected: 04/01/2	0 08:45	Received:	04/02/20 10:32	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 124-48-1	
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/03/20 21:27		
Dibromomethane	<5.0	ug/L	5.0	1		04/03/20 21:27		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/03/20 21:27		
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/03/20 21:27		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/03/20 21:27	7 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/03/20 21:27		
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 21:27		
sis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 21:27		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 21:27		
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 78-87-5	
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/03/20 21:27	7 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/03/20 21:27		
Ethylbenzene	<5.0	ug/L	5.0	1		04/03/20 21:27	7 100-41-4	
-Hexanone	<5.0	ug/L	5.0	1		04/03/20 21:27	7 591-78-6	
odomethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 74-88-4	CL
lethylene Chloride	<5.0	ug/L	5.0	1		04/03/20 21:27	7 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/03/20 21:27	7 108-10-1	
tyrene	<5.0	ug/L	5.0	1		04/03/20 21:27	7 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		04/03/20 21:27	7 127-18-4	
oluene	<5.0	ug/L	5.0	1		04/03/20 21:27	7 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		04/03/20 21:27	7 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/03/20 21:27	7 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		04/03/20 21:27	7 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/03/20 21:27	7 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		04/03/20 21:27	7 1330-20-7	
Surrogates		•						
,2-Dichloroethane-d4 (S)	101	%	68-153	1		04/03/20 21:27	7 17060-07-0	
-Bromofluorobenzene (S)	100	%	79-124	1		04/03/20 21:27	7 460-00-4	
oluene-d8 (S)	100	%	69-124	1		04/03/20 21:27	7 2037-26-5	
TC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica							
TC Search	No TICs Found			1		04/07/20 12:39	9	
120B W Apparent Color	Analytical Met	hod: SM22	2120B					
· · · · · · · · · · · · · · · · · · ·	Pace Analytica							
Apparent Color	5.0	units	5.0	1		04/03/20 07:25	5	
рН	6.3	Std. Units		1		04/03/20 07:25		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 1A	Lab ID: 7012	26875001	Collected: 04/01/2	20 08:45	Received: 04	/02/20 10:32 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth							
Alkalinity, Total as CaCO3	55.5	mg/L	1.0	1		04/08/20 12:37	•	
2340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	130	mg/L	5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	286	mg/L	10.0	1		04/07/20 10:51		
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/03/20 11:59	18540-29-9	НЗ
410.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Met Melville	hod: EF	PA 410.4			
Chemical Oxygen Demand	16.7	mg/L	10.0	1	04/08/20 10:50	04/08/20 13:02		
5210B BOD, 5 day	Analytical Meth Pace Analytica		5210B Preparation N Melville	Method:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/03/20 12:20	04/08/20 11:43		H2
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		04/15/20 21:35		
Chloride Sulfate	26.6 91.9	mg/L mg/L	2.0 25.0	1 5		04/15/20 21:35 04/17/20 00:22		
351.2 Total Kjeldahl Nitrogen		nod: EPA 35	1.2 Preparation Met		PA 351.2	0 11 11 11 10 10 1		
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	04/15/20 08:39	04/16/20 12:58	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica							
Nitrate as N	9.2	mg/L	0.50	10		04/03/20 03:49	14797-55-8	
Nitrate-Nitrite (as N)	9.2	mg/L	0.50	10		04/03/20 03:49	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/03/20 01:51	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica		0.1 Preparation Met Melville	hod: EF	PA 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	04/16/20 08:36	04/16/20 15:43		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1A	Lab ID: 7012	26875001	Collected: 04/01/2	0 08:45	Received: 04	1/02/20 10:32 I	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H							
	Pace Analytical	Services -	Melville							
Nitrogen, Ammonia	0.18	mg/L	0.10	1		04/15/20 16:04	7664-41-7			
9014 Cyanide, Total	•	Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C Pace Analytical Services - Melville								
Cyanide	<10.0	ug/L	10.0	1	04/08/20 09:38	04/08/20 15:12	57-12-5			
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A							
	Pace Analytical	Services -	Melville							
Total Organic Carbon	4.0	mg/L	1.0	1		04/13/20 16:21	7440-44-0			
Total Organic Carbon	3.9	mg/L	1.0	1		04/13/20 16:21	7440-44-0			
Total Organic Carbon	4.0	mg/L	1.0	1		04/13/20 16:21	7440-44-0			
Total Organic Carbon	4.0	mg/L	1.0	1		04/13/20 16:21	7440-44-0			
Mean Total Organic Carbon	4.0	mg/L	1.0	1		04/13/20 16:21	7440-44-0			

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: TRIP BLANK	Lab ID: 701	26875002	Collected: 04/01/2	20 00:00	Received:	04/02/20 10:32	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Metl	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		04/03/20 20:0	9 67-64-1	IC
Acrylonitrile	<5.0	ug/L	5.0	1		04/03/20 20:0		.0
Benzene	<5.0	ug/L	5.0	1		04/03/20 20:0		
Bromochloromethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
Bromodichloromethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
Bromoform	<5.0	ug/L	5.0	1		04/03/20 20:0		
Bromomethane	<5.0	ug/L	5.0	1		04/03/20 20:0		CL
P-Butanone (MEK)	<5.0	ug/L	5.0	1		04/03/20 20:0		~ _
Carbon disulfide	<5.0	ug/L	5.0	1		04/03/20 20:0		
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/03/20 20:0		
Chlorobenzene	<5.0	ug/L	5.0	1		04/03/20 20:0		
Chloroethane	<5.0	ug/L	5.0	1		04/03/20 20:0		CL
Chloroform	<5.0	ug/L	5.0	1		04/03/20 20:0		02
Chloromethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		04/03/20 20:0		
Dibromochloromethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/03/20 20:0		
Dibromomethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/03/20 20:0		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/03/20 20:0		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/03/20 20:0		
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 20:0		
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 20:0		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 20:0		
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/03/20 20:0		
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1			9 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1			9 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/03/20 20:0		
-Hexanone	<5.0	ug/L	5.0	1		04/03/20 20:0		
odomethane	<5.0	ug/L	5.0	1		04/03/20 20:0		CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/03/20 20:0		~ _
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/03/20 20:0		
Styrene	<5.0	ug/L	5.0	1		04/03/20 20:0		
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
etrachloroethene	<5.0	ug/L	5.0	1		04/03/20 20:0		
oluene	<5.0	ug/L	5.0	1		04/03/20 20:0		
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
richloroethene	<5.0	ug/L	5.0	1		04/03/20 20:0		
richlorofluoromethane	<5.0	ug/L	5.0	1		04/03/20 20:0		
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/03/20 20:0		
/inyl acetate	<5.0	ug/L ug/L	5.0	1		04/03/20 20:0		
/inyl chloride	<5.0 <5.0	ug/L ug/L	5.0	1		04/03/20 20:0		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: TRIP BLANK	Lab ID: 7012	26875002	Collected: 04/01/2	00:00	Received: 04	I/02/20 10:32 N	Matrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
	Pace Analytical	l Services -	Melville					
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		04/03/20 20:09	1330-20-7	
1,2-Dichloroethane-d4 (S)	100	%	68-153	1		04/03/20 20:09	17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-124	1		04/03/20 20:09	460-00-4	
Toluene-d8 (S)	99	%	69-124	1		04/03/20 20:09	2037-26-5	
TIC MSV Water	Analytical Meth	od: EPA 82	260					
	Pace Analytical	Services -	Melville					
TIC Search	No TICs Found			1		04/07/20 12:38		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: STORAGE BLANK	Lab ID: 701	26875003	Collected: 04/01/2	20 00:00	Received:	04/02/20 10:32	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		04/03/20 20:28	8 67-64-1	IC
Acrylonitrile	<5.0	ug/L	5.0	1		04/03/20 20:28		.0
Benzene	<5.0	ug/L	5.0	1		04/03/20 20:28		
Bromochloromethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
Bromodichloromethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
Bromoform	<5.0	ug/L	5.0	1		04/03/20 20:28		
Bromomethane	<5.0	ug/L	5.0	1		04/03/20 20:28		CL
2-Butanone (MEK)	<5.0	ug/L	5.0	1		04/03/20 20:28		_
Carbon disulfide	<5.0	ug/L	5.0	1		04/03/20 20:28		
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/03/20 20:28		
Chlorobenzene	<5.0	ug/L	5.0	1		04/03/20 20:28		
Chloroethane	<5.0	ug/L	5.0	1		04/03/20 20:28		CL
Chloroform	<5.0	ug/L	5.0	1		04/03/20 20:28		
Chloromethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		04/03/20 20:28		
Dibromochloromethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/03/20 20:28		
Dibromomethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
.2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/03/20 20:28		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/03/20 20:28		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/03/20 20:28		
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 20:28		
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 20:28		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/03/20 20:28		
I,2-Dichloropropane	<5.0	ug/L	5.0	1		04/03/20 20:28		
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/03/20 20:28		
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/03/20 20:28		
Ethylbenzene	<5.0	ug/L	5.0	1		04/03/20 20:28		
2-Hexanone	<5.0	ug/L	5.0	1		04/03/20 20:28		
odomethane	<5.0	ug/L	5.0	1		04/03/20 20:28		CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/03/20 20:28		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/03/20 20:28		
Styrene	<5.0	ug/L	5.0	1		04/03/20 20:28	3 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
	<5.0	ug/L	5.0	1		04/03/20 20:28		
oluene	<5.0	ug/L	5.0	1		04/03/20 20:28		
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
Trichloroethene	<5.0	ug/L	5.0	1		04/03/20 20:28		
richlorofluoromethane	<5.0	ug/L	5.0	1		04/03/20 20:28		
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/03/20 20:28		
/inyl acetate	<5.0	ug/L	5.0	1		04/03/20 20:28		
/inyl chloride	<5.0	ug/L	5.0	1		04/03/20 20:28		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: STORAGE BLANK	Lab ID: 701	26875003	Collected: 04/01/2	20 00:00	Received: 04	4/02/20 10:32 N	Matrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		04/03/20 20:28	1330-20-7	
1,2-Dichloroethane-d4 (S)	100	%	68-153	1		04/03/20 20:28	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-124	1		04/03/20 20:28	460-00-4	
Toluene-d8 (S)	100	%	69-124	1		04/03/20 20:28	2037-26-5	
TIC MSV Water	Analytical Meth	nod: EPA 82	260					
	Pace Analytica	l Services -	Melville					
TIC Search	No TICs Found			1		04/07/20 12:38		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1B	Lab ID: 7	0126875004	Collected:	04/02/2	0 13:20	Received: 04	//03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical M	lethod: EPA 60	010C Prepara	ation Me	thod: EF	PA 3005A			
	Pace Analyt	ical Services -	Melville						
Aluminum	<200	ug/L		200	1	04/09/20 09:00	04/13/20 14:33	7429-90-5	
Antimony	<60.0	ug/L		60.0	1	04/09/20 09:00			
Arsenic	<10.0	ug/L		10.0	1		04/13/20 14:33		
Barium	<200	ug/L		200	1	04/09/20 09:00			
Beryllium	<5.0	ug/L		5.0	1		04/13/20 14:33		
Boron	<50.0	ug/L		50.0	1		04/13/20 14:33		
Cadmium	<2.5	ug/L		2.5	1		04/13/20 14:33		
Calcium	3830	ug/L		200	1		04/13/20 14:33		
Chromium	30.3	ug/L		10.0	1	04/09/20 09:00			
Cobalt	<50.0	ug/L		50.0	1	04/09/20 09:00			
Copper	<25.0	ug/L		25.0	1		04/13/20 14:33		
ron	114	ug/L		20.0	1	04/09/20 09:00			
_ead	<5.0	ug/L		5.0	1		04/13/20 14:33		
Magnesium	1620	ug/L		200	1	04/09/20 09:00			
Manganese	<10.0	ug/L		10.0	1		04/13/20 14:33		
lickel	<40.0	ug/L		40.0	1		04/13/20 14:33		
Potassium	<5000	ug/L ug/L		5000	1	04/09/20 09:00			
Selenium	<10.0	ug/L		10.0	1		04/13/20 14:33		
Silver	<10.0	-		10.0	1	04/09/20 09:00			
Sodium	8370	ug/L		5000	1	04/09/20 09:00			
	<10.0	ug/L							
hallium (anadium	<10.0 <50.0	ug/L		10.0	1		04/13/20 14:33		
/anadium Ľinc	<20.0	ug/L		50.0 20.0	1 1	04/09/20 09:00	04/13/20 14:33		
LINC	<20.0	ug/L		20.0		04/09/20 09.00	04/13/20 14.33	7440-00-0	
010 MET ICP, Dissolved	Analytical M	lethod: EPA 60)10C						
	Pace Analyt	ical Services -	Melville						
Aluminum, Dissolved	<200	ug/L		200	1		04/20/20 17:11	7429-90-5	
Antimony, Dissolved	<60.0	ug/L		60.0	1		04/20/20 17:11	7440-36-0	
Arsenic, Dissolved	<10.0	ug/L		10.0	1		04/20/20 17:11	7440-38-2	
Barium, Dissolved	<200	ug/L		200	1		04/20/20 17:11	7440-39-3	
Beryllium, Dissolved	<5.0	ug/L		5.0	1		04/20/20 17:11	7440-41-7	
Boron, Dissolved	<50.0	ug/L		50.0	1		04/20/20 17:11		
Cadmium, Dissolved	<2.5	ug/L		2.5	1		04/20/20 17:11		
		-		200	1		04/20/20 17:11		
·	3750	uu/L							
Calcium, Dissolved	3750 <10.0	ug/L ug/L			1		04/20/20 17:11	/440-4/-3	
Calcium, Dissolved Chromium, Dissolved	<10.0	ug/L		10.0	1 1		04/20/20 17:11 04/20/20 17:11		
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved	<10.0 <50.0	ug/L ug/L		10.0 50.0	1		04/20/20 17:11	7440-48-4	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved	<10.0 <50.0 <25.0	ug/L ug/L ug/L		10.0 50.0 25.0	1 1		04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved ron, Dissolved	<10.0 <50.0 <25.0 <20.0	ug/L ug/L ug/L ug/L		10.0 50.0 25.0 20.0	1 1 1		04/20/20 17:11 04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8 7439-89-6	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved ron, Dissolved Lead, Dissolved	<10.0 <50.0 <25.0 <20.0 <5.0	ug/L ug/L ug/L ug/L ug/L		10.0 50.0 25.0 20.0 5.0	1 1 1 1		04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8 7439-89-6 7439-92-1	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved ron, Dissolved Lead, Dissolved Magnesium, Dissolved	<10.0 <50.0 <25.0 <20.0 <5.0 1570	ug/L ug/L ug/L ug/L ug/L ug/L		10.0 50.0 25.0 20.0 5.0 200	1 1 1 1		04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved ron, Dissolved Lead, Dissolved Magnesium, Dissolved Manganese, Dissolved	<10.0 <50.0 <25.0 <20.0 <5.0 1570 <10.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10.0 50.0 25.0 20.0 5.0 200 10.0	1 1 1 1 1		04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved ron, Dissolved Lead, Dissolved Magnesium, Dissolved Manganese, Dissolved Nickel, Dissolved	<10.0 <50.0 <25.0 <20.0 <5.0 1570 <10.0 <40.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10.0 50.0 25.0 20.0 5.0 200 10.0 40.0	1 1 1 1 1 1		04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7440-02-0	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved ron, Dissolved Lead, Dissolved Magnesium, Dissolved Minganese, Dissolved Potassium, Dissolved	<10.0 <50.0 <25.0 <20.0 <5.0 1570 <10.0 <40.0 <5000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10.0 50.0 25.0 20.0 5.0 200 10.0 40.0 5000	1 1 1 1 1 1 1		04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7440-02-0 7440-09-7	
Calcium, Dissolved Chromium, Dissolved Cobalt, Dissolved Copper, Dissolved ron, Dissolved Lead, Dissolved Magnesium, Dissolved Manganese, Dissolved Nickel, Dissolved Potassium, Dissolved Selenium, Dissolved Silver, Dissolved	<10.0 <50.0 <25.0 <20.0 <5.0 1570 <10.0 <40.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10.0 50.0 25.0 20.0 5.0 200 10.0 40.0	1 1 1 1 1 1		04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11 04/20/20 17:11	7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7440-02-0 7440-09-7 7782-49-2	M1

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1B	Lab ID: 7012	26875004	Collected: 04/02/2	20 13:20	Received: 0	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010C					
	Pace Analytica	Services -	Melville					
Fhallium, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:1	1 7440-28-0	
/anadium, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:1		
Zinc, Dissolved	<20.0	ug/L	20.0	1		04/20/20 17:1		
470 Mercury	Analytical Meth	od: EPA 74	170A Preparation Me	thod: El	PA 7470A			
•	Pace Analytica		•					
Mercury	<0.20	ug/L	0.20	1	04/07/20 21:22	2 04/08/20 05:1	5 7439-97-6	
470 Mercury, Dissolved	Analytical Meth	od: EPA 74	170A Preparation Me	thod: El	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury, Dissolved	<0.20	ug/L	0.20	1	04/14/20 21:12	2 04/15/20 03:4	4 7439-97-6	
3260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C					
•	Pace Analytica	Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		04/09/20 13:5	6 67-64-1	IC
acrylonitrile	<5.0	ug/L	5.0	1		04/09/20 13:5		10
enzene	<5.0	ug/L	5.0	1		04/09/20 13:5		
romochloromethane	<5.0	ug/L	5.0	1		04/09/20 13:5		
romodichloromethane	<5.0	ug/L	5.0	1		04/09/20 13:5		
Bromoform	<5.0	ug/L	5.0	1		04/09/20 13:5		
Bromomethane	<5.0	ug/L	5.0	1		04/09/20 13:5	6 74-83-9	
-Butanone (MEK)	<5.0	ug/L	5.0	1		04/09/20 13:5	6 78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		04/09/20 13:5	6 75-15-0	
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/09/20 13:5	6 56-23-5	
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:5	6 108-90-7	
Chloroethane	<5.0	ug/L	5.0	1		04/09/20 13:5	6 75-00-3	
Chloroform	5.0	ug/L	5.0	1		04/09/20 13:5	6 67-66-3	
Chloromethane	<5.0	ug/L	5.0	1		04/09/20 13:5	6 74-87-3	
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		04/09/20 13:5	6 96-12-8	
Pibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 13:5	6 124-48-1	L1
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 13:5		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 13:5	6 74-95-3	
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:5		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:5	6 106-46-7	
ans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 13:5		
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:5		
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:5		
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 13:5		
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 13:5		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 13:5		
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 13:5		
sis-1,3-Dichloropropene	<5.0	ug/L	5.0	1			6 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1			6 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 13:5	b 100-41-4	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

•	Lub ID.	0126875004	Collected: 04/02/2	20 13.20	ixeceived.	04/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical M	lethod: EPA 82	260C/5030C					
	Pace Analyt	ical Services -	Melville					
lodomethane	<5.0	ug/L	5.0	1		04/09/20 13:56	74-88-4	CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 13:56	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 13:56	108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 13:56	100-42-5	
1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 13:56	630-20-6	
1,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 13:56	79-34-5	
Tetrachloroethene	<5.0	ug/L	5.0	1		04/09/20 13:56	127-18-4	
Toluene	<5.0	ug/L	5.0	1		04/09/20 13:56	108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:56	71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:56	79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 13:56	79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 13:56	75-69-4	
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 13:56	96-18-4	
Vinyl acetate	<5.0	ug/L	5.0	1		04/09/20 13:56	108-05-4	
Vinyl chloride	<5.0	ug/L	5.0	1		04/09/20 13:56	75-01-4	
Xylene (Total)	<5.0	ug/L	5.0	1		04/09/20 13:56	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	103	%	68-153	1		04/09/20 13:56	17060-07-0	
4-Bromofluorobenzene (S)	100	%	79-124	1		04/09/20 13:56	460-00-4	
Toluene-d8 (S)	98	%	69-124	1		04/09/20 13:56	2037-26-5	
TIC MSV Water	Analytical M	lethod: EPA 82	260					
	Pace Analyt	ical Services -	Melville					
TIC Search	No TICs Found			1		04/10/20 15:16		
2120B W Apparent Color	•	lethod: SM22 : ical Services -						
Apparent Color	<5.0	units	5.0	1		04/04/20 10:05		
pH	6.4	Std. Units		1		04/04/20 10:05		
2320B Alkalinity	-	lethod: SM22 : ical Services -						
Alkalinity, Total as CaCO3	8.5	mg/L	1.0	1		04/13/20 10:07		
2340C Hardness, Total	-	lethod: SM22 : ical Services -						
Tot Hardness asCaCO3 (SM 2340B	12.0	mg/L	5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids		lethod: SM22						
	Pace Analyt	icai Services -	Meiville					

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 1B	Lab ID: 7012	26875004	Collected: 04/02/2	20 13:20	Received: 04	/03/20 16:48 N	fatrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua		
Chromium, Hexavalent	Analytical Meth									
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/04/20 09:29	18540-29-9	H3		
410.4 COD	Analytical Meth Pace Analytical		0.4 Preparation Met Melville	hod: EF	PA 410.4					
Chemical Oxygen Demand	14.6	mg/L	10.0	1	04/08/20 10:50	04/08/20 13:03				
5210B BOD, 5 day	Analytical Meth Pace Analytical		5210B Preparation N Melville	Method:	SM22 5210B					
BOD, 5 day	<2.0	mg/L	2.0	1	04/04/20 06:29	04/09/20 10:44				
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical									
Bromide	<0.50	mg/L	0.50	1		04/15/20 21:52				
Chloride Sulfate	9.0 8.3	mg/L mg/L	2.0 5.0	1 1		04/15/20 21:52 04/15/20 21:52				
351.2 Total Kjeldahl Nitrogen		od: EPA 35	1.2 Preparation Met		PA 351.2	04/13/20 21.32	14000-79-0			
Nitrogen, Kjeldahl, Total	0.24	mg/L	0.10	1	04/15/20 08:39	04/16/20 13:03	7727-37-9			
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth									
Nitrate as N Nitrate-Nitrite (as N)	0.093 0.093	mg/L mg/L	0.050 0.050	1 1		04/04/20 01:32 04/04/20 01:32				
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical									
Nitrite as N	<0.050	mg/L	0.050	1		04/04/20 00:01	14797-65-0			
Phenolics, Total Recoverable	Analytical Meth Pace Analytical		0.1 Preparation Met Melville	hod: EF	PA 420.1					
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	04/16/20 08:36	04/16/20 15:45				
4500 Ammonia Water	Analytical Meth Pace Analytical									
Nitrogen, Ammonia	0.13	mg/L	0.10	1		04/15/20 16:44	7664-41-7			
9014 Cyanide, Total		Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C Pace Analytical Services - Melville								
Cyanide	<10.0	ug/L	10.0	1	04/08/20 09:38	04/08/20 15:12	57-12-5			
9060A TOC as NPOC	Analytical Meth									
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:08	7440-44-0			

(631)694-3040

ANALYTICAL RESULTS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1B	Lab ID: 70	126875004	Collected: 04/02/2	20 13:20	Received: 0	4/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	•	thod: EPA 906						
Total Occasio Ocaba	•	al Services - I		4		04/40/00 47 00	7440 44 0	
Total Organic Carbon Total Organic Carbon	<1.0 <1.0	mg/L mg/L	1.0 1.0	1		04/13/20 17:08 04/13/20 17:08	-	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:08		
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:08	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 1C	Lab ID: 701	26875005	Collected: 04/02/2	0 14:25	Received: 04	1/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
			<u> </u>		•			
010 MET ICP	Analytical Metr)10C Preparation Me Melville	ethod: El	PA 3005A			
luminum	Ť			4	04/00/20 00:00	04/12/20 14:20	7400.00 5	
Aluminum	<200	ug/L	200	1		04/13/20 14:39 04/13/20 14:39		
Antimony	<60.0	ug/L	60.0	1		04/13/20 14:39		
Arsenic	<10.0	ug/L	10.0	1				
Barium	<200 <5.0	ug/L	200	1		04/13/20 14:39		
Beryllium		ug/L	5.0	1 1		04/13/20 14:39		
Boron Cadmium	<50.0 <2.5	ug/L	50.0 2.5	1		04/13/20 14:39 04/13/20 14:39		
Calcium	4640	ug/L	2.5	1		04/13/20 14:39		
		ug/L						
Chromium	<10.0 <50.0	ug/L	10.0	1		04/13/20 14:39		
Cobalt		ug/L	50.0	1		04/13/20 14:39		
Copper	<25.0	ug/L	25.0	1		04/13/20 14:39		
on	<20.0	ug/L	20.0	1		04/13/20 14:39		
ead	<5.0	ug/L	5.0	1		04/13/20 14:39		
Magnesium	2370	ug/L	200	1		04/13/20 14:39		
/langanese	<10.0	ug/L	10.0	1		04/13/20 14:39		
lickel	<40.0	ug/L	40.0	1		04/13/20 14:39		
otassium	<5000	ug/L	5000	1		04/13/20 14:39		
selenium	<10.0	ug/L	10.0	1		04/13/20 14:39		
ilver	<10.0	ug/L	10.0	1		04/13/20 14:39		
odium	8080	ug/L	5000	1		04/13/20 14:39		
hallium	<10.0	ug/L	10.0	1		04/13/20 14:39		
anadium 	<50.0	ug/L	50.0	1		04/13/20 14:39		
inc	<20.0	ug/L	20.0	1	04/09/20 09:00	04/13/20 14:39	7440-66-6	
470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation Me	thod: EF	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:16	7439-97-6	
260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
_	Pace Analytica	l Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		04/09/20 14:15	5 67-64-1	IC
crylonitrile	<5.0	ug/L	5.0	1		04/09/20 14:15	5 107-13-1	
Senzene	<5.0	ug/L	5.0	1		04/09/20 14:15	71-43-2	
romochloromethane	<5.0	ug/L	5.0	1		04/09/20 14:15	74-97-5	
Bromodichloromethane	<5.0	ug/L	5.0	1		04/09/20 14:15	5 75-27-4	
Bromoform	<5.0	ug/L	5.0	1		04/09/20 14:15	5 75-25-2	
romomethane	<5.0	ug/L	5.0	1		04/09/20 14:15	74-83-9	
-Butanone (MEK)	<5.0	ug/L	5.0	1		04/09/20 14:15	78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		04/09/20 14:15	5 75-15-0	
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/09/20 14:15		
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:15		
Chloroethane	<5.0	ug/L	5.0	1		04/09/20 14:15		
Chloroform	5.0	ug/L	5.0	1		04/09/20 14:15		
Chloromethane	<5.0	ug/L	5.0	1		04/09/20 14:15		
		3		1		04/09/20 14:15		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1C	Lab ID: 701	26875005	Collected: 04/02/2	0 14:25	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 124-48-1	L1
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 14:1		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 14:1		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:1		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:1		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		04/09/20 14:1	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 74-88-4	CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 14:1	5 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 14:1	5 108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 127-18-4	
Toluene Toluene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:1	5 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 14:1	5 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 14:1	5 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/09/20 14:1	5 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		04/09/20 14:1	5 1330-20-7	
Surrogates								
,2-Dichloroethane-d4 (S)	101	%	68-153	1			5 17060-07-0	
I-Bromofluorobenzene (S)	98	%	79-124	1		04/09/20 14:1	5 460-00-4	
Toluene-d8 (S)	98	%	69-124	1		04/09/20 14:1	5 2037-26-5	
TIC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica							
TIC Search	No TICs Found			1		04/10/20 15:1	7	
2120B W Apparent Color	Analytical Met Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/04/20 10:0	5	
τρραιστιί Ουισι	₹3.0	นเแอ	5.0	1		U-1/U-1/ZU 1U.U	•	

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1C	Lab ID: 701	26875005	Collected: C)4/02/2	0 14:25	Received: 04	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth								
Alkalinity, Total as CaCO3	13.4	mg/L		1.0	1		04/13/20 10:12		
2340C Hardness, Total	Analytical Meth Pace Analytica								
Tot Hardness asCaCO3 (SM 2340B	16.0	mg/L		5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica								
Total Dissolved Solids	62.0	mg/L		10.0	1		04/09/20 10:27		
Chromium, Hexavalent	Analytical Meth Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L	(0.020	1		04/04/20 09:29	18540-29-9	НЗ
410.4 COD	Analytical Meth Pace Analytica			on Met	nod: EPA	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L		10.0	1	04/08/20 10:50	04/08/20 13:03		
5210B BOD, 5 day	Analytical Meth Pace Analytica			ation M	lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/04/20 06:37	04/09/20 10:47		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		04/15/20 22:09		
Chloride Sulfate	8.9 9.4	mg/L mg/L		2.0 5.0	1 1		04/15/20 22:09 04/15/20 22:09		
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	•			A 351.2			
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	04/15/20 08:39	04/16/20 13:03	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth								
Nitrate as N	0.24	mg/L	(0.050	1		04/04/20 01:33	14797-55-8	
Nitrate-Nitrite (as N)	0.24	mg/L	(0.050	1		04/04/20 01:33	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L	(0.050	1		04/04/20 00:03	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica			on Met	nod: EPA	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:36	04/16/20 15:46		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 1C	Lab ID: 7012	26875005	Collected: 04/02/2	20 14:25	Received: 04	I/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		04/15/20 16:45	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/08/20 09:38	04/08/20 15:12	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:19	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:19	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:19	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:19	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 17:19	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Pace Project No.: 70126875								
Sample: 3A	Lab ID: 7012	26875006	Collected: 04/02/2	0 16:50	Received: 04	/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 60	010C Preparation Me	thod: El	PA 3005A			
	Pace Analytical	Services -	Melville					
Aluminum	<200	ug/L	200	1	04/09/20 09:00	04/13/20 14:44	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	04/09/20 09:00	04/13/20 14:44	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 14:44	7440-38-2	
Barium	201	ug/L	200	1	04/09/20 09:00	04/13/20 14:44	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	04/09/20 09:00	04/13/20 14:44	7440-41-7	
Boron	<50.0	ug/L	50.0	1	04/09/20 09:00	04/13/20 14:44	7440-42-8	
admium	<2.5	ug/L	2.5	1	04/09/20 09:00	04/13/20 14:44	7440-43-9	
alcium	27800	ug/L	200	1	04/09/20 09:00			
Chromium	506	ug/L	10.0	1	04/09/20 09:00			
Cobalt	<50.0	ug/L	50.0	1	04/09/20 09:00			
Copper	<25.0	ug/L	25.0	1	04/09/20 09:00			
on	2000	ug/L	20.0	1	04/09/20 09:00			
ead	<5.0	ug/L	5.0	1	04/09/20 09:00			
lagnesium	8080	ug/L	200	1	04/09/20 09:00			
langanese	227	ug/L	10.0	1	04/09/20 09:00			
lickel	54.6	-	40.0	1	04/09/20 09:00			
otassium	7790	ug/L	5000	1	04/09/20 09:00			
	<10.0	ug/L						
elenium		ug/L	10.0	1	04/09/20 09:00			
ilver	<10.0	ug/L	10.0	1	04/09/20 09:00			
odium	157000	ug/L	5000	1	04/09/20 09:00			
hallium	<10.0	ug/L	10.0	1	04/09/20 09:00			
anadium 	<50.0	ug/L	50.0	1	04/09/20 09:00			
inc	<20.0	ug/L	20.0	1	04/09/20 09:00	04/13/20 14:44	1 7440-66-6	
010 MET ICP, Dissolved	Analytical Meth	od: EPA 60)10C					
	Pace Analytical	Services -	Melville					
luminum, Dissolved	<200	ug/L	200	1		04/20/20 17:20	7429-90-5	
Intimony, Dissolved	<60.0	ug/L	60.0	1		04/20/20 17:20	7440-36-0	
rsenic, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:20	7440-38-2	
arium, Dissolved	203	ug/L	200	1		04/20/20 17:20	7440-39-3	
eryllium, Dissolved	<5.0	ug/L	5.0	1		04/20/20 17:20	7440-41-7	
oron, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:20	7440-42-8	
admium, Dissolved	<2.5	ug/L	2.5	1		04/20/20 17:20	7440-43-9	
alcium, Dissolved	28700	ug/L	200	1		04/20/20 17:20	7440-70-2	
Chromium, Dissolved	38.0	ug/L	10.0	1		04/20/20 17:20	7440-47-3	
Cobalt, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:20	7440-48-4	
opper, Dissolved	<25.0	ug/L	25.0	1		04/20/20 17:20	7440-50-8	
on, Dissolved	122	ug/L	20.0	1		04/20/20 17:20	7439-89-6	
ead, Dissolved	<5.0	ug/L	5.0	1		04/20/20 17:20		
Magnesium, Dissolved	8280	ug/L	200	1		04/20/20 17:20		
langanese, Dissolved	95.1	ug/L	10.0	1		04/20/20 17:20		
lickel, Dissolved	49.0	ug/L	40.0	1		04/20/20 17:20		
otassium, Dissolved	7890	ug/L	5000	1		04/20/20 17:20		
	1000	ug/∟	5000			5-1/20/20 11.20	, 1440 00-1	
·	~10 O		10.0	1		N4/2N/2N 17·20	7782-40-2	
Selenium, Dissolved Silver, Dissolved	<10.0 <10.0	ug/L ug/L	10.0 10.0	1 1		04/20/20 17:20 04/20/20 17:20		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3A	Lab ID: 7012	26875006	Collected: 04/02/2	20 16:50	Received: 0	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010C					
	Pace Analytica	Services -	Melville					
Thallium, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:2	0 7440-28-0	
Vanadium, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:2		
Zinc, Dissolved	<20.0	ug/L	20.0	1		04/20/20 17:2		
Ellio, Biocolivod	12010	ug/ L	20.0	•		0 1/20/20 17:2	0 7 1 10 00 0	
7470 Mercury	•		170A Preparation Me	ethod: El	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	04/07/20 21:22	2 04/08/20 05:1	8 7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	70A Preparation Me	ethod: El	PA 7470A			
	Pace Analytica	Services -	Melville					
Mercury, Dissolved	<0.20	ug/L	0.20	1	04/14/20 21:12	2 04/15/20 03:5	0 7439-97-6	
8260C Volatile Organics	Analytical Meth	nod: FPA 82	260C/5030C					
sector rotatile organics	Pace Analytica							
	-							
Acetone	<5.0	ug/L	5.0	1		04/09/20 14:3		IC
Acrylonitrile	<5.0	ug/L	5.0	1		04/09/20 14:3		
Benzene	<5.0	ug/L	5.0	1		04/09/20 14:3		
Bromochloromethane	<5.0	ug/L	5.0	1		04/09/20 14:3		
Bromodichloromethane	<5.0	ug/L	5.0	1		04/09/20 14:3	-	
Bromoform	<5.0	ug/L	5.0	1		04/09/20 14:3		
Bromomethane	<5.0	ug/L	5.0	1 1		04/09/20 14:3		
2-Butanone (MEK) Carbon disulfide	<5.0 <5.0	ug/L	5.0 5.0	1		04/09/20 14:3 04/09/20 14:3		
Carbon distillide Carbon tetrachloride	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 14:3		
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:3		
Chloroethane	<5.0	ug/L	5.0	1		04/09/20 14:3		
Chloroform	<5.0	ug/L	5.0	1		04/09/20 14:3		
Chloromethane	<5.0	ug/L	5.0	1		04/09/20 14:3		
I,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		04/09/20 14:3		
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 14:3		L1
I,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 14:3		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 14:3		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 95-50-1	
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 110-57-6	
1,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1			5 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1			5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 14:3		
2-Hexanone	<5.0	ug/L	5.0	1		04/09/20 14:3	5 591-78-6	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3A	Lab ID: 701	26875006	Collected: 04/02/2	0 16:50	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytic	al Services -	Melville					
lodomethane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 74-88-4	CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 14:3	5 75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 14:3	5 108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 100-42-5	
1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 630-20-6	
1,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 79-34-5	
Tetrachloroethene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 127-18-4	
Toluene	<5.0	ug/L	5.0	1		04/09/20 14:3	5 108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:3		
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:3		
Trichlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 75-69-4	
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 14:3	5 96-18-4	
√inyl acetate	<5.0	ug/L	5.0	1		04/09/20 14:3	5 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/09/20 14:3		
Kylene (Total)	<5.0	ug/L	5.0	1		04/09/20 14:3	5 1330-20-7	
Surrogates						24/22/22 44 24		
1,2-Dichloroethane-d4 (S)	100	%	68-153	1		04/09/20 14:3		
4-Bromofluorobenzene (S)	100	%	79-124	1		04/09/20 14:3		
Toluene-d8 (S)	98	%	69-124	1		04/09/20 14:3	2037-26-5	
ΓIC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytic	al Services -	Melville					
TIC Search	No TICs Found			1		04/10/20 15:17	7	
2120B W Apparent Color	Analytical Met	hod: SM22 2	2120B					
, production of the control of the c	Pace Analytic							
Apparent Color	40.0	units	5.0	1		04/04/20 10:0	5	
pH	6.6	Std. Units		1		04/04/20 10:0		
2320B Alkalinity	Analytical Met	hod: SM22 2	2320B					
•	Pace Analytic							
Alkalinity, Total as CaCO3	71.1	mg/L	1.0	1		04/13/20 10:19	e	
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	100	mg/L	5.0	1		04/20/20 15:01	İ	
2540C Total Dissolved Solids	Analytical Mat	_	25400					
2040C TOTAL DISSOIVED SOIIDS	Analytical Met							
	Pace Analytic	al Services -	Meiville					
Total Dissolved Solids	508	mg/L	20.0	1		04/09/20 10:28	3	
2.0001704 001140	000	9/ =	20.0	•		0 1/00/20 10.20	-	

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Pace Project No.: 70126875								
Sample: 3A	Lab ID: 7012	26875006	Collected: 04/02/2	0 16:50	Received: 04	/03/20 16:48 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Chromium, Hexavalent	Analytical Meth							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/04/20 09:29	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Met Melville	nod: EP	A 410.4			
Chemical Oxygen Demand	27.3	mg/L	10.0	1	04/08/20 10:50	04/08/20 13:04		
5210B BOD, 5 day	Analytical Meth Pace Analytica		5210B Preparation M Melville	ethod:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/04/20 06:38	04/09/20 10:49		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Bromide Chloride Sulfate	<0.50 295 <5.0	mg/L mg/L mg/L	0.50 20.0 5.0	1 10 1		04/15/20 22:25 04/17/20 01:12 04/15/20 22:25	16887-00-6	
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytica		1.2 Preparation Met Melville	nod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	1.3	mg/L	0.10	1	04/15/20 08:39	04/16/20 13:04	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica							
Nitrate as N Nitrate-Nitrite (as N)	0.70 0.70	mg/L mg/L	0.050 0.050	1 1		04/04/20 01:36 04/04/20 01:36		
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/04/20 00:04	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica		0.1 Preparation Met Melville	nod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	04/16/20 08:36	04/16/20 15:47		
4500 Ammonia Water	Analytical Meth Pace Analytica							
Nitrogen, Ammonia	0.51	mg/L	0.10	1		04/15/20 16:46	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytica		14 Total Cyanide Pro Melville	eparatio	n Method: EPA 9	0010C		
Cyanide	<10.0	ug/L	10.0	1	04/08/20 09:38	04/08/20 15:13	57-12-5	
9060A TOC as NPOC	Analytical Meth Pace Analytica							
Total Organic Carbon	5.3	mg/L	1.0	1		04/13/20 17:42	7440-44-0	

REPORT OF LABORATORY ANALYSIS

(631)694-3040

ANALYTICAL RESULTS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3A	Lab ID: 70	126875006	Collected: 04/02/2	20 16:50	Received: 04	1/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	•	ethod: EPA 906						
Total Organic Carbon	5.2	mg/L	1.0	1		04/13/20 17:42	7440-44-0	
Total Organic Carbon	5.1	mg/L	1.0	1		04/13/20 17:42	7440-44-0	
Total Organic Carbon	5.1	mg/L	1.0	1		04/13/20 17:42	7440-44-0	
Mean Total Organic Carbon	5.2	mg/L	1.0	1		04/13/20 17:42	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3B	Lab ID: 701	26875007	Collected: 04/02	20 16:35	Received: 04	/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	od: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	Services -	Melville					
Numinum	<200	ug/L	200	1	04/09/20 09:00	04/13/20 14:50	7/20-90-5	
Antimony	<60.0	ug/L	60.0	1	04/09/20 09:00			
Arsenic	<10.0	ug/L	10.0	1	04/09/20 09:00			
arium	<200	ug/L	200	1	04/09/20 09:00			
eryllium	<5.0	ug/L	5.0	1	04/09/20 09:00			
oron	54.5	ug/L	50.0	1	04/09/20 09:00			
admium	<2.5	ug/L	2.5	1	04/09/20 09:00			
alcium	15500	ug/L	200	1	04/09/20 09:00			
hromium	<10.0	-	10.0	1	04/09/20 09:00			
	<10.0 <50.0	ug/L						
obalt	<50.0 <25.0	ug/L	50.0	1	04/09/20 09:00			
opper		ug/L	25.0	1	04/09/20 09:00 04/09/20 09:00			
on	5860	ug/L	20.0	1				
ead	<5.0	ug/L	5.0	1	04/09/20 09:00			
lagnesium	5530	ug/L	200	1	04/09/20 09:00			
langanese	1680	ug/L	10.0	1	04/09/20 09:00			
ickel	<40.0	ug/L	40.0	1	04/09/20 09:00			
otassium	6660	ug/L	5000	1	04/09/20 09:00			
elenium 	<10.0	ug/L	10.0	1	04/09/20 09:00			
ilver	<10.0	ug/L	10.0	1	04/09/20 09:00			
odium	13400	ug/L	5000	1	04/09/20 09:00			
hallium	<10.0	ug/L	10.0	1	04/09/20 09:00			
anadium	<50.0	ug/L	50.0	1	04/09/20 09:00			
inc	<20.0	ug/L	20.0	1	04/09/20 09:00	04/13/20 14:50	7440-66-6	
470 Mercury	Analytical Meth	od: EPA 74	70A Preparation M	ethod: El	PA 7470A			
	Pace Analytica	Services -	Melville					
lercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:20	7439-97-6	
260C Volatile Organics	Analytical Meth	- J. EDA 00						
zooo voiaino organico	,	100: EPA 82	60C/5030C					
2000 Tolatilo Olganico	Pace Analytica							
-		Services -		1		04/09/20 14:55	5 67-64-1	IC
cetone	Pace Analytica	Services - ug/L	Melville	1 1		04/09/20 14:55 04/09/20 14:55		IC
cetone crylonitrile	Pace Analytica	Services - ug/L ug/L	Melville 5.0				5 107-13-1	IC
cetone crylonitrile enzene	Pace Analytica <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L	Melville 5.0 5.0 5.0	1		04/09/20 14:55 04/09/20 14:55	5 107-13-1 5 71-43-2	IC
cetone crylonitrile enzene romochloromethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0	1 1 1		04/09/20 14:55 04/09/20 14:55 04/09/20 14:55	5 107-13-1 5 71-43-2 5 74-97-5	IC
cetone crylonitrile enzene romochloromethane romodichloromethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0	1 1 1 1		04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4	IC
cetone crylonitrile enzene romochloromethane romodichloromethane romoform	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2	IC
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9	IC
acetone acrylonitrile denzene deromochloromethane deromodichloromethane deromoform deromomethane deromomethane deromomethane deromomethane deromomethane deromomethane deromomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 6 74-83-9 5 78-93-3	IC
acetone acrylonitrile denzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55 04/09/20 14:55	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0	IC
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromoform dromomethane dromomethane dromomethane dromomethane dromomethane dramone (MEK) dramon disulfide dramon tetrachloride	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1		04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 6 75-15-0 5 56-23-5	IC
acetone acrylonitrile Benzene Bromochloromethane Bromoform Bromomethane Bromomethan	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7	IC
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1 1		04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7 7 5-00-3	IC
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane P-Butanone (MEK) Carbon disulfide Chlorobenzene Chloroform Chloroform Chloromethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58 04/09/20 14:58	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0 5 56-23-5 6 108-90-7 7 75-00-3 5 67-66-3	IC

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3B	Lab ID: 701	26875007	Collected: 04/02/2	0 16:35	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 124-48-1	L1
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 14:5		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 14:5		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 95-50-1	
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 110-57-6	
1,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 107-06-2	
1,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 156-60-5	
1,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		04/09/20 14:5	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 74-88-4	CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 14:5	5 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 14:5	5 108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 127-18-4	
Toluene Toluene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 14:5	5 79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 14:5	5 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 14:5	5 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/09/20 14:5	5 75-01-4	
Kylene (Total)	<5.0	ug/L	5.0	1		04/09/20 14:5	5 1330-20-7	
Surrogates								
I,2-Dichloroethane-d4 (S)	99	%	68-153	1		04/09/20 14:5		
1-Bromofluorobenzene (S)	97	%	79-124	1		04/09/20 14:5		
Toluene-d8 (S)	98	%	69-124	1		04/09/20 14:5	5 2037-26-5	
TIC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	l Services -	Melville					
TIC Search	No TICs Found			1		04/10/20 15:1	7	
2120B W Apparent Color	Analytical Met Pace Analytica							
Apparent Color	20.0	units	5.0	1		04/04/20 10:0	5	
аррагент Союг эН	6.5	Std. Units		1		04/04/20 10:0		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3B	Lab ID: 7012	26875007	Collected: 04/0	2/20 16	:35 Rece	eived: 04	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Lim	t DF	Pre	pared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth								
Alkalinity, Total as CaCO3	74.0	mg/L	1	.0 1			04/13/20 10:2	7	
2340C Hardness, Total	Analytical Meth Pace Analytical								
Tot Hardness asCaCO3 (SM 2340B	80.0	mg/L	5	.0 1			04/20/20 15:0	1	
2540C Total Dissolved Solids	Analytical Meth Pace Analytical								
Total Dissolved Solids	147	mg/L	10	.0 1			04/09/20 10:28	3	
Chromium, Hexavalent	Analytical Meth Pace Analytical								
Chromium, Hexavalent	<0.020	mg/L	0.02	.0 1			04/04/20 09:29	9 18540-29-9	НЗ
410.4 COD	Analytical Meth Pace Analytical		10.4 Preparation I Melville	Method:	EPA 410.4				
Chemical Oxygen Demand	10.4	mg/L	10	.0 1	04/08/	20 10:50	04/08/20 13:04	4	
5210B BOD, 5 day	Analytical Meth Pace Analytical		5210B Preparatio Melville	n Metho	od: SM22 5	210B			
BOD, 5 day	<2.0	mg/L	2	.0 1	04/04/2	20 06:40	04/09/20 10:52	2	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical								
Bromide	<0.50	mg/L	0.5				04/15/20 22:42		
Chloride Sulfate	12.8 12.4	mg/L mg/L		.0 1			04/15/20 22:4: 04/15/20 22:4:		
351.2 Total Kjeldahl Nitrogen		od: EPA 35	51.2 Preparation I		EPA 351.2				
Nitrogen, Kjeldahl, Total	0.48	mg/L	0.1	0 1	04/15/2	20 08:39	04/16/20 13:0	5 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth								
Nitrate as N	0.35	mg/L	0.05	0 1			04/04/20 01:3	7 14797-55-8	
Nitrate-Nitrite (as N)	0.35	mg/L	0.05	0 1			04/04/20 01:3	7 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical								
Nitrite as N	<0.050	mg/L	0.05	0 1			04/04/20 00:0	5 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytical		20.1 Preparation l Melville	/lethod:	EPA 420.1				
Phenolics, Total Recoverable	<5.0	ug/L	5	.0 1	04/16/2	20 08:36	04/16/20 15:4	3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3B	Lab ID: 7012	26875007	Collected: 04/02/2	20 16:35	Received: 04	1/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	0.12	mg/L	0.10	1		04/15/20 16:47	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/08/20 09:38	04/08/20 15:13	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	1.9	mg/L	1.0	1		04/13/20 17:54	7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		04/13/20 17:54	7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		04/13/20 17:54	7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		04/13/20 17:54	7440-44-0	
Mean Total Organic Carbon	1.8	mg/L	1.0	1		04/13/20 17:54	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 3C	Lab ID: 701	26875002	Collected: 04/02/2	0 16:05	Received: 04	1/03/20 16:48	Matrix: Water	
•								~ :
Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	thod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
luminum	<200	ug/L	200	1	04/09/20 09:00	04/13/20 14:55	7429-90-5	
antimony	<60.0	ug/L	60.0	1	04/09/20 09:00	04/13/20 14:55	7440-36-0	
rsenic	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 14:55	7440-38-2	
Barium	<200	ug/L	200	1	04/09/20 09:00	04/13/20 14:55	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	04/09/20 09:00	04/13/20 14:55	7440-41-7	
Boron	<50.0	ug/L	50.0	1	04/09/20 09:00	04/13/20 14:55	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	04/09/20 09:00	04/13/20 14:55	7440-43-9	
Calcium	8440	ug/L	200	1	04/09/20 09:00	04/13/20 14:55	7440-70-2	
Chromium	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 14:55	7440-47-3	
Cobalt	<50.0	ug/L	50.0	1	04/09/20 09:00	04/13/20 14:55	7440-48-4	
Copper	<25.0	ug/L	25.0	1	04/09/20 09:00	04/13/20 14:55	7440-50-8	
on	86.8	ug/L	20.0	1	04/09/20 09:00	04/13/20 14:55	7439-89-6	
ead	<5.0	ug/L	5.0	1	04/09/20 09:00	04/13/20 14:55	7439-92-1	
/lagnesium	3820	ug/L	200	1	04/09/20 09:00	04/13/20 14:55	7439-95-4	
Manganese	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 14:55	7439-96-5	
lickel	<40.0	ug/L	40.0	1	04/09/20 09:00	04/13/20 14:55	7440-02-0	
otassium	<5000	ug/L	5000	1	04/09/20 09:00	04/13/20 14:55	7440-09-7	
Selenium	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 14:55	7782-49-2	
Silver	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 14:55	7440-22-4	
Sodium	11800	ug/L	5000	1	04/09/20 09:00	04/13/20 14:55	7440-23-5	
hallium	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 14:55	7440-28-0	
'anadium	<50.0	ug/L	50.0	1	04/09/20 09:00	04/13/20 14:55	7440-62-2	
inc	<20.0	ug/L	20.0	1	04/09/20 09:00	04/13/20 14:55	7440-66-6	
470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: EF	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:21	7439-97-6	
260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica							
cetone	<5.0	ug/L	5.0	1		04/09/20 15:15	5 67-64-1	IC
crylonitrile	<5.0	ug/L	5.0	1		04/09/20 15:15		
Benzene	<5.0	ug/L	5.0	1		04/09/20 15:15		
romochloromethane	<5.0	ug/L	5.0	1		04/09/20 15:15		
romodichloromethane	<5.0	ug/L	5.0	1		04/09/20 15:15		
romoform	<5.0	ug/L	5.0	1		04/09/20 15:15		
romomethane	<5.0	ug/L	5.0	1		04/09/20 15:15		
-Butanone (MEK)	<5.0	ug/L	5.0	1		04/09/20 15:15		
Carbon disulfide	<5.0	ug/L	5.0	1		04/09/20 15:15		
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/09/20 15:15		
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 15:15		
Chloroethane	<5.0 <5.0	ug/L	5.0	1		04/09/20 15:15		
Chloroform	<5.0	ug/L	5.0	1		04/09/20 15:15		
		~9/ -	5.0					
Chloromethane	<5.0	ug/L	5.0	1		04/09/20 15:15	5 74-87-3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3C	Lab ID: 701	26875008	Collected: 04/02/2	0 16:05	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 124-48-1	L1
I,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 15:1		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 15:1		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 15:1		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 15:1		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 15:1		
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 15:1		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 100-41-4	
?-Hexanone	<5.0	ug/L	5.0	1		04/09/20 15:1	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 74-88-4	CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 15:1	5 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 15:1	5 108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 127-18-4	
oluene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		04/09/20 15:1	5 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 15:1	5 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 15:1	5 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/09/20 15:1	5 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		04/09/20 15:1	5 1330-20-7	
Surrogates		•						
,2-Dichloroethane-d4 (S)	99	%	68-153	1		04/09/20 15:1	5 17060-07-0	
I-Bromofluorobenzene (S)	97	%	79-124	1		04/09/20 15:1	5 460-00-4	
oluene-d8 (S)	97	%	69-124	1		04/09/20 15:1	5 2037-26-5	
IC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica							
TC Search	No TICs Found			1		04/10/20 15:1	7	
2120B W Apparent Color	Analytical Met	hod: SM22 :	2120B					
II Apparont oolor	Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/04/20 10:0	5	
ъррагент Союг оН	6.9	Std. Units		1		04/04/20 10:0		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Parameters									
	Results	Units	Report L	Limit _	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Meth Pace Analytical								
Alkalinity, Total as CaCO3	45.9	mg/L		1.0	1		04/13/20 10:34	!	
2340C Hardness, Total	Analytical Meth Pace Analytical								
Tot Hardness asCaCO3 (SM 2340B	32.0	mg/L		5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids	Analytical Meth Pace Analytical								
Total Dissolved Solids	94.0	mg/L		10.0	1		04/09/20 10:40)	
Chromium, Hexavalent	Analytical Meth Pace Analytical								
Chromium, Hexavalent	<0.020	mg/L	(0.020	1		04/04/20 09:29	18540-29-9	Н3
110.4 COD	Analytical Meth Pace Analytical			on Met	nod: EPA	\ 410.4			
Chemical Oxygen Demand	<10.0	mg/L		10.0	1	04/08/20 10:50	04/08/20 13:04	ļ	
5210B BOD, 5 day	Analytical Meth Pace Analytical			ation M	lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/04/20 06:42	04/09/20 10:54		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical								
Bromide	<0.50	mg/L		0.50	1		04/15/20 22:59	24959-67-9	
Chloride Sulfate	9.9 <5.0	mg/L mg/L		2.0 5.0	1 1		04/15/20 22:59 04/15/20 22:59		
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3				\ 351.2	0 1/ 10/20 22:00	11000 70 0	
Nitrogen, Kjeldahl, Total	0.29	mg/L		0.10	1	04/15/20 08:39	04/16/20 13:06	7727-37-9	
853.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytical								
Nitrate as N	0.18	mg/L	(0.050	1		04/04/20 01:39	14797-55-8	
Nitrate-Nitrite (as N)	0.18	mg/L	(0.050	1		04/04/20 01:39	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical								
Nitrite as N	<0.050	mg/L	(0.050	1		04/04/20 00:06	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytical			on Met	nod: EPA	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:36	04/16/20 15:48	}	

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 3C	Lab ID: 7012	26875008	Collected: 04/02/2	20 16:05	Received: 04	I/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		04/15/20 16:49	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		n14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/08/20 09:38	04/08/20 15:13	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:04	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:04	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:04	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:04	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:04	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4A	Lab ID:	70126875009	Collected:	04/02/2	0 18:42	Received: 04	1/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical I	Method: EPA 60	10C Prepara	ation Me	thod: EF	PA 3005A			
	Pace Analy	tical Services -	Melville						
Aluminum	<200	ug/L		200	1	04/09/20 09:00	04/13/20 15:0	7429-90-5	
Antimony	<60.0	0		60.0	1	04/09/20 09:00			
Arsenic	<10.0	•		10.0	1	04/09/20 09:00			
Barium	<200	_		200	1	04/09/20 09:00			
Beryllium	<5.0	J		5.0	1	04/09/20 09:00			
Boron	<50.0	•		50.0	1	04/09/20 09:00			
Cadmium	<2.5			2.5	1	04/09/20 09:00			
Calcium	8270	•		200	1		04/13/20 15:00		
Chromium	<10.0	-		10.0	1	04/09/20 09:00			
Cobalt	<50.0	J		50.0	1	04/09/20 09:00			
Copper	<25.0	•		25.0	1	04/09/20 09:00			
ron	35.8	0		20.0	1	04/09/20 09:00			
₋ead	<5.0	•		5.0	1	04/09/20 09:00			
Magnesium	2810	•		200	1	04/09/20 09:00			
Manganese	63.0	J		10.0	1	04/09/20 09:00			
lickel	<40.0	•		40.0	1	04/09/20 09:00			
Potassium	<5000	0		5000	1	04/09/20 09:00			
Selenium	<10.0	J		10.0	1	04/09/20 09:00			
Silver	<10.0	J		10.0	1	04/09/20 09:00			
Sodium	16900	J		5000	1	04/09/20 09:00			
hallium	<10.0	•		10.0	1	04/09/20 09:00			
/anadium	<50.0			50.0	1	04/09/20 09:00			
linc	<20.0	0		20.0	1	04/09/20 09:00			
470 Moroury	Analytical M	Method: EPA 74	IZOA Propora	ation Mo	thod: EE	ν 7470 Λ			
470 Mercury	•	tical Services -		ation ivic	uiou. Li	A 1410A			
Mercury	<0.20	ug/L		0.20	1	04/07/20 21:22	04/08/20 05:23	3 7439-97-6	
260C Volatile Organics	Analytical I	Method: EPA 82	260C/5030C						
· ·		tical Services -							
Acetone	<5.0	ug/L		5.0	1		04/09/20 15:30	6 67-64-1	IC
Acrylonitrile	<5.0	-		5.0	1		04/09/20 15:30	3 107-13-1	
Benzene	<5.0			5.0	1		04/09/20 15:30	6 71-43-2	
Bromochloromethane	<5.0	•		5.0	1		04/09/20 15:30	6 74-97-5	
Bromodichloromethane	<5.0	ug/L		5.0	1		04/09/20 15:30	6 75-27-4	M1
Bromoform	<5.0	-		5.0	1		04/09/20 15:30	6 75-25-2	
Bromomethane	<5.0	•		5.0	1		04/09/20 15:30	6 74-83-9	
-Butanone (MEK)	<5.0	-		5.0	1		04/09/20 15:30	6 78-93-3	
Carbon disulfide	<5.0	Ū		5.0	1		04/09/20 15:30		
Carbon tetrachloride	<5.0	•		5.0	1		04/09/20 15:30		M1
Chlorobenzene	<5.0	-		5.0	1		04/09/20 15:30		
Chloroethane	<5.0	•		5.0	1		04/09/20 15:30		
Chloroform	5.0	Ū		5.0	1		04/09/20 15:30		
7111010101111									
Chloromethane	<5.0	•		5.0	1		04/09/20 15:30	6 74-87-3	

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 4A	Lab ID: 701	26875009	Collected: 04/02/2	0 18:42	Received: (04/03/20 16:48 M	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	60C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 15:36	124-48-1	L1,M0
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 15:36	106-93-4	
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 15:36	74-95-3	
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 15:36	95-50-1	
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 15:36	106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 15:36	110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:36	75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:36	107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 15:36	75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 15:36	156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 15:36	156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 15:36	78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 15:36	10061-01-5	L1,M0
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 15:36	10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 15:36	100-41-4	M1
?-Hexanone	<5.0	ug/L	5.0	1		04/09/20 15:36	591-78-6	
odomethane	<5.0	ug/L	5.0	1		04/09/20 15:36	74-88-4	CL,R1
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 15:36	75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 15:36	108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 15:36	100-42-5	M1
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 15:36	630-20-6	M1
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 15:36	79-34-5	
Tetrachloroethene	<5.0	ug/L	5.0	1		04/09/20 15:36	127-18-4	
Toluene	<5.0	ug/L	5.0	1		04/09/20 15:36	108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:36	71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 15:36	79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 15:36	79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 15:36	75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 15:36	96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 15:36	108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/09/20 15:36	75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		04/09/20 15:36	1330-20-7	MS
Surrogates								
,2-Dichloroethane-d4 (S)	98	%	68-153	1		04/09/20 15:36	17060-07-0	
I-Bromofluorobenzene (S)	96	%	79-124	1		04/09/20 15:36	460-00-4	
oluene-d8 (S)	97	%	69-124	1		04/09/20 15:36	2037-26-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	2120B					
	Pace Analytica	al Services -	Melville					
Apparent Color	<5.0	units	5.0	1		04/04/20 10:05		
H	6.0	Std. Units	0.10	1		04/04/20 10:05		
2320B Alkalinity	Analytical Met	hod: SM22 2	2320B					
	Pace Analytica	al Services -	Melville					
Alkalinity, Total as CaCO3	5.6	mg/L	1.0	1		04/13/20 10:38		
Alkalinity,Carbonate (CaCO3)	<1.0	mg/L	1.0	1		04/13/20 10:38		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4A	Lab ID: 7012	26875009	Collected: 04	/02/20) 18:42	Received: 04	4/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Lin	mit _	DF	Prepared	Analyzed	CAS No.	Qual
2340C Hardness, Total	Analytical Meth Pace Analytical								
Tot Hardness asCaCO3 (SM 2340B	32.0	mg/L		5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids	Analytical Meth Pace Analytical								
Total Dissolved Solids	109	mg/L	1	0.0	1		04/09/20 10:41		
Chromium, Hexavalent	Analytical Meth Pace Analytical								
Chromium, Hexavalent	<0.020	mg/L	0.0	020	1		04/04/20 09:29	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytical		10.4 Preparation Melville	n Meth	nod: EPA	\ 410.4			
Chemical Oxygen Demand	<10.0	mg/L	1	0.0	1	04/08/20 10:50	04/08/20 13:06	i	
5210B BOD, 5 day	Analytical Meth Pace Analytical		5210B Preparati Melville	ion M	ethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/04/20 06:43	04/09/20 10:57	•	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical								
Bromide	<0.50	mg/L).50	1		04/15/20 23:16		
Chloride Sulfate	27.5 12.7	mg/L mg/L		2.0 5.0	1 1		04/15/20 23:16 04/15/20 23:16		
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytical		51.2 Preparation Melville	n Meth	nod: EPA	A 351.2			
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0).10	1	04/15/20 08:39	04/16/20 13:07	7727-37-9	M6
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytical								
Nitrate as N Nitrate-Nitrite (as N)	5.0 5.0	mg/L mg/L).50).50	10 10		04/04/20 01:40 04/04/20 01:40		
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical								
Nitrite as N	<0.050	mg/L	0.0	050	1		04/04/20 00:10	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytical		20.1 Preparation Melville	n Meth	nod: EPA	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:36	04/16/20 15:51		
4500 Ammonia Water	Analytical Meth Pace Analytical								
Nitrogen, Ammonia	0.12	mg/L	0	0.10	1		04/15/20 16:52	7664-41-7	M1

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4A	Lab ID: 7012	26875009	Collected: 04/02/2	20 18:42	2 Received: 04	1/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cyanide Pr	eparati	on Method: EPA 9	9010C		
	Pace Analytical	Services -	Melville					
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 13:54	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:39	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:39	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:39	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:39	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 18:39	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4B	Lab ID: 701	26875010	Collected: 04/0	2/20 18:30	Received: 04	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation	Method: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
luminum	<200	ug/L	20	00 1	04/09/20 09:00	04/13/20 15:3	8 7420-00-5	
Antimony	<60.0	ug/L	60			04/13/20 15:3		
Arsenic	<10.0	ug/L	10			04/13/20 15:3		
arium	<200	ug/L		00 1		04/13/20 15:3		
Beryllium	<5.0	ug/L		.0 1		04/13/20 15:3		
oron	57.4	ug/L	50			04/13/20 15:3		
admium	<2.5	ug/L		.5 1		04/13/20 15:3		
alcium	13800	ug/L		00 1		04/13/20 15:3		
Chromium	133	ug/L	10	-		04/13/20 15:3		
cobalt	<50.0	ug/L	50			04/13/20 15:3		
Copper	<25.0	ug/L	25			04/13/20 15:3		
on .	4020	ug/L	20			04/13/20 15:3		
ead	<5.0	ug/L		.0 1		04/13/20 15:3		
lagnesium	6730	ug/L		00 1		04/13/20 15:3		
langanese	395	ug/L	10			04/13/20 15:3		
ickel	<40.0	ug/L	40			04/13/20 15:3		
otassium	<5000	ug/L ug/L	500	-		04/13/20 15:3		
elenium	<10.0	ug/L ug/L	10			04/13/20 15:3		
ilver	<10.0	ug/L ug/L	10			04/13/20 15:3		
odium	14200	-	500			04/13/20 15:3		
hallium	<10.0	ug/L				04/13/20 15.3		
anadium	<50.0	ug/L ug/L	10 50			04/13/20 15.3		
inc	<20.0	ug/L ug/L	20			04/13/20 15.3		
	\20.0	ug/L	20	.0 1	04/03/20 03:00	04/10/20 10:0	0 7440 00 0	
470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation	Method: E	PA 7470A			
	Pace Analytica	l Services -	Melville					
1ercury	<0.20	ug/L	0.2	20 1	04/07/20 21:22	04/08/20 05:3	2 7439-97-6	
260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C					
-	Pace Analytica	l Services -	Melville					
cetone	<5.0	ug/L	5	.0 1		04/09/20 15:5	5 67-64-1	IC
crylonitrile	<5.0	ug/L	5	.0 1		04/09/20 15:5	5 107-13-1	
Benzene	<5.0	ug/L	5	.0 1		04/09/20 15:5	5 71-43-2	
romochloromethane	<5.0	ug/L	5	.0 1		04/09/20 15:5	5 74-97-5	
romodichloromethane	<5.0	ug/L	5	.0 1		04/09/20 15:5	5 75-27-4	
romoform	<5.0	ug/L		.0 1		04/09/20 15:5		
romomethane	<5.0	ug/L		.0 1		04/09/20 15:5	5 74-83-9	
-Butanone (MEK)	<5.0	ug/L	5	.0 1		04/09/20 15:5	5 78-93-3	
carbon disulfide	<5.0	ug/L		.0 1		04/09/20 15:5		
Carbon tetrachloride	<5.0	ug/L		.0 1		04/09/20 15:5		
Chlorobenzene	<5.0	ug/L		.0 1		04/09/20 15:5		
Chloroethane	<5.0	ug/L		.0 1		04/09/20 15:5		
Chloroform	<5.0	ug/L		.0 1		04/09/20 15:5		
		-		.0 1		04/09/20 15:5		
Chloromethane	<5.0	ug/L		.U i				

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone lodomethane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Tolluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane Vinyl acetate Vinyl chloride Xylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana	-	Units	Report Limit	DF	Prepared	A I	04011	_				
Dibromochloromethane 1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,1,1-Z-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloropropane Vinyl acetate Vinyl chloride Xylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	-					Analyzed	CAS No.	Qua				
Dibromochloromethane ,2-Dibromoethane (EDB) Dibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene rans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethene sis-1,2-Dichloroethene rans-1,2-Dichloropropane sis-1,3-Dichloropropane ethylbenzene 2-Hexanone odomethane Methylene Chloride 1-Methyl-2-pentanone (MIBK) Styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane fetrachloroethene foluene ,1,1-Trichloroethane ,1,2-Trichloropropane frischlorofluoromethane frichlorofluoromethane frichlorofluoromethane ,2,3-Trichloropropane //inyl acetate //inyl chloride //surrogates ,2-Dichloroethane-d4 (S) -Bromofluorobenzene (S) File MSV Water Ana Pac	Analytical Method: EPA 8260C/5030C Pace Analytical Services - Melville											
,2-Dibromoethane (EDB) Dibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene rans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethene rans-1,2-Dichloroethene rans-1,2-Dichloropropane rans-1,3-Dichloropropane rans-1,3-Dichloropropene rans-1,1-Tichloropropene rans-1,1-Trichloroethane ,1,1,1-Trichloroethane retrachloroethene roluene ,1,1-Trichloroethane richlorofluoromethane ,1,2-Trichloroethane richlorofluoromethane richlorofluoromethane ,2,3-Trichloropropane /inyl acetate /inyl chloride (ylene (Total) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana	e Analytica	al Services -	Melville									
1,2-Dibromoethane (EDB) Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropene 1,2-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloropropene 1,4-Dichloroethane 1,4-Dichloro	<5.0	ug/L	5.0	1		04/09/20 15:5	5 124-48-1	L1				
Dibromomethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene trans-1,4-Dichloro-2-butene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene trans-1,3-Dichloropropane cis-1,3-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone lodomethane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloropropane Vinyl acetate Vinyl acetate Vinyl acetate Vinyl chloride Xylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55						
1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropene 1,2-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,3-Dichloropropene 1,4-Methylene Chloride 1,4-Methyl-2-pentanone (MIBK) 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloropropane 1,1,1-Trichloroethane 1,2,3-Trichloropropane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloroethane 1,2,3-Trichloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Dichloroethane 1,4-Bromofluorobenzene (S) 1,5-Dichloroethane-d4 (S) 1,5-Dichloroethane-d8 (S) 1,6-Dichloroethane-d8 (S) 1,7-Dichloroethane-d8 (S) 1,7-Dichloroethane-d8 (S) 1,7-Dichloroethane-d8 (S) 1,7-Dichloroethane-d8 (S)	<5.0	ug/L	5.0	1		04/09/20 15:55						
1,4-Dichlorobenzene rans-1,4-Dichloro-2-butene 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene sis-1,2-Dichloroethene rans-1,2-Dichloroethene 1,2-Dichloropropane sis-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene ethylbenzene 2-Hexanone odomethane Methylene Chloride 1-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloropropane //inyl acetate //inyl chloride Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 1-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5						
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene cis-1,3-Dichloropropene cis-1,3-Dichloropropene cis-1,3-Dichloropropene cis-1,3-Dichloropropene citylbenzene 2-Hexanone odomethane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichlorofluoromethane Trichlorofluoromethane Trichlorofluoromethane 1,2,3-Trichloropropane Vinyl acetate Vinyl chloride Xylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 106-46-7					
1,2-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropene 1,3-Dichloropropene 1,3-Dichlorode 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Dichloroethane 1,3-Trichloroethane 1,3-Trichloroethane 1,3-Trichloropropane 1,3-Trichloropropane 1,3-Trichloropropane 1,3-Dichlorodethane 1,2-Dichloroethane-d4 (S) 1-Bromofluorobenzene (S)	<5.0	ug/L	5.0	1		04/09/20 15:5	5 110-57-6					
1,1-Dichloroethene cis-1,2-Dichloroethene rans-1,2-Dichloroethene l,2-Dichloropropane cis-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene Ethylbenzene 2-Hexanone odomethane Methylene Chloride 1-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Fetrachloroethene Foluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Frichlorofluoromethane Frichlorofluoromethane Firichlorofluoromethane I,2,3-Trichloropropane I/inyl acetate I/inyl chloride Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 1-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 75-34-3					
cis-1,2-Dichloroethene rans-1,2-Dichloroethene l,2-Dichloropropane cis-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene ethylbenzene 2-Hexanone odomethane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Styrene l,1,1,2-Tetrachloroethane l,1,2,2-Tetrachloroethane retrachloroethene foluene l,1,1-Trichloroethane fi,1,2-Trichloroethane fi,2,3-Trichloropropane //inyl acetate //inyl chloride Kylene (Total) Surrogates l,2-Dichloroethane-d4 (S) l-Bromofluorobenzene (S) foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 107-06-2					
rans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rethylbenzene 2-Hexanone odomethane Methylene Chloride 1-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane retrachloroethene roluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane richlorofluoromethane richlorofluoromethane 1,2,3-Trichloropropane //inyl acetate //inyl chloride Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 1-Bromofluorobenzene (S) roluene-d8 (S) ric MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 75-35-4					
1,2-Dichloropropane cis-1,3-Dichloropropene rans-1,3-Dichloropropene Ethylbenzene 2-Hexanone odomethane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Foluene 1,1,1-Trichloroethane Firichloroethene Frichloroethene Frichlorofluoromethane I,2,3-Trichloropropane Vinyl acetate Vinyl chloride Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 156-59-2					
cis-1,3-Dichloropropene rans-1,3-Dichloropropene Ethylbenzene 2-Hexanone odomethane Methylene Chloride I-Methyl-2-pentanone (MIBK) Styrene I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane Tetrachloroethene Toluene I,1,1-Trichloroethane I,2,3-Trichloroethane Trichloroethene Trichlorofluoromethane I,2,3-Trichloropropane I/inyl acetate I/inyl chloride Kylene (Total) Surrogates I,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 156-60-5					
rans-1,3-Dichloropropene Ethylbenzene 2-Hexanone odomethane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Foluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Frichloroethene Frichlorofluoromethane Frichlorofluoromethane I,2,3-Trichloropropane Vinyl acetate Vinyl chloride Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 78-87-5					
Ethylbenzene P-Hexanone odomethane Methylene Chloride I-Methyl-2-pentanone (MIBK) Styrene I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane Tetrachloroethene Toluene I,1,1-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichlorofluoromethane I,2,3-Trichloropropane Inyl acetate Inyl chloride Kylene (Total) Surrogates I,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 10061-01-5	L1				
2-Hexanone odomethane Methylene Chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Fetrachloroethene Foluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Frichloroethene Frichlorofluoromethane Frichlorofluoromethane Frichlorofluoromethane Frichloride Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 10061-02-6					
odomethane Methylene Chloride I-Methyl-2-pentanone (MIBK) Styrene I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane Fetrachloroethene Foluene I,1,1-Trichloroethane I,1,2-Trichloroethane Frichloroethene Frichloroethene Frichlorofluoromethane I,2,3-Trichloropropane Jinyl acetate Jinyl chloride Kylene (Total) Surrogates I,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 100-41-4					
Methylene Chloride I-Methyl-2-pentanone (MIBK) Styrene I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane Fetrachloroethene Foluene I,1,1-Trichloroethane I,1,2-Trichloroethane Irichloroethene Frichloroethene Frichlorofluoromethane I,2,3-Trichloropropane Inyl acetate Inyl chloride Kylene (Total) Surrogates I,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 591-78-6					
A-Methyl-2-pentanone (MIBK) Styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane Tetrachloroethene Trichloroethane Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichloropropane Trichloride Kylene (Total) Surrogates ,2-Dichloroethane-d4 (S) D-Bromofluorobenzene (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 74-88-4	CL				
Styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane etrachloroethene foluene ,1,1-Trichloroethane ,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane ,2,3-Trichloropropane /inyl acetate /inyl chloride (xylene (Total) Surrogates ,2-Dichloroethane-d4 (S) -Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 75-09-2					
,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane Tetrachloroethene Toluene ,1,1-Trichloroethane ,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane ,2,3-Trichloropropane /inyl acetate /inyl chloride (xylene (Total) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 108-10-1					
,1,2,2-Tetrachloroethane Tetrachloroethene Toluene ,1,1-Trichloroethane ,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane ,2,3-Trichloropropane //inyl acetate //inyl chloride (xylene (Total)) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 100-42-5					
Tetrachloroethene Toluene ,1,1-Trichloroethane ,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane ,2,3-Trichloropropane //inyl acetate //inyl chloride (xylene (Total) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 630-20-6					
Toluene ,1,1-Trichloroethane ,1,2-Trichloroethane ,1,2-Trichloroethane Trichlorofluoromethane ,2,3-Trichloropropane /inyl acetate /inyl chloride (xylene (Total) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 79-34-5					
,1,1-Trichloroethane ,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane ,2,3-Trichloropropane finyl acetate finyl chloride (ylene (Total) Surrogates ,2-Dichloroethane-d4 (S) -Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 127-18-4					
,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane ,2,3-Trichloropropane /inyl acetate /inyl chloride (ylene (Total) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 108-88-3					
Trichloroethene Trichlorofluoromethane ,2,3-Trichloropropane /inyl acetate /inyl chloride (ylene (Total) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Toluene-d8 (S) TIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	71-55-6					
Frichlorofluoromethane 1,2,3-Trichloropropane /inyl acetate /inyl chloride Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 1-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	79-00-5					
,2,3-Trichloropropane /inyl acetate /inyl chloride (ylene (Total) Surrogates ,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 79-01-6					
/inyl acetate /inyl chloride Kylene (Total) Surrogates I,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 75-69-4					
/inyl chloride Kylene (Total) Surrogates I,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 96-18-4					
Kylene (Total) Surrogates 1,2-Dichloroethane-d4 (S) 1-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5						
Surrogates 1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:55	5 75-01-4					
I,2-Dichloroethane-d4 (S) I-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac	<5.0	ug/L	5.0	1		04/09/20 15:5	5 1330-20-7					
I-Bromofluorobenzene (S) Foluene-d8 (S) FIC MSV Water Ana Pac												
Foluene-d8 (S) FIC MSV Water Ana Pac	100	%	68-153	1		04/09/20 15:5						
FIC MSV Water Ana	98	%	79-124	1		04/09/20 15:5						
Pac	98	%	69-124	1		04/09/20 15:5	5 2037-26-5					
Pac	lytical Met	hod: EPA 82	260									
	-	al Services -										
FIC Search N	o TICs Found			1		04/10/20 15:17	7					
• •	•	hod: SM22 2 al Services -										
Apparent Color	10.0	units	5.0	1		04/04/20 10:0	5					
аррагені Союг БН	6.8	Std. Units		1		04/04/20 10:0						

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4B	Lab ID: 701	26875010	Collected:	04/02/2	0 18:30	Received: 0	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth								
Alkalinity, Total as CaCO3	69.2	mg/L		1.0	1		04/13/20 11:07		
2340C Hardness, Total	Analytical Meth Pace Analytica								
Tot Hardness asCaCO3 (SM 2340B	53.3	mg/L		5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica								
Total Dissolved Solids	128	mg/L		10.0	1		04/09/20 10:41		
Chromium, Hexavalent	Analytical Meth Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		04/04/20 09:30	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytica			ion Met	hod: EP/	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L		10.0	1	04/08/20 10:50	04/08/20 13:07	•	
5210B BOD, 5 day	Analytical Meth Pace Analytica			ration M	lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/04/20 06:47	04/09/20 11:01		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		04/16/20 00:39	24959-67-9	
Chloride Sulfate	13.8 9.8	mg/L mg/L		2.0 5.0	1 1		04/16/20 00:39 04/16/20 00:39		
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	•			A 351.2	0 11 10,20 00100		
Nitrogen, Kjeldahl, Total	1.2	mg/L		0.10	1	04/15/20 08:39	04/16/20 13:09	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica								
Nitrate as N	0.27	mg/L		0.050	1		04/04/20 01:43	14797-55-8	
Nitrate-Nitrite (as N)	0.27	mg/L		0.050	1		04/04/20 01:43	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L		0.050	1		04/04/20 00:13	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica			ion Met	hod: EP/	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:36	04/16/20 15:53	}	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4B	Lab ID: 7012	26875010	Collected: 04/02/2	20 18:30	Received: 04	1/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	0.62	mg/L	0.10	1		04/15/20 16:56	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 13:56	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:36	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:36	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:36	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:36	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:36	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4C	Lab ID: 7012	26875011	Collected: 04/02/2	20 18:15	Received: 04	/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	od: EPA 60	10C Preparation Mo	ethod: El	PA 3005A			
	Pace Analytical	Services -	Melville					
Numinum	<200	ug/L	200	1	04/09/20 09:00	04/13/20 15:43	R 7/20-00-5	
Antimony	<60.0	ug/L	60.0	1	04/09/20 09:00			
Arsenic	<10.0	ug/L	10.0	1	04/09/20 09:00			
arium	<200	ug/L	200	1	04/09/20 09:00			
eryllium	<5.0	ug/L	5.0	1	04/09/20 09:00			
oron	<50.0	ug/L	50.0	1	04/09/20 09:00			
admium	<2.5	ug/L ug/L	2.5	1	04/09/20 09:00			
alcium	19600	ug/L	200	1	04/09/20 09:00			
hromium	345		10.0	1	04/09/20 09:00			
	<50.0	ug/L						
obalt		ug/L	50.0	1	04/09/20 09:00			
opper	<25.0 1470	ug/L	25.0	1	04/09/20 09:00 04/09/20 09:00			
on		ug/L	20.0	1				
ead	<5.0	ug/L	5.0	1	04/09/20 09:00			
lagnesium	8640	ug/L	200	1	04/09/20 09:00			
langanese	33.6	ug/L	10.0	1	04/09/20 09:00			
ickel	203	ug/L	40.0	1	04/09/20 09:00			
otassium	<5000	ug/L	5000	1	04/09/20 09:00			
elenium 	<10.0	ug/L	10.0	1	04/09/20 09:00			
ilver	<10.0	ug/L	10.0	1	04/09/20 09:00			
odium	33200	ug/L	5000	1	04/09/20 09:00			
hallium 	<10.0	ug/L	10.0	1	04/09/20 09:00			
anadium	<50.0	ug/L	50.0	1	04/09/20 09:00			
inc	<20.0	ug/L	20.0	1	04/09/20 09:00	04/13/20 15:43	3 7440-66-6	
470 Mercury	Analytical Meth	od: EPA 74	70A Preparation Me	ethod: EF	PA 7470A			
	Pace Analytical	Services -	Melville					
lercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:34	7439-97-6	
260C Volatile Organics	Analytical Meth	od: EPA 82	60C/5030C					
260C Volatile Organics	Analytical Meth Pace Analytical							
-	· ·	Services -		1		04/09/20 16:15	5 67-64-1	IC
cetone	Pace Analytical	Services - ug/L	Melville 5.0	1 1				IC
cetone crylonitrile	Pace Analytical <5.0 <5.0	Services - ug/L ug/L	Melville 5.0 5.0	1		04/09/20 16:15	5 107-13-1	IC
cetone crylonitrile enzene	Pace Analytical <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L	Melville 5.0 5.0 5.0			04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2	IC
cetone crylonitrile enzene romochloromethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0	1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5	IC
cetone crylonitrile enzene romochloromethane romodichloromethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4	IC
cetone crylonitrile enzene romochloromethane romodichloromethane romoform	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2	IC
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9	IC
acetone acrylonitrile denzene dromochloromethane dromoform dromomethane dromomethane dromomethane dromomethane dromomethane -Butanone (MEK)	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 6 74-83-9 5 78-93-3	IC
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromoform dromomethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0	IC
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromoform dromomethane dromomethane dromomethane dromomethane dromomethane dramone (MEK) dramon disulfide dramon tetrachloride	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 6 75-15-0 5 56-23-5	IC
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dramone (MEK) dramon disulfide drarbon tetrachloride chlorobenzene	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 6 75-15-0 6 56-23-5 5 108-90-7	IC
acetone acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	1 1 1 1 1 1 1 1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7 7 75-00-3	IC
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromothoromethane Bromoform Bromomethane C-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloroform Chloromethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15 04/09/20 16:15	5 107-13-1 5 71-43-2 5 74-97-5 5 75-27-4 5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0 5 56-23-5 6 108-90-7 6 75-00-3 6 67-66-3	IC

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Parameters 260C Volatile Organics Dibromochloromethane ,2-Dibromoethane (EDB) Dibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene ans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethene is-1,2-Dichloroethene ans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene	Results	Linita						
Dibromochloromethane ,2-Dibromoethane (EDB) Dibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene rans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethene rans-1,2-Dichloroethene rans-1,2-Dichloropropane rans-1,3-Dichloropropene		Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
,2-Dibromoethane (EDB) bibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene rans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethene is-1,2-Dichloroethene rans-1,2-Dichloroethene rans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropane rans-1,3-Dichloropropene rans-1,3-Dichloropropane rans-1,3-Dichloropropane rans-1,3-Dichloropropane rans-1,3-Dichloropropene	Analytical Met	hod: EPA 82	260C/5030C					
,2-Dibromoethane (EDB) bibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene rans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethene is-1,2-Dichloroethene rans-1,2-Dichloroethene rans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropane rans-1,3-Dichloropropene rans-1,3-Dichloropropane rans-1,3-Dichloropropane rans-1,3-Dichloropropane rans-1,3-Dichloropropene	Pace Analytica	al Services -	Melville					
,2-Dibromoethane (EDB) bibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene rans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethene is-1,2-Dichloroethene rans-1,2-Dichloroethene rans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropane rans-1,3-Dichloropropene rans-1,3-Dichloropropane rans-1,3-Dichloropropane rans-1,3-Dichloropropane rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 16:1	5 124-48-1	L1
Dibromomethane ,2-Dichlorobenzene ,4-Dichlorobenzene ;ans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethene is-1,2-Dichloroethene ;ans-1,2-Dichloroethene ;ans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropene cans-1,3-Dichloropropene cans-1,3-Dichloropropene ithylbenzene -Hexanone odomethane Methyl-2-pentanone (MIBK) styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1		
,2-Dichlorobenzene ,4-Dichlorobenzene ;ans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethene is-1,2-Dichloroethene ;ans-1,2-Dichloroethene ;ans-1,2-Dichloropropane is-1,3-Dichloropropane is-1,3-Dichloropropene ;ans-1,3-Dichloropropene ;thylbenzene -Hexanone odomethane Methyl-2-pentanone (MIBK) styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1		
,4-Dichlorobenzene rans-1,4-Dichloro-2-butene ,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethene is-1,2-Dichloroethene rans-1,2-Dichloroethene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene ethylbenzene -Hexanone odomethane Methyl-2-pentanone (MIBK) retyrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1		
,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethene is-1,2-Dichloroethene rans-1,2-Dichloroethene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene ethylbenzene -Hexanone odomethane Methyl-2-pentanone (MIBK) retyrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1		
,1-Dichloroethane ,2-Dichloroethane ,1-Dichloroethene is-1,2-Dichloroethene rans-1,2-Dichloroethene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene ethylbenzene -Hexanone odomethane Methyl-2-pentanone (MIBK) retyrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 110-57-6	
,1-Dichloroethene is-1,2-Dichloroethene rans-1,2-Dichloroethene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloropropene rans-1,4-Dichloroethane rans-1,4-Dichloroethane rans-1,4-Dichloroethane rans-1,4-Dichloroethane rans-1,4-Dichloroethane rans-1,4-Dichloroethane rans-1,4-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 75-34-3	
is-1,2-Dichloroethene rans-1,2-Dichloroethene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rans-1,3	<5.0	ug/L	5.0	1		04/09/20 16:1	5 107-06-2	
rans-1,2-Dichloroethene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rans-	<5.0	ug/L	5.0	1		04/09/20 16:1	5 75-35-4	
,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rthylbenzene -Hexanone odomethane Methylene Chloride -Methyl-2-pentanone (MIBK) rtyrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 156-59-2	
,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene rthylbenzene -Hexanone odomethane Methylene Chloride -Methyl-2-pentanone (MIBK) rtyrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 156-60-5	
rans-1,3-Dichloropropene Ethylbenzene -Hexanone odomethane Methylene Chloride -Methyl-2-pentanone (MIBK) Etyrene 1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 78-87-5	
Ethylbenzene -Hexanone odomethane Methylene Chloride -Methyl-2-pentanone (MIBK) Styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 10061-01-5	L1
-Hexanone odomethane Methylene Chloride -Methyl-2-pentanone (MIBK) Styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 10061-02-6	
odomethane Methylene Chloride -Methyl-2-pentanone (MIBK) Styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 100-41-4	
Methylene Chloride -Methyl-2-pentanone (MIBK) styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 591-78-6	
-Methyl-2-pentanone (MIBK) styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 74-88-4	CL
Styrene ,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 75-09-2	
,1,1,2-Tetrachloroethane ,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 108-10-1	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 100-42-5	
	<5.0	ug/L	5.0	1		04/09/20 16:1	5 630-20-6	
'atrachlaraethana	<5.0	ug/L	5.0	1		04/09/20 16:1	5 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		04/09/20 16:1	5 127-18-4	
oluene	<5.0	ug/L	5.0	1		04/09/20 16:1	5 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		04/09/20 16:1	5 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 16:1	5 96-18-4	
inyl acetate	<5.0	ug/L	5.0	1		04/09/20 16:1	5 108-05-4	
'inyl chloride	<5.0	ug/L	5.0	1		04/09/20 16:1	5 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		04/09/20 16:1	5 1330-20-7	
Surrogates								
,2-Dichloroethane-d4 (S)	104	%	68-153	1		04/09/20 16:1		
-Bromofluorobenzene (S)	93	%	79-124	1		04/09/20 16:1		
oluene-d8 (S)	99	%	69-124	1		04/09/20 16:1	5 2037-26-5	
TC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica							
TC Search	No TICs Found			1		04/10/20 15:1	7	
120B W Apparent Color	Analytical Met							
apparent Color	25.0	units		1		04/04/20 10:0	5	
pparent Color H	25.0 7.1	units Std. Units	5.0 0.10	1 1		04/04/20 10:0:		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4C	Lab ID: 7012	26875011	Collected: 04/02/2	20 18:15	Received: 04	4/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth							
Alkalinity, Total as CaCO3	50.0	mg/L	1.0	1		04/13/20 11:14	ļ	
2340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	80.0	mg/L	5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	212	mg/L	10.0	1		04/09/20 10:42	2	
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/04/20 09:30	18540-29-9	H1
110.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	16.7	mg/L	10.0	1	04/08/20 10:50	04/08/20 13:07	7	
5210B BOD, 5 day	Analytical Meth Pace Analytica		5210B Preparation N Melville	/lethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/04/20 06:48	04/09/20 11:03	3	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		04/16/20 00:56	24959-67-9	
Chloride Sulfate	84.6 5.2	mg/L mg/L	10.0 5.0	5 1		04/17/20 01:29 04/16/20 00:56		
51.2 Total Kjeldahl Nitrogen		nod: EPA 35	51.2 Preparation Me		A 351.2	0 11 10,20 00100		
Nitrogen, Kjeldahl, Total	0.20	mg/L	0.10	1	04/15/20 08:39	04/16/20 13:12	2 7727-37-9	
853.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica							
litrate as N Nitrate-Nitrite (as N)	<0.050 <0.050	mg/L mg/L	0.050 0.050	1 1		04/04/20 01:45 04/04/20 01:45		
853.2 Nitrogen, NO2	Analytical Meth Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/04/20 00:15	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica		20.1 Preparation Me Melville	thod: EP	A 420.1			
	<5.0							

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 4C	Lab ID: 7012	26875011	Collected: 04/02/2	20 18:15	Received: 04	4/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		04/15/20 16:57	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		014 Total Cyanide Pr Melville	eparation	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 13:56	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:47	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:47	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:47	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:47	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:47	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: DUP001	Lab ID: 701	26875012	Collected: 04/02/2	20 08:15	Received: 04	/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Metl	nod: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
	Pace Analytica	al Services -	Melville					
Aluminum	<200	ug/L	200	1	04/09/20 09:00	04/13/20 15:48	7429-90-5	
Antimony	<60.0	ug/L	60.0	1		04/13/20 15:48		
Arsenic	<10.0	ug/L	10.0	1		04/13/20 15:48		
Barium	<200	ug/L	200	1	04/09/20 09:00	04/13/20 15:48	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1		04/13/20 15:48		
Boron	<50.0	ug/L	50.0	1	04/09/20 09:00	04/13/20 15:48	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1		04/13/20 15:48		
Calcium	4730	ug/L	200	1	04/09/20 09:00	04/13/20 15:48	7440-70-2	
Chromium	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 15:48	7440-47-3	
Cobalt	<50.0	ug/L	50.0	1		04/13/20 15:48		
Copper	<25.0	ug/L	25.0	1	04/09/20 09:00	04/13/20 15:48	7440-50-8	
ron	20.8	ug/L	20.0	1	04/09/20 09:00	04/13/20 15:48	7439-89-6	
₋ead	<5.0	ug/L	5.0	1	04/09/20 09:00	04/13/20 15:48	7439-92-1	
Magnesium	2310	ug/L	200	1		04/13/20 15:48		
Manganese	<10.0	ug/L	10.0	1		04/13/20 15:48		
lickel	<40.0	ug/L	40.0	1	04/09/20 09:00	04/13/20 15:48	7440-02-0	
Potassium	<5000	ug/L	5000	1	04/09/20 09:00	04/13/20 15:48	7440-09-7	
Selenium	<10.0	ug/L	10.0	1		04/13/20 15:48		
Silver	<10.0	ug/L	10.0	1		04/13/20 15:48		
Sodium	8140	ug/L	5000	1		04/13/20 15:48		
Γhallium	<10.0	ug/L	10.0	1		04/13/20 15:48		
/anadium	<50.0	ug/L	50.0	1		04/13/20 15:48		
Zinc	<20.0	ug/L	20.0	1		04/13/20 15:48		
470 Mercury	Analytical Met	hod: EPA 74	170A Preparation Me	thod: El	PA 7470A			
	Pace Analytica	al Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:36	7439-97-6	
260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
3	Pace Analytica							
Acetone	<5.0	ug/L	5.0	1		04/09/20 16:35	67-64-1	IC
Acrylonitrile	<5.0	ug/L	5.0	1		04/09/20 16:35	107-13-1	
Benzene	<5.0	ug/L	5.0	1		04/09/20 16:35	71-43-2	
Bromochloromethane	<5.0	ug/L	5.0	1		04/09/20 16:35	74-97-5	
Bromodichloromethane	<5.0	ug/L	5.0	1		04/09/20 16:35	75-27-4	
Bromoform	<5.0	ug/L	5.0	1		04/09/20 16:35	75-25-2	
Bromomethane	<5.0	ug/L	5.0	1		04/09/20 16:35	74-83-9	
P-Butanone (MEK)	<5.0	ug/L	5.0	1		04/09/20 16:35	78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		04/09/20 16:35		
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/09/20 16:35		
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 16:35		
Chloroethane	<5.0	ug/L	5.0	1		04/09/20 16:35		
Chloroform	5.0	ug/L	5.0	1		04/09/20 16:35		
	<5.0	ug/L	5.0	1		04/09/20 16:35		
Chloromethane	<5.0	ug/∟	5.0			04/03/20 10.30	14-01-3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: DUP001	Lab ID: 701	26875012	Collected: 04/02/2	20 08:15	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 16:3	5 124-48-1	L1
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 16:3		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 16:3		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 16:3		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 16:3	5 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 16:3		
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:3	5 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:3		
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 16:3	5 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 16:3		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 16:3	5 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 16:3	5 78-87-5	
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 16:3	5 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 16:3		
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 16:3		
-Hexanone	<5.0	ug/L	5.0	1		04/09/20 16:3	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		04/09/20 16:3		CL
lethylene Chloride	<5.0	ug/L	5.0	1		04/09/20 16:3		
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 16:3		
tyrene	<5.0	ug/L	5.0	1		04/09/20 16:3		
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:3		
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:3		
etrachloroethene	<5.0	ug/L	5.0	1		04/09/20 16:3		
oluene	<5.0	ug/L	5.0	1		04/09/20 16:3		
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:3		
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:3	5 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		04/09/20 16:3		
richlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 16:3	5 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 16:3		
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 16:3	5 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/09/20 16:3		
(ylene (Total)	<5.0	ug/L	5.0	1		04/09/20 16:3	5 1330-20-7	
Surrogates		Ü						
,2-Dichloroethane-d4 (S)	101	%	68-153	1		04/09/20 16:3	5 17060-07-0	
-Bromofluorobenzene (S)	96	%	79-124	1		04/09/20 16:3	5 460-00-4	
oluene-d8 (S)	96	%	69-124	1		04/09/20 16:3	5 2037-26-5	
TC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
TC Search	No TICs Found			1		04/10/20 15:1	7	
120B W Apparent Color	Analytical Met	hod: SM22	2120B					
pp	Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/04/20 10:0	5	H1
oH	6.6	Std. Units		1		04/04/20 10:0		H1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: DUP001	Lab ID: 701	26875012	Collected:	04/02/2	20 08:15	Received: 04	4/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Meth								
Alkalinity, Total as CaCO3	13.5	mg/L		1.0	1		04/13/20 11:19		
2340C Hardness, Total	Analytical Meth Pace Analytica								
Tot Hardness asCaCO3 (SM 2340B	20.0	mg/L		5.0	1		04/20/20 15:01		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica								
Total Dissolved Solids	108	mg/L		10.0	1		04/09/20 10:54		
Chromium, Hexavalent	Analytical Meth Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		04/04/20 09:30	18540-29-9	Н3
410.4 COD	Analytical Meth Pace Analytica			tion Met	hod: EP/	A 410.4			
Chemical Oxygen Demand	25.1	mg/L		10.0	1	04/08/20 10:50	04/08/20 13:07		
5210B BOD, 5 day	Analytical Meth Pace Analytica			aration M	Method: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/04/20 06:49	04/09/20 11:06		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		04/16/20 01:13		
Chloride Sulfate	8.9 9.3	mg/L mg/L		2.0 5.0	1 1		04/16/20 01:13 04/16/20 01:13		
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	•			A 351.2			
Nitrogen, Kjeldahl, Total	0.28	mg/L		0.10	1	04/15/20 08:39	04/16/20 13:13	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica								
Nitrate as N	0.24	mg/L		0.050	1		04/04/20 01:46	14797-55-8	
Nitrate-Nitrite (as N)	0.24	mg/L		0.050	1		04/04/20 01:46	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L		0.050	1		04/04/20 00:16	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica			tion Met	hod: EP/	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:36	04/16/20 15:55	i	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: DUP001	Lab ID: 7012	26875012	Collected: 04/02/2	20 08:15	Received: 04	1/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		04/15/20 16:58	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 14:23	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:58	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:58	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:58	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:58	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 19:58	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: TRIP BLANK	Lab ID: 701	26875013	Collected: 04/02/2	20 00:00	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		04/09/20 13:1	6 67-64-1	IC
Acrylonitrile	<5.0	ug/L	5.0	1		04/09/20 13:1		
Benzene	<5.0	ug/L	5.0	1		04/09/20 13:1	6 71-43-2	
Bromochloromethane	<5.0	ug/L	5.0	1		04/09/20 13:1	6 74-97-5	
Bromodichloromethane	<5.0	ug/L	5.0	1		04/09/20 13:1	6 75-27-4	
Bromoform	<5.0	ug/L	5.0	1		04/09/20 13:1		
Bromomethane	<5.0	ug/L	5.0	1		04/09/20 13:1	6 74-83-9	
-Butanone (MEK)	<5.0	ug/L	5.0	1		04/09/20 13:1	6 78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		04/09/20 13:1		
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/09/20 13:1		
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:1		
Chloroethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
Chloroform	<5.0	ug/L	5.0	1		04/09/20 13:1		
Chloromethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		04/09/20 13:1		
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 13:1		L1
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 13:1		
bibromomethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
.2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:1		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:1		
ans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 13:1		
,1-Dichloroethane	<5.0	ug/L ug/L	5.0	1		04/09/20 13:1		
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
,1-Dichloroethene	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 13:1		
is-1,2-Dichloroethene	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 13:1		
rans-1,2-Dichloroethene	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 13:1		
,2-Dichloropropane	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 13:1		
	<5.0 <5.0	•	5.0	1			6 10061-01-5	L1
is-1,3-Dichloropropene rans-1,3-Dichloropropene	<5.0 <5.0	ug/L	5.0	1			6 10061-01-5	LI
thylbenzene		ug/L						
•	<5.0	ug/L	5.0	1		04/09/20 13:1		
-Hexanone	<5.0 <5.0	ug/L	5.0	1		04/09/20 13:1		CI
odomethane		ug/L	5.0	1		04/09/20 13:1		CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 13:1		
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 13:1		
Styrene	<5.0	ug/L	5.0	1		04/09/20 13:1		
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
etrachloroethene	<5.0	ug/L	5.0	1		04/09/20 13:1		
oluene	<5.0	ug/L	5.0	1		04/09/20 13:1		
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
richloroethene	<5.0	ug/L	5.0	1		04/09/20 13:1		
richlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 13:1		
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 13:1		
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 13:1	6 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		04/09/20 13:1	6 75-01-4	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: TRIP BLANK	Lab ID: 7012	26875013	Collected: 04/02/2	20 00:00	Received: 04	/03/20 16:48 I	Matrix: Water	•		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260C Volatile Organics	Analytical Method: EPA 8260C/5030C									
	Pace Analytical	l Services -	Melville							
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		04/09/20 13:16	3 1330-20-7			
1,2-Dichloroethane-d4 (S)	99	%	68-153	1		04/09/20 13:16	17060-07-0			
4-Bromofluorobenzene (S)	98	%	79-124	1		04/09/20 13:16	460-00-4			
Toluene-d8 (S)	97	%	69-124	1		04/09/20 13:16	2037-26-5			
TIC MSV Water	Analytical Meth	od: EPA 82	260							
	Pace Analytical	l Services -	Melville							
TIC Search	No TICs Found			1		04/10/20 15:18	3			

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 11B	Lab ID: 7012	26875014	Collected: 04/03/2	0 08:31	Received: 04	/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	od: EPA 60	010C Preparation Me	thod: El	PA 3005A			
	Pace Analytica	Services -	Melville					
Aluminum	1400	ug/L	200	1	04/09/20 09:00	04/13/20 15:54	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	04/09/20 09:00	04/13/20 15:54	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	04/09/20 09:00	04/13/20 15:54	7440-38-2	
Barium	<200	ug/L	200	1	04/09/20 09:00	04/13/20 15:54	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	04/09/20 09:00	04/13/20 15:54	7440-41-7	
Boron	<50.0	ug/L	50.0	1		04/13/20 15:54		
Cadmium	<2.5	ug/L	2.5	1	04/09/20 09:00			
Calcium	14000	ug/L	200	1		04/13/20 15:54		
Chromium	<10.0	ug/L	10.0	1		04/13/20 15:54		
Cobalt	<50.0	ug/L	50.0	1		04/13/20 15:54		
Copper	<25.0	ug/L	25.0	1		04/13/20 15:54		
ron	5950	ug/L	20.0	1	04/09/20 09:00			
.ead	6.0	ug/L	5.0	1		04/13/20 15:54		
	6140	ug/L	200	1		04/13/20 15:54		
/lagnesium	152	•	10.0	1		04/13/20 15:54		
/langanese lickel	<40.0	ug/L		1		04/13/20 15:54		
otassium		ug/L	40.0					
	<5000	ug/L	5000	1	04/09/20 09:00			
Selenium	<10.0	ug/L	10.0	1		04/13/20 15:54		
Silver	<10.0	ug/L	10.0	1		04/13/20 15:54		
Sodium	12400	ug/L	5000	1		04/13/20 15:54		
hallium	<10.0	ug/L	10.0	1		04/13/20 15:54		
/anadium	<50.0	ug/L	50.0	1	04/09/20 09:00			
linc	<20.0	ug/L	20.0	1	04/09/20 09:00	04/13/20 15:54	7440-66-6	
010 MET ICP, Dissolved	Analytical Meth	od: EPA 60)10C					
	Pace Analytica	l Services -	Melville					
Aluminum, Dissolved	<200	ug/L	200	1		04/20/20 17:23	7429-90-5	
Antimony, Dissolved	<60.0	ug/L	60.0	1		04/20/20 17:23	7440-36-0	
Arsenic, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:23	7440-38-2	
Barium, Dissolved	<200	ug/L	200	1		04/20/20 17:23	7440-39-3	
Beryllium, Dissolved	<5.0	ug/L	5.0	1		04/20/20 17:23	7440-41-7	
Boron, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:23	7440-42-8	
Cadmium, Dissolved	<2.5	ug/L	2.5	1		04/20/20 17:23	7440-43-9	
Calcium, Dissolved	13700	ug/L	200	1		04/20/20 17:23	7440-70-2	
Chromium, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:23	7440-47-3	
Cobalt, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:23		
Copper, Dissolved	<25.0	ug/L	25.0	1		04/20/20 17:23		
ron, Dissolved	<20.0	ug/L	20.0	1		04/20/20 17:23		
ead, Dissolved	<5.0	ug/L	5.0	1		04/20/20 17:23		
Magnesium, Dissolved	6100	ug/L	200	1		04/20/20 17:23		
Manganese, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:23		
Nickel, Dissolved	<40.0	ug/L	40.0	1		04/20/20 17:23		
Potassium, Dissolved	<5000	ug/L	5000	1		04/20/20 17:23		
Selenium, Dissolved	<10.0	ug/L ug/L	10.0	1		04/20/20 17:23		
Silver, Dissolved	<10.0 <10.0	•						
JIIVEL DISSUIVEU	<10.0	ug/L	10.0	1		04/20/20 17:23	/ 44 U-ZZ-4	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 11B	Lab ID: 701	26875014	Collected: 04/03/2	20 08:31	Received: 04	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010C					
	Pace Analytica	l Services -	Melville					
Thallium, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:2	3 7440-28-0	
Vanadium, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:2		
Zinc, Dissolved	<20.0	ug/L	20.0	1		04/20/20 17:2		
	120.0	ug/ =	20.0	•		0 1/20/20 11:2	0 7110 00 0	
7470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	ethod: El	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:3	7 7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	nod: EPA 74	70A Preparation Me	ethod: El	PA 7470A			
	Pace Analytica							
Moroury Dissolved	•			4	04/14/20 24:42	04/15/20 03:5	1 7/20 07 6	
Mercury, Dissolved	<0.20	ug/L	0.20	1	04/14/20 21:12	04/15/20 03:5	1 /439-9/-0	
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		04/09/20 16:5	5 67-64-1	IC
Acrylonitrile	<5.0	ug/L	5.0	1		04/09/20 16:5		.0
Benzene	<5.0	ug/L	5.0	1		04/09/20 16:5		
Bromochloromethane	<5.0	ug/L	5.0	1		04/09/20 16:5		
Bromodichloromethane	<5.0	ug/L	5.0	1		04/09/20 16:5		
Bromoform	<5.0	ug/L	5.0	1		04/09/20 16:5	5 75-25-2	
Bromomethane	<5.0	ug/L	5.0	1		04/09/20 16:5	5 74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		04/09/20 16:5	5 78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		04/09/20 16:5	5 75-15-0	
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/09/20 16:5	5 56-23-5	
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 16:5	5 108-90-7	
Chloroethane	<5.0	ug/L	5.0	1		04/09/20 16:5	5 75-00-3	
Chloroform	5.0	ug/L	5.0	1		04/09/20 16:5		
Chloromethane	<5.0	ug/L	5.0	1		04/09/20 16:5		
1,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		04/09/20 16:5		
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 16:5		L1
I,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 16:5		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 16:5		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 16:5		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 16:5		
rans-1,4-Dichloro-2-butene	<5.0 <5.0	ug/L	5.0	1		04/09/20 16:5		
,1-Dichloroethane .2-Dichloroethane	<5.0 <5.0	ug/L ug/L	5.0 5.0	1 1		04/09/20 16:5 04/09/20 16:5		
1,1-Dichloroethene	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 16:5		
sis-1,2-Dichloroethene	<5.0	ug/L ug/L	5.0	1		04/09/20 16:5		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 16:5		
1,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 16:5		
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1			5 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1			5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 16:5		
2-Hexanone	<5.0	ug/L	5.0	1		04/09/20 16:5		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Parameters								
	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical M	ethod: EPA 82	260C/5030C					
	Pace Analyti	cal Services -	Melville					
odomethane	<5.0	ug/L	5.0	1		04/09/20 16:55	74-88-4	CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 16:55	75-09-2	
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 16:55	108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 16:55	100-42-5	
1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:55	630-20-6	
1,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 16:55	79-34-5	
Tetrachloroethene	<5.0	ug/L	5.0	1		04/09/20 16:55	127-18-4	
Toluene	11.4	ug/L	5.0	1		04/09/20 16:55	108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:55	71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 16:55	79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 16:55	79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 16:55	75-69-4	
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 16:55	96-18-4	
Vinyl acetate	<5.0	ug/L	5.0	1		04/09/20 16:55	108-05-4	
Vinyl chloride	<5.0	ug/L	5.0	1		04/09/20 16:55	75-01-4	
Xylene (Total)	<5.0	ug/L	5.0	1		04/09/20 16:55	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	98	%	68-153	1		04/09/20 16:55	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124	1		04/09/20 16:55	460-00-4	
Toluene-d8 (S)	99	%	69-124	1		04/09/20 16:55	2037-26-5	
TIC MSV Water	Analytical M	ethod: EPA 82	260					
	Pace Analyti	cal Services -	Melville					
TIC Search	No TICs Found			1		04/10/20 15:18		
2120B W Apparent Color	•	ethod: SM22 2 cal Services -						
Apparent Color	20.0	units	5.0	1		04/04/20 10:05		
Н	6.3	Std. Units		1		04/04/20 10:05		
2320B Alkalinity	-	ethod: SM22 2 cal Services -						
Alkalinity, Total as CaCO3	41.5	mg/L	1.0	1		04/13/20 11:26		
2340C Hardness, Total	-	ethod: SM22 2 cal Services -						
Tot Hardness asCaCO3 (SM 2340B	66.7	mg/L	5.0	1		04/20/20 15:02		
2540C Total Dissolved Solids		ethod: SM22 2						

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 11B	Lab ID: 7012	26875014	Collected: 04/03/2	20 08:31	Received: 04	/03/20 16:48 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Chromium, Hexavalent	Analytical Meth							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/04/20 09:30	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytical		0.4 Preparation Me Melville	thod: EF	PA 410.4			
Chemical Oxygen Demand	61.0	mg/L	10.0	1	04/08/20 10:50	04/08/20 13:07		
5210B BOD, 5 day	Analytical Meth Pace Analytical		210B Preparation Melville	/lethod:	SM22 5210B			
BOD, 5 day	<4.0	mg/L	4.0	2	04/04/20 06:51	04/09/20 11:08		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical							
Bromide	<0.50	mg/L	0.50	1		04/16/20 01:29		
Chloride Sulfate	12.0 25.5	mg/L mg/L	2.0 5.0	1 1		04/16/20 01:29 04/16/20 01:29		
351.2 Total Kjeldahl Nitrogen		od: EPA 35	1.2 Preparation Me		PA 351.2	04/10/20 01.23	14000 73 0	
Nitrogen, Kjeldahl, Total	1.2	mg/L	0.10	1	04/15/20 08:39	04/16/20 13:14	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth							
Nitrate as N Nitrate-Nitrite (as N)	1.2 1.2	mg/L mg/L	0.050 0.050	1 1		04/04/20 01:47 04/04/20 01:47		
353.2 Nitrogen, NO2	Analytical Meth							
Nitrite as N	<0.050	mg/L	0.050	1		04/04/20 00:17	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth		0.1 Preparation Me Melville	thod: EF	PA 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	04/16/20 08:36	04/16/20 15:56		
4500 Ammonia Water	Analytical Meth							
Nitrogen, Ammonia	0.10	mg/L	0.10	1		04/15/20 17:02	7664-41-7	
9014 Cyanide, Total	Analytical Meth		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	010C		
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 14:23	57-12-5	
9060A TOC as NPOC	Analytical Meth							
Total Organic Carbon	3.4	mg/L	1.0	1		04/13/20 20:11	7440-44-0	

(631)694-3040

ANALYTICAL RESULTS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 11B	Lab ID: 7	0126875014	Collected: 04/03/2	0 08:31	Received: 04	1/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	•	ethod: EPA 906						
	Pace Analyt	cal Services - I	Melville					
Total Organic Carbon	2.5	mg/L	1.0	1		04/13/20 20:11	7440-44-0	
Total Organic Carbon	2.5	mg/L	1.0	1		04/13/20 20:11	7440-44-0	
Total Organic Carbon	2.3	mg/L	1.0	1		04/13/20 20:11	7440-44-0	
Mean Total Organic Carbon	2.7	mg/L	1.0	1		04/13/20 20:11	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 12A	Lab ID: 701	26875015	Collected: 04/03	/20 07:15	Received: 04	1/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation N	1ethod: E	PA 3005A			
	Pace Analytic	al Services -	Melville					
luminum	<200	ug/L	200	1	04/09/20 09:00	04/13/20 15:5	9 7429-90-5	
Antimony	<60.0	ug/L	60.0		04/09/20 09:00			
Arsenic	<10.0	ug/L	10.0		04/09/20 09:00			
arium	<200	ug/L	200		04/09/20 09:00			
eryllium	<5.0	ug/L	5.0		04/09/20 09:00			
oron	<50.0	ug/L	50.0		04/09/20 09:00			
admium	<2.5	ug/L	2.5		04/09/20 09:00			
alcium	15600	ug/L	200		04/09/20 09:00			
hromium	<10.0	ug/L	10.0		04/09/20 09:00			
obalt	<50.0	ug/L	50.0		04/09/20 09:00			
Copper	<25.0	ug/L	25.0		04/09/20 09:00			
on	445	ug/L ug/L	20.0		04/09/20 09:00			
ead	<5.0	ug/L	5.0		04/09/20 09:00			
lagnesium	4560	ug/L ug/L	200		04/09/20 09:00			
langanese	1770	ug/L ug/L	10.0		04/09/20 09:00			
ickel	<40.0	ug/L ug/L	40.0		04/09/20 09:00			
otassium	<5000	ug/L ug/L	5000		04/09/20 09:00			
elenium	<10.0	ug/L ug/L	10.0		04/09/20 09:00			
ilver	<10.0	ug/L ug/L	10.0		04/09/20 09:00			
odium	9350	•	5000		04/09/20 09:00			
	9350 <10.0	ug/L						
hallium anadium	<10.0 <50.0	ug/L	10.0 50.0		04/09/20 09:00 04/09/20 09:00			
nc	<30.0 <20.0	ug/L ug/L	20.0		04/09/20 09:00			
inc	₹20.0	ug/L	20.0		04/09/20 09:00	04/13/20 13.3	9 7440-00-0	
470 Mercury	Analytical Met	hod: EPA 74	70A Preparation N	lethod: El	PA 7470A			
	Pace Analytic	al Services -	Melville					
lercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:3	9 7439-97-6	
260C Volatile Organics	Analytical Met	hod: EPA 82	60C/5030C					
•	Pace Analytic							
cetone	<5.0	ug/L	5.0	1		04/09/20 17:1	5 67-64-1	IC
crylonitrile	<5.0	ug/L	5.0			04/09/20 17:1		
enzene	<5.0	ug/L	5.0			04/09/20 17:1		
romochloromethane	<5.0	ug/L	5.0			04/09/20 17:1	5 74-97-5	
romodichloromethane	<5.0	ug/L	5.0			04/09/20 17:1		
romoform	<5.0	ug/L	5.0			04/09/20 17:1		
romomethane	<5.0	ug/L	5.0			04/09/20 17:1		
-Butanone (MEK)	<5.0	ug/L	5.0			04/09/20 17:1		
arbon disulfide	<5.0	ug/L	5.0			04/09/20 17:1		
arbon tetrachloride	<5.0	ug/L	5.0			04/09/20 17:1		
	<5.0	ug/L	5.0			04/09/20 17:1		
	~5.0	-				04/09/20 17:1		
chlorobenzene	∠ 5 ∩	ua/l	יר					
Chlorobenzene Chloroethane	<5.0 <5.0	ug/L ug/l	5.0 5.0					
Chlorobenzene Chloroethane Chloroform Chloromethane	<5.0 <5.0 <5.0	ug/L ug/L ug/L	5.0 5.0 5.0	1		04/09/20 17:1 04/09/20 17:1	5 67-66-3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 12A	Lab ID: 701	26875015	Collected: 04/03/2	0 07:15	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
_	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 124-48-1	L1
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 17:1		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 17:1		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 17:1		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 75-35-4	
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 156-59-2	
ans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 78-87-5	
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 10061-01-5	L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 10061-02-6	
thylbenzene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 100-41-4	
-Hexanone	<5.0	ug/L	5.0	1		04/09/20 17:1	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 74-88-4	CL
lethylene Chloride	<5.0	ug/L	5.0	1		04/09/20 17:1	5 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 17:1	5 108-10-1	
Styrene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 127-18-4	
oluene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		04/09/20 17:1	5 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 17:1	5 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 17:1	5 108-05-4	
inyl chloride/	<5.0	ug/L	5.0	1		04/09/20 17:1	5 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		04/09/20 17:1	5 1330-20-7	
Surrogates								
,2-Dichloroethane-d4 (S)	99	%	68-153	1			5 17060-07-0	
-Bromofluorobenzene (S)	99	%	79-124	1		04/09/20 17:1	5 460-00-4	
oluene-d8 (S)	98	%	69-124	1		04/09/20 17:1	5 2037-26-5	
TC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
TC Search	No TICs Found			1		04/10/20 15:1	8	
120B W Apparent Color	Analytical Met Pace Analytica							
apparent Color	<5.0	units	5.0	1		04/04/20 10:0	5	
.pps. 5111 00101	٦٥.٥	ariito	0.0	•		5 1/5 1/20 10.0	~	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 12A	Lab ID: 701	26875015	Collected: 04/	/03/20	07:15	Received: 04	1/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Lin	nit	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Met								
Alkalinity, Total as CaCO3	56.1	mg/L		1.0	1		04/13/20 11:33		
2340C Hardness, Total	Analytical Met Pace Analytica								
Tot Hardness asCaCO3 (SM 2340B	53.3	mg/L	:	5.0	1		04/20/20 15:02		
2540C Total Dissolved Solids	Analytical Met Pace Analytica								
Total Dissolved Solids	100	mg/L	1	0.0	1		04/10/20 09:52		
Chromium, Hexavalent	Analytical Met Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L	0.0	020	1		04/04/20 09:30	18540-29-9	H1
410.4 COD	Analytical Met Pace Analytica		10.4 Preparation Melville	Metho	od: EPA	410.4			
Chemical Oxygen Demand	18.8	mg/L	1	0.0	1	04/08/20 10:50	04/08/20 13:08		
5210B BOD, 5 day	Analytical Met Pace Analytica		5210B Preparati Melville	ion Me	thod: S	M22 5210B			
BOD, 5 day	<2.0	mg/L	:	2.0	1	04/04/20 06:52	04/09/20 11:14		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica								
Bromide	<0.50	mg/L		.50	1		04/16/20 01:46		
Chloride Sulfate	10.8 15.6	mg/L mg/L		2.0 5.0	1 1		04/16/20 01:46 04/16/20 01:46		
351.2 Total Kjeldahl Nitrogen		hod: EPA 35	51.2 Preparation			351.2			
Nitrogen, Kjeldahl, Total	1.7	mg/L	0	.10	1	04/15/20 08:39	04/16/20 13:15	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Met								
Nitrate as N	0.83	mg/L)50	1		04/04/20 01:51		
Nitrate-Nitrite (as N)	0.83	mg/L)50	1		04/04/20 01:51	1121-31-9	
353.2 Nitrogen, NO2	Analytical Met Pace Analytica								
Nitrite as N	<0.050	mg/L	0.0)50	1		04/04/20 00:18	14797-65-0	
Phenolics, Total Recoverable	Analytical Met Pace Analytica		20.1 Preparation Melville	Metho	od: EPA	420.1			

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 12A	Lab ID: 7012	26875015	Collected: 04/	03/20	07:15	Received: 04	/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Lin	nit _	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	1.0	mg/L	0	.10	1		04/15/20 17:03	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		•	e Pre	paratio	n Method: EPA 9	0010C		
Cyanide	<10.0	ug/L	1	0.0	1	04/09/20 09:35	04/09/20 14:23	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		04/13/20 20:22	7440-44-0	
Total Organic Carbon	<1.0	mg/L		1.0	1		04/13/20 20:22	7440-44-0	
Total Organic Carbon	<1.0	mg/L		1.0	1		04/13/20 20:22	7440-44-0	
Total Organic Carbon	<1.0	mg/L		1.0	1		04/13/20 20:22	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L		1.0	1		04/13/20 20:22	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Lab ID: 7	70126875016	Collected:	04/03/2	20 07:35	Received: 04	1/03/20 16:48	Matrix: Water	
Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical N	Method: EPA 60	10C Prepara	ation Me	ethod: EF	PA 3005A			
Pace Analy	tical Services -	Melville						
<200	ua/l		200	1	04/09/20 09:00	04/13/20 16:0	4 7429-90-5	
	J							
	J							
	_							
	J							
	J							
	J							
	J							
	- 3							
	J							
	J							
	J							
	J							
	J							
	J							
	J							
	J							
	J							
	_							
	J							
	J							
	J							
	J		20.0	1				
	ŭ							
•		•	ation Me	thod: EF	PA 7470A			
Pace Analy	tical Services -	Melville						
<0.20	ug/L		0.20	1	04/07/20 21:22	04/08/20 05:4	1 7439-97-6	
Analytical N	/lethod: EPA 82	60C/5030C						
-								
<5.0	ug/l		5.0	1		04/09/20 17:3	5 67-64-1	IC
	J							.0
	J							
	•		5.0	1		04/09/20 17:3		
<5 O	Ha/l					0-7/00/20 17.00	7 7 57 0	
<5.0 <5.0	J			-		04/09/20 17:34	5 75-27-4	
<5.0	ug/L		5.0	1		04/09/20 17:3		
<5.0 <5.0	ug/L ug/L		5.0 5.0	1		04/09/20 17:3	5 75-25-2	
<5.0 <5.0 <5.0	ug/L ug/L ug/L		5.0 5.0 5.0	1 1 1		04/09/20 17:39 04/09/20 17:39	5 75-25-2 5 74-83-9	
<5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0	1 1 1 1		04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3:	5 75-25-2 5 74-83-9 5 78-93-3	
<5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3:	5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0	
<5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3:	5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0 5 56-23-5	
<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3:	5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0 5 56-23-5 5 108-90-7	
<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		04/09/20 17:33 04/09/20 17:33 04/09/20 17:33 04/09/20 17:33 04/09/20 17:33 04/09/20 17:33	5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0 5 56-23-5 6 108-90-7 5 75-00-3	
<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3: 04/09/20 17:3:	5 75-25-2 5 74-83-9 5 78-93-3 5 75-15-0 5 56-23-5 5 108-90-7 6 75-00-3 6 67-66-3	
	Analytical Manalytical Manalyt	Analytical Method: EPA 60 Pace Analytical Services - <200	Results	Results	Results	Results Units Report Limit DF Prepared Analytical Method: EPA 6010C Preparation Method: EPA 3005A Pace Analytical Services - Melville <200	Results	Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 6010C Preparation Method: EPA 3005A Pace Analytical Services - Melville <200

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 12B	Lab ID: 701	26875016	Collected: 04/03/2	0 07:35	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metl	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 17:3	5 124-48-1	L1
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 17:3		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 17:3		
trans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:3		
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:3		
trans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 17:3		
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1			5 10061-01-5	L1
trans-1,3-Dichloropropene	<5.0	ug/L	5.0	1			5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		04/09/20 17:3		
2-Hexanone	<5.0	ug/L	5.0	1		04/09/20 17:3		
odomethane	<5.0	ug/L	5.0	1		04/09/20 17:3		CL
Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 17:3		~-
4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 17:3		
Styrene	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
Tetrachloroethene	<5.0	ug/L	5.0	1		04/09/20 17:3		
Toluene	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:3		
Trichlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 17:3		
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 17:3		
Vinyl acetate	<5.0	ug/L	5.0	1		04/09/20 17:3		
Vinyl dectate Vinyl chloride	<5.0	ug/L	5.0	1		04/09/20 17:3		
Xylene (Total)	<5.0	ug/L	5.0	1		04/09/20 17:3		
Surrogates		~g/ _	0.0	-		0 1/00/20 1110		
1,2-Dichloroethane-d4 (S)	100	%	68-153	1		04/09/20 17:3	5 17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124	1		04/09/20 17:3		
Toluene-d8 (S)	99	%	69-124	1		04/09/20 17:3		
TIC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
TIC Search	No TICs Found			1		04/10/20 15:1	8	
2120B W Apparent Color	Analytical Metl	hod: SM22	2120B					
• •	Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/04/20 10:0	5	
pH	6.5	Std. Units		1		04/04/20 10:0		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 12B	Lab ID: 701	26875016	Collected: 04	1/03/20	07:35	Received: 04	1/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Lii	mit _	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Meth Pace Analytica								
Alkalinity, Total as CaCO3	49.8	mg/L		1.0	1		04/13/20 11:40		
2340C Hardness, Total	Analytical Meth Pace Analytica								
Tot Hardness asCaCO3 (SM 2340B	53.3	mg/L		5.0	1		04/20/20 15:02		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica								
Total Dissolved Solids	112	mg/L	1	10.0	1		04/10/20 09:59		
Chromium, Hexavalent	Analytical Meth Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L	0.	020	1		04/04/20 09:30	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Melville	n Meth	od: EPA	410.4			
Chemical Oxygen Demand	12.5	mg/L	1	10.0	1	04/08/20 10:50	04/08/20 13:08		
5210B BOD, 5 day	Analytical Meth Pace Analytica		5210B Preparat Melville	tion M	ethod: S	M22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/04/20 06:54	04/09/20 11:16		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Bromide	<0.50	mg/L	(0.50	1		04/16/20 02:03	24959-67-9	
Chloride Sulfate	13.8 20.8	mg/L mg/L		2.0 5.0	1 1		04/16/20 02:03 04/16/20 02:03		
351.2 Total Kjeldahl Nitrogen		nod: EPA 35	51.2 Preparation Melville			351.2			
Nitrogen, Kjeldahl, Total	2.2	mg/L	(0.10	1	04/15/20 08:39	04/16/20 13:15	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica								
Nitrate as N	1.7	mg/L	0.	050	1		04/04/20 01:52	14797-55-8	
Nitrate-Nitrite (as N)	1.7	mg/L	0.	050	1		04/04/20 01:52	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L	0.	050	1		04/04/20 00:19	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica		20.1 Preparation Melville	n Meth	od: EPA	420.1			
	<5.0	ug/L		5.0		04/16/20 08:36			

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 12B	Lab ID: 7012	26875016	Collected: 04/03/2	0 07:35	Received: 04	1/03/20 16:48 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	l Services -	Melville					
Nitrogen, Ammonia	1.8	mg/L	0.10	1		04/15/20 17:07	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 14:23	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	l Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 20:33	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 20:33	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 20:33	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 20:33	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 20:33	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Results	Units	D						
	Office	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Meth	hod: EPA 60	010C Prepara	ation Me	thod: EF	PA 3005A			
Pace Analytica	al Services -	Melville						
~200	ua/l		200	1	04/09/20 09:00	04/13/20 16:10	7/29-90-5	
	_							
	•							
	•							
	•							
	•							
	_							
	•							
	•							
	•							
	•							
	_							
	•							
	•							
	•							
	•							
	_							
	•							
	•							
	•							
<5000	ug/L		5000	1	04/09/20 09:00	04/13/20 16:10	7440-23-5	
<10.0	ug/L		10.0	1	04/09/20 09:00	04/13/20 16:10	7440-28-0	
<50.0	ug/L		50.0	1	04/09/20 09:00	04/13/20 16:10	7440-62-2	
<20.0	ug/L		20.0	1	04/09/20 09:00	04/13/20 16:10	7440-66-6	
Analytical Meth	hod: EPA 74	170A Prepara	tion Met	thod: EF	PA 7470A			
Pace Analytica	al Services -	Melville						
<0.20	ug/L		0.20	1	04/07/20 21:22	04/08/20 05:42	7439-97-6	
Analytical Meth	hod: EPA 82	260C/5030C						
Pace Analytica	l Services -	Melville						
<5.0	ug/L		5.0	1		04/09/20 13:36	67-64-1	IC
<5.0	_		5.0	1		04/09/20 13:36	107-13-1	
<5.0			5.0	1		04/09/20 13:36	71-43-2	
<5.0	•		5.0	1		04/09/20 13:36	74-97-5	
	Ū		5.0	1				
	_							
	-							
	•							
	•							
	•							
	•							
	_							
	•							
<5.0 <5.0	ug/L ug/L		5.0 5.0	1		04/09/20 13:36		
	<200 <60.0 <10.0 <200 <5.0 <50.0 <2.5 <200 <10.0 <50.0 <25.0 <20.0 <5.0 <20.0 <10.0 <40.0 <5000 <10.0 <10.0 <5000 <10.0 <50.0 <20.0 Analytical Meth Pace Analytical Meth Pace Analytical Section Secti	<pre> <200</pre>	<pre><60.0</pre>	<200	<200			<200 ug/L 200 1 04/09/20 09:00 04/13/20 16:10 7429-90-5 <60.0 ug/L 60.0 1 04/09/20 09:00 04/13/20 16:10 7440-38-0 <200 ug/L 200 1 04/09/20 09:00 04/13/20 16:10 7440-38-2 <200 ug/L 5.0 1 04/09/20 09:00 04/13/20 16:10 7440-41-7 <50.0 ug/L 5.0 1 04/09/20 09:00 04/13/20 16:10 7440-41-7 <50.0 ug/L 2.5 1 04/09/20 09:00 04/13/20 16:10 7440-43-9 <200 ug/L 2.0 1 04/09/20 09:00 04/13/20 16:10 7440-70-2 <10.0 ug/L 5.0 1 04/09/20 09:00 04/13/20 16:10 7440-70-2 <10.0 ug/L 5.0 1 04/09/20 09:00 04/13/20 16:10 7440-70-2 <20.0 ug/L 20.0 1 04/09/20 09:00 04/13/20 16:10 7440-60-8 <5.0 ug/L 5.0 1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: EB001	Lab ID: 701	26875017	Collected: 04/03/2	0 10:35	Received:	04/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 13:36	6 124-48-1	L1
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 13:36		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 13:36		
.2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:36		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 13:36		
ans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 13:36	6 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:36		
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 13:36		
,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 13:36		
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 13:36		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 13:36		
,2-Dichloropropane	<5.0	ug/L	5.0	1		04/09/20 13:36		
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 13:36		L1
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		04/09/20 13:36		
ithylbenzene	<5.0	ug/L	5.0	1		04/09/20 13:36		
-Hexanone	<5.0	ug/L ug/L	5.0	1		04/09/20 13:36		
odomethane	<5.0	ug/L ug/L	5.0	1		04/09/20 13:36		CL
Methylene Chloride	<5.0	ug/L ug/L	5.0	1		04/09/20 13:36		OL
-Methyl-2-pentanone (MIBK)	<5.0	ug/L ug/L	5.0	1		04/09/20 13:36		
Styrene	<5.0	•	5.0	1		04/09/20 13:36		
,1,1,2-Tetrachloroethane	<5.0 <5.0	ug/L	5.0	1		04/09/20 13:36		
,1,2,2-Tetrachioroethane	<5.0 <5.0	ug/L	5.0	1		04/09/20 13:36		
etrachloroethene	<5.0	ug/L ug/L	5.0	1		04/09/20 13:36		
oluene	<5.0 <5.0	•	5.0	1		04/09/20 13:36		
	<5.0 <5.0	ug/L	5.0	1		04/09/20 13:36		
,1,1-Trichloroethane ,1,2-Trichloroethane	<5.0 <5.0	ug/L	5.0	1		04/09/20 13:36		
richloroethene	<5.0 <5.0	ug/L	5.0 5.0	1				
		ug/L		1		04/09/20 13:36		
richlorofluoromethane	<5.0	ug/L	5.0			04/09/20 13:36		
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 13:36		
/inyl acetate	<5.0	ug/L	5.0	1		04/09/20 13:36		
(inyl chloride	<5.0	ug/L	5.0	1		04/09/20 13:36		
(ylene (Total)	<5.0	ug/L	5.0	1		04/09/20 13:36	1330-20-7	
Surrogates ,2-Dichloroethane-d4 (S)	100	%	68-153	1		04/09/20 13:36	3 17060 07 0	
-Bromofluorobenzene (S)		%	79-124	1		04/09/20 13:36		
oluene-d8 (S)	99 98	% %	79-124 69-124	1		04/09/20 13:36		
				•		0 1,00,20 10.00	200. 200	
TC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
TC Search	No TICs Found			1		04/10/20 15:18	3	
120B W Apparent Color	Analytical Met Pace Analytica							
	<5.0	units	5.0	1		04/04/20 10:05	5	
pparent Color	<n.u< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></n.u<>							

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: EB001	Lab ID: 7012	26875017	Collected:	04/03/2	20 10:35	Received: 04	4/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
2320B Alkalinity	Analytical Meth								
Alkalinity, Total as CaCO3	<1.0	mg/L		1.0	1		04/13/20 11:44		
2340C Hardness, Total	Analytical Meth Pace Analytica								
Tot Hardness asCaCO3 (SM 2340B	<5.0	mg/L		5.0	1		04/20/20 15:02		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica								
Total Dissolved Solids	26.0	mg/L		10.0	1		04/10/20 09:59)	
Chromium, Hexavalent	Analytical Meth Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		04/04/20 09:30	18540-29-9	
410.4 COD	Analytical Meth Pace Analytica			ion Met	hod: EPA	\ 410.4			
Chemical Oxygen Demand	<10.0	mg/L		10.0	1	04/08/20 10:50	04/08/20 13:08	1	
5210B BOD, 5 day	Analytical Meth Pace Analytica			ration M	Method: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/04/20 06:56	04/09/20 11:19		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		04/16/20 02:20	24959-67-9	
Chloride Sulfate	<2.0 <5.0	mg/L mg/L		2.0 5.0	1 1		04/16/20 02:20 04/16/20 02:20		
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3				A 351.2	0 11 10 02120	000 . 0 0	
Nitrogen, Kjeldahl, Total	0.35	mg/L		0.10	1	04/15/20 08:39	04/16/20 13:16	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica								
Nitrate as N Nitrate-Nitrite (as N)	<0.050 <0.050	mg/L mg/L		0.050 0.050	1 1		04/04/20 01:53 04/04/20 01:53		
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L		0.050	1		04/04/20 00:20	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica			ion Met	hod: EP/	\ 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	04/16/20 08:36	04/16/20 15:58	1	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: EB001	Lab ID: 7012	26875017	Collected: 04/03/2	0 10:35	Received: 04	1/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		04/15/20 17:08	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		n14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 14:23	57-12-5	
9060A TOC as NPOC	Analytical Meth							
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 21:08	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 21:08	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 21:08	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 21:08	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		04/13/20 21:08	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 11A	Lab ID: 701	26875018	Collected: 04/03/2	20 08:41	Received: 04	1/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Aluminum	<200	ug/L	200	1	04/09/20 09:00	04/13/20 16:2	6 7429-90-5	
Antimony	<60.0	ug/L	60.0	1	04/09/20 09:00			
Arsenic	<10.0	ug/L	10.0	1	04/09/20 09:00			
Barium	<200	ug/L	200	1	04/09/20 09:00			
Beryllium	<5.0	ug/L	5.0	1	04/09/20 09:00			
Boron	<50.0	ug/L	50.0	1	04/09/20 09:00	04/13/20 16:2	6 7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	04/09/20 09:00			
Calcium	32800	ug/L	200	1	04/09/20 09:00			
Chromium	<10.0	ug/L	10.0	1	04/09/20 09:00			
Cobalt	<50.0	ug/L	50.0	1	04/09/20 09:00			
Copper	<25.0	ug/L	25.0	1	04/09/20 09:00			
ron	17200	ug/L	20.0	1	04/09/20 09:00			
Lead	<5.0	ug/L	5.0	1	04/09/20 09:00			
Magnesium	10400	ug/L	200	1	04/09/20 09:00			
Vanganese	1660	ug/L	10.0	1	04/09/20 09:00			
Nickel	<40.0	ug/L	40.0	1	04/09/20 09:00			
Potassium	<5000	ug/L	5000	1	04/09/20 09:00			
Selenium	<10.0	ug/L	10.0	1	04/09/20 09:00			
Silver	<10.0	ug/L	10.0	1	04/09/20 09:00			
Sodium	9690	ug/L	5000	1	04/09/20 09:00			
Thallium	<10.0	ug/L	10.0	1	04/09/20 09:00			
Vanadium	<50.0	ug/L	50.0	1	04/09/20 09:00			
Zinc	<20.0	ug/L	20.0	1	04/09/20 09:00			
		•		-				
6010 MET ICP, Dissolved	Analytical Meth							
	Pace Analytica	l Services -	Melville					
Aluminum, Dissolved	<200	ug/L	200	1		04/20/20 17:2	5 7429-90-5	
Antimony, Dissolved	<60.0	ug/L	60.0	1		04/20/20 17:2	5 7440-36-0	
Arsenic, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:2	5 7440-38-2	
Barium, Dissolved	<200	ug/L	200	1		04/20/20 17:2	5 7440-39-3	
Beryllium, Dissolved	<5.0	ug/L	5.0	1		04/20/20 17:2	5 7440-41-7	
Boron, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:2	5 7440-42-8	
Cadmium, Dissolved	<2.5	ug/L	2.5	1		04/20/20 17:2	5 7440-43-9	
Calcium, Dissolved	33600	ug/L	200	1		04/20/20 17:2	5 7440-70-2	
Chromium, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:2	5 7440-47-3	
Cobalt, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:2	5 7440-48-4	
Copper, Dissolved	<25.0	ug/L	25.0	1		04/20/20 17:2	5 7440-50-8	
ron, Dissolved	55.5	ug/L	20.0	1		04/20/20 17:2	5 7439-89-6	
Lead, Dissolved	<5.0	ug/L	5.0	1		04/20/20 17:2	5 7439-92-1	
Magnesium, Dissolved	11300	ug/L	200	1		04/20/20 17:2		
Manganese, Dissolved	1710	ug/L	10.0	1		04/20/20 17:2	5 7439-96-5	
Nickel, Dissolved	<40.0	ug/L	40.0	1		04/20/20 17:2		
Potassium, Dissolved	<5000	ug/L	5000	1		04/20/20 17:2	5 7440-09-7	
Selenium, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:2		
Silver, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:2		
Sodium, Dissolved	9720	ug/L	5000	1		04/20/20 17:2		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 11A	Lab ID: 7012	26875018	Collected: 04/03/	20 08:41	Received: 04	4/03/20 16:48	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	110C					
	Pace Analytica	l Services -	Melville					
Thallium, Dissolved	<10.0	ug/L	10.0	1		04/20/20 17:2	5 7440-28-0	
Vanadium, Dissolved	<50.0	ug/L	50.0	1		04/20/20 17:2		
Zinc, Dissolved	<20.0	ug/L	20.0	1		04/20/20 17:2		
	42010	ug/ L	20.0	•		0 1/20/20 11:2	0 7110 00 0	
7470 Mercury	Analytical Meth	od: EPA 74	70A Preparation M	ethod: El	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	04/07/20 21:22	04/08/20 05:4	4 7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	70A Preparation M	ethod: El	PA 7470A			
-	Pace Analytica							
Marcury Dissolved	<0.20		0.20	1	04/14/20 21:12	04/15/20 02:5	3 7/30 07 6	
Mercury, Dissolved	<0.20	ug/L	0.20	1	04/14/20 Z1.12	04/10/20 03:3	J 14J8-81-0	
8260C Volatile Organics	Analytical Meth	od: EPA 82	60C/5030C					
	Pace Analytica	l Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		04/09/20 17:5	6 67-64-1	IC
Acrylonitrile	<5.0	ug/L	5.0	1		04/09/20 17:5		.0
Benzene	<5.0	ug/L	5.0	1		04/09/20 17:5		
Bromochloromethane	<5.0	ug/L	5.0	1		04/09/20 17:5		
Bromodichloromethane	<5.0	ug/L	5.0	1		04/09/20 17:5		
Bromoform	<5.0	ug/L	5.0	1		04/09/20 17:5		
Bromomethane	<5.0	ug/L	5.0	1		04/09/20 17:5		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		04/09/20 17:5	6 78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		04/09/20 17:5	6 75-15-0	
Carbon tetrachloride	<5.0	ug/L	5.0	1		04/09/20 17:5	6 56-23-5	
Chlorobenzene	<5.0	ug/L	5.0	1		04/09/20 17:5	6 108-90-7	
Chloroethane	<5.0	ug/L	5.0	1		04/09/20 17:5	6 75-00-3	
Chloroform	<5.0	ug/L	5.0	1		04/09/20 17:5	6 67-66-3	
Chloromethane	<5.0	ug/L	5.0	1		04/09/20 17:5	6 74-87-3	
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		04/09/20 17:5	6 96-12-8	
Dibromochloromethane	<5.0	ug/L	5.0	1		04/09/20 17:5		L1
I,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		04/09/20 17:5		
Dibromomethane	<5.0	ug/L	5.0	1		04/09/20 17:5		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 17:5		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		04/09/20 17:5		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		04/09/20 17:5		
,1-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:5		
,2-Dichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:5		
I,1-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:5		
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:5		
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:5		
1,2-Dichloropropane	<5.0 <5.0	ug/L	5.0 5.0	1 1		04/09/20 17:5		1.1
sis-1,3-Dichloropropene	<5.0 <5.0	ug/L	5.0	1			6 10061-01-5 6 10061-02-6	L1
rans-1,3-Dichloropropene Ethylbenzene	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 17:5		
ethylbenzene 2-Hexanone	<5.0 <5.0	ug/L ug/L	5.0	1		04/09/20 17:5		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Analytical Method: EPA 8260C/6030C Pace Analytical Services - Melville odomethane	Sample: 11A	Lab ID: 70	126875018	Collected: 04/03/2	20 08:41	Received: 04/	/03/20 16:48 N	Matrix: Water	
Pace Analytical Services - Melville	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Additional Color Additional Color Additional Color Additional Color	8260C Volatile Organics	Analytical Me	ethod: EPA 82	260C/5030C					
Methylene Chloride		Pace Analyti	cal Services -	Melville					
### Alefthyl-2-pentanone (MIBK) \$ 50	lodomethane	<5.0	ug/L	5.0	1		04/09/20 17:56	74-88-4	CL
Styrene	Methylene Chloride	<5.0	ug/L	5.0	1		04/09/20 17:56	75-09-2	
1,1,1,2-Tetrachloroethane	4-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		04/09/20 17:56	108-10-1	
1,1,2,2-Tetrachloroethane	Styrene	<5.0	ug/L	5.0	1		04/09/20 17:56	100-42-5	
Terrachloroethene	1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 17:56	630-20-6	
Tolluene	1,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		04/09/20 17:56	79-34-5	
1,1,1-Trichloroethane	Tetrachloroethene	<5.0	ug/L	5.0	1		04/09/20 17:56	127-18-4	
1.1.2-Trichloroethane	Toluene	<5.0	ug/L	5.0	1		04/09/20 17:56	108-88-3	
Trichloroethene	1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		04/09/20 17:56	71-55-6	
Trichlorofluoromethane	1,1,2-Trichloroethane	<5.0		5.0	1		04/09/20 17:56	79-00-5	
1,2,3-Trichloropropane	Trichloroethene	<5.0	ug/L	5.0	1		04/09/20 17:56	79-01-6	
Vinyl acetate	Trichlorofluoromethane	<5.0	ug/L	5.0	1		04/09/20 17:56	75-69-4	
Vinyl chloride <5.0 ug/L 5.0 1 04/09/20 17:56 75-01-4 Kylene (Total) <5.0 ug/L 5.0 1 04/09/20 17:56 75-01-4 Surrogates 3 04/09/20 17:56 1330-20-7 330-20-7 Surrogates 99 % 68-153 1 04/09/20 17:56 17060-07-0 4-Bromofluorobenzene (S) 99 % 69-124 1 04/09/20 17:56 460-00-4 Followed-048 (S) 98 % 69-124 1 04/09/20 17:56 460-00-4 TIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville 1 04/10/20 15:18 04/10/20 15:18 Found Analytical Method: SM22 2120B Pace Analytical Services - Melville 1 04/04/20 10:05 04/04/20 10:05 SMD 40.0 units 5.0 1 04/04/20 10:05 04/04/20 10:05 SMD Analytical Method: SM22 2320B Pace Analytical Services - Melville 1 04/04/20 10:05 04/04/20 10:05 Alkalinity, Total as CaCO3 145 mg/L	1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		04/09/20 17:56	96-18-4	
Sylene (Total) Strongates Surrogates	Vinyl acetate	<5.0	ug/L	5.0	1		04/09/20 17:56	108-05-4	
1,2-Dichloroethane-d4 (S)	Vinyl chloride	<5.0	ug/L	5.0	1		04/09/20 17:56	75-01-4	
1,2-Dichloroethane-d4 (S) 4-Bromofluorobenzene (S) 99 % 79-124 1 04/09/20 17:56 17060-07-0 1-Bromofluorobenzene (S) 98 % 69-124 1 04/09/20 17:56 460-00-4 170luene-d8 (S) 98 % 69-124 1 04/09/20 17:56 2037-26-5 171C MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville 1 04/10/20 15:18 1 04/10/20 15:18 1 04/10/20 15:18 1 04/10/20 15:18 1 04/04/20 10:05 1 04/04/20 10:05	Xylene (Total)	<5.0	ug/L	5.0	1		04/09/20 17:56	1330-20-7	
### Paramofluorobenzene (S) ### 10	Surrogates								
Toluene-d8 (S) 98 % 69-124 1 04/09/20 17:56 2037-26-5 FIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville FIC Search No TICs Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Analytical Services - Melville Apparent Color Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Analytical Method: SM22 2320B Pace Analytical Services - Melville Analytical Services - Melville Alkalinity Analytical Services - Melville Alkalinity, Total as CaCO3 145 mg/L Analytical Services - Melville Fot Hardness, Total Analytical Services - Melville Fot Hardness asCaCO3 (SM 2340B 150 mg/L 5.0 1 04/09/20 17:56 2037-26-5 1 04/10/20 15:18 04/10/20 15:18 04/10/20 15:18 04/10/20 10:05 04/04/20					1				
Analytical Method: EPA 8260 Pace Analytical Services - Melville TIC Search No TICs Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Apparent Col	` ,			79-124	1		04/09/20 17:56	460-00-4	
Pace Analytical Services - Melville No TICs Found 1 04/10/20 15:18 2120B W Apparent Color Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Apparent Co	Toluene-d8 (S)	98	%	69-124	1		04/09/20 17:56	2037-26-5	
No TICs	TIC MSV Water	Analytical Me	ethod: EPA 82	260					
Found 2120B W Apparent Color		Pace Analyti	cal Services -	Melville					
Pace Analytical Services - Melville Apparent Color 40.0 units 5.0 1 04/04/20 10:05 6.2 Std. Units 0.10 1 04/04/20 10:05 2320B Alkalinity Analytical Method: SM22 2320B Pace Analytical Services - Melville Alkalinity, Total as CaCO3 145 mg/L 1.0 1 04/13/20 11:54 2340C Hardness, Total Analytical Method: SM22 2340C Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B 150 mg/L 5.0 1 04/20/20 15:02 Analytical Method: SM22 2540C Pace Analytical Services - Melville Analytical Method: SM22 2540C Pace Analytical Services - Melville	TIC Search				1		04/10/20 15:18		
Analytical Method: SM22 2320B Pace Analytical Services - Melville Alkalinity, Total as CaCO3 145 Analytical Method: SM22 2340C Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B Analytical Method: SM22 2340C Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B Analytical Method: SM22 2540C Pace Analytical Services - Melville Analytical Method: SM22 2540C Pace Analytical Services - Melville	2120B W Apparent Color	•							
Analytical Method: SM22 2320B Pace Analytical Services - Melville Alkalinity, Total as CaCO3 145 Analytical Method: SM22 2340C Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B Analytical Method: SM22 2340C Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B Analytical Method: SM22 2540C Pace Analytical Services - Melville Analytical Method: SM22 2540C Pace Analytical Services - Melville	Apparent Color	40.0	units	5.0	1		04/04/20 10:05		
Pace Analytical Services - Melville Alkalinity, Total as CaCO3 145 mg/L 1.0 1 04/13/20 11:54 2340C Hardness, Total Analytical Method: SM22 2340C Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B 150 mg/L 5.0 1 04/20/20 15:02 2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville	рН								
Analytical Method: SM22 2340C Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B 150 mg/L 5.0 1 04/20/20 15:02 Analytical Method: SM22 2540C Pace Analytical Services - Melville	2320B Alkalinity	-							
Pace Analytical Services - Melville Tot Hardness asCaCO3 (SM 2340B 150 mg/L 5.0 1 04/20/20 15:02 2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville	Alkalinity, Total as CaCO3	145	mg/L	1.0	1		04/13/20 11:54		
2540C Total Dissolved Solids Analytical Method: SM22 2540C Pace Analytical Services - Melville	2340C Hardness, Total	-							
Pace Analytical Services - Melville	Tot Hardness asCaCO3 (SM 2340B	150	mg/L	5.0	1		04/20/20 15:02		
·	2540C Total Dissolved Solids								
	Total Dissolved Solids	·			1		04/10/20 09:59		

Project: NORTH SEA LANDFILL BASELINE

Date: 04/22/2020 07:57 AM

Sample: 11A	Lab ID: 7012	26875018	Collected: 04/03/2	0 08:41	Received: 04	/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Chromium, Hexavalent	Analytical Meth Pace Analytical							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/04/20 09:30	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytical		0.4 Preparation Met Melville	hod: EF	PA 410.4			
Chemical Oxygen Demand	18.8	mg/L	10.0	1	04/08/20 10:50	04/08/20 13:08		
5210B BOD, 5 day	Analytical Meth Pace Analytical		5210B Preparation M Melville	lethod:	SM22 5210B			
BOD, 5 day	<4.0	mg/L	4.0	2	04/04/20 06:57	04/09/20 11:21		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical							
Bromide	<0.50	mg/L	0.50	1		04/16/20 02:36		
Chloride Sulfate	11.4 10.8	mg/L mg/L	2.0 5.0	1 1		04/16/20 02:36 04/16/20 02:36		
351.2 Total Kjeldahl Nitrogen		od: EPA 35	1.2 Preparation Met		PA 351.2	0 1/ 10/20 02:00	11000 70 0	
Nitrogen, Kjeldahl, Total	0.74	mg/L	0.10	1	04/15/20 08:39	04/16/20 13:17	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytical							
Nitrate as N Nitrate-Nitrite (as N)	0.075 0.075	mg/L mg/L	0.050 0.050	1 1		04/04/20 01:54 04/04/20 01:54		
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical							
Nitrite as N	<0.050	mg/L	0.050	1		04/04/20 00:24	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytical		0.1 Preparation Met Melville	hod: EF	PA 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	04/16/20 08:36	04/16/20 16:00		
4500 Ammonia Water	Analytical Meth Pace Analytical							
Nitrogen, Ammonia	0.32	mg/L	0.10	1		04/15/20 17:09	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	010C		
Cyanide	<10.0	ug/L	10.0	1	04/09/20 09:35	04/09/20 14:23	57-12-5	
9060A TOC as NPOC	Analytical Meth Pace Analytical							

(631)694-3040

ANALYTICAL RESULTS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Sample: 11A	Lab ID: 70	126875018	Collected: 04/03/2	20 08:41	Received: 04	4/03/20 16:48 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
9060A TOC as NPOC	•	ethod: EPA 906						
	•	cal Services - I						
Total Organic Carbon	1.8	mg/L	1.0	1		04/13/20 21:20	7440-44-0	
Total Organic Carbon	1.9	mg/L	1.0	1		04/13/20 21:20	7440-44-0	
Total Organic Carbon	1.8	mg/L	1.0	1		04/13/20 21:20	7440-44-0	
Mean Total Organic Carbon	1.8	mg/L	1.0	1		04/13/20 21:20	7440-44-0	

QUALITY CONTROL DATA

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

QC Batch: 157565 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875006, 70126875014, 70126875018

METHOD BLANK: 759324 Matrix: Water
Associated Lab Samples: 70126875004, 70126875006, 70126875014, 70126875018

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum, Dissolved	ug/L	<200	200	04/20/20 17:06	
Antimony, Dissolved	ug/L	<60.0	60.0	04/20/20 17:06	
Arsenic, Dissolved	ug/L	<10.0	10.0	04/20/20 17:06	
Barium, Dissolved	ug/L	<200	200	04/20/20 17:06	
Beryllium, Dissolved	ug/L	<5.0	5.0	04/20/20 17:06	
Boron, Dissolved	ug/L	<50.0	50.0	04/20/20 17:06	
Cadmium, Dissolved	ug/L	<2.5	2.5	04/20/20 17:06	
Calcium, Dissolved	ug/L	<200	200	04/20/20 17:06	
Chromium, Dissolved	ug/L	<10.0	10.0	04/20/20 17:06	
Cobalt, Dissolved	ug/L	<50.0	50.0	04/20/20 17:06	
Copper, Dissolved	ug/L	<25.0	25.0	04/20/20 17:06	
Iron, Dissolved	ug/L	<20.0	20.0	04/20/20 17:06	
Lead, Dissolved	ug/L	<5.0	5.0	04/20/20 17:06	
Magnesium, Dissolved	ug/L	<200	200	04/20/20 17:06	
Manganese, Dissolved	ug/L	<10.0	10.0	04/20/20 17:06	
Nickel, Dissolved	ug/L	<40.0	40.0	04/20/20 17:06	
Potassium, Dissolved	ug/L	< 5000	5000	04/20/20 17:06	
Selenium, Dissolved	ug/L	<10.0	10.0	04/20/20 17:06	
Silver, Dissolved	ug/L	<10.0	10.0	04/20/20 17:06	
Sodium, Dissolved	ug/L	< 5000	5000	04/20/20 17:06	
Thallium, Dissolved	ug/L	<10.0	10.0	04/20/20 17:06	
Vanadium, Dissolved	ug/L	<50.0	50.0	04/20/20 17:06	
Zinc, Dissolved	ug/L	<20.0	20.0	04/20/20 17:06	

LABORATORY CONTROL SAMPLE:	759325					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	5000	4930	99	80-120	
Antimony, Dissolved	ug/L	750	753	100	80-120	
Arsenic, Dissolved	ug/L	500	499	100	80-120	
Barium, Dissolved	ug/L	500	502	100	80-120	
Beryllium, Dissolved	ug/L	50	50.0	100	80-120	
Boron, Dissolved	ug/L	2500	2490	100	80-120	
Cadmium, Dissolved	ug/L	50	50.5	101	80-120	
Calcium, Dissolved	ug/L	25000	25000	100	80-120	
Chromium, Dissolved	ug/L	250	248	99	80-120	
Cobalt, Dissolved	ug/L	500	506	101	80-120	
Copper, Dissolved	ug/L	250	252	101	80-120	
Iron, Dissolved	ug/L	2000	2010	101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

LABORATORY CONTROL SAMPLE:	759325					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Lead, Dissolved	ug/L	500	504	101	80-120	
Magnesium, Dissolved	ug/L	25000	24800	99	80-120	
Manganese, Dissolved	ug/L	250	248	99	80-120	
Nickel, Dissolved	ug/L	250	253	101	80-120	
Potassium, Dissolved	ug/L	50000	49900	100	80-120	
Selenium, Dissolved	ug/L	750	747	100	80-120	
Silver, Dissolved	ug/L	250	247	99	80-120	
Sodium, Dissolved	ug/L	50000	51200	102	80-120	
Thallium, Dissolved	ug/L	750	755	101	80-120	
Vanadium, Dissolved	ug/L	500	500	100	80-120	
Zinc, Dissolved	ug/L	1000	1010	101	80-120	

MATRIX SPIKE SAMPLE:	759328						
		70126875004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	<200	5000	4860	97	75-125	
Antimony, Dissolved	ug/L	<60.0	750	770	102	75-125	
Arsenic, Dissolved	ug/L	<10.0	500	490	98	75-125	
Barium, Dissolved	ug/L	<200	500	505	99	75-125	
Beryllium, Dissolved	ug/L	<5.0	50	48.4	97	75-125	
Boron, Dissolved	ug/L	<50.0	2500	2380	95	75-125	
Cadmium, Dissolved	ug/L	<2.5	50	49.7	99	75-125	
Calcium, Dissolved	ug/L	3750	25000	28500	99	75-125	
Chromium, Dissolved	ug/L	<10.0	250	250	98	75-125	
Cobalt, Dissolved	ug/L	<50.0	500	504	101	75-125	
Copper, Dissolved	ug/L	<25.0	250	249	99	75-125	
Iron, Dissolved	ug/L	<20.0	2000	2010	99	75-125	
Lead, Dissolved	ug/L	<5.0	500	494	99	75-125	
Magnesium, Dissolved	ug/L	1570	25000	26200	99	75-125	
Manganese, Dissolved	ug/L	<10.0	250	248	98	75-125	
Nickel, Dissolved	ug/L	<40.0	250	275	100	75-125	
Potassium, Dissolved	ug/L	<5000	50000	45900	90	75-125	
Selenium, Dissolved	ug/L	<10.0	750	739	98	75-125	
Silver, Dissolved	ug/L	<10.0	250	48.4	19	75-125 N	/ 11
Sodium, Dissolved	ug/L	8480	50000	57800	99	75-125	
Thallium, Dissolved	ug/L	<10.0	750	743	99	75-125	
Vanadium, Dissolved	ug/L	<50.0	500	494	99	75-125	
Zinc, Dissolved	ug/L	<20.0	1000	1010	101	75-125	

Date: 04/22/2020 07:57 AM

		70126875004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum, Dissolved	ug/L	<200	<200		
Antimony, Dissolved	ug/L	<60.0	<60.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

SAMPLE DUPLICATE: 759327					
		70126875004	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Arsenic, Dissolved	ug/L	<10.0	<10.0		
Barium, Dissolved	ug/L	<200	<200		
Beryllium, Dissolved	ug/L	<5.0	<5.0		
Boron, Dissolved	ug/L	<50.0	<50.0		
Cadmium, Dissolved	ug/L	<2.5	<2.5		
Calcium, Dissolved	ug/L	3750	3700	1	
Chromium, Dissolved	ug/L	<10.0	<10.0		
Cobalt, Dissolved	ug/L	<50.0	<50.0		
Copper, Dissolved	ug/L	<25.0	<25.0		
Iron, Dissolved	ug/L	<20.0	<20.0		
Lead, Dissolved	ug/L	<5.0	< 5.0		
Magnesium, Dissolved	ug/L	1570	1550	1	
Manganese, Dissolved	ug/L	<10.0	<10.0		
Nickel, Dissolved	ug/L	<40.0	<40.0		
Potassium, Dissolved	ug/L	<5000	<5000		
Selenium, Dissolved	ug/L	<10.0	<10.0		
Silver, Dissolved	ug/L	<10.0	<10.0		
Sodium, Dissolved	ug/L	8480	8320	2	
Thallium, Dissolved	ug/L	<10.0	<10.0		
Vanadium, Dissolved	ug/L	<50.0	<50.0		
Zinc, Dissolved	ug/L	<20.0	<20.0		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156137 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

METHOD BLANK: 752069 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

 Parameter
 Units
 Blank Reporting Result
 Limit
 Analyzed
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 0.20
 04/08/20 05:00

LABORATORY CONTROL SAMPLE: 752070

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 1 1.0 100 80-120

MATRIX SPIKE SAMPLE: 752071

% Rec 70126875009 Spike MS MS Parameter Units Result Conc. Result % Rec Limits Qualifiers <0.20 1.0 75-125 ug/L 96 Mercury

SAMPLE DUPLICATE: 752072

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 <0.20</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156937 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury Dissolved

> Pace Analytical Services - Melville Laboratory:

Associated Lab Samples: 70126875004, 70126875006, 70126875014, 70126875018

METHOD BLANK: 756378 Matrix: Water

Associated Lab Samples: 70126875004, 70126875006, 70126875014, 70126875018

> Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed

Mercury, Dissolved < 0.20 0.20 04/15/20 03:41 ug/L

LABORATORY CONTROL SAMPLE: 756379

> Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units

Mercury, Dissolved ug/L 1.0 102 80-120

MATRIX SPIKE SAMPLE: 756380

70126875004 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.20 0.97

Mercury, Dissolved ug/L 97 75-125

SAMPLE DUPLICATE: 756381

Date: 04/22/2020 07:57 AM

70126875004 Dup RPD Parameter Units Result Result Qualifiers <0.20 Mercury, Dissolved ug/L < 0.20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

QC Batch: 156355 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 701

70126875018

METHOD BLANK: 752907 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

Blank

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

Reporting

70126875018

Units	Result	Limit	Analyzed	Qualifiers
ua/L	<200	200	04/13/20 14:17	
-				
•	<10.0	10.0	04/13/20 14:17	
•	<200	200	04/13/20 14:17	
•	<5.0	5.0	04/13/20 14:17	
ug/L	<50.0	50.0	04/13/20 14:17	
ug/L	<2.5	2.5	04/13/20 14:17	
ug/L	<200	200	04/13/20 14:17	
ug/L	<10.0	10.0	04/13/20 14:17	
ug/L	<50.0	50.0	04/13/20 14:17	
ug/L	<25.0	25.0	04/13/20 14:17	
ug/L	<20.0	20.0	04/13/20 14:17	
ug/L	< 5.0	5.0	04/13/20 14:17	
ug/L	<200	200	04/13/20 14:17	
ug/L	<10.0	10.0	04/13/20 14:17	
ug/L	<40.0	40.0	04/13/20 14:17	
ug/L	<5000	5000	04/13/20 14:17	
ug/L	<10.0	10.0	04/13/20 14:17	
ug/L	<10.0	10.0	04/13/20 14:17	
ug/L	<5000	5000	04/13/20 14:17	
ug/L	<10.0	10.0	04/13/20 14:17	
ug/L	<50.0	50.0	04/13/20 14:17	
ug/L	<20.0	20.0	04/13/20 14:17	
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Units Result Ug/L <200 ug/L <60.0 ug/L <10.0 ug/L <50.0 ug/L <50.0 ug/L <200 ug/L <50.0 ug/L <200 ug/L <200 ug/L <2.5 ug/L <200 ug/L <200 ug/L <10.0 ug/L <50.0 ug/L <50.0 ug/L <50.0 ug/L <25.0 ug/L <20.0 ug/L <20.0 ug/L <10.0 ug/L <10.0 ug/L <10.0 ug/L <10.0 ug/L <40.0 ug/L <10.0 ug/L <5000 ug/L <10.0 ug/L <10.0 ug/L <10.0 ug/L <5000 ug/L <10.0 ug/L <5000 Units Result Limit ug/L <200	Units Result Limit Analyzed ug/L <200	

LABORATORY CONTROL SAMPLE:	752908					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	5000	5010	100	80-120	
Antimony	ug/L	750	773	103	80-120	
Arsenic	ug/L	500	498	100	80-120	
Barium	ug/L	500	524	105	80-120	
Beryllium	ug/L	50	51.7	103	80-120	
Boron	ug/L	2500	2570	103	80-120	
Cadmium	ug/L	50	52.6	105	80-120	
Calcium	ug/L	25000	25200	101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

ABORATORY CONTROL SAMPLE:	752908					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
romium	ug/L	250	261	104	80-120	
alt	ug/L	500	516	103	80-120	
per	ug/L	250	258	103	80-120	
	ug/L	2000	2060	103	80-120	
1	ug/L	500	512	102	80-120	
nesium	ug/L	25000	24600	98	80-120	
ganese	ug/L	250	254	101	80-120	
el	ug/L	250	258	103	80-120	
ssium	ug/L	50000	51800	104	80-120	
nium	ug/L	750	780	104	80-120	
r	ug/L	250	254	102	80-120	
um	ug/L	50000	50700	101	80-120	
ium	ug/L	750	810	108	80-120	
dium	ug/L	500	515	103	80-120	
:	ug/L	1000	1020	102	80-120	

MATRIX SPIKE SAMPLE:	752910						
		70126875009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	<200	5000	5080	99	75-125	
Antimony	ug/L	<60.0	750	770	103	75-125	
Arsenic	ug/L	<10.0	500	489	98	75-125	
Barium	ug/L	<200	500	601	108	75-125	
Beryllium	ug/L	<5.0	50	49.5	98	75-125	
Boron	ug/L	<50.0	2500	2550	101	75-125	
Cadmium	ug/L	<2.5	50	52.8	106	75-125	
Calcium	ug/L	8270	25000	33100	99	75-125	
Chromium	ug/L	<10.0	250	252	99	75-125	
Cobalt	ug/L	<50.0	500	499	100	75-125	
Copper	ug/L	<25.0	250	253	101	75-125	
Iron	ug/L	35.8	2000	2160	106	75-125	
Lead	ug/L	<5.0	500	485	97	75-125	
Magnesium	ug/L	2810	25000	26800	96	75-125	
Manganese	ug/L	63.0	250	295	93	75-125	
Nickel	ug/L	<40.0	250	254	100	75-125	
Potassium	ug/L	<5000	50000	55200	104	75-125	
Selenium	ug/L	<10.0	750	775	103	75-125	
Silver	ug/L	<10.0	250	240	96	75-125	
Sodium	ug/L	16900	50000	66500	99	75-125	
Thallium	ug/L	<10.0	750	838	112	75-125	
Vanadium	ug/L	<50.0	500	518	104	75-125	
Zinc	ug/L	<20.0	1000	1010	100	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

SAMPLE DUPLICATE: 752909		70126875009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum	ug/L	<200	<200		
Antimony	ug/L	<60.0	<60.0		
Arsenic	ug/L	<10.0	<10.0		
Barium	ug/L	<200	<200		
Beryllium	ug/L	<5.0	<5.0		
Boron	ug/L	<50.0	<50.0		
Cadmium	ug/L	<2.5	<2.5		
Calcium	ug/L	8270	8290	0	
Chromium	ug/L	<10.0	<10.0		
Cobalt	ug/L	<50.0	<50.0		
Copper	ug/L	<25.0	<25.0		
Iron	ug/L	35.8	35.8	0	
_ead	ug/L	<5.0	< 5.0		
Magnesium	ug/L	2810	2800	0	
Manganese	ug/L	63.0	63.7	1	
Nickel	ug/L	<40.0	<40.0		
Potassium	ug/L	<5000	<5000		
Selenium	ug/L	<10.0	<10.0		
Silver	ug/L	<10.0	<10.0		
Sodium	ug/L	16900	17000	1	
Thallium	ug/L	<10.0	<10.0		
Vanadium	ug/L	<50.0	<50.0		
Zinc	ug/L	<20.0	<20.0		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

QC Batch: 155840 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875002, 70126875003

METHOD BLANK: 749997 Matrix: Water

Associated Lab Samples: 70126875001, 70126875002, 70126875003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<5.0	5.0	04/03/20 18:57	
1,1,1-Trichloroethane	ug/L	<5.0	5.0	04/03/20 18:57	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	5.0	04/03/20 18:57	
1,1,2-Trichloroethane	ug/L	<5.0	5.0	04/03/20 18:57	
1,1-Dichloroethane	ug/L	<5.0	5.0	04/03/20 18:57	
1,1-Dichloroethene	ug/L	< 5.0	5.0	04/03/20 18:57	
1,2,3-Trichloropropane	ug/L	<5.0	5.0	04/03/20 18:57	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	5.0	04/03/20 18:57	
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	04/03/20 18:57	
1,2-Dichlorobenzene	ug/L	<5.0	5.0	04/03/20 18:57	
1,2-Dichloroethane	ug/L	<5.0	5.0	04/03/20 18:57	
1,2-Dichloropropane	ug/L	<5.0	5.0	04/03/20 18:57	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	04/03/20 18:57	
2-Butanone (MEK)	ug/L	<5.0	5.0	04/03/20 18:57	
2-Hexanone	ug/L	< 5.0	5.0	04/03/20 18:57	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	04/03/20 18:57	
Acetone	ug/L	<5.0	5.0	04/03/20 18:57	IC
Acrylonitrile	ug/L	<5.0	5.0	04/03/20 18:57	
Benzene	ug/L	<5.0	5.0	04/03/20 18:57	
Bromochloromethane	ug/L	< 5.0	5.0	04/03/20 18:57	
Bromodichloromethane	ug/L	<5.0	5.0	04/03/20 18:57	
Bromoform	ug/L	<5.0	5.0	04/03/20 18:57	
Bromomethane	ug/L	<5.0	5.0	04/03/20 18:57	CL
Carbon disulfide	ug/L	<5.0	5.0	04/03/20 18:57	
Carbon tetrachloride	ug/L	<5.0	5.0	04/03/20 18:57	
Chlorobenzene	ug/L	< 5.0	5.0	04/03/20 18:57	
Chloroethane	ug/L	<5.0	5.0	04/03/20 18:57	CL
Chloroform	ug/L	<5.0	5.0	04/03/20 18:57	
Chloromethane	ug/L	<5.0	5.0	04/03/20 18:57	
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	04/03/20 18:57	
cis-1,3-Dichloropropene	ug/L	< 5.0	5.0	04/03/20 18:57	
Dibromochloromethane	ug/L	<5.0	5.0	04/03/20 18:57	
Dibromomethane	ug/L	<5.0	5.0	04/03/20 18:57	
Ethylbenzene	ug/L	<5.0	5.0	04/03/20 18:57	
Iodomethane	ug/L	<5.0	5.0	04/03/20 18:57	CL
Methylene Chloride	ug/L	<5.0	5.0	04/03/20 18:57	
Styrene	ug/L	<5.0	5.0	04/03/20 18:57	
Tetrachloroethene	ug/L	<5.0	5.0	04/03/20 18:57	
Toluene	ug/L	<5.0	5.0	04/03/20 18:57	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	04/03/20 18:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

METHOD BLANK: 749997 Matrix: Water

Associated Lab Samples: 70126875001, 70126875002, 70126875003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	04/03/20 18:57	
trans-1,4-Dichloro-2-butene	ug/L	<5.0	5.0	04/03/20 18:57	
Trichloroethene	ug/L	<5.0	5.0	04/03/20 18:57	
Trichlorofluoromethane	ug/L	<5.0	5.0	04/03/20 18:57	
Vinyl acetate	ug/L	<5.0	5.0	04/03/20 18:57	
Vinyl chloride	ug/L	<5.0	5.0	04/03/20 18:57	
Xylene (Total)	ug/L	<5.0	5.0	04/03/20 18:57	
1,2-Dichloroethane-d4 (S)	%	100	68-153	04/03/20 18:57	
4-Bromofluorobenzene (S)	%	99	79-124	04/03/20 18:57	
Toluene-d8 (S)	%	98	69-124	04/03/20 18:57	

LABORATORY CONTROL SAMPLE:	749998					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	47.3	95	74-113	
1,1,1-Trichloroethane	ug/L	50	43.8	88	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	45.3	91	74-121	
1,1,2-Trichloroethane	ug/L	50	46.0	92	80-117	
1,1-Dichloroethane	ug/L	50	44.2	88	83-151	
1,1-Dichloroethene	ug/L	50	41.1	82	45-146	
1,2,3-Trichloropropane	ug/L	50	43.0	86	71-123	
1,2-Dibromo-3-chloropropane	ug/L	50	42.2	84	74-119	
1,2-Dibromoethane (EDB)	ug/L	50	47.5	95	83-115	
1,2-Dichlorobenzene	ug/L	50	43.9	88	74-113	
1,2-Dichloroethane	ug/L	50	43.7	87	74-129	
1,2-Dichloropropane	ug/L	50	44.5	89	75-117	
1,4-Dichlorobenzene	ug/L	50	43.5	87	71-113	
2-Butanone (MEK)	ug/L	50	45.0	90	44-162	
2-Hexanone	ug/L	50	50.5	101	32-183 (CH
4-Methyl-2-pentanone (MIBK)	ug/L	50	52.6	105	69-132	
Acetone	ug/L	50	38.9	78	23-188 (CH,IC
Acrylonitrile	ug/L	50	43.5	87	59-148	
Benzene	ug/L	50	44.7	89	73-119	
Bromochloromethane	ug/L	50	42.7	85	81-116	
Bromodichloromethane	ug/L	50	47.5	95	78-117	
Bromoform	ug/L	50	44.9	90	65-122	
Bromomethane	ug/L	50	35.2	70	52-147 (CL
Carbon disulfide	ug/L	50	38.0	76	41-144	
Carbon tetrachloride	ug/L	50	46.2	92	59-120	
Chlorobenzene	ug/L	50	44.5	89	75-113	
Chloroethane	ug/L	50	34.2	68	49-151 (CL
Chloroform	ug/L	50	44.0	88	72-122	
Chloromethane	ug/L	50	39.2	78	46-144	
cis-1,2-Dichloroethene	ug/L	50	44.3	89	72-121	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

LABORATORY CONTROL SAMPLE:	749998					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,3-Dichloropropene	ug/L	50	51.0	102	78-116	
Dibromochloromethane	ug/L	50	50.5	101	70-120	
ibromomethane	ug/L	50	45.1	90	75-125	
thylbenzene	ug/L	50	45.1	90	70-113	
domethane	ug/L	50	34.7	69	61-144	CL
lethylene Chloride	ug/L	50	39.8	80	61-142	
yrene	ug/L	50	49.8	100	72-118	
trachloroethene	ug/L	50	43.5	87	60-128	
uene	ug/L	50	45.2	90	72-119	
ns-1,2-Dichloroethene	ug/L	50	44.0	88	56-142	
ns-1,3-Dichloropropene	ug/L	50	45.1	90	79-116	
ns-1,4-Dichloro-2-butene	ug/L	50	50.2	100	71-121	
chloroethene	ug/L	50	44.4	89	69-117	
chlorofluoromethane	ug/L	50	43.2	86	27-173	
nyl acetate	ug/L	50	49.1	98	20-158	
nyl chloride	ug/L	50	34.7	69	43-143	
lene (Total)	ug/L	150	139	92	71-109	
-Dichloroethane-d4 (S)	%			96	68-153	
Bromofluorobenzene (S)	%			103	79-124	
luene-d8 (S)	%			99	69-124	

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 75071	5		750716						
			MS	MSD							
	701	126818004	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50	43.7	48.3	87	97	74-113	10	
1,1,1-Trichloroethane	ug/L	<1.0	50	50	43.4	47.7	87	95	65-118	10	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	43.7	47.0	87	94	74-121	7	
1,1,2-Trichloroethane	ug/L	<1.0	50	50	44.0	48.2	88	96	80-117	9	
1,1-Dichloroethane	ug/L	1.1	50	50	43.4	47.6	85	93	83-151	9	
1,1-Dichloroethene	ug/L	<1.0	50	50	40.4	45.2	81	90	45-146	11	
1,2,3-Trichloropropane	ug/L	<1.0	50	50	42.6	44.4	85	89	71-123	4	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	50	38.4	42.4	77	85	74-119	10	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	50	45.2	49.5	90	99	83-115	9	
1,2-Dichlorobenzene	ug/L	<1.0	50	50	44.0	45.8	88	92	74-113	4	
1,2-Dichloroethane	ug/L	<1.0	50	50	41.0	44.7	82	89	74-129	9	
1,2-Dichloropropane	ug/L	<1.0	50	50	43.0	46.3	86	93	75-117	7	
1,4-Dichlorobenzene	ug/L	<1.0	50	50	44.4	46.5	89	93	71-113	5	
2-Butanone (MEK)	ug/L	< 5.0	50	50	39.6	42.7	79	85	44-162	8	
2-Hexanone	ug/L	< 5.0	50	50	47.4	50.8	95	102	32-183	7 C	Н
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	47.3	52.4	95	105	69-132	10	
Acetone	ug/L	<5.0	50	50	36.1	33.2	72	66	23-188	8 C	H,IC
Acrylonitrile	ug/L	<1.0	50	50	38.4	43.4	77	87	59-148	12	
Benzene	ug/L	0.74J	50	50	45.9	48.4	90	95	73-119	5	
Bromochloromethane	ug/L	<1.0	50	50	38.5	44.3	77	89	81-116	14 N	11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

MATRIX SPIKE & MATRIX SPIK	E DUPLICATE	: 75071			750716						
Parameter	7012 Units	26818004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qua
Bromodichloromethane	ug/L	<1.0	50	50	43.7	47.5	87	95	78-117	8	
Bromoform	ug/L	<1.0	50	50	38.9	43.1	78	86	65-122	10	
Bromomethane	ug/L	<1.0	50	50	32.5	40.0	65	80	52-147	21	CL,R1
Carbon disulfide	ug/L	<1.0	50	50	35.4	42.2	71	84	41-144	17	
Carbon tetrachloride	ug/L	<1.0	50	50	45.3	49.8	91	100	59-120	10	
Chlorobenzene	ug/L	1.6	50	50	45.3	48.0	87	93	75-113	6	
Chloroethane	ug/L	<1.0	50	50	31.2	37.6	62	75	49-151	18	CL
Chloroform	ug/L	<1.0	50	50	41.7	45.8	83	92	72-122	9	
Chloromethane	ug/L	<1.0	50	50	36.0	41.7	72	83	46-144	15	
cis-1,2-Dichloroethene	ug/L	3.7	50	50	46.5	50.2	86	93	72-121	8	
cis-1,3-Dichloropropene	ug/L	<1.0	50	50	46.4	49.5	93	99	78-116	7	
Dibromochloromethane	ug/L	<1.0	50	50	45.8	50.5	92	101	70-120	10	
Dibromomethane	ug/L	<1.0	50	50	44.3	46.9	89	94	75-125	6	
Ethylbenzene	ug/L	<1.0	50	50	45.1	47.9	90	96	70-113	6	
lodomethane	ug/L	<4.0	50	50	34.7	40.6	69	81	61-144	15	CL
Methylene Chloride	ug/L	<1.0	50	50	34.4	41.2	69	82	61-142	18	
Styrene	ug/L	<1.0	50	50	48.7	51.7	97	103	72-118	6	
Tetrachloroethene	ug/L	<1.0	50	50	45.4	47.2	91	94	60-128	4	
Toluene	ug/L	<1.0	50	50	45.1	48.2	90	96	72-119	7	
trans-1,2-Dichloroethene	ug/L	<1.0	50	50	43.4	47.7	87	95	56-142	9	
trans-1,3-Dichloropropene	ug/L	<1.0	50	50	39.7	43.7	79	87	79-116	10	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	50	50	43.9	46.6	88	93	71-121	6	
Trichloroethene	ug/L	<1.0	50	50	45.2	47.8	90	96	69-117	6	
Trichlorofluoromethane	ug/L	<1.0	50	50	43.5	48.8	87	98	27-173	11	
Vinyl acetate	ug/L	<1.0	50	50	35.3	39.8	71	80	20-158	12	
Vinyl chloride	ug/L	1.1	50	50	35.6	41.4	69	81	43-143	15	
Xylene (Total)	ug/L	<3.0	150	150	138	148	92	99	71-109	7	
1,2-Dichloroethane-d4 (S)	%						97	99	68-153		
4-Bromofluorobenzene (S)	%						104	104	79-124		
Toluene-d8 (S)	%						98	100	69-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

QC Batch: 156370 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875013, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

METHOD BLANK: 753028 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

Blank

70126875011, 70126875012, 70126875013, 70126875014, 70126875015, 70126875016, 70126875017,

Reporting

70126875018

Parameter	Units	Result	Limit	Analyzed	Qualifiers
	/	<5.0	5.0	04/09/20 10:25	
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ug/L ug/L	<5.0 <5.0	5.0	04/09/20 10:25	
1,1,2,2-Tetrachloroethane	ug/∟ ug/L	<5.0 <5.0	5.0	04/09/20 10:25	
1,1,2-Trichloroethane	-	<5.0 <5.0	5.0	04/09/20 10:25	
1,1-Dichloroethane	ug/L	<5.0 <5.0	5.0	04/09/20 10:25	
1,1-Dichloroethane	ug/L	<5.0 <5.0	5.0	04/09/20 10:25	
•	ug/L	<5.0 <5.0		04/09/20 10:25	
1,2,3-Trichloropropane	ug/L	<5.0 <5.0	5.0 5.0	04/09/20 10:25	
1,2-Dibromo-3-chloropropane	ug/L				
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	04/09/20 10:25	
1,2-Dichlorobenzene	ug/L	<5.0	5.0	04/09/20 10:25	
1,2-Dichloroethane	ug/L	<5.0	5.0	04/09/20 10:25	
1,2-Dichloropropane	ug/L	<5.0	5.0	04/09/20 10:25	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	04/09/20 10:25	
2-Butanone (MEK)	ug/L	<5.0	5.0	04/09/20 10:25	
2-Hexanone	ug/L	<5.0	5.0	04/09/20 10:25	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	04/09/20 10:25	
Acetone	ug/L	<5.0	5.0	04/09/20 10:25	IC
Acrylonitrile	ug/L	<5.0	5.0	04/09/20 10:25	
Benzene	ug/L	<5.0	5.0	04/09/20 10:25	
Bromochloromethane	ug/L	<5.0	5.0	04/09/20 10:25	
Bromodichloromethane	ug/L	<5.0	5.0	04/09/20 10:25	
Bromoform	ug/L	<5.0	5.0	04/09/20 10:25	
Bromomethane	ug/L	<5.0	5.0	04/09/20 10:25	
Carbon disulfide	ug/L	<5.0	5.0	04/09/20 10:25	
Carbon tetrachloride	ug/L	<5.0	5.0	04/09/20 10:25	
Chlorobenzene	ug/L	<5.0	5.0	04/09/20 10:25	
Chloroethane	ug/L	<5.0	5.0	04/09/20 10:25	
Chloroform	ug/L	<5.0	5.0	04/09/20 10:25	
Chloromethane	ug/L	<5.0	5.0	04/09/20 10:25	
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	04/09/20 10:25	
cis-1,3-Dichloropropene	ug/L	<5.0	5.0	04/09/20 10:25	
Dibromochloromethane	ug/L	<5.0	5.0	04/09/20 10:25	
Dibromomethane	ug/L	<5.0	5.0	04/09/20 10:25	
Ethylbenzene	ug/L	<5.0	5.0	04/09/20 10:25	
Iodomethane	ug/L	<5.0	5.0	04/09/20 10:25	IL
Methylene Chloride	ug/L	<5.0	5.0	04/09/20 10:25	
Styrene	ug/L	<5.0	5.0	04/09/20 10:25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

METHOD BLANK: 753028 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875013, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Tetrachloroethene	ug/L	<5.0	5.0	04/09/20 10:25	_
Toluene	ug/L	<5.0	5.0	04/09/20 10:25	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	04/09/20 10:25	
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	04/09/20 10:25	
trans-1,4-Dichloro-2-butene	ug/L	<5.0	5.0	04/09/20 10:25	
Trichloroethene	ug/L	<5.0	5.0	04/09/20 10:25	
Trichlorofluoromethane	ug/L	<5.0	5.0	04/09/20 10:25	
Vinyl acetate	ug/L	<5.0	5.0	04/09/20 10:25	
Vinyl chloride	ug/L	<5.0	5.0	04/09/20 10:25	
Xylene (Total)	ug/L	<5.0	5.0	04/09/20 10:25	
1,2-Dichloroethane-d4 (S)	%	100	68-153	04/09/20 10:25	
4-Bromofluorobenzene (S)	%	98	79-124	04/09/20 10:25	
Toluene-d8 (S)	%	97	69-124	04/09/20 10:25	

LABORATORY CONTROL SAMPLE:	753029					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	55.9	112	74-113	
1,1,1-Trichloroethane	ug/L	50	56.2	112	65-118	
1,1,2,2-Tetrachloroethane	ug/L	50	51.2	102	74-121	
1,1,2-Trichloroethane	ug/L	50	52.2	104	80-117	
1,1-Dichloroethane	ug/L	50	56.6	113	83-151	
1,1-Dichloroethene	ug/L	50	58.9	118	45-146	
1,2,3-Trichloropropane	ug/L	50	48.2	96	71-123	
1,2-Dibromo-3-chloropropane	ug/L	50	50.4	101	74-119	
1,2-Dibromoethane (EDB)	ug/L	50	54.4	109	83-115	
1,2-Dichlorobenzene	ug/L	50	50.1	100	74-113	
1,2-Dichloroethane	ug/L	50	52.8	106	74-129	
1,2-Dichloropropane	ug/L	50	52.7	105	75-117	
1,4-Dichlorobenzene	ug/L	50	50.8	102	71-113	
2-Butanone (MEK)	ug/L	50	46.5	93	44-162	
2-Hexanone	ug/L	50	54.1	108	32-183	
4-Methyl-2-pentanone (MIBK)	ug/L	50	57.1	114	69-132	
Acetone	ug/L	50	28.3	57	23-188 I	С
Acrylonitrile	ug/L	50	46.4	93	59-148	
Benzene	ug/L	50	54.9	110	73-119	
Bromochloromethane	ug/L	50	46.6	93	81-116	
Bromodichloromethane	ug/L	50	57.6	115	78-117	
Bromoform	ug/L	50	53.4	107	65-122	
Bromomethane	ug/L	50	53.8	108	52-147	
Carbon disulfide	ug/L	50	50.1	100	41-144	
Carbon tetrachloride	ug/L	50	60.1	120	59-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

LABORATORY CONTROL SAMPLE:	753029					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
hlorobenzene	ug/L	50	51.0	102	75-113	
hloroethane	ug/L	50	48.8	98	49-151	
nloroform	ug/L	50	55.0	110	72-122	
loromethane	ug/L	50	55.3	111	46-144	
-1,2-Dichloroethene	ug/L	50	55.6	111	72-121	
-1,3-Dichloropropene	ug/L	50	61.0	122	78-116	L1
promochloromethane	ug/L	50	60.7	121	70-120	L1
promomethane	ug/L	50	53.0	106	75-125	
nylbenzene	ug/L	50	52.1	104	70-113	
omethane	ug/L	50	41.6	83	61-144	CL
thylene Chloride	ug/L	50	51.3	103	61-142	
rene	ug/L	50	56.2	112	72-118	
rachloroethene	ug/L	50	51.7	103	60-128	
uene	ug/L	50	53.5	107	72-119	
ns-1,2-Dichloroethene	ug/L	50	58.8	118	56-142	
ns-1,3-Dichloropropene	ug/L	50	53.4	107	79-116	
ns-1,4-Dichloro-2-butene	ug/L	50	53.1	106	71-121	
chloroethene	ug/L	50	54.1	108	69-117	
chlorofluoromethane	ug/L	50	60.2	120	27-173	
nyl acetate	ug/L	50	55.6	111	20-158	
yl chloride	ug/L	50	55.6	111	43-143	
ene (Total)	ug/L	150	159	106	71-109	
-Dichloroethane-d4 (S)	%			96	68-153	
romofluorobenzene (S)	%			103	79-124	
uene-d8 (S)	%			98	69-124	

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 75303	0		753031						
			MS	MSD							
	701	126875009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<5.0	50	50	54.4	59.1	109	118	74-113	8 N	11
1,1,1-Trichloroethane	ug/L	<5.0	50	50	55.1	58.2	110	116	65-118	6	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	50	50	50.7	54.3	101	109	74-121	7	
1,1,2-Trichloroethane	ug/L	<5.0	50	50	53.6	54.9	107	110	80-117	2	
1,1-Dichloroethane	ug/L	<5.0	50	50	54.6	57.3	109	115	83-151	5	
1,1-Dichloroethene	ug/L	<5.0	50	50	55.9	57.7	112	115	45-146	3	
1,2,3-Trichloropropane	ug/L	<5.0	50	50	48.0	50.9	96	102	71-123	6	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	50	50	46.5	51.6	93	103	74-119	10	
1,2-Dibromoethane (EDB)	ug/L	<5.0	50	50	55.0	57.0	110	114	83-115	4	
1,2-Dichlorobenzene	ug/L	<5.0	50	50	51.7	54.4	103	109	74-113	5	
1,2-Dichloroethane	ug/L	<5.0	50	50	51.8	53.3	104	107	74-129	3	
1,2-Dichloropropane	ug/L	<5.0	50	50	52.7	54.7	105	109	75-117	4	
1,4-Dichlorobenzene	ug/L	<5.0	50	50	51.1	53.9	102	108	71-113	5	
2-Butanone (MEK)	ug/L	<5.0	50	50	45.7	47.5	91	95	44-162	4	
2-Hexanone	ug/L	<5.0	50	50	52.3	57.1	105	114	32-183	9	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

MATRIX SPIKE & MATRIX SPIKE	E DUPLICAT				753031						
			MS	MSD							
		126875009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	55.0	58.8	110	118	69-132	7	
Acetone	ug/L	< 5.0	50	50	28.0	27.9	56	56	23-188	0 IC	
Acrylonitrile	ug/L	< 5.0	50	50	48.2	48.3	96	97	59-148	0	
Benzene	ug/L	<5.0	50	50	55.1	57.4	110	115	73-119	4	
Bromochloromethane	ug/L	< 5.0	50	50	49.0	48.9	98	98	81-116	0	
Bromodichloromethane	ug/L	< 5.0	50	50	55.9	59.2	112	118	78-117	6 M1	
Bromoform	ug/L	< 5.0	50	50	48.7	52.9	97	106	65-122	8	
Bromomethane	ug/L	<5.0	50	50	44.2	51.5	88	103	52-147	15	
Carbon disulfide	ug/L	<5.0	50	50	43.8	52.4	88	105	41-144	18	
Carbon tetrachloride	ug/L	<5.0	50	50	56.3	63.2	113	126	59-120	12 M1	
Chlorobenzene	ug/L	< 5.0	50	50	52.5	56.2	105	112	75-113	7	
Chloroethane	ug/L	<5.0	50	50	46.2	48.8	92	98	49-151	5	
Chloroform	ug/L	5.0	50	50	54.8	56.2	107	110	72-122	3	
Chloromethane	ug/L	<5.0	50	50	49.9	53.3	100	107	46-144	7	
cis-1,2-Dichloroethene	ug/L	<5.0	50	50	55.2	57.6	110	115	72-121	4	
cis-1,3-Dichloropropene	ug/L	< 5.0	50	50	57.8	61.1	116	122	78-116	5 M0	
Dibromochloromethane	ug/L	< 5.0	50	50	57.5	61.9	115	124	70-120	7 M0	
Dibromomethane	ug/L	<5.0	50	50	53.1	55.9	106	112	75-125	5	
Ethylbenzene	ug/L	< 5.0	50	50	54.4	57.8	109	116	70-113	6 M1	
odomethane	ug/L	< 5.0	50	50	35.2	45.5	70	91	61-144	25 CL	,R1
Methylene Chloride	ug/L	<5.0	50	50	47.2	50.9	94	102	61-142	7	
Styrene	ug/L	< 5.0	50	50	58.4	61.0	117	122	72-118	4 M1	
Tetrachloroethene	ug/L	< 5.0	50	50	54.9	57.1	110	114	60-128	4	
Toluene	ug/L	<5.0	50	50	55.0	57.4	110	115	72-119	4	
rans-1,2-Dichloroethene	ug/L	<5.0	50	50	57.5	59.3	115	119	56-142	3	
rans-1,3-Dichloropropene	ug/L	<5.0	50	50	49.7	53.6	99	107	79-116	8	
rans-1,4-Dichloro-2-butene	ug/L	<5.0	50	50	50.7	52.9	101	106	71-121	4	
Trichloroethene	ug/L	< 5.0	50	50	55.1	56.9	110	114	69-117	3	
Trichlorofluoromethane	ug/L	<5.0	50	50	58.8	61.0	118	122	27-173	4	
/inyl acetate	ug/L	<5.0	50	50	50.4	53.5	101	107	20-158	6	
/inyl chloride	ug/L	< 5.0	50	50	49.4	53.0	99	106	43-143	7	
Kylene (Total)	ug/L	< 5.0	150	150	166	174	111	116	71-109	5 MS	;
I,2-Dichloroethane-d4 (S)	%						99	94	68-153		
4-Bromofluorobenzene (S)	%						103	102	79-124		
Toluene-d8 (S)	%						97	98	69-124		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155736 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001

METHOD BLANK: 749541 Matrix: Water

Associated Lab Samples: 70126875001

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 04/03/20 07:25

LABORATORY CONTROL SAMPLE: 749542

Spike LCS LCS % Rec Units Conc. Result % Rec Limits Qualifiers Parameter **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 749543

Date: 04/22/2020 07:57 AM

70126875001 Dup **RPD** Parameter Units Result Result Qualifiers 5.0 5.0 **Apparent Color** 0 units Std. Units 6.3 0 pН 6.3

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155850 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 750099 Matrix: Water

750100

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersApparent Colorunits<5.0</td>5.004/04/20 10:04

Spike LCS LCS % Rec Parameter Units Result % Rec Limits Qualifiers Conc. **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 750101

Date: 04/22/2020 07:57 AM

LABORATORY CONTROL SAMPLE:

Parameter	Units	70126875009 Result	Dup Result	RPD	Qualifiers
Apparent Color pH	units Std. Units	<5.0 6.0	<5.0 6.0	1	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156150 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001

METHOD BLANK: 752104 Matrix: Water

Associated Lab Samples: 70126875001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 04/08/20 09:38

LABORATORY CONTROL SAMPLE: 752105

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 25 24.5 98 85-115

MATRIX SPIKE SAMPLE: 752107

70127125004 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 29.8 Alkalinity, Total as CaCO3 mg/L 53.2 25 94 75-125

SAMPLE DUPLICATE: 752106

Date: 04/22/2020 07:57 AM

Parameter Units 70127125004 Dup Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 29.8 28.5 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156653 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 754839 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting Parameter Units Result Limit Qualifiers Analyzed Alkalinity, Total as CaCO3 mg/L <10 1.0 04/13/20 09:20 Alkalinity, Carbonate (CaCO3) 04/13/20 09:20 mg/L <1.0 1.0

LABORATORY CONTROL SAMPLE: 754840 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3 25 24.5 98 85-115 mg/L Alkalinity, Carbonate (CaCO3) mg/L <1.0

MATRIX SPIKE SAMPLE: 754842 70126875009 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 5.6 Alkalinity, Total as CaCO3 31.9 105 75-125 mg/L 25 <1.0 Alkalinity, Carbonate (CaCO3) mg/L <1.0

SAMPLE DUPLICATE: 754841

Date: 04/22/2020 07:57 AM

		70126875009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Alkalinity, Total as CaCO3	mg/L	5.6	5.5	2	
Alkalinity, Carbonate (CaCO3)	mg/L	<1.0	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 157400 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

METHOD BLANK: 758490 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

 Parameter
 Units
 Blank Reporting Result
 Reporting Limit
 Analyzed
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 <2.5</td>
 2.5
 04/20/20 15:01

LABORATORY CONTROL SAMPLE: 758491

Spike LCS LCS % Rec % Rec Parameter Units Conc. Result Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 100 99.0 99 90-110

MATRIX SPIKE SAMPLE: 758492

70126875009 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B 32.0 440 102 75-125 mg/L 400

SAMPLE DUPLICATE: 758493

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 Result
 Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 32.0
 32.0
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156014

QC Batch Method: SM22 2540C

Analysis Method: SM22 2540C

Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001

METHOD BLANK: 751128 Matrix: Water

Associated Lab Samples: 70126875001

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 04/07/20 09:54

LABORATORY CONTROL SAMPLE: 751129

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 500 568 114 85-115

MATRIX SPIKE SAMPLE: 751131

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 363 300 641 93 75-125

MATRIX SPIKE SAMPLE: 751133

70126830002 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 130 300 437 102 75-125

SAMPLE DUPLICATE: 751130

70126818008 Dup
Parameter Units Result RepD Qualifiers

Total Dissolved Solids mg/L 363 375 3

SAMPLE DUPLICATE: 751132

Date: 04/22/2020 07:57 AM

70126830002 Dup
Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L 130 126 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156343 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005

METHOD BLANK: 752845 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 04/09/20 09:42

LABORATORY CONTROL SAMPLE: 752846

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 500 542 108 85-115 mg/L

MATRIX SPIKE SAMPLE: 752848

MS % Rec 70126870003 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 308 **Total Dissolved Solids** mg/L 600 916 101 75-125

Total Dissolved Solids Hig/L 300 600 910 101 73-123

 MATRIX SPIKE SAMPLE:
 752850
 70126875004
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Total Dissolved Solids mg/L 65.0 300 365 100 75-125

SAMPLE DUPLICATE: 752847

SAMPLE DUPLICATE: 752849

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Total Dissolved Solids
 mg/L
 308
 312
 1

70126875004 Dup
Parameter Units Result RPD Qualifiers

Total Dissolved Solids mg/L 65.0 62.0 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156345 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875006, 70126875007, 70126875008, 70126875009, 70126875010, 70126875011, 70126875012

METHOD BLANK: 752857 Matrix: Water

Associated Lab Samples: 70126875006, 70126875007, 70126875008, 70126875009, 70126875010, 70126875011, 70126875012

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 04/09/20 10:27

LABORATORY CONTROL SAMPLE: 752858

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 500 482 96 85-115

MATRIX SPIKE SAMPLE: 752860

70126875009 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Table Birach ad Quility 2000 404 404 404 405 405

Total Dissolved Solids mg/L 109 300 421 104 75-125

SAMPLE DUPLICATE: 752859

Date: 04/22/2020 07:57 AM

ParameterUnits70126875009 ResultDup ResultRPDQualifiersTotal Dissolved Solidsmg/L1091063

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156509 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 753822 Matrix: Water

Associated Lab Samples: 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 04/10/20 09:51

LABORATORY CONTROL SAMPLE: 753823

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 500 538 108 85-115

MATRIX SPIKE SAMPLE: 753825

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Tatal Bissalved Salida 200 400 400 75 405

Total Dissolved Solids mg/L 106 300 409 101 75-125

MATRIX SPIKE SAMPLE: 753827

Parameter Units Result Conc. Result % Rec Limits Qualifiers

 Total Dissolved Solids
 mg/L
 393
 300
 713
 107
 75-125

SAMPLE DUPLICATE: 753824

70126875014 Dup
Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L 106 106 0

SAMPLE DUPLICATE: 753826

Date: 04/22/2020 07:57 AM

70127108001 Dup Units Result Result

ParameterUnitsResultResultRPDQualifiersTotal Dissolved Solidsmg/L3933755

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155777

QC Batch Method: SM22 3500-Cr B

Analysis Method: SM22 3500-Cr B

Analysis Description: Chromium, Hexavalent by 3500

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70126875001

METHOD BLANK: 749737 Matrix: Water

Associated Lab Samples: 70126875001

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chromium, Hexavalent mg/L <0.020 0.020 04/03/20 11:59

LABORATORY CONTROL SAMPLE: 749738

Parameter Units Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers

Chromium, Hexavalent mg/L 0.2 0.20 102 85-115

MATRIX SPIKE SAMPLE: 749739

70126875001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 Chromium, Hexavalent mg/L 0.19 75-125 H3 0.2 95

SAMPLE DUPLICATE: 749740

Date: 04/22/2020 07:57 AM

ParameterUnits70126875001 ResultDup ResultRPDQualifiersChromium, Hexavalentmg/L<0.020</td><0.020</td>H3

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155852 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 750104 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersChromium, Hexavalentmg/L<0.020</td>0.02004/04/20 09:28

LABORATORY CONTROL SAMPLE: 750105

LCS LCS Spike % Rec % Rec Limits Qualifiers Parameter Units Conc. Result Chromium, Hexavalent mg/L 0.2 0.20 98 85-115

MATRIX SPIKE SAMPLE: 750106

MS MS 70126875009 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 0.20 100 75-125 H1 Chromium, Hexavalent 0.2 mg/L

SAMPLE DUPLICATE: 750107

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Chromium, Hexavalent
 mg/L
 <0.020</td>
 <0.020</td>
 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

QC Batch: 156172 Analysis Method: EPA 410.4
QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

METHOD BLANK: 752163 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Chemical Oxygen Demand <10.0 10.0 04/08/20 13:01 mg/L LABORATORY CONTROL SAMPLE: 752164 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand 500 511 102 90-110 mg/L MATRIX SPIKE SAMPLE: 752165 70126961002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 1000 101 90-110 Chemical Oxygen Demand mg/L 1010 MATRIX SPIKE SAMPLE: 752167 70126875009 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers <10.0 Chemical Oxygen Demand mg/L 1000 1020 101 90-110 SAMPLE DUPLICATE: 752166 70126961002 Dup **RPD** Parameter Units Result Result Qualifiers <10.0 Chemical Oxygen Demand <10.0 mg/L SAMPLE DUPLICATE: 752168 70126875009 Dup RPD Units Result Parameter Result Qualifiers Chemical Oxygen Demand mg/L <10.0 <10.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155757

QC Batch Method: SM22 5210B

Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

SM22 5210B

Associated Lab Samples: 70126875001

METHOD BLANK: 749597 Matrix: Water

Associated Lab Samples: 70126875001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Analysis Method:

BOD, 5 day mg/L <2.0 2.0 04/08/20 10:39

LABORATORY CONTROL SAMPLE: 749598

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 190 96 84.5-115.4

SAMPLE DUPLICATE: 749600

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 70126818004 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 1.0J
 <2.0</td>

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155849 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 750096 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 BOD, 5 day
 mg/L
 <2.0</td>
 2.0
 04/09/20 10:37

LABORATORY CONTROL SAMPLE: 750097

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. BOD, 5 day mg/L 198 216 109 84.5-115.4

SAMPLE DUPLICATE: 750098

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 70126875009 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 <2.0</td>
 <2.0</td>

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

LABORATORY CONTROL SAMPLE.

QC Batch: 157088 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 701

70126875018

METHOD BLANK: 757230 Matrix: Water

757231

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	04/15/20 21:02	
Chloride	mg/L	<2.0	2.0	04/15/20 21:02	
Sulfate	mg/L	<5.0	5.0	04/15/20 21:02	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L		1.0	103	90-110	
Chloride	mg/L	10	9.6	96	90-110	
Sulfate	mg/L	10	9.5	95	90-110	

MATRIX SPIKE SAMPLE:	757232						
		70126875009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	0.93	91	90-110	
Chloride	mg/L	27.5	10	37.2	96	90-110	
Sulfate	mg/L	12.7	10	22.4	97	90-110	

MATRIX SPIKE SAMPLE:	757234						
		70127207001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	1.0	97	90-110	
Chloride	mg/L	26.5	10	36.3	98	90-110	
Sulfate	mg/L	19.9	10	27.4	76	90-110	И1

SAMPLE DUPLICATE: 757233

Date: 04/22/2020 07:57 AM

		70126875009	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	27.5	27.6	0	
Sulfate	mg/L	12.7	12.6	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

SAMPLE DUPLICATE: 757235

		70127207001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	26.5	26.5	0	
Sulfate	mg/L	19.9	19.8	0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

QC Batch: 156965 Analysis Method: EPA 351.2

QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

METHOD BLANK: 756447 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Nitrogen, Kjeldahl, Total < 0.094 0.094 04/16/20 12:57 mg/L LABORATORY CONTROL SAMPLE: 756448 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total 4 4.0 100 90-110 mg/L MATRIX SPIKE SAMPLE: 756449 70126875009 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 5.9 145 90-110 M6 Nitrogen, Kjeldahl, Total mg/L 4 MATRIX SPIKE SAMPLE: 756451 70127309002 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 4.8 Nitrogen, Kjeldahl, Total mg/L 4 8.9 101 90-110 SAMPLE DUPLICATE: 756450 70126875009 Dup Parameter Units Result Result **RPD** Qualifiers < 0.10 Nitrogen, Kjeldahl, Total < 0.10 mg/L SAMPLE DUPLICATE: 756452 70127309002 Dup RPD Units Result Parameter Result Qualifiers Nitrogen, Kjeldahl, Total mg/L 4.8 1.7 98 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155724 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001

METHOD BLANK: 749494 Matrix: Water

Associated Lab Samples: 70126875001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 04/03/20 01:49

LABORATORY CONTROL SAMPLE: 749495

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Nitrite as N mg/L 1 1.0 102 90-110

MATRIX SPIKE SAMPLE: 749496

SAMPLE DUPLICATE: 749499

Date: 04/22/2020 07:57 AM

MS MS % Rec 70126875001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.52 105 90-110

Titille as N 111g/L 0.000 0.5 0.52 105 90-110

 MATRIX SPIKE SAMPLE:
 749498

 70126855001
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Nitrite as N mg/L <0.050 0.5 0.52 104 90-110

SAMPLE DUPLICATE: 749497

70126875001 Dup
Parameter Units Result RPD Qualifiers

Nitrite as N mg/L <0.050 <0.050

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155842 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 750072 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersNitrite as Nmg/L<0.027</td>0.02704/03/20 23:53

LABORATORY CONTROL SAMPLE: 750073

LCS LCS Spike % Rec Limits Parameter Units Conc. Result % Rec Qualifiers Nitrite as N 1 1.0 102 90-110 mg/L

MATRIX SPIKE SAMPLE: 750074

MS MS 70126875009 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 0.50 Nitrite as N 0.5 99 90-110 mg/L

MATRIX SPIKE SAMPLE: 750076

70126993001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L < 0.050 0.5 0.50 100 90-110

SAMPLE DUPLICATE: 750075

 Parameter
 Units
 70126875009 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

SAMPLE DUPLICATE: 750077

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 70126993001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155726 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001

METHOD BLANK: 749506 Matrix: Water

Associated Lab Samples: 70126875001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 04/03/20 03:22

LABORATORY CONTROL SAMPLE: 749507

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 0.97 97 90-110 mg/L

MATRIX SPIKE SAMPLE: 749508

Date: 04/22/2020 07:57 AM

MS MS % Rec 70126818004 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.050 Nitrate-Nitrite (as N) 0.57 mg/L 0.5 104 90-110

Miliate-Milite (as N) 1119/L 0.000 0.5 0.57 104 90-110

 MATRIX SPIKE SAMPLE:
 749510
 Spike
 MS
 MS
 Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Nitrate-Nitrite (as N) mg/L 6.6 5 11.1 89 90-110 M6

SAMPLE DUPLICATE: 749509

70126818004 Dup
Parameter Units Result Repl Qualifiers

Nitrate-Nitrite (as N) mg/L 0.050 <0.050

SAMPLE DUPLICATE: 749511

 Parameter
 Units
 70126855001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 6.6
 6.6
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 155844 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 750082 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 <0.037</td>
 0.037
 04/04/20 01:20

LABORATORY CONTROL SAMPLE: 750083

LCS LCS Spike % Rec % Rec Limits Parameter Units Conc. Result Qualifiers Nitrate-Nitrite (as N) mg/L 1 0.93 93 90-110

MATRIX SPIKE SAMPLE: 750084

MS MS 70126875009 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 5.0 5 9.9 Nitrate-Nitrite (as N) 99 90-110 mg/L

MATRIX SPIKE SAMPLE: 750086

70126993001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L 1.9 7.2 106 90-110

SAMPLE DUPLICATE: 750085

 Parameter
 Units
 70126875009 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 5.0
 5.0
 0

SAMPLE DUPLICATE: 750087

Date: 04/22/2020 07:57 AM

 Parameter
 Units
 70126993001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 1.9
 1.9
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 157052 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

METHOD BLANK: 756809 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

Phenolics, Total Recoverable

Blank Reporting
Result
Limit
Analyzed
Qualifiers

5.0 04/16/20 15:39

LABORATORY CONTROL SAMPLE: 756810

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable 100 109 109 90-110 ug/L

MATRIX SPIKE SAMPLE: 756811

70126875009 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable <5.0 113 75-125 50 56.7 ug/L

SAMPLE DUPLICATE: 756812

Date: 04/22/2020 07:57 AM

Phenolics, Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Total Recoverable

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156974

QC Batch Method: SM22 4500 NH3 H

Analysis Method: SM22 4500 NH3 H

Analysis Description: 4500 Ammonia

Laboratory: Pace

Pace Analytical Services - Melville

Associated Lab Samples: 70126875001

METHOD BLANK: 756471 Matrix: Water

Associated Lab Samples: 70126875001

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.050 0.050 04/15/20 15:52

LABORATORY CONTROL SAMPLE: 756472

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Nitrogen, Ammonia mg/L 1 0.99 99 90-110

MATRIX SPIKE SAMPLE: 756473

70127799001 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Nitrogen, Ammonia mg/L <0.10 1 0.78 78 75-125

SAMPLE DUPLICATE: 756474

Date: 04/22/2020 07:57 AM

ParameterUnits70127799001 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L<0.10</td>0.16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156975 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012

METHOD BLANK: 756475 Matrix: Water

Associated Lab Samples: 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009, 70126875010,

70126875011, 70126875012

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersNitrogen, Ammoniamg/L<0.050</td>0.05004/15/20 16:26

LABORATORY CONTROL SAMPLE: 756476

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1 96 Nitrogen, Ammonia mg/L 0.96 90-110

MATRIX SPIKE SAMPLE: 756477

70126875009 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.12 0.86 74 75-125 M1 Nitrogen, Ammonia mg/L

SAMPLE DUPLICATE: 756478

Date: 04/22/2020 07:57 AM

Parameter Units Parameter Units Parameter Units Parameter Units Result Result RPD Qualifiers O.12 C.10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156982 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

METHOD BLANK: 756492 Matrix: Water

Associated Lab Samples: 70126875014, 70126875015, 70126875016, 70126875017, 70126875018

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.050 0.050 04/15/20 16:59

LABORATORY CONTROL SAMPLE: 756493

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Ammonia mg/L 0.96 96 90-110

MATRIX SPIKE SAMPLE: 756494

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Nitrogen Ammonia mg/l <0.10 1 0.75 75 75 135

Nitrogen, Ammonia mg/L <0.10 1 0.75 75 75-125

SAMPLE DUPLICATE: 756495

Date: 04/22/2020 07:57 AM

ParameterUnits70127127001 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L<0.10</td><0.10</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

QC Batch: 156175 Analysis Method: EPA 9014 Total Cyanide
QC Batch Method: EPA 9010C Analysis Description: 9014 Cyanide, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008

METHOD BLANK: 752173 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Cyanide ug/L <10.0 10.0 04/08/20 15:12

LABORATORY CONTROL SAMPLE: 752174

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units ug/L 75 72.8 97 85-115

MATRIX SPIKE SAMPLE: 752175

70126875001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 117 Cyanide ug/L 100 117 75-125

SAMPLE DUPLICATE: 752176

Date: 04/22/2020 07:57 AM

Cyanide

 Parameter
 Units
 70126875001 Result Result RPD
 Qualifiers

 Cyanide
 ug/L
 <10.0</td>
 <10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Cyanide

QC Batch: 156359 Analysis Method: EPA 9014 Total Cyanide
QC Batch Method: EPA 9010C Analysis Description: 9014 Cyanide, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875009, 70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016,

70126875017, 70126875018

METHOD BLANK: 752925 Matrix: Water

Associated Lab Samples: 70126875009, 70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016,

70126875017, 70126875018

Parameter Units Blank Reporting Result Limit Analyzed Qualifiers

ug/L <10.0 10.0 04/09/20 13:53

LABORATORY CONTROL SAMPLE: 752926

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 75 72.1 96 85-115 Cyanide ug/L

MATRIX SPIKE SAMPLE: 752927

70126875009 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 100 96.2 75-125 Cyanide 96 ug/L

SAMPLE DUPLICATE: 752928

Date: 04/22/2020 07:57 AM

ParameterUnits70126875009 ResultDup ResultRPDQualifiersCyanideug/L<10.0</td><10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(631)694-3040

QUALITY CONTROL DATA

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

QC Batch: 156658 Analysis Method: EPA 9060A QC Batch Method: EPA 9060A Analysis Description: 9060 TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017, 701

70126875018

METHOD BLANK: 754855 Matrix: Water

Associated Lab Samples: 70126875001, 70126875004, 70126875005, 70126875006, 70126875007, 70126875008, 70126875009,

70126875010, 70126875011, 70126875012, 70126875014, 70126875015, 70126875016, 70126875017,

70126875018

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	1.0	04/13/20 15:56	
Total Organic Carbon	mg/L	<1.0	1.0	04/13/20 15:56	
Total Organic Carbon	mg/L	<1.0	1.0	04/13/20 15:56	
Total Organic Carbon	mg/L	<1.0	1.0	04/13/20 15:56	
Total Organic Carbon	mg/L	<1.0	1.0	04/13/20 15:56	

LABORATORY CONTROL SAMPLE:	754856					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	10	9.5	95	85-115	
Total Organic Carbon	mg/L	10	9.5	95	85-115	
Total Organic Carbon	mg/L	10	9.6	96	85-115	
Total Organic Carbon	mg/L	10	9.6	96	85-115	
Total Organic Carbon	mg/L	10	9.5	95	85-115	

MATRIX SPIKE SAMPLE:	754858						
Parameter	Units	70126875001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Mean Total Organic Carbon	 mg/L	4.0	10	13.5	96	75-125	
Total Organic Carbon	mg/L	4.0	10	13.3	93	75-125	
Total Organic Carbon	mg/L	3.9	10	13.3	94	75-125	
Total Organic Carbon	mg/L	4.0	10	13.4	94	75-125	
Total Organic Carbon	mg/L	4.0	10	14.2	102	75-125	

MATRIX SPIKE SAMPLE:	754860						
		70126875009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	10	10.3	97	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.2	96	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.3	97	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.5	99	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.3	97	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

SAMPLE DUPLICATE: 754857

		70126875001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Mean Total Organic Carbon	mg/L	4.0	3.9	2	
Total Organic Carbon	mg/L	4.0	3.9	2	
Total Organic Carbon	mg/L	3.9	3.9	2	
Total Organic Carbon	mg/L	4.0	3.9	2	
Total Organic Carbon	mg/L	4.0	3.9	2	

SAMPLE DUPLICATE: 754859

Date: 04/22/2020 07:57 AM

Parameter	Units	70126875009 Result	Dup Result	RPD	Qualifiers
Faiailletei	Ullits	Result	Result	KFD	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		
Total Organic Carbon	mg/L	<1.0	<1.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/22/2020 07:57 AM

CH	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
CL	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
H1	Analysis conducted outside the EPA method holding time.
H2	Extraction or preparation conducted outside EPA method holding time.
H3	Sample was received or analysis requested beyond the recognized method holding time.
IC	The initial calibration for this compound was outside of method control limits. The result is estimated.
IL	This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
M6	Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
MS	Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
R1	RPD value was outside control limits.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70126875001	1A	EPA 3005A	156355	EPA 6010C	156361
70126875004	1B	EPA 3005A	156355	EPA 6010C	156361
70126875005	1C	EPA 3005A	156355	EPA 6010C	156361
70126875006	3A	EPA 3005A	156355	EPA 6010C	156361
70126875007	3B	EPA 3005A	156355	EPA 6010C	156361
70126875008	3C	EPA 3005A	156355	EPA 6010C	156361
70126875009	4A	EPA 3005A	156355	EPA 6010C	156361
70126875010	4B	EPA 3005A	156355	EPA 6010C	156361
70126875011	4C	EPA 3005A	156355	EPA 6010C	156361
70126875012	DUP001	EPA 3005A	156355	EPA 6010C	156361
70126875014	11B	EPA 3005A	156355	EPA 6010C	156361
70126875015	12A	EPA 3005A	156355	EPA 6010C	156361
70126875016	12B	EPA 3005A	156355	EPA 6010C	156361
70126875017	EB001	EPA 3005A	156355	EPA 6010C	156361
70126875018	11A	EPA 3005A	156355	EPA 6010C	156361
70126875004	1B	EPA 6010C	157565 157565		
70126875006	3A	EPA 6010C			
70126875014	11B	EPA 6010C	157565		
70126875018	11A	EPA 6010C	157565		
70126875001	1A	EPA 7470A	156137	EPA 7470A	156141
70126875004	1B	EPA 7470A	156137	EPA 7470A	156141
70126875005	1C	EPA 7470A	156137	EPA 7470A	156141
70126875006	3A	EPA 7470A	156137	EPA 7470A	156141
70126875007	3B	EPA 7470A	156137	EPA 7470A	156141
70126875008	3C	EPA 7470A	156137	EPA 7470A	156141
70126875009	4A	EPA 7470A	156137	EPA 7470A	156141
70126875010	4B	EPA 7470A	156137	EPA 7470A	156141
70126875011	4C	EPA 7470A	156137	EPA 7470A	156141
70126875012	DUP001	EPA 7470A	156137	EPA 7470A	156141
70126875014	11B	EPA 7470A	156137	EPA 7470A	156141
70126875015	12A	EPA 7470A	156137	EPA 7470A	156141
70126875016	12B	EPA 7470A	156137	EPA 7470A	156141
70126875017	EB001	EPA 7470A	156137	EPA 7470A	156141
70126875018	11A	EPA 7470A	156137	EPA 7470A	156141
70126875004	1B	EPA 7470A	156937	EPA 7470A	156942
70126875006	3A	EPA 7470A	156937	EPA 7470A	156942
70126875014	11B	EPA 7470A	156937	EPA 7470A	156942
70126875018	11A	EPA 7470A	156937	EPA 7470A	156942
70126875001	1A	EPA 8260C/5030C	155840		
70126875002	TRIP BLANK	EPA 8260C/5030C	155840		
70126875003	STORAGE BLANK	EPA 8260C/5030C	155840		
70126875004	1B	EPA 8260C/5030C	156370		
70126875005	1C	EPA 8260C/5030C	156370		
70126875006	3A	EPA 8260C/5030C	156370		
70126875007	3B	EPA 8260C/5030C	156370		
70126875008	3C	EPA 8260C/5030C	156370		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70126875009	—— 4 A	EPA 8260C/5030C	156370	_	
70126875010	4B	EPA 8260C/5030C	156370		
0126875011	4C	EPA 8260C/5030C	156370		
0126875012	DUP001	EPA 8260C/5030C	156370		
0126875013	TRIP BLANK	EPA 8260C/5030C	156370		
0126875014	11B	EPA 8260C/5030C	156370		
0126875015	12A	EPA 8260C/5030C	156370		
0126875016	12B	EPA 8260C/5030C	156370		
0126875017	EB001	EPA 8260C/5030C	156370		
0126875018	11A	EPA 8260C/5030C	156370		
0120073010	116	E1 A 02000/30300	130370		
0126875001	1A	EPA 8260			
0126875002	TRIP BLANK	EPA 8260			
0126875003	STORAGE BLANK	EPA 8260			
0126875004	1B	EPA 8260			
0126875005	1C	EPA 8260			
0126875006	3A	EPA 8260			
0126875007	3B	EPA 8260			
0126875008	3C	EPA 8260			
0126875010	4B	EPA 8260			
0126875011	4C	EPA 8260			
126875012	DUP001	EPA 8260			
0126875013	TRIP BLANK	EPA 8260			
0126875014	11B	EPA 8260			
0126875015	12A	EPA 8260			
0126875016	12B	EPA 8260			
0126875017	EB001	EPA 8260			
0126875018	11A	EPA 8260			
0126875001	1A	SM22 2120B	155736		
0126875004	1B	SM22 2120B	155850		
0126875005	1C	SM22 2120B	155850		
0126875006	3A	SM22 2120B	155850		
0126875007	3B	SM22 2120B	155850		
0126875008	3C	SM22 2120B	155850		
0126875009	4A	SM22 2120B	155850		
0126875010	4B	SM22 2120B	155850		
0126875011	4C	SM22 2120B	155850		
0126875012	DUP001	SM22 2120B	155850		
0126875014	11B	SM22 2120B	155850		
0126875015	12A	SM22 2120B	155850		
0126875016	12B	SM22 2120B	155850		
0126875017	EB001	SM22 2120B SM22 2120B	155850		
0126875018	11A	SM22 2120B	155850		
0126875016	11A 1A	SM22 2320B	156150		
0126875004	1B	SM22 2320B	156653		
0126875005	1C	SM22 2320B	156653		
0126875006	3A	SM22 2320B	156653		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70126875007	3B	SM22 2320B	156653		
0126875008	3C	SM22 2320B	156653		
0126875009	4A	SM22 2320B	156653		
0126875010	4B	SM22 2320B	156653		
0126875011	4C	SM22 2320B	156653		
0126875012	DUP001	SM22 2320B	156653		
0126875014	11B	SM22 2320B	156653		
0126875015	12A	SM22 2320B	156653		
0126875016	12B	SM22 2320B	156653		
0126875017	EB001	SM22 2320B	156653		
0126875018	11A	SM22 2320B	156653		
0126875001	1 A	SM22 2340C	157400		
	1B				
0126875004		SM22 2340C	157400		
0126875005	1C	SM22 2340C	157400		
0126875006	3A	SM22 2340C	157400		
0126875007	3B	SM22 2340C	157400		
0126875008	3C	SM22 2340C	157400		
0126875009	4A	SM22 2340C	157400		
0126875010	4B	SM22 2340C	157400		
0126875011	4C	SM22 2340C	157400		
0126875012	DUP001	SM22 2340C	157400		
0126875014	11B	SM22 2340C	157400		
0126875015	12A	SM22 2340C	157400		
0126875016	12B	SM22 2340C	157400		
0126875017	EB001	SM22 2340C	157400		
0126875018	11A	SM22 2340C	157400		
0126875001	1A	SM22 2540C	156014		
0126875004	1B	SM22 2540C	156343		
0126875005	1C	SM22 2540C	156343		
0126875006	3A	SM22 2540C	156345		
0126875007	3B	SM22 2540C	156345		
0126875008	3C	SM22 2540C	156345		
0126875009	4A	SM22 2540C	156345		
0126875010	4B	SM22 2540C	156345		
0126875011	4C	SM22 2540C	156345		
0126875012	DUP001	SM22 2540C	156345		
0126875014	11B	SM22 2540C	156509		
0126875015	12A	SM22 2540C	156509		
0126875016	12B	SM22 2540C	156509		
0126875017	EB001	SM22 2540C	156509		
0126875018	11A	SM22 2540C	156509		
0126875016	1A	SM22 3500-Cr B	155777		
0126875004	1B	SM22 3500-Cr B	155852		
0126875005	1C	SM22 3500-Cr B	155852		
0126875006	3A	SM22 3500-Cr B	155852		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

₋ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
70126875007	3B	SM22 3500-Cr B	 155852		
70126875008	3C	SM22 3500-Cr B	155852		
0126875009	4A	SM22 3500-Cr B	155852		
0126875010	4B	SM22 3500-Cr B	155852		
0126875011	4C	SM22 3500-Cr B	155852		
0126875012	DUP001	SM22 3500-Cr B	155852		
0126875014	11B	SM22 3500-Cr B	155852		
0126875015	12A	SM22 3500-Cr B	155852		
0126875016	12B	SM22 3500-Cr B	155852		
0126875017	EB001	SM22 3500-Cr B	155852		
0126875018	11A	SM22 3500-Cr B	155852		
0126875001	1A	EPA 410.4	156172	EPA 410.4	156211
0126875004	1B	EPA 410.4	156172	EPA 410.4	156211
0126875005	1C	EPA 410.4	156172	EPA 410.4	156211
0126875006	3A	EPA 410.4	156172	EPA 410.4	156211
0126875007	3B	EPA 410.4	156172	EPA 410.4	156211
0126875008	3C	EPA 410.4	156172	EPA 410.4	156211
0126875009	4A	EPA 410.4	156172	EPA 410.4	156211
0126875010	4B	EPA 410.4	156172	EPA 410.4	156211
0126875011	4C	EPA 410.4	156172	EPA 410.4	156211
126875012	DUP001	EPA 410.4	156172	EPA 410.4	156211
126875014	11B	EPA 410.4	156172	EPA 410.4	156211
126875015	12A	EPA 410.4	156172	EPA 410.4	156211
126875016	12B	EPA 410.4	156172	EPA 410.4	156211
0126875017	EB001	EPA 410.4	156172	EPA 410.4	156211
126875018	11A	EPA 410.4	156172	EPA 410.4	156211
0126875001	1A	SM22 5210B	155757	SM22 5210B	156588
0126875004	1B	SM22 5210B	155849	SM22 5210B	157401
0126875005	1C	SM22 5210B	155849	SM22 5210B	157401
126875006	3A	SM22 5210B	155849	SM22 5210B	157401
0126875007	3B	SM22 5210B	155849	SM22 5210B	157401
0126875008	3C	SM22 5210B	155849	SM22 5210B	157401
0126875009	4A	SM22 5210B	155849	SM22 5210B	157401
0126875010	4B	SM22 5210B	155849	SM22 5210B	157401
0126875011	4C	SM22 5210B	155849	SM22 5210B	157401
0126875012	DUP001	SM22 5210B	155849	SM22 5210B	157401
0126875014	11B	SM22 5210B	155849	SM22 5210B	157401
0126875015	12A	SM22 5210B	155849	SM22 5210B	157401
0126875016	12B	SM22 5210B	155849	SM22 5210B	157401
126875017	EB001	SM22 5210B	155849	SM22 5210B	157401
126875018	11A	SM22 5210B	155849	SM22 5210B	157401
0126875001	1A	EPA 300.0	157088		
0126875004	1B	EPA 300.0	157088		
0126875005	1C	EPA 300.0	157088		
0126875006	3A	EPA 300.0	157088		
0126875007	3B	EPA 300.0	157088		
0126875008	3C	EPA 300.0	157088		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70126875009	4A	EPA 300.0	157088	_	
70126875010	4B	EPA 300.0	157088		
0126875011	4C	EPA 300.0	157088		
0126875012	DUP001	EPA 300.0	157088		
0126875014	11B	EPA 300.0	157088		
0126875015	12A	EPA 300.0	157088		
0126875016	12B	EPA 300.0	157088		
0126875017	EB001	EPA 300.0	157088		
0126875018	11A	EPA 300.0	157088		
0126875001	1A	EPA 351.2	156965	EPA 351.2	156984
0126875004	1B	EPA 351.2	156965	EPA 351.2	156984
0126875005	1C	EPA 351.2	156965	EPA 351.2	156984
0126875006	3A	EPA 351.2	156965	EPA 351.2	156984
0126875007	3B	EPA 351.2	156965	EPA 351.2	156984
0126875008	3C	EPA 351.2	156965	EPA 351.2	156984
0126875009	4A	EPA 351.2	156965	EPA 351.2	156984
0126875010	4B	EPA 351.2	156965	EPA 351.2	156984
0126875011	4C	EPA 351.2	156965	EPA 351.2	156984
0126875012	DUP001	EPA 351.2	156965	EPA 351.2	156984
0126875014	11B	EPA 351.2	156965	EPA 351.2	156984
0126875015	12A	EPA 351.2	156965	EPA 351.2	156984
0126875016	12B	EPA 351.2	156965	EPA 351.2	156984
0126875017	EB001	EPA 351.2	156965	EPA 351.2	156984
0126875018	11A	EPA 351.2	156965	EPA 351.2	156984
0126875001	1A	EPA 353.2	155726		
0126875004	1B	EPA 353.2	155844		
0126875005	1C	EPA 353.2	155844		
0126875006	3A	EPA 353.2	155844		
0126875007	3B	EPA 353.2	155844		
0126875008	3C	EPA 353.2	155844		
0126875009	4A	EPA 353.2	155844		
0126875010	4B	EPA 353.2	155844		
0126875011	4C	EPA 353.2	155844		
0126875012	DUP001	EPA 353.2	155844		
0126875014	11B	EPA 353.2	155844		
0126875015	12A	EPA 353.2	155844		
0126875016	12B	EPA 353.2	155844		
0126875017	EB001	EPA 353.2	155844		
0126875018	11A	EPA 353.2	155844		
0126875001	1A	EPA 353.2	155724		
0126875004	1B	EPA 353.2	155842		
0126875005	1C	EPA 353.2	155842		
0126875006	3A	EPA 353.2	155842		
0126875007	3B	EPA 353.2	155842		
0126875008	3C	EPA 353.2	155842		
0126875009	4A	EPA 353.2	155842		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70126875010	—— ——————————————————————————————————	EPA 353.2	 155842		
70126875011	4C	EPA 353.2	155842		
0126875012	DUP001	EPA 353.2	155842		
0126875014	11B	EPA 353.2	155842		
0126875015	12A	EPA 353.2	155842		
0126875016	12B	EPA 353.2	155842		
0126875017	EB001	EPA 353.2	155842		
0126875018	11A	EPA 353.2	155842		
0126875001	1A	EPA 420.1	157052	EPA 420.1	157159
0126875004	1B	EPA 420.1	157052	EPA 420.1	157159
0126875005	1C	EPA 420.1	157052	EPA 420.1	157159
0126875006	3A	EPA 420.1	157052	EPA 420.1	157159
0126875007	3B	EPA 420.1	157052	EPA 420.1	157159
0126875008	3C	EPA 420.1	157052	EPA 420.1	157159
0126875009	4A	EPA 420.1	157052	EPA 420.1	157159
0126875010	4B	EPA 420.1	157052	EPA 420.1	157159
0126875011	4C	EPA 420.1	157052	EPA 420.1	157159
0126875012	DUP001	EPA 420.1	157052	EPA 420.1	157159
0126875014	11B	EPA 420.1	157052	EPA 420.1	157159
0126875015	12A	EPA 420.1	157052	EPA 420.1	157159
0126875016	12B	EPA 420.1	157052	EPA 420.1	157159
0126875017	EB001	EPA 420.1	157052	EPA 420.1	157159
0126875018	11A	EPA 420.1	157052	EPA 420.1	157159
0126875001	1A	SM22 4500 NH3 H	156974		
0126875004	1B	SM22 4500 NH3 H	156975		
0126875005	1C	SM22 4500 NH3 H	156975		
0126875006	3A	SM22 4500 NH3 H	156975		
0126875007	3B	SM22 4500 NH3 H	156975		
0126875008	3C	SM22 4500 NH3 H	156975		
0126875009	4A	SM22 4500 NH3 H	156975		
0126875010	4B	SM22 4500 NH3 H	156975		
0126875011	4C	SM22 4500 NH3 H	156975		
0126875012	DUP001	SM22 4500 NH3 H	156975		
0126875014	11B	SM22 4500 NH3 H	156982		
0126875015	12A	SM22 4500 NH3 H	156982		
0126875016	12B	SM22 4500 NH3 H	156982		
0126875017	EB001	SM22 4500 NH3 H	156982		
0126875018	11A	SM22 4500 NH3 H	156982		
0126875001	1A	EPA 9010C	156175	EPA 9014 Total Cyanide	156223
0126875004	1B	EPA 9010C	156175	EPA 9014 Total Cyanide	156223
0126875005	1C	EPA 9010C	156175	EPA 9014 Total Cyanide	156223
0126875006	3A	EPA 9010C	156175	EPA 9014 Total Cyanide	156223
0126875007	3B	EPA 9010C	156175	EPA 9014 Total Cyanide	156223
0126875008	3C	EPA 9010C	156175	EPA 9014 Total Cyanide	156223
0126875009	4A	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
0126875010	4B	EPA 9010C	156359	EPA 9014 Total Cyanide	156402

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70126875

Date: 04/22/2020 07:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70126875011	4C	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
70126875012	DUP001	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
70126875014	11B	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
70126875015	12A	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
70126875016	12B	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
70126875017	EB001	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
70126875018	11A	EPA 9010C	156359	EPA 9014 Total Cyanide	156402
70126875001	1A	EPA 9060A	156658		
70126875004	1B	EPA 9060A	156658		
70126875005	1C	EPA 9060A	156658		
70126875006	3A	EPA 9060A	156658		
70126875007	3B	EPA 9060A	156658		
70126875008	3C	EPA 9060A	156658		
70126875009	4A	EPA 9060A	156658		
70126875010	4B	EPA 9060A	156658		
70126875011	4C	EPA 9060A	156658		
70126875012	DUP001	EPA 9060A	156658		
70126875014	11B	EPA 9060A	156658		
70126875015	12A	EPA 9060A	156658		
70126875016	12B	EPA 9060A	156658		
70126875017	EB001	EPA 9060A	156658		
70126875018	11A	EPA 9060A	156658		

W0#:70126875

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Section C Section A Page: Of Invoice Information: Required Client In Company Attention: La Louth (Alactho) pugessor. Con Ferreit, Williams Address: Copy To: Waste Management Division Regulatory Agency Address: Ro30 Johnson Alcric STE Southampton, NY 11968 Purchase Order #: Email: c_fetten@southamptonlownny_gov State / Location Project Name Pace Project Manager: jennifer aracri@pacelabs.com (631)283-5210 North Sea Landfill Requested Due Date: Project #: Pace Profile # 5479 Line 3 Requested Analysis Filtered (Y/N) codes to left)

B C=COMP) X Preservatives COLLECTED MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water TAL Metals+B & Hardness WT Water (G=GRAB (see valid o Waste Water ww Residual Chlorine (Y/N) BOD, Br, CI, SO4, Color Product SAMPLE ID SL OL WP Soil/Solid START END # OF CONTAINERS Oil One Character per box. Wipe MATRIX CODE SAMPLE TYPE AR (A-Z, 0-9/, -) OT Other Na2S203 Sample Ids must be unique Tissue ITEM HNO3 TIME DATE TIME DATE WT 2 no Blank WT WT 5 WT Χ x x WT 6 X WT Х $x \mid x$ 8 WT Х 4A MSD WT WT 10 4B WT 11 40 12 11A WT ACCEPTED BY / AFFILIATION DATE SAMPLE CONDITIONS **ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION** DATE 9:57 Part 360 Baseline age SAMPLER NAME AND SIGNATURE in C PRINT Name of SAMPLER: richard bayettelly SIGNATURE of SAMPLER;

Condition Upon Receipt

	Sample Condition	Upon Receipt
Pace Analytical	Client Name:	Proje WO#:70

2 - Analytical	Sai	iipio o o			Proje WO#: 70126875
Pace Analytical	Client N	ame:			D-1- 04/16/20
	(Y	W Gre	sser		
		rcial Pace	Dther		CLIENT: TOS
ourier. Fed Ex UPS USPS Clie	;iii	_	Sile	=	L. O. Maria
racking #:	CINA	Seals in	tact: Ye	es 🗌 No	Temperature Blank Present: Yes No
custody Seal on Cooler/Box Present:	es 🗆 🖽			(2)	Type of Ice: Wel Blue None
eacking Material: Bubble Wrap Bubble	Bags [Zipi	on Factor:	FO.	2	Samples on ice, cooling process has begun
hermometer Used: TH091		emperature C		(°C):	5.1 Date/Time 5035A kits placed in freezer
Cooler Temperature (°C): 4.4	Cooler re	Miporata			
Temp should be above freezing to 6.0°C				Date and	d Initials of person examining contents: II I 10 138
JSDA Regulated Soil (N/A, water samp	le)	AL AR CA F	L. GA, ID, L	A, MS, NO	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No
JSDA Regulated Soil (N/A, water sample of the samples originate in a quarantine zone within the samples originate in a quarantine zone within the samples of the samples	e United States YES	NO NO			including rawaii and rueno ricor.
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	fill out a Re	gulated Soil	Checklist	(F-LI-C-	010) and include with SCUR/COC paperwork. COMMENTS:
If les to divise t				1.	
Chain of Custody Present	D'Yes	□No		2.	
Chain of Custody Filled Out:	Dyes	□No		3.	
Chain of Custody Relinquished:	(DYes	□No	□N/A	4.	•
Sampler Name & Signature on COC:	GYes	□No	LINIA	5. CeC	e Atrived out of hold
Samples Arrived within Hold Time: V.WY/2	DYes	ØNo.		6.	
Short Hold Time Analysis (<72hr):	Yes	□No		7.	
Rush Turn Around Time Requested:	□Yes	ZNo		8.	
Sufficient Volume: (Triple volume provided for MS/	MSD: DYes	□No		9.	
Correct Containers Used:	Tres				*
-Pace Containers Used:	, □Yes			10.	
Containers Intact:	☐Yes ☐	□N ₀	ZÍNA	11.	Note if sediment is visible in the dissolved container.
Filtered volume received for Dissolved tests	□Yes □Yes	□No		12.	
Sample Labels match COC:	L WT OIL				
-Includes date/time/ID/Analysis Matrix S All containers needing preservation have been che		ŪNo	□N/A	13.	□ HNO₃ □ H₂SO₄ □ NaOH □ HCI
	7				
pH paper Lot # HC9/140/31_ All containers needing preservation are found to b	e in	12		Sample	#
compliance with FPA recommendations	 Ø Yes	□No	□N/A		9
(HNO, H₂SO, HCI, NaOH>9 Sulfide,					when completed: Lot # of added preservative: Date/Time preservative added
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	rease,	595		Initial v	when completed: Lot # of added preservative: DaterTime pressries
DRO/8015 (water). Per Method, VOA pH is checked after analysis			D N/A	14.	*
Samples checked for dechlorination:	□Yes	□No	Pick		
KI starch test strips Lot #			1565388		Positive for Res. Chlorine? Y N
Residual dilorine strips Lol #	□Yes	, DNo	□N/A	15.	
Headspace in VOA Vials (>6mm);	ØYes	unt/2 PNO	_ ON/A	16.	
Trip Blank Present:	√Yes	□No	□N/A		
Trip Blank Custody Seals Present Pace Trip Blank Lot # (if applicable):					Data Required? Y / N
Pace Trip Blank Lot # (If application) Client Notification/ Resolution:				Field	Data Required? Y / N Date/Time:
Person Contacted:					Dater Hille.
Comments/ Resolution:					
Commonds (Costs)					
		44-4-1			Contract of the Contract of th

^{*} PM (Project Manager) review is documented electronically in LIMS.

CHAIN-OF-CUSTODY / Analytical Request The Chain-of-Custody is a LEGAL DOCLIMENT All selection.

PM: JSA

Due Date: 04/16/20

CLIENT: TOS Section C Section B Section A Invoice Information: Required Project Information: Required Client Information: Attention Report To: Fetten, Christine Town of Southampton Company Name: Copy To: Waste Management Division Address Regulatory Agency Address. Southampton, NY 11968 Pace Quote: Purchase Order # c.fetten@southamptontownny.gov State / Location jennifer aracri@pacelabs.com Pace Project Manager: Project Name: North Sea Landfill (631)283-5210 NY Pace Profile #: 5479 Line 3 Requested Due Date Project #: Requested Analysis Filtered (Y/N) C=COMP) valid codes to ! Preservatives COLLECTED MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water DW COD, NH3, NO3, TKN, Pheno TAL Metals+B & Hardness SG Water (G=GRAB Residual Chlorine (Y/N) ww Waste Wate BOD, Br, CI, SO4, Color Product **SAMPLE ID** (see Spil/Solid END Metals START # OF CONTAINERS OL WP One Character per box. Wipe MATRIX CODE SAMPLE TYPE AR (A-Z, 0-9/, -) Other Sample Ids must be unique Tissue NaOH HNO3 ITEM 豆 TIME DATE TIME DATE WT Bothes Sy 4/1/20 @10:00 Vilio 13:15 13:20 WT 1B 14.20 4/2/20 WT 4/1/2 1630 16:45 WT 3A 4/2/2 16:35 4/2/20 16:30 WT 3B 4/2/20 4/2/20 16:05 16.00 WT 4/2/10 15:00 4/2/10/18:42 x x x WT 7 4/2/20 18:47 WT 4A MS 4/4/2 18:42 4A MSD WT 4140 18.30 10 WT 18:10 1865 WT 11 WT 12 11A ACCEPTED BY AFFILIATION DATE SAMPLE CONDITIONS RELINQUISHED BY I AFFILIATION DATE TIME ADDITIONAL COMMENTS 4/4/20 11:45 Part 360 Baseline ₽ age SAMPLER NAME AND SIGNATURE Received on loe (Y/N)
Custody
Sealed
Cooler (Y/N) TEMP in C 153 of 157 PRINT Name of SAMPLER: Lagattolla DATE Signed: SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Company Court of Social Particular Cour	Of 2	2		age :	Pi												7	F	-	_	orma	ce In	Secti Invoi										ction B quired Pro	Rec									www.pac ent Info	ed CI	Section Requir
SCHAMPLE D		- Agency	leter	-				1				7	fer	A	es	to	er	280	-6	0	_				_				ne .	Christine	ten, (Fett						3						ny:	Compa
State Location Property P		y Agency	liator	Regu				_ B	in	mya.	1	17	2#	n	1	يثك	2	mS	70	S	1	_									_		py 10.	1				n	Jivision	nem Ur					and the second second
Processor Proc		ocation	ate / L	Sta		.11		-		46	4/	_		_					_				41 4 1 1								t:	der#	rchase Or	Pur				60	v.gov	itawnny				c.fe	Email:
SAMPLE ID SAMPLE ID SAMPLE ID START END START		-	ALC: UNKNOWN DESCRIPTION			_		+	_			n,	s.con	elabs	gpac	acri(o	er ar						200000					dfill	a Lan	rth Sea	No	e:	oject Name	Pro											Phone:
SAMPLE ID One Character per box. (A.Z. P.B. J.) Sample ids must be unique 13 118 119 119 110 119 110 110 110 110 110 110	STANIS W		-		- L	Y/N)	ered (Filte	ysis	Analy	sted	que	Re	10		-	_	62	9 LIN	54	er m.	Pron	Pace	_	_		_						oject #	Pro					-	- "		e:	ue Date	sted D	Reques
13 118 WT			Chlorine (Y/N)				Metals	s+B & Hardness			NO3,TKN,Phenok	SC	SO4, Color, Cr6		Test			ves	rvati	rese	F	D	INERS	AP AT COLLECTION	D		ECT		STA		9=0	(see	DW WT WW P SL OL WP	ater	Drinking W Water Waste Wa Product Soil/Solid Oil	V V F S									
13 11B WT			Residual (Dissloved	TAL Metal	Cyanide	T0C	COD,NH3,	AIK,NO2,TI	BOD,Br,Cl	8260	Analy	Other	Methanol	Na2S203	NaOH	HO I	H2SO4	Unpreserve	# OF CONTA	SAMPLETER	TIME	DATE	D	TIME	TE	DAT	SAMPLE TYP	MATRIX COD	OT		Other	(1	9/,-)	A-Z, 0-9	(A			ITEM #
14 12A 15 12B WT 16 12B WT 17 DUPOO1 WT THE \$15 4/2/6 6/5 20 21 22 23 24 ADDITIONAL COMMENTS DELINQUISHED BY APPRIATION DATE TIME ACCEPTED BY I APPRIATION DATE TIME			L	\sqcup	\perp	1		х	x i	x 2	х	х	х	X .																	т	W												1	
16 EBOO1 17 DUPOC1 18 Try Blank 19 20 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY APPRIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTE								x	x	x	x	x	x	x										1			T																3	11	13
16 EB001 WT								x	×	x .	v l	V	v l	Ţ	Ī	\exists		П	T		1						t					1							_			-	4	12	14
17 DUPOO1 18 TO Black 19 20 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY I APPRIATION DATE TIME ACCEPTED BY I APPRIATION DATE TIME SAMPLE COI Part 360 Baseline					1		\neg		П				$\hat{}$	^	ŀ	\dashv	Н	H	+	+	-	\vdash	1	+			╆			-	/Τ	W											В	12	15
17 DUPO01 WT 1/15 \$15 4/25 \$15 18 TO Black 19 20 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY JAPFINATION DATE TIME ACCEPTED BY IAFFINATION DATE TIME SAMPLE COLUMN TIME SAMPLE SAMPLE COLUMN TIME SAMPLE			. -	+	+	+	-	×	X	X .	X	Х	X	X	-	\dashv		-	1	4	_		┡		70.00	, ,	_				/т	w											1001	F	16
19 20 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY I APPRIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME SAMPLE CON Part 360 Baseline V V V May 11:48 H6:48			ŀ	\sqcup	+	_		x	х	х	x	х	х	х	-										8-15	12/2	4	815	10	4/4	/T	w												0	
20 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY / APPRILATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE COL Fan 360 Baseline ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE COL WINDS 11:48 16:48			-	\dashv	+		_	_	_																														26	la	B	0	Tra		1,447,5
21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY / AFFINATION DATE TIME ACCEPTED BY / AFFINATION DATE TIME SAMPLE COL CHICAGO II. 48 Which are the sample col CHICAGO II. 48 CHICAGO III.			-	+	\perp	-	4	4							-				_	1			L																	•		V			
21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY I APPRILATION DATE TIME ACCEPTED BY I APPRILATION DATE TIME SAMPLE COI CUI CUI 20 11:48 Part 360 Baseline CUI CUI 20 11:48 V V V V V V V V V V V V V V V V V V V			1	Ш	\perp										١																													100	3.0
22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME SAMPLE CON CLICY 20 16:48 Part 360 Baseline 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																								T			1				T	1													20
23 24 ADDITIONAL COMMENTS RELINQUISHED BY / APPRILATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE COMMENTS Part 360 Baseline V V V V V V V V V V V V V V V V V V																				1	٦		T	T			+				+	t				_		_		_					21
ADDITIONAL COMMENTS RELINQUISHED BY / AFFISIATION DATE TIME ACCEPTED BY / AFFISIATION DATE TIME SAMPLE COMMENTS CLICY CLICY V V ACCEPTED BY / AFFISIATION DATE TIME SAMPLE COMMENTS CLICY V ACCEPTED BY / AFFISIATION DATE TIME SAMPLE COMMENTS CLICY V ACCEPTED BY / AFFISIATION DATE TIME SAMPLE COMMENTS CLICY CLI					T		ī							П				T	1	+	7	Г		\dagger			t			+-	+	╁												1	22
ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE COMMENTS Part 360 Baseline Part 360 Baseline ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AF			Ιt	+	\top	\top					Н					Н		╁	+	+	-	-	+	+						+-	+	1												3	23
Part 360 Baseline Part 360 Baseline ADDITIONAL COMMENTS RELINQUISHED BY APPRILATION DATE IMME ACCUPACY 16:148 Part 360 Baseline	DITIONS	SAMPLE C			ME	TII		DATE			Ш		TION	CIL IA	LAE	n PV	EDTE	450	P	1200			+				_			1_		┸												4	24
Part 360 Baseline				+				-		_			LIGH	7	1	וםע	EPIC	ACC		- 8		_			-44.40		TION	APPIBLAT	BY	JISHED E	LINQU	REL	1			VII.	s	MENTS	COMM	ONAL C	ADDITIO		(5)m		123
			\exists	L			_	_	_		5	ú	P	7	21	2	1		2	1	18	.1	0 1					7	Į	1	_	1	\Y										eline	60 Bas	Part 3
													1																																7
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE		Б	ا ن	١,	20	58	0.5	E		165	MEG	W.		4	4													II CSII																2	age
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Signed: DATE Signed: PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Signed: PRINT Name of SAMPLER: PRINT Name of SAMPLER: DATE Signed: PRINT Name of SAMPLER: DATE Signed: PRINT Name of SAMPLER: PRINT Name of SAMPLER: DATE Signed: PRINT Name of SAMPLER: PRINT Name of SAMPLER: DATE Signed: PRINT Name of SAMPLER: PRINT NA	Sealed Cooler (Y/N) Samples Intact	Received se (Y/N)	⊆			_		20	17	d:	igned	E Si	DAT		ر	4	110	++0	aya	V	ron	Ric																						7	154 01

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

		Section D							Sect	ion C																г	_					\neg
Section	A d Client Information:	Section B Required Pro	ioct Infe	ormation:						ice Info	ormati	on:														- 1	Pag	е •	1	Of		1
Compan	Tours of Southampton			Christine				_		ntion: 🔏	_			- sec	110				_					ĺ			1 0.5	•			_	
Address		Сору То	renen,	Christine						pany N						10	11	3	i	_												
-	npton, NY 11968	оору топ							Addr		1.4				our					B	de	50		13			R	egula	tory Age	ıcy		133
	c_felten@southamptontownny.gov	Purchase Ord	er #:						Pace	Quote	1	W	11	116					-													\neg
Phone	(631)283-5210 Fax	Project Name	No	orth Sea La	ndfill				Pace	Projec	et Mari	ager	-	ennife	er.arac	ri@p	acela	bs.c	om,									State	/ Locatio	n	121	
Request	ed Due Date:	Project #:							Pace	e Profile	e #:	5479	9 Line	3															NY			=
																	201	F	Requ	este	d An	alysi	s Fil	terec	(Y/N)						
	MATRIX Drnking Waler	CODE ater DW WT	(S=GRAB C=COMP)		COLLI	ECTED		TION			Pro	eser	vativ	/es		N/A		9		loui			SS									H
	SAMPLE ID Waste Wat Product Soil/Solid Oil	er WW P SL OL			ART	EN	ID.	AT COLLEC	ERS							s Test		CI,SO4,Color,Cr6		3,TKN,Phe			3 & Hardne	tals				orine (Y/N)				
ITEM #	One Character per box. Wipe (A-Z, 0-9 ', -) Air Other Sample lds must be unique Tissue	AR OT TS	MATRIX CODE SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	HN03	НСІ	NaOH	Na2S203	Methanol	Analyses Test	8260	BOD, Br, CI, SC	Alk, NO2, TDS	COD,NH3,NO3,TKN,Pheno	T0C	Cyanide	TAL Metals+B & Hardness	Dissloved Metals				Residual Chlor				
1	1A		WT	DAIL	THVIL	DATE	THVIL									T	х	x	х	х	х	х	x					Т				\neg
2	1B		wr														X	Х	x	х	х	x	х									
3	1C		WT														x	x	x	х	x	х	х									
4	3A		WT														x	x	x	х	x	х	х									_
5	3B		WT														x	X	x	х	х	х	х									
6	3C		WT														x	x	x	х	x	х	х									_
7	4A		WT														x	x	x	x	x	х	х									\Box
8	4A MS		WT														x	х	x	х	х	х	х									_
9	4A MSD		WT														×	x	x	х	х	х	х				_					_
10	4B		WT													1	×	х	x	x	х	x	х									_
11	4C		WT	1		 ,										1	x	х	х	x	x	х	х				_	1				_
12	11A		WT	7/3/20	8.40	4/3/20	841							\perp		\perp	x	х	x	х	х	х	х					L				
W.	ADDITIONAL COMMENTS	_	-	ISHED BY /		ON	DAT			TIME	1				PTED E	100	FFILL	TIO	N	0)		DATI			TIME		10	SAMPLE	CONDITIO	vs	
Part 360	Baseline	tme	EL	INVE	P,		Cilcs	120	16	148	- 6	Ma	1	IN	vE)	_	Y	1	_	1)			3/20		45	+			+	-	\dashv
							•		-		1		$\overline{}$	_	111			(A	26	-1		141.	3/2	১	16	48	+			+	-	-
_											-																					
Page					SAMPLE	R NAME	AND SIG	NAT	URE	8				No.		95	y V	ų į		ij.	H		31	ģ,	Ė	Ġ.	M.	()	5			
Page 155 of						NT Name			1316	Sour		de	04.	(+0	lic.		ī	DA	TE S	gne	d: 1	1.7	2	10				TEMP in C		Custody Sealed Cooler	(Y/N) Samples	Intact (Y/N)
									17	200	25/	- Co					_				-	11	1/	- 14	2			· .	~	1-00		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Address: Waste Southampton, NY 11: Email: c.fetten@sc Phone: (631)2 Requested Due Date	of Southampton e Management Division 968 buthamptontownny.gov 283-5210 Fax	Required Pr Report To: Copy To: Purchase Or Project Nam Project #: MATRIX CODE Drinking Water WT Waste Water WT Waste Water WP Soil/Solid St Other Other Other OT Tissue TS	Letteu ' Ace valid codes to left) det #: e. No TYPE (G=GRAB C=COMP)	Christine orth Sea Lar	COLL	ECTED			Attention Compa Addres Pace C Pace P Pace F	ny Nai s: (5) uote: roject	me P	a Le Lori Bristo Th	jennifi ie 3		de		s.com,	,	I Analy		ltered	1 (Y/N)	Pag	Regulat State	2 tory Agen / Location NY		2
Address: Waste Southampton, NY 11! Email: c.fetten@sc Phone: (631)2 Requested Due Date	e Management Division 968 buthamptontownny,gov 283-5210 Fax 3: SAMPLE ID ne Character per box. (A-Z, 0-9 /, -)	Copy To: Purchase Or Project Mam Project #: MATRIX CODE Drinking Water DW Water WW Parle WW Psoll/Solid SL Oil OL Wipe WP Air AR Other OT	code (see valid codes to left) #: # YOE (C=GRAB C=COMP)	orth Sea Lar	COLL	ECTED			Compa Addres Pace C Pace P	ny Nai s: (_s uote: roject	Manaç	ger 479 Li	jennifi ie 3	H. I	i@pa	part.	s.com,	,			Itered	H (V/N)	F	State	/ Location		
Southampton, NY 11! Email: c.fetten@sc Phone: (631)2 Requested Due Date	968 buthamptontownny.gov 283-5210 Fax s: SAMPLE ID ne Character per box. (A-Z, 0-9 /, -)	Purchase Or Project Mam Project #: MATRIX CODE Drinking Water DW Water WT Waste Water WW Product P Soil/Soild SL Soil/Soild SL Wipe WP Air AR Other OT	CODE (see valid codes to left) TYPE (G=GRAB C=COMP)	STA	COLL	ECTED			Addres Pace C Pace P	s: (_s uote: roject	Manag # 5	/ (ger 479 Li	jennif ne 3	H. I	i@pa	part.	s.com,	,			ltered	1 (Y/N)	F	State	/ Location		
Email: c.fetten@sc Phone: (631)2 Requested Due Date	SAMPLE ID ne Character per box. (A-Z, 0-9 /, -)	Project Nam Project #: MATRIX CODE Drinking Water Water Water Wase Water Work Voil OI Wipe WP Air AR Other OT	CODE (see valid codes to left) TYPE (G=GRAB C=COMP)	STA	COLL	ECTED			Pace C Pace P	uote: roject	Manag # 5	ger 479 Li	jennif ne 3		i@pa		s.com,	,			Itered	(N/Y)		State	/ Location		
Phone: (631)2 Requested Due Date On	SAMPLE ID The Character per box. (A-Z, 0-9 /, -)	Project Nam Project #: MATRIX CODE Drinking Water Water Water Wase Water Work Voil OI Wipe WP Air AR Other OT	CODE (see valid codes to left) TYPE (G=GRAB C=COMP)	STA	COLL	ECTED			Pace P	roject	# 5	479 Li	ne 3	er aracr		celab		uested	l Analy	sis Fi	Itered	(Y/N)					
Requested Due Date	SAMPLE ID ne Character per box. (A-Z, 0-9 /, -)	Project #: MATRIX CODE Drinking Water Water Water Wase Water: WW Product P Soil/Soild SL Oili OL Wipe WP Air AR Other OT	CODE (see valid codes to left) TYPE (G=GRAB C=COMP)	STA	COLL	ECTED					# 5	479 Li	ne 3	er araci		COLLEGE		uested	Analy	sis Fi	Itered	1 (Y/N)					
On ## Son	SAMPLE ID ne Character per box. (A-Z, 0-9 /, -)	MATRIX CODE Drinking Water DW Water WT Waste Water WW Product P Soil/Soild SL Oili OL Wipe WP Air AR Other OT	CODE (see valid	STA		ECTED		_ 							N/A		Req	uested	Analy	sis Fi	Itered	(Y/N)					
On	ne Character per box. (A-Z, 0-9 / , -)	Drinking Water	CODE (see valid	STA		ECTED		CTION			Pres	servat	ives		N/A	П			T				П				
# 5	(A-Z, 0-9 / , -)	Other OT	X COD			Ef	1D	P AT COLLE	NERS						Analyses Test		BOD, Br, Cl, SO4, Color, Cr6 Alk NO2 TDS	COD,NH3,NO3,TKN,Phenol		TAL Metals+B & Hardness	letals			Residual Chlorine (Y/N)			
<u> </u>			MATRIX	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	H2S04	HN03	HCI NaOH	Na2S203	Methanol	Analys	8260	BOD, Br, CI, SC	COD,NH3,N	TOC	TAL Metals	Dissloved Metals		Ц	Residual Ch			
13 11B			WT	4/3/20	930	4/3/6	8.3									х	x x	x	x x	x							
14 12A			WT	4/3/2	710	4/3/8	7:15									х	x x	x	x x	x				╛			
15 12B			WT	4/30	7.30	4/3/2	7:35									x	x x	x	x x	x							
16 EB001			wt	4/3/20												х	x x	x	x x	x							
17 DUP001			WT								П					х	x x	x	x x	x			П				
18															1									1			
19															1	П								7			
20															1												
21															1												
22																											
23																											
24			П																								
	ADDITIONAL COMMENTS		RELINQU	ISHED BY / /	AFFILIATI	ON	DATE		ТІІ	ME		0	ACCE	PTED B	YIAS	FIDAT	TION			DAT	E	TIM	E		SAMPLE	CONDITIONS	3
Part 360 Baseline		En	VE L	INVER	ن إ		CL/C3	120		48	1.	X	~		_	7	ÊU		(4/c	7/20						
							V		V		1	<	4	11		PAZ	60		4	13/2	Ÿ	6:49	5				
Pag					SAMPL	ER NAME	AND SIGI	VAT	URE		7.3 W	201	a / B	(AVIIV)	8.	BU	(VI	e)Vi		90	551		\$ 3		_		
Page 156 of 157					PR	INT Name	of SAMPI	LER:	F	rd	ul	La	yearte	elliq			DATE :	Signed	:	41	31	76		TEMP in C	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)

Sample Condition Upon Receipt

Pace Analytical					1.10	0# . 70	1268	75
Post real	Client N	lame:	Lean		Proje 🔼	U# - / C	11200	04/46/06
	lown	of de	uthom	ptor	PM:	: JSA	Due Date	: 04/16/20
Courier: Fed Ex UPS USPS C	lient Comme	ercial D Pa	ce Dthe	er	CL1	IENT: TOS		
Tracking #:						it		D., G.,
Custody Seal on Cooler/Box Present:	Yes No	Seals	intact:	Yes 🜙	No	Temperature	Blank Present:	□ A62-17 NO
Packing Material:☐Bubble Wrap ☐Bubbl	le Bags 🔲 Zipl	oc Mone	□Other	Λ		Type of Ice:	Wet Blue Nor	ne
Thermometer Used: TH091		on Factor:		7		☐Samples on ic	e, cooling process	has begun
Cooler Temperature (°C):	Cooler Te	emperature	Correcte	d (°C):	3.8_	Date/Time 503	35A kits placed in	freezer
Temp should be above freezing to 6.0°C	_							522
USDA Regulated Soil (N/A, water samp	ple)			Date a	and Initials of p	person examini	ing contents: O(lozloc EU
Did samples originate in a quarantine zone within the		AL. AR, CA.	FL, GA, ID,	LA, MS,	NC,	Did samples orig	nate from a foreign s	ource (international)
NIMA NIV OK OR SC TNI TX or VA (check man):	? I (YES)	I NO					and Puerto Rico)? [
If Yes to either question	i, fill out a Reg	julated Soi	l Checklis	st (F-LI-	C-010) and inc	lude with SCUF	VCOC paperwork	(.
					-	COMIN	ENTS:	
Chain of Custody Present:	DYes	□No		1.				
Chain of Custody Filled Out	ØYes	□No		2.				
Chain of Custody Relinquished:	ÿ Yes	□No		3.				
Sampler Name & Signature on COC:	9Yes	□No	□N/A	4.				
Samples Arrived within Hold Time:	ØYes .	□No		5,				
Short Hold Time Analysis (<72hr):	Z/Yes	□No		6.				
Rush Turn Around Time Requested:	□Yes	ΩNο		7.				
Sufficient Volume: (Triple volume provided for MS/	MSD Dives	□No		8,				
Correct Containers Used:	Z Yes	□No		9.				
-Pace Containers Used:	✓Yes	□No		-				
Containers Intact:	∐Yes	□No	,	10.				
Filtered volume received for Dissolved lests	□Yes	□No	-EN/A	11.	Note if sedime	ent is visible in the	dissolved container.	
Sample Labels match COC:	Dres	□No		12.				
morado data timbera in any	L WIT OIL			1				
All containers needing preservation have been che	Cked AYes	□No	□N/A	13.	☐ HNO ₃	□ H₂SO₄ [J NaOH ☐ I	HCI
pH paper Lot # WCG(55)2								
All containers needing preservation are found to be	in			Sample	÷#			
compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , HCI, NaOH>9 Sulfide,	Yes	□No	□N/A					
NAOH>12 Cvanide)	-000			1			ř	
Exceptions: VOA, Coliform, TOC/DOC, Oil and Gre DRO/8015 (water).	5436,			Initial	when completed:	Lot # of added p	reservative: Date/Tin	ne preservative add
Per Melhod, VOA pH is checked after analysis			-/					
Samples checked for dechlorination:	□Yes	□No	PNA	14.				
KI starch test strips Lot #					Positive for Ro	es. Chlorine? Y	N	
Residual chlorine strips Lot #	□Yes	ØNo	□N/A	15.				
Headspace in VOA Vials (>6mm):		□No	□N/A	16.				
Trip Blank Present:	ØYes □#es	□No	□N/A					
Trip Blank Custody Seals Present	□∦es	2,40	_, ,,,,,					
Pace Trip Blank Lot # (if applicable):				Field (Data Required?	Y	/ N	
Client Notification/ Resolution:				, ,0,0 (Date/Time:			
Person Contacted:						-		
Comments/ Resolution:								

^{*} PM (Project Manager) review is documented electronically in LIMS.

PREMIER ENVIRONMENTAL SERVICES, INC.

DATA VALIDATION REPORT
OF THE
TOWN OF SOUTHAMPTON
NORTH SEA LANDFILL

ORGANIC AND INORGANIC ANALYSES OF AQUEOUS SAMPLES

PACE ANALYTICAL SERVICES, INC. MELVILLE, NEW YORK

LABORATORY REPORT NUMBER: 70126874, 70126875

May 2020

Prepared for P.W. Grosser Consulting Bohemia, New York

Prepared by
Premier Environmental Services
2815 Covered Bridge Road
Merrick, New York 11566
(516)223-9761

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR: Volatile Organic Analyses

SITE: North Sea Landfill-Town of Southampton

CONTRACT LAB: Pace Analytical Services, Inc.

Melville, New York

REPORT NO.: 70126875

REVIEWER: Renee Cohen

DATE REVIEW COMPLETED: May 2020

MATRIX: Aqueous

The data validation was performed according to the guidelines in the described in the New York State Department of Environmental Conservation, Division of Environmental Remediation, Guidance for the Development of Data Usability Summary Reports (DUSR). In addition, the data has been reviewed using the protocol specified in the NYS Analytical Services Protocol ('05).

All data are considered valid and acceptable except those analytes which have been rejected "R" (unusable). Due to various QC problems, some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material, "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All actions are detailed on the attached sheets.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

This data reports includes fourteen (14) aqueous samples including one (1) field duplicate sample. In addition, one (1) Equipment Blank sample and one (1) Trip Blank sample were submitted with these field samples. The samples associated with this data set were collected and received at Pace Analytical Services, Inc. located in Melville, New York on April 2, 2020 for the analyses listed on the chain of custody documents that accompanied these samples to the laboratory. The cooler temperatures were within QC limits upon receipt. The samples were analyzed for Volatile Organic Analytes (EPA Method 8260C), Total Metals and Miscellaneous Wet Chemistry analytes as specified on the Chain of Custody (COC) documentation that accompanied the samples to the laboratory.

A cross-reference between Field Sample ID and Laboratory Sample ID is located in Table 1 of this report. Copies of the definitions that may be used to qualify data results are located in Appendix A of this report. Copies of qualified data result pages are located in Appendix B of this report and a copy of Chain of Custody (COC) documentation associated with sampling event is located in Appendix C.

This review is for the subset of samples that were marked on the Chain of Custody for Volatile Organic Analytes. A subset of these samples was also analyzed for Total and Dissolved Metals and miscellaneous wet chemistry analytes. The review of these inorganic analytes is located in stand-alone data review reports within this validation report.

1. OVERVIEW:

The client requested that five (5) percent (%) of the samples in this data set be reviewed. One (1) discreet sample points was chosen for Volatile Organic Data review (VOA). A full data review of the sample chosen will be performed.

The samples in this data set were analyzed using EPA Test Methods for the Evaluation of Solid Waste (SW 846), Method 8260C. The project target analytes were reported by the laboratory. Proper custody transfer of the samples was documented in the laboratory reports. Cooler temperatures were within QC limits. Sample preservation was checked prior to analysis. The samples in this data set were properly preserved.

The following aqueous sample was chosen for the 5 % data review in the VOA fraction: 1A (70126875001).

2. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Preserved volatile organic analyses are required to be analyzed within 10 days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly preserved aqueous samples is 14 days from collection.

The samples in this data set were collected on April 1, 2020 and received at the laboratory on April 2, 2020. The sample analyses associated with this data set was completed on April 3, 2020. The sample chosen for data review and the associated QC samples were prepared and analyzed within ten (10) days of VTSR.

3. SURROGATES:

Each of the samples reported in this data set have been fortified with the method specified surrogate compounds prior to sample preparation/analysis to evaluate the overall laboratory performance and the efficiency of the analytical technique. If the measured surrogate concentrations are outside the QC limits, qualifiers were applied to the effected samples.

Each of the samples in this data set was spiked with the three (3) surrogate compounds 1, 2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene. In house-surrogate recovery limits were reported by the laboratory. The percent recovery of each surrogate compound met QC criteria in the sample chosen for review.

4. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

Site specific MS/MSD analysis was marked on the COC documents that accompanied the samples to the laboratory Site specific MS/MSD was performed on sample 4A. The percent recovery and RPD (%) of the reported target compounds met QC criteria with the exception of Bromochloromethane in the site-specific MS/MSD analysis. Sample 4A was not the sample chosen for the 5% data review, no action was taken based on this QC outlier.

In addition, Batch QC MS/MSD (70126818-004) is reported in this data set. Percent recovery (%) and RPD (%) met QC criteria in the Batch QC analyses. No action was taken based on the results of these Batch QC analyses.

5. BLANK SPIKE ANALYSIS:

The NY ASP protocol requires that a blank spike analysis be performed with each sample batch. The blank spike analysis is used to ensure that the analytical system is in control. The laboratory applied in-house recovery limits for each analyte.

The laboratory performed one (1) laboratory control sample (LCS) analysis is reported with this data set. The LCS was fortified with the complete list of reported target analytes. In-house spike recovery limits were reported for each of target analyte. The percent recovery of target analytes met QC criteria in the reported LCS sample.

6. BLANK CONTAMINATION:

Quality assurance (QA) blanks, such as the method, trip, field, or rinse blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks and Equipment Blank samples are used to measure cross-contamination of samples during field operations. Samples are then qualified based on blank contamination when detected.

A) Method Blank contamination

One (1) aqueous method blank sample (749997) is associated with the sample chosen for review. The method blank sample was free from contamination of target and non-target (TIC) analytes.

B) Equipment Blank contamination

The Equipment Blank sample (EB001) is associated with this data set. The EB sample was free from contamination of target and non-target analytes.

C) Trip Blank contamination

Two (2) Trip Blank samples are reported in this data set (4/3/20, 4/9/20). Each of the Trip Blank samples reported in this data set was free from contamination of target and non-target analytes.

D) Storage Blank contamination

One (1) Storage Blank sample is associated with this data set. The Storage Blank sample is free from contamination of target and non-target analytes.

7. GC/MS CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A) RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. Region II data review requires that the response factor of all analytes be greater than or equal to 0.05 in both initial and continuing calibration analyses. A value less than 0.05 indicates a serious detection and quantitation problem (poor sensitivity). Region II data validation criteria states that if the minimum RRF criteria are not met in an initial calibration the positive results are qualified "J". Non-detect results in the initial calibration with an RRF <0.05 are qualified "R", unusable. If RRF criteria is not met in the continuing calibration curve analysis, affected positive analytes will be qualified "J" estimated. Those analytes not detected are not qualified. The SW-846 Methods cite specific analytes known as System Performance Check Compounds (SPCC). Minimum response criteria are set for these analytes. If the minimum criteria are not met, analyses must stop, and the source of problems must be found and corrected. Data associated with this set has been reviewed for the criteria in the cited in the EPA Method and the Region II criteria.

Initial calibration curve analyses were performed on March 23, 2020 (Instrument 70MS5). Eight (8) calibration standards were analyzed for the initial calibration curve analysis. The RRF of the target analytes was reported on the laboratory form VI in the data report. The RRF of the reported target analytes met QC criteria for the reported target analytes. Following the calibration analysis; an initial calibration verification standard was analyzed (File ID: 13089816 (ICV) was analyzed. The RRF of target analytes met OC criteria.

Two (2) continuing calibration standard analyses are associated with this data set. Continuing calibration standard analyses was performed 4/3/20 (File ID: 13133724) and 4/9/20 (File ID: 13232209). The RRF of reported target analytes met QC criteria in the reported CCV analyses associated with this data set.

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the compounds in the continuing calibration standard to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Region II data validation criteria states that the percent RSD of the initial calibration curve must be less than or equal to 20% (30% CCC compounds). The %D must be <20% in the continuing calibration standard. These criteria have been applied to all target analytes. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects may be flagged "UJ", based on professional judgment. If %RSD and %D grossly exceed QC criteria (>90%), non-detects data may be qualified "R", unusable. Data associated with this set has been reviewed for the criteria in the cited in the USEPA Data Validation Guidelines and the USEPA Region II criteria.

The laboratory reported the Relative Standard Deviation (RSD/%) of the target analytes in the initial calibration curve analysis (Instrument 70MS5: 3/23/20). The RSD (%) of target analytes met QC criteria with the exception of Acetone (29.81%). Acetone has been qualified ("J"/"UJ") in the samples reported in this data set. Following the calibration analysis; an initial calibration verification standard was analyzed (File ID: 13089816 (ICV) was analyzed. The %D of target compounds met QC criteria in the ICV analysis.

Qualified data result pages are located in Appendix B of this report.

7. GC/MS CALIBRATION:

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D) (cont'd):

Continuing calibration verification analyses (CCV) was reported in this data set. CCV analysis was performed on 4/3/20 (File ID: 040320.B) and 4/9/20 (File ID: 040920.B). Percent (%) difference of target analyses met QC criteria in these calibration standard analyses with the exception of that listed below:

Date/File ID: 040320.B\H25660.D

% Difference
24.56
26.16
20.54
27.61
27.60

Date/File ID: 040920.B\H25717.D

Target Analyte % Difference

Iodomethane 25.61

Sample 1A was chosen for the 5% data review. Sample 1A analyzed on 4/3/20. Target analytes reported with a % Difference above QC criteria have been estimated "J"/"UJ" qualified. The other samples reported in this data set were analyzed on 4/9/20.

Qualified data result pages are located in Appendix B of this report.

8. GC/MS INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50%to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non-detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard area count evaluation criteria are applied to all field and QC samples.

The samples in this data set were spiked with the internal standards Pentafluorobenzene, 1, 4-Difluorobenzene, Chlorobenzene-d5 and 1, 4-Dichlorobenzene-d4 prior to analysis. The area counts, and retention time of each internal standard met QC criteria in the field samples and QC samples associated with this data set.

10. GC/MS INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non-detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard area count evaluation criteria are applied to all field and QC samples.

GCMS Internal Standard data was not submitted for in the data report associated with this data set. Sample data has not been qualified based on the results of this QC criteria.

11. FIELD DUPLICATE ANALYSIS:

Field duplicate samples are taken and analyzed as an indication of overall precision. These measure both field and lab precision, therefore, the results may have more variability than lab duplicate samples. Soil samples are also expected to have a greater variance due to the difficulties associated with collecting exact duplicate soil samples. Data was not qualified based on the results of the field duplicate sample data.

Field duplicate sample analysis is not associated with the sample chosen for data review.

The laboratory prepared and analyzed a Batch QC Laboratory Duplicate sample and reported it in this data set. Target analytes were not detected in the sample and/or laboratory duplicate sample analysis. No action was taken.

12. COMPOUND IDENTIFICATION:

Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within ± 0.06 RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary ion intensities with 20% of that in the standard compound.

Fourteen (14) field samples, inc. one (1) Field Duplicate, one (1) Equipment Blank and one (1) Trip Blank sample were marked on the COC for volatile organic analyses. One (1) aqueous sample was chosen for data review and DUS preparation. Sample 1A (70126875001) was analyzed for Volatile Organic analytes by EPA Method 8260C. Target and non-target compounds were not detected in the sample chosen for data review. Tentatively Identified Compounds (TIC's) were analyzed for, none were detected in this sample. The samples were analyzed in accordance with the cited method. Detected analyte results reported between the method detection limit and the reporting limit are "J" qualified by the laboratory.

The laboratory provided the quantitation report, chromatogram and analyte spectra in the New York Sate DEC ASP Category B deliverable that was reported for this data set.

9. GC/MS MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is Bromofluorobenzene (BFB). If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R".

The tune criteria associated with this data set was not included in the laboratory report. Sample data has not been qualified based on this QC criteria.

10. GC/MS INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ± 30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non-detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard area count evaluation criteria are applied to all field and QC samples.

GCMS Internal Standard data was not submitted for in the data report associated with this data set. Sample data has not been qualified based on the results of this QC criteria.

11. FIELD DUPLICATE ANALYSIS:

Field duplicate samples are taken and analyzed as an indication of overall precision. These measure both field and lab precision, therefore, the results may have more variability than lab duplicate samples. Soil samples are also expected to have a greater variance due to the difficulties associated with collecting exact duplicate soil samples. Data was not qualified based on the results of the field duplicate sample data.

Field duplicate sample analysis is not associated with the sample chosen for data review. No action was taken.

12. COMPOUND IDENTIFICATION:

Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within ± 0.06 RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary ion intensities with 20% of that in the standard compound.

Fourteen (14) field samples, inc. one (1) Field Duplicate, one (1) Equipment Blank and one (1) Trip Blank sample were marked on the COC for volatile organic analyses. One (1) aqueous sample was chosen for data review and DUS preparation. Sample 1A (70126875001) was analyzed for Volatile Organic analytes by EPA Method 8260C. Target and non-target compounds were not detected in the sample chosen for data review. Tentatively Identified Compounds (TIC's) were analyzed for, none were detected in this sample. The samples were analyzed in accordance with the cited method. Detected analyte results reported between the method detection limit and the reporting limit are "J" qualified by the laboratory.

The laboratory provided the quantitation report, chromatogram and analyte spectra in the New York Sate DEC ASP Category B deliverable that was reported for this data set.

13. OVERALL ASSESSMENT:

The aqueous samples associated with this data set were collected April 2, 2020. The COC documents that accompanied the samples to the laboratory and indicated which samples were to be analyzed Volatile Organic compounds. The data reported agrees with the raw data provided in the final report.

One (1) sample was reviewed to meet the Quality Assurance Plan requirements. The Volatile Organic analytes/sample results in sample 1A (70126875001) were reviewed in this data set. In addition, the Equipment Blank sample, Storage Blank sample, and Trip Blank were reviewed.

These Volatile Organic data results are acceptable for use with the noted data qualifiers.

Qualified data result pages are located in Appendix B of this report.

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR: Target Analyte List of Metals (TAL)

SITE: North Sea Landfill

CONTRACT LAB: Pace Analytical Services, Inc.

Melville, New York

PROJECT NO.: 70126874

REVIEWER: Renee Cohen

DATE REVIEW COMPLETED: May 2020

MATRIX: Aqueous

The Chain of Custody (COC) documentation associated with this data set listed two (2) aqueous samples. Samples in this data set were analyzed for a subset of Total and Dissolved metals in accordance with the COC documents that accompanied the samples to the laboratory.

The samples in this data set were collected April 1, 2020 and received at Pace Analytical Services, LLC located in Melville, New York on April 2, 2020.

The data evaluation was performed according to the guidelines noted in the "National Functional Guidelines for Inorganic Data Review", January 2010 and the NYSDEC ASP. A Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines of the Division of Environmental Remediation.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

Table 1 of this report contains a cross reference between the Field Sample ID's and the Laboratory Sample ID's. Appendix A of this Data Usability Summary Report (DUSR) contains a summary of the data qualifiers that may be used in the report. Appendix B contains the qualified data result pages. Appendix C contains the Chain of Custody (COC) documents associated with this data set.

The samples in this data set were also analyzed for Miscellaneous Wet Chemistry analytes. The data review associated with these analyses are located in stand-alone Data Usability Report (DUSR). This data review is associated with these Total Metals Analyses.

1. OVERVIEW

This data report includes the analysis of 5% of the aqueous samples that were collected April 1, 2020. The samples were received at the laboratory on April 2, 2020 and analyzed for the parameters indicated on the COC documents that accompanied the samples to the laboratory. Table 1 of this report is a cross reference between the Field Sample ID and Laboratory Sample ID.

Sample LEA PRI (70126874001) was reviewed for Total ICP Metals.

2. HOLDING TIME

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Metals with the exception of Mercury, is required to be digested and analyzed within 180 days of Verified Time of Sample Receipt (VTSR). Mercury samples are to be digested and analyzed within 26 days of VTSR.

The Total ICP metal aqueous sample (LEA PRI) chosen for review was prepared/digested for ICP metals in one (1) batch on April 7, 2020. The sample digestate and associated QC samples were analyzed in one (1) analytical sequence on April 8, 2020.

3. CALIBRATION ANALYSIS

Inductively Coupled Plasma (ICP) was utilized for these analyses. The ICP was calibrated using the calibration standards required by the manufacturer. An initial calibration verification (ICV) standard is then analyzed to verify instrument calibration. One (1) continuing calibration standard was analyzed after each ten (10) field samples.

One (1) ICP analytical sequence is associated with this data set. The ICP sequence was analyzed April 7, 2020. The sample chosen for review (LEA PRI) was analyzed for Total ICP metals on April 8, 2020.

The ICV and CCV standards associated with the analytical sequence met QC criteria.

4. ICP CRDL STANDARD

The CRDL standard is used for the verification of instrument linearity near the CRDL. The CRDL standard control limits are 70%-130% recovery. If the CRDL standard falls outside of the control limits, associated data less than or equal to the 10X the CRDL are qualified estimated (J or UJ) or rejected (R) depending on the recovery of the CRDL standard and the concentration of the analyte in the sample. When the CRDL standard exceeds the control limit, indicating a high bias samples are qualified estimated (J or UJ).

The laboratory analyzed one (1) CRDL standard with the Total ICP analytical sequence associated with this data set. This validator applied limits of 70-130% to review each target analyte. The CRDL recovery of the reported target analytes met QC criteria in the opening CRDL and closing CRDL standard.

5. ICP INTERFERENCE CHECK STANDARD

The Interference Check Standard (ICS) is used to verify the laboratory interelement and background correction factors of the ICP. Two solutions comprise the ICS A and ICS AB. Solution A consists of the interferent metals while solution AB is the group of target analytes and the interferent metals. An ICS analysis consists of analyzing both solutions consecutively for all wavelengths used for each analyte reported by ICP. The ICP ICS standards are to be analyzed at the beginning and end of each analytical run. The results are to fall within control limits of +/-20% of the true value.

The laboratory analyzed one (1) ICSA and one (1) ICSAB standard at the beginning and end of the ICP analytical sequence reported with this data set. These QC samples are used to verify the laboratories interelement and background correction factors of the ICP. The recovery of the ICSA/AB standards met QC criteria in the analytical sequences associated with these Total metal analyses.

6. MATRIX SPIKE (MS) ANALYSIS

The spike sample analysis provides information about the effect of the sample matrix upon the digestion and measurement methodology. The spike control limits are 75%-125% when the sample concentration is less than four (4) times the spike added. If the matrix spike recoveries fall in the range of 30%-74%, the sample results are may be biased low and are qualified as estimated (J or UJ). If the matrix spike recoveries fall in the range of 126%-200%, sample results may be biased high. Positive results are qualified estimated (J). If the spike recovery is greater than 125% and the reported sample result is less than the IDL the data point is acceptable for use. If the matrix spike recovery is greater than 200%, the associated sample data are unusable and are rejected (R). If matrix spike results are less than 30%, the associated non-detect results are qualified unusable and rejected (R), and the results reported above the IDL are qualified estimated (J).

Site specific Matrix Spike analysis was not reported in this data set. The laboratory prepared and analyzed matrix spike analysis on a non-project sample. Sample data has not been qualified based on the results of the Batch QC analysis reported in this data set.

7. POST DIGESTION SPIKE ANALYSIS

The post digestion spike sample analysis provides additional information about the effect of the sample matrix upon the digestion and measurement methodology. The post digestion spike is performed for each analyte that the predigestion spike recovery falls outside the 75-125% control limit.

Post digestion spike (PDS) analysis was performed/analyzed on a non-project sample. Sample data has not been qualified based on the results of Batch QC analysis reported in this data set.

8. DUPLICATE SAMPLE ANALYSIS

The laboratory duplicate sample analysis is used to evaluate the laboratory precision of the method for each analyte. If the duplicate sample analysis results for a particular analyte fall outside the control windows of 20% RPD or +/- CRDL, whichever is appropriate depending upon the concentration of the sample, the associated sample results are qualified "J" estimated.

Batch QC duplicate analysis is reported with this data set. Sample data has not been qualified based on Batch QC duplicate analyses.

9. ICP SERIAL DILUTION

The serial dilution analysis indicates whether significant physical or chemical interferences exist due to the sample matrix. If the concentration of any analyte in the original sample is greater than 50 times the instrument detection limit (IDL), an analysis of a 5-fold dilution samples must yield results which have a percent difference (%D) of less than or equal to 10 with the original sample results. If the %D of the serial dilution exceeds the 10% (and is not greater than 100%) for a particular analyte, all the associated sample results are qualified estimated (J).

Batch QC serial dilution analysis was reported in this data set. Sample data has not been qualified based on the results of the Batch QC serial dilution analyses reported in this data set.

10. BLANKS

Blank analyses are assessed to determine the existence and magnitude of contamination problems. The criteria for the evaluation of blanks applies to all blanks, including but not limited to reagent blanks, method blanks and field blanks. The responsibility for action in the case of an unsuitable blank result depends upon the circumstances and the origin of the blank itself. If the problem with any blank exists, then all associated data must be carefully evaluated to determine whether there is inherent variability in the data for that case, or the problem is an isolated occurrence not affecting other data.

The laboratory provided a summary report form for the method blank associated with each of the preparation batches. The ICP method blank sample associated with the Total sample chosen for review was free from contamination of target analytes.

The ICP preparation blank (Total) was free from contamination of the reported target analytes above the reporting limit.

11. LABORATORY CONTROL SAMPLE ANALYSIS (LCS)

The laboratory control sample (LCS) analysis provides information about the efficiency of the laboratory digestion procedure. If the recovery of any analyte is outside the established control limits, then laboratory performance and method accuracy are in question. Professional judgment is used to determine of data should be qualified or rejected.

One (1) Laboratory Control Sample (LCS) was prepared and analyzed with the reported sample preparation batch. The LCS sample was fortified with the reported associated target analytes. A recovery limit of 80%-120% was applied to each target analyte. The recovery of target analytes met QC criteria in the ICP LCS sample.

12. <u>INSTRUMENT QC DATA</u>

The laboratory provided the required annual and semiannual ICP Instrument QC summary report forms in this data report. The annual and semiannual QC studies were performed by the laboratory within the proper time frame.

13. COMPOUND IDENTIFICATION

The samples in this data set were reported as Total Metals. Samples in this data set were analyzed for the project specific ICP metals as specified by the COC documents that accompanied the samples to the laboratory.

Five (5) percent (%) of these samples are chosen for data review. Sample LEA PRI (70126874001) was chosen for the review of Total Metals.

The samples in this data set were analyzed in accordance with the required methods as specified by the COC documents that accompanied the samples to the laboratory. Sample data results are reported in ug/l.

14. FIELD DUPLICATE SAMPLE ANALYSIS

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Soil samples have more variability than aqueous samples due to the non-homogeneity of the soil.

A field duplicate sample is not associated with the sample chosen for data review.

15. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

This data set included the reporting of Total Metals as required by the Chain of Custody Documentation that accompanied the samples to the laboratory. The samples were analyzed for the Total project specific metals designated by the associated COC documents. The Chain of Custody documents noted what samples were analyzed for specified analytes. A copy of the Chain of Custody is located in Appendix C of this report. The sample results are reported in accordance with the cited methods.

The sample chosen for Total Metal data review in this data set is acceptable for use without data qualifiers.

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR: Miscellaneous Wet Chemistry

SITE: Town of Southampton - North Sea Landfill

CONTRACT LAB: Pace Analytical Services, LLC.

Melville, NY

REPORT NO.: 70126874

REVIEWER: Renee Cohen

DATE REVIEW COMPLETED: May 2020

MATRIX: Aqueous

Two (2) samples were listed on the COC documents that accompanied the samples to the laboratory. The samples in this data set were collected April 1, 2020 and received at Pace Analytical Services, Inc. located in Melville, New York on April 2, 2020. The samples were received in good condition.

The data evaluation was performed according to the guidelines and QC criteria cited in the miscellaneous wet chemistry methods that were used for this data set. A Data Usability Summary Report (DUSR) has been prepared in accordance with the guidelines of the Division of Environmental Remediation.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

Table 1 of this report contains a cross reference between the Field Sample ID's and the Laboratory Sample ID's. Appendix A of this Data Usability Summary Report (DUSR) contains a summary of the data qualifiers that may be used in the report. Appendix B contains the qualified data result pages. Appendix C contains the Chain of Custody (COC) documents associated with this data set.

The laboratory performed these wet chemistry analyses based on the COC documentation that accompanied the samples to the laboratory. In addition, these samples were analyzed for Volatile Organic analyses, and Metals (Total and Filtered). The review of these various analyses is reported in stand-alone DUSR reports. This data review is associated with the Miscellaneous Wet Chemistry Analyses.

DATA USABILITY SUMMARY REPORT (DUSR) NORTH SEA LANDFILL

1. OVERVIEW

This data report includes the review of 5% of the aqueous samples that were collected April 1, 2020 and received at the laboratory on April 2, 2020 in good condition. Table 1 of this report is a cross reference between the field sample ID and laboratory sample ID. A total of two (2) field samples were submitted to the laboratory for the analyses listed on the COC documents.

One (1) of the sample in this data set was chosen for the wet chemistry analyte review. The sample chosen for review was sample LEA-PRI (70126874-001).

The samples in this data set were analyzed for the parameters listed on the COC documents. A full data deliverable was generated to report these sample results.

2. HOLDING TIME

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid.

The laboratory chronicles list the date of analysis for each of the Miscellaneous Wet Chemistry analyses. Sample **LEA PRI (70126874001)** was chosen for data review. The holding time for each of the analytes reported in sample MW-8 was performed within the method holding time.

3. CALIBRATION ANALYSIS

The laboratory summarized the initial and continuing calibration data associated with each of the wet chemistry analytes where applicable. The laboratory applied control limits for each of the methods reported. The initial calibration and continuing calibration standard analyses associated with these wet chemistry parameters reported in this data set met QC criteria. The laboratory analyzed a CRDL check standard with the COD, Nitrite, Nitrate-Nitrite, Ammonia, TKN, TOC and Total Phenols analyses. The CRDL check standard met QC criteria in these analyses.

4. MATRIX SPIKE (MS) ANALYSIS

The spike sample analysis provides information about the effect of the sample matrix upon the digestion and measurement methodology. The spike control limits are designated by Pace Analytical Laboratories. The in-house recovery limits are cited on the QC summary report pages for each analyte where applicable.

Site specific matrix spike analysis was performed on sample MW-8 per the COC documents that accompanied the samples to the laboratory. Nitrate-Nitrite (as N) was recovered above QC limit. Nitrate-Nitrite as N was detected in the sample chosen for review. Nitrate-Nitrite as N has been estimated "J" qualified. TKN and Phenols, Total were recovered above QC limit in the site-specific MS analysis. TKN and Phenols, Total was not detected in the sample chosen for review, no action was taken. Additional matrix spike analyses were performed on samples 3B, 4C, 1A, 4B 12 B and 3C. Percent recovery met in-house QC criteria for the reported analytes.

In addition, batch QC matrix spike analysis was reported in this data set with a number of the wet chemistry analyses where applicable. No action was taken based on the results of Batch QC MS (MS/MSD) analyses.

DATA USABILITY SUMMARY REPORT (DUSR) NORTH SEA LANDFILL

5. **DUPLICATE SAMPLE ANALYSIS**

The laboratory duplicate sample analysis is used to evaluate the laboratory precision of the method for each analyte. If the duplicate sample analysis results for a particular analyte fall outside the control windows of 20% RPD depending upon the concentration of the sample, the associated sample results are qualified "J" estimated.

Laboratory Batch QC duplicate analysis was reported with these analyses. RPD (%) was met in each of the Batch QC duplicate analyses reported in this data set. No action was taken based on the results of these Batch QC analyses.

6. BLANKS

Blank analyses are assessed to determine the existence and magnitude of contamination problems. The criteria for the evaluation of blanks applies to all blanks, including but not limited to reagent blanks, method blanks and field blanks. The responsibility for action in the case of an unsuitable blank result depends upon the circumstances and the origin of the blank itself. If the problem with any blank exists, then all associated data must be carefully evaluated to determine whether there is inherent variability in the data for that case, or the problem is an isolated occurrence not affecting other data.

The laboratory provided Method Blank data results for each of the reported Wet Chemistry analytes. The method blank and/or preparation blank associated with these miscellaneous Wet Chemistry methods were free from contamination of the target analyte above the reporting limit.

7. LABORATORY CONTROL SAMPLE ANALYSIS (LCS)

The laboratory control sample (LCS) analysis provides information about the efficiency of the laboratory digestion procedure. If the recovery of any analyte is outside the established control limits, then laboratory performance and method accuracy are in question. Professional judgment is used to determine of data should be qualified or rejected.

The laboratory reported LCS recoveries for each of the wet chemistry analyses. In-house percent recoveries were applied to each analytical method. The recovery of each of each reported LCS sample analysis met QC criteria.

8. COMPOUND IDENTIFICATION

Sample results are reported in accordance with the cited methods. The sample chosen for the 5% data review was analyzed for the following analyses: Alkalinity, Anions by Ion Chromatography (Br, Cl, SO4), BOD, COD, Nitrate as N, Nitrate-Nitrite as N, Nitrite as N, Ammonia, Total Kjeldahl Nitrogen (TKN), Phenolics (Total), Total Hardness as CaCO3, Total Organic Carbon (TOC), Total Dissolved Solids (TDS). Review of the raw data associated with these wet chemistry analyses was performed. Sample LEA PRI (70126874001) was the sample chosen for the wet chemistry data review parameters. Sample results were reported in accordance with the analytical method. Sample results are reported to the base reporting limit (without dilution) for the reported target analytes with the exception of BOD, 5-day (DF 1:2) Chloride (DF 1:5), Nitrogen Kjeldahl, Total (TKN and Nitrogen, Ammonia (DF 1:10). Sample reporting limits have been elevated to reflect the concentration of the analyte within the calibration range of the method.

DATA USABILITY SUMMARY REPORT (DUSR) NORTH SEA LANDFILL

9. FIELD DUPLICATE DATA RESULTS:

Field duplicate samples are taken and analyzed as an indication of overall precision. The field duplicate sample analyses measure both field and laboratory precision; therefore, the results may have more variability than lab duplicate samples.

A field duplicate sample was not collected with the sample chosen for the 5% data review. No action was taken based on this.

10. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

The inorganic analyses associated with this data set included the reporting of two (2) aqueous samples. The samples were analyzed for miscellaneous Wet Chemistry analytes as noted on the COC documents that accompanied the data set. Five percent (5%) of the sample set was to be reviewed. The sample chosen for data review in this sample set was sample LEA PRI (70126874001).

A copy of the associated Chain of Custody documents is located in Appendix C of this report. The sample results are reported in accordance with the cited methods.

The miscellaneous wet chemistry analyte results in sample LEA PRI are acceptable for use without data qualifiers.

APPENDIX A

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are unreliable/unusable. The presence or absence of the analyte cannot be verified.

TABLE 1

CLIENT SAMPLE ID

LABORATORYSAMPLE ID

1A LEA-PRI 70126875001 - VOA 70126874-001 - Target Analyte Metals (TAL), Misc. Wet Chemistry Analytes

APPENDIX A

DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are unreliable/unusable. The presence or absence of the analyte cannot be verified.

APPENDIX B

MSV - FORM I VOA-1 **VOLATILE ORGANICS ANALYSIS DATA SHEET**

1A		

ab Name: Pace Analytical - New York Contract: NORTH SEA LANDFILL BASELINE Date Received: 04/02/2020 10:32 Matrix: Water SDG No.: 70126875 Date Extracted: 04/03/2020 21:27 Lab Sample ID: 70126875001 Date Analyzed: 04/03/2020 21:27 Lab File ID: 040320.B\H25667.D Initial wt/vol: 5 mL Final wt/vol: Dilution: 1 Instrument: 70MSV5 5 ml Percent Moisture:

Initial wt/vol:	5 mL Final wt/vol: 5 mL Dilution: 1	Instrument: 70MSV5 Percent Mo	sture:	_
CAS NO.	COMPOUND	CONCENTRATION UNITS: ug/L	Q	
67-64-1	Acetone	<5.0	U	
107-13-1	Acrylonitrile	<5.0	U	
71-43-2	Benzene	<5.0	U	
74-97-5	Bromochloromethane	<5.0	U	
75-27-4	Bromodichloromethane	<5.0	U	
75-25-2	Bromoform	<5.0	υ	
74-83-9	Bromomethane	<5.0	U	U
78-93-3	2-Butanone (MEK)	<5.0	U	
75-15-0	Carbon disulfide	<5.0	υ	
56-23-5	Carbon tetrachloride	<5.0	U	
108-90-7	Chlorobenzene	<5.0	U	
75-00-3	Chloroethane	<5.0	U	U_
67-66-3	Chloroform	<5.0	U	
4-87-3	Chloromethane	<5.0	U	
9 6-12-8	1,2-Dibromo-3-chloropropane	<5.0	U	
124-48-1	Dibromochloromethane	<5.0	U	
106-93-4	1,2-Dibromoethane (EDB)	<5.0	U	
74-95-3	Dibromomethane	<5.0	U	
95-50-1	1,2-Dichlorobenzene	<5.0	U	
106-46-7	1,4-Dichlorobenzene	<5.0	U	
110-57-6	trans-1,4-Dichloro-2-butene	<5.0	U	
75-34-3	1,1-Dichloroethane	<5.0	U	
107-06-2	1,2-Dichloroethane	<5.0	U	
75-35-4	1,1-Dichloroethene	<5.0	U	
156-59-2	cis-1,2-Dichloroethene	<5.0	U	
156-60-5	trans-1,2-Dichloroethene	<5.0	U	
78-87-5	1,2-Dichloropropane	<5.0	U	
10061-01-5	cis-1,3-Dichloropropene	<5.0	U	
10061-02-6	trans-1,3-Dichloropropene	<5.0	U	
100-41-4	Ethylbenzene	<5.0	U	
591-78-6	2-Hexanone	<5.0	U	_ ∪_
74-88-4	Iodomethane	<5.0	U	- ا تا
75-09-2	Methylene Chloride	<5.0	U	
108-10-1	4-Methyl-2-pentanone (MIBK)	<5.0	U	
400-42-5	Styrene	<5.0	U	
30-20-6	1,1,1,2-Tetrachloroethane	<5.0	U	
79-34-5	1,1,2,2-Tetrachloroethane	<5.0	U	

MSV - FORM I VOA-TIC-1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.							
1A	•						

Lab Name: Pac	e Analytical - New York	Contrac	INE						
Date Received:	04/02/2020 10:32	Matrix:							
Date Extracted:	04/03/2020 21:27	Lab Sample ID: 70126875001							
Date Analyzed:	04/03/2020 21:27	Lab File ID: 040320.B\H25667.D							
Initial wt/vol: _	5 mL Final wt/vol: 5 mL Dilution: 1	Instrum	ent: 70MSV5 Percent Mois	ture:					
CAS NO.	COMPOUND	RT	EST. CONC. UNITS: ppbv	Q					
	No TICs Found								

APPENDIX C

WO#:70126874

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Danula										ION C																١.					
Require		••••		ormation:							ormati												_				age	<u>: </u>	_1	Of	11
Address		Reput to.	runen,	Christine					Atter	ilion.	<u> </u>	<u> </u>	<u> </u>	w.	<u> </u>																
		Сору То							Com	pany t	lama:	7	- 6-(927	<u>ဗာ င</u>	جرد	زار		1_												
	npton, NY 11968								Addr	055 (30	<u> 157</u>	NA	<u>م ۸</u>	عبعة		11		٤,	<u> </u>	Ét	* /	<i>-</i>				Reg	ulator	y Agenc	<u></u>	
	c fatten@southamptontownny.gov	Purchase Or						Pace Quote: Schenia NG																							
Phone	(631)283-5210 Fax tod Due Date	Project Nam	e. N	orth Sea La	andfill				Pace Project Manager jennifer arecrigipacelabs.com, Pace Profile # 5479 Line 1										State / Location												
neques	Ind Das Dasa	Project #							Pace	Prom	6 #.	547	9 Line	e 1														N'	Y		
			1 1													4			Roq	ueste	d An	lysis	Filte	red (Y/N)	-					
			€ a	:												12		1	1	1	1 1				1	1					
	MATRIX	CODE	(see valid codes to left)		COLL	ECTED		,			Pro	eser	vativ	ves		Z.			1	1	1 1	l		- 1		1		esi, i i			
	Drinking W.	aler DW	1 8 1 3					흔	1 1								3	7 7	<u> </u>	I Å					┪						
	Water Waste Wat	WT er WW	2 2	2				Signal Signal	1 1								1 9	3 3	<u> </u>	1 5			- 1	- 1			1	ş			
	Product	P	18 S	[]				1	1	-						1	1		2	85						1		٤١			
l	SAMPLE ID Sol/Sold	SL OL	(see valid o	Σ ST	ART	EI	ND	12	ဖြွ							۱ř	: []	3 3		₹			1		-		1	ē			
	One Character per box.	WP						۵		- I	-		ll	1		8	3 3	5 5	3	ag s	1					1		وَ			
#	(A-Z, 0-9 / , -) Air Other	qw AR TO		:	100	l		鱼	₹	ĝ	-		1 1	[₀]	<u>.</u>	2	SI E	5 5	2	Ş							1	힐			
Ē	Sample Ids must be unique Tissue	15	Ĭž I ≒	: 	161°L			۳	[8]	8 2	5 0		اェا		ᇎ.	Iner Amalycoc Toct	} à	i 2	5	<u>2</u>			1					ä			
ITEM			MATRIX CODE		1 ~			₹	# OF CONTAINERS	Unpreserved	HN03	豆	NaOH	Na2S203	Metha	<u> </u>	CM SULTURY NO COL	3 5	TOC	Routine Metals+As & Hardn				- 1		1		Residual Chlorine (Y/N)			
			2 0		+	DATE	TIME	s	*	<u> </u>	II	Ξ	Z	Z	≥ 0	2	ļ°	16	<u> </u>	1 22	┷	\dashv	_	-	_	┿	₩	<u>"</u>			
1	LEA PRI		wτ	41/2	1240	4/1/20	15:10				- 1				-		I,	. x	. _x	l _x											
,			1	4/1/20		4/1/2			\Box	\top						1		×	×	×							П	Г	***************************************		
2	LEA SEC	·····	WT	111100	14.70	11110		-	+	\dashv	+	\vdash	Н	Н	+	┨	ŕ	×	+^	+^	+	\vdash	\dashv	\dashv	+	+	Н	H			
3			+	_	<u> </u>	ļ			\vdash	_		<u> </u>	Ш	Щ	_	4	\perp	╀	-	+	_		+	+	\perp	+	Н	\vdash			
4																	L	\perp							\perp		Ц	L			
5																ı	1						- [
\$100 A									П	T			П	П		1	T	\top	T	\top			\top		T		П	F			
6		······································	++	-	<u> </u>	 		 	H	\dashv		 	Н	H		1	H	+	╁	+	+	\dashv	\dashv	\dashv	+	┪	H	H			
7			\vdash	-	 	ļ		-	\vdash	-	-	├-	\vdash	\vdash	-	-	ŀ	+	+	+-	+	\dashv	+	+	+	+-	Н	\vdash			
8			$oxed{oxed}$						\sqcup	_		<u> </u>	Ш	Ш	_	_	L	\downarrow	_		$oldsymbol{\perp}$	\perp	4	_	4	ــــــــــــــــــــــــــــــــــــــ	Ц	L			
9																	L														
10																1	Γ										П				
			\Box					Г	\Box	\top	1			П	\top	1	r	T	T	\top	T		1	7	T		П	F			
11			$\dagger \dagger$	1				Н	H	\dashv	+	\vdash	П	H	\neg	1	H	\dagger	\dagger	\dagger	Ħ	\vdash	\dashv	\top	+	\top	Н	F			
12	ADDITIONAL COMMENTS		DEI INCII	IISHED BY /	ACENIATIO	DAN	DATE	<u>_</u>	H	TIME	+	Ц	Щ	اللا	PTED	BYI)EEN	IAT	- N		1		ATE	+	TIA	I AF	Н		AMPLE C	ONDITION	vs.
Dad 360	Routine + Arsenic					1.,			╀			_	1		<u> </u>			300	3. 1					+							
LEA-Prin							l				1/		7 ≃.		_	_						$4/\varepsilon$	180	9	1:5	7		\perp			<u> </u>
		All	m d	12			4/2/2	ט	10	138			زر					7	100	4		4/1r	by		131						1
·		4110	and the second			<u> </u>	1 11 1		ľ		7			·	1	7			1	h	-	","	<u>,></u>	7	للبنة			\dashv			
															1													-			
70																	•												J		
Page 37 of 38																	,												l		
37 (-									$\ \ $																		ĺ		
of 3																	:														
8																													l		
							l		`																		1	- 1	1		7

DATE Signed:

่าล

Due Date: 04/16/20

CHAIN-OF-CUSTODY / Analytical Request W0#:70126875
The Chain-of-Custody is a LEGAL DOCUMENT AT PM: JSA CLIENT: TOS Section C Section B Section A Invoice Information: Required Project Information: Required Client Information: Attention Report To: Fetten, Christine Town of Southampton Company Name: PW Waste Management Division Address Regulatory Agency Address (50 Coffee Southempton, NY 11968 Pace Quote. Purchase Order#: Email: c.fetten@southamptontownny.gov jenniler arecri@pacelabs.com, State / Location Pace Project Manager: Project Name: North Sea Landfill (631)283-5210 Pace Profile #: 5479 Line 3 NY Project # Requested Due Date Requested Analysis Filtered (Y/N) (see valid codes to teff) (G=GRAB C=COMP) Preservatives COLLECTED MATRIX CODE Drinking Water AIK,NO2,TDS COD,NH3,NO3,TKN,Phenol Metals+B & Hardness BOD, Br, CI, SO4, Color, Cr6 Water Waste Water ww Residual Chlorina (Y/N) P SL OL WP AR OT SAMPLE ID START END One Character per box. MATRIX CODE (A-Z, 0-91, -) HCI NBOH NB2S203 Cyanide Sample Ids must be unique FNOS HEM Other DATE TIME DATE TIME wr BoHles Sin 4/1/20 310:00 13 15 14/210 13820 ט.כי 2 wT 14.20 y/2/10 14.6 wt 3 4/1/2 16:45 1630 WT ЗА 4/2/2 16:35 4/2/20 5 38 WT Yhho 16:00 4/2/20 16:05 WT 6 4/2/10 15:40 4/2/20 19:42 7 WT 1418 18:47 8 4A MS wr 18:40 4/2/2 18:42 .9 4A MSD WT 18-25 4140 18-30 10 WT 1870 1815 11 WT 11A SAMPLE CONDITIONS ACCEPTED BY AFFILIATION DATE TIME RELINQUISHED BY I AFFELIATION DATE TIME . ADDITIONAL COMMENTS 4/4/20 CU/CI2 Part 360 Baseline Page 153 of 157 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Larattolk

SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

	WAR PAZELARS COM			0							Section	on C																	· ·				
Section a	A I Client Information:			Section B Required Pr	oiect Infe	rmation:						ce Info	onna	tion:														L P	age:		2	Of	2
Company	Town of Southampton			Report To:	Fatten,						Atteni		an		L,	N					<i>.</i>				\dashv								
Address.	Town of Southampton Waste Management Di pton, NY 11968 defen@southamptonlowns	rision		Copy To:								any N	lame:	Pu	-0	25	<u>~</u>	Con	بدِ	4_	+e-	7	<u></u>	<u></u>	-	1 200			Redu	latory	Agency		era o ce. Se respués
Southern	pton, NY 11968										Addre	Quote	. (5	30	چ.	<u> </u>		-5	η.	, 112	7 li	7	7	\dashv	10.000							
Email.	c.fetten@southamptontownny			Purchase Or								Projec		nager		jennif							/ -7		┪	, nio n	and the N	,	Stalf	مًا / ف	cation	1:257	750 gjá
Phone:	(631)283-5210	Fex		Project Name	e: No	nh Sea La	ndfill					Profix			9 Lin															NY			
Requeste	od Due Date:			Project #																	Req	ucăto	d An	alýst	Filt	ered	(Y/N)	ж.					
			MATRIX	co0€	s to left)		COLL	CTED		¥			P	rese	rvati	ves		N/>	,,,,								-			3			
	SAMPLE One Character per (A-Z, 0-9 /, -)		Onniung W Water Waste Wat Product Soll/Solid Oil Whee Air Other	aler DW WT	CODE (see valid codes to left) TYPE (G=GRAB C=COMP)	ST	ART	EN	lD	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	nved				33	5	Ton.	Analyses lest		BOD, Br, Cl, SO4, Color, Cre	COD, NH3, NO3, TKN, Pheno			TAL Metals+8 & Hardness	Dissloved Metals			Davidual Chloring (VM)	tai Cholina (Thu)			
ITEM#	Sample lds must be	unique	Tossue	TS	MATRIX CODE SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE	# OF CO	Unpreserved	4230 4230 430 430 430 430 430 430 430 430 430 4		NaOH	Na2S203	Methanol	Other		28 28 28	BOD, Br. Cl. SO	N'OS	5	Cyanida	TAL M	Disslov			0	Kesing			
					wr								1		1			ļ],	x	$ \mathbf{x} _{X}$	$ \mathbf{x} $	x	x	х					L			
13	118				WI	 				Н	Н	十	十	✝	T	П	\neg	7	T	T		Τ.	1	Ī.,	Ī.,				П				
14	12A				wr	<u> </u>	<u> </u>				\vdash	-	-	+	+	\vdash	+	\dashv	P	×	× ×	L X	×	×	ı×.	H	\dashv	+	Н	\vdash			
1.41.					wt							- 1	١		ì				L	x l	x x	(x	x	x	х				Ш				
_15	12B				 	 				П	П			T		П		7	- [.	. [.	. [Ι.,		L,			1	11				
16	E8001				WT	_			29 1 1	<u> </u>	Н	\dashv	-	+-	+-	\vdash	+	-	F	×	× ×	(X	+×	╀	<u> ~ </u>	\vdash	\vdash	+-	Н	\vdash			
t die					wr	1/1/2	815	4/2/2	515						1		1		- 1:	x	x x	(x	x	x	х				Ш	L			
£ 17	DUP001				 "	 	1	 			П		T	T	1	\sqcap			Γ	\Box			Т						11	1			
_:18	Trio Blan	4			1-		<u> </u>	ļ		\vdash	Н	-+-	+	╁	┼┈	+	\dashv	\dashv	ŀ	\dashv	+	╁	╈	╁	 	\vdash	\vdash	+	H	-			
.19	[' ' '	•			11	1	1	·		1	Ш				\perp	Ш	\perp	_	L	4	\perp		1	1	<u> </u>	匚	\sqcup		Н	-			
10					\Box					Π					1					1	-	1				1							
20					╁┼		 			╁╌	Н	\vdash	+	十	╁	+	\dashv	┨	ŀ	十	十	十	十	1	T	Τ			П				
21					\bot		<u> </u>			↓_	Ш			4	1	Щ	\dashv	_	ŀ	4	-	4	-	╀	┡	⊢	\vdash	-	+-1	\vdash			
5-					П		1				1							ı	ı	ı		1	1	1				1		1			
.22					++		+	 		t		\vdash	\top	十	✝	\top	\neg		Ī	7	T	\top	1	Т	П	Г	П		П				
. 23									<u> </u>	<u> </u>		\vdash	4	4	 	1	\rightarrow	4	ŀ	-	+	+	+	-	╄	┼-	\vdash	+	+	┝			
3.4					11			1	ĺ			1 1	١		L	1					- [1	1			11						
24		74 TA 11 1 1 1 1 1 1 1 1	20 miles	1/	Deinio	NOUED BY	(APPAIAT	nu	DAT	F	Г	TIME	丁			ACC	EPTE	D BY	AFF	LIA	NOI				DAT	E .	Т	IME .		S	AMPLE C	CNDITIONS	3
	ADDITIONALO	OWNENTS			1	ASHED BY		EXI.	350.00		₩		_	s.)	\mathcal{H}				$-\mathcal{L}$	–	· Caller			-		7	(4)	10	1	Ť			
Part 360	Baseline			- 1	1	─	7		Q/C	120	1 16	4:4	4				1		<u> </u>	T	pr	//-			102 3/2		16:	48	╁	+			
-									+		+		-						~			-	`	+"	~,,	_	1.0.	1.5	1	\top			
-									 		+		\dashv											+			I^-		1	\dagger			
Page 154 of 15							SAMPL	ER NAME	AND SK	TAME	URE		- ! - :, ;	1.2			7		20. 481			197. 197							1 .		5		
154							L	UNT Name			1	17.54	m	b	ma.	461	lu	L											TEMP in C		Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	se de la S
of 15							Si	GNATURE	of SAM	PLER		4	k	\$	Z	f	nA)	<u></u>	ر		DATE	Sign:	2 ⁴ 5	Ĺ	<i>20</i>				Ę	-	28	388€	Sar Sar

APPENDIX B WELL INSPECTION CHECKLIST

SHP2001 - 1ST SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT

Well No.	1A	Da	te _	4/1/2020
Inspected By	RL	We	ather Conditions	45 Sunny
	WELL EX	TERIOR CON	DITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		x		
Cracked:			x	
Missing:			x	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK	x		
Casing/Manh	nole - Intact:	x		
Lock - Intact:		x		
WELL CASING (STIC	KUP) STRAIGHT	x		
DESIGNATED MEASU	JRING POINT	x		
WELL IS PROTECTED)	x		
WELL IS CLEARLY M	ARKED	x		
	INTERIO	R WELL CON	DITIONS	
DEPTH TO WATER (FEET) 103.27			
DEPTH TO BOTTOM	(FEET) <u>110.10</u>			
PID (ppm)	0.0			

Well No.	1B	Da ⁻	te	4/1/2020
Inspected By	RL	We	ather Conditions	45 Sunny
	WELL EX	TERIOR CON	DITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		x		
Cracked:			x	
Missing:			x	
PONDING OF WATE	R AROUND WELL		x	
PROTECTIVE CASING	G/MANHOLE/LOCK	X		
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASI	JRING POINT	X		
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	X		
	INTERIO	R WELL CON	DITIONS	
DEPTH TO WATER (FEET) 104.50			
DEPTH TO BOTTOM	(FEET) 162.08			
PID (ppm)	0.0			

Well No.	1C	Da	te _	4/2/2020
Inspected By	RL	We	ather Conditions	50 Windy
	WELL EX	TERIOR CON	DITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			x	
Missing:			x	
PONDING OF WATE	R AROUND WELL		x	
PROTECTIVE CASIN	G/MANHOLE/LOCK	X		
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEAS	URING POINT	X		
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	X		
	INTERIO	R WELL CON	DITIONS	
DEPTH TO WATER (FEET) 105.20)		
DEPTH TO BOTTOM	1 (FEET))		
PID (ppm)	0.0			

Well No.	3A	Da	te _	4/2/2020
Inspected By	RL	We	ather Conditions	50 Windy
	WELL EXT	ERIOR CON	DITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		x		
Cracked:			<u> </u>	
Missing:			<u> </u>	
PONDING OF WATE	R AROUND WELL		<u> </u>	
PROTECTIVE CASING	G/MANHOLE/LOCK	x		
Casing/Manh	nole - Intact:	x		
Lock - Intact:		x		
WELL CASING (STICE	KUP) STRAIGHT	x		
DESIGNATED MEASU	JRING POINT	x		
WELL IS PROTECTED)	x		
WELL IS CLEARLY M.	ARKED	x		
	INTERIOR	R WELL CON	DITIONS	
DEPTH TO WATER (I	FEET) 47.12			
DEPTH TO BOTTOM	(FEET) 58.00			
PID (ppm)	0.0			

Well No.	3B	Da	te _	4/2/2020
Inspected By	RL	We	ather Conditions	50 Windy
	WELL EX	TERIOR CON	DITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			x	
Missing:			x	
PONDING OF WATE	R AROUND WELL		x	
PROTECTIVE CASIN	G/MANHOLE/LOCK	x		
Casing/Manh	nole - Intact:	x		
Lock - Intact:		x		
WELL CASING (STIC	KUP) STRAIGHT	x		
DESIGNATED MEAS	URING POINT	x		
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	X		
	INTERIO	R WELL CON	DITIONS	
DEPTH TO WATER (FEET) 43.92			
DEPTH TO BOTTOM	I (FEET)111.50	<u>) </u>		
PID (ppm)	0.0			

Well No.	3C	Da	te	4/2/2020
Inspected By	RL	We	ather Conditions	50 Windy
	WELL EX	TERIOR CON	IDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK	X		
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASU	JRING POINT	X		
WELL IS PROTECTED)	x		
WELL IS CLEARLY M	ARKED	X		
	INTERIO	R WELL CON	DITIONS	
DEPTH TO WATER (FEET) 43.36			
DEPTH TO BOTTOM	(FEET) 176.00	<u> </u>		
PID (ppm)	0.0			

Well No.	4A	Da	te	4/2/2020	
Inspected By	RL	We	ather Conditions	50 Windy	
	WELL EX	XTERIOR CON	DITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			X		
Missing:			X		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASING	G/MANHOLE/LOCK	x			
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEASI	JRING POINT	X			
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 13.10	<u>) </u>			
DEPTH TO BOTTOM	(FEET) 29.70	<u>) </u>			
PID (ppm)	0.0				

Well No.	4B	Da	te _	4/2/2020	
Inspected By	RL	We	ather Conditions	50 Windy	
	WELL EX	CTERIOR CON	DITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		x			
Cracked:			x		
Missing:			x		
PONDING OF WATE	R AROUND WELL		x		
PROTECTIVE CASIN	G/MANHOLE/LOCK	x			
Casing/Manh	nole - Intact:	x			
Lock - Intact:		x			
WELL CASING (STIC	KUP) STRAIGHT	<u> x</u>			
DESIGNATED MEAS	URING POINT	<u> x</u>			
WELL IS PROTECTED)	<u> x</u>			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 13.31	<u> </u>			
DEPTH TO BOTTOM	1 (FEET) 79.89)			
PID (ppm)	0.0				

Well No.	4C	Da ⁻	te _	4/2/2020	
Inspected By	RL	We	ather Conditions	50 Windy	
	WELL EXT	TERIOR CON	DITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		x			
Cracked:			X		
Missing:			X		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASIN	G/MANHOLE/LOCK	X			
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEAS	URING POINT	X			
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) <u>8.64</u>				
DEPTH TO BOTTOM	1 (FEET) 150.4				
PID (ppm)	0.0				

Well No.	6AR	Da	ite	4/1/2020	
Inspected By	RL	We	eather Conditions	45 Sunny	
	WELL EXT	ERIOR CON	IDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			X		
Missing:			<u> x</u>		
PONDING OF WATE	R AROUND WELL		<u> x</u>		
PROTECTIVE CASING	G/MANHOLE/LOCK	X			
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEASI	JRING POINT	X			
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 91.83	_			
DEPTH TO BOTTOM	(FEET) 111.38	_			
PID (ppm)	0.0				

Well No.	6B	Da ⁻	te	4/1/2020	
Inspected By	RL	We	ather Conditions	45 Sunny	
	WELL EX	TERIOR CON	DITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			x		
Missing:			x		
PONDING OF WATE	R AROUND WELL		x		
PROTECTIVE CASING	G/MANHOLE/LOCK	X			
Casing/Manh	ole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STICE	KUP) STRAIGHT	x			
DESIGNATED MEASU	JRING POINT	x			
WELL IS PROTECTED)	x			
WELL IS CLEARLY M.	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (I	FEET) 94.43				
DEPTH TO BOTTOM	(FEET) 145.0				
PID (ppm)	0.0				

Well No.	7A	Da	te	4/2/2020	
Inspected By	RL	We	ather Conditions	50 Windy	
	WELL EX	TERIOR CON	IDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		x			
Cracked:			X		
Missing:			X		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASING	G/MANHOLE/LOCK	X			
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X		Buried	
WELL CASING (STICE	KUP) STRAIGHT	X			
DESIGNATED MEASU	JRING POINT	X			
WELL IS PROTECTED)	X			
WELL IS CLEARLY M.	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (I	FEET) 82.23				
DEPTH TO BOTTOM	(FEET) 96.30				
PID (ppm)	0.0				

Well No.	7B	Da	te	4/2/2020	
Inspected By	RL	We	ather Conditions	50 Windy	
	WELL EX	TERIOR CON	IDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		x			
Cracked:			X		
Missing:			X		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASING	G/MANHOLE/LOCK	X			
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X		Buried	
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEASU	JRING POINT	X			
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 82.26				
DEPTH TO BOTTOM	(FEET) 140.7				
PID (ppm)	0.0				

Well No.	7C	Da	te	4/2/2020			
Inspected By	RL	We	ather Conditions	50 Windy			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			<u> </u>				
Missing:			<u> </u>				
PONDING OF WATE	R AROUND WELL		X				
PROTECTIVE CASING	G/MANHOLE/LOCK	X					
Casing/Manh	nole - Intact:	X					
Lock - Intact:		X		Buried			
WELL CASING (STICE	KUP) STRAIGHT	X					
DESIGNATED MEASU	JRING POINT	x					
WELL IS PROTECTED)	X					
WELL IS CLEARLY M.	ARKED	X					
INTERIOR WELL CONDITIONS							
DEPTH TO WATER (I	FEET) 84.17	7					
DEPTH TO BOTTOM	(FEET) 180.	<u> </u>					
PID (ppm)	0.0						

Well No.	8	Da	te _	4/1/2020	
Inspected By	RL	We	ather Conditions	45 Sunny	
	WELL EX	TERIOR CON	DITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			x		
Missing:			x		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASING	G/MANHOLE/LOCK	x			
Casing/Manh	nole - Intact:	x			
Lock - Intact:		x			
WELL CASING (STIC	KUP) STRAIGHT	x			
DESIGNATED MEASU	JRING POINT	x			
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 77.41	<u></u>			
DEPTH TO BOTTOM	(FEET) 83.93	<u></u>			
PID (ppm)	0.0				

Well No.	9	Da	ite <u>.</u>	4/1/2020	
Inspected By	RL	We	eather Conditions	45 Sunny	
	WELL E	EXTERIOR CON	IDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		x	<u> </u>		
Cracked:			x		
Missing:			x		
PONDING OF WATE	R AROUND WELL		x		
PROTECTIVE CASIN	G/MANHOLE/LOCK	x			
Casing/Manh	nole - Intact:	x			
Lock - Intact:		x			
WELL CASING (STIC	KUP) STRAIGHT	x			
DESIGNATED MEAS	URING POINT	x			
WELL IS PROTECTED)	x			
WELL IS CLEARLY M	ARKED	x			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 74.2	20			
DEPTH TO BOTTOM	1 (FEET) 85.7	<u>"2 </u>			
PID (ppm)	0.0)			

Well No.	11A	Da	te	4/3/2020	
Inspected By	RL	We	ather Conditions	42 Rain	
	WELL EXT	ERIOR CON	DITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		x			
Cracked:			X		
Missing:			X		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASIN	G/MANHOLE/LOCK	x			
Casing/Manh	nole - Intact:	x			
Lock - Intact:		x			
WELL CASING (STIC	KUP) STRAIGHT	x			
DESIGNATED MEAS	URING POINT	x			
WELL IS PROTECTED)	x			
WELL IS CLEARLY M	ARKED	x			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 71.32				
DEPTH TO BOTTOM	1 (FEET) 76.90				
PID (ppm)	0.0				

Well No.	118	Date		4/3/2020				
Inspected By	RL	We	ather Conditions	42 Rain				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			x					
Missing:			x					
PONDING OF WATER AROU	JND WELL		x					
PROTECTIVE CASING/MAN	HOLE/LOCK	X						
Casing/Manhole - Ir	ntact:	X						
Lock - Intact:		x						
WELL CASING (STICKUP) ST	ΓRAIGHT	x						
DESIGNATED MEASURING	POINT	x						
WELL IS PROTECTED		x						
WELL IS CLEARLY MARKED		X						
INTERIOR WELL CONDITIONS								
DEPTH TO WATER (FEET)	73.75							
DEPTH TO BOTTOM (FEET)	120.3							
PID (ppm)	0.0							

WELL INSPECTION CHECKLIST

Well No.	12A	Da	te	4/3/2020					
Inspected By	RL	We	ather Conditions _	42 Rain					
	WELL EX	CTERIOR CON	IDITIONS						
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>					
Intact:		X							
Cracked:			x						
Missing:			x						
PONDING OF WATER	R AROUND WELL		x						
PROTECTIVE CASINO	G/MANHOLE/LOCK	X							
Casing/Manh	ole - Intact:	X							
Lock - Intact:		X							
WELL CASING (STICE	(UP) STRAIGHT	X							
DESIGNATED MEASU	JRING POINT	X							
WELL IS PROTECTED)	X							
WELL IS CLEARLY MA	ARKED	X							
INTERIOR WELL CONDITIONS									
DEPTH TO WATER (F	EET) 79.75	5							
DEPTH TO BOTTOM	(FEET) 89.00)							
PID (ppm)	0.0								

WELL INSPECTION CHECKLIST

Well No.	12B	Da ⁻	te _	4/3/2020
Inspected By	RL	We	ather Conditions	42 Rain
	WELL EX	TERIOR CON	DITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			x	
Missing:			x	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK	x		
Casing/Manh	nole - Intact:	x		
Lock - Intact:		x		
WELL CASING (STIC	KUP) STRAIGHT	x		
DESIGNATED MEASU	JRING POINT	x		
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	x		
	INTERIO	R WELL CON	DITIONS	
DEPTH TO WATER (FEET) 79.14			
DEPTH TO BOTTOM	(FEET) 110.0			
PID (ppm)	0.0			

APPENDIX C MONITORING WELL SAMPLING LOGS

SHP2001 - 1ST SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001							
WELL No./OWNER	_		1A /	Town of Southhamp	ton				
SAMPLE I.D.	_			MW-1A					
SAMPLING POINT		TOC	_	SAMPLED BY	_	RL			
DATE SAMPLED	_	4/1/2020	_	TIME SAMPLED	_	8:40			
WELL USE	_	Monitoring	_						
STATIC WATER ELEVATION 103.27			_	FT. BELOW MEAS	URING POINT	ТОС			
WELL DIAMETER		4	Inches	es					
TOTAL WELL DEPTH 110.10			_	FT. BELOW MEAS	URING POINT	ТОС			
SAMPLING INFORMATION									
		<u> </u>		<u> </u>					
PURGE METHOD Submersible Pump			-	SAMPLE METHOD	Subm	ersible Pump			
PURGE RATE		5 GPM	_	PURGE TIME		5			
CASING VOLUMES	REMOVED	3	_	GALLONS	13.6				
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVE	D _	n/a			
PID (ppm)		0.0	_						
ANALYSIS		Baseline	_	DATE SHIPPED	4	/1/2020			
		SAMPL	ING PARA	METERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling	1			
рН	6.42	6.39	6.21	6.05	6.00	,			
COND	0.383	0.385	0.385	0.384	0.384				
T	11.72	11.74	11.75	11.72	11.70				
ORP	230	247	250	247	255				
TURB	61.0	50.0	40.5	38.3	32.4				
D.O.	9.08	9.07	9.00	8.93	8.80				
		<u> </u>							

CLIENT/PROJECT	No.			Town of Southhampton / SHP2001				
WELL No./OWNER	! -			1B ,	/ Town of Southhamp	oton		
SAMPLE I.D.	_				MW-1B			
SAMPLING POINT	-		TOC		SAMPLED BY			RL
DATE SAMPLED	-		4/1/2020		TIME SAMPLED			13:15
WELL USE	_	1	Monitoring					
STATIC WATER ELEVATION 104.50				FT. BELOW MEASURING POINT TOC			ТОС	
WELL DIAMETER 4			Inches					
TOTAL WELL DEPTH 162.08				FT. BELOW MEASU	RING POINT		тос	
			SAMPL	ING INFO	RMATION			
PURGE METHOD	PURGE METHOD Submersible Pump			_	SAMPLE METHOD	Subr	nersib	le Pump
PURGE RATE		5 G	PM	_	PURGE TIME		23.0)4
CASING VOLUMES	REMOVE)	3	_	GALLONS		115.6	50
SAMPLE APPEARA	NCE _		clear		ODORS OBSERVED			n/a
PID (ppm)		0.	.0					
ANALYSIS		Base	eline		DATE SHIPPED		4/1/20	020
			SAMP	LING PARA	AMETERS			
nΗ	Initial 6.15		1 Vol 6.02	2 Vol 5.98	3 Vol 5.75	Pre-samplin 5.76	ıg	
pH COND	0.020		0.063	0.064	0.063	0.063		
T	11.75		11.83	11.65	11.64	11.68		
ORP	140		157	172	187	184		
TURB	120		120	128	65.6	64.4		
D.O.	9.53		9.23	9.25	9.13	9.11		

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001							
WELL No./OWNER	2 _		1C ,	/ Town of Southhamp	ton				
SAMPLE I.D.	_			MW-1C / DUP001					
SAMPLING POINT	-	ТОС	_	SAMPLED BY	_		RL		
DATE SAMPLED	-	4/2/2020	_	TIME SAMPLED	_		14:20		
WELL USE	-	Monitoring	_						
STATIC WATER ELEVATION 105.2			_	FT. BELOW MEASU	RING POINT	_	TOC		
WELL DIAMETER		4	Inches						
TOTAL WELL DEPTH 201			_	FT. BELOW MEASU	RING POINT	_	TOC		
SAMPLING INFORMATION									
PURGE METHOD Submersible Pump			_	SAMPLE METHOD	Subm	nersible	e Pump		
PURGE RATE		5 GPM	_	PURGE TIME		38.32	2		
CASING VOLUMES	REMOVED	3	_	GALLONS	GALLONS191.60				
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED	_		n/a		
PID (ppm)		0.0	_						
ANALYSIS		Baseline	_	DATE SHIPPED		1/2/20	20		
		SAMPL	ING PARA	AMETERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling	٦			
рН	6.28	6.27	6.21	6.16	6.17	9			
COND	0.25	0.073	0.072	0.073	0.072				
T	11.48	11.32	11.38	11.36	11.38				
ORP	184	211	223	236	236				
TURB	41.3	43.9	223 37.5	36.0	36.2				
D.O.	41.3 8.51	9.03	9.04	8.90	8.92				
2.3.	0.01	5.00	5.0 1	0.00	0.02				

CLIENT/PROJECT	No.	Town of Southhampton / SHP1901							
WELL No./OWNER	₹ _		3A	/ Town of Southham	pton				
SAMPLE I.D.	_			MW-3A					
SAMPLING POINT	_	TOC	_	SAMPLED BY		RL			
DATE SAMPLED	-	4/1/2020	_	TIME SAMPLED		16:45			
WELL USE	-	Monitoring	_						
STATIC WATER ELEVATION 47.12				FT. BELOW MEASU	JRING POINT	ТОС			
WELL DIAMETER		4	Inches						
TOTAL WELL DEP	58.00	_	FT. BELOW MEASU	JRING POINT	ТОС				
		SAMPL	ING INFO	RMATION					
PURGE METHOD Submersible Pump			_	SAMPLE METHOD	Submers	sivle Pump			
PURGE RATE		5 GPM	_	PURGE TIME	4	.30			
CASING VOLUMES	REMOVED	3	_	GALLONS		1.76			
SAMPLE APPEARA	NCE _	clear		ODORS OBSERVED		n/a			
PID (ppm)		0.0	_						
ANALYSIS		Baseline		DATE SHIPPED	4/1/	/2020			
		SAMPI	LING PARA	AMETERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling				
рН	6.61	7.10	7.14	7.17	7.22				
COND	2.60	1.84	1.70	1.56	1.35				
T	11.53	11.57	11.53	11.58	11.59				
ORP	49	66	72	77	85				
TURB	69.2	45.6	42.0	40.0	56.3				
D.O.	7.89	6.17	5.73	5.21	4.80				

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001						
WELL No./OWNER	? _		3B	/ Town of Southhamp	oton			
SAMPLE I.D.	_			MW-3B				
SAMPLING POINT	-	TOC	_	SAMPLED BY		RL		
DATE SAMPLED	-	4/2/2020	_	TIME SAMPLED		16:30		
WELL USE	-	Monitoring	_					
STATIC WATER ELEVATION 43.92			_	FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	111.50	_	FT. BELOW MEASU	RING POINT	ТОС			
		SAMPL	ING INFO	RMATION				
PURGE METHOD Submersible Pump			_	SAMPLE METHOD	Subme	rsible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		27		
CASING VOLUMES	REMOVED	3	_	GALLONS		35.16		
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED		n/a		
PID (ppm)		0.0	_					
ANALYSIS		Baseline	_	DATE SHIPPED	4/2	2/2020		
			_					
		SAMPL	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH	7.28	7.12	7.27	7.14	7.14			
COND	0.161	0.166	0.182	0.179	0.174			
T	11.49	11.88	11.85	11.84	11.85			
ORP TURB	182 59.0	71 62.6	-15 37.9	25.9 23.0	25.9 22.0			
D.O.	2.20	1.02	0.00	0.00	0.00			
D.O.	2.20	1.02	0.00	0.00	0.00			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001						
WELL No./OWNER	₹ _		3C	/ Town of Southham	pton			
SAMPLE I.D.	_			MW-3C/MS/MSD				
SAMPLING POINT	-	TOC	_	SAMPLED BY		RL		
DATE SAMPLED	_	4/2/2020	_	TIME SAMPLED		16:00		
WELL USE	-	Monitoring	_					
STATIC WATER ELEVATION 43.36			_	FT. BELOW MEASU	JRING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	176.00	<u> </u>	FT. BELOW MEASU	IRING POINT	ТОС			
		SAMPL	ING INFO	RMATION				
PURGE METHOD	JRGE METHOD Submersible Pump			SAMPLE METHOD	Submer	rsible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		53		
CASING VOLUMES	REMOVED	3	_	GALLONS 2		55.280		
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED		n/a		
PID (ppm)		0.0						
ANALYSIS		Baseline		DATE SHIPPED 4		2/2020		
		SAMPL	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	7.21	7.58	7.47	7.45	7.42			
COND	0.116	O.117	0.103	0.103	0.103			
Т	11.78	0.12	11.81	11.81	11.81			
ORP	166	158	163	171	171			
TURB	438	58.5	32.4	29.6	29.4			
D.O.	6.19	2.56	3.35	3.39	3.38			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001							
WELL No./OWNER	_		4A	/ Town of Southhamp	oton				
SAMPLE I.D.	-			MW-4A					
SAMPLING POINT	<u>-</u>	ТОС	_	SAMPLED BY	_	RL	-		
DATE SAMPLED	_	4/2/2020		TIME SAMPLED	_	18:4	0		
WELL USE	<u>-</u>	Monitoring	_						
STATIC WATER ELEVATION 13.10			_	FT. BELOW MEASU	RING POINT		тос		
WELL DIAMETER		4	Inches						
TOTAL WELL DEPTH 29.70			_	FT. BELOW MEASUI	RING POINT		тос		
SAMPLING INFORMATION									
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Subm	ersible Pu	mp		
PURGE RATE		5 GPM		PURGE TIME		6.40			
CASING VOLUMES	REMOVED	3		GALLONS		32.00			
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED	_	n/a	a		
PID (ppm)		0.0	_						
ANALYSIS		Baseline		DATE SHIPPED	4	/2/2020			
		SAMPL	ING PARA	AMETERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling	ı			
рН	6.50	5.82	5.56	5.64	5.43	-			
COND	0.147	0.148	0.146	0.145	0.145				
T	11.44	11.47	11.49	11.30	11.59				
ORP	188	230	246	262	270				
TURB	23.9	21.0	22.1	19.2	18.4				
D.O.	6.71	6.46	6.41	6.45	6.43				
5.0.	0.7 1	0.10	0.11	0.10	0.10				

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001						
WELL No./OWNER	2		4B	/ Town of Southhamp	oton			
SAMPLE I.D.	_			MW-4B				
SAMPLING POINT	<u>-</u>	TOC	_	SAMPLED BY		RL		
DATE SAMPLED	_	4/2/2020	_	TIME SAMPLED	_	18:25		
WELL USE	_	Monitoring	_					
STATIC WATER ELEVATION 13.31			_	FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	79.89	_	FT. BELOW MEASU	RING POINT	ТОС			
		SAMPL	ING INFO	RMATION				
PURGE METHOD Submersible Pump			_	SAMPLE METHOD	Subme	rsible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		26.6		
CASING VOLUMES	REMOVED	3	<u> </u>	GALLONS		133.0		
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED	<u> </u>	n/a		
PID (ppm)		0.0	_					
ANALYSIS		Baseline	_	DATE SHIPPED	4/2	2/2020		
			_					
		<u>SAMPL</u>	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
PH	7.92	7.68	7.64	7.46	7.44			
COND T	0.136 12.28	0.136	0.136	0.155	0.155			
ORP	12.28 161	12.37 160	12.38 168	12.45 144	12.42 142			
TURB	21.3	21.4	23.4	24.9	24.8			
D.O.	0.00	0.00	0.00	0.00	0.00			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001						
WELL No./OWNER	2		4C	/ Town of Southhamp	oton			
SAMPLE I.D.	_			MW-4C				
SAMPLING POINT	_	TOC	<u> </u>	SAMPLED BY	_	RL		
DATE SAMPLED	_	4/3/2020	_	TIME SAMPLED	_	18:10		
WELL USE	_	Monitoring	<u> </u>					
STATIC WATER ELEVATION 8.64			<u> </u>	FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	150.4	_	FT. BELOW MEASU	RING POINT	ТОС			
		SAMPL	ING INFO	RMATION				
PURGE METHOD Submersible Pump			_	SAMPLE METHOD	Subme	ersible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		57		
CASING VOLUMES	REMOVED	3	<u></u>	GALLONS		283.57		
SAMPLE APPEARA	NCE _	clear	<u> </u>	ODORS OBSERVED		none		
PID (ppm)		0.0						
ANALYSIS		Baseline	_	DATE SHIPPED	4/	′2/2020		
			_					
		<u>SAMP</u> I	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH COND	8.14 0.344	7.90	7.96 0.712	8.00 0.316	8.00 0.306			
T	12.23	0.355 12.51	0.312 12.51	12.51	12.51			
ORP	183	93	91	43.3	33.4			
TURB	145	140	114	112	100.0			
D.O.	3.34	2.60	3.70	3.80	3.80			

CLIENT/PROJECT	No.			/ SHP2001				
WELL No./OWNER				11A	/ Town of Southha	ampton		
SAMPLE I.D.	_				MW-11A			
SAMPLING POINT	_		тос		SAMPLED BY		RL	
DATE SAMPLED	_		4/3/2020		TIME SAMPLED		9:00	
WELL USE	<u>-</u>	١	Monitoring	ng				
STATIC WATER ELEVATION 71.32				FT. BELOW MEA	SURING POINT		ТОС	
WELL DIAMETER		-	4	Inches	ches			
TOTAL WELL DEPTH 76.90			76.90	<u> </u>	FT. BELOW MEA	SURING POINT		TOC
			SAMPI	LING INFO	RMATION			
PURGE METHOD	Suk	mersil	ble Pump		SAMPLE METHO	D Subr	mersib	le Pump
PURGE RATE		5 G	PM		PURGE TIME	2.3		
CASING VOLUMES	REMOVED)	3		GALLONS		11.16	6
SAMPLE APPEARA	NCE	(orange-ish		ODORS OBSERV	'ED		n/a
PID (ppm)		0.	0					
ANALYSIS		Base	eline		DATE SHIPPED		4/3/20	020
			SAMP	LING PARA	AMETERS			
pH COND	Initial 7.23 0.300		1 Vol 7.12 0.296	2 Vol 7.02 0.290	3 Vol 6.97 0.284	Pre-samplir 6.45 0.282	ng	
T	12.22		12.25	12.40	12.52	12.53		
ORP TURB	0 >1000		0 >1000	0 1000	0 450	0 313		
D.O.	2.43		1.30	0.20	0.00	0.00		

CLIENT/PROJECT N	No		Town	of Southhampton / SI	HP2001	
WELL No./OWNER	_		11B	/ Town of Southhamp	oton	
SAMPLE I.D.	_			MW-11B		
SAMPLING POINT	_	тос	_	SAMPLED BY		RL
DATE SAMPLED	_	4/3/2020	_	TIME SAMPLED		8:30
WELL USE	_	Monitoring	_			
STATIC WATER EL	EVATION	73.75	_	FT. BELOW MEASU	RING POINT	ТОС
WELL DIAMETER		4	_Inches			
TOTAL WELL DEPT	Н	120.3	_	FT. BELOW MEASU	RING POINT	ТОС
		SAMPL	ING INFO	RMATION		
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submei	rsible Pump
PURGE RATE		5 GPM	_	PURGE TIME		18
CASING VOLUMES	REMOVED	3	_	GALLONS 93		93
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED		liquid garbage
PID (ppm)		0.0	_			
ANALYSIS		Baseline	_	DATE SHIPPED	4/3	3/2020
		SAMPL	ING PARA	AMETERS		
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling	
рН	7.08	7.43	6.88	6.83	6.83	
COND	0.241	0.149	0.149	0.146	0.146	
T	12.22	12.24	12.17	12.18	12.15	
ORP	-29	306	296	249	240	
TURB	66.2	60.0	60.0	63.5	58.0	
D.O.	1.08	1.11	1.11	1.10	1.13	

CLIENT/PROJECT	No.	Town of Southhampton / SHP2001					
WELL No./OWNER	_	12A / Town of Southhampton					
SAMPLE I.D.	_			MW-12A			
SAMPLING POINT	_	TOC	_	SAMPLED BY	_	RL	
DATE SAMPLED	_	4/3/2020	_	TIME SAMPLED	_	7:10	
WELL USE	_	Monitoring	_				
STATIC WATER EL	EVATION	79.75	_	FT. BELOW MEASU	RING POINT	ТОС	
WELL DIAMETER		4	Inches				
TOTAL WELL DEP	TH	89.00	_	FT. BELOW MEASU	RING POINT	ТОС	
		SAMPL	ING INFO	RMATION			
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Subme	ersible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		5	
CASING VOLUMES	REMOVED	3	_	GALLONS	24.38		
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED		n/a	
PID (ppm)		0.0	_				
ANALYSIS		Baseline	_	DATE SHIPPED	4/	/3/2020	
		SAMPL	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	6.73	6.71	6.40	6.70	6.70		
COND	0.149	0.125	0.130	0.142	0.146		
T	11.27	12.05	12.05	12.08	12.06		
ORP	277	236	229	206	198		
TURB	128	420	33.4	26.1	23.5		
D.O.	2.37	0.53	6.42	0.18	0.07		

CLIENT/PROJECT	No.	Town			of Southhampton / S	HP2001		
WELL No./OWNER		12B / Town of Southhampton						
SAMPLE I.D.			MW-12B					
SAMPLING POINT	-		тос	<u> </u>	SAMPLED BY	_		RL
DATE SAMPLED	_	4	1/3/2020		TIME SAMPLED	_		7:30
WELL USE	_	٨	1onitoring					
STATIC WATER EL	EVATION	_	79.14		FT. BELOW MEASU	IRING POINT		ТОС
WELL DIAMETER		_	4	Inches				
TOTAL WELL DEP	ΤΗ	_	110.0	<u> </u>	FT. BELOW MEASU	IRING POINT		ТОС
			SAMP	LING INFO	RMATION			
PURGE METHOD	Sub	mersik	ole Pump		SAMPLE METHOD	Subm	nersib	le Pump
PURGE RATE		5 GF	PM		PURGE TIME		12.3	3
CASING VOLUMES REMOVED 3			GALLONS	61.72		2		
SAMPLE APPEARA	NCE		clear		ODORS OBSERVED)		n/a
PID (ppm)		0.0	0					
ANALYSIS		Base	line		DATE SHIPPED		1/3/20	020
			SAMP	LING PARA	AMETERS			
рН	Initial 6.63		1 Vol 6.01	2 Vol 6.56	3 Vol 6.85	Pre-sampling	9	
COND T ORP	0.116 11.71 263		0.120 11.87 278	0.243 11.84 242	0.223 11.81 223	0.223 11.81 223		
TURB D.O.	20.0 3.60		18.0 3.60	18.3 0.80	17.0 0.81	16.8 0.87		

CLIENT/PROJECT No.		Town of Southhampton / SHP1901					
WELL No./OWNER	LEA-PRI / Town of Southhampton						
SAMPLE I.D.			LEA-PRI				
SAMPLING POINT	TOC	_	SAMPLED BY	_	RL		
DATE SAMPLED	4/1/2020	_	TIME SAMPLED	_	15:00		
WELL USE	NA	_					
STATIC WATER ELEVATION	71.32	_	FT. BELOW MEASU	RING POINT	NA		
WELL DIAMETER	NA	Inches					
TOTAL WELL DEPTH	NA	_	FT. BELOW MEASU	RING POINT	NA		
	SAMPL	ING INFO	RMATION				
PURGE METHOD	NA	_	SAMPLE METHOD		Bailer		
PURGE RATE	NA	<u>_</u>	PURGE TIME		NA		
CASING VOLUMES REMOVE	D NA	_	GALLONS		NA		
SAMPLE APPEARANCE	cloudy/turbid	_	ODORS OBSERVED) <u> </u>	leeching pool		
PID (ppm)	NA	<u>_</u>					
ANALYSIS Routine Par	ameters + Arsenic	<u> </u>	DATE SHIPPED	4,	/1/2020		
	SAMPL	ING PARA	AMETERS				
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH -	-	-	-	7.13			
COND -	-	-	-	0.457			
T -	-	-	-	14.52			
ORP -	-	-	-	-10			
TURB -	-	-	-	469 6.74			
D.O	=	-	=	6.74			

CLIENT/PROJECT No.		Town of Southhampton / SHP1901			
WELL No./OWNER		LEA-S	EC / Town of Southh	nampton	
SAMPLE I.D.			LEA-SEC		
SAMPLING POINT	TOC	_	SAMPLED BY		RL
DATE SAMPLED	4/1/2020		TIME SAMPLED		14:20
WELL USE	NA	_			
STATIC WATER ELEVATION	n/a		FT. BELOW MEAS	JRING POINT	NA
WELL DIAMETER	NA	Inches			
TOTAL WELL DEPTH	NA		FT. BELOW MEAS	JRING POINT	NA
	SAMP	LING INFO	RMATION		
PURGE METHOD	NA		SAMPLE METHOD	E	Bailer
PURGE RATE	NA	_	PURGE TIME	-	NA
CASING VOLUMES REMOVED	NA NA		GALLONS		NA
SAMPLE APPEARANCE	turbid	_	ODORS OBSERVE	D	septic
PID (ppm)	NA				
ANALYSIS Routine Para	ameters + Arsenic		DATE SHIPPED	4/	1/2020
	SAMP	LING PARA	AMETERS		
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling	
pH -	-	Z V OI	J V OI	7.59	
COND -	_	_	_	0.1	
T -	_	_	_	12.66	
ORP -	_	_	_	-13	
TURB -	_	_	_	423	
D.O				11.5	

APPENDIX D 6 NYCRR PART 360-2: LANDFILLS

SHP2001 - 1ST SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT

Division of Solid & Hazardous Materials

6 NYCRR Part 360 Solid Waste Management Facilities Title 6 of the Official Compilation of Codes,

Rules and Regulations

Revised November 24, 1999

Reprinted March 2001

New York State Department of Environmental Conservation

George E. Pataki, Governor

Erin M. Crotty, Acting Commissioner

6 NYCRR PART 360

SOLID WASTE MANAGEMENT FACILITIES

TABLE OF CONTENTS

		Page
SUBPART 360-1	GENERAL PROVISIONS	
Section 360-1.1	Purpose and applicability	1-1
(a) Purpose		
(b) Applicability		
Section 360-1.2	Definitions	1-1
(a) Solid waste and 1	related terms	
(b) Other definitions	of general applicability	
Section 360-1.3	References	1-14
(a) Federal		
(b) Other		
Section 360-1.4	Enforcement, inspection and reporting	1-15
(a) Enforcement		
(b) Inspection		
(c) Reporting		
Section 360-1.5	Prohibited disposal	1-16
(a) Solid waste disp	osal facilities	
(b) Hazardous waste	e disposal facilities	
Section 360-1.6	Severability	1-17
Section 360-1.7	Permit requirements, exemptions and variances	1-17
(a) Permit requirem	ents	
(b) Exemptions		
(c) Variances		
Section 360-1.8	Permit application and registration procedures,	
	generally	1-22
(a) Uniform Proced	ures Act	
(b) SEQRA review		
(c) Preapplication n	neetings	
(d) Permits, general	lly	
(e) Permit modifica	tions	
(f) Permit renewals		
(g) Local solid was	te management plan	
(h) Registration of		
Section 360-1.9	Contents of applications, generally	1-24
(a) Initial permits a		
(b) Nonspecific fac	ilities	

(c) Modification applications	
(d) Renewal applications	
(e) Engineering plans, reports and specifications	
(f) Comprehensive recycling analysis	
(g) Inactive hazardous waste disposal and corrective action sites	
(h) Contingency plan	
(i) Signature and verification of applications	
Section 360-1.10 Permit issuance criteria	1-30
(a) Construction	
(b) Operation	
Section 360-1.11 Permit provisions	1-48
(a) Mitigation of adverse impacts	
(b) Transferability	
(c) Duration of construction	
(d) Duration of permits	
(e) Supervision and certification of construction	
(f) Cessation of construction or operation activities	
(g) Department inspection of activities	
(h) Recyclables recovery	
(i) Approved design capacity	
Section 360-1.12 Financial assurance	1-32
(a) Applicability	
(b) Liability coverage	
(c) Forms of financial assurance	
Section 360-1.13 Research, development and demonstration permits	1-32
(a) Permit	
(b) Permit application	
(c) Permit restrictions	
(d) Renewal	
Section 360-1.14 Operational requirements for all solid waste	
management facilities	1-33
(a) Applicability	
(b) Water	
(c) Public access	
(d) Control of access	
(e) Control program for unauthorized waste	
(f) Maintenance and operation	
(g) Contingency plan	
(h) Monitoring samples and results	
(i) Recordkeeping	
(j) Confinement of solid waste	
(k) Dust control	
(l) Vector control	

TABLE OF CONTENTS

TOC-3

	(m) Odor control		
	(n) On-site roads		
	(o) Equipment shel	ter	
	(p) Noise levels		
	(q) Open burning		
	(r) Department-app	roved facilities	
	(s) Emergency num	nbers	
	(t) Facilities		
	(u) Facility operato	or requirements	
	(v) Salvaging		
	(w) Closure		
	Section 360-1.15	Beneficial use	1-36
	(a) Applicability		
	(b) Solid waste ces		
	(c) Special reporting	-	
	(d) Casc-specific b	cnoficial use determinations	
	SUBPART 360-2	LANDFILLS	
•	Section 360-2.1	Applicability	2-1
	Section 360-2.2	Transition	2-1
	Section 360-2.3	Permit application requirements	2-2
	Section 360-2.4	Engineering drawings	2-3
	Section 360-2.5	Operation drawings	2-4
	Section 360-2.6	Landscape plan	2-4
	Section 360-2.7	Engineering report	2-4
	Section 360-2.8	Construction quality assurance/construction	
		quality control plan	2-7
	(a) Responsibilitie		
	(b) Personnel quali		
	(c) Inspection activ		
	(d) Sampling strate	-	
	(e) Documentation		
	Section 360-2.9	Operation and maintenance manual	2-8
	(a) Landfill dispos		
	(b) Personnel requ		
	(c) Machinery and		
	(d) Landfill operat		
	(e) Fill progression		
		and characterization	
	(g) Solid waste rec	~ .	
	(h) Cover material		
	(i) Environmental	monitoring plan	

(j) Leachate management plan	
(k) Gas monitoring program	
(1) Winter and inclement weather operations	
(m) Convenience station operation	
(n) First lift placement procedures	
(o) Fire prevention plan	
Section 360-2.10 Contingency plan	2-10
(a) Construction related contingency plan	
(b) Operation related contingency plan	
(c) Post-closure contingency plan	
Section 360-2.11 Hydrogeologic report	2-11
(a) Requirements of the site investigation plan	
(b) Site investigation report	
(c) Environmental monitoring plan	
(d) Site analytical plan	
(d)(6) Water Quality Analysis Tables	2-26
Section 360-2.12 Landfill siting	2-47
(a) Applicability	
(b) Exceptions	
(c) Landfill siting restrictions	
Section 360-2.13 Landfill construction requirements	2-51
(a) Horizontal separation requirements	
(b) Survey control	
(c) Location coordinates	
(d) Groundwater separation	
(e) Bedrock separation	
(f) Liner system description	
(g) Leachate collection and removal system design	
(h) Leachate collection pipe network design	
(i) Landfill subgrade	
(j) Soil component of the liner system	
(k) Geomembrane liners	
(l) Soil drainage layers	
(m) Leachate collection pipes	
(n) Geosynthetic drainage layers	
(o) Filter layer criteria	
(p) Gas venting layer	
(q) Low permeability barrier soil covers	
(r) Geomembrane covers	
(s) Composite covers	
(t) Topsoil	
(u) Construction certification report	
(v) Waste quantification	

(w) Equivalent design	gn	
Section 360-2.14	Industrial/commercial waste monofills and	
/ N T	solid waste incinerator ash residue monofills	2-63
	ercial waste monofills	
	nerator ash residue monofills	
Section 360-2.15	Landfill closure and post-closure criteria	2-65
(a) Closure site inve	<u> </u>	
(b) Conceptual closs	-	
(c) Final closure pla		
(d) Final cover syste		
(e) Landfill gas cont		
(f) Perimeter gas col		
(g) Gas control usin		
• •	gas processing or control systems	
(i) Leachate collecti	on system	
(j) Vectors		
• •	ration and maintenance	
• '	-closure registration report	
Section 360-2.16	Landfill gas recovery facilities	2-71
(a) Purpose		
(b) Applicability		
(c) Application requ	irements	
(d) Permit renewals		
(e) Operational requ		
Section 360-2.17	Landfill operation requirements	2-72
(a) Water quality me	J. J	
(b) Waste placemen	t requirements	
(c) Daily cover		
(d) Intermediate cov		
(e) Final cover syste		
(f) Decomposition g		
(g) Leachate genera		
	redule for primary leachate collection	
and removal system		
	fule for secondary leachate collection	
and removal systems		
(j) Leachate recircul	ation	•
(k) Bulk liquids		
(l) Industrial/comm		
• •	te and low-level radioactive waste	
(n) Sludge disposal		
(o) Sludge and othe		
(p) Asbestos waste	aisposai	

(q) Inspection of un	authorized waste	
(r) Tank disposal		
(s) Perimeter access	road	
(t) Annual report		
(u) Weight scales		
(v) Tires		
(w) Lead acid batte	ries	
(x) Air criteria		
Section 360-2.18	Landfill reclamation	2-76
(a) Applicability		2.0
(b) Feasibility study	work plans	
	field investigation and report	
(d) Landfill reclama		
(e) Landfill footprir	•	
(f) Contingency pla		
Section 360-2.19	Financial assurance criteria	2-78
(a) Applicability an	d effective date	
(b) Financial assura		
	nce for post-closure care	
	nce for corrective measures	
	cial assurance mechanisms	
Section 360-2.20	Corrective measures report	2-84
(a) Corrective meas		
(b) Corrective meas		
(c) Corrective meas	ures implementation	
Section 360-2.21	Landfill gas collection and control systems	
	for certain municipal solid waste landfills	2-89
	-	
	D WASTE INCINERATORS OR REFUSE-DER	
	CESSING FACILITIES OR SOLID WASTE PYI	
Section 360-3.1	Applicability	3~1
(a) Applicability		
(b) Exemptions		
(c) Registration Section 360-3.2	D. 6. 14:	2.1
Section 360-3.2	Definitions	3-1
Section 300-3.3	Application requirements for a permit to	2.0
(a) Engineering rep	construct and operate	3-2
1		
	ns and specifications	
(c) Comprehensive (d) Landfill	recycling analysis	
• •	of refuse-derived fuel	
(e) Littiat atabositiot	i of feringe-gettaeg thet	

(g) Personnel traini	nance, monitoring and inspection plan	
(1) Closure plan		
(m) Additional requ	uirements	
(n) Operation and r	naintenance manual submission review	
Section 360-3.4	Operational requirements	3-9
(a) Operation and r	naintenance manual	
(b) Receipt and har	ndling of solid waste	
(c) Drainage		
(d) Process change	S	
(e) Access		
(f) Reporting		
(g) Preparedness ar	-	
Section 360-3.5	Ash residue requirements	3-11
(a) General		
(b) Additional requ		
(c) Testing require		
(d) Testing procedu		
(e) Management re		
(f) Ash residue ma	nagement plan	
(g) Disposal		
(h) Landfill applica	ations	
(i) Ash residue ber	neficial use	
	·	
SUBPART 360-4	LAND APPLICATION FACILITIES	
Section 360-4.1	Applicability and exemptions	4-1
Section 360-4.2	Sewage sludge and septage: department review	4-2
Section 360-4.3	Sewage sludge and septage: permit application	4-2
Section 360-4.4	Sewage sludge and septage: operational	
	requirements	4-6
Section 360-4.5	Sludge and other solid waste: applicability	
	and department review	4-9
Section 360-4.6	Sludge and other solid waste: permit application	4-9
Section 360-4.7	Sludge and other solid waste: operational	
	requirements	4-10
Section 360-4.8	Research projects	4-10
Section 360-4.9	Storage facilities: permit application	4-10
Section 360-4.10	Storage facilities: operational requirements	4-11

TABLE OF CONTENTS TOC-8

SUBPART 360-5	COMPOSTING FACILITIES	
Section 360-5.1	Applicability and exemptions	5-1
(a) Applicability		
(b) Exemptions		
Section 360-5.2	Permit application: sludge and solid waste	5-1
Section 360-5.3	Operational requirements: sludge and solid waste	5-3
Section 360-5.4	Permit application: yard waste	5-6
Section 360-5.5	Operational requirements: yard waste	5-7
	•	
SUBPART 360-6	LIQUID STORAGE	
Section 360-6.1	Applicability	6-1
Section 360-6.2	General requirements	6-1
Section 360-6.3	Aboveground and on-ground tank requirements	6-1
Section 360-6.4	Underground tank requirements	6-2
Section 360-6.5	Surface impoundment requirements	6-2
Section 360-6.6	Closure of liquid storage facilities	6-3
SUBPART 360-7	CONSTRUCTION AND DEMOLITION DEBRIS L	ANDFILL
Section 360-7.1	Applicability, exemptions and definitions	7-1
(a) Applicability	/apprenomes, exemptions and womanions	
(b) Exemptions		
(c) Definitions		
(d) Landfill expan	sions	
Section 360-7.2	Registration	7-2
(a) Land clearing		
(b) Location restri		
	erational requirements	
Section 360-7.3	C&D debris landfills three acres or less	7-2
(a) Permit applica		
(b) Construction r		
Section 360-7.4	C&D debris landfills greater than three acres	7-6
(a) Permit applica	-	
(b) Construction r		
Section 360-7.5	Operation requirements	7-10
	monitoring program	
(b) Annual report	 -	
	placement requirements	
(d) Cover	. himarione radimanian	
(e) Final cover sy	stem	
(f) Vegetative cov		
(g) Leachate	10.	
(g) Leachaic		

(h) Unauthorized wa	aste -	
(i) Public access		
(j) Recordkeeping		
Section 360-7.6	Closure and post-closure criteria	7-12
(a) Final closure pla	un.	
(b) Landfills withou	it an approved closure plan	
(c) Landfills where	maximum slope exceeds 33 percent	
(d) Maintenance		
(e) Post-closure mo	nitoring and maintenance manual	
(f) Transfer of owner	ership	
(g) Closure and pos	t-closure registration report	
Section 360-7.7	Corrective measures	7-13
SUBPART 360-8	LONG ISLAND LANDFILLS	
Section 360-8.1	Applicability	8-1
Section 360-8.2	Definitions	8-1
(a) Definitions		
(b) General definiti	ons	
Section 360-8.3	General landfill requirements	8-1
(a) Site prohibition	S	
(b) Financial guara	ntee	
(c) Methane gas		
(d) Operational lim	itations	
(e) Existing landfil	l liner requirements	
Section 360-8.4	Landfills in deep flow recharge areas	8-2
Section 360-8.5	Landfills outside deep flow recharge areas	8-3
Section 360-8.6	Disposal of clean fill	8-3
(a) Clean fill dispo	sal requirements	
(b) Exemptions		
· · · · · · · · · · · · · · · · · · ·	nents for clean fill sites two acres or less	
(d) Permit requiren	nents for clean fill sites larger than two acres	
	TE ASSISTANCE AND LOANS FOR MUNICIPA	AL LANDFILI
	OSURE PROJECTS	0.1
Section 360-9.1	Purpose and applicability	9-1
(a) Purpose		
(b) Applicability		
(c)	To . 6% - 145	9-1
Section 360-9.2	Definitions	7-1
* *	m Environmental Conservation Law	
(b) Other definition	ns	

TABLE OF CONTENTS

TOC-10

Section 360-9.3	Application eligibility	9-3
(a) Ownership	•	
(b) Population		
(c) Additional requir	rements	
(d) Applicable regul	ations	
(e) Obligation to clo	se	
(f) Closure investiga	tion report	
(g) Waiver of assista		
(h) Phased landfill c	losure	
Section 360-9.4	Application procedure	9-4
(a) Application form		
(b) Necessary inform	nation	
(c) Central office su	bmission	
(d) Regional office s	submission	
Section 360-9.5	Department review	9-4
(a) Receipt of applic	ations	
(b) Initial review		
(c) Award of State a	ssistance and loans	
Section 360-9.6	Eligible and ineligible costs for State	
	assistance payments and loans	9-5
(a) Eligible costs		
(b) Ineligible costs		
Section 360-9.7	State assistance progress reviews and	
	reimbursement schedule	9-6
(a) Approval process	3	
(b) Requirements for	r reimbursement	
(c) Department revie		
(d) Revision of awar	rd amount	
Section 360-9.8	Loan approvals	9-6
(a) Loan requiremen	uts	
(b) Loan amount		
(c) Loan schedule		
Section 360-9.9	State assistance contract	9- 7
Section 360-9.10	Return of State assistance for nonperformance	9-7
(a) Failure to comply		
(b) Violation of con-		
Section 360-9.11	Loan contract	9-8
Section 360-9.12	Return of loan for nonperformance	9-8
(a) Failure to make	• •	
(b) Loan contract de	fault	

SUBPART 360-10 RE	GULATED MEDICAL WASTE STORAGE, TRANSFE	C R
AN	D DISPOSAL	
Section 360-10.1	Applicability and exemptions	10-1
(a) Applicability		
(b) Exemptions		
Section 360-10.2	Definitions	10-1
Section 360-10.3	Permit to construct and operate application	
	requirements	10-1
(a) Regional plan o	-	
(b) Engineering pla		
(c) Engineering rep	ort	
(d) Surety		
· · ·	nents for storage and transfer facilities	
(f) Operation plan		
(g) Contingency pla		
(h) Personnel traini	- .	40.5
Section 360-10.4	Operational requirements	10-3
Section 360-10.5	Disposal	10-4
SUBPART 360-11	TRANSFER STATIONS	
Section 360-11.1	Applicability and registration	11-1
(a) Applicability		
(b) Registration		
Section 360-11.2	Additional permit application requirements	11-1
(a) Application req		
(b) Other requirem		11.0
Section 360-11.3	Design requirements	11-2
(a) Unloading and	loading areas	
(b) On-site roads	On another all an anti-	11.2
Section 360-11.4	Operational requirements	11-3
(a) Acceptable was		
(b) Ultimate dispos	sal of waste	
(c) Signs		
(d) Public access		
, ,	, insects, odors and vectors	
(f) Drainage		
(g) Storage area	hid woode	
(h) Recoverable so		
(i) Operational rec	oras	
(j) Annual report		
(k) Fire protection	4.	
(1) Removal of was	sie	

TABLE OF CONTENTS

(m) Asbestos waste

(n) Additional operational requirements

TOC-12

	ECYCLABLES HANDLING AND RECOVERY FA	CHITIES
Section 360-12.1	Applicability	12-
(a) Facilities regul		
(b) Exempt faciliti		
• •	smantlers reporting requirements	
(d) Registration		
(e) Other recycling		
Section 360-12.2	Operational requirements	12-2
` '	ndling of solid waste	
(b) Storage		
(c) Access		
(d) Reporting and	recordkeeping	
SUBPART 360-13	WASTE TIRE STORAGE FACILITIES	
Section 360-13.1	Applicability	13-1
(a) Storage		
(b) Temporary sto	rage	
(c) Agricultural so	ils	
(d) Registration		
(e) Other uses		
(f) Waste tire disp	osal	
(g) Transition		
Section 360-13.2	Additional application requirements for an	
	initial permit to construct and operate	13-3
(a) Report		
(b) Site plan		
(c) Market analysi		
(d) Plans and spec		
(e) Monitoring an	d inspection plan	
(f) Closure plan		
(g) Surety		
(h) Contingency p	lan	
(i) Storage plan		
(j) Vector control		
Section 360-13.3	Operational requirements	13-6
	maintenance manual	
(b) Sorting of was		
(c) Fire prevention	n and control	

(d) Access

(e) Reporting and recordkeeping

(f) Receipt and har	dling	
SUBPART 360-14	USED OIL	
Section 360-14.1	Applicability	14-1
(a) Applicable requ		
(b) Waste oil comp	pared to used oil	
(c) Prohibitions		
(d) Exemptions	·	
Section 360-14.2	Definitions	14-4
Section 360-14.3	Additional application requirements for an initial	
	permit to construct and operate a used oil transfer,	
	storage or processing facility	14-6
(a) Other applicable		
(b) EPA identification	tion number	
(c) Transition		
(d) Municipal requ		
• •	s: Compliance with Petroleum Bulk Storage	
	ulations and Federal Underground Tank Regulations	
(f) Containers		
	on versus on-specification	
	iner sign requirements	
(i) Engineering rep		
(j) Used oil quality		
(k) Contingency p	lan	
(1) Closure plan		
	ns and maintenance manual	
(n) Records and re	-	
Section 360-14.4	Used engine lubricating oil retention facilities	14-13
	bricating oil retention facilities	
(b) Service establi		
• •	ment collection facilities	
, ,	nments that elect not to maintain collection facilities	1415
Section 360-14.5	Transportation requirements for used oil facilities	14-15
(a) Shipping used		
(b) Receipt of used	d oil by a facility	
CIIDDADT 240 15 CA	OMPREHENSIVE SOLID WASTE MANAGEMENT P	THE LATER A TO
Section 360-15.1	Purpose and overview	15-1
Section 360-15.1	•	15-1
3CCHOH 300-13.2	Denutions	13-1

Section 360-15.3	Grant application	15-2
Section 360-15.4	Department grant application review	15-2
Section 360-15.5	Contract content	15-3
Section 360-15.6	Payments under contract	15-3
Section 360-15.7	Eligible costs	15-3
Section 360-15.8	Ineligible costs	15-3
Section 360-15.9	Plan contents	15-4
Section 360-15.10	Plan approval	15-5
Section 360-15.11	Plan modification/update	15-6
Section 360-15.12	Plan compliance reports	15-70
SUBPART 360-16	CONSTRUCTION AND DEMOLITION DEBRIS	
	PROCESSING FACILITIES	
Section 360-16.1	Applicability	16-1
(a) Processing and	disposal	
(b) Exempt facilities	es	
(c) Prohibition		
(d) Registration		
Section 360-16.2	Definitions	16-1
Section 360-16.3	Additional application requirements for a	
	permit to construct and operate	16-2
(a) Regional map		
(b) Vicinity map		
(c) Site plan		
(d) Engineering rep	port	
(e) Fire protection :	and control	
(f) Unloading, load	ling and storage areas	
(g) On-site roads		
(h) Draft operation	and maintenance manual	
(i) Residue disposa		
(j) Daily cover use		
Section 360-16.4	Operational requirements	16-4
(a) O&M manual		
(b) Receipt and har	-	
· · ·	cessed C&D debris	
	bris as an alternative daily cover material	
at a landfill		
(e) Beneficial uses		
(f) Storage requirer		
	gement and drainage	
(h) Access		
(i) Reporting and re	ecordkeeping	

TABLE OF CONTENTS

TOC-15

(j) Closure requirer	ments	
(k) On-site environ		
(l) Tracking docum		
SUBPART 360-17 RE	GULATED MEDICAL WASTE TREATMENT F.	ACILITIES
Section 360-17.1	Applicability	17-1
(a) Applicability		
(b) Approved treats	ment methods	
(c) Exemption		
(d) Existing faciliti	es	
(e) New York State	e Department of Health approvals	
Section 360-17.2	Definitions	17-2
Section 360-17.3	Application requirements for a permit to	
	construct and operate	17-4
(a) Engineering rep	port	
(b) Engineering pla	ans and specifications	
(c) Treatment, dest	ruction and disposal facility	
(d) Validation testi	ng program	
(e) Surety		
(f) Facility plans		
(g) Operation plan		
	nd monitoring plan	
(i) Personnel staffi	ng and training plan	
(j) Waste control p	lan	
(k) Contingency pl		
(1) Closure and fina	ancial assurance plans	
(m) Security plan		
Section 360-17.4	Operational requirements	17-13
(a) General		
	ndling of solid waste	
(c) Drainage		
(d) Process change	es	
(e) Reporting		
(f) Odor and volati	le organic control	
(g) Certification		
Section 360-17.5	Requirements for treatment of regulated	15.15
() 0	medical waste	17-15
	meters for autoclaves	
(b) Validation testi		
(c) Challenge testing	•	
(u) Operating para	meters for other RMW treatment technologies	

PREFACE

Organization and Numbering of Statutes and Regulations

The Environmental Conservation Law (ECL) is Chapter 43-B of the Consolidated Laws of New York.

Numbering system in the ECL:

Example

Article 25 Title 19 Section 25-1910 subdivision 25-1910.5 paragraph 25-1910.5(a)

This may be written as ECL 25-1910.5(a)

The regulations of the department are Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (NYCRR).

Numbering system in the department's regulations:

Example

Title 6
Part 360
Subpart 360-2
section 360-2.13
subdivision 360-2.13(k)
paragraph 360-2.13(k)(3)
subparagraph 360-2.13(k)(3)(iii)
clause 360-2.13(k)(3)(iii)(b)
subclause 360-2.13(k)(3)(iii)(b)(1)
item 360-2.13(k)(3)(iii)(b)(1)(i)

This may be written as 6 NYCRR Part 360-2.13(k)(3)(iii)(\underline{b})(\underline{l})(\underline{i})

This numbering system is described in the preface to the department's regulations, and in the regulations of the Department of State (19 NYCRR 261.4(b)).

service area under local laws or ordinances adopted or to be adopted under section 120-aa of the General Municipal Law.

- (e) Supervision and certification of construction. The construction of a solid waste management facility and each stage of one must be undertaken under the supervision of an individual licensed to practice engineering in the State of New York. Upon completion of construction, that individual must certify in writing that the construction is in accordance with the terms of the applicable permit and tested in accordance with generally accepted engineering practices. Except as specified elsewhere in this Part, this certification must be submitted to the department within three months after completion of construction and must include as-built plans. The operator must notify the department, in writing, of the date when solid waste will be first received at the facility.
- (f) Cessation of construction or operation activities. If construction or operation activities started under a permit issued pursuant to this Part cease for a period of 12 consecutive months, the permit automatically expires on the last day of the 12th month following cessation of activities. There is no automatic expiration when the cessation of construction or operation is caused by factors beyond the reasonable control of the permittee, as determined by the department, or when such cessation is in accordance with the provisions of the permit.
- (g) Department inspection of activities. The permittee must authorize the commissioner or authorized department staff, after presentation of department credentials, to undertake inspections in accordance with subdivision 360-1.4(b) of this Part.
- (h) Recyclables recovery. In the case of a permit relating to a landfill (other than one used exclusively for ash residue, clean fill or construction and demolition debris), a solid waste incinerator (other than one used exclusively to incinerate regulated medical waste), a refuse-derived fuel processing facility, a construction and demolition debris processing facility, a mixed solid waste composting facility or a transfer station (other than one used exclusively for transfer of regulated medical waste), the permit must contain a condition that the permittee must not accept at the facility solid waste which was generated within a municipality that has either not completed a comprehensive recycling analysis or is not included in another municipality's comprehensive recycling analysis satisfying the requirements of subdivision 360-1.9(f) of this Part which has been

approved by the department and implemented the recyclables recovery program determined to be feasible by the analysis.

(i) Approved design capacity. Every permit must set forth the facility's approved design capacity.

Section 360-1.12 Financial assurance,

- (a) Applicability.
- (1) In addition to any financial assurance requirements specifically addressed in a Subpart of this Part, the department may require a form of financial assurance, acceptable to the department, from a permit holder, and conditioned upon compliance with the terms of the permit issued to such holder pursuant to this Part.
- (2) A form of financial assurance, acceptable to the department, will be required to cover the cost of having the facility properly closed for facilities where the operator and the owner are not the same person.
- (3) A form of financial assurance, acceptable to the department, may be required from registered facilities.
- (b) Liability coverage. A form of financial assurance for claims arising out of injury to persons or property, relative to either sudden and accidental occurrences or non-sudden and accidental occurrences, may be required for solid waste management facilities. Such financial assurance may be in the form of liability insurance, self-insurance or other form acceptable to the department. The amount of such financial assurance is to be set by the department.
- (c) Forms of financial assurance. Section 373-2.8 of this Title provides guidance on the criteria and wording of financial assurance instruments that the department will consider in assessing the acceptability of financial assurance mechanisms.

Section 360-1.13 Research, development and demonstration permits.

(a) Permit. The department may issue a research, development and demonstration permit for any solid waste management facility proposing to utilize an innovative and experimental solid waste management technology or process, including a beneficial use demonstration project. The application for such

permit must clearly demonstrate adequate protection of public health and the environment and be consistent with federal and State laws and regulations and this Part. A permit issued under this section must not be for an activity of a continuing nature. The department may, at its discretion, waive or modify some or all of the application requirements for permits issued under this section.

- (b) Permit application. An application for a permit issued under this section must:
 - (1) describe the proposed activity in detail;
- (2) describe how the applicant intends to provide for the receipt and treatment or disposal by the proposed facility of only those types and quantities of solid waste necessary to determine the efficiency and performance capabilities of the technology or process and the effects of such technology or process on human health and the environment; and how the applicant intends to protect human health and the environment in the conduct of the project; and
- (3) state that the applicant will provide, on a timely basis, the department with any information obtained as a result of the activity undertaken under the permit. The information must be submitted in accordance with schedules identified in the permit.
 - (c) Permit restrictions. The permit must:
- (1) provide for the construction of facilities as necessary, and for the operation of the facility for not longer than one year (unless renewed as provided in subdivision (d) of this section);
- (2) provide for the receipt and treatment or disposal by the facility of only those types and quantities of solid waste that the department determines necessary to determine, the efficiency and performance capabilities of the technology or process and the effects of such technology or process on human health and the environment;
- (3) include such requirements as the department determines necessary to protect human health and the environment (including, but not limited to requirements regarding monitoring, operation, financial assurance and closure, and such requirements as the department deems necessary regarding testing and providing of information to the commissioner about the operation of the facility); and
- (4) provide that the commissioner, without affording the permittee a prior opportunity for a

hearing, may order an immediate termination of all operations at the facility at any time the commissioner determines that termination is necessary to protect human health and the environment, provided that the permittee is provided an opportunity for a hearing on the termination issue no later than 10 days after the issuance of the order and a decision is rendered no more than 20 days after the close of the hearing record. Nothing in this Part shall preclude or affect the commissioner's authority to issue summary abatement orders under section 71-0301 of the ECL or to take emergency actions summarily suspending a permit under section 401.3 of the State Administrative Procedure Act.

(d) Renewal. Permits issued under this section may be renewed not more than three times, unless the permittee demonstrates to the satisfaction of the department that a longer time period is required to adequately assess the long-term environmental effects of the technology or process being studied under authority of the permit. Each renewal period will not exceed one year and will be conditioned upon compliance with this section.

Section 360-1.14 Operational requirements for all solid waste management facilities.

- (a) Applicability. Except as elsewhere provided in this Part, any person who designs, constructs, maintains or operates any solid waste management facility subject to this Part must do so in conformance with the requirements of this section.
 - (b) Water.
- Solid waste must not be deposited in, and must be prevented from, entering surface waters or groundwaters.
- (2) Leachate. All solid waste management facilities must be constructed, operated and closed in a manner that minimizes the generation of leachate that must be disposed of and prevent the migration of leachate into surface and groundwaters. Leachate must not be allowed to drain or discharge into surface water except pursuant to a State Pollutant Discharge Elimination System permit and must not cause or contribute to contravention of groundwater quality standards established by the department pursuant to ECL section 17-0301.
- (c) Public access. Public access to facilities and receipt of solid waste may occur only when an attendant is on duty. This provision does not apply to

combustion-powered equipment used at the facility. Sound levels for such equipment must not exceed 80 decibels (A) at a distance of 50 feet from the operating equipment.

- (q) Open burning. Open burning at a solid waste management facility is prohibited, except for the infrequent burning of agricultural wastes, silvicultural wastes, land clearing debris (excluding stumps), diseased trees or debris from emergency cleanup operation, pursuant to a restricted burning permit issued by the department. Measures must be taken immediately to extinguish any non-permitted open burning and the department must be notified that it has occurred.
- (r) Department-approved facilities. Solid waste resulting from industrial or commercial operations, sludge, and septage must be processed, disposed, used or otherwise managed only at facilities that the department has specifically approved for such management of that specific waste.
- (s) Emergency numbers. Telephone numbers to emergency response agencies such as the local police department, fire department, ambulance and hospital must be conspicuously posted in all areas where telephones are available for use at the facility.
- (t) Facilities. Where operating personnel are required, certain facilities must be provided (except in the case of composting facilities using aerated static pile or windrow techniques and land application facilities). These facilities include adequately heated and lighted shelters, a safe drinking water supply, sanitary toilet facilities and radio or telephone communication.
 - (u) Facility operator requirements.
- (1) Except as otherwise specified in a Subpart of this Part pertaining to a specific type of solid waste management facility, the facility operator, during all hours of operation, must have available for use, a copy of the permit issued pursuant to this Part, including conditions, a copy of the operation and maintenance report, the contingency plan and the most recent annual report.
- (2) Operation of every landfill, and other solid waste management facilities as directed by the department, must be conducted under the direction of a facility operator. The facility operator must attend and successfully complete within 12 months from their date of employment. a course of instruction in solid

waste management procedures relevant to the facility at which the facility operator is employed. The course must be provided or approved by the department. The department will issue a certificate of attendance to each individual successfully completing the course. Attendance at a department-approved course before the effective date of this Part will adequately satisfy these training requirements.

- (v) Salvaging. Salvaging, if permitted by the facility owner or operator, must be controlled by the facility owner or operator within a designated salvage area and must not interfere with facility operations or create hazards or nuisances.
- (w) Closure. The owner or operator of any active or inactive solid waste management facility must, upon termination of use, properly close that facility and must monitor and maintain such closure so as to minimize the need for further maintenance or corrective actions and to prevent or remedy adverse environmental or health impacts such as, but not limited to, contravention of surface water and groundwater quality standards, gas migration, odors and vectors. Termination of use includes those situations where a facility has not received solid waste for more than one year, unless otherwise provided by permit, or if the permit has expired. Termination of use also results from permit denial or order of the commissioner or of a court. Specific closure measures which may also include corrective actions as specified in this Part are subject to approval by the department.

Section 360-1.15 Beneficial use.

- (a) Applicability.
- (1) This section applies to materials that, before being beneficially used (as determined by the department), were solid waste. This section does not apply to solid wastes subject to regulation under Subpart 360-4 of this Part, except in the manner identified in subdivision 360-1.15(b) of this Part.
- (2) Beneficial use determinations granted by the department before the effective date of this section shall remain in effect, subject to all conditions contained therein, unless specifically addressed by subsequent department action.
- (b) Solid waste cessation. The following items are not considered solid waste for the purposes of this Part when used as described in this subdivision:

- (1) materials identified in subparagraphs 371.1(e)(1)(vi)-(viii) of this Title that cease to be solid waste under the conditions identified in those subparagraphs:
- (2) compost and other distribution and marketing (D&M) products that satisfy the applicable requirements under Subpart 360-5 of this Part;
- (3) unadulterated wood, wood chips, or bark from land clearing, logging operations, utility line clearing and maintenance operations, pulp and paper production, and wood products manufacturing, when these materials are placed in commerce for service as mulch, landscaping, animal bedding, erosion control, wood fuel production, and bulking agent at a compost facility operated in compliance with Subpart 360-5 of this Part:
- (4) uncontaminated newspaper or newsprint when used as animal bedding;
- (5) uncontaminated glass when used as a substitute for conventional aggregate in asphalt or subgrade applications:
- (6) tire chips when used as an aggregate for road base materials or asphalt pavements in accordance with New York State Department of Transportation standard specifications, or whole tires or tire chips when used for energy recovery;
- (7) uncontaminated soil which has been excavated as part of a construction project, and which is being used as a fill material, in place of soil native to the site of disposition;
- (8) nonhazardous, contaminated soil which has been excavated as part of a construction project, other than a department-approved or undertaken inactive hazardous waste disposal site remediation program, and which is used as backfill for the same excavation or excavations containing similar contaminants at the same site. Excess materials on these projects are subject to the requirements of this Part. (Note: use of in-place and stockpiled soil from a site being converted to a realty subdivision, as defined by the Public Health Law (10 NYCRR 72), must be approved by the local health department.);
- (9) nonhazardous petroleum contaminated soil which has been decontaminated to the satisfaction of the department and is being used in a manner acceptable to the department;

- (10) solid wastes which are approved in advance, in writing, by the department for use as daily cover material or other landfill liner or final cover system components pursuant to the provisions of subdivision 360-2.13(w) of this Part when these materials are received at the landfill;
- (11) recognizable, uncontaminated concrete and concrete products, asphalt pavement, brick, glass, soil and rock placed in commerce for service as a substitute for conventional aggregate;
- (12) nonhazardous petroleum contaminated soil when incorporated into asphalt pavement products by a producer authorized by the department;
- (13) unadulterated wood combustion bottom ash. fly ash, or combined ash when used as a soil amendment or fertilizer, provided the application rate of the wood ash is limited to the nutrient need of the crop grown on the land on which the wood ash will be applied and does not exceed 16 dry tons per acre per year;
- (14) coal combustion bottom ash placed in commerce to serve as a component in the manufacture of roofing shingles or asphalt products; or as a traction agent on roadways, parking lots and other driving surfaces;
- (15) coal combustion fly ash or gas scrubbing by-products placed in commerce to serve as an ingredient to produce light weight block, light weight aggregate, low strength backfill material, manufactured gypsum or manufactured calcium chloride; and
- (16) coal combustion fly ash or coal combustion bottom ash placed in commerce to serve as a cement or aggregate substitute in concrete or concrete products; as raw feed in the manufacture of cement; or placed in commerce to serve as structural fill within building foundations when placed above the seasonal high groundwater table.
- (c) Special reporting requirements. No later than 60 days after the first day of January following each year of operation, the generator of coal combustion ash must submit a report to the department that identifies the respective quantities of coal combustion bottom ash, fly ash, and gas scrubbing by-products it generated during the calendar year to which it pertains and, with respect to coal combustion bottom ash, how much was sent to a manufacturer of roofing shingles or asphalt products, how much was used as a traction

agent on roadways, parking lots, and other driving surfaces, how much was sent to a manufacturer of cement, concrete or concrete products, and how much was used as structural fill; and, with respect to coal combustion fly ash and to gas scrubbing by-products, how much was used to produce light weight block, light weight aggregate, low strength backfill material (flowable fill), manufactured gypsum or manufactured calcium chloride.

- (d) Case-specific beneficial use determinations.
- (1) The generator or proposed user of a solid waste may petition the department, in writing, for a determination that the solid waste under review in the petition may be beneficially used in a manufacturing process to make a product or as an effective substitute for a commercial product. Unless otherwise directed by the department, the department may not consider any such petition unless it provides the following:
- (i) a description of the solid waste under review and its proposed use;
- (ii) chemical and physical characteristics of the solid waste under review and of each type of proposed product;
- (iii) a demonstration that there is a known or reasonably probable market for the intended use of the solid waste under review and of all proposed products by providing one or more of the following:
- (a) a contract to purchase the proposed product or to have the solid waste under review used in the manner proposed;
- (b) a description of how the proposed product will be used;
- (c) a demonstration that the proposed product complies with industry standards and specifications for that product; or
- (a) other documentation that a market for the proposed product or use exists; and
- (iv) a demonstration that the management of the solid waste under review will not adversely affect human health and safety, the environment, and natural resources by providing:
- (a) a solid waste control plan that describes the following:

- (1) the source of the solid waste under review, including contractual arrangements with the supplier;
- (2) procedures for periodic testing of the solid waste under review and the proposed product to ensure that the proposed product's composition has not changed significantly;
- (3) the disposition of any solid waste which may result from the manufacture of the product into which the solid waste under review is intended to be incorporated;
- (4) a description of the type of storage (e.g., tank or pile) and the maximum anticipated inventory of the solid waste under review (not to exceed 90 days) before being used;
- (5) procedures for run-on and run-off control of the storage areas for the solid waste under review; and
- (6) a program and implementation schedule of best management practices designed to minimize uncontrolled dispersion of the solid waste under review before and during all aspects of its storage as inventory and/or during beneficial use; and
- (b) a contingency plan that contains the information and is prepared in accordance with subdivision 360-1.9(h) of this Part.
- (2) The department will determine in writing, on a case-by-case basis, whether the proposal constitutes a beneficial use based on a showing that all of the following criteria have been met:
- (i) the essential nature of the proposed use of the material constitutes a reuse rather than disposal;
- (ii) the proposal is consistent with the solid waste management policy contained in section 27-0106 of the ECL;
- (iii) the material under review must be intended to function or serve as an effective substitute for an analogous raw material or fuel. When used as a fuel, the material must meet the requirements of paragraph 360-3.1(c)(4) of this Part and the facility combusting the material must comply with the registration requirements in subdivision 360-3.1(c) of this Part, if appropriate;
 - (iv) for a material which is proposed for

incorporation into a manufacturing process, the material must not be required to be decontaminated or otherwise specially handled or processed before such incorporation, in order to minimize loss of material or to provide adequate protection, as needed, of public health, safety or welfare, the environment or natural resources;

- (v) whether a market is existing or is reasonably certain to be developed for the proposed use of the material under review or the product into which the solid waste under review is proposed to be incorporated; and
- (vi) other criteria as the department shall determine in its discretion to be appropriate.
- (3) The department will either approve the petition, disapprove it, or allow the proposed use of the solid waste under review subject to such conditions as the department may impose. When granting a beneficial use determination, the department shall determine, on a case-by-case basis, the precise point at which the solid waste under review ceases to be solid waste. Unless otherwise determined for the particular solid waste under review, that point occurs when it is used in a manufacturing process to make a product or used as an effective substitute for a commercial product or used as a fuel for energy recovery. As part of its petition, the petitioner may request that such point occur elsewhere. In such a request, the petitioner must include a demonstration that there is little potential for improper disposal of the material or little potential for the handling, transportation, or storage of the solid waste under review to have an adverse impact upon the public health, safety or welfare, the environment or natural resources.
- (4) The department may revoke any determination made under this subdivision if it finds that one or more of the matters serving as the basis for the department's determination was incorrect or is no longer valid or the department finds that there has been a violation of any condition that the department attached to such determination.

perform in the same manner as the component specified in this section. When the equivalent design involves the substitution of waste materials for components of the landfill's liner or final cover system; and where it can be demonstrated that these material substitutions are within the landfill's environmental containment system (i.e. below the upper most layer of the barrier layer of the final cover and above the secondary composite liner), such equivalency determinations are not subject to the variance requirements of this Part and this use is consistent with the beneficial use provision of paragraph 360-1.15(b)(10) of this Part. It is highly recommended that the applicant discuss equivalent component design proposals with the department in a preapplication conference.

Section 360-2.14 Industrial/commercial waste monofills and solid waste incinerator ash residue monofills.

- (a) Industrial/commercial waste monofills. Monofills used solely for the disposal of solid waste resulting from industrial or commercial operations are subject to all requirements of this Subpart, unless the applicant demonstrates that specific landfill requirements in this Subpart are not necessary for the solid waste to be disposed of at the subject facility. The requirements in this Subpart may be modified on a case-specific basis. The department may impose additional or less stringent requirements on these monofills, based on the pollution potential of the waste. Pollution potential shall be based upon the volume and the physical, chemical, and biological properties of the solid waste, and, its variability. Changes in the monofill's design may include, but not be limited to, modifications to the leachate collection system, low permeability liners, and low permeability cover system designs. For those facilities where the applicant can demonstrate to the department that a specific regulatory requirement contained in either sections 360-2.13, 2.15 or 2.17 of this Subpart are not applicable as discussed in this subdivision, the need for a formal variance is waived. Alternative liner system designs for industrial waste monofills must demonstrate the following:
- (1) In the case where an alternative liner system is proposed for an industrial waste monofill, a demonstration must be made as to the proposed liner's ability to adequately prevent a negative impact on groundwater and must address the following factors: the volume and physical and chemical composition of the leachate that will be generated at the disposal facility; the climatological conditions in the vicinity of the proposed site; and the hydrogeologic

- characteristics of the proposed site. The demonstration must include an assessment of leachate quality and quantity, anticipated liner system leakage to the subsurface and related contaminant transport to the closest environmental monitoring point. The demonstration should focus on developing an accurate profile of leachate quality and production rates sufficient to be used in evaluating its fate and transport from the point of release to the first point of environmental monitoring in order to determine whether leachate constituents can be expected to exceed the State's groundwater quality standards. It must be demonstrated that the industrial wastes' chemical characterization be accurately defined and that there are no reasons to anticipate significant changes in the concentrations of compounds that could increase the wastes' pollution potential in the future. demonstration must include chemical compatibility test data run on the proposed liner and/or leachate collection and removal system materials with representative waste leachate, using an appropriate permeameter test to determine potential changes in the permeability of the proposed liner. The demonstration must include an estimate of the volumetric release of leachate from the proposed liner design based on analytical approaches supported by empirical data and/or be verified from other existing operational facilities of similar design. A dilution calculation must then be modelled to evaluate the impacts of the characterized leachate on groundwater quality based upon the calculated liner system's leakage rate.
- (2) Paper mill sludge monofills. The minimum components of the liner system, monofill closure, operation requirements and the environmental monitoring plan for paper mill sludge landfills must consist of the following:
- (i) Components of liner system. A single composite liner system is the minimal level of containment that the department will accept for paper mill sludge monofills. The composite liner system must consist of a minimum of two components, an upper geomembrane liner placed directly above a low permeability soil layer. A leachate collection and removal system must be located over the composite liner. The construction of each of the components must be in conformance with the appropriate requirements of section 360-2.13 of this Subpart unless expressly stated otherwise in this paragraph. The department may require additional liner components to the single composite liner or other restrictions depending upon the waste expected to be produced, monitorability of the site and/or other site conditions.
 - (ii) The soil component of the composite

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS ACTIVE SOLID WASTE FACILITIES

NYS DEC REGION 1

COUNTY Suffolk

Babylon Southern Ashfill52A01360 PERMIT NUMBER:
PERMIT ISSUED:
PERMIT ISSUED:
PERMIT EXPIRES:
05/03/02OWNER TYPE:
REGULATORY STATUS:
OWNER:Municipal
PermitPERMIT EXPIRES:
PERMIT EXPIRES:
OS/03/0205/03/02

OWNER: Town of Babylon CONTACT: Ronald Kluesener
ADDRESS: 200 East Sunrise Hwy ADDRESS: Gleam Street

(MAILING) Lindenhurst NY 11757 West Babylon NY 11704

PHONE: (516) 957-3072 PHONE: (631) 422-7640

WASTE TYPE: RR Ash UTMEAST: 636645 UTMNORTH: 4510592

Brookhaven SLF Cell 5 52A03 360 PERMIT NUMBER: 1472200030000040

OWNER TYPE: Municipal PERMIT ISSUED: 11/17/98
REGULATORY STATUS: Permit PERMIT EXPIRES: 08/31/05

REGULATORY STATUS: Permit PERMIT EXPIRES: 08/31/05
OWNER: Town of Brookhaven CONTACT: Dennis Lynch

ADDRESS: 3233 Route 112 ADDRESS: 3233 Route 112

(MAILING) Medford NY 11763 Medford NY 11763

PHONE: (516) 451-6224

PHONE: (516) 451-6224

WASTE TYPE: RR Ash UTMEAST: 674593 UTMNORTH: 4518097

Northern U 52A39 360 PERMIT NUMBER: 1472000628000010

OWNER TYPE: Municipal PERMIT ISSUED: 10/19/94
REGULATORY STATUS: Permit PERMIT EXPIRES: 04/30/05

OWNER: Town of Babylon CONTACT: Ronald Kluesener

ADDRESS: 200 East Sunrise Highway ADDRESS: 200 East Sunrise Highway

ADDRESS: 200 East Sunrise Highway

(MAILING) Lindenhurst NY 11757

ADDRESS: 200 East Sunrise Highway

Lindenhurst NY 11757

Lindenhurst NY 117

 (MAILING)
 Lindenhurst
 NY
 11757
 Lindenhurst
 NY
 11757

 PHONE:
 (516) 957-3072
 PHONE:
 (631) 422-7640

WASTE TYPE: RR Ash UTMEAST: 637078 UTMNORTH: 4510803

NYS DEC REGION 3

Westchester

COUNTY

 Sprout Brook LF
 60A20
 360 PERMIT NUMBER:
 3552200097000020

OWNER TYPE: County PERMIT ISSUED: 10/01/97

PEGUI ATORY STATUS: PERMIT EXPIRES: 10/01/02

REGULATORY STATUS: Permit PERMIT EXPIRES: 10/01/02
OWNER: Westchester County DPW CONTACT: mario Parise

ADDRESS: 270 North Avenue ADDRESS: Old Albany Post Road

(MAILING) New Rochelle NY 10801 Peekskill NY 10601

PHONE: (914) 637-3000 PHONE: (914) 637-3000

WASTE TYPE: Bottom Ash, Fly Ash, RR Ash UTMEAST: 590560 UTMNORTH: 4573986

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION **DIVISION OF SOLID & HAZARDOUS MATERIALS** ACTIVE SOLID WASTE FACILITIES

NYS DEC REGION 3

COUNTY Orange

360 PERMIT NUMBER: Central Hudson Gas & Elec 36N01 PERMIT ISSUED: OWNER TYPE: Private

3334600011000018

NY

REGULATORY STATUS: Permit

05/09/00 PERMIT EXPIRES: 05/09/05

OWNER: Central Hudson Gas & Elec

Newburgh

Coal Ash

CONTACT: Mark McLean

ADDRESS: 992 River Road

ADDRESS: 992 River Road

Newburgh

12550 PHONE: (914) 452-2000 PHONE: (914) 563-4805

UTMEAST:

585953 UTMNORTH: 4603521

12550

COUNTY Rockland

44N07 Tomkins Cove Ash Facility

360 PERMIT NUMBER:

3392800039000010

OWNER TYPE:

(MAILING)

WASTE TYPE:

Private

PERMIT ISSUED: PERMIT EXPIRES: 06/30/94

REGULATORY STATUS:

None

NY

CONTACT: C.A. Herbst

06/30/99

OWNER:

Orange & Rockland Utility

ADDRESS: One Blue Hill Plaza

ADDRESS: (MAILING)

One Blue Hill Plaza Pearl River

NY 10965

Pearl River UTMEAST:

NY 10965

PHONE: WASTE TYPE: (914) 577-2582 Coal Ash, Ash Residue PHONE: (914) 786 8150

585526 UTMNORTH: 4567869

NYS DEC REGION 6

COUNTY Jefferson

Deferiet Paper 23N06 360 PERMIT NUMBER:

62240000300000000

OWNER TYPE:

Private

PERMIT ISSUED: PERMIT EXPIRES: 02/15/94

REGULATORY STATUS:

Permit

11/01/03

OWNER:

Deferiet Paper Company

CONTACT: Todd Furnia

ADDRESS: 400 Anderson Avenue

ADDRESS: (MAILING) 400 Anderson Avenue Deferiet

13628

Deferiet NY

PHONE:

(315) 493-3540

PHONE:

13628

WASTE TYPE:

Caol Ash, Paper Sludge, Coal Rejects, Wood Yard Debris

NY

(315) 493-3540

UTMEAST:

439729 UTMNORTH: 4884523

DANC Landfill

23S13

360 PERMIT NUMBER: PERMIT ISSUED:

6225200007000006 02/27/96

OWNER TYPE: REGULATORY STATUS: Municipal

PERMIT EXPIRES: CONTACT: E. William Seifried

02/27/06

OWNER: ADDRESS:

Develop. Authority N. Country 317 Washington Street

ADDRESS: NYS Route 177

(MAILING) Watertown

13601 NY

NY 13682

PHONE:

(315) 785-2592

PHONE:

WASTE TYPE:

Residential, Demo, Asbestos, Indus, Coal Ash, Cont. Soil, Sludge

(315) 232-3236 UTMEAST:

Rodman

427037 UTMNORTH: 4852232

NYS DEC **REGION 7**

COUNTY **Broome**

Weber Ash Disposal Site

04N08

360 PERMIT NUMBER:

7033200020000010

OWNER TYPE: REGULATORY STATUS: Private Consent Order PERMIT ISSUED: PERMIT EXPIRES: 10/01/80 09/30/83

OWNER: ADDRESS:

AES Creative Resources

CONTACT: Peter Huff

ADDRESS: 720 Riverside Dr.

NY 13790

(MAILING) PHONE:

720 Riverside Dr. Johnson City

NY 13790 Johnson City

WASTE TYPE:

(607) 729-6950 Coal Ash, Sludge PHONE: (607) 729-6950 UTMEAST:

431941 UTMNORTH:

4673115

COUNTY **Tompkins**

360 PERMIT NUMBER: 7503200069000010 55N02 Cayuga

PERMIT ISSUED: OWNER TYPE: Private 04/17/97 PERMIT EXPIRES: REGULATORY STATUS: 04/17/02

Permit OWNER: AES Cayuga, L.L.C. CONTACT: Daniel Hill

ADDRESS: 228 Cayuga Drive ADDRESS: Milliken Road

(MAILING) NY 14882 NY Lansing (607) 533-7913 PHONE: PHONE: (607) 533-7913

WASTE TYPE: Coal Ash, Sludge UTMEAST: 366998 UTMNORTH: 4718715

NYS DEC **REGION 9**

COUNTY Chautauqua

360 PERMIT NUMBER: 906360000600013 Chautauqua Landfill 07S12

PERMIT ISSUED: 07/22/99 OWNER TYPE: County REGULATORY STATUS: PERMIT EXPIRES: 07/23/09

Permit OWNER: CONTACT: Theodore Osborne County of Chautauqua DPW

ADDRESS: 3889 Towerville Road ADDRESS: Grace Office Building

Jamestown NY 14701-9653 (MAILING) Mayville NY 14757

PHONE: (716) 985-4785 PHONE: (716) 985-4211

WASTE TYPE: Residential, C&D, Asbestos, Sludge, Industrial, Cont.Soil, Coal Ash UTMEAST: 143329 UTMNORTH: 4681819

COUNTY Niagara

360 PERMIT NUMBER: 9291100119000050 32S11 Niagara Recycling Inc.

PERMIT ISSUED: 04/25/95 OWNER TYPE: Private REGULATORY STATUS: PERMIT EXPIRES: 04/30/05 Permit

OWNER: CONTACT: David Hanson BFI (Allied Waste)

ADDRESS: P.O. Box 344 LPO ADDRESS: 56th St. & Niagara Falls Blvd.

Niagara Falls (MAILING) ΝV 14304-0344 Niagara Falls NY 14304-0344

PHONE: PHONE: (716) 285-3344 (716) 285-3344

WASTE TYPE: Industrial, C&D, RR & Coal Ash, Sludge, Asbestos, Cont. Soil, MSW UTMEAST:

175230 UTMNORTH: 4779955 360 PERMIT NUMBER: 9292400016000310

Modern Landfill 32S30 PERMIT ISSUED: 12/29/95 Private OWNER TYPE:

REGULATORY STATUS: PERMIT EXPIRES: 12/31/05 Permit OWNER:

CONTACT: James Goehrig Modern Landfill, Inc. ADDRESS: P.O. Box 209 ADDRESS: Pletcher & Harold Roads

Model City NY 14107-0209 (MAILING) Model City NY 14107-0209

PHONE: (716) 754-8226 PHONE: (716) 754-8226

WASTE TYPE: MSW, Industrial, Asbestos, Sludge, RR & Coal Ash, C&D, Cont. Soil UTMEAST: 176999 UTMNORTH- 4792194 DEC

FACILITY	FACILITY LINER TYPE		<u> </u>		
NUMBER	FACILITY NAME	s	SC	D	DC
36N01	Central Hudson Gas & Elec	.F.	.F.	.F.	.T.
44N07	Tomkins Cove Ash Facility	.F.	.F.	.F.	.F.
23N06	Deferiet Paper	.F.	.T.	.F.	.F.
23S13	DANC Landfill	.F.	.F.	.F.	.T.
04N08	Weber Ash Disposal Site	.т.	.F.	.F.	.F.
55N02	Cayuga	.F.	.F.	.F.	.T.
07S12	Chautauqua Landfill	.F.	.F.	.F.	.т.
32511	Niagara Recycling Inc.	.F.	.F.	.F.	.T.
32530	Modern Landfill	.F.	.F.	.F.	.T.

➡ Printer-friendly | A-Z Subject Index | ■ Enter search words

Search DEC

Home » Regulations and Enforcement » Regulations » Chapter IV- Quality Services » Subpart 360-2: Landfills - Page 2

Outdoor Activities

Animals, Plants, Aquatic Life

Chemical and Pollution Control

Energy and Climate

Lands and Waters

Education

Permits and Licenses

Public Involvement and News

Regulations and Enforcement

Regulations

Chapter IV- Quality Services

Subpart 360-2: Landfills -Page 2

Publications, Forms, Maps

About DEC

Subpart 360-2: Landfills - Page 2

(Statutory authority: Environmental Conservation Law, Sections 1-0101, 3-0301, 8-0113, 19-0301, 19-0306, 23-2305, 23-2307, 27-0101, 27-0106, 27-0107, 27-0109, 27-0305, 27-0703, 27-0704, 27-0705, 27-0911, 27-1317, 27-1515, 52-0107, 52-0505, and 70-0107)

[Effective Date December 31, 1988]

[Amendment Dates:

Revised Effective March 27, 1990; with promulgation of new Subpart 15: Grants for Comprehensive Solid Waste Management Planning.

Revised Effective May 28, 1991; With repeal of existing Subpart 9 and promulgation of new Subpart 9:

State Assistance for Municipal Landfill Closure Projects

Revised Effective January 25, 1992; With repeal of existing Subpart 10 and promulgation of new Subpart10: Regulated Medical Waste Storage, Transfer, and Disposal, and new Subpart 17 Regulated Medical Waste Treatment Facilities.

Revised/Enhanced Effective October 9, 1993; with adoption of amendments to existing Subparts 1 through 17

Revised Effective December 14, 1994; with adoption of amendments to existing Subpart 9: State Assistance for Municipal Landfill Closure Projects

Revised Effective January 14, 1995; With repeal of existing Subpart 14 and promulgation of new Subpart

Revised Effective November 26, 1996; With adoption of amendments to existing Subparts 1, 2, 3, 7, 11, 14, and 17

Revised Effective September 29, 1997; With adoption of amendments to existing Subpart 9 Revised Effective November 21, 1998; With adoption of amendments to existing Subpart 2 Revised Effective November 24, 1999; With adoption of amendments to existing Subparts 2, 3, 4, 5, 9, 11, 14, and 16]

[This is page 2 of 3 of this Subpart. A complete list of Subparts in this regulation appears in the Chapter 4 contents page.]

Contents:

Sec.

360-2.11 Hydrogeologic report.

360-2.12 Landfill siting.

§360-2.11 Hydrogeologic report.

The hydrogeologic report must define the landfill site geology and hydrology and relate these factors to regional and local hydrogeologic patterns; define the critical stratigraphic section for the site; provide an understanding of groundwater and surface water flow at the site sufficient to determine the suitability of the site for a landfill; establish an environmental monitoring system capable of readily detecting a contaminant release from the facility and determining whether the site is contaminating surface or subsurface waters; and form the basis for design of the facility and contingency plans relating to ground or surface water contamination or gas migration as required in section 360-2.10 of this Subpart. The scope and extent of investigations necessary in the hydrogeologic report will vary based upon the hydrogeologic complexity of the site and the ability of the site to restrict contaminant migration. Additionally, the hydrogeologic report must define the engineering properties of the site as necessary for

proper design and construction of any facilities proposed to be built at the site.

- (a) Requirements of the site investigation plan. The site investigation plan must clearly define all methods used in investigating the hydrogeologic conditions of the site, the scope of the intended investigation, and any specific hydrogeologic questions to be addressed. The applicant is strongly encouraged to develop a draft version of the plan for review by the department before starting the hydrogeologic investigation that begins to define the critical stratigraphic section, and to keep the department informed of the findings and subsequent investigative proposals as the study proceeds. The final version of the plan, included in the hydrogeologic report section of the permit application, must fully describe all methods of investigation used. Unless otherwise approved by the department, the plan must comply with the following:
 - (1) General requirements for all methods used. In obtaining the required hydrogeologic information, the applicant must employ current, standard, and generally accepted procedures. All work must be done in accordance with applicable American Society for Testing Materials standards or current and appropriate U.S. Environmental Protection Agency and department guidance documents. Alternative or innovative methodologies may be approved by the department; however, the department may initially require redundant technologies to prove the reliability of a new methodology. All procedures must be conducted under the supervision of a qualified groundwater scientist having experience in similar hydrogeologic investigations, in a manner that ensures accuracy of the data and precludes environmental degradation. The location of all installations, geophysical and geochemical surveys, and seismic lines for the proposed investigation must be shown on a map with the same scale and coordinate grid system used on the engineering plans (see section 360-1.9[e] of this Part).
 - (2) Literature search. A comprehensive search must be made for pertinent and reliable information concerning regional and site specific hydrogeologic conditions. The literature search must include, as available, records and reports of the New York State Department of Health, the New York State Department of Transportation, the U.S. Soil Conservation Service, and the New York State Geological Survey; basin planning reports, groundwater bulletins, water supply papers, professional papers and other open file reports of the U.S. Geological Survey; bulletins, circulars, map and chart series, memoirs and other publications of the New York State Geologic Survey; publications and bulletins of the Geological Society of America and other professional organizations; and publications of the U.S. Environmental Protection Agency and the department, college and university reports; and aerial photography or remotely sensed imagery.
 - (3) Surficial geologic mapping. The site must be mapped to determine the distribution of surficial deposits on and surrounding the site based upon information from the hydrogeologic investigation, field evaluations, and field confirmation of all interpretations made on the site itself.
- (4) Test pits. Test pits may be used to determine shallow stratigraphy. The test pits must not create a health or safety hazard and must be logged by a geologist or geotechnical engineer with experience in similar hydrogeologic investigations. Logs must include: elevations; surface features before excavation; depth of the test pit and of all relevant horizons or features; moisture content of units; standard soil classifications (including the Unified Soil Classification System), stratigraphy, soil structure, bedrock lithology, brittle, or

secondary structures in soil and bedrock; and a sketch showing these features for each test pit constructed. Test pits must be promptly backfilled and compacted with excavated materials. The department may require that, if a test pit is dug, undisturbed soil samples be taken and tested in accordance with subparagraph (9)(ii) of this subdivision.

- (5) Water well surveys. A survey of public and private water wells within one mile downgradient and one-quarter mile upgradient of the proposed site must be conducted. Surveys must obtain, where available, the location of wells, which must be shown on a map with their approximate elevation and depth, name of owner, age and usage of the well; stratigraphic unit screened; well construction; static water levels; well yield; perceived water quality; and any other relevant data which can be obtained.
- (6) Geophysical and geochemical surveys. The department may require the use of geophysical and geochemical methods, such as electromagnetic, resistivity, seismic surveys, remote sensing surveys, downhole geophysics, isotope geochemistry, and soil gas analysis, where necessary to justify the interpretations and conclusions of the site investigation report and to provide information between boreholes, and aid in the siting of wells.
- (7) Tracer studies. The department may require the use of tracer studies to aid in understanding groundwater flow or to otherwise assist in devising an effective environmental monitoring plan.
 - (i) Where sites overlie weathered limestone or dolostone bedrock or where karst environments cannot be avoided, the department may require tracer studies before finalizing the bedrock monitoring plan. Tracer studies must identify, in specific detail, areas of groundwater flow from the facility attributed to secondary permeability, recharge and discharge areas on and surrounding the site, storage of groundwater, and variations of water quality seasonally and during high and low flow periods.
 - (ii) Where a site is otherwise unmonitorable because of existing contamination, the department may allow the use of tracers to aid in monitoring.
- (8) Monitoring wells and piezometers.
 - (i) Construction in general.
 - (a) Monitoring wells and piezometers must define the three-dimensional flow system within the critical stratigraphic section to justify the interpretations and conclusions of the hydrogeologic report.
 - (b) Construction techniques must be appropriate to ensure that groundwater samples and head level measurements characterize discrete stratigraphic intervals; and to prevent leakage of groundwater or contaminants along the well annulus. If leakage is detected, it must be corrected or the well abandoned.
 - (c) Monitoring wells and piezometers may be placed individually or as well clusters. Well clusters consist of individual wells at varying depths in close proximity, each installed in its own boring. Multiple wells placed into one large borehole are prohibited unless prior department approval in writing is obtained.
 - (d) Soil borings, soil samples, and rock cores must characterize each stratigraphic unit within the critical stratigraphic section to justify the interpretations and conclusions

of the hydrogeologic report.

- (e) Every precaution must be taken during drilling and construction of monitoring wells to avoid introducing contaminants into a borehole. Only potable water of known chemistry may be used in drilling monitoring wells or piezometers unless otherwise approved by the department.
- (f) All equipment placed into the boring must be properly decontaminated before use at the site and between boreholes. The initial cleaning at the site must ensure that no contaminants from the last site drilled will be introduced into the borings. All equipment must be steam cleaned between holes. Where possible, upgradient wells should be drilled first.
- (g) Use of drilling muds is to be avoided unless prior department approval in writing is granted. If drilling muds are used, the material used must avoid the introduction of stray contaminants. Drilling muds must not be used within 10 feet of the screened interval.
- (h) Air systems and drilling lubricants must not introduce contaminants into the borehole.
- (i) Well borings must have an inside diameter at least two inches larger than the outside diameter of the casing and screen to ensure that a tremie may be properly used.
- (j) Wells and borings must not be placed through or into waste unless prior department approval has been granted and sufficient safety precautions are employed. If waste is encountered unexpectedly during drilling, drilling of that boring must cease, the hole properly abandoned with cuttings properly disposed of and the department notified.
- (ii) Construction of monitoring wells and piezometers.
 - (a) Well screens and risers must be constructed of materials selected to last for the required monitoring period of the facility without contributing contaminants to, or removing contaminants from, the groundwater. All materials used are subject to department approval. Joints, caps, and end plugs are to be secured by welds, threads with teflon tape, or force fittings. Solvents and glues or other adhesives are prohibited. Caps must be vented to allow for proper pressure equalization. The inside diameter of each well screen or riser pipe must be nominally two inches in diameter and must allow for proper development, survey and sampling equipment to be used within the screen and casing. A permanent mark should be made at the top of the riser pipe to provide a datum for subsequent water level measurements.
 - (b) Unless otherwise approved by the department, well screens are required for all wells and piezometers. All screens used must be factory constructed non-solvent welded/bonded continuous slot wire wrap screens of a material appropriate for long-term monitoring without contributing contaminants to or removing contaminants from the groundwater. The slot size of the screen must be compatible with the sand pack. Water table variations, site stratigraphy, expected contaminant behavior, and groundwater flow must be considered in determining the screen length, materials, and position. Where existing contamination is suspected or known, down hole geophysical

techniques may be required by the department to aid in selecting well screen elevations.

- (c) The sand pack surrounding the well screen must consist of clean, inert, siliceous material. Grain size must be based upon a representative sieve analysis of the zone to be screened. The sand pack must minimize the amount of fine materials entering the well and must not inhibit water inflow to the well. The sand pack must be placed in the annular space around the well screen and extend two feet or 20 percent of the screen length (whichever is greater) above the top, and six inches below the bottom, of the screen. The sand pack material must be placed using the tremie method or another method approved by the department and must avoid bridging. The sand pack must be checked for proper placement. A finer grained sand pack material (100 percent passing the No. 30 sieve and less than two percent passing the No. 200 sieve) six inches thick must be placed at the top of the sand pack between the sand and the bentonite seal.
- (d) Bentonite must be placed above the sand pack using the tremie or other approved method to form a seal at least three feet thick. A 6 to 12 inch fine grained sand pack must be placed above the bentonite seal to minimize grout infiltration. If pellets or chips are used, sufficient time should be allotted to allow for full hydration of the bentonite prior to emplacement of overlying materials.
- (e) Grout of cement/bentonite, bentonite alone, or other suitable, low permeability material, if approved by the department, must completely fill the remaining annular space to the surface seal. The grout mixture must set up without being diluted by formation water, and must displace water in the annular space to ensure a continuous seal. The grout mixture must be placed under pressure using a tremie or other method approved by the department. Auger flights or casing must be left in the hole before grouting to prevent caving. The cement used must be appropriate for the groundwater chemistry of the site.
- (f) A protective steel casing, at least two inches larger in diameter than the well casing, must be placed over the well casing or riser pipe and secured in a surface well seal to adequately protect the well casing. A distinctive, readily visible marker must be permanently affixed to the protective casing or near the well to identify the well number and ensure visibility even in periods of high snow cover. A drain hole must be drilled at the base of the protective casing. A vent hole must be located near the top of the protective casing to prevent explosive gas build up and to allow water levels to respond naturally to barometric pressure changes. The annulus of the protective casing should be filled with gravel. A locking cap must be installed with one to two inches clearance between the top of the well cap and the bottom of the locking cap when in the locked position and a weather resistant padlock must be placed on the protective casing and duplicate keys provided to the department.
- (g) A concrete surface seal designed to last throughout the planned life of the monitoring well must be constructed. The surface seal must extend below the frost depth to prevent potential well damage. The top of the seal must be constructed by pouring the concrete into a pre-built form with a minimum of three foot long sides. The seal must be designed to prevent surface runoff from ponding and entering the well casing. In areas where traffic may cause damage to the well, bumperguards or other

suitable protection for the well is required. Any damaged or deteriorated surface seals must be reported to the department and repaired or replaced in an appropriate manner. The department may allow alternate designs when documentation is presented which demonstrates the intent of the regulations.

- (h) Where under the circumstances of a particular situation the department believes that the methods identified in this section are inadequate, it may require that additional measures be taken to prevent migration of contaminants along the annulus of the well or to protect the well.
- (i) Alternative construction methods for piezometers and wells which are not to be part of the environmental monitoring plan may be approved by the department if those methods meet the requirements set forth in clause (i)(b) of this paragraph.
- (iii) Well and piezometer development. All wells and piezometers must be developed as soon as possible after installation, but not before the well seal and grout have set. Water must not be introduced into the well for development, except with approval of the department. Any contaminated water withdrawn during development must be properly managed. Development must not disturb the strata above the water-bearing zone or damage the well. The entire saturated screened interval must be developed. The department may require multiple attempts at well development to increase the likelihood that sediment free water can be obtained. Development methods should be appropriate for conditions/stratigraphy encountered. Placement of screens in a fine grained strata may require gentle development techniques to avoid pulling sediment into the well. The selected method must minimize to the greatest extent possible the amount of turbidity in the well.
- (iv) Survey. The locations and elevations of all existing and abandoned test pits, soil borings, monitoring wells, and piezometers must be surveyed to obtain their precise location and plotted on a map in the hydrogeologic report. The vertical location of the ground surface and the mark made on the top of the monitoring well and piezometer risers must be accurately measured to the nearest 100th foot.
- (v) Replacement of wells. All wells must be properly protected to ensure their integrity throughout the active and post-closure period of the facility. If, in the opinion of the department, water quality or other data show that the integrity of a well is lost, the well must be replaced and sampled within a time period acceptable to the department (but not to exceed 120 days) after written notification by the department. The initial sample for the replacement well must be analyzed for baseline parameters in the Water Quality Analysis Tables in this section.
- (vi) Abandonment of wells. All soil borings or rock cores which are not completed as monitoring wells or piezometers and other abandoned wells must be fully sealed in a manner appropriate for the geologic conditions to prevent contaminant migration through the borehole. Generally, such sealing must include:
 - (a) Overboring or removal of the casing to the greatest extent possible, followed by perforation of any casing left in place. All casing and well installations in the upper five feet of the boring, or within five feet of the proposed level of excavation, must be removed.
 - (b) Sealing by pressure injection with cement bentonite grout, using a tremie pipe or

other method acceptable to the department, must extend the entire length of the boring to five feet below the ground surface or the proposed excavation level. The screened interval of the borehole must be sealed separately and tested to ensure its adequacy before sealing the remainder of the borehole. Where the surrounding geologic deposits are highly permeable, alternate methods of sealing may be required to prevent the migration of the grout into the surrounding geologic formation. The upper five feet must be backfilled with appropriate native materials compacted to avoid settlement.

(c) The sealed site must be restored to a safe condition. The site must be inspected periodically after sealing for settlement or other conditions which require remediation.

(9) Geologic sampling.

- (i) All borings and rock cores must be sampled continuously to the base of the critical stratigraphic section. For well clusters, continuous samples must be collected from the surface to the base of the deepest well. Other wells in the cluster must be sampled at all stratigraphic changes, and at the screened interval. At sites where the geology is not of a complex nature the department may allow a reduction in the number of wells requiring continuous sampling. Soil borings must be sampled using the split spoon method and bedrock or boulders must be sampled by coring with standard size NX or larger diameter core bits. Samples must be retained in labeled glass jars or wooden core boxes. All samples must be securely stored and accessible throughout the life of the facility. The location of the storage area must be designated in the operation and maintenance plan for the facility.
- (ii) A representative number of undisturbed samples must be collected from test pits and soil borings using appropriate methods to identify the soil characteristics of all cohesive soil units. Such samples must be analyzed in the laboratory for: Atterberg limits; gradation curves by sieve or hydrometer analysis or both, as appropriate; undisturbed permeabilities; and visual descriptions of undisturbed soil structures and lithologies.

(10) Logs.

- (i) Complete and accurate drilling logs must be provided to the department for all soil borings. These logs must provide detailed soil classification according to the Unified Soil Classification System (USCS). The USCS visual method must be used on all samples supplemented by the USCS laboratory tests on a representative number of samples from each stratigraphic unit and each screened interval. Logs also must contain a description of matrix and clasts, mineralogy, roundness, color, appearance, odor, and behavior of materials using an appropriate descriptive system. A clear description of the system used must be included with the logs. When undisturbed samples have been taken, the interval tested and the test results must be clearly shown on the logs. All well logs must contain drilling information as observed in the field including: moisture content, location of the water table during drilling, water loss during drilling; depth to significant changes in material and rock; sample recovery measured in tenths of a foot; hammer blow counts, and other pertinent comments; the method of drilling, anomalous features such as gas in the well, and the use and description of drilling fluids or additives, including the source, and calculated and actual amounts of materials used.
- (ii) Rock core logs must describe the lithology, mineralogy, degree of cementation, color, grain size, and any other physical characteristics of the rock; percent recovery and the

rock quality designation (RQD); other primary and secondary features, and contain all drilling observations and appropriate details required for soil boring logs. A clear photograph of all labeled cores must also be taken and submitted with the logs.

- (iii) Well completion logs must contain a diagram of the completed well, all pertinent details on well construction, a description of the materials used, and elevations of all well features.
- (iv) Copies of original field logs must be submitted to the department upon request.
- (11) In situ hydraulic conductivity testing. In situ hydraulic conductivity testing must be done in all monitoring wells and piezometers, unless other methods that are approved by the department, are used. The testing method used must not introduce contaminants into the well. If contamination is known or suspected to exist, all water removed must be properly managed. Hydraulic conductivities may be determined using pump tests, slug tests, packer tests, tracer studies, isotopic geochemistry, thermal detection, or other suitable methods.
- (b) Site investigation report. The site investigation report must include a final version of the site investigation plan, raw field data, analytical calculations, maps, flow nets, cross-sections, interpretations (and alternative interpretations where applicable), and conclusions. All maps, drawings and diagrams must have a minimum scale of 1:24,000, unless otherwise acceptable to the department. Such report must comprehensively describe:
 - (1) Regional geology. The discussion of regional geology must demonstrate how the regional geology relates to the formation of on-site geologic materials, the potential for and effects of off-site contaminant migration, and the location of nearby sensitive environments. This discussion must include available and appropriate information to describe:
 - (i) bedrock stratigraphy and structural features (represented on maps and columnar diagrams) constructed from field exposures and the geologic literature, describing formation and member names, geologic ages, rock types, thicknesses, the units' mineralogic and geochemical compositions and variabilities, rock fabrics, porosities and bulk permeabilities, including karst development, structural geology, including orientation and density or spacing of folds, faults, joints, and other features;
 - (ii) glacial geology, including a discussion of the formation, timing, stages, and distribution of glacial deposits, advances and retreats, hydrologic characteristics of the surficial deposits, such as kames, eskers, outwash moraines, etc.;
 - (iii) major topographic features, their origin and influence upon drainage basin characteristics; and
 - (iv) surface water and groundwater hydrologic features, including surface drainage patterns, recharge and discharge areas, wetlands and other sensitive environments, inferred regional groundwater flow directions, aquifers, aquitards and aquicludes, known primary water supply and principal aquifers, public water supply wells, and private water supply wells identified in the water supply well survey; any known peculiarities in surface water and groundwater geochemistry, and any other relevant features.
 - (2) Site-specific geology. The site investigation report must define site hydrogeologic conditions in three dimensions and their relationship to the proposed landfill. The report must define site geology, surface water and groundwater flow, and must relate site-specific conditions to the regional geology. The report must describe the potential impact the landfill

may have on surface and groundwater resources and other receptors, including future hydrogeologic conditions, which may occur with site development, and it must describe the hydrogeologic conditions in sufficient detail to construct a comprehensive understanding of groundwater flow, which can be quantified and verified through hydrologic, geochemical, and geophysical measurements. The report must provide sufficient data to specify the location and sampling frequency for environmental monitoring points; form the basis for contingency plans regarding groundwater and surface water contamination and explosive gas migration; and support the engineering design of the landfill. The site- specific hydrogeologic evaluation must specifically discuss all units in the critical stratigraphic section. Such evaluation must include maps, cross- sections, other graphical representations, and a detailed written analysis of the following:

- (i) all hydrogeologic units such as aquifers, aquitards and aquicludes, and how they relate to surface water and groundwater flow. This must include all hydrogeologic data collected during the site investigation and explain and evaluate the hydrologic and engineering properties of the site and each specific unit; and
- (ii) local groundwater recharge and discharge areas, high and low groundwater tables and potentiometric surfaces for each hydrologic unit, vertical and horizontal hydraulic gradients, groundwater flow directions and velocities, groundwater boundary conditions, surface water and groundwater interactions, and an evaluation of existing water quality.
- (c) Environmental monitoring plan. The environmental monitoring plan must describe all proposed on-site and off-site monitoring, including the location of all environmental, facility, and other monitoring points, sampling schedule, analyses to be performed, statistical methods, and reporting requirements. The plan must also include a schedule for construction of the groundwater monitoring wells based on site-specific hydrogeology and the sequencing of construction of landfill cells; a schedule for initiation of the existing water quality and operational water quality monitoring programs and a contingency water quality monitoring plan which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the plan must comply with the following:
 - (1) Groundwater sampling. Groundwater monitoring wells must be capable of detecting landfill-derived groundwater contamination within the critical stratigraphic section.
 - (i) Horizontal well spacing.
 - (a) Horizontal spacing of wells must be based upon site-specific conditions including groundwater flow rates, estimated longitudinal and transverse dispersivity rates, proximity to or presence of sensitive environments and groundwater users, the nature of contaminants disposed of at the site, and the proposed design and size of the landfill.
 - (b) In the first water-bearing unit of the critical stratigraphic section, monitoring well spacing must not exceed 500 feet along the downgradient perimeter of the facility. In sensitive environments or geologically complex environments, closer well spacing may be required. Upgradient or crossgradient well spacing must not exceed 1,500 feet and may be less in sensitive environments, or where up-gradient sources of contamination are known to exist. Subsequent water-bearing units must be monitored, as required by the department, based upon the potential for contaminant migration to that unit. Well spacing must provide at least one upgradient and three downgradient

monitoring wells or well clusters for each water- bearing unit of the critical stratigraphic section.

- (c) Sensitive environments or areas where public health concerns exist may be subject to more intensive groundwater monitoring requirements. In addition, the department may require the applicant to develop acceptable computer models of contaminant plume behavior from hypothetical leaks in the liner system, if necessary to determine optimum monitoring well spacing.
- (d) In areas where waterflow is irregular and unpredictable and where otherwise determined to be appropriate, the applicant may be required to conduct spring, sinkhole, or other sampling to enhance the monitoring.
- (e) All downgradient monitoring wells must be located as close as practical to but not more than 50 feet from the waste boundary, unless otherwise approved by the department due to site specific conditions, to ensure early detection of any contaminant plume.
- (f) All upgradient and crossgradient monitoring wells must be placed far enough from the waste boundary to avoid any facility derived impacts.
- (ii) Well screen placement.
 - (a) Well screens must be located to readily detect groundwater contamination within the saturated thickness of the first water-bearing unit, and must be installed at a representative number of points at each subsequent permeable unit throughout the critical stratigraphic section. Well screens must not act as conduits through impermeable layers. Wells monitoring the water table should be screened to ensure that the water table can be sampled at all times.
 - (b) Upgradient and crossgradient wells must monitor the same hydrologic units whenever possible within the critical stratigraphic section as the downgradient monitoring wells.
- (iii) Screen length. Well screens must not exceed 20 feet in length, unless otherwise approved by the department. The applicant must provide technical justification for the actual screen length chosen.
- (iv) Geophysical and geochemical techniques. Where existing contamination is suspected, the department may require the use of geophysical and geochemical techniques to locate contaminated zones before selecting well locations and screen depths for environmental monitoring points.
- (v) If a groundwater suppression system exists at a facility, the department may require representative sampling points to be designated as environmental monitoring points. Existing water quality monitoring at these points may not be required.
- (2) Surface water and sediment sampling. The environmental monitoring plan must designate monitoring points, for use in operational or contingency monitoring or both of the facility pursuant to subparagraphs (5)(ii) and (iii) of this subdivision, for all surface water bodies that may be significantly impacted by a contaminant release from the facility. Sampling activities at these monitoring points shall be for surface water and sediment. The department may require the sampling and analysis of surface water and sediment

sampling points during a site investigation to understand site hydrogeology or existing patterns of contamination. In bodies of standing water, these points must be located at the closest point to the facility and must be included in existing water quality monitoring. In flowing water bodies, these points must include sufficient upgradient and downgradient locations to allow the facility's impact to be measured. These points, however, do not require existing water quality analysis. The detailed analysis requirements of these points must be specified in the contingency monitoring plan and the detailed sampling requirements must be specified in the site analytical plan.

- (3) Leachate sampling. The environmental monitoring plan must specify the location of facility leachate sampling points and parameters to be analyzed so as to obtain a representative characterization of the leachate composition in the primary leachate collection and removal system and to determine the nature of liquids detected in the secondary leachate collection and removal system. The following must be included:
 - (i) Sampling points. All sampling points should be located to minimize pumping of leachate before sampling. Sampling points in the secondary leachate collection system should be adequate to sample liquids beneath each discrete leachate collection area or landfill cell.
 - (ii) Analysis required. Except as allowed by the department when a specific waste stream and its leachate are already well defined, analysis of the leachate in the primary and secondary leachate collection and removal systems must be performed semi-annually for expanded parameters. The department may require the use of specific analytical methods in these analyses when minimum detection levels are determined inadequate to fully characterize leachate.
- (4) Water supply well sampling. If sampling and analysis of water supply wells is to be performed, the analytical requirements must be in accordance with those specified in the site analytical plan. Sampling frequency and analysis shall be at least quarterly for baseline parameters. Sampling methods must be consistently applied each time a well is sampled and before sampling any residential well, the New York State Department of Health and/or local health department must be notified.
- (5) Water quality monitoring program. A water quality monitoring program must be implemented for all environmental monitoring points specified in the environmental monitoring plan. This program must be tailored to the site to establish existing water quality for the site prior to landfilling, operational water quality during operation of the site and the post-closure period, and contingency water quality, if contamination is detected at the site. These programs must meet the following minimum requirements:
 - (i) Existing water quality. The applicant must establish an existing water quality database to characterize the site geochemistry.
 - (a) The permit application must contain a preliminary evaluation of water quality, consisting of the first two rounds of sampling and analyses for a representative number of monitoring points at both upgradient and downgradient locations, in each water bearing hydrogeologic unit within the critical stratigraphic section, with a minimum of two samples taken from each well during the first round of sampling, unless otherwise approved by the department. The first round of these samples must be analyzed for the expanded parameters. The second round must be analyzed for the

baseline parameters, except as specified in clause (d) of this subparagraph. These samples should be taken in early spring and late summer, or equivalent, to approximate periods of high and low groundwater flow. The department may require sampling and analysis of additional monitoring points as necessary to define site hydrogeology and geochemistry in support of the interpretations and conclusions of the site investigation report.

- (b) Before deposition of waste in the facility, all environmental monitoring points not previously sampled must be sampled and analyzed for four rounds of quarterly sampling. The first of these sampling rounds must be analyzed for expanded parameters and the other three rounds must be analyzed for baseline parameters. Those environmental monitoring points which were sampled in accordance with clause (a) of this subparagraph must be sampled and analyzed for baseline parameters for two rounds of samples. The samples shall be obtained at different times of the year than when the sampling required by clause (a) of this subparagraph was performed. If elevated contaminant levels were detected during the preliminary evaluation of water quality, then the sampling required in this clause shall be as specified in clause (d) of this subparagraph. The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed. The sampling of these phased monitoring points shall commence at least one year prior to solid waste deposition and shall be in conformance with the requirements of clause (b) of this subparagraph or as approved by the department. As these phased monitoring points are added to the monitoring program, the procedures contained in clause (c) of this subparagraph shall be followed to reestablish existing water quality at the facility and recompute the standard deviation.
- (c) Prior to facility operation, existing water quality must be established for each hydrogeologic flow regime being monitored at the site. Existing water quality for each hydrogeologic flow regime shall be the arithmetic mean, per parameter, of the analytical results of the samples obtained from those environmental monitoring points within that flow regime prior to deposition of solid waste; provided there is no reason to believe that the distribution of the analytical results was non-uniform. The standard deviation of the analytical results for each parameter within each flow regime shall also be established at that time. Should the department determine that the sampling results are non-representative of existing water quality or do not constitute a normal, uniform distribution, then the department shall specify such additional sampling and analyses as it deems necessary to confidently establish existing water quality at the site. For those facilities where solid waste has been placed previously in other than a contiguous landfill cell, the existing water quality may be based on only some of the environmental monitoring points, subject to the approval of the department.
- (d) If elevated contaminant levels are detected and additional detailed information is needed to establish a complete existing water quality database, the department may require one or more rounds of baseline or expanded parameter sampling and analysis in any sampling point, using the procedure specified for contingency monitoring required in subparagraph (iii) of this paragraph when contamination is detected.
- (e) Additional sampling and analysis beyond the site boundaries may be required to determine the nature and extent of contamination and the source, if possible. This evaluation may include construction, sampling, and analysis of any additional

monitoring wells, and surface water sampling points required by the department. Based upon the results of this additional data, the department may require analysis for any and all expanded parameters, to be included in quarterly or annual operational water quality sampling.

- (ii) Operational water quality. The environmental monitoring plan must include a plan for operational water quality monitoring to be conducted during the operation, closure, and post-closure periods of the facility. The operational water quality monitoring plan must be able to distinguish landfill-derived contamination from the existing water quality at the site. The plan must also describe trigger mechanisms for initiating contingency water quality monitoring. The department may require modification of this plan as additional sampling data becomes available during the life of the facility. The minimum requirements for operational water quality monitoring are:
 - (a) Except as provided below, in each calendar year sampling and analysis must be performed at least quarterly, once for baseline parameters and three times for routine parameters. The baseline sampling event must be rotated quarterly; one round of baseline parameters to be analyzed in each calendar year will be sufficient unless a pattern of contamination exists which may require the department to change the sampling frequency. For double lined landfills, the department may allow omission of the winter sampling once a complete understanding of water chemistry has been obtained, provided that a demonstration of acceptable liner performance is made to the department. The department will require sampling and analysis on a quarterly basis, alternately analyzing for routine and baseline parameters, at all landfills which do not have a liner system constructed in accordance with section 360-2.13(f) of this Subpart.
 - (b) The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed or as post-closure monitoring is completed as specified in section 360-2.15(i) of this Subpart. With department approval, sampling of specific environmental monitoring points which are not potentially impacted by the portions of the landfill already constructed, may be deferred, provided that scheduled sampling commences at least one year before landfill construction in the vicinity. The department may withdraw this approval at any time, based upon a change in facility design, operation, or performance.
 - (c) Operational water quality analysis must include at least those parameters specified in the Water Quality Analysis Tables for routine and baseline parameters. The department may modify these tables before granting a permit for the facility, or during the duration of the permit, if leachate composition so warrants. If subsequent leachate compositions vary or if the waste disposed of at the facility changes, the department may adjust analytical requirements accordingly.
 - (d) Within 90 days of completing the quarterly field sampling activities, the facility owner/operator must determine whether or not there is a significant increase from existing water quality levels established for each parameter pursuant to clause (c)(5)(i) (c) of this section.
- (1) In determining whether a significant increase has occurred, the facility owner/operator must compare the groundwater quality of each parameter at each monitoring well to the existing water quality value of that parameter.

- (2) A significant increase has occurred if:
 - (i) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section, by three standard deviations; or
 - (ii) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section and exceeds the water quality standards for that parameter as specified in Part 701, 702, or 703 of this Title. (e) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the routine parameters, excluding the field parameters, at any monitoring well, the facility owner/operator:
- (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and
- (2) must sample and analyze all monitoring points for the baseline parameters during the next quarterly sampling event. Subsequent sampling and analysis for baseline parameters must be conducted at least semiannually until the significant increase is determined not to be landfill-derived or the department determines such monitoring is not needed to protect public health or the environment.
- (f) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the baseline parameters, excluding the field parameters, at any monitoring well, the facility owner/operator:
 - (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and
 - (2) must establish a contingency monitoring program meeting the requirements of subparagraph (iii) of this paragraph within 90 days except as provided for in subclause (3) of this clause.
 - (3) The facility owner/operator may attempt to demonstrate to the department that a source other than the facility caused the contamination or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. A report documenting this demonstration must be submitted to the department for approval. If a successful demonstration is made, documented and approved by the department, the facility owner/operator may continue operational water quality monitoring as specified in this subparagraph. If, after 90 days, a successful demonstration is not made, the owner/operator must initiate a contingency monitoring program as required in subparagraph (iii) of this paragraph.
 - (iii) Contingency water quality. The environmental monitoring plan must include a plan for contingency water quality monitoring, as described in this subparagraph, which must be conducted when a significant increase over existing water quality has been detected pursuant to clause (c)(5)(ii)(d) of this section for one or more of the baseline parameters listed in the Water Quality Analysis Tables. All contingency water quality monitoring plans are subject to department approval, may be modified at any time by the department

when necessary to protect public health and the environment, and must include the following:

- (a) Within 90 days of triggering a contingency water quality monitoring program, the facility owner/operator must sample and analyze the groundwater for the expanded parameters listed in the Water Quality Analysis Tables. A minimum of one sample from each monitoring well (upgradient and downgradient) must be collected and analyzed during this sampling. If any constituents are detected in the downgradient wells as a result of the expanded parameter analysis, a minimum of two independent samples from each well (upgradient and downgradient) must be collected within 30 days of obtaining the results of the expanded parameter analysis and analyzed for the detected constituents. These samples must be collected within two weeks of each other and then compared to the existing groundwater quality values established pursuant to subparagraph (c)(5)(i) of this section. If an increase in the existing water quality values in the upgradient wells is indicated by this comparison, the existing water quality values for these parameters shall be revised to be the arithmetic mean of the results of each parameter for which analyses were performed in the upgradient wells within each hydrogeologic flow regime. The department may delete any of the expanded parameters if it can be shown that the removed parameters are not reasonably expected to be in, or derived from, the waste contained in the landfill based on the leachate sampling being performed pursuant to paragraph (c)(3) of this section.
- (b) After obtaining the results from the initial or subsequent sampling required in clause (a) of this subparagraph, the facility owner/operator must:
- (1) within 14 days, notify the department to identify the expanded parameters that have been detected:
- (2) within 90 days, and on a quarterly basis thereafter, resample all wells, conduct analyses for all baseline parameters, and for those expanded parameters that are detected in response to clause (a) of this subparagraph. In addition, the facility owner/operator shall sample and conduct analyses annually on all wells for the expanded parameters. At least one sample from each upgradient and downgradient well must be collected and analyzed during these sampling events. The department may reduce the requirements of this subclause based on site specific conditions; and
- (3) establish groundwater protection standards for all parameters detected pursuant to clause (a) of this subparagraph. The groundwater protection standards must be established in accordance with clause (f) of this subparagraph.
- (c) If the concentrations of any of the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department of this finding and, if approved by the department, may remove that parameter from the contingency water quality monitoring program. If the concentrations of all the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department and, if approved by the department, may return to operational water quality monitoring.
- (d) If the concentrations of any expanded parameters are above existing water quality values, but all concentrations are below the groundwater protection standard

established under clause (f) of this subparagraph, the owner/operator must continue contingency monitoring in accordance with this subparagraph.

- (e) If one or more expanded parameters are detected at significant levels above the groundwater protection standard established under clause (f) of this subparagraph in any sampling event, the facility owner/operator must, within 14 days of this finding, notify the department to identify the expanded parameters that have exceeded the groundwater protection standard, and notify all appropriate local government officials identified in the Contingency Plan, required pursuant to section 360-2.10 of this Subpart, that the notice has been sent to the department. The owner/operator must also:
- (1) characterize the nature and extent of the release by installing additional monitoring wells as necessary;
- (2) install at least one additional monitoring well at the facility boundary in the direction of contaminant migration, and sample this well in accordance with subparagraph (c) (5)(i) of this section;
- (3) notify all persons who own the land or reside on the land that is directly over any part of the plume of contamination if contaminants have migrated off-site as indicated by sampling of wells in accordance with subclause (1) of this clause; and
- (4) initiate an assessment of corrective measures as required by section 360-2.20 of this Subpart within 90 days; or
- (5) demonstrate that a source other than the landfill caused the contamination, or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. This report must be submitted for approval by the department. If a successful demonstration is made, the facility owner/operator must continue monitoring in accordance with the contingency water quality monitoring program pursuant to subparagraph (c)(3)(iii) of this section, and may return to operational monitoring if the expanded parameters are at or below existing water quality as specified in subparagraph (c)(5)(i) of this section. Unless and until a successful demonstration is made, the owner/operator must comply with this clause, including initiating an assessment of corrective measures.
- (f) The owner/operator must establish a groundwater protection standard for each expanded parameter detected in the groundwater. The groundwater protection standard shall be:
- (1) for parameters for which a maximum contaminant level (MCL) has been established in section 1412 of the Safe Drinking Water Act under 40 CFR part 141 (see section 360-1.3 of this Part) or for which standard has been established pursuant to Part 701, 702, or 703 of this Title, whichever is more stringent when the parameters are the same, the MCL or standard for that constituent;
- (2) for parameters for which MCLs or standards have not been established, the existing water quality concentration for the parameter established from wells in accordance with subparagraph (c)(5)(i) of this section; or
- (3) for parameters for which the existing water quality level is higher than the MCL or standard identified under subclause (1) of this clause, the existing water quality

concentration.

- (iv) Reporting of data. Unless more rapid reporting is required to address an imminent environmental or public health concern, the owner or operator of the facility must report all water quality monitoring results to the department within 90 days of the conclusion of the sample collection. The report must include:
 - (a) A table showing the sample collection date, the analytical results (including all peaks even if below method detection limits [MDL]), designation of upgradient wells and location number for each environmental monitoring point sampled, applicable water quality standards, and groundwater protection standards if established, MDL's, and Chemical Abstracts Service (CAS) numbers on all parameters.
 - (b) In addition, tables or graphical representations comparing current water quality with existing water quality and with upgradient water quality must be presented. These comparisons may include Piper diagrams, Stiff diagrams, tables, or other analyses.
 - (c) A summary of the contraventions of State water quality standards, significant increases in concentrations above existing water quality, any exceedances of groundwater protection standards, and discussion of results, and any proposed modifications to the sampling and analysis schedule necessary to meet the requirements of subparagraphs (i) through (iii) of this paragraph.
 - (d) All AQA/AQC documentation must be submitted to the department in a form acceptable to the department.
 - (e) The annual report must contain a summary of the water quality information presented in clauses (b) and (c) of this subparagraph with special note of any changes in water quality which have occurred throughout the year.
 - (f) The data quality assessment report required pursuant to paragraph (d)(5) of this section.
 - (d) Site analytical plan. The site analytical plan must describe the method of sample collection and preservation, chain of custody documentation, analyses to be performed, analytical methods, data quality objectives, procedures for corrective actions, and procedures for data reduction, validation and reporting. The site analytical plan will pertain to existing water quality monitoring programs, operational water quality monitoring programs, and a contingency water quality monitoring program which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the site analytical plan must comply with the following:
 - Data quality objectives.
 - (i) The data quality objectives for the data generation activity must be established prior to the initiation of any sampling.
 - (ii) The data quality objectives shall define the goals of each phase of the water quality monitoring program, including, but not limited to, the following:
 - (a) reasons for the analytical program;
 - (b) identification of any regulatory programs and standards applicable to the analytical program; and

- (c) minimum detection limits for each of the parameters listed in the Water Quality Analysis Tables.
- (iii) The data quality objectives shall be the basis for the development of all other portions of the site analytical plan.
- (2) Analytic quality assurance (AQA)/analytic quality control (AQC).
- (i) The site analytical plan must include a discussion of the AQA/AQC for the sampling program associated with the facility and shall be sufficient to ensure that the data generated by the sampling and analysis activities are of a quality commensurate with their intended use and the requirements of the department. The discussion shall detail the AQA/AQC goals and protocols for each type of environmental monitoring to be performed at the facility. Elements must include a discussion of the quality objectives of the project, identification of the qualifications of those persons who will be performing the work and their responsibilities and authorities, enumeration of AQC procedures to be followed, and reference to the specific standard operating procedures that will be followed for all aspects of the environmental monitoring program.
- (3) Field sampling procedures.
- (i) All field sampling procedures shall be described in detail in the site analytical plan. All field quality control procedures shall be described including types and frequency of field quality control samples to be collected such as field blanks, trip blanks, field duplicates, reference materials and material blanks.
- (ii) All samples must be collected and stored in the order of the parameter's volatilization sensitivity using methods, consistently applied, which ensure sample integrity.
- (iii) All sampling equipment must be constructed of inert materials designed to obtain samples with minimal agitation and contact with the atmosphere; be cleaned and protected during transport to avoid contamination; and checked before use. Dedicated equipment must be constructed of appropriate inert materials and must be appropriate for the types of sampling to be performed.
- (iv) Samples must be properly preserved and delivered to the laboratory with proper chain of custody within all appropriate holding times for the parameters to be analyzed.
- (v) The sampling procedures and frequencies must be protective of human health and the environment.
- (vi) Monitoring well sampling techniques. Monitoring well sampling techniques must be consistently performed each time a well is sampled, and must comply with the following:
- (a) In areas where the presence of explosive or organic vapors is suspected, ambient air in the well must be checked for their presence before the well is evacuated.
- (b) For wells with documented contamination, where contamination by non-aqueous phase liquids may be present, standing water in the well must be checked for immiscible layers or other contaminants that are lighter or heavier than water (floaters or sinkers). If present, floaters or sinkers must be sampled and analyzed separately by

a method described in the site analytical plan.

- (c) Evacuation of the well must replace stagnant water in the well and the sand pack with fresh water representative of the formation. Evacuation methods, including pumping rate, depth of pump intake, and method of determining sufficiency of evacuation must be consistently applied each time the well is sampled. Evacuation methods must create the least possible turbidity in the well and must not lower the water in the well below the top of the sand pack whenever feasible. Evacuated water must be properly managed.
- (d) After evacuation of the well, volatile organic samples must be collected.
- (e) analysis must be performed after volatile organic samples have been collected, either within the borehole using a probe or from the next sample collected. All field test equipment must be calibrated at the beginning of each sampling day and checked and recalibrated according to the manufacturer's specifications. Calibration data must be reported with the analytical results.
- (f) Groundwater samples shall not be filtered, unless otherwise approved by the department. If, due to site-specific conditions, sample turbidity cannot be reduced to 50 nephelometric turbidity units (NTUs) or less by good sampling technique or well redevelopment, the department may approve collection of both filtered and unfiltered samples for analyses of the inorganic parameters. All other analyses required will be on the unfiltered samples.
- (vii) Surface water and sediment sampling techniques. Surface water and sediment sampling methods must be consistently applied to all samples, and must comply with the following:
- (a) Surface water samples collected from shallow water should not include bottom sediment. In shallow moving water, downstream samples must be collected first to avoid disturbances from the bottom sediments.
- (b) Each water body over three feet deep that is sampled must be checked for stratification, and each stratum must be checked for contamination using field parameters. Each stratum showing evidence of contamination must be separately analyzed. If no stratum shows such evidence, a composite sample having equal parts of water from each stratum must be analyzed.
- (c) Sediment samples must be taken at each location from which surface water samples are taken, and should consist of the upper five centimeters of sediment.
- (viii) Water supply well sampling techniques. Sampling methods must be consistently applied each time a well is sampled and must comply with the following:
- (a) Samples should be collected directly from the well so as to yield water representative of the formations supplying the well. If this is not possible, samples must be collected as near to the well as possible and before the water is softened, filtered, or heated.
- (b) If possible, samples must be collected before the water enters the pressure tank, otherwise the water must run long enough to flush water stored in the tank and pipes.
- (c) Before sampling, water must be evacuated from the well to ensure a fresh sample

of aquifer water.

- (d) If samples are collected from a tap, aerators, filters, or other devices must be removed before sampling.
- (ix) Corrective action. Standard operating procedures must be established which describe the procedures used to identify and correct deficiencies in the sample collection process. The standard operating procedure shall specify that each corrective action must be documented in the sampling report submitted to the department, with a description of the deficiency, the corrective action taken, and the persons responsible for implementing the corrective action. Any alterations to the field sampling procedures shall be included as an amendment to the site analytical plan.
 - (4) Laboratory procedures.
 - (i) Laboratory analyses must be performed by a laboratory currently certified under the appropriate approval categories by the New York State Department of Health's Environmental Laboratory Approval Program (ELAP).
 - (ii) The site analytical plan should contain the standard operating procedures of all laboratory activities related to the environmental monitoring plan. Any revisions to these standard operating procedures must be documented. Standard operating procedures should be available for the following, at a minimum:
 - (a) receipt, storage and handling of samples;
 - (b) sample scheduling to ensure that holding time requirements are met;
 - (c) reagent/standard preparation;
 - (d) general laboratory techniques such as glassware cleaning procedures, operation of analytical balances, pipetting techniques and use of volumetric glassware;
 - (e) description of how analytical methods are actually to be performed including precise reference to the analytical method used; and not a simple reference to standard methods; and
 - (f) standard operating procedures for equipment calibration and maintenance to ensure that laboratory equipment and instrumentation are in working order, including, but not limited to procedures and schedules for calibration and maintenance in accordance with manufacturers' specifications; and
 - (g) for a corrective action, standard operating procedures must be established for identifying and correcting deficiencies in the laboratory procedures. The standard operating procedure shall specify that each corrective action must be documented in the sampling event report submitted to the department with a description of the deficiency, the corrective action taken, and the person responsible for implementing the corrective action. Any alterations to the laboratory procedures shall be included as an amendment to the site analytical plan.
 - (5) Data quality assessment. At the conclusion of each sampling event and analysis of the samples collected, data quality assessment shall occur. A data quality assessment report must be submitted with the results from each sampling event. Data quality assessment shall occur in two phases.

- (i) Data validation.
- (a) For those sampling events for which only routine parameters are analyzed, the data validation shall be performed by the laboratory that performed the sample analyses.
- (b) For those sampling events for which baseline or expanded parameters are analyzed, the data validation shall be performed by a person other than the laboratory that performed the analyses and that is acceptable to the department.
- (c) The data validation shall be performed on all analytical data for the facility at a rate acceptable to the department, but not less than five percent of the data generated, and shall consist, at a minimum, of the following:
- (1) field records and analytical data are reviewed to determine whether the data are accurate and defensible. All AQA/AQC information shall be reviewed along with any corrective actions taken during that sampling event; and
- (2) all data summaries shall be clearly marked to identify any data that are not representative of environmental conditions at the site, or that were not generated in accordance with the site analytical plan.
- (ii) Data usability analysis.
- (a) The data usability analysis shall be performed on all analytical data for the facility and shall consist of the following:
- (1) an assessment to determine if the data quality objectives were met;
- (2) for consistency, comparison of the analytical data with the results from previous sampling events;
- (3) evaluation of field duplicate results to indicate the samples are representative;
- (4) comparison of the results of all field blanks, trip blanks, equipment rinsate blanks, and method blanks with full data sets to provide information concerning contaminants that may have been introduced during sampling, shipping, or analyzing;
- (5) evaluation of matrix effects to assess the performance of the analytical method with respect to the sample matrix, and determine whether the data have been biased high or low due to matrix effects;
- (6) integration of the field and laboratory data with geological, hydrogeological, and meteorological data to provide information about the extent of contamination, if it occurs; and
- (7) comparison of precision, accuracy, representativeness, comparability, completeness, and defensibility of the data generated with that required to meet the data quality objectives established in the site analytical plan.
- (6) The following Water Quality Analysis Tables in this section list the routine, baseline, and expanded parameters for analysis of all monitoring samples.

WATER QUALITY ANALYSIS TABLES

ROUTINE PARAMETERS¹

Common Name2	CAS RN3	Suggested Methods	PQL4 (µg/I)
Field Parameters:			
Static water level(in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
Temperature			
рН		9040	
Eh		9041	
Dissolved Oxygen6			
Field Observations7			
Turbidity		180.1	
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41-7	351.4 350.1 350.2	200 60
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3 410.4	50000 50000 5000 80000
Biochemical Oxygen Demand (BOD ₅)	4	405.1	2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride	108-95-2	310.2 8040 9250	6000
Bromide		9251	
Total hardness as CaCO ₃		9252 320.1 130.1 130.2	2000 20000 30000
Inorganic Parameters:			
Cadmium	(Total)	3010 7130	40 50
Calcium		7131	1
Iron	(Total) (Total)	7140 7380	40 100
Lead	(Total)	7381 6010	4 400

		7420	1000
Magnesium		7421	10
Manganese	(Total) (Total)	7450 7460	4 40
Potassium		7461	0.8
Sodium	(Total) (Total)	7610 7770	40 8

The department may modify this list as necessary.

Notes

¹This list contains parameters for which possible analytical procedures are provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.

⁵Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁶Surface water only.

⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

BASELINE PARAMETERS¹

Common Name2	CAS RN3	Suggested Methods	PQL4 (µg/I)
Field Parameters:			
Static water level (in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
pH		9040 9041	

	r	T.	10
Eh			
Dissolved Oxygen6			
Field Observations7		180.1	
Turbidity			
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41- 7	351.4 350.1 350.2	200 30
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3	50000 50000 50000
Biochemical Oxygen Demand (BOD ₅)		410.4 405.1	80000 2000
Total Organic Carbon		8	
Total Dissolved Solids	8	9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride	2	310.2 9250	6000
Bromide		9251	
Total hardness as CaCO ₃		9252	
Color		320.1 130.1 130.2 110.1 110.2 110.3	2000 20000 30000 80
Boron	7440-42- 8		
Inorganic Parameters:			
Aluminum			
Antimony	(total) (total)	7020 6010 7040	10 300 2000
Arsenic	(total)	7041 6010 7060	30 500 10
Barium	(total)	7061 6010	20 20
Beryllium	(total)	7080 6010 7090	1000 3 50
Cadmium	(total)	7091 6010 7130	2 40 50

	Ĺ	1	1
Calcium		7131	1
Chromium	(total) (total)	7140 6010 7190	40 70 500
Chromium(Hexavalent)*	18540- 29-9	7191 7195 7196	10 600
Cobalt	(total)	7197 7198 6010	30 70
Copper	(total)	7200 7201 6010	500 10 60
Cyanide		7210	200
Iron	(total)	7211 9010	10 200
Lead	(total) (total)	7380 7381 6010	100 4 400
Magnesium		7420	1000
Manganese	(total)	7421 7450	10 4
Mercury	(total)	7460	40
Nickel	(total)	7461 7470	0.8
Potassium	(total) (total)	6010 7520 7610	150 400 40
Selenium	(total)	6010 7740	750 20
Silver	(total)	7741 6010	20 70
Sodium		7760	100
Thallium	(total) (total)	7761 7770 6010	10 8 400
Vanadium	(total)	7840 7841 6010	1000 10 80
Zinc	(total)	7910 7911 6010 7950 7951	2000 40 20 50 0.5
Organic Parameters:			
Acetone	67-64-1	8260	100
Acrylonitrile	107-13-1	8030 8260	5 200
Benzene	71-43-2	8020 8021 8260	2 0.1 5
Bromochloromethane	74-97-5	8021 8260	0.1 5
Bromodichloromethane	75-27-4	8010 8021	1 0.2

		8260	5
Bromoform; Tribromomethane	75-25-2	8010 8021 8260	2 15 5
Carbon disulfide	75-15-0	8260	100
Carbon tetrachloride	56-23-5	8010 8021 8260	1 0.1 10
Chlorobenzene	108-90-7	8010 8020 8021 8260	2 2 0.1 5
Chloroethane; Ethyl chloride	75-00-3	8010 8021	5 1
Chloroform; Trichloromethane	67-66-3	8010 8021	0.5 0.2
Dibromochloromethane; Chlorodibromomethane	124-48-1	8260 8010 8021	5 1 0.3
1,2-Dibromo-3-chloropro-pane; DBCP	96-12-8	8260 8011 8021	5 0.1 30
1,2-Dibromoethane; Ethyl-ene dibromide; EDB	106-96-4	8260 8011 8021	25 0.1 10
o-Dichlorobenzene; 1,2-Dichlorobenzene	95-50-1	8026 8010 8020 8021 8120 8260	5 2 5 0.5 10 5
p-Dichlorobenzene; 1,4-Dichlorobenzene	106-46-	8270 8010 8020 8021 8120 8260	10 2 5 0.1 15 5
trans-1,4-Dichloro-2-bu- tene		8270	10
1,1-Dichloroethane; Ethylidene chloride	110-57-6 75-34-3	8260 8010 8021	100 1 0.5
1,2-Dichloroethane; Ethylene dichloride	107-06-2	8260 8010 8021	8 0.5 0.3
1,1-Dichloroethylene;		8260	5
1,1-Dichloroethene;		8010	1
Vinylidene chloride	75-35-4	8021	0.5
cis-1,2-Dichloroethylene;		8260	5
cis-1,2-Dichloroethene		8021	0.2
trans-1,2-Dichloroethyl-ene;	156-59-2	8260	5
trans-1,2-Dichloro- ethene	156-60-5	8010 8021	1 0.5
1,2-Dichloropropane;		8260	5
Pro-pylene dichloride	78-87-5	8010 8021	0.5 0.05
cis-1,3-Dichloropropene		8260	5

		8010	20
trans-1,3-Dichloropropene.	10061- 01-5 10061- 02-6	8260 8010 8260	10 5 10
Ethylbenzene	100-41-4	8020 8221 8260	2 0.05 5
2-Hexanone; Methyl butyl ketone	591-78-6	8260	50
Methyl bromide; Bromo- methane	74-83-9	8010 8021	20 10
Methyl chloride; Chloro- methane	74-87-3	8010 8021	1 0.3
Methylene bromide; Dibro- momethane	74-95-3	8010 8021	15 20
Methylene chloride; Dichloromethane	75-09-02	8260 8010 8021	5 0.2 10
Methyl ethyl ketone; MEK; 2-Butanone	78-93-3	8260 8010	100 40
4-Methyl-2-pentanone; Methyl isobutyl ketone	108-10-1	8260 8015	10 5
Styrene	100-42-5	8260 8020 8021	100 1 0.1
1,1,1,2-Tetrachloroethane.	630-20-6	8260 8010 8021	10 5 5
1,1,2,2-Tetrachloroethane	79-34-5	8260 8010 8021	0.5 0.1 0.05
Tetrachloroethylene; Tet- rachloroethene; Per- chloroethylene	127-18-4	8260 8010 8021	5 0.5 0.5
Toluene	108-88-3	8260 8020 8021	5 2 0.1
1,1,1-Trichloroethane; Methylchloroform	71-55-6	8260 8010 8021	5 0.3 0.3
1,1,2-Trichloroethane	79-00-5	8260 8010	5 0.2
Trichloroethylene; Tri- chloroethene	79-01-6	8260 8010 8021	5 1 0.2
Trichlorofluoromethane; CFC-11	75-69-4	8260 8010 8021 8260	5 10 0.3 5
1,2,3-Trichloropropane	96-18-4	8010 8021 8260	10 5 15
Vinyl acetate	108-05-4	8260	50
Vinyl chloride; Chloro- ethene	75-01-4	810 8021 8260	2 0.4 10
Xylenes	1330-20- 7	8020 8021	5 0.2

	8260	5

The department may modify this list as necessary.

Notes

¹This list contains 47 volatile organics for which possible analytical procedures provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, includes Method 8260; 25 metals for which SW-846 provides either Method 6010 or a method from the 7000 series of methods; and additional parameters for which possible procedures are provided in *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.

⁵Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁶Surface water only.

⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

*The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0 .05 mg/l.

EXPANDED PARAMETERS¹

Common Name2	CAS RN3	Suggested Methods	PQL4 (µg/l)
Field Parameters:			
Static water level (in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
pH		9040 9041	

Eh			1
Dissolved Oxygen6			
Field Observations7		180.1	
Turbidity			
Leachate Indicators:		(1	
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41- 7	351.4 350.1 350.2	200 30
Nitrate	1	350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3 410.4	50000 50000 50000 80000
Biochemical Oxygen Demand (BOD ₅)		405.1	2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride	108-95-2	310.2 8040 9250	6000
Bromide		9251	
Total hardness as CaCO ₃	24959- 67-9	9252 320.1 130.1 130.2	2000 20000 30000
Color		110.1 110.2 110.3	80
Boron	7440-42- 8		
Inorganic Parameters:			0
Aluminum	(total)	7020	10
Antimony	(total)	6010 7040 7041	300 2000 30
Arsenic	(total)	6010 7060 7061	500 10 20
Barium	(total)	6010	20
Beryllium	(total)	7080 6010 7090	1000 3 50
Cadmium	(total)	7091 6010 7130	2 40 50

Calcium		7131	1
Chromium	(total) (total)	7140 6010 7190	40 70 500
Chromium(Hexavalent)*	18540- 29-9	7191 7195 7196 7197	10 600 30
Cobalt	(total)	7198 6010 7200	70 500
Copper	(total)	7201 6010	10 60
Cyanide		7211	10
Iron	(total) (total)	9010 7380	200 100
Lead	(total)	7381 6010 7420	4 400 1000
Magnesium		7421	10
Manganese	(total) (total)	7450 7460	4 40
Mercury	(total)	7461 7470	0.8
Nickel	(total)	6010 7520	150 400
Potassium	(total)	7610	40
Selenium	(total)	6010 7740 7741	750 20 20
Silver	(total)	6010 7760 7761	70 100 10
Sodium	(total)	7770	8
Thallium	(total)	6010 7840 7841	400 1000 10
Tin	(total)	6010	40
Vanadium	(total)	6010 7910 7911	80 2000 40
Zinc	(total)	6010 7950 7951	20 50 0.5
Organic Parameters:	4		
Acenaphthene	83-32-9	8100 8270	200 10
Acemaphthylene	208-96-8	8100 8270	200 10
Acetone	67-64-1	8260	100
Acetonitrile; Methyl cyanide	75-05-8	8015	100
Acetophenone	98-86-2	8270	10
2-Acetylaminofluorene; 2-AAF	53-96-3	8270	20

Acrolein	107-02-8	8030 8260	5 100
Acrylonitrile	107-13-1	8030 8260	5 200
Aldrin	309-00-2	8080 8270	10 5
Ally chloride	107-05-1	8010 8260	5 10
4- aminobiphenyl	92-67-1	8270	20
Anthracene	120-12-7	8100 8270	200 10
Benzene	71-43-2	8020 8021 8260	2 0.1 5
Benzo[a]anthracene; Benzanthracene	56-55-3	8100 8270	200 10
Benzo[b]fluoranthene	205-99-2	8100 8270	200 10
Benzo[k]fluoranthene	207-08-9	8100 8270	200 10
Benzo[ghi]perylene	191-24-2	8100 8270	200 10
Benzo[a]pyrene	50-32-8	8100 8270	200 10
Benzyl alcohol	100-51-6	8270	20
alpha-BHC	319-84-6	8080 8270	0.05 10
beta-BHC	319-85-7	8080 8270	0.05 10
delta-BHC	31986- 8	8080 8270	0.1 20
gamma-BHC; Lindane	58-89-9	8080 8270	0.05 20
Bis(2-chloroethoxy)methane	111-91-1	8110 8270	5 10
Bis(2-chloroethyl) ether; Dichloroethyl ether	111-44-4	8110 8270	3 10
Bis-(2-chloro-1-methyl-ethyl) ether; 2,21-Di- chlorodiisopropyl ether	108-60-1	8110 8270	10 10
DCIP, See note 9			
Bis(2-ethylhexyl)phthalate Bromochloromethane; Chlorobromomethane	117-81-7 74-97-5	8060 8021 8260	20 0.1 5
Bromodichloromethane; Dibromochloromethane	75-27-4	8010 8021	1 0.2
Bromoform; Tribromomethane	75-25-2	8260 8010 8021	5 2 15
4-Bromophenyl phenyl ether	101-55-3	8260 8110	5 25
Butyl benzyl phthalate; Benzyl butyl phthalate	85-68-7	8270 8060	10 5
Carbon disulfide		8270	10

Carbon tetrachloride	75-15-0 56-23-5	8260 8010 8021 8260	100 1 0.1 10
Chlordane	See Note 10	8080 8270	0.1 50
p-Chloroaniline	106-47-8	8270	20
Chlorobenzene	108-90-7	8010 8020 8021 8260	2 2 0.1 5
Chlorobenzilate	510-15-6	8270	10
p-Chloro-m-cresol; 4-Chloro-3-methylphenol	59-50-7	8040 8270	5 20
Chloroethane; Ethyl chloride	75-00-3	8010 8021 8260	5 1 10
Chloroform; Trichloromethane	67-66-3	8010 8021 8260	0.5 0.2 5
2-Chloronaphthalene	91-58-7	8120 8270	10 10
2-Chlorophenol	95-57-8	8040 8270	5 10
4-Chlorophenyl phenyl ether	7005-72- 3	8110 8270	40 10
Chloroprene	126-99-8	8010 8260	50 20
Chrysene	218-01-9	8100 8270	200 10
m-Cresol; 3-methylphenol	108-39-4	8270	10
o-Cresol; 2-methylphenol	95-48-7	8270	10
p-Cresol; 4-methylphenol	106-44-5	8270	10
2,4-D; 2,4-Dichlorophen- oxyacetic acid	94-75-7	8150	10
4,41-DDD	72-54-8	8080	0.1
4,41-DDE		8270	10
4,41-DDT	72-55-9	8080	0.05
Diallate		8270	10
Dibenz[a,h]anthracene	50-29-3	8080 8270	0.1 10
Dibenzofuran	2303-16- 4	8270	10
Dibromochloromethane; Chlorodibromomethane	53-70-3 132-64-9 124-48-1	8100 8270 8270 8010 8021 8260	200 10 10 1 0.3 5
1,2-Dibromo-3-chloro- propane; DBCP	96-12-8	8011 8021 8260	0.1 30 25
1,2-Dibromoethane; Ethylene dibromide; EDB	106-93-4	8011 8021 8260	0.1 10 5

			+
Di-n-butyl phthalate	84-74-2	8060	5
o-Dichlorobenzene; 1,2-Dichlorobenzene	95-50-1	8270 8010 8020 8021 8120 8260	10 2 5 0.5 10 5
m-Dichlorobenzene; 1,3-Dichlorobenzene	541-73-1	8270 8010 8020 8021 8120 8260	10 5 5 0.2 10 5
p-Dichlorobenzene; 1,4-dichlorobenzene	106-46-7	8270 8010 8020 8021 8120 8260	10 2 5 0.1 15 5
3,31-Dichlorobenzidine		8270	10
trans-1,4-Dichloro- 2-butene	91-94-1	8270	10
Dichlorodifluoromethane; CFC 12	110-57-6 75-71-8	8260 8021	100 0.5
1,1-Dichloroethane; Ethyldidene chloride	75-34-3	8260 8010	5 1
1,2-Dichloroethane; Ethylene dichloride	107-06	8021 8260 8010	0.5 5 .05
1,1-Dichloroethylene; 1,1-Dichloroethene; Vinylidene chloride	75-35-4	8021 8260 8010	0.3 5 1
cis-1,2-Dichloroethylene; cis-1,2-Dichloroethene		8021 8260	0.5 5
trans-1,2-Dichloroethylene	156-59-2	8021 8260	0.2 5
trans-1,2-Dichloroethene	156-60-5	8260 8010	5 1
2,4-Dichlorophenol	120-83-2	8021 8260 8040 8270	0.5 5 5 10
2,6-Dichlorophenol	87-65-0	8270	10
1,2-Dichloropropane; Propylene dichloride	78-87-5	8010 8021 8260	0.5 0.05 5
1,3-Dichloropropane; Trimethylene dichloride.	142-28-9	8021 8260	0.3 5
2,2-Dichloropropane; Isopropylidene chloride.	594-20-7	8021 8260	0.5 15
1,1-Dichloropropene	563-58-6	8021	0.2
cis-1,3-Dichloropropene	10061- 01-5	8260 8010	5 20
trans-1,3-Dichloropropene	10061- 02-6	8260 8010	10 5
Dieldrin	60-57-1	8260 8080	10 0.05
Diethyl phthalate	84-66-2	8270	10

		8060	5
0,0-Diethyl 0-2-pyrazinyl phosphorothioate; Thionazin	297-97-2	8270 8141 8270	10 5 20
Dimethoate	60-51-5	8141	3
p-(Dimethylamino)azo- benzene		8270	20
7,12-Dimethylbenz[a]- anthracene	60-11-7	8270	10
3,31-Dimethylbenzidine	57-97-6	8270	10
2,4-Dimethylphenol; m-Xylenol	199-93-7 105-67-9	8270 8040	10 5
Dimethyl phthalate		8270	10
m-Dinitrobenzene	131-11-3	8060	5
4,6-Dinitro-o-cresol 4,6- Dinitro-2-methylphenol	99-65-0	8270 8270	10 20
2,4-Dinitrophenol	534-52-1	8040 8270	150 50
2,4-Dinitrotoluene	51-28-5	8040 8270	150 50
2,6-Dinitrotoluene	121-14-2	8090 8270	0.2 10
Dinoseb; DNBP; 2-sec- Butyl-4,6-dinitrophenol.	606-20-2	8090 8270	0.1 10
Di-n-octyl phthalate	88-85-7 117-84-0	8150 8270 8060 8270	1 20 30 10
11 Diphenylamine	122-39-4	8270	10
Disulfoton	298-04-4	8140 8141	2 0.5
Endosulfan I	959-98-8	8270 8080	10 0.1
Endosulfan II	33213- 65-9	8270 8080	20 005
Endosulfan sulfate		8270	20
Endrin	1031-07- 8	8080 8270	0.5 10
Endrin aldehyde	72-20-8	8080	0.1
Ethylbenzene	7421-93- 4	8270 8080 8270	20 0.2 10
Ethyl methacrylate	100-41-4	8020 8021	2 0.05
Ethyl methanesulfonate		8260	5
Famphur	97-63-2	8015	5
Fluoranthene		8260 8270	10 10
Fluorene	62-50-0 52-85-7	8270 8270	20 20
Heptachlor	206-44-0	8100 8270	200 10
Heptachlor epoxide	86-73-7	8100	200

		8270	10
Hexachlorobenzene	76-44-8	8080 8270	0.05 10
Hexachlorobutadiene	1024-57- 3 118-74-1	8080 8270 8120	1 10 0.5
Hexachlorocyclopentadiene	87-68-3	8270 8021 8120	10 0.5 5
Hexachloroethane	77-47-7	8260 8270 8120	10 10 5
Hexachloropropene		8270	10
2-Hexanone; Methyl butyl ketone	67-72-1	8120 8260	0.5 10
Indeno(1,2,3-cd)pyrene	1888-71- 7 591-78-6 193-39-5	8270 8270 8260 8100 8270	10 10 50 200 10
Isobutyl alcohol	78-83-1	8015 8240	50 100
Isodrin	465-73-6	8270 8260	20 10
Isophorone	78-59-1	8090 8270	60 10
Isosafrole	120-58-1	8270	10
Kepone	143-50-0	8270	20
Methacrylonitrile	126-98-7	8015 8260	5 100
Methapyrilene	91-80-5	8270	100
Methoxychlor	72-43-5	8080 8270	2 10
Methyl bromide; Bromomethane	74-83-9	8010 8021	20 10
Methyl chloride; Chloromethane	74-87-3	8010 8021	1 0.3
3-Methylcholanthrene	56-49-5	8270	10
Methyl ethyl ketone; MEK; 2-Butanone	78-93-3	8015 8260	10 100
Methyl iodide;lodomethane	74-88-4	8010 8260	40 10
Methyl methacrylate	80-62-6	8015 8260	2 30
Methyl methanesulfonate	66-27-3	8270	10
2-Methylnaphthalene	91-57-6	8270	10
Methyl parathion; Parathion methyl	298-00-0	8140 8141 8270	0.5 1 10
4-Methyl-2-pentanone; Methyl isobutyl ketone	108-10-1	8015 8260	5 100
Methylene bromide; Dibromomethane	74-95-3	8010 8021 8260	15 20 10

Methylene chloride; Dichloromethane	75-09-2	8010 8021 8260	5 0.2 10
Naphthalene	91-20-3	8021 8100 8260 8270	0.5 200 5 10
1,4-Naphthoquinone	130-15-4	8270	10
1-Naphthylamine	134-32-7	8270	10
2-Naphthylamine	91-59-8	8270	10
o-Nitroaniline; 2-Nitroaniline	88-74-4	8270	50
m-Nitroaniline;			
3-Nitroaniline	99-09-2	8270	50
p-Nitroaniline; 4-Nitroaniline	100-01-6	8270	20
Nitrobenzene	98-95-3	8090 8270	40 10
o-Nitrophenol; 2-Nitrophenol	88-75-5	8040 8270	5 10
p-Nitrophenol; 4-Nitrophenol	100-02-7	8040 8270	10 50
N-Nitrosodi-n-butylamine.	924-16-3	8270	10
N-Nitrosodiethylamine	55-18-5	8270	20
N-Nitrosodimethylamine	62-75-9	8070	2
N-Nitrosodiphenylamine	86-30-6	8070	5
N-Nitrosodipropylamine; N-Nitroso-N-dipropyl- amine; Di-n-propylni- trosamine	621-64-7	8070	10
N-Nitrosomethylethalamine	10595- 95-6	8270	10
N-Nitrosopiperidine	100-75-4	8270	20
N-Nitrosopyrrolidine	930-55-2	8270	40
5-Nitro-o-toluidine	99-55-8	8270	10
Parathion	56-38-2	8141 8270	0.5 10
Pentachlorobenzene	608-93-5	8270	10
Pentachloronitrobenzene	82-68-8	8270	20
Pentachlorophenol	87-86-5	8040 8270	5 50
Phenacetin	62-44-2	8270	20
Phenanthrene	85-01-8	8100 8270	200 10
Phenol	108-95-2	8040	1
p-Phenylenediamine	106-50-3	8270	10
Phorate	298-02-2	8140 8141 8270	2 0.5 10
Polychlorinated biphenyls; PCB's; Aroclors	See Note 11	8080 8270	50 200
Polychlorinated dibenzo-p-dioxins; PCDD's	See Note 12	8280	0.01

Polychlorinated dibenzo- furans; PCDF's	See Note 13	8280	0.01
Pronamide	23950- 58-8	8270	10
Propionitrile; Ethyl cyanide	107-12-0	8015 8260	60 150
Pyrene	129-00-0	8100 8270	200 10
Safrole	94-59-7	8270	10
Silvex; 2,4,5-TP	93-72-1	8150	2
Styrene	100-42-5	8020 8021 8260	1 0.1 10
2,4,5-T; 2,4,5-trichloro- phenoxyacetic acid	93-76-5	8150	2
1,2,4,5-Tetrachlorobenzene 2,3,7,8-Tetrachlorodi- benzo-p-dioxin; 2,3,7,8-TCDD	95-94-3 1746-01- 6 630-20-6	8270 8280	10 0.005
1,1,1,2-Tetrachloroethane.	79-34-5	8010 8021 8260	5 0.05 5
1,1,2,2-Tetrachloroethane.	127-18-4	8010 8021 8260	0.5 0.1 5
Tetrachloroethylene; Tetrachloroethene; Perchloroethylene	58-90-2	8010 8021 8260	0.5 0.5 5
2,3,4,6-Tetrachlorophenol.	108-88-3	8270	10
Toluene	95-53-4	8020 8021 8260	2 01 5
o-Toluidine	See Note 14	8270	10
Toxaphene	120-82-1	8080	2
1,2,4-Trichlorobenzene	71-55-6	8021 8120 8260 8270	0.3 0.5 10
1,1,1-Trichloroethane; Methylchloroform	79-00-5	8010 8021 8260	0.3 0.3 5
1,1,2-Trichloroethane	79-01-6	8010 8260	0.2 5
Trichloroethylene; Trichloroethene	75-69-4	8010 8021 8260	1 0.2 5
Trichlorofluoromethane; CFC-11	95-95-4 88-06-2	8010 8021 8260	10 0.3 5
2,4,5-Trichlorophenol		8270	10
2,4,6-Trichlorophenol	96-18-4	8040 8270	5 10
1,2,3-Trichloropropane	-	8010 8021 8260	10 5 15
0,0,0-Triethyl phosphoro-	126-68-1	8270	10

thioate			
sym-Trinitrobenzene	99-35-4	8270	10
Vinyl acetate	108-05-4	8260	50
Vinyl chloride; Chloroethene	75-01-4	8010 8021 8260	2 0.4 10
Xylene (total)	See Note 15	8020 8021 8260	5 0.2 5

The department may modify this list as necessary. EXPANDED PARAMETERS¹

Notes

¹The regulatory requirements pertain only to the list of substances; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnotes 4 and 5.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service registry number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Suggested Methods refer to analytical procedure numbers used in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised, December 1987 and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600-4/79-020, March, 1979. CAUTION: The methods listed are representative procedures and may not always be the most suitable method(s) for monitoring an analyte under the regulations.

⁵Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation. ⁶Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁷Surface water only.

⁸Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

⁹This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2"-oxybis[2]-chloro- (CAS RN 39638-32-9).

¹⁰Chlordane: This entry includes alpha-chlordane (CAS RN 5103-71-9), beta-chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 5566-34-7), and constituents of chlordane (CAS RN 57-74-9 and CAS RN 12789-03-6). PQL shown is for technical chlordane. PQLs of specific isomers are about 20 μg/l by method 8270.

¹¹Polychlorinated biphenyls (CAS RN 1336-36-3): This category contains congener chemicals, including constituents of Aroclor 1016 (CAS RN 12674-11-2), Aroclor 1221 (CAS RN 11104-28-2), Aroclor 1232 (CAS RN 11141-16-5), Aroclor 1242 (CAS RN 53469-21-9), Aroclor 1248 (CAS RN 12672-29-6), Aroclor 1254 (CAS RN 11097-69-1), and Aroclor 1260 (CAS RN 11096-82-5). The PQL shown is an average value for PCB congeners.

¹²Polychlorinated dibenzo-p-dioxins: This category contains congener chemicals, including tetrachlorodibenzo-p-dioxins (see also 2,3,7,8-TCDD), pentachlorodibenzo-p-dioxins, and hexachlorodibenzo-p-dioxins. The PQL shown is an average value for PCDD congeners. Upon request of the applicant, the department may waive the requirement to analyze for dioxins, where appropriate.

¹³Polychlorinated dibenzofurans: This category contains congener chemicals, including tetrachlrodibenzofurans, pentachlorodibenzofurans, and hexachlorodibenzofurans. The PQL shown is an average value for PCDF congeners. Upon request of the applicant, the department may waive the requirement to analyze for furans, where appropriate.

¹⁴Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.

¹⁵Xylene (total): This entry includes o-xylene (CAS RN 96-47-6), m-xylene (CAS RN 108-38-3), p-xylene (CAS RN 106-42-3), and unspecified xylenes (dimethylbenzenes) (CAS RN 1330-20-7). PQLs for method 8021 are 0.2 for o-xylene and 0.1 for m- or p-xylene. The PQL for m-xylene is 2.0 μg/L by method 8020 or 8260.

*The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0.05 mg/l.

§360-2.12 Landfill siting.

- (a) Applicability. New landfills and lateral or vertical expansions of existing active landfills must be located on a site that exhibits the following characteristics unless the requirements of subdivision (b) of this section are met. A site selection study will be required only if the applicant proposes a site that does not exhibit all of the characteristics identified in either paragraph (1) or (2) of this subdivision.
 - (1) In the case of new landfills and lateral or vertical expansions of existing landfills:
 - (i) the site is not located in an area identified in section 360-1.7(a)(2) of this Part;
 - (ii) the site complies with the siting restrictions identified in subdivision (c) of this section;
 - (iii) bedrock subject to rapid or unpredictable groundwater flow must be avoided, unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system;
 - (iv) the site must not be in proximity of any mines, caves or other anomalous features that may alter groundwater flow;
 - (v) unconsolidated deposits underlying the proposed landfill must either exist or be constructed to be 20 feet or greater in thickness as measured from the base of the constructed liner system; and
 - (vi) the upper 20 feet of the unconsolidated deposits on the site must consist

predominantly (greater than 50 percent) of soils throughout the vertical section, with a maximum in situ coefficient of permeability of 5 x 10-6 centimeters per second, with no appreciable continuous deposits having a maximum coefficient of permeability of 5 x 10-4 centimeters per second.

- (2) In the case of an existing landfill active on or after November 4, 1992 operating under and in compliance with a current Part 360 permit or order on consent, the department may allow lateral or vertical expansions if the site has less than 20 feet of unconsolidated deposits provided that:
 - (i) the proposed landfill expansion is identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed landfill expansion must be consistent with the goals and objectives of such plan;
 - (ii) the unconsolidated deposits underlying the proposed landfill exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system;
 - (iii) the applicant demonstrates that the expansion site will have no significant adverse impact on human health, safety, or welfare, the environment, or natural resources; and
 - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision.
- (3) Except in Nassau and Suffolk Counties, in the case of ash monofills for the disposal offly ash treated in a manner consistent with section 360- 3.6(g)(3) of this Part, combined ash, or bottom ash, the department may allow ash monofill development at sites that have less than 20 feet of unconsolidated deposits provided that:
 - (i) the proposed monofill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed monofill must be consistent with the goals and objectives of such plan;
 - (ii) the unconsolidated deposits underlying the proposed landfill on the site exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system;
 - (iii) the applicant demonstrates that the monofill site will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources; and
 - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision.
- (b) Exceptions. New landfills and lateral or vertical expansions of existing landfills may be located on sites that do not exhibit the characteristics identified in subdivision (a) of this section provided that the requirements of paragraphs (1) and (2) of this subdivision are met. The department may impose additional requirements to assure that the permitted activity will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources for any site selected pursuant to this subdivision.
 - (1) The proposed landfill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the

integrated solid waste management system for the planning unit in which the facility is located, and the proposed landfill must be consistent with the goals and objectives of such plan.

- (2) The applicant must perform a site selection study and submit a site selection report as part of a complete application. This report must describe the factors that prevent the applicant from using a site exhibiting the characteristics identified in subdivision (a) of this section. Such factors may include, but are not limited to, the proximity to receiving waters or proximity to sewer lines or POTWs to ensure proper management of leachate during the operational and post-closure period of the landfill. The site selection report must also demonstrate that the chosen site will have no significant adverse impact on public health, safety, or welfare, the environment or natural resources, and will be consistent with the provisions of the ECL.
 - (i) The site selection process must be comprehensive and must identify and evaluate a reasonable range of alternative sites which are feasible considering the capabilities and objectives of the applicant. All of the criteria used to eliminate and evaluate the suitability of the potential sites must be clearly defined and consistently applied. A phased approach must be used, in which a more detailed evaluation of sites occurs as the number of potential sites is reduced.
 - (a) The applicant must exclude inappropriate siting areas by avoiding the prohibited siting areas identified in section 360-1.7(a)(2) of this Part and applying the landfill siting restrictions identified in subdivision (c) of this section.
 - (b) The applicant must evaluate potential siting areas to identify alternative sites that are suitable for landfill development. When applying the siting criteria, the evaluation must include the use of the type of data listed in section 360-2.11(a)(2) of this Subpart. Field reconnaissance to confirm the published information and a morphologic evaluation of landforms must be performed to identify the areas which are likely to have thick low permeable soils available within the study area. The applicant must use the following criteria in the landfill site selection study:
 - (1) Unconsolidated deposits on the site must be those most likely to minimize the migration of contaminants from the landfill. In evaluating the sites, preferred sites should have the greatest possible thickness of these materials to provide a barrier to contaminant migration into bedrock;
 - (2) bedrock subject to rapid or unpredictable groundwater flow must be avoided unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system resulting in a contravention of groundwater standards;
 - (3) probable groundwater flow patterns and water quality must be considered in finding areas where containment failure would do the least environmental damage and would be easiest to correct;
 - (4) proximity and hydrogeologic relationship to water supply sources;
 - (5) natural topography and its impacts upon the proposed facility; and
 - (6) relationship to mines, caves, or other anomalous hydrogeologic features that might alter groundwater flow.

- (c) Preliminary field investigations must be conducted at the highest ranking available site or sites, to identify any major obstacles to site development, and to provide sufficient data to differentiate among the preferred sites and support a siting decision.
- (ii) The report must describe the process used to select the proposed site, including evaluation criteria, deferral (elimination) criteria, assumptions, data sources, decisionmaking means (such as numerical ranking systems) and other factors used to make the siting decisions. The report must demonstrate that, considering the capabilities and objectives of the applicant, a reasonable range of alternative sites available throughout the planning unit in which the project is proposed were evaluated and that the selected site is the most appropriate alternative. The decisionmaking process must be described to provide a clear understanding of how and why the siting decisions were made, and at a level of detail sufficient to provide for a comparative assessment of the alternatives discussed. The report must also include maps of sites and describe the results of the field investigations, the comparative advantages and disadvantages of the highest ranked sites, and the basis for selecting the proposed sites.
- (c) Landfill siting restrictions. In addition to the provisions of section 360-1.7(a)(2) of this Part, the following landfill siting restrictions apply.
 - (1) Primary water supply, and principal aquifers:
 - (i) Except in Nassau and Suffolk Counties, and except as provided in subparagraph (ii) of this paragraph, no new landfill and no lateral or vertical expansion of an existing landfill may be constructed over primary water supply aquifers, principal aquifers, within a public water supply stabilized cone of depression area, or within a minimum distance of 100 feet to surface waters that are actively used as sources of municipal supply. Greater separation distances may be required in accordance with subparagraph (iii) of this paragraph.
 - (ii) The commissioner may allow lateral or vertical expansions of landfills, in operation pursuant to a valid Part 360 permit to operate or Order on Consent as of December 31, 1988, that are on principal aguifers, if there is a demonstrated public need for the capacity provided by the expansion that cannot be reasonably provided elsewhere, and that outweighs the potential risk of contamination to the aquifer. Additionally, the landfill expansion must promote the implementation of the State's solid waste management policy set forth in ECL 27-0106 and must be an integral part of any local solid waste management plan that may be in effect for the planning unit (as defined in ECL 27-0107) within which the facility is located; and the expansion must comply with all other requirements of this Part. However, the maximum time period allocated by the commissioner for any such expansion must not allow operation beyond December 31, 1995. In granting any expansion pursuant to this subparagraph, the department must impose specific conditions that are reasonably necessary to assure that the expansion will, to the extent practicable, have no significant adverse impact on public health or safety, welfare, the environment ornatural resources, and such approval contributes to the proper management of solid waste at the earliest possible time.
 - (iii) The required horizontal separation between deposited solid waste, and primary water supply aquifers, principal aquifers, public water supply stabilized cone of depression areas, or surface waters that are actively used as sources of municipal supply must be sufficient (based on the rate and direction of groundwater and surface water flow, landfill

design and requirements for corrective action in the event of failure of the landfill's containment system) to preclude contravention of groundwater standards in the aquifer and surface water standards in waters that are currently used as a source of municipal drinking water supply.

(2) Floodplains. Owners or operators of new landfill units, existing landfill units, and lateral expansions located in 100-year floodplains must demonstrate that the unit will not restrict the flow of the 100-year flood, reduce the temporary water storage capacity of the floodplain, or result in washout of solid waste so as to pose a hazard to human health and the environment.

(3) Aircraft safety.

- (i) A landfill or landfill subcell into which putrescible solid waste is to be disposed must be located no closer than 5,000 feet from any airport runway end used by piston-powered fixed-wing aircraft and no closer than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft.
- (ii) A landfill or landfill subcell into which putrescible solid waste is to be disposed, which is located within five miles of any airport runway end, must not, in the opinion of the Federal Aviation Administration, pose a potential bird or obstruction hazard to aircraft.
- (iii) The permittee of an existing landfill or landfill subcell that is authorized to dispose of putrescible solid waste and that is located less than 10,000 feet from any airport runway end used by turbine-powered fixed- wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft must provide in its permit renewal application documentation that the Federal Aviation Administration believes the landfill or landfill subcell does not pose a bird hazard to aircraft.
- (iv) Landfills containing only nonputrescible solid waste may be located less than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft, if in the opinion of the Federal Aviation Administration they will not present a safety hazard to air traffic.
- (v) The final elevation of a new landfill or expansion of an existing landfill must not extend more than 200 feet above the highest elevation of the land surface that existed prior to landfill development, unless the Federal Aviation Administration believes that the proposed fill height in excess of 200 feet will not present a safety hazard to air traffic.
- (4) Unstable areas. A landfill must not be located in unstable areas where inadequate support for the structural components of the landfill exists or where changes in the substrate below or adjacent to the landfill are capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. An application for expansion of an existing landfill must demonstrate that adequate support for the structural components of the landfill exists or can be engineered to support any additional loads that may be generated by continued operation of the facility. For purposes of this paragraph:
 - (i) Unstable area means a location that is susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. Unstable areas can

include poor foundation conditions, areas susceptible to mass movements, and karst terrains.

- (ii) Structural components means liners, leachate collection systems, final covers, runon/run-off systems, and any other component used in the construction and operation of the landfill that is necessary for protection of human health and the environment.
- (iii) Poor foundation conditions means those areas where features exist which indicate that a natural or human-induced event may result in inadequate foundation support for the structural components of a landfill.
- (iv) Areas susceptible to mass movement means those areas of influence (i.e., areas characterized as having an active or substantial possibility of mass movement) where the movement of earth material at, beneath, or adjacent to the landfill because of natural or human-induced events, results in the downslope transport of soil and rock material by means of gravitational influence. Areas of mass movement include, but are not limited to, landslides, avalanches, debris slides and flows, soil fluctuation, block sliding and rock fall.
- (v) Karst terrains means areas where karst topography, with its characteristic surface and subterranean features, is developed as the result of dissolution of limestone, dolomite, or other soluble rock. Characteristic physiographic features present in karst terrains include, but are not limited to sinkholes, sinking streams, caves, large springs and blind valleys.
- (5) Unmonitorable or unremediable areas. New landfills must not be located in areas where environmental monitoring and site remediation cannot be conducted. Identification of these areas must be based upon ability to sufficiently characterize groundwater and surface water flow to locate upgradient and downgradient directions; ability to place environmental monitoring points which will detect releases from the landfill; ability to characterize and define a release from the landfill and determine what corrective actions may be necessary; and the ability to carry out those corrective actions. Lateral expansions adjacent to existing landfills which are already contaminating groundwater may be allowed by the department if the proposed expansion area can be constructed in a way that demonstrates compliance with the regulations. This may be demonstrated using remedial actions at the existing site resulting in a demonstrated improvement in groundwater quality; and any additional monitoring requirements that the department needs to ensure the integrity of the expansion area, such as leakage detection lysimeters installed beneath the new liner, statistical triggers of groundwater monitoring, tracers, additional monitoring wells surrounding the entire site, and any other monitoring methods required by the department.
- (6) Fault areas. New landfills and lateral expansions shall not be located within 200 feet of a fault that has had displacement in Holocene time unless the owner or operator demonstrates to the department that an alternative setback distance of less than 200 feet will not result in damage to the structural integrity of the landfill unit and will be protective of human health and the environment.
- (7) Seismic impact zones. New landfills and lateral expansions shall not be located in seismic impact zones, unless the owner or operator demonstrates to the department that all permanent containment structures, including liners, leachate collection systems, and surface water control systems, are designed to resist the maximum horizontal acceleration

in lithified earth material for the site pursuant to the provisions of section 360-2.7(b)(7) of this Subpart.

- (8) Federally regulated wetlands. For the purpose of this Subpart, federally regulated wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marsh, bogs and similar areas. New landfills and lateral expansions shall not be located in federally regulated wetlands, unless the appropriate permits are obtained from the U.S. Army Corps of Engineers, and unless the owner or operator can make the following demonstrations to the department, to the extent required under federal or State law.
 - (i) The presumption that a practicable alternative to the proposed landfill is available, which does not involve federally regulated wetlands, is clearly rebutted.
 - (ii) The construction and operation of the landfill will not:
 - (a) cause or contribute to violations of any applicable water quality standard;
 - (b) violate any applicable toxic effluent standard or prohibition;
 - (c) jeopardize the continued existence of endangered or threatened species or result in the destruction or adverse modification of a critical habitat; and
 - (d) violate any requirement for the protection of a marine sanctuary.
 - (iii) The landfill will not cause or contribute to significant degradation of federally regulated wetlands. The owner or operator must demonstrate the integrity of the landfill and its ability to protect ecological resources by addressing the following factors:
 - (a) erosion, stability and migration potential of native wetland soils, muds, and deposits used to support the landfill;
 - (b) erosion, stability and migration potential of dredged and fill materials used to support the landfill;
 - (c) the volume and chemical nature of the waste managed in the landfill;
 - (d) impacts from release of the solid waste on fish, wildlife, and other aquatic resources and their habitat;
 - (e) the potential effects on catastrophic release of waste to the federally regulated wetland and the resulting impacts on the environment; and
 - (f) any additional factors, as necessary, to demonstrate that ecological resources in the federally regulated wetland are sufficiently protected.
- (iv) Steps have been taken to attempt to achieve no net loss of federally regulated wetlands to the extent required under federal or State law (as defined by acreage and function) by first avoiding impacts to federally regulated wetlands to the maximum extent practicable, then minimizing unavoidable impacts to the maximum extent practicable, and finally by offsetting remaining unavoidable wetland impacts through all appropriate and practicable compensatory mitigation actions (e.g. restoration of existing degraded wetlands or creation of new wetlands).

(v) Sufficient information is available to make a reasonable determination with respect to these demonstrations.

Privacy Policy | Website Usage and Policies | Website Accessibility | Employment | Contact Us | Website Survey Copyright © 2013 New York State Department of Environmental Conservation