NORTH SEA LANDFILL 1370 MAJORS PATH SOUTHAMPTON, NEW YORK

ANNUAL POST-CLOSURE MONITORING AND MAINTENANCE OPERATIONS REPORT 2022

SUBMITTED TO:

New York State Department of Environmental Conservation Division of Environmental Remediation 50 Circle Road Stony Brook, New York 11790

PREPARED FOR:

Town of Southampton 1370 Majors Path Southampton, New York 11968

PREPARED BY:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705

PWGC Project Number: SHP2201

ANNUAL POST-CLOSURE MONITORING AND **MAINTENANCE OPERATIONS REPORT 2022** 1370 MAJORS PATH, SOUTHAMPTON, NY

PAGE	TABLE
1	1.0
2	2.0
3	3.0
4	4.0
5	5.0
5	
5	
6	
6	
6	
7	
7	
8	
8	
9	
9	
10	
11	6.0
11	
12	7.0
13	8.0
14	9.0
15	10.0
•	9.0

TABLES

TABLE 1	INORGANIC WATER QUALITY RESULTS – OCTOBER 2022
TABLE 2	ORGANIC WATER QUALITY RESULTS – FIRST HALF 2022
TABLE 3	ORGANIC WATER QUALITY RESULTS - SECOND HALF 2022
TABLE 4	LEACHATE RESULTS
TABLE 5	GROUNDWATER ELEVATIONS – SECOND HALF 2022

FIGURES

FIGURE 1	GROUNDWATER CONTOUR MAP – APRIL 2022
FIGURE 2	GROUNDWATER CONTOUR MAP – OCTOBER 2022
FIGURE 3	CROSS SECTION MW-11A – 1997-2022
FIGURE 4	CROSS SECTION MW-11B - 1997-2022
FIGURE 5	CROSS SECTION MW CLUSTER 4 – AMMONIA – 1993-2022
FIGURE 6	CROSS SECTION MW CLUSTER 4 – CHLORIDE – 1995-2022
FIGURE 7	CROSS SECTION MW CLUSTER 4 – CHROMIUM – 1995-2022
FIGURE 8	CROSS SECTION MW CLUSTER 4 – CONDUCTIVITY – 1995-2022
FIGURE 9	CROSS SECTION MW CLUSTER 4 – IRON – 1993-2022
FIGURE 10	CROSS SECTION MW CLUSTER 4 – MANGANESE – 1995-2022
FIGURE 11	CROSS SECTION MW CLUSTER 4 – NITRATE – 1993-2022
FIGURE 12	CROSS SECTION MW CLUSTER 4 – TDS – 2005-2022

APPENDICES

AFF ENDICES	
APPENDIX A	COVER AND DRAINAGE SYSTEM INSPECTION LOGS
APPENDIX B	LABORATORY ANALYTICAL REPORTS
APPENDIX C	WELL INSPECTION CHECKLISTS
APPENDIX D	MONITORING WELL SAMPLING LOGS
APPENDIX E	GAS MONITORING SHEETS
APPENDIX F	6 NYCRR PART 360-2: LANDFILLS

1.0 SCOPE AND PURPOSE

P.W. Grosser Consulting, Inc. (PWGC) has prepared the following post-closure monitoring report for the North Sea Landfill, Southampton, New York. This report is intended to satisfy New York State Department of Environmental Conservation (NYSDEC) requirements for post-closure monitoring at the North Sea Landfill. The landfill is currently in post-closure and was removed from the United States Environmental Protection Agency (USEPA) Superfund National Priorities List (NPL) in 2005. The report provides a summary of the leachate collection data, the results of the perimeter gas monitoring well observations, a summary of groundwater monitoring and results of groundwater samples collected during both the First and Second Half of 2022. This report is intended to serve as the 2022 Annual Post-Closure Monitoring and Maintenance Operations Report in accordance with New York Codes, Rules and Regulations (NYCRR) Part 360 regulations.

North Sea Landfill (the Landfill) was initially constructed in 1963 for the disposal of solid waste, refuse and septic system waste. The Landfill consisted of three cells (Cell No. 1, Cell No. 2 and Cell No. 3), sludge lagoons, a leachate collection system and a gas monitoring system. Cell No. 1 is an inactive, unlined landfill that has been capped and closed. Cell No. 2 is an inactive, lined landfill with a leachate collection system that was capped and closed in 1990. Cell No. 3 is a 6.6-acre, inactive, lined landfill with a leachate collection system that was capped and closed in 1997. The sludge lagoons were decommissioned in 1986.

2.0 COVER SYSTEM

The cover system for the Landfill consists of the following components:

- A gas venting layer The gas venting layer is composed of a series of piping that is designed to collect landfill gasses that may accumulate beneath the cover system.
- A high-density polyethylene (HDPE) liner The HDPE liner covers the gas venting layer and is designed to aid in the collection of landfill gasses and to prevent storm water infiltration.
- A barrier protection sand The barrier protection sand covers the HDPE liner and is designed to protect the liner from punctures.
- Top soil Above the barrier protection sand is a layer of top soil. The top soil is intended to support the growth of vegetation.
- Vegetative cover The upper most portion of the landfill cover system is a vegetative cover. The vegetation is designed to prevent erosion.

The cover system, including vegetative cover, soil cover, and access roads, is inspected by Town of Southampton personnel on a quarterly basis and/or after significant storm events. Quarterly inspections were performed on March 2, June 8, September 10, and December 8, 2022. The vegetative cover is inspected for bare spots, dead areas, undesirable growth, unauthorized dumping, and litter, while the soil cover is inspected for erosion damage, slope movement, ponding, holes, cracking, rutting, waste breakthrough, leachate breakthrough, exposed geosynthetics, vandalism, and vector infestation. Finally, the access roads are inspected for potholes, erosion gullies, loss of stone cover, exposed geotextile, and obstructions/debris.

No deficiencies were noted in 2022. Copies of the Site Inspection Checklists are included in **Appendix A**.

3.0 DRAINAGE SYSTEM

The drainage system for the Landfill consists of a series of vegetated swales, rip-rap down chutes, and storm water catch basins. These structures are all designed to collect runoff from landfill surfaces and discharge to a recharge basin. The recharge basin is located west of Cells No.1 and 2 and up-gradient of groundwater monitoring well clusters MW-3 and MW-4. Between 1997 and 2001, the recharge basin was expanded farther to the north, approximately doubling in size.

The drainage system is inspected by Town of Southampton personnel on a quarterly basis and/or after significant storm events. Quarterly inspections were performed on March 2, June 8, September 10, and December 8, 2022.

No deficiencies were noted in 2022. Copies of the Site Inspection Checklists are included in **Appendix A.**

4.0 LEACHATE COLLECTION AND DISPOSAL

The Landfill is comprised of three distinct and separate landfill cells (identified as Cells 1, 2, and 3). Cell 3 is 6.6 acres in size and was constructed to the design criteria required in 6 NYCRR Part 360 and closed, in compliance with the Long Island Landfill Law. The cell is double lined with a subsurface of clay, a 60 ml HDPE liner, an overlaying layer of sand, an 80 ml HDPE liner and a top layer of sand. Both a leachate collection system and a storm water control system were installed and are currently operational. The system is composed of a primary collection system of perforated pipe on top of the 80 ml HDPE liner and a secondary collection system of perforated pipe on top of the 60 ml HDPE liner. The pipes are sloped so that leachate runs into a primary and secondary wet well. The secondary wet well to a storage tank which is periodically pumped out into a waste hauler truck and disposed of off-site.

The leachate pump station was upgraded in 2022 to include:

- Replaced swing check valve in meter vault to prevent backflow from storage tank to primary wet well/landfill.
- Installed new Flygt NZ 3085 MT 3 Adaptive 462 pump to allow for pumping leachate from storage tank to waste hauler tanker truck without having to use the truck's vacuum pump.
- Installed new electromagnetic flow meter on new pump discharge to record instantaneous and total flow readings when pumping to waste hauler tanker truck for off-site disposal.
- Installed new electromagnetic flow meters on the primary and secondary wet well pump discharge pipes to record instantaneous and total flow from the primary and secondary wet wells, respectively.

The new leachate pump station achieved substantial completion in 2022 and leachate readings will start to be recorded again on January 1, 2023. Troubleshooting of the new pump's operation is currently occurring. Additional improvements to the leachate storage distribution piping have been recommended to assist with improving the flow rate and normal operating procedure of the new pump.

5.0 GROUNDWATER MONITORING PLAN

Groundwater monitoring and sampling is performed in accordance with the USEPA approved Operation and Maintenance (0&M) Manual dated November 1994.

The groundwater monitoring plan for the site calls for the monitoring of both leachate and groundwater to confirm that the historic operation of the facility has not adversely impacted groundwater quality. The groundwater well network currently utilized for monitoring purposes at the Landfill consists of 20 groundwater monitoring wells that were installed as a part of the Remedial Investigation / Feasibility Study, the Cell No. 3 landfill expansion hydrogeologic investigation, and earlier monitoring activities.

5.1 Groundwater Monitoring Well Network

The groundwater monitoring well network for the Landfill consists of nine groundwater monitoring locations (MW-1, MW-3, MW-4, MW-6, MW-7, MW-8, MW-9, MW-11, and MW-12) which are currently in use. Several of these locations are constructed with multiple wells which are screened at varying depths throughout the aquifer (A=shallow, B=intermediate, C=deep).

5.2 Sampling Frequency

In accordance with the O&M Manual, groundwater monitoring well sampling was performed on a quarterly basis. In 2005, the USEPA and NYSDEC approved a reduction in the number of wells sampled and sampling frequency to semi-annual as detailed in the table below:

1st Half Semi-Annual Sar	mpling (April)	2 nd Half Semi-Annual Sar	mpling (October)
Analysis	Sample Locations	Analysis	Sample Locations
Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6)	1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 11A, 11B, 12A, & 12C	Routine Parameters (6 NYCRR Part 360-2.11 (d)(6)	1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 6AR, 6B, 8, 9, 11A, 11B, 12A, 12B
		Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6)	6AR, 6B, 11A, & 11B
Routine Parameters + Arsenic	LEA-Primary &	Metals Only Baseline Parameters	11A & 11B
(6 NYCRR Part 360-2.11 (d)(6)	LEA-Secondary	(6 NYCRR Part 360-2.11 (d)(6)	12.1.0.122
Minus VOC Analysis		Volatile Organic Compounds (VOCs) Only	
		Routine Parameters + Arsenic (6 NYCRR Part 360-2.11 (d)(6)	LEA-Primary & LEA-Secondary
		Minus VOC Analysis	

Note: Filtered metals analysis run on samples with turbidity in excess of 50 nephelometric turbidity units (NTUs).

SHP2201 - Annual Post-Closure Monitoring and Maintenance Operating Report 2022

Appendix F includes list of analytes for 6 NYCRR Part 360-2.11 (d) (6).

The First Half 2022 sampling event was performed on April 26 and 27, 2022 and the Second Half 2022 sampling event was performed on October 26 and 27, 2022. Groundwater samples were delivered to Pace Analytical Laboratories (PAL) for analysis. The data collected in the field and laboratory are summarized on **Tables 1** through **5** and the laboratory reports are attached in **Appendix B**. Depth to water measurements were collected from twenty groundwater monitoring wells. Groundwater monitoring wells MW-7A, MW-7B and MW-7C are only used to collect water measurements and have been eliminated from the sampling program as per approval by USEPA and NYSDEC in 2005. Depth to water and groundwater elevation data are summarized on **Table 5** and water table flow maps are shown on **Figures 1** and **2**.

5.3 Sample Collection Procedures

Prior to collection of each sample, a minimum of three casing volumes were evacuated (purged) from the well using a Grundfos, submersible pump and temperature, specific conductivity, pH, dissolved oxygen, oxygen reduction potential (ORP), and turbidity measurements were collected and recorded. Groundwater sampling logs are included in **Appendix D**. Groundwater samples were collected using disposable polyethylene bailers and a dedicated polyethylene line. Primary and secondary leachate collection systems were also sampled using disposable polyethylene bailers and a dedicated polyethylene line.

Additional volume was collected from groundwater monitoring wells where turbidity could not be reduced below 50 NTUs for laboratory filtering of metals. This included groundwater monitoring well MW-11A and MW-11B in April and MW-11A in October.

5.4 Decontamination and Quality Assurance Quality Control Procedures

All non-disposable sampling equipment (i.e. submersible pump) was decontaminated by using a distilled water and non-phosphate detergent wash followed by a distilled water rinse prior to and between each well.

5.5 Groundwater Quality

Baseline parameters include inorganic and organic parameters. The inorganic portion of the analysis includes metals, nutrients, and the physical properties of the sample. Routine parameters include a condensed version of the baseline parameters. Routine metals are reduced to cadmium, calcium, iron, lead, magnesium, manganese, potassium, and sodium. In addition, VOCs, color and hexavalent chromium are not analyzed as part of the routine parameters. Specific conductivity, turbidity, temperature and pH values were reported from field measurements. However, they are listed in **Table 1** and discussed in the inorganic water quality section below. The list of organic groundwater quality results (**Table 2** and **3**) is comprised of VOCs.

Groundwater quality as it relates to inorganic metal concentrations is evaluated by looking at the total metal concentrations for samples with turbidity values below 50 NTUs and dissolved metal concentrations with turbidity values above 50 NTUs.

The laboratory results are compared to NYSDEC's Class GA Groundwater Standards, 6 NYCRR Part 703. Analytical results are discussed below.

SHP2201 - Annual Post-Closure Monitoring and Maintenance Operating Report 2022

Page 6

5.5.1 Inorganic Water Quality Results – April 2022 (First Half)

Long Island groundwater generally has a low pH and is typically measured below the NYSDEC standard range of 6.5 to 8.5. Eleven of the thirteen samples had a measured pH level below 6.5. pH concentrations ranged from 4.45 (MW-4A) to 6.63 (MW-4C).

Chromium was detected above method detection limits in four of the thirteen groundwater samples. Chromium concentrations ranged from less than 0.01 mg/L to 1.08 mg/L (MW-3A). Chromium was detected in two of the thirteen groundwater samples (MW-3A and MW-4C) at concentrations exceeding the NYSDEC groundwater standard (0.05 mg/L). Hexavalent chromium, the toxic form of chromium, was detected above method detection limits in one of the thirteen groundwater samples. Hexavalent chromium was detected at a concentration pf 0.11 mg/L in MW-1C which exceeds the NYSDEC groundwater standard (0.05 mg/L). The MW-1 cluster is an up-gradient well which provides background groundwater quality.

Iron was detected above method detection limits in eight of the thirteen groundwater samples. Iron concentrations ranged from less than 0.02 mg/L to 8.04 mg/L (MW-4B). Iron was detected in five of the thirteen groundwater samples (MW-3A, MW-3B, MW-4B, MW-4C, and MW-12A) at concentrations exceeding the NYSDEC groundwater standard (0.3 mg/L).

Manganese was detected above method detection limits in nine of the thirteen groundwater samples. Manganese concentrations ranged from less than 0.01 mg/L to 2.64 mg/L (MW-11A). Manganese was detected in four of the thirteen groundwater samples (MW-3B, MW-4B, MW-11A, and MW-12A) at a concentration exceeding the NYSDEC groundwater standard (0.3 mg/L).

Nickel was detected above method detection limits in two of the thirteen groundwater samples. Nickel concentrations ranged from less than 0.04 mg/L to 0.194 mg/L (MW-4C). Nickel was detected in two of the thirteen groundwater samples (MW-3A and MW-4C) at a concentration exceeding the NYSDEC groundwater standard (0.1 mg/L).

Sodium was detected above method detection limits in each of the thirteen groundwater samples. Sodium concentrations ranged from 6.77 mg/L (MW-1C) to 851 mg/L (MW-3A). Sodium was detected in three of the thirteen groundwater samples (MW-3A, MW-4A, and MW-4C) at a concentration exceeding the NYSDEC groundwater standard (20 mg/L).

Ammonia was detected above method detection limits in six of the thirteen groundwater samples. Ammonia concentrations ranged from less than 0.1 mg/L to 3.5 mg/L (MW-12B). Ammonia was detected in three of the thirteen groundwater samples (MW-3B, MW-4B, and MW-12A) at a concentration exceeding the NYSDEC groundwater standard (2 mg/L).

5.5.2 Inorganic Water Quality Results – October 2022 (Second Half)

Long Island groundwater generally has a low pH and is typically measured below the NYSDEC standard range of 6.5 to 8.5. Three of the seventeen samples had a measured pH level below 6.5. pH concentrations ranged from 6.16 (MW-6B) to 6.90 (MW-1C).

Chromium was detected above method detection limits in one of the four groundwater samples analyzed for baseline metals. Chromium concentrations ranged from less than 0.01 mg/L to 0.0577 mg/L (MW-11B). Chromium was detected in one of the four groundwater samples (MW-11B) at a concentration exceeding the NYSDEC groundwater standard (0.05

SHP2201 - Annual Post-Closure Monitoring and Maintenance Operating Report 2022

mg/L). Hexavalent chromium, the toxic form of chromium, was not detected above method detection limits in the four groundwater samples.

Iron was detected above method detection limits in eleven of the seventeen groundwater samples. Iron concentrations ranged from less than 0.100 mg/L to 12.3 mg/L (MW-11B). Iron was detected in eight of the seventeen groundwater samples (MW-1A, MW-3A, MW-3B, MW-4B, MW-4C, MW-9, MW-11A, and MW-11B) at concentrations exceeding the NYSDEC groundwater standard (0.3 mg/L).

Manganese was detected above method detection limits in eleven of the seventeen groundwater samples. Manganese concentrations ranged from less than 0.01 mg/L to 1.88 mg/L (MW-3A). Manganese was detected in six of the seventeen groundwater samples (MW-3A, MW-3B, MW-4B, MW-11A, MW-12A, and MW-12B) at a concentration exceeding the NYSDEC groundwater standard (0.3 mg/L).

Sodium was detected above method detection limits in each of the seventeen groundwater samples. Sodium concentrations ranged from 7.15 mg/L (MW-1B) to 34.6 mg/L (MW-3A). Sodium was detected in two of the seventeen groundwater samples (MW-3A and MW-4C) at a concentration exceeding the NYSDEC groundwater standard (20 mg/L).

Ammonia was detected above method detection limits in eight of the seventeen groundwater samples. Ammonia concentrations ranged from less than 0.1 mg/L to 3.8 mg/L (MW-12A). Ammonia was detected in three of the seventeen groundwater samples (MW-3B, MW-12A, and MW-12B) at a concentration exceeding the NYSDEC groundwater standard (2 mg/L).

Nitrate was detected above method detection limits in sixteen of the seventeen groundwater samples. Nitrate concentrations ranged from less than 0.050 mg/L to 10.7 mg/L (MW-1A). Nitrate was detected in one of the seventeen groundwater samples (MW-1A) at a concentration exceeding the NYSDEC groundwater standard (10 mg/L).

Phenol was detected above method detection limits in four of the seventeen groundwater samples. Phenol concentrations ranged from less than 0.0028 mg/L to 0.0059 mg/L (MW-1A). Phenol was detected in four of the seventeen groundwater samples (MW-1A, MW-4A, MW-8, and MW-11B) at a concentration exceeding the NYSDEC groundwater standard (0.001 mg/L).

5.5.3 Organic Water Quality Results – April 2022 (First Half)

Groundwater samples collected from the wells were analyzed for VOCs as part of the First Half 2022 sampling program. Analytical results indicate that no VOCs were detected in the samples collected at concentrations exceeding the laboratory detection limits with the exception of chloroform in MW-1B, MW-1C, MW-4A, MW-4C, and MW-11B. Chloroform did not exceed its NYSDEC groundwater standard of 0.007 mg/L.

5.5.4 Organic Water Quality Results – October 2022 (Second Half)

Groundwater samples collected from two of the wells (MW-11A and MW-11B) were analyzed for VOCs as part of the Second Half 2022 sampling program. Analytical results indicate that no VOCs were detected in the samples collected at concentrations exceeding the laboratory detection limits with the exception of chloroform in MW-11A and MW-11B. Chloroform did not exceed its NYSDEC groundwater standard of 0.007 mg/L.

SHP2201 - Annual Post-Closure Monitoring and Maintenance Operating Report 2022

Page 8

5.5.5 Well Cluster 4 & 11 Analysis

Monitoring wells MW-4A, MW-4B, and MW-4C are located down-gradient of the Landfill along the edge of Fish Cove Pond. These wells represent the farthest down-gradient wells that are used to monitor the Landfill. Historical monitoring has shown that the leading edge of the leachate plume is migrating into Fish Cove Pond. In addition, there is an upward groundwater flow gradient from MW-4C to MW-4B. Concentrations of Conductivity, Chloride, Chromium, and total dissolved solids (TDS), have been increasing in MW-4C. The increasing trends observed in MW-4C may be attributed to a former salt storage area. The former salt storage area was located at the southwestern portion of the North Sea Landfill. A monitoring well was installed in this area during the Remedial Investigation and Feasibility Study (RI/FS) performed under the USEPA and NYSDEC oversite. This well exhibited similar water quality of elevated chlorides and trivalent chromium as that exhibited in MW-4C. This area was not included as an operable unit at the time of the RI/FS and Remedial actions. These increasing trends are not coupled with any significant increases in iron and manganese which would indicate the presence of leachate that is being broken down. Iron and manganese are prevalent in MW-4B where the plume has been documented. Iron and manganese levels in MW-4C are at background levels when compared to MW-4B. A steady increase in Nitrate has been observed in MW-4A. This is likely attributed to the increase in development of the area up-gradient of this well by homes with onsite sanitary systems. Concentrations of Nitrate are lower in the onsite landfill wells with the exception of MW-1A, located adjacent to a compost storage area. Trend charts are included as Figures 5 and 12 to depict historic trends in monitoring wells MW-4A, 4B, and 4C.

Monitoring wells MW-11A and MW-11B are located down-gradient of Cell 3. These wells have been under close observation since March 1993. A graph of several leachate indicators detected in samples collected from monitoring wells MW-11A and MW-11B since 1997 are shown on **Figures 3** and **4**. Detected concentrations of certain constituents were noted in MW-11A and MW-11B during this sampling event. A review of the trends shows that concentrations have generally decreased over time indicating that the plume continues to degrade over time. Slightly elevated concentrations of iron, manganese, and lead are still detected in these wells.

5.6 Groundwater Flow & Migration of Leachate Plume

Groundwater elevation data and laboratory analytical results are utilized to determine groundwater flow and to map the horizontal and vertical migration of the leachate plume. Depth to water and groundwater elevation data are shown on **Table 5**.

Groundwater contour maps for April and October 2022 (**Figures 1** and **2**), were created with groundwater elevation data from eight shallow water table monitoring wells (MW-1A, MW-3A, MW-4A, MW-7A, MW-9, MW-11A, and MW-12A). An evaluation of the water table elevation data indicates that groundwater flows north beneath the landfill. At the western extent of the landfill, groundwater is observed to flow northwest towards Fish Cove Pond. At Fish Cove Pond, an upward vertical flow component has been observed based upon head differential observed in the groundwater monitoring wells indicating groundwater is discharging into the pond from deeper portions of the aquifer.

SHP2201 - Annual Post-Closure Monitoring and Maintenance Operating Report 2022

Based upon historical groundwater sampling results and previous remedial investigations, the leachate plume migrates from the landfill, specifically Cell No. 1, and travels horizontally towards the northwest and discharges into Fish Cove Pond. The plume has been observed at its deepest point vertically at the MW-3B depth interval.

5.7 Leachate Quality

The April and October 2022 analytical data indicate that contaminant concentrations in the leachate detection system (secondary) are similar when compared to those of the leachate collection system (primary). Total precipitation was higher during the First Half of 2022 (21.39 inches), from November 2021 through April 2022, when compared to the Second Half of 2022 (18.54 inches), from May 2022 through October 2022. The analytical results for the primary and secondary leachate are shown on **Table 4** and the laboratory report is attached as part of **Appendix B**.

6.0 DATA VALIDATION AND USABILITY REPORT

6.1 **Data Validation**

In accordance with the contract, five percent of the groundwater analytical results are in the process of being validated by Laboratory Data Consultants, Carlsbad, California. As part of the data validation process, all quality control (QC) issues are being reviewed. Upon completion, a copy of the data validation and usability report shall be submitted under separate cover. Compliance chart, re-submission communications, and the NYSDEC laboratory sample preparation and analysis summary forms will also be included.

7.0 LANDFILL GAS MONITORING DATA

Monitoring of the perimeter methane monitoring wells is typically performed on a monthly basis by the Southampton Fire Marshal. Due to staffing issues, landfill gas monitoring was not performed January, March, April, June, July, August, and October 2022. No LEL or fullscale detections were measured at the gas monitoring wells during the 2022 inspections. Therefore, there is no evidence of offsite migration.

Gas monitoring data is summarized on the field data sheet found in **Appendix E**.

8.0 GROUNDWATER AND LANDFILL GAS MONITORING WELL CONDITION

During the semi-annual sampling events, groundwater and landfill gas monitoring wells were inspected for damages. The following observations were noted:

The lock on MW-11B was observed to be rusted and difficult to open.

Well condition logs are included in Appendix C.

9.0 SUMMARY

Review of the data for 2022 indicates that previously implemented remedial actions continue to be effective at minimizing potential site impacts. In brief, the leachate quality has remained similar and the groundwater quality with regards to the inorganic constituents has improved when compared to the previous reporting periods. The groundwater quality with regards to the organic constituents has remained similar when compared to the previous reporting periods. Several inorganic compounds are sporadically detected in wells MW-1A, 3A, 3B, 4A, 4B, 4C, 8, 9, 11A, 11B, and 12A above groundwater standards.

Monitoring well cluster MW-4 has shown Nitrate and former salt storage impact. Nitrate concentrations in MW-4A have been trending upwards and are a potential result of development of the area upgradient. Conductivity, Chloride, and TDS concentrations have been trending upwards in MW-4C, indicating potential impact from the former salt storage area at the landfill.

The results from the monthly monitoring of the perimeter methane monitoring wells indicate that there is no evidence of offsite migration of methane. No LEL or full-scale detections were measured at the gas monitoring wells for 2022.

Groundwater and landfill gas monitoring wells were inspected for damages during the semiannual sampling events and found to be in good condition.

The new leachate pump station achieved substantial completion in 2022 and leachate readings will start to be recorded again on January 1, 2023.

10.0 RECOMMENDATIONS

PWGC recommends that the post-closure monitoring and maintenance operations program be continued, and the groundwater and leachate sampling program be continued with the following modifications:

- Reduction from semi-annual monitoring and sampling to annual monitoring and sampling.
 - Baseline sampling will be performed on an annual basis in April of each calendar year and extend to the entire groundwater monitoring well network except the MW-7 cluster.

In addition, PWGC recommends the following maintenance items:

- Replace lock on MW-11B.
- Troubleshoot the new pump's operation.

TABLES

Sertam	ANALYTICAL	UNITS	GW		MW-1A																		
PMADESTRAPP PMAD			-	October 20	17	April 201	Ω	October 20	1Ω	April 20	10	October 2010		April 202	0	October 2020	April 20	21	October 2	021	April 203	2	October 2022
Section of Section Margin 1987 Perk 0.098 U Perk 0.0960 U Perk 0	PARAMETERS		STND (1)	October 20	/1/	April 2010	U	October 20.	10	April 20	1,	October 2017		April 202	.0	October 2020	April 20	21	Octobel 2	021	April 202		October 2022
More First Part More Part	Aluminum as Al	mg/L	NA	PNA		0.0134	UJ	PNA		0.200	U	PNA		0.200	U	PNA	0.200	U	PNA		0.200		PNA
Partiers mg/L 1 PNA 0.0218 1 PNA 0.0208 0 PNA 0.0209 0 PNA 0	Antimony as Sb	mg/L	0.003#	PNA		0.003	U	PNA		0.0600	U	PNA		0.0600	U	PNA	0.0600	U	PNA		0.0600	U	PNA
Beryllium as Be mg/L 0.003	Arsenic as As	mg/L	0.025	PNA		0.0068	U	PNA		0.0100	U	PNA		0.0100	U	0.0100 U	0.0100	U	0.0100	U	0.0100	U	0.0100 U
Series Bernel Cardinam and Cardinam an	Barium	mg/L	1	PNA		0.0218	J	PNA		0.200	U	PNA		0.200	U	PNA	0.200	U	PNA		0.200	U	PNA
Common as Col. Common as Col. C	Beryllium as Be	mg/L	0.003	PNA		0.0006	U	PNA		0.0050	U	PNA		0.0050	U	PNA	0.0050	U	PNA		0.0050	U	PNA
Calciums as Ca	Boron as B	mg/L	1	PNA		0.0324	J	PNA		0.0917		PNA		0.0807		PNA	0.0611		PNA		0.0500	U	PNA
Carelina Sect	Cadmium as Cd	mg/L	0.005	0.0025	U	0.00011	J	0.0025	U	0.0025	U	0.0025 U	U	0.0025	U	0.0025 U	0.0025	U	0.0025	U	0.0025	U	0.0025 U
Cababit	Calcium as Ca	mg/L	NA	55.6		17.7		63.9		76.400		63.400		46.700		77.800	40.200		54.700		21.700		60.000
Copper as Gu	Chromium as Cr	mg/L	0.05	PNA		0.0016	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0184		PNA		0.0100	U	PNA
Control of Control o	Cobalt	mg/L	NA	PNA		0.0006	U	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500	U	PNA		0.0500	U	PNA
Tomas Se	Copper as Cu	mg/L	0.2	PNA		0.0025	U	PNA		0.0250	U	PNA		0.0250	U	PNA	0.0250	U	PNA		0.0250	U	PNA
Lead as Pp	Cyanide as CN	mg/L	0.2	PNA		0.0029	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	0.0100 U
	Iron as Fe	mg/L	0.3	0.0625		0.0109	U	0.0601		0.0261		0.742		0.0291		3.840	0.800		0.179		0.100	U	0.393
Marganes as Mn	Lead as Pb	mg/L	0.025	0.005	U	0.0013	U	0.005	UB	0.0050	U	0.0050 t	U	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050	U	0.0050 U
	Magnesium	mg/L	35 #	22.100		7.25	J	24.8		28.700		22.600		19.000		27.000	15.800		18.700		7.450		20.300
Nickel as Ni	Manganese as Mn	mg/L	0.3	0.028		0.005	U	0.0196		0.0100	U	0.217		0.0100	U	0.243	0.100		0.0126		0.0100	U	0.0100 U
Potassium mg/L NA 12.90	Mercury as Hg	mg/L	0.0007	PNA		0.000056	U	PNA		0.00020	U	PNA		0.00020	U	PNA	0.00020	U	PNA		0.00020	U	PNA
Selenia as Se	Nickel as Ni	mg/L	0.1	PNA		0.0009	UJ	PNA		0.0400	U	PNA		0.0400	U	PNA	0.0400	U	PNA		0.0400	U	PNA
Silver as Ag mg/L 0.05 PNA 0.0036 U/ PNA 0.0100 U 0.050	Potassium	mg/L	NA	12.900		4	J	12.5		13.900		12.600		6.820		17.300	5.580		11.100		5.000	U	13.500
Sodium as Na mg/L 20	Selenium as Se	mg/L	0.01	PNA		0.0063	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	PNA
Thaillum as Ti	Silver as Ag	mg/L	0.05	PNA		0.0036	UJ	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	PNA
Vanadium	Sodium as Na	mg/L	20	13.400		11.1		15.2		15.400		18.600		14.400		22.300	12.800		16.300		10.800		19.900
Zinc as Zn	Thallium as Tl	mg/L	0.0005#	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	PNA
Alkalinity tot CaCo3 mg/L NA 132 46.6 98.4 178 127 55.5 194 76.1 119 29.3 142 Chloride as Cl mg/L 250 22.6 18.3 30.2 39.6 41.0 26.6 43.4 20.7 26.3 20.0 39.0 Sulfate as S04 mg/L 250 85.8 37.2 125 120 106 91.9 103 58.4 67.7 36.7 87.3 Bromide mg/L 2 # 0.5 U 0.030 J 0.5 U 0.50	Vanadium	mg/L	NA	PNA		0.0008	U	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500	U	PNA		0.0500	U	PNA
Chloride as Cl mg/L 250 22.6 18.3 30.2 39.6 41.0 26.6 43.4 20.7 26.3 20.0 39.0	Zinc as Zn	mg/L	2 #	PNA		0.0022	UJ	PNA		0.0200	U	PNA		0.0200	U	PNA	0.0200	U	PNA		0.0200	U	PNA
Sulfate as SO4	Alkalinity tot CaCo3	mg/L	NA	132		46.6		98.4		178		127		55.5		194	76.1		119		29.3		142
Bromide	Chloride as Cl	mg/L	250	22.6		18.3		30.2		39.6		41.0		26.6		43.4	20.7		26.3		20.0		39.0
BODS	Sulfate as SO4	mg/L	250	85.8		37.2		125		120		106		91.9		103	58.4		67.7		36.7		87.3
COD mg/L NA 10 U 10 U 15.5 32.2 10.2 16.7 27.3 10 U 21.2 10 U 20.8 Color units NA PNA 5 U PNA 10.0 PNA 5.0 PNA 6.2 PNA 5.0 U 6.0 Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 0.020 U	Bromide	mg/L	2 #	0.5	U	0.038	J	0.5	U	0.50	U	0.50 t	U	0.50	U	0.50 U	0.50	U	0.50	U	0.50	U	0.50 U
Color units NA PNA 5 U PNA 10.0 PNA 5.0 PNA 0.020 U 0.020	BOD5	mg/L	NA	2	U	2	U	4.1		2.0	U	2.0 t	U	2.0	U	2.0 U	2.0	U	2.0	U	2.0	U	2.0 U
Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 0.020 U 0	COD	mg/L	NA	10	U	10	U	15.5		32.2		10.2		16.7		27.3	10	U	21.2		10	U	20.8
Hardness as CaC03 mg/L NA 200 166 187 265 220 130 280 120 300 56.7 273 Ammonia as N mg/L 2 0.1 U 0.018 J 0.10 U 0.10 U 0.10 U 0.18 0.10 U 0.050 U 0.0050 U	Color	units	NA	PNA		5	U	PNA		10.0		PNA		5.0		PNA	6.2		PNA		5.0	U	6.0
Ammonia as N mg/L 2 0.1 U 0.018 J 0.10 U 0.050 U 0.0050 U	Chromium hex as Cr	mg/L	0.05	PNA		0.003	U	PNA		0.020	U	PNA		0.020	U	PNA	0.020	U	PNA		0.020	U	PNA
Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.050 U 0.055 U 0.050 U 0.055 U 0.050 U 0.055 U 0.050 U 0.055 U 0.050 U 0.05	Hardness as CaC03	mg/L	NA	200	İ	166	İ	187		265		220		130		280	120		300		56.7		273
Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.050 U 0.05	Ammonia as N	mg/L	2	0.1	U	0.018	J	0.10	U	0.10	U	0.10 U	U	0.18		0.10 U	0.10	U	0.10	U	0.10	U	0.10 U
Phenols as Phenol mg/L 0.001 0.005 U 0.0056 0.005 U 0.0050 U 0.	Nitrite as N	mg/L	NA	0.05	U	0.05	U	0.050	U	0.050	U	0.050 U	U	0.050	U	0.050 U	0.050	U	0.050	U	0.050	U	0.050 U
Tot Dissolved Solids mg/L NA 305.0 144 326 390 330 286 472 258 234 129 342 Tot. Kjeldahl Nitrogen mg/L NA 0.38 0.1 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.36 U 0.10 U 0.10 Tot Organic Carbon mg/L NA 3.7 B 1.2 4.4 6.2 4.8 4.0 5.4 3.5 3.5 1.4 5.1 Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Nitrate as N	mg/L	10	6.4		4		10.5		11.0		6.6		9.2		9.5	6.2		8.1		5.8		10.7
Tot. Kjeldahl Nitrogen mg/L NA 0.38 0.1 U 0.10 U 0.01 U 0.10 U 0.01 U 0.01 U 0.10 U 0.10 U 0.01 U 0.02 0.01 U 0.01 U 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03	Phenols as Phenol	mg/L	0.001	0.005	U	0.0056		0.005	U	0.0050	U	0.0118	Ţ	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050	U	0.0059
Tot Organic Carbon mg/L NA 3.7 B 1.2 4.4 6.2 4.8 4.0 5.4 3.5 3.5 1.4 5.1 Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Tot Dissolved Solids	mg/L	NA	305.0		144		326		390		330		286		472	258		234		129		342
Tot Organic Carbon mg/L NA 3.7 B 1.2 4.4 6.2 4.8 4.0 5.4 3.5 3.5 1.4 5.1 Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Tot. Kjeldahl Nitrogen	mg/L	NA	0.38		0.1	U	0.10	U	0.10	U	0.10 U	U	0.10	U	0.10 U	0.10	U	0.36	U	0.10	U	0.10 U
Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Tot Organic Carbon	mg/L	NA	3.7	В	1.2		4.4		6.2		4.8		4.0		5.4	3.5		3.5		1.4		5.1
Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	- J	0,	NA	2.8									t										
	Temperature	deg.C	NA	12.26		11.42		12.16		12.01		12.77	T	11.7		12.63	12.62		15.27		12.44		13.45
	pН	units	6.5-8.5	6.09		5.54		5.61		6.73		6.29		6.30		6.40	7.95		4.19		5.46		6.60
Spec. Cond umho/cm NA 568 244 192 373 522 384 56 329 576 187 578	Spec. Cond	umho/cm	NA	568		244		192		373		522		384		56	329		576		187		578

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

- # = Guidance value, no standard exists.
- NA = Not available.
- PNA = parameter not analyzed for.
- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J-Data Validation Qualifier-The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\label{thm:continuous} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$
- $\textit{UJ-Data Validation Qualifier-The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is$
- approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ANALYTICAL	UNITS	GW							N	MW	7-1B								
			October 2017	April 20	10	October 2018	April 2019	October 2019	Apr	ril 2	:020	October 2020	April 2021		October 202		April 202	12	October 2022
PARAMETERS		STND (1)	October 2017	April 20	10	October 2018	April 2019	October 2019	Unfiltered		Filtered	October 2020	April 2021		october 202	1	April 202		October 2022
Aluminum as Al	mg/L	NA	PNA	0.0134	U	PNA	0.200 l	PNA	0.200 U	J	0.200 U	PNA	0.200	J	PNA		0.200	U	PNA
Antimony as Sb	mg/L	0.003#	PNA	0.003	U	PNA	0.0600 U	PNA	0.0600 U	J	0.0600 U	PNA	0.0600	J	PNA		0.0600	U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	0.0100 U	0.0100 I	J	0.0100	U	0.0100	U	0.0100 U
Barium	mg/L	1	PNA	0.0107	J	PNA	0.200 U	PNA	0.200 U	J	0.200 U	PNA		J	PNA		0.200	U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006	U	PNA	0.0050 U	PNA	0.0050 U	J	0.0050 U	PNA		J	PNA		0.0050	U	PNA
Boron as B	mg/L	1	PNA	0.0132	J	PNA	0.0500 U	PNA	0.0500 U	J	0.0500 U	PNA		J	PNA		0.0500	U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U		U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	J	0.0025 U	0.0025 U		J	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	4.46	4.29		4.74	4.440	3.130	3.830		3.750	3.670	4.630		4.380		4.440		4.190
Chromium as Cr	mg/L	0.05	PNA	0.0027	J	PNA	0.010 U	PNA	0.0303		0.010 U	PNA	0.0472		PNA		0.0100	U	PNA
Cobalt	mg/L	NA	PNA	0.0006	U	PNA	0.0500 U	PNA	0.0500 U	J	0.0500 U	PNA	0.0500	J	PNA		0.0500	U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025	U	PNA	0.0250 U	PNA	0.0250 U	J	0.0250 U	PNA		J	PNA		0.0250	U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029	U	PNA	0.0100 U	PNA	0.0100 U	J	PNA	PNA	0.0100 I	J	PNA		0.0100	U	0.0100 U
Iron as Fe	mg/L	0.3	0.02 U		U	0.0200 U	0.0200 U		0.114	_	0.0200 U	0.0378	0.190		0.102		0.100	U	0.237
Lead as Pb	mg/L	0.025	0.005 U		U	0.0050 U	0.0050 U			J	0.0050 U	0.0050 U		J	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35#	1.94	1.98		2.160	1.850	1.250	1.620	_	1.570	1.740	2.180		2.150		2.100		2.160
Manganese as Mn	mg/L	0.3	0.01 U	0.0035	J	0.0100 U	0.0100 U	0.0100 U	0.0100 U	J	0.0100 U	0.0100 U	0.0100 I	J	0.0100	U	0.0100	U	0.0100 U
Mercury as Hg	mg/L	0.0007	PNA	0.000069	J	PNA	0.00020 U	PNA	0.00020 U	J	0.00020 U	PNA	0.00020	J	PNA		0.00020	U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.0139	J	PNA	0.0400 U	PNA	0.0400 U	J	0.0400 U	PNA	0.0400	J	PNA		0.0400	U	PNA
Potassium	mg/L	NA	5 U	0.83	U	5.000 U	5.000 U	5.000 U	5.000 U	J	5.000 U	5.000 U	5.000 I	J	5.000	U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	PNA	0.0100 I	J	PNA		0.0100	U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	PNA	0.0100 I	J	PNA		0.0100	U	PNA
Sodium as Na	mg/L	20	8.44	8.42		9.750	9.180	9.040	8.370		8.480	7.990	8.190		8.770		7.070		7.150
Thallium as Tl	mg/L	0.0005#	PNA	0.0036	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	PNA	0.0100 I	_	PNA		0.0100	U	PNA
Vanadium	mg/L	NA	PNA	0.0008	U	PNA	0.0500 U	PNA	0.0500 U	J	0.0500 U	PNA	0.0500	J	PNA		0.0500	U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0012	J	PNA	0.0200 U	PNA	0.0200 U	J	0.0200 U	PNA	0.0200	J	PNA		0.0200	U	PNA
Alkalinity tot CaCo3	mg/L	NA	10.8	11		13.4	11.4	5.4	8.5		PNA	11.4	11.7		15.1		12.5		14.7
Chloride as Cl	mg/L	250	11.2	9		16.3	14.5	15.4	9.0		PNA	9.9	13.9		10.9		9.6		12.1
Sulfate as SO4	mg/L	250	6.3	7.9		8.5	7.9	8.7	8.3		PNA	7.4	7.4		7.1		8.3		9.4
Bromide	mg/L	2 #	0.5 U	0.025	J	0.50 U	0.50 U	0.50 U	0.50 U	J	PNA	0.50 U	0.50	J	0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2 U	2	U	2.0 U	2.0 U	1 2.0 U	2.0 U	J	PNA	2.0 U	2.0	J	2.0	U	2.0	U	2.0 U
COD	mg/L	NA	10 U		U	10.0 U	38.9	10.0 U		\perp	PNA	10.0 U		J	10.9		10.0	U	10.0 U
Color	units	NA	PNA	5	U	PNA	5.0 U		5.0 U	-	PNA	PNA		J	PNA		5.0	U	7.0
Chromium hex as Cr	mg/L	0.05	PNA	0.003	U	PNA	0.020 U		0.020 U	J	PNA	PNA		J	PNA		0.020	U	PNA
Hardness as CaC03	mg/L	NA	18.7	15		14.0	17.0	8.0	12.0	\perp	PNA	23.3		J	30		5.0	U	20.0
Ammonia as N	mg/L	2	0.1 U		J	0.10 U	0.10 U			_	PNA	0.10 U		J	0.10	U	0.10	U	0.10 U
Nitrite as N	mg/L	NA	0.5 U		U	0.050 U	0.050 l			J	PNA	0.050 U		J	0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.05 U			7.9	0.050 l			4	PNA	0.053		J	0.050	U	0.050	U	0.070
Phenols as Phenol	mg/L	0.001	0.005 U		J	0.0050 U	0.0050 U		0.0050 U	J	PNA	0.0050 U		J	0.0050	U	0.0050	U	0.0028 U
Tot Dissolved Solids	mg/L	NA	38	59		61.0	26.0	59.0	65.0	\perp	PNA	75.0	75.0	_	34.0		20.0		93.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.1 U	0.1	U	0.10 U	0.42	0.10 U	4	\perp	PNA	0.10 U	0.14	_	0.27		0.10	U	0.17
Tot Organic Carbon	mg/L	NA	1 U		U	1.0 U	1.0 l	1.0		J	PNA	1.0 U		J	1.0	U	1.0	U	1.0 U
Turbidity	NTU	NA	0.7	3.2		0.0	0.0	0.0	64.4	\perp	PNA	1.20	31.9	_	PNA		0.00		0.0
Temperature	deg.C	NA	11.38	11.66		12.38	11.22	12.01	11.68	┙	PNA	12.18	13.82		12.62		11.57		12.70
pH	units	6.5-8.5	6.54	6.17		6.31	5.87	5.89	6.40		PNA	6.33	7.92		3.85		5.62		6.56
Spec. Cond	umho/cm	NA	96	84		96	93	71	63		PNA	65	76		95		62		82

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation. # = Guidance value, no standard exists.

- NA = Not available.
- PNA = parameter not analyzed for.
- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 R - Data Validation Qualifier - Rejected.

 U - Indicates the compound was analyzed for, but not detected.

- U-Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

 UJ-Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

 Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW											MW-10	C								
			October 20	017	April 2018	В	October 20	18	April 201	19	October 2019	9	April 202	0	October 2020	April 2021	00	ctober 202	21	April 202	2	October 2022
PARAMETERS		STND (1)			•				•			_	-			•				•		
Aluminum as Al	mg/L	NA	PNA		0.0134	U	PNA		0.200	U	PNA	_	0.200	U	PNA	0.200 U	_	PNA		0.200	U	PNA
Antimony as Sb	mg/L	0.003 #	PNA		0.003	U	PNA		0.0600	U	PNA	_	0.0600	U	PNA	0.0600 U	_	PNA		0.0600	U	PNA
Arsenic as As	mg/L	0.025	PNA		0.0068	U	PNA		0.0100	U	PNA	_	0.0100	U	0.0100 U	0.0100 U	_	0.0100	U	0.0100	U	0.0100 U
Barium	mg/L	1	PNA		0.0101	J	PNA		0.200	U	PNA	_	0.200	U	PNA	0.200 U	_	PNA		0.200	U	PNA
Beryllium as Be	mg/L	0.003	PNA		0.0006	U	PNA		0.0050	U	PNA	_	0.0050	U	PNA	0.0050 U	_	PNA		0.0050	U	PNA
Boron as B	mg/L	1	PNA		0.0121	J	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500 U	_	PNA		0.0500	U	PNA
Cadmium as Cd	mg/L	0.005	0.0025	U	0.00006	U	0.0025	U	0.0025	U		U	0.0025	U	0.0025 U	0.0025 U	_	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	4.14		4.63		4.910		4.770		5.120	_	4.640		4.660	4.440	_	5.020		4.500		4.550
Chromium as Cr	mg/L	0.05	PNA		0.0048	J	PNA		0.0100	U	PNA	_	0.0100	U	PNA	0.0121	_	PNA		0.0100	U	PNA
Cobalt	mg/L	NA	PNA		0.0006	U	PNA		0.0500	U	PNA	_	0.0500	U	PNA	0.0500 U	_	PNA		0.0500	U	PNA
Copper as Cu	mg/L	0.2	PNA		0.0025	U	PNA		0.0250	U	PNA	4	0.0250	U	PNA	0.0250 U	_	PNA		0.0250	U	PNA
Cyanide as CN	mg/L	0.2	PNA		0.0029	U	PNA		0.0100	U	PNA	4	0.0100	U	PNA	0.0100 U	_	PNA		0.0100	U	0.0100 U
Iron as Fe	mg/L	0.3	0.02	U	0.0301		0.0200	U	0.0200	U	0.0840	_	0.0200	U	0.0241	0.0709	_	0.195		0.100	U	0.100 U
Lead as Pb	mg/L	0.025	0.005	U	0.0013	U	0.0050	U	0.0050	U		U	0.0050	U	0.0050 U	0.0050 U	_	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35 #	2.17		2.45		2.510		2.420		2.410	_	2.370		2.390	2.270	_	2.480		2.210		2.310
Manganese as Mn	mg/L	0.3	0.01	U	0.0037	J	0.0100	U	0.0100	U	0.0110	_	0.0100	U	0.0100 U	0.0100 U	_	0.0121		0.0100	U	0.0100 U
Mercury as Hg	mg/L	0.0007	PNA		0.000075	J	PNA		0.00020	U	PNA		0.00020	U	PNA	0.00020 U	_	PNA		0.00020	U	PNA
Nickel as Ni	mg/L	0.1	PNA		0.0129	J	PNA		0.0400	U	PNA	_	0.0400	U	PNA	0.0400 U	-	PNA		0.0400	U	PNA
Potassium	mg/L	NA	5	U	0.83	U	5.000	U	5.000	U		U	5.000	U	5.000 U	5.000 U	_	5.000	U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	PNA		0.0063	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100 U		PNA		0.0100	U	PNA
Silver as Ag	mg/L	0.05	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100 U	_	PNA		0.0100	U	PNA
Sodium as Na	mg/L	20	7.48		7.83		7.930		8.230		8.620		8.080		8.040	7.010		7.620		6.770		7.590
Thallium as Tl	mg/L	0.0005 #	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100 U		PNA		0.0100	U	PNA
Vanadium	mg/L	NA	PNA		0.0008	U	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500 U		PNA		0.0500	U	PNA
Zinc as Zn	mg/L	2#	PNA		0.002	J	PNA		0.0200	U	PNA		0.0200	U	PNA	0.0200 U		PNA		0.0200	U	PNA
Alkalinity tot CaCo3	mg/L	NA	12		13.2		14.6		14.0		14.7		13.4		14.6	13.5		14.8		14.7		16.8
Chloride as Cl	mg/L	250	8.1		9.3		10.7		10.9		11.4		8.9		9.3	9.7		9.2		8.9		11.1
Sulfate as SO4	mg/L	250	8.1		9.3		10.9		10.6		10.6		9.4		8.2	9.2		8.5		8.7		10.6
Bromide	mg/L	2#	0.5	U	0.023	J	0.50	U	0.50	U	0.50	U	0.50	U	0.50 U	0.50 U		0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2	U	2	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0 U	2.0 U		2.0	U	2.0	U	2.0 U
COD	mg/L	NA	10	U	10	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0 U	10.0 U		13.0		10.0	U	10.0 U
Color	units	NA	PNA		5	U	PNA		5.0	U	PNA		5.0	U	PNA	5.0 U		PNA		5.0	U	PNA
Chromium hex as Cr	mg/L	0.05	PNA		0.003	U	PNA		0.020	U	PNA		0.020	U	PNA	0.020 U		PNA		0.11		PNA
Hardness as CaC03	mg/L	NA	17.3		19		16.0		20.0		16.0		16.0		22.0	10.0		36.7		6.0		22.0
Ammonia as N	mg/L	2	0.13		0.11		0.10	U	0.10	U	0.10	U	0.10	U	0.21	0.10 U		0.10	U	0.10	U	0.10 U
Nitrite as N	mg/L	NA	0.1	U	0.05	U	0.050	U	0.050	U		U	0.050	U	0.050 U	0.050 U		0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.17		0.24		0.25		0.26		0.37		0.24		0.23	0.13		0.22		0.17		0.20
Phenols as Phenol	mg/L	0.001	0.005	U	0.0043	J	0.0050	U	0.0050	U	0.0161		0.0050	U	0.0050 U	0.0050 U	(0.0050	U	0.0050	U	0.0028 U
Tot Dissolved Solids	mg/L	NA	48		57		45.0		49.0		97.0		62.0		99.0	64.0		26.0		43.0		78.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.11		0.1	U	0.64		0.10	U	0.10	U	0.10	U	0.31	0.35		0.45		0.22		0.12
Tot Organic Carbon	mg/L	NA	1	U	0.23	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0 U	1.0 U		1.0	U	1.0	U	1.0 U
Turbidity	NTU	NA	1		2.2		0.0		0.0		0.0		36.2		0.00	8.80		PNA		0.00		0.0
Temperature	deg.C	NA	11.23		10.99		12.11		11.41		12.76		11.38		11.58	12.62		12.62		11.46		12.44
pH	units	6.5-8.5	6.02		5.89		6.1		6.28		6.56		6.60		6.43	7.75		3.85		5.63		6.90
Spec. Cond	umho/cm	NA	90		92		87		100		84	П	72		72	73		95		46		86

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.
= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank. H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

IJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	Unfiltered 0.127 0.0089 0.0068 0.107 0.0006 0.0331 U 0.00006 19.5 1.84 0.0084 0.0024 0.0024 5.82 1.18 U 0.00068 0.181 U 0.00068	pril 2018 Filtered J 0.0327 J J 0.003 L J 0.0669 J U 0.0066 L J 0.0066 L J 0.0006 L J 0.0006 L J 0.0006 L J 0.0006 L J 0.00063 L J 0.000	October 2018 PNA PNA PNA PNA PNA PNA PNA PNA PNA PN	April 2019 0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0050 U 0.0050 U 0.0550 U 0.0251 0.0550 U 0.0251 0.0550 U 0.0250 U 0.0250 U 0.0050 U 0.0050 U	October 2019 PNA PNA PNA PNA PNA PNA PNA O.0025 U 18.200 PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	Unfiltered 0.200 U 0.0600 U 0.0100 U 0.201 0.0050 U 0.0550 U 0.0500 U 27.800 0.506 0.0500 U 0.0025 U 0.0025 U 0.0025 U 0.0025 U	10202 1020	Octobe Unfiltered PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 23.100 PNA PNA PNA	Filtered PNA PNA O.0100 U PNA PNA PNA O.0025 U 21.600 PNA PNA PNA	April 2021 0.200 U 0.0600 U 0.0100 U 0.0050 U 0.0500 U 0.0025 U 1.700 U 0.0500 U 0.0500 U 0.0500 U	Octobe Unfiltered PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 19.800 PNA PNA PNA PNA PNA PNA PNA	Filtered PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 12.600 PNA PNA	April 2022 0.200 U 0.0600 U 0.0100 U 0.0200 U 0.0050 U 0.0500 U 0.0025 U 22.900 1.080 U	PNA PNA 0.0100 PNA PNA PNA 0.0025 20.600 PNA PNA
PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.127 0.0089 0.0068 0.107 0.0006 0.0331 U 0.00006 19.5 1.84 0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 0.00068 0.00068	J 0.0327 J 0.00327 J 0.00327 J 0.003 L 0.0068 J 0.0669 J 0.0321 J 0.00063 L 194 0.143 J 0.00063 L 0.00068 L 0.00068	PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0550 U	PNA PNA PNA PNA PNA PNA PNA PNA PNA 0.0025 U 18.200 PNA PNA PNA PNA	0.200 U 0.0600 U 0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506 0.0500 U 0.0250 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U 0.0500 U	0.200 U 0.0600 U 0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28.700 0.0380 0.0500 U 0.0380 0.0500 U	PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 23.100 PNA PNA PNA PNA	PNA PNA 0.0100 U PNA PNA PNA 0.0025 U 21.600 PNA PNA PNA PNA	0.200 U 0.0600 U 0.0100 U 0.200 U 0.0500 U 0.0500 U 0.0025 U 21.700 0.182 0.0500 U	PNA PNA 0.0100 U PNA PNA PNA 0.0025 U 19.800 PNA PNA	PNA PNA 0.0100 U PNA PNA PNA 0.0025 U 12.600 PNA PNA	0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 22.900 1.080 0.0500 U	PNA 0.0100 PNA PNA PNA 0.0025 20.600 PNA
PNA PNA PNA PNA PNA PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA O.1 U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA	0.0089 0.0068 0.107 0.0006 0.0331 U 0.0006 19.5 1.84 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.00068 0.00068	0.003 0.003 0.0068 0.0068 0.0069 0.0069 0.0069 0.0069 0.0069 0.0063 0.0063 0.0063 0.0097 0.0097 0.0097 0.0097 0.0097 0.0093 0.0	PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0050 U 0.0025 U 20.300 0.251 0.0500 U 0.0250 U 0.0100 U 0.953	PNA PNA PNA PNA PNA 0.0025 U 18.200 PNA PNA PNA PNA PNA	0.0600 U 0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506 0.0500 U 0.0250 U 0.0250 U	0.0600 U 0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28,700 0.0380 0.0500 U 0.0250 U	PNA 0.0100 U PNA PNA PNA 0.0025 U 23.100 PNA PNA PNA	PNA 0.0100 U PNA PNA PNA 0.0025 U 21.600 PNA PNA PNA PNA	0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0050 U 0.0050 U 0.0025 U 21.700 0.182 0.0500 U	PNA 0.0100 U PNA PNA PNA 0.0025 U 19.800 PNA PNA	PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 12.600 PNA PNA	0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 22.900 1.080 0.0500 U	PNA 0.0100 PNA PNA PNA 0.0025 20.600 PNA
PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.0068 0.107 0.0006 0.0331 U 0.00006 19.5 1.84 0.0084 0.0051 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.00068	U 0.0068 U 0.0069 U 0.0069 U 0.0006 U 0.0006 U 0.0006 U 0.00063 U 0.00063 U 0.00063 U 0.0097 U PNA 0.514 U PNA 0.514 U PNA 0.514 U 0.0013	PNA PNA PNA PNA 1 0.0025 U 22.900 PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.0100 U 0.200 U 0.0050 U 0.0050 U 0.0025 U 20.300 0.251 0.0500 U 0.0250 U 0.0100 U	PNA PNA PNA PNA 0.0025 U 18.200 PNA PNA PNA PNA	0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.0506 0.0500 U 0.0250 U 0.0100 U	0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28.700 0.0380 0.0500 U 0.0250 U	0.0100 U PNA PNA PNA 0.0025 U 23.100 PNA PNA PNA	0.0100 U PNA PNA PNA 0.0025 U 21.600 PNA PNA PNA PNA	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 21.700 0.182 0.0500 U	0.0100 U PNA PNA PNA 0.0025 U 19.800 PNA PNA	0.0100 U PNA PNA PNA 0.0025 U 12.600 PNA PNA	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 22.900 1.080 0.0500 U	0.0100 PNA PNA PNA 0.0025 20.600 PNA
PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.107 0.0006 0.0331 U 0.00006 19.5 1.84 0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.00068 0.181	U 0.0068 U 0.0069 U 0.0069 U 0.0006 U 0.0006 U 0.0006 U 0.00063 U 0.00063 U 0.00063 U 0.0097 U PNA 0.514 U PNA 0.514 U PNA 0.514 U 0.0013	PNA PNA PNA PNA 1 0.0025 U 22.900 PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.0100 U 0.200 U 0.0050 U 0.0050 U 0.0025 U 20.300 0.251 0.0500 U 0.0250 U 0.0100 U	PNA PNA PNA PNA 0.0025 U 18.200 PNA PNA PNA PNA	0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.0506 0.0500 U 0.0250 U 0.0100 U	0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28.700 0.0380 0.0500 U 0.0250 U	0.0100 U PNA PNA PNA 0.0025 U 23.100 PNA PNA PNA	0.0100 U PNA PNA PNA 0.0025 U 21.600 PNA PNA PNA PNA	0.200 U 0.0050 U 0.0500 U 0.0025 U 21.700 0.182 0.0500 U	0.0100 U PNA PNA PNA 0.0025 U 19.800 PNA PNA	0.0100 U PNA PNA PNA 0.0025 U 12.600 PNA PNA	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 22.900 1.080 0.0500 U	0.0100 PNA PNA PNA 0.0025 20.600 PNA
PNA PNA PNA 10 0.0025 U 14.4 PNA PNA PNA PNA PNA PNA 0.1 U 0.0025 U 0.0025 U 0.0025 U 0.0025 U 0.002 U PNA PNA	0.107 0.0006 0.0331 U 0.00006 19.5 1.84 0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.00068 0.181	J 0.0669 J U 0.0006 J J 0.0321 J U 0.00063 U 19.4 0.143 J 0.00063 U 0.0097 U PNA 0.514 J 0.0013 U 5.65 0.0483	PNA PNA PNA PNA 1 0.0025 U 22.900 PNA PNA PNA PNA PNA PNA 2.520 1 0.0050 U	0.200 U 0.0050 U 0.0500 U 0.0500 U 20.300 0.251 0.0500 U 0.0250 U 0.0100 U	PNA PNA PNA 0.0025 U 18.200 PNA PNA PNA PNA	0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506 0.0500 U 0.0250 U 0.0100 U	0.203 0.0050 U 0.0500 U 0.0025 U 28.700 0.0380 0.0500 U 0.0250 U	PNA PNA PNA 0.0025 U 23.100 PNA PNA PNA	PNA PNA PNA 0.0025 U 21.600 PNA PNA PNA	0.200 U 0.0050 U 0.0500 U 0.0025 U 21.700 0.182 0.0500 U	PNA PNA PNA 0.0025 U 19.800 PNA PNA	PNA PNA PNA 0.0025 U 12.600 PNA PNA	0.200 U 0.0050 U 0.0500 U 0.0025 U 22.900 1.080 0.0500 U	PNA PNA PNA 0.0025 20.600 PNA
PNA U 0.0025 L 14.4 PNA PNA PNA PNA PNA 0.1 U 0.005 U 0.005 U 0.002 L PNA U 0.5.0 U PNA	0.0006 0.0331 0.00006 19.5 1.84 0.0084 0.0351 0.0029 0.7.37 0.0029 1.80 1.80 0.0024 5.82 1.18 0.00068 0.181	U 0.0006 U 0.0321 J 0.0321 J 19.4 0.00063 U 19.4 0.143 J 0.00063 U 0.0097 J U PNA 0.514 J 0.0013 U 0.514 J 0.0013 U 5.65 0.0483	PNA PNA PNA 0.0025 U 22,900 PNA PNA PNA PNA PNA 2.520 U 0.0050 U	0.0050 U 0.0500 U 0.0025 U 20.300 0.251 0.0500 U 0.0250 U 0.0250 U 0.0100 U	PNA PNA 0.0025 U 18.200 PNA PNA PNA PNA	0.0050 U 0.0500 U 0.0025 U 27.800 0.506 0.0500 U 0.0250 U 0.0100 U	0.0050 U 0.0500 U 0.0025 U 28.700 0.0380 0.0500 U 0.0250 U	PNA PNA 0.0025 U 23.100 PNA PNA PNA	PNA PNA 0.0025 U 21.600 PNA PNA PNA	0.0050 U 0.0500 U 0.0025 U 21.700 0.182 0.0500 U	PNA PNA 0.0025 U 19.800 PNA PNA	PNA PNA 0.0025 U 12.600 PNA PNA	0.0050 U 0.0500 U 0.0025 U 22.900 1.080 0.0500 U	PNA PNA 0.0025 20.600 PNA
PNA U 0.0025 L 14.4 PNA PNA PNA PNA U 0.005 L U 0.005 L U 0.005 L U 0.005 L U 0.005 L U 0.005 L PNA U 5.0 L PNA	0.0331 U 0.00006 19.5 184 0.0084 0.0351 U 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.00068	J 0.0321 J 0.00063 U 19.4 0.143 J 0.00063 U 0.0097 J U PNA 0.514 J 0.0013 U 5.65 0.0483	PNA 1 0.0025 U 22.900 PNA PNA PNA PNA 2.520 1 0.0050 U	0.0500 U 0.0025 U 20.300 0.251 0.0500 U 0.0250 U 0.0100 U 0.953	PNA 0.0025 U 18.200 PNA PNA PNA PNA	0.0500 U 0.0025 U 27.800 0.506 0.0500 U 0.0250 U 0.0100 U	0.0500 U 0.0025 U 28.700 0.0380 0.0500 U 0.0250 U	PNA 0.0025 U 23.100 PNA PNA PNA	PNA 0.0025 U 21.600 PNA PNA PNA	0.0500 U 0.0025 U 21.700 0.182 0.0500 U	PNA 0.0025 U 19.800 PNA PNA	PNA 0.0025 U 12.600 PNA PNA	0.0500 U 0.0025 U 22.900 1.080 0.0500 U	PNA 0.0025 20.600 PNA
U 0.0025 U 14.4 PNA PNA PNA PNA 0.1 U 0.0025 U 4.36 0.0419 0.002 U PNA PNA U 5.0 U PNA PNA	U 0.00006 19.5 1.84 0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	U 0.000063 U 19.4 0.143 J 0.00063 U 0.0097 U PNA 0.514 J 0.0013 U 5.65 0.0483	0.0025 U 22.900 PNA PNA PNA PNA PNA 0.0050 U	0.0025 U 20.300 0.251 0.0500 U 0.0250 U 0.0100 U 0.953	0.0025 U 18.200 PNA PNA PNA PNA	0.0025 U 27.800 0.506 0.0500 U 0.0250 U 0.0100 U	0.0025 U 28.700 0.0380 0.0500 U 0.0250 U	0.0025 U 23.100 PNA PNA PNA	0.0025 U 21.600 PNA PNA PNA	0.0025 U 21.700 0.182 0.0500 U	0.0025 U 19.800 PNA PNA	0.0025 U 12.600 PNA PNA	0.0025 U 22.900 1.080 0.0500 U	0.0025 20.600 PNA
14.4 PNA PNA PNA PNA PNA PNA LU U 0.005 U 4.36 0.0419 0.002 PNA U 5.0 U PNA PNA	19.5 1.84 0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	19.4 0.143 J 0.00063 U 0.0097 J U PNA 0.514 J 0.0013 U 5.65 0.0483	22.900 PNA PNA PNA PNA 2.520 0.0050 U	20.300 0.251 0.0500 U 0.0250 U 0.0100 U 0.953	18.200 PNA PNA PNA PNA	27.800 0.506 0.0500 U 0.0250 U 0.0100 U	28.700 0.0380 0.0500 U 0.0250 U	23.100 PNA PNA PNA	21.600 PNA PNA PNA	21.700 0.182 0.0500 U	19.800 PNA PNA	12.600 PNA PNA	22.900 1.080 0.0500 U	20.600 PNA
PNA PNA PNA PNA 0.1 U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	1.84 0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	0.143 J 0.00063 U 0.0097 J U PNA 0.514 J 0.0013 U 5.65 0.0483	PNA PNA PNA PNA 2.520 PNOSO U	0.251 0.0500 U 0.0250 U 0.0100 U 0.953	PNA PNA PNA PNA	0.506 0.0500 U 0.0250 U 0.0100 U	0.0380 0.0500 U 0.0250 U	PNA PNA PNA	PNA PNA PNA	0.182 0.0500 U	PNA PNA	PNA PNA	1.080 0.0500 U	PNA
PNA PNA PNA 0.1 U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	J 0.00063 U 0.0097 J U PNA 0.514 J 0.0013 U 5.65 0.0483	PNA PNA PNA 2.520 0.0050 U	0.0500 U 0.0250 U 0.0100 U 0.953	PNA PNA PNA	0.0500 U 0.0250 U 0.0100 U	0.0500 U 0.0250 U	PNA PNA	PNA PNA	0.0500 U	PNA	PNA	0.0500 U	
PNA PNA PNA 0.1 U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	0.0084 0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	J 0.00063 U 0.0097 J U PNA 0.514 J 0.0013 U 5.65 0.0483	PNA PNA PNA 2.520 0.0050 U	0.0500 U 0.0250 U 0.0100 U 0.953	PNA PNA PNA	0.0500 U 0.0250 U 0.0100 U	0.0500 U 0.0250 U	PNA PNA	PNA PNA	0.0500 U	PNA	PNA	0.0500 U	
PNA PNA 0.1 U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	0.0351 0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	0.0097 JU PNA 0.514 J 0.0013 L 5.65 0.0483	PNA PNA 2.520 0.0050 U	0.0250 U 0.0100 U 0.953	PNA PNA	0.0250 U 0.0100 U	0.0250 U	PNA	PNA					
PNA 0.1 U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	0.0029 U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	U PNA 0.514 J 0.0013 U 5.65 0.0483	PNA 2.520 0.0050 U	0.0100 U 0.953	PNA	0.0100 U				0.0250 U				PNA
0.1 U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	U 7.37 U 0.0024 5.82 1.18 U 0.000068 0.181	0.514 J 0.0013 U 5.65 0.0483	2.520 0.0050 U	0.953								PNA	0.0264	
U 0.005 U 4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	U 0.0024 5.82 1.18 U 0.000068 0.181	J 0.0013 U 5.65 0.0483	0.0050 U		3 630			PNA	PNA	0.0100 U	PNA	PNA	0.0100 U	0.0100
4.36 0.0419 0.002 U PNA U 5.0 U PNA PNA	5.82 1.18 U 0.000068 0.181	5.65 0.0483		0.0050 11	5.050	2.000	0.122	14.500	3.270	0.700	2.090	0.116	4.200	5.170
0.0419 0.002 U PNA U 5.0 U PNA PNA	1.18 U 0.000068 0.181	0.0483	6.770	0.0000 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050
0.002 U PNA U 5.0 U PNA PNA	U 0.000068 0.181			6.500	5.770	8.080	8.280	6.560	6.200	6.680	5.770	4.640	6.020	6.010
0.002 U PNA U 5.0 U PNA PNA	U 0.000068 0.181		0.190	0.0914	0.390	0.227	0.0951	1.200	0.628	0.0526	0.155	0.0384	0.218	1.880
PNA U 5.0 U PNA PNA	0.181													-1000
U 5.0 U PNA PNA			PNA	0.00020 U	PNA	0.00020 U	0.00020 U	PNA	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA
PNA PNA	11 6.65	0.0541	PNA	0.0416	PNA	0.0546	0.0490	PNA	PNA	0.0984	PNA	PNA	0.117	PNA
PNA	0.03	6.9	9.530	7.930	11.400	7.790	7.890	10.500	10.000	5.000 U	6.710	7.150	5.000 U	11.300
PNA	0.0063	U 0.0062 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	PNA	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA
	0.0036	U 0.0036 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	PNA	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA
40.3	56.3	50.7	105.000	40.100	33.000	157,000	168,000	25.200	25,600	99.800	65.100	84.100	85.100	34.600
PNA	0.0036	U 0.0036 L	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	25.200 PNA	25.600 PNA	0.0100 U	PNA	PNA	0.0100 U	PNA
PNA	0.0052	J 0.0008 U	PNA	0.0500 U	PNA	0.0500 U	0.0500 U	PNA	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA
PNA	0.0026	J 0.0012 U	PNA	0.0200 U	PNA	0.0200 U	0.0200 U	PNA	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA
PNA	47.4	PNA	78.0	69.4	83.8	71.1	PNA	88.3	PNA	54.6	60.7	PNA	61.8	97.8
PNA	98.1	PNA	217	79.5	46.8	295	PNA	41.5	PNA	191	116	PNA	175	51.8
U PNA	5.6	PNA	9.0	5.0 U	9.4	5.0 U	PNA	14.0	PNA	5.0 U	6.9	PNA	6.9	15.4
	0.021	I PNA	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U		0.50 U	0.50 U		0.50 U	0.50
U PNA							PNA		PNA			PNA		
U PNA	2	U PNA	2.0 U	2.0 U	4.0 U	2.0 U	PNA	2.0 U	PNA	2.0 U	2.0 U	PNA	2.0 U	2.0
PNA	10	U PNA	16.2	19.0	12.4	27.3	PNA	20.9	PNA	14.2	15	PNA	14.7	23.00
PNA	5	U PNA	PNA	15.0	PNA	40.0	PNA	PNA	PNA	40.0	PNA	PNA	90.0	140
PNA	0.00003	U PNA	PNA	0.020 U	PNA	0.020 U	PNA	PNA	PNA	0.020 U	PNA	PNA	0.020 U	0.020
														73.3
														0.10
	0.05													0.050
PNA	2	PNA	0.34	0.58	0.33	0.70	PNA	0.33	PNA	0.38	0.15	PNA	0.78	0.17
U PNA	0.0034	J PNA	0.0050 U	0.0050 U	0.0099	0.0050 U	PNA	0.0050 U	PNA	0.0050 U	0.0050 U	PNA	0.0050 U	0.0028
PNA	266	PNA	367	186	209	508	PNA	184	PNA	384	218	PNA	335	268
														0.42
														4.5
														24.5
														10.54
PNA	5.79	PNA	6.66	6.47	6.55	6.60	PNA	6.38	PNA	8.47	4.17	PNA	6.00	6.65
PNA	487	PNA	504	420	303	1.350	PNA	262	PNA	81	9	PNA	364	375
UB U	PNA PNA PNA PNA PNA	PNA 0.46 PNA 0.05 PNA 2 PNA 2 PNA 266 PNA 266 PNA 3 PNA 3 PNA 3.7 PNA 86.6 PNA 11.79	PNA 0.46 PNA PNA 0.05 U PNA PNA 2 PNA PNA 2 PNA PNA 2.66 PNA PNA 2.66 PNA PNA 3 PNA PNA 3 PNA PNA 3.66 PNA PNA 8.6.6 PNA PNA 11.79 PNA PNA 5.79 PNA	PNA 0.46 PNA 0.10 U PNA 0.05 U PNA 0.50 U PNA 0.050 U PNA 0.050 U PNA 0.34 PNA 0.0034 J PNA 0.0050 U PNA 266 PNA 367 PNA 0.83 PNA 0.23 PNA 3 PNA 0.23 PNA 3 PNA 4.8 PNA 86.6 PNA 32.0 PNA 11.79 PNA 11.17 PNA 5.79 PNA 6.66	PNA 0.46 PNA 0.10 U 0.10 U PNA 0.05 U PNA 0.050 U 0.050 U 0.050 U 0.050 U 0.059 U 0.059 U 0.059 U 0.059 U 0.0050 U 0.058 PNA 3.0 0.58 PNA 4.8 4.9 PNA 1.0 PNA 1.177 10.39 PNA 1.177 10.39	PNA 0.46 PNA 0.10 U 0.10 U 0.53 PNA 0.05 U PNA 0.050 U 0.0050 U 0.0050 U 0.0050 U 0.0099 PNA 266 PNA 367 186 209 PNA 0.033 PNA 0.23 0.58 1.3 1.3 PNA 4.8 4.9 5.5 PNA 36.6 PNA 32.0 12.8 36.7 PNA 11.79 PNA 11.17 10.39 10.14 PNA 5.79 PNA 6.66 6.47 6.55	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA 0.05 U PNA 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.0050 U 0.0050 U 0.0050 U 0.0050 U 0.0050 U 0.0099 0.0050 U 0.0050 U 0.0050 U 0.0099 0.0050 U 0.0079 0.0050 U 0.0099 0.0050 U 0.0099 0.0050 U 0.0050 U 0.0099 0.0050 U 0.0050 U 0.0099 0.0050 U 0.0050 U	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA PNA 0.05 U 0.050 U 0.0050 U 0.0099 0.0050 U PNA 0.0050 U 0.0099 0.0050 U PNA PNA PNA PNA 9.0050 U PNA PNA PNA PNA PNA 9.0050 U PNA <	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA 0.10 U PNA 0.05 U PNA 0.050 U PNA 0.050 U PNA 0.050 U 0.0050 U 0.0050 U 0.0050 U 0.0099 0.0050 U PNA 10.0050 U 0.0099 0.0050 U PNA 10.4050 U 0.0050 U 0.0050 U PNA 1.0050 D 0.	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA 0.10 U PNA PNA 0.05 U PNA 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U PNA 0.033 PNA 0.033 PNA PNA PNA PNA 0.0050 U 0.0099 0.0050 U PNA 184 PNA PNA PNA 184 PNA PNA	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA 0.10 U PNA 0.10 U PNA 0.05 U PNA 0.050 U 0.050 U 0.050 U PNA 0.050 U 0.0050 U PNA 0.050 U 0.0050 U 0.0050 U PNA 0.050 U PNA 1.04 PNA 1.04	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA 0.10 U PNA 0.10 U 0.10 U 0.010 U 0.015 U 0.015 U 0.020 U 0.020 U 0.020 U 0.005 U 0.0050 U PNA 0.050 U 0.0050 U PNA 0.050 U PNA 0.053 U 0.0050 U 0.0050 U 0.005	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA 0.10 U PNA 0.10 U PNA PNA 0.05 U PNA 0.050 U PNA 0.050 U PNA 0.050 U PNA 0.050 U PNA 0.033 PNA 0.083 0.15 PNA 0.050 U PNA 0.033 PNA 0.033 PNA 0.033 PNA 0.0050 U 0.0050 U 0.0050 U PNA 0.0050 U PNA 0.0050 U PNA 0.0050 U PNA 9NA 184 PNA 384 218 PNA PNA	PNA 0.46 PNA 0.10 U 0.10 U 0.53 0.51 PNA 0.10 U PNA 0.13 PNA 0.05 U PNA 0.050 U 0.050 U 0.050 U PNA 0.050 U 0.050 U PNA 0.083 PNA 0.083 U PNA 0.088 PNA 0.083 PNA 0.083 U PNA 0.0050 U 0.0050 U PNA 0.050 U PNA 0

ANALYTICAL	UNITS	GW												
ANALYTICAL	UNITS	GW		1	1	ı			MW-3B	er 2020	ı	1	ı	
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022
Aluminum as Al	mg/L	NA	PNA	0.0134 U	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Antimony as Sb	mg/L	0.003#	PNA	0.003 U	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	PNA	0.0208 I	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA
Boron as B	mg/L	1	PNA	0.0409 I	PNA	0.0500 U	PNA	0.0545	PNA	PNA	0.110	PNA	0.0582	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	11.7	8.64	14.000	14.400	18.900	15.500	24.000	22.800	18.600	22.400	15.000	18.400
Chromium as Cr	mg/L	0.05	PNA	0.0016 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Cobalt	mg/L	NA	PNA	0.0035 I	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0035 U	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0023 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Iron as Fe	mg/L	0.2	9.97	6.69	9,990	8.710	8.570	5.860	9.780	5.880	7.690	7.900	5.470	4.140
Lead as Pb	mg/L	0.025	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	3.98	3.08	4.950	5.150	6.810	5.530	8.810	8.420	6.480	7.500	5.210	6.370
Manganese as Mn	mg/L	0.3	2.95	2.6	3.700	2.920	2.440	1.680	3.370	3.210	2.590	2.270	1.430	1.640
Mercury as Hg	mg/L	0.0007	PNA	0.000063 I	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA
Nickel as Ni	5	0.0007	PNA	0.00063 J	PNA	0.00020 U	PNA	0.0400 U	PNA	PNA	0.00020 U	PNA	0.0400 U	PNA
	mg/L		5.0 U	,	5.000 U		5.940	6.660		5.330	5.780	6.760		5.930
Potassium	mg/L	NA 0.01	PNA	2.19 J 0.0063 U					5.480	5.330 PNA			5.810	
Selenium as Se	mg/L	0.00			PNA	0.0200	PNA		PNA		0.0100 U	PNA	0.0100 U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Sodium as Na	mg/L	20	12.0	9.37	20.900	13.800	11.400	13.400	19.300	19.700	16.600	17.300	12.700	19.500
Thallium as Tl	mg/L	0.0005 #	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Vanadium	mg/L	NA	PNA	0.0008 U	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0016 J	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA
Alkalinity tot CaCo3	mg/L	NA	47	37.2	48.3	59.4	77.7	74.0	119	PNA	95.8	99.7	72.5	90.6
Chloride as Cl	mg/L	250	14.7	11.0	49.9	22.5	20.1	12.8	21.9	PNA	16.8	21.6	18.7	37.3
Sulfate as SO4	mg/L	250	11	12.1	7.5	10.1	9.5	12.4	15.4	PNA	12.3	5.6	12.2	12.8
Bromide	mg/L	2 #	0.5 U	0.038	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	10 U	10.0 U	10.0 U	12.4	21.2	10.4	10.0 U	PNA	16.3	27.3	10.3	18.7
Color	units	NA	PNA	5 U	PNA	5.0	PNA	20.0	PNA	PNA	5.0	PNA	35.0	100
Chromium hex as Cr	mg/L	0.05	PNA	0.003 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U
Hardness as CaC03	mg/L	NA	60	34.0	56.0	40.0	90.0	80.0	86.7	PNA	60.0	120.0	26.7	66.7
Ammonia as N	mg/L	2	1	0.39	0.28	0.30	0.30	0.12	0.36	PNA	1.1	5.5	2.7	3.4
Nitrite as N	mg/L	NA	0.05 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.25	0.74	0.37	0.15	0.43	0.35	0.19	PNA	0.050 U	0.050 U	0.260	0.098
Phenols as Phenol	mg/L	0.001	0.005 U	0.00084 U	0.0050 U	0.0074	0.0116	0.0050 U	0.0050 U	PNA	0.0050 U	0.0051	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	89	111	142	168	183	147	173	PNA	120	137	150	184
Tot. Kjeldahl Nitrogen	mg/L	NA	1.2	0.34	0.37	0.62	0.84	0.48	0.68	PNA	1.6	8.0	2.9	3.4
Tot Organic Carbon	mg/L	NA	1.4 B	0.45 J	3.9	3.2	6.8	1.8	3.8	PNA	3.2	7.7	3.0	3.7
Turbidity	NTU	NA	4.9	1.2	17.0	2.2	0.0	22.0	50.0	PNA	12.4	PNA	0.0	0.0
Temperature	deg.C	NA	11.52	11.61	11.49	11.70	8.61	11.85	10.73	PNA	12.32	9.72	12.11	11.38
pH	units	6.5-8.5	6.12	5.95	6.19	6.16	6.11	6.50	6.66	PNA	8.41	4.06	5.59	6.64
Spec. Cond	umho/cm	NA	220	156	199	246	281	174	271	PNA	254	364	187	300
NOTES:				•	•					•		•		

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.] - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW	MW-3C October 2020													
ANALITICAL	UNITS	uw		1	1			1		or 2020						
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022		
Aluminum as Al	mg/L	NA	PNA	0.0134 U	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA		
Antimony as Sb	mg/L	0.003#	PNA	0.003 U	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA		
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U		
Barium	mg/L	1	PNA	0.0185 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA		
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA		
Boron as B	mg/L	1	PNA	0.0124 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA		
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U		
Calcium as Ca	mg/L	NA	7.35	8.06	8.68	8.95	8.80	8.44	8.960	8.620	10.8	10.80	7.32	8.630		
Chromium as Cr	mg/L	0.05	PNA	0.022	PNA	0.0146	PNA	0.0100 U	PNA	PNA	0.0133	PNA	0.0240	PNA		
Cobalt	mg/L	NA	PNA	0.0006 U	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA		
Copper as Cu	mg/L	0.2	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA		
Cyanide as CN	mg/L	0.2	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U		
Iron as Fe	mg/L	0.3	0.02 U	0.108	0.100	0.0862	0.0285	0.0868	0.0616	0.0200 U	0.181	0.0291	0.151	0.100 U		
Lead as Pb	mg/L	0.025	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U		
Magnesium	mg/L	35 #	3.52	3.93	3.980	4.050	4.080	3.820	4.190	4.050	4.770	4.360	3.420	3.890		
Manganese as Mn	mg/L	0.3	0.01 U	0.0063 J	0.0167	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0132	0.0100 U	0.0100 U	0.0100 U		
Mercury as Hg	mg/L	0.0007	PNA	0.000067 J	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA		
Nickel as Ni	mg/L	0.1	PNA	0.0046 J	PNA	0.0400 U	PNA	0.0400 U	PNA	PNA	0.0400 U	PNA	0.0400 U	PNA		
Potassium	mg/L	NA	5 U	0.841 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U		
Selenium as Se	mg/L	0.01	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA		
Silver as Ag	mg/L	0.05	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA		
Sodium as Na	mg/L	20	10.1	10.8	11.000	12.100	12.100	11.800	10.900	11.400	12.200	13.900	9.260	10.700		
Thallium as Tl	mg/L	0.0005#	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA		
Vanadium	mg/L	NA	PNA	0.0012 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA		
Zinc as Zn	mg/L	2 #	PNA	0.0012 U	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA		
Alkalinity tot CaCo3	mg/L	NA	41.6	33	42.8	45.0	45.8	45.9	47.3	PNA	54.3	50.3	41.1	45.7		
Chloride as Cl	mg/L	250	9.5	10.7	12.6	12.4	13.0	9.9	10.4	PNA	10.2	9.6	10.2	13.2		
Sulfate as SO4	mg/L	250	5 U	3.2 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	PNA	5.0 U	5.0 U	5.0 U	5.8		
Bromide	mg/L	2 #	0.5 U	0.056 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	0.50 U	0.50 U	0.50 U		
BOD5	mg/L	NA	2 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U		
COD	mg/L	NA	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U	12.5	PNA	10.0 U	10.0 U	10.0 U	10.0 U		
Color	units	NA	PNA	5 U	PNA	5.0	PNA	5.0 U	PNA	PNA	5.0 U	PNA	5.0 U	5.0 U		
Chromium hex as Cr	mg/L	0.05	PNA	0.003 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U		
Hardness as CaC03	mg/L	NA	33	32	33.0	24.0	23.3	32.0	25.0	PNA	13.3 J	66.7 J	13.3	36.0		
Ammonia as N	mg/L	2	0.1 UB	0.023 J	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	PNA	0.100 U	0.100 U	0.100 U	0.20		
Nitrite as N	mg/L	NA	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U		
Nitrate as N	mg/L	10	0.16	0.21	0.17	0.18	0.19	0.18	0.27	PNA	0.18	0.24	0.19	0.20		
Phenols as Phenol	mg/L	0.001	0.005 U	0.0038 J	0.0050 U	0.0050 U	0.0121	0.0050 U	0.0050 U	PNA	0.0050 U	0.0050 U	0.0050 U	0.0028 U		
Tot Dissolved Solids	mg/L	NA	41	102	65.0	80.0	102	94.0	103	PNA	90.0	62.0	126	106		
Tot. Kjeldahl Nitrogen	mg/L	NA	0.1 U	0.1 U	0.10 U	0.14	0.10 U	0.29	0.10 U	PNA	0.21 J	0.11 J	0.10 U	0.10 U		
Tot Organic Carbon	mg/L	NA	1 UB	,	1.0 U		1.0 U	1.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U		
Turbidity	NTU	NA	3.8	1.9	4.6	0.0	0.0	29.4	51.0	PNA	6.10	PNA	0.0	0.0		
Temperature	deg.C	NA	11.76	11.79	11.82	11.86	10.75	11.81	11.64	PNA	12.50	10.95	12.13	12.19		
pH	units	6.5-8.5	6.61	6.19	7.01	6.64	6.71	6.90	6.93	PNA	8.09	3.67	6.20	6.77		
Spec. Cond	umho/cm	NA	131	127	127	142	126	103	118	PNA	120	148	74	129		
NOTES:																

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for. B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U-Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U-Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW										MW-	4A									
MATERIAL	011113	411											Octobe	r 2020								
PARAMETERS		STND (1)	October 2017	April 20	18	October 20	18	April 2019	October 2	2019	April 20	20	Unfiltered	Filtere	d	April 202	21	October 20	021	April 202	2	October 2022
Aluminum as Al	mg/L	NA	PNA	0.187	J	PNA		0.200 U	PNA		0.200	U	PNA	PNA		0.202		PNA		0.200	U	PNA
Antimony as Sb	mg/L	0.003 #	PNA	0.003	U	PNA		0.0600 U	PNA		0.0600	U	PNA	PNA		0.0600	U	PNA		0.0600	U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068	U	PNA		0.0100 U	PNA		0.0100	U	0.0100 U	0.0100	U	0.0100	U	0.0100	U	0.0100	U	0.0100 U
Barium	mg/L	1	PNA	0.123	J	PNA		0.200 U	PNA		0.200	U	PNA	PNA		0.200	U	PNA		0.200	U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006	U	PNA		0.0050 U	PNA		0.0050	U	PNA	PNA		0.0050	U	PNA		0.0050	U	PNA
Boron as B	mg/L	1	PNA	0.0488	J	PNA		0.0500 U	PNA		0.0500	U	PNA	PNA		0.0500	U	PNA		0.0500	U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00015	J	0.0025	U	0.0025 U	0.0025	U	0.0025	U	0.0025 U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	10.9	10.4		8.330		7.700	9.030		8.270		7.370	7.120		8.690		11.500		7.500		12.500
Chromium as Cr	mg/L	0.05	PNA	0.0039	J	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0177		PNA
Cobalt	mg/L	NA	PNA	0.0006	U	PNA		0.0500 U	PNA		0.0500	U	PNA	PNA		0.0500	U	PNA		0.0500	U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025	U	PNA		0.0250 U	PNA		0.0250	U	PNA	PNA		0.0250	U	PNA		0.0250	U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029	U	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	0.0100 U
Iron as Fe	mg/L	0.3	1.69	0.0583		0.0302		0.0200 U	2.140		0.0358		0.183	0.0200	U	0.0238		0.256		0.246		0.135
Lead as Pb	mg/L	0.025	0.005 U	0.0013	U	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35 #	4.24	3.82		3.170		2.960	3.190		2.810		2.520	2.450		3.000		3.570		2.300		4.410
Manganese as Mn	mg/L	0.3	0.219	0.0702		0.0244		0.0225	0.224		0.0630		0.0607	0.0506		0.0691		0.0787		0.0467		0.0217
Mercury as Hg	mg/L	0.0007	PNA	0.000066	I	PNA		0.00020 U	PNA		0.00020	U	PNA	PNA		0.00020	U	PNA		0.00020	U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.0031	Ĵ	PNA		0.0400 U	PNA		0.0400	U	PNA	PNA		0.0400	U	PNA		0.0400	U	PNA
Potassium	mg/L	NA	5 U	3.45	I	5.000	U	5.000 U	5.000	U	5.000	U	5.000 U	5.000	U	5.000	U	5.000	U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063	Ú	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036	U	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	PNA
Sodium as Na	mg/L	20	25.9	29.8		24.400		25.000	19.200		16.900		18.800	19.500		24.900		24.800		25.400		20.000
Thallium as Tl	mg/L	0.0005#	PNA	0.0036	U	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	PNA
Vanadium	mg/L	NA	PNA	0.0008	U	PNA		0.0500 U	PNA		0.0500	U	PNA	PNA		0.0500	U	PNA		0.0500	U	PNA
Zinc as Zn	mg/L	2#	PNA	0.006	I	PNA		0.0200 U	PNA		0.0200	U	PNA	PNA		0.0200	U	PNA		0.0200	U	PNA
Alkalinity tot CaCo3	mg/L	NA	50.4	6.4	J	12.7		7.0	4.8		5.6		8.3	PNA		2.6		3.3		6.1		16.6
Chloride as Cl	mg/L	250	46.6	42.9		39.0		49.4	37.1		27.5		32.1	PNA		40.1		40.3		40.3		43.9
Sulfate as SO4	mg/L	250	11.4	14.4		8.5		16.7	19.5		12.7		12.0	PNA		15.3		20.9		17.7		21.6
Bromide	mg/L	2#	0.5 U	0.027	J	0.50	U	0.50 U	0.50	U	0.50	U	0.50 U	PNA		0.50	U	0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2 U	2	U	2.0	U	2.0 U	4.0	U	2.0	U	2.0 U	PNA		2.0	U	2.0	U	2.0	U	2.0 U
COD	mg/L	NA	10 U	10	U	10.0	U	10.0 U	10.0	U	10.0	U	10.0 U	PNA		10.0	U	13.0		14.7		10.0 U
Color	units	NA	PNA	5	U	PNA		5.0 U	PNA		5.0	U	PNA	PNA		5.0	U	PNA		5.0	U	5.0 U
Chromium hex as Cr	mg/L	0.05	PNA	0.003	U	PNA		0.020 U	PNA		0.020	U	PNA	PNA		0.020	U	PNA		0.020	U	0.020 U
Hardness as CaC03	mg/L	NA	88	41		29.0		23.3	34.0		32.0		25.0	PNA		20.0		66.7		6.7		48.0
Ammonia as N	mg/L	2	0.1 U	0.073	U	0.10	U	0.10 U	0.20		0.12		0.15	PNA		0.10	U	0.10	U	0.10	U	0.10 U
Nitrite as N	mg/L	NA	0.05 U	0.05	U	0.050	U	0.050 U	0.050	U	0.050	U	0.050 U	PNA		0.050	U	0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.29	0.46		7.2		1.4	3.6		5.0		4.4	PNA		5.7		3.4		1.7		2.1
Phenols as Phenol	mg/L	0.001	0.005 U	0.0043	UJ	0.0050	U	0.0050 U	0.0161		0.0050	U	0.0050 U	PNA		0.0050	U	0.0050	U	0.0050	U	0.0030
Tot Dissolved Solids	mg/L	NA	120	166		117		97.0	126		109		138	PNA		137		195		118		127
Tot. Kjeldahl Nitrogen	mg/L	NA	0.41	0.1	U	0.10	U	0.01 U	0.10	U	0.10	U	0.10 U	PNA		0.10	U	0.10	U	0.18		0.10 U
Tot Organic Carbon	mg/L	NA	1 U	0.66	J	1.0	U	1.0 U	1.8		1.0	U	1.0 U	PNA		1.0	U	1.0	U	1.0	U	1.0 U
Turbidity	NTU	NA	22.9	1.4		14.88		0.0	48.2		18.4		66.0	PNA		4.00		PNA		0.0		0.0
Temperature	deg.C	NA	13.31	10.78		13.49		10.46	12.91		11.59		12.95	PNA		11.14		13.71		11.33		12.65
рН	units	6.5-8.5	5.22	4.89		5.4		5.26	4.75		6.00		5.41	PNA		7.70		4.84		4.45		6.68
Spec. Cond	umho/cm	NA	272	278		296		232	171		145		148	PNA		222		272		84		227

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.
= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.) - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.

U -Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely med Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW						MW-	4B					
									October 2	2020				
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022
Aluminum as Al	mg/L	NA	PNA	0.0137 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Antimony as Sb	mg/L	0.003 #	PNA	0.0055 J	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	PNA	0.0589 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA
Boron as B	mg/L	1	PNA	0.0713	PNA	0.0569	PNA	0.0574	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	16.9	15.6	15.400	13.800	14.400	13.800	14.500	14.000	12.000	12.200	13.200	14.200
Chromium as Cr	mg/L	0.05	PNA	0.0055 J	PNA	0.0100 U	PNA	0.133	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Cobalt	mg/L	NA	PNA	0.0046 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Iron as Fe	mg/L	0.3	3.89	9.32	10.600	4.800	5.430	4.020	3.640	1.530	0.341	0.331	8.040	4.770
Lead as Pb	mg/L	0.025	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	8.31	7.35	7.500	6.900	7.320	6.730	7.440	7.250	6.310	6.340	6.350	6.830
Manganese as Mn	mg/L	0.3	0.633	1.08	1.270	0.710	0.959	0.395	0.790	0.758	0.186	0.160	0.812	1.040
Mercury as Hg	mg/L	0.0007	PNA	0.000067 J	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.0034 J	PNA	0.0400 U	PNA	0.0400 U	PNA	PNA	0.0400 U	PNA	0.0400 U	PNA
Potassium	mg/L	NA	5 U	3.74 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Sodium as Na	mg/L	20	16.6	17.8	16.700	23.000	26.000	14.200	13.100	13.800	11.000	12.300	12.500	13.000
Thallium as Tl	mg/L	0.0005 #	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Vanadium	mg/L	NA	PNA	0.0008 U	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0022 J	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA
Alkalinity tot CaCo3	mg/L	NA	91.4	68.6	79.6	77.8	68.6	69.2	70.8	PNA	67.2	51.1	74.4	62.5
Chloride as Cl	mg/L	250	22.4	19.2	20.4	30.4	43.4	13.8	15.6	PNA	11.7	10.5	15.8	32.4
Sulfate as SO4	mg/L	250	10.3	14.7	15.2	10.4	14.9	9.8	11.8	PNA	9.8	5.0 U	13.4	15.4
Bromide	mg/L	2 #	0.5 U	0.09 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	2.1	0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2 U	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U	10.4	PNA	10.0 U	13.0	10.0 U	10.0 U
Color	units	NA	PNA	5 U	PNA	6.0	PNA	10.0	PNA	PNA	5.0 U	PNA	60.0	55.0
Chromium hex as Cr	mg/L	0.05	PNA	0.015 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U
Hardness as CaC03	mg/L	NA	74	70	60.0	50.0	66.7	53.3	66.7	PNA	40.0	63.3	43.3	64.0
Ammonia as N	mg/L	2	2.3	2.5	2.8	1.4	2.1	0.62	1.9	PNA	0.50	0.13	2.9	1.2
Nitrite as N	mg/L	NA	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.069	0.13	0.11	0.16	0.21	0.27	0.28	PNA	0.35	0.34	0.11	0.11
Phenols as Phenol	mg/L	0.001	0.005 U	0.0029 J	0.0050 U	0.0050 U	0.014	0.0050 U	0.0050 U	PNA	0.0050 U	0.0050 U	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	137	161	114	144	216	128	154	PNA	112	86.0	128	120
Tot. Kjeldahl Nitrogen	mg/L	NA	2.5	2.7	3.0	1.3	2.4	1.2	2.0	PNA	0.39	0.48	3.3	1.5
Tot Organic Carbon	mg/L	NA	1.5	1.6	1.9	1.3	1.4	1.0 U	1.1	PNA	1.0 U	1.0 U	1.3	1.0 U
Turbidity	NTU	NA	2.7	2.2	0.0	0.0	0.0	24.8	51.0	PNA	3.60	PNA	3.0	0.0
Temperature	deg.C	NA	12.73	12.04	12.55	12.1	12.48	12.42	12.68	PNA	12.34	12.76	12.77	12.89
pH	units	6.5-8.5	6.41	6.31	6.4	6.58	6.29	6.80	6.87	PNA	7.51	4.57	6.10	6.68
Spec. Cond	umho/cm	NA	283	281	285	270	252	155	182	PNA	152	165	186	233

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.
= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.] - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.

U -Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely me Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW						MW-	4C					
ALL THEAT	ONTIS	u.,							Octobe	r 2020				
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022
Aluminum as Al	mg/L	NA	PNA	0.0134 U	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Antimony as Sb	mg/L	0.003 #	PNA	0.0052 J	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	PNA	0.0491 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA
Boron as B	mg/L	1	PNA	0.0011 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	30.4	25.3	25.800	24.600	25.300	19.600	20.800	19.400	19.100	17.700	13.000	11.700
Chromium as Cr	mg/L	0.05	PNA	0.564	PNA	0.367	PNA	0.345	PNA	PNA	0.230	PNA	0.378	PNA
Cobalt	mg/L	NA	PNA	0.0099 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0104 J	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Iron as Fe	mg/L	0.3	1.41	2.15	4.160	1.450	2.640	1.470	7.720	0.172	0.913	1.610	1.590	0.764
Lead as Pb	mg/L	0.025	0.0050 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	13.9	11.7	11.700	11.100	11.400	8.640	9.400	8.860	8.710	7.900	5.860	5.220
Manganese as Mn	mg/L	0.3	0.0479	0.070	0.108	0.0417	0.0933	0.0336	0.175	0.0165	0.0120	0.0538	0.0334	0.0208
Mercury as Hg	mg/L	0.0007	PNA	0.00007 J	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.274	PNA	0.288	PNA	0.203	PNA	PNA	0.880	PNA	0.194	PNA
Potassium	mg/L	NA	5.00 U	1.51 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Sodium as Na	mg/L	20	44.6	34.1	37.4	39.7	44.2	33.200	40.200	40.600	39.300	44.000	26.300	26.500
Thallium as Tl	mg/L	0.0005#	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Vanadium	mg/L	NA	PNA	0.0017 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0015 J	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA
Alkalinity tot CaCo3	mg/L	NA	47.4	43.0	46.6	45.3	44.2	50.0	46.6	PNA	48.3	45.1	39.3	42.4
Chloride as Cl	mg/L	250	125	101	122	125	134	84.6	90.1	PNA	86.1	79.6	55.4	58.6
Sulfate as SO4	mg/L	250	5.00 U	4.60 J	5.9	5.2	6.6	5.2	5.6	PNA	5.9	6.0	6.4	7.8
Bromide	mg/L	2 #	0.50 U	0.072 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2.0 U	10.0 U	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	16.7	16.7	PNA	10.0 U	17.1	10.3	10.0 U
Color	units	NA	PNA	5.0 U	PNA	30.0	PNA	25.0	PNA	PNA	40.0	PNA	26.0	7.0
Chromium hex as Cr	mg/L	0.05	PNA	0.015 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U
Hardness as CaC03	mg/L	NA	120	110	96.0	80.0	90.0	80.0	93.3	PNA	46.7	100	30.0	40.0
Ammonia as N	mg/L	2	0.10 U	0.021 J	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	PNA	0.10 U	0.10 U	0.10 U	0.10 U
Nitrite as N	mg/L	NA	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.050 U	0.076	0.062	0.050 U	0.050 U	0.050 U	0.060	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Phenols as Phenol	mg/L	0.001	0.0050 U	0.0020 J	0.0050 U	0.0050 U	0.0114	0.0050 U	0.0050 U	PNA	0.0050 U	0.0050 U	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	230	307	234	266	300	212	279	PNA	222	212	174	131
Tot. Kjeldahl Nitrogen	mg/L	NA	0.17	0.10 U	0.10 U	0.30	0.10 U	0.20	0.23 J	PNA	0.12	0.45	0.15	0.16
Tot Organic Carbon	mg/L	NA	1.0 U	0.00023 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	PNA	1.0 U	1.0 U	1.0 U	1.0 U
Turbidity	NTU	NA	8.3	18.3	5.6	8.4	12.5	100	55.7	PNA	19.6	PNA	1.0	0.0
Temperature	deg.C	NA	12.67	12.14	13.22	12.16	12.65	12.51	12.2	PNA	12.17	12.89	12.92	13.03
pH	units	6.5-8.5	6.85	6.7	6.74	6.87	6.83	7.10	7.19	PNA	7.79	4.68	6.63	6.55
Spec. Cond	umho/cm	NA	566	437	543	485	412	306	331	PNA	354	437	216	257

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank. H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

 $\label{thm:continuous} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely me Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW				MW-6A						MW	/-6B		
PARAMETERS		STND (1)	October 2014	October 2017	October 2018	October 2019	October 2020	October 2021	October 2022	October 2017	October 2018	October 2019	October 2020	October 2021	October 2022
Aluminum as Al	mg/L	NA	0.0543 B	0.200 U	0.200 U	0.200 U	0.200 UJ	0.200 U	0.200 U						
Antimony as Sb	mg/L	0.003#	0.0044 B	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U
Arsenic as As	mg/L	0.025	0.0009 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	0.056 B	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Beryllium as Be	mg/L	0.003	0.0002 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Boron as B	mg/L	1	0.0182 B	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Cadmium as Cd	mg/L	0.005	0.0003 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	19.3	7.930	6.510	8.690	20.800	13.000	7.180	3.980	4.420	4.540	4.120	3.910	4.290
Chromium as Cr	mg/L	0.05	0.0017 B	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0137	0.0100 U	0.0110	0.0100 U
Cobalt	mg/L	NA	0.0002 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Copper as Cu	mg/L	0.2	0.0011 B	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U
Cyanide as CN	mg/L	0.2	PNA	PNA	PNA	PNA	PNA	PNA	0.0100 U	PNA	PNA	PNA	PNA	PNA	0.0100 U
Iron as Fe	mg/L	0.3	0.128	0.0201	0.0361	0.261	0.286	0.101	0.100 U	0.0254	0.108	0.100	0.0638	0.105	0.100 U
Lead as Pb	mg/L	0.025	0.0013 U	0.0005 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	7.54	3.380	2.730	4.340	8.070	5.190	2.680	2.320	2.540	2.650	2.380	2.260	2.390
Manganese as Mn	mg/L	0.3	0.0136 B	0.0100 U	0.0100 U	0.0405	0.0172 J	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0154	0.0143	0.0100 U	0.0100 U
Mercury as Hg	mg/L	0.0007	0.0001 U	0.0002 U	0.0002 U	0.00020 U	0.00020 U	PNA	0.00020 U	0.0002 UB	0.0002 U	0.00020 U	0.00020 U	PNA	0.00020 U
Nickel as Ni	mg/L	0.1	0.0008 B	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U
Potassium	mg/L	NA	2.86 B	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	0.0014 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Silver as Ag	mg/L	0.05	0.0007 U	0.0100 U	0.0100 U	0.0100 U	0.0100 UJ	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Sodium as Na	mg/L	20	9.16	6.520	7.680	8.600	8.820	8.040	7.680	8.210	7.800	7.820	7.240	7.840	8.000
Thallium as Tl	mg/L	0.0005#	0.001 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Vanadium	mg/L	NA	0.0007 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Zinc as Zn	mg/L	2#	0.0086 B	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 UB	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	66.8	23.6	16.3	29.9	79.1	47.2	17.8	11.0	12.2	13.0	14.2 U	1.0 U	12.3
Chloride as Cl	mg/L	250	12.0	10.3	16.2	17.0	13.5	12.5	16.0	9.8	12.9	13.2	10.7	2.0 U	12.9
Sulfate as SO4	mg/L	250	10.9	6.4	8.2	10.2	10.7	7.3	7.4	6.9	9.0	9.7	8.4	5.0 U	8.7
Bromide	mg/L	2#	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.50 U	0.50 U	0.50 U				
BOD5	mg/L	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
COD	mg/L	NA	10.0 U	10.0 U	10.0 U	10.0 U	14.6	10.9	10.0 U	10.0 U	10.0 U	10.0 U	14.6	10.0 U	10.0 U
Color	units	NA	PNA	PNA	PNA	PNA	PNA	PNA	5.0 U	PNA	PNA	PNA	PNA	PNA	5.0 U
Chromium hex as Cr	mg/L	0.05	PNA	PNA	PNA	PNA	PNA	PNA	0.020 U	PNA	PNA	PNA	PNA	PNA	0.020 U
Hardness as CaC03	mg/L	NA	120	PNA	23.0	36.7	80.0	80.0	24.0	PNA	16.0	17.5	18.0	33.3	22.0
Ammonia as N	mg/L	2	0.10 U	0.10 U	0.10 U	0.10 U	0.41	0.10 U	0.10 U	0.10	0.10 U	0.10 U	0.10 U	0.10 U	0.33
Nitrite as N	mg/L	NA	0.10 U	0.05 U	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.05 U	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	1.74	0.091	0.38	0.79	0.19	0.23	0.21	0.36	0.36	0.42	0.22	0.11	0.16
Phenols as Phenol	mg/L	0.001	0.0050 U	0.00050 U	0.0054	0.0050 U	0.0050 U	0.0050 U	0.0028 U	0.0050 U	0.0050 U	0.013	0.0050 U	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	107	52	62	76	158	60	82.0	43.0	38.0	142	79.0	38.0	64.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.1 U	0.2	0.1 U	0.1 U	0.14 R	0.62	0.20	0.30	0.10 U	0.10 U	0.33	0.43 J	0.53
Tot Organic Carbon	mg/L	NA	16.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Turbidity	NTU	NA	1.6	9.0	23.0	10.5	2.1	PNA	0.0	3.5	2.6	0.0	4.8	PNA	0.0
Temperature	deg.C	NA	12.18	12.02	12.04	12.39	12.92	13.31	13.1	11.41	12.25	12.00	11.98	12.59	12.47
pH	units	6.5-8.5	5.86	5.83	5.96	5.55	6.11	3.84	6.30	5.94	5.89	5.60	6.19	3.80	6.16
Spec. Cond	umho/cm	NA	230	114	112	124	184	166	106	94	112	84	72	93	89

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation. # = Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

 $\label{lem:J-Estimated} \textbf{J} - \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.
U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit.
UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

MW-8 ANALYTICAL UNITS GW October 2017 October 2018 October 2019 October 2020 October 2021 October 2022 STND (1) PARAMETERS Aluminum as Al mg/L NA PNA PNA PNA PNA PNA PNA 0.003# PNA PNA PNA PNA PNA PNA Antimony as Sb mg/L Arsenic as As mg/L 0.025 PNA PNA PNA PNA 0.0100 U 0.0100 U Barium mg/L PNA PNA PNA PNA PNA PNA Beryllium as Be 0.003 PNA PNA PNA PNA PNA PNA mg/L PNA PNA PNA PNA PNA PNA Boron as B mg/L 0.005 0.0025 0.0025 0.0025 0.0025 Cadmium as Cd 0.0025 0.0025 mg/L NA 10.500 13.300 16.000 11.900 13.600 7.410 Calcium as Ca mg/L 0.05 PNA PNA PNA PNA PNA Chromium as Cr mg/L PNA NA PNA PNA PNA PNA PNA PNA Cobalt mg/L 0.2 PNA PNA PNA PNA PNA PNA Copper as Cu mg/L 0.2 PNA PNA PNA PNA PNA 0.0100 U Cyanide as CN mg/L 0.3 0.4210 0.1400 10.300 1.610 Iron as Fe mg/L 0.3760.221 ead as Pb 0.025 0.0050 0.0050 U 0.0050 0.0050 U 0.0050 U 0.0050 U mg/L U Magnesium mg/L 35 # 4.470 5.110 6.740 5.040 5.650 3.130 Manganese as Mn mg/L 0.3 0.0140 0.0128 0.126 0.0850 0.0850 0.0202 Mercury as Hg mg/L 0.0007 PNA PNA PNA PNA PNA PNA Nickel as Ni mg/L 0.1 PNA PNA PNA PNA PNA PNA Potassium mg/L NA 5.000 5.000 5.000 5.000 5.000 5.000 Selenium as Se mg/L 0.01 PNA PNA PNA PNA PNA PNA Silver as Ag mg/L 0.05 PNA PNA PNA PNA PNA PNA Sodium as Na mg/L 20 8 440 8.370 8.850 7 960 10.800 7 380 Thallium as Tl mg/L 0.0005# PNA PNA PNA PNA PNA PNA Vanadium mg/L NA PNA PNA PNA PNA PNA PNA Zinc as Zn mg/L 2# PNA PNA PNA PNA PNA PNA NA 37.0 45.7 52.0 39.2 44.1 Alkalinity tot CaCo mg/L 25.7 Chloride as Cl mg/L 250 13.1 13.8 12.3 11.2 10.7 250 10.0 13.4 8.6 10 Sulfate as SO4 7.1 mg/L 0.50 0.50 0.50 Bromide mg/L 0.50 0.50 NA U BOD5 2.0 2.0 4.0 2.0 2.0 U 2.0 mg/L COD mg/L NA 11.9 11.4 12.4 10.4 10.0 U 10.0 U NA PNA PNA PNA PNA PNA 12.0 Color units PNA U 0.05 PNA PNA PNA Chromium hex as Cr mg/L PNA 0.020 48.0 Hardness as CaC03 NA 50.0 80.0 63.3 34.0 mg/L Ammonia as N mg/L 0.10 0.10 U 0.10 0.24 0.10 U 0.10 U U NA U U U U Nitrite as N mg/L 0.050 0.050 0.050 U 0.050 0.050 0.050 Nitrate as N mg/L 10 1.2 0.71 0.65 I 1.0 1.4 0.67 Phenols as Phenol mg/L 0.001 0.005 0.0050 IJ 0.0050 IJ 0.0050 IJ 0.0050 IJ Tot Dissolved Solids mg/L NA 79 78 103 113 113 87.0 Tot. Kjeldahl Nitroger mg/L NA 0.14 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U Tot Organic Carbon mg/L NA 1.0 UB 1.0 IJ 1.3 1.0 IJ 1.0 IJ 1.0 IJ Turbidity NTU NA 25.1 29.9 42.8 48.20 PNA 0.0 Temperature deg.C NA 11.85 12.11 12.14 12.36 13.96 12.61

pH Spec. Cond NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

units

umho/ci

6.5-8.5

NA

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- \ensuremath{B} Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{lem:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$

151

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical

value is the approximate concentration of the analyte in the sample.

 ${\it R-Data\ Validation\ Qualifier-Rejected}.$

- U Indicates the compound was analyzed for, but not detected.
- $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

148

156

6.10

119

4.09

173

112

 $Highlighted \ text \ denotes \ concentrations \ exceeding \ the \ NYSDEC, \ Class \ GA \ Groundwater \ Quality \ Standard \ or \ Guidance \ Value$

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 1 INORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2022

					OCTOR	JLK Z	022							
ANALYTICAL	UNITS	GW	GW MW-9 October 2017 October 2018 October 2019 October 2020 October 2021 October 2020 October 2021 October 2020 October 2020 October 2021 October 2020 October 2021 October 2020 October 2020 October 2021 October 2020 October 2											
PARAMETERS		STND (1)	October 20	017	October 20	18	October 20	019	October 20	020	October 20	021	October 20	022
Aluminum as Al	mg/L	NA	PNA		PNA		PNA		PNA		PNA		PNA	
Antimony as Sb	mg/L	0.003 #	PNA		PNA		PNA		PNA		PNA		PNA	
Arsenic as As	mg/L	0.025	PNA		PNA		PNA		0.0100	U	0.0100	U	0.0100	U
Barium	mg/L	1	PNA		PNA		PNA		PNA		PNA		PNA	
Beryllium as Be	mg/L	0.003	PNA		PNA		PNA		PNA		PNA		PNA	
Boron as B	mg/L	1	PNA		PNA		PNA		PNA		PNA		PNA	
Cadmium as Cd	mg/L	0.005	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U
Calcium as Ca	mg/L	NA	5.24		8.99		7.430		6.080		5.720		3.540	
Chromium as Cr	mg/L	0.05	PNA		PNA		PNA		PNA		PNA		PNA	
Cobalt	mg/L	NA	PNA		PNA		PNA		PNA		PNA		PNA	
Copper as Cu	mg/L	0.2	PNA		PNA		PNA		PNA		PNA		PNA	
Cyanide as CN	mg/L	0.2	PNA		PNA		PNA		PNA		PNA		0.0100	U
Iron as Fe	mg/L	0.3	0.188		1.400		1.160		1.030		0.304	J	0.423	
Lead as Pb	mg/L	0.025	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	5.0000	U
Magnesium	mg/L	35 #	2.740		8.830		2.940		2.900		2.720	J	1.740	
Manganese as Mn	mg/L	0.3	0.0110		0.0776		0.0986		0.0891		0.0465		0.0291	
Mercury as Hg	mg/L	0.0007	PNA		PNA		PNA		PNA		PNA		PNA	
Nickel as Ni	mg/L	0.1	PNA		PNA		PNA		PNA		PNA		PNA	
Potassium	mg/L	NA	5.000	U	5.000	U	5.000	U	5.000	U	5.000	U	5.000	U
Selenium as Se	mg/L	0.01	PNA		PNA		PNA		PNA		PNA		PNA	
Silver as Ag	mg/L	0.05	PNA		PNA		PNA		PNA		PNA		PNA	
Sodium as Na	mg/L	20	10.200		11.100		8.710		8.630		11.800		6.630	
Thallium as Tl	mg/L	0.0005#	PNA		PNA		PNA		PNA		PNA		PNA	
Vanadium	mg/L	NA	PNA		PNA		PNA		PNA		PNA		PNA	
Zinc as Zn	mg/L	2 #	PNA		PNA		PNA		PNA		PNA		PNA	
Alkalinity tot CaCo3	mg/L	NA	19.0		52.6		14.0		16.3		14.8		12.2	
Chloride as Cl	mg/L	250	17.9		17.5		18.7		15.4		14.6		11.4	
Sulfate as SO4	mg/L	250	5.8		8.6		9.0		8.1		7.2		7.5	
Bromide	mg/L	2#	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
BOD5	mg/L	NA	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
COD	mg/L	NA	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
Color	units	NA	PNA		PNA		PNA		PNA		PNA		6.0	
Chromium hex as Cr	mg/L	0.05	PNA		PNA		PNA		PNA		PNA		0.020	U
Hardness as CaC03	mg/L	NA	22		40		28.0		30.0		40.0		22.0	
Ammonia as N	mg/L	2	0.1	U	0.1	U	0.10	U	0.10	U	0.10	U	0.10	U
Nitrite as N	mg/L	NA	0.05	U	0.05	U	0.05	U	0.050	U	0.050	U	0.050	U
Nitrate as N	mg/L	10	0.18		0.81		0.24		0.13		0.18		0.19	
Phenols as Phenol	mg/L	0.001	0.0050	U	0.0050	U	0.0176		0.0050	U	0.0050	U	0.0028	U
Tot Dissolved Solids	mg/L	NA	61		70		74.0		62.0		49.0		62.0	
Tot. Kjeldahl Nitrogen	mg/L	NA	0.14		0.10	U	0.10	U	0.33		0.36	U	0.10	U
Tot Organic Carbon	mg/L	NA	1.0	UB	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Turbidity	NTU	NA	5.5		0.0		42.8		70.0		PNA		0.0	
Temperature	deg.C	NA	12.73		12.88		12.82		12.93		13.77		13.17	
pН	units	6.5-8.5	5.21		5.27		6.14		5.59		4.03		6.56	
Spec. Cond	umho/cm	NA	122		126		92		91		112		57	

NOTES

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{eq:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$
- ${\it J-Data\ Validation\ Qualifier-The\ analyte\ was\ positively\ identified; the\ associated\ numerical}$

value is the approximate concentration of the analyte in the sample.

- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- U-Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

												MW-11A										
		Octob	er 2017	Ap	oril 2018		October 2018	Ap	ril 2019	0.1.1	Apr	12020	Octob	er 2020	Apr	il 2021	Octob	er 2021	Apri	12022	Octob	ber 2022
	STND (1)	Unfiltered	Filtered	Unfiltered	Filtered	Unfilt	ered Filt	tered Unfiltered	Filtered	October 2019	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filt
mg/L	NA	0.2 U	0.2 U	0.0975	1 0.0239	J 0.200	U 0.20	00 U 0.200	U 0.200	U 0.200 U	0.200 I	0.200 t	0.200 U	0.200 U	0.200 t	0.200	U 0.200 U	0.200 t	J 0.200 U	0.200 U	0.200 U	J 0.20
mg/L	0.003#	0.06 U	0.06 U	0.003	U 0.003	U 0.060	U 0.060	00 U 0.0600	U 0.0600	U 0.0600 U	0.0600 U	0.0600 t	0.0600 U	0.0600 U	0.0600 I	0.0600	U 0.0600 U	0.0600 I	J 0.0600 U	0.0600 U	0.0600 U	J 0.06
mg/L	0.025	0.0188 U	0.01 U	0.0068	U 0.0068	U 0.010	U 0.010	00 U 0.0651	0.0100	U 0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100	U 0.0100 U	0.0100 U	J 0.0114	0.0100 U	0.0100 U	J 0.0
mg/L	1	1.03	0.2 U	0.0891	J 0.0717	J 0.200	U 0.20	00 U 0.721	0.200	U 0.200 U	0.200 I	0.200 t	0.200 U	0.200 U	0.358	0.200	U 0.269 /	0.200 t	J 0.320	0.200 U	0.200 U	J 0.2
mg/L	0.003	0.005 U	0.005 U	0.0006	U 0.0006	U 0.005	U 0.00	05 U 0.005	U 0.005	U 0.005 U	0.005 L	0.005 t	0.005 U	0.005 U	0.0050 t	0.0050	U 0.0050 U	0.0050 t	J 0.0050 U	0.0050 U	0.0050 U	J 0.0
mg/L	1	0.05 U	0.05 U	0.0324	1 0.0288	J 0.050	U 0.050	00 U 0.0500	U 0.0500	U 0.0500 U	0.0500 t	0.0500 t	0.0500 U	0.0500 U	0.0500 t	0.0500	U 0.0500 U	0.0500 t	J 0.0500 U	0.0500 U	0.0500 U	J 0.0
mg/L	0.005	0.0121 U	0.0025 U	0.00006	U 0.000063	U 0.002	5 U 0.002	25 U 0.0048	0.0025	U 0.0025 U	0.0025 L	0.0025 t	0.0025 U	0.0025 U	0.0025 t	0.0025	U 0.0025 U	0.0025 t	J 0.0025 U	0.0025 U	0.0025 U	J 0.0
	NA	60.5	43.1			36.30			32,900	36,500	32.800	33,600	31.700	31,000	53,500		48.200	39.600	28.600		17.300	17.
mg/L	0.05	0.1 U	0.01 U		_	U 0.010			0.0100	U 0.0100 U	0.0100	0.0100 I		0.0100 U	0.0100 U		U 0.0100 U	0.0100 U	J 0.0100 U		0.0100 U	J 0.0
mg/L	NA								U 0.0500	U 0.0500 U	0.0500 I	0.0500 L	0.0500 U	0.0500 U	0.0500 I	0.0500	U 0.0500 U	0.0500 U		0.0500 U	0.0500 U	J 0.0
mg/L	0.2			0.0067	I 0.0025	U 0.025	U 0.025	50 U 0.0250	U 0.0250	U 0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0258	0.0250	U 0.0250 U	0.0250 U	J 0.0250 U	0.0250 U	0.0250 U	J 0.0
						PNA				PNA		PNA				PNA						J P
mg/L		539		11.3	0.127				_	35.600	17.200	0.0555			154.000	0.0200	U 53.800 I		136.000	0.100 U	37.100	0.
		0.0052	0.005 U	0.0024	I 0.0013	U 0.005			0.0050	U 0.0050 U	0.0050 U	0.0050 L	0.0050 U	0.0050 U	0.0050 I	0.0050	U 0.0050 U	0.0050 U	J 0.0050 U	0.0050 U	0.0050 U	J 0.0
mg/L	35#	16.6	14.4	9.07	8.93	13.00	12.50	00 12.600	10.800	12.700	10.400	11.300	14.300	14.200	13.400	11.900	20.200 /	19.800	7.700	7.810	6.890	7.0
mg/L	0.3	15.2	1.49	1.32	1.13				1.560	5.400	1.660	1.710	1.790	1.660 J	9.600	0.010	U 6.370	2.680	8.440	2.640	2.040	1.1
mg/L	0.0007	PNA	0.0002 U	0.000079	J 0.0002	U 0.0002	0 U 0.000	020 U 0.00024	0.00020	U 0.00020 U	0.00020 t	0.00020 t	0.00020 U	0.00020 UJ	0.00020 t	0.00020	U 0.00020 U	0.00020 t	J 0.00020 U	0.00020 U	0.00020 U	J 0.00
mg/L	0.1	0.04 U	0.04 U	0.0136	J 0.023				U 0.0400	U 0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400	U 0.0400 U	0.0400 U			0.0400 U	J 0.0
mg/L	NA	10.2	5.0 U	2.77	J 2.99	J 5.000	U 5.00	00 U 5.000	U 5.000	U 5.000 U	5.000 U	5.000 t	5.000 U	5.000 U	5.000 t	5.000	U 5.230	5.880	5.000 U	5.000 U	5.000 U	J 5.
mg/L	0.01	0.01 U	0.01 U	0.0063	U 0.0062				U 0.0100	u 0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0198	0.0100	U 0.0100 U	0.0100 U	0.0150	0.0100 U	0.0100 U	J 0.0
mg/L	0.05	0.0525	0.01 U	0.0036	U 0.0036	U 0.010			U 0.0100	U 0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100	U 0.0100 U	0.0000 t	J 0.0100 U	0.0100 U	0.0100 U	J 0.0
mg/L	20	11	9.81	9	8.74				9.700	8.960	9.690	9.720	7.130	7.590	21.300	24.100	11.100 J	10.900	12.700	12.200	7.230	7.
mg/L	0.0005#	0.0254	0.01 U	0.0036	U 0.0036	U 0.010	U 0.010	00 U 0.0261	0.0100	U 0.0100 U	0.0100 U	0.0100 t	0.0100 U	0.0100 U	0.0100 U	0.0100	U 0.0100 U	0.0100 U	J 0.0100 U	0.0100 U	0.0100 U	J 0.0
mg/L	NA	0.05 U	0.05 U	0.0008	U 0.00083	J 0.050	U 0.050	00 U 0.0500	U 0.0500	U 0.0500 U	0.0500 U	0.0500 t	0.0500 U	0.0500 U	0.0500 U	0.0500	U 0.0500 U	0.0500 t	J 0.0500 U	0.0500 U	0.0500 U	J 0.
mg/L	2#	0.112	0.02 U	0.039	0.0173	J 0.036	7 0.020	00 U 0.0254	0.0200	U 0.0200 U	0.0200 U	0.0200 t	0.0200 U	0.0200 U	0.0649	0.0200	U 0.0910	0.0200 t	J 0.0616	0.0200 U	0.0604	0.0
mg/L	NA	195 J	PNA	87.2	PNA	138	PNA	A 131	PNA	141	145	PNA	151	PNA	158	PNA	207	PNA	79.4	PNA	58.5	- 1
mg/L	250	11.3	PNA	14.8	PNA	13.9	PNA	A 16.7	PNA	14.3	11.4	PNA	10.3	PNA	22.7	PNA	9.9	PNA	14.2	PNA	14.5	
mg/L	250	6.6	PNA	23.9	PNA	9.7	PNA	A 18.8	PNA	14	10.8	PNA	5.8	PNA	35.0	PNA	5.8	PNA	11.7	PNA	25.6	F
mg/L	2#	0.5 U	PNA	0.032	J PNA	0.50	U PNA	A 0.50	U PNA	0.50 U	0.50 t	PNA	0.50 U	PNA	0.50 t	PNA	0.50 U	PNA	0.50 U	PNA	0.50 U	J P
mg/L	NA	4 U	PNA	2	U PNA	4.0	U PNA	A 4.0	U PNA	4.0 U	4.0 U	PNA	2.0 U	PNA	4.0 l	PNA	2.0 U	PNA	4.0 U	PNA	2.0 U	J P
mg/L	NA	30.9	PNA	10	U PNA	10.0	U PNA	A 27.8	PNA	10.2	18.8	PNA	29.4	PNA	35.6	PNA	29.4	PNA	32.4	PNA	23.0	P
units	NA	PNA	PNA	40	PNA	PNA	PNA	A 5.0	U PNA	PNA	40.0	PNA	PNA	PNA	5.0 t	PNA	PNA	PNA	900	PNA	130	P
mg/L	0.05	PNA	PNA	0.003	U PNA	PNA	PNA	A 0.020	U PNA	PNA	0.020	PNA	PNA	PNA	0.020 t	PNA	PNA	PNA	0.020 U	PNA	0.020 U	J P
mg/L	NA	133	PNA	PNA	PNA	120	PNA	A 150	PNA	200	150	PNA	173	PNA	127	PNA	167	PNA	80.0	PNA	86.7	P
mg/L	2	0.69 U	PNA	0.19	PNA	0.28	PNA	A 0.15	PNA	1.0	0.32	PNA	0.53	PNA	0.10 t	PNA	0.38	PNA	0.10 U	PNA	0.12	P
mg/L	NA	0.5 U	PNA	0.05	U PNA	0.51	PNA	A 0.05	U PNA	0.05 U	0.05 U	PNA	0.050 U	PNA	0.050 t	PNA	0.050 U	PNA	0.050 U	PNA	0.050 U	J P
mg/L	10	0.25	PNA	0.33	PNA	0.51	PNA	A 0.39	PNA	0.11	0.075	PNA	0.063	PNA	0.70	PNA	0.050 U	PNA	0.78	PNA	0.20	P
mg/L	0.001	0.005 U	PNA	0.0038	J PNA	0.005	U PNA	A 0.0084	PNA	0.0054	0.0050 U	PNA	0.0050 U	PNA	0.0050 U	PNA	0.0070	PNA	0.0050 U	PNA	0.0028 U	J P
mg/L	NA	222	PNA	152	PNA	173	PNA	A 240	PNA	171	166	PNA	154	PNA	280	PNA	192	PNA	133	PNA	120	F
mg/L	NA	1.5 J	PNA	0.16	PNA	0.43			PNA	0.99	0.74	PNA	0.89	PNA	1.5	PNA	1.8	PNA	1.5	PNA	0.49	F
mg/L	NA	20.2	PNA	1.9	PNA	2.9	PNA	A 4.2	PNA	3.0	1.8	PNA	2.3	PNA	16.0	PNA	4.2	PNA	6.4	PNA	2.5	F
NTU	NA	>1,000	PNA	573	PNA	198			PNA	35.2	313	PNA	125	PNA	>1,000	PNA	PNA	PNA	714	PNA	191	P
deg.C	NA	13.31	PNA	12.91	PNA	14.00	PNA	A 12.70	PNA	13.05	12.53	PNA	13.42	PNA	13.65	PNA	13.65	PNA	13.13	PNA	13.67	P
units	6.5-8.5	6.13	PNA	5.7	PNA	6.15			PNA	6.09	6.45	PNA	6.01	PNA	8.14	PNA	4.86	PNA	5.73	PNA	6.77	P
nho/cm	NA	453	PNA	267	PNA	470	PNA	A 356	PNA	315	282	PNA	284	PNA	429	PNA	487	PNA	224	PNA	212	P
	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	ng/L 0.003 mg/L 1.005 mg/L 1.005 mg/L 1.005 mg/L 1.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.25 mg/L 0.2 mg/L 0.2 mg/L 0.2 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.007 mg/L 0.1 mg/L 0.0007 mg/L 0.1 mg/L 0.0007 mg/L 0.1 mg/L 0.0007 mg/L 0.0008 mg/L 0.0008 mg/L 0.0008 mg/L 0.0008 mg/L 2.0 mg/L 2.0 mg/L 2.0 mg/L 2.0 mg/L 2.0 mg/L 2.0 mg/L 2.0 mg/L 2.0 mg/L 2.4 mg/L 2.50 mg/L 2.4 mg/L NA mg/L 0.05 mg/L 2.4 mg/L NA mg/L 0.05 mg/L 2.4 mg/L NA mg/L 2.50 mg/L 2.4 mg/L NA mg/L 0.05 mg/L 0.05 mg/L 1.0008 mg/L 2.4 mg/L NA mg/L 0.05 mg/L 2.4 mg/L NA mg/L 0.05 mg/L 1.0008 mg/L	ng/L 0.003 0.005 U ng/L 1 0.05 U ng/L 1 0.05 0.0121 U ng/L 0.005 0.0121 U ng/L 0.05 0.0 1 U ng/L 0.05 0.1 U ng/L NA 0.05 U ng/L 0.2 0.25 0.0052 U ng/L 0.02 ng/L 0.02 ng/L 0.03 ns/R 16.6 ng/L 0.03 15.2 ng/L 0.0 0.0 ng/L 0.0 0.0 ng/L 0.0 0.0 ng/L 0.0 0.0 0.0 ng/L 0.0 0.0 0.0 ng/L 0.0 0.0 0.0 0.0 0.0 ng/L <td>ng/L 0.003 0.005 U 0.</td> <td>ng/L 0.003 0.005 U 0.005 U 0.006 ng/L 1 0.05 U 0.005 U 0.006 ng/L NA 60.5 U 0.0025 U 0.0006 ng/L NA 60.5 43.1 2.25.3 U 0.0000 ng/L NA 60.5 0.1 U 0.01 U 0.05 U 0.0237 ng/L 0.2 0.01 U 0.05 U 0.0237 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.029 0.029 0.027 0.028 0.029 0.029 0.029 0.029 0.029 0.024 0.0029 0.024 0.0029 0.024 0.0029 0.024 0.0029 0.024 0.0029 0.024 0.00209 0.0024 0.00209</td> <td>mg/L 0.003 0.005 U 0.005 U 0.005 U 0.006 U 0.0006 mg/L 1 0.05 U 0.025 U 0.0324 J 0.0288 mg/L 0.005 0.0121 U 0.0025 U 0.00060 U 0.000063 mg/L 0.05 0.01 U 0.01 U 0.01 U 0.023 J 0.001 mg/L 0.05 0.1 U 0.05 U 0.0237 J 0.0216 mg/L 0.2 0.25 U 0.05 U 0.0023 J 0.0216 mg/L 0.2 0.2 0.2 0.00 U 0.023 J 0.0216 mg/L 0.3 3.59 0.1 U 1.13 0.127 0.0013 mg/L 0.3 3.52 1.49 1.32 1.13 0.023 mg/L 0.0007 PNA 0.0002</td> <td>mg/L 0.003 0.005 U 0.005 U 0.005 U 0.005 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.006 U 0.000603 U 0.002 mg/L 0.05 0.1 U 0.01 U 0.003 J 0.0016 U 0.0021</td> <td>mg/L 0.003 0.005 U 0.005 U 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.006 U 0.00063 U 0.0025 U 0.0006 U 0.00063 U 0.0025 U 0.0007 U 0.0023 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.0023 U 0.0021 U 0.005 U 0.0023 U 0.0021 U 0.005 U 0.0023 U 0.005 U 0.0023 U 0.0020 U</td> <td>mg/L 0.003 0.005 U 0.006 U 0.006 U 0.005 U 0.0050 U 0.0050 U 0.0050 U 0.0050 U 0.0060 U 0.001 U 0.0025 U 0.0048 mg/L NA 66.5 43.1 25.3 25.7 36.300 34.200 J 49.400 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 J 0.0500 U 0.0500 U</td> <td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.0050 U 0.0063 U 0.006 U 0.006 U 0.006 U 0.005 U</td> <td> </td> <td></td> <td></td>	ng/L 0.003 0.005 U 0.	ng/L 0.003 0.005 U 0.005 U 0.006 ng/L 1 0.05 U 0.005 U 0.006 ng/L NA 60.5 U 0.0025 U 0.0006 ng/L NA 60.5 43.1 2.25.3 U 0.0000 ng/L NA 60.5 0.1 U 0.01 U 0.05 U 0.0237 ng/L 0.2 0.01 U 0.05 U 0.0237 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.028 0.029 0.029 0.027 0.028 0.029 0.029 0.029 0.029 0.029 0.024 0.0029 0.024 0.0029 0.024 0.0029 0.024 0.0029 0.024 0.0029 0.024 0.00209 0.0024 0.00209	mg/L 0.003 0.005 U 0.005 U 0.005 U 0.006 U 0.0006 mg/L 1 0.05 U 0.025 U 0.0324 J 0.0288 mg/L 0.005 0.0121 U 0.0025 U 0.00060 U 0.000063 mg/L 0.05 0.01 U 0.01 U 0.01 U 0.023 J 0.001 mg/L 0.05 0.1 U 0.05 U 0.0237 J 0.0216 mg/L 0.2 0.25 U 0.05 U 0.0023 J 0.0216 mg/L 0.2 0.2 0.2 0.00 U 0.023 J 0.0216 mg/L 0.3 3.59 0.1 U 1.13 0.127 0.0013 mg/L 0.3 3.52 1.49 1.32 1.13 0.023 mg/L 0.0007 PNA 0.0002	mg/L 0.003 0.005 U 0.005 U 0.005 U 0.005 U 0.006 U 0.006 U 0.006 U 0.006 U 0.006 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.005 U 0.006 U 0.000603 U 0.002 mg/L 0.05 0.1 U 0.01 U 0.003 J 0.0016 U 0.0021	mg/L 0.003 0.005 U 0.005 U 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.006 U 0.00063 U 0.0025 U 0.0006 U 0.00063 U 0.0025 U 0.0007 U 0.0023 U 0.001 U 0.001 U 0.001 U 0.001 U 0.001 U 0.0023 U 0.0021 U 0.005 U 0.0023 U 0.0021 U 0.005 U 0.0023 U 0.005 U 0.0023 U 0.0020 U	mg/L 0.003 0.005 U 0.006 U 0.006 U 0.005 U 0.0050 U 0.0050 U 0.0050 U 0.0050 U 0.0060 U 0.001 U 0.0025 U 0.0048 mg/L NA 66.5 43.1 25.3 25.7 36.300 34.200 J 49.400 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 J 0.0500 U 0.0500 U	mg/L 0.003 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.0050 U 0.0063 U 0.006 U 0.006 U 0.006 U 0.005 U												

ANALYTICAL	UNITS	GW								MW-11B							
			Octob	er 2017	_	_	Apri	12019	Octob	er 2019	April	2020	_	_	Apri	12022	
PARAMETERS		STND (1)	Unfiltered	Filtered	April 2018	October 2018	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	October 2020	October 2021	Unfiltered	Filtered	October 2022
Aluminum as Al	mg/L	NA	0.994	0.2 U	0.312	0.200 U	7.780	0.200 U	3.540	0.200 U	1.400	0.200 U	0.204	0.200 U	0.544	0.200 U	1.530
Antimony as Sb	mg/L	0.003#	0.06 U	0.06 U	0.003 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 UJ	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U
Arsenic as As	mg/L	0.025	0.01 U	0.01 U	0.0068 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	0.2 U	0.2 U	0.0155 J	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Beryllium as Be	mg/L	0.003	0.005 U	0.005 U	0.0006 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Boron as B	mg/L	1	0.05 U	0.05 U	0.0133 J	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Cadmium as Cd	mg/L	0.005	0.0025 U	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	7.43	6.95	6.83	6.950	30.300	22.400	16.800	13.500	14.000	13.700	26.300	28.300	12.700	11.800	17.700
Chromium as Cr	mg/L	0.05	0.01 U	0.01 U	0.0082 J	0.0100 U	0.0198	0.0100 U	0.0190	0.0100 U	0.0100 U	0.0100 U	0.0104 U	0.0100 U	0.0100 U	0.0100 U	0.0577
Cobalt	mg/L	NA	0.05 U	0.05 U	0.0006 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Copper as Cu	mg/L	0.2	0.025 U	0.025 U	0.0025 U	0.0250 U	0.0322	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U
Cyanide as CN	mg/L	0.2	PNA	PNA	0.0029 U	PNA	0.0100 U	PNA	PNA	PNA	0.0100 U	PNA	PNA	PNA	0.0100 U	PNA	0.0100 U
Iron as Fe	mg/L	0.3	14.6	0.1 U	3.4	2.170	14.400	0.241	11.600 J	0.0325	5.950	0.0200 U	4.890	2.210	3.320	0.100 U	12.300
Lead as Pb	mg/L	0.025	0.0065	0.005 U	0.0014 J	0.0050 U	0.0413	0.0050 U	0.0195	0.0050 U	0.0060	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0088
Magnesium	mg/L	35 #	2.9	2.47	2.99	3.160	7.700	4.010	6.210	4.150	6.140	6.100	5.900	5.450	2.790	2.430	3.000
Manganese as Mn	mg/L	0.3	0.603	0.01 U	0.0676	0.0570	0.500	0.130	0.369	0.181	0.152	0.0100 U	0.652	0.358	0.0804	0.0181	0.1920
Mercury as Hg	mg/L	0.0007	0.0002 U	0.0002 UB	0.000073 J	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U
Nickel as Ni	mg/L	0.1	0.04 U	0.04 U	0.0034 J	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0100 0	0.0400 U	0.0559
Potassium	mg/L	NA	5.0 U	5.0 U	1.12 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.800	5.000 U	5.000 U	5.010
Selenium as Se	mg/L	0.01	0.01 U	0.01 U	0.0063 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 0	0.0100 U	0.0100 U
Silver as Ag	mg/L	0.05	0.01 U	0.01 U	0.0036 U	0.0100 U	0.0100 U	0.0100 U	0.0100 UJ	0.0100 <i>UJ</i>	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 0	0.0100 U	0.0100 U
Sodium as Na	mg/L	20	8.21	7.04	8.77	8.680	10.400	9.360	10.500	10.300 J	12.400	12.500	9.410	10.800	8.210	8.710	7.980
Thallium as Tl	mg/L	0.0005#	0.01 U	0.01 U	0.0036 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Vanadium	mg/L	NA	0.05 U	0.05 U	0.0008 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 0	0.0500 U	0.0500 U
Zinc as Zn	mg/L	2 #	0.02 U	0.02 U	0.0062 J	0.0200 U	0.0774	0.0200 U	0.0394	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 0	0.0200 U	0.0227
Alkalinity tot CaCo3	mg/L	NA DEC	26.8	PNA	21.8	26.6	59.6	PNA	40.4	PNA	41.5	PNA	86.3	91.3	34.9	PNA	31.4
Chloride as Cl	mg/L	250	8.8	PNA	11.4	12.1	14.0	PNA	13.9	PNA	12.0	PNA	10.5	9.7	10.1	PNA	11.5
Sulfate as SO4	mg/L	250	7.2 0.5 U	PNA	8.9 0.032 I	12.5 0.50 U	19.9 0.50 U	PNA	20.0 0.50 U	PNA	25.5	PNA	21.6 0.50 U	15.6 0.50 U	11.8 0.50 U	PNA PNA	11.4 0.50 U
Bromide	mg/L	2 # NA	0.5 U	PNA PNA	0.032 J	0.50 U		PNA PNA	0.50 U	PNA PNA	0.50 U 4.0 U	PNA	0.50 U 2.0 U	2.0 U		PNA PNA	0.50 U
BOD5 COD	mg/L											PNA				PNA	75.8
Color	mg/L	NA	18.2 PNA	PNA PNA	10 U 5 U	10.0 U PNA	266 5.0	PNA PNA	165 PNA	PNA PNA	61.0 20.0	PNA PNA	16.7 PNA	15.0 PNA	36.8 90.0	PNA	130.0
	units	NA 0.05	PNA	PNA	0.003 U	PNA	0.020 U	PNA	PNA	PNA	0.020 U	PNA	PNA	PNA	0.020 U	PNA	0.020 U
Chromium hex as Cr Hardness as CaCO3	mg/L mg/L	NA	32	PNA	30	30.0	90.0	PNA	70.0	PNA	66.7	PNA	127	66.7	36.7	PNA	66.7
Ammonia as N	mg/L	2	0.1 UB	PNA	0.021 J	0.10 U	0.14	PNA	0.87	PNA	0.10	PNA	4.8	2.5	0.15	PNA	0.40
Nitrite as N	mg/L	NA	0.05 U	PNA	0.021 J	0.050 U	0.050 U	PNA	0.050 U	PNA	0.050 U	PNA	0.050 U	0.050 U	0.050 U	PNA	0.050 U
Nitrate as N	mg/L	10	0.03	PNA	0.3	0.50	0.72	PNA	0.69 I	PNA	1.2	PNA	0.050 U	0.050 U	0.44	PNA	0.33
Phenols as Phenol	mg/L	0.001	0.005 U	PNA	0.0043 I	0.0064	0.0390	PNA	0.0116	PNA	0.0050 U	PNA	0.0050 U	0.0050 U		PNA	0.0030
Tot Dissolved Solids	mg/L	NA	57	PNA	83	58	121	PNA	94	PNA	106	PNA	139	142	63.0	PNA	110
Tot. Kjeldahl Nitrogen	mg/L	NA NA	0.43	PNA	0.11	0.10 U	0.58	PNA	0.59	PNA	1.2	PNA	2.5	4.2	0.80	PNA	1.5
Tot Organic Carbon	mg/L mg/L	NA	1.7 B	PNA	0.59 I	1.0 U	23.9	PNA	16.7	PNA	2.7	PNA	1.8	1.5	1.5	PNA	4.0
Turbidity	NTU	NA NA	11.7 B	PNA	34.4	26.5	1,000	PNA	587	PNA	58.0	PNA	39.6	PNA	79.6	PNA	0.0
Temperature	deg.C	NA NA	12.7	PNA	12.02	12.85	12.22	PNA	12.42	PNA	12.15	PNA	13.56	14.27	13.26	PNA	12.76
nH	units	6.5-8.5	6.4	PNA	5.79	6.24	6.57	PNA	6.62	PNA	6.83	PNA	6.35	4.74	6.32	PNA	6.58
Spec. Cond	umho/cm	NA	129	PNA	109	144	183	PNA	156	PNA	146	PNA	203	272	108	PNA	305
NOTES:	anno, cin	11/1	127	111/1	107	177	103	1 14/1	130	1 11/1	110	111/1	203	272	100	1 11/1	303

NOTES: (1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

B - Analyte was detected in the associated method blank.
H - Received / analyzed outside of analytical holding time
J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.
U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
UJ - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

Commitment A	ANALYTICAL	UNITS	GW									MW-12A										1
Monthmory and Monthmory an		UNITS		October 201	7	April 2018	October 2	2018	April 2019	October 2019				October 2020		April 202	1	October 20	21	April 202	22	October 2022
Aerenic and Aeren		mg/L		PNA		0.0134 U	PNA		0.200 U	PNA	Ť	0.200	U	PNA	T	0.200	U	PNA		0.200	U	PNA
Arenet as A mg/L 0.025	Antimony as Sb	mg/L	0.003 #	PNA		0.003 U	PNA		0.0600 U	PNA	T	0.0600	U	PNA	7	0.0600	U	PNA		0.0600	U	PNA
SeyMone Meyl 1 1 1 1 1 1 1 1 1	Arsenic as As		0.025	PNA		0.0068 U	PNA		0.0100 U	PNA	T	0.0100	U	0.0100	U	0.0100	U	0.0100	U	0.0100	U	0.0100 U
Part	Barium	mg/L	1	PNA		0.0442 J	PNA		0.200 U	PNA	T	0.200	U	PNA	7	0.200	U	PNA		0.200	U	PNA
Commitment of March March	Beryllium as Be		0.003	PNA		0.0006 U	PNA		0.0050 U	PNA	T	0.0050	U	PNA	T	0.0050	U	PNA		0.0050	U	PNA
Commitment of March March	Boron as B	mg/L	1	PNA		0.0541	PNA		0.0680	PNA	T	0.0500	U	PNA	7	0.0639		PNA		0.0506		PNA
Commitman C. Comm	Cadmium as Cd		0.005	0.0025	U	0.00006 U	0.0025	U	0.0025 U	0.0025 U	J	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025 U
Cahair mg/L or	Calcium as Ca	mg/L	NA	22.2		20.4	25.3		23.800	29.100	T	15.600		8.720	T	25.400		21.800		16.500		19.100
Copport as Ca	Chromium as Cr	mg/L	0.05	PNA		0.0016 U	PNA		0.0100 U	PNA	T	0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
Canales SCN mg/L 0.2 PNA 0.0029 U PNA 0.0100 U 0.010	Cobalt	mg/L	NA	PNA		0.006 J	PNA		0.0500 U	PNA	T	0.0500	U	PNA	T	0.0500	U	PNA		0.0500	U	PNA
From Septe Mg/L 0.3 187	Copper as Cu	mg/L	0.2	PNA		0.0025 U	PNA		0.0250 U	PNA	T	0.0250	U	PNA	T	0.0250	U	PNA		0.0250	U	PNA
Load as Pb	Cyanide as CN	mg/L	0.2	PNA		0.0029 U	PNA		0.0100 U	PNA	T	0.0100	U	PNA	T	0.0100	U	PNA		0.0100	U	0.0100 U
Magnesism	Iron as Fe	mg/L	0.3	18.7		1.48	2.56		1.420	4.100	T	0.445		0.414		0.158		1.47		3.75		0.100 U
Magnesism mg/L 0.3 3.37 1.98 2.54 1.50 2.070 1.770 2.270 0.261 2.090 0.054 Magnesism mg/L 0.3 3.37 1.98 2.54 1.50 2.090 1.770 1.770 0.247 2.270 0.261 2.090 0.554 Mercury as lig mg/L 0.0007 PNA 0.00005 U PNA 0.0002 U PNA 0.0000 U PNA 0.0002 U PNA 0.0002 U PNA 0.0002 U PNA 0.0000 U PNA 0.0002 U PNA 0.0000 U PN	Lead as Pb	mg/L	0.025	0.005	U	0.0013 U	0.005	U	0.0050 U	0.0050 U	J	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050 U
Mercury as Hg	Magnesium	mg/L	35#	6.15		6.08	7.78		7.250	8.070	T	4.560		2.760	T	8.310		7.570		5.160		6.000
Michael San Mig/L	Manganese as Mn	mg/L	0.3	3.37		1.98	2.54		1.500	2.270	T	1.770		0.747	T	2.270		0.261		2.090		0.534
Petassium mg/L	Mercury as Hg	mg/L	0.0007	PNA		0.000056 U	PNA		0.00020 U	PNA	T	0.00020	U	PNA	T	0.00020	U	PNA		0.00020	U	PNA
Selenium as Se	Nickel as Ni	mg/L	0.1	PNA		0.0035 J	PNA		0.0400 U	PNA		0.0400	U	PNA		0.0400	U	PNA		0.0400	U	PNA
Silver as Ag	Potassium	mg/L	NA	6.46		7.74	5.66		9.370	9.110		5.000	U	5.000	U	5.000	U	5.000	U	5.000	U	5.570
Solitima s N	Selenium as Se	mg/L	0.01	PNA		0.0063 U	PNA		0.0100 U	PNA		0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
The column The	Silver as Ag	mg/L	0.05	PNA		0.0036 U	PNA		0.0100 U	PNA		0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
Vanadium mg/L NA PNA 0.012 J PNA 0.0500 U PNA 0.0200 U PNA 0.020 U PNA 0.020 U DNA 0.020 U DNA 0.020 U DNA 0.020 U 0.020 U <th< td=""><td>Sodium as Na</td><td>mg/L</td><td>20</td><td>9.02</td><td></td><td>13.3</td><td>11.9</td><td></td><td>13.900</td><td>11.700</td><td></td><td>9.350</td><td></td><td>7.020</td><td></td><td>12.300</td><td></td><td>10.700</td><td></td><td>9.590</td><td></td><td>9.930</td></th<>	Sodium as Na	mg/L	20	9.02		13.3	11.9		13.900	11.700		9.350		7.020		12.300		10.700		9.590		9.930
Zincas Zn mg/L 2 # PNA 0.0049 j PNA 0.0200 U 0.0	Thallium as Tl	mg/L	0.0005#	PNA		0.0036 U	PNA		0.0100 U	PNA		0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
Alkalinity tot CaCo3	Vanadium	mg/L	NA	PNA		0.0012 J	PNA		0.0500 U	PNA		0.0500	U	PNA		0.0500	U	PNA		0.0500	U	PNA
Chloride as Cl mg/L 250 11.5 15.7 16.8 17.3 17.1 10.8 10.1 15.0 12.0 12.9 14.9 Sulfate as SO4 mg/L 250 16 32 31.2 32.4 26.8 15.6 11.6 24.3 5.0 U 16.0 16.0 Bromide mg/L 2# 0.5 U 0.13 1 0.5 U 0.5 U 0.50 U 0.	Zinc as Zn	mg/L	2 #	PNA		0.0049 J	PNA		0.0200 U	PNA		0.0200	U	PNA		0.0200	U	PNA		0.0200	U	PNA
Sulfate as SO4 mg/L 250 16 32 31.2 32.4 26.8 15.6 11.6 24.3 5.0 U 160 160 Bromide mg/L 2# 0.5 U 0.13 J 0.5 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.55 U 0.50 U 0.50 mg/L NA 11.3 2 U 2 U 2.0 U 2.0 U 10.0 U	Alkalinity tot CaCo3	mg/L	NA	80		59.4	79.7		88.3	114		56.1		21.8		93.3		68.4		61.2		89.5
Bromide mg/L 2 # 0.5 U 0.13 J 0.5 U 0.50 U	Chloride as Cl	mg/L	250	11.5		15.7	16.8		17.3	17.1		10.8		10.1		15.0		12.0		12.9		14.9
BODS	Sulfate as SO4	mg/L	250	16		32	31.2		32.4	26.8		15.6		11.6		24.3		5.0	U	16.0		16.0
COD mg/L NA 14 10 U 10 U 10.0 U 10.0 U 18.8 10.0 U 12.1 13.0 10.0 U 10.0 U 10.0 Color units NA PNA 15 PNA 5.0 PNA 5.0 U PNA 5.0 U PNA 5.0 U PNA 7.0 5.0 Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 66.7 66.7 110 53.3 36.7 66.7 50.0 44.7 70.0 Ammonia as N mg/L NA 88.0 PNA 66.7 66.7 66.7 110 53.3 36.7 66.7 50.0 44.7 70.0 Ammonia as N mg/L NA 0.05 U 0.05	Bromide	mg/L	2 #	0.5	U	0.13 J	0.5	U	0.50 U	0.50 U	J	0.50	U	0.50	U	0.50	U	5.5		0.50	U	0.50 U
Color units NA PNA 15 PNA 5.0 PNA 5.0 U PNA 5.0 U PNA 7.0 5.0 Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 0.010 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U 0.020 U PNA 0.020 U PNA 0.020 U 0.0	BOD5	mg/L	NA	11.3		2 U	2	U	2.0 U	2.0 U	J	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	
Chromium hex as Cr	COD	mg/L	NA	14		10 U	10	U	10.0 U	10.0 U	J	18.8		10.0	U	12.1		13.0		10.0	U	
Hardness as CaCO3 mg/L NA 88.0 PNA 66.7 66.7 110 53.3 36.7 66.7 50.0 46.7 70.0 Ammonia as N mg/L 2 2.9 2.8 0.53 3.2 6.1 1.0 0.32 0.67 0.10 U 2.0 3.8 Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.05 U 0.050 U 0.0050	Color	units				_											_					
Ammonia as N mg/L 2 2.9 2.8 0.53 3.2 6.1 1.0 0.32 0.67 0.10 U 2.0 3.8 Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.05 U 0.050	Chromium hex as Cr	mg/L	0.05	PNA		0.003 U	PNA		0.010 U	PNA		0.020	U	PNA		0.020	U	PNA		0.020	U	0.020 U
Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 Nitrate as N mg/L 10 0.23 0.46 0.75 0.48 0.16 0.83 0.59 0.52 0.94 1.0 0.80 Phenols as Phenol mg/L 0.001 0.005 U	Hardness as CaC03	mg/L																				
Nitrate as N mg/L 10 0.23 0.46 0.75 0.48 0.16 0.83 0.59 0.52 0.94 1.0 0.80 Phenols as Phenol mg/L 0.001 0.005 U 0.0051 U 0.005 U 0.0050 U 0.0044 0.0050 U 0.0050 U 0.0053 U 0.0050 U 0.0050 U 0.0053 U 0.0050 U 0.0050 U 0.0028 Tot Dissolved Solids mg/L NA 107 136 136 136 146 157 100 116 166 124 132 126 Tot Kjeldahl Nitrogen mg/L NA 3.3 2.7 0.72 3.8 7.6 1.7 0.48 0.76 0.66 2.60 3.9 Tot Organic Carbon mg/L NA 1.9 1.6 2.2 1.6 2.4 1.0 U 1.0 U 1.7 1.1 1.1 1.0 Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 0.0 Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 pH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Ammonia as N	mg/L	2								1				4							
Phenols as Phenol mg/L	Nitrite as N	mg/L			U			U			J		U		Ü		U		U		U	
Tot Dissolved Solids mg/L NA 107 136 136 146 157 100 116 166 124 132 126 Tot Kjeldahl Nitrogen mg/L NA 3.3 2.7 0.72 3.8 7.6 1.7 0.48 0.76 0.66 2.60 3.9 Tot Organic Carbon mg/L NA 1.9 1.6 2.2 1.6 2.4 1.0 U 1.0 U 1.7 1.1 1.1 1.1 1.0 Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 pH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Nitrate as N	mg/L	10	0.23		0.46	0.75		0.48	0.16		0.83		0.59				0.94		1.0		
Tot. Kjeldahl Nitrogen mg/L NA 3.3 2.7 0.72 3.8 7.6 1.7 0.48 0.76 0.66 2.60 3.9 Tot Organic Carbon mg/L NA 1.9 1.6 2.2 1.6 2.4 1.0 U 1.0 U 1.7 1.1 1.1 1.0 Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 pH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63		0,			U			U			1		U		Ü				U		U	
Tot Organic Carbon mg/L NA 1.9 1.6 2.2 1.6 2.4 1.0 U 1.0 U 1.7 1.1 1.1 1.0 1.0 Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 PH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63											1											
Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature degC NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 PH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Tot. Kjeldahl Nitrogen	mg/L	NA			2.7																
Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 PH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Tot Organic Carbon										1		U		U							
pH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Turbidity		NA				1				\perp				_							
	-										⊥				_							
Spec Cond Lumbo/cm NA 261 280 275 314 306 146 88 252 235 141 241	r										1				4							
Spec conta annothing and 201 200 273 334 300 140 00 232 233 141 241 NOTES	Spec. Cond	umho/cm	NA	261		280	275		314	306		146		88		252		235		141		241

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.
NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Natimony as Sh mg/L 0.003 # PNA 0.0035 PNA 0.0600 U PN	0.200 U PNA 0.0600 U PNA 0.0100 U 0.0100 U 0.200 U PNA 0.0050 U PNA 0.00625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Aluminum as Al mg/L NA	0.0600 U PNA 0.0100 U 0.0100 U 0.0200 U PNA 0.0050 U PNA 0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Arsenica SAS mg/L 0.025 PNA 0.0068 U PNA 0.0100 U PNA 0.0100 U PNA 0.0200 U	0.0100 U 0.0100 U 0.200 U PNA PNA 0.0050 U PNA PNA 0.0625 PNA D.0025 U 0.0025 U 0.0025 U 0.0100 U PNA
Barlium	0.200 U PNA 0.0050 U PNA 0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Beryllium as Be mg/L 0.003 PNA 0.0006 U PNA 0.0050 U 0.0025 U	0.0050 U PNA 0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Define as B mg/L 1	0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Cadmium as Cd mg/L 0.005 0.0025 U 0.0006 U 0.0025 U	0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Calcium as Ca mg/L NA 19.5 10 9.35 11.700 34.400 13.700 13.100 16.300 31.300 16.700 16.700 17.700	16.700 17.900 0.0100 U PNA
Chromium as Cr	0.0100 U PNA
Cobalt mg/L NA	
Cobalt	
Cyanide as CN mg/L 0.2 PNA 0.0029 U PNA 0.0100 U 0.055 U 0.0050 U 0.0051 0.0050 U <t< td=""><td>0.0500 U PNA</td></t<>	0.0500 U PNA
Iron as Fe mg/L 0.3 0.02 U 0.0109 U 0.0232 U 0.0200 U 0.0499 U 0.0405 U 0.0659 U 0.0200 U 0.0708 U 0.0505 U 0.0050 U 0.005	0.0250 U PNA
Lead as Pb	0.0100 U 0.0100 U
Lead as Pb	0.149 0.100 U
Manganese as Mn mg/L 0.3 0.01 U 0.0086 J 0.01 U 0.0100 U 0.0248 0.0110 U 0.0312 0.230 Mercury as Hg mg/L 0.0007 PNA 0.000056 U PNA 0.00020 U PNA 0.00000 U PNA 0.00000 U PNA 0.0400 U PNA 0.0100 U PNA 0.0100 U PNA 0.0100 U PNA	0.0050 U 0.0050 U
Manganese as Mn mg/L 0.3 0.01 U 0.0086 J 0.01 U 0.0100 U 0.0248 0.0100 U 0.0512 0.230 Mercury as Hg mg/L 0.0007 PNA 0.000056 U PNA 0.00020 U PNA 0.00000 U PNA 0.00000 U PNA 0.0400 U PNA 0.0100 U PNA	
Mercury as Hg mg/L 0.0007 PNA 0.000056 U PNA 0.00020 U PNA 0.0400 U PNA 0.0500 U PNA	
Nickel as Ni mg/L 0.1 PNA 0.0018 J PNA 0.0400 U PNA 0.0500 U PN	
Potassium mg/L	
Selenium as Se mg/L 0.01 PNA 0.0063 U PNA 0.0100 U	
Silver as Ag mg/L 0.05 PNA 0.0036 U PNA 0.0100 U PNA 0.0500 U PNA 0.0500 </td <td></td>	
Sodium as Na mg/L 20 12.1 9.23 8.15 10.800 19.900 10.600 8.480 11.400 16.400 10.400 Thallium as Tl mg/L 0.0005 # PNA 0.0036 U PNA 0.0100 U PNA 0.0500 U PNA 0.0200 U PNA 0.0200 U PNA 0.0200 U PNA 0.0200 U PNA <t< td=""><td></td></t<>	
Thallium as TI mg/L 0.0005 # PNA 0.0036 U PNA 0.0100 U PNA 0.0500 U PNA 0.	
Vanadium mg/L NA PNA 0.00092 J PNA 0.0500 U PNA 0.0200	
Zinc as Zn mg/L 2 # PNA 0.0016 J PNA 0.0200 U DNA 0.020	
Alkalinity tot CaCo3 mg/L NA 56.6 25.2 24.6 45.6 114 49.8 34.8 46.1 75 56.8 Chloride as Cl mg/L 250 15.8 13.4 13.8 16.1 28.0 13.8 12.3 15.4 17.5 16.6 Sulfate as SO4 mg/L 250 26.5 9.7 12.1 11.3 49.3 20.8 9.0 22.4 5.0 U 21.6 Bromide mg/L 2# 0.5 U 0.50 U 0.	
Chloride as Cl mg/L 250 15.8 13.4 13.8 16.1 28.0 13.8 12.3 15.4 17.5 16.6 Sulfate as SO4 mg/L 250 26.5 9.7 12.1 11.3 49.3 20.8 9.0 22.4 5.0 U 21.6 Bromide mg/L 2# 0.5 U 0.03 J 0.5 U 0.50 U 0.	
Sulfate as SO4 mg/L 250 26.5 9.7 12.1 11.3 49.3 20.8 9.0 22.4 5.0 U 21.6 Bromide mg/L 2 # 0.5 U 0.03 J 0.5 U 0.50 U	
Bromide mg/L 2 # 0.5 U 0.03 J 0.5 U 0.50 U 0	
BOD5 mg/L NA 2 U 2 U 2 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 3.0 U	
COD mg/L NA 10 U 10 U 10 U 10.0 U 12.4 12.5 10.0 U 10.0 U 21.2 10.3	
Color	5.0 U 5.0 U
Hardness as CaC03 mg/L NA 60 PNA 34 44.0 127 53.3 50.0 40.0 56.7 13.3	
Ammonia as N mg/L 2 1.1 0.068 0.1 U 0.10 U 1.8 1.8 PNA 0.53 0.17 3.5	
Nitrate as N mg/L 10 1.2 0.75 1.3 0.97 0.41 1.7 0.80 1.6 1.0 2.6	
Tot Dissolved Solids mg/L NA 150 85 70 84.0 238 112 111 120 172 153	
Tot. Kjeldahl Nitrogen mg/L NA 1.5 0.1 U 0.1 U 0.33 2.9 2.2 0.13 R 0.72 0.80 3.30	
3 8	
Turbidity NTU NA 138 0.2 8 0.2 0.0 16.8 10.1 3.20 PNA 0.0	-
Temperature deg.C NA 12.05 11.83 12.85 11.84 12.57 11.81 13.86 12.66 13.98 12.70	0.0
DH units 6.5-8.5 5.81 6.00 5.76 6.26 6.26 6.85 6.25 8.41 4.64 5.86	
Spec. Cond umbo/cm NA 261 140 25 180 30 223 98 179 254 153	5.86 6.66

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation. # = Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for. B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U-Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ-Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

Parameters	Units	GW Standard (1)	MW-1A	MW-1B	MW-1C	MW-3A	MW-3B	MW-3C	MW-4A	MW-4B	MW-4C	MW-11A	MW-11B	MW-12A	MW-12B
1.1.1.2-Tetrachloroethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1.1.1-Trichloroethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1.1.2.2-Tetrachloroethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1,1,2-Trichloroethane	mg/L	0.001	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1.1-Dichloroethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1.1-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1.2-Dibromo-3-chloropropane	mg/L	0.0004	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1,2-Dibromoethane	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1,2-Dichlorobenzene	mg/L	0.003	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1.2-Dichloroethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1,2-Dichloropropane	mg/L	0.001	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
1.4-Dichlorobenzene	mg/L	0.003	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
2-Butanone	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
2-Hexanone	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
4-Methyl-2-pentanone	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Acetone	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Acrylonitrile	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Benzene	mg/L	0.001	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Bromochloromethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Bromodichloromethane	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Bromoform	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Bromomethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Carbon disulfide	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Carbon tetrachloride	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Chlorobenzene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Chloroethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Chloroform	mg/L	0.007	0.0050 U	0.0050	0.0050	0.0050 U	0.0050 U	0.0050 U	0.0050	0.0050 U	0.0050	0.0050 U	0.0050	0.0050 U	0.0050 U
Chloromethane	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
cis-1,2-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
cis-1,3-Dichloropropene	mg/L	0.0004	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Dibromochloromethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Dibromomethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Ethylbenzene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Iodomethane	mg/L	NA	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Methylene chloride	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Styrene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Tetrachloroethene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Toluene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
trans-1,2-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
trans-1,3-Dichloropropene	mg/L	0.0004	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
trans-1,4-Dichloro-2-butene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Trichloroethene	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Trichlorofluoromethane	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Vinyl acetate	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Vinyl chloride	mg/L	0.002	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Xylene (total)	mg/L	0.005	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL TABLE 3

ORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2022

		TOBER 2022		_
Parameters	Units	GW Standard (1)	MW-11A	MW-11B
1,1,1,2-Tetrachloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1,1-Trichloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1,2,2-Tetrachloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1,2-Trichloroethane	mg/L	0.001	0.0050 U	0.0050 U
1,1-Dichloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U
1,2-Dibromo-3-chloropropane	mg/L	0.0004	0.0050 U	0.0050 U
1,2-Dibromoethane	mg/L	NA	0.0050 U	0.0050 U
1,2-Dichlorobenzene	mg/L	0.003	0.0050 U	0.0050 U
1,2-Dichloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,2-Dichloropropane	mg/L	0.001	0.0050 U	0.0050 U
1,4-Dichlorobenzene	mg/L	0.003	0.0050 U	0.0050 U
2-Butanone	mg/L	0.005	0.0050 U	0.0050 U
2-Hexanone	mg/L	NA	0.0050 U	0.0050 U
4-Methyl-2-pentanone	mg/L	0.005	0.0050 U	0.0050 U
Acetone	mg/L	NA	0.0050 U	0.0050 U
Acrylonitrile	mg/L	0.005	0.0050 U	0.0050 U
Benzene	mg/L	0.001	0.0050 U	0.0050 U
Bromochloromethane	mg/L	0.005	0.0050 U	0.0050 U
Bromodichloromethane	mg/L	NA	0.0050 U	0.0050 U
Bromoform	mg/L	NA	0.0050 U	0.0050 U
Bromomethane	mg/L	0.005	0.0050 U	0.0050 U
Carbon disulfide	mg/L	NA	0.0050 U	0.0050 U
Carbon tetrachloride	mg/L	0.005	0.0050 U	0.0050 U
Chlorobenzene	mg/L	0.005	0.0050 U	0.0050 U
Chloroethane	mg/L	0.005	0.0050 U	0.0050 U
Chloroform	mg/L	0.007	0.0050	0.0050
Chloromethane	mg/L	NA	0.0050 U	0.0050 U
cis-1,2-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U
cis-1,3-Dichloropropene	mg/L	0.0004	0.0050 U	0.0050 U
Dibromochloromethane	mg/L	0.005	0.0050 U	0.0050 U
Dibromomethane	mg/L	0.005	0.0050 U	0.0050 U
Ethylbenzene	mg/L	0.005	0.0050 U	0.0050 U
Iodomethane	mg/L	NA	0.0050 U	0.0050 U
Methylene chloride	mg/L	0.005	0.0050 U	0.0050 U
Styrene	mg/L	0.005	0.0050 U	0.0050 U
Tetrachloroethene	mg/L	0.005	0.0050 U	0.0050 U
Toluene	mg/L	0.005	0.0050 U	0.0050 U
trans-1,2-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U
trans-1,3-Dichloropropene	mg/L	0.0004	0.0050 U	0.0050 U
trans-1,4-Dichloro-2-butene	mg/L	0.005	0.0050 U	0.0050 U
Trichloroethene	mg/L	0.005	0.0050 U	0.0050 U
Trichlorofluoromethane	mg/L	0.005	0.0050 U	0.0050 U
Vinyl acetate	mg/L	0.005	0.0050 U	0.0050 U
Vinyl chloride	mg/L	0.002	0.0050 U	0.0050 U
Xylene (total)	mg/L	0.005	0.0050 U	0.0050 U

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

- # = Guidance value, no standard exists.
- NA = Not available.
- PNA = parameter not analyzed for.
- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- \boldsymbol{J} Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\it U$ -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 4

LEACHATE QUALITY RESULTS

October 2022

Analytical Parameter		Leachate Collection (Primary)										
Units mg/L	April	October	April	October	April	October	April	October	April	October	April	October
	2017	2017	2018	2018	2019	2019	2020	2020	2021	2021	2022	2022
Arsenic as As	0.01 U	0.01 U	0.0068 U	0.01 U	0.01 U	0.010 U	0.010 U	0.0214	0.0100 U	0.0100 U	0.0100 U	0.0102
Cadmium as Cd	0.00021	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	60.2	84.8	38.0	59.3	78.8	107.000	49.800	89.700	54.100	73.100	66.100	89.600
Iron as Fe	29.9	47.9	11.3	17.0	34.6	1.020	13.500	34.000	13.100	3.470	2.740	1.380
Lead as Pb	0.0014 J	0.005 U	0.0013 U	0.005 U	0.005 U	0.0050 U	0.0050 U	0.0142	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium as Mg	8.93	27	5.37	13.3	12.0	19.600	10.500	12.000	9.960	12.900	11.500	22.100
Manganese as Mn	2.2	2.03	0.966	1.78	2.28	0.848	1.460	0.547	1.660	1.080	0.778	0.172
Potassium as K	18	134	7.22	48.0	33.1	87.200	31.600	37.200	18.600	37.100	22.700	68.000
Sodium as Na	37.9	352	9.39	122	76	225.000	82.400	56.900	13.000	50.000	25.900	39.800
Alkalinity total CaCO3	231	995	110	583	512	793	402	280	218	330	255	347
BOD5	5	20.9	4.0 U	28.6 U	13.3 U	8.9	12.4	8.4	5.2	10.4	2.0 U	2.0 U
COD	60.9	425	15.5	136	74.2	231	82.2	244	39.8	74.5	52.3	296
Chloride as Cl	42.5	446	11	170	99.1	332	92.8	88.2	13.6	51.2	28.4	
Hardness as CaCO3	204	200	116	180	200	320	180	333	120	360	173	327
Ammonia as N	9.5	280	3	86.2	57.9	83.7	32.0	8.6	3.5	19.9	10.2	1.0
Nitrite as N	0.05 U	0.056	0.067	0.05 U	0.05 U	1.4	0.052	0.63	0.30	0.27	0.072	0.067
Nitrate as N	0.036 J	0.22	1	0.19	0.074	12	1.5	10.7	0.15	11	0.74	0.42
Bromide	0.18 J	1.8	0.034 j	0.91	0.05 U	1.7	0.50	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Total Recoverable Phenolics	0.0282	0.0213	0.0137	0.0110	0.0064	0.0148	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0132
Sulfate as SO4	52.2	24.2	3.7 J	8.1	5 U		5.7	27.2	6.6	11.3	12.5	31.6
Total Dissolved Solids	363	1,610	191	658	440	648	416	591	240	404	317	970 1.0 II
Total Organic Carbon	12.2	130	8.6	44.5	22	69	23.5	59.7	13.2	23.2	16.2	
Total Kjeldahl Nitorgen Turbidity NTU	23.6 88.5	305 130	3.8 85.6	99.8 92.0	54.3 >50	127 >50	69.9 469	15.6 PNA	5.3 14.52	27.3 PNA	0.00	5.1 0.00
Analytical Parameter	00.3	150	03.0	72.0	- 50		tion (Secondary)		41.04		0.00	0.00
Units mg/L	April	October	April	October	April	October April October		October	April	October	April	October
	2017	2017	2018	2018	2019	2019	2020	2020	2021	2021	2022	2022
Arsenic as As	0.01 U	0.01 U	0.0068 U	0.01 U	0.01 U	0.010 U	0.0407	0.0127	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Cadmium as Cd	0.00022 J	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	73	70.6	53.1	76.8	76.1	84.400	65.600	84.100	53.800	61.600	57.600	66.700
Iron as Fe	32.4	0.407									0.116	0.100 U
Lead as Pb	0.0015 J		1.17	1.62	2.88	2.010	65.500	159.000	0.687	0.0215	0.116	0.100 0
Magnesium as Mg		0.005 U	1.17 0.0013 U	1.62 0.0050 U	2.88 0.0050 U	2.010 0.0050 U		159.000 0.0067	0.687 0.0050 U	0.0215 0.0050 U	0.0050 U	0.0050 U
	12.6	0.005 U 9.66					65.500					
Manganese as Mn			0.0013 U	0.0050 U	0.0050 U	0.0050 U	65.500 0.0104	0.0067	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Potassium as K	12.6 8.16 31.9	9.66 1.82 30.2	0.0013 U 5.64 2.75 9.81	0.0050 U 11.60 1.07 34.40	0.0050 U 12.00 3.33 31.70	0.0050 U 13.900 0.231 48.200	65.500 0.0104 9.690 0.947 27.800	0.0067 14.100 0.896 52.300	0.0050 U 9.950 0.149 16.200	0.0050 U 8.870 0.0217 17.300	0.0050 U 7.300 0.0154 14.100	0.0050 U 8.810 0.0206 17.900
Potassium as K Sodium as Na	12.6 8.16 31.9 62.2	9.66 1.82 30.2 47.4	0.0013 U 5.64 2.75 9.81 17.4	0.0050 U 11.60 1.07 34.40 77.8	0.0050 U 12.00 3.33 31.70 70.1	0.0050 U 13.900 0.231 48.200 74.600	65.500 0.0104 9.690 0.947 27.800 75.700	0.0067 14.100 0.896 52.300 85.300	0.0050 U 9.950 0.149 16.200 7.820	0.0050 U 8.870 0.0217 17.300 7.320	0.0050 U 7.300 0.0154 14.100 6.570	0.0050 U 8.810 0.0206 17.900 10.900
Potassium as K Sodium as Na Alkalinity total CaCO3	12.6 8.16 31.9 62.2 381	9.66 1.82 30.2 47.4 427	0.0013 U 5.64 2.75 9.81 17.4 195	0.0050 U 11.60 1.07 34.40 77.8 460	0.0050 U 12.00 3.33 31.70 70.1 483	0.0050 U 13.900 0.231 48.200 74.600	65.500 0.0104 9.690 0.947 27.800 75.700 277	0.0067 14.100 0.896 52.300 85.300 410	0.0050 U 9.950 0.149 16.200 7.820	0.0050 U 8.870 0.0217 17.300 7.320	0.0050 U 7.300 0.0154 14.100 6.570 169	0.0050 U 8.810 0.0206 17.900 10.900
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5	12.6 8.16 31.9 62.2 381 11.6	9.66 1.82 30.2 47.4 427 5.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U	0.0050 U 11.60 1.07 34.40 77.8 460 71.2	0.0050 U 12.00 3.33 31.70 70.1 483 7.4	0.0050 U 13.900 0.231 48.200 74.600 368 9.0	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4	0.0067 14.100 0.896 52.300 85.300 410 10.1	0.0050 U 9.950 0.149 16.200 7.820 198 7.7	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD	12.6 8.16 31.9 62.2 381 11.6 117	9.66 1.82 30.2 47.4 427 5.2 54.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137	0.0067 14.100 0.896 52.300 85.300 410 10.1	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl	12.6 8.16 31.9 62.2 381 11.6 117 71.7	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2	0.0067 14.100 0.896 52.300 85.300 410 10.1 300	9.950 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U
Potassium as K Sodium as Na Alkalinity total CaCO3 BDD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18 2.8	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 0.0135	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054	0.0050 U 8.870 0.0217 17:300 7:320 188 2.0 U 27:3 5.3 213 0.14 0.050 U 1.8	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U 0.0050 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 0.0135	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 I	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U 0.0050 U	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9 0.50 0.0050 U	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18 2.8 0.50 U 0.0064	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9 0.50 U 0.0050 U	0.0050 U 8.870 0.0217 17:300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U 1.8 0.50 U 0.0050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U 0.0050 U 22.1	0.0050 U 8.810 0.0206 17:900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7 0.50 U 0.0128
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 0.0135	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U.00083	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 I	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U 0.0050 U	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9 0.50 0.0050 U	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18 2.8 0.50 U 0.0064	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9 0.50 U 0.0050	0.0050 U 8.870 0.0217 17:300 7:320 188 2.0 U 27:3 5.3 213 0.14 0.050 U 1.8	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U 0.0050 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7 0.50 U 0.0128
Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4 Total Dissolved Solids	12.6 8.16 3.1.9 62.2 3.81 11.6 11.7 71.7 3.20 16.0 0.0058 0.066 0.32 0.0135 6.4	9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083 8.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 I 6 6.3	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115 19.8	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151 6.9	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U 58.7	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9 0.500 0.0050 U 46.6	0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18 2.8 0.50 U 0.0064 23.6	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9 0.50 U 0.0050 U 6.1	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U 1.8 0.50 U 17.6	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U 0.0050 U 22.1	0.0050 U 8.810 0.0206 17:900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7 0.50 U 0.0128 28.0

NOTES:

- Bold indicates update due to data validation.
 B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time

- E Serial dilution is not within acceptance criteria or the reported value is estimated because of the presence of interference.

 J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

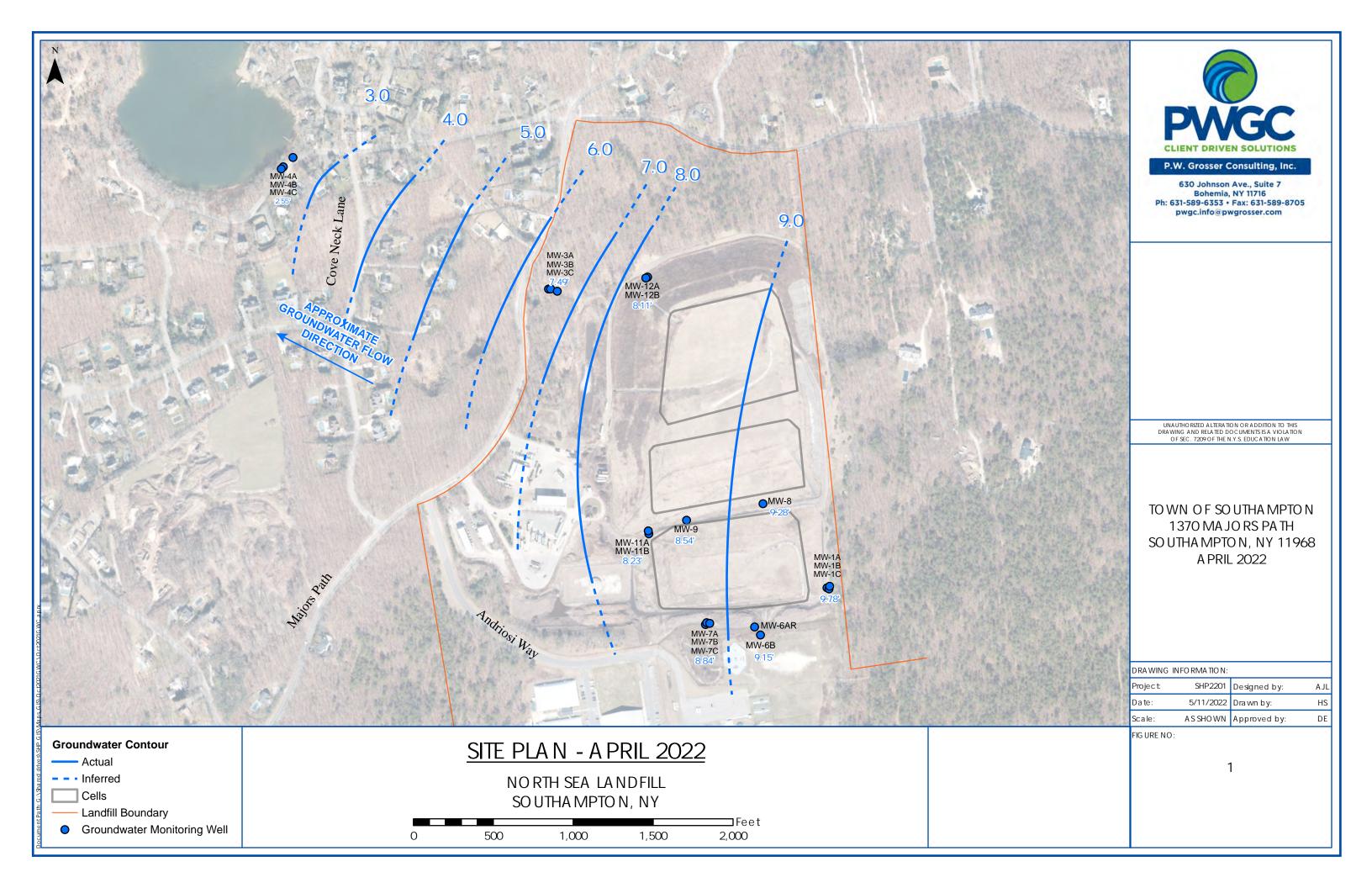
 J Data Validation (Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- 7 Out a vanation (quame* The allayer was possively network of the control of the compound was analyzed for, but not detected above the reported sample quantitation limit of U-Data Validation (qualifier The analyte was not detected above the reported sample quantitation limit of the property o

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 5

GROUNDWATER ELEVATIONS October 2022


Monitoring	* Casing	Octobe	r 2017	April	2018	Octobe	r 2018	April	2019	Octobe	r 2019	April	2020	Octobe	r 2020	April	2021	Octobe	er 2021	April	2022	Octobe	r 2022
Well Number	Elevation	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE
MW-1A	113.87	105.28	8.59	104.37	9.50	104.72	9.15	102.40	11.47	103.10	10.77	103.27	9.73	103.24	10.63	104.72	9.15	104.59	9.28	104.09	9.78	104.12	9.75
MW-1B	115.09	106.50	8.59	105.70	9.39	108.80	6.29	103.57	11.52	104.30	10.79	104.50	10.59	107.28	7.81	105.04	10.05	105.82	9.27	105.34	9.75	106.39	8.70
MW-1C	114.99	106.28	8.71	106.10	8.89	106.88	8.11	104.45	10.54	105.60	9.39	105.20	9.79	106.31	8.68	106.75	8.24	106.68	8.31	105.99	9.00	107.18	7.81
MW-2	74.8	NM		NM		NM		NM	-	NM		NM	-	NM		NM	ī	NM		NM		NM	
MW-3A	55.3	48.88	6.42	47.50	7.80	48.43	6.87	46.56	8.74	47.35	7.95	47.12	8.18	48.40	6.90	47.30	8.00	48.27	7.03	47.81	7.49	48.88	6.42
MW-3B	51.9	45.47	6.43	44.20	7.70	44.96	6.94	45.24	6.66	44.00	7.90	43.92	7.98	45.11	6.79	44.09	7.81	44.96	6.94	44.45	7.45	45.57	6.33
MW-3C	51.4	45.07	6.33	43.78	7.62	44.40	7.00	44.98	6.42	44.80	6.60	43.36	8.04	44.72	6.68	44.71	6.69	44.50	6.90	43.99	7.41	45.08	6.32
MW-4A	16	13.99	2.01	13.40	2.60	12.75	3.25	13.58	2.42	13.30	2.70	13.10	2.90	13.86	2.14	13.42	2.58	13.58	2.42	13.45	2.55	13.49	2.51
MW-4B	16.1	14.15	1.95	13.60	2.50	12.74	3.36	13.49	2.61	13.54	2.56	13.31	2.79	13.98	2.12	13.47	2.63	13.15	2.95	13.27	2.83	13.40	2.70
MW-4C	16	10.31	5.69	9.80	6.20	9.51	6.49	8.57	7.43	9.12	6.88	8.64	7.36	9.56	6.44	9.06	6.94	9.79	6.21	9.31	6.69	10.01	5.99
MW-5A	74.27	NM		NM		NM		NM		NM		NM		NM		NM	-	NM		NM		NM	
MW-5B	75.25	NM		NM		NM		NM		NM		NM		NM		NM	-	NM		NM		NM	
MW-5C	74.33	NM		NM		NM		NM	-	NM		NM	-	NM		NM	ī	NM		NM		NM	
MW-6A	NS	NM		NM		NM		NM	-	NM		NM	-	NM		NM	ī	NM		NM		NM	
MW-6AR	100.72	92.89	7.83	91.81	8.91	93.71	7.01	88.85	11.87	90.70	10.02	91.83	8.89	92.35	8.37	91.25	9.47	92.19	8.53	91.57	9.15	93.84	6.88
MW-6B	103.46	95.20	8.26	94.12	9.34	94.46	9.00	92.19	11.27	93.20	10.26	94.43	9.03	94.68	8.78	93.59	9.87	94.18	9.28	93.97	9.49	95.14	8.32
MW-7A	92.83	84.98	7.85	83.15	9.68	83.55	9.28	81.50	11.33	82.43	10.40	82.23	10.60	82.54	10.29	80.43	12.40	83.12	9.71	83.99	8.84	84.88	7.95
MW-7B	92.72	84.67	8.05	83.54	9.18	83.70	9.02	81.68	11.04	82.50	10.22	82.26	10.46	82.14	10.58	83.11	9.61	NM		83.45	9.27	84.67	8.05
MW-7C	93.31	86.20	7.11	84.69	8.62	84.08	9.23	83.51	9.80	83.81	9.50	84.17	9.14	84.85	8.46	84.56	8.75	85.66	7.65	84.98	8.33	86.18	7.13
MW-8	86.02	77.76	8.26	76.75	9.27	77.13	8.89	74.97	11.05	76.80	9.22	77.41	8.61	77.03	8.99	76.23	9.79	77.11	8.91	76.74	9.28	77.69	8.33
MW-9	82.56	74.73	7.83	73.60	8.96	74.10	8.46	72.00	10.56	73.90	8.66	74.20	8.36	74.30	8.26	73.23	9.33	74.12	8.44	74.02	8.54	74.40	8.16
MW-11A	80.78	73.69	7.09	73.40	7.38	74.00	6.78	71.19	9.59	71.40	9.38	71.32	9.46	71.76	9.02	71.55	9.23	72.99	7.79	72.55	8.23	72.88	7.90
MW-11B	78.32	74.56	3.76	73.38	4.94	74.10	4.22	66.88	11.44	68.80	9.52	73.75	4.57	73.91	4.41	NM		73.75	4.57	73.75	4.57	74.38	3.94
MW-12A	87.95	81.88	6.07	79.66	8.29	80.40	7.55	78.57	9.38	79.20	8.75	79.75	8.20	80.40	7.55	79.42	8.53	80.11	7.84	79.84	8.11	80.19	7.76
MW-12B	88.28	81.47	6.81	80.20	8.08	80.12	8.16	79.36	8.92	78.00	10.28	79.14	9.14	80.99	7.29	80.02	8.26	80.92	7.36	80.43	7.85	81.70	6.58

NOTES:
* = SURVEYED TO MEAN SEA LEVEL
GWE = GROUNDWATER ELEVATION
DTW = DEPTH TO WATER

NM = NOT MONITORED NS = NOT SURVEYED

FIGURES

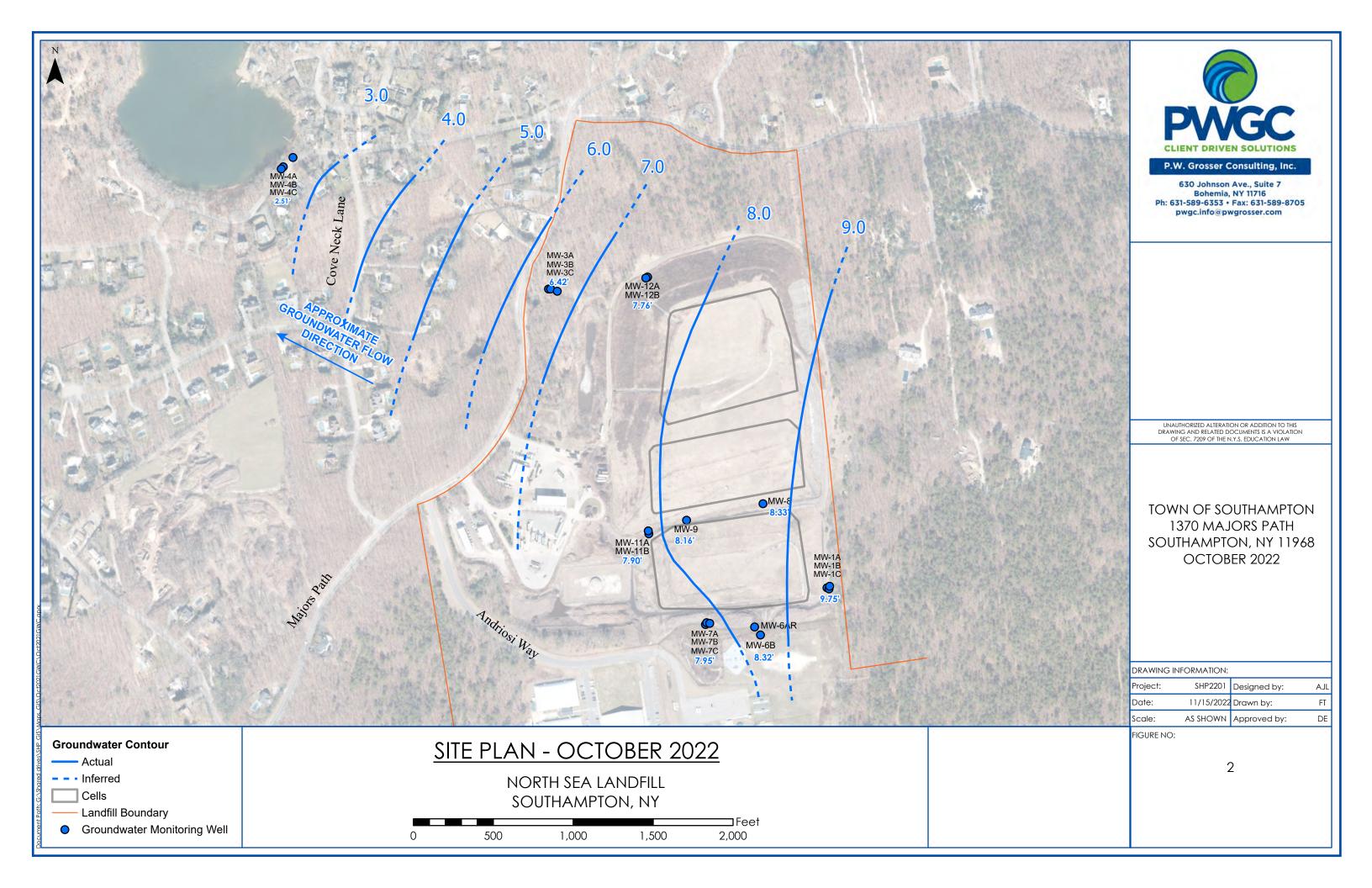


Figure 3 Monitoring Well 11A (1997 - 2022)

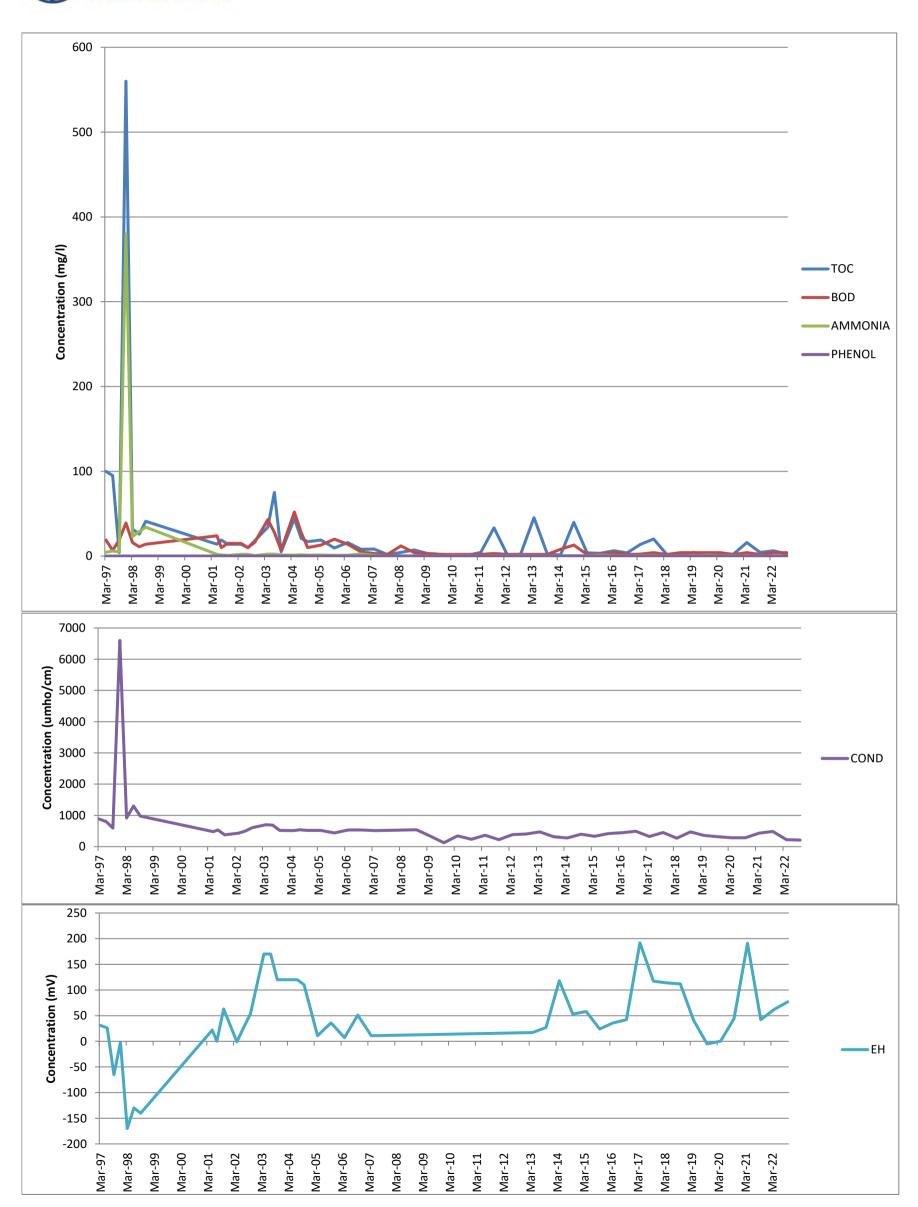


Figure 4 Monitoring Well 11B (1997 - 2022)

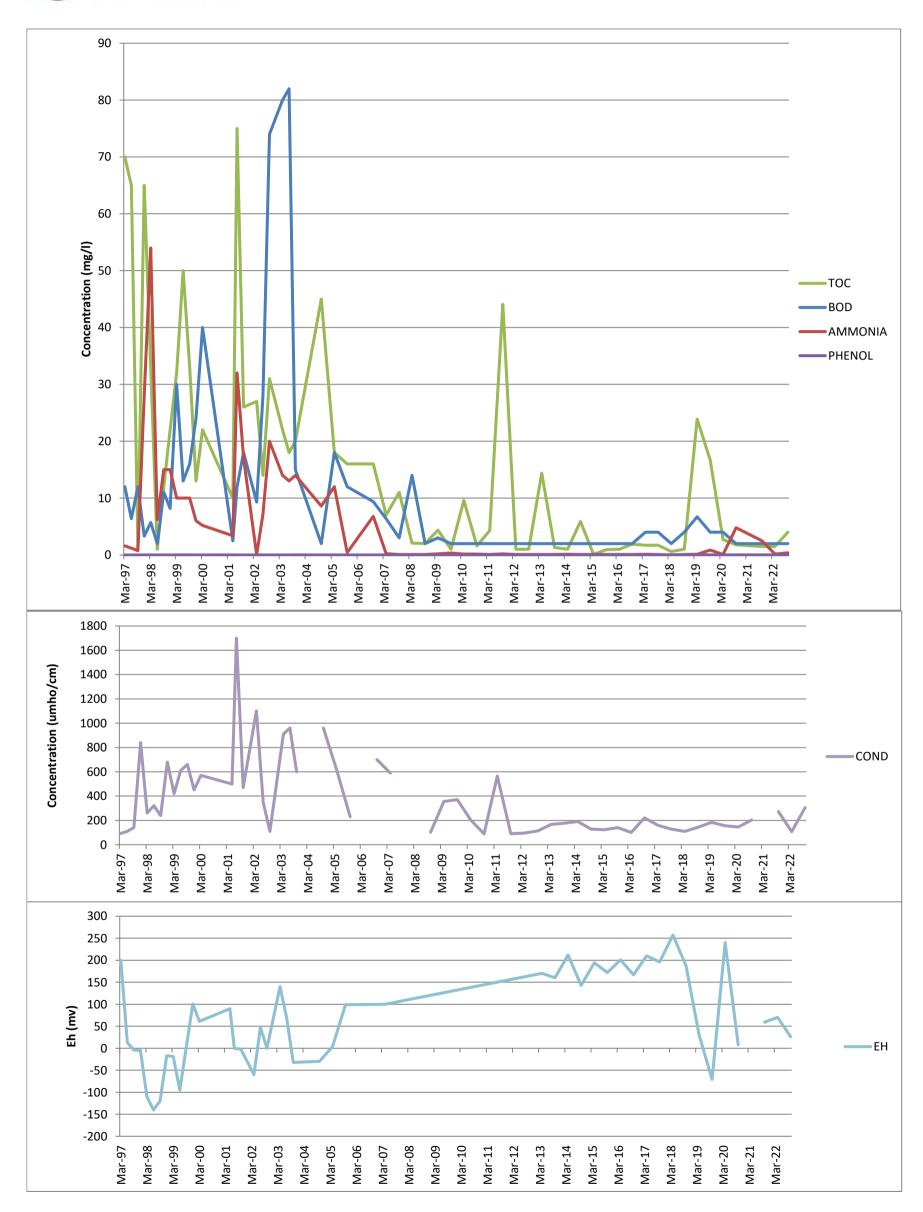


Figure 5
Monitoring Well Cluster 4
Ammonia Trends
(1993 - 2022)

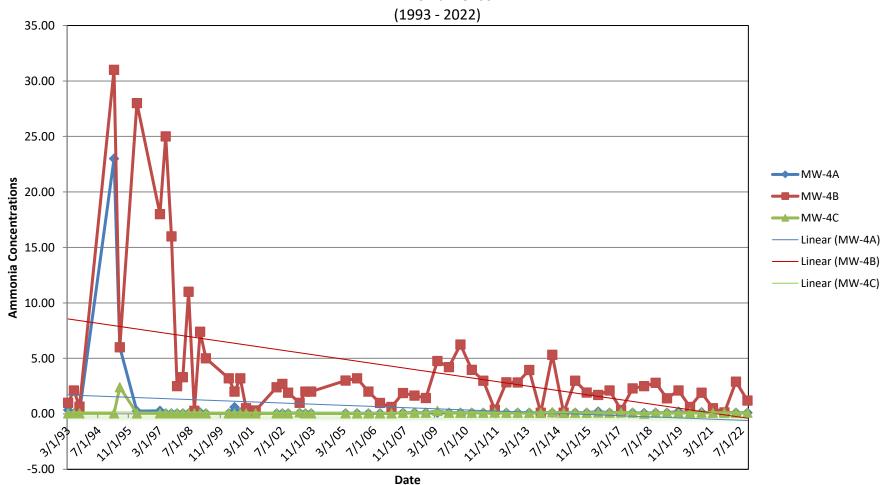


Figure 6 Monitoring Well Cluster 4 Chloride Trends (1995 - 2022)

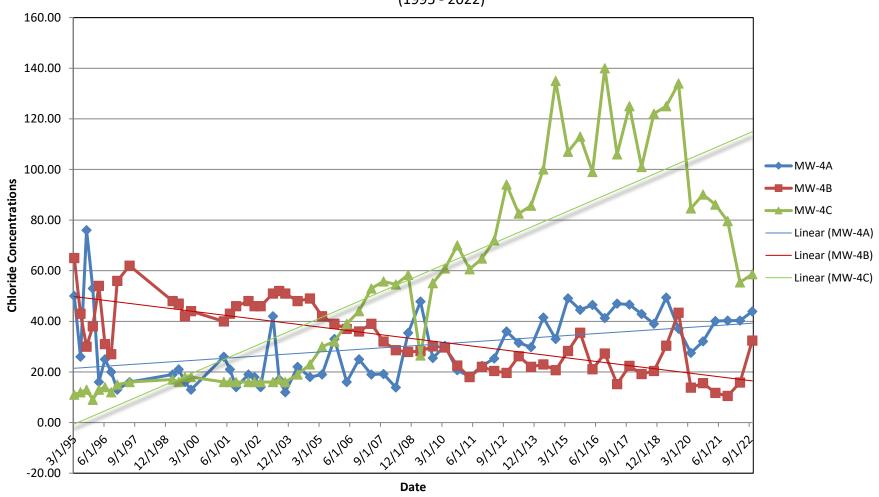


Figure 7
Monitoring Well Cluster 4
Chromium Trends

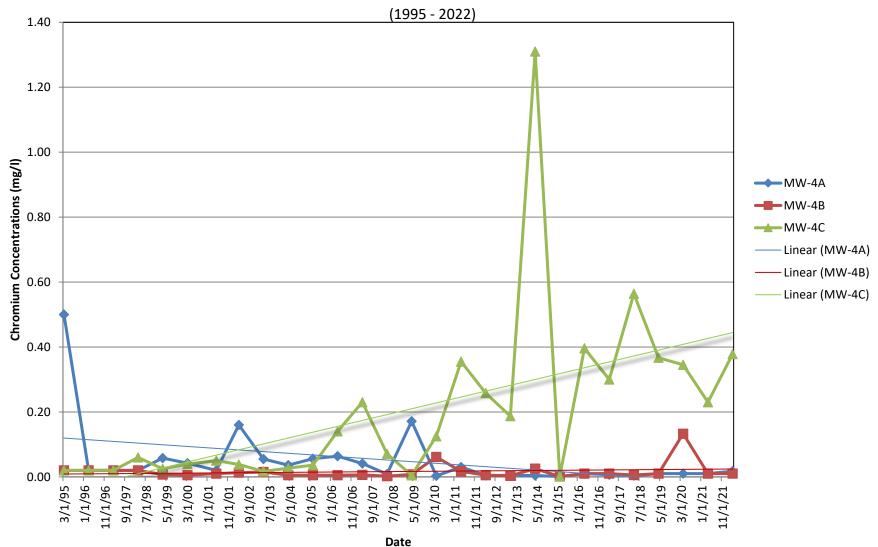


Figure 8

Monitoring Well Cluster 4

Conductivity Trends

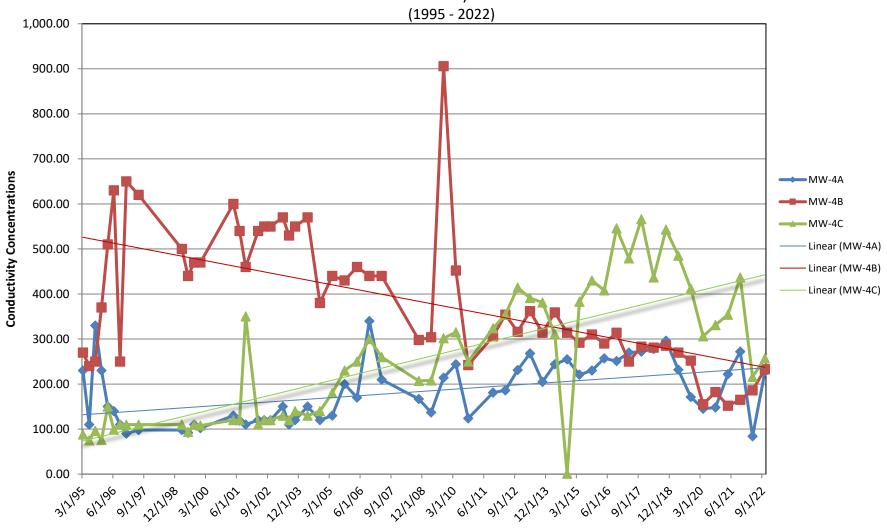


Figure 9
Monitoring Well Cluster 4
Iron Trends
(1993 - 2022)

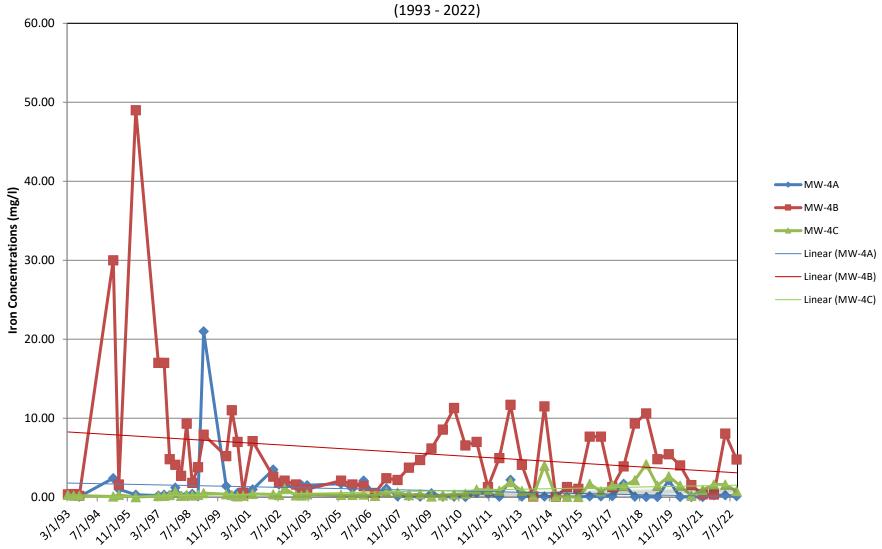


Figure 10
Monitoring Well Cluster 4
Manganese Trends

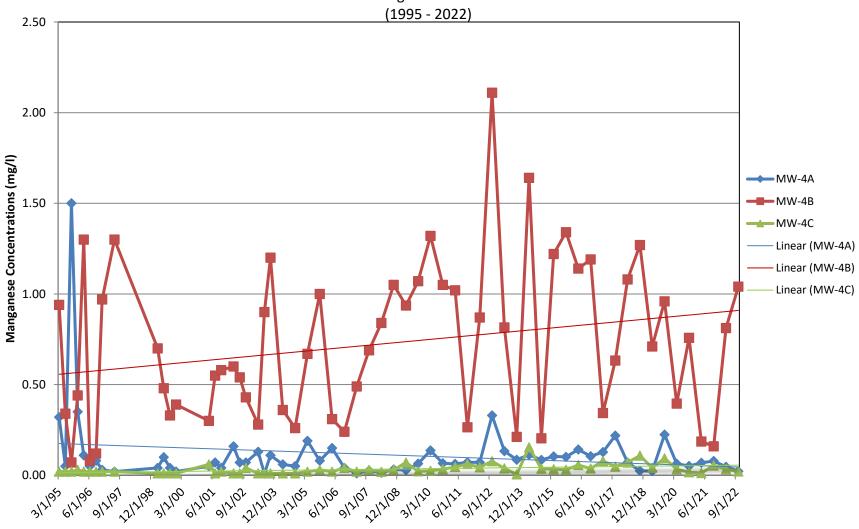


Figure 11 Monitoring Well Cluster 4 Nitrate Trends (1993 - 2022)

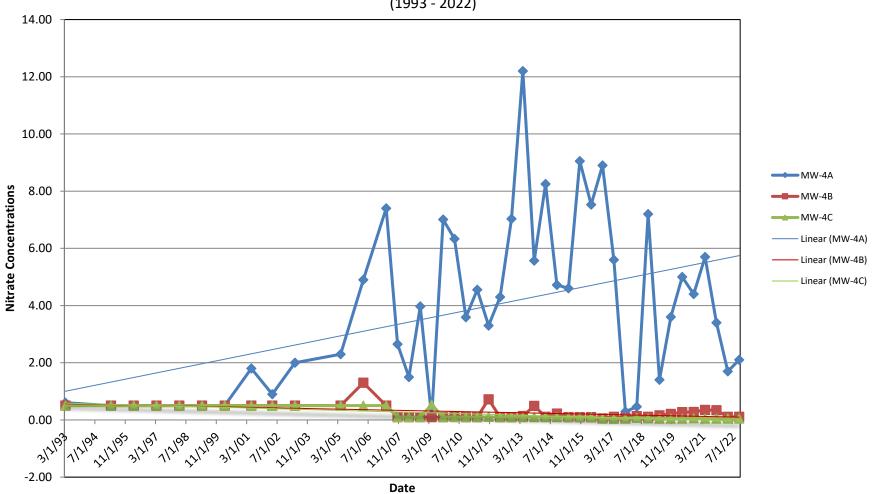
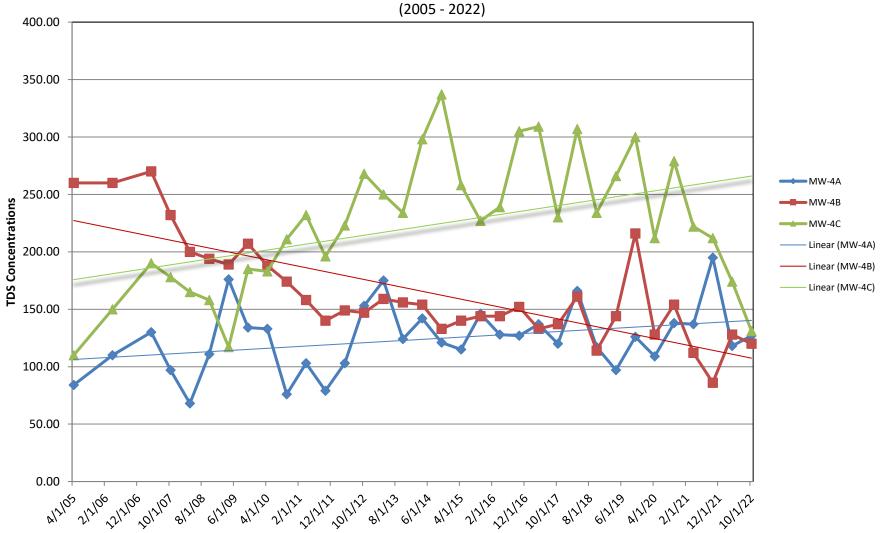



Figure 12 Monitoring Well Cluster 4 Total Dissolved Solids Trends (2005 - 2022)

APPENDIX A COVERAGE AND DRAINAGE INSPECTION LOGS

<u>VEGETA</u>	TIVE COVER				DATE:	3-2-7	2022		
Quarterly Inspection X Storm Inspection			ction	INSPECTION BY: Ed Thompson, Jr.					
LOCATIO	PROBLEM CODE	PRIORITY CODE	PHOT TAKE	1		CON	IMENTS		
			Y/N#			· · · · · · · · · · · · · · · · · · ·			
			Y/N#						
		· · · · · · · · · · · · · · · · · · ·	Y/N#						
			Y/N#					The state of the s	
			Y/N#				. , , , ,		
			Y/N#						
			Y/N#						
			Y/N#						
			Y/N#						
			Y/N#			1000			
	PROBLEM C	ODE			PRIORIT	Y CODE		Directions:	
a t	are spots			1	Immediate			List only items or areas	
b c	ead areas			2	Correct within	1 week		of the site where problems or deficiencies	
c undesirable growth d unauthorized dumping			3	Correct within			are noted or where		
			4	Correct within			repairs or rehabilitation		
e. I	tter			5	Correct within	6 months		are required.	
f				6	Correct within	1 year			

SOIL	COV	/ER
------	-----	-----

3-2-2022 DATE:

and the second s			
Quarterly Inspection	X	Storm Inspection	INSPECTION BY: Ed Thompson Jr.

LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
			Y/N #	
	<u></u>		Y/N #	
			Y/N #	
·		· .	Y/N #	
			Y/N#	
			Y/N #	
			Y/N #	

	PROBLEM CODE								
а	erosion damage	g	waste breakthrough						
b	slope movement	h	leachate breakthrough						
С	ponding (>10'x10')	1	exposed geosynthethics						
_d	holes	j	vandalism						
е	cracking	k	vector infestation						
f	rutting of soils	I							

	PRIORITY CODE							
1	1 Immediate							
2	Correct within 1 week							
3	Correct within 1 month							
4	Correct within 3 months							
5	Correct within 6 months							
6	Correct within 1 year							

List only items or areas of the site where problems or deficiencies are noted or where

repairs or rehabilitation

are required.

Directions:

If entire site Soil Cov <u>er is</u> acceptable, check box and sign bel	ow.
---	-----

	SITE INSPECTION CHECKLIST	٠
REVETMENT MATTING (RIP RAP)	DATE: 3-2-20	22

Quarterly Insp	ection X	Storm Inspe	ction	INSPECTION BY: Ed Thompson Jr.
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
Side Slopes				
			Y/N #	
Gabion Curb				
			Y/N #	
			Y/N #	
			Y/N #	
			Y/N#	

	PROBLEM CODE									
а	vandalism	g	waste breakthrough							
b	slope movement	h	leachate breakthrough							
С	vector infestation	l l	exposed geosynthetics							
d	holes	j	damaged baskets							
е	holes in wire fabric	k	loose ties							
f	settlement	Ι								

	PRIORITY CODE								
1	Immediate								
2	Correct within 1 week								
3	Correct within 1 month								
4	Correct within 3 months								
5	Correct within 6 months								
6	Correct within 1 year								

Directions:
List only items or areas
of the site where
problems or deficiencies
are noted or where
repairs or rehabilitation
are required.

If all Dayetment Matting (Din Day	a) and Cabian Curbs are accomtable	abook how and alan halov
ii ali Kevelillelli mattiliy (Kip Kaj	 and Gabion Curbs are acceptable, 	CHECK DOX AHU SIGH DEIOY

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

		POST CLOSURE MO SITE IN	NITORING AND MA ISPECTION CHECK	
ACCESS ROADS			DATE:	3-2-20
Quarterly Inspection	Χ	Storm Inspection	INSPECT	FION BY: Ed Thom

Storm Inspection

LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
			Y/N#	
·			Y/N #	
			Y/N #	
			Y/N#	
			Y/N #	

PROBLEM CODE							
а	potholes						
b	burrow holes						
С	erosion gullies						
d	loss of stone cover						
е	exposed geotextile						
f	obstructions / debris						

	PRIORITY CODE
1	Immediate
2	Correct within 1 week
3	Correct within 1 month
4	Correct within 3 months
5	Correct within 6 months
6	Correct within 1 year

INSPECTION BY: Ed Thompson Jr.

Directions: List only items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation are required.

If all Access	Roads	are	acceptable,	check	box	and	sign	below.
	0						Ť	

Signature:

Page 4 of 15

STORMWATER COLLECTION SYSTEM (2 of 4)						DATE:					
Quarterly Insp	ection	X	Storm Inspec	ction	•		INSPECTION BY: Ed Thompson Jr.				
LOCATION	PROBL COD		PRIORITY CODE	PHOT TAKE	-				COMMENTS		
Inlet Structures											·
			·	Y/N#							:
				Y/N#						`.	
				Y/N#					····		
				Y/N#							
Rip Rap Draii	nwav				nbog i	·					· · · · · · · · · · · · · · · · · · ·
				Y/N#							<u>.</u>
										· ····	
				Y/N#		· ·					
				Y/N#						. :	·
	<u> </u>			Y/N#		<u> </u>					
	PROB	LEM	CODE	<u> </u>	1		PRIORIT	TY CODI	= 1	Directions	3.
a vandalism	<u> </u>	g	erosion control	fabric	:	1	Immediate				tems or areas
b slope mov	rement	h	loss of stone			2	Correct within 1 w	veek		of the site	
c silt accum	ulation		loss of topsoil			3	Correct within 1 m	nonth		problems or deficiencies are noted or where	
d ponded w	ater	j	soil erosion arc	und		4	Correct within 3 m	nonths		· ·	rehabilitation
e vegetative	cover	k	soil erosion ber	neath		5				are requir	
f debris / cl	ogging					6	Correct within 1 ye	ear		aro roquii	
If Inlet Struct	ures and	Rip	Rap Drainway	are acce	eptal	ole, d	check box and s	ign belo	рw		
Signature:					<u> </u>		<u>.</u>	·			

STORMWA	TER COLLE	CTION SYS	TEM (1 of 4)	DATE: 3-2-2022				
Quarterly Insp	ection X	Storm Inspe	ction	INSPECTION BY: Ed Thompson Jr.				
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS				
Perimeter Sv	vales				<u> </u>			
-			Y/N #					
			Y/N #					
		±.	Y/N#		··· ,			
			Y/N #					
Diversion Sw	/ales							
			Y/N#					
			Y/N#					
			Y/N#		<u> </u>			
			Y/N#					

	PROBLEM		· .	PRIORITY CODE <u>Direction</u>				
a vandalism		erosion control	fabric	T ITTERIORIES	items or areas			
b slope mov		loss of topsoil		Z Correct within I week	or deficiencies			
c silt accum		exposed geosy	nthetics	3 Correct within 1 month	or where			
d ponded w		wash outs		4 Correct within 3 months	r rehabilitation			
	e vegetative cover k			5 Correct within 6 months are requi				
f debris / cl	ogging i	<u> </u>		6 Correct within 1 year				
If Perimeter S	Swales and D	iversion Swal	es are accept	table, check box and sign below				

Quarterly Inspection X Storm Inspection						INSPECTION BY: Ed Thompson Jr.				
LOCATION PROBLEM PRIORITY PHOTO CODE CODE TAKEN						COMME	NTS			
Energy Dissipators							· · · · · · · · · · · · · · · · · · ·			
				Y/N#			, , , , , , , , , , , , , , , , , , , ,			
				Y/N#						
				Y/N#						
	<u>,,</u>			Y/N#						
Downchutes						· · · · · · · · · · · · · · · · · · ·	<u> </u>			
				Y/N#	1100					
				Y/N#						
				Y/N#						
				Y/N#						
	PROBI	LEM	CODE	·]		PRIORITY CODE	Directions:			
a vandalism		q	soil erosion ard	ound		Immediate	List only items or areas			
b slope mov		h	loss of stone	-	2	Correct within 1 week	of the site where			
c silt accum		1	soil erosion be	neath	3	Correct within 1 month	problems or deficiencies			
d ponded w	ater	i	loose ties on b		4	Correct within 3 months	are noted or where			
		slippage of gal	pion	5	Correct within 6 months	repairs or rehabilitation are required.				
	ogging				6	Correct within 1 year	are required.			

STORMWA	TER CC	LLE	CTION SYS	TEM (4 of 4	<u>1)</u>	DATE:	3-2-	2012	
Quarterly Inspection X Storm Inspection						INSPECT	FION BY: Ed Th		г.
LOCATION	PROBL COD		PRIORITY CODE	PHOTO TAKEN			СОМ	MENTS	
Drywells			<u></u>						
				Y/N#					
	i i			Y/N#					
				Y/N#			<u> </u>		
				Y/N#	 		,		
Culverts / Ou	itlets								<u> </u>
				Y/N#			······································	· ·	
			. :	Y/N#					
	·			Y/N#				•	· · · · · · · · · · · · · · · · · · ·
			-	Y/N#		· · · · · · · · · · · · · · · · · · ·			
	PROB	IFM	CODE			PPIOE	RITY CODE		Directions:
a vandalism		a	erosion control	fabric		Immediate	WIT CODE		List only items or areas
b slope mov		h	soil erosion arc		2	Correct within 1	l week		of the site where
c silt accum			exposed geosy		3	Correct within 1			problems or deficiencies
d ponded w	ater	i	damage / insta		4	Correct within 3			are noted or where
e vegetative	cover	k	<u> </u>		5	Correct within 6			repairs or rehabilitation
f debris / cl		ı	···		6	Correct within 1			are required.
If Drywells an	nd Culver	rts ar	re acceptable,	check box a	ınd s				

MONITO	RING WELLS	·	•		DATE:		
Quarterly I	nspection X	Storm Inspe	ction	<u>-</u>	INSPECTION BY: Ed	l Thompson J	r.
ITEM I.C	PROBLEM CODE	PRIORITY CODE	PHOT TAKE	- 1	Co	OMMENTS	
Landfill G	as Monitoring W	ells					
			Y/N#			-	· . · .
			Y/N#				
			Y/N#				
			Y/N#				
Groundwa	ater Monitoring	Wells					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Y/N#				· · · · · · · · · · · · · · · · · · ·
			Y/N#				
			i				<u> </u>
1	· · · · · · · · · · · · · · · · · · ·		Y/N#				
T \$ 3	्र क्षाम्यस् हो।	A to an in	Y/N#				
	PROBLEM C				PRIORITY CODE		<u>Directions:</u>
a c	damage	***		1	Immediate		List only items or areas
b v	/andalism			2	Correct within 1 week		of the site where
CS	settlement			3	Correct within 1 month		problems or deficiencies are noted or where
d v	ector infestation	-		4	Correct within 3 months		repairs or rehabilitation
е				5	Correct within 6 months		are required.
f				6	Correct within 1 year		aro roquirou.
If all Moni	itoring Wells are	acceptable, c	heck box	and si	gn below.	. :	

RECHARG	E BASINS	•			DATE:	_3-2-	2027	
Quarterly Insp	ection X	Storm Inspe	ction	_	INSPECT	TION BY: Ed		
LOCATION	PROBLEM CODE	PRIORITY CODE	PHO TAKI	- 1		CC	MMENTS	
Recharge Ba	sin						14	
			Y/N#					·
			Y/N#				 -	
			Y/N#					· · · · · · · · · · · · · · · · · · ·
			Y/N#					·
			Y/N#				· · · · · · · · · · · · · · · · · · ·	
							· .	
			Y/N#					
	<u> </u>		Y/N#					
		<u> </u>	Y/N#			·		
	PROBLEM C	ODE	<u> </u>		PRIORIT	Y CODE		Directions:
a vege	etation				Immediate			List only items or areas
	slope erosion					1 week	· -	of the site where
	slope failures							problems or deficiencies
	ccumulation			4				are noted or where
e over	flow conditions	S		5				repairs or rehabilitation
f debi	is / clogging			6	***			are required.
If Recharge E	Basin is accep	otable, check	box and	sign I	pelow.			

LANDFILL GAS COLLECTION SYSTEM

DATE: 3-2-2027

Quarterly Inspection Storm Inspection

INSPECTION BY: Ed Thompson Jr.

ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS	
LFG Collection	on Wells / Val	ve Vaults			
			Y/N #	Landfill is using passive venting of LFG	
			Y/N #		
		9	Y/N #		
			Y/N#		
LFG Collecti	on Headers				
			Y/N#	Landfill is using passive venting of LFG	
1	h	*	Y/N #	Inactive 10" pipe between Cells 2 & 3 was damaged during excavation.	
			Y/N #	*abandoned in place, marked in case of future activity is required.	
			Y/N#		

	PROBLEM CODE					
а	odor	g	broken valve			
b	damage	h	broken piping			
С	vandalism		exposed geosynthetics			
d	settlement	j	damage / instability			
е	vector infestation	k	soil erosion around			
f	no vacuum	I				

	PRIORITY CODE
1	Immediate
2	Correct within 1 week
3	Correct within 1 month
4	Correct within 3 months
5	Correct within 6 months
6	Correct within 1 year

Directions:

List only items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation are required.

If entire site Landfill Gas	Collection System	is acceptable,	check box and	sign below

					· ·		, :
LANDFILL C	SAS CC	MP	<u>DUND</u>		DATE:	3-7-20	2-2-
Quarterly Inspection X Storm Inspection			ction	INSPECT	ION BY: Ed Thompso	n Jr.	
ITEM I.D.	PROBL COD		PRIORITY CODE	PHOTO TAKEN		COMMENTS	<u> </u>
Blower Pad /	Blower	Nos.	1 and 2				
				Y/N#	Landfill is using pas	sive venting of LFG	
				Y/N #			4
				Y/N#			
Flare			<u> </u>				
	-			Y/N#	l andfill is using nas	sive venting of LFG	
				Y/N#	Landing basing pas	Solve vehiling of El O	
				Y/N#			
				Y/N#	, , , , , , , , , , , , , , , , , , , ,		, <u>, , , , , , , , , , , , , , , , , , </u>
				1711 #			
	PROB	LEM	CODE		PRIOR	ITY CODE	<u>Directions:</u>
a odor		g	broken valve		1 Immediate		List <u>only</u> items or areas
b damage		h	broken piping		2 Correct within 1	week	of the site where
c vandalism		1	broken belts		3 Correct within 1	month	problems or deficiencies
d mechanica	l noise	j			4 Correct within 3	months	are noted or where
e no vacuum)	k			5 Correct within 6	months	repairs or rehabilitation
f alarms		1			6 Correct within 1	year	are required.
If entire Land	/	Comp	pound is acce	ptable, check	t box and sign below	N. 2	=

SITE FACIL	<u>ITIES</u>			DATE: Ed Thompson Jr.	
Quarterly Insp	ection X	Storm Inspe	ction	INSPECTION BY:	
ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS	. `
Electrical Pa	nels and Cont	trol Panels		Lights tested: Y / N	
			Y/N#		
			Y/N#		
Gates / Lock	s / Signs		77 - 186 - 1		
			Y/N#		
Fencina (ider	ntify location by	Grid I D))	Tree land of the land of the land		
			Y/N#		
			Y/N#		
Site Trailer		<u> </u>	I / IN #	Talanhana dial tanan V / N	
Site Hailer	1	<u> </u>		Telephone dial tone: Y / N	
<u> </u>			Y/N#		
	PROBLEM	CODE		PRIORITY CODE	<u>Directions:</u>
a damage	g	replace indicat		1 Immediate	List <u>only</u> items or areas
b vandalism	n h	tripped / reset	required	2 Correct within 1 week	of the site where problems or deficiencies
c alarms	<u> </u>			3 Correct within 1 month	are noted or where
d missing lo				4 Correct within 3 months	repairs or rehabilitation
e missing s				5 Correct within 6 months	are required.
f hole in fer	nce fabric I			6 Correct within 1 year	
If all Site Fac	cilities are acc	eptable, chec	k box and s	sign below.	_
Signature:				· · · · · · · · · · · · · · · · · · ·	

LEACHATE PUMP STATION

DATE:	3-2-2022

Quarterly Inspection

X Storm Inspection

INSPECTION BY: Ed Thompson Jr.

ITEM I.D.	PROBLEM PR	ORITY PHOTO	COMMENTS
Leachate Pump Sta	tion		Contractor doing repairs to the
		Y/N #	Contractor doing repairs to the Lechete pump station
		Y/N#	
		Y/N#	
Leachate Tank			
		Y/N #	
		Y/N#	
		Y/N #	
		Y/N#	

	PROBLEM CODE					
а	pump not working	g	broken valve			
Ь	damage	h	broken piping			
С	vandalism	_ 1	other			
d	mechanical noise	j				
е	no electric	k				
f	alarms					

PRIORITY CODE					
1	Immediate				
2	Correct within 1 week				
3	Correct within 1 month				
(4)	Correct within 3 months				
5	Correct within 6 months				
6	Correct within 1 year				

Directions:

List <u>only</u> items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation are required.

If entire Leachate Pump Station is acceptable, check box and sign below.

1

COMMENTS		DATE:	3-2-2022	
Quarterly Inspection	Storm Inspection	INSPECT	ION BY: Edward Thompson Jr.	
	ADDITIONAL (COMMENTS AS RE	QUIRED	
Philip Ross	s Contractor's ar	e doing a	revovation of the	DAVE
	· · · · · · · · · · · · · · · · · · ·			
				
		An organization of the contract of the contrac	And the second second	
		·		
				· ·
		· .		
Site inspection has bee Signature:	n completed, check box and s	ign below.		
		Page 15 of 15		

` / -	\sim \sim	- A T	13 / [001	
VΕ	GE	IAI	IVE	CO	VEK.

DATE: 6-8-2022

Quarterly	Inspection
-----------	------------

X Storm Inspection

INSPECTION BY: Ed Thompson, Jr.

LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
	÷		Y / N #	
			Y/N #	
			Y/N#	
			Y/N #	
			Y/N#	
	ı.		Y/N #	
			Y/N#	
	,		Y/N #	
			Y/N #	
			Y/N #	··

PROBLEM CODE				
а	bare spots			
b	dead areas			
С	undesirable growth			
d	unauthorized dumping			
е	litter			
f				

	PRIORITY CODE
1	Immediate
2	Correct within 1 week
3	Correct within 1 month
4	Correct within 3 months
5	Correct within 6 months
6	Correct within 1 year

<u>Directions:</u> List only items

List <u>only</u> items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation are required.

lf	entire site	Vegetative (Cover is	acceptable,	check box	and sign	below
••	VIIII V GILC	regemente	22 ACI 13	acceptable,	CHECK DOX	ana siyii	NEIA4

SOIL COVE	₹
-----------	---

DATE: 6-8-2022

			·
Quarterly Inspection	Х	Storm Inspection	INSPECTION BY: Ed Thompson Jr.

LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
Medical Constant			Y/N#	
	·		Y/N#	
			Y/N#	
			Y/N#	
			Y/N #	
			Y/N#	
			Y/N #	
			Y / N:#	
			Y/N#	
	. *		Y/N #	

	PROBLEM CODE					
а	erosion damage	g	waste breakthrough			
b	slope movement	h	leachate breakthrough			
С	ponding (>10'x10')	_	exposed geosynthethics			
d	holes	j	vandalism			
Е	cracking	k	vector infestation			
_ f_	rutting of soils	-				

	PRIORITY CODE				
1	Immediate				
2	Correct within 1 week				
3	Correct within 1 month				
4	Correct within 3 months				
5	Correct within 6 months				
6	Correct within 1 year				

Directions:
List only items or areas
of the site where
problems or deficiencies
are noted or where
repairs or rehabilitation
are required.

If entire site Soil Cover is acceptable, check box and sign below.	V
Signature: The John	•

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL POST CLOSURE MONITORING AND MAINTENANCE PLAN

	SITE INSPECTION CHECKLIST		
REVETMENT MATTING (RIP RAP)	DATE: 6-8-2022		
Quarterly Inspection X Storm Inspection	INSPECTION BY: Ed Thompson Jr.		

=	* *		·	·
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
Side Slopes				
	,		Y/N #	
			Y/N #	
			Y/N #	
		·	Y/N #	
Gabion Curb				
			Y/N #	
			Y/N #	
			Y/N #	
		·	Y/N #	

PROBLEM CODE				
а	vandalism	g	waste breakthrough	
b	slope movement	h	leachate breakthrough	
С	vector infestation	l	exposed geosynthetics	
d -	holes	j	damaged baskets	
е	holes in wire fabric	k	loose ties	
f	settlement	I		

PRIORITY CODE			
1	Immediate		
2	Correct within 1 week		
3	Correct within 1 month		
4	Correct within 3 months		
5	Correct within 6 months		
6	Correct within 1 year		

List only items or areas of the site where

problems or deficiencies are noted or where repairs or rehabilitation are required.

Directions:

Signature: Zorfe Dr.

ACCESS ROADS					DATE: 6-8-2022			
Quarterly Inspection X Storm Inspection				INSPECTION BY: Ed Thompson Jr.				
LOCATIO	ON PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	- 1	COMMENTS			
			Y/N#					
			Y/N#					
			Y/N#		-			
			Y/N#					
-			Y/N#					
			Y/N#					
			Y/N#					
			Y/N#					
		·	Y/N#					
			Y/N#					
	PROBLEM C	ODE			PRIORITY CODE	Directions:		
a potholes		1	Immediate	List <u>only</u> items or areas				
b burrow holes c erosion gullies d loss of stone cover		2	Correct within 1 week	of the site where				
			3	Correct within 1 month	problems or deficiencies are noted or where			
		4	Correct within 3 months	repairs or rehabilitation				
e exposed geotextile		5	Correct within 6 months	are required.				
f obstructions / debris		6	Correct within 1 year	aro roquirou.				

Page 4 of 15

				SITE)	FION CHECK	_13 1		•		
STORMW	ATER CO	LLE	CTION SYS	TEM (1 of 4)	<u>)</u>	DATE:	Ca-8-	2022			
Quarterly Inspection X Storm Inspection						INSPECTION BY: Ed Thompson Jr.					
LOCATION	ATION PROBLEM PRIORITY PHOTO CODE CODE TAKEN					CO	MMENTS				
Perimeter Swales											
				Y/N #				, , , <u>, , , , , , , , , , , , , , , , </u>			
1				Y/N#	,		• •				
-				Y/N#					······································		
		-		Y/N#		· <u></u>					
Diversion Swales											
	Y/N#					· · · · · · · · · · · · · · · · · · ·					
				Y/N#			<u></u>				
			·	Y/N #		-		·			
				Y/N #		~	<u>-</u>	***			
	PROBL	ΕM	CODE			PRIOR	RITY CODE	1	Directions:		
a vandalis	m	g	erosion contro	fabric	1	Immediate			List only items or areas		
b slope mo	vement	h	loss of topsoil		2	Correct within 1	week	· · ·	of the site where		
c silt accu	mulation	ı	exposed geosy	/nthetics	3	Correct within 1	month		problems or deficiencies		
d ponded	water	j	wash outs		4	Correct within 3	months		are noted or where		
e vegetativ	e cover	k			5	Correct within 6	months		repairs or rehabilitation		
f debris/	logging	J			6	Correct within 1	year		are required.		
If Perimeter	Swales an	d Di	iversion Swal	es are accept	able	, check box an	d sian below				

Page 5 of 15

Signature:

STORMWA	TER COLL	ECTION SYS	TEM (2 of 4	DATE: 6-8-2022	•
Quarterly Inspection X Storm Inspection				INSPECTION BY: Ed Thompson	Jr.
LOCATION	PROBLEN CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS	
Inlet Structures					
			Y/N #		
			Y/N#	·	
			Y/N#.		
			Y/N #		
Rip Rap Drainway					
			Y / N .#		
			Y/N#		· .
			Y/N#		
			Y/N#		
	PROBLE	M CODE		PRIORITY CODE	Directions:
a vandalism			fabric	1 Immediate	List only items or areas
b slope mov			142110	2 Correct within 1 week	of the site where
c silt accum	nulation l	loss of topsoil		3 Correct within 1 month	problems or deficiencies are noted or where
d ponded w		soil erosion ard	ound	4 Correct within 3 months	repairs or rehabilitation
e vegetative		soil erosion be	neath	5 Correct within 6 months	are required.
f debris / cl	ogging I			6 Correct within 1 year	
If Inlet Struct	ures and Ri	p Rap Drainwa	y are accepta	ble, check box and sign below.	
Signature:	<u>Con</u>	4/2m		· 	
		V		Page 6 of 15	

STORMWATER COLLECTION SYSTEM (3 of 4)						DATE:	CO-8-	-2022	
Quarterly Insp	Quarterly Inspection X Storm Inspection					INSPEC	TION BY: Ed	Гhompson Jr.	
LOCATION	LOCATION PROBLEM PRIORITY PHOTO CODE CODE TAKEN						CO	MMENTS	
Energy Dissipators						Ŷ.			
				Y/N#	•			-	
				Y/N#					
				Y/N#	t	-			· .
					 	114 St.		·	
Y/N#									
Downchutes									•
	Υ/								
				Y/N#					
				Y/N#					
				Y/N#					· · · · · · · · · · · · · · · · · · ·
		LEM	CODE				RITY CODE		Directions:
a vandalisn		g	soil erosion are	ound	1	Immediate		i	List only items or areas of the site where
b slope mo		h	loss of stone		2	Correct within			problems or deficiencies
c silt accun			soil erosion be		3	Correct within			are noted or where
d ponded w		j	loose ties on b		4	Correct within			repairs or rehabilitation
1	instability	k	slippage of gal	oion	5	Correct within			are required.
f debris / c	logging	l			6	Correct within	1 year		
If Energy Dis	ssipators		Downchutes :	are acceptabl	e, ch	eck box and	sign below.		

Page 7 of 15

Signature:

STORMWATER COLLECTION SYSTEM (4 of 4)) DATE:	6-8-	2022				
Quarterly Ins _i	pection	X	Storm Inspec	tion		INSPECT	ION BY: Ed	Thompson J	ſ.
LOCATION	PROBLI CODE		PRIORITY CODE	PHOTO TAKEN			CC	MMENTS	
Drywells									- :
				Y/N#					
				Y/N#					
				Y/N#				" .	
				Y/N #					
Culverts / Outlets				160.16					
				Y/N #	CONTRACTO				
			·	Y/N#					, <u>, , , , , , , , , , , , , , , , , , </u>
				Y/N #					
				Y/N#					
	PROBI	EM	CODE	1	[BRIOR	RITY CODE		Directions:
a vandalisr			erosion control	fahric		1 Immediate	GIT CODE		List <u>only</u> items or areas
b slope mo			soil erosion aro			2 Correct within 1	week		of the site where
c silt accun	nulation	i	exposed geosy	nthetics		3 Correct within 1			problems or deficiencies
d ponded v	vater	j	damage / instal	oility		4 Correct within 3	months		are noted or where
e vegetativ	e cover	k				5 Correct within 6	months		repairs or rehabilitation are required.
f debris / c	logging	l				6 Correct within 1	year		are required.
If Drywells a	If Drywells and Culverts are acceptable, check box an								

Quarterly I	nspection X	Storm Inspe	ction		INSPEC	TION BY: Ed Thom	oson Jr.	
LOCATIO	LOCATION PROBLEM PRIORITY PHOTO CODE CODE TAKEN					COMME	NTS	
Recharge Basin								
			Y/N#					
			Y/N #					
					·		<u> </u>	
			Y/N #					
			Y/N#	<u> </u>		· ·		
			Y/N#	:	·		,	
			Y/N#					
			Y/N#	1				
			Y/N #	1				
	PROBLEM C	ODE		ſ	PRIORIT	Y CODE	Directions:	
a۱	regetation			1	1 Immediate List only iter			
bs	ideslope erosion			2	Correct within	1 week	of the site where	
	ideslope failures			3	Correct within	1 month	problems or deficiencies	
			4	Correct within	3 months	are noted or where		
				5		FORGITO OF robobilitation		
f	lebris / clogging			6	Correct within	1 year	are required.	

	RING WELLS				DATE: 6-8-2522				
Quarterly In	spection X	Storm Inspe	ction	-	INSPECT	TION BY: Ed T	hompson Jr		
ITEM I.D	PROBLEM CODE	PRIORITY CODE	PHOT TAKE			CON	MENTS		
Landfill G	s Monitoring W	ells							
		·	Y/N#						
			Y/N#						
			Y/N#			****			
*	·		Y/N#						
Groundwa	Groundwater Monitoring Wells								
	. ,		Y/N#			,,,,,			
			Y/N#		,	·			
			Y/N#						
			Y/N#						
	PROBLEM C	ODE			PRIORIT	Y CODE		Directions:	
a d	amage			1	Immediate			List only items or areas	
b v	b vandalism c settlement d vector infestation			2	Correct within	1 week	-	of the site where	
c s				3	Correct within	1 month	-,	problems or deficiencies	
d v				4	Correct within	3 months		are noted or where	
е				5	Correct within	6 months		repairs or rehabilitation are required.	
f		-		6	Correct within	1 vear	•	are required.	

If all Monitoring Wells are acceptable, check box and sign below.

W

Signature:

Page 10 of 15

LANDFILL	GAS	COLLECTION	SYSTEM	

DATE: 6-8-2022

Quarterly Inspection X Storm Inspection

INSPECTION BY: Ed Thompson Jr.

ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
LFG Collecti	LFG Collection Wells / Valve Vaults			
			Y/N#	Landfill is using passive venting of LFG
			Y/N #	
			Y/N #	
	·		Y/N #	
LFG Collecti	on Headers	·		
			Y/N #	Landfill is using passive venting of LFG
1	h	*	Y/N #	Inactive 10" pipe between Cells 2 & 3 was damaged during excavation
			Y/N #	*abandoned in place, marked in case of future activity is required.
			Y/N#	

PROBLEM CODE							
а	odor	g	broken valve				
b	damage	h	broken piping				
С	vandalism	I	exposed geosynthetics				
d	settlement	j	damage / instability				
е	vector infestation	k	soil erosion around				
f	no vacuum	-					

	PRIORITY CODE						
1	Immediate						
2	Correct within 1 week						
3	Correct within 1 month						
4	Correct within 3 months						
5	Correct within 6 months						
6	Correct within 1 year						

Directions:

List only items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation are required.

			· ·	
lf autica aita I audfill Caa	Callagtian Customs	:	المحمد محمل ما ما محمل	-: b-1
it entire site i anntili Gas	Conection System	is acceptable.	check box and	sian neiaw
lf entire site Landfill Gas		io acceptable;	OHOOK DOX GHG	0.9 00.011

Signature:

LANDFILL GAS COMPOUND					DATE:	-8-202	2
Quarterly Insp	ection <u>></u>	<u> </u>	Storm Inspe	ction	INSPECTION BY	: Ed Thompson	Jr.
ITEM I.D.	PROBLE CODE		PRIORITY CODE	PHOTO TAKEN		COMMENTS	
Blower Pad /	Blower No	os. 1	and 2				
	:			Y/N#	Landfill is using passive ver	nting of LFG	
				Y/N #			
				Y/N #			
Flare							
				Y/N#	Landfill is using passive ver	nting of LFG	
				Y/N#	,		· · · · · · · · · · · · · · · · · · ·
			.,.	Y/N#			<u>-</u>
				Y/N #	y		
	PROBL	EM :	CODE		PRIORITY COI	DE 1	Directions:
a lodor	FROBL		broken valve		1 Immediate	DE	List only items or areas
b damage			broken piping		2 Correct within 1 week		of the site where
c vandalism	1		broken belts		3 Correct within 1 month		problems or deficiencies
d mechanic	d mechanical noise j e no vacuum k			4 Correct within 3 months		are noted or where	
e no vacuui				5 Correct within 6 months		repairs or rehabilitation are required.	
f alarms		1			6 Correct within 1 year		are required.
	0.	omp	ound is acce	ptable, check	box and sign below.	1	
Signature:	1/hul	1	11		<u> </u>		

SITE FA	<u>CILITIES</u>			DATE: Ed Thompson Jr.	
Quarterly I	nspection X	Storm Inspe	ction	INSPECTION BY:	
ITEM I.D	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	СОММЕ	NTS
Electrical	Panels and Con	trol Panels		Lights tested: Y / N	
			Y/N #		
		•	Y/N #		
Gates / Lo	cks / Signs				
			Y/N#		
Fencing (i	dentify location b	y Grid I.D.))	NS 30 10 10 10 11 11 11 11 11 11 11 11 11 11		
			Y/N#		
			Y/N#		
Site Traile	 r		Participation (Inc.)	Telephone dial tone: Y / N	
			Y/N#		
		LOODE	·		Discotion
	PROBLEM		1:-6-4-	PRIORITY CODE	<u>Directions:</u> List only items or areas
a damag		replace indicat tripped / reset		Immediate Correct within 1 week	of the site where
c alarms		liipped / Jeset	required	3 Correct within 1 month	problems or deficiencies
<u> </u>	g locks j			4 Correct within 3 months	are noted or where
	g signs k			5 Correct within 6 months	repairs or rehabilitation
	fence fabric I			6 Correct within 1 year	are required.
If all Site	Facilities are acc	ceptable, chec	k box and sig	n below.	
Signature	:		•	<u> </u>	

LEACHATE PUMP STATION

LEACHATE PUM	P STATION	DATE: 6-8-2022	
Quarterly Inspection	X Storm Inspection	INSPECTION BY: Ed Thompson Jr.	
ITEM I.D.	PROBLEM PRIORITY PHOTO	COMMENTS	

ITEM I.D.	PROBLEM	PRIORITY		COMMENTS
Leachate Pump Station				R
			Y/N #	Phillip Ross 12 distres are @ the firel
·			Y/N #	Stages of a Construction product on our
			Y/N#	Leachate amping Station that Shall be
Leachate Tank				Completed IN the Next 30 DAYS
	<u></u>		Y/N#	
			Y/N #	
			Y/N #	
		-	Y/N #	

	PROBLEM CODE					
а	pump not working	g	broken valve			
Ь	damage	h	broken piping			
С	vandalism	I	other			
d	mechanical noise	j				
е	no electric	k				
f	alarms					

	PRIORITY CODE
1	Immediate
2	Correct within 1 week
3	Correct within 1 month
4	Correct within 3 months
5	Correct within 6 months
6	Correct within 1 year

List only items or areas of the site where problems

Directions:

or deficiencies are noted or where repairs or rehabilitation are required.

If entire Leachate	Pump Station is acceptable, check box and sign below.	Γ.
Signature:	Earlyn	

<u>COMMENTS</u>			DATE:	6-B-25	22	
Quarterly Inspection	X	Storm Inspection	INSPEC	TION BY: Edward	l Thompson Jr.	· · · · · · · · · · · · · · · · · · ·
		ADDITIONAL	COMMENTS AS	REQUIRED		
		·	·			
		·			···	
				3- <u>-</u> -		9
			······································	: : ::	<u> </u>	
					<u>,</u>	
·	· · ·					
Site inspection has	been d	completed, check box and	sign below.			
Signature:	en	The				
			Page 15 of 15	*		

LANDFILL	GAS COMPO	<u>DUND</u>		DATE: 9-10-2022	•
Quarterly Ins	pection X	Storm Inspe	ction	INSPECTION BY: Ed Thompson	Jr.
ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS	
Blower Pad	Blower Nos.	1 and 2			
			Y/N #	Landfill is using passive venting of LFG	
			Y/N#		
			Y/N #		
Flare				,	
			Y/N #	Landfill is using passive venting of LFG	
			Y/N #		
			Y/N#		
			Y/N#		
	PROBLEM	CODE		PRIORITY CODE	Directions:
a odor	g	broken valve		1 Immediate	List <u>only</u> items or areas
b damage	h	broken piping		2 Correct within 1 week	of the site where problems or deficiencies
c vandalisi	m I	broken belts		3 Correct within 1 month	are noted or where
d mechani	cal noise j			4 Correct within 3 months	repairs or rehabilitation
e no vacuu	ım k			5 Correct within 6 months	are required.
f alarms	1			6 Correct within 1 year	·
If entire Lan	dfill Gas Com	pound is acce	eptable, check	t box and sign below.	

<u>LANDFILL</u>	GAS COLL	ECTION	SYST	ΈM

DATE: 9-10-2022

Quarterly Inspection Storm Inspection

INSPECTION BY: Ed Thompson Jr.

ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
LFG Collection	on Wells / Val	ve Vaults		
			Y/N #	Landfill is using passive venting of LFG
			Y/N#	
			Y/N #	
			Y/N #	
LFG Collection	on Headers			
			Y/N #	Landfill is using passive venting of LFG
1	h	*	Y/N #	Inactive 10" pipe between Cells 2 & 3 was damaged during excavation.
			Y/N#	*abandoned in place, marked in case of future activity is required.
			Y/N #	

PROBLEM CODE					
а	odor	g	broken valve		
b	damage	h	broken piping		
С	vandalism	1	exposed geosynthetics		
d	settlement	j	damage / instability		
ω	vector infestation	k	soil erosion around		
f	no vacuum	1			

	PRIORITY CODE				
1	Immediate				
2	Correct within 1 week				
3	Correct within 1 month				
4	Correct within 3 months				
5	Correct within 6 months				
6	Correct within 1 year				

List only items or areas of the site where problems or deficiencies

are noted or where repairs or rehabilitation

are required.

Directions:

If entire site Landfill Gas	Collection System is	acceptable.	check box	and sion I	below.
	`			3	

			SILE	INSPE	CHOM CHECK		•
<u>MONITORI</u>	NG WELLS				DATE:	9-10-2027	2
Quarterly Ins	pection X	Storm Inspe	ction		INSPECT	FION BY: Ed Thomp	oson Jr.
ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN			COMMEN	тѕ
Landfill Gas	Monitoring W	ells					
			Y/N#				
		 	Y/N#				
			Y/N#				
			Y/N#				·
Groundwate	er Monitoring	Wells					<u> </u>
			Y/N#				
<u> </u>			Y/N#				
			Y/N#				
			Y/N#				
<u> </u>		NODE			PRIORI	ITY CODE	<u>Directions:</u>
L	PROBLEM (JODE		<u> </u>	Immediate		List <u>only</u> items or areas
	mage			2	Correct withi	in 1 week	problems or deficiencie
	ndalism	<u> </u>		3	Correct withi		are noted or where
II - I - I	ttlement ector infestation			4	Correct with	in 3 months	repairs or rehabilitation
	ector intestation		 .	5	Correct with	in 6 months	are required.
e				6	Correct with		
L <u>'</u>						/	
If all Monit	oring Wells are	e acceptable,	check box	c and si	ign below.		

Page 10 of 15

Signature:

RECHARG	<u>E BASINS</u>			DATE:	9-10-2027	<u>.</u>
Quarterly ins	pection X	Storm Inspe	ction	INSPECT	FION BY: Ed Thompso	·
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN		COMMENTS	3
Recharge Ba	sin			100		
<u> </u>			Y/N#			
			Y/N#			<u> </u>
	·		Y/N #			
			Y/N #			
			Y/N #			
			Y/N#			
			Y/N #			
			Y/N#			
	PROBLEM C	ODE		PRIORIT	Y CODE	Directions:
a veg	etation			1 Immediate		List <u>only</u> items or areas
b side	slope erosion			2 Correct within	1 week	of the site where
	slope failures	· ,		3 Correct within		problems or deficiencies
d silt	accumulation			4 Correct within		are noted or where
e ove	rflow conditions	3		5 Correct within		repairs or rehabilitation
f deb	ris / clogging			6 Correct within	1 year	are required.
If Recharge I	Basin is accep	otable, check	box and sign			=

			SHEINS	PEC	TION CHECK	LIST		
STORMWA	TER COLLE	CTION SYS	TEM (4 of 4)	<u>)</u> .	DATE:	9-10-	2022	
Quarterly Insp	ection X	Storm Inspe	ction		INSPECT	TION BY: Ed	Thompson J	r,
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN			CC	MMENTS	
Drywells		 					-	
			Y/N #					
			Y/N#					
			Y/N #					
			Y / N #					
Culverts / Ou	ıtlets							
			Y/N#					
			Y/N#				-	
			Y/N#					
			Y/N#					
	PROBLEM	1 CODE			PRIO	RITY CODE		<u>Directions:</u>
a vandalisn	n g	erosion contro	l fabric	1	Immediate			List <u>only</u> items or areas of the site where
b slope mo	vement h	soil erosion ar	ound	2	Correct within	1 week		problems or deficiencies
c silt accum	nulation I	exposed geos	ynthetics	3	Correct within	1 month		are noted or where
d ponded w	vater j	damage / insta	ability	4	Correct within			repairs or rehabilitation
e vegetative	e cover k			5	Correct within	6 months		are required.
f debris / c	logging I			6	Correct within	1 year		•

Page 8 of 15

Signature:

STORMWATER COLLECTION SYSTEM (3 of 4)				DATE:	9-10-202	2
Quarterly Insp	ection X	Storm Inspe	ction	INSPECT	ION BY: Ed Thomp	
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN		COMMEN	ITS
Energy Dissi	pators				-	
			Y/N #			
			Y/N #			
			Y/N #		,	·
			Y/N #	-		
Downchutes					-	
			Y/N #			
			Y/N#			
			Y/N #	, , , , , , , , , , , , , , , , , , ,		
			Y/N#			
	PROBLEM	CODE	1	PRIOR	ITY CODE	Directions:
a vandalism		soil erosion arc	und	1 Immediate	III GODE	List <u>only</u> items or areas
b slope mov		loss of stone		2 Correct within 1	week	of the site where
c silt accum	ulation I	soil erosion ber	neath	3 Correct within 1	month	problems or deficiencies
d ponded w	ater j	loose ties on ba	askets	4 Correct within 3	months	are noted or where repairs or rehabilitation
e damage /		slippage of gab	ion	5 Correct within 6	months	are required.
f debris / cl	ogging I			6 Correct within 1	year	are required.
If Energy Dis	sipators and I	Downchutes a	ire acceptable	e, check box and si	gn below.	
	\ /					

STORMWATER COLLECTION S	<u>/STEM (2 of</u>	4) DATE: 9-10-2022	
Quarterly Inspection X Storm Ins	pection	INSPECTION BY: Ed Thompson	Jr.
LOCATION PROBLEM PRIORIT CODE CODE	Y PHOTO TAKEN	COMMENTS	
Inlet Structures			
	Y/N#		·
Pin Ben Preinwey			
Rip Rap Drainway			
	Y/N#		
	Y/N#		
	Y/N#	1 12	
	Y/N#		
PROBLEM CODE		PRIORITY CODE	Directions:
	trol fabric	1 Immediate	List only items or areas
a vandalism g erosion cor b slope movement h loss of ston		2 Correct within 1 week	of the site where
c silt accumulation I loss of tops		3 Correct within 1 month	problems or deficiencies are noted or where
d ponded water j soil erosion		4 Correct within 3 months	repairs or rehabilitation
e vegetative cover k soil erosion	beneath	5 Correct within 6 months	are required.
f debris / clogging I		6 Correct within 1 year	,
If Inlet Structures and Rip Rap Drain Signature:	way are accep	table, check box and sign below.	

Page 6 of 15

		•							
STORMWA	TER COLLE	ECTION SYS	STEM (1 o	of 4))	DATE:	9-10-	2022	
Quarterly Insp	ection X	Storm Inspe	ction			INSPECT	ION BY: Ed Ti		
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOT TAKE			*.	СОМ	MENTS	
Perimeter Sv	vales							.	
			Y/N#						
		<u> </u>	Y/N#						
			Y/N#						
	· ·		Y/N#				.,,==	- ·	
Diversion Sw	ales			Tiple					
			Y/N#						
			Y/N#						
			Y/N#	_					
			Y/N#	-					
	PROBLEN	CODE				PRIOR	ITY CODE		Directions:
a vandalism	n g	erosion contro	fabric		1	Immediate			List only items or areas
b slope mov		loss of topsoil			2	Correct within 1	week		of the site where
c silt accum		exposed geosy	/nthetics		3	Correct within 1			problems or deficiencies are noted or where
d ponded w		wash outs			4	Correct within 3			repairs or rehabilitation
ll e lvegetative	cover k	1				Correct within C			ropano or renabilitation

	PRIORITY CODE						
1	Immediate						
2	Correct within 1 week						
3	Correct within 1 month						
4	Correct within 3 months						
5	Correct within 6 months						
6	Correct within 1 year						

are required.

If Perimeter Swales and Diversion Swales are acceptable	e, check box and sign below

debris / clogging

ACCESS R	OADS		.*	DATE: 9-10-2022
Quarterly Insp	ection X	Storm Inspe	ction	INSPECTION BY: Ed Thompson Jr.
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
			Y/N#	

LOCATION	CODE	CODE	TAKEN	COMMENIS
			Y/N #	
			Y/N#	
			Y/N #	
			Y/N #	
	,		Y/N #	
			Y/N #	
			Y/N #	
			Y/N#	
			Y/N#	
			Y/N#	

	PROBLEM CODE
а	potholes
b	burrow holes
С	erosion gullies
d	loss of stone cover
е	exposed geotextile
f	obstructions / debris

PRIORITY CODE						
1	Immediate					
2	Correct within 1 week					
3	Correct within 1 month					
4	Correct within 3 months					
5	Correct within 6 months					
6	Correct within 1 year					

Directions:
List only items or areas
of the site where
problems or deficiencies
are noted or where
repairs or rehabilitation
are required.

If all Access	Roads are acceptable, check box and sign below.	
•	Chegn	
Signature:	(sheeper	

REVETMEN	IT MATTING	G(RIP RAP)			DATE:	9-10-	2022	
Quarterly Insp	ection X	Storm Inspe	ction		INSPECT	ION BY: Ed	Thompson Jr.	
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN			CC	MMENTS	
Side Slopes								
			Y/N #				<u> </u>	
	<u> </u>		Y/N#					
			Y/N#				•	
			Y/N #				,	
Gabion Curb			Park III	×	- 14 · · · · · · · · · · · · · · · · · ·			
			Y/N#			·		
·			Y/N #					
			Y/N #	 				
			Y/N#				····	
	PROBLEM		·			ITY CODE		Directions:
a vandalism		waste breakthr		1	Immediate			List <u>only</u> items or areas of the site where
b slope mov		leachate break		2				problems or deficiencies
c vector infe	station i	exposed geosy		3	Correct within 1			are noted or where
d holes e holes in w		damaged bask	ets	4	Correct within 3			repairs or rehabilitation
e holes in w		loose ties		5	Correct within 6			are required.
i jsettlement				6	Correct within 1	year		
•	ent Matting (R	ip Rap) and G	abion Curbs	are	acceptable, che	eck box and	sign below.	4
Signature:	come of	J VV			_			

Page 3 of 15

SOIL COVER Quarterly Inspection X Storm Inspection				DATE: 9-10 2022
			ction	INSPECTION BY: Ed Thompson Jr.
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
-			Y/N#	
			Y/N#	
Septim Control			Y/N#	
			Y/N#	
			Y/N #	
			Y/N #	
			Y/N#	
			Y/N#	
			Y/N#	
. + : .			Y/N#	

PROBLEM CODE						
а	erosion damage	g	waste breakthrough			
b	slope movement	h	leachate breakthrough			
C	ponding (>10'x10')		exposed geosynthethics			
d	noles	j	vandalism			
е	cracking	k	vector infestation			
f	rutting of soils	ı				

PRIORITY CODE					
1	Immediate				
2	Correct within 1 week				
3	Correct within 1 month				
4	Correct within 3 months				
5	Correct within 6 months				
6	Correct within 1 year				

List only items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation are required.

Directions:

If entire site Soil Cover is acceptable, check box and	l sign below.
Signature: (Me A)	
	Page 2 of 15

VEGETATIVE COVER				DATE: 9-10-2022	
Quarterly Inspe	Quarterly Inspection X Storm Inspection		tion	INSPECTION BY: Ed Thompson, Jr.	
LOCATION	PROBLEM	PRIORITY	РНОТО	COMMENTS	

LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
	<u>.</u>		Y/N #	
			Y/N#	
-			Y/N #	
			Y/N #	
		•	Y/N#	
			Y/N#	

PROBLEM CODE					
а	bare spots				
b	dead areas				
C	undesirable growth				
d	unauthorized dumping				
е	litter				
f					

	PRIORITY CODE
1	Immediate
2	Correct within 1 week
3	Correct within 1 month
4	Correct within 3 months
5	Correct within 6 months
6	Correct within 1 year

List only items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation

are required.

Directions:

	egetative Cover is acceptable, check box and sign below.	
Signature:	Echeeffer	

LEACHATE PUMF	STATION		DATE: 9-10-2022		
Quarterly Inspection	X Storm Inspec	tion	INSPECTION BY: Ed Thompson Jr.		
ITEM I.D.	PROBLEM PRIORITY	РНОТО	COMMENTS		
Landada Direca Chat					

ITEM I.D.	PROBLEM	PRIORITY	РНОТО	COMMENTS
Leachate Pump Sta	tion			
			Y/N #	Still a few things to adjust for Completion
			Y/N #	Completion
	,		Y/N#	
Leachate Tank				
			Y/N #	
			Y/N #	
			Y/N#	
			Y/N #	

	PROBLEM CODE										
а	pump not working	g	broken valve								
b	damage	h	broken piping								
С	vandalism		other								
d	mechanical noise	j									
е	no electric	k									
f	alarms	Ī									

	PRIORITY CODE							
1	Immediate							
2	Correct within 1 week							
3	Correct within 1 month							
4	Correct within 3 months							
5	Correct within 6 months							
6	Correct within 1 year							

List <u>only</u> items or areas of the site where problems or deficiencies are noted

or deficiencies are note or where repairs or rehabilitation are required.

Directions:

If entire Leachate Pump Station is acceptable, check box and sign below.

-	

Signature:

				J. 2011011 0	·	•	
SITE FACIL	<u>ITIES</u>			DA	TE: Ed Thom	pson Jr.	
Quarterly Insp	pection X	Storm Inspe	ction	IN	SPECTION BY:	9-10-20	22
ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN			COMMENTS	
Electrical Pa	nels and Con	trol Panels		Lights teste	ed: Y / N		
			Y/N #				-
			Y/N#				
Gates / Lock	s / Signs					•	
		-	Y/N#		·		
Fencing (ider	ntify location b	y Grid I.D.))			,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		, wet
			Y/N #				
			Y/N #		· · · · · · · · · · · · · · · · · · ·		
Site Trailer				Telephone	dial tone: Y / N		,
			Y/N #				
	PROBLEM	CODE			PRIORITY COD	E	Directions:
a damage	g	replace indicat	or lights	1 Immedia	ite		List only items or areas
b vandalism	1 h	tripped / reset	required	2 Correct	within 1 week		of the site where
c alarms		<u></u>		3 Correct	within 1 month		problems or deficiencies
d missing lo				4 Correct	within 3 months		are noted or where repairs or rehabilitation
e missing si				5 Correct	within 6 months		are required.
f hole in fer	nce fabric I.	<u> </u>		6 Correct	within 1 year		are required.
If all Site Fac	ilities are acc	entable chec	k boy and eig	n holow			

Page 14 of 15

Signature:

COMMENIS	DATE: 9-10-2022
Quarterly Inspection X Storm Inspection	INSPECTION BY: Edward Thompson Jr.
ADDITIO	NAL COMMENTS AS REQUIRED
,	
· · ·	
Site inspection has been completed, check box	and sign below.
Signature:	
	Page 15 of 15

		•				•		
<u>VEGETATI</u>	VE COVER				DATE:	12-8-	2022	
Quarterly Insp	ection X	Storm Inspe	ction	-	INSPECT	ΓΙΟΝ ΒΥ: Ed	Thompson, Jr.	
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOT TAKE	_		со	MMENTS	
			Y/N#					
		-	Y/N#					-11-1
			Y/N#					
		-	Y/N#			· · · · · · · · · · · · · · · · · · ·	!	
			Y/N#		· · · · · · · · · · · · · · · · · · ·			
			Y/N#				•	
			Y/N#			.,	·	
			Y/N#					
	-	·	Y/N#					
	.,		Y/N#		· ·			***
	PROBLEM C	ODE	1		DDIODI	TY CODE		Directions:
l a lbara		ODE		1	Immediate	I I CODE	 .	List only items or areas
	e spots d areas			2	Correct within	1 week		of the site where
	esirable growth			3	Correct within		-	problems or deficiencies
	uthorized dumpi	ng		4	Correct within			are noted or where repairs or rehabilitation
e litter		<u> </u>		5	Correct within	6 months		are required.
f	•			6	Correct within	ı 1 year		
If entire site	Vegetative Co	ver is accept	able, che	ck box	and sign below			

Page 1 of 15

SOIL COVE	<u> R</u>		•		DATE:	12-8-2022			
Quarterly Inspection X Storm Inspection					INSPECTION BY: Ed Thompson Jr.				
LOCATION PROBLEM PRIORITY PHOTO CODE CODE TAKEN					·	COMMEN	ΓS		
				Y/N#					
				Y/N#					
				Y/N#					
				Y/N#		· · · · · · · · · · · · · · · · · · ·			
				Y/N #					
				Y/N#					
-				Y/N#		·	- 1		
				Y/N#					
				Y/N#					
				Y/N#		* .			
	PROB	LEM	CODE		PRIOR	RITY CODE	Directions:		
a erosion da		g	waste breakthr	ough	1 Immediate	ATT CODE	List only items or areas		
b slope mov		h	leachate break		2 Correct within 1	Wook	of the site where		
c ponding (Ϊ́	exposed geosy		3 Correct within 1	_	problems or deficiencies		
d holes	,	ì	vandalism		4 Correct within 3		are noted or where		
e cracking		k	vector infestation	on —	5 Correct within 6		repairs or rehabilitation		
f rutting of	soils	ī			6 Correct within 1		are required.		
If entire site	Soil Cove	- Aller	acceptable, cl	neck box and					

Page 2 of 15

REVETMENT MATTING (RIP RAP)								DATE:	12-8	-2022	
Qua	arterly Insp	ection	Χ	Storm Inspe	ction			INSPECT	ION BY: Ed	Thompson J	r.
					PHOTO TAKEN				C	OMMENTS	
Side Slopes											
					Y/N #						
					Y/N#				•	<u>.</u>	
					Y/N #	\dagger	-		"		· "
-						+			****		
-					Y/N#	Const					· · · · · · · · · · · · · · · · · · ·
Gal	Gabion Curb							·			<u></u>
					Y/N#						
					Y/N#						
					Y / N #						
-					Y / N #						
						 _					
		PROB	LEM	CODE					RITY CODE		<u>Directions:</u> List only items or areas
а	vandalism	1	g	waste breakthr			1	Immediate	1		of the site where
b	slope mov		h	leachate break			2	Correct within 1			problems or deficiencies
С	vector infe	estation	I	exposed geosy		. _	3	Correct within 1			are noted or where
d	holes		j	damaged bask	ets		4	Correct within 3			repairs or rehabilitation
е	holes in w	rire fabric	k	loose ties		L	5	Correct within 6			are required.
f	settlemen	t	- 1				6	Correct within 1	l year		•
	il Revetmo	_	ng (F	Rip Rap) and (Sabion Cur	bs a	re a	icceptable, ch	ieck box an	d sign below	

ACCESS K	OADS				DATE: _	12-8-20	>22	
Quarterly Insp	pection X	Storm Inspe	ction		INSPECTION BY: Ed Thompson Jr.			
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOT TAKE			COMMEN	TS	
			Y/N#					
			Y/N#					
			Y/N#					
			Y/N#		<u> </u>			
			Y/N#					
			Y/N#			· · · · · · · · · · · · · · · · · · ·		
			Y/N#		·	· .		
				•				
	-	<u> </u>	Y/N#					
			Y/N#		·			
			Y/N #					
	PROBLEM C	ODE			PRIORITY	CODE	<u>Directions:</u>	
a poth	oles			1	Immediate		List <u>only</u> items or areas	
b burre	ow holes			2	Correct within 1	week	of the site where	
c eros	ion gullies		i	3	Correct within 1	month	problems or deficiencies	
	of stone cover		× .	4	Correct within 3	months	are noted or where	
	osed geotextile		:-	5	Correct within 6	months	repairs or rehabilitation are required.	
f obst	ructions / debr	is		6	Correct within 1	year	are required.	
	Roads are acc	ceptable, che	ck box ar	nd sig	n below.			
Signature: (way		<u></u>					

STORMWA	TER CO	DLLE	CTION SYS	TEM (1 of 4	<u>4)</u>	DATE:	12-8-	2022	
Quarterly insp	ection	Χ	Storm Inspec	ction		INSPECT	ION BY: Ed Th	nompson Jr	
LOCATION	PROBL COD		PRIORITY CODE	PHOTO TAKEN			сом	MENTS	
Perimeter Sv	wales					100 4.11			
				Y/N#		·			
				Y/N#					
				Y/N#		-		· ·	
				Y/N#					100 00
Diversion Sv	vales								
	1			Y/N#	diese				
				Y/N#					
				Y/N#				11.07	•
				Y/N#					· · · · · · · · · · · · · · · · · · ·
									Discotioner
		T	CODE				RITY CODE		<u>Directions:</u> List only items or areas
a vandalisn		<u>g</u>	erosion control	tabric	1	Immediate			of the site where
b slope mo		<u>h</u>	loss of topsoil		2	Correct within 1			problems or deficiencies
c silt accun		 	exposed geosy	nthetics	3	Correct within 1			are noted or where
d ponded v		 	wash outs	<u> </u>	4	Correct within 3			repairs or rehabilitation
e vegetativ		k		<u>`</u>	5	Correct within 6			are required.
f debris/c	iogging	1 1			6	Correct within 1	ı year		
If Perimeter Signature:	Swales a	OFF THE PARTY OF T	iversion Swal	es are accep	otable	e, check box ar	nd sign below		

STORMWA	TER COLLE	CTION SYS	TEM (2 of 4)	<u>)</u>	DATE:	12-8-	2022	- ,	
Quarterly Insp	ection X	Storm Inspe	ction		INSPECT	ION BY: Ed	Thompson	Jr.	
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN			CC	MMENTS	-	
Inlet Structur									
			Y/N #						
			Y/N #				· · ·		
			Y/N #						
			Y / N #			. "		· · · · · · · · · · · · · · · · · · ·	
Rip Rap Drair	nway								
	·		Y/N#				* 1 .		
			Y/N #						
			Y/N#						
			Y/N#						
	PROBLEM	CODE		<u> </u>	DDIOD	ITY CODE		Directions	
a vandalism		erosion control	fabric	1	Immediate	ITY CODE		<u>Directions:</u> List <u>only</u> items or areas	
b slope mov		loss of stone	labile	2	Correct within 1	wook		of the site where	
c silt accum		loss of topsoil		3	Correct within 1			problems or deficiencies	
			ound	4		ect within 3 months		are noted or where	
e vegetative	cover k	soil erosion ber		5	Correct within 6			repairs or rehabilitation	
f debris / clo	ogging I	-		6	Correct within 1		are required.		
If Inlet Structi	ures and Rip	Rap Drainway	are acceptat	ole, c	heck box and	<u> </u>			

Page 6 of 15

STORMWA	TER COLL	ECTION SYS	TEM (3 of 4)	DATE: 12-8	3-2022	
Quarterly Insp	ection X	Storm Inspe	ction	INSPECTION BY:	Ed Thompson Ji	
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN		COMMENTS	
Energy Dissi	pators					
		·	Y/N #			· ·
			Y/N#			
			Y/N#			
			Y/N #			
Downchutes						
			Y/N#			,
			Y/N #	· · · · · · · · · · · · · · · · · · ·		
			Y/N#			
		,	Y/N #			
	PROBLE	M CODE		PRIORITY COD	E	Directions:
a vandalism		T	ound	1 Immediate		List only items or areas
b slope mo				2 Correct within 1 week		of the site where
c silt accum	nulation I	soil erosion be	neath	3 Correct within 1 month		problems or deficiencies are noted or where
d ponded w	/ater j	loose ties on b	askets	4 Correct within 3 months		repairs or rehabilitation
e damage /	instability l	slippage of ga	bion	5 Correct within 6 months		are required.
f debris / c	logging			6 Correct within 1 year		
If Energy Dis	sipators an		are acceptable	e, check box and sign below	v. 🔽	

Page 7 of 15

<u>STORMWA</u>	TER COLLE	CTION SYS	TEM (4 of 4)	DATE:	12-8-202	2
Quarterly Insp	ection X	Storm Inspe	ction	_	ON BY: Ed Thompso	
LOCATION	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN		COMMENTS	8
Drywells				·		
			Y/N#			
			Y/N#			
		<u></u>	Y/N #			
		· .	Y/N #			
Culverts / Ou	tlets					
			Y/N #		· .	
			Y/N #			
			Y/N#			
	<u>.</u>		Y/N#			
	PROBLEM	CODE		PRIORI	TY CODE	Directions:
a vandalism	g	erosion control	fabric	1 Immediate		List <u>only</u> items or areas
b slope mov		soil erosion arc	und	2 Correct within 1	week	of the site where
c silt accum		exposed geosy		3 Correct within 1 i	month	problems or deficiencies are noted or where
d ponded w		damage / insta	bility	4 Correct within 3		repairs or rehabilitation
e vegetative				5 Correct within 6	months	are required.
f debris / cl	ogging I			6 Correct within 1 y	<u>y</u> ear	
	nd Culverts ar	e acceptable,	check box an	nd sign below.		
Signature: _	mel!	<u> </u>		· · · · · · · · · · · · · · · · · · ·		:

Page 8 of 15

RECHARGE BASINS					DATE: 12/8/2022					
Quarterly Insp	ection X	Storm Inspe	ction		INSPECTION BY: Ed Thompson Jr.					
LOCATION	PROBLEM CODE	PRIORITY CODE	PHO TAK			C	OMMENTS			
Recharge Basin								:		
			Y/N #		• •					
			Y/N #				'			
			Y/N #							
			Y/N#			ч				
		W 1	Y/N#							
			Y/N #							
			Y/N#		-					
			Y/N#	-						
	DDOD! EM O	ODE		<u></u>	PRIOR	ITV CODE		Directions:		
	PROBLEM C	ODE		<u> </u>		ITY CODE		List only items or areas		
	etation				I Immediate	in 4ale		of the site where		
	slope erosion			2 3		11.0		problems or deficiencies		
	eslope failures						· · · · · ·	are noted or where		
	accumulation rflow condition	<u> </u>		1 5				repairs or rehabilitation		
	ris / clogging	3			Correct with			are required.		
l lueb	ris / clogging			L	5 Correct With	iii i yeai				
If Recharge	Basin is acce _l	otable, check	box and	l sign l	below.		•			
Signature:				_	· · · · · · · · · · · · · · · · · · ·					

<u>MONITOR</u>	ING WELLS				DATE:	12-8	-2022	<u> </u>	
Quarterly Ins	pection X	Storm Inspe	ction	-	INSPECTION BY: Ed Thompson Jr.				
ITEM I.D.	PHOTO TAKEN		COMMENTS						
Landfill Gas		7.5							
			Y/N#			<u> </u>	· ·		
·		,	Y/N#		 :			·	
			Y/N#		<u> </u>	···			
			Y/N#				<u> </u>		
Groundwate	er Monitoring \	Molle	1 / N #		· · · · · · · · · · · · · · · · · · ·				
Groundwate		Meliz		A117640-004			·	·	
	-		Y/N#	_		<u> </u>			
			Y/N#						
			Y/N#			·			
	1		Y/N#						
	PROBLEM C	ODE			PRIORIT	Y CODE	.]	Directions:	
a dar	nage			1 Immediate				List only items or areas	
b var	dalism			2	of the site where				
c set	tlement			2 Correct within 1 week 3 Correct within 1 month 4 Correct within 3 months			problems or deficiencies		
d vec	tor infestation							are noted or where	
e					Correct within 6 months				
f	·			6	Correct within	1 year		are required.	
If all Monito	ring Wells are	acceptable, c	heck box	and si	gn below.				
		-		 P	—- Page 10 of 15				

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL POST CLOSURE MONITORING AND MAINTENANCE PLAN SITE INSPECTION CHECKLIST

L	ANDFILL	. GAS	COLL	_ECT	ION	SYST	ГЕМ

DATE: 12-8-2027

Quarterly Inspection	Χ	Storm Inspection	INSPECTION BY: Ed Thompson Jr.
Quarterly more con	<u> </u>	Ctottii iiiopeottoii	The Latter Division Post of

ITEM I.D.	PROBLEM CODE	PRIORITY CODE	PHOTO TAKEN	COMMENTS
LFG Collection Wells / Valve Vaults				
			Y/N#	Landfill is using passive venting of LFG
			Y/N #	
			Y/N #	
			Y/N#	
LFG Collecti	on Headers			
			Y/N #	Landfill is using passive venting of LFG
1	h	*	Y/N#.	Inactive 10" pipe between Cells 2 & 3 was damaged during excavation.
			Y/N#	*abandoned in place, marked in case of future activity is required.
		-	Y/N #	

	PROBLEM CODE						
а	odor	g	broken valve				
b	damage	h	broken piping				
С	vandalism	ļ	exposed geosynthetics				
d	settlement	j	damage / instability				
е	vector infestation	k	soil erosion around				
f	no vacuum	1					

	PRIORITY CODE						
1	Immediate						
2	Correct within 1 week						
3	Correct within 1 month						
4	Correct within 3 months						
5	Correct within 6 months						
6	Correct within 1 year						

List only items or areas of the site where problems or deficiencies are noted or where

repairs or rehabilitation

are required.

Directions:

Signature:

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL POST CLOSURE MONITORING AND MAINTENANCE PLAN SITE INSPECTION CHECKLIST

LANDFI	L GAS CO	OMPO	DUND	•		DATE:	12-8	-2022	
Quarterly	Inspection	Х	Storm Inspe	ction	. 1	NSPEC ⁻	TION BY: E	d Thompson	Jr.
ITEM I.	D. PROB		PRIORITY CODE	PHOTO TAKEN				OMMENTS	
Blower P	ad / Blower	Nos.	1 and 2	14. The state of t					<u> </u>
				Y/N#	Landfill is ı	using pa	ssive ventir	g of LFG	
				Y/N #		<u>_</u>			
	-			Y/N#		- ·		_	
Flare		_	<u> </u>		` -				
				Y/N#	Landfill is u	using pa	ssive ventir	g of LFG	
		,		Y/N #		<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
			,-	Y/N #		•			· · · · · · · · · · · · · · · · · · ·
				Y/N #					
	PROI	BLEM	CODE			PRIO	RITY CODE		Directions:
a odor		g	broken valve		1 Immed		<u> </u>		List <u>only</u> items or areas
b dama	ge	h	broken piping			t within	1 week		of the site where
c vanda	ılism	I	broken belts		3 Correc	t within '	1 month		problems or deficiencies
d mech	anical noise	j			4 Correc	t within 3	3 months		are noted or where repairs or rehabilitation
e no va		k			5 Correc	t within 6	6 months		are required.
f alarm	<u>s</u>				6 Correc	t within 1	1 year		are required.
If entire L	Gal	Comp	oound is acce	ptable, check	box and si	ign belo	ow.		

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL POST CLOSURE MONITORING AND MAINTENANCE PLAN SITE INSPECTION CLECKLIST

1	EACHAT	F PLIMP	STAT	ION
L	・レハンロハロ	L I CIVII	OIAI	\mathbf{U}

LEACHATE PUMP S	<u>TATION</u>	DATE: 12-8-2022	
Quarterly Inspection	X Storm Inspection	INSPECTION BY: Ed Thompson Jr.	

ITEM I.D.	PROBLEM	PRIORITY	РНОТО	COMMENTS
Leachate Pump Sta	tion			
			Y/N #	
			Y/N #	
			Y/N #	
Leachate Tank				
			Y/N #	
			Y/N #	
			Y/N #	
			Y/N #	·

	PROBLEM CODE					
а	pump not working	g	broken valve			
b	damage	h	broken piping			
С	vandalism		other			
d	mechanical noise	j				
е	no electric	k				
f	alarms	T				

	PRIORITY CODE
1	Immediate
2	Correct within 1 week
3	Correct within 1 month
4	Correct within 3 months
5	Correct within 6 months
6	Correct within 1 year

Directions:

List only items or areas of the site where problems or deficiencies are noted or where repairs or rehabilitation are required.

If entire Leachate Pu	ump Station is acceptable, check box and sign below.	V
Signature:	Estern	 .

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL POST CLOSURE MONITORING AND MAINTENANCE PLAN SITE INSPECTION CHECKLIST

SITE FACILITIES		DATE: Ed Thompson Jr.	
Quarterly Inspection X Storm Inspe	ction	INSPECTION BY: 12-8-2	orr
ITEM I.D. PROBLEM PRIORITY CODE CODE	PHOTO TAKEN	COMMENTS	
Electrical Panels and Control Panels		Lights tested: Y / N	
,	Y/N #		
	Y/N #		
Gates / Locks / Signs			
	Y/N #		
Fencing (identify location by Grid I.D.))			
	Y/N #		-
	Y/N #		
Site Trailer		Telephone dial tone: Y / N	
	Y/N #		
PROBLEM CODE		PRIORITY CODE	Directions
a damage g replace indicat	or lights	1 Immediate	<u>Directions:</u> List <u>only</u> items or areas
b vandalism h tripped / reset		2 Correct within 1 week	of the site where
c alarms I		3 Correct within 1 month	problems or deficiencies
d missing locks j		4 Correct within 3 months	are noted or where
e missing signs k		5 Correct within 6 months	repairs or rehabilitation
f hole in fence fabric I		6 Correct within 1 year	are required.
If all Site Facilities are acceptable, checks	k box and sig	n below.	

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL POST CLOSURE MONITORING AND MAINTENANCE PLAN SITE INSPECTION CHECKLIST

COMMENTS			DATE:	12-8-2022	
Quarterly Inspection	X	Storm Inspection	INSPECT	FION BY: Edward Thompson Jr.	
ADDITIONAL COMMENTS AS REQUIRED					
				<u> </u>	
	-				
-					
·					
			·		
			· · · · · · · · · · · · · · · · · · ·		
			·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		·			
		·	<u>, </u>		
		The first three constraints of the constraints of t			
Site inspection has Signature:	been o	completed, check box and s	ign below.		
			Page 15 of 15		

APPENDIX B LABORATORY ANALYTICAL REPORTS / **DATA VALIDATION & USABILITY REPORT**

May 10, 2022

Christine Fetten
Town of Southampton
116 Hampton Road
Waste Management Division
Southampton, NY 11968

RE: Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Dear Christine Fetten:

Enclosed are the analytical results for sample(s) received by the laboratory on April 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist

Derek Ersbak, P.W. Grosser Consulting

Richard Hodgson, Town of Southampton

Amanda Lauth, PW Grosser

(631)694-3040

CERTIFICATIONS

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Maryland Certification #: 208

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: May 10, 2022

General Information:

2 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved Client: Town of Southampton Date: May 10, 2022

General Information:

2 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: SM22 2320B
Description: 2320B Alkalinity
Client: Town of Southampton
Date: May 10, 2022

General Information:

2 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: Town of Southampton
Date: May 10, 2022

General Information:

2 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: SM22 2540C

Description: 2540C Total Dissolved Solids **Client:** Town of Southampton

Date: May 10, 2022

General Information:

2 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 254851

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1287631)
 - Total Dissolved Solids

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: May 10, 2022

General Information:

2 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 255696

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1291807)
 - Chemical Oxygen Demand

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method:SM22 5210BDescription:5210B BOD, 5 dayClient:Town of SouthamptonDate:May 10, 2022

General Information:

2 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

- LEA-PRIMARY (Lab ID: 70212657001)
- LEA-SECONDARY (Lab ID: 70212657002)

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Town of Southampton
Date: May 10, 2022

General Information:

2 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen **Client:** Town of Southampton

Date: May 10, 2022

General Information:

2 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 254819

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212613002,70213042002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1287551)
 Nitrogen, Kjeldahl, Total
 MS (Lab ID: 1287553)

• Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client: Town of Southampton

Date: May 10, 2022

General Information:

2 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 255787

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212657001,70213640007

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1292038)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:May 10, 2022

General Information:

2 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: EPA 420.1

Description: Phenolics, Total Recoverable **Client:** Town of Southampton

Date: May 10, 2022

General Information:

2 samples were analyzed for EPA 420.1 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 420.1 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Southampton
Date: May 10, 2022

General Information:

2 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Method: SM22 5310B

Description: 5310B TOC as NPOC **Client:** Town of Southampton **Date:** May 10, 2022

General Information:

2 samples were analyzed for SM22 5310B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

Sample: LEA-PRIMARY	Lab ID: 7	0212657001	Collected: 04/26/2	22 08:15	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical M	ethod: EPA 60	010C Preparation Me	ethod: El	PA 3005A			
	-	ical Services -						
Arsenic	<10.0	ug/L	10.0	1	05/03/22 10:59	05/04/22 11:01	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	05/03/22 10:59	05/04/22 11:01	7440-43-9	
Calcium	66100	ug/L	200	1	05/03/22 10:59	05/04/22 11:01	7440-70-2	
ron	2740	ug/L	100	1	05/03/22 10:59	05/04/22 11:01	7439-89-6	
_ead	<5.0	ug/L	5.0	1	05/03/22 10:59	05/04/22 11:01	7439-92-1	
Magnesium	11500	ug/L	200	1	05/03/22 10:59	05/04/22 11:01	7439-95-4	
Manganese	778	ug/L	10.0	1	05/03/22 10:59	05/04/22 11:01	7439-96-5	
Potassium	22700	ug/L	5000	1	05/03/22 10:59	05/04/22 11:01	7440-09-7	
Sodium	25900	ug/L	5000	1	05/03/22 10:59	05/04/22 11:01	7440-23-5	
6010 MET ICP, Dissolved	Analytical M	ethod: EPA 60)10C					
	Pace Analyti	ical Services -	Melville					
Arsenic, Dissolved	<10.0	ug/L	10.0	1		04/30/22 00:49	7440-38-2	
Cadmium, Dissolved	<2.5	ug/L	2.5	1		04/30/22 00:49	7440-43-9	
Calcium, Dissolved	62500	ug/L	200	1		04/30/22 00:49	7440-70-2	
ron, Dissolved	204	ug/L	100	1		04/30/22 00:49	7439-89-6	
ead, Dissolved	<5.0	ug/L	5.0	1		04/30/22 00:49	7439-92-1	
Magnesium, Dissolved	11000	ug/L	200	1		04/30/22 00:49	7439-95-4	
Manganese, Dissolved	577	ug/L	10.0	1		04/30/22 00:49	7439-96-5	
Potassium, Dissolved	22500	ug/L	5000	1		04/30/22 00:49	7440-09-7	
Sodium, Dissolved	26000	ug/L	5000	1		04/30/22 00:49	7440-23-5	
2320B Alkalinity	Analytical M	ethod: SM22	2320B					
	Pace Analyti	ical Services -	Melville					
Alkalinity, Total as CaCO3	255	mg/L	1.0	1		05/09/22 13:30)	
2340C Hardness, Total	Analytical M	ethod: SM22	2340C					
	Pace Analyti	ical Services -	Melville					
Tot Hardness asCaCO3 (SM 2340B	173	mg/L	5.0	1		04/29/22 13:52	2	
2540C Total Dissolved Solids	Analytical M	ethod: SM22	2540C					
	Pace Analyt	ical Services -	Melville					
Total Dissolved Solids	317	mg/L	10.0	1		05/03/22 13:25	5	
410.4 COD	Analytical M	ethod: EPA 41	10.4 Preparation Met	hod: EP	A 410.4			
	Pace Analyti	ical Services -	Melville					
Chemical Oxygen Demand	52.3	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:07	7	
5210B BOD, 5 day	Analytical M	ethod: SM22	5210B Preparation N	/lethod: \$	SM22 5210B			
	Pace Analyti	ical Services -	Melville					
BOD, 5 day	<2.0	mg/L	2.0	1	04/28/22 10:44	05/03/22 10:39)	H2
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 30	0.00					
•	Pace Analyti	ical Services -	Melville					
Bromide	<0.50	mg/L	0.50	1		04/29/22 19:17	24959-67-9	
		=						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

Sample: LEA-PRIMARY	Lab ID: 702	2657001	Collected: 04/26/2	22 08:15	Received: 04	/27/22 11:25 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
	Pace Analytica	Services -	Melville					
Chloride	28.4	mg/L	2.0	1		04/29/22 19:17	16887-00-6	
Sulfate	12.5	mg/L	5.0	1		04/29/22 19:17	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	1.2 Preparation Me	thod: EF	PA 351.2			
	Pace Analytica	Services -	Melville					
Nitrogen, Kjeldahl, Total	10.7	mg/L	0.50	5	05/03/22 05:54	05/05/22 19:18	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	od: EPA 35	3.2					
	Pace Analytica	Services -	Melville					
Nitrate-Nitrite (as N)	0.74	mg/L	0.050	1		05/09/22 14:26	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2					
	Pace Analytica	Services -	Melville					
Nitrite as N	0.072	mg/L	0.050	1		04/28/22 02:35	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth	od: EPA 42	0.1 Preparation Me	thod: EF	PA 420.1			
	Pace Analytica	Services -	Melville					
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/03/22 12:23	05/03/22 16:23		
4500 Ammonia Water	Analytical Meth	od: SM22 4	500 NH3 H					
	Pace Analytica	Services -	Melville					
Nitrogen, Ammonia	10.2	mg/L	0.50	5		05/05/22 15:04	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22 5	310B					
	Pace Analytica							
Total Organic Carbon	16.2	mg/L	1.0	1		05/07/22 02:29	7440-44-0	

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Date: 05/10/2022 04:27 PM

Sample: LEA-SECONDARY	Lab ID: 702	12657002	Collected: 04/26/2	22 08:35	Received: 04	1/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	05/03/22 10:59	05/04/22 11:03	3 7440-38-2	
Cadmium	<2.5	ug/L	2.5	1		05/04/22 11:03		
Calcium	57600	ug/L	200	1	05/03/22 10:59	05/04/22 11:03	3 7440-70-2	
ron	116	ug/L	100	1	05/03/22 10:59	05/04/22 11:03	7439-89-6	
ead	<5.0	ug/L	5.0	1	05/03/22 10:59	05/04/22 11:03	7439-92-1	
/lagnesium	7300	ug/L	200	1	05/03/22 10:59	05/04/22 11:03	7439-95-4	
/langanese	15.4	ug/L	10.0	1	05/03/22 10:59	05/04/22 11:03	7439-96-5	
Potassium	14100	ug/L	5000	1	05/03/22 10:59	05/04/22 11:03	7440-09-7	
Sodium	6570	ug/L	5000	1	05/03/22 10:59	05/04/22 11:03	7440-23-5	
010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10C					
	Pace Analytica	l Services -	Melville					
Cadmium, Dissolved	<2.5	ug/L	2.5	1		04/30/22 00:52	2 7440-43-9	
Calcium, Dissolved	56000	ug/L	200	1		04/30/22 00:52	2 7440-70-2	
ron, Dissolved	<100	ug/L	100	1		04/30/22 00:52	2 7439-89-6	
ead, Dissolved	<5.0	ug/L	5.0	1		04/30/22 00:52	2 7439-92-1	
Magnesium, Dissolved	7270	ug/L	200	1		04/30/22 00:52	2 7439-95-4	
Manganese, Dissolved	<10.0	ug/L	10.0	1		04/30/22 00:52	7439-96-5	
Potassium, Dissolved	14400	ug/L	5000	1		04/30/22 00:52	2 7440-09-7	
Sodium, Dissolved	7170	ug/L	5000	1		04/30/22 00:52	2 7440-23-5	
2320B Alkalinity	Analytical Meth	nod: SM22 2	2320B					
•	Pace Analytica	l Services -	Melville					
Alkalinity, Total as CaCO3	169	mg/L	1.0	1		05/09/22 13:40)	
2340C Hardness, Total	Analytical Meth	nod: SM22 2	2340C					
	Pace Analytica							
ot Hardness asCaCO3 (SM 2340B	133	mg/L	5.0	1		04/29/22 13:59)	
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	2540C					
10 100 10tal 21000110a 0011a0	Pace Analytica							
Total Dissolved Solids	241	mg/L	10.0	1		05/03/22 13:26	5	
110.4 COD	Analytical Meth	nod: FPA 41	0.4 Preparation Me	thod: FP	A 410 4			
110.4 000	Pace Analytica			illou. El	7.410.4			
Chemical Oxygen Demand	32.4	mg/L	10.0	1	05/00/22 05:54	05/09/22 08:07	7	
		Ü				00.00122 00.01		
5210B BOD, 5 day	Analytical Meth Pace Analytica		5210B Preparation Melville	/lethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/28/22 10:46	05/03/22 10:4	I	H2
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
	Pace Analytica	l Services -	Melville					
Bromide	<0.50	mg/L	0.50	1		04/29/22 19:30	24959-67-9	
Chloride	8.4	mg/L	2.0	1		04/29/22 19:30	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

Sample: LEA-SECONDARY	Lab ID: 702	12657002	Collected:	04/26/2	22 08:35	Received: 04	/27/22 11:25 N	latrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Sulfate	22.1	mg/L		5.0	1		04/29/22 19:30	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytica		•	tion Met	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.90	mg/L		0.10	1	05/03/22 05:54	05/05/22 18:56	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth Pace Analytica								
Nitrate-Nitrite (as N)	2.2	mg/L		0.25	5		05/09/22 14:33	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L		0.050	1		04/28/22 02:36	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica			tion Met	thod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	05/03/22 12:23	05/03/22 16:24		
4500 Ammonia Water	Analytical Meth Pace Analytica								
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		05/05/22 14:08	7664-41-7	
5310B TOC as NPOC	Analytical Meth Pace Analytica								
Total Organic Carbon	11.6	mg/L		1.0	1		05/07/22 02:47	7440-44-0	

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 254563 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1286291 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Cadmium, Dissolved	ug/L	<2.5	2.5	04/29/22 23:52	
Calcium, Dissolved	ug/L	<200	200	04/29/22 23:52	
Iron, Dissolved	ug/L	<100	100	04/29/22 23:52	
Lead, Dissolved	ug/L	<5.0	5.0	04/29/22 23:52	
Magnesium, Dissolved	ug/L	<200	200	04/29/22 23:52	
Manganese, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Potassium, Dissolved	ug/L	<5000	5000	04/29/22 23:52	
Sodium, Dissolved	ug/L	<5000	5000	04/29/22 23:52	

LABORATORY	CONTROL	CVMDI E.	1296202
LABORATORY	CONTROL	SAMPLE:	1286292

Date: 05/10/2022 04:27 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic, Dissolved	ug/L	500	491	98	80-120	
Cadmium, Dissolved	ug/L	500	466	93	80-120	
Calcium, Dissolved	ug/L	25000	25200	101	80-120	
Iron, Dissolved	ug/L	12500	12700	101	80-120	
Lead, Dissolved	ug/L	500	495	99	80-120	
Magnesium, Dissolved	ug/L	25000	24300	97	80-120	
Manganese, Dissolved	ug/L	500	486	97	80-120	
Potassium, Dissolved	ug/L	25000	24000	96	80-120	
Sodium, Dissolved	ug/L	25000	24900	100	80-120	

MATRIX SPIKE SAMPLE:	1286295						
Parameter	Units	70211668001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic, Dissolved	ug/L	<10.0	500	468	93	75-125	
Cadmium, Dissolved	ug/L	<2.5	500	448	90	75-125	
Calcium, Dissolved	ug/L	<200	12500	11900	95	75-125	
Iron, Dissolved	ug/L	<100	5000	4820	96	75-125	
Lead, Dissolved	ug/L	<5.0	500	478	96	75-125	
Magnesium, Dissolved	ug/L	<200	12500	11600	93	75-125	
Manganese, Dissolved	ug/L	<10.0	500	468	94	75-125	
Potassium, Dissolved	ug/L	< 5000	12500	11500	90	75-125	
Sodium, Dissolved	ug/L	<5000	12500	12900	103	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

SAMPLE DUPLICATE: 1286294 70211668001 Dup Parameter Units Result Result RPD Qualifiers <10.0 Arsenic, Dissolved ug/L <10.0 <2.5 Cadmium, Dissolved ug/L <2.5 <200 Calcium, Dissolved ug/L <200 Iron, Dissolved ug/L <100 <100 Lead, Dissolved < 5.0 <5.0 ug/L Magnesium, Dissolved ug/L <200 <200 <10.0 Manganese, Dissolved ug/L <10.0 Potassium, Dissolved ug/L <5000 <5000 <5000 Sodium, Dissolved ug/L <5000

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 254804 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1287357 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

		Blank	Reporting		0 ""
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	ug/L	<10.0	10.0	05/04/22 10:49	
Cadmium	ug/L	<2.5	2.5	05/04/22 10:49	
Calcium	ug/L	<200	200	05/04/22 10:49	
Iron	ug/L	<100	100	05/04/22 10:49	
Lead	ug/L	<5.0	5.0	05/04/22 10:49	
Magnesium	ug/L	<200	200	05/04/22 10:49	
Manganese	ug/L	<10.0	10.0	05/04/22 10:49	
Potassium	ug/L	<5000	5000	05/04/22 10:49	
Sodium	ug/L	<5000	5000	05/04/22 10:49	

	001 ITD 01	- · · · - · -	
LABORATORY	CONTROL	SAMPLE:	1287358

Date: 05/10/2022 04:27 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	494	99	80-120	
Cadmium	ug/L	500	493	99	80-120	
Calcium	ug/L	25000	25400	102	80-120	
Iron	ug/L	12500	12600	100	80-120	
Lead	ug/L	500	496	99	80-120	
Magnesium	ug/L	25000	24300	97	80-120	
Manganese	ug/L	500	488	98	80-120	
Potassium	ug/L	25000	24300	97	80-120	
Sodium	ug/L	25000	23900	96	80-120	

MATRIX SPIKE SAMPLE:	1287360						
Parameter	Units	70212849003 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic	ug/L	19.6	500	464	 89	75-125	
Cadmium	ug/L	<2.5	500	433	87	75-125	
Calcium	ug/L	267000	12500	278000	88	75-125	
Iron	ug/L	36400	5000	40500	81	75-125	
Lead	ug/L	<5.0	500	437	87	75-125	
Magnesium	ug/L	26400	12500	37100	86	75-125	
Manganese	ug/L	4460	500	4890	86	75-125	
Potassium	ug/L	9580	12500	22000	99	75-125	
Sodium	ug/L	135000	12500	148000	104	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

SAMPLE DUPLICATE: 1287359 70212849003 Dup Parameter Units Result Result **RPD** Qualifiers 19.6 Arsenic ug/L 22.9 16 <2.5 Cadmium ug/L <2.5 267000 8 Calcium ug/L 289000 Iron ug/L 36400 39400 8 Lead ug/L < 5.0 <5.0 Magnesium ug/L 26400 28800 9 4460 9 Manganese ug/L 4870 Potassium ug/L 9580 10300 7 Sodium ug/L 135000 148000 9

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 255752 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1291972 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 05/09/22 11:12

LABORATORY CONTROL SAMPLE: 1291973

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 25 24.1 96 85-115

MATRIX SPIKE SAMPLE: 1291999

MS MS % Rec 70212265001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 6.9 Alkalinity, Total as CaCO3 mg/L 50 54.6 96 75-125

SAMPLE DUPLICATE: 1291998

Date: 05/10/2022 04:27 PM

ParameterUnits70212265001 ResultDup ResultRPDQualifiersAlkalinity, Total as CaCO3mg/L6.97.35

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

N SEA LANDFILL-ROUTINE/AS 4/26 Project:

Pace Project No.: 70212657

QC Batch: 254518

QC Batch Method: SM22 2340C

Analysis Method: Analysis Description:

SM22 2340C 2340C Hardness, Total

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1285987 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Parameter

Blank Result Reporting Limit

Analyzed Qualifiers

Tot Hardness asCaCO3 (SM 2340B <2.5 04/29/22 13:38 mg/L

LABORATORY CONTROL SAMPLE: 1285988

Spike Conc.

LCS

LCS % Rec % Rec Limits

Qualifiers

Parameter Tot Hardness asCaCO3 (SM 2340B

Parameter

Tot Hardness asCaCO3 (SM 2340B

Tot Hardness asCaCO3 (SM 2340B

Units mg/L

Units

Result

173

173

100 90-110

MATRIX SPIKE SAMPLE:

1285989

Units

mg/L

mg/L

70212657001 Result

100

Spike Conc.

667

173

100

MS Result

840

0

MS % Rec % Rec Limits

75-125

Qualifiers

SAMPLE DUPLICATE: 1285990

Date: 05/10/2022 04:27 PM

Parameter Units 70212657001 Result

Dup Result

RPD

Qualifiers

100

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

N SEA LANDFILL-ROUTINE/AS 4/26 Project:

Pace Project No.: 70212657

QC Batch: 254851

QC Batch Method:

SM22 2540C

Analysis Method:

SM22 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1287627

Matrix: Water

Associated Lab Samples:

Parameter

Parameter

70212657001, 70212657002

Blank Result Reporting

Limit Analyzed

Qualifiers

Total Dissolved Solids

mg/L

Units

Units

mg/L

mg/L

<5.0

5.0 05/03/22 13:13

LABORATORY CONTROL SAMPLE: 1287628

Spike Conc.

LCS Result

427

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE SAMPLE:

Total Dissolved Solids

1287630

Parameter Units 70212483001 Result

500

Spike Conc.

300

466

MS Result

675

335

2

13 D6

93

MS % Rec

83

100

85-115

% Rec Limits

75-125

75-125

Qualifiers

MATRIX SPIKE SAMPLE:

Total Dissolved Solids

1287632

Parameter Units Total Dissolved Solids mg/L 70212676001 Result 35.0 Spike Conc. 300

MS Result

MS % Rec

% Rec Limits

Qualifiers

SAMPLE DUPLICATE: 1287629

Total Dissolved Solids

Total Dissolved Solids

Date: 05/10/2022 04:27 PM

Parameter

Parameter

Units

mg/L

70212483001 Result

427

Dup Result

RPD

Qualifiers

SAMPLE DUPLICATE: 1287631

Units

mg/L

70212676001 Result 35.0

Dup Result 40.0

420

RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

N SEA LANDFILL-ROUTINE/AS 4/26 Project:

Pace Project No.: 70212657

QC Batch: 255696 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

> Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1291804 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

> Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Chemical Oxygen Demand <10.0 10.0 05/09/22 08:04 mg/L

LABORATORY CONTROL SAMPLE: 1291805

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Chemical Oxygen Demand 500 510 102 90-110 mg/L

MATRIX SPIKE SAMPLE: 1291806

SAMPLE DUPLICATE: 1291809

Date: 05/10/2022 04:27 PM

MS % Rec 70212558001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 10.3 Chemical Oxygen Demand mg/L 1000 998 99 90-110

MATRIX SPIKE SAMPLE: 1291808 70212658010 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers

14.7 Chemical Oxygen Demand mg/L 1000 1020 101 90-110

SAMPLE DUPLICATE: 1291807

70212558001 Dup RPD Parameter Units Result Result Qualifiers

10.3 14.7 35 D6 Chemical Oxygen Demand mg/L

70212658010 Dup Units **RPD** Qualifiers Parameter Result Result

14.7 Chemical Oxygen Demand 12.5 16 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 254273 Analysis Method: SM22 5210B

QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1284952 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

BOD, 5 day mg/L <1.0 1.0 05/03/22 10:21

LABORATORY CONTROL SAMPLE: 1284953

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 212 107 84.5-115.4

SAMPLE DUPLICATE: 1284954

Date: 05/10/2022 04:27 PM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 BOD, 5 day
 mg/L
 352
 352
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

QC Batch: 254483
QC Batch Method: EPA 300.0

Analysis Method: EPA 300.0

Analysis Description: 300.0 IC Anions

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1285816 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	04/29/22 14:32	
Chloride	mg/L	<2.0	2.0	04/29/22 14:32	
Sulfate	mg/L	<5.0	5.0	04/29/22 14:32	

LABORATORY CONTROL SAMPLE:	1285817					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	1	0.95	95	90-110	
Chloride	mg/L	10	10.4	104	90-110	
Sulfate	mg/L	10	10.4	104	90-110	

MATRIX SPIKE SAMPLE:	1285818						
		70212796001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.050	1	0.99	99	90-110	
Chloride	mg/L	14.5	10	23.5	91	90-110	
Sulfate	mg/L	12.0	10	21.3	93	90-110	

MATRIX SPIKE SAMPLE:	1285820						
		70212657002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	0.99	99	90-110	
Chloride	mg/L	8.4	10	17.7	93	90-110	
Sulfate	mg/L	22.1	10	31.2	91	90-110	

SAMPLE DUPLICATE: 1285819					
		70212796001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.050	<0.50		
Chloride	mg/L	14.5	14.4	1	
Sulfate	mg/L	12.0	11.9	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

SAMPLE DUPLICATE: 1285821

Parameter	Units	70212657002 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	8.4	8.3	1	
Sulfate	mg/L	22.1	22.0	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 254819 Analysis Method: EPA 351.2

QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1287549 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Kjeldahl, Total mg/L <0.094 0.094 05/05/22 18:32

LABORATORY CONTROL SAMPLE: 1287550

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Kjeldahl, Total 4.3 107 90-110 mg/L

MATRIX SPIKE SAMPLE: 1287551

MS MS % Rec 70213042002 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 9.2 Nitrogen, Kjeldahl, Total 90-110 M1 mg/L 4 11.4 54

MATRIX SPIKE SAMPLE: 1287553

70212613002 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.2 90-110 M1 Nitrogen, Kjeldahl, Total mg/L 4 4.7 88

SAMPLE DUPLICATE: 1287552

Parameter Units 70213042002 Dup
Result Result RPD Qualifiers

Nitrogen, Kjeldahl, Total mg/L 9.2 9.7 5

SAMPLE DUPLICATE: 1287554

Date: 05/10/2022 04:27 PM

 Parameter
 Units
 70212613002 Result
 Dup Result
 RPD
 Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 1.2
 1.2
 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 254208 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1284760 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 04/28/22 02:29

LABORATORY CONTROL SAMPLE: 1284761

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N mg/L 1.1 109 90-110

MATRIX SPIKE SAMPLE: 1284762

MS MS % Rec 70212658007 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 mg/L 0.50 90-110 H1 Nitrite as N 0.5 101

SAMPLE DUPLICATE: 1284763

Date: 05/10/2022 04:27 PM

 Parameter
 Units
 70212658007 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>
 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 255787 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Laboratory: Pace Analytical Services - Melville Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1292034 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 05/09/22 14:24

LABORATORY CONTROL SAMPLE: 1292035

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.0 103 90-110 mg/L

MATRIX SPIKE SAMPLE: 1292036

MS % Rec 70212657001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.74 Nitrate-Nitrite (as N) mg/L 0.5 1.3 110 90-110

MATRIX SPIKE SAMPLE: 1292038

70213640007 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 4.0 75 90-110 M1 Nitrate-Nitrite (as N) mg/L 0.5 4.3

SAMPLE DUPLICATE: 1292037

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.74
 0.75
 2

SAMPLE DUPLICATE: 1292039

Date: 05/10/2022 04:27 PM

 Parameter
 Units
 70213640007 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 4.0
 3.9
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 254848 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1287623 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Phenolics, Total Recoverable ug/L <5.0 5.0 05/03/22 16:15

LABORATORY CONTROL SAMPLE: 1287624

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Phenolics, Total Recoverable ug/L 100 94.7 95 90-110

MATRIX SPIKE SAMPLE: 1287625

70211652002 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Phenolics, Total Recoverable ug/L <5.0 50 60.2 120 75-125

SAMPLE DUPLICATE: 1287626

Date: 05/10/2022 04:27 PM

Phenolics, Total Recoverable

Total Recoverable

Parameter

Units

Total Recoverable

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 255340 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1289885 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.050 0.050 05/05/22 13:52

LABORATORY CONTROL SAMPLE: 1289886

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrogen, Ammonia mg/L 1.0 102 90-110

MATRIX SPIKE SAMPLE: 1289887

MS MS % Rec 70212662003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 mg/L 0.95 Nitrogen, Ammonia 91 75-125

SAMPLE DUPLICATE: 1289888

Date: 05/10/2022 04:27 PM

ParameterUnits70212662003 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L<0.10</td><0.10</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

QC Batch: 255621

QC Batch Method: SM22 5310B

Analysis Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70212657001, 70212657002

METHOD BLANK: 1290978 Matrix: Water

Associated Lab Samples: 70212657001, 70212657002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 05/06/22 23:21

LABORATORY CONTROL SAMPLE: 1290979

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** mg/L 10 9.8 98 85-115

MATRIX SPIKE SAMPLE: 1290981

MS MS % Rec 70212530001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 2.3 **Total Organic Carbon** mg/L 12.1 10 98 75-125

SAMPLE DUPLICATE: 1290980

Date: 05/10/2022 04:27 PM

ParameterUnits70212530001 ResultDup ResultRPDQualifiersTotal Organic Carbonmg/L2.32.32

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/10/2022 04:27 PM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H1 Analysis conducted outside the EPA method holding time.

H2 Extraction or preparation conducted outside EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: N SEA LANDFILL-ROUTINE/AS 4/26

Pace Project No.: 70212657

Date: 05/10/2022 04:27 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch 254875 254875		
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 3005A EPA 3005A	254804 254804	EPA 6010C EPA 6010C			
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 6010C EPA 6010C	254563 254563				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	SM22 2320B SM22 2320B	255752 255752				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	SM22 2340C SM22 2340C	254518 254518				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	SM22 2540C SM22 2540C	254851 254851				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 410.4 EPA 410.4	255696 255696	EPA 410.4 EPA 410.4	255706 255706		
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	SM22 5210B SM22 5210B	254273 254273	SM22 5210B SM22 5210B	255172 255172		
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 300.0 EPA 300.0	254483 254483				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 351.2 EPA 351.2	254819 254819	EPA 351.2 EPA 351.2	254821 254821		
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 353.2 EPA 353.2	255787 255787				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 353.2 EPA 353.2	254208 254208				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	EPA 420.1 EPA 420.1	254848 254848	EPA 420.1 EPA 420.1	254917 254917		
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	SM22 4500 NH3 H SM22 4500 NH3 H	255340 255340				
70212657001 70212657002	LEA-PRIMARY LEA-SECONDARY	SM22 5310B SM22 5310B	255621 255621				

CHAIN-OF-CUSTODY Analytical Request Document Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas-standard-terms.pdf Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields						and		-	排					57		Pace W	orkorder Nun	nber or			
Company: P.W. Grosser C	onfulting Inc		Billing Info	ormation:									Ш						LAB	USE ONL	.Υ
Address: Johnson A			Town	of 5	southam	bjau					702:	1265	7						ect Ma	-	VIMM
Report To: Derek Ersbo	aK		Email To:	rekeo p	ngrosser.	com													acid, (4) sodium h		c acetate,
Сору То			Site Collec	tion Info/A	ddress:					, ,		, (7) sodii m hydrox							(A) ascorbic acid,		ulfate,
Customer Project Name/Numb	CE'II		1		ty: Time]ET						Analys	es				Lab Profile/Line Lab Sample F	Receipt Che	cklist: Intact Y N NA
Phone:	Site/Facility ID) #:			1								- 1						Custody Sign	natures Pre	sent Y N NA
Email:					Yes Yes	[] No				, ,											esent Y N NA
Collected By (print):	Purchase Ord	er#:			DW PWS ID #:				1							ľ		Bottles Inta Correct Bott	les	Y N NA	
Mike Pecarano	Quote #:		DW Location Code: Immediately Packed on Ice: [Yes [] No Apply) Ext Day Field Filtered (if applicable): [] Yes [] No Analysis: DW), Ground Water (GW), Wastewater (WW), ue (TS), Bioassay (B), Vapor (V), Other (OT) Collected (or Composite End Res					(7)	ا چ ا		1							Sufficient V Samples Rece		e YN NA	
Collected By (signature):	Turnaround D	ate Requir	is this chain of custody constitutes acknowledgment and acceptance of the Pace Tilitions found at: https://info.pacelabs.com/hub6/pas-standard-terms.pdfof-Custody is a LEGAL DOCUMENT - Complete all relevant fields Billing Information: The Southampton Email To:)) sse	1									VOA - Heads	pace Accept	able YN NA
Sample Disposal:		117.							8	2		3							USDA Regulat Samples in I		Y U NA
Dispose as appropriate						## Pre ##					()								Residual Chi	Lorine Pres	
[] Return	[] 2 Day		,						(a)	1	(1)		- 1						Cl Strips:	14-860	
[] Archive:	[] 4 Day				Analysis: _				stic	ر ق									Sample pH A	ceptable	M NA
[] Hold:	1 1 1 1 2 2 2 2		DIAN Comme	1 14/-4 1/	CIAI) Mastou	intor (\A/\)	(/)		Pla	3									Sulfide Pre	sent	Y M NA
							٧),		уре	2				4					Lead Acetate	strips: 5	Cons
Customer Sample ID	Matrix *	Comp / Grab	Colle	cted (or site Start)	Compo	site End			Container	0 1									LAB USE ONL Lab Sample		s:
LEX-Primary	L	G	4/26/22	0415	1																
LEA- secondary	1.1.	1	1	0435						×											
Ecol Scientific																					
					(MP)																
					1																
													_				4=	-			
		-					+-	-	-					-			-	+			
							-			-			-	-			-	-	-	4	
			-	-	-		-	-	-				-							-	
Customer Remarks / Special C	Conditions / Possible	: Hazards:	Type of lo	e Used:	(Wet)	Blue	Dry	None	-		SHC	ORT HOL	DS PRI	ESENT	<72 hou	urs):	Y N	N/A	LAB Sami	ole Temperatu	re Info:
			VANA CO.		ed:						Lab	Trackin	g#:						Therm I Cooler	D#: / NOT/	Receipt:5 6
			Radchem	sample(s)			Υ	N NA				nples re			ent Co	urier	Pace C	Courier	Cooler	1 Therm Cor 1 Corrected	r. Factor
Relinquished by/Company: (S	ignature)	Dat	e/Time:	1715	Received b	y/Compa	ny: (Signa	ature)				Date/T	_	-	40		L LAB L		Comment	3-27-2	2
Reinquished by/Company: (S	ignature)	Dat		1125			200	ature)	4			Date/T	lme:		Ā	empla	m: ite:			p Blank Recei HCL M∈OH	ved: Y N NA TSP Other
Relinquished by/Company: (S	ignature)	Dat	:e/Time:	-1	Received b	y/Compa	ny: (Sign:	ature)				Date/T		11. 1	P	relogi M: B:	n:			nformance(s)	Page:

July 25, 2022

Tom Houghton
Town of Southampton
116 Hampton Road
Waste Management Division
Southampton, NY 11968

RE: Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Dear Tom Houghton:

Enclosed are the analytical results for sample(s) received by the laboratory between April 27, 2022 and April 28, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

REVISION#1: Report re-issued 7/25/22 to update dissolved metals list.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting

Richard Hodgson, Town of Southampton

Amanda Lauth, PW Grosser

Ed Thompson, Town of Southampton

(631)694-3040

CERTIFICATIONS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478

Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 254804

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212849003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1287360)
 - Silver

QC Batch: 255490

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212658012

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1290501)
 - Silver

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 255490

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

• DUP (Lab ID: 1290622)

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method:EPA 6010CDescription:6010 MET ICPClient:Town of SouthamptonDate:July 25, 2022

QC Batch: 255490

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

• Chromium • Iron

Additional Comments:

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved
Client: Town of Southampton
Date: July 25, 2022

General Information:

3 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 254563

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70211668001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1286295)Silver, Dissolved

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 7470A
Description: 7470 Mercury

Client: Town of Southampton

Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 256040

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1293403)
 - Mercury

Additional Comments:

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 7470A

Description: 7470 Mercury, Dissolved Client: Town of Southampton Date: July 25, 2022

General Information:

3 samples were analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Southampton
Date: July 25, 2022

General Information:

16 samples were analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 255018

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 1288646)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
- MS (Lab ID: 1288647)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
- MSD (Lab ID: 1288648)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane

QC Batch: 255553

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 1290658)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
- Bromomethane
- MS (Lab ID: 1290659)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone
 - Bromomethane
- MSD (Lab ID: 1290660)
 - 2-Butanone (MEK)
 - 2-Hexanone
 - Acetone

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:July 25, 2022

QC Batch: 255553

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

Bromomethane

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

OC Batch: 255018

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- LCS (Lab ID: 1288646)
 - Acetone
 - Bromomethane
- MS (Lab ID: 1288647)
 - Acetone
 - Bromomethane
- MSD (Lab ID: 1288648)
 - Acetone
 - Bromomethane

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- BLANK (Lab ID: 1288645)
 - Chloroethane
 - Tetrachloroethene
- DUP001 (Lab ID: 70212658007)
 - Chloroethane
 - Tetrachloroethene
- EQUIPMENT BLANK (Lab ID: 70212658015)
 - Chloroethane
 - Tetrachloroethene
- LCS (Lab ID: 1288646)
 - Chloroethane
 - Tetrachloroethene
- MS (Lab ID: 1288647)
 - Chloroethane
 - Tetrachloroethene
- MSD (Lab ID: 1288648)
 - Chloroethane
 - Tetrachloroethene
- MW-11A (Lab ID: 70212658005)
 - Chloroethane
 - Tetrachloroethene
- MW-11B (Lab ID: 70212658006)
 - Chloroethane
 - Tetrachloroethene
- MW-12A (Lab ID: 70212658013)

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:July 25, 2022

QC Batch: 255018

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- Chloroethane
- Tetrachloroethene
- MW-12B (Lab ID: 70212658014)
 - Chloroethane
 - Tetrachloroethene
- MW-1A (Lab ID: 70212658001)
 - Chloroethane
 - Tetrachloroethene
- MW-1B (Lab ID: 70212658002)
 - Chloroethane
 - Tetrachloroethene
- MW-1C (Lab ID: 70212658003)
 - Chloroethane
 - Tetrachloroethene
- MW-3A (Lab ID: 70212658004)
 - Chloroethane
 - Tetrachloroethene
- MW-3B (Lab ID: 70212658008)
 - Chloroethane
 - Tetrachloroethene
- MW-3C (Lab ID: 70212658009)
 - Chloroethane
 - Tetrachloroethene
- MW-4A (Lab ID: 70212658010)
 - Chloroethane
 - Tetrachloroethene
- MW-4B (Lab ID: 70212658011)
 - Chloroethane
 - Tetrachloroethene
- MW-4C (Lab ID: 70212658012)
 - Chloroethane
 - Tetrachloroethene

QC Batch: 255553

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- LCS (Lab ID: 1290658)
 - Bromomethane
- MS (Lab ID: 1290659)
 - Bromomethane
- MSD (Lab ID: 1290660)
 - Bromomethane

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:July 25, 2022

QC Batch: 255553

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- BLANK (Lab ID: 1290657)
 - Tetrachloroethene
- LCS (Lab ID: 1290658)
 - Tetrachloroethene
- MS (Lab ID: 1290659)
- Tetrachloroethene
- MSD (Lab ID: 1290660)
 - Tetrachloroethene
- TRIP BLANK (Lab ID: 70212658016)
 - Tetrachloroethene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 255018

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 1288646)
 - Acetone

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCS (Lab ID: 1288646)
 - Tetrachloroethene

QC Batch: 255553

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 1290658)
 - Bromomethane

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

NORTH SEA LANDFILL BASELINE Project:

Pace Project No.: 70212658

Method: EPA 8260C/5030C **Description:** 8260C Volatile Organics Client: Town of Southampton Date: July 25, 2022

QC Batch: 255018

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212658012

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 1288647) • Bromomethane • MSD (Lab ID: 1288648) • Bromomethane

QC Batch: 255553

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212903004

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

• MSD (Lab ID: 1290660) Bromomethane

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MSD (Lab ID: 1290660) • 1,1,1-Trichloroethane • trans-1,2-Dichloroethene

R1: RPD value was outside control limits.

• MSD (Lab ID: 1290660)

- Bromomethane
- lodomethane
- trans-1,2-Dichloroethene

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 8260
Description: TIC MSV Water
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 8260 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: SM22 2120B

Description: 2120B W Apparent Color Client: Town of Southampton Date: July 25, 2022

General Information:

15 samples were analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

• DUP001 (Lab ID: 70212658007)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: SM22 2320B
Description: 2320B Alkalinity
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: SM22 2540C

Description: 2540C Total Dissolved Solids **Client:** Town of Southampton

Date: July 25, 2022

General Information:

15 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 254851

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1287631)Total Dissolved Solids
- QC Batch: 255045

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1288721)
 - Total Dissolved Solids

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 255696

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1291807)
 - Chemical Oxygen Demand

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: SM22 5210B
Description: 5210B BOD, 5 day
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

- DUP001 (Lab ID: 70212658007)
- EQUIPMENT BLANK (Lab ID: 70212658015)
- MW-12A (Lab ID: 70212658013)MW-3B (Lab ID: 70212658008)
- MW-3C (Lab ID: 70212658009)

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 255571

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212658012,70213100001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1290720)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen **Client:** Town of Southampton

Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 255005

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212658001,70212658012

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1288613)Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client: Town of Southampton

Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:July 25, 2022

General Information:

15 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

• DUP001 (Lab ID: 70212658007)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 254408

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70212658012,70212740002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1285615)
 - Nitrite as N

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 420.1

Description: Phenolics, Total Recoverable **Client:** Town of Southampton

Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 420.1 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 420.1 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

PROJECT NARRATIVE

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 9014 Total Cyanide
Description: 9014 Cyanide, Total
Client: Town of Southampton
Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Method: EPA 9060A

Description: 9060A TOC as NPOC **Client:** Town of Southampton

Date: July 25, 2022

General Information:

15 samples were analyzed for EPA 9060A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1A	Lab ID: 7021	2658001	Collected: 04/26/2	22 10:55	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 60°	10C Preparation Mo	ethod: El	PA 3005A			
	Pace Analytical	Services - I	Melville					
luminum	<200	ug/L	200	1	05/03/22 10:59	05/04/22 11:05	7/20-00-5	
Antimony	<60.0	ug/L	60.0	1	05/03/22 10:59			
rsenic	<10.0	ug/L	10.0	1	05/03/22 10:59			
arium	<200	ug/L	200	1	05/03/22 10:59			
eryllium	<5.0	ug/L	5.0	1	05/03/22 10:59			
oron	<50.0	ug/L	50.0	1	05/03/22 10:59			
admium	<2.5	ug/L	2.5	1	05/03/22 10:59			
alcium	21700	ug/L	200	1	05/03/22 10:59			
hromium	<10.0	ug/L	10.0	1	05/03/22 10:59			
obalt	<50.0	ug/L	50.0	1	05/03/22 10:59			
opper	<25.0	ug/L	25.0	1	05/03/22 10:59			
oppei on	<100	ug/L ug/L	100	1	05/03/22 10:59			
ead	<5.0	ug/L	5.0	1	05/03/22 10:59			
lagnesium	7450	ug/L ug/L	200	1	05/03/22 10:59			
agnesium anganese	<10.0	ug/L ug/L	10.0	1	05/03/22 10:59			
ickel	<40.0	ug/L ug/L	40.0	1	05/03/22 10:59			
otassium	<5000	ug/L ug/L	5000	1	05/03/22 10:59			
elenium	<10.0	ug/L ug/L	10.0	1	05/03/22 10:59			
ilver	<10.0	ug/L ug/L	10.0	1	05/03/22 10:59			
odium	10800	•	5000	1	05/03/22 10:59			
nallium	<10.0	ug/L		1	05/03/22 10:59			
anadium	<10.0 <50.0	ug/L ug/L	10.0 50.0	1	05/03/22 10:59			
nc	<20.0	ug/L ug/L	20.0	1	05/03/22 10:59			
TIC .	₹20.0	ug/L	20.0	'	03/03/22 10.39	03/04/22 11.00	7440-00-0	
470 Mercury	Analytical Meth	od: EPA 747	70A Preparation Me	thod: EF	PA 7470A			
	Pace Analytical	Services - I	Melville					
ercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:29	7439-97-6	
260C Volatile Organics	Analytical Meth	od: EPA 826	60C/5030C					
•	Pace Analytical							
						05/04/00 44 44	67.64.1	L1
cetone	<5.0	ua/L	5.0	1		05/04/22 11:41	07-04-1	
	<5.0 <5.0	ug/L ug/L	5.0 5.0	1 1		05/04/22 11:41 05/04/22 11:41		
crylonitrile	<5.0	ug/L	5.0	1		05/04/22 11:41	107-13-1	
crylonitrile enzene	<5.0 <5.0	ug/L ug/L	5.0 5.0	1 1		05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2	
crylonitrile enzene romochloromethane	<5.0 <5.0 <5.0	ug/L ug/L ug/L	5.0 5.0 5.0	1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5	
crylonitrile enzene romochloromethane romodichloromethane	<5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4	
crylonitrile enzene romochloromethane romodichloromethane romoform	<5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2	
crylonitrile enzene romochloromethane romodichloromethane romoform romomethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9	
crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK)	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3	
crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0	
crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide arbon tetrachloride	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5	
crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide arbon tetrachloride hlorobenzene	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7	v2
crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide arbon tetrachloride hlorobenzene	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3	v3
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromomethane dromomethane dromomethane dromomethane dromomethane dramomethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41 05/04/22 11:41	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3	v3

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1A	Lab ID: 702	12658001	Collected: 04/26/2	2 10:55	Received:	04/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 124-48-1	
I,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 11:4		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 11:4		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 11:4		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 11:4		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 156-60-5	
I,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 11:4		
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		05/04/22 11:4	1 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 74-88-4	
Methylene Chloride	<5.0	ug/L	5.0	1		05/04/22 11:4	1 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 11:4	1 108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		05/04/22 11:4	1 79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 11:4	1 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 11:4	1 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 11:4	1 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 11:4	1 1330-20-7	
Surrogates		•						
,2-Dichloroethane-d4 (S)	101	%	81-122	1		05/04/22 11:4	1 17060-07-0	
I-Bromofluorobenzene (S)	98	%	79-118	1		05/04/22 11:4	1 460-00-4	
oluene-d8 (S)	99	%	82-122	1		05/04/22 11:4	1 2037-26-5	
TIC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
TC Search	No VOA Tics found			1		05/11/22 11:32	2	
2120B W Apparent Color	Analytical Met	hod: SM22	2120B					
••	Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/28/22 09:5	4	
pH	5.9	Std. Units		1		04/28/22 09:5		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1A	Lab ID: 702	12658001	Collected: 04/26/2	22 10:55	Received: 04	4/27/22 11:25 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Metl Pace Analytica							
Alkalinity, Total as CaCO3	29.3	mg/L	1.0	1		05/09/22 13:46		
2340C Hardness, Total	Analytical Metheral Pace Analytical							
Tot Hardness asCaCO3 (SM 2340B	56.7	mg/L	5.0	1		04/29/22 14:04		
2540C Total Dissolved Solids	Analytical Metl Pace Analytica							
Total Dissolved Solids	129	mg/L	10.0	1		05/03/22 13:27		
Chromium, Hexavalent	Analytical Metl Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/28/22 10:44	18540-29-9	
410.4 COD	Analytical Metheral Pace Analytical		0.4 Preparation Met Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:07		
5210B BOD, 5 day	Analytical Metl Pace Analytica		210B Preparation Melville	/lethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/28/22 10:47	05/03/22 10:43		
300.0 IC Anions 28 Days	Analytical Metl Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		04/29/22 20:38		
Chloride Sulfate	20.0 36.7	mg/L mg/L	2.0 5.0	1 1		04/29/22 20:38 04/29/22 20:38		
351.2 Total Kjeldahl Nitrogen	Analytical Metl	hod: EPA 35	1.2 Preparation Met	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	05/04/22 05:22	05/05/22 20:01	7727-37-9	M1
353.2 Nitrogen, NO2/NO3 pres.	Analytical Metl Pace Analytica							
Nitrate-Nitrite (as N)	5.8	mg/L	0.25	5		05/09/22 15:07	7727-37-9	
353.2 Nitrogen, NO2	Analytical Metl Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/28/22 02:38	14797-65-0	
Phenolics, Total Recoverable	Analytical Metl Pace Analytica		0.1 Preparation Met Melville	thod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:38		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1A	Lab ID: 7021	2658001	Collected: 04/26/	22 10:55	5 Received: 04	1/27/22 11:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:02	2 7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		n14 Total Cyanide P Melville	reparation	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 15:52	2 57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	1.7	mg/L	1.0	1		05/09/22 15:15	7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	1		05/09/22 15:15	7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	1		05/09/22 15:15	7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	1		05/09/22 15:15	7440-44-0	
Mean Total Organic Carbon	1.4	mg/L	1.0	1		05/09/22 15:15	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1B	Lab ID: 702	12658002	Collected: 04/26	/22 11:40	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation N	lethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Numinum	<200	ug/L	200	1	05/03/22 10:59	05/04/22 11:08	R 7/120-00-5	
Antimony	<60.0	ug/L	60.0		05/03/22 10:59			
Arsenic	<10.0	ug/L	10.0		05/03/22 10:59			
arium	<200	ug/L	200		05/03/22 10:59			
Beryllium	<5.0	ug/L	5.0		05/03/22 10:59			
oron	<50.0	ug/L	50.0		05/03/22 10:59			В
Cadmium	<2.5	ug/L	2.5		05/03/22 10:59			
calcium	4440	ug/L	200		05/03/22 10:59			
chromium	<10.0	ug/L	10.0		05/03/22 10:59			
Cobalt	<50.0	ug/L	50.0		05/03/22 10:59			
Copper	<25.0	ug/L	25.0		05/03/22 10:59			
on	<100	ug/L	100		05/03/22 10:59			
ead	<5.0	ug/L	5.0		05/03/22 10:59			
lagnesium	2100	ug/L	200		05/03/22 10:59			
langanese	<10.0	ug/L	10.0		05/03/22 10:59			
lickel	<40.0	ug/L	40.0		05/03/22 10:59			
otassium	<5000	ug/L ug/L	5000		05/03/22 10:59			
elenium	<10.0	ug/L ug/L	10.0		05/03/22 10:59			
ilver	<10.0 <10.0	ug/L ug/L	10.0		05/03/22 10:59			
odium	7070	•	5000		05/03/22 10:59			
		ug/L						
hallium anadium	<10.0 <50.0	ug/L	10.0 50.0		05/03/22 10:59 05/03/22 10:59			
inc	<20.0	ug/L ug/L	20.0		05/03/22 10:59			
						00/04/22 11:00	7 1 1 1 0 0 0	
470 Mercury	Analytical Met	hod: EPA 74	70A Preparation M	ethod: El	PA 7470A			
	Pace Analytica	al Services -	Melville					
1ercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:30	7439-97-6	
260C Volatile Organics	Analytical Met	hod: EPA 82	60C/5030C					
•	Pace Analytica							
cetone	<5.0	ug/L	5.0	1		05/04/22 12:0	1 67-64-1	L1
crylonitrile	<5.0	ug/L	5.0			05/04/22 12:0		
Benzene	<5.0	ug/L	5.0	1		05/04/22 12:0	1 71-43-2	
romochloromethane	<5.0	ug/L	5.0	1		05/04/22 12:0	1 74-97-5	
romodichloromethane	<5.0	ug/L	5.0	1		05/04/22 12:0		
romoform	<5.0	ug/L	5.0			05/04/22 12:0		
romomethane	<5.0	ug/L	5.0			05/04/22 12:0		
-Butanone (MEK)	<5.0	ug/L	5.0			05/04/22 12:0		
Carbon disulfide	<5.0	ug/L	5.0			05/04/22 12:0		
Carbon tetrachloride	<5.0	ug/L	5.0			05/04/22 12:0		
	<5.0	ug/L	5.0			05/04/22 12:0		
		~g/ ∟				05/04/22 12:0		v2
Chlorobenzene		ua/l	5.0	1				
Chlorobenzene Chloroethane	<5.0	ug/L ug/l	5.0 5.0					v3
Chlorobenzene Chloroethane Chloroform Chloromethane		ug/L ug/L ug/L	5.0 5.0 5.0	1		05/04/22 12:0 05/04/22 12:0 05/04/22 12:0	1 67-66-3	VS

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Sample: MW-1B	Lab ID: 702	12658002	Collected: 04/26/2	22 11:40	Received: (04/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 12:01	124-48-1	
I,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 12:01	106-93-4	
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 12:01	74-95-3	
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:01	95-50-1	
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:01	106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 12:01	110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:01	75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:01	107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:01	75-35-4	
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:01	156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:01	156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:01		
sis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 12:01		
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 12:01		
thylbenzene	<5.0	ug/L	5.0	1		05/04/22 12:01		
-Hexanone	<5.0	ug/L	5.0	1		05/04/22 12:01		
odomethane	<5.0	ug/L	5.0	1		05/04/22 12:01		
Methylene Chloride	<5.0	ug/L	5.0	1		05/04/22 12:01		
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 12:01		
Styrene	<5.0	ug/L	5.0	1		05/04/22 12:01		
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:01		
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:01		
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 12:01		L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 12:01		,
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:01		
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:01		
richloroethene	<5.0	ug/L	5.0	1		05/04/22 12:01		
richlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 12:01		
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:01		
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 12:01		
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 12:01		
Kylene (Total)	<5.0	ug/L	5.0	1		05/04/22 12:01		
Surrogates	40.0	ug/ L	0.0			00/01/22 12:01	1000 20 7	
,2-Dichloroethane-d4 (S)	102	%	81-122	1		05/04/22 12:01	17060-07-0	
-Bromofluorobenzene (S)	99	%	79-118	1		05/04/22 12:01		
oluene-d8 (S)	101	%	82-122	1		05/04/22 12:01		
TC MSV Water	Analytical Met	hod: EDA 93	260					
IC M3V Water	Pace Analytica							
	-	ai Gervices -	Merville	_				
ΓIC Search	No VOA Tics found			1		05/11/22 11:33	,	
2120B W Apparent Color	Analytical Met	hod: SM22	2120B					
	Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/28/22 09:56	`	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1B	Lab ID: 702	12658002	Collected: 04/26/2	22 11:40	Received: 04	4/27/22 11:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Met							
Alkalinity, Total as CaCO3	12.5	mg/L	1.0	1		05/09/22 13:52		
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	<5.0	mg/L	5.0	1		05/09/22 15:31		
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	20.0	mg/L	10.0	1		05/03/22 13:36	i	
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/28/22 10:45	18540-29-9	
410.4 COD	Analytical Met Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:08		
5210B BOD, 5 day	Analytical Met Pace Analytica		5210B Preparation Melville	/lethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/28/22 10:48	05/03/22 10:45		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		04/29/22 20:52		
Chloride Sulfate	9.6 8.3	mg/L mg/L	2.0 5.0	1 1		04/29/22 20:52 04/29/22 20:52		
351.2 Total Kjeldahl Nitrogen	Analytical Met	hod: EPA 35	51.2 Preparation Me Melville	thod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	05/04/22 05:22	05/05/22 20:04	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Met							
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		05/09/22 15:08	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met							
Nitrite as N	<0.050	mg/L	0.050	1		04/28/22 02:39	14797-65-0	
Phenolics, Total Recoverable	Analytical Met		20.1 Preparation Me Melville	thod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:39	1	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1B	Lab ID: 7021	2658002	Collected: 04/26/2	22 11:40	Received: 04	1/27/22 11:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:03	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 15:53	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:25	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:25	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:25	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:25	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:25	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1C	Lab ID: 702	12658003	Collected: 0)4/26/22	2 12:30	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparati	ion Met	hod: EF	PA 3005A			
	Pace Analytica	l Services -	Melville						
luminum	<200	ug/L		200	1	05/03/22 10:59	05/04/22 11:10	7/29-90-5	
Antimony	<60.0	ug/L		60.0	1	05/03/22 10:59			
rsenic	<10.0	ug/L		10.0	1	05/03/22 10:59			
arium	<200	ug/L		200	1	05/03/22 10:59			
eryllium	<5.0	ug/L		5.0	1	05/03/22 10:59			
oron	<50.0	ug/L		50.0	1	05/03/22 10:59			В
admium	<2.5	ug/L		2.5	1	05/03/22 10:59			5
alcium	4500	ug/L		200	1	05/03/22 10:59			
hromium	<10.0	ug/L		10.0	1	05/03/22 10:59			
obalt	<50.0	ug/L		50.0	1	05/03/22 10:59			
opper	<25.0	ug/L		25.0	1	05/03/22 10:59			
on	<100	ug/L		100	1	05/03/22 10:59			
ead	<5.0	ug/L		5.0	1	05/03/22 10:59			
lagnesium	2210	ug/L		200	1	05/03/22 10:59			
langanese	<10.0	ug/L		10.0	1	05/03/22 10:59			
lickel	<40.0	ug/L		40.0	1	05/03/22 10:59			
otassium	<5000	ug/L ug/L		5000	1	05/03/22 10:59			
elenium	<10.0	ug/L ug/L		10.0	1	05/03/22 10:59			
ilver	<10.0 <10.0	ug/L ug/L		10.0	1	05/03/22 10:59			
odium	6770	•		5000	1	05/03/22 10:59			
		ug/L			1				
hallium anadium	<10.0 <50.0	ug/L		10.0 50.0	1	05/03/22 10:59 05/03/22 10:59			
inc	<20.0	ug/L ug/L		20.0	1	05/03/22 10:59			
							00/01/22 11:10	7 110 00 0	
470 Mercury	Analytical Meth	nod: EPA 74	70A Preparati	ion Metl	nod: EF	PA 7470A			
	Pace Analytica	l Services -	Melville						
lercury	<0.20	ug/L		0.20	1	05/10/22 17:25	05/11/22 12:32	7439-97-6	
260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C						
· ·	Pace Analytica								
cetone	<5.0	ug/L		5.0	1		05/04/22 12:20) 67-64-1	L1
crylonitrile	<5.0	ug/L		5.0	1		05/04/22 12:20		
enzene	<5.0	ug/L		5.0	1		05/04/22 12:20		
000	<5.0	ug/L		5.0	1		05/04/22 12:20		
romochloromethane	70.0	•		5.0	1		05/04/22 12:20		
	<5.0	ua/l							
romodichloromethane	<5.0 <5.0	ug/L		5.0	1		05/04/22 12:20	1 /5-25-2	
romodichloromethane romoform	<5.0	ug/L		5.0 5.0	1 1		05/04/22 12:20		
romodichloromethane romoform romomethane	<5.0 <5.0	ug/L ug/L		5.0	1		05/04/22 12:20	74-83-9	
romodichloromethane romoform romomethane -Butanone (MEK)	<5.0 <5.0 <5.0	ug/L ug/L ug/L		5.0 5.0	1 1		05/04/22 12:20 05/04/22 12:20	74-83-9 78-93-3	
romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide	<5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L		5.0 5.0 5.0	1 1 1		05/04/22 12:20 05/04/22 12:20 05/04/22 12:20	74-83-9 78-93-3 75-15-0	
romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide arbon tetrachloride	<5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20	74-83-9 78-93-3 75-15-0 56-23-5	
romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide arbon tetrachloride chlorobenzene	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20	74-83-9 78-93-3 75-15-0 56-23-5 108-90-7	v3
romodichloromethane romoform romomethane -Butanone (MEK) carbon disulfide carbon tetrachloride chlorobenzene chloroethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20	74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3	v3
cromochloromethane cromodichloromethane cromoform cromomethane -Butanone (MEK) carbon disulfide carbon tetrachloride chlorobenzene chloroform chloroform	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L		5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20 05/04/22 12:20	74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3	v3

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1C	Lab ID: 70	212658003	Collected: 04/26/2	22 12:30	Received: ()4/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	ethod: EPA 82	260C/5030C					
	Pace Analytic	cal Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 12:20	124-48-1	
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 12:20		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 12:20		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:20		
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:20		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 12:20	110-57-6	
1,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:20	75-34-3	
1,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:20	107-06-2	
1,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:20	75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:20		
trans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:20		
1,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:20		
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 12:20	10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 12:20	10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 12:20	100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		05/04/22 12:20	591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 12:20	74-88-4	
Methylene Chloride	<5.0	ug/L	5.0	1		05/04/22 12:20	75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 12:20	108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/04/22 12:20	100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:20	630-20-6	
1,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:20	79-34-5	
Tetrachloroethene	<5.0	ug/L	5.0	1		05/04/22 12:20	127-18-4	L2,v3
Toluene	<5.0	ug/L	5.0	1		05/04/22 12:20	108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:20	71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:20	79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:20	79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 12:20	75-69-4	
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:20	96-18-4	
√inyl acetate	<5.0	ug/L	5.0	1		05/04/22 12:20	108-05-4	
Vinyl chloride	<5.0	ug/L	5.0	1		05/04/22 12:20	75-01-4	
Kylene (Total)	<5.0	ug/L	5.0	1		05/04/22 12:20	1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	103	%	81-122	1		05/04/22 12:20	17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-118	1		05/04/22 12:20	460-00-4	
Toluene-d8 (S)	98	%	82-122	1		05/04/22 12:20	2037-26-5	
TIC MSV Water	Analytical Me	ethod: EPA 82	260					
	Pace Analytic	cal Services -	Melville					
TIC Search	No VOA Tics found			1		05/11/22 11:33		
2120B W Apparent Color	Analytical Me	ethod: SM22	2120B					
pp	Pace Analytic							
Apparent Color	<5.0	units	5.0	1		04/28/22 09:57	,	
оН	6.0	Std. Units		1		04/28/22 09:57		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Sample: MW-1C	Lab ID: 702	12658003	Collected: 04/26/2	2 12:30	Received: 04	1/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth							
Alkalinity, Total as CaCO3	14.7	mg/L	1.0	1		05/09/22 13:58	3	
2340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	6.0	mg/L	5.0	1		05/09/22 15:34	4	
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	43.0	mg/L	10.0	1		05/03/22 13:36	6	
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	0.11	mg/L	0.020	1		04/28/22 10:47	7 18540-29-9	
410.4 COD	Analytical Meth Pace Analytica		4 Preparation Met elville	hod: EF	PA 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:13	3	
5210B BOD, 5 day	Analytical Meth Pace Analytica		10B Preparation Melville	lethod:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/28/22 10:50	05/03/22 10:48	3	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		04/29/22 21:05		
Chloride Sulfate	8.9 8.7	mg/L mg/L	2.0 5.0	1 1		04/29/22 21:05 04/29/22 21:05		
351.2 Total Kjeldahl Nitrogen		nod: EPA 351.	2 Preparation Met	hod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	0.22	mg/L	0.10	1	05/04/22 05:22	05/05/22 20:0	5 7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth Pace Analytica							
Nitrate-Nitrite (as N)	0.17	mg/L	0.050	1		05/09/22 15:11	1 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/28/22 02:40	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica		1 Preparation Met elville	hod: EF	PA 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:39	9	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-1C	Lab ID: 7021	2658003	Collected: 04/26	22 12:3	0 Received: 04	1/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:04	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide F Melville	reparati	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 15:53	3 57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:37	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:37	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:37	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:37	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 15:37	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3A	Lab ID: 702	12658004	Collected: 04/26/2	22 15:10	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
luminum	<200	ug/L	200	1	05/03/22 10:59	05/04/22 11:17	7 7429-90-5	
Intimony	<60.0	ug/L	60.0	1	05/03/22 10:59	05/04/22 11:17	7 7440-36-0	
rsenic	<10.0	ug/L	10.0	1	05/03/22 10:59	05/04/22 11:17	7 7440-38-2	
arium	<200	ug/L	200	1	05/03/22 10:59	05/04/22 11:17	7 7440-39-3	
eryllium	<5.0	ug/L	5.0	1	05/03/22 10:59	05/04/22 11:17	7 7440-41-7	
oron	<50.0	ug/L	50.0	1	05/03/22 10:59	05/04/22 11:17	7 7440-42-8	
admium	<2.5	ug/L	2.5	1	05/03/22 10:59	05/04/22 11:17	7 7440-43-9	
alcium	22900	ug/L	200	1	05/03/22 10:59			
hromium	1080	ug/L	10.0	1	05/03/22 10:59			
obalt	<50.0	ug/L	50.0	1	05/03/22 10:59			
copper	26.4	ug/L	25.0	1	05/03/22 10:59			
on	4200	ug/L	100	1	05/03/22 10:59			
ead	<5.0	ug/L	5.0	1	05/03/22 10:59			
lagnesium	6020	ug/L	200	1	05/03/22 10:59			
langanese	218	ug/L	10.0	1	05/03/22 10:59			
ickel	117	ug/L	40.0	1	05/03/22 10:59			
otassium	7520	ug/L	5000	1	05/03/22 10:59			
elenium	<10.0	ug/L	10.0	1	05/03/22 10:59			
	<10.0 <10.0	•		1	05/03/22 10:59			
ilver		ug/L	10.0					
odium	85100	ug/L	5000	1	05/03/22 10:59			
hallium	<10.0	ug/L	10.0	1	05/03/22 10:59			
anadium	<50.0	ug/L	50.0	1	05/03/22 10:59			
inc	<20.0	ug/L	20.0	1	05/03/22 10:59	05/04/22 11:17	7440-66-6	
470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: EF	PA 7470A			
	Pace Analytica	l Services -	Melville					
lercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:33	3 7439-97-6	
260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
-	Pace Analytica	l Services -	Melville					
cetone	<5.0	ug/L	5.0	1		05/04/22 12:40	0 67-64-1	L1
crylonitrile	<5.0	ug/L	5.0	1		05/04/22 12:40	0 107-13-1	
enzene	<5.0	ug/L	5.0	1		05/04/22 12:40	71-43-2	
romochloromethane	<5.0	ug/L	5.0	1		05/04/22 12:40		
romodichloromethane	<5.0	ug/L	5.0	1		05/04/22 12:40		
romoform	<5.0	ug/L	5.0	1		05/04/22 12:40		
romomethane	<5.0	ug/L	5.0	1		05/04/22 12:40		
-Butanone (MEK)	<5.0	ug/L	5.0	1		05/04/22 12:40		
arbon disulfide	<5.0	ug/L	5.0	1		05/04/22 12:40		
carbon tetrachloride	<5.0	ug/L	5.0	1		05/04/22 12:40		
Chlorobenzene	<5.0	ug/L ug/L	5.0	1		05/04/22 12:40		
Chloroethane	<5.0 <5.0	-	5.0	1		05/04/22 12:40		v3
		ug/L				05/04/22 12:40		٧J
Chloroform	<5.0	ug/L	5.0	1				
Chloromethane	<5.0	ug/L	5.0	1		05/04/22 12:40		
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		05/04/22 12:40	J 90-12-8	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3A	Lab ID: 702	12658004	Collected: 04/26/2	22 15:10	Received:	04/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 124-48-1	
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 12:4		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 12:4		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:4		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 75-35-4	
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 156-59-2	
ans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:4		
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1			0 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 10061-02-6	
thylbenzene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 100-41-4	
-Hexanone	<5.0	ug/L	5.0	1		05/04/22 12:4	0 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 74-88-4	
lethylene Chloride	<5.0	ug/L	5.0	1		05/04/22 12:4	0 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 12:4	0 108-10-1	
tyrene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		05/04/22 12:4	0 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:4	0 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 12:4	0 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 12:4	0 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 12:4		
Surrogates		•						
,2-Dichloroethane-d4 (S)	103	%	81-122	1		05/04/22 12:4	0 17060-07-0	
-Bromofluorobenzene (S)	99	%	79-118	1		05/04/22 12:4		
oluene-d8 (S)	99	%	82-122	1		05/04/22 12:4	0 2037-26-5	
IC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
IC Search	No VOA Tics found			1		05/11/22 11:33	3	
120B W Apparent Color	Analytical Met	hod: SM22	2120B					
· · · · · · · · · · · · · · · · · · ·	Pace Analytica							
pparent Color	90.0	units	25.0	5		04/28/22 10:1	0	
рН	6.1	Std. Units		5		04/28/22 10:1		

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Pace Project No.: 70212658			0 11 . 1 . 0 / (0 0 / 0					
Sample: MW-3A	Lab ID: 70212	2658004	Collected: 04/26/2	2 15:10	Received: 04	1/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Metho	od: SM22 23	320B					
	Pace Analytical	Services - N	/lelville					
Alkalinity, Total as CaCO3	61.8	mg/L	1.0	1		05/09/22 16:24	1	
2340C Hardness, Total	Analytical Metho							
	Pace Analytical	Services - N	Melville					
Tot Hardness asCaCO3 (SM 2340B	93.3	mg/L	5.0	1		05/09/22 15:40)	
2540C Total Dissolved Solids	Analytical Metho							
	Pace Analytical	Services - N	Melville					
Total Dissolved Solids	335	mg/L	10.0	1		05/03/22 13:37	7	
Chromium, Hexavalent	Analytical Metho							
	Pace Analytical							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/28/22 10:49	9 18540-29-9	
410.4 COD	Analytical Methor Pace Analytical		.4 Preparation Met	hod: EP	A 410.4			
Chemical Oxygen Demand	14.7	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:13	3	
5210B BOD, 5 day	Analytical Metho		210B Preparation M Melville	lethod:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/28/22 10:55	05/03/22 10:50)	
300.0 IC Anions 28 Days	Analytical Metho							
Dromido	-			4		04/20/22 24:40	0.04050.67.0	
Bromide Chloride	<0.50 175	mg/L mg/L	0.50 10.0	1 5		04/29/22 21:19 05/02/22 21:19		
Sulfate	6.9	mg/L	5.0	1		04/29/22 21:19		
351.2 Total Kjeldahl Nitrogen	Analytical Metho	od: EPA 351	.2 Preparation Met	hod: EP	PA 351.2			
	Pace Analytical	Services - N	Melville					
Nitrogen, Kjeldahl, Total	0.48	mg/L	0.10	1	05/04/22 05:22	05/05/22 20:05	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Metho							
Nitrate-Nitrite (as N)	0.78	mg/L	0.050	1		05/09/22 15:15	7727-37-9	
353.2 Nitrogen, NO2	Analytical Metho							
Nitrite as N	<0.050	mg/L	0.050	1		04/28/22 02:46	6 14797-65-0	
Phenolics, Total Recoverable	Analytical Metho		.1 Preparation Met	hod: EP	PA 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:40)	
	70.0	~9/ ∟	0.0	•	33/33/22 12.10	30,00,22 10.40	•	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3A	Lab ID: 7021	2658004	Collected:	04/26/2	22 15:10	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.13	mg/L		0.10	1		05/09/22 14:05	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		•	nide Pr	eparatio	n Method: EPA 9	0010C		
Cyanide	<10.0	ug/L		10.0	1	05/05/22 13:15	05/05/22 15:54	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90)60A						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	2.9	mg/L		1.0	1		05/09/22 15:51	7440-44-0	
Total Organic Carbon	3.1	mg/L		1.0	1		05/09/22 15:51	7440-44-0	
Total Organic Carbon	3.0	mg/L		1.0	1		05/09/22 15:51	7440-44-0	
Total Organic Carbon	3.1	mg/L		1.0	1		05/09/22 15:51	7440-44-0	
Mean Total Organic Carbon	3.0	mg/L		1.0	1		05/09/22 15:51	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-11A	Lab ID: 702	12658005	Collected: 04/26/2	2 13:15	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	thod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Aluminum	<200	ug/L	200	1	05/03/22 10:59	05/04/22 11:20	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	05/03/22 10:59	05/04/22 11:20	7440-36-0	
Arsenic	11.4	ug/L	10.0	1	05/03/22 10:59	05/04/22 11:20	7440-38-2	
Barium	320	ug/L	200	1	05/03/22 10:59	05/04/22 11:20	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	05/03/22 10:59	05/04/22 11:20	7440-41-7	
Boron	<50.0	ug/L	50.0	1	05/03/22 10:59	05/04/22 11:20	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	05/03/22 10:59	05/04/22 11:20	7440-43-9	
Calcium	28600	ug/L	200	1	05/03/22 10:59			
Chromium	<10.0	ug/L	10.0	1	05/03/22 10:59			
Cobalt	<50.0	ug/L	50.0	1	05/03/22 10:59			
Copper	40.7	ug/L	25.0	1	05/03/22 10:59			
ron	136000	ug/L	100	1	05/03/22 10:59			
_ead	<5.0	ug/L	5.0	1	05/03/22 10:59			
Magnesium	7700	ug/L	200	1	05/03/22 10:59			
Manganese	8440	ug/L	10.0	1	05/03/22 10:59			
Nickel	<40.0	ug/L	40.0	1	05/03/22 10:59			
Potassium	<5000	ug/L	5000	1	05/03/22 10:59			
Selenium	15.0	ug/L	10.0	1	05/03/22 10:59			
Silver	<10.0	ug/L	10.0	1	05/03/22 10:59			
Sodium	12700	ug/L	5000	1	05/03/22 10:59			
Thallium	<10.0	ug/L	10.0	1	05/03/22 10:59			
/anadium	<50.0	ug/L	50.0	1	05/03/22 10:59			
Zinc	61.6	ug/L	20.0	1	05/03/22 10:59			
6010 MET ICP, Dissolved	Analytical Meth	nod: FPA 60	010C					
oro MET for, Dissolved	Pace Analytica							
Aluminum, Dissolved	<200	ug/L	200	1		04/30/22 00:59	9 7429-90-5	
Antimony, Dissolved	<60.0	ug/L	60.0	1		04/30/22 00:59		
Arsenic, Dissolved	<10.0	ug/L	10.0	1		04/30/22 00:59		
Barium, Dissolved	<200	ug/L	200	1		04/30/22 00:59		
Beryllium, Dissolved	<5.0	ug/L	5.0	1		04/30/22 00:59		
Boron, Dissolved	<50.0	ug/L	50.0	1		04/30/22 00:59		
Chromium, Dissolved	<10.0	ug/L	10.0	1		04/30/22 00:59		
Cobalt, Dissolved	<50.0	ug/L	50.0	1		04/30/22 00:59		
Copper, Dissolved	<25.0	ug/L ug/L	25.0	1		04/30/22 00:59		
Nickel, Dissolved	<40.0	ug/L	40.0	1		04/30/22 00:59		
Selenium, Dissolved	<40.0 <10.0	ug/L ug/L	10.0	1		04/30/22 00:59		
Silver, Dissolved	<10.0 <10.0	ug/L ug/L	10.0	1		04/30/22 00:59		
Thallium, Dissolved	<10.0	ug/L ug/L	10.0	1		04/30/22 00:59		
/anadium, Dissolved	<50.0	ug/L ug/L	50.0	1		04/30/22 00:59		
Zinc, Dissolved	<50.0 <20.0	ug/L ug/L	20.0	1		04/30/22 00:59		
·					DA 7470A			
7470 Mercury	Analytical Metr		470A Preparation Me Melville	u IOO: El	-A 141UA			
Mercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:34	5 7439-07-6	
viologi y	₹0.20	ug/∟	0.20		55/10/22 11.25	JU/ 11/22 12.JC	, 1-100-01-0	

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Sample: MW-11A	Lab ID: 702	12658005	Collected: 04/26/2	∠ 13:15	Received: 04	/2//22 11:25 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
7470 Mercury, Dissolved	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: El	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury, Dissolved	<0.20	ug/L	0.20	1	05/11/22 15:20	05/12/22 12:23	7439-97-6	
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		05/04/22 12:59	67-64-1	L1
Acrylonitrile	<5.0	ug/L	5.0	1		05/04/22 12:59	107-13-1	
Benzene	<5.0	ug/L	5.0	1		05/04/22 12:59	71-43-2	
Bromochloromethane	<5.0	ug/L	5.0	1		05/04/22 12:59	74-97-5	
Bromodichloromethane	<5.0	ug/L	5.0	1		05/04/22 12:59	75-27-4	
Bromoform	<5.0	ug/L	5.0	1		05/04/22 12:59	75-25-2	
Bromomethane	<5.0	ug/L	5.0	1		05/04/22 12:59	74-83-9	
2-Butanone (MEK)	<5.0	ug/L	5.0	1		05/04/22 12:59	78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		05/04/22 12:59	75-15-0	
Carbon tetrachloride	<5.0	ug/L	5.0	1		05/04/22 12:59	56-23-5	
Chlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:59	108-90-7	
Chloroethane	<5.0	ug/L	5.0	1		05/04/22 12:59	75-00-3	v3
Chloroform	<5.0	ug/L	5.0	1		05/04/22 12:59	67-66-3	
Chloromethane	<5.0	ug/L	5.0	1		05/04/22 12:59		
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		05/04/22 12:59		
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 12:59		
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 12:59		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 12:59		
I,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:59		
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 12:59		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 12:59		
1,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:59		
, 1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:59		
1,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:59		
	<5.0	•	5.0	1		05/04/22 12:59		
cis-1,2-Dichloroethene rans-1,2-Dichloroethene		ug/L		1				
•	<5.0	ug/L	5.0			05/04/22 12:59		
1,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:59		
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 12:59		
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 12:59		
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 12:59		
2-Hexanone	<5.0	ug/L	5.0	1		05/04/22 12:59		
odomethane	<5.0	ug/L	5.0	1		05/04/22 12:59		
Methylene Chloride	<5.0	ug/L	5.0	1		05/04/22 12:59		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 12:59		
Styrene	<5.0	ug/L	5.0	1		05/04/22 12:59		
1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:59	630-20-6	
1,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 12:59		
Tetrachloroethene	<5.0	ug/L	5.0	1		05/04/22 12:59	127-18-4	L2,v3
Toluene	<5.0	ug/L	5.0	1		05/04/22 12:59	108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:59	71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 12:59	79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		05/04/22 12:59	79-01-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-11A	Lab ID: 702	212658005 Co	llected: 04/26/2	2 13:15	Received: 04	1/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260C Volatile Organics	Analytical Me	thod: EPA 8260C/	5030C					
	Pace Analytic	al Services - Melv	rille					
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 12:5	9 75-69-4	
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 12:5	9 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 12:5		
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 12:5		
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 12:5	9 1330-20-7	
Surrogates I,2-Dichloroethane-d4 (S)	105	%	81-122	1		05/04/22 12:5	9 17060-07-0	
4-Bromofluorobenzene (S)	102	%	79-118	1		05/04/22 12:5		
Toluene-d8 (S)	100	%	82-122	1		05/04/22 12:5		
TIC MSV Water	•	thod: EPA 8260 al Services - Melv	rille					
TIC Search	No VOA Tics found			1		05/11/22 11:33	3	
2120B W Apparent Color	-	thod: SM22 2120l al Services - Melv						
Apparent Color	900	units	250	50		04/28/22 10:0	0	
ρΗ	6.0	Std. Units	0.10	50		04/28/22 10:0	0	
2320B Alkalinity	•	thod: SM22 2320l al Services - Melv						
Alkalinity, Total as CaCO3	79.4	mg/L	1.0	1		05/09/22 16:3	2	
2340C Hardness, Total		thod: SM22 23400 al Services - Melv						
Tot Hardness asCaCO3 (SM 2340B	80.0	mg/L	5.0	1		05/09/22 15:4	6	
2540C Total Dissolved Solids		thod: SM22 25400 al Services - Melv						
Total Dissolved Solids	133	mg/L	10.0	1		05/03/22 13:3	7	
Chromium, Hexavalent	•	thod: SM22 3500- al Services - Melv						
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/28/22 10:4	8 18540-29-9	
410.4 COD		thod: EPA 410.4 al Services - Melv		hod: EPA	A 410.4			
Chemical Oxygen Demand	32.4	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:1	3	
5210B BOD, 5 day	•	thod: SM22 5210l al Services - Melv	•	1ethod: S	SM22 5210B			
BOD, 5 day	<4.0	mg/L	4.0	2	04/28/22 10:52	05/03/22 10:5	2	
• •		J	-			, , ,		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-11A	Lab ID: 702	12658005	Collected: 04/26/2	2 13:15	Received: 0	4/27/22 11:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.00					
	Pace Analytica	l Services -	Melville					
Bromide	<0.50	mg/L	0.50	1		04/29/22 21:32	24959-67-9	
Chloride	14.2	mg/L	2.0	1		04/29/22 21:32		
Sulfate	11.7	mg/L	5.0	1		04/29/22 21:32	14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytica		51.2 Preparation Met Melville	hod: EF	PA 351.2			
Nitrogen, Kjeldahl, Total	1.5	mg/L	0.50	1	05/04/22 05:22	05/05/22 20:06	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth Pace Analytica							
Nitrate-Nitrite (as N)	0.78	mg/L	0.050	1		05/09/22 15:35	7727-37-9	
53.2 Nitrogen, NO2	Analytical Meth Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/28/22 02:43	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica		20.1 Preparation Met Melville	hod: EF	PA 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:41		
500 Ammonia Water	Analytical Meth Pace Analytica							
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:09	7664-41-7	
0014 Cyanide, Total	Analytical Meth Pace Analytica		014 Total Cyanide Pr Melville	eparatio	on Method: EPA	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 15:55	57-12-5	
060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
	Pace Analytica	l Services -	Melville					
otal Organic Carbon	6.6	mg/L	1.0	1		05/09/22 16:07	7440-44-0	
otal Organic Carbon	6.4	mg/L	1.0	1		05/09/22 16:07	7440-44-0	
otal Organic Carbon	6.3	mg/L	1.0	1		05/09/22 16:07	7440-44-0	
Total Organic Carbon	6.3	mg/L	1.0	1		05/09/22 16:07		
Mean Total Organic Carbon	6.4	mg/L	1.0	1		05/09/22 16:07	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-11B	Lab ID: 70	212658006	Collected: 04/26/2	2 14:10	Received: 04	/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Me	thod: EPA 60	010C Preparation Me	thod: El	PA 3005A			
	Pace Analytic							
Aluminum	544	ug/L	200	1	05/03/22 10:59	05/04/22 11:22	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	05/03/22 10:59	05/04/22 11:22	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	05/03/22 10:59	05/04/22 11:22	7440-38-2	
Barium	<200	ug/L	200	1	05/03/22 10:59	05/04/22 11:22	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	05/03/22 10:59	05/04/22 11:22	7440-41-7	
Boron	<50.0	ug/L	50.0	1	05/03/22 10:59	05/04/22 11:22	7440-42-8	В
Cadmium	<2.5	ug/L	2.5	1	05/03/22 10:59	05/04/22 11:22	7440-43-9	
Calcium	12700	ug/L	200	1	05/03/22 10:59			
Chromium	<10.0	ug/L	10.0	1	05/03/22 10:59			
Cobalt	<50.0	ug/L	50.0	1	05/03/22 10:59			
Copper	<25.0	ug/L	25.0	1	05/03/22 10:59			
ron	3320	ug/L	100	1	05/03/22 10:59			
Lead	<5.0	ug/L	5.0	1	05/03/22 10:59			
Magnesium	2790	ug/L	200	1	05/03/22 10:59			
Manganese	80.4	ug/L	10.0	1	05/03/22 10:59			
Nickel	<40.0	ug/L	40.0	1	05/03/22 10:59			
Potassium	<5000	ug/L	5000	1	05/03/22 10:59			
Selenium	<10.0	ug/L	10.0	1	05/03/22 10:59			
Silver	<10.0	ug/L	10.0	1	05/03/22 10:59			
Sodium	8210	ug/L	5000	1	05/03/22 10:59			
Thallium	<10.0	ug/L	10.0	1	05/03/22 10:59			
/anadium	<50.0	ug/L	50.0	1	05/03/22 10:59			
Zinc	<20.0	ug/L	20.0	1	05/03/22 10:59			
6010 MET ICP, Dissolved	Analytical Me	thod: FPA 60	010C					
or o mer for, biosoffed	Pace Analytic							
Aluminum, Dissolved	<200	ug/L	200	1		04/30/22 01:01	T429-90-5	
Antimony, Dissolved	<60.0	ug/L	60.0	1		04/30/22 01:01		
Arsenic, Dissolved	<10.0	ug/L	10.0	1		04/30/22 01:01		
Barium, Dissolved	<200	ug/L	200	1		04/30/22 01:01		
Beryllium, Dissolved	<5.0	ug/L	5.0	1		04/30/22 01:01		
Boron, Dissolved	<50.0	ug/L	50.0	1		04/30/22 01:01		
Chromium, Dissolved	<10.0	ug/L	10.0	1		04/30/22 01:01		
Cobalt, Dissolved	<50.0	ug/L	50.0	1		04/30/22 01:01		
Copper, Dissolved	<25.0	ug/L	25.0	1		04/30/22 01:01		
Nickel, Dissolved	<40.0	ug/L	40.0	1		04/30/22 01:01		
Selenium, Dissolved	<10.0	ug/L	10.0	1		04/30/22 01:01		
Silver, Dissolved	<10.0	ug/L	10.0	1		04/30/22 01:01		
Fhallium, Dissolved	<10.0	ug/L	10.0	1		04/30/22 01:01		
Vanadium, Dissolved	<50.0	ug/L ug/L	50.0	1		04/30/22 01:01		
Zinc, Dissolved	<20.0	ug/L ug/L	20.0	1		04/30/22 01:01		
7470 Mercury		_	170A Preparation Me		PA 7470A	-		
TTO MEICULY	Pace Analytic		•	aiou. El	A I TI UA			
Mercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:36	7439-97-6	
··· ,	-0.20	~ - ~ -	5.20	-				

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-11B	Lab ID: 702	12658006	Collected:	04/26/2	2 14:10	Received: 0	4/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	170A Prepara	ation Me	thod: EF	PA 7470A			
	Pace Analytica	l Services -	Melville						
Mercury, Dissolved	<0.20	ug/L		0.20	1	05/11/22 15:20	05/12/22 12:27	7 7439-97-6	
3260C Volatile Organics	Analytical Meth	od: EPA 82	260C/5030C						
•	Pace Analytica	l Services -	Melville						
Acetone	<5.0	ug/L		5.0	1		05/04/22 13:18	3 67-64-1	L1
Acrylonitrile	<5.0	ug/L		5.0	1		05/04/22 13:18	3 107-13-1	
Benzene	<5.0	ug/L		5.0	1		05/04/22 13:18	3 71-43-2	
Bromochloromethane	<5.0	ug/L		5.0	1		05/04/22 13:18		
Bromodichloromethane	<5.0	ug/L		5.0	1		05/04/22 13:18	3 75-27-4	
Bromoform	<5.0	ug/L		5.0	1		05/04/22 13:18		
Bromomethane	<5.0	ug/L		5.0	1		05/04/22 13:18		
2-Butanone (MEK)	<5.0	ug/L		5.0	1		05/04/22 13:18		
Carbon disulfide	<5.0	ug/L		5.0	1		05/04/22 13:18		
Carbon tetrachloride	<5.0	ug/L		5.0	1		05/04/22 13:18		
Chlorobenzene	<5.0	ug/L		5.0	1		05/04/22 13:18		
Chloroethane	<5.0	ug/L		5.0	1		05/04/22 13:18		v3
Chloroform	5.0	ug/L ug/L		5.0	1		05/04/22 13:18		VS
	<5.0	-		5.0	1		05/04/22 13:18		
Chloromethane		ug/L							
,2-Dibromo-3-chloropropane	<5.0	ug/L		5.0	1		05/04/22 13:18		
Dibromochloromethane	<5.0	ug/L		5.0	1		05/04/22 13:18		
,2-Dibromoethane (EDB)	<5.0	ug/L		5.0	1		05/04/22 13:18		
Dibromomethane	<5.0	ug/L		5.0	1		05/04/22 13:18		
,2-Dichlorobenzene	<5.0	ug/L		5.0	1		05/04/22 13:18		
,4-Dichlorobenzene	<5.0	ug/L		5.0	1		05/04/22 13:18		
rans-1,4-Dichloro-2-butene	<5.0	ug/L		5.0	1		05/04/22 13:18		
1,1-Dichloroethane	<5.0	ug/L		5.0	1		05/04/22 13:18		
1,2-Dichloroethane	<5.0	ug/L		5.0	1		05/04/22 13:18	3 107-06-2	
,1-Dichloroethene	<5.0	ug/L		5.0	1		05/04/22 13:18	3 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L		5.0	1		05/04/22 13:18	3 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L		5.0	1		05/04/22 13:18	3 156-60-5	
1,2-Dichloropropane	<5.0	ug/L		5.0	1		05/04/22 13:18	3 78-87-5	
sis-1,3-Dichloropropene	<5.0	ug/L		5.0	1		05/04/22 13:18	3 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L		5.0	1		05/04/22 13:18	3 10061-02-6	
Ethylbenzene	<5.0	ug/L		5.0	1		05/04/22 13:18	3 100-41-4	
?-Hexanone	<5.0	ug/L		5.0	1		05/04/22 13:18	3 591-78-6	
odomethane	<5.0	ug/L		5.0	1		05/04/22 13:18	3 74-88-4	
Methylene Chloride	<5.0	ug/L		5.0	1		05/04/22 13:18	3 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		05/04/22 13:18	3 108-10-1	
Styrene	<5.0	ug/L		5.0	1		05/04/22 13:18		
,1,1,2-Tetrachloroethane	<5.0	ug/L		5.0	1		05/04/22 13:18		
,1,2,2-Tetrachloroethane	<5.0	ug/L		5.0	1		05/04/22 13:18		
etrachloroethene	<5.0	ug/L		5.0	1		05/04/22 13:18		L2,v3
oluene	<5.0	ug/L		5.0	1		05/04/22 13:18		L2, v0
,1,1-Trichloroethane	<5.0 <5.0				1		05/04/22 13:18		
		ug/L		5.0	1		05/04/22 13:18		
1,1,2-Trichloroethane	<5.0	ug/L		5.0	ı		05/04/22 13:18	79-00-5	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-11B	Lab ID: 702	212658006 Co	ollected: 04/26/2	22 14:10	Received: 04	4/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	thod: EPA 82600	C/5030C					
	Pace Analytic	al Services - Mel	ville					
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 13:18	8 75-69-4	
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 13:18	8 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 13:18	8 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 13:18		
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 13:18	8 1330-20-7	
Surrogates I,2-Dichloroethane-d4 (S)	102	%	81-122	1		05/04/22 12:19	8 17060-07-0	
4-Bromofluorobenzene (S)	97	%	79-118	1		05/04/22 13:18		
Foluene-d8 (S)	99	%	82-122	1		05/04/22 13:18		
TIC MSV Water	•	thod: EPA 8260						
	Pace Analytic	al Services - Mel	ville					
ΓIC Search	No VOA Tics found			1		05/11/22 11:34	1	
2120B W Apparent Color	,	thod: SM22 2120						
	Pace Analytic	al Services - Mel	ville					
Apparent Color	90.0	units	25.0	5		04/28/22 10:08	В	
θH	6.2	Std. Units	0.10	5		04/28/22 10:08	8	
2320B Alkalinity	Analytical Me	thod: SM22 2320	В					
•	•	al Services - Mel						
Alkalinity, Total as CaCO3	34.9	mg/L	1.0	1		05/09/22 16:38	8	
2240C Hardness Total	Analytical Mo	thod: SM22 2340	nC					
2340C Hardness, Total	•	al Services - Mel						
Tot Hardness asCaCO3 (SM 2340B	36.7	mg/L	5.0	1		05/09/22 15:50	0	
2540C Total Dissolved Solids		thod: SM22 2540						
	-	al Services - Mel						
Total Dissolved Solids	63.0	mg/L	10.0	1		05/03/22 13:3	7	
Chromium, Hexavalent		thod: SM22 3500 al Services - Mel						
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/28/22 10:49	9 18540-29-9	
110.4 COD		thod: EPA 410.4 al Services - Mel	Preparation Met	hod: EP/	A 410.4			
Chemical Oxygen Demand	36.8	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:13	3	
5210B BOD, 5 day	•	thod: SM22 5210 al Services - Mel	DB Preparation Note:	/lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/28/22 10:53	05/03/22 10:5	5	
,,	72.0	⊎, =	2.0	•	,, 10.00	35, 55, LL 10.00	-	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-11B	Lab ID: 7021	12658006	Collected: 04/	26/22	14:10	Received: 0	4/27/22 11:25 I	Matrix: Water	
Parameters	Results	Units	Report Lim	nit _	DF	Prepared	Analyzed	CAS No.	Qua
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0						
	Pace Analytical	Services -	Melville						
Bromide	<0.50	mg/L	0.	.50	1		04/29/22 21:46	24959-67-9	
Chloride	10.1	mg/L	2	2.0	1		04/29/22 21:46	16887-00-6	
Sulfate	11.8	mg/L	į.	5.0	1		04/29/22 21:46	14808-79-8	
351.2 Total Kjeldahl Nitrogen			1.2 Preparation	Meth	od: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.80	mg/L	0.	.50	1	05/04/22 05:22	05/05/22 20:07	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrate-Nitrite (as N)	0.44	mg/L	0.0	50	1		05/09/22 15:17	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
•	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L	0.0	50	1		04/28/22 02:45	14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytical		20.1 Preparation Melville	Meth	od: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	05/09/22 12:10	05/09/22 16:42		
4500 Ammonia Water	Analytical Meth	od: SM22 4	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.15	mg/L	0.	.10	1		05/09/22 14:10	7664-41-7	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cyanide	e Pre	paratio	n Method: EPA	9010C		
	Pace Analytical								
Cyanide	<10.0	ug/L	10	0.0	1	05/05/22 13:15	05/05/22 15:56	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A						
	Pace Analytical								
Total Organic Carbon	2.8	mg/L		1.0	1		05/09/22 16:21	7440-44-0	
Total Organic Carbon	1.2	mg/L		1.0	1		05/09/22 16:21		
Total Organic Carbon	<1.0	mg/L	•	1.0	1		05/09/22 16:21	7440-44-0	
Total Organic Carbon	1.0	mg/L	•	1.0	1		05/09/22 16:21	7440-44-0	
Mean Total Organic Carbon	1.5	mg/L		1.0	1		05/09/22 16:21	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: DUP001	Lab ID: 702	12658007	Collected: 04/2	6/22 00:00	Received: 04	1/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation	Method: E	PA 3005A			
	Pace Analytica							
Aluminum	<200	ug/L	20	0 1	05/03/22 10:59	05/04/22 11:24	4 7429-90-5	
Antimony	<60.0	ug/L	60.) 1	05/03/22 10:59	05/04/22 11:24	4 7440-36-0	
Arsenic	<10.0	ug/L	10.) 1	05/03/22 10:59	05/04/22 11:24	4 7440-38-2	
Barium	206	ug/L	20) 1	05/03/22 10:59	05/04/22 11:24	4 7440-39-3	
Beryllium	<5.0	ug/L	5.) 1	05/03/22 10:59	05/04/22 11:24	4 7440-41-7	
Soron	<50.0	ug/L	50.) 1	05/03/22 10:59	05/04/22 11:24	4 7440-42-8	
admium	<2.5	ug/L	2.	5 1	05/03/22 10:59	05/04/22 11:24	4 7440-43-9	
Calcium	29500	ug/L	20) 1	05/03/22 10:59	05/04/22 11:24	4 7440-70-2	
Chromium	<10.0	ug/L	10.) 1	05/03/22 10:59	05/04/22 11:24	4 7440-47-3	
Cobalt	<50.0	ug/L	50.		05/03/22 10:59			
Copper	<25.0	ug/L	25.		05/03/22 10:59			
on	77400	ug/L	10		05/03/22 10:59			
.ead	<5.0	ug/L	5.		05/03/22 10:59			
/lagnesium	8610	ug/L	20		05/03/22 10:59			
Manganese	4830	ug/L	10.		05/03/22 10:59			
lickel	<40.0	ug/L	40.		05/03/22 10:59			
Potassium	<5000	ug/L	500		05/03/22 10:59			
selenium	<10.0	ug/L	10.		05/03/22 10:59			
Silver	<10.0	ug/L	10.		05/03/22 10:59			
Sodium	13400	ug/L	500		05/03/22 10:59			
hallium	<10.0	ug/L ug/L	10.		05/03/22 10:59			
/anadium	<50.0	ug/L ug/L	50.		05/03/22 10:59			
Zinc	47.4	-	20.		05/03/22 10:59			
		ug/L		J I	05/05/22 10.59	03/04/22 11.24	4 7440-00-0	
010 MET ICP, Dissolved	Analytical Meth							
	Pace Analytica	Services -	Melville					
Cadmium, Dissolved	<2.5	ug/L	2.	5 1		04/30/22 01:0	4 7440-43-9	
Calcium, Dissolved	24900	ug/L	20) 1		04/30/22 01:0	4 7440-70-2	
ron, Dissolved	<100	ug/L	10) 1		04/30/22 01:0	4 7439-89-6	
ead, Dissolved	<5.0	ug/L	5.) 1		04/30/22 01:0	4 7439-92-1	
Magnesium, Dissolved	7780	ug/L	20) 1		04/30/22 01:0	4 7439-95-4	
Manganese, Dissolved	2570	ug/L	10.) 1		04/30/22 01:0		
Potassium, Dissolved	<5000	ug/L	500) 1		04/30/22 01:0	4 7440-09-7	
Sodium, Dissolved	12000	ug/L	500) 1		04/30/22 01:0	4 7440-23-5	
470 Mercury	•		470A Preparation	Method: El	PA 7470A			
Mercury	Pace Analytica <0.20) 1	05/10/22 17:25	05/41/22 42:29	8 7/30.07 6	
Mercury		ug/L	0.2			00/11/22 12:30	U 1435-81-0	
470 Mercury, Dissolved	Analytical Meth Pace Analytica		170A Preparation I Melville	Method: El	PA 7470A			
Mercury, Dissolved	<0.20	ug/L	0.2) 1	05/11/22 15:20	05/12/22 12:2	9 7439-97-6	
		-						

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: DUP001	Lab ID: 7	0212658007	Collected: 04/26/2	22 00:00	Received: (04/27/22 11:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical M	1ethod: EPA 82	:60C/5030C					
	Pace Analyt	tical Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		05/04/22 13:38	8 67-64-1	L1
Acrylonitrile	<5.0	ug/L	5.0	1		05/04/22 13:38		
Benzene	<5.0	ug/L	5.0	1		05/04/22 13:38		
Bromochloromethane	<5.0	ug/L	5.0	1		05/04/22 13:38		
Bromodichloromethane	<5.0	ug/L	5.0	1		05/04/22 13:38		
Bromoform	<5.0	ug/L	5.0	1		05/04/22 13:38	3 75-25-2	
Bromomethane	<5.0	ug/L	5.0	1		05/04/22 13:38		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		05/04/22 13:38		
Carbon disulfide	<5.0	ug/L	5.0	1		05/04/22 13:38	3 75-15-0	
Carbon tetrachloride	<5.0	ug/L	5.0	1		05/04/22 13:38		
Chlorobenzene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 108-90-7	
Chloroethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 75-00-3	v3
Chloroform	<5.0	ug/L	5.0	1		05/04/22 13:38		
Chloromethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 74-87-3	
1,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 96-12-8	
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 124-48-1	
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 13:38	3 106-93-4	
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 74-95-3	
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 95-50-1	
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 107-06-2	
1,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 156-60-5	
1,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 13:38		
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		05/04/22 13:38	3 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 74-88-4	
Methylene Chloride	<5.0	ug/L	5.0	1		05/04/22 13:38	3 75-09-2	
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 13:38	3 108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 13:38	3 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 13:38	79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 13:38	3 108-88-3	
,1,1-Trichloroethane	<5.0		5.0	1		05/04/22 13:38	3 71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 13:38		
Frichloroethene	<5.0	-	5.0	1		05/04/22 13:38		
Frichlorofluoromethane	<5.0	-	5.0	1		05/04/22 13:38		
I,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 13:38		
/inyl acetate	<5.0		5.0	1		05/04/22 13:38		
Vinyl chloride	<5.0	-	5.0	1		05/04/22 13:38		

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Sample: DUDO01	Lab ID: 700	112650007	Collected: 04/00/	22 00.00	Dooring of 0	1/07/00 11:0E	Motrix: Motor	
Sample: DUP001	Lab ID: 702	212658007	Collected: 04/26/2	22 00:00	Received: 0	4/27/22 11:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 826	60C/5030C					
	Pace Analytica	al Services - I	Melville					
(ylene (Total) Surrogates	<5.0	ug/L	5.0	1		05/04/22 13:38	3 1330-20-7	
,2-Dichloroethane-d4 (S)	104	%	81-122	1		05/04/22 13:38	3 17060-07-0	
-Bromofluorobenzene (S)	97	%	79-118	1		05/04/22 13:38		
oluene-d8 (S) entatively Identified Compounds	99	%	82-122	1		05/04/22 13:38	3 2037-26-5	
Jnknown	5.6J	ug/L		1		05/04/22 13:38	3	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B					
	Pace Analytica	al Services - I	Melville					
Apparent Color	1400	units	250	50		04/28/22 09:5	I	H1
H	6.0	Std. Units	0.10	50		04/28/22 09:51	I	H1
320B Alkalinity	Analytical Met Pace Analytica							
lkalinity, Total as CaCO3	102	mg/L	1.0	1		05/09/22 16:47	7	
340C Hardness, Total	Analytical Met Pace Analytica							
ot Hardness asCaCO3 (SM 2340B	83.3	mg/L	5.0	1		05/09/22 15:53	3	
540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	126	mg/L	10.0	1		05/03/22 13:38	3	
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/28/22 10:40	18540-29-9	
110.4 COD	Analytical Met Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	25.8	mg/L	10.0	1	05/09/22 05:54	1 05/09/22 08:14	1	
210B BOD, 5 day	Analytical Met Pace Analytica		210B Preparation Melville	Method: 3	SM22 5210B			
BOD, 5 day	<4.0	mg/L	4.0	2	04/28/22 10:57	05/03/22 10:58	3	H2
00.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		04/29/22 21:59	24959-67-9	
Chloride	14.2	mg/L	2.0	1		04/29/22 21:59		
Sulfate	12.1	mg/L	5.0	1		04/29/22 21:59	14808-79-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: DUP001	Lab ID: 7021	12658007	Collected: 04/26/2	22 00:00	Received: 04	/27/22 11:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Preparation Me	thod: El	PA 351.2			
	Pace Analytical	Services -	Melville					
Nitrogen, Kjeldahl, Total	0.91	mg/L	0.50	1	05/04/22 05:22	05/05/22 20:10	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	od: EPA 35	3.2					
	Pace Analytical	Services -	Melville					
Nitrate-Nitrite (as N)	0.28	mg/L	0.050	1		05/09/22 15:19	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	3.2					
	Pace Analytical	Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		04/28/22 02:32	14797-65-0	H1
Phenolics, Total Recoverable	Analytical Meth	od: EPA 42	20.1 Preparation Me	thod: El	PA 420.1			
	Pace Analytical	Services -	Melville					
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:43		
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:11	7664-41-7	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	114 Total Cyanide Pr	eparati	on Method: EPA 9	010C		
	Pace Analytical	Services -	Melville					
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 15:57	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	4.7	mg/L	1.0	1		05/09/22 16:37	7440-44-0	
Total Organic Carbon	4.8	mg/L	1.0	1		05/09/22 16:37	7440-44-0	
Total Organic Carbon	5.1	mg/L	1.0	1		05/09/22 16:37	7440-44-0	
Total Organic Carbon	4.9	mg/L	1.0	1		05/09/22 16:37	7440-44-0	
Mean Total Organic Carbon	4.9	mg/L	1.0	1		05/09/22 16:37	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Sample: MW-3B	Lab ID: 702	12658008	Collected: 04/27/2	2 08:30	Received: 04	/28/22 11:51 N	/latrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua		
6010 MET ICP	Analytical Meth	od: EPA 60	10C Preparation Me	thod: El	PA 3005A					
	Pace Analytica	l Services -	Melville							
Aluminum	<200	ug/L	200	1	05/06/22 00:10	05/12/22 15:04	7/20-00-5			
Antimony	<60.0	ug/L	60.0	1		05/12/22 15:04				
Arsenic	<10.0	ug/L	10.0	1	05/06/22 09:10					
Barium	<200	ug/L	200	1	05/06/22 09:10					
Beryllium	<5.0	ug/L	5.0	1		05/12/22 15:04				
Boron	58.2	ug/L	50.0	1	05/06/22 09:10		-			
Cadmium	<2.5	ug/L	2.5	1	05/06/22 09:10					
Calcium	15000	ug/L ug/L	200	1	05/06/22 09:10					
	<10.0	•		1		05/12/22 15:04				
Chromium Cobalt	<50.0	ug/L	10.0	1	05/06/22 09:10					
		ug/L	50.0							
Copper	<25.0 5470	ug/L	25.0	1		05/12/22 15:04				
ron	5470	ug/L	100	1	05/06/22 09:10					
_ead	<5.0	ug/L	5.0	1	05/06/22 09:10					
/lagnesium	5210	ug/L	200	1	05/06/22 09:10					
/langanese	1430	ug/L	10.0	1		05/12/22 15:04				
lickel	<40.0	ug/L	40.0	1	05/06/22 09:10					
Potassium	5810	ug/L	5000	1	05/06/22 09:10					
Selenium	<10.0	ug/L	10.0	1	05/06/22 09:10					
Silver	<10.0	ug/L	10.0	1		05/12/22 15:04				
Sodium	12700	ug/L	5000	1	05/06/22 09:10					
hallium	<10.0	ug/L	10.0	1		05/12/22 15:04				
/anadium	<50.0	ug/L	50.0	1	05/06/22 09:10					
Zinc	<20.0	ug/L	20.0	1	05/06/22 09:10	05/12/22 15:04	7440-66-6			
470 Mercury	Analytical Method: EPA 7470A Preparation Method: EPA 7470A									
	Pace Analytica	l Services -	Melville							
Mercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:39	7439-97-6			
260C Valatila Organica	Analytical Meth	od: EPA 82	60C/5030C							
2000 voiatile Ordanics										
2000 voiatile Organics	Pace Analytica	l Services -	Melville							
· ·	,			1		05/04/22 13:57	67-64-1	L1		
Acetone	Pace Analytica	ug/L	Melville 5.0 5.0	1 1		05/04/22 13:57 05/04/22 13:57		L1		
Acetone Acrylonitrile	<5.0	ug/L ug/L	5.0			05/04/22 13:57	107-13-1	L1		
Acetone Acrylonitrile Benzene	<5.0 <5.0 <5.0	ug/L ug/L ug/L	5.0 5.0 5.0	1		05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2	L1		
Acetone Acrylonitrile Benzene Bromochloromethane	<5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0	1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5	L1		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane	<5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4	L1		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2	L1		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9	L1		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3	L1		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0	L1		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5	L1		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Chlorobenzene	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7			
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane C-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3	L1 v3		
Acetone Acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane Bromomethane Bromomethane Carbon disulfide Chlorobenzene Chloroform Chloromethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57 05/04/22 13:57	107-13-1 71-43-2 74-97-5 75-27-4 75-25-2 74-83-9 78-93-3 75-15-0 56-23-5 108-90-7 75-00-3 67-66-3			

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3B	Lab ID: 702	12658008	Collected: 04/27/2	22 08:30	Received:	04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 124-48-1	
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 13:5		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 13:5		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 13:5		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 13:5		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 13:5		
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 75-35-4	
sis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 78-87-5	
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 13:5		
-Hexanone	<5.0	ug/L	5.0	1		05/04/22 13:5	7 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 74-88-4	
lethylene Chloride	<5.0	ug/L	5.0	1		05/04/22 13:5		
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 13:5	7 108-10-1	
tyrene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		05/04/22 13:5	7 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 13:5	7 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 13:5	7 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 13:5	7 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 13:5	7 1330-20-7	
Surrogates		•						
,2-Dichloroethane-d4 (S)	105	%	81-122	1		05/04/22 13:5	7 17060-07-0	
l-Bromofluorobenzene (S)	99	%	79-118	1		05/04/22 13:5	7 460-00-4	
oluene-d8 (S)	99	%	82-122	1		05/04/22 13:5	7 2037-26-5	
IC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
IC Search	No VOA Tics found			1		05/11/22 11:34	4	
120B W Apparent Color	Analytical Met	hod: SM22	2120B					
P.P	Pace Analytica							
pparent Color	35.0	units	5.0	1		04/29/22 08:1	5	
рН	5.9	Std. Units		1		04/29/22 08:1		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3B	Lab ID:	70212658008	Collected:	04/27/2	22 08:30	Received: 0	4/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	•	Method: SM22 /tical Services -							
Alkalinity, Total as CaCO3	72.5	mg/L		1.0	1		05/10/22 19:43	3	
2340C Hardness, Total	•	Method: SM22 /tical Services							
Tot Hardness asCaCO3 (SM 2340B	26.7	mg/L		5.0	1		05/12/22 18:49	9	
2540C Total Dissolved Solids	•	Method: SM22 /tical Services -							
Total Dissolved Solids	150	mg/L		10.0	1		05/04/22 13:53	3	
Chromium, Hexavalent	-	Method: SM22 /tical Services							
Chromium, Hexavalent	<0.020	mg/L		0.020	1		04/29/22 10:08	8 18540-29-9	
110.4 COD	-	Method: EPA 4 ⁻ /tical Services -		ation Me	thod: EPA	A 410.4			
Chemical Oxygen Demand	10.3	B mg/L		10.0	1	05/09/22 05:54	05/09/22 08:14	4	
5210B BOD, 5 day		Method: SM22 tical Services		aration N	/lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/29/22 10:49	05/04/22 10:43	3	H2
300.0 IC Anions 28 Days	-	Method: EPA 30 tical Services							
Bromide	<0.50	J		0.50	1		05/06/22 18:1		
Chloride Sulfate	18.7 12.2	J		2.0 5.0	1 1		05/06/22 18:1° 05/06/22 18:1°		
351.2 Total Kjeldahl Nitrogen		Method: EPA 35 tical Services		ation Me	thod: EPA	A 351.2			
Nitrogen, Kjeldahl, Total	2.9	mg/L		0.10	1	05/04/22 05:22	2 05/05/22 20:1	1 7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	•	Method: EPA 35 tical Services							
Nitrate-Nitrite (as N)	0.26	s mg/L		0.050	1		05/09/22 15:20	7727-37-9	
53.2 Nitrogen, NO2	•	Method: EPA 35 tical Services							
Nitrite as N	<0.050	mg/L		0.050	1		04/29/22 00:39	9 14797-65-0	
Phenolics, Total Recoverable	-	Method: EPA 42 tical Services		ation Me	thod: EPA	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	05/09/22 12:10	05/09/22 16:4:	3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

	L-L-ID 700	1005000	0-1111-04/07/	20.00.00	Described 04	1/00/00 44 54	M = (- ! - ! - ! - !				
Sample: MW-3B	Lab ID: 702	12658008	Collected: 04/27/2	22 08:30	Received: 04	1/28/22 11:51 I	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
4500 Ammonia Water	Analytical Method: SM22 4500 NH3 H										
	Pace Analytica	l Services -	Melville								
Nitrogen, Ammonia	2.7	mg/L	0.10	1		05/09/22 14:13	3 7664-41-7				
9014 Cyanide, Total	Analytical Meth Pace Analytica		014 Total Cyanide Pr Melville	eparation	on Method: EPA 9	9010C					
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 15:59	9 57-12-5				
9060A TOC as NPOC	Analytical Method: EPA 9060A										
	Pace Analytica	l Services -	Melville								
Total Organic Carbon	2.9	mg/L	1.0	1		05/09/22 16:51	7440-44-0				
Total Organic Carbon	3.1	mg/L	1.0	1		05/09/22 16:51	7440-44-0				
Total Organic Carbon	2.8	mg/L	1.0	1		05/09/22 16:51	7440-44-0				
Total Organic Carbon	3.0	mg/L	1.0	1		05/09/22 16:51	7440-44-0				
Mean Total Organic Carbon	3.0	mg/L	1.0	1		05/09/22 16:51	7440-44-0				

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Sample: MW-3C	Lab ID: 702	12658009	Collected: 04/27/2	2 09:30	Received: 04	/28/22 11:51	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua		
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: El	PA 3005A					
	Pace Analytica	l Services -	Melville							
Aluminum	<200	ug/L	200	1	05/06/22 09:10	05/12/22 15:06	3 7429-90-5			
Antimony	<60.0	ug/L	60.0	1	05/06/22 09:10					
Arsenic	<10.0	ug/L	10.0	1	05/06/22 09:10					
Barium	<200	ug/L	200	1	05/06/22 09:10					
Beryllium	<5.0	ug/L	5.0	1		05/12/22 15:06				
Boron	<50.0	ug/L	50.0	1		05/12/22 15:06				
Cadmium	<2.5	ug/L	2.5	1		05/12/22 15:06				
Calcium	7320	ug/L	200	1		05/12/22 15:06				
Chromium	24.0	ug/L	10.0	1	05/06/22 09:10					
Cobalt	<50.0	ug/L	50.0	1		05/12/22 15:06				
Copper	<25.0	ug/L	25.0	1	05/06/22 09:10					
on	151	ug/L	100	1	05/06/22 09:10					
.ead	<5.0	ug/L	5.0	1	05/06/22 09:10					
/lagnesium	3420	ug/L	200	1	05/06/22 09:10					
/langanese	<10.0	ug/L	10.0	1		05/12/22 15:06				
lickel	<40.0	ug/L	40.0	1		05/12/22 15:06				
otassium	<5000	ug/L	5000	1		05/12/22 15:06				
selenium	<10.0	ug/L	10.0	1		05/12/22 15:06				
Silver	<10.0	ug/L	10.0	1	05/06/22 09:10					
Sodium	9260	ug/L	5000	1		05/12/22 15:06				
hallium	<10.0	ug/L	10.0	1	05/06/22 09:10					
/anadium	<50.0	ug/L	50.0	1	05/06/22 09:10					
linc	<20.0	ug/L	20.0	1	05/06/22 09:10					
470 Mercury	Analytical Method: EPA 7470A Preparation Method: EPA 7470A									
	Pace Analytica	l Services -	Melville							
Mercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:44	7439-97-6			
260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C							
3	Pace Analytica									
Acetone	<5.0	ug/L	5.0	1		05/04/22 14:17	7 67-64-1	L1		
crylonitrile	<5.0	ug/L	5.0	1		05/04/22 14:17	7 107-13-1			
Benzene	<5.0	ug/L	5.0	1		05/04/22 14:17	7 71-43-2			
Bromochloromethane	<5.0	ug/L	5.0	1		05/04/22 14:17	7 74-97-5			
Bromodichloromethane	<5.0	ug/L	5.0	1		05/04/22 14:17	7 75-27-4			
Bromoform	<5.0	ug/L	5.0	1		05/04/22 14:17	7 75-25-2			
Bromomethane	<5.0	ug/L	5.0	1		05/04/22 14:17	74-83-9			
-Butanone (MEK)	<5.0	ug/L	5.0	1		05/04/22 14:17	78-93-3			
Carbon disulfide	<5.0	ug/L	5.0	1		05/04/22 14:17	75-15-0			
Carbon tetrachloride	<5.0	ug/L	5.0	1		05/04/22 14:17				
Chlorobenzene	<5.0	ug/L	5.0	1		05/04/22 14:17				
Chloroethane	<5.0	ug/L	5.0	1		05/04/22 14:17	75-00-3	v3		
Chloroform	<5.0	ug/L	5.0	1		05/04/22 14:17				
Chloromethane	<5.0	ug/L	5.0	1		05/04/22 14:17				
		_	5.0	1		05/04/22 14:17				

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3C	Lab ID: 702	12658009	Collected: 04/27/2	22 09:30	Received:	04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 124-48-1	
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 14:1		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 14:1		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 14:1		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 14:1		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 75-35-4	
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 156-59-2	
ans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 14:1		
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 10061-02-6	
thylbenzene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 100-41-4	
-Hexanone	<5.0	ug/L	5.0	1		05/04/22 14:1	7 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 74-88-4	
lethylene Chloride	<5.0	ug/L	5.0	1		05/04/22 14:1	7 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 14:1	7 108-10-1	
tyrene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		05/04/22 14:1	7 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 14:1	7 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 14:1	7 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 14:1	7 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 14:1	7 1330-20-7	
Surrogates		•						
,2-Dichloroethane-d4 (S)	105	%	81-122	1		05/04/22 14:1	7 17060-07-0	
l-Bromofluorobenzene (S)	98	%	79-118	1		05/04/22 14:1	7 460-00-4	
oluene-d8 (S)	99	%	82-122	1		05/04/22 14:1	7 2037-26-5	
IC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
IC Search	No VOA Tics found			1		05/11/22 11:3	4	
120B W Apparent Color	Analytical Met	hod: SM22	2120B					
	Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/29/22 08:1	6	
oH	6.3	Std. Units		1		04/29/22 08:1		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3C	Lab ID: 70	212658009	Collected: 04/27/	22 09:30	Received: 04	4/28/22 11:51 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Me Pace Analytic							
Alkalinity, Total as CaCO3	41.1	mg/L	1.0	1		05/10/22 19:50		
2340C Hardness, Total	Analytical Me Pace Analytic							
Tot Hardness asCaCO3 (SM 2340B	13.3	mg/L	5.0	1		05/12/22 18:52		
2540C Total Dissolved Solids	Analytical Me Pace Analytic							
Total Dissolved Solids	126	mg/L	10.0	1		05/04/22 13:54		
Chromium, Hexavalent	Analytical Me Pace Analytic							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/29/22 10:09	18540-29-9	
410.4 COD	Analytical Me Pace Analytic		0.4 Preparation Me Melville	ethod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:14		
5210B BOD, 5 day	Analytical Me Pace Analytic		5210B Preparation Melville	Method: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/29/22 10:51	05/04/22 10:46		H2
300.0 IC Anions 28 Days	Analytical Me Pace Analytic							
Bromide	<0.50	mg/L	0.50	1		05/06/22 18:24		
Chloride Sulfate	10.2 <5.0	mg/L mg/L	2.0 5.0	1 1		05/06/22 18:24 05/06/22 18:24		
351.2 Total Kjeldahl Nitrogen		thod: EPA 35	51.2 Preparation Me		A 351.2	00,00,22 10.2		
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	05/04/22 05:22	05/05/22 20:11	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Me Pace Analytic							
Nitrate-Nitrite (as N)	0.19	mg/L	0.050	1		05/09/22 15:21	7727-37-9	
353.2 Nitrogen, NO2	Analytical Me Pace Analytic							
Nitrite as N	<0.050	mg/L	0.050	1		04/29/22 00:41	14797-65-0	
Phenolics, Total Recoverable	Analytical Me Pace Analytic		20.1 Preparation Me Melville	ethod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:44		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-3C	Lab ID: 7021	2658009	Collected: 04/27	/22 09:3	0 Received: 04	1/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:14	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide I Melville	reparati	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 16:00	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 17:0	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 17:01	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 17:01	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 17:0	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 17:01	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4A	Lab ID: 702	12658010	Collected: 04/27/	22 12:15	Received: 04	/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	nod: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Juminum	<200	ug/L	200	1	05/06/22 09:10	05/12/22 15:00	7/20-00-5	
ntimony	<60.0	ug/L	60.0	1	05/06/22 09:10			
rsenic	<10.0	ug/L	10.0	1	05/06/22 09:10			
arium	<200	ug/L	200	1	05/06/22 09:10			
eryllium	<5.0	ug/L	5.0	1	05/06/22 09:10			
oron	<50.0	ug/L	50.0	1	05/06/22 09:10		-	
admium	<2.5	ug/L ug/L	2.5	1	05/06/22 09:10			
alcium	7500	ug/L ug/L	200	1	05/06/22 09:10			
hromium	7300 17.7	ug/L ug/L	10.0	1	05/06/22 09:10			
	<50.0	-		1	05/06/22 09:10			
obalt		ug/L	50.0					
opper	<25.0	ug/L	25.0	1	05/06/22 09:10 05/06/22 09:10			
on	246	ug/L	100	1				
ead	<5.0	ug/L	5.0	1	05/06/22 09:10			
lagnesium	2300	ug/L	200	1	05/06/22 09:10			
langanese	46.7	ug/L	10.0	1	05/06/22 09:10			
ickel	<40.0	ug/L	40.0	1	05/06/22 09:10			
otassium	<5000	ug/L	5000	1	05/06/22 09:10			
elenium 	<10.0	ug/L	10.0	1	05/06/22 09:10			
ilver	<10.0	ug/L	10.0	1	05/06/22 09:10			
odium	25400	ug/L	5000	1	05/06/22 09:10			
hallium	<10.0	ug/L	10.0	1	05/06/22 09:10			
anadium	<50.0	ug/L	50.0	1	05/06/22 09:10			
nc	<20.0	ug/L	20.0	1	05/06/22 09:10	05/12/22 15:09	9 7440-66-6	
470 Mercury	Analytical Met	nod: EPA 74	70A Preparation M	ethod: El	PA 7470A			
	Pace Analytica	I Services -	Melville					
lercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:45	7439-97-6	
	A I+: I M - +I	d. EDA 00						
260C Volatile Organics	Analytical Met	100. EPA 621	60C/5030C					
260C Volatile Organics	Pace Analytical Met							
-	· ·	l Services -		1		05/04/22 14:36	6 67-64-1	L1
cetone	Pace Analytica	l Services - ug/L	Melville 5.0	1 1				L1
cetone crylonitrile	Pace Analytica <5.0 <5.0	ug/L ug/L	Melville 5.0 5.0	1		05/04/22 14:36	6 107-13-1	L1
cetone crylonitrile enzene	Pace Analytica <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0			05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2	L1
cetone crylonitrile enzene romochloromethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0	1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5	L1
cetone crylonitrile enzene romochloromethane romodichloromethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane endem (MEK)	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3	L1
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromoform dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0	L1
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromoform dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane dromomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5	L1
acetone acrylonitrile denzene dromochloromethane dromoform dromomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7	
acetone acrylonitrile denzene dromochloromethane dromodichloromethane dromoethane dromoethane dromoethane dromoethane dromoethane dromoethane dramone (MEK) dramon disulfide drarbon tetrachloride drilorobenzene dromoethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7 6 75-00-3	L1 v3
acetone acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane	Pace Analytica <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36 05/04/22 14:36	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7 6 75-00-3 6 67-66-3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4A	Lab ID: 70	212658010	Collected: 04/27/2	22 12:15	Received: (04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C					
	Pace Analytic	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 14:36	6 124-48-1	
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 14:36		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 14:36		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 14:36		
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 110-57-6	
1,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:36	5 75-34-3	
1,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:36	6 107-06-2	
I,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 156-60-5	
1,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 14:36	6 78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 14:36	5 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		05/04/22 14:36	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 14:36	6 74-88-4	
Nethylene Chloride	<5.0	ug/L	5.0	1		05/04/22 14:36	5 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 14:36	6 108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 14:36	6 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 14:36	6 79-34-5	
Tetrachloroethene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 127-18-4	L2,v3
Toluene	<5.0	ug/L	5.0	1		05/04/22 14:36	6 108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:36	6 71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:36	79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:36	79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 14:36	75-69-4	
1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 14:36	96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 14:36	5 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 14:36	5 75-01-4	
Kylene (Total)	<5.0	ug/L	5.0	1		05/04/22 14:36	6 1330-20-7	
Surrogates								
1,2-Dichloroethane-d4 (S)	104	%	81-122	1		05/04/22 14:36	5 17060-07-0	
4-Bromofluorobenzene (S)	98	%	79-118	1		05/04/22 14:36	6 460-00-4	
Toluene-d8 (S)	99	%	82-122	1		05/04/22 14:36	6 2037-26-5	
TIC MSV Water	Analytical Me	thod: EPA 82	260					
	Pace Analytic	al Services -	Melville					
ΓIC Search	No VOA Tics found			1		05/11/22 11:35	5	
2120B W Apparent Color	Analytical Me	thod: SM22	2120B					
pp void	Pace Analytic							
Apparent Color	< 5.0	units	5.0	1		04/29/22 10:49	9	
оН	5.8	Std. Units		1		04/29/22 10:49		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4A	Lab ID: 7	0212658010	Collected:	04/27/2	22 12:15	Received: 0	4/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	,	lethod: SM22 ical Services -							
Alkalinity, Total as CaCO3	6.1	mg/L		1.0	1		05/10/22 19:5	5	
2340C Hardness, Total	•	lethod: SM22 ical Services -							
Tot Hardness asCaCO3 (SM 2340B	6.7	mg/L		5.0	1		05/12/22 18:5	4	
2540C Total Dissolved Solids	•	lethod: SM22 ical Services -							
Total Dissolved Solids	118	mg/L		10.0	1		05/04/22 13:5	4	
Chromium, Hexavalent		lethod: SM22 ical Services -							
Chromium, Hexavalent	<0.020	mg/L		0.020	1		04/29/22 10:1	2 18540-29-9	
110.4 COD	•	lethod: EPA 4 ² ical Services -	•	ation Met	hod: EPA	\ 410.4			
Chemical Oxygen Demand	14.7	mg/L		10.0	1	05/09/22 05:54	05/09/22 08:1	4	
5210B BOD, 5 day		lethod: SM22 ical Services -		aration N	/lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	04/29/22 10:52	2 05/04/22 10:4	8	
300.0 IC Anions 28 Days		lethod: EPA 30 ical Services -							
Bromide	<0.50	mg/L		0.50	1			8 24959-67-9	
Chloride Sulfate	40.3 17.7	mg/L mg/L		2.0 5.0	1 1			8 16887-00-6 8 14808-79-8	
851.2 Total Kjeldahl Nitrogen		lethod: EPA 35		ation Met	hod: EPA	A 351.2			
Nitrogen, Kjeldahl, Total	0.18	mg/L		0.10	1	05/04/22 05:22	2 05/05/22 20:1	2 7727-37-9	
853.2 Nitrogen, NO2/NO3 pres.	,	lethod: EPA 35							
Nitrate-Nitrite (as N)	1.7	mg/L		0.050	1		05/09/22 15:2	2 7727-37-9	
353.2 Nitrogen, NO2	•	lethod: EPA 35 ical Services -							
Nitrite as N	<0.050	mg/L		0.050	1		04/29/22 00:4	9 14797-65-0	
Phenolics, Total Recoverable		lethod: EPA 42 ical Services -		ation Met	hod: EPA	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L		5.0	1	05/00/22 42:40	05/09/22 16:4	-	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Tace Hoject No.: 70212030									
Sample: MW-4A	Lab ID: 7021	2658010	Collected:	04/27/2	2 12:15	Received: 04	4/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		05/09/22 14:1	5 7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		•	ınide Pr	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L		10.0	1	05/05/22 13:15	05/05/22 16:0	1 57-12-5	
9060A TOC as NPOC	Analytical Meth Pace Analytical								
Total Organic Carbon	<1.0	mg/L		1.0	1		05/09/22 17:1	3 7440-44-0	
Total Organic Carbon	<1.0	mg/L		1.0	1		05/09/22 17:1	3 7440-44-0	
Total Organic Carbon	<1.0	mg/L		1.0	1		05/09/22 17:1	3 7440-44-0	
Total Organic Carbon	<1.0	mg/L		1.0	1		05/09/22 17:1	3 7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L		1.0	1		05/09/22 17:1	3 7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4B	Lab ID: 7021	2658011	Collected: 04/27/2	22 13:00	Received: 04	/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 601	IOC Preparation M	ethod: El	PA 3005A			
	Pace Analytical	Services - I	Melville					
luminum	<200	ug/L	200	1	05/06/22 09:10	05/12/22 15:11	7/29-90-5	
ntimony	<60.0	ug/L	60.0	1	05/06/22 09:10			
rsenic	<10.0	ug/L	10.0	1	05/06/22 09:10			
arium	<200	ug/L	200	1	05/06/22 09:10			
eryllium	<5.0	ug/L	5.0	1	05/06/22 09:10			
oron	<50.0	ug/L	50.0	1	05/06/22 09:10			
admium	<2.5	ug/L ug/L	2.5	1	05/06/22 09:10			
alcium	13200	ug/L ug/L	200	1	05/06/22 09:10			
hromium	45.8	-	10.0	1	05/06/22 09:10			
	45.6 <50.0	ug/L		1	05/06/22 09:10			
obalt	<50.0 <25.0	ug/L	50.0					
opper		ug/L	25.0	1	05/06/22 09:10 05/06/22 09:10			
on	8040	ug/L	100	1				
ead	<5.0	ug/L	5.0	1	05/06/22 09:10			
lagnesium	6350	ug/L	200	1	05/06/22 09:10			
langanese	812	ug/L	10.0	1	05/06/22 09:10			
ickel	<40.0	ug/L	40.0	1	05/06/22 09:10			
otassium	<5000	ug/L	5000	1	05/06/22 09:10			
elenium 	<10.0	ug/L	10.0	1	05/06/22 09:10			
ilver	<10.0	ug/L	10.0	1	05/06/22 09:10			
odium	12500	ug/L	5000	1	05/06/22 09:10			
hallium	<10.0	ug/L	10.0	1	05/06/22 09:10			
anadium	<50.0	ug/L	50.0	1	05/06/22 09:10			
nc	<20.0	ug/L	20.0	1	05/06/22 09:10	05/12/22 15:11	7440-66-6	
470 Mercury	Analytical Meth	od: EPA 747	70A Preparation Me	ethod: EF	PA 7470A			
	Pace Analytical	Services - I	Melville					
lercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:47	7439-97-6	
260C Volatile Organics	Analytical Meth	od: EPA 826	60C/5030C					
260C Volatile Organics	Analytical Meth Pace Analytical							
-	· ·	Services - I		1		05/04/22 14:56	6 67-64-1	L1
cetone	Pace Analytical	Services - I	Melville	1 1		05/04/22 14:56 05/04/22 14:56		L1
cetone crylonitrile	Pace Analytical	Services - I ug/L ug/L	Melville 5.0				5 107-13-1	L1
cetone crylonitrile enzene	Pace Analytical <5.0 <5.0	Services - I ug/L ug/L ug/L	Melville 5.0 5.0	1		05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2	L1
cetone crylonitrile enzene romochloromethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0	1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5	L1
cetone crylonitrile enzene romochloromethane romodichloromethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane endem (MEK)	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) earbon disulfide earbon tetrachloride	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) earbon disulfide earbon tetrachloride hlorobenzene	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7	
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) earbon disulfide earbon tetrachloride chlorobenzene	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7 7 75-00-3	L1 v3	
acetone acrylonitrile denzene aromochloromethane aromodichloromethane aromomethane aromomethane aromomethane aromomethane arbon disulfide carbon tetrachloride chlorobenzene chloroform chloroform	Pace Analytical <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - I ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56 05/04/22 14:56	6 107-13-1 6 71-43-2 6 74-97-5 6 75-27-4 6 75-25-2 6 74-83-9 6 78-93-3 6 75-15-0 6 56-23-5 6 108-90-7 6 75-00-3 6 67-66-3	

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4B	Lab ID: 70	212658011	Collected: 04/27/2	22 13:00	Received: (04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C					
	Pace Analytic	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 14:56	6 124-48-1	
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 14:56		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 14:56		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 14:56		
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 14:56	106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 14:56	6 110-57-6	
I,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:56	5 75-34-3	
1,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:56	6 107-06-2	
I,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:56	5 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:56	5 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:56	5 156-60-5	
1,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 14:56	8 78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 14:56	5 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 14:56	5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 14:56	5 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		05/04/22 14:56	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 14:56	6 74-88-4	
Methylene Chloride	<5.0	ug/L	5.0	1		05/04/22 14:56	75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 14:56	108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/04/22 14:56	100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 14:56	6 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 14:56	79-34-5	
Tetrachloroethene	<5.0	ug/L	5.0	1		05/04/22 14:56	6 127-18-4	L2,v3
Toluene	<5.0	ug/L	5.0	1		05/04/22 14:56	108-88-3	
1,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:56	71-55-6	
1,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 14:56	79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		05/04/22 14:56	79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 14:56	75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 14:56	96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 14:56	108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 14:56	75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 14:56	1330-20-7	
Surrogates								
I,2-Dichloroethane-d4 (S)	102	%	81-122	1		05/04/22 14:56	5 17060-07-0	
I-Bromofluorobenzene (S)	96	%	79-118	1		05/04/22 14:56	6 460-00-4	
oluene-d8 (S)	97	%	82-122	1		05/04/22 14:56	6 2037-26-5	
TC MSV Water	Analytical Me	thod: EPA 82	260					
	Pace Analytic							
TC Search	No VOA Tics found			1		05/11/22 11:35	i	
1400D W 4		4h - d. ON 400	04000					
2120B W Apparent Color	Analytical Me Pace Analytic							
Annoront Color	•			-		04/00/00 40 50	`	
Apparent Color	60.0	units	25.0	5		04/29/22 10:50		
ρΗ	6.1	Std. Units	0.10	5		04/29/22 10:50	J	

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4B	Lab ID: 7021	12658011	Collected: 04/27/2	2 13:00	Received: 0-	4/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth	od: SM22 232	20B					
	Pace Analytical	Services - Mo	elville					
Alkalinity, Total as CaCO3	74.4	mg/L	1.0	1		05/10/22 20:0	3	
2340C Hardness, Total	Analytical Meth Pace Analytical							
Tot Hardness asCaCO3 (SM 2340B	43.3	mg/L	5.0	1		05/12/22 18:5	8	
2540C Total Dissolved Solids	Analytical Meth Pace Analytical							
Total Dissolved Solids	128	mg/L	10.0	1		05/04/22 14:0	2	
Chromium, Hexavalent	Analytical Meth Pace Analytical							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/29/22 10:1	3 18540-29-9	
410.4 COD	Analytical Meth Pace Analytical		4 Preparation Metlelville	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	05/09/22 05:54	05/09/22 08:1	5	
5210B BOD, 5 day	Analytical Meth Pace Analytical		IOB Preparation Melville	lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/29/22 10:54	05/04/22 10:5	0	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical							
Bromide	<0.50	mg/L	0.50	1		05/06/22 18:5	2 24959-67-9	
Chloride	15.8	mg/L	2.0	1			2 16887-00-6	
Sulfate	13.4	mg/L	5.0	1		05/06/22 18:5	2 14808-79-8	
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytical		2 Preparation Metlelville	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	3.3	mg/L	0.10	1	05/04/22 05:22	2 05/05/22 20:1	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth Pace Analytical							
Nitrate-Nitrite (as N)	0.11	mg/L	0.050	1		05/09/22 15:2	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytical							
Nitrite as N	<0.050	mg/L	0.050	1		04/29/22 00:5	4 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth		1 Preparation Metlelville	hod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:4	8	
		-						

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4B	Lab ID: 7021	2658011	Collected: 04/27/2	22 13:00	Received: 04	1/28/22 11:51 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	2.9	mg/L	0.10	1		05/09/22 14:16	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		n14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 16:02	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	1.3	mg/L	1.0	1		05/09/22 17:50	7440-44-0	
Total Organic Carbon	1.4	mg/L	1.0	1		05/09/22 17:50	7440-44-0	
Total Organic Carbon	1.3	mg/L	1.0	1		05/09/22 17:50	7440-44-0	
Total Organic Carbon	1.4	mg/L	1.0	1		05/09/22 17:50	7440-44-0	
Mean Total Organic Carbon	1.3	mg/L	1.0	1		05/09/22 17:50	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Lab ID:	70212658012	Collected:	04/27/2	22 14:00	Received: 04	1/28/22 11:51	Matrix: Water	
Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical I	Method: EPA 60	10C Prepara	ation Me	ethod: EF	PA 3005A			
Pace Analy	tical Services -	Melville						
<200	ua/l		200	1	05/06/22 09:10	05/12/22 15:11	8 7429-90-5	
	0							
	0							
	_							
	•							
	•							В
	0							_
	0							
	_							D6
	0							20
	_							
	0							D6
	0							20
	_							
	•							
	•							
	0							
	0							
	0							M1
	0							IVII
	•							
	0							
	•			1				
	ū							
•		•	ation Me	thod: EF	PA 7470A			
Pace Analy	tical Services -	Melville						
0.60	ug/L		0.20	1	05/10/22 17:25	05/11/22 12:48	7439-97-6	D6
Analytical I	Method: EPA 82	.60C/5030C						
<5.0	ua/l		5.0	1		05/04/22 15:1	67-64-1	L1
	0							
	•							
	0							
	•			-				
	•							
								M1
	ŭ							IVII
<5.0	•		5.0	1		05/04/22 15:15		
<5.0	•		5.0	1		05/04/22 15:15		
	, ug/∟		5.0	1		05/04/22 15:15		
	/1					UD/U4/// 10:13	100-90-7	
<5.0	•							v/3
<5.0 <5.0	ug/L		5.0	1		05/04/22 15:15	75-00-3	v3
<5.0	ug/L ug/L						5 75-00-3 5 67-66-3	v3
	Analytical I Pace Analy <200 <60.0 <10.0 <200 <50.0 <50.0 <25.0 <50.0 <25.0 13000 <10.0 <25.0 1590 <50.0 <25.0 <50.0 <25.0 <50.0 <25.0 <50.0 <25.0 <50.0 <25.0 <50.0 <50.0 <25.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50	Results	Analytical Method: EPA 6010C Prepara Pace Analytical Services - Melville <200	Results	Results	Results	Results	Results

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4C	Lab ID: 702	12658012	Collected: 04/27/2	22 14:00	Received:	04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 124-48-1	
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 15:1		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 15:1		
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 15:1		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 15:1		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 75-35-4	
is-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 78-87-5	
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 100-41-4	
-Hexanone	<5.0	ug/L	5.0	1		05/04/22 15:1	5 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 74-88-4	
lethylene Chloride	<5.0	ug/L	5.0	1		05/04/22 15:1	5 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 15:1	5 108-10-1	
tyrene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 79-00-5	
richloroethene	<5.0	ug/L	5.0	1		05/04/22 15:1	5 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 15:1	5 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 15:1	5 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 15:1	5 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 15:1	5 1330-20-7	
Surrogates		•						
,2-Dichloroethane-d4 (S)	105	%	81-122	1		05/04/22 15:1	5 17060-07-0	
l-Bromofluorobenzene (S)	98	%	79-118	1		05/04/22 15:1	5 460-00-4	
oluene-d8 (S)	99	%	82-122	1		05/04/22 15:1	5 2037-26-5	
IC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
TC Search	No VOA Tics found			1		05/11/22 11:30	6	
120B W Apparent Color	Analytical Met	hod: SM22	2120B					
h h	Pace Analytica							
pparent Color	26.0	units	10.0	2		04/29/22 10:5	3	
bH	6.4	Std. Units		2		04/29/22 10:5		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4C	Lab ID: 702	12658012	Collected: 04/27/2	22 14:00	Received: 04	4/28/22 11:51 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Met Pace Analytica							
Alkalinity, Total as CaCO3	39.3	mg/L	1.0	1		05/11/22 10:02	!	
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	30.0	mg/L	5.0	1		05/12/22 19:09)	
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	174	mg/L	10.0	1		05/04/22 14:02	2	D6
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/29/22 10:14	18540-29-9	
410.4 COD	Analytical Met Pace Analytica		0.4 Preparation Me Melville	thod: EP/	A 410.4			
Chemical Oxygen Demand	10.3	mg/L	10.0	1	05/11/22 06:45	05/11/22 08:56	i	
5210B BOD, 5 day	Analytical Met Pace Analytica		5210B Preparation Melville	/lethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/29/22 10:55	05/04/22 10:53	3	
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		05/06/22 19:46	24959-67-9	
Chloride Sulfate	55.4 6.4	mg/L mg/L	2.0 5.0	1 1		05/06/22 19:46 05/06/22 19:46		M1
351.2 Total Kjeldahl Nitrogen		hod: EPA 35	51.2 Preparation Me		A 351.2			
Nitrogen, Kjeldahl, Total	0.15	mg/L	0.10	1	05/04/22 05:22	2 05/05/22 20:14	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Met Pace Analytica							
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		05/09/22 15:25	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/29/22 00:51	14797-65-0	
Phenolics, Total Recoverable	Analytical Met Pace Analytica		20.1 Preparation Me Melville	thod: EP/	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:48	3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-4C	Lab ID: 7021	2658012	Collected: 04/27/2	2 14:00	Received: 04	1/28/22 11:51 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:17	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 16:03	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 18:01	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 18:01	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 18:01	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 18:01	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 18:01	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12A	Lab ID: 702	12658013	Collected: 04/27/	22 10:30	Received: 04	/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	Services -	Melville					
luminum	<200	ug/L	200	1	05/06/22 09:10	05/12/22 15:30	7429-90-5	
intimony	<60.0	ug/L	60.0	1	05/06/22 09:10			
rsenic	<10.0	ug/L	10.0	1	05/06/22 09:10			
arium	<200	ug/L	200	1	05/06/22 09:10			
eryllium	<5.0	ug/L	5.0	1	05/06/22 09:10			
oron	50.6	ug/L	50.0	1	05/06/22 09:10		-	
admium	<2.5	ug/L ug/L	2.5	1	05/06/22 09:10			
alcium	16500	ug/L	200	1	05/06/22 09:10			
hromium	<10.0	•	10.0	1	05/06/22 09:10			
	<50.0	ug/L		1	05/06/22 09:10			
obalt		ug/L	50.0					
opper	<25.0 3750	ug/L	25.0	1	05/06/22 09:10 05/06/22 09:10			
on		ug/L	100	1				
ead	<5.0	ug/L	5.0	1	05/06/22 09:10			
lagnesium	5160	ug/L	200	1	05/06/22 09:10			
langanese	2090	ug/L	10.0	1	05/06/22 09:10			
ickel	<40.0	ug/L	40.0	1	05/06/22 09:10			
otassium	<5000	ug/L	5000	1	05/06/22 09:10			
elenium	<10.0	ug/L	10.0	1	05/06/22 09:10			
ilver	<10.0	ug/L	10.0	1	05/06/22 09:10			
odium	9590	ug/L	5000	1	05/06/22 09:10			
hallium	<10.0	ug/L	10.0	1	05/06/22 09:10			
anadium	<50.0	ug/L	50.0	1	05/06/22 09:10			
nc	<20.0	ug/L	20.0	1	05/06/22 09:10	05/12/22 15:30	7440-66-6	
470 Mercury	Analytical Meth	od: EPA 74	70A Preparation M	ethod: El	PA 7470A			
	Pace Analytica	Services -	Melville					
lercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:53	7439-97-6	
260C Volatile Organics	Analytical Meth	od: EPA 820	60C/5030C					
3	Pace Analytica							
-	Pace Analytica	Services -		1		05/04/22 15:34	1 67-64-1	L1
cetone		Services - ug/L	Melville	1 1		05/04/22 15:3 ⁴ 05/04/22 15:3 ⁴		L1
cetone crylonitrile	<5.0	ug/L ug/L	Melville 5.0				107-13-1	L1
cetone crylonitrile enzene	<5.0 <5.0 <5.0	Services - ug/L ug/L ug/L	Melville 5.0 5.0	1		05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2	L1
cetone crylonitrile enzene romochloromethane	<5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0	1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5	L1
cetone crylonitrile enzene romochloromethane romodichloromethane	<5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2 1 74-83-9	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK)	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2 1 74-83-9 1 78-93-3	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) arbon disulfide	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2 1 74-83-9 1 78-93-3 1 75-15-0	L1
cetone crylonitrile enzene cromochloromethane cromodichloromethane cromoform cromomethane cromomethane cromomethane cromomethane cromomethane cromomethane cromomethane cromomethane cromomethane cromomethane cromomethane cromomethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2 1 74-83-9 1 78-93-3 1 75-15-0 1 56-23-5	L1
cetone crylonitrile enzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) earbon disulfide earbon tetrachloride hlorobenzene	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2 1 74-83-9 1 78-93-3 1 75-15-0 1 56-23-5 1 108-90-7	
cetone crylonitrile enzene cromochloromethane cromodichloromethane cromoform cromomethane -Butanone (MEK) carbon disulfide carbon tetrachloride chlorobenzene chloroethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2 1 74-83-9 1 78-93-3 1 75-15-0 1 56-23-5 1 108-90-7 1 75-00-3	L1 v3
acetone acrylonitrile Benzene Bromochloromethane Bromodichloromethane Bromomethane	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Services - ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Melville 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1 1 1 1 1 1 1 1 1		05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34 05/04/22 15:34	1 107-13-1 1 71-43-2 1 74-97-5 1 75-27-4 1 75-25-2 1 74-83-9 1 78-93-3 1 75-15-0 1 56-23-5 1 108-90-7 1 75-00-3 1 67-66-3	

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12A	Lab ID: 70	212658013	Collected: 04/27/2	22 10:30	Received: (04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C					
	Pace Analytic	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 124-48-1	
I,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 15:34	106-93-4	
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 74-95-3	
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 15:34	1 95-50-1	
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 15:34	1 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 15:34	110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:34	107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:34	75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:34	156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:34	156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 78-87-5	
is-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 15:34	10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 15:34	10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 15:34	1 100-41-4	
-Hexanone	<5.0	ug/L	5.0	1		05/04/22 15:34	1 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 74-88-4	
lethylene Chloride	<5.0	ug/L	5.0	1		05/04/22 15:34	75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 15:34	1 108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/04/22 15:34	1 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 15:34	1 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 15:34	1 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:34	79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 15:34	75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 15:34	1 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 15:34	1 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 15:34	75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 15:34	1330-20-7	
Surrogates								
,2-Dichloroethane-d4 (S)	100	%	81-122	1		05/04/22 15:34	17060-07-0	
1-Bromofluorobenzene (S)	98	%	79-118	1		05/04/22 15:34		
oluene-d8 (S)	98	%	82-122	1		05/04/22 15:34	1 2037-26-5	
TC MSV Water	Analytical Me	thod: EPA 82	260					
	Pace Analytic	al Services -	Melville					
TC Search	No VOA Tics found			1		05/11/22 11:35	i	
120B W Apparent Color	Analytical Me	thod: SM22 1	2120B					
	Pace Analytic							
Apparent Color	7.0	units	5.0	1		04/29/22 08:18	3	
ъН	5.5	Std. Units		1		04/29/22 08:18		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12A	Lab ID: 702	12658013	Collected: 04/2	7/22 10:30	Received: 0	4/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Met Pace Analytica							
Alkalinity, Total as CaCO3	61.2	mg/L	1	0 1		05/10/22 20:10)	
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	46.7	mg/L	5	0 1		05/12/22 19:12	2	
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	132	mg/L	10	0 1		05/04/22 14:03	3	
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.02	0 1		04/29/22 10:11	18540-29-9	
410.4 COD	Analytical Met Pace Analytica		0.4 Preparation Melville	fethod: El	PA 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10	0 1	05/11/22 06:45	05/11/22 08:56	5	
5210B BOD, 5 day	Analytical Met Pace Analytica		5210B Preparatio Melville	n Method:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2	0 1	04/29/22 10:58	3 05/04/22 10:57	7	H2
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide	<0.50	mg/L	0.5			05/06/22 20:27		
Chloride Sulfate	12.9 16.0	mg/L mg/L	2 5			05/06/22 20:27 05/06/22 20:27		
351.2 Total Kjeldahl Nitrogen		hod: EPA 35	51.2 Preparation I		PA 351.2	00,00,22 20.2.	. 1000 700	
Nitrogen, Kjeldahl, Total	2.6	mg/L	0.1	0 1	05/04/22 05:22	2 05/05/22 20:17	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Met Pace Analytica							
Nitrate-Nitrite (as N)	1.0	mg/L	0.05	0 1		05/09/22 15:31	7727-37-9	
353.2 Nitrogen, NO2	Analytical Met Pace Analytica							
Nitrite as N	<0.050	mg/L	0.05	0 1		04/29/22 00:45	14797-65-0	
Phenolics, Total Recoverable	Analytical Met Pace Analytica		20.1 Preparation Melville	fethod: El	PA 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5	0 1	05/00/00 40:40	05/09/22 16:51		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12A	Lab ID: 7021	2658013	Collected: 04/27/2	22 10:30	Received: 04	1/28/22 11:51 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	2.0	mg/L	0.10	1		05/09/22 14:23	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		n14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 16:05	57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	060A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	1.1	mg/L	1.0	1		05/09/22 18:48	7440-44-0	
Total Organic Carbon	1.1	mg/L	1.0	1		05/09/22 18:48	7440-44-0	
Total Organic Carbon	1.1	mg/L	1.0	1		05/09/22 18:48	7440-44-0	
Total Organic Carbon	1.1	mg/L	1.0	1		05/09/22 18:48	7440-44-0	
Mean Total Organic Carbon	1.1	mg/L	1.0	1		05/09/22 18:48	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12B	Lab ID: 702	12658014	Collected: 04	1/27/22	11:00	Received: 04	1/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Lir	mit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation	on Meth	od: EF	PA 3005A			
	Pace Analytica	l Services -	Melville						
luminum	<200	ug/L		200	1	05/06/22 09:10	05/12/22 15:32	7/20-00-5	
antimony	<60.0	ug/L		50.0	1		05/12/22 15:32		
rsenic	<10.0	ug/L		10.0	1		05/12/22 15:32		
arium	<200	ug/L		200	1		05/12/22 15:32		
eryllium	<5.0	ug/L	•	5.0	1		05/12/22 15:32		
oron	62.5	ug/L	5	50.0	1		05/12/22 15:32		
admium	<2.5	ug/L ug/L		2.5	1		05/12/22 15:32		
alcium	16700	ug/L ug/L		200	1		05/12/22 15:32		
hromium	<10.0	-		10.0	1		05/12/22 15:32		
	<10.0 <50.0	ug/L			1		05/12/22 15:32		
obalt		ug/L		50.0					
opper	<25.0	ug/L		25.0	1		05/12/22 15:32		
on	149	ug/L		100	1		05/12/22 15:32		
ead	<5.0	ug/L		5.0	1		05/12/22 15:32		
lagnesium	5260	ug/L		200	1		05/12/22 15:32		
anganese	230	ug/L		10.0	1		05/12/22 15:32		
ickel	<40.0	ug/L		40.0	1		05/12/22 15:32		
otassium	7250	ug/L		000	1		05/12/22 15:32		
elenium	<10.0	ug/L		10.0	1		05/12/22 15:32		
lver	<10.0	ug/L		10.0	1		05/12/22 15:32		
odium	10400	ug/L	50	000	1	05/06/22 09:10	05/12/22 15:32	2 7440-23-5	
nallium	<10.0	ug/L	1	10.0	1		05/12/22 15:32		
anadium	<50.0	ug/L	5	50.0	1	05/06/22 09:10	05/12/22 15:32	2 7440-62-2	
nc	<20.0	ug/L	2	20.0	1	05/06/22 09:10	05/12/22 15:32	2 7440-66-6	
470 Mercury	Analytical Meth	nod: EPA 74	70A Preparatio	n Meth	od: EP	A 7470A			
	Pace Analytica	l Services -	Melville						
lercury	<0.20	ug/L	C	0.20	1	05/10/22 17:25	05/11/22 12:54	7439-97-6	
260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C						
	Pace Analytica	l Services -	Melville						
cetone	<5.0	ug/L		5.0	1		05/04/22 15:54	1 67-64-1	L1
crylonitrile	<5.0	ug/L		5.0	1		05/04/22 15:54	1 107-13-1	
enzene	<5.0	ug/L		5.0	1		05/04/22 15:54	1 71-43-2	
romochloromethane	<5.0	ug/L		5.0	1		05/04/22 15:54	1 74-97-5	
romodichloromethane	<5.0	ug/L		5.0	1		05/04/22 15:54		
romoform	<5.0	ug/L		5.0	1		05/04/22 15:54		
romomethane	<5.0	ug/L		5.0	1		05/04/22 15:54		
·Butanone (MEK)	<5.0	ug/L		5.0	1		05/04/22 15:54		
arbon disulfide	<5.0	ug/L		5.0	1		05/04/22 15:54		
arbon tetrachloride	<5.0	ug/L ug/L		5.0	1		05/04/22 15:54		
hlorobenzene	<5.0 <5.0	-		5.0	1		05/04/22 15:54		
hloroethane	<5.0 <5.0	ug/L		5.0	1		05/04/22 15:54		v3
		ug/L							v3
hloroform	<5.0	ug/L		5.0	1		05/04/22 15:54		
chloromethane	<5.0 <5.0	ug/L ug/L		5.0 5.0	1 1		05/04/22 15:54 05/04/22 15:54		
,2-Dibromo-3-chloropropane							ロトバハノワウ イド・トノ	1 (1/2: 4/) ()	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12B	Lab ID: 702	12658014	Collected: 04/27/2	22 11:00	Received:	04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C					
	Pace Analytica	al Services -	Melville					
Dibromochloromethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 124-48-1	
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/04/22 15:5		
Dibromomethane	<5.0	ug/L	5.0	1		05/04/22 15:5		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 15:5		
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/04/22 15:5		
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 110-57-6	
1,1-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 75-35-4	
cis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 78-87-5	
cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1			4 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		05/04/22 15:5	4 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 74-88-4	
Methylene Chloride	<5.0	ug/L	5.0	1		05/04/22 15:5	4 75-09-2	
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/04/22 15:5	4 108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		05/04/22 15:5	4 79-01-6	
Trichlorofluoromethane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/04/22 15:5	4 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1		05/04/22 15:5	4 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1		05/04/22 15:5	4 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1		05/04/22 15:5	4 1330-20-7	
Surrogates		•						
,2-Dichloroethane-d4 (S)	105	%	81-122	1		05/04/22 15:5	4 17060-07-0	
1-Bromofluorobenzene (S)	98	%	79-118	1		05/04/22 15:5	4 460-00-4	
oluene-d8 (S)	99	%	82-122	1		05/04/22 15:5	4 2037-26-5	
TC MSV Water	Analytical Met	hod: EPA 82	260					
	Pace Analytica	al Services -	Melville					
TC Search	No VOA Tics found			1		05/11/22 11:3	5	
2120B W Apparent Color	Analytical Met	hod: SM22	2120B					
h h	Pace Analytica							
Apparent Color	<5.0	units	5.0	1		04/29/22 10:4	8	
оН	6.4	Std. Units		1		04/29/22 10:4		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12B	Lab ID: 702	12658014	Collected: 04/27/2	22 11:00	Received: 0	4/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Meth							
Alkalinity, Total as CaCO3	56.8	mg/L	1.0	1		05/11/22 10:25	;	
2340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	13.3	mg/L	5.0	1		05/12/22 19:15	5	
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	153	mg/L	10.0	1		05/04/22 14:04	ŀ	
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/29/22 10:11	18540-29-9	
410.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Met Melville	hod: EP	A 410.4			
Chemical Oxygen Demand	10.3	mg/L	10.0	1	05/11/22 06:45	05/11/22 08:56	;	
5210B BOD, 5 day	Analytical Meth Pace Analytica		5210B Preparation N Melville	/lethod: S	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/29/22 10:59	05/04/22 11:01		
300.0 IC Anions 28 Days	Analytical Mether Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		05/06/22 20:40		
Chloride Sulfate	16.6 21.6	mg/L mg/L	2.0 5.0	1 1		05/06/22 20:40 05/06/22 20:40		
351.2 Total Kjeldahl Nitrogen		hod: EPA 35	1.2 Preparation Met		A 351.2			
Nitrogen, Kjeldahl, Total	3.3	mg/L	0.10	1	05/04/22 05:22	2 05/05/22 20:17	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth							
Nitrate-Nitrite (as N)	2.6	mg/L	0.050	1		05/09/22 15:32	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica							
Nitrite as N	<0.050	mg/L	0.050	1		04/29/22 00:48	3 14797-65-0	
Phenolics, Total Recoverable	Analytical Meth Pace Analytica		20.1 Preparation Met Melville	hod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:52	2	

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: MW-12B	Lab ID: 702	12658014	Collected: 04/27/2	22 11:00	Received: 04	1/28/22 11:51 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H					
	Pace Analytica	l Services -	Melville					
Nitrogen, Ammonia	3.5	mg/L	0.10	1		05/09/22 14:25	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytica		n14 Total Cyanide Pr Melville	eparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 16:06	57-12-5	
9060A TOC as NPOC	Analytical Meth	nod: EPA 90	060A					
	Pace Analytica	l Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:00	7440-44-0	
Total Organic Carbon	1.1	mg/L	1.0	1		05/09/22 19:00	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:00	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:00	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:00	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: EQUIPMENT BLANK	Lab ID: 702	212658015	Collected: 04/27/2	22 09:45	Received: 04	/28/22 11:51 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Me	thod: EPA 60	010C Preparation Me	ethod: EF	PA 3005A			
	Pace Analytic	al Services -	Melville					
Aluminum	<200	ug/L	200	1	05/06/22 09:10	05/12/22 15:35	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	05/06/22 09:10	05/12/22 15:35	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	05/06/22 09:10	05/12/22 15:35	7440-38-2	
Barium	<200	ug/L	200	1	05/06/22 09:10	05/12/22 15:35	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	05/06/22 09:10	05/12/22 15:35	7440-41-7	
Boron	<50.0	ug/L	50.0	1	05/06/22 09:10	05/12/22 15:35	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	05/06/22 09:10	05/12/22 15:35	7440-43-9	
Calcium	<200	ug/L	200	1	05/06/22 09:10			
Chromium	<10.0	ug/L	10.0	1	05/06/22 09:10			
Cobalt	<50.0	ug/L	50.0	1	05/06/22 09:10			
Copper	<25.0	ug/L	25.0	1	05/06/22 09:10			
ron	<100	ug/L	100	1	05/06/22 09:10			
.ead	<5.0	ug/L	5.0	1	05/06/22 09:10			
Magnesium	<200	ug/L	200	1	05/06/22 09:10			
-		-						
/langanese	<10.0	ug/L	10.0	1	05/06/22 09:10			
lickel	<40.0	ug/L	40.0	1	05/06/22 09:10			
Potassium	<5000	ug/L	5000	1	05/06/22 09:10			
Selenium	<10.0	ug/L	10.0	1	05/06/22 09:10			
Silver	<10.0	ug/L	10.0	1	05/06/22 09:10			
Sodium	<5000	ug/L	5000	1	05/06/22 09:10			
Thallium	<10.0	ug/L	10.0	1	05/06/22 09:10			
/anadium	<50.0	ug/L	50.0	1	05/06/22 09:10			
linc	<20.0	ug/L	20.0	1	05/06/22 09:10	05/12/22 15:35	7440-66-6	
470 Mercury	Analytical Me	thod: EPA 74	70A Preparation Me	thod: EF	PA 7470A			
	Pace Analytic	al Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	05/10/22 17:25	05/11/22 12:56	7439-97-6	
260C Volatile Organics	Analytical Me	thod: EPA 82	260C/5030C					
	Pace Analytic							
Acetone	<5.0	ug/L	5.0	1		05/04/22 11:22	67-64-1	L1
acrylonitrile	<5.0	ug/L	5.0	1		05/04/22 11:22		
Benzene	<5.0	ug/L	5.0	1		05/04/22 11:22		
Bromochloromethane	<5.0	ug/L	5.0	1		05/04/22 11:22		
Bromodichloromethane	<5.0 <5.0	J	5.0	1		05/04/22 11:22		
Bromoform	<5.0 <5.0	ug/L	5.0	1		05/04/22 11:22		
Bromomethane	<5.0 <5.0	ug/L	5.0	1		05/04/22 11:22		
		ug/L						
-Butanone (MEK)	<5.0	ug/L	5.0	1		05/04/22 11:22		
Carbon disulfide	<5.0	ug/L	5.0	1		05/04/22 11:22		
Carbon tetrachloride	<5.0	ug/L	5.0	1		05/04/22 11:22		
Chlorobenzene	<5.0	ug/L	5.0	1		05/04/22 11:22		•
Chloroethane	<5.0	ug/L	5.0	1		05/04/22 11:22		v3
Chloroform	<5.0	ug/L	5.0	1		05/04/22 11:22		
Chloromethane	<5.0	ug/L	5.0	1		05/04/22 11:22		
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		05/04/22 11:22	06 40 0	

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Date: 07/25/2022 05:40 PM

Sample: EQUIPMENT BLANK	Lab ID: 702	12658015	Collected: 04/27/2	22 09:45	Received: 04/28/22 11:5	1 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyz	ed CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C				
	Pace Analytica	al Services -	Melville				
Dibromochloromethane	<5.0	ug/L	5.0	1	05/04/22	1:22 124-48-1	
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1	05/04/22	1:22 106-93-4	
Dibromomethane	<5.0	ug/L	5.0	1	05/04/22	1:22 74-95-3	
,2-Dichlorobenzene	<5.0	ug/L	5.0	1	05/04/22	1:22 95-50-1	
,4-Dichlorobenzene	<5.0	ug/L	5.0	1	05/04/22	1:22 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		1:22 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		1:22 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		1:22 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		1:22 75-35-4	
sis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		1:22 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		1:22 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		1:22 78-87-5	
sis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		1:22 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		1:22 10061-01-5	
Ethylbenzene	<5.0	ug/L ug/L	5.0	1		1:22 10001-02-0	
-Hexanone	<5.0 <5.0	•	5.0	1		1:22 591-78-6	
odomethane	<5.0 <5.0	ug/L	5.0	1		1:22 74-88-4	
		ug/L				1:22 75-09-2	
Methylene Chloride	5.0	ug/L	5.0	1			
-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		1:22 108-10-1	
Styrene	<5.0	ug/L	5.0	1		1:22 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		1:22 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		1:22 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		1:22 127-18-4	L2,v3
oluene	<5.0	ug/L	5.0	1		1:22 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		1:22 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		1:22 79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		1:22 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1	05/04/22	1:22 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1	05/04/22	1:22 96-18-4	
/inyl acetate	<5.0	ug/L	5.0	1	05/04/22	1:22 108-05-4	
/inyl chloride	<5.0	ug/L	5.0	1	05/04/22	1:22 75-01-4	
(ylene (Total)	<5.0	ug/L	5.0	1	05/04/22	1:22 1330-20-7	
Surrogates							
,2-Dichloroethane-d4 (S)	105	%	81-122	1	05/04/22	1:22 17060-07-0	
I-Bromofluorobenzene (S)	98	%	79-118	1	05/04/22	1:22 460-00-4	
oluene-d8 (S)	99	%	82-122	1	05/04/22	1:22 2037-26-5	
TIC MSV Water	Analytical Met	hod: EPA 82	260				
	Pace Analytica	al Services -	Melville				
TIC Search	No VOA Tics found			1	05/11/22	1:36	
2120B W Apparent Color	Analytical Met	hod: SM22 2	2120B				
P.P	Pace Analytica						
Apparent Color	<5.0	units	5.0	1	04/29/22 (08:17	
оН	5.8	Std. Units		1	04/29/22 (

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: EQUIPMENT BLANK	Lab ID: 702	212658015	Collected: 04/27	/22 09:45	Received: 0	4/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2320B Alkalinity	Analytical Met							
Alkalinity, Total as CaCO3	<1.0	mg/L	1.0	1		05/10/22 18:10)	
2340C Hardness, Total	Analytical Met Pace Analytic							
Tot Hardness asCaCO3 (SM 2340B	<5.0	mg/L	5.0	1		05/12/22 19:17	,	
2540C Total Dissolved Solids	Analytical Met Pace Analytic							
Total Dissolved Solids	<10.0	mg/L	10.0	1		05/04/22 14:13	3	
Chromium, Hexavalent	Analytical Met Pace Analytic							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		04/29/22 10:09	18540-29-9	
410.4 COD	Analytical Met Pace Analytic		10.4 Preparation Mo	ethod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	05/11/22 06:45	05/11/22 08:57	•	
5210B BOD, 5 day	Analytical Met Pace Analytic		5210B Preparation Melville	Method: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	04/29/22 11:02	05/04/22 11:03	3	H2
300.0 IC Anions 28 Days	Analytical Met Pace Analytic							
Bromide	<0.50	mg/L	0.50			05/06/22 20:54		
Chloride Sulfate	<2.0 <5.0	mg/L mg/L	2.0 5.0			05/06/22 20:54 05/06/22 20:54		B B
351.2 Total Kjeldahl Nitrogen	Analytical Met	thod: EPA 35	51.2 Preparation Mo	ethod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.16	mg/L	0.10	1	05/04/22 05:22	2 05/05/22 20:20	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Met							
Nitrate-Nitrite (as N)	<0.050	mg/L	0.050	1		05/09/22 15:33	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Met							
Nitrite as N	<0.050	mg/L	0.050	1		04/29/22 00:42	14797-65-0	
Phenolics, Total Recoverable	Analytical Met Pace Analytic		20.1 Preparation Mo	ethod: EP	A 420.1			
Phenolics, Total Recoverable	<5.0	ug/L	5.0	1	05/09/22 12:10	05/09/22 16:53	3	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: EQUIPMENT BLANK	Lab ID: 7021	2658015	Collected: 04/27/2	22 09:45	Received: 04	1/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
4500 Ammonia Water	Analytical Meth	od: SM22	1500 NH3 H					
	Pace Analytical	Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		05/09/22 14:26	7664-41-7	
9014 Cyanide, Total	Analytical Meth Pace Analytical		14 Total Cyanide P Melville	reparatio	on Method: EPA 9	9010C		
Cyanide	<10.0	ug/L	10.0	1	05/05/22 13:15	05/05/22 16:07	7 57-12-5	
9060A TOC as NPOC	Analytical Meth	od: EPA 90	60A					
	Pace Analytical	Services -	Melville					
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:11	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:11	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:11	7440-44-0	
Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:11	7440-44-0	
Mean Total Organic Carbon	<1.0	mg/L	1.0	1		05/09/22 19:11	7440-44-0	

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: TRIP BLANK	Lab ID: 702	12658016	Collected: 04/27/2	22 00:00	Received:	04/28/22 11:51	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical Metl	nod: EPA 82	260C/5030C					
	Pace Analytica	l Services -	Melville					
Acetone	<5.0	ug/L	5.0	1		05/06/22 13:0	6 67-64-1	
Acrylonitrile	<5.0	ug/L	5.0	1		05/06/22 13:0		
Benzene	<5.0	ug/L	5.0	1		05/06/22 13:0		
Bromochloromethane	<5.0	ug/L	5.0	1		05/06/22 13:0		
Bromodichloromethane	<5.0	ug/L	5.0	1		05/06/22 13:0		
Bromoform	<5.0	ug/L	5.0	1		05/06/22 13:0		
Bromomethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 74-83-9	L1
2-Butanone (MEK)	<5.0	ug/L	5.0	1		05/06/22 13:0	6 78-93-3	
Carbon disulfide	<5.0	ug/L	5.0	1		05/06/22 13:0	6 75-15-0	
Carbon tetrachloride	<5.0	ug/L	5.0	1		05/06/22 13:0	6 56-23-5	
Chlorobenzene	<5.0	ug/L	5.0	1		05/06/22 13:0		
Chloroethane	<5.0	ug/L	5.0	1		05/06/22 13:0		
Chloroform	<5.0	ug/L	5.0	1		05/06/22 13:0	6 67-66-3	
Chloromethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 74-87-3	
,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 96-12-8	
Dibromochloromethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 124-48-1	
,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		05/06/22 13:0	6 106-93-4	
Dibromomethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 74-95-3	
,2-Dichlorobenzene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 95-50-1	
,4-Dichlorobenzene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 110-57-6	
,1-Dichloroethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 75-34-3	
,2-Dichloroethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 107-06-2	
,1-Dichloroethene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 75-35-4	
sis-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 156-59-2	
rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 156-60-5	
,2-Dichloropropane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 78-87-5	
sis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 10061-01-5	
rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 10061-02-6	
Ethylbenzene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 100-41-4	
2-Hexanone	<5.0	ug/L	5.0	1		05/06/22 13:0	6 591-78-6	
odomethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 74-88-4	
Methylene Chloride	<5.0	ug/L	5.0	1		05/06/22 13:0	6 75-09-2	
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		05/06/22 13:0	6 108-10-1	
Styrene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 100-42-5	
,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 630-20-6	
,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 79-34-5	
etrachloroethene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 127-18-4	v3
oluene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 108-88-3	
,1,1-Trichloroethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 71-55-6	
,1,2-Trichloroethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 79-00-5	
Trichloroethene	<5.0	ug/L	5.0	1		05/06/22 13:0	6 79-01-6	
richlorofluoromethane	<5.0	ug/L	5.0	1		05/06/22 13:0	6 75-69-4	
,2,3-Trichloropropane	<5.0	ug/L	5.0	1		05/06/22 13:0		
/inyl acetate	<5.0	ug/L	5.0	1		05/06/22 13:0		
/inyl chloride	<5.0	ug/L	5.0	1		05/06/22 13:0		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Sample: TRIP BLANK	Lab ID: 702	12658016	Collected: 04/27/2	22 00:00	Received: 04	4/28/22 11:51 N	Matrix: Water	·
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
	Pace Analytica	I Services -	Melville					
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		05/06/22 13:06	1330-20-7	
1,2-Dichloroethane-d4 (S)	105	%	81-122	1		05/06/22 13:06	17060-07-0	
4-Bromofluorobenzene (S)	96	%	79-118	1		05/06/22 13:06	460-00-4	
Toluene-d8 (S)	99	%	82-122	1		05/06/22 13:06	2037-26-5	
TIC MSV Water	Analytical Meth	nod: EPA 82	260					
	Pace Analytica	l Services -	Melville					
TIC Search	No VOA Tics found			1		05/11/22 10:36		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 254563 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658005, 70212658006, 70212658007

METHOD BLANK: 1286291 Matrix: Water

Associated Lab Samples: 70212658005, 70212658006, 70212658007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum, Dissolved	ug/L	<200	200	04/29/22 23:52	
Antimony, Dissolved	ug/L	<60.0	60.0	04/29/22 23:52	
Arsenic, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Barium, Dissolved	ug/L	<200	200	04/29/22 23:52	
Beryllium, Dissolved	ug/L	<5.0	5.0	04/29/22 23:52	
Cadmium, Dissolved	ug/L	<2.5	2.5	04/29/22 23:52	
Calcium, Dissolved	ug/L	<200	200	04/29/22 23:52	
Chromium, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Cobalt, Dissolved	ug/L	<50.0	50.0	04/29/22 23:52	
Copper, Dissolved	ug/L	<25.0	25.0	04/29/22 23:52	
Iron, Dissolved	ug/L	<100	100	04/29/22 23:52	
Lead, Dissolved	ug/L	<5.0	5.0	04/29/22 23:52	
Magnesium, Dissolved	ug/L	<200	200	04/29/22 23:52	
Manganese, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Nickel, Dissolved	ug/L	<40.0	40.0	04/29/22 23:52	
Potassium, Dissolved	ug/L	<5000	5000	04/29/22 23:52	
Selenium, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Silver, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Sodium, Dissolved	ug/L	<5000	5000	04/29/22 23:52	
Thallium, Dissolved	ug/L	<10.0	10.0	04/29/22 23:52	
Vanadium, Dissolved	ug/L	<50.0	50.0	04/29/22 23:52	
Zinc, Dissolved	ug/L	<20.0	20.0	04/29/22 23:52	

LABORATORY CONTROL SAMPLE:	1286292					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	25000	24800	99	80-120	
Antimony, Dissolved	ug/L	1000	1010	101	80-120	
Arsenic, Dissolved	ug/L	500	491	98	80-120	
Barium, Dissolved	ug/L	500	491	98	80-120	
Beryllium, Dissolved	ug/L	500	494	99	80-120	
Cadmium, Dissolved	ug/L	500	466	93	80-120	
Calcium, Dissolved	ug/L	25000	25200	101	80-120	
Chromium, Dissolved	ug/L	500	478	96	80-120	
Cobalt, Dissolved	ug/L	500	496	99	80-120	
Copper, Dissolved	ug/L	500	466	93	80-120	
Iron, Dissolved	ug/L	12500	12700	101	80-120	
Lead, Dissolved	ug/L	500	495	99	80-120	
Magnesium, Dissolved	ug/L	25000	24300	97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

LABORATORY CONTROL SAMPLE:	1286292					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Manganese, Dissolved	ug/L	500	486	97	80-120	
Nickel, Dissolved	ug/L	500	495	99	80-120	
Potassium, Dissolved	ug/L	25000	24000	96	80-120	
Selenium, Dissolved	ug/L	500	486	97	80-120	
Silver, Dissolved	ug/L	250	247	99	80-120	
Sodium, Dissolved	ug/L	25000	24900	100	80-120	
Thallium, Dissolved	ug/L	250	254	102	80-120	
Vanadium, Dissolved	ug/L	500	487	97	80-120	
Zinc, Dissolved	ug/L	500	485	97	80-120	

MATRIX SPIKE SAMPLE:	1286295						
5	11.5	70211668001	Spike	MS	MS	% Rec	0 ""
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	<200	12500	11800	94	75-125	
Antimony, Dissolved	ug/L	<60.0	1000	949	95	75-125	
Arsenic, Dissolved	ug/L	<10.0	500	468	93	75-125	
Barium, Dissolved	ug/L	<200	500	466	93	75-125	
Beryllium, Dissolved	ug/L	<5.0	500	475	95	75-125	
Cadmium, Dissolved	ug/L	<2.5	500	448	90	75-125	
Calcium, Dissolved	ug/L	<200	12500	11900	95	75-125	
Chromium, Dissolved	ug/L	<10.0	500	457	91	75-125	
Cobalt, Dissolved	ug/L	<50.0	500	479	96	75-125	
Copper, Dissolved	ug/L	<25.0	500	447	89	75-125	
ron, Dissolved	ug/L	<100	5000	4820	96	75-125	
Lead, Dissolved	ug/L	<5.0	500	478	96	75-125	
Magnesium, Dissolved	ug/L	<200	12500	11600	93	75-125	
Manganese, Dissolved	ug/L	<10.0	500	468	94	75-125	
Nickel, Dissolved	ug/L	<40.0	500	467	93	75-125	
Potassium, Dissolved	ug/L	< 5000	12500	11500	90	75-125	
Selenium, Dissolved	ug/L	<10.0	500	468	93	75-125	
Silver, Dissolved	ug/L	<10.0	250	163	65	75-125 N	11
Sodium, Dissolved	ug/L	<5000	12500	12900	103	75-125	
Thallium, Dissolved	ug/L	<10.0	250	238	95	75-125	
Vanadium, Dissolved	ug/L	<50.0	500	460	92	75-125	
Zinc, Dissolved	ug/L	<20.0	500	472	94	75-125	

Date: 07/25/2022 05:40 PM

		70211668001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum, Dissolved	ug/L	<200	<200		
Antimony, Dissolved	ug/L	<60.0	<60.0		
Arsenic, Dissolved	ug/L	<10.0	<10.0		
Barium, Dissolved	ug/L	<200	<200		
Beryllium, Dissolved	ug/L	<5.0	<5.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

SAMPLE DUPLICATE: 1286294 70211668001 Dup Parameter Units Result Result RPD Qualifiers <2.5 Cadmium, Dissolved ug/L <2.5 <200 Calcium, Dissolved ug/L <200 <10.0 Chromium, Dissolved ug/L <10.0 Cobalt, Dissolved <50.0 <50.0 ug/L Copper, Dissolved <25.0 <25.0 ug/L Iron, Dissolved ug/L <100 <100 < 5.0 Lead, Dissolved ug/L < 5.0 Magnesium, Dissolved <200 <200 ug/L Manganese, Dissolved <10.0 <10.0 ug/L <40.0 Nickel, Dissolved ug/L <40.0 <5000 Potassium, Dissolved ug/L <5000 <10.0 Selenium, Dissolved ug/L <10.0 <10.0 Silver, Dissolved ug/L <10.0 Sodium, Dissolved ug/L < 5000 <5000 Thallium, Dissolved ug/L <10.0 <10.0 Vanadium, Dissolved <50.0 <50.0 ug/L Zinc, Dissolved ug/L <20.0 <20.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 256040 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1293400 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

 Parameter
 Units
 Blank Reporting Result
 Limit
 Analyzed
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 0.20
 05/11/22 12:26

LABORATORY CONTROL SAMPLE: 1293401

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 1 1.1 111 80-120

MATRIX SPIKE SAMPLE: 1293402

70212658012 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.60 1.5 88 75-125 Mercury ug/L

SAMPLE DUPLICATE: 1293403

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Mercury
 ug/L
 0.60
 0.31
 64
 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 256215 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury Dissolved

> Pace Analytical Services - Melville Laboratory:

Associated Lab Samples: 70212658005, 70212658006, 70212658007

METHOD BLANK: 1294275 Matrix: Water

Associated Lab Samples: 70212658005, 70212658006, 70212658007

> Blank Reporting Qualifiers Parameter Units Result Limit Analyzed

Mercury, Dissolved < 0.20 0.20 05/12/22 12:18 ug/L

LABORATORY CONTROL SAMPLE: 1294276

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury, Dissolved ug/L 1.0 101 80-120

1294277

MS MS % Rec 70212658005 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers

< 0.20 Mercury, Dissolved 0.98 ug/L 94 75-125

SAMPLE DUPLICATE: 1294278

MATRIX SPIKE SAMPLE:

Date: 07/25/2022 05:40 PM

70212658005 Dup RPD Parameter Units Result Result Qualifiers < 0.20 Mercury, Dissolved ug/L < 0.20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 254804 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1287357 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	05/04/22 10:49	
Antimony	ug/L	<60.0	60.0	05/04/22 10:49	
Arsenic	ug/L	<10.0	10.0	05/04/22 10:49	
Barium	ug/L	<200	200	05/04/22 10:49	
Beryllium	ug/L	<5.0	5.0	05/04/22 10:49	
Boron	ug/L	<50.0	50.0	05/04/22 10:49	
Cadmium	ug/L	<2.5	2.5	05/04/22 10:49	
Calcium	ug/L	<200	200	05/04/22 10:49	
Chromium	ug/L	<10.0	10.0	05/04/22 10:49	
Cobalt	ug/L	<50.0	50.0	05/04/22 10:49	
Copper	ug/L	<25.0	25.0	05/04/22 10:49	
Iron	ug/L	<100	100	05/04/22 10:49	
Lead	ug/L	<5.0	5.0	05/04/22 10:49	
Magnesium	ug/L	<200	200	05/04/22 10:49	
Manganese	ug/L	<10.0	10.0	05/04/22 10:49	
Nickel	ug/L	<40.0	40.0	05/04/22 10:49	
Potassium	ug/L	<5000	5000	05/04/22 10:49	
Selenium	ug/L	<10.0	10.0	05/04/22 10:49	
Silver	ug/L	<10.0	10.0	05/04/22 10:49	
Sodium	ug/L	<5000	5000	05/04/22 10:49	
Thallium	ug/L	<10.0	10.0	05/04/22 10:49	
Vanadium	ug/L	<50.0	50.0	05/04/22 10:49	
Zinc	ug/L	<20.0	20.0	05/04/22 10:49	

LABORATORY CONTROL SAMPLE:	1287358					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	25000	24300	97	80-120	
Antimony	ug/L	1000	974	97	80-120	
Arsenic	ug/L	500	494	99	80-120	
Barium	ug/L	500	488	98	80-120	
Beryllium	ug/L	500	494	99	80-120	
Boron	ug/L	1000	988	99	80-120	
Cadmium	ug/L	500	493	99	80-120	
Calcium	ug/L	25000	25400	102	80-120	
Chromium	ug/L	500	492	98	80-120	
Cobalt	ug/L	500	487	97	80-120	
Copper	ug/L	500	485	97	80-120	
Iron	ug/L	12500	12600	100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

LABORATORY CONTROL SAMPLE:	1287358					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Lead	ug/L	500	496	99	80-120	
Magnesium	ug/L	25000	24300	97	80-120	
Manganese	ug/L	500	488	98	80-120	
Nickel	ug/L	500	492	98	80-120	
Potassium	ug/L	25000	24300	97	80-120	
Selenium	ug/L	500	492	98	80-120	
Silver	ug/L	250	240	96	80-120	
Sodium	ug/L	25000	23900	96	80-120	
Thallium	ug/L	250	249	100	80-120	
Vanadium	ug/L	500	485	97	80-120	
Zinc	ug/L	500	490	98	80-120	

MATRIX SPIKE SAMPLE:	1287360						
		70212849003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	<200	12500	11100	89	75-125	
Antimony	ug/L	<60.0	1000	881	88	75-125	
Arsenic	ug/L	19.6	500	464	89	75-125	
Barium	ug/L	179J	500	608	86	75-125	
Beryllium	ug/L	<5.0	500	461	92	75-125	
Boron	ug/L	47.9J	1000	946	90	75-125	
Cadmium	ug/L	<2.5	500	433	87	75-125	
Calcium	ug/L	267000	12500	278000	88	75-125	
Chromium	ug/L	1.7J	500	443	88	75-125	
Cobalt	ug/L	<50.0	500	436	87	75-125	
Copper	ug/L	10.3J	500	441	86	75-125	
Iron	ug/L	36400	5000	40500	81	75-125	
Lead	ug/L	<5.0	500	437	87	75-125	
Magnesium	ug/L	26400	12500	37100	86	75-125	
Manganese	ug/L	4460	500	4890	86	75-125	
Nickel	ug/L	21.3J	500	444	85	75-125	
Potassium	ug/L	9580	12500	22000	99	75-125	
Selenium	ug/L	<10.0	500	448	89	75-125	
Silver	ug/L	<10.0	250	171	68	75-125 N	11
Sodium	ug/L	135000	12500	148000	104	75-125	
Thallium	ug/L	<10.0	250	214	86	75-125	
Vanadium	ug/L	<50.0	500	448	89	75-125	
Zinc	ug/L	<20.0	500	427	85	75-125	

SAMPLE DUPLICATE: 1287359

Date: 07/25/2022 05:40 PM

		70212849003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum	ug/L	<200	<200		
Antimony	ug/L	<60.0	<60.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

SAMPLE DUPLICATE: 1287359 70212849003 Dup Parameter Units Result Result **RPD** Qualifiers 19.6 Arsenic ug/L 22.9 16 179J Barium ug/L <200 < 5.0 Beryllium ug/L <5.0 Boron 47.9J 53.8 ug/L Cadmium <2.5 <2.5 ug/L Calcium ug/L 267000 289000 8 Chromium 1.7J ug/L <10.0 Cobalt <50.0 <50.0 ug/L Copper ug/L 10.3J <25.0 36400 Iron ug/L 39400 8 < 5.0 Lead ug/L < 5.0 26400 9 Magnesium ug/L 28800 4460 Manganese ug/L 4870 9 21.3J Nickel ug/L <40.0 ug/L 7 Potassium 9580 10300 Selenium ug/L <10.0 <10.0 Silver ug/L <10.0 <10.0 135000 Sodium ug/L 148000 9 <10.0 Thallium ug/L <10.0 <50.0 Vanadium < 50.0 ug/L <20.0 Zinc <20.0 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 255490 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1290499 Matrix: Water

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	05/12/22 14:54	
Antimony	ug/L	<60.0	60.0	05/12/22 14:54	
Arsenic	ug/L	<10.0	10.0	05/12/22 14:54	
Barium	ug/L	<200	200	05/12/22 14:54	
Beryllium	ug/L	<5.0	5.0	05/12/22 14:54	
Boron	ug/L	<50.0	50.0	05/12/22 14:54	
Cadmium	ug/L	<2.5	2.5	05/12/22 14:54	
Calcium	ug/L	<200	200	05/12/22 14:54	
Chromium	ug/L	<10.0	10.0	05/12/22 14:54	
Cobalt	ug/L	<50.0	50.0	05/12/22 14:54	
Copper	ug/L	<25.0	25.0	05/12/22 14:54	
Iron	ug/L	<100	100	05/12/22 14:54	
Lead	ug/L	<5.0	5.0	05/12/22 14:54	
Magnesium	ug/L	<200	200	05/12/22 14:54	
Manganese	ug/L	<10.0	10.0	05/12/22 14:54	
Nickel	ug/L	<40.0	40.0	05/12/22 14:54	
Potassium	ug/L	<5000	5000	05/12/22 14:54	
Selenium	ug/L	<10.0	10.0	05/12/22 14:54	
Silver	ug/L	<10.0	10.0	05/12/22 14:54	
Sodium	ug/L	<5000	5000	05/12/22 14:54	
Thallium	ug/L	<10.0	10.0	05/12/22 14:54	
Vanadium	ug/L	<50.0	50.0	05/12/22 14:54	
Zinc	ug/L	<20.0	20.0	05/12/22 14:54	

LABORATORY CONTROL SAMPLE:	1290500					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	25000	22900	92	80-120	
Antimony	ug/L	1000	900	90	80-120	
Arsenic	ug/L	500	457	91	80-120	
Barium	ug/L	500	457	91	80-120	
Beryllium	ug/L	500	459	92	80-120	
Boron	ug/L	1000	910	91	80-120	
Cadmium	ug/L	500	460	92	80-120	
Calcium	ug/L	25000	22900	92	80-120	
Chromium	ug/L	500	460	92	80-120	
Cobalt	ug/L	500	456	91	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

LABORATORY CONTROL SAMPLE:	1290500					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Copper	ug/L	500	457	91	80-120	
Iron	ug/L	12500	11600	93	80-120	
Lead	ug/L	500	460	92	80-120	
Magnesium	ug/L	25000	22900	92	80-120	
Manganese	ug/L	500	458	92	80-120	
Nickel	ug/L	500	458	92	80-120	
Potassium	ug/L	25000	23400	94	80-120	
Selenium	ug/L	500	458	92	80-120	
Silver	ug/L	250	226	90	80-120	
Sodium	ug/L	25000	23600	94	80-120	
Thallium	ug/L	250	227	91	80-120	
Vanadium	ug/L	500	462	92	80-120	
Zinc	ug/L	500	460	92	80-120	

MATRIX SPIKE SAMPLE:	1290501						
		70212658012	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	<200	12500	11600	93	75-125	
Antimony	ug/L	<60.0	1000	914	91	75-125	
Arsenic	ug/L	<10.0	500	458	92	75-125	
Barium	ug/L	<200	500	483	91	75-125	
Beryllium	ug/L	<5.0	500	465	93	75-125	
Boron	ug/L	<50.0	1000	917	91	75-125	
Cadmium	ug/L	<2.5	500	462	92	75-125	
Calcium	ug/L	13000	12500	24500	92	75-125	
Chromium	ug/L	378	500	820	88	75-125	
Cobalt	ug/L	<50.0	500	464	92	75-125	
Copper	ug/L	<25.0	500	461	91	75-125	
Iron	ug/L	1590	5000	6150	91	75-125	
Lead	ug/L	<5.0	500	461	92	75-125	
Magnesium	ug/L	5860	12500	17200	91	75-125	
Manganese	ug/L	33.4	500	487	91	75-125	
Nickel	ug/L	194	500	632	88	75-125	
Potassium	ug/L	<5000	12500	13200	98	75-125	
Selenium	ug/L	<10.0	500	458	91	75-125	
Silver	ug/L	<10.0	250	175	70	75-125 M	11
Sodium	ug/L	26300	12500	40300	112	75-125	
Thallium	ug/L	<10.0	250	229	91	75-125	
Vanadium	ug/L	<50.0	500	465	93	75-125	
Zinc	ug/L	<20.0	500	465	93	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

SAMPLE DUPLICATE: 1290622					
		70212658012	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum	ug/L	<200	<200		
Antimony	ug/L	<60.0	<60.0		
Arsenic	ug/L	<10.0	<10.0		
arium	ug/L	<200	<200		
eryllium	ug/L	<5.0	< 5.0		
oron	ug/L	<50.0	<50.0		
admium	ug/L	<2.5	<2.5		
alcium	ug/L	13000	13500	4	
hromium	ug/L	378	491	26	D6
balt	ug/L	<50.0	<50.0		
opper	ug/L	<25.0	<25.0		
on	ug/L	1590	2000	23	D6
ad	ug/L	<5.0	< 5.0		
agnesium	ug/L	5860	6070	4	
nganese	ug/L	33.4	35.6	6	
ckel	ug/L	194	202	4	
otassium	ug/L	<5000	< 5000		
elenium	ug/L	<10.0	<10.0		
lver	ug/L	<10.0	<10.0		
odium	ug/L	26300	27300	4	
nallium	ug/L	<10.0	<10.0		
anadium	ug/L	<50.0	<50.0		
nc	ug/L	<20.0	<20.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 255018 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1288645 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<5.0	5.0	05/04/22 08:38	
1,1,1-Trichloroethane	ug/L	<5.0	5.0	05/04/22 08:38	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	5.0	05/04/22 08:38	
1,1,2-Trichloroethane	ug/L	<5.0	5.0	05/04/22 08:38	
1,1-Dichloroethane	ug/L	<5.0	5.0	05/04/22 08:38	
1,1-Dichloroethene	ug/L	<5.0	5.0	05/04/22 08:38	
1,2,3-Trichloropropane	ug/L	<5.0	5.0	05/04/22 08:38	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	5.0	05/04/22 08:38	
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	05/04/22 08:38	
1,2-Dichlorobenzene	ug/L	<5.0	5.0	05/04/22 08:38	
1,2-Dichloroethane	ug/L	<5.0	5.0	05/04/22 08:38	
1,2-Dichloropropane	ug/L	<5.0	5.0	05/04/22 08:38	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	05/04/22 08:38	
2-Butanone (MEK)	ug/L	<5.0	5.0	05/04/22 08:38	
2-Hexanone	ug/L	<5.0	5.0	05/04/22 08:38	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	05/04/22 08:38	
Acetone	ug/L	<5.0	5.0	05/04/22 08:38	
Acrylonitrile	ug/L	<5.0	5.0	05/04/22 08:38	
Benzene	ug/L	<5.0	5.0	05/04/22 08:38	
Bromochloromethane	ug/L	<5.0	5.0	05/04/22 08:38	
Bromodichloromethane	ug/L	<5.0	5.0	05/04/22 08:38	
Bromoform	ug/L	<5.0	5.0	05/04/22 08:38	
Bromomethane	ug/L	<5.0	5.0	05/04/22 08:38	
Carbon disulfide	ug/L	<5.0	5.0	05/04/22 08:38	
Carbon tetrachloride	ug/L	<5.0	5.0	05/04/22 08:38	
Chlorobenzene	ug/L	<5.0	5.0	05/04/22 08:38	
Chloroethane	ug/L	<5.0	5.0	05/04/22 08:38	v3
Chloroform	ug/L	<5.0	5.0	05/04/22 08:38	
Chloromethane	ug/L	<5.0	5.0	05/04/22 08:38	
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	05/04/22 08:38	
cis-1,3-Dichloropropene	ug/L	<5.0	5.0	05/04/22 08:38	
Dibromochloromethane	ug/L	<5.0	5.0	05/04/22 08:38	
Dibromomethane	ug/L	<5.0	5.0	05/04/22 08:38	
Ethylbenzene	ug/L	<5.0	5.0	05/04/22 08:38	
Iodomethane	ug/L	<5.0	5.0	05/04/22 08:38	
Methylene Chloride	ug/L	<5.0	5.0	05/04/22 08:38	
Styrene	ug/L	<5.0	5.0	05/04/22 08:38	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

METHOD BLANK: 1288645 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Tetrachloroethene	ug/L	<5.0	5.0	05/04/22 08:38	v3
Toluene	ug/L	<5.0	5.0	05/04/22 08:38	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	05/04/22 08:38	
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	05/04/22 08:38	
trans-1,4-Dichloro-2-butene	ug/L	<5.0	5.0	05/04/22 08:38	
Trichloroethene	ug/L	<5.0	5.0	05/04/22 08:38	
Trichlorofluoromethane	ug/L	<5.0	5.0	05/04/22 08:38	
Vinyl acetate	ug/L	<5.0	5.0	05/04/22 08:38	
Vinyl chloride	ug/L	<5.0	5.0	05/04/22 08:38	
Xylene (Total)	ug/L	<5.0	5.0	05/04/22 08:38	
1,2-Dichloroethane-d4 (S)	%	101	81-122	05/04/22 08:38	
4-Bromofluorobenzene (S)	%	98	79-118	05/04/22 08:38	
Toluene-d8 (S)	%	99	82-122	05/04/22 08:38	

LABORATORY CONTROL SAMPLE:	1288646					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	48.5	97	75-122	
1,1,1-Trichloroethane	ug/L	50	42.0	84	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	49.7	99	70-127	
1,1,2-Trichloroethane	ug/L	50	48.1	96	81-119	
1,1-Dichloroethane	ug/L	50	44.6	89	72-126	
1,1-Dichloroethene	ug/L	50	39.4	79	66-133	
1,2,3-Trichloropropane	ug/L	50	47.5	95	69-120	
1,2-Dibromo-3-chloropropane	ug/L	50	48.1	96	47-133	
1,2-Dibromoethane (EDB)	ug/L	50	47.5	95	81-123	
1,2-Dichlorobenzene	ug/L	50	46.8	94	80-117	
1,2-Dichloroethane	ug/L	50	48.5	97	69-134	
1,2-Dichloropropane	ug/L	50	46.3	93	75-125	
1,4-Dichlorobenzene	ug/L	50	45.6	91	80-117	
2-Butanone (MEK)	ug/L	50	57.6	115	33-165	Н
2-Hexanone	ug/L	50	60.1	120	50-128	Н
4-Methyl-2-pentanone (MIBK)	ug/L	50	51.4	103	62-131	
Acetone	ug/L	50	79.2	158	14-156	H,L1,v1
Acrylonitrile	ug/L	50	48.4	97	60-136	
Benzene	ug/L	50	44.4	89	78-117	
Bromochloromethane	ug/L	50	44.0	88	77-122	
Bromodichloromethane	ug/L	50	48.2	96	80-123	
Bromoform	ug/L	50	52.0	104	49-138	
Bromomethane	ug/L	50	59.2	118	10-143	H,v1
Carbon disulfide	ug/L	50	39.5	79	66-133	
Carbon tetrachloride	ug/L	50	39.1	78	64-135	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

ABORATORY CONTROL SAMPLE:	1288646					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
hlorobenzene	ug/L	50	47.4	95	79-117	
hloroethane	ug/L	50	33.5	67	31-156 \	v 3
nloroform	ug/L	50	47.4	95	79-123	
oromethane	ug/L	50	30.8	62	39-116	
-1,2-Dichloroethene	ug/L	50	47.9	96	77-125	
-1,3-Dichloropropene	ug/L	50	48.4	97	78-131	
promochloromethane	ug/L	50	50.2	100	65-123	
oromomethane	ug/L	50	48.2	96	81-123	
ylbenzene	ug/L	50	44.2	88	79-115	
omethane	ug/L	50	43.0	86	10-183	
thylene Chloride	ug/L	50	44.6	89	67-123	
rene	ug/L	50	47.4	95	82-121	
achloroethene	ug/L	50	30.7	61	65-120 l	L2,v3
ene	ug/L	50	45.5	91	80-114	
ns-1,2-Dichloroethene	ug/L	50	44.9	90	74-123	
ns-1,3-Dichloropropene	ug/L	50	49.6	99	73-135	
ns-1,4-Dichloro-2-butene	ug/L	50	51.6	103	52-137	
chloroethene	ug/L	50	42.7	85	79-115	
chlorofluoromethane	ug/L	50	39.6	79	51-136	
yl acetate	ug/L	50	51.1	102	49-136	
yl chloride	ug/L	50	33.4	67	49-118	
ene (Total)	ug/L	150	134	89	80-118	
Dichloroethane-d4 (S)	%			96	81-122	
romofluorobenzene (S)	%			101	79-118	
uene-d8 (S)	%			101	82-122	

MATRIX SPIKE & MATRIX SPIKE	1288648										
			MS	MSD							
	702	212658012	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<5.0	50	50	49.2	47.0	98	94	65-122		
1,1,1-Trichloroethane	ug/L	<5.0	50	50	52.6	50.1	105	100	72-123	5	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	50	50	48.9	46.1	98	92	64-133	6	
1,1,2-Trichloroethane	ug/L	<5.0	50	50	47.7	46.8	95	94	78-120	2	
1,1-Dichloroethane	ug/L	<5.0	50	50	50.3	48.1	101	96	70-124	5	
1,1-Dichloroethene	ug/L	<5.0	50	50	51.4	47.1	103	94	61-139	9	
1,2,3-Trichloropropane	ug/L	<5.0	50	50	45.9	44.8	92	90	64-120	2	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	50	50	46.4	44.2	93	88	32-137	5	
1,2-Dibromoethane (EDB)	ug/L	<5.0	50	50	47.2	47.2	94	94	78-121	0	
1,2-Dichlorobenzene	ug/L	<5.0	50	50	50.7	49.1	101	98	75-120	3	
1,2-Dichloroethane	ug/L	<5.0	50	50	49.8	48.5	100	97	58-138	3	
1,2-Dichloropropane	ug/L	<5.0	50	50	48.6	47.1	97	94	74-122	3	
1,4-Dichlorobenzene	ug/L	<5.0	50	50	50.7	49.0	101	98	76-118	3	
2-Butanone (MEK)	ug/L	<5.0	50	50	42.5	42.1	85	84	33-148	1 IF	1
2-Hexanone	ug/L	<5.0	50	50	47.9	46.3	96	93	49-124	3 IF	1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 12886			1288648						
			MS	MSD							
Daman atau		212658012	Spike	Spike	MS	MSD	MS	MSD	% Rec	DDD	0
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD -	Qual
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	50.4	48.8	101	98	60-136	3	
Acetone	ug/L	<5.0	50	50	43.7	41.2	87	82	35-112	6 II	H,v1
Acrylonitrile	ug/L	<5.0	50	50	46.3	44.5	93	89	45-132	4	
Benzene	ug/L	<5.0	50	50	51.1	49.9	102	100	70-130	2	
Bromochloromethane	ug/L	<5.0	50	50	49.1	47.8	98	96	70-122	3	
Bromodichloromethane	ug/L	<5.0	50	50	50.4	48.6	101	97	74-122	4	
Bromoform	ug/L	<5.0	50	50	48.7	47.3	97	95	39-139	3	
Bromomethane	ug/L	<5.0	50	50	75.8	73.0	152	146	10-130	4 II	H,M1,v
Carbon disulfide	ug/L	<5.0	50	50	50.2	46.0	100	92	60-129	9	
Carbon tetrachloride	ug/L	<5.0	50	50	51.0	48.7	102	97	56-143	5	
Chlorobenzene	ug/L	<5.0	50	50	51.2	48.6	102	97	74-122	5	
Chloroethane	ug/L	<5.0	50	50	40.4	38.1	81	76	35-146	6 v	3
Chloroform	ug/L	5.0	50	50	53.9	51.6	105	101	71-129	4	
Chloromethane	ug/L	<5.0	50	50	34.2	32.2	68	64	29-112	6	
cis-1,2-Dichloroethene	ug/L	<5.0	50	50	53.7	51.0	107	102	73-129	5	
cis-1,3-Dichloropropene	ug/L	<5.0	50	50	48.0	48.5	96	97	67-130	1	
Dibromochloromethane	ug/L	<5.0	50	50	47.8	47.0	96	94	55-126	2	
Dibromomethane	ug/L	<5.0	50	50	49.2	48.4	98	97	71-127	2	
Ethylbenzene	ug/L	<5.0	50	50	52.5	49.0	105	98	70-126	7	
odomethane	ug/L	<5.0	50	50	39.9	46.5	80	93	10-167	15	
Methylene Chloride	ug/L	< 5.0	50	50	47.0	46.1	94	92	69-117	2	
Styrene	ug/L	< 5.0	50	50	49.9	47.2	100	94	79-123	6	
Tetrachloroethene	ug/L	< 5.0	50	50	40.6	38.0	81	76	64-124	7 v	3
Toluene	ug/L	<5.0	50	50	52.6	50.4	105	101	76-123	4	
rans-1,2-Dichloroethene	ug/L	<5.0	50	50	54.8	53.0	110	106	69-127	3	
rans-1,3-Dichloropropene	ug/L	<5.0	50	50	49.1	48.1	98	96	61-130	2	
rans-1,4-Dichloro-2-butene	ug/L	<5.0	50	50	49.5	47.4	99	95	18-144	4	
Trichloroethene	ug/L	<5.0	50	50	49.6	47.8	99	96	73-125	4	
Trichlorofluoromethane	ug/L	<5.0	50	50	52.8	50.0	106	100	59-129	5	
/inyl acetate	ug/L	<5.0	50	50	46.2	49.1	92	98	34-123	6	
/inyl chloride	ug/L	<5.0	50	50	41.3	38.4	83	77	33-127	7	
(Total)	ug/L	<5.0	150	150	156	146	104	97	78-123	7	
1,2-Dichloroethane-d4 (S)	%						100	100	81-122		
4-Bromofluorobenzene (S)	%						99	99	79-118		
Toluene-d8 (S)	%						100	100	82-122		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 255553 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658016

METHOD BLANK: 1290657 Matrix: Water

Associated Lab Samples: 70212658016

		Blank Reportir			
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	<5.0	5.0	05/06/22 11:39	- · <u></u>
1,1,1-Trichloroethane	ug/L	<5.0	5.0	05/06/22 11:39	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	5.0	05/06/22 11:39	
1,1,2-Trichloroethane	ug/L	<5.0	5.0	05/06/22 11:39	
1,1-Dichloroethane	ug/L	<5.0	5.0	05/06/22 11:39	
1,1-Dichloroethene	ug/L	<5.0	5.0	05/06/22 11:39	
1,2,3-Trichloropropane	ug/L	<5.0	5.0	05/06/22 11:39	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	5.0	05/06/22 11:39	
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	05/06/22 11:39	
1,2-Dichlorobenzene	ug/L	<5.0	5.0	05/06/22 11:39	
1,2-Dichloroethane	ug/L	<5.0	5.0	05/06/22 11:39	
1,2-Dichloropropane	ug/L	<5.0	5.0	05/06/22 11:39	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	05/06/22 11:39	
2-Butanone (MEK)	ug/L	<5.0	5.0	05/06/22 11:39	
2-Hexanone	ug/L	< 5.0	5.0	05/06/22 11:39	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	05/06/22 11:39	
Acetone	ug/L	< 5.0	5.0	05/06/22 11:39	
Acrylonitrile	ug/L	<5.0	5.0	05/06/22 11:39	
Benzene	ug/L	<5.0	5.0	05/06/22 11:39	
Bromochloromethane	ug/L	< 5.0	5.0	05/06/22 11:39	
Bromodichloromethane	ug/L	< 5.0	5.0	05/06/22 11:39	
Bromoform	ug/L	<5.0	5.0	05/06/22 11:39	
Bromomethane	ug/L	< 5.0	5.0	05/06/22 11:39	
Carbon disulfide	ug/L	< 5.0	5.0	05/06/22 11:39	
Carbon tetrachloride	ug/L	<5.0	5.0	05/06/22 11:39	
Chlorobenzene	ug/L	<5.0	5.0	05/06/22 11:39	
Chloroethane	ug/L	<5.0	5.0	05/06/22 11:39	
Chloroform	ug/L	<5.0	5.0	05/06/22 11:39	
Chloromethane	ug/L	<5.0	5.0	05/06/22 11:39	
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	05/06/22 11:39	
cis-1,3-Dichloropropene	ug/L	<5.0	5.0	05/06/22 11:39	
Dibromochloromethane	ug/L	<5.0	5.0	05/06/22 11:39	
Dibromomethane	ug/L	<5.0	5.0	05/06/22 11:39	
Ethylbenzene	ug/L	<5.0	5.0	05/06/22 11:39	
Iodomethane	ug/L	<5.0	5.0	05/06/22 11:39	
Methylene Chloride	ug/L	<5.0	5.0	05/06/22 11:39	
Styrene	ug/L	<5.0	5.0	05/06/22 11:39	
Tetrachloroethene	ug/L	<5.0	5.0	05/06/22 11:39	v3
Toluene	ug/L	<5.0	5.0	05/06/22 11:39	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	05/06/22 11:39	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

METHOD BLANK: 1290657 Matrix: Water

Associated Lab Samples: 70212658016

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	05/06/22 11:39	
trans-1,4-Dichloro-2-butene	ug/L	< 5.0	5.0	05/06/22 11:39	
Trichloroethene	ug/L	< 5.0	5.0	05/06/22 11:39	
Trichlorofluoromethane	ug/L	<5.0	5.0	05/06/22 11:39	
Vinyl acetate	ug/L	<5.0	5.0	05/06/22 11:39	
Vinyl chloride	ug/L	<5.0	5.0	05/06/22 11:39	
Xylene (Total)	ug/L	< 5.0	5.0	05/06/22 11:39	
1,2-Dichloroethane-d4 (S)	%	102	81-122	05/06/22 11:39	
4-Bromofluorobenzene (S)	%	96	79-118	05/06/22 11:39	
Toluene-d8 (S)	%	98	82-122	05/06/22 11:39	

LABORATORY CONTROL SAMPLE:	1290658					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	48.5	97	75-122	
1,1,1-Trichloroethane	ug/L	50	47.8	96	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	49.8	100	70-127	
1,1,2-Trichloroethane	ug/L	50	51.0	102	81-119	
1,1-Dichloroethane	ug/L	50	49.4	99	72-126	
1,1-Dichloroethene	ug/L	50	49.8	100	66-133	
1,2,3-Trichloropropane	ug/L	50	46.8	94	69-120	
1,2-Dibromo-3-chloropropane	ug/L	50	46.3	93	47-133	
1,2-Dibromoethane (EDB)	ug/L	50	50.1	100	81-123	
1,2-Dichlorobenzene	ug/L	50	47.6	95	80-117	
1,2-Dichloroethane	ug/L	50	53.9	108	69-134	
1,2-Dichloropropane	ug/L	50	49.6	99	75-125	
1,4-Dichlorobenzene	ug/L	50	46.3	93	80-117	
2-Butanone (MEK)	ug/L	50	51.3	103	33-165 I	Н
2-Hexanone	ug/L	50	53.1	106	50-128 I	Н
4-Methyl-2-pentanone (MIBK)	ug/L	50	49.5	99	62-131	
Acetone	ug/L	50	71.3	143	14-156 I	Н
Acrylonitrile	ug/L	50	51.3	103	60-136	
Benzene	ug/L	50	51.5	103	78-117	
Bromochloromethane	ug/L	50	51.4	103	77-122	
Bromodichloromethane	ug/L	50	51.3	103	80-123	
Bromoform	ug/L	50	51.8	104	49-138	
Bromomethane	ug/L	50	71.8	144	10-143 I	H,L1,v1
Carbon disulfide	ug/L	50	50.6	101	66-133	
Carbon tetrachloride	ug/L	50	43.5	87	64-135	
Chlorobenzene	ug/L	50	49.1	98	79-117	
Chloroethane	ug/L	50	41.3	83	31-156	
Chloroform	ug/L	50	53.1	106	79-123	
Chloromethane	ug/L	50	38.4	77	39-116	
cis-1,2-Dichloroethene	ug/L	50	52.5	105	77-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

ABORATORY CONTROL SAMPLE:	1290658					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
is-1,3-Dichloropropene	ug/L	50	50.7	101	78-131	
Dibromochloromethane	ug/L	50	50.2	100	65-123	
bromomethane	ug/L	50	52.2	104	81-123	
nylbenzene	ug/L	50	44.5	89	79-115	
domethane	ug/L	50	40.8	82	10-183	
ethylene Chloride	ug/L	50	51.1	102	67-123	
rene	ug/L	50	48.3	97	82-121	
rachloroethene	ug/L	50	33.2	66	65-120 v	/3
uene	ug/L	50	49.8	100	80-114	
s-1,2-Dichloroethene	ug/L	50	53.0	106	74-123	
s-1,3-Dichloropropene	ug/L	50	51.6	103	73-135	
ns-1,4-Dichloro-2-butene	ug/L	50	49.8	100	52-137	
hloroethene	ug/L	50	46.7	93	79-115	
chlorofluoromethane	ug/L	50	48.7	97	51-136	
yl acetate	ug/L	50	54.6	109	49-136	
yl chloride	ug/L	50	42.5	85	49-118	
ene (Total)	ug/L	150	135	90	80-118	
Dichloroethane-d4 (S)	%			100	81-122	
romofluorobenzene (S)	%			99	79-118	
uene-d8 (S)	%			100	82-122	

MATRIX SPIKE & MATRIX SPIKE	DUPLICAT	E: 12906	59		1290660						
			MS	MSD							
	702	212903004	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	50	50.5	57.6	101	115	65-122	13	
1,1,1-Trichloroethane	ug/L	<1.0	50	50	52.8	61.8	106	124	72-123	16 N	11
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	50	50.3	56.4	101	113	64-133	11	
1,1,2-Trichloroethane	ug/L	<1.0	50	50	51.8	58.3	104	117	78-120	12	
1,1-Dichloroethane	ug/L	64.4	50	50	116	122	103	116	70-124	5	
1,1-Dichloroethene	ug/L	4.8	50	50	57.5	65.3	105	121	61-139	13	
1,2,3-Trichloropropane	ug/L	<1.0	50	50	48.4	53.7	97	107	64-120	10	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	50	46.0	52.1	92	104	32-137	12	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	50	51.1	56.0	102	112	78-121	9	
1,2-Dichlorobenzene	ug/L	<1.0	50	50	50.9	58.7	102	117	75-120	14	
1,2-Dichloroethane	ug/L	<1.0	50	50	53.5	59.6	107	119	58-138	11	
1,2-Dichloropropane	ug/L	<1.0	50	50	50.0	58.2	100	116	74-122	15	
1,4-Dichlorobenzene	ug/L	<1.0	50	50	49.4	58.9	99	118	76-118	18	
2-Butanone (MEK)	ug/L	< 5.0	50	50	45.7	50.0	91	100	33-148	9 II	1
2-Hexanone	ug/L	< 5.0	50	50	51.1	54.9	102	110	49-124	7 II	1
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	50	53.1	58.0	106	116	60-136	9	
Acetone	ug/L	<5.0	50	50	47.5	50.8	95	102	35-112	7 II	4
Acrylonitrile	ug/L	<1.0	50	50	49.7	53.6	99	107	45-132	7	
Benzene	ug/L	<1.0	50	50	52.2	62.3	104	125	70-130	18	
Bromochloromethane	ug/L	<1.0	50	50	50.9	57.3	102	115	70-122	12	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

MATRIX SPIKE & MATRIX SPIK	KE DUPLICATE	12906	59		1290660						
Devented		2903004	MS Spike	MSD Spike	MS	MSD	MS % Page	MSD % Rec	% Rec	RPD	Ount
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits		Qual
Bromodichloromethane	ug/L	<1.0	50	50	51.9	59.2	104	118	74-122	13	
Bromoform	ug/L	<1.0	50	50	50.9	57.5	102	115	39-139	12	
Bromomethane	ug/L	<1.0	50	50	57.0	76.3	114	153	10-130		IH,M0,R1 v1
Carbon disulfide	ug/L	<1.0	50	50	50.5	58.3	101	117	60-129	14	
Carbon tetrachloride	ug/L	<1.0	50	50	50.4	56.4	101	113	56-143	11	
Chlorobenzene	ug/L	<1.0	50	50	51.7	60.3	103	121	74-122	15	
Chloroethane	ug/L	<1.0	50	50	41.0	47.3	82	95	35-146	14	
Chloroform	ug/L	<1.0	50	50	53.8	61.8	108	124	71-129	14	
Chloromethane	ug/L	<1.0	50	50	35.8	41.1	72	82	29-112	14	
cis-1,2-Dichloroethene	ug/L	<1.0	50	50	54.2	62.8	108	126	73-129	15	
cis-1,3-Dichloropropene	ug/L	<1.0	50	50	50.8	56.4	102	113	67-130	10	
Dibromochloromethane	ug/L	<1.0	50	50	49.8	56.2	100	112	55-126	12	
Dibromomethane	ug/L	<1.0	50	50	53.6	60.2	107	120	71-127	12	
Ethylbenzene	ug/L	<1.0	50	50	51.7	59.5	103	119	70-126	14	
lodomethane	ug/L	<4.0	50	50	40.0	52.1	80	104	10-167	26	R1
Methylene Chloride	ug/L	<1.0	50	50	48.3	56.6	97	113	69-117	16	
Styrene	ug/L	<1.0	50	50	51.0	58.5	102	117	79-123	14	
Tetrachloroethene	ug/L	<1.0	50	50	40.6	47.7	81	95	64-124	16	v3
Toluene	ug/L	<1.0	50	50	53.4	61.4	107	123	76-123	14	
trans-1,2-Dichloroethene	ug/L	<1.0	50	50	53.3	65.5	107	131	69-127	21	M1,R1
trans-1,3-Dichloropropene	ug/L	<1.0	50	50	50.2	56.5	100	113	61-130	12	
trans-1,4-Dichloro-2-butene	ug/L	<1.0	50	50	49.2	54.5	98	109	18-144	10	
Trichloroethene	ug/L	<1.0	50	50	51.7	60.9	103	122	73-125	16	
Trichlorofluoromethane	ug/L	<1.0	50	50	52.9	60.5	106	121	59-129	13	
Vinyl acetate	ug/L	<1.0	50	50	46.6	46.7	93	93	34-123	0	
Vinyl chloride	ug/L	1.4	50	50	41.8	48.2	81	94	33-127	14	
Xylene (Total)	ug/L	<3.0	150	150	155	180	103	120	78-123	15	
1,2-Dichloroethane-d4 (S)	%						101	98	81-122		
4-Bromofluorobenzene (S)	%						101	99	79-118		
Toluene-d8 (S)	%						99	98	82-122		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254229 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1284829 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 04/28/22 09:46

LABORATORY CONTROL SAMPLE: 1284830

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 1284831

Date: 07/25/2022 05:40 PM

70212658007 Dup **RPD** Parameter Units Result Result Qualifiers 1400 **Apparent Color** 1400 0 H1 units 6.0 pН Std. Units 6.1 1 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254431 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658008, 70212658009, 70212658013, 70212658015

METHOD BLANK: 1285670 Matrix: Water
Associated Lab Samples: 70212658008, 70212658009, 70212658013, 70212658015

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 04/29/22 08:15

LABORATORY CONTROL SAMPLE: 1285671

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 1285672

Date: 07/25/2022 05:40 PM

70212658008 Dup **RPD** Parameter Units Result Result Qualifiers 35.0 **Apparent Color** 35.0 0 units 5.9 6 pН Std. Units 6.2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254472 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658010, 70212658011, 70212658012, 70212658014

METHOD BLANK: 1285791 Matrix: Water
Associated Lab Samples: 70212658010, 70212658011, 70212658012, 70212658014

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 04/29/22 10:47

LABORATORY CONTROL SAMPLE: 1285792

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 1285796

Date: 07/25/2022 05:40 PM

70212658012 Dup **RPD** Parameter Units Result Result Qualifiers 26.0 **Apparent Color** units 26.0 0 6.4 0 pН Std. Units 6.4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 255752 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003

METHOD BLANK: 1291972 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 05/09/22 11:12

LABORATORY CONTROL SAMPLE: 1291973

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 25 24.1 96 85-115

MATRIX SPIKE SAMPLE: 1291999

MS MS % Rec 70212265001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 6.9 Alkalinity, Total as CaCO3 mg/L 50 54.6 96 75-125

SAMPLE DUPLICATE: 1291998

Date: 07/25/2022 05:40 PM

Parameter Units 70212265001 Dup Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 6.9 7.3 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 255810 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1292202 Matrix: Water
Associated Lab Samples: 70212658004, 70212658005, 70212658006, 70212658007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 05/09/22 14:35

LABORATORY CONTROL SAMPLE: 1292203

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 25 25.0 100 85-115

MATRIX SPIKE SAMPLE: 1292205

MS MS % Rec 70212744001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 40.4 Alkalinity, Total as CaCO3 mg/L 88.7 50 97 75-125

SAMPLE DUPLICATE: 1292204

Date: 07/25/2022 05:40 PM

Parameter Units Result Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 40.4 44.2 9

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 256006 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658013, 70212658015

METHOD BLANK: 1293116 Matrix: Water

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658013, 70212658015

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 05/10/22 17:32

LABORATORY CONTROL SAMPLE: 1293117

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 25 26.6 106 85-115 mg/L

MATRIX SPIKE SAMPLE: 1293119

MS MS % Rec 70212483001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 16.1 Alkalinity, Total as CaCO3 mg/L 50 64.0 96 75-125

SAMPLE DUPLICATE: 1293118

Date: 07/25/2022 05:40 PM

Parameter Units Result Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 16.1 15.8 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 256091
QC Batch Method: SM22 2320B

Analysis Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory:

Pace Analytical Services - Melville

Qualifiers

Associated Lab Samples: 70212658012, 70212658014

METHOD BLANK: 1293848 Matrix: Water

Associated Lab Samples: 70212658012, 70212658014

Blank Reporting
Parameter Units Result Limit Analyzed

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 05/11/22 09:40

LABORATORY CONTROL SAMPLE: 1293849

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 25.0 100 85-115

MATRIX SPIKE SAMPLE: 1293851

MS MS % Rec 70212658012 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 39.3 Alkalinity, Total as CaCO3 mg/L 93.4 50 108 75-125

SAMPLE DUPLICATE: 1293850

Date: 07/25/2022 05:40 PM

ParameterUnits70212658012 ResultDup ResultRPDQualifiersAlkalinity, Total as CaCO3mg/L39.339.61

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254518

QC Batch Method: SM22 2340C

Analysis Method: SM22 2340C

Analysis Description: 2340C Hardness, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001

METHOD BLANK: 1285987 Matrix: Water

Associated Lab Samples: 70212658001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L <2.5 2.5 04/29/22 13:38

LABORATORY CONTROL SAMPLE: 1285988

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Tot Hardness asCaCO3 (SM 2340B 100 100 100 90-110

MATRIX SPIKE SAMPLE: 1285989

MS MS % Rec 70212657001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 173 Tot Hardness asCaCO3 (SM 2340B mg/L 840 667 100 75-125

SAMPLE DUPLICATE: 1285990

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 Result Result
 Dup Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 173
 173
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 255740 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1291948 Matrix: Water

Associated Lab Samples: 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L <2.5 2.5 05/09/22 15:20

LABORATORY CONTROL SAMPLE: 1291949

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 90-110

MATRIX SPIKE SAMPLE: 1292338

MS MS % Rec 70212658003 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 6.0 Tot Hardness asCaCO3 (SM 2340B mg/L 200 206 100 75-125

SAMPLE DUPLICATE: 1292339

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 Result Result
 Dup Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 6.0
 6.0
 0
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 256349 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1294783 Matrix: Water

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersTot Hardness asCaCO3 (SM 2340Bmg/L<2.5</td>2.505/12/22 18:49

LABORATORY CONTROL SAMPLE: 1294784

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 100 90-110

MATRIX SPIKE SAMPLE: 1294786

70212658012 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B 30.0 363 100 75-125 333 mg/L

SAMPLE DUPLICATE: 1294785

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 30.0
 30.0
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254851 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1287627 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 05/03/22 13:13

LABORATORY CONTROL SAMPLE: 1287628

Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers **Total Dissolved Solids** 500 466 93 85-115 mg/L

MATRIX SPIKE SAMPLE: 1287630

MS % Rec 70212483001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 427 Total Dissolved Solids mg/L 300 675 83 75-125

Total Dissolved Solids Hig/L 427 Sou 675 65 75-125

MATRIX SPIKE SAMPLE: 1287632 70212676001 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers Total Dissolved Solids 35.0 mg/L 300 335 100 75-125

SAMPLE DUPLICATE: 1287629

 Parameter
 Units
 70212483001 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 427
 420
 2

SAMPLE DUPLICATE: 1287631

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 70212676001 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 35.0
 40.0
 13 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

LABORATORY CONTROL SAMPLE:

Date: 07/25/2022 05:40 PM

QC Batch: 255045 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1288717 Matrix: Water

1288718

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.005/04/22 13:26

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 500 492 98 85-115

 MATRIX SPIKE SAMPLE:
 1288720

 70212662001
 Spike
 MS
 MS
 Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qua

ParameterUnitsResultConc.Result% RecLimitsQualifiersTotal Dissolved Solidsmg/L3673006559675-125

 MATRIX SPIKE SAMPLE:
 1288722
 70212658012
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Total Dissolved Solids mg/L 174 300 484 103 75-125

SAMPLE DUPLICATE: 1288719 70212662001 Dup

Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L 367 356 3

SAMPLE DUPLICATE: 1288721

70212658012

Dup

Parameter

Units

Result

RPD

Qualifiers

Total Dissolved Solids mg/L 174 188 8 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254242 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1284884 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chromium, Hexavalent mg/L <0.020 0.020 04/28/22 10:40

LABORATORY CONTROL SAMPLE: 1284885

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Chromium, Hexavalent mg/L 0.2 0.20 101 85-115

MATRIX SPIKE SAMPLE: 1284886

MS MS % Rec 70212658007 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 Chromium, Hexavalent mg/L 0.2 0.20 100 75-125

SAMPLE DUPLICATE: 1284887

Date: 07/25/2022 05:40 PM

Parameter Units 70212658007 Dup Result RPD Qualifiers

Chromium, Hexavalent mg/L <0.020 <0.020

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254432 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1285674 Matrix: Water

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersChromium, Hexavalentmg/L<0.020</td>0.02004/29/22 10:08

LABORATORY CONTROL SAMPLE: 1285675

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 95 85-115 Chromium, Hexavalent mg/L 0.2 0.19

MATRIX SPIKE SAMPLE: 1285676

MS MS 70212658012 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chromium, Hexavalent < 0.020 0.18 92 75-125 0.2 mg/L

SAMPLE DUPLICATE: 1285677

Date: 07/25/2022 05:40 PM

Parameter Units Result Result RPD Qualifiers

Chromium, Hexavalent mg/L <0.020 <0.020

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 255696 Analysis Method: EPA 410.4
QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011

METHOD BLANK: 1291804 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011

Blank Reporting
Parameter Units Result Limit An

ParameterUnitsResultLimitAnalyzedQualifiersChemical Oxygen Demandmg/L<10.0</td>10.005/09/22 08:04

LABORATORY CONTROL SAMPLE: 1291805

LCS LCS Spike % Rec Parameter % Rec Limits Qualifiers Units Conc. Result Chemical Oxygen Demand mg/L 500 510 102 90-110

MATRIX SPIKE SAMPLE: 1291806

MS MS 70212558001 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 10.3 998 Chemical Oxygen Demand 1000 99 90-110 mg/L

MATRIX SPIKE SAMPLE: 1291808

70212658010 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 14.7 1000 1020 101 90-110

SAMPLE DUPLICATE: 1291807

 Parameter
 Units
 70212558001 Result
 Dup Result
 RPD
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 10.3
 14.7
 35
 D6

SAMPLE DUPLICATE: 1291809

Date: 07/25/2022 05:40 PM

Parameter Units 70212658010 Dup Result RPD Qualifiers

Chemical Oxygen Demand mg/L 14.7 12.5 16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 256062 Analysis Method: EPA 410.4
QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658012, 70212658013, 70212658014, 70212658015

METHOD BLANK: 1293762 Matrix: Water

Associated Lab Samples: 70212658012, 70212658013, 70212658014, 70212658015

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chemical Oxygen Demand mg/L <10.0 10.0 05/11/22 08:54

LABORATORY CONTROL SAMPLE: 1293763

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result Chemical Oxygen Demand 500 512 102 90-110 mg/L

MATRIX SPIKE SAMPLE: 1293764

MS MS % Rec 70212658012 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 10.3 Chemical Oxygen Demand mg/L 1000 1000 99 90-110

MATRIX SPIKE SAMPLE: 1293766

70213538001 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers 23.6 Chemical Oxygen Demand mg/L 1000 1020 100 90-110

SAMPLE DUPLICATE: 1293765

Parameter Units Result Repl Qualifiers

Observed Description 10.2 August 10.2

Chemical Oxygen Demand mg/L 10.3 <10.0

SAMPLE DUPLICATE: 1293767

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Chemical Oxygen Demand
 mg/L
 23.6
 21.4
 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254273 Analysis Method: SM22 5210B

QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1284952 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 BOD, 5 day
 mg/L
 <1.0</td>
 1.0
 05/03/22 10:21

LABORATORY CONTROL SAMPLE: 1284953

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 212 107 84.5-115.4

SAMPLE DUPLICATE: 1284954

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 70212647001 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 352
 352
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254464 Analysis Method: SM22 5210B

QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1285765 Matrix: Water

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

BIANK Reporting Limit Analyzed Qualifiers

BOD, 5 day mg/L <1.0 1.0 05/04/22 10:26

LABORATORY CONTROL SAMPLE: 1285766

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 112 84.5-115.4 BOD, 5 day mg/L 198 221

SAMPLE DUPLICATE: 1285767

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 70212658012 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 <2.0</td>
 <2.0</td>
 <2.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 254483 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1285816 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	04/29/22 14:32	
Chloride	mg/L	<2.0	2.0	04/29/22 14:32	
Sulfate	mg/L	<5.0	5.0	04/29/22 14:32	

LABORATORY CONTROL SAMPLE:	1285817					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		0.95	95	90-110	
Chloride	mg/L	10	10.4	104	90-110	
Sulfate	mg/L	10	10.4	104	90-110	

MATRIX SPIKE SAMPLE:	1285818						
		70212796001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	0.99	99	90-110	_
Chloride	mg/L	14.5	10	23.5	91	90-110	
Sulfate	mg/L	12.0	10	21.3	93	90-110	

MATRIX SPIKE SAMPLE:	1285820	70040057000	0-1-	140	140	0/ 0	
Parameter	Units	70212657002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	<0.50		0.99	99	90-110	
Chloride	mg/L	8.4	10	17.7	93	90-110	
Sulfate	mg/L	22.1	10	31.2	91	90-110	

SAMPLE DUPLICATE: 1285819					
		70212796001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	14.5	14.4	1	
Sulfate	mg/L	12.0	11.9	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

SAMPLE DUPLICATE: 1285821

		70212657002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	8.4	8.3	1	
Sulfate	mg/L	22.1	22.0	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

LABORATORY CONTROL SAMPLE:

Parameter

Bromide

Sulfate

QC Batch: 255571 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

LCS

% Rec

90

19.7

% Rec

Limits

90-110

133

Qualifiers

90-110 M1

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1290718 Matrix: Water

1290719

Units

mg/L

mg/L

Associated Lab Samples: 70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	05/06/22 16:09	
Chloride	mg/L	<2.0	2.0	05/06/22 16:09	
Sulfate	mg/L	<5.0	5.0	05/06/22 16:09	

Spike

Conc.

1

Chloride	mg/L	10	9.1	91	90-110		
Sulfate	mg/L	10	9.4	94	90-110		
MATRIX SPIKE SAMPLE:	1290720						
		70212658012	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	1.0	99	90-110	
Chloride	mg/L	55.4	10	64.6	91	90-110	

6.4

LCS

Result

0.90

10

MATRIX SPIKE SAMPLE:	1290722						
Parameter	Units	70213100001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	<0.50		1.0	99	90-110	
Chloride	mg/L	7.7	10	17.6	99	90-110	
Sulfate	mg/L	<5.0	10	10.6	101	90-110	

SAMPLE DUPLICATE: 1290721

Date: 07/25/2022 05:40 PM

		70212658012	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	55.4	55.5	0	
Sulfate	mg/L	6.4	6.4	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

SAMPLE DUPLICATE: 1290723

Parameter	Units	70213100001 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	7.7	7.7	0	
Sulfate	mg/L	<5.0	<5.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 255005 Analysis Method: EPA 351.2

QC Batch Method: EPA 351.2 Analysis Description: 351.2 TKN

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1288611 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Nitrogen, Kjeldahl, Total < 0.094 0.094 05/05/22 19:59 mg/L LABORATORY CONTROL SAMPLE: 1288612 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total 4 3.7 92 90-110 mg/L MATRIX SPIKE SAMPLE: 1288613 70212658001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 2.5 62 90-110 M1 Nitrogen, Kjeldahl, Total mg/L MATRIX SPIKE SAMPLE: 1288615 70212658012 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 0.15 Nitrogen, Kjeldahl, Total mg/L 4 4.1 98 90-110 SAMPLE DUPLICATE: 1288614 70212658001 Dup Parameter Units Result Result **RPD** Qualifiers Nitrogen, Kjeldahl, Total < 0.10 < 0.10 mg/L SAMPLE DUPLICATE: 1288616 Dup 70212658012 RPD Units Result Parameter Result Qualifiers Nitrogen, Kjeldahl, Total mg/L 0.15 < 0.10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 254208 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

METHOD BLANK: 1284760 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 04/28/22 02:29

LABORATORY CONTROL SAMPLE: 1284761

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Nitrite as N mg/L 1 1.1 109 90-110

MATRIX SPIKE SAMPLE: 1284762

MS MS % Rec 70212658007 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 0.50 90-110 H1 Nitrite as N mg/L 0.5 101

SAMPLE DUPLICATE: 1284763

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 70212658007 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>
 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

NORTH SEA LANDFILL BASELINE Project:

Pace Project No.: 70212658

QC Batch: 254408 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

> Laboratory: Pace Analytical Services - Melville

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014, Associated Lab Samples:

70212658015

METHOD BLANK: 1285613 Matrix: Water

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014, Associated Lab Samples:

70212658015

Blank Reporting Parameter Units Limit Qualifiers Result Analyzed mg/L Nitrite as N < 0.027 0.027 04/29/22 00:31

LABORATORY CONTROL SAMPLE: 1285614

LCS LCS Spike % Rec Units Conc. Result % Rec Limits Qualifiers Parameter 1 Nitrite as N mg/L 1.0 100 90-110

70212740002

MATRIX SPIKE SAMPLE: 1285615

Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.24 0.5 0.65 83 90-110 M1 Nitrite as N mg/L

MS

MS

% Rec

% Rec

MATRIX SPIKE SAMPLE: 1285617 70212658012 Spike MS MS

Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L < 0.050 0.5 0.46 93 90-110

SAMPLE DUPLICATE: 1285616

70212740002 Dup Parameter Units Result Result RPD Qualifiers 0.24 Nitrite as N mg/L 0.24 0

SAMPLE DUPLICATE: 1285618

Date: 07/25/2022 05:40 PM

70212658012 Dup Parameter Result **RPD** Units Result Qualifiers mg/L < 0.050 Nitrite as N < 0.050

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Nitrate-Nitrite (as N)

Date: 07/25/2022 05:40 PM

QC Batch: 255805 Analysis Method: EPA 353.2

mg/L

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1292147 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Nitrate-Nitrite (as N) < 0.037 0.037 05/09/22 15:04 mg/L LABORATORY CONTROL SAMPLE: 1292148 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) 1 1.0 100 90-110 mg/L MATRIX SPIKE SAMPLE: 1292151 70212658012 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrate-Nitrite (as N) mg/L < 0.050 0.54 100 0.5 90-110 MATRIX SPIKE SAMPLE: 1292443 70212658002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrate-Nitrite (as N) mg/L 0.5 0.55 103 90-110 SAMPLE DUPLICATE: 1292152 70212658012 Dup Parameter Units Result Result **RPD** Qualifiers < 0.050 Nitrate-Nitrite (as N) mg/L < 0.050 SAMPLE DUPLICATE: 1292444 70212658002 Dup RPD Units Result Parameter Result Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

< 0.050

< 0.050

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 255722 Analysis Method: EPA 420.1

QC Batch Method: EPA 420.1 Analysis Description: 420.1 Phenolics Macro

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014, 70212658012, 70212658013, 70212658014, 702

70212658015

METHOD BLANK: 1291888 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersPhenolics, Total Recoverableug/L<5.0</td>5.005/09/22 16:36

LABORATORY CONTROL SAMPLE: 1291889

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable 100 102 102 90-110 ug/L

MATRIX SPIKE SAMPLE: 1291890

70212658012 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Phenolics, Total Recoverable <5.0 109 75-125 50 54.7 ug/L

SAMPLE DUPLICATE: 1291891

Date: 07/25/2022 05:40 PM

Phenolics, Total Recoverable

Total Recoverable

Parameter

Units

Tourits

Result

Re

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 255726 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1291898 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersNitrogen, Ammoniamg/L<0.050</td>0.05005/09/22 13:59

LABORATORY CONTROL SAMPLE: 1291899

Spike LCS LCS % Rec % Rec Parameter Units Conc. Result Limits Qualifiers Nitrogen, Ammonia mg/L 1 0.93 93 90-110

MATRIX SPIKE SAMPLE: 1291900

70212658012 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 0.92 88 75-125 Nitrogen, Ammonia mg/L

SAMPLE DUPLICATE: 1291901

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrogen, Ammonia
 mg/L
 <0.10</td>
 <0.10</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

QC Batch: 255271 Analysis Method: EPA 9014 Total Cyanide
QC Batch Method: EPA 9010C Analysis Description: 9014 Cyanide, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1289739 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersCyanideug/L<10.0</td>10.005/05/22 15:50

LABORATORY CONTROL SAMPLE: 1289740

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Cyanide 75 75.1 100 85-115 ug/L

MATRIX SPIKE SAMPLE: 1289741

70212658012 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 105 105 75-125 Cyanide 100 ug/L

SAMPLE DUPLICATE: 1289742

Date: 07/25/2022 05:40 PM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Cyanide
 ug/L
 <10.0</td>
 <10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

QC Batch: 255778 Analysis Method: EPA 9060A
QC Batch Method: EPA 9060A Analysis Description: 9060 TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

METHOD BLANK: 1292025 Matrix: Water

Associated Lab Samples: 70212658001, 70212658002, 70212658003, 70212658004, 70212658005, 70212658006, 70212658007,

70212658008, 70212658009, 70212658010, 70212658011, 70212658012, 70212658013, 70212658014,

70212658015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Mean Total Organic Carbon	mg/L	<0.50	0.50	05/09/22 14:49	
Total Organic Carbon	mg/L	< 0.50	0.50	05/09/22 14:49	
Total Organic Carbon	mg/L	< 0.50	0.50	05/09/22 14:49	
Total Organic Carbon	mg/L	< 0.50	0.50	05/09/22 14:49	
Total Organic Carbon	mg/L	< 0.50	0.50	05/09/22 14:49	

LABORATORY CONTROL SAMPLE:	1292026					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Mean Total Organic Carbon	mg/L	10	9.8	98	85-115	
Total Organic Carbon	mg/L	10	9.8	98	85-115	
Total Organic Carbon	mg/L	10	10	100	85-115	
Total Organic Carbon	mg/L	10	9.7	97	85-115	
Total Organic Carbon	mg/L	10	9.8	98	85-115	

MATRIX SPIKE SAMPLE:	1292028						
Parameter	Units	70212658012 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Mean Total Organic Carbon	mg/L	<1.0	10	10.3	103	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.4	103	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.4	103	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.3	103	75-125	
Total Organic Carbon	mg/L	<1.0	10	10.3	102	75-125	

 SAMPLE DUPLICATE: 1292027

 70212658012
 Dup

 Parameter
 Units
 Result
 Result

Mean Total Organic Carbon mg/L <1.0 <1.0 Total Organic Carbon <1.0 <1.0 mg/L <1.0 **Total Organic Carbon** mg/L <1.0 **Total Organic Carbon** <1.0 <1.0 mg/L **Total Organic Carbon** mg/L <1.0 <1.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

RPD

Qualifiers

QUALIFIERS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/25/2022 05:40 PM

В	Analyte was detected in the associated method blank.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
H1	Analysis conducted outside the EPA method holding time.
H2	Extraction or preparation conducted outside EPA method holding time.
IH	This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
R1	RPD value was outside control limits.
v1	The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
v3	The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70212658001	MW-1A	EPA 3005A	254804	EPA 6010C	<u>254875</u>
70212658002	MW-1B	EPA 3005A	254804	EPA 6010C	254875
0212658003	MW-1C	EPA 3005A	254804	EPA 6010C	254875
0212658004	MW-3A	EPA 3005A	254804	EPA 6010C	254875
0212658005	MW-11A	EPA 3005A	254804	EPA 6010C	254875
0212658006	MW-11B	EPA 3005A	254804	EPA 6010C	254875
0212658007	DUP001	EPA 3005A	254804	EPA 6010C	254875
0212658008	MW-3B	EPA 3005A	255490	EPA 6010C	255544
0212658009	MW-3C	EPA 3005A	255490	EPA 6010C	255544
0212658010	MW-4A	EPA 3005A	255490	EPA 6010C	255544
0212658011	MW-4B	EPA 3005A	255490	EPA 6010C	255544
0212658012	MW-4C	EPA 3005A	255490	EPA 6010C	255544
0212658013	MW-12A	EPA 3005A	255490	EPA 6010C	255544
0212658014	MW-12B	EPA 3005A	255490	EPA 6010C	255544
0212658015	EQUIPMENT BLANK	EPA 3005A	255490	EPA 6010C	255544
0212658005	MW-11A	EPA 6010C	254563		
0212658006	MW-11B	EPA 6010C	254563		
0212658007	DUP001	EPA 6010C	254563		
0212658001	MW-1A	EPA 7470A	256040	EPA 7470A	256052
0212658002	MW-1B	EPA 7470A	256040	EPA 7470A	256052
0212658003	MW-1C	EPA 7470A	256040	EPA 7470A	256052
0212658004	MW-3A	EPA 7470A	256040	EPA 7470A	256052
0212658005	MW-11A	EPA 7470A	256040	EPA 7470A	256052
0212658006	MW-11B	EPA 7470A	256040	EPA 7470A	256052
0212658007	DUP001	EPA 7470A	256040	EPA 7470A	256052
0212658008	MW-3B	EPA 7470A	256040	EPA 7470A	256052
0212658009	MW-3C	EPA 7470A	256040	EPA 7470A	256052
0212658010	MW-4A	EPA 7470A	256040	EPA 7470A	256052
0212658011	MW-4B	EPA 7470A	256040	EPA 7470A	256052
0212658012	MW-4C	EPA 7470A	256040	EPA 7470A	256052
0212658013	MW-12A	EPA 7470A	256040	EPA 7470A	256052
0212658014	MW-12B	EPA 7470A	256040	EPA 7470A	256052
0212658015	EQUIPMENT BLANK	EPA 7470A	256040	EPA 7470A	256052
0212658005	MW-11A	EPA 7470A	256215	EPA 7470A	256246
0212658006	MW-11B	EPA 7470A	256215	EPA 7470A	256246
0212658007	DUP001	EPA 7470A	256215	EPA 7470A	256246
0212658001	MW-1A	EPA 8260C/5030C	255018		
0212658002	MW-1B	EPA 8260C/5030C	255018		
0212658003	MW-1C	EPA 8260C/5030C	255018		
0212658004	MW-3A	EPA 8260C/5030C	255018		
0212658005	MW-11A	EPA 8260C/5030C	255018		
0212658006	MW-11B	EPA 8260C/5030C	255018		
0212658007	DUP001	EPA 8260C/5030C	255018		
0212658008	MW-3B	EPA 8260C/5030C	255018		
0212658009	MW-3C	EPA 8260C/5030C	255018		
0212658010	MW-4A	EPA 8260C/5030C	255018		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
0212658011	MW-4B	EPA 8260C/5030C	 255018	_	
0212658012	MW-4C	EPA 8260C/5030C	255018		
0212658013	MW-12A	EPA 8260C/5030C	255018		
0212658014	MW-12B	EPA 8260C/5030C	255018		
0212658015	EQUIPMENT BLANK	EPA 8260C/5030C	255018		
0212658016	TRIP BLANK	EPA 8260C/5030C	255553		
0212658001	MW-1A	EPA 8260			
0212658002	MW-1B	EPA 8260			
0212658003	MW-1C	EPA 8260			
0212658004	MW-3A	EPA 8260			
0212658005	MW-11A	EPA 8260			
0212658006	MW-11B	EPA 8260			
0212658008	MW-3B	EPA 8260			
0212658009	MW-3C	EPA 8260			
0212658010	MW-4A	EPA 8260			
0212658011	MW-4B	EPA 8260			
0212658012	MW-4C	EPA 8260			
0212658013	MW-12A	EPA 8260			
0212658014	MW-12B	EPA 8260			
0212658015	EQUIPMENT BLANK	EPA 8260			
0212658016	TRIP BLANK	EPA 8260			
0212658001	MW-1A	SM22 2120B	254229		
0212658002	MW-1B	SM22 2120B	254229		
0212658003	MW-1C	SM22 2120B	254229		
0212658004	MW-3A	SM22 2120B	254229		
0212658005	MW-11A	SM22 2120B	254229		
0212658006	MW-11B	SM22 2120B	254229		
0212658007	DUP001	SM22 2120B	254229		
0212658008	MW-3B	SM22 2120B	254431		
0212658009	MW-3C	SM22 2120B	254431		
0212658010	MW-4A	SM22 2120B	254472		
0212658011	MW-4B	SM22 2120B	254472		
0212658012	MW-4C	SM22 2120B	254472		
0212658013	MW-12A	SM22 2120B	254431		
0212658014	MW-12B	SM22 2120B	254472		
0212658015	EQUIPMENT BLANK	SM22 2120B	254431		
0212658001	MW-1A	SM22 2320B	255752		
0212658002	MW-1B	SM22 2320B	255752		
0212658003	MW-1C	SM22 2320B	255752		
0212658004	MW-3A	SM22 2320B	255810		
0212658005	MW-11A	SM22 2320B	255810		
0212658006	MW-11B	SM22 2320B	255810		
0212658007	DUP001	SM22 2320B	255810		

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70212658008	MW-3B	SM22 2320B	256006	_	
0212658009	MW-3C	SM22 2320B	256006		
0212658010	MW-4A	SM22 2320B	256006		
0212658011	MW-4B	SM22 2320B	256006		
0212658012	MW-4C	SM22 2320B	256091		
0212658013	MW-12A	SM22 2320B	256006		
0212658014	MW-12B	SM22 2320B	256091		
0212658015	EQUIPMENT BLANK	SM22 2320B	256006		
0212658001	MW-1A	SM22 2340C	254518		
0212658002	MW-1B	SM22 2340C	255740		
0212658003	MW-1C	SM22 2340C	255740		
0212658004	MW-3A	SM22 2340C	255740		
0212658005	MW-11A	SM22 2340C	255740		
0212658006	MW-11B	SM22 2340C	255740		
0212658007	DUP001	SM22 2340C	255740		
0212658008	MW-3B	SM22 2340C	256349		
0212658009	MW-3C	SM22 2340C	256349		
212658010	MW-4A	SM22 2340C	256349		
212658011	MW-4B	SM22 2340C	256349		
0212658012	MW-4C	SM22 2340C	256349		
0212658013	MW-12A	SM22 2340C	256349		
0212658014	MW-12B	SM22 2340C	256349		
0212658015	EQUIPMENT BLANK	SM22 2340C	256349		
0212658001	MW-1A	SM22 2540C	254851		
0212658002	MW-1B	SM22 2540C	254851		
0212658003	MW-1C	SM22 2540C	254851		
0212658004	MW-3A	SM22 2540C	254851		
0212658005	MW-11A	SM22 2540C	254851		
0212658006	MW-11B	SM22 2540C	254851		
0212658007	DUP001	SM22 2540C	254851		
0212658008	MW-3B	SM22 2540C	255045		
0212658009	MW-3C	SM22 2540C	255045		
0212658010	MW-4A	SM22 2540C	255045		
0212658011	MW-4B	SM22 2540C	255045		
0212658012	MW-4C	SM22 2540C	255045		
0212658013	MW-12A	SM22 2540C	255045		
0212658014	MW-12B	SM22 2540C	255045		
0212658015	EQUIPMENT BLANK	SM22 2540C	255045		
0212658001	MW-1A	SM22 3500-Cr B	254242		
0212658002	MW-1B	SM22 3500-Cr B	254242		
0212658003	MW-1C	SM22 3500-Cr B	254242		
0212658004	MW-3A	SM22 3500-Cr B	254242		
0212658005	MW-11A	SM22 3500-Cr B	254242		
0212658006	MW-11B	SM22 3500-Cr B	254242		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70212658007	DUP001	SM22 3500-Cr B	254242		
70212658008	MW-3B	SM22 3500-Cr B	254432		
0212658009	MW-3C	SM22 3500-Cr B	254432		
0212658010	MW-4A	SM22 3500-Cr B	254432		
0212658011	MW-4B	SM22 3500-Cr B	254432		
0212658012	MW-4C	SM22 3500-Cr B	254432		
0212658013	MW-12A	SM22 3500-Cr B	254432		
0212658014	MW-12B	SM22 3500-Cr B	254432		
0212658015	EQUIPMENT BLANK	SM22 3500-Cr B	254432		
0212658001	MW-1A	EPA 410.4	255696	EPA 410.4	255706
0212658002	MW-1B	EPA 410.4	255696	EPA 410.4	255706
0212658003	MW-1C	EPA 410.4	255696	EPA 410.4	255706
0212658004	MW-3A	EPA 410.4	255696	EPA 410.4	255706
0212658005	MW-11A	EPA 410.4	255696	EPA 410.4	255706
0212658006	MW-11B	EPA 410.4	255696	EPA 410.4	255706
0212658007	DUP001	EPA 410.4	255696	EPA 410.4	255706
0212658008	MW-3B	EPA 410.4	255696	EPA 410.4	255706
0212658009	MW-3C	EPA 410.4	255696	EPA 410.4	255706
0212658010	MW-4A	EPA 410.4	255696	EPA 410.4	255706
0212658011	MW-4B	EPA 410.4	255696	EPA 410.4	255706
0212658012	MW-4C	EPA 410.4	256062	EPA 410.4	256082
0212658013	MW-12A	EPA 410.4	256062	EPA 410.4	256082
0212658014	MW-12B	EPA 410.4	256062	EPA 410.4	256082
0212658015	EQUIPMENT BLANK	EPA 410.4	256062	EPA 410.4	256082
0212658001	MW-1A	SM22 5210B	254273	SM22 5210B	255172
0212658002	MW-1B	SM22 5210B	254273	SM22 5210B	255172
0212658003	MW-1C	SM22 5210B	254273	SM22 5210B	255172
0212658004	MW-3A	SM22 5210B	254273	SM22 5210B	255172
0212658005	MW-11 A	SM22 5210B	254273	SM22 5210B	255172
0212658006	MW-11B	SM22 5210B	254273	SM22 5210B	255172
0212658007	DUP001	SM22 5210B	254273	SM22 5210B	255172
0212658008	MW-3B	SM22 5210B	254464	SM22 5210B	255329
0212658009	MW-3C	SM22 5210B	254464	SM22 5210B	255329
0212658010	MW-4A	SM22 5210B	254464	SM22 5210B	255329
0212658011	MW-4B	SM22 5210B	254464	SM22 5210B	255329
0212658012	MW-4C	SM22 5210B	254464	SM22 5210B	255329
0212658013	MW-12A	SM22 5210B	254464	SM22 5210B	255329
0212658014	MW-12B	SM22 5210B	254464	SM22 5210B	255329
212658015	EQUIPMENT BLANK	SM22 5210B	254464	SM22 5210B	255329
0212658001	MW-1A	EPA 300.0	254483		
0212658002	MW-1B	EPA 300.0	254483		
0212658003	MW-1C	EPA 300.0	254483		
0212658004	MW-3A	EPA 300.0	254483		
0212658005	MW-11A	EPA 300.0	254483		
0212658006	MW-11B	EPA 300.0	254483		
0212658007	DUP001	EPA 300.0	254483		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70212658008	MW-3B	EPA 300.0	255571		
0212658009	MW-3C	EPA 300.0	255571		
0212658010	MW-4A	EPA 300.0	255571		
0212658011	MW-4B	EPA 300.0	255571		
0212658012	MW-4C	EPA 300.0	255571		
0212658013	MW-12A	EPA 300.0	255571		
0212658014	MW-12B	EPA 300.0	255571		
0212658015	EQUIPMENT BLANK	EPA 300.0	255571		
0212658001	MW-1A	EPA 351.2	255005	EPA 351.2	255008
0212658002	MW-1B	EPA 351.2	255005	EPA 351.2	255008
0212658003	MW-1C	EPA 351.2	255005	EPA 351.2	255008
0212658004	MW-3A	EPA 351.2	255005	EPA 351.2	255008
0212658005	MW-11A	EPA 351.2	255005	EPA 351.2	255008
0212658006	MW-11B	EPA 351.2	255005	EPA 351.2	255008
0212658007	DUP001	EPA 351.2	255005	EPA 351.2	255008
0212658008	MW-3B	EPA 351.2	255005	EPA 351.2	255008
0212658009	MW-3C	EPA 351.2	255005	EPA 351.2	255008
0212658010	MW-4A	EPA 351.2	255005	EPA 351.2	255008
0212658011	MW-4B	EPA 351.2	255005	EPA 351.2	255008
0212658012	MW-4C	EPA 351.2	255005	EPA 351.2	255008
0212658013	MW-12A	EPA 351.2	255005	EPA 351.2	255008
0212658014	MW-12B	EPA 351.2	255005	EPA 351.2	255008
0212658015	EQUIPMENT BLANK	EPA 351.2	255005	EPA 351.2	255008
0212658001	MW-1A	EPA 353.2	255805		
0212658002	MW-1B	EPA 353.2	255805		
0212658003	MW-1C	EPA 353.2	255805		
0212658004	MW-3A	EPA 353.2	255805		
0212658005	MW-11A	EPA 353.2	255805		
0212658006	MW-11B	EPA 353.2	255805		
0212658007	DUP001	EPA 353.2	255805		
0212658008	MW-3B	EPA 353.2	255805		
0212658009	MW-3C	EPA 353.2	255805		
0212658010	MW-4A	EPA 353.2	255805		
0212658011	MW-4B	EPA 353.2	255805		
0212658012	MW-4C	EPA 353.2	255805		
0212658013	MW-12A	EPA 353.2	255805		
0212658014	MW-12B	EPA 353.2	255805		
0212658015	EQUIPMENT BLANK	EPA 353.2	255805		
0212658001	MW-1A	EPA 353.2	254208		
0212658002	MW-1B	EPA 353.2	254208		
0212658003	MW-1C	EPA 353.2	254208		
0212658004	MW-3A	EPA 353.2	254208		
0212658005	MW-11A	EPA 353.2	254208		
0212658006	MW-11B	EPA 353.2	254208		
0212658007	DUP001	EPA 353.2	254208		

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70212658009	MW-3C	EPA 353.2	 254408		
70212658010	MW-4A	EPA 353.2	254408		
0212658011	MW-4B	EPA 353.2	254408		
0212658012	MW-4C	EPA 353.2	254408		
0212658013	MW-12A	EPA 353.2	254408		
0212658014	MW-12B	EPA 353.2	254408		
0212658015	EQUIPMENT BLANK	EPA 353.2	254408		
0212658001	MW-1A	EPA 420.1	255722	EPA 420.1	255829
0212658002	MW-1B	EPA 420.1	255722	EPA 420.1	255829
0212658003	MW-1C	EPA 420.1	255722	EPA 420.1	255829
0212658004	MW-3A	EPA 420.1	255722	EPA 420.1	255829
0212658005	MW-11A	EPA 420.1	255722	EPA 420.1	255829
0212658006	MW-11B	EPA 420.1	255722	EPA 420.1	255829
0212658007	DUP001	EPA 420.1	255722	EPA 420.1	255829
0212658008	MW-3B	EPA 420.1	255722	EPA 420.1	255829
0212658009	MW-3C	EPA 420.1	255722	EPA 420.1	255829
0212658010	MW-4A	EPA 420.1	255722	EPA 420.1	255829
0212658011	MW-4B	EPA 420.1	255722	EPA 420.1	255829
0212658012	MW-4C	EPA 420.1	255722	EPA 420.1	255829
0212658013	MW-12A	EPA 420.1	255722	EPA 420.1	255829
0212658014	MW-12B	EPA 420.1	255722	EPA 420.1	255829
0212658015	EQUIPMENT BLANK	EPA 420.1	255722	EPA 420.1	255829
0212658001	MW-1A	SM22 4500 NH3 H	255726		
0212658002	MW-1B	SM22 4500 NH3 H	255726		
0212658003	MW-1C	SM22 4500 NH3 H	255726		
0212658004	MW-3A	SM22 4500 NH3 H	255726		
0212658005	MW-11A	SM22 4500 NH3 H	255726		
0212658006	MW-11B	SM22 4500 NH3 H	255726		
0212658007	DUP001	SM22 4500 NH3 H	255726		
0212658008	MW-3B	SM22 4500 NH3 H	255726		
0212658009	MW-3C	SM22 4500 NH3 H	255726		
0212658010	MW-4A	SM22 4500 NH3 H	255726		
0212658011	MW-4B	SM22 4500 NH3 H	255726		
0212658012	MW-4C	SM22 4500 NH3 H	255726		
0212658013	MW-12A	SM22 4500 NH3 H	255726		
0212658014	MW-12B	SM22 4500 NH3 H	255726		
0212658015	EQUIPMENT BLANK	SM22 4500 NH3 H	255726		
0212658001	MW-1A	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658002	MW-1B	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658003	MW-1C	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658004	MW-3A	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658005	MW-11A	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658006	MW-11B	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658007	DUP001	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658008	MW-3B	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658009	MW-3C	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
0212658010	MW-4A	EPA 9010C	255271	EPA 9014 Total Cyanide	255413

REPORT OF LABORATORY ANALYSIS

Project: NORTH SEA LANDFILL BASELINE

Pace Project No.: 70212658

Date: 07/25/2022 05:40 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70212658011	MW-4B	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
70212658012	MW-4C	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
70212658013	MW-12A	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
70212658014	MW-12B	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
70212658015	EQUIPMENT BLANK	EPA 9010C	255271	EPA 9014 Total Cyanide	255413
70212658001	MW-1A	EPA 9060A	255778		
70212658002	MW-1B	EPA 9060A	255778		
70212658003	MW-1C	EPA 9060A	255778		
70212658004	MW-3A	EPA 9060A	255778		
70212658005	MW-11A	EPA 9060A	255778		
70212658006	MW-11B	EPA 9060A	255778		
70212658007	DUP001	EPA 9060A	255778		
70212658008	MW-3B	EPA 9060A	255778		
70212658009	MW-3C	EPA 9060A	255778		
70212658010	MW-4A	EPA 9060A	255778		
70212658011	MW-4B	EPA 9060A	255778		
70212658012	MW-4C	EPA 9060A	255778		
70212658013	MW-12A	EPA 9060A	255778		
70212658014	MW-12B	EPA 9060A	255778		
70212658015	EQUIPMENT BLANK	EPA 9060A	255778		

1	Mary Amaladiant
1-	Face Analytical

CHAIN-OF-CUSTODY Analytical Request Document

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and

Conditions found at: https://info.pacelabs.com/hubfs/pas-standard-terms.pdf
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields

U	非:	70	121	2	55	8
111	1000		-			

'order Number or

Company: P.W. GNASC C			Billing Information: Tom of Sarhamoton 70212658							E ONL	Υ												
Address: 630 Johnson the, ste	1, Bohemia, 1	NY	Tour	1 4	Southa	wbter 1							102	1200	90							Kym	
Report To: Derek Ersbak			Email To:	eo pa	vgrusser.	com				** Pr	eservat	ive Typ	es: (1)	nitric ac	id, (2) s	ulfuric acid	, (3) hyd	drochlo	ric acid, (4)	sodium hydra	xide, (5) zinc	acetate,	
Сору То:			Site Collect		Address:	e))				(6) m (C) ar	ethano nmonic	l, (7) so ım hyd	odium b roxide,	isulfate (D) TSP	e, (8) soc , (U) Un	ium thiosu preserved,	lfate, (9 (O) Oth) hexar er	ie, (A) ascor	bic acid, (B) a –	ımmonium sı	ulfate,	
Customer Project Name/Number:	1		State: County/City: Time Zone Collected:																	ofile/Line:	oint Choo	kliet.	
North Sea Landfill		. #	/			T []MT []ET	_										Custo		Present/I	ntact YN N.	A
Phone: Email:	Site/Facility ID) #:			Compliand Yes	ce Monitori	ing?					8	1							dy Signatu ctor Signa			
Collected By (print):	Purchase Orde	or#			DW PWS I				+			2				1 1	1			s Intact	acute rie	sent Y N N.	
Mike Peccravo	Quote #:	CI W			DW Locati						1	4								t Bottles		Y N N	
Collected By (signature):	Turnaround D		red:			ely Packed	on Ice;		Glass (G)			02 NO3 60								Sufficient Volume Y Samples Received on Ice VOA - Headspace Acceptable Y			Ą
Sample Disposal:	Rush: (Expedi	ite Charge	s Apply)			red (if appli	cable):					\$								Regulated es in Holo		YNN	A
Dispose as appropriate	[] Same [Day [] 1	Next Day		[] Yes	[] No			0	con		+	ĺζ	metals	(098					al Chlori			6
[] Return [] Archive:	[] 2 Day								C (P			1	1 2						Cl St	ips:			
[] Hold:	[] 4 Day	[] 5 Day			Analysis: _			_	Plastic (P)	2	7	1	Parameters						pH Sti	pH Accep	prable	(Y) N NZ	
* Matrix Codes (Insert in Matrix b Product (P), Soil/Solid (SL), Oil (C		_				•),		Type: PI	1		Policie.			(430					de Present Acetate St		Y	0
		Comp /		Collected (or		site End	Res	# of	ler	1	1	4	seline	itered	l,w					SE ONLY:	_		
Customer Sample ID	Matrix *	Grab	Compos	ite Start) Time	Date	Time	Cl	Ctns	Container	7964	OD HATO	1	8	江	18				Lab Sa	ample # /	Comments	:	
MWH A	GW	G	4/20/22		- Julio			-	- S	-	0	*	-		-		-	-				_	
MW-1B	300	0	11201001	1140					-	-			×				-						
MW-IC	1	-	-	1230	+		-	-	-	-	-		-		-		-	-					
MW-34			-		1			-	-	-	-		X					-					
MW-IIA	-			1315			-	-	-	-			-	. /	-		+	-					
MW-118		-	-						-		-	-	X	×	-								
DU FOCI	+		+	INIO					-	-	-	-	X	*			-	-		_			
	-	-			-			1	-				X	X			-	-					
Trip Blank		-	-						-		-		-		X								
					(up)							-		-								
									-		_							-					
Customer Remarks / Special Cond	ditions / Possible	Hazards:	Type of Ice	Used:	Web	Blue	Dry	None		_	SHC	ORT HO	OLDS P	RESEN	IT (<72	hours):	Y N	N/A		B Sample T		Info:	12
			Packing Ma	aterial Use							Lab	Track	ing#:						Th	erm ID#:	1 4000		
				-	10			-	-		Sam	nnles r	eceive	d via:								Receipt: 540	
			Radchem s	ample(s)	screened (<5	00 cpm):	Υ ١	NA				EDEX			Client	Courier	Pace	Courie	Co	oler 1 Co	orrected	Temp: 🍱	
Relinquished by/Company: (Signature)	ature)	Dat 41	e/Time:	15	Received b	y/Company	y: (Signa	ture)			Date/Time: 10 40 MTJL TAB USE						-	Comments: 777.26					
(Signature)	ature)		- W. W.		Received B	y/Company	y: (Signa	ture					Time:			Acctnu				Trip Bla	nk Receive	d: Y N NA	
148 m / m		8	112-5		1	////	//	/ ^	acti	1	Tourslates							HCL MeOH TSP Other					
Relinquished by/Company: (Signature) Dat		te/Time: Received by/Company: (Signature)								Date/Time: PM: PB:							Non Conformance(s): Page: of:						

Pace Analytical		ample via thi Condition	-CUSTOE s chain of custod is found at: https	y constitutes a :://info pacelal	icknowledgmer is.com/hubfs/p	t and acceptar as-standard-te	nce of the I erms_pdf		s and		-	林C MMX	: 70					1/22		Workorder N	lumber o	or
Company: PN. Grosses (0	maulting. I		Custody is a LE Billing Info		IENT - Compi	ete all releva	int fields				CLI	ENT:	TOS						1.6	D LISE OF	AII V	
Address: Johnson Are,			Town	o∓ :	southo	umpton				-		-			Des				Acres 1	AB USE OI Manager:	VLY	1/100
Report To:			Email To:	ekea	only 1059	ie 1.caw	n			** Pre	servativ	ve Types:	(1) nitric aci	d, (2) sulf	uric acid	l. (3) hvd	rochlor	ric acid. (4) sodium	hydroxide, (5)	zinc aceta	MYP9
Сору То:			Site Collect	tion Info/A	ddress:					(6) me	thanol,	(7) sodiu		(8) sodiui	n thiosi	ılfate, (9)	hexan	411	1	d, (B) ammoniu		,
					Land F					(C) am	imoniur	n nyaroxi	ae, (D) 13P, Anal		servea	(O) Othe	er	lah E	Profile/Li	no		
Customer Project Name/Number			State:	County/Cit		e Zone Coll							Allal	yses			1			Receipt C	hecklis	t: /
North Sea Land F		. # =	/			T []MT []ET										Cust	ody Se	als Presen	t/Intact	t YN NA
Phone: Email:	Site/Facility ID	ν #:				ce Monitori	ing?											Coll	Lector	gnatures P Signature		
Collected By (print):	Purchase Orde	er#±			DW PWS I	D#:			1										les In			Y N NA
Mike Peccravo	Quote #:				DW Locat				_			3	11.							Volume		¶ N NA
Collected By (signature):	Turnaround D		red:			ely Packed	on Ice:		Glass (G)											ceived on space Acce		Y N NA
Sample Disposal:			s Annly)	-	Yes [] No Separation Separat				Glas		1 4							USDA	A Regul	ated Soils	-	Y N 107
[] Dispose as appropriate		Rush: (Expedite Charges Apply) [] Same Day [] Next Day				No []	icabiej		ō		1	1				M.		ples in Holding Time				
[] Return	[] 2 Day								(a)	_	1				Y		М	Cl S	Strips:			YN
[] Archive: [] Hold:	[] 4 Day		Analysis:								ramete							Samp	ole pH	ACCEPTABLE	2701	(E) N N
	•	ir (AR), Tis									ine Pa							Sulfide Present Lead Acetate Strips: LAB USE ONLY:				YN
Customer Sample ID	Matrix *	Grab		ited (or lite Start) Time	Compo	osite End	Res	# of Ctns	ontaine	10Cs	Baselly									# / Comme	nts:	
MW-3B	GN	6	Marlas	0830	1				0	-	X											
MW-3C				O930							*											
MW-4+				1215							×											
MW-4B				1300							X						1					
MW-4C (NSINSD)				1400							X						1					
MW-10A				1030			1				7						1					
MW-125				1100							X		130					-				
Equipment Blank	-JUL		1	0945							×					-	-	-				
Trip Blank	L	1	-	-						*							1					
											7						1					
Customer Remarks / Special Con	nditions / Possible	Hazards:		aterial Use		Vone/		None N NA			Lab Sam	Tracking	eived via:						Temp B Therm Cooler Cooler	nple Temperalank Recei	on Rece	N ipt:3.6
Relinquished by/Company: (Sign	nature)	Dat	e/Time:			v/Compan					-	DEX Date/Tir	_	ient C	MT	JL LAB U			Commen	ts:	se se	

Acctnum:

Template:

Prelogin:

PM:

PB:

Date/Time:

Date/Time:

4/28/22/105

Trip Blank Received N NA SE HCL MeOH TSP Other

Page: _

of:

Non Conformance(s):

YES / NO

11:51

Received by/Company: (Signature)

Sarakivinius

Received by/Company: (Signature)

Date/Time:

4/28/22Date/Time:

Renquished by/Company (Signature)

Renquished by/Company: (Signature)

Pace Analytical		5 (NOS)
Date:	Sample Receiving Non-Conford	0#:70212658
- CPPA	valuated by KW	: KMM Due Date: 05/11/22 ber
Client: To S	CL.:	IENT: TOS
1. If Chain-of-Custody (COC) lab personnel. Note issues on the	is not received: contact client and if necessar	ry, fill out a COC and indicate that it was filled out by
2. If COC is incomplete, check	applicable issues below and add details v	vhere appropriate:
Collection date/time missing or incorrect		Samples listed on COC do not match samples received (missing, additional, etc.)
Sample IDs on COC do not match sample labels	Required trip blanks were not received	Required signatures are missing
Comments/Details/Other Issu		
3. Sample integrity issues: ch	eck applicable issues below and add detai	Is where appropriate:
Samples: Past holding time	Samples: Condition needs to be brought to lab personnel's attention (details below)	Preservation: Improper
Samples: Not field filtered	Containers: Broken or compromised	Temperature: not within acceptance criteria (typically 0-6C)
Samples: Insufficient volume received	Containers: Incorrect	Temperature: Samples arrived frozen
Samples: Cooler damaged or compromised	Custody Seals: Missing or compromised on samples, trip blanks or coolers	Vials received with improper headspace
Samples: contain chlorine or sulfides	Packing Material: Insufficient/Improper	Other:
Comments/Details:		
4. If Samples not preserved p	roperly and Sample Receiving adjusts pH,	add details below:
Sample ID:	Date/Time:	Amount/type pres added:
Preserved by:	Initial and Final pH:	Lot # of pres added:
Sample ID:	Date/Time:	Amount/type pres added:
Preserved by:	Initial and Final pH:	Lot # of pres added:
Sample ID:	Date/Time:	Amount/type pres added:
Preserved by:	Initial and Final pH:	Lot # of pres added:
5. Client Contact: If client is c	ontacted for any issue listed above, fill in d	letails below:
Client:	Contacted per:	

Date/Time:

PM Initials:

Client Comments/Instructions:

November 22, 2022

Tom Houghton Town of Southampton 116 Hampton Road Waste Management Division Southampton, NY 11968

RE: Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Dear Tom Houghton:

Enclosed are the analytical results for sample(s) received by the laboratory on October 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting Richard Hodgson, Town of Southampton Amanda Lauth, PW Grosser

Ed Thompson, Town of Southampton

(631)694-3040

CERTIFICATIONS

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 2120B

Description: 2120B W Apparent Color Client: Town of Southampton Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method:SM22 2320BDescription:2320B AlkalinityClient:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 2540C

Description: 2540C Total Dissolved Solids
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 280248

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1416501)
 Total Dissolved Solids
- QC Batch: 280249

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1416510)
 - Total Dissolved Solids

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- 11A (Lab ID: 70234792008)
- 11B (Lab ID: 70234792009)
- 1A (Lab ID: 70234792001)
- 1B (Lab ID: 70234792002)
- 1C (Lab ID: 70234792003)
- 8 (Lab ID: 70234792006)
- 9 (Lab ID: 70234792007)

H3: Sample was received or analysis requested beyond the recognized method holding time.

- 6AR (Lab ID: 70234792004)
- 6B (Lab ID: 70234792005)
- LEA-PRIMARY (Lab ID: 70234792010)
- LEA-SECONDARY (Lab ID: 70234792011)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 281327

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1422198)
 - Chemical Oxygen Demand

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method:SM22 5210BDescription:5210B BOD, 5 dayClient:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

- LEA-PRIMARY (Lab ID: 70234792010)
- LEA-SECONDARY (Lab ID: 70234792011)

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280155

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234863001,70234863002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1416125)
 - Bromide
 - Chloride
 - Sulfate
- MS (Lab ID: 1416127)
 - Bromide
 - Chloride
 - Sulfate

QC Batch: 280662

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234792006,70235213001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1418863)
 - Bromide
 - Chloride
 - Sulfate
- MS (Lab ID: 1418865)
 - Bromide
 - Chloride
 - Sulfate

QC Batch: 282458

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234908002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 1427716)

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Town of SouthamptonDate:November 22, 2022

QC Batch: 282458

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234908002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

BromideSulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 281329

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234792006,70235887002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1422207)Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Town of Southampton

Date: November 22, 2022

General Information:

10 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client: Town of Southampton

Date: November 22, 2022

General Information:

1 sample was analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280302

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70235222001,70235228002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1417570)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 5310B

Description: 5310B TOC as NPOC **Client:** Town of Southampton **Date:** November 22, 2022

General Information:

11 samples were analyzed for SM22 5310B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method:EPA 9014 Total CyanideDescription:9014 Cyanide, TotalClient:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Sample: 1A	Lab ID: 702	234792001	Collected: 10/26/2	2 12:10	Received: 10)/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 6010	C Preparation Me	thod: E	PA 3005A			
	Pace Analytica	al Services - M	elville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 15:55	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 15:55	7440-43-9	
Calcium	60000	ug/L	200	1	11/01/22 09:23	11/01/22 15:55	7440-70-2	
ron	393	ug/L	100	1	11/01/22 09:23	11/01/22 15:55	7439-89-6	
Lead	<5.0	ug/L	5.0	1		11/01/22 15:55		
Magnesium	20300	ug/L	200	1		11/01/22 15:55		
Manganese	<10.0	ug/L	10.0	1		11/01/22 15:55		
Potassium	13500	ug/L	5000	1		11/01/22 15:55		
Sodium	19900	ug/L	5000	1	11/01/22 09:23	11/01/22 15:55	7440-23-5	
2120B W Apparent Color	Analytical Met	hod: SM22 212	20B					
	Pace Analytica	al Services - M	elville					
Apparent Color	6.0	units	5.0	1		10/27/22 21:35		
pH	6.5	Std. Units	0.10	1		10/27/22 21:35		
2320B Alkalinity	Analytical Met	hod: SM22 232	20B					
	Pace Analytica	al Services - M	elville					
Alkalinity, Total as CaCO3	142	mg/L	1.0	1		11/09/22 11:51		
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	273	mg/L	5.0	1		11/09/22 18:34		
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	342	mg/L	10.0	1		11/01/22 19:09		D6
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:29	18540-29-9	H1
410.4 COD	Analytical Met Pace Analytica		4 Preparation Met elville	hod: EP	A 410.4			
Chemical Oxygen Demand	20.8	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Met Pace Analytica		10B Preparation Melville	lethod:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:13	11/02/22 09:32		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica	hod: EPA 300.0 al Services - M						
Bromide	<0.50	mg/L	0.50	1		11/11/22 21:18	24959-67-9	
Chloride	39.0	mg/L	2.0	1		11/11/22 21:18	16887-00-6	
Sulfate	87.3	mg/L	5.0	1		11/11/22 21:18	14808-79-8	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 1A	Lab ID: 702	34792001	Collected: 10/26/2	22 12:10	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 35	51.2 Preparation Met	thod: EF	PA 351.2			
	Pace Analytica	l Services -	Melville					
Nitrogen, Kjeldahl, Total	<0.10	mg/L	0.10	1	11/09/22 05:34	1 11/09/22 13:11	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth	nod: EPA 35	3.2					
	Pace Analytica	l Services -	Melville					
Nitrate-Nitrite (as N)	10.7	mg/L	0.25	5		11/02/22 17:04	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	3.2					
	Pace Analytica	l Services -	Melville					
Nitrite as N	<0.050	mg/L	0.050	1		10/27/22 23:57	7 14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H					
	Pace Analytica	l Services -	Melville					
Nitrogen, Ammonia	<0.10	mg/L	0.10	1		10/31/22 14:12	2 7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22 s	5310B					
	Pace Analytica	l Services -	Melville					
Total Organic Carbon	5.1	mg/L	1.0	1		11/04/22 03:02	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	114 Total Cyanide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	l Services -	Melville					
Cyanide	<10.0	ug/L	10.0	1	11/09/22 12:45	5 11/09/22 16:49	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Sample: 1B	Lab ID: 702	34792002	Collected: 10/26/2	22 12:50	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 601	0C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	al Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 15:58	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 15:58	7440-43-9	
Calcium	4190	ug/L	200	1	11/01/22 09:23	11/01/22 15:58	7440-70-2	
ron	237	ug/L	100	1	11/01/22 09:23	11/01/22 15:58	7439-89-6	
ead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 15:58	7439-92-1	
lagnesium (2160	ug/L	200	1	11/01/22 09:23	11/01/22 15:58	7439-95-4	
/langanese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 15:58	7439-96-5	
otassium	<5000	ug/L	5000	1	11/01/22 09:23	11/01/22 15:58	7440-09-7	
odium	7150	ug/L	5000	1	11/01/22 09:23	11/01/22 15:58	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B					
	Pace Analytica	al Services - I	Melville					
apparent Color	7.0	units	5.0	1		10/27/22 21:36		
H	6.4	Std. Units	0.10	1		10/27/22 21:36		
320B Alkalinity	Analytical Met	hod: SM22 2:	320B					
,	Pace Analytica							
lkalinity, Total as CaCO3	14.7	mg/L	1.0	1		11/09/22 11:57		
2340C Hardness, Total	Analytical Met	hod: SM22 2:	340C					
	Pace Analytica							
ot Hardness asCaCO3 (SM 2340B	20.0	mg/L	5.0	1		11/09/22 18:36		
2540C Total Dissolved Solids	Analytical Met	hod: SM22 2	540C					
	Pace Analytica	al Services - I	Melville					
otal Dissolved Solids	93.0	mg/L	10.0	1		11/01/22 19:11		
Chromium, Hexavalent	Analytical Met	hod: SM22 3	500-Cr B					
	Pace Analytica	al Services - I	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:29	18540-29-9	H1
110.4 COD	Analytical Met	hod: EPA 410	0.4 Preparation Me	thod: EP	A 410.4			
	Pace Analytica	al Services - I	Melville					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Met	hod: SM22 5	210B Preparation I	Method:	SM22 5210B			
· •	Pace Analytica							
3OD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:17	11/02/22 09:34		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	0.0					
or a fill of the second	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/11/22 21:32	24959-67-9	
Chloride	12.1	mg/L	2.0	1		11/11/22 21:32		
Sulfate	9.4	mg/L	5.0	1		11/11/22 21:32		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 1B	Lab ID: 702	34792002	Collected: 10/	/26/22	12:50	Received: 1	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report Lin	nit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Preparation	Metho	d: EP	A 351.2			
	Pace Analytica	I Services -	Melville						
Nitrogen, Kjeldahl, Total	0.17	mg/L	0.	.10	1	11/09/22 05:34	11/09/22 12:52	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	Melville						
Nitrate as N	0.070	mg/L	0.0)50	1		10/28/22 02:13	14797-55-8	
Nitrate-Nitrite (as N)	0.073	mg/L	0.0)50	1		10/28/22 02:13	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	Melville						
Nitrite as N	<0.050	mg/L	0.0)50	1		10/28/22 00:03	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L	0	.10	1		10/31/22 14:13	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/04/22 03:13	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cyanide	e Prep	aratio	n Method: EPA	9010C		
-	Pace Analytica	I Services -	Melville						
Cyanide	<10.0	ug/L	10	0.0	1	11/09/22 12:45	11/09/22 16:50	57-12-5	
		-							

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 1C	Lab ID: 702	34792003	Collected: 10/20	6/22 13:30	Received: 10	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	hod: EPA 60	10C Preparation	Method: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.) 1	11/01/22 09:23	11/01/22 16:00	7440-38-2	
Cadmium	<2.5	ug/L	2.	5 1	11/01/22 09:23	11/01/22 16:00	7440-43-9	
Calcium	4550	ug/L	20) 1	11/01/22 09:23	11/01/22 16:00	7440-70-2	
ron	<100	ug/L	10) 1	11/01/22 09:23	11/01/22 16:00	7439-89-6	
ead	<5.0	ug/L	5.) 1	11/01/22 09:23	11/01/22 16:00	7439-92-1	
/lagnesium	2310	ug/L	20) 1	11/01/22 09:23	11/01/22 16:00	7439-95-4	
/langanese	<10.0	ug/L	10.) 1	11/01/22 09:23	11/01/22 16:00	7439-96-5	
Potassium	<5000	ug/L	500) 1	11/01/22 09:23	11/01/22 16:00	7440-09-7	
Sodium	7590	ug/L	500) 1	11/01/22 09:23	11/01/22 16:00	7440-23-5	
120B W Apparent Color	Analytical Meth	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	<5.0	units	5.) 1		10/27/22 21:38	}	
H	6.4	Std. Units				10/27/22 21:38		
2320B Alkalinity	Analytical Meth	hod: SM22 2	2320B					
-	Pace Analytica							
Alkalinity, Total as CaCO3	16.8	mg/L	1.) 1		11/09/22 12:03		
2340C Hardness, Total	Analytical Meth	hod: SM22 2	2340C					
	Pace Analytica	l Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	22.0	mg/L	5.) 1		11/09/22 18:38		
2540C Total Dissolved Solids	Analytical Meth	hod: SM22 2	2540C					
	Pace Analytica	l Services -	Melville					
Total Dissolved Solids	78.0	mg/L	10.) 1		11/01/22 19:21		
Chromium, Hexavalent	Analytical Meth	hod: SM22 3	8500-Cr B					
	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.02) 1		10/27/22 22:30	18540-29-9	H1
110.4 COD	Analytical Meth	hod: EPA 41	0.4 Preparation M	ethod: EF	PA 410.4			
	Pace Analytica	l Services -	Melville					
Chemical Oxygen Demand	<10.0	mg/L	10.) 1	11/09/22 05:15	11/09/22 12:49	ı	
5210B BOD, 5 day	Analytical Meth	hod: SM22 F	5210B Preparation	Method:	SM22 5210B			
, ,	Pace Analytica		•					
BOD, 5 day	<2.0	mg/L	2.) 1	10/28/22 09:20	11/02/22 09:36	i	
300.0 IC Anions 28 Days	Analytical Meth	hod: EPA 30	0.0					
or and the second second	Pace Analytica							
Bromide	<0.50	mg/L	0.5) 1		11/11/22 21:45	24959-67-9	
Chloride	11.1	mg/L	2.			11/11/22 21:45	16887-00-6	
Sulfate	10.6	mg/L	5.) 1		11/11/22 21:45	14808-79-8	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 1C	Lab ID: 7023	34792003	Collected:	10/26/2	2 13:30	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.12	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 12:53	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.20	mg/L		0.050	1		10/28/22 02:22	2 14797-55-8	
Nitrate-Nitrite (as N)	0.20	mg/L		0.050	1		10/28/22 02:22	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:12	2 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:17	7 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:01	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:5	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 6AR	Lab ID: 702	34792004	Collected: 10/26/2	22 10:30	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation M	ethod: E	PA 3005A			
	Pace Analytica	I Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:03	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:03	7440-43-9	
Calcium	6930	ug/L	200	1	11/01/22 09:23	11/01/22 16:03	7440-70-2	
ron	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:03	7439-89-6	
ead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:03	7439-92-1	
lagnesium	2600	ug/L	200	1	11/01/22 09:23	11/01/22 16:03	7439-95-4	
langanese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:03	7439-96-5	
otassium	<5000	ug/L	5000	1		11/01/22 16:03		
odium	7430	ug/L	5000	1	11/01/22 09:23	11/01/22 16:03	7440-23-5	
120B W Apparent Color	Analytical Meth	nod: SM22 2	120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	<5.0	units	5.0	1		10/27/22 21:33		
H	6.2	Std. Units	0.10	1		10/27/22 21:33		
320B Alkalinity	Analytical Meth	nod: SM22 2	320B					
•	Pace Analytica							
lkalinity, Total as CaCO3	17.8	mg/L	1.0	1		11/09/22 12:10		
2340C Hardness, Total	Analytical Meth	nod: SM22 2	340C					
	Pace Analytica	l Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	24.0	mg/L	5.0	1		11/09/22 18:40		
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	540C					
	Pace Analytica							
otal Dissolved Solids	82.0	mg/L	20.0	1		11/01/22 19:23		
Chromium, Hexavalent	Analytical Meth	nod: SM22 3	500-Cr B					
	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:28	18540-29-9	НЗ
110.4 COD	Analytical Meth	nod: EPA 410	0.4 Preparation Me	thod: EP	'A 410.4			
	Pace Analytica		·					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Meth	nod: SM22 5	210B Preparation I	Method:	SM22 5210B			
	Pace Analytica		·					
SOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:23	11/02/22 09:39		
800.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
 , -	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/14/22 11:25	24959-67-9	
Chloride	16.0	mg/L	2.0	1		11/14/22 11:25		
Sulfate	7.4	mg/L	5.0	1		11/14/22 11:25		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 6AR	Lab ID: 7023	34792004	Collected:	10/26/2	22 10:30	Received: 1	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Prepara	tion Met	hod: EP	A 351.2			
	Pace Analytica	I Services -	- Melville						
Nitrogen, Kjeldahl, Total	0.20	mg/L		0.10	1	11/09/22 05:34	11/09/22 12:54	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrate as N	0.21	mg/L		0.050	1		10/28/22 01:59	14797-55-8	
Nitrate-Nitrite (as N)	0.21	mg/L		0.050	1		10/28/22 01:59	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/27/22 23:50	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:18	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	- Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:12	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	I Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	11/09/22 16:52	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 6B	Lab ID: 702	34792005	Collected: 10/26	5/22 11:20	Received: 10	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation I	Лethod: Е	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0) 1	11/01/22 09:23	11/01/22 16:06	7440-38-2	
Cadmium	<2.5	ug/L	2.5	5 1	11/01/22 09:23	11/01/22 16:06	7440-43-9	
Calcium	4080	ug/L	200) 1	11/01/22 09:23	11/01/22 16:06	7440-70-2	
ron	150	ug/L	100) 1	11/01/22 09:23	11/01/22 16:06	7439-89-6	
ead	<5.0	ug/L	5.0) 1		11/01/22 16:06		
/lagnesium	2290	ug/L	200) 1	11/01/22 09:23	11/01/22 16:06	7439-95-4	
Manganese	<10.0	ug/L	10.0) 1	11/01/22 09:23	11/01/22 16:06	7439-96-5	
otassium	<5000	ug/L	5000) 1		11/01/22 16:06		
Sodium	7760	ug/L	5000) 1	11/01/22 09:23	11/01/22 16:06	7440-23-5	
120B W Apparent Color	Analytical Metl	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	<5.0	units	5.0) 1		10/27/22 21:34	ļ	
H	6.2	Std. Units	0.10) 1		10/27/22 21:34	ļ	
2320B Alkalinity	Analytical Metl	hod: SM22 2	2320B					
,	Pace Analytica							
Alkalinity, Total as CaCO3	12.3	mg/L	1.0) 1		11/09/22 12:15	i	
2340C Hardness, Total	Analytical Met	hod: SM22 2	2340C					
	Pace Analytica	l Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	22.0	mg/L	5.0) 1		11/09/22 18:43	;	
2540C Total Dissolved Solids	Analytical Met	hod: SM22 2	2540C					
	Pace Analytica	al Services -	Melville					
Total Dissolved Solids	64.0	mg/L	10.0) 1		11/01/22 19:33	;	
Chromium, Hexavalent	Analytical Metl	hod: SM22 3	3500-Cr B					
•	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020) 1		10/27/22 22:29	18540-29-9	НЗ
110.4 COD	Analytical Metl	hod: EPA 41	0.4 Preparation M	ethod: EF	PA 410.4			
	Pace Analytica							
Chemical Oxygen Demand	<10.0	mg/L	10.0) 1	11/09/22 05:15	11/09/22 12:49)	
5210B BOD, 5 day	Analytical Met	hod: SM22 F	5210B Preparation	Method:	SM22 5210B			
210B BOD, 5 day	Pace Analytica			would.	OWIZZ OZ TOB			
3OD, 5 day	<2.0	mg/L	2.0) 1	10/28/22 09:26	11/02/22 09:42		
300.0 IC Anions 28 Days	Analytical Metl	hod: EPA 30	0.0					
	Pace Analytica							
Bromide	<0.50	mg/L	0.50) 1		11/14/22 11:38	24959-67-9	
Chloride	12.9	mg/L	2.0			11/14/22 11:38		
Sulfate	8.7	mg/L	5.0			11/14/22 11:38		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 6B	Lab ID: 7023	34792005	Collected:	10/26/2	2 11:20	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ition Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.53	mg/L		0.10	1	11/09/22 05:34	11/09/22 12:57	7 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.16	mg/L		0.050	1		10/28/22 02:0	1 14797-55-8	
Nitrate-Nitrite (as N)	0.16	mg/L		0.050	1		10/28/22 02:0	1 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/27/22 23:5	1 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.33	mg/L		0.10	1		10/31/22 14:19	9 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:23	3 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:53	3 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 8	Lab ID: 702	34792006	Collected: 10/26/2	22 14:45	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:08	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:08	7440-43-9	
Calcium	7410	ug/L	200	1	11/01/22 09:23	11/01/22 16:08	7440-70-2	
on	221	ug/L	100	1	11/01/22 09:23	11/01/22 16:08	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/01/22 16:08		
/lagnesium	3130	ug/L	200	1		11/01/22 16:08		
Manganese	20.2	ug/L	10.0	1		11/01/22 16:08		
Potassium	<5000	ug/L	5000	1		11/01/22 16:08		
Sodium	7380	ug/L	5000	1	11/01/22 09:23	11/01/22 16:08	7440-23-5	
120B W Apparent Color	Analytical Meth	nod: SM22 2	120B					
	Pace Analytica	I Services -	Melville					
apparent Color	12.0	units	5.0	1		10/27/22 21:40		
H	6.0	Std. Units	0.10	1		10/27/22 21:40		
320B Alkalinity	Analytical Meth	nod: SM22 2	320B					
J20B Alkallility	Pace Analytica							
lkalinity, Total as CaCO3	25.7	mg/L	1.0	1		11/09/22 12:35		
2340C Hardness, Total	Analytical Meth	nod: SM22 2	340C					
	Pace Analytica	I Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	34.0	mg/L	5.0	1		11/09/22 18:45		
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	540C					
	Pace Analytica	I Services -	Melville					
otal Dissolved Solids	87.0	mg/L	10.0	1		11/01/22 19:33		D6
Chromium, Hexavalent	Analytical Meth	nod: SM22 3	500-Cr B					
,	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:32	18540-29-9	H1
110.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation Me	thod: EP	A 410.4			
	Pace Analytica		•					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
	Analytical Moth	and CMOO	240D Dranaration	Asthod	CM22 F240B			
3210B BOD, 5 day	Pace Analytica		210B Preparation I Melville	vietnoa.	SIVI22 32 IUB			
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:29	11/02/22 09:45		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
-	Pace Analytica	l Services -	Melville					
Bromide	<0.50	mg/L	0.50	1		11/14/22 11:52	24959-67-9	M1
Chloride	10.7	mg/L	2.0	1		11/14/22 11:52		M1
Sulfate	10	mg/L	5.0	1		11/14/22 11:52		M1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 8	Lab ID: 7023	34792006	Collected:	10/26/2	2 14:45	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Preparat	tion Met	hod: EP	A 351.2			
	Pace Analytica	Services -	- Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/09/22 05:34	11/09/22 13:12	2 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	- Melville						
Nitrate as N	0.67	mg/L		0.050	1		10/28/22 02:33	3 14797-55-8	
Nitrate-Nitrite (as N)	0.67	mg/L		0.050	1		10/28/22 02:33	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	- Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:20	14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:21	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	- Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:34	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytica	Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:54	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 9	Lab ID: 7023	34792007	Collected: 10/26/2	2 15:15	Received: 10)/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 601	0C Preparation Me	thod: Ef	PA 3005A			
	Pace Analytical	Services - N	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:27	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:27	7440-43-9	
Calcium	3540	ug/L	200	1	11/01/22 09:23	11/01/22 16:27	7440-70-2	
ron	423	ug/L	100	1	11/01/22 09:23	11/01/22 16:27	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/01/22 16:27		
Magnesium	1740	ug/L	200	1		11/01/22 16:27		
Manganese	29.1	ug/L	10.0	1		11/01/22 16:27		
Potassium	<5000	ug/L	5000	1		11/01/22 16:27		
Sodium	6630	ug/L	5000	1	11/01/22 09:23	11/01/22 16:27	7440-23-5	
2120B W Apparent Color	Analytical Meth	od: SM22 21	20B					
	Pace Analytical	Services - N	/lelville					
Apparent Color	6.0	units	5.0	1		10/27/22 21:41		
pH	5.6	Std. Units	0.10	1		10/27/22 21:41		
2320B Alkalinity	Analytical Meth	od: SM22 23	320B					
,	Pace Analytical							
Alkalinity, Total as CaCO3	12.2	mg/L	1.0	1		11/09/22 12:54	ļ	
2340C Hardness, Total	Analytical Meth Pace Analytical							
Tot Hardness asCaCO3 (SM 2340B	22.0	mg/L	5.0	1		11/09/22 18:53	3	
2540C Total Dissolved Solids	Analytical Meth Pace Analytical							
Total Dissolved Solids	62.0	mg/L	10.0	1		11/01/22 19:35	;	
Chromium, Hexavalent	Analytical Meth Pace Analytical							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:34	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytical		.4 Preparation Met Melville	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49)	
5210B BOD, 5 day	Analytical Meth Pace Analytical		210B Preparation N Melville	lethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:37	11/02/22 09:49)	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytical							
Bromide	<0.50	mg/L	0.50	1		11/14/22 12:33	3 24959-67-9	
Chloride	11.4	mg/L	2.0	1		11/14/22 12:33		
Sulfate	7.5	mg/L	5.0	1		11/14/22 12:33		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 9	Lab ID: 7023	34792007	Collected:	10/26/2	2 15:15	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ition Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 13:00	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.19	mg/L		0.050	1		10/28/22 02:2	5 14797-55-8	
Nitrate-Nitrite (as N)	0.19	mg/L		0.050	1		10/28/22 02:25	5 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:10	6 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:24	1 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 16:44	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:58	3 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 11A	Lab ID: 702	34792008	Collected: 10/26/	22 15:50	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation M	ethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:30	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:30	7440-43-9	
Calcium	17300	ug/L	200	1	11/01/22 09:23	11/01/22 16:30	7440-70-2	
on	34900	ug/L	100	1	11/01/22 09:23	11/01/22 16:30	7439-89-6	
ead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:30	7439-92-1	
lagnesium	6910	ug/L	200	1	11/01/22 09:23	11/01/22 16:30	7439-95-4	
langanese	1900	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:30	7439-96-5	
otassium	<5000	ug/L	5000	1	11/01/22 09:23	11/01/22 16:30	7440-09-7	
Sodium	7320	ug/L	5000	1	11/01/22 09:23	11/01/22 16:30	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	130	units	50.0	10		10/27/22 21:43		
H	6.0	Std. Units	0.10	10		10/27/22 21:43		
320B Alkalinity	Analytical Metl	hod: SM22 2	2320B					
	Pace Analytica							
Ikalinity, Total as CaCO3	58.5	mg/L	1.0	1		11/09/22 13:01		
2340C Hardness, Total	Analytical Metl	hod: SM22 2	2340C					
·	Pace Analytica	al Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	86.7	mg/L	5.0	1		11/09/22 18:55		
2540C Total Dissolved Solids	Analytical Metl	hod: SM22 2	2540C					
	Pace Analytica							
otal Dissolved Solids	120	mg/L	20.0	1		11/01/22 19:36		
Chromium, Hexavalent	Analytical Metl	hod: SM22 3	3500-Cr B					
,	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:34	18540-29-9	H1
110.4 COD	Analytical Metl	hod: EPA 41	0.4 Preparation Me	thod: EP	A 410.4			
	Pace Analytica							
Chemical Oxygen Demand	23.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Met	nod: SM22 F	5210B Preparation I	Method:	SM22 5210B			
	Pace Analytica							
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 15:48	11/02/22 12:28		
800.0 IC Anions 28 Days	Analytical Metl	hod: EPA 30	0.0					
	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/14/22 12:46	24959-67-9	
Chloride	14.5	mg/L	2.0	1		11/14/22 12:46		
Sulfate	25.6	mg/L	5.0	1		11/14/22 12:46		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 11A	Lab ID: 7023	34792008	Collected:	10/26/2	2 15:50	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.49	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 13:01	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.20	mg/L		0.050	1		10/28/22 02:26	6 14797-55-8	
Nitrate-Nitrite (as N)	0.21	mg/L		0.050	1		10/28/22 02:20	6 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:18	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.12	mg/L		0.10	1		10/31/22 14:25	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	2.5	mg/L		1.0	1		11/01/22 16:57	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytical	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:59	9 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 11B	Lab ID: 7023	4792009	Collected: 10/26/	22 16:30	Received: 10)/27/22 11:30 M	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytical	Services -	Melville					
rsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:32	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:32	7440-43-9	
Calcium	17900	ug/L	200	1	11/01/22 09:23	11/01/22 16:32	7440-70-2	
ron	9070	ug/L	100	1	11/01/22 09:23	11/01/22 16:32	7439-89-6	
ead	6.2	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:32	7439-92-1	
1agnesium	2870	ug/L	200	1	11/01/22 09:23	11/01/22 16:32	7439-95-4	
langanese	134	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:32	7439-96-5	
otassium	5400	ug/L	5000	1	11/01/22 09:23	11/01/22 16:32	7440-09-7	
odium	8470	ug/L	5000	1	11/01/22 09:23	11/01/22 16:32	7440-23-5	
120B W Apparent Color	Analytical Meth	od: SM22 2	120B					
	Pace Analytical	Services -	Melville					
pparent Color	130	units	50.0	10		10/27/22 21:46		
H	6.5	Std. Units	0.10	10		10/27/22 21:46		
320B Alkalinity	Analytical Meth	od: SM22 2	320B					
ozob Amaiiniy	Pace Analytical							
Ikalinity, Total as CaCO3	31.4	mg/L	1.0	1		11/09/22 13:07		
340C Hardness, Total	Analytical Meth	od: SM22 2	340C					
	Pace Analytical	Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	66.7	mg/L	5.0	1		11/09/22 18:58		
540C Total Dissolved Solids	Analytical Meth	od: SM22 2	540C					
	Pace Analytical	Services -	Melville					
otal Dissolved Solids	110	mg/L	20.0	1		11/01/22 19:46		
Chromium, Hexavalent	Analytical Methor	od: SM22 3	500-Cr B					
	Pace Analytical							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:35	18540-29-9	H1
110.4 COD	Analytical Meth	od: EPA 41	0.4 Preparation Me	thod: EP	'A 410.4			
	Pace Analytical		•		-			
Chemical Oxygen Demand	75.8	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Meth	od: SM22 5	210B Preparation	Method:	SM22 5210B			
2105 505, 5 day	Pace Analytical		•	wicthod.	OIVIZZ OZ TOD			
SOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 15:51	11/02/22 12:31		
300.0 IC Anions 28 Days	Analytical Metho	od: EPA 30	0.0					
•	Pace Analytical							
Bromide	<0.50	mg/L	0.50	1		11/14/22 13:00	24959-67-9	
Chloride	11.5	mg/L	2.0	1		11/14/22 13:00		
Sulfate	11.4	mg/L	5.0			11/14/22 13:00		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 11B	Lab ID: 7023	34792009	Collected:	10/26/2	2 16:30	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ition Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	1.5	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 13:02	2 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.33	mg/L		0.050	1		10/28/22 02:23	7 14797-55-8	
Nitrate-Nitrite (as N)	0.34	mg/L		0.050	1		10/28/22 02:27	7 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:19	9 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.40	mg/L		0.10	1		10/31/22 14:27	7 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	4.0	mg/L		1.0	1		11/01/22 17:09	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:59	9 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: LEA-PRIMARY	Lab ID: 702	234792010	Collected:	10/26/2	2 08:10	Received: 10	/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	hod: EPA 60	10C Prepara	ation Me	thod: EF	PA 3005A			
	Pace Analytic	al Services -	Melville						
rsenic	10.2	ug/L		10.0	1	11/01/22 09:23	11/01/22 16:35	7440-38-2	
admium	<2.5	ug/L		2.5	1	11/01/22 09:23	11/01/22 16:35	7440-43-9	
alcium	89600	ug/L		200	1	11/01/22 09:23	11/01/22 16:35	7440-70-2	
on	1380	ug/L		100	1	11/01/22 09:23	11/01/22 16:35	7439-89-6	
ead	<5.0	ug/L		5.0	1	11/01/22 09:23			
lagnesium	22100	ug/L		200	1	11/01/22 09:23			
langanese	172	ug/L		10.0	1	11/01/22 09:23			
otassium	68000	ug/L		5000	1	11/01/22 09:23			
odium	39800	ug/L		5000	1	11/01/22 09:23	11/01/22 16:35	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B						
	Pace Analytic	al Services -	Melville						
pparent Color	660	units		250	50		10/27/22 21:30)	
H	7.9	Std. Units		0.10	50		10/27/22 21:30	1	
320B Alkalinity	Analytical Met	hod: SM22 2	320B						
ozob Andinney	Pace Analytic								
Ikalinity, Total as CaCO3	347	mg/L		1.0	1		11/09/22 13:24		
340C Hardness, Total	Analytical Met Pace Analytic								
ot Hardness asCaCO3 (SM 2340B	327	mg/L		5.0	1		11/09/22 19:01		
540C Total Dissolved Solids	Analytical Met Pace Analytic								
otal Dissolved Solids	970	mg/L		100	1		11/01/22 19:46		
Chromium, Hexavalent	Analytical Met Pace Analytic								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		10/27/22 22:27	18540-29-9	НЗ
10.4 COD	Analytical Met Pace Analytic			tion Metl	hod: EP	A 410.4			
Chemical Oxygen Demand	296	mg/L		10.0	1	11/09/22 05:15	11/09/22 12:49		
210B BOD, 5 day	Analytical Met Pace Analytic			aration M	lethod: S	SM22 5210B			
OD, 5 day	<2.0	mg/L		2.0	1	10/28/22 09:40	11/02/22 09:51		H2
00.0 IC Anions 28 Days	Analytical Met Pace Analytic								
romide	<0.50	mg/L		0.50	1		11/22/22 09:36	24959-67-9	
ulfate	31.6	mg/L		5.0	1		11/22/22 09:36	14808-79-8	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: LEA-PRIMARY	Lab ID: 7023	34792010	Collected:	10/26/2	2 08:10	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytica	Services -	Melville						
Nitrogen, Kjeldahl, Total	5.1	mg/L		0.50	1	11/09/22 05:34	1 11/09/22 13:03	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	Services -	Melville						
Nitrate as N	0.42	mg/L		0.050	1		10/28/22 01:42	2 14797-55-8	
Nitrate-Nitrite (as N)	0.48	mg/L		0.050	1		10/28/22 01:42	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	Services -	Melville						
Nitrite as N	0.067	mg/L		0.050	1		10/27/22 23:3	5 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	Melville						
Nitrogen, Ammonia	1.0	mg/L		0.10	1		10/31/22 14:30	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/04/22 19:05	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	l Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 17:00	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Sample: LEA-SECONDARY	Lab ID: 702	34792011	Collected: 10/26/2	22 08:30	Received: 10)/27/22 11:30 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 601	0C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	al Services - N	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:38	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:38	7440-43-9	
Calcium	66700	ug/L	200	1	11/01/22 09:23	11/01/22 16:38	7440-70-2	
ron	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:38	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/01/22 16:38		
lagnesium	8810	ug/L	200	1		11/01/22 16:38		
Manganese	20.6	ug/L	10.0	1		11/01/22 16:38		
Potassium	17900	ug/L	5000	1		11/01/22 16:38		
Sodium	10900	ug/L	5000	1	11/01/22 09:23	11/01/22 16:38	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B					
	Pace Analytica	al Services - N	Melville					
Apparent Color	180	units	50.0	10		10/27/22 21:32		
Н	7.6	Std. Units	0.10	10		10/27/22 21:32		
2320B Alkalinity	Analytical Met	hod: SM22 23	320B					
•	Pace Analytica							
lkalinity, Total as CaCO3	189	mg/L	1.0	1		11/09/22 13:34		
2340C Hardness, Total	Analytical Met	hod: SM22 23	340C					
	Pace Analytica	al Services - N	Melville					
ot Hardness asCaCO3 (SM 2340B	193	mg/L	5.0	1		11/09/22 19:03		
540C Total Dissolved Solids	Analytical Met	hod: SM22 2	540C					
	Pace Analytica	al Services - N	Melville					
Total Dissolved Solids	440	mg/L	100	1		11/01/22 19:47		
Chromium, Hexavalent	Analytical Met	hod: SM22 3	500-Cr B					
	Pace Analytica	al Services - N	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:28	18540-29-9	H3
110.4 COD	Analytical Met	hod: EPA 410	.4 Preparation Me	thod: EP	A 410.4			
	Pace Analytica	al Services - N	Melville					
Chemical Oxygen Demand	93.4	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Met	hod: SM22 52	210B Preparation N	/lethod:	SM22 5210B			
,	Pace Analytica		•					
SOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:43	11/02/22 09:54		H2
800.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	0.0					
	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/22/22 10:03	24959-67-9	
Chloride	22.0	mg/L	2.0	1		11/22/22 10:03		
Sulfate	28.0	mg/L	5.0	1		11/22/22 10:03		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: LEA-SECONDARY	Lab ID: 702	34792011	Collected: 1	0/26/2	2 08:30	Received: 1	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report L	imit _	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Preparatio	n Metl	hod: EP	A 351.2			
	Pace Analytica	I Services -	- Melville						
Nitrogen, Kjeldahl, Total	2.1	mg/L		0.50	1	11/09/22 05:34	11/09/22 13:04	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrate as N	1.7	mg/L	0	.050	1		10/28/22 01:46	14797-55-8	
Nitrate-Nitrite (as N)	1.7	mg/L	0	.050	1		10/28/22 01:46	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrite as N	<0.050	mg/L	0	.050	1		10/27/22 23:38	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:31	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	- Melville						
Total Organic Carbon	26.1	mg/L		1.0	1		11/01/22 22:35	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cyanio	de Pre	eparatio	n Method: EPA	9010C		
-	Pace Analytica	I Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	11/09/22 17:01	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

LABORATORY CONTROL CAMPLE

Date: 11/22/2022 08:04 PM

QC Batch: 280111 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

 $70234792008,\,70234792009,\,70234792010,\,70234792011$

METHOD BLANK: 1415989 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Parameter	Units	Blank Result	Reporting Limit	Analyzad	Qualifiers
Parameter	Onits	Result	LIIIIIL	Analyzed	Quaillers
Arsenic	ug/L	<10.0	10.0	11/01/22 15:47	
Cadmium	ug/L	<2.5	2.5	11/01/22 15:47	
Calcium	ug/L	<200	200	11/01/22 15:47	
Iron	ug/L	<100	100	11/01/22 15:47	
Lead	ug/L	<5.0	5.0	11/01/22 15:47	
Magnesium	ug/L	<200	200	11/01/22 15:47	
Manganese	ug/L	<10.0	10.0	11/01/22 15:47	
Potassium	ug/L	<5000	5000	11/01/22 15:47	
Sodium	ug/L	<5000	5000	11/01/22 15:47	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	494	99	80-120	
Cadmium	ug/L	500	499	100	80-120	
Calcium	ug/L	25000	25000	100	80-120	
Iron	ug/L	12500	12500	100	80-120	
Lead	ug/L	500	506	101	80-120	
Magnesium	ug/L	25000	25100	100	80-120	
Manganese	ug/L	500	497	99	80-120	
Potassium	ug/L	25000	25200	101	80-120	
Sodium	ug/L	25000	25800	103	80-120	

MATRIX SPIKE SAMPLE:	1415992						
ъ.	11.5	70234792006	Spike	MS	MS	% Rec	0 110
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	<10.0	500	473	94	75-125	
Cadmium	ug/L	<2.5	500	476	95	75-125	
Calcium	ug/L	7410	25000	31300	96	75-125	
Iron	ug/L	221	12500	12100	95	75-125	
Lead	ug/L	<5.0	500	476	95	75-125	
Magnesium	ug/L	3130	25000	26900	95	75-125	
Manganese	ug/L	20.2	500	506	97	75-125	
Potassium	ug/L	<5000	25000	25300	98	75-125	
Sodium	ug/L	7380	25000	32400	100	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Potassium

Date: 11/22/2022 08:04 PM

Sodium

SAMPLE DUPLICATE: 1415991 70234792006 Dup RPD Parameter Units Result Result Qualifiers <10.0 Arsenic ug/L <10.0 <2.5 Cadmium ug/L <2.5 7410 7230 2 Calcium ug/L Iron ug/L 221 220 0 Lead ug/L < 5.0 <5.0 Magnesium ug/L 3130 3040 3 ug/L 20.2 8 Manganese 18.7

<5000

7380

<5000

7080

4

ug/L

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279688 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1414148 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 10/27/22 21:29

LABORATORY CONTROL SAMPLE: 1414149

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Apparent Color** units 40 40.0 100 90-110

7000470000

SAMPLE DUPLICATE: 1414150

Date: 11/22/2022 08:04 PM

Parameter	Units	70234792006 Result	Result	RPD	Qualifiers
Apparent Color	units	12.0	12.0	0	
рН	Std. Units	6.0	6.0	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

NORTH SEA LANDFILL 10/26 Project:

Pace Project No.: 70234792

QC Batch: 281354 Analysis Method: SM22 2320B QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

> Laboratory: Pace Analytical Services - Melville

> > 1.0

LCS

% Rec

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422282 Matrix: Water

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

<1.0

70234792008, 70234792009, 70234792010, 70234792011 Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers 11/09/22 10:54

Spike

Alkalinity, Total as CaCO3 mg/L

LABORATORY CONTROL SAMPLE: 1422283

Parameter Units Conc. Result % Rec Limits Qualifiers 95 Alkalinity, Total as CaCO3 mg/L 25 23.7 85-115

MATRIX SPIKE SAMPLE: 1422285

70234792006 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 25.7 50 74.9 98 75-125 Alkalinity, Total as CaCO3 mg/L

LCS

SAMPLE DUPLICATE: 1422284

Date: 11/22/2022 08:04 PM

70234792006 Dup RPD Parameter Units Result Result Qualifiers Alkalinity, Total as CaCO3 mg/L 25.7 26.6 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 281434 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

> Laboratory: Pace Analytical Services - Melville

> > LCS

% Rec

Reporting

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422678 Matrix: Water

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples: Blank

70234792008, 70234792009, 70234792010, 70234792011

Parameter Limit Qualifiers Units Result Analyzed Tot Hardness asCaCO3 (SM 2340B mg/L <2.5 25 11/09/22 18:15

LABORATORY CONTROL SAMPLE: 1422679

Spike Parameter Limits Units Conc. Result % Rec Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 100 90-110

MATRIX SPIKE SAMPLE: 1422680

70234696001 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 63.3 393 75-125 Tot Hardness asCaCO3 (SM 2340B 333 99 mg/L

LCS

MATRIX SPIKE SAMPLE: 1422682

70234792006 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 34.0 200 230 75-125

SAMPLE DUPLICATE: 1422681

70234696001 Dup Parameter Units Result Result RPD Qualifiers 63.3 Tot Hardness asCaCO3 (SM 2340B mg/L 63.3 0

SAMPLE DUPLICATE: 1422683

Date: 11/22/2022 08:04 PM

70234792006 Dup RPD Parameter Units Result Result Qualifiers 34.0 Tot Hardness asCaCO3 (SM 2340B 30.0 12 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

SM22 2540C

NORTH SEA LANDFILL 10/26 Project:

Pace Project No.: 70234792

QC Batch: 280248 Analysis Method:

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003

METHOD BLANK: 1416497 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003

> Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids <5.0 5.0 11/01/22 18:06 mg/L

LABORATORY CONTROL SAMPLE: 1416498

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result

Total Dissolved Solids 500 566 113 85-115 mg/L

MATRIX SPIKE SAMPLE: 1416500

MS % Rec 70234596001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 71.0 **Total Dissolved Solids** mg/L 300 319 83 75-125

MATRIX SPIKE SAMPLE: 1416502 70234792001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids 342 mg/L 300 616 91 75-125

SAMPLE DUPLICATE: 1416499

Date: 11/22/2022 08:04 PM

70234596001 Dup RPD Parameter Units Result Result Qualifiers 71.0 5

75.0 Total Dissolved Solids mg/L

SAMPLE DUPLICATE: 1416501

70234792001 Dup RPD Units Qualifiers Parameter Result Result 342 Total Dissolved Solids 376 9 D6 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 280249 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Melville

70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009, 70234792010, Associated Lab Samples:

70234792011

METHOD BLANK: 1416505 Matrix: Water

70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009, 70234792010, Associated Lab Samples:

70234792011

Blank Reporting Parameter Units Limit Qualifiers Result Analyzed mg/L **Total Dissolved Solids** <5.0 5.0 11/01/22 19:22

LABORATORY CONTROL SAMPLE: 1416506

LCS LCS Spike % Rec Parameter Units % Rec Limits Qualifiers Conc. Result **Total Dissolved Solids** mg/L 500 504 101 85-115

70234792004

MATRIX SPIKE SAMPLE: 1416509

Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 82.0 608 75-125 **Total Dissolved Solids** 600 88 mg/L

MS

MS

% Rec

MATRIX SPIKE SAMPLE: 1416511

70234792006 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers **Total Dissolved Solids** mg/L 87.0 300 340 75-125

SAMPLE DUPLICATE: 1416507

70234792004 Dup Parameter Units Result Result RPD Qualifiers 82.0 **Total Dissolved Solids** mg/L 86.0 5

SAMPLE DUPLICATE: 1416510

Date: 11/22/2022 08:04 PM

70234792006 Dup Result **RPD** Parameter Units Result Qualifiers 87.0 82.0 6 D6 **Total Dissolved Solids** mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279687 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1414144 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersChromium, Hexavalentmg/L<0.020</td>0.02010/27/22 22:25

LABORATORY CONTROL SAMPLE: 1414145

Spike LCS LCS % Rec Units Conc. Result % Rec Limits Qualifiers Parameter Chromium, Hexavalent mg/L 0.2 0.19 95 85-115

MATRIX SPIKE SAMPLE: 1414193

MS MS 70234792006 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 0.20 75-125 H1 Chromium, Hexavalent 0.2 99 mg/L

SAMPLE DUPLICATE: 1414194

Date: 11/22/2022 08:04 PM

ParameterUnits70234792006 ResultDup ResultRPDQualifiersChromium, Hexavalentmg/L<0.020</td><0.020</td>H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 281327 Analysis Method: EPA 410.4 QC Batch Method: EPA 410.4 Analysis Description: 410.4 COD

> Laboratory: Pace Analytical Services - Melville

> > LCS

% Rec

Reporting

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422193 Matrix: Water

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

Blank Parameter Units Limit Qualifiers Result Analyzed mg/L Chemical Oxygen Demand <10.0 10.0 11/09/22 12:49

LABORATORY CONTROL SAMPLE: 1422194

Spike Parameter Units % Rec Limits Qualifiers Conc. Result Chemical Oxygen Demand mg/L 500 520 104 90-110

MATRIX SPIKE SAMPLE: 1422195

70234792006 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 1030 102 Chemical Oxygen Demand 1000 90-110 mg/L

LCS

MATRIX SPIKE SAMPLE: 1422197

70234853001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 51.6 1000 1050 100 90-110

SAMPLE DUPLICATE: 1422196

70234792006 Dup Parameter Units Result Result RPD Qualifiers <10.0 Chemical Oxygen Demand mg/L <10.0

SAMPLE DUPLICATE: 1422198

Date: 11/22/2022 08:04 PM

70234853001 Dup RPD Parameter Units Result Result Qualifiers mg/L 51.6 40.6 24 D6 Chemical Oxygen Demand

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279754 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792010, 70234792011

METHOD BLANK: 1414389 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792010, 70234792011

BOD, 5 day

Blank Reporting Limit Analyzed Qualifiers

80D, 5 day

Result 1.0 11/02/22 09:07

LABORATORY CONTROL SAMPLE: 1414390

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 84.5-115.4 BOD, 5 day mg/L 198 210 106

SAMPLE DUPLICATE: 1414391

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 70234792006 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 <2.0</td>
 <2.0</td>
 <2.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279842 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792008, 70234792009

METHOD BLANK: 1414701 Matrix: Water

Associated Lab Samples: 70234792008, 70234792009

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

BOD, 5 day mg/L <1.0 11.0 2/22 10:24

LABORATORY CONTROL SAMPLE: 1414702

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 179 91 84.5-115.4

SAMPLE DUPLICATE: 1414704

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 70234798001 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 93.2
 86.6
 7

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

QC Batch: 280155 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003

METHOD BLANK: 1416123 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	11/11/22 14:45	
Chloride	mg/L	<2.0	2.0	11/11/22 14:45	
Sulfate	mg/L	<5.0	5.0	11/11/22 14:45	

LABORATORY CONTROL SAMPLE:	1416124					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		1.0	102	90-110	
Chloride	mg/L	10	10.5	105	90-110	
Sulfate	mg/L	10	10.6	106	90-110	

Rec
nits Qualifiers
90-110 M1
90-110 M1
90-110 M1
1

1416127						
Units		•	MS Result	_		Qualifiers
mg/L	< 0.50	1	1.2	119	90-110 N	<i>I</i> 11
mg/L	25.9	10	38.7	128	90-110 N	<i>I</i> 11
mg/L	23.0	10	35.9	129	90-110 N	Л1
	Units mg/L mg/L	T0234863002 Units Result	Units 70234863002 Result Spike Conc. mg/L mg/L <0.50	Units 70234863002 Result Spike Conc. MS Result mg/L mg/L <0.50	Units 70234863002 Result Spike Conc. MS Result MS % Rec mg/L mg/L <0.50	Units 70234863002 Result Spike Conc. MS Result MS Rec Limits mg/L mg/L <0.50

SAMPLE DUPLICATE: 1416126					
		70234863001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	29.0	29.4	1	
Sulfate	mg/L	29.6	30.0	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

SAMPLE DUPLICATE: 1416128

Parameter	Units	70234863002 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	25.9	25.7	1	
Sulfate	mg/L	23.0	23.0	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

QC Batch: 280662 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

METHOD BLANK: 1418861 Matrix: Water

Associated Lab Samples: 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	11/14/22 10:58	
Chloride	mg/L	<2.0	2.0	11/14/22 10:58	
Sulfate	mg/L	<5.0	5.0	11/14/22 10:58	

LABORATORY CONTROL SAMPLE:	1418862					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	1	0.99	99	90-110	
Chloride	mg/L	10	9.9	99	90-110	
Sulfate	mg/L	10	10	100	90-110	

MATRIX SPIKE SAMPLE:	1418863						
		70234792006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	1.1	112	90-110	M1
Chloride	mg/L	10.7	10	22.0	113	90-110	M1
Sulfate	mg/L	10	10	21.5	115	90-110 I	M1

MATRIX SPIKE SAMPLE:	1418865						
Parameter	Units	70235213001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	<0.50		1.3	128	90-110	M1
Chloride	mg/L	7.2	10	18.9	116	90-110	M1
Sulfate	mg/L	21.3	10	32.9	116	90-110	M1

SAMPLE DUPLICATE: 1418864					
		70234792006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	10.7	10.7	1	
Sulfate	mg/L	10	10.0	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

SAMPLE DUPLICATE: 1418866

		70235213001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	7.2	7.2	1	
Sulfate	mg/L	21.3	21.1	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 282458 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0

Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70234792010, 70234792011

METHOD BLANK: 1427714

Bromide Chloride Sulfate Matrix: Water

Associated Lab Samples: 70234792010, 70234792011

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
	mg/L	<0.50	0.50	11/22/22 09:09	
	mg/L	<2.0	2.0	11/22/22 09:09	
	mg/L	< 5.0	5.0	11/22/22 09:09	

LABORATORY CONTROL SAMPLE: 1427715 LCS Spike LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Bromide mg/L 1.0 102 90-110 Chloride 10 100 90-110 mg/L 10 Sulfate 9.9 90-110 mg/L 10 99

MATRIX SPIKE SAMPLE:	1427716						
		70234908002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	0.061	1	1.3	126	90-110 N	11
Chloride	mg/L		50	113	112	90-110	
Sulfate	mg/L	11.9	10	24.0	120	90-110 N	11

SAMPLE DUPLICATE: 1427717

Date: 11/22/2022 08:04 PM

		70234908002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	0.061	<0.50		
Chloride	mg/L		58.8	4	
Sulfate	mg/L	11.9	12.1	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 281329 QC Batch Method: EPA 351.2 Analysis Method: EPA 351.2

Analysis Description: 351.2 TKN

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422205 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersNitrogen, Kjeldahl, Totalmg/L<0.094</td>0.09411/09/22 12:40

LABORATORY CONTROL SAMPLE: 1422206

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. Nitrogen, Kjeldahl, Total mg/L 4 4.0 100 90-110

MATRIX SPIKE SAMPLE: 1422207

70235887002 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 7.8 11.4 88 90-110 M1 Nitrogen, Kjeldahl, Total 4 mg/L

MATRIX SPIKE SAMPLE: 1422209

70234792006 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L < 0.10 3.9 90-110

SAMPLE DUPLICATE: 1422208

 Parameter
 Units
 70235887002 Result
 Dup Result
 RPD
 Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 7.8
 7.3
 7

SAMPLE DUPLICATE: 1422210

Date: 11/22/2022 08:04 PM

Parameter Units Parameter Units Parameter Units Parameter End of the Result Res

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279690 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792004, 70234792005, 70234792010, 70234792011

METHOD BLANK: 1414213 Matrix: Water

Associated Lab Samples: 70234792001, 70234792004, 70234792005, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 10/27/22 23:25

LABORATORY CONTROL SAMPLE: 1414214

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 0.99 99 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414215

MS % Rec 70234714002 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.27 Nitrite as N mg/L 0.5 0.80 106 90-110

MATRIX SPIKE SAMPLE: 1414217

70234671002 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.53 102 90-110

SAMPLE DUPLICATE: 1414216

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 0.27
 0.27
 1

SAMPLE DUPLICATE: 1414218

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 70234671002 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

NORTH SEA LANDFILL 10/26 Project:

Pace Project No.: 70234792

QC Batch: 279691 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

> Laboratory: Pace Analytical Services - Melville

70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009 Associated Lab Samples:

METHOD BLANK: 1414219 Matrix: Water

Associated Lab Samples: 70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009

> Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed

Nitrite as N < 0.027 0.027 10/28/22 00:01 mg/L

LABORATORY CONTROL SAMPLE: 1414220

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.0 101 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414221

SAMPLE DUPLICATE: 1414224

Date: 11/22/2022 08:04 PM

MS 70234792002 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.51 101 90-110

MATRIX SPIKE SAMPLE: 1414223 70234792006 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers

< 0.050 Nitrite as N mg/L 0.5 0.52 104 90-110

SAMPLE DUPLICATE: 1414222

70234792002 Dup RPD Parameter Units Result Result Qualifiers

< 0.050 Nitrite as N mg/L < 0.050

70234792006 Dup RPD Qualifiers Parameter Units Result Result

< 0.050 Nitrite as N < 0.050 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 280302 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate + Nitrite, preserved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001

METHOD BLANK: 1417029 Matrix: Water

Associated Lab Samples: 70234792001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 11/02/22 16:30

LABORATORY CONTROL SAMPLE: 1417030

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.1 109 90-110 mg/L

MATRIX SPIKE SAMPLE: 1417031

MS % Rec 70235222001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.8 Nitrate-Nitrite (as N) mg/L 0.5 2.4 110 90-110

MATRIX SPIKE SAMPLE: 1417570

70235228002 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 2.0 90-110 M1 Nitrate-Nitrite (as N) mg/L 0.5 2.4 69

SAMPLE DUPLICATE: 1417032

 Parameter
 Units
 Result
 Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 1.8
 1.9
 1

SAMPLE DUPLICATE: 1417571

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 2.0
 2.0
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279694 Analysis Method:

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

EPA 353.2

Associated Lab Samples: 70234792004, 70234792005, 70234792010, 70234792011

METHOD BLANK: 1414233 Matrix: Water

Associated Lab Samples: 70234792004, 70234792005, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 10/28/22 01:34

LABORATORY CONTROL SAMPLE: 1414234

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.0 103 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414235

MS % Rec 70234668001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 4.7 Nitrate-Nitrite (as N) mg/L 2.5 7.2 102 90-110

MATRIX SPIKE SAMPLE: 1414237

70234818003 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers 3.0 Nitrate-Nitrite (as N) mg/L 2.5 5.5 102 90-110

SAMPLE DUPLICATE: 1414236

 Parameter
 Units
 70234668001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 4.7
 4.7
 0

SAMPLE DUPLICATE: 1414238

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 70234818003 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 3.0
 2.9
 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Nitrate-Nitrite (as N)

QC Batch: 279695 Analysis Method: EPA 353.2

mg/L

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

0.037

10/28/22 02:11

Associated Lab Samples: 70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009

METHOD BLANK: 1414239 Matrix: Water

Associated Lab Samples: 70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009

Blank Reporting

< 0.037

Parameter Units Result Limit Analyzed Qualifiers

LABORATORY CONTROL SAMPLE: 1414240

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.0 103 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414241

MS % Rec 70234792002 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.073 Nitrate-Nitrite (as N) mg/L 0.5 0.55 96 90-110

MATRIX SPIKE SAMPLE: 1414243

70234792006 MS MS % Rec Spike Qualifiers Parameter Units Result Conc. Result % Rec Limits 0.67 Nitrate-Nitrite (as N) mg/L 0.5 1.2 108 90-110

SAMPLE DUPLICATE: 1414242

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.073
 <0.050</td>

SAMPLE DUPLICATE: 1414244

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.67
 0.67
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Nitrogen, Ammonia

QC Batch: 279982 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

0.050

10/31/22 14:05

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1415330 Matrix: Water

mg/L

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

< 0.050

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

LABORATORY CONTROL SAMPLE: 1415331

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1 97 90-110 Nitrogen, Ammonia mg/L 0.97

MATRIX SPIKE SAMPLE: 1415332

70234792006 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 0.91 87 75-125 Nitrogen, Ammonia mg/L

SAMPLE DUPLICATE: 1415333

Date: 11/22/2022 08:04 PM

Parameter Units Result Result RPD Qualifiers

Nitrogen, Ammonia mg/L <0.10 <0.10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279960 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002

METHOD BLANK: 1415261 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/03/22 22:13

LABORATORY CONTROL SAMPLE: 1415262

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** mg/L 10 9.6 96 85-115

MATRIX SPIKE SAMPLE: 1415264

70234847004 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 13.4 **Total Organic Carbon** mg/L 22.6 10 92 75-125

SAMPLE DUPLICATE: 1415263

Date: 11/22/2022 08:04 PM

ParameterUnits70234847004 ResultDup ResultRPDQualifiersTotal Organic Carbonmg/L13.412.94

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 280126 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

METHOD BLANK: 1416036 Matrix: Water

Associated Lab Samples: 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/01/22 14:04

LABORATORY CONTROL SAMPLE: 1416037

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L **Total Organic Carbon** 10 9.5 95 85-115

MATRIX SPIKE SAMPLE: 1416039

MS MS % Rec 70234792006 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <1.0 **Total Organic Carbon** mg/L 10 9.5 94 75-125

SAMPLE DUPLICATE: 1416038

Date: 11/22/2022 08:04 PM

Parameter Units 70234792006 Dup Result RPD Qualifiers
Total Organic Carbon mg/L <1.0 <1.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

QC Batch: 280128 QC Batch Method: SM22 5310

280128 Analysis Method: SM22 5310B Analysis Description:

Laboratory:

Pace Analytical Services - Melville

SM22 5310B

5310B TOC

Associated Lab Samples: 70234792010, 70234792011

METHOD BLANK: 1416044 Matrix: Water

Associated Lab Samples: 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/01/22 19:49

LABORATORY CONTROL SAMPLE: 1416045

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Organic Carbon** mg/L 10 9.3 93 85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 281356 Analysis Method: EPA 9014 Total Cyanide
QC Batch Method: EPA 9010C Analysis Description: 9014 Cyanide, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422290 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersCyanideug/L<10.0</td>10.011/09/22 16:45

LABORATORY CONTROL SAMPLE: 1422291

LCS LCS % Rec Spike Units Conc. Result % Rec Limits Qualifiers Parameter 85-115 Cyanide ug/L 75 80.6 107

MATRIX SPIKE SAMPLE: 1422292

70234792006 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 100 101 98 75-125 Cyanide ug/L

SAMPLE DUPLICATE: 1422293

Date: 11/22/2022 08:04 PM

Parameter Units 70234792006 Dup Result Result RPD Qualifiers

Cyanide ug/L <10.0 <10.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/22/2022 08:04 PM

	D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
--	----	---

H1 Analysis conducted outside the EPA method holding time.

H2 Extraction or preparation conducted outside EPA method holding time.

H3 Sample was received or analysis requested beyond the recognized method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
0234792001	1A	EPA 3005A	280111	EPA 6010C	280181
0234792002	1B	EPA 3005A	280111	EPA 6010C	280181
0234792003	1C	EPA 3005A	280111	EPA 6010C	280181
0234792004	6AR	EPA 3005A	280111	EPA 6010C	280181
0234792005	6B	EPA 3005A	280111	EPA 6010C	280181
0234792006	8	EPA 3005A	280111	EPA 6010C	280181
0234792007	9	EPA 3005A	280111	EPA 6010C	280181
0234792008	11A	EPA 3005A	280111	EPA 6010C	280181
0234792009	11B	EPA 3005A	280111	EPA 6010C	280181
0234792010	LEA-PRIMARY	EPA 3005A	280111	EPA 6010C	280181
0234792011	LEA-SECONDARY	EPA 3005A	280111	EPA 6010C	280181
0234792001	1A	SM22 2120B	279688		
0234792002	1B	SM22 2120B	279688		
0234792002	1C	SM22 2120B	279688		
0234792004	6AR	SM22 2120B	279688		
0234792005	6B	SM22 2120B	279688		
0234792006	8	SM22 2120B	279688		
0234792007	9	SM22 2120B	279688		
0234792008	11A	SM22 2120B	279688		
0234792009	11B	SM22 2120B	279688		
0234792010	LEA-PRIMARY	SM22 2120B	279688		
234792011	LEA-SECONDARY	SM22 2120B	279688		
0234792001	1 A	SM22 2320B	281354		
0234792001	1B	SM22 2320B	281354		
0234792003	1C	SM22 2320B	281354		
0234792004	6AR	SM22 2320B	281354		
0234792005	6B	SM22 2320B	281354		
0234792006	8	SM22 2320B	281354		
0234792007	9	SM22 2320B	281354		
0234792007	11A	SM22 2320B	281354		
0234792009	11B	SM22 2320B	281354		
0234792010 0234792011	LEA-PRIMARY LEA-SECONDARY	SM22 2320B SM22 2320B	281354 281354		
0234792001		SM22 2340C	281434		
0234792001 0234792002	1A 1B	SM22 2340C SM22 2340C	281434		
0234792002 0234792003	1C	SM22 2340C SM22 2340C	281434 281434		
0234792003	6AR	SM22 2340C SM22 2340C	281434 281434		
0234792005	6B	SM22 2340C	281434		
0234792006	8	SM22 2340C	281434		
0234792007	9	SM22 2340C	281434		
0234792008	11A	SM22 2340C	281434		
0234792009	11B	SM22 2340C	281434		
0234792010	LEA-PRIMARY	SM22 2340C	281434		
0234792011	LEA-SECONDARY	SM22 2340C	281434		
0234792001	1A	SM22 2540C	280248		
0234792002	1B	SM22 2540C	280248		
0234792003	1C	SM22 2540C	280248		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
70234792004	6AR	SM22 2540C	280249		
0234792005	6B	SM22 2540C	280249		
0234792006	8	SM22 2540C	280249		
0234792007	9	SM22 2540C	280249		
0234792008	11A	SM22 2540C	280249		
0234792009	11B	SM22 2540C	280249		
0234792010	LEA-PRIMARY	SM22 2540C	280249		
0234792011	LEA-SECONDARY	SM22 2540C	280249		
0234792001	1A	SM22 3500-Cr B	279687		
0234792002	1B	SM22 3500-Cr B	279687		
0234792003	1C	SM22 3500-Cr B	279687		
0234792004	6AR	SM22 3500-Cr B	279687		
0234792005	6B	SM22 3500-Cr B	279687		
0234792006	8	SM22 3500-Cr B	279687		
0234792007	9	SM22 3500-Cr B	279687		
0234792008	11A	SM22 3500-Cr B	279687		
0234792009	11B	SM22 3500-Cr B	279687		
0234792010	LEA-PRIMARY	SM22 3500-Cr B	279687		
0234792011	LEA-SECONDARY	SM22 3500-Cr B	279687		
0234792001	1A	EPA 410.4	281327	EPA 410.4	281404
0234792002	1B	EPA 410.4	281327	EPA 410.4	281404
0234792003	1C	EPA 410.4	281327	EPA 410.4	281404
0234792004	6AR	EPA 410.4	281327	EPA 410.4	281404
0234792005	6B	EPA 410.4	281327	EPA 410.4	281404
0234792006	8	EPA 410.4	281327	EPA 410.4	281404
0234792007	9	EPA 410.4	281327	EPA 410.4	281404
0234792008	11A	EPA 410.4	281327	EPA 410.4	281404
0234792009	11B	EPA 410.4	281327	EPA 410.4	281404
0234792010	LEA-PRIMARY	EPA 410.4	281327	EPA 410.4	281404
0234792011	LEA-SECONDARY	EPA 410.4	281327	EPA 410.4	281404
0234792001	1A	SM22 5210B	279754	SM22 5210B	280628
0234792002	1B	SM22 5210B	279754	SM22 5210B	280628
0234792003	1C	SM22 5210B	279754	SM22 5210B	280628
0234792004	6AR	SM22 5210B	279754	SM22 5210B	280628
0234792005	6B	SM22 5210B	279754	SM22 5210B	280628
0234792006	8	SM22 5210B	279754	SM22 5210B	280628
0234792007	9	SM22 5210B	279754	SM22 5210B	280628
0234792008	11A	SM22 5210B	279842	SM22 5210B	280631
0234792009	11B	SM22 5210B	279842	SM22 5210B	280631
0234792010	LEA-PRIMARY	SM22 5210B	279754	SM22 5210B	280628
0234792011	LEA-SECONDARY	SM22 5210B	279754	SM22 5210B	280628
0234792001	1A	EPA 300.0	280155		
0234792002	1B	EPA 300.0	280155		
0234792003	1C	EPA 300.0	280155		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234792005	— 	EPA 300.0	280662	_	
70234792006	8	EPA 300.0	280662		
70234792007	9	EPA 300.0	280662		
70234792008	11A	EPA 300.0	280662		
70234792009	11B	EPA 300.0	280662		
70234792010	LEA-PRIMARY	EPA 300.0	282458		
70234792011	LEA-SECONDARY	EPA 300.0	282458		
70234792001	1A	EPA 351.2	281329	EPA 351.2	281331
70234792002	1B	EPA 351.2	281329	EPA 351.2	281331
70234792003	1C	EPA 351.2	281329	EPA 351.2	281331
70234792004	6AR	EPA 351.2	281329	EPA 351.2	281331
70234792005	6B	EPA 351.2	281329	EPA 351.2	281331
70234792006	8	EPA 351.2	281329	EPA 351.2	281331
70234792007	9	EPA 351.2	281329	EPA 351.2	281331
70234792008	11A	EPA 351.2	281329	EPA 351.2	281331
70234792009	11B	EPA 351.2	281329	EPA 351.2	281331
70234792010	LEA-PRIMARY	EPA 351.2	281329	EPA 351.2	281331
70234792011	LEA-SECONDARY	EPA 351.2	281329	EPA 351.2	281331
0234792002	1B	EPA 353.2	279695		
70234792003	1C	EPA 353.2	279695		
70234792004	6AR	EPA 353.2	279694		
70234792005	6B	EPA 353.2	279694		
70234792006	8	EPA 353.2	279695		
70234792007	9	EPA 353.2	279695		
70234792008	11A	EPA 353.2	279695		
70234792009	11B	EPA 353.2	279695		
70234792010	LEA-PRIMARY	EPA 353.2	279694		
70234792011	LEA-SECONDARY	EPA 353.2	279694		
70234792001	1A	EPA 353.2	280302		
70234792001	1A	EPA 353.2	279690		
70234792002	1B	EPA 353.2	279691		
70234792003	1C	EPA 353.2	279691		
70234792004	6AR	EPA 353.2	279690		
70234792005	6B	EPA 353.2	279690		
70234792006	8	EPA 353.2	279691		
70234792007	9	EPA 353.2	279691		
0234792008	11A	EPA 353.2	279691		
70234792009	11B	EPA 353.2	279691		
70234792010	LEA-PRIMARY	EPA 353.2	279690		
70234792011	LEA-SECONDARY	EPA 353.2	279690		
70234792001	1A	SM22 4500 NH3 H	279982		
70234792002	1B	SM22 4500 NH3 H	279982		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70234792003	1C	SM22 4500 NH3 H	279982		
70234792004	6AR	SM22 4500 NH3 H	279982		
70234792005	6B	SM22 4500 NH3 H	279982		
70234792006	8	SM22 4500 NH3 H	279982		
70234792007	9	SM22 4500 NH3 H	279982		
70234792008	11A	SM22 4500 NH3 H	279982		
70234792009	11B	SM22 4500 NH3 H	279982		
70234792010	LEA-PRIMARY	SM22 4500 NH3 H	279982		
70234792011	LEA-SECONDARY	SM22 4500 NH3 H	279982		
70234792001	1A	SM22 5310B	279960		
70234792002	1B	SM22 5310B	279960		
70234792003	1C	SM22 5310B	280126		
0234792004	6AR	SM22 5310B	280126		
0234792005	6B	SM22 5310B	280126		
0234792006	8	SM22 5310B	280126		
0234792007	9	SM22 5310B	280126		
0234792008	11A	SM22 5310B	280126		
0234792009	11B	SM22 5310B	280126		
0234792010	LEA-PRIMARY	SM22 5310B	280128		
70234792011	LEA-SECONDARY	SM22 5310B	280128		
70234792001	1A	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792002	1B	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792003	1C	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
70234792004	6AR	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792005	6B	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792006	8	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792007	9	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792008	11A	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792009	11B	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
70234792010	LEA-PRIMARY	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
70234792011	LEA-SECONDARY	EPA 9010C	281356	EPA 9014 Total Cyanide	281474

CHAIN-OF-CUSTODY / Analytical

WO#: 70234792

The Chain-of-Custody is a LEGAL DOCUMENT. All Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions four

Invoice Information

Required Project Information:

Report To: Copy To:

Waste Management Division

Southampton, NY 11968

Email:

Address:

Town of Southampton

Required Client Information:

Jurchase Order #;

Company Name:

Address:

Regulatory Agency

Samples SAMPLE CONDITIONS Cooler pelses Custody State / Location Received on Residual Chlorine (Y/N) TEMP in C 1010 TIME Requested Analysis Filtered (Y/N) DATE Dissloved Metals 0 TAL Metals+8 & Hardness × × × × × Cyanide × COC × × × × × × kimberiey mack@pacelabs.com, × СОД'ИНЗ'ИОЗ'ТКИ, РЪепо × × × × × × × × × × ACCEPTED BY / AFFILIATION × × × × AIK, NO2, TDS × × BOD, Br, CI, SO4, Color, Cr6 N/A Analyses Test Methanol Na2S203 Preservatives 5479 Line 3 HOEN Pace Quote: Pace Project Manager, HCI EONH Pace Profile #: H2SO4 m TIME Unpreserved (0 9 -SAMPLER NAME AND SIGNATURE # OF CONTAINERS PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 1445 130 TIME KO KO 1250 13.30 סויצו 0 END oblos DATE 10/36 COLLECTED RELINQUISHED BY / AFFILIATION TIME North Sea Landfill START DATE SAMPLE TYPE (G=GRAB C=COMP) ¥ ¥ ¥ ₹ ₹ ₹ ž ₹ ₹ Ž 5 MATRIX CODE (see valid codes to left) ₹ Project Name: Project #: CODE DW WT WW SL OL WP AR TS MATRIX
Drinking Water
Water
Waste Water
Product
Soul/Solid
Oil
Wipe
Air
Tissue ADDITIONAL COMMENTS One Character per box, (A-Z, 0-9 / , -) Sample Ids must be unique c fellen@southamptontownny gov (631)283-5210 Fax: SAMPLE ID 9 Requested Due Date: 30/18 JAN ST SH- HA - MO Part 360 ROUTINE 6AR 8 MS 4 7 18 5 6B Page 74 of 94 9 11 72 œ O # MaTI က S 9

(N/Y)

(N/A)

(Y/N)

DATE Signed:

SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info pacelabs.com/hubfs/pas-standard-terms.pdf The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately,

ntact (Y/N) Samples SAMPLE CONDITIONS (N/A) Cooler ō Sealed Custody Regulatory Agency State / Location (N/A) 90 Received on Residual Chlorine (Y/N) Page: TEMP in C 10/0 TIME Requested Analysis Filtered (Y/N) DATE Dissloved Metals TAL Metals+B & Hardness DATE Signed: TOC × × × × × kimberley mack@pacelabs.com, СОД'ИНЗ'ИОЗ'ТКИ БРЕПО × × × × ACCEPTED BY / AFFILIATION AIK, NO2, TDS BOD, Br, CI, SO4, Color, Cr6 × Analyses Test N/A Methanol Preservatives Na2S2O3 5479 Line 3 NaOH Pace Project Manager: HCI Invoice Information: ЕОИН Company Name: Pace Profile #: H2SO4 3 Pace Quote: 'n 100 Allention: TIME Address: è 18 Unpreserved K Г # OF CONTAINERS SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION PRINT Name of SAMPLER: DATE 10/27 515 1550 162 5430 TIME 1445 242 23 END ic Rie DATE 0C 01 COLLECTED Pulco RELINQUISHED BY / AFFILIATION TIME North Sea Landfill START DATE Required Project Information: Fetten, Christine Will Yearn SAMPLE TYPE (G=GRAB C=COMP) ₹ 5 M M 5 'urchase Order #: 5 Ž 3 MATRIX CODE (see valid codes to left) LEA-Scandery CA Project Name: Report To: Section B Copy To: CODE DW WT WW P WW SL OL OL OL TS Project # MATRIX Drinking Water Waste Water Waste Water Product SolitSolid Oil Wipe Air Other Tissuc ADDITIONAL COMMENTS (A-Z, 0-9 / , -) Sample Ids must be unique LEA-Deimer Waste Management Division Fax One Character per box. c fellen@southamplonlownny gov SAMPLE ID Seamdary Town of Southampton LEA-Primory (631)283-5210 Required Client Information: Southampton, NY 11968 Requested Due Date SW BZT TZX M8 LEA. Add Arsenic 8 MSD an 360 ROUTINE ddress: Page 75 of 94 5 4 15 16 13 17 18 20 22 23 24 21 # MHTI

	Sa	mpl	e Conditio	on Upo	on Re	WO#	:70	23	4792
Pace Analytical®	Client N	ame:	910552		Pro	PM: KMM	1		Date: 11/10/22
Courier T End Ev T UDS T USDS TClinet	w				-	CLIENT:	105		
Courier: Fed Ex UPS USPS Client Tracking #:	Lomine	ciai	☐ace ☐the	31					
Custody Seal on Cooler/Box Present: Ne	c DNo	Soal	s intact: Te	o∏ No f	_ N/Λ	L	noraturo	Plank Di	resent: Yes No-
Packing Material: Bubble Wrap Bubble				_	N/ A		-		ue None
Thermometer Used: Thermometer Used:	. –		tor: + O.1			• •			process has begun
Cooler Temperature (°C): 4.2			ature Correcti		4.3				placed in freezer
Temp should be above freezing to 6.0°C		ember	ature correcti	eul CJ.	. /		e) illile ac	DON KILS	praced in treezer
USDA Regulated Soil (An/A, water sample	1		ė	Data ar	nd Initials	of person	ovaminin	a conton	
Did samples originate in a quarantine zone wi				, FL, GA, IL	J, LA, MS, N				rom a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?				12 .1 .1	:11 00				uerto Rico}? ☐ Yes🂢 No
If Yes to either question, fill out a Regulate	ed Soil Che	ecklist	(F-LI-C-UIU) ai	na inclua	e with St	UK/CUC pa			
Chain of Custody Present:	Thyan			1			COMME	:N12:	
Chain of Custody Filled Out:	Yes	No		2.					
Chain of Custody Filled Out. Chain of Custody Relinquished:	es			3.					
Sampler Name & Signature on COC:	Yes		□N/A	4.					
Samples Arrived within Hold Time:	Yes		ШП/А	5.		-			
Short Hold Time Analysis (<72hr):	⊿Yes			6.					
Rush Turn Around Time Requested:	□Yes	ENO		7.					
Sufficient Volume: (Triple volume provided for		□No		8.					
Correct Containers Used:	⊠Yes			9.					
-Pace Containers Used:	⊠Yes			0.					
Containers Intact:	Yes	□No		10.					
Filtered volume received for Dissolved tests	□Yes	□No	₽N/A	11.	Note it	f sediment i	s visible in	the disso	olved container.
Sample Labels match COC:	Yes	□No	11/11	12.	1101011	Cooming	0 1101010 111	tho diose	nvoa borreamor.
-Includes date/time/ID, Matrix: SL WP (
All containers needing preservation have beer		□No	□N/A	13.) ₃ □ H ₂	SO ₄ (□ NaOH	□ HCl
checked?	1		,						
pH paper Lot # LL 1930-85									
All containers needing preservation are found				Sample	#				
in compliance with method recommendation?				1					
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	□Ves	□No	□N/A						
NAOH>12 Cyanide)									
Exceptions: VOA, Coliform, TOC/DOC, Oil and Gr	ease,			-					
DRO/8015 (water).				Initial w	nen compl	- 1	of added		Date/Time preservative
Per Method, VOA pH is checked after analysis						pres	ervative:		added:
Samples checked for dechlorination:	Pres	□No	□N/A	14.					
KI starch test strips Lot # 14-500					D '''	(D 011	\		
Residual chlorine strips Lot # Scotter SM 4500 CN samples checked for sulfide?		-NI-	mN/A	15.	Positive	for Res. Chic	orine? Y	NO.	
Lead Acetate Strips Lot # Scol21	⊠Yes	□No	□N/A	15.	Donitive	for C. 16:400	V /	41	
Headspace in VOA Vials (>6mm):	□\/oo	⊠No	ı́DN/A	16.	Positive	for Sulfide?	Υ (W) .	
Trip Blank Present:	□Yes •	-	DN/A	17.					
	E)Yes	□No	DN/A	0.					
Pace Trip Blank Lot # (if applicable):	7105	□No	PIN/A						
Client Notification/ Resolution:				Field Dat	a Require	d2	Υ	/ NI	
Person Contacted:				_rieiu bal	a keyulle Date/T		ĭ	/ IN	
Comments/ Resolution:					- Date/1	niic.			
Carrier (Coolection)									

Microbac Laboratories Inc., - Marietta, OH

Client Project ID:

70234792

For:

LATOYA SOBRATIE

Pace Analytical Melville

575 BROAD HOLLOW RD

MELVILLE, NY 11747

Project State of Origin: New York

Project Requested Certification:

Microbac Laboratories Inc., - Marietta, OH 10861 NY State Department of Health

All test results meet the requirements of the QAPP and other applicable contract terms and conditions. Any exceptions are attached to this cover page or addressed in the method narratives presented in the report. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. The reported results are related only to the samples analyzed as received. This laboratory report may be released as a hardcopy and in computer-readable form submitted electronically or on diskette. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories, Inc.

Laboratory Project Manager:

Dichelle Tax

Michelle Taylor

Project Manager

Michelle.Taylor@microbac.com

Authorized By:

Dichelle Tay

Michelle Taylor
Project Manager

Issued: 11/15/2022

Microbac Laboratories, Inc.

Client Project ID: 70234792

Cooler Receipt Log

Cooler ID: Default Cooler	Temp:	0.2°C	
			Cooler Inspection Checklist
Ice Present or not required?		Yes	
Shipping containers sealed or not required?		Yes	
Custody seals intact or not required?		Yes	
Chain of Custody (COC) Present?		Yes	
COC includes customer information?		Yes	
Relinquished and received signature on COC?		Yes	
Sample collector identified on COC?		Yes	
Sample type identified on COC?		Yes	
Correct type of Containers Received		Yes	
Correct number of containers listed on COC?		Yes	
Containers Intact?		Yes	
COC includes requested analyses?		Yes	
Enough sample volume for indicated tests received?		Yes	
Sample labels match COC (Name, Date & Time?)		No	
Samples arrived within hold time?		Yes	
Correct preservatives on COC or not required?		Yes	
Chemical preservations checked or not required?		Yes	
Preservation checks meet method requirements?		Yes	
VOA vials have zero headspace, or not recd.?		Yes	

Client Project ID: 70234792

Case Narrative

Received extra containers for sample 8. The client confirmed the extra containers should be used for MS/MSD.

Client ID: 1A

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-01

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 12:10

Prep Date: 11/11/2022 12:12

Analyzed: 11/14/2022 13:20

Calibration: NA

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1

Instrument: UV-2600

Matrix: Aqueous

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0059	0.0028	0.0055		

Client ID: 1B

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-02

Matrix: Aqueous

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 12:50

Prep Date: 11/11/2022 12:12

Analyzed: 11/14/2022 13:20

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 1C

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 13:30

Prep Date: 11/11/2022 12:12 Analyzed: 11/14/2022 13:20

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Matrix: Aqueous Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1

Instrument: UV-2600

Laboratory ID: M2K0078-03

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 6AR

Laboratory ID: M2K0078-04

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 10:30

Prep Date: 11/11/2022 12:12 Analyzed: 11/14/2022 13:20

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Matrix: Aqueous Batch / Sequence: B2K0680 /

Instrument: UV-2600

Analytical Method: EPA 420.1

Analyst: EPT

Units: mg/L Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 6B

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-05

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 11:20

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600 Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 8

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-06

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 14:45

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

Analyst: EPT

Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0038	0.0028	0.0055	J	
i Filefiolics, iolai	TOTPHEN	0.0038	0.002	<u> </u>	8 0.0055	8 0.0055 3

Client ID: 9

Batch / Sequence: B2K0511 /

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 15:15

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Laboratory ID: M2K0078-07

Matrix: Aqueous

Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

ber Result	MDL	KL	Flag	Qualifier
N ND	0.0028	0.0055	U	

Client ID: 11A

Laboratory ID: M2K0078-08

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 15:50

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	
		1				

Client ID: 11B

Batch / Sequence: B2K0511 /

Laboratory ID: M2K0078-09

Matrix: Aqueous

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 16:30

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analytical Method: EPA 420.1 Calibration: NA

Instrument: UV-2600 Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0030	0.0028	0.0055	J	

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-10

Analyst: EPT

Client ID: LEA-PRIMARY

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 08:10

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0132	0.0028	0.0055		

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Client ID: LEA-SECONDARY

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 08:30

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600

Laboratory ID: M2K0078-11

Matrix: Aqueous

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0128	0.0028	0.0055		

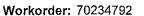
Client Project ID: 70234792

Notes and Definitions

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

mg/L: Milligrams per Liter

U: The analyte was analyzed for but was not detected above the reported quantitation limit. The quantitation limit has been adjusted for any dilution or concentration of the sample.


MDL: Method Detection Limit

RL: Reporting Limit

Chain of Custody

PASI New York Laboratory

Workorder Name:

NORTH SEA LANDFILL 10/26

Results Requested By: 11/10/2022 Report / Invoice To Subcontract To Requested Analysis Kimberlev M. Mack P.O. 70234792KMM Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747 Microbac Laboratories, Inc. Phone (631)694-3040 Email: kimberley.mack@pacelabs.com 158 Starlite Drive Marietta, OH 45750 Phenols State of Sample Origin: NY Preserved Containers Collect Sample ID Date/Time Item Lab ID Matrix LAB USE ONLY 1A 10/26/2022 12:10 70234792001 Х Water 2 1B Χ 10/26/2022 12:50 70234792002 Water Χ 1C 10/26/2022 13:30 70234792003 Water Х 6AR 10/26/2022 10:30 70234792004 Water 5 6B Χ 10/26/2022 11:20 70234792005 Water Х 6 10/26/2022 14:45 70234792006 8 Water Х 10/26/2022 15:15 70234792007 Water Χ 11A 10/26/2022 15:50 70234792008 Water Χ 9 11B 10/26/2022 16:30 Water 70234792009 10 LEA-PRIMARY 10/26/2022 08:10 Water Χ 70234792010 11 LEA-SECONDARY Х 10/26/2022 08:30 70234792011 Water 12 13 14 15

Pace Analytical - Melville. NY Rec'd: 11/01/2022 09:46 By: Brenda Gregory Temp: 0.2

E CONTROL HISTORY	\triangle					Comments
Transfers	Released By	Date/Time	Received By	Date/Time	,	
1	May Add Wice II	10/31/18/90	Dinda ougou	11/1220	1946	
2	N. IV &	777			•	
3	0~					
Cooler Te	mperature on Receipt 💛 🥍 °C	Custod	y Seal Y or N Rece	ived on Ice	Y or N	Samples Intact Y or N

Work Order #<u>U2 K0078</u>

COOLER TEMP >6° C LOG

301 & 1 100 10		CUU	LER TEMP >6° C	LOG		
	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
SAMPLE ID	°C	°C	ºC	°c	°c	°c
			-			
			÷			
			ż			
			2			
				\		
			538			
		1				
		101/013	:			
oH Lot # <u>#@9915</u> 9	Ò	рН	Exceptions			
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6

pH Lot # <u>HCA915</u> 90		На	Exceptions			<u> </u>
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
			_			
			-			
			:-			
				200		
			1000			
			101			
		<u> </u>				
	/					
		レジュニー	RVATIV	harne.		·····
			PTIONS			
			VOIVE .			

Document Control # 1957 Last 04-10-2019 _AS NOTED

Issued to: Document Master File

November 10, 2022

Tom Houghton Town of Southampton 116 Hampton Road Waste Management Division Southampton, NY 11968

RE: Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Dear Tom Houghton:

Enclosed are the analytical results for sample(s) received by the laboratory on October 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting

Richard Hodgson, Town of Southampton

Amanda Lauth, PW Grosser

Ed Thompson, Town of Southampton

(631)694-3040

CERTIFICATIONS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: November 10, 2022

General Information:

4 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280111

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234792006

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1415992)
 - Barium
 - Silver

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved
Client: Town of Southampton
Date: November 10, 2022

General Information:

1 sample was analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 279787

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234794003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1414476)Barium, Dissolved
 - Silver, Dissolved

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 7470A

Description: 7470 Mercury

Client: Town of Southampton

Date: November 10, 2022

General Information:

4 samples were analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 7470A

Description: 7470 Mercury, Dissolved Client: Town of Southampton Date: November 10, 2022

General Information:

1 sample was analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 6AR	Lab ID: 702	34794001	Collected: 10/26/2	22 10:30	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Aluminum	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	11/01/22 09:23	11/01/22 16:41	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-38-2	
Barium	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:41	7440-41-7	
Boron	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:41	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:41	7440-43-9	
Calcium	7180	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7440-70-2	
Chromium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-47-3	
Cobalt	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:41	7440-48-4	
Copper	<25.0	ug/L	25.0	1	11/01/22 09:23	11/01/22 16:41	7440-50-8	
Iron	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:41	7439-89-6	
Lead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:41	7439-92-1	
Magnesium	2680	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7439-95-4	
Manganese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7439-96-5	
Nickel	<40.0	ug/L	40.0	1	11/01/22 09:23	11/01/22 16:41	7440-02-0	
Potassium	<5000	ug/L	5000	1	11/01/22 09:23	11/01/22 16:41	7440-09-7	
Selenium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7782-49-2	
Silver	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-22-4	
Sodium	7680	ug/L	5000	1	11/01/22 09:23	11/01/22 16:41	7440-23-5	
Thallium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-28-0	
√anadium	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:41	7440-62-2	
Zinc	<20.0	ug/L	20.0	1	11/01/22 09:23	11/01/22 16:41	7440-66-6	
7470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: E	PA 7470A			
	Pace Analytica	I Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	10/31/22 12:16	11/01/22 12:59	7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Analytical Method: EPA 6010C Preparation Method: EPA 3005A Pace Analytical Services - Melville Aluminum -200 ug/L 00.0 1 11/01/22 09:23 11/01/22 16:43 7429-90-5 Antimony -60.0 ug/L 60.0 1 11/01/22 09:23 11/01/22 16:43 7440-36-0 Arsenic -10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-38-2 Barium -200 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7440-38-2 Barium -50.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-41-7 Boron -50.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-41-7 Boron -50.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-42-8 Cadmium -2.5 ug/L 2.5 1 11/01/22 09:23 11/01/22 16:43 7440-43-9 Calcium -4200 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7440-70-2 Chromium -10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-70-2 Chromium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Foron -25.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Foron -10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Foron -10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead -5.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead -5.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead -5.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7439-96-5 Nickel -40.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7439-96-5 Nickel -40.0 ug/L 40.0 1 11/01/22 09:23 11/01/22 16:43 7439-96-5 Selenium -5000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-09-7 Selenium -10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-09-7 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-09-7 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-09-7 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-09-7 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-09-7 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-09-7 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-29-6 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-29-6 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-29-6 Selenium -10.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16	Sample: 6B	Lab ID: 702	34794002	Collected: 10/26/2	22 11:20	Received: 10)/27/22 11:30 N	Natrix: Water	
Pace Analytical Services - Melville Aluminum <200	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Aluminum \$\text{200} ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7429-90-5 7401 7429-90-5 7401 7429-90-5 7401 7429-90-5 7401 7429-90-5 7401 7429-90-5 7401 7429-90-5 7401 7429-90-5 7401 7429-90-5 7401 7429-90-5 7440-90-7 7440-90-7	6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
Antimony		Pace Analytica	l Services -	Melville					
Antimony	Aluminum	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:43	7429-90-5	
Sarium	Antimony	<60.0	-	60.0	1	11/01/22 09:23	11/01/22 16:43	7440-36-0	
Sery S	Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7440-38-2	
Soron Solon Solo	Barium	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:43	7440-39-3	
Cadmium	Beryllium	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:43	7440-41-7	
Calcium 4290 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7440-70-2 Chromium <10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-70-2 Cobalt <50.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-48-4 Copper <25.0 ug/L 25.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron <100 ug/L 100 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead <5.0 ug/L 5.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead <5.0 ug/L 5.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead <5.0 ug/L 5.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead <5.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead <5.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7439-96-5	Boron	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:43	7440-42-8	
Chromium 10.0	Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:43	7440-43-9	
Cobalt	Calcium	4290	ug/L	200	1	11/01/22 09:23	11/01/22 16:43	7440-70-2	
Copper	Chromium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7440-47-3	
Company Comp	Cobalt	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:43	7440-48-4	
Selenium Selenium	Copper	<25.0	ug/L	25.0	1	11/01/22 09:23	11/01/22 16:43	7440-50-8	
Magnesium 2390 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7439-95-4 Manganese <a #"="" href="https://docs.org/linear.com/line</td><td>ron</td><td><100</td><td>ug/L</td><td>100</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7439-89-6</td><td></td></tr><tr><td>Manganese 10.0</td><td>Lead</td><td><5.0</td><td>ug/L</td><td>5.0</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7439-92-1</td><td></td></tr><tr><td> Nickel 40.0 ug/L 40.0 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 </td><td>Magnesium</td><td>2390</td><td>ug/L</td><td>200</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7439-95-4</td><td></td></tr><tr><td> Potassium</td><td>Manganese</td><td><10.0</td><td>ug/L</td><td>10.0</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7439-96-5</td><td></td></tr><tr><td> Selenium Selenium</td><td>Nickel</td><td><40.0</td><td>ug/L</td><td>40.0</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7440-02-0</td><td></td></tr><tr><td>Silver</td><td>Potassium</td><td><5000</td><td>ug/L</td><td>5000</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7440-09-7</td><td></td></tr><tr><td>Sodium 8000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-23-5 Thallium <10.0</td> ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-28-0 Vanadium <50.0</td> ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-62-2 Zinc <20.0</td> ug/L 20.0 1 11/01/22 09:23 11/01/22 16:43 7440-66-6 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Melville</td><td>Selenium</td><td><10.0</td><td>ug/L</td><td>10.0</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7782-49-2</td><td></td></tr><tr><td>Thallium</td><td>Silver</td><td><10.0</td><td>ug/L</td><td>10.0</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7440-22-4</td><td></td></tr><tr><td>Vanadium</td><td>Sodium</td><td>8000</td><td>ug/L</td><td>5000</td><td>1</td><td>11/01/22 09:23</td><td>11/01/22 16:43</td><td>7440-23-5</td><td></td></tr><tr><td>Zinc 	Thallium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7440-28-0	
Zinc <20.0 ug/L 20.0 1 11/01/22 09:23 11/01/22 16:43 7440-66-6 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Melville	Vanadium	<50.0	Ū	50.0	1	11/01/22 09:23	11/01/22 16:43	7440-62-2	
Pace Analytical Services - Melville	Zinc	<20.0	•	20.0	1	11/01/22 09:23	11/01/22 16:43	7440-66-6	
	7470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: El	PA 7470A			
Vercury <0.20 ug/L 0.20 1 10/31/22 12:16 11/01/22 13:00 7439-97-6		Pace Analytica	l Services -	Melville					
	Mercury	<0.20	ug/L	0.20	1	10/31/22 12:16	11/01/22 13:00	7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 11A	Lab ID: 7	70234794003	Collected:	10/26/2	2 15:50	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical M	Method: EPA 60	10C Prepara	ation Me	thod: EF	PA 3005A			
	Pace Analyt	tical Services -	Melville						
Aluminum	<200	ug/L		200	1	11/01/22 09:23	11/01/22 16:5	3 7429-90-5	
Antimony	<60.0			60.0	1		11/01/22 16:5		
Arsenic	<10.0	U		10.0	1		11/01/22 16:5		
Barium	<200	0		200	1		11/01/22 16:5		
Beryllium	<5.0	U		5.0	1		11/01/22 16:5		
Boron	<50.0	0		50.0	1		11/01/22 16:5		
Cadmium	<2.5			2.5	1		11/01/22 16:5		
Calcium	17300	U		200	1		11/01/22 16:5		
Chromium	<10.0	U		10.0	1		11/01/22 16:5		
Cobalt	<50.0			50.0	1		11/01/22 16:5		
Copper	<25.0	U		25.0	1		11/01/22 16:5		
ron	37100			100	1		11/01/22 16:5		
_ead	<5.0	0		5.0	1		11/01/22 16:5		
Jeau Magnesium	6890	U		200	1		11/01/22 16:5		
Magnesium Manganese	2040	0		10.0	1		11/01/22 16:5		
lickel	<40.0	J			1				
otassium	<5000	J		40.0	1		11/01/22 16:53 11/01/22 16:53		
		J		5000					
Selenium	<10.0			10.0	1		11/01/22 16:53		
Silver	<10.0	J		10.0	1		11/01/22 16:53		
Sodium	7230	J		5000	1		11/01/22 16:53		
Thallium	<10.0	J		10.0	1		11/01/22 16:53		
/anadium	<50.0	U		50.0	1		11/01/22 16:53		
linc	60.4	ug/L		20.0	1	11/01/22 09:23	11/01/22 16:53	3 /440-66-6	
010 MET ICP, Dissolved	Analytical M	lethod: EPA 60)10C						
	Pace Analyt	tical Services -	Melville						
Aluminum, Dissolved	<200	ug/L		200	1		10/28/22 15:2	5 7429-90-5	
Antimony, Dissolved	<60.0	ug/L		60.0	1		10/28/22 15:2	5 7440-36-0	
Arsenic, Dissolved	<10.0	ug/L		10.0	1		10/28/22 15:2	5 7440-38-2	
Barium, Dissolved	<200	ug/L		200	1		10/28/22 15:2	5 7440-39-3	M1
Beryllium, Dissolved	<5.0	ug/L		5.0	1		10/28/22 15:2	5 7440-41-7	
Boron, Dissolved	<50.0	ug/L		50.0	1		10/28/22 15:2	5 7440-42-8	
Cadmium, Dissolved	<2.5	ug/L		2.5	1		10/28/22 15:2	5 7440-43-9	
Calcium, Dissolved	17600	ug/L		200	1		10/28/22 15:2	5 7440-70-2	
Chromium, Dissolved	<10.0	ug/L		10.0	1		10/28/22 15:2	5 7440-47-3	
Cobalt, Dissolved	<50.0			50.0	1		10/28/22 15:2	5 7440-48-4	
Copper, Dissolved	<25.0	_		25.0	1		10/28/22 15:2	5 7440-50-8	
ron, Dissolved	601	ug/L		100	1		10/28/22 15:2	5 7439-89-6	
ead, Dissolved	<5.0	_		5.0	1		10/28/22 15:2		
Magnesium, Dissolved	7000	-		200	1		10/28/22 15:2		
Manganese, Dissolved	1160	•		10.0	1		10/28/22 15:2		
Nickel, Dissolved	<40.0	U		40.0	1		10/28/22 15:2		
Potassium, Dissolved	<5000	•		5000	1		10/28/22 15:2		
		~ g, –			-				
	<10.0	ua/l		10.0	1		10/28/22 15:2	5 7782-49-2	
Selenium, Dissolved Silver, Dissolved	<10.0 <10.0	-		10.0 10.0	1 1		10/28/22 15:2 10/28/22 15:2		M1

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 11A	Lab ID: 702	34794003	Collected: 10/26/	22 15:50	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10C					
	Pace Analytica	l Services -	Melville					
Thallium, Dissolved	<10.0	ug/L	10.0	1		10/28/22 15:2	5 7440-28-0	
Vanadium, Dissolved	<50.0	ug/L	50.0	1		10/28/22 15:2	5 7440-62-2	
Zinc, Dissolved	29.2	ug/L	20.0	1		10/28/22 15:25	5 7440-66-6	
7470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation M	ethod: E	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	10/31/22 12:10	6 11/01/22 13:02	2 7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	nod: EPA 74	70A Preparation M	ethod: E	PA 7470A			
•	Pace Analytica	l Services -	Melville					
Mercury, Dissolved	<0.20	ug/L	0.20	1	11/10/22 07:50	0 11/10/22 13:48	3 7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 11B	Lab ID: 7023	34794004	Collected: 10/26/2	22 16:30	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	od: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
	Pace Analytical	l Services -	Melville					
Aluminum	1530	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	11/01/22 09:23	11/01/22 16:55	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-38-2	
Barium	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:55	7440-41-7	
Boron	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:55	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:55	7440-43-9	
Calcium	17700	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7440-70-2	
Chromium	57.7	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-47-3	
Cobalt	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:55	7440-48-4	
Copper	<25.0	ug/L	25.0	1	11/01/22 09:23	11/01/22 16:55	7440-50-8	
ron	12300	ug/L	100	1	11/01/22 09:23	11/01/22 16:55	7439-89-6	
_ead	8.8	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:55	7439-92-1	
Magnesium	3000	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7439-95-4	
Manganese	192	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7439-96-5	
Nickel	55.9	ug/L	40.0	1	11/01/22 09:23	11/01/22 16:55	7440-02-0	
Potassium	5010	ug/L	5000	1	11/01/22 09:23	11/01/22 16:55	7440-09-7	
Selenium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7782-49-2	
Silver	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-22-4	
Sodium	7980	ug/L	5000	1	11/01/22 09:23	11/01/22 16:55	7440-23-5	
Thallium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-28-0	
√anadium	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:55	7440-62-2	
Zinc	22.7	ug/L	20.0	1	11/01/22 09:23	11/01/22 16:55	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	170A Preparation Me	thod: El	PA 7470A			
	Pace Analytical	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	11/02/22 12:00	11/02/22 14:34	7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

QC Batch: 279787 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794003

METHOD BLANK: 1414473 Matrix: Water

Associated Lab Samples: 70234794003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum, Dissolved	ug/L	<200	200	10/28/22 15:14	
Antimony, Dissolved	ug/L	<60.0	60.0	10/28/22 15:14	
Arsenic, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Barium, Dissolved	ug/L	<200	200	10/28/22 15:14	
Beryllium, Dissolved	ug/L	<5.0	5.0	10/28/22 15:14	
Boron, Dissolved	ug/L	<50.0	50.0	10/28/22 15:14	
Cadmium, Dissolved	ug/L	<2.5	2.5	10/28/22 15:14	
Calcium, Dissolved	ug/L	<200	200	10/28/22 15:14	
Chromium, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Cobalt, Dissolved	ug/L	<50.0	50.0	10/28/22 15:14	
Copper, Dissolved	ug/L	<25.0	25.0	10/28/22 15:14	
Iron, Dissolved	ug/L	<100	100	10/28/22 15:14	
Lead, Dissolved	ug/L	<5.0	5.0	10/28/22 15:14	
Magnesium, Dissolved	ug/L	<200	200	10/28/22 15:14	
Manganese, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Nickel, Dissolved	ug/L	<40.0	40.0	10/28/22 15:14	
Potassium, Dissolved	ug/L	<5000	5000	10/28/22 15:14	
Selenium, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Silver, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Sodium, Dissolved	ug/L	< 5000	5000	10/28/22 15:14	
Thallium, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Vanadium, Dissolved	ug/L	<50.0	50.0	10/28/22 15:14	
Zinc, Dissolved	ug/L	<20.0	20.0	10/28/22 15:14	

LABORATORY CONTROL SAMPLE:	1414474					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	25000	24900	100	80-120	_
Antimony, Dissolved	ug/L	1000	992	99	80-120	
Arsenic, Dissolved	ug/L	500	497	99	80-120	
Barium, Dissolved	ug/L	500	490	98	80-120	
Beryllium, Dissolved	ug/L	500	506	101	80-120	
Boron, Dissolved	ug/L	1000	984	98	80-120	
Cadmium, Dissolved	ug/L	500	497	99	80-120	
Calcium, Dissolved	ug/L	25000	25100	100	80-120	
Chromium, Dissolved	ug/L	500	493	99	80-120	
Cobalt, Dissolved	ug/L	500	499	100	80-120	
Copper, Dissolved	ug/L	500	488	98	80-120	
Iron, Dissolved	ug/L	12500	12400	99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

LABORATORY CONTROL SAMPLE:	1414474					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Lead, Dissolved	ug/L	500	504	101	80-120	
Magnesium, Dissolved	ug/L	25000	24600	98	80-120	
Manganese, Dissolved	ug/L	500	496	99	80-120	
Nickel, Dissolved	ug/L	500	500	100	80-120	
Potassium, Dissolved	ug/L	25000	25000	100	80-120	
Selenium, Dissolved	ug/L	500	492	98	80-120	
Silver, Dissolved	ug/L	250	239	96	80-120	
Sodium, Dissolved	ug/L	25000	26100	104	80-120	
Thallium, Dissolved	ug/L	250	249	100	80-120	
Vanadium, Dissolved	ug/L	500	480	96	80-120	
Zinc, Dissolved	ug/L	500	499	100	80-120	

MATRIX SPIKE SAMPLE:	1414476						
		70234794003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	<200	25000	28200	113	75-125	
Antimony, Dissolved	ug/L	<60.0	1000	1120	112	75-125	
Arsenic, Dissolved	ug/L	<10.0	500	576	115	75-125	
Barium, Dissolved	ug/L	<200	500	464	72	75-125 N	Л1
Beryllium, Dissolved	ug/L	<5.0	500	569	114	75-125	
Boron, Dissolved	ug/L	<50.0	1000	1130	110	75-125	
Cadmium, Dissolved	ug/L	<2.5	500	569	114	75-125	
Calcium, Dissolved	ug/L	17600	25000	44100	106	75-125	
Chromium, Dissolved	ug/L	<10.0	500	564	113	75-125	
Cobalt, Dissolved	ug/L	<50.0	500	577	113	75-125	
Copper, Dissolved	ug/L	<25.0	500	551	110	75-125	
Iron, Dissolved	ug/L	601	12500	14500	112	75-125	
Lead, Dissolved	ug/L	<5.0	500	563	113	75-125	
Magnesium, Dissolved	ug/L	7000	25000	33800	107	75-125	
Manganese, Dissolved	ug/L	1160	500	1620	92	75-125	
Nickel, Dissolved	ug/L	<40.0	500	584	113	75-125	
Potassium, Dissolved	ug/L	<5000	25000	31400	114	75-125	
Selenium, Dissolved	ug/L	<10.0	500	597	119	75-125	
Silver, Dissolved	ug/L	<10.0	250	187	74	75-125 N	Л1
Sodium, Dissolved	ug/L	7510	25000	37000	118	75-125	
Thallium, Dissolved	ug/L	<10.0	250	283	112	75-125	
Vanadium, Dissolved	ug/L	<50.0	500	549	110	75-125	
Zinc, Dissolved	ug/L	29.2	500	603	115	75-125	

SAMPLE DUPLICATE: 1414475

Date: 11/10/2022 03:07 PM

		70234794003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum, Dissolved	ug/L	<200	<200		
Antimony, Dissolved	ug/L	<60.0	<60.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

SAMPLE DUPLICATE: 1414475 70234794003 Dup Parameter Units Result Result RPD Qualifiers <10.0 Arsenic, Dissolved ug/L <10.0 <200 Barium, Dissolved ug/L <200 < 5.0 Beryllium, Dissolved ug/L < 5.0 Boron, Dissolved <50.0 <50.0 ug/L Cadmium, Dissolved <2.5 <2.5 ug/L Calcium, Dissolved ug/L 17600 17800 1 Chromium, Dissolved <10.0 ug/L <10.0 Cobalt, Dissolved <50.0 <50.0 ug/L Copper, Dissolved <25.0 <25.0 ug/L 601 Iron, Dissolved ug/L 711 17 < 5.0 Lead, Dissolved ug/L < 5.0 7000 0 Magnesium, Dissolved ug/L 6990 1160 Manganese, Dissolved ug/L 1160 0 Nickel, Dissolved ug/L <40.0 <40.0 ug/L Potassium, Dissolved <5000 <5000 Selenium, Dissolved <10.0 <10.0 ug/L Silver, Dissolved ug/L <10.0 <10.0 7510 Sodium, Dissolved ug/L 7440 1 Thallium, Dissolved <10.0 ug/L <10.0 <50.0 Vanadium, Dissolved <50.0 ug/L 29.2 2 Zinc, Dissolved 29.7 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

QC Batch: 279942 Analysis Method: EPA 7470A
QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794001, 70234794002, 70234794003

METHOD BLANK: 1415202 Matrix: Water

Associated Lab Samples: 70234794001, 70234794002, 70234794003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 11/01/22 12:24

LABORATORY CONTROL SAMPLE: 1415203

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 0.90 90 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

QC Batch: 280290 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794004

METHOD BLANK: 1416989 Matrix: Water

Associated Lab Samples: 70234794004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 11/02/22 14:12

LABORATORY CONTROL SAMPLE: 1416990

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 0.97 97 80-120

MATRIX SPIKE SAMPLE: 1416991

70231628003 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.20 ug/L 0.83 75-125 H1 Mercury 83

SAMPLE DUPLICATE: 1416992

Date: 11/10/2022 03:07 PM

 Parameter
 Units
 70231628003 Result
 Dup Result
 RPD
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 <0.20</td>
 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

QC Batch: 281509

QC Batch Method: EPA 7470A Analysis Method:

EPA 7470A

Analysis Description:

7470 Mercury Dissolved

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70234794003

METHOD BLANK: 1423202

Matrix: Water

Associated Lab Samples: 70234794003

Blank Units Result Reporting Limit

Analyzed

Qualifiers

Mercury, Dissolved

ug/L

< 0.20

0.20 11/10/22 13:45

LABORATORY CONTROL SAMPLE: 1423203

Parameter

Parameter

Parameter

Spike

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury, Dissolved

Units

ug/L

Units

ug/L

Conc.

1.0

< 0.20

100

80-120

MATRIX SPIKE SAMPLE:

1423204

70234794003 Result

Spike Conc.

MS Result

1.0

MS % Rec % Rec Limits

75-125

Qualifiers

Mercury, Dissolved

SAMPLE DUPLICATE: 1423205

Parameter

70234794003 Units Result

Dup Result

RPD

Qualifiers

98

Date: 11/10/2022 03:07 PM

Mercury, Dissolved

ug/L

< 0.20

< 0.20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

QC Batch: 280111 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794001, 70234794002, 70234794003, 70234794004

METHOD BLANK: 1415989 Matrix: Water
Associated Lab Samples: 70234794001, 70234794002, 70234794003, 70234794004

		Blank Reportin			
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	11/01/22 15:47	
Antimony	ug/L	<60.0	60.0	11/01/22 15:47	
Arsenic	ug/L	<10.0	10.0	11/01/22 15:47	
Barium	ug/L	<200	200	11/01/22 15:47	
Beryllium	ug/L	<5.0	5.0	11/01/22 15:47	
Boron	ug/L	<50.0	50.0	11/01/22 15:47	
Cadmium	ug/L	<2.5	2.5	11/01/22 15:47	
Calcium	ug/L	<200	200	11/01/22 15:47	
Chromium	ug/L	<10.0	10.0	11/01/22 15:47	
Cobalt	ug/L	<50.0	50.0	11/01/22 15:47	
Copper	ug/L	<25.0	25.0	11/01/22 15:47	
Iron	ug/L	<100	100	11/01/22 15:47	
Lead	ug/L	<5.0	5.0	11/01/22 15:47	
Magnesium	ug/L	<200	200	11/01/22 15:47	
Manganese	ug/L	<10.0	10.0	11/01/22 15:47	
Nickel	ug/L	<40.0	40.0	11/01/22 15:47	
Potassium	ug/L	< 5000	5000	11/01/22 15:47	
Selenium	ug/L	<10.0	10.0	11/01/22 15:47	
Silver	ug/L	<10.0	10.0	11/01/22 15:47	
Sodium	ug/L	<5000	5000	11/01/22 15:47	
Thallium	ug/L	<10.0	10.0	11/01/22 15:47	
Vanadium	ug/L	<50.0	50.0	11/01/22 15:47	
Zinc	ug/L	<20.0	20.0	11/01/22 15:47	

LABORATORY CONTROL SAMPLE:	1415990					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	25000	25100	100	80-120	_
Antimony	ug/L	1000	996	100	80-120	
Arsenic	ug/L	500	494	99	80-120	
Barium	ug/L	500	498	100	80-120	
Beryllium	ug/L	500	501	100	80-120	
Boron	ug/L	1000	1010	101	80-120	
Cadmium	ug/L	500	499	100	80-120	
Calcium	ug/L	25000	25000	100	80-120	
Chromium	ug/L	500	501	100	80-120	
Cobalt	ug/L	500	498	100	80-120	
Copper	ug/L	500	504	101	80-120	
Iron	ug/L	12500	12500	100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

LABORATORY CONTROL SAMPLE:	1415990					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Lead	ug/L	500	506	101	80-120	
Magnesium	ug/L	25000	25100	100	80-120	
Manganese	ug/L	500	497	99	80-120	
Nickel	ug/L	500	501	100	80-120	
Potassium	ug/L	25000	25200	101	80-120	
Selenium	ug/L	500	494	99	80-120	
Silver	ug/L	250	254	102	80-120	
Sodium	ug/L	25000	25800	103	80-120	
Thallium	ug/L	250	252	101	80-120	
Vanadium	ug/L	500	502	100	80-120	
Zinc	ug/L	500	503	101	80-120	

MATRIX SPIKE SAMPLE:	1415992						
		70234792006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	<200	25000	24200	96	75-125	
Antimony	ug/L	<60.0	1000	940	94	75-125	
Arsenic	ug/L	<10.0	500	473	94	75-125	
Barium	ug/L	<200	500	313	58	75-125 N	/11
Beryllium	ug/L	<5.0	500	485	97	75-125	
Boron	ug/L	<50.0	1000	953	94	75-125	
Cadmium	ug/L	<2.5	500	476	95	75-125	
Calcium	ug/L	7410	25000	31300	96	75-125	
Chromium	ug/L	<10.0	500	482	96	75-125	
Cobalt	ug/L	<50.0	500	481	96	75-125	
Copper	ug/L	<25.0	500	480	96	75-125	
ron	ug/L	221	12500	12100	95	75-125	
_ead	ug/L	<5.0	500	476	95	75-125	
Magnesium	ug/L	3130	25000	26900	95	75-125	
Manganese	ug/L	20.2	500	506	97	75-125	
Nickel	ug/L	<40.0	500	493	96	75-125	
Potassium	ug/L	<5000	25000	25300	98	75-125	
Selenium	ug/L	<10.0	500	472	94	75-125	
Silver	ug/L	<10.0	250	186	74	75-125 N	Л1
Sodium	ug/L	7380	25000	32400	100	75-125	
Γhallium	ug/L	<10.0	250	243	97	75-125	
√anadium	ug/L	<50.0	500	486	97	75-125	
Zinc	ug/L	<20.0	500	487	97	75-125	

SAMPLE DUPLICATE: 1415991

Date: 11/10/2022 03:07 PM

		70234792006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum	ug/L	<200	<200		
Antimony	ug/L	<60.0	<60.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

SAMPLE DUPLICATE: 1415991					
		70234792006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Arsenic	ug/L	<10.0	<10.0		
Barium	ug/L	<200	<200		
Beryllium	ug/L	<5.0	< 5.0		
Boron	ug/L	<50.0	<50.0		
Cadmium	ug/L	<2.5	<2.5		
Calcium	ug/L	7410	7230	2	
Chromium	ug/L	<10.0	<10.0		
Cobalt	ug/L	<50.0	<50.0		
Copper	ug/L	<25.0	<25.0		
Iron	ug/L	221	220	0	
Lead	ug/L	<5.0	< 5.0		
Magnesium	ug/L	3130	3040	3	
Manganese	ug/L	20.2	18.7	8	
Nickel	ug/L	<40.0	<40.0		
Potassium	ug/L	<5000	<5000		
Selenium	ug/L	<10.0	<10.0		
Silver	ug/L	<10.0	<10.0		
Sodium	ug/L	7380	7080	4	
Thallium	ug/L	<10.0	<10.0		
Vanadium	ug/L	<50.0	<50.0		
Zinc	ug/L	<20.0	<20.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/10/2022 03:07 PM

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234794001	6AR	EPA 3005A	280111	EPA 6010C	280181
70234794002	6B	EPA 3005A	280111	EPA 6010C	280181
70234794003	11A	EPA 3005A	280111	EPA 6010C	280181
70234794004	11B	EPA 3005A	280111	EPA 6010C	280181
70234794003	11A	EPA 6010C	279787		
70234794001	6AR	EPA 7470A	279942	EPA 7470A	280020
70234794002	6B	EPA 7470A	279942	EPA 7470A	280020
70234794003	11A	EPA 7470A	279942	EPA 7470A	280020
70234794004	11B	EPA 7470A	280290	EPA 7470A	280408
70234794003	11A	EPA 7470A	281509	EPA 7470A	281541

24

CHAIN-OF-CUSTODY / An

WO#:70234794

The Chain-of-Custody is a LEGAL DOCL Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Co

Section A Section B Section C Required Client Information: Required Project Information: Invoice Information: Of Company Town of Southampton Report To: Fetten, Christine Attention: Address Waste Management Division Copy To: Company Name: Southampton, NY 11968 Address: Regulatory Agency Email c fetten@southamptontownny gov Purchase Order #: Pace Quote: (631)283-5210 Fax: Project Name: Baseline-North Sea Landfill Pace Project Manager: kimberley mack@pacelabs.com, State / Location Requested Due Date: Project # Pace Profile #: 5479 NY Requested Analysis Filtered (Y/N) (see valid codes to left) C=COMP) X COLLECTED Preservatives MATRIX CODE SAMPLE TEMP AT COLLECTION **Drinking Water** DW GRAB Waste Water WW Residual Chlorine (Y/N) Product Analyses Test SAMPLE ID Soil/Solid SL 9 START END OL WP AR OT TS # OF CONTAINERS One Character per box. Wipe MATRIX CODE Air Unpreserved Solutions (A-Z, 0-9 / , -) # Other 6010/7470 Sample Ids must be unique Na2S203 Methanol SAMPLE ITEM Tissue H2S04 NaOH HN03 Other 를 드 DATE TIME DATE TIME P 10/26/10/30 1 6AR WT 2 6B 11:20 WT 3 15:50 11A WT 4 11B WT 1630 5 6 7 8 9 10 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME **ACCEPTED BY / AFFILIATION** DATE TIME SAMPLE CONDITIONS 10-1-12 010 Baseline Parameters 1shap 11:30 Page SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: TEMP in (23 of Ice (Y/N) Custody Sealed Cooler (Y/N) SIGNATURE of SAMPLER: DATE Signed:

	S	ampl	e Condit	tion Up	on Re	WO#	:70	123	4794
Pace Analytical®	Client I		91055	en	Proj	PM: KMM	TOS	Due	Date: 11/10/22
Couries — Fod Eu - LIDO - LICOS - Cicat	-		Pace Di		-				
Courier: Fed Ex UPS USPS Client		iei Ciai	יעם אונים	uici					
Tracking #: Custody Seal on Cooler/Box Present:	No.	Coal	e intact:	Vac No	¬ы/л	L	noraturo	Blank Pri	esent: Yes No
					N/A		of Ice:		
Packing Material: Bubble Wrap Bubble									process has begun
	_Correc		otor: $+ 0$		4.3	٠ ـــا			process nos began placed in freezer
	- Cooler	remper	ature corre	Cled(C).	1	Date	rinne ou	DA KILS I	, 0-2
Temp should be above freezing to 6.0°C	1-			Doto o	ad Initials	of person e	vaminina	contont	/
USDA Regulated Soil (PM/A, water sample							_		
Did samples originate in a quarantine zone w				CA, FL, GA, II	D, LA, MS, N				om a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		es \square N				includ	ding Hawa	ii and Pu	erto Rico)? 🗆 Yes💢 No
If Yes to either question, fill out a Regulat	ed Soil Cl	hecklist	(F-LI-C-010)	and includ	de with SC	UR/COC pap	erwork.		
							COMME	NTS:	
Chain of Custody Present:	ZiYes	□No		1.					
Chain of Custody Filled Out:	ZYes	□No		2.					
Chain of Custody Relinquished:	Yes	□No		3.					-9
Sampler Name & Signature on COC:	Yes	□No		4.					
Samples Arrived within Hold Time:	Mes	□No		5.					
Short Hold Time Analysis (<72hr):	□Yes	PINO		6.					
Rush Turn Around Time Requested:	□Yes	ONo		7.					
Sufficient Volume: (Triple volume provided for		□No		8.					
Correct Containers Used:	Yes	□No		9.					
-Pace Containers Used:	☑Yes	□No							
Containers Intact:	Yes	□No		10.					
Filtered volume received for Dissolved tests	□Yes	□No	DN/A	11.	Note i	f sediment is	visible in	the disso	ved container.
Sample Labels match COC:	✓Yes	□No		12.					
-Includes date/time/ID, Matrix: SL WT									- 1101
All containers needing preservation have bee	n caves	□No	□N/A	13.) ₃ \square H ₂ S	SU ₄ [1 МаОН	□ HCI
checked?									
pH paper Lot # Vk29306C	d to bo			Sample	o #				
All containers needing preservation are found				Sample	5#				
in compliance with method recommendation		□No	□N/A						
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	Yes		□N/A						
NAOH>12 Cyanide) Exceptions: VOA, Coliform, TOC/DOC, Oil and G									
DRO/8015 [water].	ilease,			Initial w	hen comp	lated. Lat #	of added		Date/Time preservative
Per Method, VOA pH is checked after analysis				Integral M	nen comp		rvative:		added:
Samples checked for dechlorination:	□Yes	□No	ØN/A	14.		prese	i vacivo.		00000.
KI starch test strips Lot #		Пио	PINA	1					
Residual chlorine strips Lot #					Positive	for Res. Chlo	rine? Y	N	
SM 4500 CN samples checked for sulfide?	□Yes	□No	ØN/A	15.	1 001410	101 1100. 01110			
Lead Acetate Strips Lot #	CHES		7337	10.	Positive	for Sulfide?	Υ	N	
Headspace in VOA Vials (>6mm):	□Yes	-DNO	₫N/A	16.	1 0011110	101 00111001			
Trip Blank Present:	- DYes	□No		17_					
Trip Blank Custody Seals Present	# Yes	□No							
Pace Trip Blank Lot # (if applicable)	71100	2.10	T						
Client Notification/ Resolution:				Field Da	ita Require	ed?	Υ	/ N	
Person Contacted:					Date/1				
Comments/ Resolution:						-			
							14		

 $[\]ensuremath{^{\circ}}$ PM (Project Manager) review is documented electronically in LIMS.

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

December 16, 2022

Tom Houghton
Town of Southampton
116 Hampton Road
Waste Management Division
Southampton, NY 11968

RE: Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Dear Tom Houghton:

Enclosed are the analytical results for sample(s) received by the laboratory between October 27, 2022 and October 28, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Melville

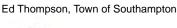
REVISION#1: Report re-issued 12/16/22 to update chloride results.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com


Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting Richard Hodgson, Town of Southampton Amanda Lauth, PW Grosser

(631)694-3040

CERTIFICATIONS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280951

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234886005

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1420290)
 - Calcium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved
Client: Town of Southampton
Date: December 16, 2022

General Information:

1 sample was analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Southampton
Date: December 16, 2022

General Information:

3 samples were analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 279850

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 1414732)
 - 2-Butanone (MEK)
- MS (Lab ID: 1415187)
 - 2-Butanone (MEK)

QC Batch: 280925

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 1420208)
 - 2-Butanone (MEK)
- MS (Lab ID: 1420230)
 - 2-Butanone (MEK)
- MSD (Lab ID: 1420231)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 279850

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- 11B (Lab ID: 70234795002)
 - Acetone
- LCS (Lab ID: 1414732)
 - 2-Butanone (MEK)
 - Acetone
- MS (Lab ID: 1415187)
 - 2-Butanone (MEK)
 - Acetone
- v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
 - 11A (Lab ID: 70234795001)
 - Carbon disulfide

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:December 16, 2022

QC Batch: 279850

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- Chloromethane
- Vinyl chloride
- trans-1,4-Dichloro-2-butene
- 11B (Lab ID: 70234795002)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- BLANK (Lab ID: 1414731)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- DUP (Lab ID: 1415186)
 - Carbon disulfide
 - Chloromethane
 - Vinvl chloride
 - trans-1,4-Dichloro-2-butene
- LCS (Lab ID: 1414732)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MS (Lab ID: 1415187)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene

QC Batch: 280925

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- LCS (Lab ID: 1420208)
 - Chloroethane
 - Trichlorofluoromethane
- MS (Lab ID: 1420230)
 - Chloroethane
 - Trichlorofluoromethane
- MSD (Lab ID: 1420231)
 - Chloroethane
 - Trichlorofluoromethane

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

• BLANK (Lab ID: 1420207)

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:December 16, 2022

QC Batch: 280925

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Vinyl acetate

• EB001 (Lab ID: 70234795012)

Vinyl acetate

• LCS (Lab ID: 1420208)

Vinyl acetate

• MS (Lab ID: 1420230)

Vinyl acetate

• MSD (Lab ID: 1420231)

Vinyl acetate

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 280925

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 1420208)
 - Acetone
 - Trichlorofluoromethane

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280925

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70235441001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 1420230)
 - Trichlorofluoromethane
- MSD (Lab ID: 1420231)
 - Trichlorofluoromethane

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:December 16, 2022

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 8260
Description: TIC MSV Water
Client: Town of Southampton
Date: December 16, 2022

General Information:

1 sample was analyzed for EPA 8260 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 2120B

Description: 2120B W Apparent Color Client: Town of Southampton Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- 12A (Lab ID: 70234795009)
- 12B (Lab ID: 70234795010)
- 3A (Lab ID: 70234795003)
- 3B (Lab ID: 70234795004)
- 3C (Lab ID: 70234795005)
- 4A (Lab ID: 70234795006)
- 4B (Lab ID: 70234795007)
- 4C (Lab ID: 70234795008)
- DUP001 (Lab ID: 70234795011)
- EB001 (Lab ID: 70234795012)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:SM22 2320BDescription:2320B AlkalinityClient:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: Town of Southampton
Date: December 16, 2022

General Information:

9 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

BASELINE-NORTH SEA LANDFILL Project:

Pace Project No.: 70234795

Method: SM22 2540C

Description: 2540C Total Dissolved Solids Client: Town of Southampton Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 280457

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1417652) Total Dissolved Solids
- QC Batch: 280458

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1417656) • Total Dissolved Solids
- QC Batch: 280682

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1418979)
 - Total Dissolved Solids

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- 4A (Lab ID: 70234795006)
- 4B (Lab ID: 70234795007)
- 4C (Lab ID: 70234795008)
- EB001 (Lab ID: 70234795012)

H3: Sample was received or analysis requested beyond the recognized method holding time.

- 12A (Lab ID: 70234795009)
- 12B (Lab ID: 70234795010)
- 3A (Lab ID: 70234795003)
- 3B (Lab ID: 70234795004)
- 3C (Lab ID: 70234795005)
- DUP001 (Lab ID: 70234795011)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 5210B

Description: 5210B BOD, 5 day

Client: Town of Southampton

Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

• DUP001 (Lab ID: 70234795011)

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280955

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70235291001,70235291002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1420305)
 - Bromide
 - Sulfate
- MS (Lab ID: 1420307)
 - Bromide
 - Sulfate

QC Batch: 282458

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234908002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1427716)
 - Bromide
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Town of Southampton

Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 5310B

Description:5310B TOC as NPOCClient:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for SM22 5310B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 9014 Total CyanideDescription:9014 Cyanide, TotalClient:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11A	Lab ID: 702	234795001	Collected:	10/26/2	2 15:50	Received:	10/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C						
_	Pace Analytic	al Services -	Melville						
Acetone	<5.0	ug/L		5.0	1		10/29/22 00:1	5 67-64-1	
Acrylonitrile	<5.0	ug/L		5.0	1		10/29/22 00:1		
Benzene	<5.0	ug/L		5.0	1		10/29/22 00:1	5 71-43-2	
Bromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Bromodichloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1	5 75-27-4	
Bromoform	<5.0	ug/L		5.0	1		10/29/22 00:1	5 75-25-2	
Bromomethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
2-Butanone (MEK)	<5.0	ug/L		5.0	1		10/29/22 00:1		
Carbon disulfide	<5.0	ug/L		5.0	1		10/29/22 00:1		v3
Carbon tetrachloride	<5.0	ug/L		5.0	1		10/29/22 00:1		
Chlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Chloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Chloroform	5.0	ug/L		5.0	1		10/29/22 00:1		
Chloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		v3
,2-Dibromo-3-chloropropane	<5.0	ug/L		5.0	1		10/29/22 00:1		vo
Dibromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,2-Dibromoethane (EDB)	<5.0	ug/L		5.0	1		10/29/22 00:1		
Dibromomethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
.2-Dichlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:1		
,4-Dichlorobenzene	<5.0			5.0	1		10/29/22 00:1		
rans-1,4-Dichloro-2-butene	<5.0	ug/L		5.0	1		10/29/22 00:1		v3
1,1-Dichloroethane	<5.0 <5.0	ug/L ug/L		5.0	1		10/29/22 00:1		VS
,2-Dichloroethane	<5.0	•		5.0	1		10/29/22 00:1		
	<5.0 <5.0	ug/L		5.0	1		10/29/22 00:1		
,1-Dichloroethene		ug/L							
cis-1,2-Dichloroethene	<5.0	ug/L		5.0	1 1		10/29/22 00:1		
rans-1,2-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:1		
I,2-Dichloropropane	<5.0	ug/L		5.0			10/29/22 00:1		
cis-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:1		
rans-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Ethylbenzene	<5.0	ug/L		5.0	1		10/29/22 00:1		
2-Hexanone	<5.0	ug/L		5.0	1		10/29/22 00:1		
odomethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Methylene Chloride	<5.0	ug/L		5.0	1		10/29/22 00:1		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		10/29/22 00:1		
Styrene	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,1,2-Tetrachloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,2,2-Tetrachloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
etrachloroethene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Toluene	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,1-Trichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,2-Trichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Trichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Trichlorofluoromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,2,3-Trichloropropane	<5.0	ug/L		5.0	1		10/29/22 00:1	5 96-18-4	
/inyl acetate	<5.0	ug/L		5.0	1		10/29/22 00:1	5 108-05-4	
√inyl chloride	<5.0	ug/L		5.0	1		10/29/22 00:1	5 75-01-4	v3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11A	Lab ID: 702	34795001	Collected: 10/26/2	22 15:50	Received: 10	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met Pace Analytica							
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		10/29/22 00:15	5 1330-20-7	
1,2-Dichloroethane-d4 (S)	108	%	81-122	1		10/29/22 00:15	17060-07-0	
4-Bromofluorobenzene (S)	90	%	79-118	1		10/29/22 00:15	460-00-4	
Toluene-d8 (S)	97	%	82-122	1		10/29/22 00:15	2037-26-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11B	Lab ID: 702	234795002	Collected: 1	10/26/2	2 16:30	Received:	10/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C						
	Pace Analytic	al Services -	Melville						
Acetone	<5.0	ug/L		5.0	1		10/29/22 00:38	8 67-64-1	v1
Acrylonitrile	<5.0	ug/L		5.0	1		10/29/22 00:38		
Benzene	<5.0	ug/L		5.0	1		10/29/22 00:38	8 71-43-2	
Bromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
Bromodichloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38	8 75-27-4	
Bromoform	<5.0	ug/L		5.0	1		10/29/22 00:38	8 75-25-2	
Bromomethane	<5.0	ug/L		5.0	1		10/29/22 00:38	8 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		10/29/22 00:38		
Carbon disulfide	<5.0	ug/L		5.0	1		10/29/22 00:38		v3
Carbon tetrachloride	<5.0	ug/L		5.0	1		10/29/22 00:38	8 56-23-5	
Chlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
Chloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
Chloroform	5.0	ug/L		5.0	1		10/29/22 00:38		
Chloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		v3
,2-Dibromo-3-chloropropane	<5.0	ug/L		5.0	1		10/29/22 00:38		
Dibromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
,2-Dibromoethane (EDB)	<5.0	ug/L		5.0	1		10/29/22 00:38		
Dibromomethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
.2-Dichlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
,4-Dichlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
rans-1,4-Dichloro-2-butene	<5.0	ug/L		5.0	1		10/29/22 00:38		v3
,1-Dichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		••
,2-Dichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
,1-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
cis-1,2-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
rans-1,2-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
I,2-Dichloropropane	<5.0	ug/L		5.0	1		10/29/22 00:38		
cis-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:38		
rans-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:38		
Ethylbenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
2-Hexanone	<5.0	ug/L ug/L		5.0	1		10/29/22 00:38		
odomethane	<5.0	ug/L ug/L		5.0	1		10/29/22 00:38		
Methylene Chloride	<5.0	ug/L		5.0	1		10/29/22 00:38		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		10/29/22 00:38		
Styrene	<5.0	-							
•	<5.0 <5.0	ug/L		5.0 5.0	1		10/29/22 00:38 10/29/22 00:38		
,1,1,2-Tetrachloroethane	<5.0 <5.0	ug/L ug/L		5.0	1 1		10/29/22 00:38		
etrachloroethene	<5.0	-		5.0	1		10/29/22 00:38		
		ug/L					10/29/22 00:3		
oluene	<5.0	ug/L		5.0	1				
,1,1-Trichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
• •	<5.0	ug/L		5.0	1		10/29/22 00:38		
Frichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
Frichlorofluoromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
,2,3-Trichloropropane	<5.0	ug/L		5.0	1		10/29/22 00:38		
/inyl acetate	<5.0	ug/L		5.0	1		10/29/22 00:38		•
Vinyl chloride	<5.0	ug/L		5.0	1		10/29/22 00:38	8 75-01-4	v3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11B	Lab ID: 702	34795002	Collected: 10/26/2	22 16:30	Received: 10	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met Pace Analytica							
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		10/29/22 00:38	1330-20-7	
1,2-Dichloroethane-d4 (S)	107	%	81-122	1		10/29/22 00:38	17060-07-0	
4-Bromofluorobenzene (S)	92	%	79-118	1		10/29/22 00:38	460-00-4	
Toluene-d8 (S)	98	%	82-122	1		10/29/22 00:38	2037-26-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 3A	Lab ID: 702	34795003	Collected: 10/27	/22 09:55	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	hod: EPA 60	10C Preparation I	1ethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:03	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:03	7440-43-9	
Calcium	20600	ug/L	200	1	11/04/22 10:28	11/05/22 14:03	7440-70-2	
ron	5170	ug/L	100	1	11/04/22 10:28	11/05/22 14:03	7439-89-6	
ead	<5.0	ug/L	5.0			11/05/22 14:03		
/lagnesium	6010	ug/L	200			11/05/22 14:03		
Manganese	1880	ug/L	10.0			11/05/22 14:03		
Potassium	11300	ug/L	5000			11/05/22 14:03		
Sodium	34600	ug/L	5000	1	11/04/22 10:28	11/05/22 14:03	3 7440-23-5	
120B W Apparent Color	Analytical Meth	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	140	units	50.0	10		10/31/22 13:45	5	H1
 H	6.5	Std. Units	0.10	10		10/31/22 13:45	5	H1
2320B Alkalinity	Analytical Meth	hod: SM22 2	2320B					
,	Pace Analytica							
lkalinity, Total as CaCO3	97.8	mg/L	1.0	1		11/10/22 14:33	3	
2340C Hardness, Total	Analytical Meth	hod: SM22 2	2340C					
	Pace Analytica	l Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	73.3	mg/L	5.0	1		11/10/22 18:09)	
2540C Total Dissolved Solids	Analytical Meth	hod: SM22 2	2540C					
	Pace Analytica							
Total Dissolved Solids	268	mg/L	20.0	1		11/02/22 20:26	;	
Chromium, Hexavalent	Analytical Metl	hod: SM22 3	8500-Cr B					
Sillomium, nexavalent	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:05	18540-29-9	НЗ
110.4.COD	Analytical Mot	hod: EDA 41	0.4 Propagation M	othod: ED	ν 410.4			
110.4 COD	Pace Analytica		 0.4 Preparation M Melville 	elnoa. Er	A 410.4			
Chemical Oxygen Demand	23.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:47		
5210B BOD, 5 day	Analytical Meth	hod: SM22 5	5210B Preparation	Method:	SM22 5210B			
- , ,	Pace Analytica		•		-			
3OD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:21	11/03/22 10:47	•	
300.0 IC Anions 28 Days	Analytical Meth	hod: EPA 30	0.0					
•	Pace Analytica	al Services -	Melville					
Bromide	<0.50	mg/L	0.50	1		11/15/22 01:04	24959-67-9	
Chloride	51.8	mg/L	10.0			11/15/22 10:36		
Sulfate	15.4	mg/L	5.0			11/15/22 01:04		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 3A	Lab ID: 7023	34795003	Collected:	10/27/2	2 09:55	Received: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.42	mg/L		0.10	1	11/14/22 05:42	2 11/14/22 12:1	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.17	mg/L		0.050	1		10/29/22 00:0	4 14797-55-8	
Nitrate-Nitrite (as N)	0.18	mg/L		0.050	1		10/29/22 00:0	4 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:0	9 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 11:45	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	4.5	mg/L		1.0	1		11/02/22 19:4	7 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:02	2 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795			.			100100 1		
Sample: 3B	Lab ID: 702	34795004	Collected: 10/27/2	22 10:40	Received: 10)/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	nod: EPA 601	0C Preparation M	ethod: E	PA 3005A			
	Pace Analytica	al Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:06	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:06	7440-43-9	
Calcium	18400	ug/L	200	1	11/04/22 10:28	11/05/22 14:06	7440-70-2	
on	4140	ug/L	100	1	11/04/22 10:28	11/05/22 14:06	7439-89-6	
ead	<5.0	ug/L	5.0	1	11/04/22 10:28	11/05/22 14:06	7439-92-1	
/lagnesium	6370	ug/L	200	1	11/04/22 10:28	11/05/22 14:06	7439-95-4	
Manganese	1640	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:06	7439-96-5	
otassium	5930	ug/L	5000	1		11/05/22 14:06		
Sodium	19500	ug/L	5000	1	11/04/22 10:28	11/05/22 14:06	7440-23-5	
120B W Apparent Color	Analytical Metl	nod: SM22 2	120B					
	Pace Analytica	al Services - N	Melville					
Apparent Color	100	units	10.0	2		10/31/22 13:48		H1
 H	6.4	Std. Units	0.10	2		10/31/22 13:48		H1
2320B Alkalinity	Analytical Metl	nod: SM22 2:	320B					
•	Pace Analytica	al Services - I	Melville					
Alkalinity, Total as CaCO3	90.6	mg/L	1.0	1		11/10/22 14:41		
2340C Hardness, Total	Analytical Met	nod: SM22 2:	340C					
,	Pace Analytica	al Services - I	Melville					
ot Hardness asCaCO3 (SM 2340B	66.7	mg/L	5.0	1		11/10/22 18:12		
2540C Total Dissolved Solids	Analytical Metl	hod: SM22 2	540C					
	Pace Analytica							
Total Dissolved Solids	184	mg/L	20.0	1		11/02/22 20:26		
Chromium, Hexavalent	Analytical Met	nod: SM22 3	500-Cr B					
Sinomum, nexavalent	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:07	18540-29-9	НЗ
110.4 COD	Analytical Met	hod: FPA 410	0.4 Preparation Me	thod: FP	A 410.4			
110.4 005	Pace Analytica		•	unou. En	7			
Chemical Oxygen Demand	18.7	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:47		
5210B BOD, 5 day	Analytical Met	nod: SM22 5	210B Preparation I	Method:	SM22 5210B			
500, 0 day	Pace Analytica		•	.ioti iod.	5ZZ 0Z 10D			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:24	11/03/22 10:49		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	0.0					
	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/15/22 01:18	24959-67-9	
Chloride	37.3	mg/L	2.0	1		11/15/22 01:18		
Sulfate	12.8	mg/L	5.0	1		11/15/22 01:18		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Parameters Results Units Report Limit DF Prepared Analyzed	La	b ID:	70234795004	Collected:	10/27/2	22 10:40	Received:	10/28/22 12:25	Matrix: Water	
Pace Analytical Services - Melville	Re	sults	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Nitrogen, Kjeldahl, Total 3.4 mg/L 0.10 1 11/14/22 05:42 11/14/22 12:18 353.2 Nitrogen, NO2/NO3 unpres Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrate as N 0.098 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N 40.050 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N 40.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	ogen Ana	lytical N	Method: EPA 35	51.2 Prepara	ition Met	hod: EP	A 351.2			
Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrate as N 0.098 mg/L 0.050 1 10/29/22 00:10 Nitrate-Nitrite (as N) 0.10 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pac	e Analy	tical Services -	Melville						
Pace Analytical Services - Melville		3.4	l mg/L		0.10	1	11/14/22 05:4	2 11/14/22 12:18	3 7727-37-9	
Nitrate as N 0.098 mg/L 0.050 1 1 10/29/22 00:10 Nitrate-Nitrite (as N) 0.10 mg/L 0.050 1 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 1 1/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	3 unpres Ana	lytical N	Method: EPA 35	53.2						
Nitrate-Nitrite (as N) 0.10 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050	Pac	e Analy	tical Services -	Melville						
Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N 40.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		0.098	mg/L		0.050	1		10/29/22 00:10	14797-55-8	
Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		0.10	mg/L		0.050	1		10/29/22 00:10	7727-37-9	
Nitrite as N <0.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Ana	lytical N	Method: EPA 35	53.2						
4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pad	e Analy	tical Services -	Melville						
Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		<0.050	mg/L		0.050	1		10/28/22 22:1	5 14797-65-0	
Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Ana	lytical N	Method: SM22	4500 NH3 H						
5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pac	e Analy	tical Services -	Melville						
Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		3.4	l mg/L		0.10	1		11/01/22 11:47	7664-41-7	
Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Ana	lytical N	Method: SM22	5310B						
9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pac	e Analy	tical Services -	Melville						
		3.7	mg/L		1.0	1		11/02/22 20:00	7440-44-0	
Pace Analytical Services - Melville	Ana	lytical N	Method: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
	Pac	e Analy	tical Services -	Melville						
Cyanide <10.0 ug/L 10.0 1 11/10/22 13:07 11/10/22 15:03		<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:03	3 57-12-5	

Project: **BASELINE-NORTH SEA LANDFILL**

Date: 12/16/2022 11:25 AM

			0			100100 1		
Sample: 3C	Lab ID: 7023	34795005	Collected: 10/27/2	22 11:15	Received: 10	/28/22 12:25 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	od: EPA 601	IOC Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:09	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:09	7440-43-9	
Calcium	8630	ug/L	200	1	11/04/22 10:28	11/05/22 14:09	7440-70-2	
ron	<100	ug/L	100	1	11/04/22 10:28	11/05/22 14:09	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/05/22 14:09		
lagnesium	3890	ug/L	200	1	11/04/22 10:28	11/05/22 14:09	7439-95-4	
Manganese	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:09	7439-96-5	
otassium	<5000	ug/L	5000	1	11/04/22 10:28	11/05/22 14:09	7440-09-7	
Sodium	10700	ug/L	5000	1	11/04/22 10:28	11/05/22 14:09	7440-23-5	
120B W Apparent Color	Analytical Meth	od: SM22 2	120B					
	Pace Analytica	l Services - I	Melville					
Apparent Color	<5.0	units	5.0	1		10/31/22 13:50		H1
H	6.8	Std. Units	0.10	1		10/31/22 13:50		H1
320B Alkalinity	Analytical Meth	od: SM22 2	320B					
OZOD Alkallinty	Pace Analytica							
lkalinity, Total as CaCO3	45.7	mg/L	1.0	1		11/10/22 15:43		
2340C Hardness, Total	Analytical Meth	od: SM22 2	340C					
	Pace Analytica	l Services - I	Melville					
ot Hardness asCaCO3 (SM 2340B	36.0	mg/L	5.0	1		11/10/22 18:04		
2540C Total Dissolved Solids	Analytical Meth	od: SM22 2	540C					
	Pace Analytica	l Services - I	Melville					
Total Dissolved Solids	106	mg/L	10.0	1		11/02/22 20:27		
Chromium, Hexavalent	Analytical Meth	od: SM22 3	500-Cr B					
,	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:07	18540-29-9	НЗ
110.4 COD	Analytical Meth	od: EPA 410	0.4 Preparation Met	hod: EP	A 410.4			
	Pace Analytica		•					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:47		
5210B BOD, 5 day	Analytical Meth	od: SM22 5	210B Preparation N	/lethod:	SM22 5210B			
505, 0 daj	Pace Analytica		•		5 <u>2</u> 2 52 102			
3OD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:26	11/03/22 10:51		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
•	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/16/22 11:10	24959-67-9	
Chloride	13.2	mg/L	2.0	1		11/16/22 11:10		
Sulfate	5.8	mg/L	5.0	1		11/16/22 11:10		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 3C	Lab ID: 7023	34795005	Collected:	10/27/2	2 11:15	Received: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytica	Services -	Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/14/22 05:42	11/14/22 12:19	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	Services -	Melville						
Nitrate as N	0.20	mg/L		0.050	1		10/29/22 00:16	14797-55-8	
Nitrate-Nitrite (as N)	0.20	mg/L		0.050	1		10/29/22 00:16	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:19	14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	Melville						
Nitrogen, Ammonia	0.20	mg/L		0.10	1		11/01/22 11:48	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 20:10	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90)14 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	11/10/22 15:04	57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 4A	Lab ID: 702	34795006	Collected: 10/27/	22 14:20	Received: 10)/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60°	10C Preparation M	ethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:12	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:12	7440-43-9	
Calcium	12500	ug/L	200	1	11/04/22 10:28	11/05/22 14:12	7440-70-2	
ron	135	ug/L	100	1	11/04/22 10:28	11/05/22 14:12	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/05/22 14:12		
/lagnesium	4410	ug/L	200	1		11/05/22 14:12		
Manganese	21.7	ug/L	10.0	1		11/05/22 14:12		
Potassium	<5000	ug/L	5000	1		11/05/22 14:12		
Sodium	20000	ug/L	5000	1	11/04/22 10:28	11/05/22 14:12	? 7440-23-5	
120B W Apparent Color	Analytical Meth	nod: SM22 2	120B					
	Pace Analytica	l Services - I	Melville					
Apparent Color	<5.0	units	5.0	1		10/31/22 13:57	,	H1
Н	6.1	Std. Units	0.10	1		10/31/22 13:57	,	H1
2320B Alkalinity	Analytical Meth	nod: SM22 2	320B					
,	Pace Analytica							
Alkalinity, Total as CaCO3	16.6	mg/L	1.0	1		11/10/22 16:06	5	
2340C Hardness, Total	Analytical Meth Pace Analytica							
Fot Hardness asCaCO3 (SM 2340B	48.0	mg/L	5.0	1		11/10/22 18:16	;	
540C Total Dissolved Solids	Analytical Meth	od: SM22.2	540C					
1340C Total Dissolved Solids	Pace Analytica							
Fortal Discoulous d Oolista	•			4		44 /00 /00 00 0		
otal Dissolved Solids	127	mg/L	10.0	1		11/02/22 20:27		
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:07	18540-29-9	H1
110.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Meth Pace Analytica		210B Preparation l Melville	Method:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:28	11/03/22 10:53	3	
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/16/22 11:24	24959-67-9	
Chloride	43.9	mg/L	2.0	1		11/16/22 11:24		
Sulfate	21.6	mg/L	5.0	1			14808-79-8	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 4A	Lab ID: 7023	34795006	Collected:	10/27/2	2 14:20	Received:	10/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/14/22 05:4	2 11/14/22 12:39	9 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	2.1	mg/L		0.25	5		10/29/22 00:5	3 14797-55-8	
Nitrate-Nitrite (as N)	2.1	mg/L		0.25	5		10/29/22 00:5	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:3	4 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 11:49	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 20:4	5 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical		-		•				
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:0	5 57-12-5	

Project: **BASELINE-NORTH SEA LANDFILL**

Date: 12/16/2022 11:25 AM

Commiss. 4D	1 als 10 7000	4705007	O-II4 40/07/0	0.44.00	Deschied 10	/00/00 40 05	A-4-1 \A/- 1 -	
Sample: 4B	Lab ID: 7023	34795007	Collected: 10/27/2	2 14:00	Received: 10	1/28/22 12:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 601	0C Preparation Me	thod: El	PA 3005A			
	Pace Analytical	Services - N	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:15	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:15	7440-43-9	
Calcium	14200	ug/L	200	1		11/05/22 14:15		
ron	4770	ug/L	100	1		11/05/22 14:15		
ead	<5.0	ug/L	5.0	1		11/05/22 14:15		
lagnesium	6830	ug/L	200	1		11/05/22 14:15		
Manganese	1040	ug/L	10.0	1		11/05/22 14:15		
otassium	<5000	ug/L	5000	1		11/05/22 14:15		
Sodium	13000	ug/L	5000	1	11/04/22 10:28	11/05/22 14:15	7440-23-5	
120B W Apparent Color	Analytical Meth	od: SM22 21	20B					
	Pace Analytical	Services - N	/lelville					
Apparent Color	55.0	units	25.0	5		10/31/22 13:56		H1
H	6.8	Std. Units	0.10	5		10/31/22 13:56		H1
320B Alkalinity	Analytical Meth	nd: SM22 23	20R					
320B Alkalillity	Pace Analytical							
lkalinity, Total as CaCO3	62.5	mg/L	1.0	1		11/10/22 16:13		
340C Hardness, Total	Analytical Meth	od: SM22 23	340C					
	Pace Analytical	Services - N	/lelville					
ot Hardness asCaCO3 (SM 2340B	64.0	mg/L	5.0	1		11/10/22 18:19		
540C Total Dissolved Solids	Analytical Meth	od: SM22 25	540C					
2.000.000	Pace Analytical							
otal Dissolved Solids	120	mg/L	20.0	1		11/02/22 20:28		
otal Dissolved Solids	120	IIIg/∟	20.0	'		11/02/22 20.26		
Chromium, Hexavalent	Analytical Meth							
	Pace Analytical	Services - N	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:08	18540-29-9	H1
110.4 COD	Analytical Meth	od: EPA 410	.4 Preparation Met	hod: EP	A 410.4			
	Pace Analytical	Services - N	Melville					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Meth	od: SM22 52	210B Preparation M	lethod:	SM22 5210R			
505, 0 day	Pace Analytical			.550. (5 <u>2</u> 2 52 102			
3OD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:29	11/03/22 10:56		
800.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	.0					
	Pace Analytical							
Bromide	<0.50	mg/L	0.50	1		11/16/22 11:51	24959-67-9	
Chloride	32.4	mg/L	2.0	1		11/16/22 11:51		
Sulfate	15.4	mg/L	5.0	1		11/16/22 11:51	14808-79-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 4B	Lab ID: 7023	34795007	Collected:	10/27/2	2 14:00	Received: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	tion Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	1.5	mg/L		0.10	1	11/14/22 05:42	2 11/14/22 12:20	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.11	mg/L		0.050	1		10/29/22 00:3	1 14797-55-8	
Nitrate-Nitrite (as N)	0.12	mg/L		0.050	1		10/29/22 00:3	1 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:3	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	1.2	mg/L		0.10	1		11/01/22 12:08	3 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 21:3	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytical	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:00	5 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 4C	Lab ID: 702	34795008	Collected: 10/27/	22 13:30	Received: 10)/28/22 12:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	nod: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:02	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:02	7440-43-9	
Calcium	11700	ug/L	200	1	11/07/22 08:58	11/07/22 18:02	7440-70-2	
ron	764	ug/L	100	1	11/07/22 08:58	11/07/22 18:02	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/07/22 18:02		
/lagnesium	5220	ug/L	200	1		11/07/22 18:02		
Manganese	20.8	ug/L	10.0	1		11/07/22 18:02		
Potassium	<5000	ug/L	5000	1		11/07/22 18:02		
Sodium	26500	ug/L	5000	1	11/07/22 08:58	11/07/22 18:02	1 7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	7.0	units	5.0	1		10/31/22 13:53	3	H1
H	7.2	Std. Units	0.10	1		10/31/22 13:53	3	H1
2320B Alkalinity	Analytical Metl	hod: SM22 2	2320B					
,	Pace Analytica							
Ikalinity, Total as CaCO3	42.4	mg/L	1.0	1		11/10/22 16:20	1	
340C Hardness, Total	Analytical Metl Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	40.0	mg/L	5.0	1		11/10/22 18:21		
`	Analytical Mot		0E 40C					
2540C Total Dissolved Solids	Analytical Metheral Pace Analytical							
	•			_				
otal Dissolved Solids	131	mg/L	10.0	1		11/02/22 20:42		
Chromium, Hexavalent	Analytical Metl Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:08	18540-29-9	H1
110.4 COD	Analytical Metl Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Metl Pace Analytica		5210B Preparation Melville	Method:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:31	11/03/22 10:58	;	
300.0 IC Anions 28 Days	Analytical Metl Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/15/22 02:53	24959-67-9	
Chloride	58.6	mg/L	10.0	5		11/19/22 04:17		
Sulfate	7.8	mg/L		1			14808-79-8	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 4C	Lab ID: 702	34795008	Collected:	10/27/2	2 13:30	Received:	10/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytica	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.16	mg/L		0.10	1	11/14/22 05:4	2 11/14/22 12:2	1 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	Melville						
Nitrate as N	<0.050	mg/L		0.050	1		10/29/22 00:2	9 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		10/29/22 00:2	9 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:3	1 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 12:09	9 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 21:52	2 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:0	7 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 12A	Lab ID: 702	234795009	Collected: 10/27/2	22 08:35	Received: 10	/28/22 12:25 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	thod: EPA 601	OC Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	al Services - M	lelville					
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:05	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:05	7440-43-9	
Calcium	19100	ug/L	200	1	11/07/22 08:58	11/07/22 18:05	7440-70-2	
ron	<100	ug/L	100	1	11/07/22 08:58	11/07/22 18:05	7439-89-6	
_ead	<5.0	ug/L	5.0	1		11/07/22 18:05		
Magnesium	6000	ug/L	200	1		11/07/22 18:05		
Manganese	534	ug/L	10.0	1		11/07/22 18:05		
Potassium	5570	ug/L	5000	1		11/07/22 18:05		
Sodium	9930	ug/L	5000	1	11/07/22 08:58	11/07/22 18:05	7440-23-5	
2120B W Apparent Color	Analytical Met	thod: SM22 21	20B					
	Pace Analytica	al Services - M	lelville					
Apparent Color	<5.0	units	5.0	1		10/31/22 13:37		H1
oH	6.3	Std. Units	0.10	1		10/31/22 13:37		H1
2320B Alkalinity	Analytical Met	thod: SM22 23 al Services - M						
Alkalinity, Total as CaCO3	89.5	mg/L	1.0	1		11/10/22 16:28		
2340C Hardness, Total	Analytical Met Pace Analytica	thod: SM22 23 al Services - M						
Tot Hardness asCaCO3 (SM 2340B	70.0	mg/L	5.0	1		11/10/22 18:24		
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	126	mg/L	10.0	1		11/02/22 20:43		D6
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:09	18540-29-9	НЗ
410.4 COD	Analytical Met Pace Analytica		.4 Preparation Me lelville	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Met Pace Analytica		10B Preparation Nelville	Method: 3	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:32	11/03/22 11:02		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/22/22 10:17	24959-67-9	
Chloride	14.9	mg/L	2.0	1		11/22/22 10:17		
Sulfate	16.0	mg/L	5.0	1		11/22/22 10:17	14808-79-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 12A	Lab ID: 702	34795009	Collected: 10/2	27/22 08:	35 Re	ceived: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Lim	it DF	F	repared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Preparation	Method: I	EPA 351	.2			
	Pace Analytica	I Services -	Melville						
Nitrogen, Kjeldahl, Total	3.9	mg/L	0.	10 1	11/1	4/22 05:42	2 11/14/22 12:22	2 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	Melville						
Nitrate as N	0.80	mg/L	0.0	50 1			10/28/22 23:49	9 14797-55-8	
Nitrate-Nitrite (as N)	0.80	mg/L	0.0	50 1			10/28/22 23:49	9 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	Melville						
Nitrite as N	<0.050	mg/L	0.0	50 1			10/28/22 21:53	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	Melville						
Nitrogen, Ammonia	3.8	mg/L	0.	10 1			11/01/22 12:11	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	Melville						
Total Organic Carbon	<1.0	mg/L	1	.0 1			11/02/22 22:04	7440-44-0	
9014 Cyanide, Total	Analytical Meth Pace Analytica		014 Total Cyanide Melville	Prepara	tion Met	thod: EPA	9010C		
Cyanide	<10.0	ug/L		.0 1	11/1	0/22 13:0 ⁻	7 11/10/22 15:07	7 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795									
Sample: 12B	Lab ID: 702	34795010	Collected: 1	0/27/22	2 08:55	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report L	imit _	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	nod: EPA 60	10C Preparati	ion Met	hod: EF	PA 3005A			
	Pace Analytica	l Services -	Melville						
Arsenic	<10.0	ug/L		10.0	1	11/07/22 08:58	11/07/22 18:07	7440-38-2	
Cadmium	<2.5	ug/L		2.5	1	11/07/22 08:58	11/07/22 18:07	7440-43-9	
Calcium	17900	ug/L		200	1	11/07/22 08:58	11/07/22 18:07	7440-70-2	
ron	<100	ug/L		100	1	11/07/22 08:58	11/07/22 18:07	7439-89-6	
ead	<5.0	ug/L		5.0	1	11/07/22 08:58	11/07/22 18:07	7439-92-1	
Magnesium	5780	ug/L		200	1	11/07/22 08:58	11/07/22 18:07	7439-95-4	
Manganese	812	ug/L		10.0	1	11/07/22 08:58	11/07/22 18:07	7439-96-5	
Potassium	8400	ug/L	5	5000	1		11/07/22 18:07		
Sodium	12500	ug/L	5	5000	1	11/07/22 08:58	11/07/22 18:07	7440-23-5	
120B W Apparent Color	Analytical Metl	hod: SM22 2	2120B						
	Pace Analytica	l Services -	Melville						
Apparent Color	<5.0	units		5.0	1		10/31/22 13:39)	H1
H	6.3	Std. Units		0.10	1		10/31/22 13:39)	H1
2320B Alkalinity	Analytical Metl	hod: SM22 2	2320B						
•	Pace Analytica	l Services -	Melville						
Alkalinity, Total as CaCO3	78.7	mg/L		1.0	1		11/10/22 16:36		
2340C Hardness, Total	Analytical Met	hod: SM22 2	2340C						
,	Pace Analytica	l Services -	Melville						
Tot Hardness asCaCO3 (SM 2340B	66.7	mg/L		5.0	1		11/10/22 18:27		
2540C Total Dissolved Solids	Analytical Metl	hod: SM22 2	2540C						
10 TO TOTAL DISSOTTER COMAS	Pace Analytica								
Total Dissolved Solids	150	mg/L		10.0	1		11/02/22 20:53		D6
Chromium, Hexavalent	Analytical Met	hod: SM22 3	8500-Cr B						
Sinomum, nexavalent	Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L		.020	1		10/31/22 12:09	18540-29-9	НЗ
110.4 COD	Analytical Met	hod: EPA 41	0.4 Preparatio	n Math	od: ED/	A 410 4			
110.4 COD	Pace Analytica			ni ivieti	iou. LF7	410.4			
Chemical Oxygen Demand	<10.0	mg/L		10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Metl	hod: SM22 5	5210B Prepara	ation M	ethod: S	SM22 5210B			
- , ,	Pace Analytica		•			-			
BOD, 5 day	<2.0	mg/L		2.0	1	10/29/22 06:33	11/03/22 11:04		
300.0 IC Anions 28 Days	Analytical Metl	hod: EPA 30	0.0						
	Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		11/22/22 10:44	24959-67-9	
Chloride	20.8	mg/L		10.0	5		11/22/22 10:31		
Sulfate	12.2	mg/L		5.0	1		11/22/22 10:44		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 12B	Lab ID: 7023	34795010	Collected:	10/27/2	2 08:55	Received: 1	10/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	3.5	mg/L		0.10	1	11/14/22 05:42	2 11/14/22 12:23	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	1.4	mg/L		0.050	1		10/28/22 23:5	4 14797-55-8	
Nitrate-Nitrite (as N)	1.4	mg/L		0.050	1		10/28/22 23:5	4 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 21:5	5 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	3.5	mg/L		0.10	1		11/01/22 12:12	2 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical								
Total Organic Carbon	1.1	mg/L		1.0	1		11/02/22 22:38	3 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	7 11/10/22 15:08	3 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: DUP001	Lab ID: 702	34795011	Collected: 10/27	/22 00:00	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
010 MET ICP	Analytical Meth	hod: EPA 60°	10C Preparation N	lethod: E	PA 3005A			
	Pace Analytica	al Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:10	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:10	7440-43-9	
Calcium	20000	ug/L	200	1	11/07/22 08:58	11/07/22 18:10	7440-70-2	
ron	4130	ug/L	100			11/07/22 18:10		
ead	<5.0	ug/L	5.0			11/07/22 18:10		
/lagnesium	5850	ug/L	200			11/07/22 18:10		
Manganese	1710	ug/L	10.0			11/07/22 18:10		
Potassium	11500	ug/L	5000			11/07/22 18:10		
Sodium	34400	ug/L	5000	1	11/07/22 08:58	11/07/22 18:10	7440-23-5	
120B W Apparent Color	Analytical Meth	hod: SM22 2	120B					
	Pace Analytica	I Services - I	Melville					
Apparent Color	120	units	25.0	5		10/31/22 13:20)	H1
H	6.6	Std. Units	0.10	5		10/31/22 13:20)	H1
2320B Alkalinity	Analytical Meth	hod: SM22 2	320B					
O200 Alkallinty	Pace Analytica							
Alkalinity, Total as CaCO3	90.6	mg/L	1.0	1		11/10/22 16:44	ŀ	
2340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	73.3	mg/L	5.0	1		11/10/22 18:29)	
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	220	mg/L	20.0	1		11/02/22 20:54	ļ	
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:09	18540-29-9	H3
110.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Monday	ethod: EP	A 410.4			
Chemical Oxygen Demand	20.8	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Meth Pace Analytica		210B Preparation Melville	Method:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:36	11/03/22 11:06		H2
300.0 IC Anions 28 Days	Analytical Metl Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/22/22 10:58	24959-67-9	
Chloride	<2.0	mg/L	2.0			11/22/22 10:58		В
Sulfate	<5.0	mg/L	5.0			11/22/22 10:58		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: DUP001	Lab ID: 7023	34795011	Collected: 10)/27/2	2 00:00	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Li	mit _	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Preparation	n Meth	nod: EP	A 351.2			
	Pace Analytica	I Services	- Melville						
Nitrogen, Kjeldahl, Total	0.53	mg/L	(0.10	1	11/14/22 05:42	11/14/22 12:25	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services	- Melville						
Nitrate as N	0.24	mg/L	0.	050	1		10/28/22 23:39	14797-55-8	
Nitrate-Nitrite (as N)	0.24	mg/L	0.	050	1		10/28/22 23:39	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrite as N	<0.050	mg/L	0.	050	1		10/28/22 21:38	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L	(0.10	1		11/01/22 12:13	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	I Services	- Melville						
Total Organic Carbon	4.4	mg/L		1.0	1		11/02/22 22:51	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 9	014 Total Cyanid	le Pre	paratio	n Method: EPA 9	9010C		
-	Pace Analytica	I Services	Melville						
Cyanide	<10.0	ug/L	1	10.0	1	11/10/22 13:07	11/10/22 15:09	57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: EB001	Lab ID: 7023	34795012	Collected: 10/28/2	2 11:25	Received: 10	/28/22 12:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica							
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:12	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:12	7440-43-9	
Calcium	<200	ug/L	200	1	11/07/22 08:58	11/07/22 18:12	7440-70-2	
ron	<100	ug/L	100	1	11/07/22 08:58	11/07/22 18:12	7439-89-6	
_ead	<5.0	ug/L	5.0	1	11/07/22 08:58	11/07/22 18:12	7439-92-1	
Magnesium	<200	ug/L	200	1		11/07/22 18:12		
Manganese	<10.0	ug/L	10.0	1		11/07/22 18:12		
Potassium	<5000	ug/L	5000	1		11/07/22 18:12		
Sodium	<5000	ug/L	5000	1		11/07/22 18:12		
6010 MET ICP, Dissolved	Analytical Meth	_	100					
outo MET ICP, Dissolved	Pace Analytica							
	•							
Cadmium, Dissolved	<2.5	ug/L	2.5	1		10/31/22 14:06	7440-43-9	
Calcium, Dissolved	<200	ug/L	200	1		10/31/22 14:06	7440-70-2	
ron, Dissolved	<100	ug/L	100	1		10/31/22 14:06	7439-89-6	
_ead, Dissolved	<5.0	ug/L	5.0	1		10/31/22 14:06	7439-92-1	
Magnesium, Dissolved	<200	ug/L	200	1		10/31/22 14:06	7439-95-4	
Manganese, Dissolved	<10.0	ug/L	10.0	1		10/31/22 14:06	7439-96-5	
Potassium, Dissolved	<5000	ug/L	5000	1		10/31/22 14:06	7440-09-7	
Sodium, Dissolved	<5000	ug/L	5000	1		10/31/22 14:06	7440-23-5	
3260C Volatile Organics	Analytical Meth	nod: EPA 82	60C/5030C					
ū	Pace Analytica							
Acetone	<5.0	ug/L	5.0	1		11/06/22 21:40	67-64-1	L1
Acrylonitrile	<5.0	ug/L	5.0	1		11/06/22 21:40		
Benzene	<5.0	ug/L	5.0	1		11/06/22 21:40		
Bromochloromethane	<5.0	ug/L	5.0	1		11/06/22 21:40		
Bromodichloromethane	<5.0	ug/L	5.0	1		11/06/22 21:40		
Bromoform	<5.0	ug/L	5.0	1		11/06/22 21:40		
Bromomethane	<5.0	ug/L	5.0	1		11/06/22 21:40		
2-Butanone (MEK)	<5.0	ug/L	5.0	1		11/06/22 21:40		
Carbon disulfide	<5.0	ug/L	5.0	1		11/06/22 21:40		
Carbon tetrachloride	<5.0	ug/L	5.0	1		11/06/22 21:40		
		-		1		11/06/22 21:40		
Chlorobenzene	<5.0	ug/L	5.0	1				
Chloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40		
Chloroform	<5.0	ug/L	5.0	1		11/06/22 21:40		
Chloromethane	<5.0	ug/L	5.0	1		11/06/22 21:40		
I,2-Dibromo-3-chloropropane	<5.0	ug/L	5.0	1		11/06/22 21:40		
Dibromochloromethane	<5.0	ug/L	5.0	1		11/06/22 21:40		
1,2-Dibromoethane (EDB)	<5.0	ug/L	5.0	1		11/06/22 21:40		
Dibromomethane	<5.0	ug/L	5.0	1		11/06/22 21:40		
1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		11/06/22 21:40	95-50-1	
1,4-Dichlorobenzene	<5.0	ug/L	5.0	1		11/06/22 21:40	106-46-7	
rans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		11/06/22 21:40	110-57-6	
	<5.0	ug/L	5.0	1		11/06/22 21:40		

ANALYTICAL RESULTS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

1,2,3-Trichloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 96-18-4 Vinyl acetate <5.0 ug/L 5.0 1 11/06/22 21:40 108-05-4 v3 Vinyl chloride <5.0 ug/L 5.0 1 11/06/22 21:40 75-01-4 x30-20-7 Xylene (Total) <5.0 ug/L 5.0 1 11/06/22 21:40 1330-20-7 340-20-1 330-20-7 340-20-1 340-20-2 340-20-1 340-20-1 <t< th=""><th>Sample: EB001</th><th>Lab ID: 702</th><th>34795012</th><th>Collected: 10/28/2</th><th>22 11:25</th><th>Received:</th><th>10/28/22 12:25</th><th>Matrix: Water</th><th></th></t<>	Sample: EB001	Lab ID: 702	34795012	Collected: 10/28/2	22 11:25	Received:	10/28/22 12:25	Matrix: Water	
Pace Analytical Services - Melville	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2-Dichloroethane	3260C Volatile Organics	Analytical Met	hod: EPA 82	60C/5030C					
1.4-Dichloroethene		Pace Analytica	al Services -	Melville					
1	1,2-Dichloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	0 107-06-2	
Trans-1,2-Dichloroethene	1,1-Dichloroethene	<5.0	_	5.0	1		11/06/22 21:40	75-35-4	
Tans-1,2-Dichloroethene	cis-1,2-Dichloroethene	<5.0	-	5.0	1		11/06/22 21:40	156-59-2	
Sist_1,3-Dichloropropene	rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		11/06/22 21:40	156-60-5	
rans-1,3-Dichloropropene	1,2-Dichloropropane	<5.0	ug/L	5.0	1		11/06/22 21:40	78-87-5	
Ethylbenzene	cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		11/06/22 21:40	10061-01-5	
2-Hexanone	rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		11/06/22 21:40	10061-02-6	
Apparent Color Appa	Ethylbenzene	<5.0	ug/L	5.0	1		11/06/22 21:40	100-41-4	
Methylene Chloride	2-Hexanone	<5.0	ug/L	5.0	1		11/06/22 21:40	591-78-6	
#Methyl-2-pentanone (MIBK)	odomethane	<5.0	ug/L	5.0	1		11/06/22 21:40	74-88-4	
Styrene	Methylene Chloride	5.0	ug/L	5.0	1		11/06/22 21:40	75-09-2	
1,1,2-Tetrachloroethane	1-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		11/06/22 21:40	108-10-1	
1,1,2,2-Tetrachloroethane	Styrene	<5.0	ug/L	5.0	1		11/06/22 21:40	100-42-5	
Tetrachloroethene	1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	630-20-6	
Toluene	,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	79-34-5	
1,1-Trichloroethane	etrachloroethene	<5.0	ug/L	5.0	1		11/06/22 21:40	127-18-4	
1,1,2-Trichloroethane	Toluene Toluene	<5.0	ug/L	5.0	1		11/06/22 21:40	108-88-3	
Trichloroethene	,1,1-Trichloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	71-55-6	
Trichlorofluoromethane	,1,2-Trichloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	79-00-5	
2,3-Trichloropropane	Trichloroethene	<5.0	ug/L	5.0	1		11/06/22 21:40	79-01-6	
Viny acetate	Trichlorofluoromethane	<5.0	ug/L	5.0	1		11/06/22 21:40	75-69-4	L1
Vinyl chloride	1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		11/06/22 21:40	96-18-4	
Apparent Color Source So	/inyl acetate	<5.0	ug/L	5.0	1		11/06/22 21:40	108-05-4	v3
11	/inyl chloride	<5.0	ug/L	5.0	1		11/06/22 21:40	75-01-4	
1,2-Dichloroethane-d4 (S) 111 % 81-122 1 11/06/22 21:40 17060-07-0 14-Bromofluorobenzene (S) 192 % 79-118 1 11/06/22 21:40 460-00-4 15 Toluene-d8 (S) 104 % 82-122 1 11/06/22 21:40 2037-26-5 TIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville TIC Search No TIC's Found Pace Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Analytical Services - Melville 4. Sparent Color 5.6 Std. Units 5.0 1 10/31/22 14:00 Hi 5.6 Std. Units 0.10 1 10/31/22 14:00 Hi 5.6 Std. Units 0.10 1 10/31/22 14:00 Hi 5.6 Std. Units 0.10 1 10/31/22 14:00 Hi 5.6 Std. Units 5.7 Std. Units 5.8 Std. Units 5.9 Std. Units	(Ylene (Total)	<5.0	ug/L	5.0	1		11/06/22 21:40	1330-20-7	
## Bromofluorobenzene (S) 92 % 79-118 1 11/06/22 21:40 460-00-4 Foluene-d8 (S) 104 % 82-122 1 11/06/22 21:40 2037-26-5 FIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville FIC Search No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Analytical Services - Melville 45.0 units 5.0 1 10/31/22 14:00 H 5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B	Surrogates								
Toluene-d8 (S) 104 % 82-122 1 11/06/22 21:40 2037-26-5 TIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville TIC Search No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color	1,2-Dichloroethane-d4 (S)	111		81-122	1		11/06/22 21:40	17060-07-0	
Analytical Method: EPA 8260 Pace Analytical Services - Melville FIC Search No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Apparent Color	1-Bromofluorobenzene (S)			79-118	1		11/06/22 21:40) 460-00-4	
Pace Analytical Services - Melville No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color	Toluene-d8 (S)	104	%	82-122	1		11/06/22 21:40	2037-26-5	
Pace Analytical Services - Melville No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color	FIC MSV Water	Analytical Met	hod: EPA 82	60					
Found 2120B W Apparent Color Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color <5.0 units 5.0 1 10/31/22 14:00 H OH 5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B		•							
Pace Analytical Services - Melville Apparent Color <5.0 units 5.0 1 10/31/22 14:00 H 5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B	ΓIC Search				1		11/07/22 18:59)	
5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B	2120B W Apparent Color	· ·							
5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B	Apparent Color	<5.0	units	5.0	1		10/31/22 14:00)	H1
·	• •								H1
	2320B Alkalinity								
Alkalinity, Total as CaCO3	Alkalinity, Total as CaCO3	<1.0	mg/L	1.0	1		11/10/22 16:48	3	

ANALYTICAL RESULTS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: EB001	Lab ID: 7023	34795012	Collected:	10/28/2	2 11:25	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical Meth								
Total Dissolved Solids	<10.0	mg/L		10.0	1		11/03/22 18:56	5	
Chromium, Hexavalent	Analytical Meth Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		10/31/22 12:10	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytica			tion Met	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L		10.0	1	11/11/22 05:35	11/11/22 07:48	1	
5210B BOD, 5 day	Analytical Meth Pace Analytica			aration M	1ethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	10/29/22 09:03	11/03/22 11:21		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		11/22/22 11:11		
Chloride Sulfate	21.3 27.8	mg/L mg/L		2.0 5.0	1 1		11/22/22 11:11 11/22/22 11:11		
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytica	od: EPA 35		tion Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.11	mg/L		0.10	1	11/14/22 05:42	11/14/22 12:26	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica								
Nitrate as N	<0.050	mg/L		0.050	1		10/29/22 00:47		
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		10/29/22 00:47	7 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:5	14797-65-0	
4500 Ammonia Water	Analytical Meth Pace Analytica								
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 12:14	7664-41-7	
5310B TOC as NPOC	Analytical Meth Pace Analytica								
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 23:01	7440-44-0	
9014 Cyanide, Total	Analytical Meth Pace Analytica		-	nide Pr	eparatio	n Method: EPA 9	9010C		
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	11/10/22 15:10	57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 280006 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1415386 Matrix: Water

Associated Lab Samples: 70234795012

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Cadmium, Dissolved	ug/L	<2.5	2.5	10/31/22 13:55	
Calcium, Dissolved	ug/L	<200	200	10/31/22 13:55	
Iron, Dissolved	ug/L	<100	100	10/31/22 13:55	
Lead, Dissolved	ug/L	<5.0	5.0	10/31/22 13:55	
Magnesium, Dissolved	ug/L	<200	200	10/31/22 13:55	
Manganese, Dissolved	ug/L	<10.0	10.0	10/31/22 13:55	
Potassium, Dissolved	ug/L	< 5000	5000	10/31/22 13:55	
Sodium, Dissolved	ug/L	<5000	5000	10/31/22 13:55	

LABORATORY CONTROL SAMPLE:	1415387					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium, Dissolved	ug/L	500	511	102	80-120	
Calcium, Dissolved	ug/L	25000	26400	106	80-120	
Iron, Dissolved	ug/L	12500	12700	101	80-120	
Lead, Dissolved	ug/L	500	502	100	80-120	
Magnesium, Dissolved	ug/L	25000	25800	103	80-120	
Manganese, Dissolved	ug/L	500	501	100	80-120	
Potassium, Dissolved	ug/L	25000	24600	98	80-120	
Sodium, Dissolved	ua/L	25000	25800	103	80-120	

MATRIX SPIKE SAMPLE:	1415389						
_		70234795012	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium, Dissolved	ug/L	<2.5	500	498	100	75-125	
Calcium, Dissolved	ug/L	<200	25000	25300	101	75-125	
Iron, Dissolved	ug/L	<100	12500	12000	96	75-125	
Lead, Dissolved	ug/L	<5.0	500	473	95	75-125	
Magnesium, Dissolved	ug/L	<200	25000	24700	99	75-125	
Manganese, Dissolved	ug/L	<10.0	500	486	97	75-125	
Potassium, Dissolved	ug/L	< 5000	25000	24200	94	75-125	
Sodium, Dissolved	ug/L	< 5000	25000	24800	99	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1415388 70234795012 Dup RPD Parameter Units Result Result Qualifiers <2.5 Cadmium, Dissolved ug/L <2.5 <200 Calcium, Dissolved ug/L <200 <100 Iron, Dissolved ug/L <100 Lead, Dissolved ug/L < 5.0 < 5.0 Magnesium, Dissolved ug/L <200 <200 Manganese, Dissolved ug/L <10.0 <10.0 <5000 <5000 Potassium, Dissolved ug/L Sodium, Dissolved ug/L <5000 <5000

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280521 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007

METHOD BLANK: 1418204 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	ug/L	<10.0	10.0	11/05/22 12:51	
Cadmium	ug/L	<2.5	2.5	11/05/22 12:51	
Calcium	ug/L	<200	200	11/05/22 12:51	
Iron	ug/L	<100	100	11/05/22 12:51	
Lead	ug/L	<5.0	5.0	11/05/22 12:51	
Magnesium	ug/L	<200	200	11/05/22 12:51	
Manganese	ug/L	<10.0	10.0	11/05/22 12:51	
Potassium	ug/L	< 5000	5000	11/05/22 12:51	
Sodium	ug/L	<5000	5000	11/05/22 12:51	

LABORATORY CONTROL SAMPLE:	1418205	

Date: 12/16/2022 11:25 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	464	93	80-120	
Cadmium	ug/L	500	489	98	80-120	
Calcium	ug/L	25000	24600	98	80-120	
Iron	ug/L	12500	12100	97	80-120	
Lead	ug/L	500	498	100	80-120	
Magnesium	ug/L	25000	24200	97	80-120	
Manganese	ug/L	500	477	95	80-120	
Potassium	ug/L	25000	22500	90	80-120	
Sodium	ug/L	25000	24500	98	80-120	

MATRIX SPIKE SAMPLE:	1419231						
		30528090005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	 ug/L	ND	500	464	91	75-125	
Cadmium	ug/L	ND	500	479	96	75-125	
Calcium	ug/L	86700	12500	101000	114	75-125	
Iron	ug/L	403	5000	5180	96	75-125	
Lead	ug/L	ND	500	490	98	75-125	
Magnesium	ug/L	11200	12500	23100	95	75-125	
Manganese	ug/L	62.0	500	533	94	75-125	
Potassium	ug/L	9880	12500	21300	91	75-125	
Sodium	ug/L	10700	12500	24700	112	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Sodium

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1419230 30528090005 Dup RPD Parameter Units Result Result Qualifiers ND Arsenic ug/L <10.0 ND Cadmium ug/L <2.5 86700 88800 2 Calcium ug/L Iron ug/L 403 399 1 Lead ug/L ND <5.0 Magnesium ug/L 11200 11300 1 ug/L 62.0 2 Manganese 63.1 Potassium ug/L 9880 9970 1

ug/L

10700

10500

2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

LABORATORY CONTROL SAMPLE:

Sodium

Date: 12/16/2022 11:25 AM

QC Batch: 280951 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

METHOD BLANK: 1420287 Matrix: Water

1420288

ug/L

Associated Lab Samples: 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	ug/L	<10.0	10.0	11/07/22 17:38	
Cadmium	ug/L	<2.5	2.5	11/07/22 17:38	
Calcium	ug/L	<200	200	11/07/22 17:38	
Iron	ug/L	<100	100	11/07/22 17:38	
Lead	ug/L	<5.0	5.0	11/07/22 17:38	
Magnesium	ug/L	<200	200	11/07/22 17:38	
Manganese	ug/L	<10.0	10.0	11/07/22 17:38	
Potassium	ug/L	<5000	5000	11/07/22 17:38	
Sodium	ug/L	<5000	5000	11/07/22 17:38	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	ug/L	500	479	96	80-120	_
Cadmium	ug/L	500	491	98	80-120	
Calcium	ug/L	25000	24800	99	80-120	
Iron	ug/L	12500	11900	95	80-120	
Lead	ug/L	500	497	99	80-120	
Magnesium	ug/L	25000	24300	97	80-120	
Manganese	ug/L	500	488	98	80-120	
Potassium	ug/L	25000	23800	95	80-120	

25000

MATRIX SPIKE SAMPLE:	1420290						
		70234886005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	<10.0	500	499	99	75-125	
Cadmium	ug/L	<2.5	500	506	101	75-125	
Calcium	ug/L	117000	12500	144000	216	75-125 I	M1
Iron	ug/L	174	5000	5330	103	75-125	
Lead	ug/L	<5.0	500	506	101	75-125	
Magnesium	ug/L	20300	12500	35700	123	75-125	
Manganese	ug/L	<10.0	500	512	101	75-125	
Potassium	ug/L	< 5000	12500	14600	108	75-125	
Sodium	ug/L	< 5000	12500	16600	118	75-125	

25100

100

80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1420289 70234886005 Dup RPD Parameter Units Result Result Qualifiers <10.0 Arsenic ug/L <10.0 <2.5 Cadmium ug/L <2.5 117000 120000 Calcium ug/L 3 Iron ug/L 174 175 1 Lead ug/L < 5.0 <5.0 Magnesium ug/L 20300 20600 1 Manganese ug/L <10.0 <10.0 Potassium ug/L <5000 <5000 <5000 Sodium ug/L <5000

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 279850 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795001, 70234795002

METHOD BLANK: 1414731 Matrix: Water

Associated Lab Samples: 70234795001, 70234795002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1,1-Trichloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1,2-Trichloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1-Dichloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1-Dichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
1,2,3-Trichloropropane	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dichlorobenzene	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dichloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dichloropropane	ug/L	<5.0	5.0	10/28/22 15:35	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	10/28/22 15:35	
2-Butanone (MEK)	ug/L	<5.0	5.0	10/28/22 15:35	
2-Hexanone	ug/L	<5.0	5.0	10/28/22 15:35	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	10/28/22 15:35	
Acetone	ug/L	<5.0	5.0	10/28/22 15:35	
Acrylonitrile	ug/L	<5.0	5.0	10/28/22 15:35	
Benzene	ug/L	<5.0	5.0	10/28/22 15:35	
Bromochloromethane	ug/L	<5.0	5.0	10/28/22 15:35	
Bromodichloromethane	ug/L	<5.0	5.0	10/28/22 15:35	
Bromoform	ug/L	<5.0	5.0	10/28/22 15:35	
Bromomethane	ug/L	<5.0	5.0	10/28/22 15:35	
Carbon disulfide	ug/L	<5.0	5.0	10/28/22 15:35	v3
Carbon tetrachloride	ug/L	<5.0	5.0	10/28/22 15:35	
Chlorobenzene	ug/L	<5.0	5.0	10/28/22 15:35	
Chloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
Chloroform	ug/L	<5.0	5.0	10/28/22 15:35	
Chloromethane	ug/L	<5.0	5.0	10/28/22 15:35	v3
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
cis-1,3-Dichloropropene	ug/L	<5.0	5.0	10/28/22 15:35	
Dibromochloromethane	ug/L	<5.0	5.0	10/28/22 15:35	
Dibromomethane	ug/L	<5.0	5.0	10/28/22 15:35	
Ethylbenzene	ug/L	<5.0	5.0	10/28/22 15:35	
Iodomethane	ug/L	<5.0	5.0	10/28/22 15:35	
Methylene Chloride	ug/L	<5.0	5.0	10/28/22 15:35	
Styrene	ug/L	<5.0	5.0	10/28/22 15:35	
Tetrachloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
Toluene	ug/L	<5.0	5.0	10/28/22 15:35	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

METHOD BLANK: 1414731 Matrix: Water

Associated Lab Samples: 70234795001, 70234795002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	10/28/22 15:35	
trans-1,4-Dichloro-2-butene	ug/L	< 5.0	5.0	10/28/22 15:35	v3
Trichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
Trichlorofluoromethane	ug/L	<5.0	5.0	10/28/22 15:35	
Vinyl acetate	ug/L	<5.0	5.0	10/28/22 15:35	
Vinyl chloride	ug/L	<5.0	5.0	10/28/22 15:35	v3
Xylene (Total)	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dichloroethane-d4 (S)	%	102	81-122	10/28/22 15:35	
4-Bromofluorobenzene (S)	%	93	79-118	10/28/22 15:35	
Toluene-d8 (S)	%	99	82-122	10/28/22 15:35	

LABORATORY CONTROL SAMPLE:	1414732					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.9	102	75-122	
1,1,1-Trichloroethane	ug/L	50	50.9	102	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	53.1	106	70-127	
1,1,2-Trichloroethane	ug/L	50	56.8	114	81-119	
1,1-Dichloroethane	ug/L	50	49.6	99	72-126	
1,1-Dichloroethene	ug/L	50	42.7	85	66-133	
,2,3-Trichloropropane	ug/L	50	52.0	104	69-120	
,2-Dibromo-3-chloropropane	ug/L	50	46.1	92	47-133	
,2-Dibromoethane (EDB)	ug/L	50	52.7	105	81-123	
,2-Dichlorobenzene	ug/L	50	51.0	102	80-117	
,2-Dichloroethane	ug/L	50	55.4	111	69-134	
,2-Dichloropropane	ug/L	50	54.3	109	75-125	
,4-Dichlorobenzene	ug/L	50	48.9	98	80-117	
2-Butanone (MEK)	ug/L	50	68.7	137	33-165	H,v1
-Hexanone	ug/L	50	50.4	101	50-128	
l-Methyl-2-pentanone (MIBK)	ug/L	50	51.4	103	62-131	
Acetone	ug/L	50	47.6	95	14-156	/ 1
Acrylonitrile	ug/L	50	50.5	101	60-136	
Benzene	ug/L	50	56.0	112	78-117	
Bromochloromethane	ug/L	50	47.1	94	77-122	
Bromodichloromethane	ug/L	50	57.9	116	80-123	
Bromoform	ug/L	50	56.0	112	49-138	
Bromomethane	ug/L	50	48.1	96	10-143	
Carbon disulfide	ug/L	50	38.8	78	66-133	v 3
Carbon tetrachloride	ug/L	50	48.0	96	64-135	
Chlorobenzene	ug/L	50	51.9	104	79-117	
Chloroethane	ug/L	50	51.7	103	31-156	
Chloroform	ug/L	50	52.7	105	79-123	
Chloromethane	ug/L	50	32.0	64	39-116	v 3
cis-1,2-Dichloroethene	ug/L	50	48.3	97	77-125	
	_					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

LABORATORY CONTROL SAMPLE:	1414732	0 "			0/ 5	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualifiers
cis-1,3-Dichloropropene	ug/L	50	52.3	105	78-131	
Dibromochloromethane	ug/L	50	58.5	117	65-123	
Dibromomethane	ug/L	50	53.3	107	81-123	
Ethylbenzene	ug/L	50	50.8	102	79-115	
odomethane	ug/L	50	40.0	80	10-183	
Methylene Chloride	ug/L	50	45.0	90	67-123	
Styrene	ug/L	50	55.3	111	82-121	
etrachloroethene	ug/L	50	53.9	108	65-120	
oluene	ug/L	50	53.4	107	80-114	
rans-1,2-Dichloroethene	ug/L	50	43.6	87	74-123	
rans-1,3-Dichloropropene	ug/L	50	50.0	100	73-135	
ans-1,4-Dichloro-2-butene	ug/L	50	38.6	77	52-137 v	3
richloroethene	ug/L	50	54.1	108	79-115	
richlorofluoromethane	ug/L	50	56.2	112	51-136	
inyl acetate	ug/L	50	38.8	78	49-136	
/inyl chloride	ug/L	50	38.0	76	49-118 v	3
Kylene (Total)	ug/L	150	155	103	80-118	
,2-Dichloroethane-d4 (S)	%			103	81-122	
I-Bromofluorobenzene (S)	%			97	79-118	
oluene-d8 (S)	%			98	82-122	

MATRIX SPIKE SAMPLE:	1415187						
		70233766011	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits Q	ualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	49.7	99	65-122	
1,1,1-Trichloroethane	ug/L	<1.0	50	51.7	103	72-123	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	53.4	107	64-133	
1,1,2-Trichloroethane	ug/L	<1.0	50	58.0	116	78-120	
1,1-Dichloroethane	ug/L	<1.0	50	52.7	105	70-124	
1,1-Dichloroethene	ug/L	<1.0	50	46.4	93	61-139	
1,2,3-Trichloropropane	ug/L	<1.0	50	51.7	103	64-120	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	46.7	93	32-137	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	52.7	105	78-121	
1,2-Dichlorobenzene	ug/L	<1.0	50	52.1	104	75-120	
1,2-Dichloroethane	ug/L	<1.0	50	57.6	115	58-138	
1,2-Dichloropropane	ug/L	<1.0	50	56.5	113	74-122	
1,4-Dichlorobenzene	ug/L	<1.0	50	50.4	101	76-118	
2-Butanone (MEK)	ug/L	<5.0	50	63.8	128	33-148 IH,v	1
2-Hexanone	ug/L	<5.0	50	48.3	97	49-124	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	51.6	103	60-136	
Acetone	ug/L	2.0J	50	33.6	63	35-112 v1	
Acrylonitrile	ug/L	<1.0	50	49.1	98	45-132	
Benzene	ug/L	<1.0	50	57.7	115	70-130	
Bromochloromethane	ug/L	<1.0	50	49.7	99	70-122	
Bromodichloromethane	ug/L	<1.0	50	57.1	114	74-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

MATRIX SPIKE SAMPLE:	1415187						
		70233766011	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/L	<1.0	50	51.9	104	39-139	
Bromomethane	ug/L	<1.0	50	48.4	97	10-130	
Carbon disulfide	ug/L	<1.0	50	40.5	81	60-129 v	3
Carbon tetrachloride	ug/L	<1.0	50	47.3	95	56-143	
Chlorobenzene	ug/L	<1.0	50	52.8	106	74-122	
Chloroethane	ug/L	<1.0	50	60.0	120	35-146	
Chloroform	ug/L	<1.0	50	54.7	109	71-129	
Chloromethane	ug/L	<1.0	50	34.9	70	29-112 v	3
cis-1,2-Dichloroethene	ug/L	<1.0	50	49.7	99	73-129	
cis-1,3-Dichloropropene	ug/L	<1.0	50	50.9	102	67-130	
Dibromochloromethane	ug/L	<1.0	50	57.2	114	55-126	
Dibromomethane	ug/L	<1.0	50	53.9	108	71-127	
Ethylbenzene	ug/L	<1.0	50	51.8	104	70-126	
odomethane	ug/L	<4.0	50	46.7	93	10-167	
Methylene Chloride	ug/L	<1.0	50	45.6	91	69-117	
Styrene	ug/L	<1.0	50	55.8	112	79-123	
Tetrachloroethene	ug/L	<1.0	50	53.7	107	64-124	
Toluene	ug/L	<1.0	50	54.3	109	76-123	
rans-1,2-Dichloroethene	ug/L	<1.0	50	47.4	95	69-127	
rans-1,3-Dichloropropene	ug/L	<1.0	50	47.7	95	61-130	
rans-1,4-Dichloro-2-butene	ug/L	<1.0	50	40.5	81	18-144 v	3
Trichloroethene	ug/L	<1.0	50	55.2	110	73-125	
Trichlorofluoromethane	ug/L	<1.0	50	59.7	119	59-129	
Vinyl acetate	ug/L	<1.0	50	38.9	78	34-123	
Vinyl chloride	ug/L	<1.0	50	41.2	82	33-127 v	3
Kylene (Total)	ug/L	<3.0	150	157	105	78-123	
1,2-Dichloroethane-d4 (S)	%				107	81-122	
4-Bromofluorobenzene (S)	%				98	79-118	
Toluene-d8 (S)	%				97	82-122	

SAMPLE DUPLICATE: 1415186	SAMPI	LE D	UPL	ICAT	E:	14151	86
---------------------------	-------	------	-----	------	----	-------	----

Date: 12/16/2022 11:25 AM

		70233766013	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	<5.0		
1,1,1-Trichloroethane	ug/L	<1.0	< 5.0		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	< 5.0		
1,1,2-Trichloroethane	ug/L	<1.0	< 5.0		
1,1-Dichloroethane	ug/L	4.2	5.0	5	
1,1-Dichloroethene	ug/L	<1.0	< 5.0		
1,2,3-Trichloropropane	ug/L	<1.0	< 5.0		
1,2-Dibromo-3-chloropropane	ug/L	<1.0	< 5.0		
1,2-Dibromoethane (EDB)	ug/L	<1.0	< 5.0		
1,2-Dichlorobenzene	ug/L	<1.0	<5.0		
1,2-Dichloroethane	ug/L	<1.0	<5.0		
1,2-Dichloropropane	ug/L	<1.0	<5.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1415186					
_		70233766013	Dup		_
Parameter	Units	Result	Result	RPD	Qualifiers
,4-Dichlorobenzene	ug/L	<1.0	<5.0		
-Butanone (MEK)	ug/L	<5.0	<5.0		
Hexanone	ug/L	<5.0	<5.0		
Methyl-2-pentanone (MIBK)	ug/L	<5.0	<5.0		
etone	ug/L	<5.0	<5.0		
rylonitrile	ug/L	<1.0	<5.0		
nzene	ug/L	<1.0	<5.0		
omochloromethane	ug/L	<1.0	<5.0		
omodichloromethane	ug/L	<1.0	<5.0		
omoform	ug/L	<1.0	<5.0		
momethane	ug/L	<1.0	<5.0		
rbon disulfide	ug/L	<1.0	<5.0		v3
bon tetrachloride	ug/L	<1.0	<5.0		
orobenzene	ug/L	<1.0	<5.0		
oroethane	ug/L	<1.0	<5.0		
proform	ug/L	<1.0	<5.0		
promethane	ug/L	<1.0	<5.0		v3
1,2-Dichloroethene	ug/L	4.5	5.0		7
,3-Dichloropropene	ug/L	<1.0	<5.0		
omochloromethane	ug/L	<1.0	<5.0		
omomethane	ug/L	<1.0	<5.0		
Ibenzene	ug/L	<1.0	<5.0		
methane	ug/L	<4.0	<5.0		
nylene Chloride	ug/L	<1.0	<5.0		
ene	ug/L	<1.0	<5.0		
achloroethene	ug/L	5.5	5.4		3
iene	ug/L	<1.0	<5.0		
s-1,2-Dichloroethene	ug/L	<1.0	<5.0		
s-1,3-Dichloropropene	ug/L	<1.0	<5.0		
s-1,4-Dichloro-2-butene	ug/L	<1.0	<5.0		v3
nloroethene	ug/L	9.7	9.1		7
nlorofluoromethane	ug/L	<1.0	<5.0		
d acetate	ug/L	<1.0	<5.0		
yl chloride	ug/L	<1.0	<5.0		v3
ene (Total)	ug/L	<3.0	<5.0		
Dichloroethane-d4 (S)	%	106	105		
romofluorobenzene (S)	%	92	91		
iene-d8 (S)	%	97	96		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 280925 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1420207 Matrix: Water

Associated Lab Samples: 70234795012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1,1-Trichloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1,2-Trichloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1-Dichloroethane	ug/L	< 5.0	5.0	11/06/22 12:58	
1,1-Dichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
1,2,3-Trichloropropane	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dichlorobenzene	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dichloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dichloropropane	ug/L	<5.0	5.0	11/06/22 12:58	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	11/06/22 12:58	
2-Butanone (MEK)	ug/L	<5.0	5.0	11/06/22 12:58	
2-Hexanone	ug/L	<5.0	5.0	11/06/22 12:58	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	5.0	11/06/22 12:58	
Acetone	ug/L	<5.0	5.0	11/06/22 12:58	
Acrylonitrile	ug/L	<5.0	5.0	11/06/22 12:58	
Benzene	ug/L	<5.0	5.0	11/06/22 12:58	
Bromochloromethane	ug/L	<5.0	5.0	11/06/22 12:58	
Bromodichloromethane	ug/L	<5.0	5.0	11/06/22 12:58	
Bromoform	ug/L	<5.0	5.0	11/06/22 12:58	
Bromomethane	ug/L	<5.0	5.0	11/06/22 12:58	
Carbon disulfide	ug/L	<5.0	5.0	11/06/22 12:58	
Carbon tetrachloride	ug/L	<5.0	5.0	11/06/22 12:58	
Chlorobenzene	ug/L	<5.0	5.0	11/06/22 12:58	
Chloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
Chloroform	ug/L	<5.0	5.0	11/06/22 12:58	
Chloromethane	ug/L	<5.0	5.0	11/06/22 12:58	
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
cis-1,3-Dichloropropene	ug/L	<5.0	5.0	11/06/22 12:58	
Dibromochloromethane	ug/L	<5.0	5.0	11/06/22 12:58	
Dibromomethane	ug/L	<5.0	5.0	11/06/22 12:58	
Ethylbenzene	ug/L	<5.0	5.0	11/06/22 12:58	
Iodomethane	ug/L	<5.0	5.0	11/06/22 12:58	
Methylene Chloride	ug/L	<5.0	5.0	11/06/22 12:58	
Styrene	ug/L	<5.0	5.0	11/06/22 12:58	
Tetrachloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
Toluene	ug/L	<5.0	5.0	11/06/22 12:58	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

METHOD BLANK: 1420207 Matrix: Water

Associated Lab Samples: 70234795012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	11/06/22 12:58	
trans-1,4-Dichloro-2-butene	ug/L	<5.0	5.0	11/06/22 12:58	
Trichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
Trichlorofluoromethane	ug/L	<5.0	5.0	11/06/22 12:58	
Vinyl acetate	ug/L	<5.0	5.0	11/06/22 12:58	v3
Vinyl chloride	ug/L	<5.0	5.0	11/06/22 12:58	
Xylene (Total)	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dichloroethane-d4 (S)	%	104	81-122	11/06/22 12:58	
4-Bromofluorobenzene (S)	%	91	79-118	11/06/22 12:58	
Toluene-d8 (S)	%	106	82-122	11/06/22 12:58	

LABORATORY CONTROL SAMPLE:	1420208					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.3	101	75-122	
1,1,1-Trichloroethane	ug/L	50	43.0	86	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	51.4	103	70-127	
1,1,2-Trichloroethane	ug/L	50	52.0	104	81-119	
1,1-Dichloroethane	ug/L	50	41.4	83	72-126	
1,1-Dichloroethene	ug/L	50	51.9	104	66-133	
1,2,3-Trichloropropane	ug/L	50	53.3	107	69-120	
1,2-Dibromo-3-chloropropane	ug/L	50	39.4	79	47-133	
1,2-Dibromoethane (EDB)	ug/L	50	49.2	98	81-123	
1,2-Dichlorobenzene	ug/L	50	50.5	101	80-117	
1,2-Dichloroethane	ug/L	50	47.4	95	69-134	
1,2-Dichloropropane	ug/L	50	47.5	95	75-125	
1,4-Dichlorobenzene	ug/L	50	48.8	98	80-117	
2-Butanone (MEK)	ug/L	50	51.1	102	33-165	IH
2-Hexanone	ug/L	50	55.0	110	50-128	
4-Methyl-2-pentanone (MIBK)	ug/L	50	48.1	96	62-131	
Acetone	ug/L	50	78.3	157	14-156	L1
Acrylonitrile	ug/L	50	43.6	87	60-136	
Benzene	ug/L	50	48.3	97	78-117	
Bromochloromethane	ug/L	50	45.4	91	77-122	
Bromodichloromethane	ug/L	50	50.5	101	80-123	
Bromoform	ug/L	50	55.3	111	49-138	
Bromomethane	ug/L	50	53.8	108	10-143	
Carbon disulfide	ug/L	50	50.5	101	66-133	
Carbon tetrachloride	ug/L	50	41.6	83	64-135	
Chlorobenzene	ug/L	50	50.6	101	79-117	
Chloroethane	ug/L	50	56.9	114	31-156	v1
Chloroform	ug/L	50	46.3	93	79-123	
Chloromethane	ug/L	50	37.2	74	39-116	
cis-1,2-Dichloroethene	ug/L	50	42.4	85	77-125	
	_					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

ABORATORY CONTROL SAMPLE:	1420208					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
s-1,3-Dichloropropene	ug/L	50	44.6	89	78-131	
ibromochloromethane	ug/L	50	59.0	118	65-123	
bromomethane	ug/L	50	51.9	104	81-123	
hylbenzene	ug/L	50	47.9	96	79-115	
domethane	ug/L	50	58.0	116	10-183	
ethylene Chloride	ug/L	50	50.2	100	67-123	
yrene	ug/L	50	51.7	103	82-121	
rachloroethene	ug/L	50	52.1	104	65-120	
uene	ug/L	50	47.6	95	80-114	
ns-1,2-Dichloroethene	ug/L	50	53.0	106	74-123	
ns-1,3-Dichloropropene	ug/L	50	42.1	84	73-135	
ns-1,4-Dichloro-2-butene	ug/L	50	41.3	83	52-137	
chloroethene	ug/L	50	46.7	93	79-115	
chlorofluoromethane	ug/L	50	70.0	140	51-136 L	_1,v1
nyl acetate	ug/L	50	40.8	82	49-136 v	/3
nyl chloride	ug/L	50	38.4	77	49-118	
ene (Total)	ug/L	150	147	98	80-118	
-Dichloroethane-d4 (S)	%			107	81-122	
romofluorobenzene (S)	%			102	79-118	
luene-d8 (S)	%			108	82-122	

MATRIX SPIKE & MATRIX SPIKE	30		1420231								
			MS	MSD							
	702	235441001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	47.1	44.5	94	89	65-122	6	
1,1,1-Trichloroethane	ug/L	ND	50	50	43.9	42.3	88	85	72-123	4	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	47.8	49.9	96	100	64-133	4	
1,1,2-Trichloroethane	ug/L	ND	50	50	51.7	48.4	103	97	78-120	7	
1,1-Dichloroethane	ug/L	ND	50	50	43.7	41.3	87	83	70-124	6	
1,1-Dichloroethene	ug/L	ND	50	50	44.5	41.4	89	83	61-139	7	
1,2,3-Trichloropropane	ug/L	ND	50	50	50.9	50.2	102	100	64-120	1	
1,2-Dibromo-3-chloropropane	ug/L	ND	50	50	37.4	37.1	75	74	32-137	1	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	48.1	44.7	96	89	78-121	7	
1,2-Dichlorobenzene	ug/L	ND	50	50	47.9	46.8	96	94	75-120	2	
1,2-Dichloroethane	ug/L	ND	50	50	47.5	46.3	95	93	58-138	3	
1,2-Dichloropropane	ug/L	ND	50	50	46.1	43.9	92	88	74-122	5	
1,4-Dichlorobenzene	ug/L	ND	50	50	46.6	45.5	93	91	76-118	2	
2-Butanone (MEK)	ug/L	ND	50	50	38.7	39.7	77	79	33-148	3 IF	ł
2-Hexanone	ug/L	ND	50	50	39.8	40.4	80	81	49-124	1	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	50	50	41.9	42.7	84	85	60-136	2	
Acetone	ug/L	ND	50	50	27.9	28.4	56	57	35-112	2	
Acrylonitrile	ug/L	ND	50	50	39.8	36.8	80	74	45-132	8	
Benzene	ug/L	ND	50	50	49.6	46.5	99	93	70-130	6	
Bromochloromethane	ug/L	ND	50	50	46.5	43.7	93	87	70-122	6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

MATRIX SPIKE & MATRIX SPIK	KE DUPLICATI	E: 14202	30		1420231						
			MS	MSD							
	_	35441001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
Bromodichloromethane	ug/L	ND	50	50	49.8	47.9	100	96	74-122	4	
Bromoform	ug/L	ND	50	50	48.0	51.0	96	102	39-139	6	
Bromomethane	ug/L	ND	50	50	56.7	55.4	113	111	10-130	2	
Carbon disulfide	ug/L	ND	50	50	43.2	40.3	86	81	60-129	7	
Carbon tetrachloride	ug/L	ND	50	50	43.4	43.4	87	87	56-143	0	
Chlorobenzene	ug/L	ND	50	50	48.1	46.5	96	93	74-122	4	
Chloroethane	ug/L	ND	50	50	63.1	59.7	126	119	35-146	6 v1	
Chloroform	ug/L	ND	50	50	48.0	45.9	96	92	71-129	4	
Chloromethane	ug/L	ND	50	50	37.7	35.2	75	70	29-112	7	
cis-1,2-Dichloroethene	ug/L	ND	50	50	44.4	43.0	89	86	73-129	3	
cis-1,3-Dichloropropene	ug/L	ND	50	50	41.8	40.5	84	81	67-130	3	
Dibromochloromethane	ug/L	ND	50	50	53.5	53.1	107	106	55-126	1	
Dibromomethane	ug/L	ND	50	50	49.1	47.4	98	95	71-127	4	
Ethylbenzene	ug/L	ND	50	50	47.0	44.8	94	90	70-126	5	
lodomethane	ug/L	ND	50	50	44.9	42.4	90	85	10-167	6	
Methylene Chloride	ug/L	ND	50	50	41.1	39.7	82	79	69-117	4	
Styrene	ug/L	ND	50	50	49.5	48.0	99	96	79-123	3	
Tetrachloroethene	ug/L	ND	50	50	50.5	47.2	101	94	64-124	7	
Toluene	ug/L	ND	50	50	48.2	45.5	96	91	76-123	6	
trans-1,2-Dichloroethene	ug/L	ND	50	50	45.5	42.3	91	85	69-127	7	
trans-1,3-Dichloropropene	ug/L	ND	50	50	39.0	39.5	78	79	61-130	1	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	36.4	36.5	73	73	18-144	0	
Trichloroethene	ug/L	ND	50	50	47.7	45.5	95	91	73-125	5	
Trichlorofluoromethane	ug/L	ND	50	50	75.3	67.2	151	134	59-129	11 M),v1
Vinyl acetate	ug/L	ND	50	50	30.1	36.6	60	73	34-123	19 v3	
Vinyl chloride	ug/L	ND	50	50	43.7	39.6	87	79	33-127	10	
Xylene (Total)	ug/L	ND	150	150	144	136	96	91	78-123	6	
1,2-Dichloroethane-d4 (S)	%						108	106	81-122		
4-Bromofluorobenzene (S)	%						97	97	79-118		
Toluene-d8 (S)	%						107	106	82-122		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280025 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1415454 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 10/31/22 13:16

LABORATORY CONTROL SAMPLE: 1415455

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Apparent Color** units 40 40.0 100 90-110

SAMPLE DUPLICATE: 1415456

Date: 12/16/2022 11:25 AM

		70234795011	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Apparent Color	units	120	110	(9 H1
pH	Std. Units	6.6	6.5	() H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281536
QC Batch Method: SM22 2320B

Analysis Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004

METHOD BLANK: 1423271 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 11/10/22 10:38

LABORATORY CONTROL SAMPLE: 1423272

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 25 23.8 95 85-115

MATRIX SPIKE SAMPLE: 1423274

MS MS % Rec 70234698001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 58.9 Alkalinity, Total as CaCO3 mg/L 109 50 100 75-125

SAMPLE DUPLICATE: 1423273

Date: 12/16/2022 11:25 AM

Parameter Units Result Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 58.9 59.4 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281538 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011,

70234795012

METHOD BLANK: 1423279 Matrix: Water

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011,

70234795012

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<1.0</td>1.011/10/22 15:27

LABORATORY CONTROL SAMPLE: 1423280

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Alkalinity, Total as CaCO3 mg/L 25 25.8 103

MATRIX SPIKE SAMPLE: 1423282

70234795005 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 45.7 50 91.0 91 75-125 Alkalinity, Total as CaCO3 mg/L

SAMPLE DUPLICATE: 1423281

Date: 12/16/2022 11:25 AM

Parameter Units Result Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 45.7 46.0 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281560 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

METHOD BLANK: 1423379 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersTot Hardness asCaCO3 (SM 2340Bmg/L<2.5</td>2.511/10/22 17:33

LABORATORY CONTROL SAMPLE: 1423380

LCS LCS Spike % Rec Parameter Limits Qualifiers Units Conc. Result % Rec Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 100 90-110

MATRIX SPIKE SAMPLE: 1423381

MS MS 70234853001 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B 16.0 216 100 75-125 200 mg/L

MATRIX SPIKE SAMPLE: 1423383

70234886001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 267 667 920 75-125

SAMPLE DUPLICATE: 1423382

 Parameter
 Units
 70234853001 Result
 Dup Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 16.0
 18.0
 12

SAMPLE DUPLICATE: 1423384

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234886001 Result
 Dup Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 267
 253
 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280457 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009

METHOD BLANK: 1417648 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 11/02/22 19:32

LABORATORY CONTROL SAMPLE: 1417649

Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers **Total Dissolved Solids** 500 496 99 85-115 mg/L

MATRIX SPIKE SAMPLE: 1417651

MS % Rec 70234875001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 834 Total Dissolved Solids mg/L 600 1320 81 75-125

MATRIX SPIKE SAMPLE: 1417653

70234795009 MS MS % Rec Spike % Rec Qualifiers Parameter Units Result Conc. Result Limits Total Dissolved Solids 126 mg/L 300 422 99 75-125

SAMPLE DUPLICATE: 1417650

 Parameter
 Units
 Result
 Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 834
 880
 5

SAMPLE DUPLICATE: 1417652

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234795009 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 126
 145
 14 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280458

QC Batch Method: SM22 2540C

Analysis Method: SM22 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70234795010, 70234795011

METHOD BLANK: 1417654 Matrix: Water

Associated Lab Samples: 70234795010, 70234795011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 11/02/22 20:44

LABORATORY CONTROL SAMPLE: 1417655

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 500 476 95 85-115 mg/L

MATRIX SPIKE SAMPLE: 1417657

MS MS % Rec 70234795010 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 150 **Total Dissolved Solids** mg/L 300 427 92 75-125

Total Dissolved Solids Hig/L 130 300 427 92 75-125

 MATRIX SPIKE SAMPLE:
 1417659

 70234464015
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Total Dissolved Solids mg/L 128 300 387 86 75-125

SAMPLE DUPLICATE: 1417656

 Parameter
 Units
 70234795010 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 150
 161
 7 D6

SAMPLE DUPLICATE: 1417658

Date: 12/16/2022 11:25 AM

Parameter Units 70234464015 Dup Result RPD Qualifiers

Total Dissolved Solids mg/L 128 124 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

BASELINE-NORTH SEA LANDFILL Project:

Pace Project No.: 70234795

QC Batch: 280682

QC Batch Method: SM22 2540C Analysis Method: SM22 2540C

Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1418977 Matrix: Water

Associated Lab Samples: 70234795012

> Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids <5.0 5.0 11/03/22 18:42 mg/L

LABORATORY CONTROL SAMPLE: 1418978

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 500 492 98 85-115 mg/L

MATRIX SPIKE SAMPLE: 1418980

MS MS % Rec 70234828001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 312 **Total Dissolved Solids** mg/L 600 838 88 75-125

MATRIX SPIKE SAMPLE: 1418982 70234795012 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids <10.0 mg/L 300 255 84 75-125

SAMPLE DUPLICATE: 1418979

SAMPLE DUPLICATE: 1418981

Date: 12/16/2022 11:25 AM

70234828001 Dup RPD Parameter Units Result Result Qualifiers 312 334 7 D6 Total Dissolved Solids mg/L

70234795012 Dup RPD Units Qualifiers Parameter Result Result

<10.0 Total Dissolved Solids <10.0 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Chromium, Hexavalent

QC Batch: 279977 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

0.020

10/31/22 12:02

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1415311 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

 $70234795010,\,70234795011,\,70234795012$

mg/L

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

< 0.020

LABORATORY CONTROL SAMPLE: 1415312

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Chromium, Hexavalent mg/L 0.2 0.21 103

MATRIX SPIKE SAMPLE: 1415313

70234795003 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 0.21 75-125 H3 Chromium, Hexavalent 0.2 99 mg/L

SAMPLE DUPLICATE: 1415314

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Chromium, Hexavalent
 mg/L
 <0.020</td>
 <0.020</td>
 H3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281729
QC Batch Method: EPA 410.4

Analysis Description: 410.4 COD

EPA 410.4

LCS

MS

% Rec

MS

% Rec

Laboratory: Pace Analytical Services - Melville
mples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

Analysis Method:

Associated Lab Samples: 70234795003, 70234795004, 70234795005 70234795010, 70234795011, 70234795012

METHOD BLANK: 1424245 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersChemical Oxygen Demandmg/L<10.0</td>10.011/11/22 07:47

LABORATORY CONTROL SAMPLE: 1424246

ParameterUnitsConc.Result% RecLimitsQualifiersChemical Oxygen Demandmg/L50052010490-110

70234795003

Spike

MATRIX SPIKE SAMPLE: 1424247

ParameterUnitsResultConc.Result% RecLimitsQualifiersChemical Oxygen Demandmg/L23.01000108010690-110

Spike

LCS

MATRIX SPIKE SAMPLE: 1424249

70235492001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 928 1000 1890 90-110

SAMPLE DUPLICATE: 1424248

 Parameter
 Units
 70234795003 Result
 Dup Result
 RPD
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 23.0
 25.2
 9

SAMPLE DUPLICATE: 1424250

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Chemical Oxygen Demand
 mg/L
 928
 928
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279888 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

METHOD BLANK: 1415016 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

BOD, 5 day

Blank Reporting Limit Analyzed Qualifiers

80D, 5 day

Result 1.0 11/03/22 09:45

LABORATORY CONTROL SAMPLE: 1415017

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 95 84.5-115.4 BOD, 5 day mg/L 198 188

SAMPLE DUPLICATE: 1415018

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 BOD, 5 day
 mg/L
 139
 140
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279890 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1415023 Matrix: Water

Associated Lab Samples: 70234795012

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

BOD, 5 day mg/L <1.0 1.0 11/03/22 11:08

LABORATORY CONTROL SAMPLE: 1415024

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 190 96 84.5-115.4

SAMPLE DUPLICATE: 1415025

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234850001 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 445
 442
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 280955 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

METHOD BLANK: 1420303 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	11/09/22 04:09	
Chloride	mg/L	<2.0	2.0	11/09/22 04:09	
Sulfate	mg/L	<5.0	5.0	11/09/22 04:09	

LABORATORY CONTROL SAMPLE:	1420304					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	1	1.0	104	90-110	_
Chloride	mg/L	10	10.6	106	90-110	
Sulfate	mg/L	10	10.3	103	90-110	

MATRIX SPIKE SAMPLE:	1420305						
		70235291001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	ND	1	1.3	130	90-110	M1
Chloride	mg/L	83.7	50	125	82	90-110	
Sulfate	mg/L	45.9	10	58.2	123	90-110	M1

1420307						
	70235291002	Spike	MS	MS	% Rec	
Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
mg/L	ND	1	1.3	131	90-110	M 1
mg/L	71.4	50	116	89	90-110	
mg/L	47.5	10	59.6	121	90-110 I	/ 11
	Units mg/L mg/L	Units 70235291002 Result mg/L ND mg/L 71.4	Units 70235291002 Result Spike Conc. mg/L mg/L ND 1 mg/L 1 50	Units 70235291002 Result Spike Conc. MS Result mg/L mg/L ND 1 1.3 mg/L 1.3 mg/L	Units 70235291002 Result Spike Conc. MS Result MS % Rec mg/L mg/L ND 1 1.3 131 mg/L 71.4 50 116 89	Units Result Spike Conc. MS Result MS Rec Limits mg/L mg/L ND 1 1.3 1.3 131 90-110 Mg/L 116 89 90-110 Mg/L

SAMPLE DUPLICATE: 1420306					
		70235291001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	ND ND	<2.5		

 Chloride
 mg/L
 83.7
 83.9
 0

 Sulfate
 mg/L
 45.9
 46.1
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1420308

Parameter	Units	70235291002 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	ND	<2.5		
Chloride	mg/L	71.4	70.1	2	
Sulfate	mg/L	47.5	46.5	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Bromide Chloride Sulfate

Date: 12/16/2022 11:25 AM

QC Batch: 282458 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795009, 70234795010, 70234795011, 70234795012

METHOD BLANK: 1427714 Matrix: Water
Associated Lab Samples: 70234795009, 70234795010, 70234795011, 70234795012

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
<u> </u>	mg/L	<0.50	0.50	11/22/22 09:09	
•	mg/L	<2.0	2.0	11/22/22 09:09	
	mg/L	<5.0	5.0	11/22/22 09:09	

LABORATORY CONTROL SAMPLE:	1427715					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		1.0	102	90-110	
Chloride	mg/L	10	10	100	90-110	
Sulfate	mg/L	10	9.9	99	90-110	

MATRIX SPIKE SAMPLE:	1427716						
		70234908002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	0.061	1	1.3	126	90-110 N	//1
Chloride	mg/L	56.6	50	113	112	90-110	
Sulfate	mg/L	11.9	10	24.0	120	90-110 N	<i>I</i> 11

SAMPLE DUPLICATE: 1427717					
		70234908002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	0.061	<0.50		
Chloride	mg/L	56.6	58.8	4	1
Sulfate	mg/L	11.9	12.1	1	1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281952 QC Batch Method: EPA 351.2 Analysis Method: EPA 351.2

Analysis Description: 351.2 TKN Laboratory: Pace Analytical Services - Melville

70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009, Associated Lab Samples:

70234795010, 70234795011, 70234795012

METHOD BLANK: 1425234 Matrix: Water

70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009, Associated Lab Samples:

70234795010, 70234795011, 70234795012

Blank Reporting Parameter Units Result Limit Qualifiers Analyzed mg/L Nitrogen, Kjeldahl, Total < 0.094 0.094 11/14/22 12:13

LABORATORY CONTROL SAMPLE: 1425235

Spike Units Result % Rec Limits Qualifiers Parameter Conc. Nitrogen, Kjeldahl, Total mg/L 4 4.2 105 90-110

MATRIX SPIKE SAMPLE: 1425236

70234795003 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.42 4.6 105 Nitrogen, Kjeldahl, Total 4 90-110 mg/L

LCS

LCS

% Rec

MATRIX SPIKE SAMPLE: 1425238

70235414002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 1.3 5.4 101 90-110

SAMPLE DUPLICATE: 1425237

70234795003 Dup Parameter Units Result Result RPD Qualifiers 0.42 9 Nitrogen, Kjeldahl, Total mg/L 0.46

SAMPLE DUPLICATE: 1425239

Date: 12/16/2022 11:25 AM

70235414002 Dup **RPD** Parameter Units Result Result Qualifiers mg/L 1.3 1.3 Nitrogen, Kjeldahl, Total 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

BASELINE-NORTH SEA LANDFILL Project:

Pace Project No.: 70234795

QC Batch: 279874 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

> Laboratory: Pace Analytical Services - Melville

70234795009, 70234795010, 70234795011 Associated Lab Samples:

METHOD BLANK: 1414927 Matrix: Water

Associated Lab Samples: 70234795009, 70234795010, 70234795011

> Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N < 0.027 0.027 10/28/22 21:28 mg/L

LABORATORY CONTROL SAMPLE: 1414928

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units

Nitrite as N 1.1 108 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414929

MS MS % Rec 70234886001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 0.51 90-110 H1 Nitrite as N mg/L 0.5 101

MATRIX SPIKE SAMPLE: 1414931

70234867003 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.50 100 90-110

SAMPLE DUPLICATE: 1414930

Date: 12/16/2022 11:25 AM

70234886001 Dup RPD Parameter Units Result Result Qualifiers < 0.050 Н1 Nitrite as N mg/L < 0.050

SAMPLE DUPLICATE: 1414932 70234867003

Dup RPD Units Qualifiers Parameter Result Result < 0.050 Nitrite as N < 0.050 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279875 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

METHOD BLANK: 1414933 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 10/28/22 22:03

LABORATORY CONTROL SAMPLE: 1414934

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.1 109 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414935

MS % Rec 70234867006 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.50 99 90-110

MATRIX SPIKE SAMPLE: 1414937

70234855006 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.53 101 90-110

SAMPLE DUPLICATE: 1414936

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

SAMPLE DUPLICATE: 1414938

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279876 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1414939 Matrix: Water

Associated Lab Samples: 70234795012

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 10/28/22 22:42

LABORATORY CONTROL SAMPLE: 1414940

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N mg/L 1.1 109 90-110

MATRIX SPIKE SAMPLE: 1414941

MS MS % Rec 70234896004 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 mg/L 0.53 90-110 Nitrite as N 0.5 104

SAMPLE DUPLICATE: 1414942

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234896004 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279880 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795009, 70234795010, 70234795011

METHOD BLANK: 1414994 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795009, 70234795010, 70234795011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 10/28/22 23:37

LABORATORY CONTROL SAMPLE: 1414995

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.0 100 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414996

MS % Rec 70234795011 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.24 Nitrate-Nitrite (as N) mg/L 0.5 0.77 105 90-110

MATRIX SPIKE SAMPLE: 1414998

70234867004 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers 0.46 Nitrate-Nitrite (as N) mg/L 0.5 0.98 105 90-110

SAMPLE DUPLICATE: 1414997

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.24
 0.24
 0

SAMPLE DUPLICATE: 1414999

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234867004 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.46
 0.45
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279881 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

> Laboratory: Pace Analytical Services - Melville

> > LCS

% Rec

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795012

METHOD BLANK: 1415000 Matrix: Water

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795012

> Blank Reporting

> > LCS

Qualifiers Parameter Units Result Limit Analyzed

Nitrate-Nitrite (as N) < 0.037 0.037 10/29/22 00:14 mg/L

LABORATORY CONTROL SAMPLE: 1415001

Spike Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 0.96 96 90-110 mg/L

MATRIX SPIKE SAMPLE: 1415002

MS % Rec 70234795005 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.20 Nitrate-Nitrite (as N) mg/L 0.5 0.69 99 90-110

MATRIX SPIKE SAMPLE: 1415004

70234896009 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 77 Nitrate-Nitrite (as N) mg/L 0.5 0.42 90-110

SAMPLE DUPLICATE: 1415003

70234795005 Dup RPD Parameter Units Result Result Qualifiers 0.20 1 Nitrate-Nitrite (as N) mg/L 0.20

SAMPLE DUPLICATE: 1415005

Date: 12/16/2022 11:25 AM

70234896009 Dup RPD Units Qualifiers Parameter Result Result < 0.050 Nitrate-Nitrite (as N) < 0.050 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280105 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1415970 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.050 0.050 11/01/22 11:41

LABORATORY CONTROL SAMPLE: 1415971

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1 90-110 Nitrogen, Ammonia mg/L 1.0 100

MATRIX SPIKE SAMPLE: 1415972

70234888001 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 29.8 38.0 83 75-125 Nitrogen, Ammonia 10 mg/L

SAMPLE DUPLICATE: 1415973

Date: 12/16/2022 11:25 AM

ParameterUnits70234888001 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L29.829.03

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280377 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005

METHOD BLANK: 1417212 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/02/22 16:50

LABORATORY CONTROL SAMPLE: 1417213

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** mg/L 10 9.0 90 85-115

MATRIX SPIKE SAMPLE: 1417215

70234855011 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 9.8 **Total Organic Carbon** mg/L 18.7 10 89 75-125

SAMPLE DUPLICATE: 1417214

Date: 12/16/2022 11:25 AM

ParameterUnits70234855011 ResultDup ResultRPDQualifiersTotal Organic Carbonmg/L9.89.62

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280378 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

METHOD BLANK: 1417219 Matrix: Water

Associated Lab Samples: 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/02/22 20:21

LABORATORY CONTROL SAMPLE: 1417220

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L **Total Organic Carbon** 10 9.1 91 85-115

MATRIX SPIKE SAMPLE: 1417222

70234795006 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <1.0 **Total Organic Carbon** mg/L 10 11.1 103 75-125

SAMPLE DUPLICATE: 1417221

Date: 12/16/2022 11:25 AM

Parameter Units 70234795006 Dup Result Result RPD Qualifiers

Total Organic Carbon mg/L <1.0 <1.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Cyanide

QC Batch: 281526 Analysis Method: EPA 9014 Total Cyanide
QC Batch Method: EPA 9010C Analysis Description: 9014 Cyanide, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1423230 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

Parameter Units Blank Reporting Result Limit Analyzed Qualifiers ug/L <10.0 10.0 11/10/22 15:01

LABORATORY CONTROL SAMPLE: 1423231

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Cyanide ug/L 75 75.5 101

MATRIX SPIKE SAMPLE: 1423232

70235432004 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 100 103 103 75-125 Cyanide ug/L

SAMPLE DUPLICATE: 1423233

Date: 12/16/2022 11:25 AM

ParameterUnits70235432004 ResultDup ResultRPDQualifiersCyanideug/L<10.0</td><10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/16/2022 11:25 AM

В	Analyte was detected in the associated method blank.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
H1	Analysis conducted outside the EPA method holding time.
H2	Extraction or preparation conducted outside EPA method holding time.
H3	Sample was received or analysis requested beyond the recognized method holding time.
IH	This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
v1	The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
v3	The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70234795003	3A	EPA 3005A	280521	EPA 6010C	280824
0234795004	3B	EPA 3005A	280521	EPA 6010C	280824
0234795005	3C	EPA 3005A	280521	EPA 6010C	280824
0234795006	4A	EPA 3005A	280521	EPA 6010C	280824
0234795007	4B	EPA 3005A	280521	EPA 6010C	280824
0234795008	4C	EPA 3005A	280951	EPA 6010C	281041
0234795009	12A	EPA 3005A	280951	EPA 6010C	281041
0234795010	12B	EPA 3005A	280951	EPA 6010C	281041
0234795011	DUP001	EPA 3005A	280951	EPA 6010C	281041
0234795012	EB001	EPA 3005A	280951	EPA 6010C	281041
0234795012	EB001	EPA 6010C	280006		
70234795001	11A	EPA 8260C/5030C	279850		
0234795002	11B	EPA 8260C/5030C	279850		
0234795012	EB001	EPA 8260C/5030C	280925		
0234795012	EB001	EPA 8260			
0234795003	3A	SM22 2120B	280025		
0234795004	3B	SM22 2120B	280025		
0234795005	3C	SM22 2120B	280025		
0234795006	4A	SM22 2120B	280025		
0234795007	4B	SM22 2120B	280025		
0234795008	4C	SM22 2120B	280025		
0234795009	12A	SM22 2120B	280025		
0234795010	12B	SM22 2120B	280025		
0234795011	DUP001	SM22 2120B	280025		
0234795012	EB001	SM22 2120B	280025		
0234795003	3A	SM22 2320B	281536		
0234795004	3B	SM22 2320B	281536		
0234795005	3C	SM22 2320B	281538		
0234795006	4A	SM22 2320B	281538		
0234795007	4B	SM22 2320B	281538		
0234795008	4C	SM22 2320B	281538		
0234795009	12A	SM22 2320B	281538		
0234795010	12B	SM22 2320B	281538		
0234795011	DUP001	SM22 2320B	281538		
0234795012	EB001	SM22 2320B	281538		
0234795003	3A	SM22 2340C	281560		
0234795004	3B	SM22 2340C	281560		
0234795005	3C	SM22 2340C	281560		
0234795006	4A	SM22 2340C	281560		
0234795007	4B	SM22 2340C	281560		
0234795008	4C	SM22 2340C	281560		
0234795009	12A	SM22 2340C	281560		
0234795010	12B	SM22 2340C	281560		
0234795011	DUP001	SM22 2340C	281560		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
0234795003	3A	SM22 2540C	280457	_	
0234795004	3B	SM22 2540C	280457		
0234795005	3C	SM22 2540C	280457		
0234795006	4A	SM22 2540C	280457		
0234795007	4B	SM22 2540C	280457		
0234795008	4C	SM22 2540C	280457		
0234795009	12A	SM22 2540C	280457		
0234795010	12B	SM22 2540C	280458		
0234795011	DUP001	SM22 2540C	280458		
0234795012	EB001	SM22 2540C	280682		
0234795003	3A	SM22 3500-Cr B	279977		
0234795004	3B	SM22 3500-Cr B	279977		
0234795005	3C	SM22 3500-Cr B	279977		
0234795006	4A	SM22 3500-Cr B	279977		
0234795007	4B	SM22 3500-Cr B	279977		
0234795008	4C	SM22 3500-Cr B	279977		
0234795009	12A	SM22 3500-Cr B	279977		
0234795010	12B	SM22 3500-Cr B	279977		
0234795011	DUP001	SM22 3500-Cr B	279977		
0234795012	EB001	SM22 3500-Cr B	279977		
0234795003	3A	EPA 410.4	281729	EPA 410.4	281740
0234795004	3B	EPA 410.4	281729	EPA 410.4	281740
0234795005	3C	EPA 410.4	281729	EPA 410.4	281740
0234795006	4A	EPA 410.4	281729	EPA 410.4	281740
0234795007	4B	EPA 410.4	281729	EPA 410.4	281740
0234795008	4C	EPA 410.4	281729	EPA 410.4	281740
0234795009	12A	EPA 410.4	281729	EPA 410.4	281740
0234795010	12B	EPA 410.4	281729	EPA 410.4	281740
0234795011	DUP001	EPA 410.4	281729	EPA 410.4	281740
0234795012	EB001	EPA 410.4	281729	EPA 410.4	281740
0234795003	3A	SM22 5210B	279888	SM22 5210B	280842
0234795004	3B	SM22 5210B	279888	SM22 5210B	280842
0234795005	3C	SM22 5210B	279888	SM22 5210B	280842
0234795006	4A	SM22 5210B	279888	SM22 5210B	280842
0234795007	4B	SM22 5210B	279888	SM22 5210B	280842
0234795008	4C	SM22 5210B	279888	SM22 5210B	280842
0234795009	12A	SM22 5210B	279888	SM22 5210B	280842
0234795010	12B	SM22 5210B	279888	SM22 5210B	280842
0234795011	DUP001	SM22 5210B	279888	SM22 5210B	280842
0234795012	EB001	SM22 5210B	279890	SM22 5210B	280844
0234795003	3A	EPA 300.0	280955		
0234795004	3B	EPA 300.0	280955		
0234795005	3C	EPA 300.0	280955		
0234795006	4A	EPA 300.0	280955		
0234795007	4B	EPA 300.0	280955		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234795008	4C	EPA 300.0	280955		
70234795009	12A	EPA 300.0	282458		
70234795010	12B	EPA 300.0	282458		
70234795011	DUP001	EPA 300.0	282458		
70234795012	EB001	EPA 300.0	282458		
70234795003	3A	EPA 351.2	281952	EPA 351.2	281955
70234795004	3B	EPA 351.2	281952	EPA 351.2	281955
70234795005	3C	EPA 351.2	281952	EPA 351.2	281955
70234795006	4A	EPA 351.2	281952	EPA 351.2	281955
70234795007	4B	EPA 351.2	281952	EPA 351.2	281955
70234795008	4C	EPA 351.2	281952	EPA 351.2	281955
70234795009	12A	EPA 351.2	281952	EPA 351.2	281955
70234795010	12B	EPA 351.2	281952	EPA 351.2	281955
70234795011	DUP001	EPA 351.2	281952	EPA 351.2	281955
70234795012	EB001	EPA 351.2	281952	EPA 351.2	281955
70234795003	3A	EPA 353.2	279880		
70234795004	3B	EPA 353.2	279880		
70234795005	3C	EPA 353.2	279881		
70234795006	4A	EPA 353.2	279881		
0234795007	4B	EPA 353.2	279881		
70234795008	4C	EPA 353.2	279881		
70234795009	12A	EPA 353.2	279880		
70234795010	12B	EPA 353.2	279880		
70234795011	DUP001	EPA 353.2	279880		
70234795012	EB001	EPA 353.2	279881		
70234795003	3A	EPA 353.2	279875		
70234795004	3B	EPA 353.2	279875		
70234795005	3C	EPA 353.2	279875		
70234795006	4A	EPA 353.2	279875		
70234795007	4B	EPA 353.2	279875		
70234795008	4C	EPA 353.2	279875		
70234795009	12A	EPA 353.2	279874		
70234795010	12B	EPA 353.2	279874		
70234795011	DUP001	EPA 353.2	279874		
70234795012	EB001	EPA 353.2	279876		
70234795003	3A	SM22 4500 NH3 H	280105		
70234795004	3B	SM22 4500 NH3 H	280105		
0234795005	3C	SM22 4500 NH3 H	280105		
0234795006	4A	SM22 4500 NH3 H	280105		
70234795007	4B	SM22 4500 NH3 H	280105		
70234795008	4C	SM22 4500 NH3 H	280105		
70234795009	12A	SM22 4500 NH3 H	280105		
70234795010	12B	SM22 4500 NH3 H	280105		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234795012	EB001	SM22 4500 NH3 H	280105		
70234795003	3A	SM22 5310B	280377		
70234795004	3B	SM22 5310B	280377		
70234795005	3C	SM22 5310B	280377		
70234795006	4A	SM22 5310B	280378		
70234795007	4B	SM22 5310B	280378		
70234795008	4C	SM22 5310B	280378		
70234795009	12A	SM22 5310B	280378		
70234795010	12B	SM22 5310B	280378		
70234795011	DUP001	SM22 5310B	280378		
70234795012	EB001	SM22 5310B	280378		
70234795003	3A	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795004	3B	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795005	3C	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795006	4A	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795007	4B	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795008	4C	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795009	12A	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795010	12B	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795011	DUP001	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795012	EB001	EPA 9010C	281526	EPA 9014 Total Cyanide	281605

CHAIN-OF-CUSTODY / Analytical Requ

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant

WO#:70234795

DATE Signed:

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https: Section B Section A

Required Client Information: Required Project Information: Invoice Information: Report To: Fetten, Christine Attention: Town of Southampton Address: Waste Management Division Copy To: Company Name: Southampton, NY 11968 Address: Regulatory Agency c.fetten@southamptontownny.gov Purchase Order #: Pace Quote: (631)283-5210 Fax: Project Name: Pace Project Manager: North Sea Landfill kimberley.mack@pacelabs.com. State / Location Requested Due Date Project #: Pace Profile #: 5479 Line 3 NY Requested Analysis Filtered (Y/N) (see valid codes to left) N/A COLLECTED Preservatives MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water DW Water TAL Metals+B & Hardness BOD, Br, CI, SO4, Color, Cr6 COD,NH3,NO3,TKN,Phen GRAB WW Waste Water Residual Chlorine (Y/N) Product **Analyses Test** SAMPLE ID SL Soul/Solid START END # OF CONTAINERS OL Oil Dissloved Metals One Character per box. Wipe WP AR MATRIX CODE AIK, NO2, TDS Unpreserved (A-Z, 0-9 / , -) Olher Na2S203 Methanol Sample lds must be unique Cyanide SAMPLE ITEM H2S04 HN03 NaOH Other 豆 TIME DATE TIME 1A-MP WT TB-W WT 10 M) WT 3 3 10/37 0955 WT ЗА 1040 3B WT 1115 WT 1420 4A WT 1400 4B WT 4C 330 Х WT DAR W 10 WT OB_ MA WT Х Х X Х Х WT RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION ADDITIONAL COMMENTS DATE TIME SAMPLE CONDITIONS PWGC 10/20 Part 360 ROUTINE Add Noct preservative to 4A,4B,4L ascime unpreserval bottle age SAMPLER NAME AND SIGNATURE 93 of 104 PRINT Name of SAMPLER: TEMP in (

SIGNATURE of SAMPLER:

Pace

CHAIN-OF-CUSTODY / Analytical Reques

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant field

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://infi Section A Section C Required Client Information: Required Project Information: Invoice Information: Town of Southampton Report To: Fetten, Christine Attention: Address: Capy To: Waste Management Division Company Name: Southampton, NY 11968 Address: Regulatory Agency Email: c fellen@southamptontownny gov Purchase Order #: Pace Quote: Phone: (631)283-5210 Fax Project Name: North Sea Landfill Pace Project Manager: kimberley.mack@pacelabs.com, State / Location Requested Due Date: Project #: Pace Profile #: 5479 Line 3 NY Requested Analysis Filtered (Y/N) (G=GRAB C=COMP) X/N (see valid codes to COLLECTED Preservatives MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water DW TAL Metals+B & Hardness Water BOD, Br, CI, SO4, Color, Cr6 COD,NH3,NO3,TKN,Pher Waste Water ww Residual Chlorine (Y/N) **Analyses Test** Product SAMPLE ID SL Soil/Solid (4360 START END Oil OL Dissloved Metals One Character per box. Wipe WP SAMPLE TYPE MATRIX CODE AIK, NO2, TDS (A-Z, 0-9 / , -) Other ОТ # Na2S203 Methanol Sample lds must be unique Tissue Cyanide ITEM H2S04 HN03 NaOH Other TOC # OF 덛 DATE TIME DATE TIME 3 WSD MP 13 WT Х Х 14 WT LIA W 15 WT 118 NB 16 WT 3535 A 17 12A WT 7 0555 18 12B WT DIROUT 3 9 3 3 EBOOL 1125 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION SAMPLE CONDITIONS 128 10-282 Part 360 ROUTINE Add Naci Horeservathe to EBOO! 250 ml unpreserved wittle Page SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: 94 of 104 TEMP in SIGNATURE of SAMPLER: DATE Signed:

	S	ample	Condition	on Upon Rec	WO#:70	234795
/ Pace Analytical *	Client N	lame.		Pro <mark>je</mark>	c PM: KMM	Due Date: 11/10/22
	GHCHCI	705		110,0	CLIENT: TOS	540 545C: 11/10/11
Courier: Fed Ex UPS USPS ←Client	Comm	ercial 🗀	Pace 🗇 the	er	January 100	
Tracking #:			_			
Custody Seal on Cooler/Box Present:	es (QNo	Seals in	ntact: 🔲 Ye	s□ No ►N/A	Temperature Blar	nk Present: Yes No
Packing Material: Bubble Wrap Bubble					Type of Ice: Wet	
Thermometer Used: TH148			r: + 0.1		Samples on ice, co	oling process has begun
Cooler Temperature (°C): 2.0		Temperat	ure Correct	ed(°C): 2(Date/Time 5035A	kits placed in freezer
Temp-should be above freezing to 6.0°C	*					11/10/1
USDA Regulated Soil (DN/A, water sample	e)			Date and Initials	of person examining cor	ntents: KD 1292
Did samples originate in a quarantine zone w	ithin the U	Inited Stat	es: AL, AR, CA	A, FL, GA, ID, LA, MS, N	IC, Did samples origna	ate from a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	Ye	s \square No			including Hawaii ar	nd Puerto Rico)? 🛚 Yes💢 No
If Yes to either question, fill out a Regulat	ed Soil Ch	recklist (F	-LI-C-010) a	nd include with SC		
	-				COMMENTS	
Chain of Custody Present:	ZYes	□No		1.		
Chain of Custody Filled Out:	°⊈Yes	□No		2.		
Chain of Custody Relinquished:	⊠Yes	□No		3.		
Sampler Name & Signature on COC:	ZiYes	□No	□N/A	4.		
Samples Arrived within Hold Time:	Yes	□No		5.		
Short Hold Time Analysis (<72hr):	∠Yes	□No		6.		
Rush Turn Around Time Requested:	□Yes	PNO		7.		
Sufficient Volume: (Triple volume provided for	_	□No		8.		
Correct Containers Used:	Yes	□No		9.		
-Pace Containers Used:	Yes	□No		10		
Containers Intact:	∕∆Yes	□No	-NA	10.	f andimant in visible in the	discolved apptainer
Filtered volume received for Dissolved tests	□Yes	□No	DN/A	11. Note i	f sediment is visible in the	dissolved container.
Sample Labels match COC:Includes date/time/ID, Matrix: SL WV	Yes	□No		12.		
All containers needing preservation have bee	n Dwas	□No	□N/A	13. □ HN0	D ₃ □ H ₂ SO ₄ □ Na	OH □ HCI
checked?	7163		LIN/ A	10.	73 H112004 H110	
pH paper Lot #HC193088						
All containers needing preservation are found	d to be			Sample #		
in compliance with method recommendation	?					
(HNO3, H2SO4, HCI, NaOH>9 Sulfide,	□Yes	□No	□N/A			
NAOH>12 Cyanide)	1					
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	rease,					
DRO/8015 (water).				Initial when comp		Date/Time preservative
Per Method, VOA pH is checked after analysis					preservative:	added:
Samples checked for dechlorination:	Pres	□No	□N/A	14.		
KI starch test strips Lot #						
Residual chlorine strips Lot #	-1:		-11/4		for Res. Chlorine? Y N	
SM 4500 CN samples checked for sulfide?	⊠Yes	□No	□N/A	15.	f0.16:4-0 V N	
Lead Acetate Strips Lot #			-N/A		for Sulfide? Y N	
Headspace in VOA Vials (>6mm):	□Yes	No	□N/A	16.		
Trip Blank Present: Trip Blank Custody Seals Present	□Yes □Yes	.⊠No □No	□N/A ∠ N/A	10.		
Pace Trip Blank Lot # (if applicable):	Lites	Пио	ZIN/A			
Client Notification/ Resolution:				Field Data Require	ed? Y /	N
Person Contacted:				Date/		
Comments/ Resolution:						
					*	

^{*} PM (Project Manager) review is documented electronically in LIMS.

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS M2K0066

Project Description

70234795

For:

LATOYA SOBRATIE

Pace Analytical Melville

575 BROAD HOLLOW RD

MELVILLE, NY 11747

Project Manager Michelle Taylor

Tuesday, November 15, 2022

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories Inc., - Marietta, OH. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

M2K0066

Pace Analytical Melville

Project Name: 70234795

LATOYA SOBRATIE 575 BROAD HOLLOW RD MELVILLE, NY 11747 Project / PO Number: N/A Received: 11/01/2022 Reported: 11/15/2022

Sample Summary Report

Sample Name 3A	<u>Laboratory ID</u> M2K0066-01	Client Matrix Aqueous	Sample Type	Sample Begin	Sample Taken 10/27/22 09:55	<u>Lab Received</u> 11/01/22 09:46
3B	M2K0066-02	Aqueous			10/27/22 10:40	11/01/22 09:46
3C	M2K0066-03	Aqueous			10/27/22 11:15	11/01/22 09:46
4A	M2K0066-04	Aqueous			10/27/22 14:20	11/01/22 09:46
4B	M2K0066-05	Aqueous			10/27/22 14:00	11/01/22 09:46
4C	M2K0066-06	Aqueous			10/27/22 13:30	11/01/22 09:46
12A	M2K0066-07	Aqueous			10/27/22 08:35	11/01/22 09:46
12B	M2K0066-08	Aqueous			10/27/22 08:55	11/01/22 09:46
DUP001	M2K0066-09	Aqueous			10/27/22 00:00	11/01/22 09:46
EB001	M2K0066-10	Aqueous			10/28/22 11:25	11/01/22 09:46

Microbac Laboratories Inc., - Marietta, OH CERTIFICATE OF ANALYSIS

M2K0066

Client Sample ID:	3A
Sample Matrix:	Aqueous
	NA0170000 04

Lab Sample ID: M2K0066-01 Collection Date: 10/27/2022 9:55

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 3B

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-02 Collection Date: 10/27/2022 10:40

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 3C

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-03 Collection Date: 10/27/2022 11:15

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 4A

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-04 Collection Date: 10/27/2022 14:20

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	0.0030	0.0028	0.0055	mg/L	1	J	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 4B

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-05 Collection Date: 10/27/2022 14:00

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

M2K0066

Client Sample ID:	4C									
Sample Matrix: Lab Sample ID:	Aqueous M2K0066-06					c	Collection	Date: 10/27/20	022 13:30	
Inorganics Total		Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1										
Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH
Client Sample ID:	12A									
Sample Matrix: Lab Sample ID:	Aqueous M2K0066-07					c	Collection	Date: 10/27/20)22 8:35	
Inorganics Total		Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1 Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH
Client Sample ID: Sample Matrix:	12B Aqueous									
Lab Sample ID:	M2K0066-08					C	Collection	Date: 10/27/20)22 8:55	
Inorganics Total		Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1										
Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH
Client Sample ID:	DUP001									
Client Sample ID: Sample Matrix: Lab Sample ID:	DUP001 Aqueous M2K0066-09					C	Collection	Date: 10/27/20	022	
Sample Matrix:	Aqueous	Result	MDL	RL	Units	DF	Collection	Date: 10/27/20	022 Analyzed	Analyst
Sample Matrix: Lab Sample ID: Inorganics Total Method: EPA 420.1	Aqueous					DF	Note	Prepared	Analyzed	
Sample Matrix: Lab Sample ID: Inorganics Total	Aqueous	Result <0.0028	MDL 0.0028	RL 0.0055	Units mg/L					Analyst APH
Sample Matrix: Lab Sample ID: Inorganics Total Method: EPA 420.1 Phenolics, Total Client Sample ID:	Aqueous M2K0066-09					DF	Note	Prepared	Analyzed	
Sample Matrix: Lab Sample ID: Inorganics Total Method: EPA 420.1 Phenolics, Total	Aqueous M2K0066-09					DF	Note	Prepared 11/14/22 0909	Analyzed	Analyst APH
Sample Matrix: Lab Sample ID: Inorganics Total Method: EPA 420.1 Phenolics, Total Client Sample ID: Sample Matrix:	Aqueous M2K0066-09 EB001 Aqueous					DF	Note U	Prepared 11/14/22 0909	Analyzed 11/15/22 1605	

Microbac Laboratories Inc., - Marietta, OH CERTIFICATE OF ANALYSIS

M2K0066

Batch Log Summary

Method	Ва	tch	Labo	ratory ID		Client	/ Source	ID			
EPA 420.1	B2	K0680	B2K06	680-CCV1							
			B2K06	680-CCV3							
			M2K0	066-10		EB001					
			B2K06	680-BS1							
			B2K06	680-BLK1							
Method	Ва	itch	Labo	ratory ID		Client	/ Source	ID			
EPA 420.1	B2	K0751	M2K0	066-05		4B					
			M2K0	066-07		12A					
			M2K0	066-08		12B					
			M2K0	066-01		3A					
			M2K0	066-02		3B					
			M2K0	066-04		4A					
			B2K07	751-BS2							
			M2K0	066-06		4C					
			B2K07	751-BLK1							
			B2K07	751-CCV1							
				B2K0751-CCV2 B2K0751-CCV3							
			B2K07								
			B2K0751-CCV4								
				M2K0066-09			1				
			B2K07	751-BS1							
						3C					
			M2K0	066-03		30					
Batch Quality Control Summ	nary: Microbac Labo	oratories I				30					
Batch Quality Control Summ	nary: Microbac Labo	oratories I			Spike	Source		%REC		RPD	
Batch Quality Control Summ	nary: Microbac Labo Result	oratories I			Spike Level		%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	MDL	nc., - Marie	etta, OH	-	Source	%REC		RPD		Notes
Inorganics Total	Result lethod Prep - EPA 4	MDL 20.1	nc., - Marie	etta, OH Units	-	Source Result		Limits	RPD		Notes
Inorganics Total Batch B2K0680 - Wet Chem-N	Result	MDL	nc., - Marie	etta, OH Units	Level	Source Result		Limits	RPD		Notes
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1)	Result lethod Prep - EPA 4	MDL 20.1	nc., - Marie	Units Prepare	Level	Source Result 022 Analyz	red: 11/14/	Limits /2022	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total	Result lethod Prep - EPA 4	MDL 20.1	nc., - Marie	Units Prepare	Level ed: 11/11/20	Source Result 022 Analyz	red: 11/14/	Limits /2022	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1)	Result Method Prep - EPA 4 <0.0025 0.0507	MDL 20.1 0.0025	nc., - Marie RL 0.0050	Units Prepare mg/L Prepare	Level ed: 11/11/20	Source Result 022 Analyz	red: 11/14/	Limits /2022 /2022	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total	Result Method Prep - EPA 4 <0.0025 0.0507	MDL 20.1 0.0025 0.0025	nc., - Marie RL 0.0050	Prepare mg/L Prepare mg/L	Level ed: 11/11/20	Source Result 022 Analyz 022 Analyz	red: 11/14/ red: 11/14/ 101	/2022 /2022 80-120	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N	Result Method Prep - EPA 4 <0.0025 0.0507	MDL 20.1 0.0025	nc., - Marie RL 0.0050	Prepare mg/L Prepare mg/L	ed: 11/11/20	Source Result 022 Analyz 022 Analyz	red: 11/14/ red: 11/14/ 101	/2022 /2022 80-120	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N Blank (B2K0751-BLK1)	Result Method Prep - EPA 4 <0.0025 0.0507 Method Prep - EPA 4	MDL 20.1 0.0025 0.0025	nc., - Marie RL 0.0050 0.0050	Prepare mg/L Prepare mg/L Prepare mg/L	ed: 11/11/20	Source Result 022 Analyz 022 Analyz 022 Analyz	red: 11/14/ red: 11/14/ 101 red: 11/15/	/2022 /2022 80-120	RPD		U
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N Blank (B2K0751-BLK1) Phenolics, Total	Result Method Prep - EPA 4 <0.0025 0.0507 Method Prep - EPA 4	MDL 20.1 0.0025 0.0025	nc., - Marie RL 0.0050 0.0050	Prepare mg/L Prepare mg/L Prepare mg/L	Level 2d: 11/11/20 2d: 11/11/20 0.0500 2d: 11/14/20	Source Result 022 Analyz 022 Analyz 022 Analyz	red: 11/14/ red: 11/14/ 101 red: 11/15/	/2022 /2022 80-120	RPD		U
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N Blank (B2K0751-BLK1) Phenolics, Total LCS (B2K0751-BS1)	Result Nethod Prep - EPA 4	MDL 20.1 0.0025 0.0025 20.1	nc., - Marie RL 0.0050 0.0050	Prepare mg/L Prepare mg/L Prepare mg/L Prepare mg/L Prepare mg/L Prepare mg/L	Level ed: 11/11/20 ed: 11/11/20 0.0500 ed: 11/14/20 ed: 11/14/20	Source Result 022 Analyz 022 Analyz 022 Analyz	red: 11/14/ red: 11/14/ 101 red: 11/15/ red: 11/15/ 96.4	/2022 /2022 80-120 /2022 80-120	RPD		U

Microbac Laboratories, Inc.

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

M2K0066

Definitions

DF: Dilution Factor representing the amount the sample was diluted during analysis and may not represent preparation

factors.

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte

in the sample.

MDL: Minimum Detection Limit mg/L: Milligrams per Liter RL: Reporting Limit

U: The analyte was analyzed for but was not detected above the reported quantitation limit. The quantitation limit has

been adjusted for any dilution or concentration of the sample.

Cooler Receipt Log

Cooler ID: Default Cooler Temp: 0.2°C

Cooler Inspection Checklist

Ice Present or not required?	Yes	Shipping containers sealed or not required?	Yes
Custody seals intact or not required?	Yes	Chain of Custody (COC) Present?	Yes
COC includes customer information?	Yes	Relinquished and received signature on COC?	Yes
Sample collector identified on COC?	Yes	Sample type identified on COC?	Yes
Correct type of Containers Received	Yes	Correct number of containers listed on COC?	Yes
Containers Intact?	Yes	COC includes requested analyses?	Yes
Enough sample volume for indicated tests received?	Yes	Sample labels match COC (Name, Date & Time?)	Yes
Samples arrived within hold time?	Yes	Correct preservatives on COC or not required?	Yes
Chemical preservations checked or not required?	Yes	Preservation checks meet method requirements?	Yes
VOA vials have zero headspace, or not recd.?	Yes		

Project Requested Certification(s)

Microbac Laboratories Inc., - Marietta, OH 10861

NY State Department of Health

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Dichrelle Taylor

Michelle Taylor Project Manager

Reported: 11/15/2022 17:09

Microbac Laboratories, Inc.

Chain of Custody

PASI New York Laboratory

Workorder: 70234795

Report / Invoice To

Workorder Name:

Subcontract To

BASELINE-NORTH SEA LANDFILL

Results Requested By: 11/10/2022

Requested Analysis

Tropo.	ET III VOIGE 10	[GBBCO	illact 10		S90 Z#7/				\$2.75 F.S.					Reque	stea	Алаі	iysis.		~		(8,33)	
Pace 575 B	erley M. Mack Analytical Melville road Hollow Road	P.O. 70234795KMM						-														
	le, NY 11747	Microbac	Laboratories,	Inc.																	- [
Fmail	e (631)694-3040 : kimberley.mack@pacelabs.com	158 Starl									1				1	1						
	sone jaon@paociabs.com	Marietta,	OH 45750							<u>«</u>											ı	
C4-4-	of County Origins Ally									Phenols								ı				
State	of Sample Origin: NY I		a Rational contraction	- Producerski klasic	i i	rese	rved C	onta	iners	्र द												
					¤																	
Item	Sample ID	Collect Date/Time	Lab ID	Matrix	H2S04										İ							
				Openies in hydrogen (<u> </u>			_		1	ļ			_					_	_		LAB USE ONLY
1	3A	10/27/2022 09:55	70234795003	Water				\perp		X		lacksquare										
2	3B	10/27/2022 10:40	70234795004	Water						Х												
3	3C	10/27/2022 11:15	70234795005	Water				- 1		Х												
4	4A	10/27/2022 14:20	70234795006	Water	l					X						T			T			
5	4B	10/27/2022 14:00	70234795007	Water		П				Х										寸		
6	4C	10/27/2022 13:30	70234795008	Water				1		X		H	1		\top	\top	T	1				
7	12A	10/27/2022 08:35	70234795009	Water	ļ					X	1				\top	\top	\top		_	\dashv	寸	
8	12B	10/27/2022 08:55	70234795010	Water				十		X	1	П		_					\dashv	_		
9	DUP001	10/27/2022 00:00	70234795011	Water	 					Tx		f	_		十	1				_	十	
10	EB001	10/28/2022 11:25	70234795012	Water	<u> </u>					X					\top	\top		十			1	
11										1	T			<u> </u>		┪		\top	\top	\dashv		
12								\top		1			\dashv	1		 	_	\top	\dashv			
13							$\neg \vdash$				П		\dashv		\top	1	_	十	\dashv	_	十	
14							-	\top	_	1					_	+		\top	\dashv	一十	\dashv	
														I								***************************************

Pace Analytical - Melville. NY
Rec'd: 11/01/2022 09:46
By: Brenda Gregory Temp: 0.2

				3 - 3 5 5 E S	Comments
Transfers	Released By	1 1 / \	Received By	Date/Time	
1	Mall Jule Pac 17	10/31/2218W	Porenda ruggery	Illaac	1946
2					
3					
Cooler Te	mperature on Receipt 0, ₹ °C	Custod	y Seal Y or N Rece	eived on Ice	Y or N Samples Intact Y or N

Work Order# M2K0066

COOLER TEMP >6° C LOG

	B					
	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
SAMPLE ID	°C	°C	°C	°C	°C	°C
			-			
			-			
		10/200				
		101100	1,2			
		1113	•			
/						
H Lot # <u>HCƏGIS</u> VI						

pH Lot # <u>서운공역/동</u> 생	U	pH	Exceptions			
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
			-			
			-			
			-	0 -		
				Su.		
			1000			
			1 1 () 1			
		\	110			
	`					
		PRESE	RVALIV			
			PTIONS			
		1 .	-			
			VONE	<u> </u>	<u> </u>	

Document Control # 1957 Last 04-10-2019 _AS NOTED

Issued to: Document Master File

APPENDIX C WELL INSPECTION CHECKLISTS

Well No.	1A		Date _	4/26/2022
Inspected By	MPP/TD/KM		Weather Conditions	Partly Cloudy, 48-56 F
	WELL EX	TERIOR CO	ONDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			<u> X</u>	
Missing:			<u> X</u>	
PONDING OF WATE	R AROUND WELL		<u> X</u>	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	<u>X</u>		
Lock - Intact:		<u>X</u>		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASI	URING POINT	X		Top of Casing
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	<u> X</u>		
	INTERIO	R WELL CO	ONDITIONS	
DEPTH TO WATER (FEET) <u>104.09</u>			
DEPTH TO BOTTOM	(FEET) <u>114.68</u>			
PID (ppm)	0.0			

Well No.	1 B	[Date _	4/26/2022
Inspected By	MPP/TD/KM	V	Veather Conditions	Partly Cloudy, 48-56 F
	WELL EXT	TERIOR CO	ONDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X	 -	
Cracked:			<u>X</u>	
Missing:			<u>X</u>	
PONDING OF WATE	R AROUND WELL		<u> X</u>	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		Top of Casing
DESIGNATED MEASI	URING POINT	X		
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	X		
	INTERIO	R WELL CO	ONDITIONS	
DEPTH TO WATER (FEET) 105.34			
DEPTH TO BOTTOM	1 (FEET) 148.73			
PID (ppm)	0.0			

Well No.	1C		Date	4/26/2022
Inspected By	MPP/TD/KM		Weather Conditions	Partly Cloudy, 48-56 F
	WELL EXT	ERIOR C	CONDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATE	R AROUND WELL		X	_
PROTECTIVE CASING	G/MANHOLE/LOCK			_
Casing/Manh	nole - Intact:	X		
Lock - Intact:	:	X		_
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASI	URING POINT	X		Top of Casing
WELL IS PROTECTED)	X		_
WELL IS CLEARLY M	ARKED	X		_
	INTERIOR	WELL C	CONDITIONS	
DEPTH TO WATER (FEET) 105.99			
DEPTH TO BOTTOM	1 (FEET) 174.04			
PID (ppm)	0.0			

Well No.	3A	_	Date _	4/26/2022				
Inspected By	MPP/TD/KM		Weather Conditions	Partly Cloudy, 48-56 F				
WELL EXTERIOR CONDITIONS								
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			<u> </u>					
Missing:			<u> </u>					
PONDING OF WATE	R AROUND WELL		<u> </u>					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:		X						
WELL CASING (STICE	KUP) STRAIGHT	X						
DESIGNATED MEASU	JRING POINT	X		Top of Casing				
WELL IS PROTECTED)	X						
WELL IS CLEARLY M.	ARKED	X						
INTERIOR WELL CONDITIONS								
DEPTH TO WATER (I	FEET) 47.81	_						
DEPTH TO BOTTOM	(FEET) 62.36	_						
PID (ppm)	0.0							

Well No.	3C		Date		4/26/2022			
Inspected By	MPP/TD/K	M	Weather Conditions_		Partly Cloudy, 48-56 F			
WELL EXTERIOR CONDITIONS								
CONCRETE PAD		<u>Ye</u>	<u>s</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X						
Cracked:				<u> </u>				
Missing:				<u> </u>				
PONDING OF WATE	R AROUND WELL			<u> </u>				
PROTECTIVE CASING	G/MANHOLE/LOC							
Casing/Manh	nole - Intact:	<u> x</u>						
Lock - Intact:		<u> x</u>						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEASI	URING POINT	<u> x</u>			Top of Casing			
WELL IS PROTECTED)	X						
WELL IS CLEARLY M	ARKED	X						
	INT	TERIOR WELL	CONDIT	ΓIONS				
DEPTH TO WATER (FEET)	43.99						
DEPTH TO BOTTOM	I (FEET) <u>1</u>	57.13						
PID (ppm)		0.0						

Well No.	3B	_ D	ate	4/26/2022					
Inspected By	MPP/TD/KM	_ w	eather Conditions	Partly Cloudy, 48-56 F					
WELL EXTERIOR CONDITIONS									
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>					
Intact:		<u>X</u>							
Cracked:			X						
Missing:			X						
PONDING OF WATE	R AROUND WELL		X						
PROTECTIVE CASING	G/MANHOLE/LOCK								
Casing/Manh	nole - Intact:	X							
Lock - Intact:		X							
WELL CASING (STIC	KUP) STRAIGHT	X							
DESIGNATED MEASU	JRING POINT	X		Top of Casing					
WELL IS PROTECTED)	X							
WELL IS CLEARLY M	ARKED	X							
	INTERIOR	WELL CO	NDITIONS						
DEPTH TO WATER (FEET) 44.45	_							
DEPTH TO BOTTOM	(FEET) <u>117.48</u>	_							
PID (ppm)	0.0	_							

Well No.	4A		Date	4/27/2022				
Inspected By	MPP/TD/KM	_	Weather Conditions	Partly Cloudy, 44-55 F				
WELL EXTERIOR CONDITIONS								
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X	. <u>——</u> -					
Cracked:			X					
Missing:			X					
PONDING OF WATE	R AROUND WELL		X					
PROTECTIVE CASING	G/MANHOLE/LOCK		. <u>—</u> -					
Casing/Manh	nole - Intact:	X	. <u> </u>					
Lock - Intact:		X	. <u> </u>					
WELL CASING (STIC	KUP) STRAIGHT	X	. <u>—</u> -					
DESIGNATED MEASU	URING POINT	X	. <u>—</u> -	Top of Casing				
WELL IS PROTECTED)	X						
WELL IS CLEARLY M	ARKED	X						
INTERIOR WELL CONDITIONS								
DEPTH TO WATER (FEET) 13.45	_						
DEPTH TO BOTTOM	(FEET) 31.15	_						
PID (ppm)	0.0							

Well No.	4B	D	ate _	4/27/2022				
Inspected By	MPP/TD/KM	Weather Conditions_		Partly Cloudy, 44-55 F				
WELL EXTERIOR CONDITIONS								
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		<u>X</u>						
Cracked:			<u> X</u>					
Missing:			<u> X</u>					
PONDING OF WATE	R AROUND WELL		<u> X</u>					
PROTECTIVE CASIN	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	<u>X</u>						
Lock - Intact:	:	X						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEAS	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X						
WELL IS CLEARLY M	ARKED	X						
	INTERIO	R WELL CO	NDITIONS					
DEPTH TO WATER (FEET) 13.27							
DEPTH TO BOTTOM	1 (FEET) 82.55							
PID (ppm)	0.0							

Well No.	4C	'	Date _	4/27/2022				
Inspected By	MPP/TD/KM	Weather Conditions_		Partly Cloudy, 44-55 F				
WELL EXTERIOR CONDITIONS								
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			<u>X</u>					
Missing:			<u>X</u>					
PONDING OF WATE	R AROUND WELL		<u> X</u>					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:		X						
WELL CASING (STICE	KUP) STRAIGHT	X						
DESIGNATED MEASU	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X						
WELL IS CLEARLY M.	ARKED	X						
	INTERIOR	R WELL CO	ONDITIONS					
DEPTH TO WATER (I	FEET) 9.31							
DEPTH TO BOTTOM	1 (FEET) 139.65							
PID (ppm)	0.0							

Well No.	6AR	Da	ate	4/26/2022
Inspected By	MPP/TD/KM	We	eather Conditi	ons_ Partly Cloudy, 48-56 F
	WELL EX	TERIOR CON	NDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:		X		Missing Cover
PONDING OF WATER	R AROUND WELL		X	
PROTECTIVE CASINO	G/MANHOLE/LOCK			
Casing/Manh	ole - Intact:	<u> </u>		
Lock - Intact:			X	Lock rusted; can't close
WELL CASING (STICK	(UP) STRAIGHT	X		
DESIGNATED MEASU	JRING POINT	X		Top of Casing
WELL IS PROTECTED		X		
WELL IS CLEARLY MA	ARKED	X		
	INTERIC	OR WELL CON	IDITIONS	
DEPTH TO WATER (F	EET) 91.57			
DEPTH TO BOTTOM	(FEET) 112.25	5		
PID (ppm)	0.0			

Well No.	6B		Date	_	4/26/2022				
Inspected By	MPP/TD/KM		Weather Conditions_		Partly Cloudy, 48-56 F				
WELL EXTERIOR CONDITIONS									
CONCRETE PAD		<u>Yes</u>	<u>No</u>		<u>Remarks</u>				
Intact:		X	_	_					
Cracked:			X	_					
Missing:			X	_					
PONDING OF WATE	R AROUND WELL		X	_					
PROTECTIVE CASING	G/MANHOLE/LOCK			_					
Casing/Manh	nole - Intact:	X	_	_					
Lock - Intact:		X	_	_					
WELL CASING (STIC	KUP) STRAIGHT	X	_	_	_				
DESIGNATED MEASI	URING POINT	X	_	<u> </u>	Гор of Casing				
WELL IS PROTECTED)	X	_	_	_				
WELL IS CLEARLY M	ARKED	X	_	_	_				
	INTER	RIOR WELL	CONDITIONS						
DEPTH TO WATER (FEET) 93.	.97							
DEPTH TO BOTTOM	I (FEET) 147	<u>55</u>							
PID (ppm)	0	.0							

Well No.	7A	D	ate	4/26/2022					
Inspected By	MPP/TD/KM	Weather Conditions_		Partly Cloudy, 48-56 F					
WELL EXTERIOR CONDITIONS									
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>					
Intact:		<u> </u>							
Cracked:			<u> X</u>						
Missing:			<u> X</u>						
PONDING OF WATE	R AROUND WELL		<u> X</u>						
PROTECTIVE CASING	G/MANHOLE/LOCK								
Casing/Manh	nole - Intact:	<u> </u>							
Lock - Intact:			<u> </u>	No lock					
WELL CASING (STICE	KUP) STRAIGHT	X							
DESIGNATED MEASU	URING POINT	X		Top of Casing					
WELL IS PROTECTED)	X							
WELL IS CLEARLY M.	ARKED	X							
	INTERIO	R WELL COI	NDITIONS						
DEPTH TO WATER (I	FEET) <u>83.99</u>								
DEPTH TO BOTTOM	(FEET) <u>88.10</u>								
PID (ppm)	0.0								

Well No.	7B	D	ate	4/26/2022					
Inspected By	MPP/TD/KM	Weather Conditions_		Partly Cloudy, 48-56 F					
WELL EXTERIOR CONDITIONS									
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>					
Intact:		<u>X</u>							
Cracked:			<u> X</u>						
Missing:			<u> X</u>						
PONDING OF WATE	R AROUND WELL		<u> X</u>						
PROTECTIVE CASING	G/MANHOLE/LOCK								
Casing/Manh	nole - Intact:	<u>X</u>							
Lock - Intact:			<u> X</u>	No lock					
WELL CASING (STIC	KUP) STRAIGHT	<u>X</u>							
DESIGNATED MEASI	URING POINT	X		Top of Casing					
WELL IS PROTECTED)	X							
WELL IS CLEARLY M	ARKED	<u>X</u>		_					
	INTERIO	R WELL CO	NDITIONS						
DEPTH TO WATER (FEET) 83.45								
DEPTH TO BOTTOM	(FEET) 145.95								
PID (ppm)	0.0								

Well No.	7C		Date	4/26/2022	
Inspected By	MPP/TD/KM		Weather Conditions	Partly Cloudy, 48-56 F	
	WELL EXTE	RIOR C	ONDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			<u> X</u>		
Missing:			<u> X</u>		
PONDING OF WATE	R AROUND WELL		<u> X</u>		
PROTECTIVE CASING	G/MANHOLE/LOCK				
Casing/Manh	nole - Intact:	X			
Lock - Intact:			<u> X</u>	No lock	
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEASI	URING POINT	X		Top of Casing	
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) <u>84.98</u>	_			
DEPTH TO BOTTOM	1 (FEET) 146.79	_			
PID (ppm)	0.0	_			

Well No.	8	_	Date .	4/26/2022	
Inspected By	MPP/TD/KM	-	Weather Conditions	Partly Cloudy, 48-56 F	
	WELL EXTE	RIOR C	ONDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			<u> X</u>		
Missing:			<u> X</u>		
PONDING OF WATE	R AROUND WELL	X	·		
PROTECTIVE CASING	G/MANHOLE/LOCK				
Casing/Manh	nole - Intact:	<u> </u>			
Lock - Intact:		X			
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEASO	URING POINT	X		Top of Casing	
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 76.74	_			
DEPTH TO BOTTOM	(FEET) 87.45	-			
PID (ppm)	0.0	_			

Well No.	9	Da	ate	4/26/2022
Inspected By	MPP/TD/KM	W	eather Conditions	Partly Cloudy, 48-56 F
	WELL EX	TERIOR CO	NDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		<u> </u>		
Cracked:			<u> X</u>	
Missing:			X	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	X		
Lock - Intact:			X	No lock
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASI	URING POINT	X		Top of Casing
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	X		
	INTERIO	R WELL CO	NDITIONS	
DEPTH TO WATER (FEET) 74.02			
DEPTH TO BOTTOM	1 (FEET) 87.90			
PID (ppm)	0.0			

Well No.	11A	[Date _	4/26/2022			
Inspected By	MPP/TD/KM	v	Veather Conditions	Partly Cloudy, 48-56 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		<u>X</u>					
Cracked:			<u>X</u>				
Missing:			<u>X</u>				
PONDING OF WATE	R AROUND WELL		<u> X</u>				
PROTECTIVE CASIN	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	<u>X</u>					
Lock - Intact:		<u>X</u>					
WELL CASING (STIC	KUP) STRAIGHT	<u> X</u>					
DESIGNATED MEAS	URING POINT	<u>X</u>		Top of Casing			
WELL IS PROTECTED)	<u>X</u>					
WELL IS CLEARLY M	ARKED	<u>X</u>					
	INTERIOR	R WELL CO	ONDITIONS				
DEPTH TO WATER (FEET) 72.55						
DEPTH TO BOTTOM	1 (FEET) 78.09						
PID (ppm)	0.0						

Well No.	11B	D	ate	4/26/2022	
Inspected By	MPP/TD/KM	W	eather Condition	Partly Cloudy, 48-56 F	
	WELL EX	TERIOR CO	NDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		<u> </u>			
Cracked:			X		
Missing:			X		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASING	G/MANHOLE/LOCK				
Casing/Manh	nole - Intact:	X			
Lock - Intact:		<u> </u>		Lock rusted; hard to open	
WELL CASING (STIC	KUP) STRAIGHT	<u> </u>			
DESIGNATED MEASO	JRING POINT	<u> </u>		Top of Casing	
WELL IS PROTECTED)	<u> </u>			
WELL IS CLEARLY M	ARKED	<u> </u>			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 73.29				
DEPTH TO BOTTOM	1 (FEET) 125.80	<u> </u>			
PID (ppm)	0.0				

Well No.	12A	D	ate .	4/27/2022
Inspected By	MPP/TD/KM	w	eather Conditions	Partly Cloudy, 44-55 F
	WELL EX	TERIOR CO	NDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			<u> X</u>	
Missing:			<u> </u>	
PONDING OF WATER A	ROUND WELL		<u> </u>	
PROTECTIVE CASING/N	MANHOLE/LOCK			
Casing/Manhole	e - Intact:	X		
Lock - Intact:		X		
WELL CASING (STICKUI	P) STRAIGHT	X		
DESIGNATED MEASURI	NG POINT	X		Top of Casing
WELL IS PROTECTED		X		
WELL IS CLEARLY MAR	KED	X		
	INTERIO	R WELL CO	NDITIONS	
DEPTH TO WATER (FEE	T) 79.84			
DEPTH TO BOTTOM (F	EET) 97.93			
PID (ppm)	0.0			

Well No.	12B		Date _	4/27/2022
Inspected By	MPP/TD/KM	v	Veather Conditions	Partly Cloudy, 44-55 F
	WELL EXT	TERIOR CO	ONDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		<u>X</u>		
Cracked:			<u>X</u>	
Missing:			<u>X</u>	
PONDING OF WATE	R AROUND WELL		<u>X</u>	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	<u>X</u>		
Lock - Intact:		X		
WELL CASING (STICE	KUP) STRAIGHT	X		
DESIGNATED MEASU	URING POINT	X		Top of Casing
WELL IS PROTECTED)	X		
WELL IS CLEARLY M.	ARKED	X		
	INTERIO	R WELL CO	ONDITIONS	
DEPTH TO WATER (I	FEET) 80.43			
DEPTH TO BOTTOM	(FEET) 108.78			
PID (ppm)	0.0			

Well No.	1A	Da	ate	10/26/2022			
Inspected By	MPP/JU	We	eather Conditions	Fog, 62-65 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			X				
Missing:			X				
PONDING OF WATE	R AROUND WELL		X				
PROTECTIVE CASING	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	X					
Lock - Intact:		X					
WELL CASING (STIC	KUP) STRAIGHT	X					
DESIGNATED MEASI	URING POINT	X		Top of Casing			
WELL IS PROTECTED)	X		_			
WELL IS CLEARLY M	ARKED	X		_			
INTERIOR WELL CONDITIONS							
DEPTH TO WATER (FEET) <u>104.1</u>	2					
DEPTH TO BOTTOM	1 (FEET) 113.3	5					
PID (ppm)	0.0						

Well No.	1 B	Da	ate	10/26/2022			
Inspected By	MPP/JU	W	eather Conditions	Fog, 62-65 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			X				
Missing:			X				
PONDING OF WATE	R AROUND WELL		X				
PROTECTIVE CASING	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	X					
Lock - Intact:	:	X					
WELL CASING (STIC	KUP) STRAIGHT	X		Top of Casing			
DESIGNATED MEASI	URING POINT	X					
WELL IS PROTECTED)	X					
WELL IS CLEARLY M	ARKED	X					
INTERIOR WELL CONDITIONS							
DEPTH TO WATER (FEET) 106.39	9					
DEPTH TO BOTTOM	1 (FEET) 169.5	<u> </u>					
PID (ppm)	0.0						

Well No.	1C		ate	10/26/2022	
Inspected By	MPP/JU	w	Veather Conditions	Fog, 62-65 F	
	WELL EXT	TERIOR CO	NDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			<u> </u>		
Missing:			<u> </u>		
PONDING OF WATE	R AROUND WELL		X		
PROTECTIVE CASING	G/MANHOLE/LOCK				
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEASI	URING POINT	X		Top of Casing	
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 107.18				
DEPTH TO BOTTOM	(FEET) <u>155.59</u>				
PID (ppm)	0.0				

Well No.	3A/DUP001	D	ate	10/27/2022			
Inspected By	MPP/JU	W	/eather Conditions	Clear, 60-64 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			X				
Missing:			X				
PONDING OF WATE	R AROUND WELL		X				
PROTECTIVE CASIN	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	X					
Lock - Intact:	:	X					
WELL CASING (STIC	KUP) STRAIGHT	X					
DESIGNATED MEAS	URING POINT	X		Top of Casing			
WELL IS PROTECTED)	X		_			
WELL IS CLEARLY M	ARKED	X		_			
	INTERIOR WELL CONDITIONS						
DEPTH TO WATER (FEET) 48.88						
DEPTH TO BOTTOM	1 (FEET) 62.74						
PID (ppm)	0.0						

Well No.	3B	D	ate	10/27/2022			
Inspected By	MPP/JU	W	eather Conditions	Clear, 60-64 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			<u> X</u>				
Missing:			<u> X</u>				
PONDING OF WATE	R AROUND WELL		X				
PROTECTIVE CASING	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	X					
Lock - Intact:	:	X					
WELL CASING (STIC	KUP) STRAIGHT	X					
DESIGNATED MEASI	URING POINT	X		Top of Casing			
WELL IS PROTECTED)	X					
WELL IS CLEARLY M	ARKED	X					
INTERIOR WELL CONDITIONS							
DEPTH TO WATER (FEET) 45.57						
DEPTH TO BOTTOM	1 (FEET) 116.74	<u> </u>					
PID (ppm)	0.0						

Well No.	3C	Da	ite	10/27/2022	
Inspected By	MPP/JU	We	eather Conditions	Clear, 60-64 F	
	WELL EXT	TERIOR CON	IDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		<u> </u>			
Cracked:			X		
Missing:			X		
PONDING OF WATER	R AROUND WELL		X		
PROTECTIVE CASINO	G/MANHOLE/LOCK				
Casing/Manh	ole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STICK	(UP) STRAIGHT	X			
DESIGNATED MEASU	JRING POINT	X		Top of Casing	
WELL IS PROTECTED	1	X			
WELL IS CLEARLY MA	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (F	EET) 45.08				
DEPTH TO BOTTOM	(FEET) 115.16				
PID (ppm)	0.0				

Well No.	4A	Da	ate	10/27/2022				
Inspected By	MPP/JU	w	eather Conditions	Clear, 60-64 F				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			X					
Missing:			X					
PONDING OF WATE	R AROUND WELL		X					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:	:	<u> </u>						
WELL CASING (STIC	KUP) STRAIGHT	<u> </u>						
DESIGNATED MEAS	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X						
WELL IS CLEARLY M	ARKED	<u> </u>						
	INTERIOR WELL CONDITIONS							
DEPTH TO WATER (FEET) 13.49	<u> </u>						
DEPTH TO BOTTOM	1 (FEET) 31.22							
PID (ppm)	0.0							

Well No.	4B	D	ate	10/27/2022		
Inspected By	MPP/JU	w	/eather Conditions	Clear, 60-64 F		
	WELL EX	XTERIOR CO	NDITIONS			
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>		
Intact:		X				
Cracked:			<u> X</u>			
Missing:			<u> X</u>			
PONDING OF WATE	R AROUND WELL		<u> X</u>			
PROTECTIVE CASING	G/MANHOLE/LOCK					
Casing/Manh	nole - Intact:	X				
Lock - Intact:	:	X				
WELL CASING (STIC	KUP) STRAIGHT	X				
DESIGNATED MEASI	URING POINT	X		Top of Casing		
WELL IS PROTECTED)	X				
WELL IS CLEARLY M	ARKED	X				
	INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 13.40)				
DEPTH TO BOTTOM	1 (FEET) 82.09	9				
PID (ppm)	0.0					

Well No.	4C	Da	ate	10/27/2022				
Inspected By	MPP/JU	w	eather Conditions	Clear, 60-64 F				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			X					
Missing:			X					
PONDING OF WATE	R AROUND WELL		X	_				
PROTECTIVE CASIN	G/MANHOLE/LOCK			_				
Casing/Manh	nole - Intact:	X						
Lock - Intact:	:	X		_				
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEAS	URING POINT	X		Top of Casing				
WELL IS PROTECTED	D	X		_				
WELL IS CLEARLY M	ARKED	X		_				
INTERIOR WELL CONDITIONS								
DEPTH TO WATER (FEET) 10.01							
DEPTH TO BOTTOM	1 (FEET) 138.20	5						
PID (ppm)	0.0							

Well No.	6AR	[Date	10/26/2022	
Inspected By	MPP/JU	_ \	Weather Condition	sFog, 62-65 F	
	WELL EXT	ERIOR CO	ONDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			<u> X</u>		
Missing:			X		
PONDING OF WATE	R AROUND WELL		<u> X</u>		
PROTECTIVE CASING	G/MANHOLE/LOCK				
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STICE	KUP) STRAIGHT	X			
DESIGNATED MEASU	JRING POINT	X		Top of Casing	
WELL IS PROTECTED)	X			
WELL IS CLEARLY M.	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (I	FEET) 93.84	_			
DEPTH TO BOTTOM	(FEET) 113.36	_			
PID (ppm)	0.0	_			

Well No.	6B	Da	ate	10/26/2022				
Inspected By	MPP/JU	W	eather Conditions	Fog, 62-65 F				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			X					
Missing:			X					
PONDING OF WATE	R AROUND WELL		X					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:		X						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEASI	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X		_				
WELL IS CLEARLY M	ARKED	X		_				
INTERIOR WELL CONDITIONS								
DEPTH TO WATER (FEET) 95.14	4						
DEPTH TO BOTTOM	1 (FEET) 148.8	0						
PID (ppm)	0.0							

Well No.	7A		Date	10/26/2022				
Inspected By	MPP/JU		Weather Conditions	Fog, 62-65 F				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X	<u> </u>					
Cracked:			X					
Missing:			X					
PONDING OF WATE	R AROUND WELL		X					
PROTECTIVE CASING	G/MANHOLE/LOCK		<u> </u>					
Casing/Manh	nole - Intact:	X	<u> </u>					
Lock - Intact:		X						
WELL CASING (STIC	KUP) STRAIGHT	X	<u> </u>					
DESIGNATED MEASI	URING POINT	X	<u> </u>	Top of Casing				
WELL IS PROTECTED)	X	<u> </u>	_				
WELL IS CLEARLY M	ARKED	X	<u> </u>	_				
	INTERIOR WELL CONDITIONS							
DEPTH TO WATER (FEET) <u>84</u>	.88						
DEPTH TO BOTTOM	(FEET) <u>99</u>	.48						
PID (ppm)	0	.0						

Well No.	7B	Da		10/26/2022	
Inspected By	MPP/JU	We	ather Conditions	Fog, 62-65 F	
	WELL EX	CTERIOR CON	DITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			X		
Missing:			X		
PONDING OF WATER	R AROUND WELL		X		
PROTECTIVE CASINO	G/MANHOLE/LOCK				
Casing/Manh	ole - Intact:	<u> X</u>			
Lock - Intact:		X			
WELL CASING (STICK	(UP) STRAIGHT	X			
DESIGNATED MEASU	JRING POINT	X			
WELL IS PROTECTED		X			
WELL IS CLEARLY MA	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (F	EET) <u>84.67</u>				
DEPTH TO BOTTOM	(FEET) 113.22	2			
PID (ppm)	0.0				

Well No.	7C	D	ate	10/26/2022				
Inspected By	MPP/JU	w	eather Conditions	Fog, 62-65 F				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			<u> X</u>					
Missing:			<u> X</u>					
PONDING OF WATE	R AROUND WELL		<u> X</u>					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:		X						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEASI	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X		_				
WELL IS CLEARLY M	ARKED	X		_				
	INTERIOR WELL CONDITIONS							
DEPTH TO WATER (FEET) 86.	18						
DEPTH TO BOTTOM	I (FEET) 185	.64						
PID (ppm)	0.	0						

Well No.	8	Da	ate .	10/26/2022				
Inspected By	MPP/JU	w	eather Conditions	Fog, 62-65 F				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		<u> </u>						
Cracked:			X					
Missing:			X					
PONDING OF WATE	R AROUND WELL	X		_				
PROTECTIVE CASING	G/MANHOLE/LOCK			_				
Casing/Manh	nole - Intact:	X		_				
Lock - Intact:	:	X						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEASI	URING POINT	X		Top of Casing				
WELL IS PROTECTED	O	X						
WELL IS CLEARLY M	ARKED	X						
	INTERIOR WELL CONDITIONS							
DEPTH TO WATER (FEET) 77.6	9						
DEPTH TO BOTTOM	1 (FEET) 90.1	4						
PID (ppm)	0.0)						

Well No.	9	Da	ate	10/26/2022	
Inspected By	MPP/JU	W	eather Conditions	Fog, 62-65 F	
	WELL EXT	ERIOR CO	NDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			<u> </u>		
Missing:			<u> X</u>		
PONDING OF WATE	R AROUND WELL		<u> </u>		
PROTECTIVE CASING	G/MANHOLE/LOCK				
Casing/Manh	nole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STIC	KUP) STRAIGHT	X			
DESIGNATED MEASU	JRING POINT	X		Top of Casing	
WELL IS PROTECTED)	X			
WELL IS CLEARLY M	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (FEET) 74.40				
DEPTH TO BOTTOM	(FEET) 91.53				
PID (ppm)	0.0				

Well No.	11A	_ D	ate	10/26/2022	
Inspected By	MPP/JU	_ w	eather Conditions	Fog, 62-65 F	
	WELL EXTE	RIOR CO	NDITIONS		
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>	
Intact:		X			
Cracked:			<u> X</u>		
Missing:			<u> X</u>		
PONDING OF WATER	R AROUND WELL		<u> X</u>		
PROTECTIVE CASING	G/MANHOLE/LOCK				
Casing/Manh	ole - Intact:	X			
Lock - Intact:		X			
WELL CASING (STICE	KUP) STRAIGHT	X			
DESIGNATED MEASU	JRING POINT	X		Top of Casing	
WELL IS PROTECTED)	X			
WELL IS CLEARLY M.	ARKED	X			
INTERIOR WELL CONDITIONS					
DEPTH TO WATER (I	FEET) 72.88	_			
DEPTH TO BOTTOM	(FEET) 81.44	_			
PID (ppm)	0.0	_			

Well No.	11B		Date		10/26/2022
Inspected By	MPP/JU		Weath	er Condition	Fog, 62-65 F
	WELL	EXTERIOR	CONDI	ΓIONS	
CONCRETE PAD		<u>Yes</u>		<u>No</u>	<u>Remarks</u>
Intact:		X	_		
Cracked:			_	X	
Missing:				X	
PONDING OF WATER	R AROUND WELL			X	
PROTECTIVE CASING	G/MANHOLE/LOCK		_		
Casing/Manh	iole - Intact:	X	_		
Lock - Intact:		X	_		Lock rusted; hard to open
WELL CASING (STICE	KUP) STRAIGHT	X	_		
DESIGNATED MEASU	JRING POINT	X	_		Top of Casing
WELL IS PROTECTED)	X	_		
WELL IS CLEARLY MA	ARKED	X	_		
	INTEI	RIOR WELL	CONDI	ΓIONS	
DEPTH TO WATER (I	FEET) 74	.38			
DEPTH TO BOTTOM	(FEET) 97	.57			
PID (ppm)	0	.0			

Well No.	12A	Da	te	10/27/2022
Inspected By	MPP/JU	We	ather Conditions	Clear, 60-64 F
	WELL EX	TERIOR CON	IDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATER A	AROUND WELL		X	
PROTECTIVE CASING/	MANHOLE/LOCK			
Casing/Manhol	e - Intact:	X		
Lock - Intact:		X		
WELL CASING (STICKU	P) STRAIGHT	X		
DESIGNATED MEASUR	ING POINT	X		Top of Casing
WELL IS PROTECTED		X		
WELL IS CLEARLY MAR	KED	X		
	INTERIC	OR WELL CON	DITIONS	
DEPTH TO WATER (FEE	ET) <u>80.19</u>	<u> </u>		
DEPTH TO BOTTOM (F	EET) 94.63	<u> </u>		
PID (ppm)	0.0			

Well No.	12B	_ Da	ate	10/27/2022						
Inspected By	MPP/JU	_ w	eather Conditions	Clear, 60-64 F						
WELL EXTERIOR CONDITIONS										
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>						
Intact:		<u>X</u>								
Cracked:			<u> X</u>							
Missing:			<u> X</u>							
PONDING OF WATER	R AROUND WELL		<u> X</u>							
PROTECTIVE CASING	G/MANHOLE/LOCK									
Casing/Manh	ole - Intact:	<u>X</u>								
Lock - Intact:		X								
WELL CASING (STICE	KUP) STRAIGHT	X								
DESIGNATED MEASU	JRING POINT	X		Top of Casing						
WELL IS PROTECTED)	<u>X</u>								
WELL IS CLEARLY M.	ARKED	X								
INTERIOR WELL CONDITIONS										
DEPTH TO WATER (I	FEET) 81.70	_								
DEPTH TO BOTTOM	(FEET) 96.95	_								
PID (ppm)	0.0	_								

APPENDIX D MONITORING WELL SAMPLING LOGS

CLIENT/PROJECT	No	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _		1A / Town of Southhampton					
SAMPLE I.D.	_			MW-1A				
SAMPLING POINT	_	TOC	-	SAMPLED BY MP/				
DATE SAMPLED		4/26/2022	-	TIME SAMPLED		10:55		
WELL USE	_	Monitoring	-					
STATIC WATER EL	EVATION	104.09	-	FT. BELOW MEAS	URING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	ТН	114.68	-	FT. BELOW MEAS	URING POINT	ТОС		
		SAMPI	ING INFOR	RMATION				
		<u> </u>	,	,				
PURGE METHOD	Subr	mersible Pump	-	SAMPLE METHOD	Submer	rsible Pump		
PURGE RATE		5 GPM		PURGE TIME		4		
CASING VOLUMES	REMOVED	3	_	GALLONS	20.0			
SAMPLE APPEARA	ANCE _	Clear	-	ODORS OBSERVED None		None		
PID (ppm)		0.0	_					
ANALYSIS		Baseline	_	DATE SHIPPED	4/2	7/2022		
		SAMPL	ING PARA	<u>METERS</u>				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
Н	7.22	6.14	5.85	5.73	5.46			
COND	0.181	0.181	0.188	0.190	0.187			
T	12.15	12.58	12.51	12.46	12.44			
ORP	195	231	244	246	257			
TURB	35.4	0.0	0.0	0.0	0.0			
D.O.	11.20	10.45	10.31	9.03	8.96			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201								
WELL No./OWNER	₹ _		1B / Town of Southhampton							
SAMPLE I.D.				MW-1B						
SAMPLING POINT	_	TOC	_	SAMPLED BY		MP/TD/KM				
DATE SAMPLED	_	4/26/2022	_	TIME SAMPLED		11:40				
WELL USE	_	Monitoring	_							
STATIC WATER EI	_EVATION	105.34	_	FT. BELOW MEASU	JRING POINT	ТОС				
WELL DIAMETER		4	Inches							
TOTAL WELL DEP	тн	148.73	_	FT. BELOW MEASU	JRING POINT	ТОС				
		SAMDI I	NG INFO	RMATION						
		<u> </u>	140 1141 01	XI II XI I CIX						
PURGE METHOD	Sub	mersible Pump	-	SAMPLE METHOD	Subme	rsible Pump				
PURGE RATE		5 GPM PURGE TIME			18.00					
CASING VOLUMES	S REMOVEI	3	_	GALLONS		84.00				
SAMPLE APPEARA	ANCE _	clear	_	ODORS OBSERVED		none				
PID (ppm)		0.0	_							
ANALYSIS		Baseline	_	DATE SHIPPED 4		27/2022				
			_							
		SAMPL	NG PARA	METERS						
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling					
рН	5.78	5.61	5.60	5.61	5.62					
COND	0.054	0.063	0.063	0.062	0.062					
T	11.97	11.62	11.60	11.57	11.57					
ORP	203	218	223	215	217					
TURB	28.3	30.4	0.0	0.0	0.0					
D.O.	10.06	9.58	9.49	9.43	9.44					

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201					
WELL No./OWNER	₹ _		1C /	Town of Southhampt	on		
SAMPLE I.D.	_			MW-1C			
SAMPLING POINT	_	TOC	•	SAMPLED BY		MP/TD/KM	
DATE SAMPLED	_	4/26/2022		TIME SAMPLED		12:30	
WELL USE	_	Monitoring					
STATIC WATER EL	EVATION	105.99		FT. BELOW MEASU	RING POINT	ТОС	
WELL DIAMETER		4	Inches				
TOTAL WELL DEP	TH	174.04		FT. BELOW MEASU	RING POINT	ТОС	
		CAMDLII	NC INFO	RMATION			
		SAMPLII	NG IINFOI	RMATION			
PURGE METHOD	Sul	omersible Pump		SAMPLE METHOD	Submer	sible Pump	
PURGE RATE		5 GPM		PURGE TIME	3	0.00	
CASING VOLUMES	REMOVE	3		GALLONS 13		3.00	
SAMPLE APPEARA	NCE _	clear		ODORS OBSERVED		none	
PID (ppm)		0.0					
ANALYSIS		Baseline		DATE SHIPPED	4/2	7/2022	
		SAMPLI	NG PARA	AMETERS			
	1 (4) - 1	1.)/-1	2 \ / -	7.1/-1	Due serveline		
рН	Initial 5.67	1 Vol 5.64	2 Vol 6.09	3 Vol 5.60	Pre-sampling 5.63		
COND	0.064	0.062	0.055	0.045	0.046		
T	11.10	11.41	11.63	11.46	11.46		
ORP	218	232	219	247	247		
TURB	0.0	0.0	0.0	0.0	0.0		
D.O.	9.24	9.52	10.52	9.62	9.60		

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201							
WELL No./OWNER	₹ _	3A / Town of Southhampton							
SAMPLE I.D.	_			MW-3A					
SAMPLING POINT		TOC		SAMPLED BY		MP/TD/KM			
DATE SAMPLED		4/26/2022	<u></u>	TIME SAMPLED		15:10			
WELL USE		Monitoring	<u></u>						
STATIC WATER EI	_EVATION	47.81	<u></u>	FT. BELOW MEASU	JRING POINT	ТОС			
WELL DIAMETER		4	Inches						
TOTAL WELL DEP	TH	62.36	<u></u>	FT. BELOW MEASU	JRING POINT	ТОС			
		SAMDI	LING INFOI	RMATION					
		<u>JAM I</u>		<u>ATTATION</u>					
PURGE METHOD	Subi	mersible Pump	_	SAMPLE METHOD	Submer	sivle Pump			
PURGE RATE		5 GPM		PURGE TIME		5.00			
CASING VOLUMES	S REMOVE	3		GALLONS 30.00		0.00			
SAMPLE APPEARA	ANCE _	clear		ODORS OBSERVED		none			
PID (ppm)		0.0							
ANALYSIS		Baseline		DATE SHIPPED 4/27		7/2022			
		SAMP	LING PARA	AMETERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling				
рН	6.26	6.16	6.09	6.03	6.00				
COND	0.685	0.522	0.428	0.379	0.364				
T	12.07	12.19	12.20	12.19	12.20				
ORP	136	161	162	162	161				
TURB	331	143	62.7	29.3	34.5				
D.O.	12.04	7.78	6.05	5.07	4.77				

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	! _	3B / Town of Southhampton						
SAMPLE I.D.	_			MW-3B				
SAMPLING POINT	_	TOC	-	SAMPLED BY	_	MP/TD/KM		
DATE SAMPLED	_	4/27/2022	-	TIME SAMPLED	_	8:30		
WELL USE	_	Monitoring	-					
STATIC WATER EL	EVATION	44.45	FT. BELOW MEASURING POINT					
WELL DIAMETER		4	Inches					
TOTAL WELL DEPTH 117.48		117.48	-	FT. BELOW MEASUR	RING POINT	ТОС		
		SAMPI II	NG INFOI	RMATION				
PURGE METHOD	Sub	mersible Pump	•	SAMPLE METHOD	Subme	ersible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		30		
CASING VOLUMES	REMOVE	3	_	GALLONS		142.00		
SAMPLE APPEARA	NCE _	clear	_	ODORS OBSERVED		mild sulfur		
PID (ppm)		0.0	_					
ANALYSIS		Baseline	DATE SHIPPED 4		4/	28/2022		
		SAMPLI	NG PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
На	5.93	5.61	5.58	5.59	5.59	ı		
COND	0.050	0.113	0.179	0.187	0.187			
		12.07	12.09	12.11	12.11			
T	11.95							
ORP	33 115	47	35	29	28			
TURB	115	5.8	0.0	0.0	0.0			
D.O.	1.23	0.00	0.00	0.00	0.00			

CLIENT/PROJECT	No	Town of Southhampton / SHP2201							
WELL No./OWNER	R	3C / Town of Southhampton							
SAMPLE I.D.	_			MW-3C					
SAMPLING POINT		ТОС		SAMPLED BY		MP/TD/KM			
DATE SAMPLED		4/27/2022		TIME SAMPLED		9:30			
WELL USE		Monitoring							
STATIC WATER EL	EVATION	43.99		FT. BELOW MEASU	IRING POINT	ТОС			
WELL DIAMETER		4	Inches						
TOTAL WELL DEP	ТН	157.13		FT. BELOW MEASU	IRING POINT	ТОС			
		SAMPI	ING INFO	RMATION					
		<u>9,</u>		XI II XI I GIX					
PURGE METHOD .	Subm	nersible Pump	_	SAMPLE METHOD	Submers	sible Pump			
PURGE RATE		5 GPM	_	PURGE TIME		44			
CASING VOLUMES	REMOVED	3	_	GALLONS	220	0.000			
SAMPLE APPEARA	NCE _	clear	ODORS OBSERVED			none			
PID (ppm)		0.0							
ANALYSIS		Baseline		DATE SHIPPED 4,		3/2022			
		SAMP	LING PARA	AMETERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling				
рН	6.14	6.16	6.22	6.31	6.20				
COND	0.065	0.093	0.092	0.068	0.074				
T	11.97	12.22	12.24	12.36	12.13				
ORP	105	187	191	186	194				
TURB	0.00	0.00	0.00	0.00	0.00				
D.O.	2.34	3.28	3.33	3.49	3.25				

CLIENT/PROJECT	No	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _		4A ,	/ Town of Southhamp	oton			
SAMPLE I.D.	_	MW-4A						
SAMPLING POINT		TOC		SAMPLED BY		MPP/TD/KM		
DATE SAMPLED	_	4/27/2022		TIME SAMPLED		12:15		
WELL USE	_	Monitoring						
STATIC WATER EL	EVATION	13.45		FT. BELOW MEASU	IRING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	ТН	31.15		FT. BELOW MEASU	IRING POINT	ТОС		
		SAMPI	LING INFO	RMATION				
PURGE METHOD	Subr	mersible Pump	_	SAMPLE METHOD	Subme	rsible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		7.00		
CASING VOLUMES	REMOVED	3		GALLONS 35.00		35.00		
SAMPLE APPEARA	ANCE _	clear		ODORS OBSERVED no				
PID (ppm)		0.0						
ANALYSIS		Baseline		DATE SHIPPED 4		8/2022		
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Dra campling			
nЦ	6.06		4.51	4.45	Pre-sampling 4.45			
pH COND	0.133	4.75 0.070	0.073	4.45 0.085	4.45 0.084			
T	0.133 11.44	11.36		11.31	11.33			
ORP	11.44 250	305	11.37 324	11.31 337	11.33 340			
TURB	250 1.9	305 71.4	0.0	0.0	0.0			
D.O.	1.9 9.55	6.92	6.47	6.45	6.37			
D.O.	5.55	0.52	J. ¬ /	0.70	0.57			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201								
WELL No./OWNER	₹ _	4B / Town of Southhampton								
SAMPLE I.D.	_		MW-4B							
SAMPLING POINT	_	TOC	_	SAMPLED BY		MP/TD/KM				
DATE SAMPLED	_	4/27/2022		TIME SAMPLED		13:00				
WELL USE	_	Monitoring								
STATIC WATER EL	EVATION	13.27		FT. BELOW MEASU	JRING POINT	ТОС				
WELL DIAMETER		4	Inches							
TOTAL WELL DEP	ТН	82.55	<u> </u>	FT. BELOW MEASU	JRING POINT	ТОС				
		SAMDI	ING INFO	PMATION!						
		SAMI		MIATION						
PURGE METHOD .	Sub	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump				
PURGE RATE		5 GPM		PURGE TIME		7.0				
CASING VOLUMES	REMOVE	3		GALLONS 135.0		5.0				
SAMPLE APPEARA	NCE _	clear	ODORS OBSERVED			none				
PID (ppm)		0.0								
ANALYSIS		Baseline		DATE SHIPPED 4/28		/2022				
•			_							
		SAMP	LING PARA	AMETERS						
	Initial	1)/0	2 Vol	7 Vol	Dro campling					
рН	5.45	1 Vol 5.85	2 voi 5.98	3 Vol 6.08	Pre-sampling 6.10					
COND	0.111	0.151	0.172	0.183	0.186					
T	12.73	12.79	12.79	12.76	12.77					
ORP	12.73 245	20	12.79 -2	-16	-19					
TURB	91.8	6.7	-2 4.1	2.2	3.0					
D.O.	2.78	0.00	0.00	0.00	0.00					

Town of Southhampton / SHP2201				
	4C ,	/ Town of Southhamp	oton	
		MW-4C/MS/MSD		
TOC	_	SAMPLED BY		MP/TD/KM
4/27/2022		TIME SAMPLED		14:00
Monitoring	_			
9.31	_	FT. BELOW MEASU	JRING POINT	ТОС
4	Inches			
139.7	_	FT. BELOW MEASU	JRING POINT	ТОС
SAMPL	ING INFO	RMATION		
omersible Pump	_	SAMPLE METHOD	Submers	sible Pump
5 GPM		PURGE TIME		51
ED 3		GALLONS	25	3.00
clear	_	ODORS OBSERVED		none
0.0				
Baseline		DATE SHIPPED	4/28	3/2022
SAMPI	ING PARA	AMETERS		
1 \/ ol	2 Vol	3 Vol	Dre-sampling	
3.56	3.70	3.73	3.74	
	4/27/2022 Monitoring 9.31 4 139.7 SAMPL Dimersible Pump 5 GPM Clear 0.0 Baseline SAMPI 1 Vol 6.50 0.222 12.92 80 16.5	TOC 4/27/2022 Monitoring 9.31 4 Inches 139.7 SAMPLING INFO Demersible Pump 5 GPM ED 3 clear 0.0 Baseline SAMPLING PARA 1 Vol 2 Vol 6.50 6.60 0.222 0.221 12.92 12.89 80 90 16.5 3.7	### AC / Town of Southhams ### AW-4C/MS/MSD TOC	### AC / Town of Southhampton MW-4C/MS/MSD

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _		11A ,	/ Town of Southham	pton			
SAMPLE I.D.	_			MW-11A / DUP001				
SAMPLING POINT	_	TOC	<u> </u>	SAMPLED BY		MP/TD/KM		
DATE SAMPLED	_	4/26/2022	<u> </u>	TIME SAMPLED		13:15		
WELL USE	_	Monitoring	<u> </u>					
STATIC WATER EI	_EVATION	72.55		FT. BELOW MEASU	JRING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	TH	78.09		FT. BELOW MEASU	JRING POINT	ТОС		
		SAMDI	ING INFO	RMATION				
		<u>57 (1 11 E</u>		XI II XI I CIX				
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submer	sible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		4		
CASING VOLUMES	S REMOVEI	3	_	GALLONS	1	7.5		
SAMPLE APPEARA	ANCE _	turbid (red)	_	ODORS OBSERVE		none		
PID (ppm)		0.0	_					
ANALYSIS		Baseline		DATE SHIPPED	4/27	7/2022		
			_					
		SAMPI	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	6.37	6.04	6.03	5.97	5.73			
COND	0.254	0.252	0.03	0.238	0.224			
T	13.26	13.33	13.05	13.06	13.13			
ORP	49	53	65	58	62			
TURB	577	1000	1000	1000	714			
D.O.	2.47	1.48	1.53	1.67	1.70			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201					
WELL No./OWNE	R _		11B ,	/ Town of Southham	npton		
SAMPLE I.D.	_			MW-11B			
SAMPLING POINT	_	TOC	_	SAMPLED BY	_	MP/TD/KM	
DATE SAMPLED	_	4/26/2022	_	TIME SAMPLED	_	14:10	
WELL USE	_	Monitoring	_				
STATIC WATER E	LEVATION	73.29	_	FT. BELOW MEAS	URING POINT	ТОС	
WELL DIAMETER		4	Inches				
TOTAL WELL DEPTH 125.8			_	FT. BELOW MEAS	URING POINT	ТОС	
		S A MDI I	NG INFO	RMATION			
		SAMELI	INO IINI OI	RIMATION			
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Subme	rsible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		21	
CASING VOLUMES	S REMOVEI	3	_	GALLONS		103	
SAMPLE APPEARA	ANCE _	slightly turbid	_	ODORS OBSERVED		none	
PID (ppm)		0.0	_				
ANALYSIS		Baseline		DATE SHIPPED 4		27/2022	
			_				
		SAMPL	ING PARA	AMETERS			
	1.202.1	137.1	0.1/.1	7.1.1	B		
рН	Initial 6.76	1 Vol 6.68	2 Vol 6.49	3 Vol 6.34	Pre-sampling 6.32		
COND	0.76	0.132	0.49	0.109	0.108		
T	13.26	13.23	13.15	13.28	13.26		
ORP	13.20	23	44	69	70		
TURB	176	110	79.3	76.2	79.6		
D.O.	4.48	5.12	6.07	7.04	7.08		

CLIENT/PROJECT	No	Town of Southhampton / SHP2201					
WELL No./OWNER	₹		12A	/ Town of Southham	pton		
SAMPLE I.D.				MW-12A			
SAMPLING POINT		TOC	_	SAMPLED BY	_	MP/TD/KM	
DATE SAMPLED		4/27/2022	_	TIME SAMPLED		10:30	
WELL USE		Monitoring	_				
STATIC WATER EL	EVATION	79.84	_	FT. BELOW MEASU	JRING POINT	ТОС	
WELL DIAMETER		4	_Inches				
TOTAL WELL DEPTH 97.93			_	FT. BELOW MEASU	JRING POINT	ТОС	
		SAMDI	ING INFO	RMATION			
		SAME	1110 1111 01	KITATION			
PURGE METHOD	Subm	nersible Pump	_	SAMPLE METHOD	Submer	sible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		7	
CASING VOLUMES	REMOVED	3	<u> </u>	GALLONS		35	
SAMPLE APPEARA	ANCE	clear	_	ODORS OBSERVED		none	
PID (ppm)		0.0	_				
ANALYSIS		Baseline	_	DATE SHIPPED	4/2	8/2022	
		SAMPL	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	5.96	5.67	5.60	5.57	5.57		
COND	0.000	0.076	0.108	0.131	0.141		
Т	12.62	12.66	12.83	12.86	12.88		
ORP	192	215	217	202	197		
TURB	62.2	9.8	10.5	0.0	0.0		
D.O.	16.31	0.00	0.00	0.00	0.00		

CLIENT/PROJECT No.	Town of Southhampton / SHP2201					
WELL No./OWNER		12B ,	/ Town of Southhamp	oton		
SAMPLE I.D.			MW-12B			
SAMPLING POINT	ТОС		SAMPLED BY		MP/TD/KM	
DATE SAMPLED	4/27/2022	_	TIME SAMPLED		11:00	
WELL USE	Monitoring	_				
STATIC WATER ELEVATION	ON <u>80.43</u>	_	FT. BELOW MEASU	RING POINT	ТОС	
WELL DIAMETER	4	Inches				
TOTAL WELL DEPTH	108.78		FT. BELOW MEASU	RING POINT	ТОС	
	SAMDI	ING INFO	RMATION			
	SAME	-1140 1141 01	XI II XI I VIX			
PURGE METHOD S	Submersible Pump	_	SAMPLE METHOD	Submer	sible Pump	
PURGE RATE	5 GPM	_	PURGE TIME		11	
CASING VOLUMES REMOV	VED3		GALLONS 55		55	
SAMPLE APPEARANCE	clear		ODORS OBSERVED none		none	
PID (ppm)	0.0	_				
ANALYSIS	Baseline	_	DATE SHIPPED	4/28	8/2022	
	SAMPI	LING PARA	AMETERS			
Initial	1 Vol	2 Vol	3 Vol	Dro-compling		
pH 5.82	5.82	2 voi 5.83	5.84	Pre-sampling 5.86		
COND 0.050		0.137	0.138	0.153		
T 12.31	12.65	12.66	12.66	12.70		
ORP 189	203	208	210	212		
TURB 0.6	0.0	0.0	0.0	0.0		
D.O. 9.32	0.00	0.00	0.00	0.00		

CLIENT/PROJECT No. Town of Southhampton / SHP2201							
WELL No./OWNER		LEA-P	RI / Town of Southha	ampton			
SAMPLE I.D.			LEA-PRI				
SAMPLING POINT	ТОС	_	SAMPLED BY		MP/TD/KM		
DATE SAMPLED	4/26/2022	<u>_</u>	TIME SAMPLED		8:15		
WELL USE	NA	_					
STATIC WATER ELEVATION	NA NA	_	FT. BELOW MEASU	JRING POINT	NA		
WELL DIAMETER	NA	Inches					
TOTAL WELL DEPTH	_	FT. BELOW MEASU	JRING POINT	NA			
	SAMPL	ING INFO	RMATION				
PURGE METHOD	NA	_	SAMPLE METHOD		Bailer		
PURGE RATE	NA	_	PURGE TIME		NA		
CASING VOLUMES REMOVE	ED NA	_	GALLONS		NA		
SAMPLE APPEARANCE	Clear	_	ODORS OBSERVE	_	None		
PID (ppm)	0.0						
ANALYSIS Routine Pa	rameters + Arsenic	_	DATE SHIPPED	4/2	27/2022		
	SAMPI	_ING PARA	AMETERS				
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH -	-	-	-	9.62			
COND -	-	-	-	0.481			
T -	-	-	-	11.32			
ORP - TURB -	-	-	-	-35 0.0			
D.O	- -	-	- -	14.45			
				-			

CLIENT/PROJECT No.	Town of Southnampton / SHP2201						
WELL No./OWNER		LEA-S	EC / Town of Southh	ampton			
SAMPLE I.D.			LEA-SEC				
SAMPLING POINT	ТОС		SAMPLED BY	_	MP/TD/KM		
DATE SAMPLED	4/26/2022		TIME SAMPLED		8:35		
WELL USE	NA	<u> </u>					
STATIC WATER ELEVATION	NA NA		FT. BELOW MEASU	JRING POINT	NA		
WELL DIAMETER	NA	Inches					
TOTAL WELL DEPTH	DEPTH NA FT. B			JRING POINT	NA		
	SAMP	LING INFO	RMATION				
PURGE METHOD	NA		SAMPLE METHOD		Bailer		
PURGE RATE	NA		PURGE TIME		NA		
CASING VOLUMES REMOV	/ED NA		GALLONS		NA		
SAMPLE APPEARANCE	Clear		ODORS OBSERVED	_	none		
PID (ppm)	0.0						
ANALYSIS Routine P	arameters + Arsenic		DATE SHIPPED	4/	27/2022		
	SAMP	LING PARA	<u>AMETERS</u>				
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH -	-	-	-	8.42			
COND -	-	-	-	0.345			
T -	-	-	-	10.72			
ORP -	-	-	-	54			
TURB -	-	-	-	0.0			
D.O	-		<u> </u>	31.16			

CLIENT/PROJECT No.	Town of Southhampton / SHP2201					
WELL No./OWNER		1A /	Town of Southhampt	on		
SAMPLE I.D.			MW-1A			
SAMPLING POINT	TOC	_	SAMPLED BY		MPP/JU	
DATE SAMPLED	10/26/2022	_	TIME SAMPLED		12:10	
WELL USE	Monitoring	_				
STATIC WATER ELEVATION	N104.12	_	FT. BELOW MEASU	JRING POINT	ТОС	
WELL DIAMETER	4	Inches				
TOTAL WELL DEPTH	113.35	_	FT. BELOW MEASU	JRING POINT	ТОС	
	CAMDI	ING INFOR	MATION			
	SAMPL	ING INFOR	<u>IMATION</u>			
PURGE METHOD Su	bmersible Pump	-	SAMPLE METHOD	Submers	sible Pump	
PURGE RATE	5 GPM	_	PURGE TIME		3.5	
CASING VOLUMES REMOVE	ED3	_	GALLONS	1	7.5	
SAMPLE APPEARANCE	Clear	_	ODORS OBSERVE	D Ro	otting Material	
PID (ppm)	0.0	_				
ANALYSIS	Routine	_	DATE SHIPPED	10/2	7/2022	
		_				
	SAMPI	ING PARA	METERS			
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
pH 6.75	6.69	6.64	6.59	6.60		
COND 0.570	0.570	0.562	0.599	0.578		
T 13.25	13.33	13.39	13.44	13.45		
ORP 148	152	15.59	157	157		
TURB 0.0	0.0	0.0	0.0	0.0		
D.O. 12.65	11.87	11.34	10.85	10.70		

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _		1B /	Town of Southhamp	ton			
SAMPLE I.D.	_			MW-1B				
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU		
DATE SAMPLED	_	10/26/2022		TIME SAMPLED		12:50		
WELL USE	_	Monitoring						
STATIC WATER EL	_EVATION	106.39		FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	тн	169.51		FT. BELOW MEASU	RING POINT	ТОС		
		SAMDI	ING INFO	PMATION .				
		SAMEL		MATION				
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump		
PURGE RATE		5 GPM		PURGE TIME	24	.00		
CASING VOLUMES	S REMOVEI	3	_	GALLONS	122	2.00		
SAMPLE APPEARA	ANCE _	Clear		ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED	10/27	7/2022		
		SAMPI	LING PARA	METERS				
	1 (4) 1	1 \ / -	2.1/-1	7.1/-1	Dua aanadiaa			
рН	Initial 6.13	1 Vol 6.16	2 Vol 6.23	3 Vol 6.36	Pre-sampling 6.56			
COND	0.083	0.083	0.083	0.082	0.082			
T	12.44	12.57	12.70	12.68	12.70			
ORP	149	153	158	160	153			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	14.19	12.04	10.40	9.96	9.31			

CLIENT/PROJECT	No	Town of Southhampton / SHP2201					
WELL No./OWNER			1C /	Town of Southhamp	ton		
SAMPLE I.D.				MW-1C		_	
SAMPLING POINT		TOC	_	SAMPLED BY	_	MPP/JU	
DATE SAMPLED		10/26/2022	_	TIME SAMPLED	_	13:30	
WELL USE		Monitoring	_				
STATIC WATER EL	EVATION	107.18	_	FT. BELOW MEASU	JRING POINT	ТОС	
WELL DIAMETER		4	_Inches				
TOTAL WELL DEP	ГН	155.59	_	FT. BELOW MEASU	JRING POINT	ТОС	
		SAMPL	ING INFO	RMATION			
PURGE METHOD	Subme	ersible Pump		SAMPLE METHOD	Subme	ersible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		19.00	
CASING VOLUMES	REMOVED	3	_	GALLONS		93.60	
SAMPLE APPEARA	NCE	Clear	<u> </u>	ODORS OBSERVE	_	None	
PID (ppm)		0.0	_				
ANALYSIS	F	Routine	_	DATE SHIPPED	10/	27/2022	
		SAMPL	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	6.56	6.26	6.38	6.56	6.90		
COND	0.085	0.085	0.087	0.086	0.086		
Т	12.31	12.51	12.49	12.46	12.44		
ORP	145	168	166	158	142		
TURB	0.0	0.0	0.0	0.0	0.0		
D.O.	17.69	10.81	9.96	9.73	9.71		

CLIENT/PROJECT	No	Town of Southhampton / SHP2201					
WELL No./OWNE	R _		3A /	[/] Town of Southhamp	oton		
SAMPLE I.D.				MW-3A/DUP001			
SAMPLING POINT	_	тос	<u> </u>	SAMPLED BY		MPP/JU	
DATE SAMPLED	_	10/27/2022		TIME SAMPLED		9:55	
WELL USE	_	Monitoring					
STATIC WATER E	LEVATION	48.88	_	FT. BELOW MEASU	RING POINT	ТОС	
WELL DIAMETER		4	Inches				
TOTAL WELL DEPTH 62.7				FT. BELOW MEASU	RING POINT	ТОС	
		SAMPI	ING INFO	RMATION			
PURGE METHOD	Subr	nersible Pump	_	SAMPLE METHOD	Submers	ivle Pump	
PURGE RATE		5 GPM	_	PURGE TIME	9.	00	
CASING VOLUME	S REMOVED	3		GALLONS	45	.00	
SAMPLE APPEAR	ANCE _	Clear	_	ODORS OBSERVED	·	None	
PID (ppm)		0.0					
ANALYSIS		Routine		DATE SHIPPED	10/28	/2022	
			_		-		
		SAMPI	ING PARA	METERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
pH	6.97	6.87	6.76	6.76	6.65		
COND	0.430	0.401	0.382	0.381	0.375		
T ORP	10.92 164	10.63 177	10.58 185	10.56 185	10.54 190		
TURB	200	241	79.9	32.1	24.5		
D.O.	15.54	11.06	9.04	8.64	8.33		

CLIENT/PROJECT N	٠٥.	Town of Southhampton / SHP2201						
WELL No./OWNER	_		3B	/ Town of Southhamp	ton			
SAMPLE I.D.	_			MW-3B				
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU		
DATE SAMPLED	_	10/27/2022	-	TIME SAMPLED		10:40		
WELL USE	_	Monitoring	-					
STATIC WATER ELE	EVATION	45.57	-	FT. BELOW MEASUR	ING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEPT	TOTAL WELL DEPTH 116.74			FT. BELOW MEASUR	ING POINT	ТОС		
		SAMDLL	NG INFO	RMATION				
		<u>SAME</u>	110 1111 01	<u> MATION</u>				
PURGE METHOD _	Sub	mersible Pump	-	SAMPLE METHOD	Submer	sible Pump		
PURGE RATE		5 GPM	-	PURGE TIME		28		
CASING VOLUMES	REMOVED	3	_	GALLONS		39.00		
SAMPLE APPEARAI	NCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0	_					
ANALYSIS		Routine	DATE SHIPPED 10		10/2	28/2022		
			-					
		SAMPLI	NG PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
Н	6.54	6.56	6.57	6.64	6.64			
COND	0.275	0.270	0.298	0.298	0.300			
T	11.44	11.36	11.42	11.43	11.38			
ORP	77	13	1	-17	-3			
TURB	25.2	11.0	0.0	0.0	0.0			
D.O.	8.82	7.56	7.42	7.42	7.39			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201					
WELL No./OWNER	₹ _		3C ,	/ Town of Southham	pton		
SAMPLE I.D.				MW-3C			
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU	
DATE SAMPLED	_	10/27/2022	_	TIME SAMPLED		11:15	
WELL USE		Monitoring	_				
STATIC WATER ELEVATION 45.08		_	FT. BELOW MEASU	JRING POINT	ТОС		
WELL DIAMETER 4		_Inches					
TOTAL WELL DEPTH 115.16			_	FT. BELOW MEASU	JRING POINT	ТОС	
		SAMDI	ING INFO	RMATION			
		SAMPL	IINO IINI OI	MINATION			
PURGE METHOD	Subi	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		28	
CASING VOLUMES	S REMOVE	3	_	GALLONS 136.5		.500	
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVED		None	
PID (ppm)		0.0	_				
ANALYSIS		Routine		DATE SHIPPED 10,		3/2022	
		SAMPL	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	6.70	6.68	6.77	6.77	6.77		
COND	0.135	0.134	0.139	0.129	0.129		
T	11.14	12.12	12.22	12.21	12.19		
ORP	-31	-19	-7	12	20		
TURB	0.00	0.00	0.00	0.00	0.00		
D.O.	12.52	6.99	7.06	7.13	7.11		

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _	4A / Town of Southhampton						
SAMPLE I.D.	_			MW-4A				
SAMPLING POINT	_	TOC	<u></u>	SAMPLED BY	MPP/JU			
DATE SAMPLED	_	10/28/2022	<u></u>	TIME SAMPLED		14:20		
WELL USE	_	Monitoring						
STATIC WATER ELEVATION 13.49		13.49		FT. BELOW MEASU	IRING POINT	ТОС		
WELL DIAMETER 4		4	Inches					
TOTAL WELL DEPTH 31				FT. BELOW MEASU	IRING POINT	ТОС		
		SAMDI	LING INFOI	RMATION				
		<u> </u>		<u> </u>				
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump		
PURGE RATE		5 GPM		PURGE TIME		.00		
CASING VOLUMES	S REMOVEI	3		GALLONS	35.00			
SAMPLE APPEARA	ANCE _	Clear		ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED 10/28/2022		3/2022		
			_					
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	6.78	6.79	6.70	6.65	6.68			
COND	0.290	0.239	0.234	0.230	0.227			
T	12.39	12.72	12.64	12.66	12.65			
ORP	-1	40	62	81	87			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	10.77	7.71	7.46	7.31	7.22			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201					
WELL No./OWNER	₹ _		4B ,	/ Town of Southhampton			
SAMPLE I.D.	_			MW-4B			
SAMPLING POINT	_	тос		SAMPLED BY	MPP/JU		
DATE SAMPLED	_	10/27/2022		TIME SAMPLED		14:00	
WELL USE	_	Monitoring	_				
STATIC WATER EI	_EVATION	13.4		FT. BELOW MEASU	IRING POINT	ТОС	
WELL DIAMETER 4			Inches				
TOTAL WELL DEPTH 82.09				FT. BELOW MEASU	IRING POINT	ТОС	
		SAMPI	LING INFO	RMATION			
PURGE METHOD	Sub	mersible Pump		SAMPLE METHOD	Submers	sible Pump	
PURGE RATE		5 GPM	<u></u>	PURGE TIME		7.0	
CASING VOLUMES	REMOVE	D3		GALLONS	134.0		
SAMPLE APPEARA	ANCE _	Clear		ODORS OBSERVED		None	
PID (ppm)		0.0					
ANALYSIS		Routine		DATE SHIPPED 10,		8/2022	
		SAMP	LING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	6.53	6.48	6.74	6.64	6.68		
COND	0.33	0.48	0.74	0.231	0.233		
T	12.94	12.96	12.95	12.93	12.89		
ORP	83	89	38	-5	-6		
TURB	0.0	0.0	0.0	0.0	0.0		
D.O.	11.88	7.80	7.40	7.30	7.30		

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201					
WELL No./OWNER	₹ _		4C ,	/ Town of Southhamp	oton		
SAMPLE I.D.	_			MW-4C			
SAMPLING POINT	_	TOC		SAMPLED BY		MPP/JU	
DATE SAMPLED	_	10/27/2022		TIME SAMPLED		13:30	
WELL USE	_	Monitoring	_				
STATIC WATER EL	EVATION	10.01	_	FT. BELOW MEASU	IRING POINT	ТОС	
WELL DIAMETER 4			Inches				
TOTAL WELL DEPTH 138.3			_	FT. BELOW MEASU	IRING POINT	ТОС	
		SAMPI	ING INFO	RMATION			
PURGE METHOD	Sub	mersible Pump		SAMPLE METHOD	Submer	sible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		50	
CASING VOLUMES	REMOVE	D 3		GALLONS	250.00		
SAMPLE APPEARA	ANCE _	Clear		ODORS OBSERVED)	None	
PID (ppm)		0.0					
ANALYSIS		Routine		DATE SHIPPED 10		8/2022	
		SAMP	LING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	6.95	6.81	6.70	6.62	6.55		
COND	0.334	0.263	0.264	0.261	0.257		
T	13.13	13.12	13.13	13.06	13.03		
ORP	13.13	13.12	120	90	13.03 86		
TURB	143	41.3	0.0	0.0	0.0		
D.O.	16.95	8.04	7.83	7.68	7.68		
					,		

CLIENT/PROJECT I	No	Town of Southhampton / SHP2201						
WELL No./OWNER	_		6AR	/ Town of Southham	pton			
SAMPLE I.D.	_			MW-6AR				
SAMPLING POINT		TOC	_	SAMPLED BY	MPP/JU			
DATE SAMPLED		10/26/2022	_	TIME SAMPLED 10:30				
WELL USE	_	Monitoring	_					
STATIC WATER ELEVATION 93.84			_	FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		2	Inches					
TOTAL WELL DEPTH 113.4			_	FT. BELOW MEASU	RING POINT	ТОС		
		SAMPI	ING INFO	RMATION				
		<u> </u>	1110 1111 01	ALL II ALL COLL				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Submers	ible Pump			
PURGE RATE		5 GPM	_	PURGE TIME		2		
CASING VOLUMES	REMOVED	3	_	GALLONS	9.	.60		
SAMPLE APPEARA	NCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0	_					
ANALYSIS	Routine	+ Baseline Metals	_	DATE SHIPPED 10/27/20		7/2022		
			_					
		SAMPL	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	7 \/ al	Dro campling			
рН	6.73	6.49	6.34	3 Vol 6.16	Pre-sampling 6.30			
COND	0.73	0.107	0.107	0.106	0.106			
T	13.71	13.17	13.10	13.09	13.10			
ORP	103	127	142	15.09	149			
TURB	23.9	0.0	0.0	0.0	0.0			
D.O.	23.9 17.88	13.62	11.87	11.13	10.84			

CLIENT/PROJECT	No	Town of Southhampton / SHP2201						
WELL No./OWNER	<u> </u>		6B /	Town of Southhamr	oton			
SAMPLE I.D.	_			MW-6B				
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU		
DATE SAMPLED		10/26/2022	_	TIME SAMPLED		11:20		
WELL USE	_	Monitoring	_					
STATIC WATER EL	EVATION	95.14	_	FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	_Inches					
TOTAL WELL DEPTH 148.8			_	FT. BELOW MEASU	RING POINT	ТОС		
		SAMPI	ING INFOR	RMATION				
				<u> </u>				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Submer	sible Pump			
PURGE RATE		5 GPM	_	PURGE TIME		21		
CASING VOLUMES	REMOVED	3	_	GALLONS	103.00			
SAMPLE APPEARA	NCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0	_					
ANALYSIS	Routine	+ Baseline Metals	_	DATE SHIPPED 10		7/2022		
		SAMPL	ING PARA	METERS				
	lo:tial	1 \ / a	2.1/6	7.\/a.l	Due compositions			
рН	Initial 6.40	1 Vol 6.27	2 Vol 6.28	3 Vol 5.99	Pre-sampling 6.16			
COND	0.088	0.085	0.089	0.089	0.089			
T	12.26	12.43	12.50	12.49	12.47			
ORP	137	141	135	148	140			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	10.74	9.89	9.55	9.47	9.41			

CLIENT/PROJECT No. Town of Southhampton / SHP2201								
WELL No./OWNE	R _	8 / Town of Southhampton						
SAMPLE I.D.	_			MW-8 (MS/MSD)				
SAMPLING POINT	-	TOC	_	SAMPLED BY	MPP/JU			
DATE SAMPLED	<u>-</u>	10/26/2022		TIME SAMPLED	TIME SAMPLED 14:45			
WELL USE	_	Monitoring						
STATIC WATER ELEVATION 77.69		77.69		FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER 4		4	Inches					
TOTAL WELL DEPTH 90		90.1	_	FT. BELOW MEASU	RING POINT	ТОС		
		SAMPI	ING INFO	RMATION				
		<u>57 ((1))</u>		XI II XI I GIX				
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		5		
CASING VOLUME	S REMOVE	D3		GALLONS	25	.00		
SAMPLE APPEAR	ANCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED 10/27/2022		//2022		
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
На	6.33	6.34	6.25	6.29	6.26			
COND	0.33	0.107	0.108	0.112	0.112			
T	13.65	12.60	12.61	12.61	12.61			
ORP	163	182	191	192	194			
TURB	21.8	15.9	5.6	0.0	0.0			
D.O.	26.40	14.14	12.51	11.96	11.56			

	Town of Southhampton / SHP2201							
WELL No./OWNER	9 / Town of Southhampton							
SAMPLE I.D.			MW-9					
SAMPLING POINT	ТОС		SAMPLED BY		MP/JU			
DATE SAMPLED	10/26/2022		TIME SAMPLED		15:15			
WELL USE	Monitoring							
STATIC WATER ELEVATION		FT. BELOW MEASU	RING POINT	ТОС				
WELL DIAMETER	Inches							
TOTAL WELL DEPTH	91.5		FT. BELOW MEASURING POINT TOO					
	SAMPI	LING INFO	RMATION					
	57.11.11							
PURGE METHOD Su	ıbmersible Pump		SAMPLE METHOD	Submersi	ble Pump			
PURGE RATE	5 GPM	<u></u>	PURGE TIME		5			
CASING VOLUMES REMOV	ED3		GALLONS	27.30				
SAMPLE APPEARANCE	Clear		ODORS OBSERVED N		None			
PID (ppm)	0.0							
ANALYSIS	Routine		DATE SHIPPED	10/27,	/2022			
		_						
	SAMP	LING PARA	AMETERS					
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling				
pH 6.64	6.71	6.67	6.63	6.56				
COND 0.072	0.074	0.074	0.074	0.057				
T 14.06	12.94	13.05	13.15	13.17				
ORP 161 TURB 5.0	172 2.6	179 0.0	186 0.0	192 0.0				
D.O. 22.25	2.6 14.17	12.54	11.55	15.69				

CLIENT/PROJECT No.			Town of Southhampton / SHP2201							
WELL No./OWNE	R		11A ,	/ Town of Southhamp	oton					
SAMPLE I.D.	,			MW-11A						
SAMPLING POINT		ТОС		SAMPLED BY		MPP/JU				
DATE SAMPLED 10/26/2022				TIME SAMPLED		15:50				
WELL USE		Monitoring								
STATIC WATER ELEVATION 72.88				FT. BELOW MEASU	RING POINT	ТОС				
WELL DIAMETER 4			Inches							
TOTAL WELL DEF	81.44		FT. BELOW MEASU	RING POINT	ТОС					
		CAMDI IN	IG INFO	RMATION						
		<u>JAME LIII</u>	NO IINI OI	MATION						
PURGE METHOD	Sul	omersible Pump		SAMPLE METHOD	Submers	sible Pump				
PURGE RATE		5 GPM		PURGE TIME		3.5				
CASING VOLUME	S REMOVE	ED 3		GALLONS	17.55					
SAMPLE APPEAR	ANCE	Red/Turbid		ODORS OBSERVED		None				
PID (ppm)		0.0								
ANALYSIS	Routine+	Baseline VOCs/Metals		DATE SHIPPED	10/2	7/2022				
		SAMPLI	NG PARA	METERS						
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling					
рН	7.02	6.93	6.90	6.75	6.77					
COND	0.231	0.225	0.220	2.130	0.212					
T	15.07	13.96	13.78	13.75	13.67					
ORP	144	99	81	79	77					
TURB	1000	1000	364	330	191					
D.O.	10.15	10.02	9.44	8.95	8.54					

CLIENT/PROJECT	No	Town of Southhampton / SHP2201					
WELL No./OWNE	R _		11B <i>,</i>	/ Town of Southhamp	oton		
SAMPLE I.D.	_			MW-11B			
SAMPLING POINT	_	TOC	_	SAMPLED BY MPP/JU			
DATE SAMPLED	_	10/26/2022	_	TIME SAMPLED		16:30	
WELL USE	_	Monitoring	_				
STATIC WATER E	74.38	_	FT. BELOW MEASU	IRING POINT	ТОС		
WELL DIAMETER		4	Inches				
TOTAL WELL DEPTH		97.6	_	FT. BELOW MEASU	IRING POINT	ТОС	
		CAMDLI	NC INFO	DMATION			
		SAMPLI	ING INFO	RMATION			
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submer	sible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		9	
CASING VOLUMES	S REMOVEI	3	_	GALLONS	4	4.85	
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVED		None	
PID (ppm)		0.0	_				
ANALYSIS	Routine+B	aseline VOCs/Metals	- 5	DATE SHIPPED 10/27		7/2022	
			_				
		SAMPL	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
pH	6.65	6.70	6.61	6.63	6.58		
COND	0.420	0.425	0.429	0.427	0.305		
T ORP	13.27 61	13.01 50	12.83 56	12.83 44	12.76 26		
TURB	0.0	0.0	0.0	0.0	0.0		
D.O.	6.73	6.65	6.58	6.49	6.44		

CLIENT/PROJECT	No.		Town of Southhampton / SHP2201					
WELL No./OWNER	₹ _	12A / Town of Southhampton						
SAMPLE I.D.	_			MW-12A				
SAMPLING POINT	MPLING POINT TOC			SAMPLED BY		MPP/JU		
DATE SAMPLED	_	10/27/2022	_	TIME SAMPLED		8:35		
WELL USE	_	Monitoring	_					
STATIC WATER ELEVATION 80.19			_	FT. BELOW MEASU	JRING POINT	ТОС		
WELL DIAMETER4			Inches					
TOTAL WELL DEPTH 94.63		_	FT. BELOW MEASU	JRING POINT	TOC			
		C A MDL I	NC INFO	RMATION				
		SAMPLI	INO IINI OI	MATION				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Subme	rsible Pump			
PURGE RATE		5 GPM	_	PURGE TIME		6		
CASING VOLUMES	REMOVEI	3	_	GALLONS		30		
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVE	_	None		
PID (ppm)		0.0	_					
ANALYSIS		Routine	_	DATE SHIPPED 10		28/2022		
			-					
		SAMPL	NG PARA	AMETERS				
	1 1	1)/	0.17.1	7.7.1				
m.l.l	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH COND	6.85 0.227	6.73	6.68	6.70	6.63 0.241			
T		0.232	0.238	0.238				
ORP	12.59 142	12.72 167	12.77 178	12.78 182	12.79 187			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	12.39	10.05	9.00	8.44	8.18			
			2.00	5	2110			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201							
WELL No./OWNER	₹ _	12B / Town of Southhampton							
SAMPLE I.D.	_			MW-12B					
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU			
DATE SAMPLED	_	10/27/2022	<u> </u>	TIME SAMPLED		8:55			
WELL USE	_	Monitoring							
STATIC WATER ELEVATION 81.70		81.70		FT. BELOW MEASU	IRING POINT	ТОС			
WELL DIAMETER 4		4	Inches						
TOTAL WELL DEPTH 96.9			_	FT. BELOW MEASU	IRING POINT	ТОС			
		SAMPI	ING INFO	RMATION					
		<u>9,</u>		XIII XIII X					
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump			
PURGE RATE		5 GPM	_	PURGE TIME		5.5			
CASING VOLUMES	REMOVE	D3		GALLONS	31				
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVED		None			
PID (ppm)		0.0							
ANALYSIS		Routine		DATE SHIPPED 10/28/2022		3/2022			
		SAMP	LING PARA	AMETERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling				
рН	6.54	6.55	6.63	6.65	6.66				
COND	0.172	0.253	0.03	0.267	0.262				
T	12.48	12.51	12.53	12.55	12.55				
ORP	195	196	187	182	181				
TURB	0.0	0.0	0.0	0.0	0.0				
D.O.	9.46	7.91	7.53	7.25	7.09				

CLIENT/PROJECT No.		Towr	or Southnampton / :	SHP2201	
WELL No./OWNER		LEA-	PRI / Town of Southh	nampton	
SAMPLE I.D.			LEA-PRI		
SAMPLING POINT	ТО	С	SAMPLED BY		MPP/JU
DATE SAMPLED	10/26/	2022	TIME SAMPLED		8:10
WELL USE	NA	<u> </u>			
STATIC WATER ELEVATION NA		NA	FT. BELOW MEAS	FT. BELOW MEASURING POINT N	
WELL DIAMETER NA					
TOTAL WELL DEPTH NA			FT. BELOW MEAS	URING POINT	NA
		SAMPLING INFO	ORMATION .		
PURGE METHOD NA			SAMPLE METHOD	В	ailer
PURGE RATE	NA		PURGE TIME		NA
CASING VOLUMES REMO	OVED	NA	GALLONS	1	NA
SAMPLE APPEARANCE			ODORS OBSERVE	:D	None
PID (ppm)	0.0				
ANALYSIS Routine	Parameters + A	rsenic	DATE SHIPPED	10/2	7/2022
		SAMPLING PAF	<u>RAMETERS</u>		
Initi	al 1 Vo	ol 2 Vol	J 3 Vol	Pre-sampling	
pH -	-	-	-	6.24	
COND -	-	-	-	0.895	
T -	-	-	-	17.82	
ORP -	-	-	-	101	
TURB -	-	-	-	0.0	
D.O			-	13.26	

MPP/JU	
8:30	
NA	
NA	
Bailer	
A	
A	
None	
/2022	

APPENDIX E GAS MONITORING SHEETS

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 1 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
1	10	2/28/2022	9:00	16.6	12	-
1B	58	2/28/2022	Lock	-	-	-
8	10	2/28/2022	Lock	-	-	-
9	10	2/28/2022	7:54	20.1	6	-
9B	125	2/28/2022	7:52	19.3	11	-
10	10	2/28/2022	8:09	20	7	-
10B	114	2/28/2022	8:07	20.9	0	-
11	10	2/28/2022	8:17	20.9	0	-
11B	102	2/28/2022	8:15	20.9	0	-
12	10	2/28/2022	8:21	19.4	11	-
12B	90	2/28/2022	8:19	20.9	0	-
13B	90	2/28/2022	8:23	20.9	0	-
14	10	2/28/2022	8:26	19.2	10	-
15	10	2/28/2022	8:29	20.9	6	-
15B	110	2/28/2022	8:27	20.9	6	-
16	10	2/28/2022	8:34	20.9	0	-
16B	80	2/28/2022	8:32	20.9	0	-
17	10	2/28/2022	8:37	20.9	0	-
18	10	2/28/2022	8:43	18.7	12	-

NAME: Ryan White F	M-3	_INITIALS:	RW	DATE:	2/28/2022	
						
WEATHER CONDITIONS:	Sunny 25 degrees	F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 2 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
18B	74	2/28/2022	8:41	20.9	0	-
19	10	2/28/2022	8:47	20.3	7	-
19B	72	2/28/2022	8:45	20.9	0	-
20	10	2/28/2022	N/R	-	-	-
20B	64	2/28/2022	N/R	-	-	-
21	10	2/28/2022	N/R	-	-	-
21B	60	2/28/2022	N/R	-	-	-
22	10	2/28/2022	N/R	-	-	-
22B	53	2/28/2022	N/R	-	-	-
23	10	2/28/2022	N/R	-	-	-
23B	50	2/28/2022	N/R	-	-	-
24	10	2/28/2022	N/R	-	-	-
24B	48	2/28/2022	N/R	-	-	-
25	10	2/28/2022	N/R	-	-	-
25B	43	2/28/2022	N/R	-	-	-
26	10	2/28/2022	N/R	-	-	-
26B	34	2/28/2022	N/R	-	-	-
27	10	2/28/2022	N/R	-	-	-
27B	37	2/28/2022	N/R	-	-	-
28	10	2/28/2022	9:26	20.5	1	-
28B	38	2/28/2022	9:24	20.4	2	-

NAME:	_Ryan White FM	l-3	_INITIALS:	RW	DATE:	_2 <u>/28/2022</u>	
	-						
WEATHER CO	ONDITIONS:	Sunny 25 degrees	F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 3 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
30	10	2/28/2022	Port Capped	-	-	-
30B	56	2/28/2022	Port Capped	-	-	-
31	10	2/28/2022	9:18	20.5	0	-
31B	42	2/28/2022	9:17	19.4	4	-
32	10	2/28/2022	9:14	19.8	8	-
32B	53	2/28/2022	9:12	20	8	-
33	10	2/28/2022	9:08	20.9	0	-
35	10	2/28/2022	7:39	19.6	10	-
36	10	2/28/2022	9:04	20.9	5	-
37	46	2/28/2022	Inaccessible	-	-	-
SH	N/A	2/28/2022	7:44	20.9	0	-

NAME:	Ryan White FM	-3	INITIALS:_	RW	DATE:	2/28/2022
	-	_				
WEATHER C	ONDITIONS:	Sunny 25 degrees I	F			

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 1 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
1	10	5/2/2022	14:41	18.7	0	-
1B	58	5/2/2022	Lock	-	-	-
8	10	5/2/2022	Lock	-	-	-
9	10	5/2/2022	13:32	20.9	0	-
9B	125	5/2/2022	13:34	20.9	0	-
10	10	5/2/2022	13:42	19.3	0	-
10B	114	5/2/2022	13:40	20.9	0	-
11	10	5/2/2022	13:48	14.5	0	-
11B	102	5/2/2022	13:46	20.9	0	-
12	10	5/2/2022	13:54	19.3	0	-
12B	90	5/2/2022	13:52	20.9	0	-
13B	90	5/2/2022	13:56	20.9	0	-
14	10	5/2/2022	13:59	18.6	0	-
15	10	5/2/2022	14:03	20.9	0	-
15B	110	5/2/2022	14:01	19.5	0	-
16	10	5/2/2022	14:15	15.4	0	-
16B	80	5/2/2022	14:13	20.9	0	-
17	10	5/2/2022	14:17	17.8	0	-
18	10	5/2/2022	14:22	18.5	0	-

NAME:Ryan White F	M-3	_INITIALS:	RW	DATE:	_2/28/2022	
-						
WEATHER CONDITIONS:	Sunny 25 degrees	s F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 2 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
18B	74	5/2/2022	14:21	20.9	0	-
19	10	5/2/2022	14:24	20.9	0	-
19B	72	5/2/2022	14:26	20.9	0	-
20	10	5/2/2022	14:30	20.9	0	-
20B	64	5/2/2022	14:28	20.9	0	-
21	10	5/2/2022	15:43	20.9	0	-
21B	60	5/2/2022	15:41	18.6	0	-
22	10	5/2/2022	15:38	20.9	0	-
22B	53	5/2/2022	15:36	19.5	0	-
23	10	5/2/2022	15:34	20.9	0	-
23B	50	5/2/2022	15:32	19.1	0	-
24	10	5/2/2022	15:17	20.9	0	-
24B	48	5/2/2022	15:25	20.9	0	-
25	10	5/2/2022	15:22	20.9	0	-
25B	43	5/2/2022	15:20	20.9	0	-
26	10	5/2/2022	15:13	20.9	0	-
26B	34	5/2/2022	15:11	20.9	0	-
27	10	5/2/2022	15:09	20.9	0	-
27B	37	5/2/2022	15:07	20.9	0	-
28	10	5/2/2022	15:05	20.9	0	-
28B	38	5/2/2022	15:03	20.9	0	-

NAME:	_Ryan White FM	l-3	_INITIALS:	RW	DATE:	_2 <u>/28/2022</u>	
	-						
WEATHER CO	ONDITIONS:	Sunny 25 degrees	F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 3 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
30	10	5/2/2022	Port Capped	-	-	-
30B	56	5/2/2022	Port Capped	-	-	-
31	10	5/2/2022	14:57	20.9	0	-
31B	42	5/2/2022	14:55	19.4	0	-
32	10	5/2/2022	14:52	20.9	0	-
32B	53	5/2/2022	14:50	20.9	0	-
33	10	5/2/2022	14:48	19.6	0	-
35	10	5/2/2022	13:15	20.9	0	-
36	10	5/2/2022	14:45	19.6	0	-
37	46	5/2/2022	Inaccessible	-	-	-
SH	N/A	5/2/2022	13:24	20.9	0	-

NAME:	_Ryan White FM	l-3	_INITIALS:	RW	DATE:	_2 <u>/28/2022</u>	
	-						
WEATHER CO	ONDITIONS:	Sunny 25 degrees	F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 1 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
1	10	9/7/2022	10:08	17	0	-
1B	58	9/7/2022	Lock	-	-	-
8	10	9/7/2022	Lock	-	-	-
9	10	9/7/2022	Inaccessible	-	-	-
9B	125	9/7/2022	Inaccessible	-	-	-
10	10	9/7/2022	9:03	18.5	0	-
10B	114	9/7/2022	9:01	14.2	0	-
11	10	9/7/2022	9:08	19.5	0	-
11B	102	9/7/2022	9:06	8.9	0	-
12	10	9/7/2022	9:11	16.5	0	-
12B	90	9/7/2022	9:09	10.4	0	-
13B	90	9/7/2022	9:14	19	0	-
14	10	9/7/2022	9:17	15.1	0	-
15	10	9/7/2022	9:24	19.1	0	-
15B	110	9/7/2022	9:22	18.8	0	-
16	10	9/7/2022	9:29	20.9	0	-
16B	80	9/7/2022	9:27	9.1	0	-
17	10	9/7/2022	9:31	20.9	0	-
18	10	9/7/2022	9:35	16.6	0	-

NAME: Ryan White F	<u>M-3</u> IN	ITIALS:RW_	DATE:	9/7/2022
WEATHER CONDITIONS:	Overcast 66 degrees	F		

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 2 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
18B	74	9/7/2022	9:33	16.4	0	-
19	10	9/7/2022	9:39	20.9	0	-
19B	72	9/7/2022	9:37	20.9	0	-
20	10	9/7/2022	9:43	20.9	0	-
20B	64	9/7/2022	9:41	20.9	0	-
21	10	9/7/2022	10:59	20.9	0	-
21B	60	9/7/2022	10:57	19	0	-
22	10	9/7/2022	10:55	20.9	0	-
22B	53	9/7/2022	10:53	20.9	0	-
23	10	9/7/2022	10:51	20.9	0	-
23B	50	9/7/2022	10:49	20.9	0	-
24	10	9/7/2022	10:47	20.9	0	-
24B	48	9/7/2022	10:45	20.9	0	-
25	10	9/7/2022	10:43	19.9	0	-
25B	43	9/7/2022	10:41	20.9	0	-
26	10	9/7/2022	10:39	20.2	0	-
26B	34	9/7/2022	10:37	20.9	0	-
27	10	9/7/2022	10:35	20.2	0	-
27B	37	9/7/2022	10:33	20.2	0	-
28	10	9/7/2022	10:28	20.1	0	-
28B	38	9/7/2022	10:26	20.1	0	-

NAME:	Ryan White FM	<u>-3</u> l	NITIALS:	RW	DATE:	9/7/2022
WEATHER CO	NDITIONS:	Overcast 66 degree	s F			

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 3 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
30	10	9/7/2022	Port Capped	-	-	-
30B	56	9/7/2022	Port Capped	-	-	-
31	10	9/7/2022	10:25	20.1	0	-
31B	42	9/7/2022	10:23	19	0	-
32	10	9/7/2022	10:21	19.9	0	-
32B	53	9/7/2022	10:19	20.9	0	-
33	10	9/7/2022	10:15	18.8	0	-
35	10	9/7/2022	8:50	19.5	0	-
36	10	9/7/2022	10:12	18.7	0	-
37	46	9/7/2022	Inaccessible	-	-	-
SH	N/A	9/7/2022	8:55	20.9	0	-

NAME:	Ryan White FM	l-3	INITIALS:	RW	DATE:	9/7/2022	_
WEATHER CO	ONDITIONS:	Overcast 66 degree	es F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 1 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
1	10	11/10/2022	8:36	14.3	0	-
1B	58	11/10/2022	Lock	-	-	-
8	10	11/10/2022	Lock	-	-	-
9	10	11/10/2022	Inaccessible	-	-	-
9B	125	11/10/2022	Inaccessible	-	-	-
10	10	11/10/2022	7:48	17.9	0	-
10B	114	11/10/2022	7:47	15	0	-
11	10	11/10/2022	7:54	20.9	0	-
11B	102	11/10/2022	7:53	10.4	0	-
12	10	11/10/2022	7:58	16.8	0	-
12B	90	11/10/2022	7:57	10.8	0	-
13B	90	11/10/2022	8:00	12.3	0	-
14	10	11/10/2022	8:03	17.3	0	-
15	10	11/10/2022	8:08	19.3	0	-
15B	110	11/10/2022	8:08	15.1	0	-
16	10	11/10/2022	8:12	18.6	0	-
16B	80	11/10/2022	8:11	10.8	0	-
17	10	11/10/2022	8:16	20.9	0	-
18	10	11/10/2022	8:19	15.2	0	-

NAME:	Ryan White F	M-3I	NITIALS:	<u>RW</u>	DATE:	11/10/2022	
WEATHER C	CONDITIONS:	Sunny 40 to 53 degr	rees F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 2 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
18B	74	11/10/2022	8:20	19.2	0	-
19	10	11/10/2022	8:24	19.8	0	-
19B	72	11/10/2022	8:23	20.9	0	-
20	10	11/10/2022	8:28	19.6	0	-
20B	64	11/10/2022	8:27	20.9	0	-
21	10	11/10/2022	9:39	20.1	0	-
21B	60	11/10/2022	9:38	20.9	0	-
22	10	11/10/2022	9:36	20	0	-
22B	53	11/10/2022	9:35	20.1	0	-
23	10	11/10/2022	9:32	20	0	-
23B	50	11/10/2022	9:31	20.1	0	-
24	10	11/10/2022	9:29	20	0	-
24B	48	11/10/2022	9:28	20.9	0	-
25	10	11/10/2022	9:26	19.6	0	-
25B	43	11/10/2022	9:25	20.9	0	-
26	10	11/10/2022	9:23	19.8	0	-
26B	34	11/10/2022	9:21	20.1	0	-
27	10	11/10/2022	9:19	20.1	0	-
27B	37	11/10/2022	9:18	19.8	0	-
28	10	11/10/2022	9:16	20 0		-
28B	38	11/10/2022	9:15	20.9	0	_

NAME:	Ryan White FM	<u>-3INIT</u>	ΓIALS:	<u>RW</u>	DATE:	11/10/2022
WEATHER C	CONDITIONS:	Sunny 40 to 53 degrees	s F			

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 3 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
30	10	11/10/2022	Port Capped	-	-	-
30B	56	11/10/2022	Port Capped			-
31	10	11/10/2022	9:13	20.2	0	-
31B	42	11/10/2022	9:12	16.7	0	-
32	10	11/10/2022	9:10	19.9	0	-
32B	53	11/10/2022	9:09	20.9	0	-
33	10	11/10/2022	9:07	17.9	0	-
35	10	11/10/2022	8:40	18.3	18.3 0	
36	10	11/10/2022	8:43	18.6	0	-
37	46	11/10/2022	Inaccessible	-	-	-
SH	N/A	11/10/2022	7:40	20.9	0	-

NAME:	Ryan White FM	- <u>3</u> l	INITIALS:	RW	DATE:	11/10/2022	
WEATHER C	ONDITIONS:	Sunny 40 to 53 dea	rees F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 1 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
1	10	12/29/2022	8:35	14.9	0	-
1B	58	12/29/2022	Lock	-	-	-
8	10	12/29/2022	Lock	-	-	-
9	10	12/29/2022	Inaccessible	-	-	-
9B	125	12/29/2022	Inaccessible	-	-	-
10	10	12/29/2022	7:48	19.2	0	-
10B	114	12/29/2022	7:47	20.9	0	-
11	10	12/29/2022	7:54	20.9	0	-
11B	102	12/29/2022	7:53	20.9	20.9 0	
12	10	12/29/2022	7:58	20.9	0	-
12B	90	12/29/2022	7:57	20.9	0	-
13B	90	12/29/2022	8:00	20.9	0	-
14	10	12/29/2022	8:02	18.1	0	-
15	10	12/29/2022	8:06	20.9	0	-
15B	110	12/29/2022	8:05	20.9	0	-
16	10	12/29/2022	8:14	20.9	0	-
16B	80	12/29/2022	8:13	20.9	0	-
17	10	12/29/2022	8:16	20.9	0	-
18	10	12/29/2022	8:20	17.4	0	-

NAME:	Ryan White Fl	M-3	_INITIALS:	RW	DATE:	12/29/2022	
WEATHER C	CONDITIONS:	Sunny 28 to 36 de	egrees F				

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 2 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
18B	74	12/29/2022	8:19	20.9	0	-
19	10	12/29/2022	8:24	20.9	0	-
19B	72	12/29/2022	8:23	20.9	0	-
20	10	12/29/2022	8:26	20.9	0	-
20B	64	12/29/2022	8:25	20.9	0	-
21	10	12/29/2022	9:39	20.9	0	-
21B	60	12/29/2022	9:38	20.9	0	-
22	10	12/29/2022	9:36	20.9	0	-
22B	53	12/29/2022	9:35	20.9	0	-
23	10	12/29/2022	9:32	20.9	0	-
23B	50	12/29/2022	9:31	20.9	0	-
24	10	12/29/2022	9:29	20.9	0	-
24B	48	12/29/2022	9:28	20.9	0	-
25	10	12/29/2022	9:26	19.8	0	-
25B	43	12/29/2022	9:25	20.9	0	-
26	10	12/29/2022	9:23	20.9	0	-
26B	34	12/29/2022	9:21	19.7	0	-
27	10	12/29/2022	9:19	20.9	0	-
27B	37	12/29/2022	9:18	20.9	0	-
28	10	12/29/2022	9:16	20.9	0	-
28B	38	12/29/2022	9:15	20.9	0	-

NAME:	Ryan White FM	<u>-3</u> INIT	IALS:	<u>RW</u>	_DATE:	12/29/2022
WEATHER C	ONDITIONS:	Sunny 28 to 36 degrees	s F			

RECORD OF LANDFILL GAS SAMPLING AND TEST RESULTS

Page 3 of 3

Well #	Depth	Date	Time	% Oxygen	% LEL	% VOL (methane)
30	10	12/29/2022	Port Capped	-	-	-
30B	56	12/29/2022	Port Capped	-	-	-
31	10	12/29/2022	9:12	20.9	0	-
31B	42	12/29/2022	9:11	19.8	0	-
32	10	12/29/2022	9:09	20.9	0	-
32B	53	12/29/2022	9:08	19.8	0	-
33	10	12/29/2022	9:05	18.6	0	-
35	10	12/29/2022	8:40	18.5 0		-
36	10	12/29/2022	8:46	19.8	0	-
37	46	12/29/2022	Inaccessible	-	-	-
SH	N/A	12/29/2022	7:40	20.9	0	-

NAME:	Ryan White FM	<u>.3INIT</u>	IALS:	<u>RW</u>	DATE:	<u> 12/29/2022</u>
WEATHER	CONDITIONS:	Sunny 28 to 36 degrees	s F			

APPENDIX F 6NYCRR PART 360-2: LANDFILLS

Search DEC

Home » Regulations and Enforcement » Regulations » Chapter IV- Quality Services » Subpart 360-2: Landfills - Page 2

Outdoor Activities

Animals, Plants, Aquatic Life

Chemical and Pollution Control

Energy and Climate

Lands and Waters

Education

Permits and Licenses

Public Involvement and News

Regulations and Enforcement

Regulations

Chapter IV- Quality Services

Subpart 360-2: Landfills -Page 2

Publications, Forms, Maps

About DEC

Subpart 360-2: Landfills - Page 2

(Statutory authority: Environmental Conservation Law, Sections 1-0101, 3-0301, 8-0113, 19-0301, 19-0306, 23-2305, 23-2307, 27-0101, 27-0106, 27-0107, 27-0109, 27-0305, 27-0703. 27-0704, 27-0705, 27-0911, 27-1317, 27-1515, 52-0107, 52-0505, and 70-0107)

[Effective Date December 31, 1988]

[Amendment Dates:

Revised Effective March 27, 1990; with promulgation of new Subpart 15: Grants for Comprehensive Solid Waste Management Planning.

Revised Effective May 28, 1991; With repeal of existing Subpart 9 and promulgation of new Subpart 9:

State Assistance for Municipal Landfill Closure Projects

Revised Effective January 25, 1992; With repeal of existing Subpart 10 and promulgation of new Subpart10: Regulated Medical Waste Storage, Transfer, and Disposal, and new Subpart 17 Regulated Medical Waste Treatment Facilities.

Revised/Enhanced Effective October 9, 1993; with adoption of amendments to existing Subparts 1

Revised Effective December 14, 1994; with adoption of amendments to existing Subpart 9: State Assistance for Municipal Landfill Closure Projects

Revised Effective January 14, 1995; With repeal of existing Subpart 14 and promulgation of new Subpart

Revised Effective November 26, 1996; With adoption of amendments to existing Subparts 1, 2, 3, 7, 11, 14, and 17

Revised Effective September 29, 1997; With adoption of amendments to existing Subpart 9 Revised Effective November 21, 1998; With adoption of amendments to existing Subpart 2 Revised Effective November 24, 1999; With adoption of amendments to existing Subparts 2, 3, 4, 5, 9, 11, 14, and 16]

[This is page 2 of 3 of this Subpart. A complete list of Subparts in this regulation appears in the Chapter 4 contents page.]

Contents:

Sec.

360-2.11 Hydrogeologic report. 360-2.12 Landfill siting.

§360-2.11 Hydrogeologic report.

The hydrogeologic report must define the landfill site geology and hydrology and relate these factors to regional and local hydrogeologic patterns; define the critical stratigraphic section for the site; provide an understanding of groundwater and surface water flow at the site sufficient to determine the suitability of the site for a landfill; establish an environmental monitoring system capable of readily detecting a contaminant release from the facility and determining whether the site is contaminating surface or subsurface waters; and form the basis for design of the facility and contingency plans relating to ground or surface water contamination or gas migration as required in section 360-2.10 of this Subpart. The scope and extent of investigations necessary in the hydrogeologic report will vary based upon the hydrogeologic complexity of the site and the ability of the site to restrict contaminant migration. Additionally, the hydrogeologic report must define the engineering properties of the site as necessary for

proper design and construction of any facilities proposed to be built at the site.

- (a) Requirements of the site investigation plan. The site investigation plan must clearly define all methods used in investigating the hydrogeologic conditions of the site, the scope of the intended investigation, and any specific hydrogeologic questions to be addressed. The applicant is strongly encouraged to develop a draft version of the plan for review by the department before starting the hydrogeologic investigation that begins to define the critical stratigraphic section, and to keep the department informed of the findings and subsequent investigative proposals as the study proceeds. The final version of the plan, included in the hydrogeologic report section of the permit application, must fully describe all methods of investigation used. Unless otherwise approved by the department, the plan must comply with the following:
 - (1) General requirements for all methods used. In obtaining the required hydrogeologic information, the applicant must employ current, standard, and generally accepted procedures. All work must be done in accordance with applicable American Society for Testing Materials standards or current and appropriate U.S. Environmental Protection Agency and department guidance documents. Alternative or innovative methodologies may be approved by the department; however, the department may initially require redundant technologies to prove the reliability of a new methodology. All procedures must be conducted under the supervision of a qualified groundwater scientist having experience in similar hydrogeologic investigations, in a manner that ensures accuracy of the data and precludes environmental degradation. The location of all installations, geophysical and geochemical surveys, and seismic lines for the proposed investigation must be shown on a map with the same scale and coordinate grid system used on the engineering plans (see section 360-1.9[e] of this Part).
 - (2) Literature search. A comprehensive search must be made for pertinent and reliable information concerning regional and site specific hydrogeologic conditions. The literature search must include, as available, records and reports of the New York State Department of Health, the New York State Department of Transportation, the U.S. Soil Conservation Service, and the New York State Geological Survey; basin planning reports, groundwater bulletins, water supply papers, professional papers and other open file reports of the U.S. Geological Survey; bulletins, circulars, map and chart series, memoirs and other publications of the New York State Geologic Survey; publications and bulletins of the Geological Society of America and other professional organizations; and publications of the U.S. Environmental Protection Agency and the department, college and university reports; and aerial photography or remotely sensed imagery.
 - (3) Surficial geologic mapping. The site must be mapped to determine the distribution of surficial deposits on and surrounding the site based upon information from the hydrogeologic investigation, field evaluations, and field confirmation of all interpretations made on the site itself.
- (4) Test pits. Test pits may be used to determine shallow stratigraphy. The test pits must not create a health or safety hazard and must be logged by a geologist or geotechnical engineer with experience in similar hydrogeologic investigations. Logs must include: elevations; surface features before excavation; depth of the test pit and of all relevant horizons or features; moisture content of units; standard soil classifications (including the Unified Soil Classification System), stratigraphy, soil structure, bedrock lithology, brittle, or

secondary structures in soil and bedrock; and a sketch showing these features for each test pit constructed. Test pits must be promptly backfilled and compacted with excavated materials. The department may require that, if a test pit is dug, undisturbed soil samples be taken and tested in accordance with subparagraph (9)(ii) of this subdivision.

- (5) Water well surveys. A survey of public and private water wells within one mile downgradient and one-quarter mile upgradient of the proposed site must be conducted. Surveys must obtain, where available, the location of wells, which must be shown on a map with their approximate elevation and depth, name of owner, age and usage of the well; stratigraphic unit screened; well construction; static water levels; well yield; perceived water quality; and any other relevant data which can be obtained.
- (6) Geophysical and geochemical surveys. The department may require the use of geophysical and geochemical methods, such as electromagnetic, resistivity, seismic surveys, remote sensing surveys, downhole geophysics, isotope geochemistry, and soil gas analysis, where necessary to justify the interpretations and conclusions of the site investigation report and to provide information between boreholes, and aid in the siting of wells.
- (7) Tracer studies. The department may require the use of tracer studies to aid in understanding groundwater flow or to otherwise assist in devising an effective environmental monitoring plan.
 - (i) Where sites overlie weathered limestone or dolostone bedrock or where karst environments cannot be avoided, the department may require tracer studies before finalizing the bedrock monitoring plan. Tracer studies must identify, in specific detail, areas of groundwater flow from the facility attributed to secondary permeability, recharge and discharge areas on and surrounding the site, storage of groundwater, and variations of water quality seasonally and during high and low flow periods.
 - (ii) Where a site is otherwise unmonitorable because of existing contamination, the department may allow the use of tracers to aid in monitoring.
- (8) Monitoring wells and piezometers.
 - (i) Construction in general.
 - (a) Monitoring wells and piezometers must define the three-dimensional flow system within the critical stratigraphic section to justify the interpretations and conclusions of the hydrogeologic report.
 - (b) Construction techniques must be appropriate to ensure that groundwater samples and head level measurements characterize discrete stratigraphic intervals; and to prevent leakage of groundwater or contaminants along the well annulus. If leakage is detected, it must be corrected or the well abandoned.
 - (c) Monitoring wells and piezometers may be placed individually or as well clusters.
 Well clusters consist of individual wells at varying depths in close proximity, each installed in its own boring. Multiple wells placed into one large borehole are prohibited unless prior department approval in writing is obtained.
 - (d) Soil borings, soil samples, and rock cores must characterize each stratigraphic unit within the critical stratigraphic section to justify the interpretations and conclusions

of the hydrogeologic report.

- (e) Every precaution must be taken during drilling and construction of monitoring wells to avoid introducing contaminants into a borehole. Only potable water of known chemistry may be used in drilling monitoring wells or piezometers unless otherwise approved by the department.
- (f) All equipment placed into the boring must be properly decontaminated before use at the site and between boreholes. The initial cleaning at the site must ensure that no contaminants from the last site drilled will be introduced into the borings. All equipment must be steam cleaned between holes. Where possible, upgradient wells should be drilled first.
- (g) Use of drilling muds is to be avoided unless prior department approval in writing is granted. If drilling muds are used, the material used must avoid the introduction of stray contaminants. Drilling muds must not be used within 10 feet of the screened interval.
- (h) Air systems and drilling lubricants must not introduce contaminants into the borehole.
- (i) Well borings must have an inside diameter at least two inches larger than the outside diameter of the casing and screen to ensure that a tremie may be properly used.
- (j) Wells and borings must not be placed through or into waste unless prior department approval has been granted and sufficient safety precautions are employed. If waste is encountered unexpectedly during drilling, drilling of that boring must cease, the hole properly abandoned with cuttings properly disposed of and the department notified.
- (ii) Construction of monitoring wells and piezometers.
 - (a) Well screens and risers must be constructed of materials selected to last for the required monitoring period of the facility without contributing contaminants to, or removing contaminants from, the groundwater. All materials used are subject to department approval. Joints, caps, and end plugs are to be secured by welds, threads with teflon tape, or force fittings. Solvents and glues or other adhesives are prohibited. Caps must be vented to allow for proper pressure equalization. The inside diameter of each well screen or riser pipe must be nominally two inches in diameter and must allow for proper development, survey and sampling equipment to be used within the screen and casing. A permanent mark should be made at the top of the riser pipe to provide a datum for subsequent water level measurements.
 - (b) Unless otherwise approved by the department, well screens are required for all wells and piezometers. All screens used must be factory constructed non-solvent welded/bonded continuous slot wire wrap screens of a material appropriate for long-term monitoring without contributing contaminants to or removing contaminants from the groundwater. The slot size of the screen must be compatible with the sand pack. Water table variations, site stratigraphy, expected contaminant behavior, and groundwater flow must be considered in determining the screen length, materials, and position. Where existing contamination is suspected or known, down hole geophysical

techniques may be required by the department to aid in selecting well screen elevations.

- (c) The sand pack surrounding the well screen must consist of clean, inert, siliceous material. Grain size must be based upon a representative sieve analysis of the zone to be screened. The sand pack must minimize the amount of fine materials entering the well and must not inhibit water inflow to the well. The sand pack must be placed in the annular space around the well screen and extend two feet or 20 percent of the screen length (whichever is greater) above the top, and six inches below the bottom, of the screen. The sand pack material must be placed using the tremie method or another method approved by the department and must avoid bridging. The sand pack must be checked for proper placement. A finer grained sand pack material (100 percent passing the No. 30 sieve and less than two percent passing the No. 200 sieve) six inches thick must be placed at the top of the sand pack between the sand and the bentonite seal.
- (d) Bentonite must be placed above the sand pack using the tremie or other approved method to form a seal at least three feet thick. A 6 to 12 inch fine grained sand pack must be placed above the bentonite seal to minimize grout infiltration. If pellets or chips are used, sufficient time should be allotted to allow for full hydration of the bentonite prior to emplacement of overlying materials.
- (e) Grout of cement/bentonite, bentonite alone, or other suitable, low permeability material, if approved by the department, must completely fill the remaining annular space to the surface seal. The grout mixture must set up without being diluted by formation water, and must displace water in the annular space to ensure a continuous seal. The grout mixture must be placed under pressure using a tremie or other method approved by the department. Auger flights or casing must be left in the hole before grouting to prevent caving. The cement used must be appropriate for the groundwater chemistry of the site.
- (f) A protective steel casing, at least two inches larger in diameter than the well casing, must be placed over the well casing or riser pipe and secured in a surface well seal to adequately protect the well casing. A distinctive, readily visible marker must be permanently affixed to the protective casing or near the well to identify the well number and ensure visibility even in periods of high snow cover. A drain hole must be drilled at the base of the protective casing. A vent hole must be located near the top of the protective casing to prevent explosive gas build up and to allow water levels to respond naturally to barometric pressure changes. The annulus of the protective casing should be filled with gravel. A locking cap must be installed with one to two inches clearance between the top of the well cap and the bottom of the locking cap when in the locked position and a weather resistant padlock must be placed on the protective casing and duplicate keys provided to the department.
- (g) A concrete surface seal designed to last throughout the planned life of the monitoring well must be constructed. The surface seal must extend below the frost depth to prevent potential well damage. The top of the seal must be constructed by pouring the concrete into a pre-built form with a minimum of three foot long sides. The seal must be designed to prevent surface runoff from ponding and entering the well casing. In areas where traffic may cause damage to the well, bumperguards or other

suitable protection for the well is required. Any damaged or deteriorated surface seals must be reported to the department and repaired or replaced in an appropriate manner. The department may allow alternate designs when documentation is presented which demonstrates the intent of the regulations.

- (h) Where under the circumstances of a particular situation the department believes that the methods identified in this section are inadequate, it may require that additional measures be taken to prevent migration of contaminants along the annulus of the well or to protect the well.
- (i) Alternative construction methods for piezometers and wells which are not to be part of the environmental monitoring plan may be approved by the department if those methods meet the requirements set forth in clause (i)(b) of this paragraph.
- (iii) Well and piezometer development. All wells and piezometers must be developed as soon as possible after installation, but not before the well seal and grout have set. Water must not be introduced into the well for development, except with approval of the department. Any contaminated water withdrawn during development must be properly managed. Development must not disturb the strata above the water-bearing zone or damage the well. The entire saturated screened interval must be developed. The department may require multiple attempts at well development to increase the likelihood that sediment free water can be obtained. Development methods should be appropriate for conditions/stratigraphy encountered. Placement of screens in a fine grained strata may require gentle development techniques to avoid pulling sediment into the well. The selected method must minimize to the greatest extent possible the amount of turbidity in the well.
- (iv) Survey. The locations and elevations of all existing and abandoned test pits, soil borings, monitoring wells, and piezometers must be surveyed to obtain their precise location and plotted on a map in the hydrogeologic report. The vertical location of the ground surface and the mark made on the top of the monitoring well and piezometer risers must be accurately measured to the nearest 100th foot.
- (v) Replacement of wells. All wells must be properly protected to ensure their integrity throughout the active and post-closure period of the facility. If, in the opinion of the department, water quality or other data show that the integrity of a well is lost, the well must be replaced and sampled within a time period acceptable to the department (but not to exceed 120 days) after written notification by the department. The initial sample for the replacement well must be analyzed for baseline parameters in the Water Quality Analysis Tables in this section.
- (vi) Abandonment of wells. All soil borings or rock cores which are not completed as monitoring wells or piezometers and other abandoned wells must be fully sealed in a manner appropriate for the geologic conditions to prevent contaminant migration through the borehole. Generally, such sealing must include:
 - (a) Overboring or removal of the casing to the greatest extent possible, followed by perforation of any casing left in place. All casing and well installations in the upper five feet of the boring, or within five feet of the proposed level of excavation, must be removed.
 - (b) Sealing by pressure injection with cement bentonite grout, using a tremie pipe or

other method acceptable to the department, must extend the entire length of the boring to five feet below the ground surface or the proposed excavation level. The screened interval of the borehole must be sealed separately and tested to ensure its adequacy before sealing the remainder of the borehole. Where the surrounding geologic deposits are highly permeable, alternate methods of sealing may be required to prevent the migration of the grout into the surrounding geologic formation. The upper five feet must be backfilled with appropriate native materials compacted to avoid settlement.

(c) The sealed site must be restored to a safe condition. The site must be inspected periodically after sealing for settlement or other conditions which require remediation.

(9) Geologic sampling.

- (i) All borings and rock cores must be sampled continuously to the base of the critical stratigraphic section. For well clusters, continuous samples must be collected from the surface to the base of the deepest well. Other wells in the cluster must be sampled at all stratigraphic changes, and at the screened interval. At sites where the geology is not of a complex nature the department may allow a reduction in the number of wells requiring continuous sampling. Soil borings must be sampled using the split spoon method and bedrock or boulders must be sampled by coring with standard size NX or larger diameter core bits. Samples must be retained in labeled glass jars or wooden core boxes. All samples must be securely stored and accessible throughout the life of the facility. The location of the storage area must be designated in the operation and maintenance plan for the facility.
- (ii) A representative number of undisturbed samples must be collected from test pits and soil borings using appropriate methods to identify the soil characteristics of all cohesive soil units. Such samples must be analyzed in the laboratory for: Atterberg limits; gradation curves by sieve or hydrometer analysis or both, as appropriate; undisturbed permeabilities; and visual descriptions of undisturbed soil structures and lithologies.

(10) Logs.

- (i) Complete and accurate drilling logs must be provided to the department for all soil borings. These logs must provide detailed soil classification according to the Unified Soil Classification System (USCS). The USCS visual method must be used on all samples supplemented by the USCS laboratory tests on a representative number of samples from each stratigraphic unit and each screened interval. Logs also must contain a description of matrix and clasts, mineralogy, roundness, color, appearance, odor, and behavior of materials using an appropriate descriptive system. A clear description of the system used must be included with the logs. When undisturbed samples have been taken, the interval tested and the test results must be clearly shown on the logs. All well logs must contain drilling information as observed in the field including: moisture content, location of the water table during drilling, water loss during drilling; depth to significant changes in material and rock; sample recovery measured in tenths of a foot; hammer blow counts, and other pertinent comments; the method of drilling, anomalous features such as gas in the well, and the use and description of drilling fluids or additives, including the source, and calculated and actual amounts of materials used.
- (ii) Rock core logs must describe the lithology, mineralogy, degree of cementation, color, grain size, and any other physical characteristics of the rock; percent recovery and the

rock quality designation (RQD); other primary and secondary features, and contain all drilling observations and appropriate details required for soil boring logs. A clear photograph of all labeled cores must also be taken and submitted with the logs.

- (iii) Well completion logs must contain a diagram of the completed well, all pertinent details on well construction, a description of the materials used, and elevations of all well features.
- (iv) Copies of original field logs must be submitted to the department upon request.
- (11) In situ hydraulic conductivity testing. In situ hydraulic conductivity testing must be done in all monitoring wells and piezometers, unless other methods that are approved by the department, are used. The testing method used must not introduce contaminants into the well. If contamination is known or suspected to exist, all water removed must be properly managed. Hydraulic conductivities may be determined using pump tests, slug tests, packer tests, tracer studies, isotopic geochemistry, thermal detection, or other suitable methods.
- (b) Site investigation report. The site investigation report must include a final version of the site investigation plan, raw field data, analytical calculations, maps, flow nets, cross-sections, interpretations (and alternative interpretations where applicable), and conclusions. All maps, drawings and diagrams must have a minimum scale of 1:24,000, unless otherwise acceptable to the department. Such report must comprehensively describe:
 - (1) Regional geology. The discussion of regional geology must demonstrate how the regional geology relates to the formation of on-site geologic materials, the potential for and effects of off-site contaminant migration, and the location of nearby sensitive environments. This discussion must include available and appropriate information to describe:
 - (i) bedrock stratigraphy and structural features (represented on maps and columnar diagrams) constructed from field exposures and the geologic literature, describing formation and member names, geologic ages, rock types, thicknesses, the units' mineralogic and geochemical compositions and variabilities, rock fabrics, porosities and bulk permeabilities, including karst development, structural geology, including orientation and density or spacing of folds, faults, joints, and other features;
 - (ii) glacial geology, including a discussion of the formation, timing, stages, and distribution of glacial deposits, advances and retreats, hydrologic characteristics of the surficial deposits, such as kames, eskers, outwash moraines, etc.;
 - (iii) major topographic features, their origin and influence upon drainage basin characteristics; and
 - (iv) surface water and groundwater hydrologic features, including surface drainage patterns, recharge and discharge areas, wetlands and other sensitive environments, inferred regional groundwater flow directions, aquifers, aquitards and aquicludes, known primary water supply and principal aquifers, public water supply wells, and private water supply wells identified in the water supply well survey; any known peculiarities in surface water and groundwater geochemistry, and any other relevant features.
 - (2) Site-specific geology. The site investigation report must define site hydrogeologic conditions in three dimensions and their relationship to the proposed landfill. The report must define site geology, surface water and groundwater flow, and must relate site-specific conditions to the regional geology. The report must describe the potential impact the landfill

may have on surface and groundwater resources and other receptors, including future hydrogeologic conditions, which may occur with site development, and it must describe the hydrogeologic conditions in sufficient detail to construct a comprehensive understanding of groundwater flow, which can be quantified and verified through hydrologic, geochemical, and geophysical measurements. The report must provide sufficient data to specify the location and sampling frequency for environmental monitoring points; form the basis for contingency plans regarding groundwater and surface water contamination and explosive gas migration; and support the engineering design of the landfill. The site- specific hydrogeologic evaluation must specifically discuss all units in the critical stratigraphic section. Such evaluation must include maps, cross- sections, other graphical representations, and a detailed written analysis of the following:

- (i) all hydrogeologic units such as aquifers, aquitards and aquicludes, and how they relate to surface water and groundwater flow. This must include all hydrogeologic data collected during the site investigation and explain and evaluate the hydrologic and engineering properties of the site and each specific unit; and
- (ii) local groundwater recharge and discharge areas, high and low groundwater tables and potentiometric surfaces for each hydrologic unit, vertical and horizontal hydraulic gradients, groundwater flow directions and velocities, groundwater boundary conditions, surface water and groundwater interactions, and an evaluation of existing water quality.
- (c) Environmental monitoring plan. The environmental monitoring plan must describe all proposed on-site and off-site monitoring, including the location of all environmental, facility, and other monitoring points, sampling schedule, analyses to be performed, statistical methods, and reporting requirements. The plan must also include a schedule for construction of the groundwater monitoring wells based on site-specific hydrogeology and the sequencing of construction of landfill cells; a schedule for initiation of the existing water quality and operational water quality monitoring programs and a contingency water quality monitoring plan which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the plan must comply with the following:
 - (1) Groundwater sampling. Groundwater monitoring wells must be capable of detecting landfill-derived groundwater contamination within the critical stratigraphic section.
 - (i) Horizontal well spacing.
 - (a) Horizontal spacing of wells must be based upon site-specific conditions including groundwater flow rates, estimated longitudinal and transverse dispersivity rates, proximity to or presence of sensitive environments and groundwater users, the nature of contaminants disposed of at the site, and the proposed design and size of the landfill.
 - (b) In the first water-bearing unit of the critical stratigraphic section, monitoring well spacing must not exceed 500 feet along the downgradient perimeter of the facility. In sensitive environments or geologically complex environments, closer well spacing may be required. Upgradient or crossgradient well spacing must not exceed 1,500 feet and may be less in sensitive environments, or where up-gradient sources of contamination are known to exist. Subsequent water-bearing units must be monitored, as required by the department, based upon the potential for contaminant migration to that unit. Well spacing must provide at least one upgradient and three downgradient

monitoring wells or well clusters for each water- bearing unit of the critical stratigraphic section.

- (c) Sensitive environments or areas where public health concerns exist may be subject to more intensive groundwater monitoring requirements. In addition, the department may require the applicant to develop acceptable computer models of contaminant plume behavior from hypothetical leaks in the liner system, if necessary to determine optimum monitoring well spacing.
- (d) In areas where waterflow is irregular and unpredictable and where otherwise determined to be appropriate, the applicant may be required to conduct spring, sinkhole, or other sampling to enhance the monitoring.
- (e) All downgradient monitoring wells must be located as close as practical to but not more than 50 feet from the waste boundary, unless otherwise approved by the department due to site specific conditions, to ensure early detection of any contaminant plume.
- (f) All upgradient and crossgradient monitoring wells must be placed far enough from the waste boundary to avoid any facility derived impacts.
- (ii) Well screen placement.
 - (a) Well screens must be located to readily detect groundwater contamination within the saturated thickness of the first water-bearing unit, and must be installed at a representative number of points at each subsequent permeable unit throughout the critical stratigraphic section. Well screens must not act as conduits through impermeable layers. Wells monitoring the water table should be screened to ensure that the water table can be sampled at all times.
 - (b) Upgradient and crossgradient wells must monitor the same hydrologic units whenever possible within the critical stratigraphic section as the downgradient monitoring wells.
- (iii) Screen length. Well screens must not exceed 20 feet in length, unless otherwise approved by the department. The applicant must provide technical justification for the actual screen length chosen.
- (iv) Geophysical and geochemical techniques. Where existing contamination is suspected, the department may require the use of geophysical and geochemical techniques to locate contaminated zones before selecting well locations and screen depths for environmental monitoring points.
- (v) If a groundwater suppression system exists at a facility, the department may require representative sampling points to be designated as environmental monitoring points. Existing water quality monitoring at these points may not be required.
- (2) Surface water and sediment sampling. The environmental monitoring plan must designate monitoring points, for use in operational or contingency monitoring or both of the facility pursuant to subparagraphs (5)(ii) and (iii) of this subdivision, for all surface water bodies that may be significantly impacted by a contaminant release from the facility. Sampling activities at these monitoring points shall be for surface water and sediment. The department may require the sampling and analysis of surface water and sediment

sampling points during a site investigation to understand site hydrogeology or existing patterns of contamination. In bodies of standing water, these points must be located at the closest point to the facility and must be included in existing water quality monitoring. In flowing water bodies, these points must include sufficient upgradient and downgradient locations to allow the facility's impact to be measured. These points, however, do not require existing water quality analysis. The detailed analysis requirements of these points must be specified in the contingency monitoring plan and the detailed sampling requirements must be specified in the site analytical plan.

- (3) Leachate sampling. The environmental monitoring plan must specify the location of facility leachate sampling points and parameters to be analyzed so as to obtain a representative characterization of the leachate composition in the primary leachate collection and removal system and to determine the nature of liquids detected in the secondary leachate collection and removal system. The following must be included:
 - (i) Sampling points. All sampling points should be located to minimize pumping of leachate before sampling. Sampling points in the secondary leachate collection system should be adequate to sample liquids beneath each discrete leachate collection area or landfill cell.
 - (ii) Analysis required. Except as allowed by the department when a specific waste stream and its leachate are already well defined, analysis of the leachate in the primary and secondary leachate collection and removal systems must be performed semi-annually for expanded parameters. The department may require the use of specific analytical methods in these analyses when minimum detection levels are determined inadequate to fully characterize leachate.
- (4) Water supply well sampling. If sampling and analysis of water supply wells is to be performed, the analytical requirements must be in accordance with those specified in the site analytical plan. Sampling frequency and analysis shall be at least quarterly for baseline parameters. Sampling methods must be consistently applied each time a well is sampled and before sampling any residential well, the New York State Department of Health and/or local health department must be notified.
- (5) Water quality monitoring program. A water quality monitoring program must be implemented for all environmental monitoring points specified in the environmental monitoring plan. This program must be tailored to the site to establish existing water quality for the site prior to landfilling, operational water quality during operation of the site and the post-closure period, and contingency water quality, if contamination is detected at the site. These programs must meet the following minimum requirements:
 - (i) Existing water quality. The applicant must establish an existing water quality database to characterize the site geochemistry.
 - (a) The permit application must contain a preliminary evaluation of water quality, consisting of the first two rounds of sampling and analyses for a representative number of monitoring points at both upgradient and downgradient locations, in each water bearing hydrogeologic unit within the critical stratigraphic section, with a minimum of two samples taken from each well during the first round of sampling, unless otherwise approved by the department. The first round of these samples must be analyzed for the expanded parameters. The second round must be analyzed for the

baseline parameters, except as specified in clause (d) of this subparagraph. These samples should be taken in early spring and late summer, or equivalent, to approximate periods of high and low groundwater flow. The department may require sampling and analysis of additional monitoring points as necessary to define site hydrogeology and geochemistry in support of the interpretations and conclusions of the site investigation report.

- (b) Before deposition of waste in the facility, all environmental monitoring points not previously sampled must be sampled and analyzed for four rounds of quarterly sampling. The first of these sampling rounds must be analyzed for expanded parameters and the other three rounds must be analyzed for baseline parameters. Those environmental monitoring points which were sampled in accordance with clause (a) of this subparagraph must be sampled and analyzed for baseline parameters for two rounds of samples. The samples shall be obtained at different times of the year than when the sampling required by clause (a) of this subparagraph was performed. If elevated contaminant levels were detected during the preliminary evaluation of water quality, then the sampling required in this clause shall be as specified in clause (d) of this subparagraph. The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed. The sampling of these phased monitoring points shall commence at least one year prior to solid waste deposition and shall be in conformance with the requirements of clause (b) of this subparagraph or as approved by the department. As these phased monitoring points are added to the monitoring program, the procedures contained in clause (c) of this subparagraph shall be followed to reestablish existing water quality at the facility and recompute the standard deviation.
- (c) Prior to facility operation, existing water quality must be established for each hydrogeologic flow regime being monitored at the site. Existing water quality for each hydrogeologic flow regime shall be the arithmetic mean, per parameter, of the analytical results of the samples obtained from those environmental monitoring points within that flow regime prior to deposition of solid waste; provided there is no reason to believe that the distribution of the analytical results was non-uniform. The standard deviation of the analytical results for each parameter within each flow regime shall also be established at that time. Should the department determine that the sampling results are non-representative of existing water quality or do not constitute a normal, uniform distribution, then the department shall specify such additional sampling and analyses as it deems necessary to confidently establish existing water quality at the site. For those facilities where solid waste has been placed previously in other than a contiguous landfill cell, the existing water quality may be based on only some of the environmental monitoring points, subject to the approval of the department.
- (d) If elevated contaminant levels are detected and additional detailed information is needed to establish a complete existing water quality database, the department may require one or more rounds of baseline or expanded parameter sampling and analysis in any sampling point, using the procedure specified for contingency monitoring required in subparagraph (iii) of this paragraph when contamination is detected.
- (e) Additional sampling and analysis beyond the site boundaries may be required to determine the nature and extent of contamination and the source, if possible. This evaluation may include construction, sampling, and analysis of any additional

monitoring wells, and surface water sampling points required by the department. Based upon the results of this additional data, the department may require analysis for any and all expanded parameters, to be included in quarterly or annual operational water quality sampling.

- (ii) Operational water quality. The environmental monitoring plan must include a plan for operational water quality monitoring to be conducted during the operation, closure, and post-closure periods of the facility. The operational water quality monitoring plan must be able to distinguish landfill-derived contamination from the existing water quality at the site. The plan must also describe trigger mechanisms for initiating contingency water quality monitoring. The department may require modification of this plan as additional sampling data becomes available during the life of the facility. The minimum requirements for operational water quality monitoring are:
 - (a) Except as provided below, in each calendar year sampling and analysis must be performed at least quarterly, once for baseline parameters and three times for routine parameters. The baseline sampling event must be rotated quarterly; one round of baseline parameters to be analyzed in each calendar year will be sufficient unless a pattern of contamination exists which may require the department to change the sampling frequency. For double lined landfills, the department may allow omission of the winter sampling once a complete understanding of water chemistry has been obtained, provided that a demonstration of acceptable liner performance is made to the department. The department will require sampling and analysis on a quarterly basis, alternately analyzing for routine and baseline parameters, at all landfills which do not have a liner system constructed in accordance with section 360-2.13(f) of this Subpart.
 - (b) The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed or as post-closure monitoring is completed as specified in section 360-2.15(i) of this Subpart. With department approval, sampling of specific environmental monitoring points which are not potentially impacted by the portions of the landfill already constructed, may be deferred, provided that scheduled sampling commences at least one year before landfill construction in the vicinity. The department may withdraw this approval at any time, based upon a change in facility design, operation, or performance.
 - (c) Operational water quality analysis must include at least those parameters specified in the Water Quality Analysis Tables for routine and baseline parameters. The department may modify these tables before granting a permit for the facility, or during the duration of the permit, if leachate composition so warrants. If subsequent leachate compositions vary or if the waste disposed of at the facility changes, the department may adjust analytical requirements accordingly.
 - (d) Within 90 days of completing the quarterly field sampling activities, the facility owner/operator must determine whether or not there is a significant increase from existing water quality levels established for each parameter pursuant to clause (c)(5)(i) (c) of this section.
- (1) In determining whether a significant increase has occurred, the facility owner/operator must compare the groundwater quality of each parameter at each monitoring well to the existing water quality value of that parameter.

- (2) A significant increase has occurred if:
 - (i) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section, by three standard deviations; or
 - (ii) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section and exceeds the water quality standards for that parameter as specified in Part 701, 702, or 703 of this Title. (e) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the routine parameters, excluding the field parameters, at any monitoring well, the facility owner/operator:
- (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and
- (2) must sample and analyze all monitoring points for the baseline parameters during the next quarterly sampling event. Subsequent sampling and analysis for baseline parameters must be conducted at least semiannually until the significant increase is determined not to be landfill-derived or the department determines such monitoring is not needed to protect public health or the environment.
- (f) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the baseline parameters, excluding the field parameters, at any monitoring well, the facility owner/operator:
 - (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and
 - (2) must establish a contingency monitoring program meeting the requirements of subparagraph (iii) of this paragraph within 90 days except as provided for in subclause (3) of this clause.
 - (3) The facility owner/operator may attempt to demonstrate to the department that a source other than the facility caused the contamination or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. A report documenting this demonstration must be submitted to the department for approval. If a successful demonstration is made, documented and approved by the department, the facility owner/operator may continue operational water quality monitoring as specified in this subparagraph. If, after 90 days, a successful demonstration is not made, the owner/operator must initiate a contingency monitoring program as required in subparagraph (iii) of this paragraph.
 - (iii) Contingency water quality. The environmental monitoring plan must include a plan for contingency water quality monitoring, as described in this subparagraph, which must be conducted when a significant increase over existing water quality has been detected pursuant to clause (c)(5)(ii)(d) of this section for one or more of the baseline parameters listed in the Water Quality Analysis Tables. All contingency water quality monitoring plans are subject to department approval, may be modified at any time by the department

when necessary to protect public health and the environment, and must include the following:

- (a) Within 90 days of triggering a contingency water quality monitoring program, the facility owner/operator must sample and analyze the groundwater for the expanded parameters listed in the Water Quality Analysis Tables. A minimum of one sample from each monitoring well (upgradient and downgradient) must be collected and analyzed during this sampling. If any constituents are detected in the downgradient wells as a result of the expanded parameter analysis, a minimum of two independent samples from each well (upgradient and downgradient) must be collected within 30 days of obtaining the results of the expanded parameter analysis and analyzed for the detected constituents. These samples must be collected within two weeks of each other and then compared to the existing groundwater quality values established pursuant to subparagraph (c)(5)(i) of this section. If an increase in the existing water quality values in the upgradient wells is indicated by this comparison, the existing water quality values for these parameters shall be revised to be the arithmetic mean of the results of each parameter for which analyses were performed in the upgradient wells within each hydrogeologic flow regime. The department may delete any of the expanded parameters if it can be shown that the removed parameters are not reasonably expected to be in, or derived from, the waste contained in the landfill based on the leachate sampling being performed pursuant to paragraph (c)(3) of this section.
- (b) After obtaining the results from the initial or subsequent sampling required in clause(a) of this subparagraph, the facility owner/operator must:
- (1) within 14 days, notify the department to identify the expanded parameters that have been detected;
- (2) within 90 days, and on a quarterly basis thereafter, resample all wells, conduct analyses for all baseline parameters, and for those expanded parameters that are detected in response to clause (a) of this subparagraph. In addition, the facility owner/operator shall sample and conduct analyses annually on all wells for the expanded parameters. At least one sample from each upgradient and downgradient well must be collected and analyzed during these sampling events. The department may reduce the requirements of this subclause based on site specific conditions; and
- (3) establish groundwater protection standards for all parameters detected pursuant to clause (a) of this subparagraph. The groundwater protection standards must be established in accordance with clause (f) of this subparagraph.
- (c) If the concentrations of any of the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department of this finding and, if approved by the department, may remove that parameter from the contingency water quality monitoring program. If the concentrations of all the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department and, if approved by the department, may return to operational water quality monitoring.
- (d) If the concentrations of any expanded parameters are above existing water quality values, but all concentrations are below the groundwater protection standard

established under clause (f) of this subparagraph, the owner/operator must continue contingency monitoring in accordance with this subparagraph.

- (e) If one or more expanded parameters are detected at significant levels above the groundwater protection standard established under clause (f) of this subparagraph in any sampling event, the facility owner/operator must, within 14 days of this finding, notify the department to identify the expanded parameters that have exceeded the groundwater protection standard, and notify all appropriate local government officials identified in the Contingency Plan, required pursuant to section 360-2.10 of this Subpart, that the notice has been sent to the department. The owner/operator must also:
- (1) characterize the nature and extent of the release by installing additional monitoring wells as necessary:
- (2) install at least one additional monitoring well at the facility boundary in the direction of contaminant migration, and sample this well in accordance with subparagraph (c) (5)(i) of this section;
- (3) notify all persons who own the land or reside on the land that is directly over any part of the plume of contamination if contaminants have migrated off-site as indicated by sampling of wells in accordance with subclause (1) of this clause; and
- (4) initiate an assessment of corrective measures as required by section 360-2.20 of this Subpart within 90 days; or
- (5) demonstrate that a source other than the landfill caused the contamination, or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. This report must be submitted for approval by the department. If a successful demonstration is made, the facility owner/operator must continue monitoring in accordance with the contingency water quality monitoring program pursuant to subparagraph (c)(3)(iii) of this section, and may return to operational monitoring if the expanded parameters are at or below existing water quality as specified in subparagraph (c)(5)(i) of this section. Unless and until a successful demonstration is made, the owner/operator must comply with this clause, including initiating an assessment of corrective measures.
- (f) The owner/operator must establish a groundwater protection standard for each expanded parameter detected in the groundwater. The groundwater protection standard shall be:
- (1) for parameters for which a maximum contaminant level (MCL) has been established in section 1412 of the Safe Drinking Water Act under 40 CFR part 141 (see section 360-1.3 of this Part) or for which standard has been established pursuant to Part 701, 702, or 703 of this Title, whichever is more stringent when the parameters are the same, the MCL or standard for that constituent;
- (2) for parameters for which MCLs or standards have not been established, the existing water quality concentration for the parameter established from wells in accordance with subparagraph (c)(5)(i) of this section; or
- (3) for parameters for which the existing water quality level is higher than the MCL or standard identified under subclause (1) of this clause, the existing water quality

concentration.

- (iv) Reporting of data. Unless more rapid reporting is required to address an imminent environmental or public health concern, the owner or operator of the facility must report all water quality monitoring results to the department within 90 days of the conclusion of the sample collection. The report must include:
 - (a) A table showing the sample collection date, the analytical results (including all peaks even if below method detection limits [MDL]), designation of upgradient wells and location number for each environmental monitoring point sampled, applicable water quality standards, and groundwater protection standards if established, MDL's, and Chemical Abstracts Service (CAS) numbers on all parameters.
 - (b) In addition, tables or graphical representations comparing current water quality with existing water quality and with upgradient water quality must be presented. These comparisons may include Piper diagrams, Stiff diagrams, tables, or other analyses.
 - (c) A summary of the contraventions of State water quality standards, significant increases in concentrations above existing water quality, any exceedances of groundwater protection standards, and discussion of results, and any proposed modifications to the sampling and analysis schedule necessary to meet the requirements of subparagraphs (i) through (iii) of this paragraph.
 - (d) All AQA/AQC documentation must be submitted to the department in a form acceptable to the department.
 - (e) The annual report must contain a summary of the water quality information presented in clauses (b) and (c) of this subparagraph with special note of any changes in water quality which have occurred throughout the year.
 - (f) The data quality assessment report required pursuant to paragraph (d)(5) of this section.
 - (d) Site analytical plan. The site analytical plan must describe the method of sample collection and preservation, chain of custody documentation, analyses to be performed, analytical methods, data quality objectives, procedures for corrective actions, and procedures for data reduction, validation and reporting. The site analytical plan will pertain to existing water quality monitoring programs, operational water quality monitoring programs, and a contingency water quality monitoring program which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the site analytical plan must comply with the following:
 - (1) Data quality objectives.
 - (i) The data quality objectives for the data generation activity must be established prior to the initiation of any sampling.
 - (ii) The data quality objectives shall define the goals of each phase of the water quality monitoring program, including, but not limited to, the following:
 - (a) reasons for the analytical program;
- (b) identification of any regulatory programs and standards applicable to the analytical program; and

- (c) minimum detection limits for each of the parameters listed in the Water Quality Analysis Tables.
- (iii) The data quality objectives shall be the basis for the development of all other portions of the site analytical plan.
- (2) Analytic quality assurance (AQA)/analytic quality control (AQC).
- (i) The site analytical plan must include a discussion of the AQA/AQC for the sampling program associated with the facility and shall be sufficient to ensure that the data generated by the sampling and analysis activities are of a quality commensurate with their intended use and the requirements of the department. The discussion shall detail the AQA/AQC goals and protocols for each type of environmental monitoring to be performed at the facility. Elements must include a discussion of the quality objectives of the project, identification of the qualifications of those persons who will be performing the work and their responsibilities and authorities, enumeration of AQC procedures to be followed, and reference to the specific standard operating procedures that will be followed for all aspects of the environmental monitoring program.
- (3) Field sampling procedures.
- (i) All field sampling procedures shall be described in detail in the site analytical plan. All field quality control procedures shall be described including types and frequency of field quality control samples to be collected such as field blanks, trip blanks, field duplicates, reference materials and material blanks.
- (ii) All samples must be collected and stored in the order of the parameter's volatilization sensitivity using methods, consistently applied, which ensure sample integrity.
- (iii) All sampling equipment must be constructed of inert materials designed to obtain samples with minimal agitation and contact with the atmosphere; be cleaned and protected during transport to avoid contamination; and checked before use. Dedicated equipment must be constructed of appropriate inert materials and must be appropriate for the types of sampling to be performed.
- (iv) Samples must be properly preserved and delivered to the laboratory with proper chain of custody within all appropriate holding times for the parameters to be analyzed.
- (v) The sampling procedures and frequencies must be protective of human health and the environment.
- (vi) Monitoring well sampling techniques. Monitoring well sampling techniques must be consistently performed each time a well is sampled, and must comply with the following:
- (a) In areas where the presence of explosive or organic vapors is suspected, ambient air in the well must be checked for their presence before the well is evacuated.
- (b) For wells with documented contamination, where contamination by non- aqueous phase liquids may be present, standing water in the well must be checked for immiscible layers or other contaminants that are lighter or heavier than water (floaters or sinkers). If present, floaters or sinkers must be sampled and analyzed separately by

a method described in the site analytical plan.

- (c) Evacuation of the well must replace stagnant water in the well and the sand pack with fresh water representative of the formation. Evacuation methods, including pumping rate, depth of pump intake, and method of determining sufficiency of evacuation must be consistently applied each time the well is sampled. Evacuation methods must create the least possible turbidity in the well and must not lower the water in the well below the top of the sand pack whenever feasible. Evacuated water must be properly managed.
- (d) After evacuation of the well, volatile organic samples must be collected.
- (e) analysis must be performed after volatile organic samples have been collected, either within the borehole using a probe or from the next sample collected. All field test equipment must be calibrated at the beginning of each sampling day and checked and recalibrated according to the manufacturer's specifications. Calibration data must be reported with the analytical results.
- (f) Groundwater samples shall not be filtered, unless otherwise approved by the department. If, due to site-specific conditions, sample turbidity cannot be reduced to 50 nephelometric turbidity units (NTUs) or less by good sampling technique or well redevelopment, the department may approve collection of both filtered and unfiltered samples for analyses of the inorganic parameters. All other analyses required will be on the unfiltered samples.
- (vii) Surface water and sediment sampling techniques. Surface water and sediment sampling methods must be consistently applied to all samples, and must comply with the following:
- (a) Surface water samples collected from shallow water should not include bottom sediment. In shallow moving water, downstream samples must be collected first to avoid disturbances from the bottom sediments.
- (b) Each water body over three feet deep that is sampled must be checked for stratification, and each stratum must be checked for contamination using field parameters. Each stratum showing evidence of contamination must be separately analyzed. If no stratum shows such evidence, a composite sample having equal parts of water from each stratum must be analyzed.
- (c) Sediment samples must be taken at each location from which surface water samples are taken, and should consist of the upper five centimeters of sediment.
- (viii) Water supply well sampling techniques. Sampling methods must be consistently applied each time a well is sampled and must comply with the following:
- (a) Samples should be collected directly from the well so as to yield water representative of the formations supplying the well. If this is not possible, samples must be collected as near to the well as possible and before the water is softened, filtered, or heated.
- (b) If possible, samples must be collected before the water enters the pressure tank, otherwise the water must run long enough to flush water stored in the tank and pipes.
- (c) Before sampling, water must be evacuated from the well to ensure a fresh sample

of aquifer water.

- (d) If samples are collected from a tap, aerators, filters, or other devices must be removed before sampling.
- (ix) Corrective action. Standard operating procedures must be established which describe the procedures used to identify and correct deficiencies in the sample collection process. The standard operating procedure shall specify that each corrective action must be documented in the sampling report submitted to the department, with a description of the deficiency, the corrective action taken, and the persons responsible for implementing the corrective action. Any alterations to the field sampling procedures shall be included as an amendment to the site analytical plan.
 - (4) Laboratory procedures.
 - (i) Laboratory analyses must be performed by a laboratory currently certified under the appropriate approval categories by the New York State Department of Health's Environmental Laboratory Approval Program (ELAP).
 - (ii) The site analytical plan should contain the standard operating procedures of all laboratory activities related to the environmental monitoring plan. Any revisions to these standard operating procedures must be documented. Standard operating procedures should be available for the following, at a minimum:
 - (a) receipt, storage and handling of samples;
 - (b) sample scheduling to ensure that holding time requirements are met;
 - (c) reagent/standard preparation;
 - (d) general laboratory techniques such as glassware cleaning procedures, operation of analytical balances, pipetting techniques and use of volumetric glassware;
 - (e) description of how analytical methods are actually to be performed including precise reference to the analytical method used; and not a simple reference to standard methods; and
 - (f) standard operating procedures for equipment calibration and maintenance to ensure that laboratory equipment and instrumentation are in working order, including, but not limited to procedures and schedules for calibration and maintenance in accordance with manufacturers' specifications; and
 - (g) for a corrective action, standard operating procedures must be established for identifying and correcting deficiencies in the laboratory procedures. The standard operating procedure shall specify that each corrective action must be documented in the sampling event report submitted to the department with a description of the deficiency, the corrective action taken, and the person responsible for implementing the corrective action. Any alterations to the laboratory procedures shall be included as an amendment to the site analytical plan.
 - (5) Data quality assessment. At the conclusion of each sampling event and analysis of the samples collected, data quality assessment shall occur. A data quality assessment report must be submitted with the results from each sampling event. Data quality assessment shall occur in two phases.

- (i) Data validation.
- (a) For those sampling events for which only routine parameters are analyzed, the data validation shall be performed by the laboratory that performed the sample analyses.
- (b) For those sampling events for which baseline or expanded parameters are analyzed, the data validation shall be performed by a person other than the laboratory that performed the analyses and that is acceptable to the department.
- (c) The data validation shall be performed on all analytical data for the facility at a rate acceptable to the department, but not less than five percent of the data generated, and shall consist, at a minimum, of the following:
- (1) field records and analytical data are reviewed to determine whether the data are accurate and defensible. All AQA/AQC information shall be reviewed along with any corrective actions taken during that sampling event; and
- (2) all data summaries shall be clearly marked to identify any data that are not representative of environmental conditions at the site, or that were not generated in accordance with the site analytical plan.
- (ii) Data usability analysis.
- (a) The data usability analysis shall be performed on all analytical data for the facility and shall consist of the following:
- (1) an assessment to determine if the data quality objectives were met;
- (2) for consistency, comparison of the analytical data with the results from previous sampling events;
- (3) evaluation of field duplicate results to indicate the samples are representative;
- (4) comparison of the results of all field blanks, trip blanks, equipment rinsate blanks, and method blanks with full data sets to provide information concerning contaminants that may have been introduced during sampling, shipping, or analyzing;
- (5) evaluation of matrix effects to assess the performance of the analytical method with respect to the sample matrix, and determine whether the data have been biased high or low due to matrix effects;
- (6) integration of the field and laboratory data with geological, hydrogeological, and meteorological data to provide information about the extent of contamination, if it occurs; and
- (7) comparison of precision, accuracy, representativeness, comparability, completeness, and defensibility of the data generated with that required to meet the data quality objectives established in the site analytical plan.
- (6) The following Water Quality Analysis Tables in this section list the routine, baseline, and expanded parameters for analysis of all monitoring samples.

WATER QUALITY ANALYSIS TABLES

ROUTINE PARAMETERS¹

Common Name2	CAS RN3	Suggested Methods	PQL4 (µg/I)
Field Parameters:			
Static water level(in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
Temperature			
рН		9040	
Eh		9041	
Dissolved Oxygen6			
Field Observations7			
Turbidity		180.1	
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41-7	351.4 350.1 350.2	200 60
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3 410.4	50000 50000 5000 80000
Biochemical Oxygen Demand (BOD ₅)		405.1	2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride	108-95-2	310.2 8040 9250	6000
Bromide		9251	
Total hardness as CaCO ₃		9252 320.1 130.1 130.2	2000 20000 30000
Inorganic Parameters:			
Cadmium	(Total)	3010 7130	40 50
Calcium		7131	1
Iron	(Total) (Total)	7140 7380	40 100
Lead	(Total)	7381 6010	4 400

		7420	1000
Magnesium		7421	10
Manganese	(Total) (Total)	7450 7460	4 40
Potassium		7461	0.8
Sodium	(Total) (Total)	7610 7770	40 8

The department may modify this list as necessary.

Notes

¹This list contains parameters for which possible analytical procedures are provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.

⁵Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁶Surface water only.

⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

BASELINE PARAMETERS¹

Common Name®	CAS RN3	Suggested Methods	(µg/I)
Field Parameters:			
Static water level (in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
рН		9040 9041	

	4		
Eh			
Dissolved Oxygen6			
Field Observations7		180.1	
Turbidity			
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41- 7	351.4 350.1 350.2	200 30
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3	50000 50000 50000
Biochemical Oxygen Demand (BOD ₅)		410.4 405.1	80000 2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride		310.2 9250	6000
Bromide		9251	
Total hardness as CaCO ₃		9252	
Color		320.1 130.1 130.2 110.1 110.2 110.3	2000 20000 30000 80
Boron	7440-42- 8		
Inorganic Parameters:			
Aluminum			
Antimony	(total) (total)	7020 6010 7040	10 300 2000
Arsenic	(total)	7041 6010 7060	30 500 10
Barium	(total)	7061 6010	20 20
Beryllium	(total)	7080 6010 7090	1000 3 50
Cadmium	(total)	7091 6010 7130	2 40 50

Coloium		7121	1
Calcium	2.2.2	7131	
Chromium	(total) (total)	7140 6010 7190	40 70 500
Chromium(Hexavalent)*	18540- 29-9	7191 7195 7196	10 600
Cobalt	(total)	7197 7198 6010	30 70
Copper	(total)	7200 7201 6010	500 10 60
Cyanide		7210	200
Iron	(total)	7211 9010	10 200
Lead	(total) (total)	7380 7381 6010	100 4 400
Magnesium		7420	1000
Manganese	(total)	7421 7450	10 4
Mercury	(total)	7460	40
Nickel	(total)	7461 7470	0.8
Potassium	(total) (total)	6010 7520 7610	150 400 40
Selenium	(total)	6010 7740	750 20
Silver	(total)	7741 6010	20 70
Sodium		7760	100
Thallium	(total) (total)	7761 7770 6010	10 8 400
Vanadium	(total)	7840 7841 6010	1000 10 80
Zinc	(total)	7910 7911 6010 7950 7951	2000 40 20 50 0.5
Organic Parameters:	21		
Acetone	67-64-1	8260	100
Acrylonitrile	107-13-1	8030 8260	5 200
Benzene	71-43-2	8020 8021 8260	2 0.1 5
Bromochloromethane	74-97-5	8021 8260	0.1 5
Bromodichloromethane	75-27-4	8010 8021	1 0.2

	22.00.0	8260	5
Bromoform; Tribromomethane	75-25-2	8010 8021 8260	2 15 5
Carbon disulfide	75-15-0	8260	100
Carbon tetrachloride	56-23-5	8010 8021 8260	1 0.1 10
Chlorobenzene	108-90-7	8010 8020 8021 8260	2 2 0.1 5
Chloroethane; Ethyl chloride	75-00-3	8010 8021	5 1
Chloroform; Trichloromethane	67-66-3	8010 8021	0.5 0.2
Dibromochloromethane; Chlorodibromomethane	124-48-1	8260 8010 8021	5 1 0.3
1,2-Dibromo-3-chloropro-pane; DBCP	96-12-8	8260 8011 8021	5 0.1 30
1,2-Dibromoethane; Ethyl-ene dibromide; EDB	106-96-4	8260 8011 8021	25 0.1 10
o-Dichlorobenzene; 1,2-Dichlorobenzene	95-50-1	8026 8010 8020 8021 8120 8260	5 2 5 0.5 10 5
p-Dichlorobenzene; 1,4-Dichlorobenzene	106-46-	8270 8010 8020 8021 8120 8260	10 2 5 0.1 15 5
trans-1,4-Dichloro-2-bu- tene		8270	10
1,1-Dichloroethane; Ethylidene chloride	110-57-6 75-34-3	8260 8010 8021	100 1 0.5
1,2-Dichloroethane; Ethylene dichloride	107-06-2	8260 8010 8021	8 0.5 0.3
1,1-Dichloroethylene;		8260	5
1,1-Dichloroethene;		8010	1
/inylidene chloride	75-35-4	8021	0.5
cis-1,2-Dichloroethylene;		8260	5
sis-1,2-Dichloroethene		8021	0.2
rans-1,2-Dichloroethyl-ene;	156-59-2	8260	5
rans-1,2-Dichloro- ethene	156-60-5	8010 8021	1 0.5
,2-Dichloropropane;		8260	5
Pro-pylene dichloride	78-87-5	8010 8021	0.5 0.05
sis-1,3-Dichloropropene		8260	5

		8010	20
trans-1,3-Dichloropropene.	10061- 01-5 10061- 02-6	8260 8010 8260	10 5 10
Ethylbenzene	100-41-4	8020 8221 8260	2 0.05 5
2-Hexanone; Methyl butyl ketone	591-78-6	8260	50
Methyl bromide; Bromo- methane	74-83-9	8010 8021	20 10
Methyl chloride; Chloro- methane	74-87-3	8010 8021	1 0.3
Methylene bromide; Dibro- momethane	74-95-3	8010 8021	15 20
Methylene chloride; Dichloromethane	75-09-02	8260 8010 8021	5 0.2 10
Methyl ethyl ketone; MEK; 2-Butanone	78-93-3	8260 8010	100 40
4-Methyl-2-pentanone; Methyl isobutyl ketone	108-10-1	8260 8015	10 5
Styrene	100-42-5	8260 8020 8021	100 1 0.1
1,1,1,2-Tetrachloroethane.	630-20-6	8260 8010 8021	10 5 5
1,1,2,2-Tetrachloroethane	79-34-5	8260 8010 8021	0.5 0.1 0.05
Tetrachloroethylene; Tet- rachloroethene; Per- chloroethylene	127-18-4	8260 8010 8021	5 0.5 0.5
Toluene	108-88-3	8260 8020 8021	5 2 0.1
1,1,1-Trichloroethane; Methylchloroform	71-55-6	8260 8010 8021	5 0.3 0.3
1,1,2-Trichloroethane	79-00-5	8260 8010	5 0.2
Trichloroethylene; Tri- chloroethene	79-01-6	8260 8010 8021	5 1 0.2
Trichlorofluoromethane; CFC-11	75-69-4	8260 8010 8021 8260	5 10 0.3 5
1,2,3-Trichloropropane	96-18-4	8010 8021 8260	10 5 15
Vinyl acetate	108-05-4	8260	50
Vinyl chloride; Chloro- ethene	75-01-4	810 8021 8260	2 0.4 10
Xylenes	1330-20- 7	8020 8021	5 0.2

0000	-
8260	1.5

The department may modify this list as necessary.

Notes

¹This list contains 47 volatile organics for which possible analytical procedures provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, includes Method 8260; 25 metals for which SW-846 provides either Method 6010 or a method from the 7000 series of methods; and additional parameters for which possible procedures are provided in *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.

⁵Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁶Surface water only.

⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

*The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0 .05 mg/l.

EXPANDED PARAMETERS¹

Common Name2	CAS RN3	Suggested Methods	PQL4 (kg/l)
Field Parameters:			
Static water level (in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
рН		9040 9041	

Eh			
Dissolved Oxygen6			
Field Observations7		180.1	
Turbidity			
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41- 7	351.4 350.1 350.2	200 30
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3 410.4	50000 50000 50000 80000
Biochemical Oxygen Demand (BOD ₅)		405.1	2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride	108-95-2	310.2 8040 9250	6000
Bromide		9251	
Total hardness as CaCO ₃	24959- 67-9	9252 320.1 130.1 130.2	2000 20000 30000
Color		110.1 110.2 110.3	80
Boron	7440-42- 8		
norganic Parameters:			
Aluminum	(total)	7020	10
Antimony	(total)	6010 7040 7041	300 2000 30
Arsenic	(total)	6010 7060 7061	500 10 20
Barium	(total)	6010	20
Beryllium	(total)	7080 6010 7090	1000 3 50
Cadmium	(total)	7091 6010 7130	2 40 50

Calcium		7131	1
Chromium	(total) (total)	7140 6010 7190	40 70 500
Chromium(Hexavalent)*	18540- 29-9	7191 7195 7196 7197	10 600 30
Cobalt	(total)	7198 6010 7200	70 500
Copper	(total)	7201 6010	10 60
Cyanide		7211	10
Iron	(total) (total)	9010 7380	200 100
Lead	(total)	7381 6010 7420	4 400 1000
Magnesium		7421	10
Manganese	(total) (total)	7450 7460	4 40
Mercury	(total)	7461 7470	0.8
Nickel	(total)	6010 7520	150 400
Potassium	(total)	7610	40
Selenium	(total)	6010 7740 7741	750 20 20
Silver	(total)	6010 7760 7761	70 100 10
Sodium	(total)	7770	8
Thallium	(total)	6010 7840 7841	400 1000 10
Tin	(total)	6010	40
Vanadium	(total)	6010 7910 7911	80 2000 40
Zinc	(total)	6010 7950 7951	20 50 0.5
Organic Parameters:			
Acenaphthene	83-32-9	8100 8270	200 10
Acemaphthylene	208-96-8	8100 8270	200 10
Acetone	67-64-1	8260	100
Acetonitrile; Methyl cyanide	75-05-8	8015	100
Acetophenone	98-86-2	8270	10
2-Acetylaminofluorene; 2-AAF	53-96-3	8270	20

Acrolein	107-02-8	8030 8260	5 100
Acrylonitrile	107-13-1	8030 8260	5 200
Aldrin	309-00-2	8080 8270	10 5
Ally chloride	107-05-1	8010 8260	5 10
4- aminobiphenyl	92-67-1	8270	20
Anthracene	120-12-7	8100 8270	200 10
Benzene	71-43-2	8020 8021 8260	2 0.1 5
Benzo[a]anthracene; Benzanthracene	56-55-3	8100 8270	200 10
Benzo[b]fluoranthene	205-99-2	8100 8270	200 10
Benzo[k]fluoranthene	207-08-9	8100 8270	200 10
Benzo[ghi]perylene	191-24-2	8100 8270	200 10
Benzo[a]pyrene	50-32-8	8100 8270	200 10
Benzyl alcohol	100-51-6	8270	20
alpha-BHC	319-84-6	8080 8270	0.05 10
beta-BHC	319-85-7	8080 8270	0.05 10
delta-BHC	31986- 8	8080 8270	0.1 20
gamma-BHC; Lindane	58-89-9	8080 8270	0.05 20
Bis(2-chloroethoxy)methane	111-91-1	8110 8270	5 10
Bis(2-chloroethyl) ether; Dichloroethyl ether	111-44-4	8110 8270	3 10
Bis-(2-chloro-1-methyl-ethyl) ether; 2,21-Di- chlorodiisopropyl ether	108-60-1	8110 8270	10 10
DCIP, See note 9			
Bis(2-ethylhexyl)phthalate Bromochloromethane; Chlorobromomethane	117-81-7 74-97-5	8060 8021 8260	20 0.1 5
Bromodichloromethane; Dibromochloromethane	75-27-4	8010 8021	1 0.2
Bromoform; Tribromomethane	75-25-2	8260 8010 8021	5 2 15
4-Bromophenyl phenyl ether	101-55-3	8260 8110	5 25
Butyl benzyl phthalate; Benzyl butyl phthalate	85-68-7	8270 8060	10 5
Carbon disulfide		8270	10

Carbon tetrachloride	75-15-0 56-23-5	8260 8010 8021 8260	100 1 0.1 10
Chlordane	See Note 10	8080 8270	0.1 50
p-Chloroaniline	106-47-8	8270	20
Chlorobenzene	108-90-7	8010 8020 8021 8260	2 2 0.1 5
Chlorobenzilate	510-15-6	8270	10
p-Chloro-m-cresol; 4-Chloro-3-methylphenol	59-50-7	8040 8270	5 20
Chloroethane; Ethyl chloride	75-00-3	8010 8021 8260	5 1 10
Chloroform; Trichloromethane	67-66-3	8010 8021 8260	0.5 0.2 5
2-Chloronaphthalene	91-58-7	8120 8270	10 10
2-Chlorophenol	95-57-8	8040 8270	5 10
4-Chlorophenyl phenyl ether	7005-72- 3	8110 8270	40 10
Chloroprene	126-99-8	8010 8260	50 20
Chrysene	218-01-9	8100 8270	200 10
m-Cresol; 3-methylphenol	108-39-4	8270	10
o-Cresol; 2-methylphenol	95-48-7	8270	10
p-Cresol; 4-methylphenol	106-44-5	8270	10
2,4-D; 2,4-Dichlorophen- oxyacetic acid	94-75-7	8150	10
4,41-DDD	72-54-8	8080	0.1
4,41-DDE		8270	10
4,41-DDT	72-55-9	8080	0.05
Diallate		8270	10
Dibenz[a,h]anthracene	50-29-3	8080 8270	0.1
Dibenzofuran	2303-16- 4	8270	10
Dibromochloromethane; Chlorodibromomethane	53-70-3 132-64-9 124-48-1	8100 8270 8270 8010 8021 8260	200 10 10 1 0.3 5
1,2-Dibromo-3-chloro- propane; DBCP	96-12-8	8011 8021 8260	0.1 30 25
1,2-Dibromoethane; Ethylene dibromide; EDB	106-93-4	8011 8021 8260	0.1 10 5

Di-n-butyl phthalate	84-74-2	8060	5
o-Dichlorobenzene; 1,2-Dichlorobenzene	95-50-1	8270 8010 8020 8021 8120 8260	10 2 5 0.5 10 5
m-Dichlorobenzene; 1,3-Dichlorobenzene	541-73-1	8270 8010 8020 8021 8120 8260	10 5 5 0.2 10 5
p-Dichlorobenzene; 1,4-dichlorobenzene	106-46-7	8270 8010 8020 8021 8120 8260	10 2 5 0.1 15 5
3,31-Dichlorobenzidine		8270	10
trans-1,4-Dichloro- 2-butene	91-94-1	8270	10
Dichlorodifluoromethane; CFC 12	110-57-6 75-71-8	8260 8021	100 0.5
1,1-Dichloroethane; Ethyldidene chloride	75-34-3	8260 8010	5 1
1,2-Dichloroethane; Ethylene dichloride	107-06	8021 8260 8010	0,5 5 .05
1,1-Dichloroethylene; 1,1-Dichloroethene; Vinylidene chloride	75-35-4	8021 8260 8010	0.3 5 1
cis-1,2-Dichloroethylene; cis-1,2-Dichloroethene		8021 8260	0.5 5
trans-1,2-Dichloroethylene	156-59-2	8021 8260	0.2 5
trans-1,2-Dichloroethene	156-60-5	8260 8010	5 1
2,4-Dichlorophenol	120-83-2	8021 8260 8040 8270	0.5 5 5 10
2,6-Dichlorophenol	87-65-0	8270	10
1,2-Dichloropropane; Propylene dichloride	78-87-5	8010 8021 8260	0.5 0.05 5
1,3-Dichloropropane; Trimethylene dichloride.	142-28-9	8021 8260	0.3 5
2,2-Dichloropropane; Isopropylidene chloride.	594-20-7	8021 8260	0.5 15
1,1-Dichloropropene	563-58-6	8021	0.2
cis-1,3-Dichloropropene	10061- 01-5	8260 8010	5 20
rans-1,3-Dichloropropene	10061- 02-6	8260 8010	10 5
Dieldrin	60-57-1	8260 8080	10 0.05
Diethyl phthalate	84-66-2	8270	10

	1 1	8060	5
0,0-Diethyl 0-2-pyrazinyl phosphorothioate; Thionazin	297-97-2	8270 8141 8270	10 5 20
Dimethoate	60-51-5	8141	3
p-(Dimethylamino)azo- benzene		8270	20
7,12-Dimethylbenz[a]- anthracene	60-11-7	8270	10
3,31-Dimethylbenzidine	57-97-6	8270	10
2,4-Dimethylphenol; m-Xylenol	199-93-7 105-67-9	8270 8040	10 5
Dimethyl phthalate		8270	10
m-Dinitrobenzene	131-11-3	8060	5
4,6-Dinitro-o-cresol 4,6- Dinitro-2-methylphenol	99-65-0	8270 8270	10 20
2,4-Dinitrophenol	534-52-1	8040 8270	150 50
2,4-Dinitrotoluene	51-28-5	8040 8270	150 50
2,6-Dinitrotoluene	121-14-2	8090 8270	0.2 10
Dinoseb; DNBP; 2-sec- Butyl-4,6-dinitrophenol.	606-20-2	8090 8270	0.1 10
Di-n-octyl phthalate	88-85-7 117-84-0	8150 8270 8060 8270	1 20 30 10
11 Diphenylamine	122-39-4	8270	10
Disulfoton	298-04-4	8140 8141	2 0.5
Endosulfan I	959-98-8	8270 8080	10 0.1
Endosulfan II	33213- 65-9	8270 8080	20 005
Endosulfan sulfate		8270	20
Endrin	1031-07- 8	8080 8270	0.5 10
Endrin aldehyde	72-20-8	8080	0.1
Ethylbenzene	7421-93- 4	8270 8080 8270	20 0.2 10
Ethyl methacrylate	100-41-4	8020 8021	2 0.05
Ethyl methanesulfonate		8260	5
Famphur	97-63-2	8015	5
Fluoranthene		8260 8270	10 10
Fluorene	62-50-0 52-85-7	8270 8270	20 20
Heptachlor	206-44-0	8100 8270	200 10
Heptachlor epoxide	86-73-7	8100	200

		8270	10
Hexachlorobenzene	76-44-8	8080 8270	0.05 10
Hexachlorobutadiene	1024-57- 3 118-74-1	8080 8270 8120	1 10 0.5
Hexachlorocyclopentadiene	87-68-3	8270 8021 8120	10 0.5 5
Hexachloroethane	77-47-7	8260 8270 8120	10 10 5
Hexachloropropene		8270	10
2-Hexanone; Methyl butyl ketone	67-72-1	8120 8260	0.5 10
Indeno(1,2,3-cd)pyrene	1888-71- 7 591-78-6 193-39-5	8270 8270 8260 8100 8270	10 10 50 200 10
Isobutyl alcohol	78-83-1	8015 8240	50 100
lsodrin	465-73-6	8270 8260	20 10
Isophorone	78-59-1	8090 8270	60 10
lsosafrole	120-58-1	8270	10
Kepone	143-50-0	8270	20
Methacrylonitrile	126-98-7	8015 8260	5 100
Methapyrilene	91-80-5	8270	100
Methoxychlor	72-43-5	8080 8270	2 10
Methyl bromide; Bromomethane	74-83-9	8010 8021	20 10
Methyl chloride; Chloromethane	74-87-3	8010 8021	1 0.3
3-Methylcholanthrene	56-49-5	8270	10
Methyl ethyl ketone; MEK; 2-Butanone	78-93-3	8015 8260	10 100
Methyl iodide;lodomethane	74-88-4	8010 8260	40 10
Methyl methacrylate	80-62-6	8015 8260	2 30
Methyl methanesulfonate	66-27-3	8270	10
2-Methylnaphthalene	91-57-6	8270	10
Methyl parathion; Parathion methyl	298-00-0	8140 8141 8270	0.5 1 10
I-Methyl-2-pentanone; Methyl isobutyl ketone	108-10-1	8015 8260	5 100
Methylene bromide; Dibromomethane	74-95-3	8010 8021 8260	15 20 10

Methylene chloride; Dichloromethane	75-09-2	8010 8021 8260	5 0.2 10
Naphthalene	91-20-3	8021 8100 8260 8270	0.5 200 5 10
1,4-Naphthoquinone	130-15-4	8270	10
1-Naphthylamine	134-32-7	8270	10
2-Naphthylamine	91-59-8	8270	10
o-Nitroaniline; 2-Nitroaniline	88-74-4	8270	50
m-Nitroaniline;			
3-Nitroaniline	99-09-2	8270	50
p-Nitroaniline; 4-Nitroaniline	100-01-6	8270	20
Nitrobenzene	98-95-3	8090 8270	40 10
o-Nitrophenol; 2-Nitrophenol	88-75-5	8040 8270	5 10
p-Nitrophenol; 4-Nitrophenol	100-02-7	8040 8270	10 50
N-Nitrosodi-n-butylamine.	924-16-3	8270	10
N-Nitrosodiethylamine	55-18-5	8270	20
N-Nitrosodimethylamine	62-75-9	8070	2
N-Nitrosodiphenylamine	86-30-6	8070	5
N-Nitrosodipropylamine; N-Nitroso-N-dipropyl- amine; Di-n- propylni- trosamine	621-64-7	8070	10
N-Nitrosomethylethalamine	10595- 95-6	8270	10
N-Nitrosopiperidine	100-75-4	8270	20
N-Nitrosopyrrolidine	930-55-2	8270	40
5-Nitro-o-toluidine	99-55-8	8270	10
Parathion	56-38-2	8141 8270	0.5 10
Pentachlorobenzene	608-93-5	8270	10
Pentachloronitrobenzene	82-68-8	8270	20
Pentachlorophenol	87-86-5	8040 8270	5 50
Phenacetin	62-44-2	8270	20
Phenanthrene	85-01-8	8100 8270	200 10
Phenol	108-95-2	8040	1
p-Phenylenediamine	106-50-3	8270	10
Phorate	298-02-2	8140 8141 8270	2 0.5 10
Polychlorinated biphenyls; PCB's; Aroclors	See Note 11	8080 8270	50 200
Polychlorinated dibenzo-p-dioxins; PCDD's	See Note 12	8280	0.01

Polychlorinated dibenzo- furans; PCDF's	See Note 13	8280	0.01
Pronamide	23950- 58-8	8270	10
Propionitrile; Ethyl cyanide	107-12-0	8015 8260	60 150
Pyrene	129-00-0	8100 8270	200 10
Safrole	94-59-7	8270	10
Silvex; 2,4,5-TP	93-72-1	8150	2
Styrene	100-42-5	8020 8021 8260	1 0.1 10
2,4,5-T; 2,4,5-trichloro- phenoxyacetic acid	93-76-5	8150	2
1,2,4,5-Tetrachlorobenzene 2,3,7,8-Tetrachlorodi- benzo-p-dioxin; 2,3,7,8-TCDD	95-94-3 1746-01- 6 630-20-6	8270 8280	10 0.005
1,1,1,2-Tetrachloroethane.	79-34-5	8010 8021 8260	5 0.05 5
1,1,2,2-Tetrachloroethane.	127-18-4	8010 8021 8260	0.5 0.1 5
Tetrachloroethylene; Tetrachloroethene; Perchloroethylene	58-90-2	8010 8021 8260	0.5 0.5 5
2,3,4,6-Tetrachlorophenol.	108-88-3	8270	10
Toluene	95-53-4	8020 8021 8260	2 01 5
o-Toluidine	See Note 14	8270	10
Toxaphene	120-82-1	8080	2
1,2,4-Trichlorobenzene	71-55-6	8021 8120 8260 8270	0.3 0.5 10 10
1,1,1-Trichloroethane; Methylchloroform	79-00-5	8010 8021 8260	0.3 0.3 5
1,1,2-Trichloroethane	79-01-6	8010 8260	0.2 5
Trichloroethylene; Trichloroethene	75-69-4	8010 8021 8260	1 0.2 5
Trichlorofluoromethane; CFC-11	95-95-4 88-06-2	8010 8021 8260	10 0.3 5
2,4,5-Trichlorophenol		8270	10
2,4,6-Trichlorophenol	96-18-4	8040 8270	5 10
1,2,3-Trichloropropane		8010 8021 8260	10 5 15
0,0,0-Triethyl phosphoro-	126-68-1	8270	10

thioate			
sym-Trinitrobenzene	99-35-4	8270	10
Vinyl acetate	108-05-4	8260	50
Vinyl chloride; Chloroethene	75-01-4	8010 8021 8260	2 0.4 10
Xylene (total)	See Note 15	8020 8021 8260	5 0.2 5

The department may modify this list as necessary. EXPANDED PARAMETERS¹

Notes

¹The regulatory requirements pertain only to the list of substances; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnotes 4 and 5.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service registry number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Suggested Methods refer to analytical procedure numbers used in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised, December 1987 and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600-4/79-020, March, 1979. CAUTION: The methods listed are representative procedures and may not always be the most suitable method(s) for monitoring an analyte under the regulations.

⁵Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation. ⁶Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁷Surface water only.

⁸Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

⁹This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2"-oxybis[2]-chloro- (CAS RN 39638-32-9).

¹⁰Chlordane: This entry includes alpha-chlordane (CAS RN 5103-71-9), beta-chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 5566-34-7), and constituents of chlordane (CAS RN 57-74-9 and CAS RN 12789-03-6). PQL shown is for technical chlordane. PQLs of specific isomers are about 20 μg/l by method 8270.

¹¹Polychlorinated biphenyls (CAS RN 1336-36-3): This category contains congener chemicals, including constituents of Aroclor 1016 (CAS RN 12674-11-2), Aroclor 1221 (CAS RN 11104-28-2), Aroclor 1232 (CAS RN 11141-16-5), Aroclor 1242 (CAS RN 53469-21-9), Aroclor 1248 (CAS RN 12672-29-6), Aroclor 1254 (CAS RN 11097-69-1), and Aroclor 1260 (CAS RN 11096-82-5). The PQL shown is an average value for PCB congeners.

¹²Polychlorinated dibenzo-p-dioxins: This category contains congener chemicals, including tetrachlorodibenzo-p-dioxins (see also 2,3,7,8-TCDD), pentachlorodibenzo-p-dioxins, and hexachlorodibenzo-p-dioxins. The PQL shown is an average value for PCDD congeners. Upon request of the applicant, the department may waive the requirement to analyze for dioxins, where appropriate.

¹³Polychlorinated dibenzofurans: This category contains congener chemicals, including tetrachlrodibenzofurans, pentachlorodibenzofurans, and hexachlorodibenzofurans. The PQL shown is an average value for PCDF congeners. Upon request of the applicant, the department may waive the requirement to analyze for furans, where appropriate.

¹⁴Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.

¹⁵Xylene (total): This entry includes o-xylene (CAS RN 96-47-6), m-xylene (CAS RN 108-38-3), p-xylene (CAS RN 106-42-3), and unspecified xylenes (dimethylbenzenes) (CAS RN 1330-20-7). PQLs for method 8021 are 0.2 for o-xylene and 0.1 for m- or p-xylene. The PQL for m-xylene is 2.0 μg/L by method 8020 or 8260.

*The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0.05 mg/l.

§360-2.12 Landfill siting.

- (a) Applicability. New landfills and lateral or vertical expansions of existing active landfills must be located on a site that exhibits the following characteristics unless the requirements of subdivision (b) of this section are met. A site selection study will be required only if the applicant proposes a site that does not exhibit all of the characteristics identified in either paragraph (1) or (2) of this subdivision.
 - (1) In the case of new landfills and lateral or vertical expansions of existing landfills:
 - (i) the site is not located in an area identified in section 360-1.7(a)(2) of this Part;
 - (ii) the site complies with the siting restrictions identified in subdivision (c) of this section;
 - (iii) bedrock subject to rapid or unpredictable groundwater flow must be avoided, unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system;
 - (iv) the site must not be in proximity of any mines, caves or other anomalous features that may alter groundwater flow;
 - (v) unconsolidated deposits underlying the proposed landfill must either exist or be constructed to be 20 feet or greater in thickness as measured from the base of the constructed liner system; and
 - (vi) the upper 20 feet of the unconsolidated deposits on the site must consist

predominantly (greater than 50 percent) of soils throughout the vertical section, with a maximum in situ coefficient of permeability of 5 x 10-6 centimeters per second, with no appreciable continuous deposits having a maximum coefficient of permeability of 5 x 10-4 centimeters per second.

- (2) In the case of an existing landfill active on or after November 4, 1992 operating under and in compliance with a current Part 360 permit or order on consent, the department may allow lateral or vertical expansions if the site has less than 20 feet of unconsolidated deposits provided that:
 - (i) the proposed landfill expansion is identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed landfill expansion must be consistent with the goals and objectives of such plan;
 - (ii) the unconsolidated deposits underlying the proposed landfill exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system;
 - (iii) the applicant demonstrates that the expansion site will have no significant adverse impact on human health, safety, or welfare, the environment, or natural resources; and
 - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision.
- (3) Except in Nassau and Suffolk Counties, in the case of ash monofills for the disposal offly ash treated in a manner consistent with section 360- 3.6(g)(3) of this Part, combined ash, or bottom ash, the department may allow ash monofill development at sites that have less than 20 feet of unconsolidated deposits provided that:
 - (i) the proposed monofill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed monofill must be consistent with the goals and objectives of such plan;
 - (ii) the unconsolidated deposits underlying the proposed landfill on the site exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system;
 - (iii) the applicant demonstrates that the monofill site will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources; and
 - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision.
- (b) Exceptions. New landfills and lateral or vertical expansions of existing landfills may be located on sites that do not exhibit the characteristics identified in subdivision (a) of this section provided that the requirements of paragraphs (1) and (2) of this subdivision are met. The department may impose additional requirements to assure that the permitted activity will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources for any site selected pursuant to this subdivision.
 - (1) The proposed landfill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the

integrated solid waste management system for the planning unit in which the facility is located, and the proposed landfill must be consistent with the goals and objectives of such plan.

- (2) The applicant must perform a site selection study and submit a site selection report as part of a complete application. This report must describe the factors that prevent the applicant from using a site exhibiting the characteristics identified in subdivision (a) of this section. Such factors may include, but are not limited to, the proximity to receiving waters or proximity to sewer lines or POTWs to ensure proper management of leachate during the operational and post-closure period of the landfill. The site selection report must also demonstrate that the chosen site will have no significant adverse impact on public health, safety, or welfare, the environment or natural resources, and will be consistent with the provisions of the ECL.
 - (i) The site selection process must be comprehensive and must identify and evaluate a reasonable range of alternative sites which are feasible considering the capabilities and objectives of the applicant. All of the criteria used to eliminate and evaluate the suitability of the potential sites must be clearly defined and consistently applied. A phased approach must be used, in which a more detailed evaluation of sites occurs as the number of potential sites is reduced.
 - (a) The applicant must exclude inappropriate siting areas by avoiding the prohibited siting areas identified in section 360-1.7(a)(2) of this Part and applying the landfill siting restrictions identified in subdivision (c) of this section.
 - (b) The applicant must evaluate potential siting areas to identify alternative sites that are suitable for landfill development. When applying the siting criteria, the evaluation must include the use of the type of data listed in section 360-2.11(a)(2) of this Subpart. Field reconnaissance to confirm the published information and a morphologic evaluation of landforms must be performed to identify the areas which are likely to have thick low permeable soils available within the study area. The applicant must use the following criteria in the landfill site selection study:
 - (1) Unconsolidated deposits on the site must be those most likely to minimize the migration of contaminants from the landfill. In evaluating the sites, preferred sites should have the greatest possible thickness of these materials to provide a barrier to contaminant migration into bedrock;
 - (2) bedrock subject to rapid or unpredictable groundwater flow must be avoided unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system resulting in a contravention of groundwater standards;
 - (3) probable groundwater flow patterns and water quality must be considered in finding areas where containment failure would do the least environmental damage and would be easiest to correct:
 - (4) proximity and hydrogeologic relationship to water supply sources;
 - (5) natural topography and its impacts upon the proposed facility; and
 - (6) relationship to mines, caves, or other anomalous hydrogeologic features that might alter groundwater flow.

- (c) Preliminary field investigations must be conducted at the highest ranking available site or sites, to identify any major obstacles to site development, and to provide sufficient data to differentiate among the preferred sites and support a siting decision.
- (ii) The report must describe the process used to select the proposed site, including evaluation criteria, deferral (elimination) criteria, assumptions, data sources, decisionmaking means (such as numerical ranking systems) and other factors used to make the siting decisions. The report must demonstrate that, considering the capabilities and objectives of the applicant, a reasonable range of alternative sites available throughout the planning unit in which the project is proposed were evaluated and that the selected site is the most appropriate alternative. The decisionmaking process must be described to provide a clear understanding of how and why the siting decisions were made, and at a level of detail sufficient to provide for a comparative assessment of the alternatives discussed. The report must also include maps of sites and describe the results of the field investigations, the comparative advantages and disadvantages of the highest ranked sites, and the basis for selecting the proposed sites.
- (c) Landfill siting restrictions. In addition to the provisions of section 360-1.7(a)(2) of this Part, the following landfill siting restrictions apply.
 - (1) Primary water supply, and principal aquifers:
 - (i) Except in Nassau and Suffolk Counties, and except as provided in subparagraph (ii) of this paragraph, no new landfill and no lateral or vertical expansion of an existing landfill may be constructed over primary water supply aquifers, principal aquifers, within a public water supply stabilized cone of depression area, or within a minimum distance of 100 feet to surface waters that are actively used as sources of municipal supply. Greater separation distances may be required in accordance with subparagraph (iii) of this paragraph.
 - (ii) The commissioner may allow lateral or vertical expansions of landfills, in operation pursuant to a valid Part 360 permit to operate or Order on Consent as of December 31, 1988, that are on principal aguifers, if there is a demonstrated public need for the capacity provided by the expansion that cannot be reasonably provided elsewhere, and that outweighs the potential risk of contamination to the aquifer. Additionally, the landfill expansion must promote the implementation of the State's solid waste management policy set forth in ECL 27-0106 and must be an integral part of any local solid waste management plan that may be in effect for the planning unit (as defined in ECL 27-0107) within which the facility is located; and the expansion must comply with all other requirements of this Part. However, the maximum time period allocated by the commissioner for any such expansion must not allow operation beyond December 31, 1995. In granting any expansion pursuant to this subparagraph, the department must impose specific conditions that are reasonably necessary to assure that the expansion will, to the extent practicable, have no significant adverse impact on public health or safety, welfare, the environment ornatural resources, and such approval contributes to the proper management of solid waste at the earliest possible time.
 - (iii) The required horizontal separation between deposited solid waste, and primary water supply aquifers, principal aquifers, public water supply stabilized cone of depression areas, or surface waters that are actively used as sources of municipal supply must be sufficient (based on the rate and direction of groundwater and surface water flow, landfill

design and requirements for corrective action in the event of failure of the landfill's containment system) to preclude contravention of groundwater standards in the aquifer and surface water standards in waters that are currently used as a source of municipal drinking water supply.

(2) Floodplains. Owners or operators of new landfill units, existing landfill units, and lateral expansions located in 100-year floodplains must demonstrate that the unit will not restrict the flow of the 100-year flood, reduce the temporary water storage capacity of the floodplain, or result in washout of solid waste so as to pose a hazard to human health and the environment.

(3) Aircraft safety.

- (i) A landfill or landfill subcell into which putrescible solid waste is to be disposed must be located no closer than 5,000 feet from any airport runway end used by piston-powered fixed-wing aircraft and no closer than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft.
- (ii) A landfill or landfill subcell into which putrescible solid waste is to be disposed, which is located within five miles of any airport runway end, must not, in the opinion of the Federal Aviation Administration, pose a potential bird or obstruction hazard to aircraft.
- (iii) The permittee of an existing landfill or landfill subcell that is authorized to dispose of putrescible solid waste and that is located less than 10,000 feet from any airport runway end used by turbine-powered fixed- wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft must provide in its permit renewal application documentation that the Federal Aviation Administration believes the landfill or landfill subcell does not pose a bird hazard to aircraft.
- (iv) Landfills containing only nonputrescible solid waste may be located less than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft, if in the opinion of the Federal Aviation Administration they will not present a safety hazard to air traffic.
- (v) The final elevation of a new landfill or expansion of an existing landfill must not extend more than 200 feet above the highest elevation of the land surface that existed prior to landfill development, unless the Federal Aviation Administration believes that the proposed fill height in excess of 200 feet will not present a safety hazard to air traffic.
- (4) Unstable areas. A landfill must not be located in unstable areas where inadequate support for the structural components of the landfill exists or where changes in the substrate below or adjacent to the landfill are capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. An application for expansion of an existing landfill must demonstrate that adequate support for the structural components of the landfill exists or can be engineered to support any additional loads that may be generated by continued operation of the facility. For purposes of this paragraph:
 - (i) Unstable area means a location that is susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. Unstable areas can

include poor foundation conditions, areas susceptible to mass movements, and karst terrains.

- (ii) Structural components means liners, leachate collection systems, final covers, runon/run-off systems, and any other component used in the construction and operation of the landfill that is necessary for protection of human health and the environment.
- (iii) Poor foundation conditions means those areas where features exist which indicate that a natural or human-induced event may result in inadequate foundation support for the structural components of a landfill.
- (iv) Areas susceptible to mass movement means those areas of influence (i.e., areas characterized as having an active or substantial possibility of mass movement) where the movement of earth material at, beneath, or adjacent to the landfill because of natural or human-induced events, results in the downslope transport of soil and rock material by means of gravitational influence. Areas of mass movement include, but are not limited to, landslides, avalanches, debris slides and flows, soil fluctuation, block sliding and rock fall.
- (v) Karst terrains means areas where karst topography, with its characteristic surface and subterranean features, is developed as the result of dissolution of limestone, dolomite, or other soluble rock. Characteristic physiographic features present in karst terrains include, but are not limited to sinkholes, sinking streams, caves, large springs and blind valleys.
- (5) Unmonitorable or unremediable areas. New landfills must not be located in areas where environmental monitoring and site remediation cannot be conducted. Identification of these areas must be based upon ability to sufficiently characterize groundwater and surface water flow to locate upgradient and downgradient directions; ability to place environmental monitoring points which will detect releases from the landfill; ability to characterize and define a release from the landfill and determine what corrective actions may be necessary; and the ability to carry out those corrective actions. Lateral expansions adjacent to existing landfills which are already contaminating groundwater may be allowed by the department if the proposed expansion area can be constructed in a way that demonstrates compliance with the regulations. This may be demonstrated using remedial actions at the existing site resulting in a demonstrated improvement in groundwater quality; and any additional monitoring requirements that the department needs to ensure the integrity of the expansion area, such as leakage detection lysimeters installed beneath the new liner, statistical triggers of groundwater monitoring, tracers, additional monitoring wells surrounding the entire site, and any other monitoring methods required by the department.
- (6) Fault areas. New landfills and lateral expansions shall not be located within 200 feet of a fault that has had displacement in Holocene time unless the owner or operator demonstrates to the department that an alternative setback distance of less than 200 feet will not result in damage to the structural integrity of the landfill unit and will be protective of human health and the environment.
- (7) Seismic impact zones. New landfills and lateral expansions shall not be located in seismic impact zones, unless the owner or operator demonstrates to the department that all permanent containment structures, including liners, leachate collection systems, and surface water control systems, are designed to resist the maximum horizontal acceleration

in lithified earth material for the site pursuant to the provisions of section 360-2.7(b)(7) of this Subpart.

- (8) Federally regulated wetlands. For the purpose of this Subpart, federally regulated wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marsh, bogs and similar areas. New landfills and lateral expansions shall not be located in federally regulated wetlands, unless the appropriate permits are obtained from the U.S. Army Corps of Engineers, and unless the owner or operator can make the following demonstrations to the department, to the extent required under federal or State law.
 - (i) The presumption that a practicable alternative to the proposed landfill is available, which does not involve federally regulated wetlands, is clearly rebutted.
 - (ii) The construction and operation of the landfill will not:
 - (a) cause or contribute to violations of any applicable water quality standard;
 - (b) violate any applicable toxic effluent standard or prohibition;
 - (c) jeopardize the continued existence of endangered or threatened species or result in the destruction or adverse modification of a critical habitat; and
 - (d) violate any requirement for the protection of a marine sanctuary.
 - (iii) The landfill will not cause or contribute to significant degradation of federally regulated wetlands. The owner or operator must demonstrate the integrity of the landfill and its ability to protect ecological resources by addressing the following factors:
 - (a) erosion, stability and migration potential of native wetland soils, muds, and deposits used to support the landfill;
 - (b) erosion, stability and migration potential of dredged and fill materials used to support the landfill;
 - (c) the volume and chemical nature of the waste managed in the landfill;
 - (d) impacts from release of the solid waste on fish, wildlife, and other aquatic resources and their habitat;
 - (e) the potential effects on catastrophic release of waste to the federally regulated wetland and the resulting impacts on the environment; and
 - (f) any additional factors, as necessary, to demonstrate that ecological resources in the federally regulated wetland are sufficiently protected.
- (iv) Steps have been taken to attempt to achieve no net loss of federally regulated wetlands to the extent required under federal or State law (as defined by acreage and function) by first avoiding impacts to federally regulated wetlands to the maximum extent practicable, then minimizing unavoidable impacts to the maximum extent practicable, and finally by offsetting remaining unavoidable wetland impacts through all appropriate and practicable compensatory mitigation actions (e.g. restoration of existing degraded wetlands or creation of new wetlands).

(v) Sufficient information is available to make a reasonable determination with respect to these demonstrations.

Privacy Policy | Website Usage and Policies | Website Accessibility | Employment | Contact Us | Website Survey Copyright © 2013 New York State Department of Environmental Conservation