NORTH SEA LANDFILL 1370 MAJORS PATH SOUTHAMPTON, NEW YORK

2ND - SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

SUBMITTED TO:

New York State Department of Environmental Conservation Division of Environmental Remediation 50 Circle Road Stony Brook, New York 11790

PREPARED FOR:

Town of Southampton 1370 Majors Path Southampton, New York 11968

PREPARED BY:

P.W. Grosser Consulting, Inc. 630 Johnson Ave., Suite 7 Bohemia, NY 11716 Phone: 631-589-6353

PWGC Project Number: SHP2201

2ND - SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

1370 MAJORS PATH SOUTHAMPTON, NEW YORK

TABL	E OF C	ONTENTS PAGE
1.0	INTF	RODUCTION1
	1.1	Purpose and Scope
	1.2	Site Location and Description1
2.0	GRC	DUNDWATER MONITORING PLAN2
	2.1	Sampling Frequency2
	2.2	Leachate Monitoring2
	2.3	Groundwater Monitoring3
	2.4	Well Condition Report
	2.5	Sample Collection Procedures
	2.6	Decontamination and Quality Assurance / Quality Control
	Proce	edures4
	2.7	Groundwater Quality 4
		2.7.1 Inorganic Water Quality Results - October 2022 4
		2.7.2 Organic Water Quality Results - October 2022 5
		2.7.3 Well Cluster 4 & 11 Analysis - October 2022 5
	2.8	Groundwater Flow & Migration of Leachate Plume 6
	2.9	Leachate Quality 6
3.0	DAT	A VALIDATION AND USABILITY REPORT8
4.0	SUM	MARY9
5.0	REC	OMMENDATIONS10
TABLE	-6	
TABLE Table		Inorganic Groundwater Quality Results - October 2022
Table	2	Organic Groundwater Quality Results - October 2022
Table Table		Leachate Quality Results - October 2022 Groundwater Elevations - October 2022
		Groundwater Elevations Getober 2022
FIGUR Figure		Groundwater Contour Map – October 2022
Figure	2	Monitoring Well 11A - 1997-2022
Figure Figure		Monitoring Well 11B - 1997-2022 Monitoring Well Cluster 4 - Ammonia Trends - 1993-2022
Figure		Monitoring Well Cluster 4 - Allinonia Trends - 1995-2022 Monitoring Well Cluster 4 - Chloride Trends - 1995-2022
Figure	6	Monitoring Well Cluster 4 - Chromium Trends - 1995-2022
Figure		Monitoring Well Cluster 4 - Conductivity Trends - 1995-2022
Figure		Monitoring Well Cluster 4 - Iron Trends - 1993-2022
Figure Figure		Monitoring Well Cluster 4 - Manganese Trends - 1995-2022 Monitoring Well Cluster 4 - Nitrate Trends - 1993-2022
Figure		Monitoring Well Cluster 4 - Total Dissolved Solids Trends - 2005-2022

SHP2201 - 2nd SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

Page i

APPENDICES

Appendix A Laboratory Analytical Reports Appendix B Well Inspection Checklist Monitoring Well Sampling Logs Appendix C 6 NYCRR Part 360-2: Landfills Appendix D

1.0 INTRODUCTION

1.1 Purpose and Scope

P.W. Grosser Consulting Inc. (PWGC) has prepared the following post-closure groundwater monitoring report for the North Sea Landfill, Southampton, New York. This report is intended to satisfy the New York State Department of Environmental Conservation (NYSDEC) requirements for post-closure monitoring at the North Sea Landfill. The landfill is currently in post-closure and was removed from the United States Environmental Protection Agency (USEPA) Superfund National Priorities List (NPL) in 2005. The report provides a summary of the groundwater monitoring and results of groundwater and leachate samples collected during the Second Half of 2022.

1.2 Site Location and Description

North Sea Landfill (the Landfill) was initially constructed in 1963 for the disposal of solid waste, refuse and septic system waste. The Landfill consisted of three cells (Cell No. 1, Cell No. 2 and Cell No. 3), sludge lagoons, a leachate collection system and a gas monitoring system. Cell No. 1 is an inactive, unlined landfill that has been capped and closed. Cell No. 2 is an inactive, lined landfill with a leachate collection system that was capped and closed in 1990. Cell No. 3 is a 6.6-acre, inactive, lined landfill with a leachate collection system that was capped and closed in 1997. The sludge lagoons were decommissioned in 1986.

2.0 GROUNDWATER MONITORING PLAN

Groundwater monitoring and sampling is performed in accordance with the USEPA approved Operation and Maintenance (O&M) Manual dated November 1994 and subsequent amendments.

The groundwater monitoring plan for the site calls for the monitoring of both leachate and groundwater to confirm that the historic operation of the facility has not adversely impacted groundwater quality. The groundwater well network currently utilized for monitoring purposes at the Landfill consists of 20 groundwater monitoring wells that were installed as a part of the Remedial Investigation / Feasibility Study, the Cell No. 3 landfill expansion hydrogeologic investigation, and earlier monitoring activities.

Sampling Frequency

In accordance with the O&M Manual, groundwater monitoring well sampling was performed on a quarterly basis. In 2005, the USEPA and NYSDEC approved a reduction of the number of wells sampled and sampling frequency to semiannual as detailed in the table below:

1st Half Semi-Annual Sa	mpling (April)	2 nd Half Semi-Annual Sa	mpling (October)
Analysis	Sample Locations	Analysis	Sample Locations
Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6)	1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 11A, 11B, 12A, & 12B	Routine Parameters (6 NYCRR Part 360-2.11 (d)(6)	1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 6AR, 6B, 8, 9, 11A, 11B, 12A, 12B
		Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6) Metals Only	6AR, 6B, 11A, & 11B
Routine Parameters + Arsenic (6 NYCRR Part 360-2.11 (d)(6)	LEA-Primary & LEA-Secondary	Baseline Parameters (6 NYCRR Part 360-2.11 (d)(6) VOCs Only	11A & 11B
Minus VOC Analysis		Routine Parameters + Arsenic (6 NYCRR Part 360-2.11 (d)(6) Minus VOC Analysis	LEA-Primary & LEA-Secondary

Note: Filtered metals analysis run on samples with turbidity in excess of 50 nephelometric turbidity units (NTUs).

Appendix D includes list of analytes for 6 New York Codes, Rules and Regulations (NYCRR) Part 360-2.11 (d) (6).

2.2 Leachate Monitoring

The objectives of the leachate monitoring program are to adequately characterize and monitor the composition of:

- 1. Leachate in the primary leachate collection systems; and
- 2. Liquids detected in the secondary liquids collection systems, prior to offsite treatment and disposal.

The Town of Southampton monitors the leachate storage system and submits monthly status reports, which includes the monthly summary tables of leachate

volumes consisting of the amount of leachate trucked, storage tank levels and the volume of leachate removed from the storage tank. Leachate quantity removals and allowable leakage rate (ALR) calculations will be discussed in the Annual Report.

2.3 Groundwater Monitoring

The groundwater monitoring well network for the Landfill consists of nine groundwater monitoring locations (MW-1A, B, C, MW-3A, B, C, MW-4A, B, C, MW-6A, B, MW-7, MW-8, MW-9, MW-11A, B, and MW-12A, B) which are currently in use. Several of these locations are constructed with multiple wells which are screened at varying depths throughout the aquifer (A=shallow, B=intermediate, C=deep).

Seventeen groundwater monitoring wells, as well as the primary and secondary leachate collection systems were sampled on October 26 and 27, 2022 as part of the Second Half 2022 sampling event. Samples collected as part of the Second Half 2022 sampling event were delivered to Pace Analytical Laboratories of Melville, New York and analyzed for the baseline and/or routine parameters. Turbid groundwater samples were also analyzed for filtered metals. The data collected in the field and laboratory are summarized on Tables 1 through 4 and the laboratory reports are attached in **Appendix A**. Depth to water and groundwater elevation data are summarized on **Table 4** and a water table flow map is shown on **Figure 1**.

Analytical results from each monitoring well were compared to applicable standards and guidance values, as well as analytical results from the previous years. Compounds that exceed NYSDEC groundwater standards or guidance values are indicated by shading on **Tables 1** through **3** and are discussed in the water quality section of this report.

2.4 Well Condition Report

During the Second Half 2022 sampling event, PWGC assessed the monitoring wells. Well assessment checklists (**Appendix B**) were filled out appropriately in the field during the sampling event. The assessment checklist included well headspace readings, well conditions, and recommendations. Headspace readings were collected utilizing a photoionization detector (PID). No PID responses were observed. The lock for MW-11B was found to be rusted. No other deficiencies with the well conditions were noted.

2.5 Sample Collection Procedures

Prior to collection of each sample, a minimum of three casing volumes were evacuated (purged) from the well using a Grundfos, submersible pump and temperature, specific conductivity, pH, dissolved oxygen, oxygen reduction potential (ORP) and turbidity measurements were collected and recorded. Groundwater sampling logs are included in **Appendix C**. Groundwater samples were collected using a submersible pump and dedicated polyethylene tubing. Primary and secondary leachate collection systems were also sampled using disposable polyethylene bailers and a dedicated polyethylene line.

Additional sample volume was collected from groundwater monitoring wells where turbidity could not be reduced below 50 NTUs for laboratory filtering of metals. This included groundwater monitoring well MW-11A.

2.6 Decontamination and Quality Assurance / Quality Control Procedures

All non-disposable sampling equipment (i.e., submersible pump) were decontaminated prior to and between each well by using a distilled water and non-phosphate detergent wash followed by a distilled water rinse.

2.7 Groundwater Quality

During the Second Half 2022 (October) groundwater sampling event, samples from seventeen groundwater monitoring wells were collected and submitted for analysis of routine and/or baseline metals and volatile organic compound (VOC) parameters. The inorganic portion of the analysis includes metals. nutrients, and the physical properties of the sample. Routine parameters include a condensed version of the baseline parameters. Routine metals are reduced to cadmium, calcium, iron, lead, magnesium, manganese, potassium, and sodium. In addition, VOCs, color, and hexavalent chromium are not analyzed as part of the routine parameters. Specific conductivity, temperature, turbidity, and pH values were reported from field measurements. However, they are listed in **Table 1** and discussed in the inorganic water quality section below. The list of organic groundwater quality results (Table 2) is comprised of volatile organic compounds (VOCs).

Groundwater quality as it relates to inorganic metal concentrations is evaluated at looking at the total metal concentrations for samples with turbidity values below 50 NTUs and dissolved metal concentrations with turbidity values above 50 NTUs.

The laboratory results are compared to NYSDEC's Class GA Groundwater Standards, 6NYCRR Part 703. Analytical results are discussed below. The locations of groundwater monitoring wells are illustrated on Figure 1. The wells are grouped into clusters consisting of varying depths (A=shallow, B=intermediate, C=deep).

2.7.1 Inorganic Water Quality Results - October 2022

Long Island groundwater generally has a low pH and is typically measured below the NYSDEC standard range of 6.5 to 8.5. Three of the seventeen samples had a measured pH level below 6.5. pH concentrations ranged from 6.16 (MW-6B) to 6.90 (MW-1C).

Chromium was detected above method detection limits in one of the four groundwater samples analyzed for baseline metals. Chromium concentrations ranged from less than 0.01 mg/L to 0.0577 mg/L (MW-11B). Chromium was detected in one of the four groundwater samples (MW-11B) at a concentration exceeding the NYSDEC groundwater standard (0.05 mg/L). chromium, the toxic form of chromium, was not detected above method detection limits in the four groundwater samples.

Iron was detected above method detection limits in eleven of the seventeen groundwater samples. Iron concentrations ranged from less than 0.100 mg/L to 12.3 mg/L (MW-11B). Iron was detected in eight of the seventeen groundwater samples (MW-1A, MW-3A, MW-3B, MW-4B, MW-4C, MW-9, MW-11A, and MW-11B) at concentrations exceeding the NYSDEC groundwater standard (0.3 mg/L).

Manganese was detected above method detection limits in eleven of the seventeen groundwater samples. Manganese concentrations ranged from less than 0.01 mg/L to 1.88 mg/L (MW-3A). Manganese was detected in six of the seventeen groundwater samples (MW-3A, MW-3B, MW-4B, MW-11A, MW-12A, and MW-12B) at a concentration exceeding the NYSDEC groundwater standard (0.3 mg/L).

Sodium was detected above method detection limits in each of the seventeen groundwater samples. Sodium concentrations ranged from 7.15 mg/L (MW-1B) to 34.6 mg/L (MW-3A). Sodium was detected in two of the seventeen groundwater samples (MW-3A and MW-4C) at a concentration exceeding the NYSDEC groundwater standard (20 mg/L).

Ammonia was detected above method detection limits in eight of the seventeen groundwater samples. Ammonia concentrations ranged from less than 0.1 mg/L to 3.8 mg/L (MW-12A). Ammonia was detected in three of the seventeen groundwater samples (MW-3B, MW-12A, and MW-12B) at a concentration exceeding the NYSDEC groundwater standard (2 mg/L).

Nitrate was detected above method detection limits in sixteen of the seventeen groundwater samples. Nitrate concentrations ranged from less than 0.050 mg/L to 10.7 mg/L (MW-1A). Nitrate was detected in one of the seventeen groundwater samples (MW-1A) at a concentration exceeding the NYSDEC groundwater standard (10 mg/L).

Phenol was detected above method detection limits in four of the seventeen groundwater samples. Phenol concentrations ranged from less than 0.0028 mg/L to 0.0059 mg/L (MW-1A). Phenol was detected in four of the seventeen groundwater samples (MW-1A, MW-4A, MW-8, and MW-11B) at a concentration exceeding the NYSDEC groundwater standard (0.001 mg/L).

2.7.2 Organic Water Quality Results - October 2022

Groundwater samples collected from two of the wells (MW-11A and MW-11B) were analyzed for VOCs as part of the Second Half 2022 sampling program. Analytical results indicate that no VOCs were detected in the samples collected at concentrations exceeding the laboratory detection limits with the exception of chloroform in MW-11A and MW-11B. Chloroform did not exceed its NYSDEC groundwater standard of 0.007 mg/L.

2.7.3 Well Cluster 4 & 11 Analysis - October 2022

Monitoring wells MW-4A, MW-4B, and MW-4C are located down-gradient of the Landfill along the edge of Fish Cove Pond. These wells represent the farthest down-gradient wells that are used to monitor the Landfill. Historical monitoring has shown that the leading edge of the leachate plume is migrating into Fish Cove Pond. In addition, there is an upward groundwater flow gradient from MW-4C to MW-4B. Concentrations of Conductivity, Chloride, Chromium, and total dissolved solids (TDS) have been increasing in MW-4C. The increasing trends observed in MW-4C may be attributed to a former salt storage area. The former salt storage area was located at the southwestern portion of the North Sea Landfill. A monitoring well was installed in this area during the Remedial Investigation and Feasibility Study (RI/FS) performed under the USEPA and

NYSDEC oversite. This well exhibited similar water quality of elevated chlorides and trivalent chromium as that exhibited in MW-4C. This area was not included as an operable unit at the time of the RI/FS and Remedial actions. These increasing trends are not coupled with any significant increases in iron and manganese which would indicate the presence of leachate that is being broken down. Iron and manganese are prevalent in MW-4B where the plume has been documented. Iron and manganese levels in MW-4C are at background levels when compared to MW-4B. A steady increase in Nitrate has been observed in MW-4A. This is likely attributed to the increase in development of the area upgradient of this well by homes with onsite sanitary systems. Concentrations of Nitrate are lower in the onsite landfill wells with the exception of MW-1A, located adjacent to a compost storage area. Trend charts are included as **Figures 4** through **11** to depict historic trends in monitoring wells MW-4A, 4B, and 4C.

Monitoring wells MW-11A and MW-11B are located down-gradient of Cell 3. These wells have been under close observation since March 1993. A graph of several leachate indicators detected in samples collected from monitoring wells MW-11A and MW-11B since 1997 are shown on **Figures 2** and **3**. Detected concentrations of certain constituents were noted in MW-11A during this sampling event. As noted previously, a sample was not collected from MW-11B during this sampling event. A review of the trends shows that concentrations have generally decreased over time indicating that the plume continues to degrade over time. Slightly elevated concentrations of iron and manganese are still detected in these wells.

2.8 Groundwater Flow & Migration of Leachate Plume

Groundwater elevation data and laboratory analytical results are utilized to determine groundwater flow and to map the horizontal and vertical migration of the leachate plume. Depth to water and groundwater elevation data are shown on **Table 4**.

A groundwater contour map for October 2022 (**Figure 1**) was created with groundwater elevation data from nine water table monitoring wells (MW-1A, MW-3A, MW-4A, MW-6AR, MW-7A, MW-8, MW-9, MW-11A, and MW-12A). An evaluation of the water table elevation data indicates that groundwater flows from the landfill towards Fish Cove Pond. At Fish Cove Pond, an upward vertical flow component has been observed based upon head differential observed in the groundwater monitoring wells indicating groundwater is discharging into the pond.

Based upon historical groundwater sampling results and previous remedial investigations, the leachate plume migrates from the landfill, specifically Cell No. 1, and travels horizontally towards the northwest and discharges into Fish Cove Pond. The plume has been observed at its deepest point vertically at the MW-3B depth interval.

2.9 Leachate Quality

The October 2022 analytical data indicate that contaminant concentrations in the leachate detection system (secondary) are slightly lower when compared to those of the leachate collection system (primary). Concentrations observed

in both the primary and secondary leachate are similar when compared to concentrations detected during the October 2021 sampling event. The analytical results for the primary and secondary leachate are shown on Table 3 and the laboratory report is attached as part of Appendix A.

P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C.

3.0 DATA VALIDATION AND USABILITY REPORT

In accordance with the contract, five percent of the groundwater analytical results are in the process of being validated by Laboratory Data Consultants, Carlsbad, California. As part of the data validation process, all quality control (QC) issues are being reviewed. Upon completion, a copy of the data validation and usability report shall be submitted under separate cover. Compliance chart, re-submission communications, and the NYSDEC laboratory sample preparation and analysis summary forms will also be included.

4.0 SUMMARY

Review of the data for the Second Half 2022 indicates that previously implemented remedial actions continue to be effective at minimizing potential site impacts. In brief, the leachate quality has remained similar and the groundwater quality with regards to the inorganic constituents has improved when compared to the previous reporting periods. The groundwater quality with regards to other organic constituents has improved when compared to the previous reporting periods with concentrations remaining below laboratory detection levels except for chloroform (MW-1B, MW-1C, and MW-4A). Several inorganic compounds are sporadically detected in wells MW-1A, 1B, 1C, 3A, 3B, 3C, 4A, 4B, 4C, 11A, 11B, 12A, and 12B. Contaminants detected in wells MW-3A, 3B, 3C, 4A, 4B, and 4C may be due to the expansion of the recharge basin, which is now located up-gradient of these wells.

Monitoring well cluster MW-4 has shown Nitrate and potential former salt storage impact. Nitrate concentrations in MW-4A have been trending upwards and are a potential result of development of the area upgradient. Conductivity, Chloride, Chromium, and TDS concentrations have been trending upwards in MW-4C, indicating potential impact from the former salt storage area at the landfill.

All sample results are usable as reported or usable with minor qualification as estimated or edited to non-detection to determine the presence, absence, and magnitude of environmental contamination in the samples collected from the site.

5.0 RECOMMENDATIONS

PWGC recommends that the post-closure monitoring and maintenance operations program be continued, and the groundwater and leachate sampling program be continued with the following modifications:

- Reduction from semi-annual monitoring and sampling to annual monitoring and sampling.
 - o Baseline sampling will be performed on an annual basis in October of each calendar year and extend to the entire groundwater monitoring well network except the MW-7 cluster.

TABLES

SHP2201 - 2nd SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

Sertam	ANALYTICAL	UNITS	GW											MW-1	A								
PMADESTRAPP PMAD			-	October 20	17	April 201	Ω	October 20	1Ω	April 20	10	October 2010		April 202	0	October 2020	April 20	21	October 2	021	April 203	2	October 2022
Section of Section Margin 1987 Perk 0.098 U Perk 0.0960 U Perk 0	PARAMETERS		STND (1)	October 20	/1/	April 2010	U	October 20.	10	April 20	1,	October 2017		April 202	.0	October 2020	April 20	21	Octobel 2	021	April 202		October 2022
More First Part More Part	Aluminum as Al	mg/L	NA	PNA		0.0134	UJ	PNA		0.200	U	PNA		0.200	U	PNA	0.200	U	PNA		0.200		PNA
Partiers mg/L 1 PNA 0.0218 1 PNA 0.0208 0 PNA 0.0209 0 PNA 0	Antimony as Sb	mg/L	0.003 #	PNA		0.003	U	PNA		0.0600	U	PNA		0.0600	U	PNA	0.0600	U	PNA		0.0600	U	PNA
Beryllium as Be mg/L 0.003	Arsenic as As	mg/L	0.025	PNA		0.0068	U	PNA		0.0100	U	PNA		0.0100	U	0.0100 U	0.0100	U	0.0100	U	0.0100	U	0.0100 U
Series Bernel Cardinam and Cardinam an	Barium	mg/L	1	PNA		0.0218	J	PNA		0.200	U	PNA		0.200	U	PNA	0.200	U	PNA		0.200	U	PNA
Common as Col. Common as Col. C	Beryllium as Be	mg/L	0.003	PNA		0.0006	U	PNA		0.0050	U	PNA		0.0050	U	PNA	0.0050	U	PNA		0.0050	U	PNA
Calciums as Ca	Boron as B	mg/L	1	PNA		0.0324	J	PNA		0.0917		PNA		0.0807		PNA	0.0611		PNA		0.0500	U	PNA
Carelina Sect	Cadmium as Cd	mg/L	0.005	0.0025	U	0.00011	J	0.0025	U	0.0025	U	0.0025 U	U	0.0025	U	0.0025 U	0.0025	U	0.0025	U	0.0025	U	0.0025 U
Cababit	Calcium as Ca	mg/L	NA	55.6		17.7		63.9		76.400		63.400		46.700		77.800	40.200		54.700		21.700		60.000
Copper as Gu	Chromium as Cr	mg/L	0.05	PNA		0.0016	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0184		PNA		0.0100	U	PNA
Control of Control o	Cobalt	mg/L	NA	PNA		0.0006	U	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500	U	PNA		0.0500	U	PNA
Tomas Se	Copper as Cu	mg/L	0.2	PNA		0.0025	U	PNA		0.0250	U	PNA		0.0250	U	PNA	0.0250	U	PNA		0.0250	U	PNA
Lead as Pp	Cyanide as CN	mg/L	0.2	PNA		0.0029	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	0.0100 U
	Iron as Fe	mg/L	0.3	0.0625		0.0109	U	0.0601		0.0261		0.742		0.0291		3.840	0.800		0.179		0.100	U	0.393
Marganes as Mn	Lead as Pb	mg/L	0.025	0.005	U	0.0013	U	0.005	UB	0.0050	U	0.0050 t	U	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050	U	0.0050 U
	Magnesium	mg/L	35 #	22.100		7.25	J	24.8		28.700		22.600		19.000		27.000	15.800		18.700		7.450		20.300
Nickel as Ni	Manganese as Mn	mg/L	0.3	0.028		0.005	U	0.0196		0.0100	U	0.217		0.0100	U	0.243	0.100		0.0126		0.0100	U	0.0100 U
Potassium mg/L NA 12.90	Mercury as Hg	mg/L	0.0007	PNA		0.000056	U	PNA		0.00020	U	PNA		0.00020	U	PNA	0.00020	U	PNA		0.00020	U	PNA
Selenia as Se	Nickel as Ni	mg/L	0.1	PNA		0.0009	UJ	PNA		0.0400	U	PNA		0.0400	U	PNA	0.0400	U	PNA		0.0400	U	PNA
Silver as Ag mg/L 0.05 PNA 0.0036 U/ PNA 0.0100 U 0.050	Potassium	mg/L	NA	12.900		4	J	12.5		13.900		12.600		6.820		17.300	5.580		11.100		5.000	U	13.500
Sodium as Na mg/L 20	Selenium as Se	mg/L	0.01	PNA		0.0063	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	PNA
Thaillum as Ti	Silver as Ag	mg/L	0.05	PNA		0.0036	UJ	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	PNA
Vanadium	Sodium as Na	mg/L	20	13.400		11.1		15.2		15.400		18.600		14.400		22.300	12.800		16.300		10.800		19.900
Zinc as Zn	Thallium as Tl	mg/L	0.0005#	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100	U	PNA		0.0100	U	PNA
Alkalinity tot CaCo3 mg/L NA 132 46.6 98.4 178 127 55.5 194 76.1 119 29.3 142 Chloride as Cl mg/L 250 22.6 18.3 30.2 39.6 41.0 26.6 43.4 20.7 26.3 20.0 39.0 Sulfate as S04 mg/L 250 85.8 37.2 125 120 106 91.9 103 58.4 67.7 36.7 87.3 Bromide mg/L 2 # 0.5 U 0.030 J 0.5 U 0.50	Vanadium	mg/L	NA	PNA		0.0008	U	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500	U	PNA		0.0500	U	PNA
Chloride as Cl mg/L 250 22.6 18.3 30.2 39.6 41.0 26.6 43.4 20.7 26.3 20.0 39.0	Zinc as Zn	mg/L	2 #	PNA		0.0022	UJ	PNA		0.0200	U	PNA		0.0200	U	PNA	0.0200	U	PNA		0.0200	U	PNA
Sulfate as SO4	Alkalinity tot CaCo3	mg/L	NA	132		46.6		98.4		178		127		55.5		194	76.1		119		29.3		142
Bromide	Chloride as Cl	mg/L	250	22.6		18.3		30.2		39.6		41.0		26.6		43.4	20.7		26.3		20.0		39.0
BODS	Sulfate as SO4	mg/L	250	85.8		37.2		125		120		106		91.9		103	58.4		67.7		36.7		87.3
COD mg/L NA 10 U 10 U 15.5 32.2 10.2 16.7 27.3 10 U 21.2 10 U 20.8 Color units NA PNA 5 U PNA 10.0 PNA 5.0 PNA 6.2 PNA 5.0 U 6.0 Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 0.020 U	Bromide	mg/L	2 #	0.5	U	0.038	J	0.5	U	0.50	U	0.50 t	U	0.50	U	0.50 U	0.50	U	0.50	U	0.50	U	0.50 U
Color units NA PNA 5 U PNA 10.0 PNA 5.0 PNA 0.020 U 0.020	BOD5	mg/L	NA	2	U	2	U	4.1		2.0	U	2.0 t	U	2.0	U	2.0 U	2.0	U	2.0	U	2.0	U	2.0 U
Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 0.020 U 0	COD	mg/L	NA	10	U	10	U	15.5		32.2		10.2		16.7		27.3	10	U	21.2		10	U	20.8
Hardness as CaC03 mg/L NA 200 166 187 265 220 130 280 120 300 56.7 273 Ammonia as N mg/L 2 0.1 U 0.018 J 0.10 U 0.10 U 0.10 U 0.18 0.10 U 0.050 U 0.0050 U	Color	units	NA	PNA		5	U	PNA		10.0		PNA		5.0		PNA	6.2		PNA		5.0	U	6.0
Ammonia as N mg/L 2 0.1 U 0.018 J 0.10 U 0.050 U 0.0050 U	Chromium hex as Cr	mg/L	0.05	PNA		0.003	U	PNA		0.020	U	PNA		0.020	U	PNA	0.020	U	PNA		0.020	U	PNA
Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.050 U 0.055 U 0.050 U 0.055 U 0.050 U 0.055 U 0.050 U 0.055 U 0.050 U 0.05	Hardness as CaC03	mg/L	NA	200	İ	166	İ	187		265		220		130	İ	280	120		300		56.7		273
Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.050 U 0.05	Ammonia as N	mg/L	2	0.1	U	0.018	J	0.10	U	0.10	U	0.10 U	U	0.18		0.10 U	0.10	U	0.10	U	0.10	U	0.10 U
Phenols as Phenol mg/L 0.001 0.005 U 0.0056 0.005 U 0.0050 U 0.	Nitrite as N	mg/L	NA	0.05	U	0.05	U	0.050	U	0.050	U	0.050 U	U	0.050	U	0.050 U	0.050	U	0.050	U	0.050	U	0.050 U
Tot Dissolved Solids mg/L NA 305.0 144 326 390 330 286 472 258 234 129 342 Tot. Kjeldahl Nitrogen mg/L NA 0.38 0.1 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.36 U 0.10 U 0.10 Tot Organic Carbon mg/L NA 3.7 B 1.2 4.4 6.2 4.8 4.0 5.4 3.5 3.5 1.4 5.1 Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Nitrate as N	mg/L	10	6.4		4		10.5		11.0		6.6		9.2		9.5	6.2		8.1		5.8		10.7
Tot. Kjeldahl Nitrogen mg/L NA 0.38 0.1 U 0.10 U 0.01 U 0.10 U 0.01 U 0.01 U 0.10 U 0.10 U 0.01 U 0.02 0.01 U 0.01 U 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03	Phenols as Phenol	mg/L	0.001	0.005	U	0.0056		0.005	U	0.0050	U	0.0118	Ţ	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050	U	0.0059
Tot Organic Carbon mg/L NA 3.7 B 1.2 4.4 6.2 4.8 4.0 5.4 3.5 3.5 1.4 5.1 Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Tot Dissolved Solids	mg/L	NA	305.0		144		326		390		330		286		472	258		234		129		342
Tot Organic Carbon mg/L NA 3.7 B 1.2 4.4 6.2 4.8 4.0 5.4 3.5 3.5 1.4 5.1 Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Tot. Kjeldahl Nitrogen	mg/L	NA	0.38		0.1	U	0.10	U	0.10	U	0.10 U	U	0.10	U	0.10 U	0.10	U	0.36	U	0.10	U	0.10 U
Turbidity NTU NA 2.8 5.4 5.1 0.0 3.9 32.4 31.4 118.6 PNA 0.0 0.0 Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	Tot Organic Carbon	mg/L	NA	3.7	В	1.2		4.4		6.2		4.8		4.0		5.4	3.5		3.5		1.4		5.1
Temperature deg.C NA 12.26 11.42 12.16 12.01 12.77 11.7 12.63 12.62 15.27 12.44 13.45 pH units 6.5-8.5 6.09 5.54 5.61 6.73 6.29 6.30 6.40 7.95 4.19 5.46 6.60	- J	0,	NA	2.8									t										
	Temperature	deg.C	NA	12.26		11.42		12.16		12.01		12.77	T	11.7		12.63	12.62		15.27		12.44		13.45
	pН	units	6.5-8.5	6.09		5.54		5.61		6.73		6.29		6.30		6.40	7.95		4.19		5.46		6.60
Spec. Cond umho/cm NA 568 244 192 373 522 384 56 329 576 187 578	Spec. Cond	umho/cm	NA	568		244		192		373		522		384		56	329		576		187		578

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

- # = Guidance value, no standard exists.
- NA = Not available.
- PNA = parameter not analyzed for.
- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J-Data Validation Qualifier-The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\label{lem:U-Data-Validation} \textit{Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$
- $\textit{UJ-Data Validation Qualifier-The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is$
- approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

ANALYTICAL	UNITS	GW							N	MW	7-1B								
			October 2017	April 20	10	October 2018	April 2019	October 2019	Apr	ril 2	:020	October 2020	April 2021		October 202		April 202	12	October 2022
PARAMETERS		STND (1)	October 2017	April 20	10	October 2018	April 2019	October 2019	Unfiltered		Filtered	October 2020	April 2021		october 202	1	April 202		October 2022
Aluminum as Al	mg/L	NA	PNA	0.0134	U	PNA	0.200 l	PNA	0.200 U	J	0.200 U	PNA	0.200	J	PNA		0.200	U	PNA
Antimony as Sb	mg/L	0.003#	PNA	0.003	U	PNA	0.0600 U	PNA	0.0600 U	J	0.0600 U	PNA	0.0600	J	PNA		0.0600	U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	0.0100 U	0.0100 I	J	0.0100	U	0.0100	U	0.0100 U
Barium	mg/L	1	PNA	0.0107	J	PNA	0.200 U	PNA	0.200 U	J	0.200 U	PNA		J	PNA		0.200	U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006	U	PNA	0.0050 U	PNA	0.0050 U	J	0.0050 U	PNA		J	PNA		0.0050	U	PNA
Boron as B	mg/L	1	PNA	0.0132	J	PNA	0.0500 U	PNA	0.0500 U	J	0.0500 U	PNA		J	PNA		0.0500	U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U		U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	J	0.0025 U	0.0025 U		J	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	4.46	4.29		4.74	4.440	3.130	3.830		3.750	3.670	4.630		4.380		4.440		4.190
Chromium as Cr	mg/L	0.05	PNA	0.0027	J	PNA	0.010 U	PNA	0.0303		0.010 U	PNA	0.0472		PNA		0.0100	U	PNA
Cobalt	mg/L	NA	PNA	0.0006	U	PNA	0.0500 U	PNA	0.0500 U	J	0.0500 U	PNA	0.0500	J	PNA		0.0500	U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025	U	PNA	0.0250 U	PNA	0.0250 U	J	0.0250 U	PNA		J	PNA		0.0250	U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029	U	PNA	0.0100 U	PNA	0.0100 U	J	PNA	PNA	0.0100 I	J	PNA		0.0100	U	0.0100 U
Iron as Fe	mg/L	0.3	0.02 U		U	0.0200 U	0.0200 U		0.114	_	0.0200 U	0.0378	0.190		0.102		0.100	U	0.237
Lead as Pb	mg/L	0.025	0.005 U		U	0.0050 U	0.0050 U			J	0.0050 U	0.0050 U		J	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35#	1.94	1.98		2.160	1.850	1.250	1.620	1	1.570	1.740	2.180		2.150		2.100		2.160
Manganese as Mn	mg/L	0.3	0.01 U	0.0035	J	0.0100 U	0.0100 U	0.0100 U	0.0100 U	J	0.0100 U	0.0100 U	0.0100 I	J	0.0100	U	0.0100	U	0.0100 U
Mercury as Hg	mg/L	0.0007	PNA	0.000069	J	PNA	0.00020 U	PNA	0.00020 U	J	0.00020 U	PNA	0.00020	J	PNA		0.00020	U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.0139	J	PNA	0.0400 U	PNA	0.0400 U	J	0.0400 U	PNA	0.0400	J	PNA		0.0400	U	PNA
Potassium	mg/L	NA	5 U	0.83	U	5.000 U	5.000 U	5.000 U	5.000 U	J	5.000 U	5.000 U	5.000 I	J	5.000	U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	PNA	0.0100 I	J	PNA		0.0100	U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	PNA	0.0100 I	J	PNA		0.0100	U	PNA
Sodium as Na	mg/L	20	8.44	8.42		9.750	9.180	9.040	8.370		8.480	7.990	8.190		8.770		7.070		7.150
Thallium as Tl	mg/L	0.0005#	PNA	0.0036	U	PNA	0.0100 U	PNA	0.0100 U	J	0.0100 U	PNA	0.0100 I	_	PNA		0.0100	U	PNA
Vanadium	mg/L	NA	PNA	0.0008	U	PNA	0.0500 U	PNA	0.0500 U	J	0.0500 U	PNA	0.0500	J	PNA		0.0500	U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0012	J	PNA	0.0200 U	PNA	0.0200 U	J	0.0200 U	PNA	0.0200	J	PNA		0.0200	U	PNA
Alkalinity tot CaCo3	mg/L	NA	10.8	11		13.4	11.4	5.4	8.5		PNA	11.4	11.7		15.1		12.5		14.7
Chloride as Cl	mg/L	250	11.2	9		16.3	14.5	15.4	9.0		PNA	9.9	13.9		10.9		9.6		12.1
Sulfate as SO4	mg/L	250	6.3	7.9		8.5	7.9	8.7	8.3		PNA	7.4	7.4		7.1		8.3		9.4
Bromide	mg/L	2 #	0.5 U	0.025	J	0.50 U	0.50 U	0.50 U	0.50 U	J	PNA	0.50 U	0.50	J	0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2 U	2	U	2.0 U	2.0 U	1 2.0 U	2.0 U	J	PNA	2.0 U	2.0	J	2.0	U	2.0	U	2.0 U
COD	mg/L	NA	10 U		U	10.0 U	38.9	10.0 U		\perp	PNA	10.0 U		J	10.9		10.0	U	10.0 U
Color	units	NA	PNA	5	U	PNA	5.0 U		5.0 U	-	PNA	PNA		J	PNA		5.0	U	7.0
Chromium hex as Cr	mg/L	0.05	PNA	0.003	U	PNA	0.020 U		0.020 U	J	PNA	PNA		J	PNA		0.020	U	PNA
Hardness as CaC03	mg/L	NA	18.7	15		14.0	17.0	8.0	12.0	\perp	PNA	23.3		J	30		5.0	U	20.0
Ammonia as N	mg/L	2	0.1 U		J	0.10 U	0.10 U			_	PNA	0.10 U		J	0.10	U	0.10	U	0.10 U
Nitrite as N	mg/L	NA	0.5 U		U	0.050 U	0.050 l			J	PNA	0.050 U		J	0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.05 U			7.9	0.050 l			4	PNA	0.053		J	0.050	U	0.050	U	0.070
Phenols as Phenol	mg/L	0.001	0.005 U		J	0.0050 U	0.0050 U		0.0050 U	J	PNA	0.0050 U		J	0.0050	U	0.0050	U	0.0028 U
Tot Dissolved Solids	mg/L	NA	38	59		61.0	26.0	59.0	65.0	\perp	PNA	75.0	75.0	_	34.0		20.0		93.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.1 U	0.1	U	0.10 U	0.42	0.10 U	4	\perp	PNA	0.10 U	0.14	_	0.27		0.10	U	0.17
Tot Organic Carbon	mg/L	NA	1 U		U	1.0 U	1.0 l	1.0		J	PNA	1.0 U		J	1.0	U	1.0	U	1.0 U
Turbidity	NTU	NA	0.7	3.2		0.0	0.0	0.0	64.4	\perp	PNA	1.20	31.9	_	PNA		0.00		0.0
Temperature	deg.C	NA	11.38	11.66		12.38	11.22	12.01	11.68	┙	PNA	12.18	13.82		12.62		11.57		12.70
pH	units	6.5-8.5	6.54	6.17		6.31	5.87	5.89	6.40		PNA	6.33	7.92		3.85		5.62		6.56
Spec. Cond	umho/cm	NA	96	84		96	93	71	63		PNA	65	76		95		62		82

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation. # = Guidance value, no standard exists.

- NA = Not available.
- PNA = parameter not analyzed for.
- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 R - Data Validation Qualifier - Rejected.

 U - Indicates the compound was analyzed for, but not detected.

- U-Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

 UJ-Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

 Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW											MW-10	C								
			October 20	017	April 2018	В	October 20	18	April 201	19	October 2019	9	April 202	0	October 2020	April 2021	00	ctober 202	21	April 202	2	October 2022
PARAMETERS		STND (1)			•				•			_	-			•				•		
Aluminum as Al	mg/L	NA	PNA		0.0134	U	PNA		0.200	U	PNA	_	0.200	U	PNA	0.200 U	_	PNA		0.200	U	PNA
Antimony as Sb	mg/L	0.003 #	PNA		0.003	U	PNA		0.0600	U	PNA	_	0.0600	U	PNA	0.0600 U	_	PNA		0.0600	U	PNA
Arsenic as As	mg/L	0.025	PNA		0.0068	U	PNA		0.0100	U	PNA	_	0.0100	U	0.0100 U	0.0100 U	_	0.0100	U	0.0100	U	0.0100 U
Barium	mg/L	1	PNA		0.0101	J	PNA		0.200	U	PNA	_	0.200	U	PNA	0.200 U	_	PNA		0.200	U	PNA
Beryllium as Be	mg/L	0.003	PNA		0.0006	U	PNA		0.0050	U	PNA	_	0.0050	U	PNA	0.0050 U	_	PNA		0.0050	U	PNA
Boron as B	mg/L	1	PNA		0.0121	J	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500 U	_	PNA		0.0500	U	PNA
Cadmium as Cd	mg/L	0.005	0.0025	U	0.00006	U	0.0025	U	0.0025	U		U	0.0025	U	0.0025 U	0.0025 U	_	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	4.14		4.63		4.910		4.770		5.120	_	4.640		4.660	4.440	_	5.020		4.500		4.550
Chromium as Cr	mg/L	0.05	PNA		0.0048	J	PNA		0.0100	U	PNA	_	0.0100	U	PNA	0.0121	_	PNA		0.0100	U	PNA
Cobalt	mg/L	NA	PNA		0.0006	U	PNA		0.0500	U	PNA	_	0.0500	U	PNA	0.0500 U	_	PNA		0.0500	U	PNA
Copper as Cu	mg/L	0.2	PNA		0.0025	U	PNA		0.0250	U	PNA	4	0.0250	U	PNA	0.0250 U	_	PNA		0.0250	U	PNA
Cyanide as CN	mg/L	0.2	PNA		0.0029	U	PNA		0.0100	U	PNA	4	0.0100	U	PNA	0.0100 U	_	PNA		0.0100	U	0.0100 U
Iron as Fe	mg/L	0.3	0.02	U	0.0301		0.0200	U	0.0200	U	0.0840	_	0.0200	U	0.0241	0.0709	_	0.195		0.100	U	0.100 U
Lead as Pb	mg/L	0.025	0.005	U	0.0013	U	0.0050	U	0.0050	U		U	0.0050	U	0.0050 U	0.0050 U	_	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35 #	2.17		2.45		2.510		2.420		2.410	_	2.370		2.390	2.270	_	2.480		2.210		2.310
Manganese as Mn	mg/L	0.3	0.01	U	0.0037	J	0.0100	U	0.0100	U	0.0110	_	0.0100	U	0.0100 U	0.0100 U	_	0.0121		0.0100	U	0.0100 U
Mercury as Hg	mg/L	0.0007	PNA		0.000075	J	PNA		0.00020	U	PNA		0.00020	U	PNA	0.00020 U	_	PNA		0.00020	U	PNA
Nickel as Ni	mg/L	0.1	PNA		0.0129	J	PNA		0.0400	U	PNA	_	0.0400	U	PNA	0.0400 U	-	PNA		0.0400	U	PNA
Potassium	mg/L	NA	5	U	0.83	U	5.000	U	5.000	U		U	5.000	U	5.000 U	5.000 U	_	5.000	U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	PNA		0.0063	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100 U		PNA		0.0100	U	PNA
Silver as Ag	mg/L	0.05	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100 U	_	PNA		0.0100	U	PNA
Sodium as Na	mg/L	20	7.48		7.83		7.930		8.230		8.620		8.080		8.040	7.010		7.620		6.770		7.590
Thallium as Tl	mg/L	0.0005#	PNA		0.0036	U	PNA		0.0100	U	PNA		0.0100	U	PNA	0.0100 U		PNA		0.0100	U	PNA
Vanadium	mg/L	NA	PNA		0.0008	U	PNA		0.0500	U	PNA		0.0500	U	PNA	0.0500 U		PNA		0.0500	U	PNA
Zinc as Zn	mg/L	2#	PNA		0.002	J	PNA		0.0200	U	PNA		0.0200	U	PNA	0.0200 U		PNA		0.0200	U	PNA
Alkalinity tot CaCo3	mg/L	NA	12		13.2		14.6		14.0		14.7		13.4		14.6	13.5		14.8		14.7		16.8
Chloride as Cl	mg/L	250	8.1		9.3		10.7		10.9		11.4		8.9		9.3	9.7		9.2		8.9		11.1
Sulfate as SO4	mg/L	250	8.1		9.3		10.9		10.6		10.6		9.4		8.2	9.2		8.5		8.7		10.6
Bromide	mg/L	2#	0.5	U	0.023	J	0.50	U	0.50	U	0.50	U	0.50	U	0.50 U	0.50 U		0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2	U	2	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0 U	2.0 U		2.0	U	2.0	U	2.0 U
COD	mg/L	NA	10	U	10	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0 U	10.0 U		13.0		10.0	U	10.0 U
Color	units	NA	PNA		5	U	PNA		5.0	U	PNA		5.0	U	PNA	5.0 U		PNA		5.0	U	PNA
Chromium hex as Cr	mg/L	0.05	PNA		0.003	U	PNA		0.020	U	PNA		0.020	U	PNA	0.020 U		PNA		0.11		PNA
Hardness as CaC03	mg/L	NA	17.3		19		16.0		20.0		16.0		16.0		22.0	10.0		36.7		6.0		22.0
Ammonia as N	mg/L	2	0.13		0.11		0.10	U	0.10	U	0.10	U	0.10	U	0.21	0.10 U		0.10	U	0.10	U	0.10 U
Nitrite as N	mg/L	NA	0.1	U	0.05	U	0.050	U	0.050	U		U	0.050	U	0.050 U	0.050 U		0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.17		0.24		0.25		0.26		0.37		0.24		0.23	0.13		0.22		0.17		0.20
Phenols as Phenol	mg/L	0.001	0.005	U	0.0043	J	0.0050	U	0.0050	U	0.0161		0.0050	U	0.0050 U	0.0050 U	(0.0050	U	0.0050	U	0.0028 U
Tot Dissolved Solids	mg/L	NA	48		57		45.0		49.0		97.0		62.0		99.0	64.0		26.0		43.0		78.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.11		0.1	U	0.64		0.10	U	0.10	U	0.10	U	0.31	0.35		0.45		0.22		0.12
Tot Organic Carbon	mg/L	NA	1	U	0.23	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0 U	1.0 U		1.0	U	1.0	U	1.0 U
Turbidity	NTU	NA	1		2.2		0.0		0.0		0.0		36.2		0.00	8.80		PNA		0.00		0.0
Temperature	deg.C	NA	11.23		10.99		12.11		11.41		12.76		11.38		11.58	12.62		12.62		11.46		12.44
pH	units	6.5-8.5	6.02		5.89		6.1		6.28		6.56		6.60		6.43	7.75		3.85		5.63		6.90
Spec. Cond	umho/cm	NA	90		92		87		100		84	П	72		72	73		95		46		86

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.
= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank. H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

IJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ND (1) Unfiltered NA PNA ND (2) PNA 025 PNA 1 PNA 003 PNA 1 PNA 003 PNA 1 PNA 005 0.0025 NA 15.6 NA PNA NA PNA NA PNA 0.2 PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.25 0.005 5 # 4.88	PNA PNA PNA PNA PNA PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA PNA PNA O.1 U	April Unfiltered 0.127 0.0089 1 0.0068 U 0.107 0.0006 U 0.0331 1 0.00006 U 19.5 1.84 0.0084 1 0.0351 0.0029 U 7.37	Tiltered	PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	April 2019 0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 20.300 0.251 0.0500 U	PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	Unfiltered 0.200 U 0.0600 U 0.0100 U 0.201 0.0050 U 0.0050 U 0.0025 U 27.800 0.506	2020 Filtered	Octobe Unfiltered PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 23.100	F12020 Filtered PNA PNA 0.0100 U PNA PNA PNA O.0025 U 21.600	April 2021 0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 21.700	Octobe Unfiltered PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 19.800	PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	April 2022 0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 22,900	PNA PNA 0.0100 PNA PNA PNA PNA PNA O.0025
NA PNA 103# PNA 1025 PNA 1 PNA 1 PNA 1003 PNA 1 PNA 1005 0.0025 NA 15.6 NA 15.6 NA PNA NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.25 5 # 4.88	PNA PNA PNA PNA PNA PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA PNA PNA O.1 U	0.127 J 0.0089 J 0.0068 U 0.107 J 0.0006 U 0.0331 J 0.00006 U 19.5 1.84 0.0084 J 0.0351 U	0.0327 J 0.003 U 0.0068 U 0.0669 J 0.0006 U 0.0321 J 0.00063 U 19.4 0.143 0.00063 U 0.00063 U	PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.200 U 0.0600 U 0.0100 U 0.200 U 0.0500 U 0.0500 U 0.0500 U 0.0550 U 0.0550 U 0.0550 U 0.0550 U 0.0550 U 0.0550 U	PNA PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.200 U 0.0600 U 0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506	0.200 U 0.0600 U 0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28.700	PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U 23.100	PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U	0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U	PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U	PNA PNA 0.0100 U PNA PNA PNA PNA 0.0025 U	0.200 U 0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U	PNA 0.0100 PNA PNA PNA
003 # PNA 025 PNA 1 PNA 003 PNA 1 PNA 0003 PNA 1 PNA 0005 0.0025 NA 15.6 0.05 PNA NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.25 5 # 4.88	PNA PNA PNA PNA PNA PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA PNA PNA PNA PNA	0.0089 J 0.0068 U 0.107 J 0.0006 U 0.0331 J 0.00006 U 19.5 1.84 0.0084 J 0.0351 0.0029 U	0.003 U 0.0068 U 0.0669 J 0.0006 U 0.0321 J 0.00063 U 19.4 0.143 0.00063 U 0.0007 J	PNA PNA PNA PNA PNA PNA 0.0025 U 22.900 PNA PNA	0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 20.300 0.251 0.0500 U	PNA PNA PNA PNA PNA PNA 10.0025 U 18.200 PNA	0.0600 U 0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506	0.0600 U 0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28.700	PNA 0.0100 U PNA PNA PNA 0.0025 U 23.100	PNA 0.0100 U PNA PNA PNA 0.0025 U	0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U	PNA 0.0100 U PNA PNA PNA 0.0025 U	PNA 0.0100 U PNA PNA PNA 0.0025 U	0.0600 U 0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U	PNA 0.0100 PNA PNA PNA
025 PNA 1 PNA 003 PNA 1 PNA 005 0.0025 NA 1 15.6 0.05 PNA NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.005 5 # 4.88	PNA PNA PNA PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA PNA PNA O.1 U	0.0068 U 0.107 J 0.0006 U 0.0331 J 0.00006 U 19.5 1.84 0.0084 J 0.0351 0.0029 U	0.0068 U 0.0669 J 0.0006 U 0.0321 J 0.00063 U 19.4 0.143 0.00063 U 0.0007 J	PNA PNA PNA PNA 0.0025 U 22.900 PNA PNA	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 20.300 0.251 0.0500 U	PNA PNA PNA PNA 0.0025 U 18.200 PNA	0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506	0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28.700	0.0100 U PNA PNA PNA 0.0025 U 23.100	0.0100 U PNA PNA PNA 0.0025 U	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U	0.0100 U PNA PNA PNA 0.0025 U	0.0100 U PNA PNA PNA 0.0025 U	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U	0.0100 PNA PNA PNA
025 PNA 1 PNA 003 PNA 1 PNA 005 0.0025 NA 1 15.6 0.05 PNA NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.005 5 # 4.88	PNA PNA PNA PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA PNA PNA O.1 U	0.107 J 0.0006 U 0.0331 J 0.00006 U 19.5 1.84 0.0084 J 0.0351 0.0029 U	0.0068 U 0.0669 J 0.0006 U 0.0321 J 0.00063 U 19.4 0.143 0.00063 U 0.0007 J	PNA PNA PNA PNA 0.0025 U 22.900 PNA PNA	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U 20.300 0.251 0.0500 U	PNA PNA PNA PNA 0.0025 U 18.200 PNA	0.0100 U 0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506	0.0100 U 0.203 0.0050 U 0.0500 U 0.0025 U 28.700	0.0100 U PNA PNA PNA 0.0025 U 23.100	0.0100 U PNA PNA PNA 0.0025 U	0.200 U 0.0050 U 0.0500 U 0.0025 U	0.0100 U PNA PNA PNA 0.0025 U	0.0100 U PNA PNA PNA 0.0025 U	0.0100 U 0.200 U 0.0050 U 0.0500 U 0.0025 U	0.0100 PNA PNA PNA
1 PNA 003 PNA 1 PNA 005 0.0025 NA 15.6 .05 PNA NA PNA 0.2 PNA 0.3 2.460 0.25 5 # 4.88	PNA PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA PNA O.1 U	0.107 J 0.0006 U 0.0331 J 0.00006 U 19.5 1.84 0.0084 J 0.0351 0.0029 U	0.0669 J 0.0006 U 0.0321 J 0.00063 U 19.4 0.143 0.00063 U 0.00063 U	PNA PNA PNA 0.0025 U 22.900 PNA PNA	0.200 U 0.0050 U 0.0500 U 0.0025 U 20.300 0.251 0.0500 U	PNA PNA PNA 0.0025 U 18.200 PNA	0.201 0.0050 U 0.0500 U 0.0025 U 27.800 0.506	0.203 0.0050 U 0.0500 U 0.0025 U 28.700	PNA PNA PNA 0.0025 U 23.100	PNA PNA PNA 0.0025 U	0.200 U 0.0050 U 0.0500 U 0.0025 U	PNA PNA PNA 0.0025 U	PNA PNA PNA 0.0025 U	0.200 U 0.0050 U 0.0500 U 0.0025 U	PNA PNA PNA
003 PNA 1 PNA 0.0025 NA 15.6 .05 PNA NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.25 5 # 4.88	PNA PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA O.1 U	0.0006 U 0.0331 J 0.00006 U 19.5 1.84 0.0084 J 0.0351 0.0029 U	0.0006 U 0.0321 J 0.000063 U 19.4 0.143 0.00063 U 0.00063 U	PNA PNA 0.0025 U 22.900 PNA PNA	0.0050 U 0.0500 U 0.0025 U 20.300 0.251 0.0500 U	PNA PNA 0.0025 U 18.200 PNA	0.0050 U 0.0500 U 0.0025 U 27.800 0.506	0.0050 U 0.0500 U 0.0025 U 28.700	PNA PNA 0.0025 U 23.100	PNA PNA 0.0025 U	0.0050 U 0.0500 U 0.0025 U	PNA PNA 0.0025 U	PNA PNA 0.0025 U	0.0050 U 0.0500 U 0.0025 U	PNA PNA
1 PNA 005 0.0025 NA 15.6 .0.05 PNA NA PNA 0.2 PNA 0.2 PNA 0.2 PNA 0.2 2 PNA 0.2 460 0.25 0.005 5 # 4.88	PNA U 0.0025 U 14.4 PNA PNA PNA PNA PNA O.1 U	0.0331 J 0.00006 U 19.5 1.84 0.0084 J 0.0351 0.0029 U	0.0321 J 0.000063 U 19.4 0.143 0.00063 U 0.0097 J	PNA 0.0025 U 22.900 PNA PNA	0.0500 U 0.0025 U 20.300 0.251 0.0500 U	PNA 0.0025 U 18.200 PNA	0.0500 U 0.0025 U 27.800 0.506	0.0500 U 0.0025 U 28.700	PNA 0.0025 U 23.100	PNA 0.0025 U	0.0500 U 0.0025 U	PNA 0.0025 U	PNA 0.0025 U	0.0500 U 0.0025 U	PNA
005 0.0025 NA 15.6 0.05 PNA NA PNA 0.2 PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.25 0.005 5 # 4.88	U 0.0025 U 14.4 PNA PNA PNA PNA PNA O.1 U	0.00006 U 19.5 1.84 0.0084 J 0.0351 0.0029 U	0.000063 U 19.4 0.143 0.00063 U 0.0097 J	0.0025 U 22.900 PNA PNA	0.0025 U 20.300 0.251 0.0500 U	0.0025 U 18.200 PNA	0.0025 U 27.800 0.506	0.0025 U 28.700	0.0025 U 23.100	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	
NA 15.6 1.05 PNA NA PNA D.2 PNA D.2 PNA D.3 2.460 D.25 0.005 5 # 4.88	14.4 PNA PNA PNA PNA PNA O.1 U	19.5 1.84 0.0084 J 0.0351 0.0029 U	19.4 0.143 0.00063 U 0.0097 J	22.900 PNA PNA	20.300 0.251 0.0500 U	18.200 PNA	27.800 0.506	28.700	23.100						0.0025
0.05 PNA NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 0.25 0.005 5 # 4.88	PNA PNA PNA PNA O.1 U	1.84 0.0084 J 0.0351 0.0029 U	0.143 0.00063 U 0.0097 J	PNA PNA	0.251 0.0500 U	PNA	0.506			21.600	21.700	19.800	12 (00	22 000	
NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 025 0.005 5 # 4.88	PNA PNA PNA 0.1 U	0.0084 J 0.0351 0.0029 U	0.00063 U 0.0097 J	PNA	0.0500 U			0.0200							20.600
NA PNA 0.2 PNA 0.2 PNA 0.3 2.460 025 0.005 5 # 4.88	PNA PNA PNA 0.1 U	0.0084 J 0.0351 0.0029 U	0.00063 U 0.0097 J	PNA	0.0500 U				PNA	PNA	0.182	PNA	PNA	1.080	PNA
0.2 PNA 0.2 PNA 0.3 2.460 025 0.005 5 # 4.88	PNA PNA 0.1 U	0.0351 0.0029 U	0.0097 J				0.0500 U	0.0500 U	PNA	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA
0.2 PNA 0.3 2.460 025 0.005 5 # 4.88	PNA 0.1 U	0.0029 U				PNA	0.0250 U	0.0250 U	PNA	PNA	0.0250 U	PNA	PNA	0.0264	PNA
0.3 2.460 025 0.005 5 # 4.88	0.1 U				0.0250 U										
025 0.005 5 # 4.88		7 3 7		PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	PNA	0.0100 U	PNA	PNA	0.0100 U	0.0100
5 # 4.88		7.37	0.514	2.520	0.953	3.630	2.000	0.122	14.500	3.270	0.700	2.090	0.116	4.200	5.170
	U 0.005 U	0.0024 J	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050
	4.36	5.82	5.65	6.770	6.500	5.770	8.080	8.280	6.560	6.200	6.680	5.770	4.640	6.020	6.010
0.3 0.113	0.0419	1.18	0.0483	0.190	0.0914	0.390	0.227	0.0951	1.200	0.628	0.0526	0.155	0.0384	0.218	1.880
0.007 PNA	0.0419 0.002 U	0.000068]	0.0002 U	PNA		PNA	0.00020 U	0.00020 U	PNA			PNA	PNA	0.00020 U	PNA
					0.00020 U					PNA	0.00020 U				
D.1 PNA	PNA	0.181	0.0541	PNA	0.0416	PNA	0.0546	0.0490	PNA	PNA	0.0984	PNA	PNA	0.117	PNA
NA 5.0	U 5.0 U	6.65	6.9	9.530	7.930	11.400	7.790	7.890	10.500	10.000	5.000 U	6.710	7.150	5.000 U	11.300
.01 PNA	PNA	0.0063 U	0.0062 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	PNA	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA
		0.0036 U											PNA		PNA
															34.600
		0.010										00.200	0.11200	00.200	34.600 PNA
											0.0000				PNA
2 # PNA	PNA	0.0026 J	0.0012 U	PNA	0.0200 U	PNA	0.0200 U	0.0200 U	PNA	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA
NA 69.6	PNA	47.4	PNA	78.0	69.4	83.8	71.1	PNA	88.3	PNA	54.6	60.7	PNA	61.8	97.8
250 58	PNA	98.1	PNA	217	79.5	46.8	295	PNA	41.5	PNA	191	116	PNA	175	51.8
															15.4
															0.50
															2.0
										PNA					23.00
NA PNA	PNA	5 U	PNA	PNA	15.0	PNA	40.0	PNA	PNA	PNA	40.0	PNA	PNA	90.0	140
0.05 PNA	PNA	0.00003 U	PNA	PNA	0.020 U	PNA	0.020 U	PNA	PNA	PNA	0.020 U	PNA	PNA	0.020 U	0.020
															73.3
															0.10
															0.050
		_													0.17
0.005	U PNA	0.0034 J	PNA	0.0050 U	0.0050 U	0.0099	0.0050 U	PNA	0.0050 U	PNA	0.0050 U	0.0050 U	PNA	0.0050 U	0.0028
NA 165	PNA	266	PNA	367	186	209	508	PNA	184	PNA	384	218	PNA	335	268
NA 0.37	PNA	0.83	PNA	0.23	0.58	1.3	1.3	PNA	0.45	PNA	0.53	0.71	PNA	0.48	0.42
															4.5
															24.5
															10.54
				6.66			6.60							0.00	6.65
NA 423	PNA	487	PNA	504	420	303	1.350	PNA	262	PNA	81	9	PNA	364	375
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1 PNA 5 PNA 43.1 5 # PNA PNA PNA PNA PNA 69.6 0 58 0 5 2 11.9 PNA 5 PNA 0.1 0.05 0.22 1 0.005 0.22 1 0.005 165 0.37 3.9 104 10.93 1.55 6.41 423	1	PNA	1	PNA	1	PNA	1	1	PNA	PNA	PNA	1	PNA	1

ANALYTICAL	UNITS	GW							MW-3B					
ANALYTICAL	UNITS	GW		1	1	ı				er 2020	ı	1	ı	
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022
Aluminum as Al	mg/L	NA	PNA	0.0134 U	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Antimony as Sb	mg/L	0.003#	PNA	0.003 U	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	PNA	0.0208 I	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA
Boron as B	mg/L	1	PNA	0.0409 J	PNA	0.0500 U	PNA	0.0545	PNA	PNA	0.110	PNA	0.0582	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	11.7	8,64	14.000	14.400	18,900	15.500	24.000	22.800	18.600	22.400	15.000	18.400
Chromium as Cr	mg/L	0.05	PNA	0.0016 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Cobalt	mg/L	NA	PNA	0.0035 I	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Iron as Fe	mg/L	0.3	9.97	6.69	9,990	8.710	8.570	5.860	9.780	5.880	7.690	7.900	5.470	4.140
Lead as Pb	mg/L	0.025	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	3.98	3.08	4.950	5.150	6.810	5.530	8.810	8.420	6,480	7.500	5.210	6.370
Manganese as Mn	mg/L	0.3	2.95	2.6	3.700	2.920	2.440	1.680	3.370	3.210	2.590	2.270	1.430	1.640
Mercury as Hg	mg/L	0.0007	PNA	0.000063 I	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA
Nickel as Ni	mg/L	0.0007	PNA	0.0025 I	PNA	0.0400 U	PNA	0.0400 U	PNA	PNA	0.0400 U	PNA	0.0400 U	PNA
Potassium	mg/L	NA	5.0 U	2.19	5.000 U	5.000 U	5.940	6.660	5.480	5.330	5.780	6.760	5.810	5.930
Selenium as Se	mg/L	0.01	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Silver as Ag	mg/L	0.01	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Sodium as Na	mg/L	20	12.0	9.37	20.900	13.800	11.400	13.400	19.300	19.700	16.600	17.300	12.700	19.500
Thallium as Tl	mg/L	0.0005 #	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Vanadium	mg/L	NA	PNA	0.0008 U	PNA	0.0100 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Zinc as Zn	- 0,	2 #	PNA	0.0008 U	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA
Alkalinity tot CaCo3	mg/L mg/L	NA	47	37.2	48.3	59.4	77.7	74.0	119	PNA	95.8	99.7	72.5	90.6
Chloride as Cl	mg/L	250	14.7	11.0	49.9	22.5	20.1	12.8	21.9	PNA	16.8	21.6	18.7	37.3
Sulfate as SO4	mg/L	250	11	12.1	7.5	10.1	9.5	12.4	15.4	PNA	12.3	5.6	12.2	12.8
Bromide	mg/L	2 #	0.5 U	0.038	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA NA	10 U	10.0 U	10.0 U	12.4	21.2	10.4	10.0 U	PNA	16.3	27.3	10.3	18.7
Color	units	NA NA	PNA	5 U	PNA	5.0	PNA	20.0	PNA	PNA	5.0	PNA	35.0	100
Chromium hex as Cr		0.05	PNA	0.003 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U
Hardness as CaCO3	mg/L mg/L	NA	60	34.0	56.0	40.0	90.0	80.0	86.7	PNA	60.0	120.0	26.7	66.7
Ammonia as N	mg/L mg/L	2	1	0.39	0.28	0.30	0.30	0.12	0.36	PNA	1.1	5.5	2.7	3.4
	mg/L mg/L	NA	0.05 U	0.050 U	0.28 0.050 U	0.050 U	0.050 U	0.12 0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Nitrite as N	mg/L mg/L	10	0.05 0	0.050 0	0.050 0	0.050 0	0.050 0	0.050 0	0.050 0	PNA	0.050 U	0.050 U	0.050 0	0.050 U 0.098
Nitrate as N	5	0.001			0.0050 U		0.43	0.0050 U		PNA				0.0028 U
Phenols as Phenol	mg/L					0.0074			0.0050 U 173		0.0050 U 120	0.0051 137	0.0050 U 150	
Tot Dissolved Solids	mg/L	NA NA	89 1.2	111 0.34	142 0.37	168 0.62	183 0.84	0.48	0.68	PNA PNA	1.6	8.0	2.9	3.4
Tot. Kjeldahl Nitrogen	mg/L				3.9						1.6 3.2	8.0 7.7	3.0	
Tot Organic Carbon	mg/L	NA NA	1.4 B	0.45 J		3.2	6.8	1.8	3.8	PNA			0.0	3.7
Turbidity	NTU	NA	4.9	1.2	17.0	2.2	0.0	22.0	50.0	PNA	12.4	PNA		0.0
Temperature	deg.C	NA	11.52	11.61	11.49	11.70	8.61	11.85	10.73	PNA	12.32	9.72	12.11	11.38
рн	units	6.5-8.5	6.12	5.95	6.19	6.16	6.11	6.50	6.66	PNA	8.41	4.06	5.59	6.64
Spec. Cond	umho/cm	NA	220	156	199	246	281	174	271	PNA	254	364	187	300

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.] - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW						MV	V-3C					1
ANALITICAL	UNITS	uw		1	1			1		er 2020				
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022
Aluminum as Al	mg/L	NA	PNA	0.0134 U	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Antimony as Sb	mg/L	0.003#	PNA	0.003 U	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	PNA	0.0185 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA
Boron as B	mg/L	1	PNA	0.0124 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	7.35	8.06	8.68	8.95	8.80	8.44	8.960	8.620	10.8	10.80	7.32	8.630
Chromium as Cr	mg/L	0.05	PNA	0.022	PNA	0.0146	PNA	0.0100 U	PNA	PNA	0.0133	PNA	0.0240	PNA
Cobalt	mg/L	NA	PNA	0.0006 U	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Iron as Fe	mg/L	0.3	0.02 U	0.108	0.100	0.0862	0.0285	0.0868	0.0616	0.0200 U	0.181	0.0291	0.151	0.100 U
Lead as Pb	mg/L	0.025	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	3.52	3.93	3.980	4.050	4.080	3.820	4.190	4.050	4.770	4.360	3.420	3.890
Manganese as Mn	mg/L	0.3	0.01 U	0.0063 J	0.0167	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0132	0.0100 U	0.0100 U	0.0100 U
Mercury as Hg	mg/L	0.0007	PNA	0.000067 J	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.0046 J	PNA	0.0400 U	PNA	0.0400 U	PNA	PNA	0.0400 U	PNA	0.0400 U	PNA
Potassium	mg/L	NA	5 U	0.841 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Sodium as Na	mg/L	20	10.1	10.8	11.000	12.100	12.100	11.800	10.900	11.400	12.200	13.900	9.260	10.700
Thallium as Tl	mg/L	0.0005#	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Vanadium	mg/L	NA	PNA	0.0012 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0012 U	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA
Alkalinity tot CaCo3	mg/L	NA	41.6	33	42.8	45.0	45.8	45.9	47.3	PNA	54.3	50.3	41.1	45.7
Chloride as Cl	mg/L	250	9.5	10.7	12.6	12.4	13.0	9.9	10.4	PNA	10.2	9.6	10.2	13.2
Sulfate as SO4	mg/L	250	5 U	3.2 J	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	PNA	5.0 U	5.0 U	5.0 U	5.8
Bromide	mg/L	2 #	0.5 U	0.056 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U	12.5	PNA	10.0 U	10.0 U	10.0 U	10.0 U
Color	units	NA	PNA	5 U	PNA	5.0	PNA	5.0 U	PNA	PNA	5.0 U	PNA	5.0 U	5.0 U
Chromium hex as Cr	mg/L	0.05	PNA	0.003 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U
Hardness as CaC03	mg/L	NA	33	32	33.0	24.0	23.3	32.0	25.0	PNA	13.3 J	66.7 J	13.3	36.0
Ammonia as N	mg/L	2	0.1 UB	0.023 J	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	PNA	0.100 U	0.100 U	0.100 U	0.20
Nitrite as N	mg/L	NA	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.16	0.21	0.17	0.18	0.19	0.18	0.27	PNA	0.18	0.24	0.19	0.20
Phenols as Phenol	mg/L	0.001	0.005 U	0.0038 J	0.0050 U	0.0050 U	0.0121	0.0050 U	0.0050 U	PNA	0.0050 U	0.0050 U	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	41	102	65.0	80.0	102	94.0	103	PNA	90.0	62.0	126	106
Tot. Kjeldahl Nitrogen	mg/L	NA	0.1 U	0.1 U	0.10 U	0.14	0.10 U	0.29	0.10 U	PNA	0.21 J	0.11 J	0.10 U	0.10 U
Tot Organic Carbon	mg/L	NA	1 UB	,	1.0 U		1.0 U	1.0 U	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U
Turbidity	NTU	NA	3.8	1.9	4.6	0.0	0.0	29.4	51.0	PNA	6.10	PNA	0.0	0.0
Temperature	deg.C	NA	11.76	11.79	11.82	11.86	10.75	11.81	11.64	PNA	12.50	10.95	12.13	12.19
pH	units	6.5-8.5	6.61	6.19	7.01	6.64	6.71	6.90	6.93	PNA	8.09	3.67	6.20	6.77
Spec. Cond	umho/cm	NA	131	127	127	142	126	103	118	PNA	120	148	74	129
NOTES:														

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for. B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U-Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

U-Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW										MW-	4A									
MALLITICAL	011113	a											Octobe	r 2020								
PARAMETERS		STND (1)	October 2017	April 20	18	October 20	18	April 2019	October 2	2019	April 20	20	Unfiltered	Filtere	d	April 202	21	October 20	021	April 202	2	October 2022
Aluminum as Al	mg/L	NA	PNA	0.187	J	PNA		0.200 U	PNA		0.200	U	PNA	PNA		0.202		PNA		0.200	U	PNA
Antimony as Sb	mg/L	0.003 #	PNA	0.003	U	PNA		0.0600 U	PNA		0.0600	U	PNA	PNA		0.0600	U	PNA		0.0600	U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068	U	PNA		0.0100 U	PNA		0.0100	U	0.0100 U	0.0100	U	0.0100	U	0.0100	U	0.0100	U	0.0100 U
Barium	mg/L	1	PNA	0.123	J	PNA		0.200 U	PNA		0.200	U	PNA	PNA		0.200	U	PNA		0.200	U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006	U	PNA		0.0050 U	PNA		0.0050	U	PNA	PNA		0.0050	U	PNA		0.0050	U	PNA
Boron as B	mg/L	1	PNA	0.0488	J	PNA		0.0500 U	PNA		0.0500	U	PNA	PNA		0.0500	U	PNA		0.0500	U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00015	J	0.0025	U	0.0025 U	0.0025	U	0.0025	U	0.0025 U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025 U
Calcium as Ca	mg/L	NA	10.9	10.4		8.330		7.700	9.030		8.270		7.370	7.120		8.690		11.500		7.500		12.500
Chromium as Cr	mg/L	0.05	PNA	0.0039	J	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0177		PNA
Cobalt	mg/L	NA	PNA	0.0006	U	PNA		0.0500 U	PNA		0.0500	U	PNA	PNA		0.0500	U	PNA		0.0500	U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025	U	PNA		0.0250 U	PNA		0.0250	U	PNA	PNA		0.0250	U	PNA		0.0250	U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029	U	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	0.0100 U
Iron as Fe	mg/L	0.3	1.69	0.0583		0.0302		0.0200 U	2.140		0.0358		0.183	0.0200	U	0.0238		0.256		0.246		0.135
Lead as Pb	mg/L	0.025	0.005 U	0.0013	U	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050 U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050 U
Magnesium	mg/L	35 #	4.24	3.82		3.170		2.960	3.190		2.810		2.520	2.450		3.000		3.570		2.300		4.410
Manganese as Mn	mg/L	0.3	0.219	0.0702		0.0244		0.0225	0.224		0.0630		0.0607	0.0506		0.0691		0.0787		0.0467		0.0217
Mercury as Hg	mg/L	0.0007	PNA	0.000066	I	PNA		0.00020 U	PNA		0.00020	U	PNA	PNA		0.00020	U	PNA		0.00020	U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.0031	Ĵ	PNA		0.0400 U	PNA		0.0400	U	PNA	PNA		0.0400	U	PNA		0.0400	U	PNA
Potassium	mg/L	NA	5 U	3.45	I	5.000	U	5.000 U	5.000	U	5.000	U	5.000 U	5.000	U	5.000	U	5.000	U	5.000	U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063	Ú	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036	U	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	PNA
Sodium as Na	mg/L	20	25.9	29.8		24.400		25.000	19.200		16.900		18.800	19.500		24.900		24.800		25.400		20.000
Thallium as Tl	mg/L	0.0005#	PNA	0.0036	U	PNA		0.0100 U	PNA		0.0100	U	PNA	PNA		0.0100	U	PNA		0.0100	U	PNA
Vanadium	mg/L	NA	PNA	0.0008	U	PNA		0.0500 U	PNA		0.0500	U	PNA	PNA		0.0500	U	PNA		0.0500	U	PNA
Zinc as Zn	mg/L	2#	PNA	0.006	I	PNA		0.0200 U	PNA		0.0200	U	PNA	PNA		0.0200	U	PNA		0.0200	U	PNA
Alkalinity tot CaCo3	mg/L	NA	50.4	6.4	J	12.7		7.0	4.8		5.6		8.3	PNA		2.6		3.3		6.1		16.6
Chloride as Cl	mg/L	250	46.6	42.9		39.0		49.4	37.1		27.5		32.1	PNA		40.1		40.3		40.3		43.9
Sulfate as SO4	mg/L	250	11.4	14.4		8.5		16.7	19.5		12.7		12.0	PNA		15.3		20.9		17.7		21.6
Bromide	mg/L	2#	0.5 U	0.027	J	0.50	U	0.50 U	0.50	U	0.50	U	0.50 U	PNA		0.50	U	0.50	U	0.50	U	0.50 U
BOD5	mg/L	NA	2 U	2	U	2.0	U	2.0 U	4.0	U	2.0	U	2.0 U	PNA		2.0	U	2.0	U	2.0	U	2.0 U
COD	mg/L	NA	10 U	10	U	10.0	U	10.0 U	10.0	U	10.0	U	10.0 U	PNA		10.0	U	13.0		14.7		10.0 U
Color	units	NA	PNA	5	U	PNA		5.0 U	PNA		5.0	U	PNA	PNA		5.0	U	PNA		5.0	U	5.0 U
Chromium hex as Cr	mg/L	0.05	PNA	0.003	U	PNA		0.020 U	PNA		0.020	U	PNA	PNA		0.020	U	PNA		0.020	U	0.020 U
Hardness as CaC03	mg/L	NA	88	41		29.0		23.3	34.0		32.0		25.0	PNA		20.0		66.7		6.7		48.0
Ammonia as N	mg/L	2	0.1 U	0.073	U	0.10	U	0.10 U	0.20		0.12		0.15	PNA		0.10	U	0.10	U	0.10	U	0.10 U
Nitrite as N	mg/L	NA	0.05 U	0.05	U	0.050	U	0.050 U	0.050	U	0.050	U	0.050 U	PNA		0.050	U	0.050	U	0.050	U	0.050 U
Nitrate as N	mg/L	10	0.29	0.46		7.2		1.4	3.6		5.0		4.4	PNA		5.7		3.4		1.7		2.1
Phenols as Phenol	mg/L	0.001	0.005 U	0.0043	UJ	0.0050	U	0.0050 U	0.0161		0.0050	U	0.0050 U	PNA		0.0050	U	0.0050	U	0.0050	U	0.0030
Tot Dissolved Solids	mg/L	NA	120	166		117		97.0	126		109		138	PNA		137		195		118		127
Tot. Kjeldahl Nitrogen	mg/L	NA	0.41	0.1	U	0.10	U	0.01 U	0.10	U	0.10	U	0.10 U	PNA		0.10	U	0.10	U	0.18		0.10 U
Tot Organic Carbon	mg/L	NA	1 U	0.66	J	1.0	U	1.0 U	1.8		1.0	U	1.0 U	PNA		1.0	U	1.0	U	1.0	U	1.0 U
Turbidity	NTU	NA	22.9	1.4		14.88		0.0	48.2		18.4		66.0	PNA		4.00		PNA		0.0		0.0
Temperature	deg.C	NA	13.31	10.78		13.49		10.46	12.91		11.59		12.95	PNA		11.14		13.71		11.33		12.65
рН	units	6.5-8.5	5.22	4.89		5.4		5.26	4.75		6.00		5.41	PNA		7.70		4.84		4.45		6.68
Spec. Cond	umho/cm	NA	272	278		296		232	171		145		148	PNA		222		272		84		227

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.
= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.) - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.

U -Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely med Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW						MW-	4B					
									October 2	2020				
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022
Aluminum as Al	mg/L	NA	PNA	0.0137 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Antimony as Sb	mg/L	0.003 #	PNA	0.0055 J	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	PNA	0.0589 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA
Boron as B	mg/L	1	PNA	0.0713	PNA	0.0569	PNA	0.0574	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	16.9	15.6	15.400	13.800	14.400	13.800	14.500	14.000	12.000	12.200	13.200	14.200
Chromium as Cr	mg/L	0.05	PNA	0.0055 J	PNA	0.0100 U	PNA	0.133	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Cobalt	mg/L	NA	PNA	0.0046 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0025 U	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Iron as Fe	mg/L	0.3	3.89	9.32	10.600	4.800	5.430	4.020	3.640	1.530	0.341	0.331	8.040	4.770
Lead as Pb	mg/L	0.025	0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	8.31	7.35	7.500	6.900	7.320	6.730	7.440	7.250	6.310	6.340	6.350	6.830
Manganese as Mn	mg/L	0.3	0.633	1.08	1.270	0.710	0.959	0.395	0.790	0.758	0.186	0.160	0.812	1.040
Mercury as Hg	mg/L	0.0007	PNA	0.000067 J	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.0034 J	PNA	0.0400 U	PNA	0.0400 U	PNA	PNA	0.0400 U	PNA	0.0400 U	PNA
Potassium	mg/L	NA	5 U	3.74 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Sodium as Na	mg/L	20	16.6	17.8	16.700	23.000	26.000	14.200	13.100	13.800	11.000	12.300	12.500	13.000
Thallium as Tl	mg/L	0.0005#	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Vanadium	mg/L	NA	PNA	0.0008 U	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0022 J	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA
Alkalinity tot CaCo3	mg/L	NA	91.4	68.6	79.6	77.8	68.6	69.2	70.8	PNA	67.2	51.1	74.4	62.5
Chloride as Cl	mg/L	250	22.4	19.2	20.4	30.4	43.4	13.8	15.6	PNA	11.7	10.5	15.8	32.4
Sulfate as SO4	mg/L	250	10.3	14.7	15.2	10.4	14.9	9.8	11.8	PNA	9.8	5.0 U	13.4	15.4
Bromide	mg/L	2 #	0.5 U	0.09 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	2.1	0.50 U	0.50 U
BOD5	mg/L	NA	2 U	2 U	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	10 U	10 U	10.0 U	10.0 U	10.0 U	10.0 U	10.4	PNA	10.0 U	13.0	10.0 U	10.0 U
Color	units	NA	PNA	5 U	PNA	6.0	PNA	10.0	PNA	PNA	5.0 U	PNA	60.0	55.0
Chromium hex as Cr	mg/L	0.05	PNA	0.015 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U
Hardness as CaC03	mg/L	NA	74	70	60.0	50.0	66.7	53.3	66.7	PNA	40.0	63.3	43.3	64.0
Ammonia as N	mg/L	2	2.3	2.5	2.8	1.4	2.1	0.62	1.9	PNA	0.50	0.13	2.9	1.2
Nitrite as N	mg/L	NA	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.069	0.13	0.11	0.16	0.21	0.27	0.28	PNA	0.35	0.34	0.11	0.11
Phenols as Phenol	mg/L	0.001	0.005 U	0.0029 J	0.0050 U	0.0050 U	0.014	0.0050 U	0.0050 U	PNA	0.0050 U	0.0050 U	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	137	161	114	144	216	128	154	PNA	112	86.0	128	120
Tot. Kjeldahl Nitrogen	mg/L	NA	2.5	2.7	3.0	1.3	2.4	1.2	2.0	PNA	0.39	0.48	3.3	1.5
Tot Organic Carbon	mg/L	NA	1.5	1.6	1.9	1.3	1.4	1.0 U	1.1	PNA	1.0 U	1.0 U	1.3	1.0 U
Turbidity	NTU	NA	2.7	2.2	0.0	0.0	0.0	24.8	51.0	PNA	3.60	PNA	3.0	0.0
Temperature	deg.C	NA	12.73	12.04	12.55	12.1	12.48	12.42	12.68	PNA	12.34	12.76	12.77	12.89
pH	units	6.5-8.5	6.41	6.31	6.4	6.58	6.29	6.80	6.87	PNA	7.51	4.57	6.10	6.68
Spec. Cond	umho/cm	NA	283	281	285	270	252	155	182	PNA	152	165	186	233

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.] - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.

U -Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely me Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW						MW-	4C					
MINIETTICAL	OMITS	u.,							Octobe	r 2020				
PARAMETERS		STND (1)	October 2017	April 2018	October 2018	April 2019	October 2019	April 2020	Unfiltered	Filtered	April 2021	October 2021	April 2022	October 2022
Aluminum as Al	mg/L	NA	PNA	0.0134 U	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Antimony as Sb	mg/L	0.003 #	PNA	0.0052 J	PNA	0.0600 U	PNA	0.0600 U	PNA	PNA	0.0600 U	PNA	0.0600 U	PNA
Arsenic as As	mg/L	0.025	PNA	0.0068 U	PNA	0.0100 U	PNA	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	PNA	0.0491 J	PNA	0.200 U	PNA	0.200 U	PNA	PNA	0.200 U	PNA	0.200 U	PNA
Beryllium as Be	mg/L	0.003	PNA	0.0006 U	PNA	0.0050 U	PNA	0.0050 U	PNA	PNA	0.0050 U	PNA	0.0050 U	PNA
Boron as B	mg/L	1	PNA	0.0011 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Cadmium as Cd	mg/L	0.005	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	30.4	25.3	25.800	24.600	25.300	19.600	20.800	19.400	19.100	17.700	13.000	11.700
Chromium as Cr	mg/L	0.05	PNA	0.564	PNA	0.367	PNA	0.345	PNA	PNA	0.230	PNA	0.378	PNA
Cobalt	mg/L	NA	PNA	0.0099 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Copper as Cu	mg/L	0.2	PNA	0.0104 J	PNA	0.0250 U	PNA	0.0250 U	PNA	PNA	0.0250 U	PNA	0.0250 U	PNA
Cyanide as CN	mg/L	0.2	PNA	0.0029 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	0.0100 U
Iron as Fe	mg/L	0.3	1.41	2.15	4.160	1.450	2.640	1.470	7.720	0.172	0.913	1.610	1.590	0.764
Lead as Pb	mg/L	0.025	0.0050 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	13.9	11.7	11.700	11.100	11.400	8.640	9.400	8.860	8.710	7.900	5.860	5.220
Manganese as Mn	mg/L	0.3	0.0479	0.070	0.108	0.0417	0.0933	0.0336	0.175	0.0165	0.0120	0.0538	0.0334	0.0208
Mercury as Hg	mg/L	0.0007	PNA	0.00007 J	PNA	0.00020 U	PNA	0.00020 U	PNA	PNA	0.00020 U	PNA	0.00020 U	PNA
Nickel as Ni	mg/L	0.1	PNA	0.274	PNA	0.288	PNA	0.203	PNA	PNA	0.880	PNA	0.194	PNA
Potassium	mg/L	NA	5.00 U	1.51 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	PNA	0.0063 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Silver as Ag	mg/L	0.05	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Sodium as Na	mg/L	20	44.6	34.1	37.4	39.7	44.2	33.200	40.200	40.600	39.300	44.000	26.300	26.500
Thallium as Tl	mg/L	0.0005#	PNA	0.0036 U	PNA	0.0100 U	PNA	0.0100 U	PNA	PNA	0.0100 U	PNA	0.0100 U	PNA
Vanadium	mg/L	NA	PNA	0.0017 J	PNA	0.0500 U	PNA	0.0500 U	PNA	PNA	0.0500 U	PNA	0.0500 U	PNA
Zinc as Zn	mg/L	2 #	PNA	0.0015 J	PNA	0.0200 U	PNA	0.0200 U	PNA	PNA	0.0200 U	PNA	0.0200 U	PNA
Alkalinity tot CaCo3	mg/L	NA	47.4	43.0	46.6	45.3	44.2	50.0	46.6	PNA	48.3	45.1	39.3	42.4
Chloride as Cl	mg/L	250	125	101	122	125	134	84.6	90.1	PNA	86.1	79.6	55.4	58.6
Sulfate as SO4	mg/L	250	5.00 U	4.60 J	5.9	5.2	6.6	5.2	5.6	PNA	5.9	6.0	6.4	7.8
Bromide	mg/L	2 #	0.50 U	0.072 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	PNA	0.50 U	0.50 U	0.50 U	0.50 U
BOD5	mg/L	NA	2.0 U	10.0 U	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U	PNA	2.0 U	2.0 U	2.0 U	2.0 U
COD	mg/L	NA	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	16.7	16.7	PNA	10.0 U	17.1	10.3	10.0 U
Color	units	NA	PNA	5.0 U	PNA	30.0	PNA	25.0	PNA	PNA	40.0	PNA	26.0	7.0
Chromium hex as Cr	mg/L	0.05	PNA	0.015 U	PNA	0.020 U	PNA	0.020 U	PNA	PNA	0.020 U	PNA	0.020 U	0.020 U
Hardness as CaC03	mg/L	NA	120	110	96.0	80.0	90.0	80.0	93.3	PNA	46.7	100	30.0	40.0
Ammonia as N	mg/L	2	0.10 U	0.021 J	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	PNA	0.10 U	0.10 U	0.10 U	0.10 U
Nitrite as N	mg/L	NA	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	0.050 U	0.076	0.062	0.050 U	0.050 U	0.050 U	0.060	PNA	0.050 U	0.050 U	0.050 U	0.050 U
Phenols as Phenol	mg/L	0.001	0.0050 U	0.0020 J	0.0050 U	0.0050 U	0.0114	0.0050 U	0.0050 U	PNA	0.0050 U	0.0050 U	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	230	307	234	266	300	212	279	PNA	222	212	174	131
Tot. Kjeldahl Nitrogen	mg/L	NA	0.17	0.10 U	0.10 U	0.30	0.10 U	0.20	0.23 J	PNA	0.12	0.45	0.15	0.16
Tot Organic Carbon	mg/L	NA	1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	PNA	1.0 U	1.0 U	1.0 U	1.0 U
Turbidity	NTU	NA	8.3	18.3	5.6	8.4	12.5	100	55.7	PNA	19.6	PNA	1.0	0.0
Temperature	deg.C	NA	12.67	12.14	13.22	12.16	12.65	12.51	12.2	PNA	12.17	12.89	12.92	13.03
pH	units	6.5-8.5	6.85	6.7	6.74	6.87	6.83	7.10	7.19	PNA	7.79	4.68	6.63	6.55
Spec. Cond	umho/cm	NA	566	437	543	485	412	306	331	PNA	354	437	216	257

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank. H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

 $\label{lem:U-Data-Validation} \textit{Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely me Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

ANALYTICAL	UNITS	GW				MW-6A						MW	/-6B		
PARAMETERS		STND (1)	October 2014	October 2017	October 2018	October 2019	October 2020	October 2021	October 2022	October 2017	October 2018	October 2019	October 2020	October 2021	October 2022
Aluminum as Al	mg/L	NA	0.0543 B	0.200 U	0.200 U	0.200 U	0.200 UJ	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Antimony as Sb	mg/L	0.003#	0.0044 B	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U
Arsenic as As	mg/L	0.025	0.0009 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	0.056 B	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Beryllium as Be	mg/L	0.003	0.0002 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Boron as B	mg/L	1	0.0182 B	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Cadmium as Cd	mg/L	0.005	0.0003 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	19.3	7.930	6.510	8.690	20.800	13.000	7.180	3.980	4.420	4.540	4.120	3.910	4.290
Chromium as Cr	mg/L	0.05	0.0017 B	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0137	0.0100 U	0.0110	0.0100 U
Cobalt	mg/L	NA	0.0002 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Copper as Cu	mg/L	0.2	0.0011 B	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U
Cyanide as CN	mg/L	0.2	PNA	PNA	PNA	PNA	PNA	PNA	0.0100 U	PNA	PNA	PNA	PNA	PNA	0.0100 U
Iron as Fe	mg/L	0.3	0.128	0.0201	0.0361	0.261	0.286	0.101	0.100 U	0.0254	0.108	0.100	0.0638	0.105	0.100 U
Lead as Pb	mg/L	0.025	0.0013 U	0.0005 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium	mg/L	35 #	7.54	3.380	2.730	4.340	8.070	5.190	2.680	2.320	2.540	2.650	2.380	2.260	2.390
Manganese as Mn	mg/L	0.3	0.0136 B	0.0100 U	0.0100 U	0.0405	0.0172 J	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0154	0.0143	0.0100 U	0.0100 U
Mercury as Hg	mg/L	0.0007	0.0001 U	0.0002 U	0.0002 U	0.00020 U	0.00020 U	PNA	0.00020 U	0.0002 UB	0.0002 U	0.00020 U	0.00020 U	PNA	0.00020 U
Nickel as Ni	mg/L	0.1	0.0008 B	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U
Potassium	mg/L	NA	2.86 B	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U
Selenium as Se	mg/L	0.01	0.0014 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Silver as Ag	mg/L	0.05	0.0007 U	0.0100 U	0.0100 U	0.0100 U	0.0100 UJ	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Sodium as Na	mg/L	20	9.16	6.520	7.680	8.600	8.820	8.040	7.680	8.210	7.800	7.820	7.240	7.840	8.000
Thallium as Tl	mg/L	0.0005#	0.001 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Vanadium	mg/L	NA	0.0007 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Zinc as Zn	mg/L	2#	0.0086 B	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 UB	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U
Alkalinity tot CaCo3	mg/L	NA	66.8	23.6	16.3	29.9	79.1	47.2	17.8	11.0	12.2	13.0	14.2 U	1.0 U	12.3
Chloride as Cl	mg/L	250	12.0	10.3	16.2	17.0	13.5	12.5	16.0	9.8	12.9	13.2	10.7	2.0 U	12.9
Sulfate as SO4	mg/L	250	10.9	6.4	8.2	10.2	10.7	7.3	7.4	6.9	9.0	9.7	8.4	5.0 U	8.7
Bromide	mg/L	2#	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.5 U	0.50 U	0.50 U	0.50 U				
BOD5	mg/L	NA	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
COD	mg/L	NA	10.0 U	10.0 U	10.0 U	10.0 U	14.6	10.9	10.0 U	10.0 U	10.0 U	10.0 U	14.6	10.0 U	10.0 U
Color	units	NA	PNA	PNA	PNA	PNA	PNA	PNA	5.0 U	PNA	PNA	PNA	PNA	PNA	5.0 U
Chromium hex as Cr	mg/L	0.05	PNA	PNA	PNA	PNA	PNA	PNA	0.020 U	PNA	PNA	PNA	PNA	PNA	0.020 U
Hardness as CaC03	mg/L	NA	120	PNA	23.0	36.7	80.0	80.0	24.0	PNA	16.0	17.5	18.0	33.3	22.0
Ammonia as N	mg/L	2	0.10 U	0.10 U	0.10 U	0.10 U	0.41	0.10 U	0.10 U	0.10	0.10 U	0.10 U	0.10 U	0.10 U	0.33
Nitrite as N	mg/L	NA	0.10 U	0.05 U	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U	0.05 U	0.05 U	0.05 U	0.050 U	0.050 U	0.050 U
Nitrate as N	mg/L	10	1.74	0.091	0.38	0.79	0.19	0.23	0.21	0.36	0.36	0.42	0.22	0.11	0.16
Phenols as Phenol	mg/L	0.001	0.0050 U	0.00050 U	0.0054	0.0050 U	0.0050 U	0.0050 U	0.0028 U	0.0050 U	0.0050 U	0.013	0.0050 U	0.0050 U	0.0028 U
Tot Dissolved Solids	mg/L	NA	107	52	62	76	158	60	82.0	43.0	38.0	142	79.0	38.0	64.0
Tot. Kjeldahl Nitrogen	mg/L	NA	0.1 U	0.2	0.1 U	0.1 U	0.14 R	0.62	0.20	0.30	0.10 U	0.10 U	0.33	0.43 J	0.53
Tot Organic Carbon	mg/L	NA	16.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Turbidity	NTU	NA	1.6	9.0	23.0	10.5	2.1	PNA	0.0	3.5	2.6	0.0	4.8	PNA	0.0
Temperature	deg.C	NA	12.18	12.02	12.04	12.39	12.92	13.31	13.1	11.41	12.25	12.00	11.98	12.59	12.47
pH	units	6.5-8.5	5.86	5.83	5.96	5.55	6.11	3.84	6.30	5.94	5.89	5.60	6.19	3.80	6.16
Spec. Cond	umho/cm	NA	230	114	112	124	184	166	106	94	112	84	72	93	89

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation. # = Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

 $\label{eq:concentration} \textbf{J} - \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.
U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit.
UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

MW-8 ANALYTICAL UNITS GW October 2017 October 2018 October 2019 October 2020 October 2021 October 2022 STND (1) PARAMETERS Aluminum as Al mg/L NA PNA PNA PNA PNA PNA PNA 0.003# PNA PNA PNA PNA PNA PNA Antimony as Sb mg/L Arsenic as As mg/L 0.025 PNA PNA PNA PNA 0.0100 U 0.0100 U Barium mg/L PNA PNA PNA PNA PNA PNA Beryllium as Be 0.003 PNA PNA PNA PNA PNA PNA mg/L PNA PNA PNA PNA PNA PNA Boron as B mg/L 0.005 0.0025 0.0025 0.0025 0.0025 Cadmium as Cd 0.0025 0.0025 mg/L NA 10.500 13.300 16.000 11.900 13.600 7.410 Calcium as Ca mg/L 0.05 PNA PNA PNA PNA PNA Chromium as Cr mg/L PNA NA PNA PNA PNA PNA PNA PNA Cobalt mg/L 0.2 PNA PNA PNA PNA PNA PNA Copper as Cu mg/L 0.2 PNA PNA PNA PNA PNA 0.0100 U Cyanide as CN mg/L 0.3 0.4210 0.1400 10.300 1.610 Iron as Fe mg/L 0.3760.221 ead as Pb 0.025 0.0050 0.0050 U 0.0050 0.0050 U 0.0050 U 0.0050 U mg/L U Magnesium mg/L 35 # 4.470 5.110 6.740 5.040 5.650 3.130 Manganese as Mn mg/L 0.3 0.0140 0.0128 0.126 0.0850 0.0850 0.0202 Mercury as Hg mg/L 0.0007 PNA PNA PNA PNA PNA PNA Nickel as Ni mg/L 0.1 PNA PNA PNA PNA PNA PNA Potassium mg/L NA 5.000 5.000 5.000 5.000 5.000 5.000 Selenium as Se mg/L 0.01 PNA PNA PNA PNA PNA PNA Silver as Ag mg/L 0.05 PNA PNA PNA PNA PNA PNA Sodium as Na mg/L 20 8 440 8.370 8.850 7 960 10.800 7 380 Thallium as Tl mg/L 0.0005# PNA PNA PNA PNA PNA PNA Vanadium mg/L NA PNA PNA PNA PNA PNA PNA Zinc as Zn mg/L 2# PNA PNA PNA PNA PNA PNA NA 37.0 45.7 52.0 39.2 44.1 Alkalinity tot CaCo mg/L 25.7 Chloride as Cl mg/L 250 13.1 13.8 12.3 11.2 10.7 250 10.0 13.4 8.6 10 Sulfate as SO4 7.1 mg/L 0.50 0.50 0.50 Bromide mg/L 0.50 0.50 NA U BOD5 2.0 2.0 4.0 2.0 2.0 U 2.0 mg/L COD mg/L NA 11.9 11.4 12.4 10.4 10.0 U 10.0 U NA PNA PNA PNA PNA PNA 12.0 Color units PNA U 0.05 PNA PNA PNA Chromium hex as Cr mg/L PNA 0.020 48.0 Hardness as CaC03 NA 50.0 80.0 63.3 34.0 mg/L Ammonia as N mg/L 0.10 0.10 U 0.10 0.24 0.10 U 0.10 U U NA U U U U Nitrite as N mg/L 0.050 0.050 0.050 U 0.050 0.050 0.050 Nitrate as N mg/L 10 1.2 0.71 0.65 I 1.0 1.4 0.67 Phenols as Phenol mg/L 0.001 0.005 0.0050 IJ 0.0050 IJ 0.0050 IJ 0.0050 IJ Tot Dissolved Solids mg/L NA 79 78 103 113 113 87.0 Tot. Kjeldahl Nitroger mg/L NA 0.14 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U Tot Organic Carbon mg/L NA 1.0 UB 1.0 IJ 1.3 1.0 IJ 1.0 IJ 1.0 IJ Turbidity NTU NA 25.1 29.9 42.8 48.20 PNA 0.0 Temperature deg.C NA 11.85 12.11 12.14 12.36 13.96 12.61

pH Spec. Cond NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

units

umho/ci

6.5-8.5

NA

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- \ensuremath{B} Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{lem:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$

151

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical

value is the approximate concentration of the analyte in the sample.

 ${\it R-Data\ Validation\ Qualifier-Rejected}.$

- U Indicates the compound was analyzed for, but not detected.
- $\label{lem:u-def} \textit{U-Data Validation Qualifier-The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$

UJ - Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

148

156

6.10

119

4.09

173

112

 $Highlighted \ text \ denotes \ concentrations \ exceeding \ the \ NYSDEC, \ Class \ GA \ Groundwater \ Quality \ Standard \ or \ Guidance \ Value$

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 1 INORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2022

			·		00101	JLK Z	022							
ANALYTICAL	UNITS	GW				-		MV	V-9					
PARAMETERS		STND (1)	October 20	017	October 20	18	October 20	019	October 20	020	October 20	021	October 20	022
Aluminum as Al	mg/L	NA	PNA		PNA		PNA		PNA		PNA		PNA	
Antimony as Sb	mg/L	0.003 #	PNA		PNA		PNA		PNA		PNA		PNA	
Arsenic as As	mg/L	0.025	PNA		PNA		PNA		0.0100	U	0.0100 U		0.0100	U
Barium	mg/L	1	PNA		PNA		PNA		PNA		PNA		PNA	
Beryllium as Be	mg/L	0.003	PNA		PNA		PNA		PNA		PNA		PNA	
Boron as B	mg/L	1	PNA		PNA		PNA		PNA		PNA		PNA	
Cadmium as Cd	mg/L	0.005	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U
Calcium as Ca	mg/L	NA	5.24		8.99		7.430		6.080		5.720		3.540	
Chromium as Cr	mg/L	0.05	PNA		PNA		PNA		PNA		PNA		PNA	
Cobalt	mg/L	NA	PNA		PNA		PNA		PNA		PNA		PNA	
Copper as Cu	mg/L	0.2	PNA		PNA		PNA		PNA		PNA		PNA	
Cyanide as CN	mg/L	0.2	PNA		PNA		PNA		PNA		PNA		0.0100	U
Iron as Fe	mg/L	0.3	0.188		1.400		1.160		1.030		0.304	J	0.423	
Lead as Pb	mg/L	0.025	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	5.0000	U
Magnesium	mg/L	35 #	2.740		8.830		2.940		2.900		2.720	J	1.740	
Manganese as Mn	mg/L	0.3	0.0110		0.0776		0.0986		0.0891		0.0465		0.0291	
Mercury as Hg	mg/L	0.0007	PNA		PNA		PNA		PNA		PNA		PNA	
Nickel as Ni	mg/L	0.1	PNA		PNA		PNA		PNA		PNA		PNA	
Potassium	mg/L	NA	5.000	U	5.000	U	5.000	U	5.000	U	5.000	U	5.000	U
Selenium as Se	mg/L	0.01	PNA		PNA		PNA		PNA		PNA		PNA	
Silver as Ag	mg/L	0.05	PNA		PNA		PNA		PNA		PNA		PNA	
Sodium as Na	mg/L	20	10.200		11.100		8.710		8.630		11.800		6.630	
Thallium as Tl	mg/L	0.0005#	PNA		PNA		PNA		PNA		PNA		PNA	
Vanadium	mg/L	NA	PNA		PNA		PNA		PNA		PNA		PNA	
Zinc as Zn	mg/L	2 #	PNA		PNA		PNA		PNA		PNA		PNA	
Alkalinity tot CaCo3	mg/L	NA	19.0		52.6		14.0		16.3		14.8		12.2	
Chloride as Cl	mg/L	250	17.9		17.5		18.7		15.4		14.6		11.4	
Sulfate as SO4	mg/L	250	5.8		8.6		9.0		8.1		7.2		7.5	
Bromide	mg/L	2#	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
BOD5	mg/L	NA	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
COD	mg/L	NA	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
Color	units	NA	PNA		PNA		PNA		PNA		PNA		6.0	
Chromium hex as Cr	mg/L	0.05	PNA		PNA		PNA		PNA		PNA		0.020	U
Hardness as CaC03	mg/L	NA	22		40		28.0		30.0		40.0		22.0	
Ammonia as N	mg/L	2	0.1	U	0.1	U	0.10	U	0.10	U	0.10	U	0.10	U
Nitrite as N	mg/L	NA	0.05	U	0.05	U	0.05	U	0.050	U	0.050	U	0.050	U
Nitrate as N	mg/L	10	0.18		0.81		0.24		0.13		0.18		0.19	
Phenols as Phenol	mg/L	0.001	0.0050	U	0.0050	U	0.0176		0.0050	U	0.0050	U	0.0028	U
Tot Dissolved Solids	mg/L	NA	61		70		74.0		62.0		49.0		62.0	
Tot. Kjeldahl Nitrogen	mg/L	NA	0.14		0.10	U	0.10	U	0.33		0.36	U	0.10	U
Tot Organic Carbon	mg/L	NA	1.0	UB	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Turbidity	NTU	NA	5.5		0.0		42.8		70.0		PNA		0.0	
Temperature	deg.C	NA	12.73		12.88		12.82		12.93		13.77		13.17	
pН	units	6.5-8.5	5.21		5.27		6.14		5.59		4.03		6.56	
Spec. Cond	umho/cm	NA	122		126		92		91		112		57	

NOTES

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

- B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- $\label{eq:concentration} \textbf{J} \textbf{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$
- ${\it J-Data\ Validation\ Qualifier-The\ analyte\ was\ positively\ identified; the\ associated\ numerical}$

value is the approximate concentration of the analyte in the sample.

- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- U-Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

												MW-11A										
		Octob	er 2017	Ap	ril 2018	0	ctober 2018	Apr	il 2019	0.1.1	Apri	il 2020	Octob	er 2020	Apr	il 2021	Octob	er 2021	Apri	12022	Octob	er 2022
	STND (1)	Unfiltered	Filtered	Unfiltered	Filtered	Unfilter	ed Filtered	Unfiltered	Filtered	October 2019	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	File
mg/L	NA	0.2 U	0.2 U	0.0975	J 0.0239	J 0.200	U 0.200 U	0.200 U	0.200	U 0.200 U	0.200 U	J 0.200 t	0.200 U	0.200 U	0.200 t	0.200	U 0.200 U	0.200 t	0.200 U	0.200 U	0.200 U	0.20
mg/L	0.003#	0.06 U	0.06 U	0.003	U 0.003	U 0.0600	U 0.0600 U	0.0600 U	0.0600	U 0.0600 U	0.0600 U	J 0.0600 I	0.0600 U	0.0600 U	0.0600 I	0.0600	U 0.0600 U	0.0600 I	0.0600 U	0.0600 U	0.0600 U	0.06
mg/L	0.025	0.0188 U	0.01 U	0.0068	U 0.0068	U 0.0100	U 0.0100 U	0.0651	0.0100	U 0.0100 U	0.0100 U	J 0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100	U 0.0100 U	0.0100 U	0.0114	0.0100 U	0.0100 U	J 0.03
	1	1.03	0.2 U	0.0891	J 0.0717	J 0.200	U 0.200 U	0.721	0.200	U 0.200 U	0.200 U	J 0.200 I	0.200 U	0.200 U	0.358	0.200	U 0.269 /	0.200 t	0.320	0.200 U	0.200 U	J 0.2
mg/L	0.003	0.005 U	0.005 U	0.0006	U 0.0006	U 0.005	U 0.005 U	0.005 U	0.005	U 0.005 U	0.005 U	J 0.005 L	0.005 U	0.005 U	0.0050 t	0.0050	U 0.0050 U	0.0050 t	0.0050 U	0.0050 U	0.0050 U	0.00
mg/L	1	0.05 U	0.05 U	0.0324	J 0.0288	1 0.0500	U 0.0500 U	0.0500 U	0.0500	U 0.0500 U	0.0500 U	J 0.0500 I	0.0500 U	0.0500 U	0.0500 t	0.0500	U 0.0500 U	0.0500 t	0.0500 U	0.0500 U	0.0500 U	0.05
mg/L	0.005	0.0121 U	0.0025 U	0.00006	U 0.000063	U 0.0025	U 0.0025 U	0.0048	0.0025	U 0.0025 U	0.0025 U	J 0.0025 L	0.0025 U	0.0025 U	0.0025 U	0.0025	U 0.0025 U	0.0025 t	0.0025 U	0.0025 U	0.0025 U	J 0.00
mg/L	NA	60.5	43.1	25.3	25.7	36.300	34.200 /	49.400	32.900	36.500	32.800	33.600	31.700	31.000	53.500	38.700	48.200	39.600	28.600	25.100	17.300	17.6
mg/L	0.05	0.1 U	0.01 U			U 0.0100		0.136	0.0100	U 0.0100 U	0.0100	0.0100 U		0.0100 U	0.0100 U		U 0.0100 U	0.0100 U	0.0100 U		0.0100 U	0.03
mg/L	NA	0.05 U	0.05 U	0.0237	J 0.0216	1 0.0500			0.0500	U 0.0500 U	0.0500 U	J 0.0500 I	0.0500 U	0.0500 U	0.0500 t	0.0500	U 0.0500 U	0.0500 t	0.0500 U	0.0500 U	0.0500 U	J 0.0
mg/L	0.2	0.25 U	0.025 U	0.0067	J 0.0025	U 0.0250	U 0.0250 U	0.0250 U	0.0250	U 0.0250 U	0.0250 U	J 0.0250 U	0.0250 U	0.0250 U	0.0258	0.0250	U 0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	J 0.0
		PNA	PNA	0.0029	U PNA	PNA	PNA	0.0100 U	J PNA	PNA	0.0100 U	J PNA	PNA	PNA	0.0100 U	PNA	PNA	PNA	0.0100 U		0.1000 U	J PI
mg/L		539	0.1 U	11.3	0.127	26.300	I 0.243 I	306.000	0.326	35.600	17.200	0.0555	21.000	6.020	154.000	0.0200	U 53.800 I	0.575	136.000	0.100 U	37.100	0.6
mg/L	0.025	0.0052	0.005 U	0.0024	J 0.0013	U 0.0050	U 0.0050 U	0.0095	0.0050	U 0.0050 U	0.0050 U	J 0.0050 I	0.0050 U	0.0050 U	0.0050 U	0.0050	U 0.0050 U	0.0050 t	0.0050 U	0.0050 U	0.0050 U	J 0.0
mg/L	35#	16.6	14.4	9.07	8.93	13.000	12.500	12.600	10.800	12.700	10.400	11.300	14.300	14.200	13.400	11.900	20.200 J	19.800	7.700	7.810	6.890	7.0
mg/L	0.3	15.2	1.49	1.32	1.13	1.930	1.260	24.600	1.560	5.400	1.660	1.710	1.790	1.660 J	9.600	0.010	U 6.370	2.680	8.440	2.640	2.040	1.1
mg/L	0.0007	PNA	0.0002 U	0.000079	J 0.0002	U 0.00020	U 0.00020 U	0.00024	0.00020	U 0.00020 U	0.00020 U	J 0.00020 U	0.00020 U	0.00020 UJ	0.00020 t	0.00020	U 0.00020 U	0.00020 t	0.00020 U	0.00020 U	0.00020 U	0.00
mg/L	0.1	0.04 U	0.04 U	0.0136	J 0.023	J 0.0400			0.0400	U 0.0400 U	0.0400 U	J 0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400	U 0.0400 U	0.0400 U			0.0400 U	J 0.0
mg/L	NA	10.2	5.0 U	2.77	J 2.99	J 5.000	U 5.000 U	5.000 U	5.000	U 5.000 U	5.000 U	J 5.000 U	5.000 U	5.000 U	5.000 U	5.000	U 5.230	5.880	5.000 U	5.000 U	5.000 U	J 5.
mg/L	0.01	0.01 U	0.01 U	0.0063	U 0.0062	U 0.0100			0.0100	u 0.0100 U	0.0100 U	J 0.0100 U	0.0100 U	0.0100 U	0.0198	0.0100	U 0.0100 U	0.0100 U	0.0150	0.0100 U	0.0100 U	J 0.0
mg/L	0.05	0.0525	0.01 U	0.0036	U 0.0036	U 0.0100			0.0100	U 0.0100 U	0.0100 U	J 0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100	U 0.0100 U	0.0000 t	0.0100 U	0.0100 U	0.0100 U	J 0.0
mg/L	20	11	9.81	9	8.74	10.200	10.500 J	10.400	9.700	8.960	9.690	9.720	7.130	7.590	21.300	24.100	11.100 J	10.900	12.700	12.200	7.230	7.
mg/L	0.0005#	0.0254	0.01 U	0.0036	U 0.0036	U 0.0100	U 0.0100 U	0.0261	0.0100	U 0.0100 U	0.0100 U	J 0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100	U 0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	J 0.0
mg/L	NA	0.05 U	0.05 U	0.0008	U 0.00083	J 0.0500	U 0.0500 U	0.0500 U	0.0500	U 0.0500 U	0.0500 U	J 0.0500 I	0.0500 U	0.0500 U	0.0500 U	0.0500	U 0.0500 U	0.0500 t	0.0500 U	0.0500 U	0.0500 U	J 0.0
mg/L	2#	0.112	0.02 U	0.039	0.0173	J 0.0367	0.0200 U	0.0254	0.0200	U 0.0200 U	0.0200 U	J 0.0200 U	0.0200 U	0.0200 U	0.0649	0.0200	U 0.0910	0.0200 t	0.0616	0.0200 U	0.0604	0.0
mg/L	NA	195 J	PNA	87.2	PNA	138	PNA	131	PNA	141	145	PNA	151	PNA	158	PNA	207	PNA	79.4	PNA	58.5	F
mg/L	250	11.3	PNA	14.8	PNA	13.9	PNA	16.7	PNA	14.3	11.4	PNA	10.3	PNA	22.7	PNA	9.9	PNA	14.2	PNA	14.5	F
mg/L	250	6.6	PNA	23.9	PNA	9.7	PNA	18.8	PNA	14	10.8	PNA	5.8	PNA	35.0	PNA	5.8	PNA	11.7	PNA	25.6	P
mg/L	2#	0.5 U	PNA	0.032	J PNA	0.50	U PNA	0.50 U	J PNA	0.50 U	0.50 U	J PNA	0.50 U	PNA	0.50 t	PNA	0.50 U	PNA	0.50 U	PNA	0.50 U	J Pi
mg/L	NA	4 U	PNA	2	U PNA	4.0	U PNA	4.0 U	J PNA	4.0 U	4.0 U	J PNA	2.0 U	PNA	4.0 l	PNA	2.0 U	PNA	4.0 U	PNA	2.0 U	J PI
mg/L	NA	30.9	PNA	10	U PNA	10.0	U PNA	27.8	PNA	10.2	18.8	PNA	29.4	PNA	35.6	PNA	29.4	PNA	32.4	PNA	23.0	PI
units	NA	PNA	PNA	40	PNA	PNA	PNA	5.0 U	J PNA	PNA	40.0	PNA	PNA	PNA	5.0 t	PNA	PNA	PNA	900	PNA	130	P
mg/L	0.05	PNA	PNA	0.003	U PNA	PNA	PNA	0.020 U	J PNA	PNA	0.020	PNA	PNA	PNA	0.020 t	PNA	PNA	PNA	0.020 U	PNA	0.020 U	J PI
mg/L	NA	133	PNA	PNA	PNA	120	PNA	150	PNA	200	150	PNA	173	PNA	127	PNA	167	PNA	80.0	PNA	86.7	P
mg/L	2	0.69 U	PNA	0.19	PNA	0.28	PNA	0.15	PNA	1.0	0.32	PNA	0.53	PNA	0.10 U	PNA	0.38	PNA	0.10 U	PNA	0.12	PI
mg/L	NA	0.5 U	PNA	0.05	U PNA	0.51	PNA	0.05 U	J PNA	0.05 U	0.05 U	J PNA	0.050 U	PNA	0.050 t	PNA	0.050 U	PNA	0.050 U	PNA	0.050 U	J PI
mg/L	10	0.25	PNA	0.33	PNA	0.51	PNA	0.39	PNA	0.11	0.075	PNA	0.063	PNA	0.70	PNA	0.050 U	PNA	0.78	PNA	0.20	P
mg/L	0.001	0.005 U	PNA	0.0038	J PNA	0.0050	U PNA	0.0084	PNA	0.0054	0.0050 U	J PNA	0.0050 U	PNA	0.0050 U	PNA	0.0070	PNA	0.0050 U	PNA	0.0028 U	J PI
mg/L	NA	222	PNA	152	PNA	173	PNA	240	PNA	171	166	PNA	154	PNA	280	PNA	192	PNA	133	PNA	120	P
mg/L	NA	1.5 J	PNA	0.16	PNA	0.43	PNA	0.86	PNA	0.99	0.74	PNA	0.89	PNA	1.5	PNA	1.8	PNA	1.5	PNA	0.49	P
mg/L	NA	20.2	PNA	1.9	PNA	2.9	PNA	4.2	PNA	3.0	1.8	PNA	2.3	PNA	16.0	PNA	4.2	PNA	6.4	PNA	2.5	P
NTU	NA	>1,000	PNA	573	PNA	198	PNA	298	PNA	35.2	313	PNA	125	PNA	>1,000	PNA	PNA	PNA	714	PNA	191	P
deg.C	NA	13.31	PNA	12.91	PNA	14.00	PNA	12.70	PNA	13.05	12.53	PNA	13.42	PNA	13.65	PNA	13.65	PNA	13.13	PNA	13.67	P
units	6.5-8.5	6.13	PNA	5.7	PNA	6.15	PNA	6.06	PNA	6.09	6.45	PNA	6.01	PNA	8.14	PNA	4.86	PNA	5.73	PNA	6.77	Pi
	NA	453	PNA	267	PNA	470	PNA	356	PNA	315	282	PNA	284		429	PNA	487	PNA	224	PNA	212	Pi
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 0.003 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.05 mg/L 0.05 mg/L 0.2 mg/L 0.2 mg/L 0.2 mg/L 0.2 mg/L 0.2 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.3 mg/L 0.005 mg/L 0.3 mg/L 0.005 mg/L 0.3 mg/L 0.005 mg/L 0.3 mg/L 0.005 mg/L 0.3 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.005 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001 mg/L 0.001	mg/L 0.003 0.005 U mg/L 1 0.05 U mg/L 1 0.05 0.0121 U mg/L 0.05 0.1 U mg/L 0.05 0.1 U mg/L 0.05 0.1 U mg/L 0.05 U mg/L 0.05 U mg/L 0.05 U mg/L 0.05 U mg/L 0.0 3 539 mg/L 0.025 0.0052 mg/L 0.0 3 539 mg/L 0.0 3 539 mg/L 0.05 0.052 0.0052 mg/L 0.0 1 0.0 0.052 0.0052 0.0052 0.0052 0.0052 0.0054 0.0 0.0 0.0064 U 0.01 U 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td>mg/L 0.003 0.005 U 0.005 U mg/L 1 0.05 U 0.005 U mg/L 0.005 0.0121 U 0.0025 U mg/L 0.005 0.0121 U 0.0025 U mg/L 0.05 0.1 U 0.01 U mg/L 0.2 0.025 U 0.025 U mg/L 0.2 0.2 0.25 U 0.025 U mg/L 0.2 PNA PNA mg/L 0.01 U mg/L 0.025 0.0052 U 0.025 U 0.025 mg/L 0.025 0.0052 0.005 U 0.01 U 0.01 U mg/L 0.0025 0.0052 0.005 U 0.04 U<td>mg/L 0.003 0.005 U 0.005 U 0.006 mg/L 1 0.05 U 0.005 U 0.006 mg/L NA 605 43.1 25.3 mg/L NA 605 43.1 25.3 mg/L NA 0.05 U 0.05 U 0.0025 mg/L NA 0.05 U 0.05 U 0.05 U 0.0623 mg/L 0.2 PNA PNA 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0024 0.0029 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024</td><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.0006 U 0.0006 mg/L 1 0.05 U 0.05 U 0.0024 J 0.008 mg/L NA 60.5 43.1 2.5.3 2.5.3 2.57 mg/L NA 60.5 43.1 2.5.3 2.5.7 2.57 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 mg/L 0.2 PNA PNA 0.00029 U PNA mg/L 0.22 PNA PNA 0.0029 U PNA mg/L 0.3 539 0.1 U 1.13 0.127 PNA mg/L 0.025 0.0052 0.0052 0.0052 U 0.0024 J 0.0013 mg/L 0.0007 <</td><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.005 U 0.006 U 0.005 U 0.005 U 0.0025 U 0.0024 U 0.0026 U 0.00063 U 0.0025 mg/L 0.005 0.0121 U 0.0025 U 0.00060 U 0.00063 U 0.0025 mg/L 0.05 0.1 U 0.01 U 0.003 J 0.0016 U 0.0050 U 0.0237 J 0.0216 J 0.0050 U 0.0237 J 0.0216 J 0.050 U 0.0237 J 0.0250 U 0.0023 U 0.0218 J 0.0050 U 0.0023 U 0.0023<td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.003 U 0.005 U 0.0029 U 0.0050 U 0.0050 U 0.005 U 0.0029 U 0.0050 U 0.0050 U <t< td=""><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.006 U 0.005 U 0.00</td><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.0237 J 0.0216 U 0.0050 U</td></t<><td> mg/L 0.003</td><td> mg/L 0.003</td><td> mg/L 0.003</td><td> mg/L 0.003</td><td> Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart </td><td> </td><td>mg/L</td><td> </td><td> </td><td></td><td> </td><td> </td></td></td></td>	mg/L 0.003 0.005 U 0.005 U mg/L 1 0.05 U 0.005 U mg/L 0.005 0.0121 U 0.0025 U mg/L 0.005 0.0121 U 0.0025 U mg/L 0.05 0.1 U 0.01 U mg/L 0.2 0.025 U 0.025 U mg/L 0.2 0.2 0.25 U 0.025 U mg/L 0.2 PNA PNA mg/L 0.01 U mg/L 0.025 0.0052 U 0.025 U 0.025 mg/L 0.025 0.0052 0.005 U 0.01 U 0.01 U mg/L 0.0025 0.0052 0.005 U 0.04 U <td>mg/L 0.003 0.005 U 0.005 U 0.006 mg/L 1 0.05 U 0.005 U 0.006 mg/L NA 605 43.1 25.3 mg/L NA 605 43.1 25.3 mg/L NA 0.05 U 0.05 U 0.0025 mg/L NA 0.05 U 0.05 U 0.05 U 0.0623 mg/L 0.2 PNA PNA 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0024 0.0029 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024</td> <td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.0006 U 0.0006 mg/L 1 0.05 U 0.05 U 0.0024 J 0.008 mg/L NA 60.5 43.1 2.5.3 2.5.3 2.57 mg/L NA 60.5 43.1 2.5.3 2.5.7 2.57 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 mg/L 0.2 PNA PNA 0.00029 U PNA mg/L 0.22 PNA PNA 0.0029 U PNA mg/L 0.3 539 0.1 U 1.13 0.127 PNA mg/L 0.025 0.0052 0.0052 0.0052 U 0.0024 J 0.0013 mg/L 0.0007 <</td> <td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.005 U 0.006 U 0.005 U 0.005 U 0.0025 U 0.0024 U 0.0026 U 0.00063 U 0.0025 mg/L 0.005 0.0121 U 0.0025 U 0.00060 U 0.00063 U 0.0025 mg/L 0.05 0.1 U 0.01 U 0.003 J 0.0016 U 0.0050 U 0.0237 J 0.0216 J 0.0050 U 0.0237 J 0.0216 J 0.050 U 0.0237 J 0.0250 U 0.0023 U 0.0218 J 0.0050 U 0.0023 U 0.0023<td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.003 U 0.005 U 0.0029 U 0.0050 U 0.0050 U 0.005 U 0.0029 U 0.0050 U 0.0050 U <t< td=""><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.006 U 0.005 U 0.00</td><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.0237 J 0.0216 U 0.0050 U</td></t<><td> mg/L 0.003</td><td> mg/L 0.003</td><td> mg/L 0.003</td><td> mg/L 0.003</td><td> Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart </td><td> </td><td>mg/L</td><td> </td><td> </td><td></td><td> </td><td> </td></td></td>	mg/L 0.003 0.005 U 0.005 U 0.006 mg/L 1 0.05 U 0.005 U 0.006 mg/L NA 605 43.1 25.3 mg/L NA 605 43.1 25.3 mg/L NA 0.05 U 0.05 U 0.0025 mg/L NA 0.05 U 0.05 U 0.05 U 0.0623 mg/L 0.2 PNA PNA 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0024 0.0029 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024	mg/L 0.003 0.005 U 0.005 U 0.006 U 0.0006 U 0.0006 mg/L 1 0.05 U 0.05 U 0.0024 J 0.008 mg/L NA 60.5 43.1 2.5.3 2.5.3 2.57 mg/L NA 60.5 43.1 2.5.3 2.5.7 2.57 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 mg/L NA 0.05 U 0.05 U 0.0237 J 0.0216 mg/L 0.2 PNA PNA 0.00029 U PNA mg/L 0.22 PNA PNA 0.0029 U PNA mg/L 0.3 539 0.1 U 1.13 0.127 PNA mg/L 0.025 0.0052 0.0052 0.0052 U 0.0024 J 0.0013 mg/L 0.0007 <	mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.005 U 0.006 U 0.005 U 0.005 U 0.0025 U 0.0024 U 0.0026 U 0.00063 U 0.0025 mg/L 0.005 0.0121 U 0.0025 U 0.00060 U 0.00063 U 0.0025 mg/L 0.05 0.1 U 0.01 U 0.003 J 0.0016 U 0.0050 U 0.0237 J 0.0216 J 0.0050 U 0.0237 J 0.0216 J 0.050 U 0.0237 J 0.0250 U 0.0023 U 0.0218 J 0.0050 U 0.0023 U 0.0023 <td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.003 U 0.005 U 0.0029 U 0.0050 U 0.0050 U 0.005 U 0.0029 U 0.0050 U 0.0050 U <t< td=""><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.006 U 0.005 U 0.00</td><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.0237 J 0.0216 U 0.0050 U</td></t<><td> mg/L 0.003</td><td> mg/L 0.003</td><td> mg/L 0.003</td><td> mg/L 0.003</td><td> Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart </td><td> </td><td>mg/L</td><td> </td><td> </td><td></td><td> </td><td> </td></td>	mg/L 0.003 0.005 U 0.005 U 0.006 U 0.006 U 0.005 U 0.003 U 0.005 U 0.0029 U 0.0050 U 0.0050 U 0.005 U 0.0029 U 0.0050 U 0.0050 U <t< td=""><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.006 U 0.005 U 0.00</td><td>mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.0237 J 0.0216 U 0.0050 U</td></t<> <td> mg/L 0.003</td> <td> mg/L 0.003</td> <td> mg/L 0.003</td> <td> mg/L 0.003</td> <td> Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart </td> <td> </td> <td>mg/L</td> <td> </td> <td> </td> <td></td> <td> </td> <td> </td>	mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.006 U 0.005 U 0.00	mg/L 0.003 0.005 U 0.005 U 0.006 U 0.005 U 0.0237 J 0.0216 U 0.0050 U	mg/L 0.003	mg/L 0.003	mg/L 0.003	mg/L 0.003	Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart Mart		mg/L					

ANALYTICAL	UNITS	GW								MW-11B							
			Octob	er 2017	_	_	Apri	12019	Octob	er 2019	April	2020	_	_	Apri	12022	
PARAMETERS		STND (1)	Unfiltered	Filtered	April 2018	October 2018	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	October 2020	October 2021	Unfiltered	Filtered	October 2022
Aluminum as Al	mg/L	NA	0.994	0.2 U	0.312	0.200 U	7.780	0.200 U	3.540	0.200 U	1.400	0.200 U	0.204	0.200 U	0.544	0.200 U	1.530
Antimony as Sb	mg/L	0.003#	0.06 U	0.06 U	0.003 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 UJ	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.0600 U
Arsenic as As	mg/L	0.025	0.01 U	0.01 U	0.0068 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium	mg/L	1	0.2 U	0.2 U	0.0155 J	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Beryllium as Be	mg/L	0.003	0.005 U	0.005 U	0.0006 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Boron as B	mg/L	1	0.05 U	0.05 U	0.0133 J	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Cadmium as Cd	mg/L	0.005	0.0025 U	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	mg/L	NA	7.43	6.95	6.83	6.950	30.300	22.400	16.800	13.500	14.000	13.700	26.300	28.300	12.700	11.800	17.700
Chromium as Cr	mg/L	0.05	0.01 U	0.01 U	0.0082 J	0.0100 U	0.0198	0.0100 U	0.0190	0.0100 U	0.0100 U	0.0100 U	0.0104 U	0.0100 U	0.0100 U	0.0100 U	0.0577
Cobalt	mg/L	NA	0.05 U	0.05 U	0.0006 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Copper as Cu	mg/L	0.2	0.025 U	0.025 U	0.0025 U	0.0250 U	0.0322	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U	0.0250 U
Cyanide as CN	mg/L	0.2	PNA	PNA	0.0029 U	PNA	0.0100 U	PNA	PNA	PNA	0.0100 U	PNA	PNA	PNA	0.0100 U	PNA	0.0100 U
Iron as Fe	mg/L	0.3	14.6	0.1 U	3.4	2.170	14.400	0.241	11.600 J	0.0325	5.950	0.0200 U	4.890	2.210	3.320	0.100 U	12.300
Lead as Pb	mg/L	0.025	0.0065	0.005 U	0.0014 J	0.0050 U	0.0413	0.0050 U	0.0195	0.0050 U	0.0060	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0088
Magnesium	mg/L	35 #	2.9	2.47	2.99	3.160	7.700	4.010	6.210	4.150	6.140	6.100	5.900	5.450	2.790	2.430	3.000
Manganese as Mn	mg/L	0.3	0.603	0.01 U	0.0676	0.0570	0.500	0.130	0.369	0.181	0.152	0.0100 U	0.652	0.358	0.0804	0.0181	0.1920
Mercury as Hg	mg/L	0.0007	0.0002 U	0.0002 UB	0.000073 J	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U	0.00020 U
Nickel as Ni	mg/L	0.1	0.04 U	0.04 U	0.0034 J	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0400 U	0.0100	0.0400 U	0.0559
Potassium	mg/L	NA	5.0 U	5.0 U	1.12 J	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.000 U	5.800	5.000 U	5.000 U	5.010
Selenium as Se	mg/L	0.01	0.01 U	0.01 U	0.0063 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 0	0.0100 U	0.0100 U
Silver as Ag	mg/L	0.05	0.01 U	0.01 U	0.0036 U	0.0100 U	0.0100 U	0.0100 U	0.0100 <i>UJ</i>	0.0100 <i>UJ</i>	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 0	0.0100 U	0.0100 U
Sodium as Na	mg/L	20	8.21	7.04	8.77	8.680	10.400	9.360	10.500	10.300 J	12.400	12.500	9.410	10.800	8.210	8.710	7.980
Thallium as Tl	mg/L	0.0005#	0.01 U	0.01 U	0.0036 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Vanadium	mg/L	NA	0.05 U	0.05 U	0.0008 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 0	0.0500 U	0.0500 U
Zinc as Zn	mg/L	2 #	0.02 U	0.02 U	0.0062 J	0.0200 U	0.0774	0.0200 U	0.0394	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 U	0.0200 0	0.0200 U	0.0227
Alkalinity tot CaCo3	mg/L	NA DEC	26.8	PNA	21.8	26.6	59.6	PNA	40.4	PNA	41.5	PNA	86.3	91.3	34.9	PNA	31.4
Chloride as Cl	mg/L	250	8.8	PNA	11.4	12.1	14.0	PNA	13.9	PNA	12.0	PNA	10.5	9.7	10.1	PNA	11.5
Sulfate as SO4	mg/L	250	7.2 0.5 U	PNA	8.9 0.032 I	12.5 0.50 U	19.9 0.50 U	PNA	20.0 0.50 U	PNA	25.5	PNA	21.6 0.50 U	15.6 0.50 U	11.8 0.50 U	PNA PNA	11.4 0.50 U
Bromide	mg/L	2 #		PNA	, ,			PNA		PNA	0.50 U	PNA					
BOD5	mg/L	NA	4 U	PNA			6.7 U	PNA	4.0 U	PNA	1.0	PNA	2.0	2.0	2.0 0	PNA	2.0 U
COD Color	mg/L	NA	18.2 PNA	PNA PNA	10 U 5 U	10.0 U PNA	266 5.0	PNA PNA	165 PNA	PNA PNA	61.0 20.0	PNA PNA	16.7 PNA	15.0 PNA	36.8 90.0	PNA PNA	75.8 130.0
	units	NA 0.05	PNA	PNA	0.003 U	PNA	0.020 U	PNA	PNA	PNA	0.020 U	PNA	PNA	PNA	0.020 U	PNA	0.020 U
Chromium hex as Cr Hardness as CaCO3	mg/L mg/L	NA	32	PNA	30	30.0	90.0	PNA	70.0	PNA	66.7	PNA	127	66.7	36.7	PNA	66.7
Ammonia as N	mg/L	2	0.1 UB	PNA	0.021 J	0.10 U	0.14	PNA	0.87	PNA	0.10	PNA	4.8	2.5	0.15	PNA	0.40
Nitrite as N	mg/L	NA	0.05 U	PNA	0.021 J	0.050 U	0.050 U	PNA	0.050 U	PNA	0.050 U	PNA	0.050 U	0.050 U	0.050 U	PNA	0.050 U
Nitrate as N	mg/L	10	0.29	PNA	0.3	0.50	0.72	PNA	0.69 I	PNA	1.2	PNA	0.050 U	0.050 U	0.44	PNA	0.33
Phenols as Phenol	mg/L	0.001	0.005 U	PNA	0.0043 I	0.0064	0.0390	PNA	0.0116	PNA	0.0050 U	PNA	0.0050 U	0.0050 U		PNA	0.0030
Tot Dissolved Solids	mg/L	NA	57	PNA	83	58	121	PNA	94	PNA	106	PNA	139	142	63.0	PNA	110
Tot. Kjeldahl Nitrogen	mg/L	NA NA	0.43	PNA	0.11	0.10 U	0.58	PNA	0.59	PNA	1.2	PNA	2.5	4.2	0.80	PNA	1.5
Tot Organic Carbon	mg/L mg/L	NA	1.7 B	PNA	0.59 I	1.0 U	23.9	PNA	16.7	PNA	2.7	PNA	1.8	1.5	1.5	PNA	4.0
Turbidity	NTU	NA NA	11.7 B	PNA	34.4	26.5	1,000	PNA	587	PNA	58.0	PNA	39.6	PNA	79.6	PNA	0.0
Temperature	deg.C	NA NA	12.7	PNA	12.02	12.85	12.22	PNA	12.42	PNA	12.15	PNA	13.56	14.27	13.26	PNA	12.76
nH	units	6.5-8.5	6.4	PNA	5.79	6.24	6.57	PNA	6.62	PNA	6.83	PNA	6.35	4.74	6.32	PNA	6.58
Spec. Cond	umho/cm	NA	129	PNA	109	144	183	PNA	156	PNA	146	PNA	203	272	108	PNA	305
NOTES:	anno, cin	11/1	127	111/1	107	177	103	1 14/1	130	1 11/1	110	111/1	203	272	100	1 11/1	303

NOTES: (1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

B - Analyte was detected in the associated method blank.
H - Received / analyzed outside of analytical holding time
J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
R - Data Validation Qualifier - Rejected.
U - Indicates the compound was analyzed for, but not detected.
U - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
UJ - Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

Commitment A	ANALYTICAL	UNITS	GW									MW-12A										1
Monthmory and Monthmory an		UNITS		October 201	7	April 2018	October 2	2018	April 2019	October 2019				October 2020		April 202	1	October 20	21	April 202	22	October 2022
Aerenic and Aeren		mg/L		PNA		0.0134 U	PNA		0.200 U	PNA	Ť	0.200	U	PNA	T	0.200	U	PNA		0.200	U	PNA
Arenet as A mg/L 0.025	Antimony as Sb	mg/L	0.003 #	PNA		0.003 U	PNA		0.0600 U	PNA	T	0.0600	U	PNA	7	0.0600	U	PNA		0.0600	U	PNA
SeyMone Meyl 1 1 1 1 1 1 1 1 1	Arsenic as As		0.025	PNA		0.0068 U	PNA		0.0100 U	PNA	T	0.0100	U	0.0100	U	0.0100	U	0.0100	U	0.0100	U	0.0100 U
Part	Barium	mg/L	1	PNA		0.0442 J	PNA		0.200 U	PNA	T	0.200	U	PNA	7	0.200	U	PNA		0.200	U	PNA
Commitment of March March	Beryllium as Be		0.003	PNA		0.0006 U	PNA		0.0050 U	PNA	T	0.0050	U	PNA	T	0.0050	U	PNA		0.0050	U	PNA
Commitment of March March	Boron as B	mg/L	1	PNA		0.0541	PNA		0.0680	PNA	T	0.0500	U	PNA	7	0.0639		PNA		0.0506		PNA
Commitman C. Comm	Cadmium as Cd		0.005	0.0025	U	0.00006 U	0.0025	U	0.0025 U	0.0025 U	J	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025	U	0.0025 U
Cahair mg/L or	Calcium as Ca	mg/L	NA	22.2		20.4	25.3		23.800	29.100	T	15.600		8.720	T	25.400		21.800		16.500		19.100
Copport as Ca	Chromium as Cr	mg/L	0.05	PNA		0.0016 U	PNA		0.0100 U	PNA	T	0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
Canales SCN mg/L 0.2 PNA 0.0029 U PNA 0.0100 U 0.010	Cobalt	mg/L	NA	PNA		0.006 J	PNA		0.0500 U	PNA	T	0.0500	U	PNA	T	0.0500	U	PNA		0.0500	U	PNA
From Septe Mg/L 0.3 187	Copper as Cu	mg/L	0.2	PNA		0.0025 U	PNA		0.0250 U	PNA	T	0.0250	U	PNA	T	0.0250	U	PNA		0.0250	U	PNA
Load as Pb	Cyanide as CN	mg/L	0.2	PNA		0.0029 U	PNA		0.0100 U	PNA	T	0.0100	U	PNA	T	0.0100	U	PNA		0.0100	U	0.0100 U
Magnesism	Iron as Fe	mg/L	0.3	18.7		1.48	2.56		1.420	4.100	T	0.445		0.414		0.158		1.47		3.75		0.100 U
Magnesism mg/L 0.3 3.37 1.98 2.54 1.50 2.070 1.770 2.270 0.261 2.090 0.054 Magnesism mg/L 0.3 3.37 1.98 2.54 1.50 2.090 1.770 1.770 0.247 2.270 0.261 2.090 0.554 Mercury as lig mg/L 0.0007 PNA 0.00005 U PNA 0.0002 U PNA 0.0000 U PN	Lead as Pb	mg/L	0.025	0.005	U	0.0013 U	0.005	U	0.0050 U	0.0050 U	J	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050	U	0.0050 U
Mercury as Hg	Magnesium	mg/L	35#	6.15		6.08	7.78		7.250	8.070	T	4.560		2.760	T	8.310		7.570		5.160		6.000
Michael San Mig/L San Mig/L San	Manganese as Mn	mg/L	0.3	3.37		1.98	2.54		1.500	2.270	T	1.770		0.747	T	2.270		0.261		2.090		0.534
Petassium mg/L	Mercury as Hg	mg/L	0.0007	PNA		0.000056 U	PNA		0.00020 U	PNA	T	0.00020	U	PNA	T	0.00020	U	PNA		0.00020	U	PNA
Selenium as Se	Nickel as Ni	mg/L	0.1	PNA		0.0035 J	PNA		0.0400 U	PNA		0.0400	U	PNA		0.0400	U	PNA		0.0400	U	PNA
Silver as Ag	Potassium	mg/L	NA	6.46		7.74	5.66		9.370	9.110		5.000	U	5.000	U	5.000	U	5.000	U	5.000	U	5.570
Solitima s N	Selenium as Se	mg/L	0.01	PNA		0.0063 U	PNA		0.0100 U	PNA		0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
The column The	Silver as Ag	mg/L	0.05	PNA		0.0036 U	PNA		0.0100 U	PNA		0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
Vanadium mg/L NA PNA 0.012 J PNA 0.0500 U PNA 0.0200 U PNA 0.020 U PNA 0.020 U DNA 0.020 U DNA 0.020 U DNA 0.020 U 0.020 U <th< td=""><td>Sodium as Na</td><td>mg/L</td><td>20</td><td>9.02</td><td></td><td>13.3</td><td>11.9</td><td></td><td>13.900</td><td>11.700</td><td></td><td>9.350</td><td></td><td>7.020</td><td></td><td>12.300</td><td></td><td>10.700</td><td></td><td>9.590</td><td></td><td>9.930</td></th<>	Sodium as Na	mg/L	20	9.02		13.3	11.9		13.900	11.700		9.350		7.020		12.300		10.700		9.590		9.930
Zincas Zn mg/L 2 # PNA 0.0049 j PNA 0.0200 U 0.0	Thallium as Tl	mg/L	0.0005#	PNA		0.0036 U	PNA		0.0100 U	PNA		0.0100	U	PNA		0.0100	U	PNA		0.0100	U	PNA
Alkalinity tot CaCo3	Vanadium	mg/L	NA	PNA		0.0012 J	PNA		0.0500 U	PNA		0.0500	U	PNA		0.0500	U	PNA		0.0500	U	PNA
Chloride as Cl mg/L 250 11.5 15.7 16.8 17.3 17.1 10.8 10.1 15.0 12.0 12.9 14.9 Sulfate as SO4 mg/L 250 16 32 31.2 32.4 26.8 15.6 11.6 24.3 5.0 U 16.0 16.0 Bromide mg/L 2# 0.5 U 0.13 1 0.5 U 0.5 U 0.50 U 0.	Zinc as Zn	mg/L	2 #	PNA		0.0049 J	PNA		0.0200 U	PNA		0.0200	U	PNA		0.0200	U	PNA		0.0200	U	PNA
Sulfate as SO4 mg/L 250 16 32 31.2 32.4 26.8 15.6 11.6 24.3 5.0 U 160 160 Bromide mg/L 2# 0.5 U 0.13 J 0.5 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.50 U 0.55 U 0.50 U 0.50 mg/L NA 11.3 2 U 2 U 2.0 U 2.0 U 10.0 U	Alkalinity tot CaCo3	mg/L	NA	80		59.4	79.7		88.3	114		56.1		21.8		93.3		68.4		61.2		89.5
Bromide mg/L 2 # 0.5 U 0.13 J 0.5 U 0.50 U	Chloride as Cl	mg/L	250	11.5		15.7	16.8		17.3	17.1		10.8		10.1		15.0		12.0		12.9		14.9
BODS	Sulfate as SO4	mg/L	250	16		32	31.2		32.4	26.8		15.6		11.6		24.3		5.0	U	16.0		16.0
COD mg/L NA 14 10 U 10 U 10.0 U 10.0 U 18.8 10.0 U 12.1 13.0 10.0 U 10.0 U 10.0 Color units NA PNA 15 PNA 5.0 PNA 5.0 U PNA 5.0 U PNA 5.0 U PNA 7.0 5.0 Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 66.7 66.7 110 53.3 36.7 66.7 50.0 44.7 70.0 Ammonia as N mg/L NA 88.0 PNA 66.7 66.7 66.7 110 53.3 36.7 66.7 50.0 44.7 70.0 Ammonia as N mg/L NA 0.05 U 0.05	Bromide	mg/L	2 #	0.5	U	0.13 J	0.5	U	0.50 U	0.50 U	J	0.50	U	0.50	U	0.50	U	5.5		0.50	U	0.50 U
Color units NA PNA 15 PNA 5.0 PNA 5.0 U PNA 5.0 U PNA 7.0 5.0 Chromium hex as Cr mg/L 0.05 PNA 0.003 U PNA 0.010 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.020 U 0.020 U PNA 0.020 U 0.020 U PNA 0.020 U 0.0	BOD5	mg/L	NA	11.3		2 U	2	U	2.0 U	2.0 U	J	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	
Chromium hex as Cr	COD	mg/L	NA	14		10 U	10	U	10.0 U	10.0 U	J	18.8		10.0	U	12.1		13.0		10.0	U	
Hardness as CaCO3 mg/L NA 88.0 PNA 66.7 66.7 110 53.3 36.7 66.7 50.0 46.7 70.0 Ammonia as N mg/L 2 2.9 2.8 0.53 3.2 6.1 1.0 0.32 0.67 0.10 U 2.0 3.8 Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.05 U 0.050 U 0.0050	Color	units				_											_					
Ammonia as N mg/L 2 2.9 2.8 0.53 3.2 6.1 1.0 0.32 0.67 0.10 U 2.0 3.8 Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.05 U 0.050	Chromium hex as Cr	mg/L	0.05	PNA		0.003 U	PNA		0.010 U	PNA		0.020	U	PNA		0.020	U	PNA		0.020	U	0.020 U
Nitrite as N mg/L NA 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 U 0.05 Nitrate as N mg/L 10 0.23 0.46 0.75 0.48 0.16 0.83 0.59 0.52 0.94 1.0 0.80 Phenols as Phenol mg/L 0.001 0.005 U	Hardness as CaC03	mg/L																				
Nitrate as N mg/L 10 0.23 0.46 0.75 0.48 0.16 0.83 0.59 0.52 0.94 1.0 0.80 Phenols as Phenol mg/L 0.001 0.005 U 0.0051 U 0.005 U 0.0050 U 0.0050 U 0.0050 U 0.0053 U 0.0050 U 0.0053 U 0.0050 U 0.0050 U 0.0058	Ammonia as N	mg/L	2								1				4							
Phenols as Phenol mg/L	Nitrite as N	mg/L			U			U			J		U		Ü		U		U		U	
Tot Dissolved Solids mg/L NA 107 136 136 146 157 100 116 166 124 132 126 Tot Kjeldahl Nitrogen mg/L NA 3.3 2.7 0.72 3.8 7.6 1.7 0.48 0.76 0.66 2.60 3.9 Tot Organic Carbon mg/L NA 1.9 1.6 2.2 1.6 2.4 1.0 U 1.0 U 1.7 1.1 1.1 1.1 1.0 Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 pH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Nitrate as N	mg/L	10	0.23		0.46	0.75		0.48	0.16		0.83		0.59				0.94		1.0		
Tot. Kjeldahl Nitrogen mg/L NA 3.3 2.7 0.72 3.8 7.6 1.7 0.48 0.76 0.66 2.60 3.9 Tot Organic Carbon mg/L NA 1.9 1.6 2.2 1.6 2.4 1.0 U 1.0 U 1.7 1.1 1.1 1.0 Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 pH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63		0,			U			U			1		U		Ü				U		U	
Tot Organic Carbon mg/L NA 1.9 1.6 2.2 1.6 2.4 1.0 U 1.0 U 1.7 1.1 1.1 1.0 1.0 Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 PH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63											1											
Turbidity NTU NA 106 43 5.2 11.7 27.5 23.5 40.2 6.60 PNA 0.0 0.0 Temperature degC NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 PH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Tot. Kjeldahl Nitrogen	mg/L	NA			2.7																
Temperature deg.C NA 12.55 11.94 13.21 12.26 12.63 12.06 13.15 12.93 14.07 12.88 12.79 PH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Tot Organic Carbon										1		U		U							
pH units 6.5-8.5 6.36 6.1 6.39 6.44 6.14 6.70 5.96 7.98 4.64 5.57 6.63	Turbidity		NA				1				1				_							
	-										⊥				_							
Spec Cond Lumbo/cm NA 261 280 275 314 306 146 88 252 235 141 241	r										1				4							
Spec conta annothing and 201 200 273 334 300 140 00 232 233 141 241 NOTES	Spec. Cond	umho/cm	NA	261		280	275		314	306		146		88		252		235		141		241

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

= Guidance value, no standard exists.
NA = Not available.

PNA = parameter not analyzed for.

B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Natimony as Sh mg/L 0.003 # PNA 0.0035 PNA 0.0600 U PN	0.200 U PNA 0.0600 U PNA 0.0100 U 0.0100 U 0.200 U PNA 0.0050 U PNA 0.00625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Aluminum as Al mg/L NA	0.0600 U PNA 0.0100 U 0.0100 U 0.0200 U PNA 0.0050 U PNA 0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Arsenica SAS mg/L 0.025 PNA 0.0068 U PNA 0.0100 U PNA 0.0100 U PNA 0.0200 U	0.0100 U 0.0100 U 0.200 U PNA D.0050 U 0.0050 U PNA D.0025 U 0.0025 U 0.0025 U U 0.0002 U 17.900 D.00025 U 0.0100 U PNA D.00025 U
Barlium	0.200 U PNA 0.0050 U PNA 0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Beryllium as Be mg/L 0.003 PNA 0.0006 U PNA 0.0050 U 0.0025 U	0.0050 U PNA 0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Define as B mg/L 1	0.0625 PNA 0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Cadmium as Cd mg/L 0.005 0.0025 U 0.0006 U 0.0025 U	0.0025 U 0.0025 U 16.700 17.900 0.0100 U PNA
Calcium as Ca mg/L NA 19.5 10 9.35 11.700 34.400 13.700 13.100 16.300 31.300 16.700 16.700 17.700	16.700 17.900 0.0100 U PNA
Chromium as Cr	0.0100 U PNA
Cobalt mg/L NA	
Cobalt	
Cyanide as CN mg/L 0.2 PNA 0.0029 U PNA 0.0100 U 0.055 U 0.0050 U 0.0051 0.0050 U <t< td=""><td>0.0500 U PNA</td></t<>	0.0500 U PNA
Iron as Fe mg/L 0.3 0.02 U 0.0109 U 0.0232 U 0.0200 U 0.0499 U 0.0405 U 0.0659 U 0.0200 U 0.0708 U 0.0505 U 0.0050 U 0.005	0.0250 U PNA
Lead as Pb	0.0100 U 0.0100 U
Lead as Pb	0.149 0.100 U
Manganese as Mn mg/L 0.3 0.01 U 0.0086 J 0.01 U 0.0100 U 0.0248 0.0110 U 0.0312 0.230 Mercury as Hg mg/L 0.0007 PNA 0.000056 U PNA 0.00020 U PNA 0.00000 U PNA 0.00000 U PNA 0.0400 U PNA 0.0100 U PNA 0.0100 U PNA 0.0100 U PNA	0.0050 U 0.0050 U
Manganese as Mn mg/L 0.3 0.01 U 0.0086 J 0.01 U 0.0100 U 0.0248 0.0100 U 0.0512 0.230 Mercury as Hg mg/L 0.0007 PNA 0.000056 U PNA 0.00020 U PNA 0.00000 U PNA 0.00000 U PNA 0.0400 U PNA 0.0100 U PNA	
Mercury as Hg mg/L 0.0007 PNA 0.000056 U PNA 0.00020 U PNA 0.0400 U PNA 0.0500 U PNA	
Nickel as Ni mg/L 0.1 PNA 0.0018 J PNA 0.0400 U PNA 0.0500 U PN	
Potassium mg/L	
Selenium as Se mg/L 0.01 PNA 0.0063 U PNA 0.0100 U	
Silver as Ag mg/L 0.05 PNA 0.0036 U PNA 0.0100 U PNA 0.0500 U PNA 0.0500 </td <td></td>	
Sodium as Na mg/L 20 12.1 9.23 8.15 10.800 19.900 10.600 8.480 11.400 16.400 10.400 Thallium as Tl mg/L 0.0005 # PNA 0.0036 U PNA 0.0100 U PNA 0.0500 U PNA 0.0200 U PNA 0.0200 U PNA 0.0200 U PNA 0.0200 U PNA <t< td=""><td></td></t<>	
Thallium as TI mg/L 0.0005 # PNA 0.0036 U PNA 0.0100 U PNA 0.0500 U PNA 0.	
Vanadium mg/L NA PNA 0.00092 J PNA 0.0500 U PNA 0.0200	
Zinc as Zn mg/L 2 # PNA 0.0016 J PNA 0.0200 U DNA 0.020	
Alkalinity tot CaCo3 mg/L NA 56.6 25.2 24.6 45.6 114 49.8 34.8 46.1 75 56.8 Chloride as Cl mg/L 250 15.8 13.4 13.8 16.1 28.0 13.8 12.3 15.4 17.5 16.6 Sulfate as SO4 mg/L 250 26.5 9.7 12.1 11.3 49.3 20.8 9.0 22.4 5.0 U 21.6 Bromide mg/L 2# 0.5 U 0.50 U 0.	
Chloride as Cl mg/L 250 15.8 13.4 13.8 16.1 28.0 13.8 12.3 15.4 17.5 16.6 Sulfate as SO4 mg/L 250 26.5 9.7 12.1 11.3 49.3 20.8 9.0 22.4 5.0 U 21.6 Bromide mg/L 2# 0.5 U 0.03 J 0.5 U 0.50 U 0.	
Sulfate as SO4 mg/L 250 26.5 9.7 12.1 11.3 49.3 20.8 9.0 22.4 5.0 U 21.6 Bromide mg/L 2# 0.5 U 0.03 J 0.5 U 0.50 U	
Bromide mg/L 2 # 0.5 U 0.03 J 0.5 U 0.50 U 0	
BOD5 mg/L NA 2 U 2 U 2 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 2.0 U 3.0 U	
COD mg/L NA 10 U 10 U 10 U 10.0 U 12.4 12.5 10.0 U 10.0 U 21.2 10.3	
Color	5.0 U 5.0 U
Hardness as CaC03 mg/L NA 60 PNA 34 44.0 127 53.3 50.0 40.0 56.7 13.3	
Ammonia as N mg/L 2 1.1 0.068 0.1 U 0.10 U 1.8 1.8 PNA 0.53 0.17 3.5	
Nitrate as N mg/L 10 1.2 0.75 1.3 0.97 0.41 1.7 0.80 1.6 1.0 2.6	
Tot Dissolved Solids mg/L NA 150 85 70 84.0 238 112 111 120 172 153	
Tot. Kjeldahl Nitrogen mg/L NA 1.5 0.1 U 0.1 U 0.33 2.9 2.2 0.13 R 0.72 0.80 3.30	
3. 8	
Turbidity NTU NA 138 0.2 8 0.2 0.0 16.8 10.1 3.20 PNA 0.0	-
Temperature deg.C NA 12.05 11.83 12.85 11.84 12.57 11.81 13.86 12.66 13.98 12.70	0.0
DH units 6.5-8.5 5.81 6.00 5.76 6.26 6.26 6.85 6.25 8.41 4.64 5.86	
Spec. Cond umbo/cm NA 261 140 25 180 30 223 98 179 254 153	5.86 6.66

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation. # = Guidance value, no standard exists.

NA = Not available.

PNA = parameter not analyzed for. B - Analyte was detected in the associated method blank.

H - Received / analyzed outside of analytical holding time

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

J - Data Validation Qualifier - The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

R - Data Validation Qualifier - Rejected.

U - Indicates the compound was analyzed for, but not detected.

U-Data Validation Qualifier - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ-Data Validation Qualifier - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL TABLE 2

ORGANIC GROUNDWATER QUALITY RESULTS OCTOBER 2022

	OC.	I UBER 2022		
Parameters	Units	GW Standard ⁽¹⁾	MW-11A	MW-11B
1,1,1,2-Tetrachloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1,1-Trichloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1,2,2-Tetrachloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1,2-Trichloroethane	mg/L	0.001	0.0050 U	0.0050 U
1,1-Dichloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,1-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U
1,2-Dibromo-3-chloropropane	mg/L	0.0004	0.0050 U	0.0050 U
1,2-Dibromoethane	mg/L	NA	0.0050 U	0.0050 U
1,2-Dichlorobenzene	mg/L	0.003	0.0050 U	0.0050 U
1,2-Dichloroethane	mg/L	0.005	0.0050 U	0.0050 U
1,2-Dichloropropane	mg/L	0.001	0.0050 U	0.0050 U
1,4-Dichlorobenzene	mg/L	0.003	0.0050 U	0.0050 U
2-Butanone	mg/L	0.005	0.0050 U	0.0050 U
2-Hexanone	mg/L	NA	0.0050 U	0.0050 U
4-Methyl-2-pentanone	mg/L	0.005	0.0050 U	0.0050 U
Acetone	mg/L	NA	0.0050 U	0.0050 U
Acrylonitrile	mg/L	0.005	0.0050 U	0.0050 U
Benzene	mg/L	0.001	0.0050 U	0.0050 U
Bromochloromethane	mg/L	0.005	0.0050 U	0.0050 U
Bromodichloromethane	mg/L	NA	0.0050 U	0.0050 U
Bromoform	mg/L	NA	0.0050 U	0.0050 U
Bromomethane	mg/L	0.005	0.0050 U	0.0050 U
Carbon disulfide	mg/L	NA	0.0050 U	0.0050 U
Carbon tetrachloride	mg/L	0.005	0.0050 U	0.0050 U
Chlorobenzene	mg/L	0.005	0.0050 U	0.0050 U
Chloroethane	mg/L	0.005	0.0050 U	0.0050 U
Chloroform	mg/L	0.007	0.0050	0.0050
Chloromethane	mg/L	NA	0.0050 U	0.0050 U
cis-1,2-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U
cis-1,3-Dichloropropene	mg/L	0.0004	0.0050 U	0.0050 U
Dibromochloromethane	mg/L	0.005	0.0050 U	0.0050 U
Dibromomethane	mg/L	0.005	0.0050 U	0.0050 U
Ethylbenzene	mg/L	0.005	0.0050 U	0.0050 U
Iodomethane	mg/L	NA	0.0050 U	0.0050 U
Methylene chloride	mg/L	0.005	0.0050 U	0.0050 U
Styrene	mg/L	0.005	0.0050 U	0.0050 U
Tetrachloroethene	mg/L	0.005	0.0050 U	0.0050 U
Toluene	mg/L	0.005	0.0050 U	0.0050 U
trans-1,2-Dichloroethene	mg/L	0.005	0.0050 U	0.0050 U
trans-1,3-Dichloropropene	mg/L	0.0004	0.0050 U	0.0050 U
trans-1,4-Dichloro-2-butene	mg/L	0.005	0.0050 U	0.0050 U
Trichloroethene	mg/L	0.005	0.0050 U	0.0050 U
Trichlorofluoromethane	mg/L	0.005	0.0050 U	0.0050 U
Vinyl acetate	mg/L	0.005	0.0050 U	0.0050 U
Vinyl chloride	mg/L	0.002	0.0050 U	0.0050 U
Xylene (total)	mg/L	0.005	0.0050 U	0.0050 U

NOTES:

(1) = NYSDEC, Class GA Groundwater Standards

Bold indicates update due to data validation.

- # = Guidance value, no standard exists.
- NA = Not available.
- PNA = parameter not analyzed for.
- \ensuremath{B} Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time
- \boldsymbol{J} Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- J Data Validation Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- R Data Validation Qualifier Rejected.
- U Indicates the compound was analyzed for, but not detected.
- $\it U$ -Data Validation Qualifier The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Data Validation Qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Highlighted text denotes concentrations exceeding the NYSDEC, Class GA Groundwater Quality Standard or Guidance Value

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 3

LEACHATE QUALITY RESULTS

Analytical Parameter						Loachata Collo	ction (Primary)					
Units mg/L	April	October	April	October	April	October	April	October	April	October	April	October
omes m _b / z	2017	2017	2018	2018	2019	2019	2020	2020	2021	2021	2022	2022
Arsenic as As	0.01 U	0.01 U	0.0068 U	0.01 U	0.01 U	0.010 U	0.010 U	0.0214	0.0100 U	0.0100 U	0.0100 U	0.0102
Cadmium as Cd	0.00021	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	60.2	84.8	38.0	59.3	78.8	107.000	49.800	89.700	54.100	73.100	66.100	89.600
Iron as Fe	29.9	47.9	11.3	17.0	34.6	1.020	13.500	34.000	13.100	3.470	2.740	1.380
Lead as Pb	0.0014 J	0.005 U	0.0013 U	0.005 U	0.005 U	0.0050 U	0.0050 U	0.0142	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Magnesium as Mg	8.93	27	5.37	13.3	12.0	19.600	10.500	12.000	9.960	12.900	11.500	22.100
Manganese as Mn	2.2	2.03	0.966	1.78	2.28	0.848	1.460	0.547	1.660	1.080	0.778	0.172
Potassium as K	18	134	7.22	48.0	33.1	87.200	31.600	37.200	18.600	37.100	22.700	68.000
Sodium as Na	37.9	352	9.39	122	76	225.000	82.400	56.900	13.000	50.000	25.900	39.800
Alkalinity total CaCO3	231	995	110	583	512	793	402	280	218	330	255	347
BOD5	5	20.9	4.0 U	28.6 U	13.3 U	8.9	12.4	8.4	5.2	10.4	2.0 U	2.0 U
COD	60.9	425	15.5	136	74.2	231	82.2	244	39.8	74.5	52.3	296
Chloride as Cl	42.5	446	11	170	99.1	332	92.8	88.2	13.6	51.2	28.4	
Hardness as CaCO3	204	200	116	180	200	320	180	333	120	360	173	327
Ammonia as N	9.5	280	3	86.2	57.9	83.7	32.0	8.6	3.5	19.9	10.2	1.0
Nitrite as N	0.05 U	0.056	0.067	0.05 U	0.05 U	1.4	0.052	0.63	0.30	0.27	0.072	0.067
Nitrate as N	0.036 J	0.22	1	0.19	0.074	12	1.5	10.7	0.15	11	0.74	0.42
Bromide	0.18 J	1.8	0.034 J	0.91	0.05 U	1.7	0.50	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Total Recoverable Phenolics	0.0282	0.0213	0.0137	0.0110	0.0064	0.0148	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0050 U	0.0132
Sulfate as SO4	52.2	24.2	3.7 J	8.1	5 U	44.7	5.7	27.2	6.6	11.3	12.5	31.6
Total Dissolved Solids	363	1,610	191	658	440	648	416	591	240	404	317	970
Total Organic Carbon	12.2	130	8.6	44.5	22	69	23.5	59.7	13.2	23.2	16.2	1.0 U
Total Kjeldahl Nitorgen Turbidity NTU	23.6 88.5	305 130	3.8 85.6	99.8 92.0	54.3 >50	127 >50	69.9 469	15.6 PNA	5.3 14.52	27.3 PNA	0.00	5.1 0.00
Analytical Parameter	00.3	130	05.0	72.0	750		tion (Secondary)		11.02		0.00	0.00
Units mg/L	April	October	April	October	April	October	April	October	April	October	April	October
	2017	2017	2018	2018	2019	2019	2020	2020	2021	2021	2022	2022
Arsenic as As	0.01 U	0.01 U	0.0068 U	0.01 U	0.01 U	0.010 U	0.0407	0.0127	0.0100 U	0.0100 U	0.0100 U	0.0100 U
Cadmium as Cd	0.00022 J	0.0025 U	0.00006 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium as Ca	73	70.6	53.1	76.8	76.1	84.400	65.600	84.100	53.800	61.600	57.600	66.700
Iron as Fe	32.4			1.62			65.600					
Lead as Pb	0.0015 J	0.407	1.17	1.02	2.88	2.010	65.500	159.000	0.687	0.0215	0.116	0.100 U
Magnesium as Mg	0.0015 J	0.407 0.005 U	1.17 0.0013 U	0.0050 U	2.88 0.0050 U	2.010 0.0050 U			0.687 0.0050 U	0.0215 0.0050 U	0.116 0.0050 U	0.100 U 0.0050 U
	12.6						65.500	159.000				
Manganese as Mn		0.005 U	0.0013 U	0.0050 U	0.0050 U	0.0050 U	65.500 0.0104	159.000 0.0067	0.0050 U	0.0050 U	0.0050 U	0.0050 U
	12.6	0.005 U 9.66	0.0013 U 5.64	0.0050 U 11.60	0.0050 U 12.00	0.0050 U 13.900	65.500 0.0104 9.690	159.000 0.0067 14.100	0.0050 U 9.950	0.0050 U 8.870	0.0050 U 7.300	0.0050 U 8.810
Manganese as Mn Potassium as K Sodium as Na	12.6 8.16	0.005 U 9.66 1.82 30.2 47.4	0.0013 U 5.64 2.75 9.81 17.4	0.0050 U 11.60 1.07	0.0050 U 12.00 3.33 31.70 70.1	0.0050 U 13.900 0.231	65.500 0.0104 9.690 0.947	159.000 0.0067 14.100 0.896	0.0050 U 9.950 0.149 16.200 7.820	0.0050 U 8.870 0.0217	0.0050 U 7.300 0.0154	0.0050 U 8.810 0.0206
Manganese as Mn Potassium as K	12.6 8.16 31.9	0.005 U 9.66 1.82 30.2	0.0013 U 5.64 2.75 9.81	0.0050 U 11.60 1.07 34.40	0.0050 U 12.00 3.33 31.70	0.0050 U 13.900 0.231 48.200	65.500 0.0104 9.690 0.947 27.800	159.000 0.0067 14.100 0.896 52.300	0.0050 U 9.950 0.149 16.200	0.0050 U 8.870 0.0217 17.300	0.0050 U 7.300 0.0154 14.100	0.0050 U 8.810 0.0206 17.900
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BODS	12.6 8.16 31.9 62.2 381 11.6	0.005 U 9.66 1.82 30.2 47.4 427 5.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U	0.0050 U 11.60 1.07 34.40 77.8 460 71.2	0.0050 U 12.00 3.33 31.70 70.1 483 7.4	0.0050 U 13.900 0.231 48.200 74.600 368 9.0	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4	159.000 0.0067 14.100 0.896 52.300 85.300 410 10.1	0.0050 U 9.950 0.149 16.200 7.820 198 7.7	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD	12.6 8.16 31.9 62.2 381 11.6 117	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137	159.000 0.0067 14.100 0.896 52.300 85.300 410 10.1 300	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl	12.6 8.16 31.9 62.2 381 11.6 117 71.7	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2	159,000 0,0067 14,100 0,896 52,300 85,300 410 10,1 300 118	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250	159,000 0,0067 14,100 0,896 52,300 85,300 410 10,1 300 118 287	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 B0D5 COD Chloride as CI Hardness as CaCO3 Ammonia as N	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250	159,000 0,0067 14.100 0,896 52,300 85,300 410 10.1 300 118 287 46.8	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as CI Hardness as CaCO3 Ammonia as N Nitrite as N	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 2.2.2 150 8.8 0.05 U	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81	65.500 0.0104 9,690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60	159,000 0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U
Manganese as Mn Potassium as K Sodium as Na Alkalnity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 1 0.066	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81	65.500 0.0104 9.690 0.047 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9	159,000 0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U	0.0050 U 8.810 0.0206 17.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrate as N Bromide	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9	159,000 0,0067 14,100 0,896 52,300 85,300 410 10,1 300 118 287 46,8 0,18 2,8 0,50 U	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U 1.8	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 0.0135	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 2.22 150 8.8 0.05 U 0.36 0.1 J	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.055 U 2.8 0.57	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U 0.0050 U	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9 0.50 0.0050	159,000 0,0067 14,100 0,896 52,300 85,300 410 10.1 300 118 287 46,8 0,18 2,8 0,50 U 0,0064	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9 0.50 U 0.0050 U	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U 1.8 0.50 U 0.0050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U 0.0050 U	0.0050 U 8.810 0.0206 17.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7 0.50 U 0.0128
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 0.0135 6.4	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083 8.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 J 6	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.25 0.5 U 0.0151	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U 0.0050 U	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9 0.50 0.0050 U	159,000 0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18 2.8 0.50 U 0.0064	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9 0.50 U 0.0050 U	0.0050 U 8.870 0.0217 17:300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U 1.8 0.50 U 0.0050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.0050 U 22.1	0.0050 U 8.810 0.0206 17.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7 0.50 U 0.0128
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4 Total Dissolved Solids	12.6 8.16 3.1.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 1 0.066 0.32 J 0.0135 6.4	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083 8.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 J 6 6.3	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115 19.8	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.29 0.5 U 0.0151 6.9	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U 58.7	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9 0.500 0.0050 U 46.6	159,000 0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18 2.8 0.50 U 0.0064 23.6 609	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9 0.50 U 0.0050 U	0.0050 U 8.870 0.0217 17.300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.0550 U 1.8 0.50 U 17.6	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.50 U 0.0050 U 2.21	0.0050 U 8.810 0.0206 17.900 10.900 189 2.0 U 93.4 22.0 103 0.10 U 0.050 U 1.7 0.50 U 0.0128 28.0
Manganese as Mn Potassium as K Sodium as Na Alkalinity total CaCO3 BOD5 COD Chloride as Cl Hardness as CaCO3 Ammonia as N Nitrite as N Nitrate as N Bromide Total Recoverable Phenolics Sulfate as SO4	12.6 8.16 31.9 62.2 381 11.6 117 71.7 320 16.0 0.0058 0.066 0.32 0.0135 6.4	0.005 U 9.66 1.82 30.2 47.4 427 5.2 54.2 45.9 230 20.7 0.064 5.3 0.5 U 0.0083 8.2	0.0013 U 5.64 2.75 9.81 17.4 195 4 U 13.4 22.2 150 8.8 0.05 U 0.36 0.1 J 6	0.0050 U 11.60 1.07 34.40 77.8 460 71.2 84.9 90 230 43.0 0.05 U 2.8 0.57 0.0115	0.0050 U 12.00 3.33 31.70 70.1 483 7.4 78.6 87 180 51.0 0.05 U 0.25 0.5 U 0.0151	0.0050 U 13.900 0.231 48.200 74.600 368 9.0 125 113 240 32.3 0.81 8.2 0.50 U 0.0050 U	65.500 0.0104 9.690 0.947 27.800 75.700 277 46.4 137 79.2 250 13.7 0.60 11.9 0.50 0.0050 U	159,000 0.0067 14.100 0.896 52.300 85.300 410 10.1 300 118 287 46.8 0.18 2.8 0.50 U 0.0064	0.0050 U 9.950 0.149 16.200 7.820 198 7.7 31.3 8.6 127 0.10 U 0.054 1.9 0.50 U 0.0050 U	0.0050 U 8.870 0.0217 17:300 7.320 188 2.0 U 27.3 5.3 213 0.14 0.050 U 1.8 0.50 U 0.0050 U	0.0050 U 7.300 0.0154 14.100 6.570 169 2.0 U 32.4 8.4 133 0.10 U 0.050 U 2.2 0.0050 U 22.1	0.0050 U 8.810 0.0206 17.900 189 2.0 U 93.4 22.0 193 0.10 U 0.050 U 1.7 0.50 U 0.0128

NOTES:

- Bold indicates update due to data validation.
 B Analyte was detected in the associated method blank.
- H Received / analyzed outside of analytical holding time

- E Serial dilution is not within acceptance criteria or the reported value is estimated because of the presence of interference.

 J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

 J Data Validation (Qualifier The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- 7 Out a vanation (quame* The allayer was possively network of the Compound was analyzed for, but not detected above the reported sample quantitation limit of U-Data Validation (qualifier The analyte was analyzed for, but we detected above the reported sample quantitation limit of U-Data Validation (qualifier The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation faces and the compound of th

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

TABLE 4

GROUNDWATER ELEVATIONS October 2022

Monitoring	* Casing	Octobe	r 2017	April	2018	Octobe	r 2018	April	2019	Octobe	r 2019	April	2020	Octobe	er 2020	April	2021	Octobe	er 2021	April	2022	Octobe	er 2022
Well Number	Elevation	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE	DTW	GWE
MW-1A	113.87	105.28	8.59	104.37	9.50	104.72	9.15	102.40	11.47	103.10	10.77	103.27	9.73	103.24	10.63	104.72	9.15	104.59	9.28	104.09	9.78	104.12	9.75
MW-1B	115.09	106.50	8.59	105.70	9.39	108.80	6.29	103.57	11.52	104.30	10.79	104.50	10.59	107.28	7.81	105.04	10.05	105.82	9.27	105.34	9.75	106.39	8.70
MW-1C	114.99	106.28	8.71	106.10	8.89	106.88	8.11	104.45	10.54	105.60	9.39	105.20	9.79	106.31	8.68	106.75	8.24	106.68	8.31	105.99	9.00	107.18	7.81
MW-2	74.8	NM		NM		NM		NM	-	NM		NM		NM		NM	-	NM		NM		NM	
MW-3A	55.3	48.88	6.42	47.50	7.80	48.43	6.87	46.56	8.74	47.35	7.95	47.12	8.18	48.40	6.90	47.30	8.00	48.27	7.03	47.81	7.49	48.88	6.42
MW-3B	51.9	45.47	6.43	44.20	7.70	44.96	6.94	45.24	6.66	44.00	7.90	43.92	7.98	45.11	6.79	44.09	7.81	44.96	6.94	44.45	7.45	45.57	6.33
MW-3C	51.4	45.07	6.33	43.78	7.62	44.40	7.00	44.98	6.42	44.80	6.60	43.36	8.04	44.72	6.68	44.71	6.69	44.50	6.90	43.99	7.41	45.08	6.32
MW-4A	16	13.99	2.01	13.40	2.60	12.75	3.25	13.58	2.42	13.30	2.70	13.10	2.90	13.86	2.14	13.42	2.58	13.58	2.42	13.45	2.55	13.49	2.51
MW-4B	16.1	14.15	1.95	13.60	2.50	12.74	3.36	13.49	2.61	13.54	2.56	13.31	2.79	13.98	2.12	13.47	2.63	13.15	2.95	13.27	2.83	13.40	2.70
MW-4C	16	10.31	5.69	9.80	6.20	9.51	6.49	8.57	7.43	9.12	6.88	8.64	7.36	9.56	6.44	9.06	6.94	9.79	6.21	9.31	6.69	10.01	5.99
MW-5A	74.27	NM		NM		NM		NM	-	NM		NM		NM	-	NM	ī	NM		NM		NM	
MW-5B	75.25	NM		NM		NM		NM	-	NM		NM		NM	-	NM	ī	NM		NM		NM	
MW-5C	74.33	NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM	<u> </u>
MW-6A	NS	NM		NM		NM		NM		NM		NM		NM		NM		NM		NM		NM	<u> </u>
MW-6AR	100.72	92.89	7.83	91.81	8.91	93.71	7.01	88.85	11.87	90.70	10.02	91.83	8.89	92.35	8.37	91.25	9.47	92.19	8.53	91.57	9.15	93.84	6.88
MW-6B	103.46	95.20	8.26	94.12	9.34	94.46	9.00	92.19	11.27	93.20	10.26	94.43	9.03	94.68	8.78	93.59	9.87	94.18	9.28	93.97	9.49	95.14	8.32
MW-7A	92.83	84.98	7.85	83.15	9.68	83.55	9.28	81.50	11.33	82.43	10.40	82.23	10.60	82.54	10.29	80.43	12.40	83.12	9.71	83.99	8.84	84.88	7.95
MW-7B	92.72	84.67	8.05	83.54	9.18	83.70	9.02	81.68	11.04	82.50	10.22	82.26	10.46	82.14	10.58	83.11	9.61	NM		83.45	9.27	84.67	8.05
MW-7C	93.31	86.20	7.11	84.69	8.62	84.08	9.23	83.51	9.80	83.81	9.50	84.17	9.14	84.85	8.46	84.56	8.75	85.66	7.65	84.98	8.33	86.18	7.13
MW-8	86.02	77.76	8.26	76.75	9.27	77.13	8.89	74.97	11.05	76.80	9.22	77.41	8.61	77.03	8.99	76.23	9.79	77.11	8.91	76.74	9.28	77.69	8.33
MW-9	82.56	74.73	7.83	73.60	8.96	74.10	8.46	72.00	10.56	73.90	8.66	74.20	8.36	74.30	8.26	73.23	9.33	74.12	8.44	74.02	8.54	74.40	8.16
MW-11A	80.78	73.69	7.09	73.40	7.38	74.00	6.78	71.19	9.59	71.40	9.38	71.32	9.46	71.76	9.02	71.55	9.23	72.99	7.79	72.55	8.23	72.88	7.90
MW-11B	78.32	74.56	3.76	73.38	4.94	74.10	4.22	66.88	11.44	68.80	9.52	73.75	4.57	73.91	4.41	NM	-	73.75	4.57	73.75	4.57	74.38	3.94
MW-12A	87.95	81.88	6.07	79.66	8.29	80.40	7.55	78.57	9.38	79.20	8.75	79.75	8.20	80.40	7.55	79.42	8.53	80.11	7.84	79.84	8.11	80.19	7.76
MW-12B	88.28	81.47	6.81	80.20	8.08	80.12	8.16	79.36	8.92	78.00	10.28	79.14	9.14	80.99	7.29	80.02	8.26	80.92	7.36	80.43	7.85	81.70	6.58

NOTES:
* = SURVEYED TO MEAN SEA LEVEL
GWE = GROUNDWATER ELEVATION
DTW = DEPTH TO WATER

NM = NOT MONITORED NS = NOT SURVEYED

FIGURES

SHP2201 - 2nd SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

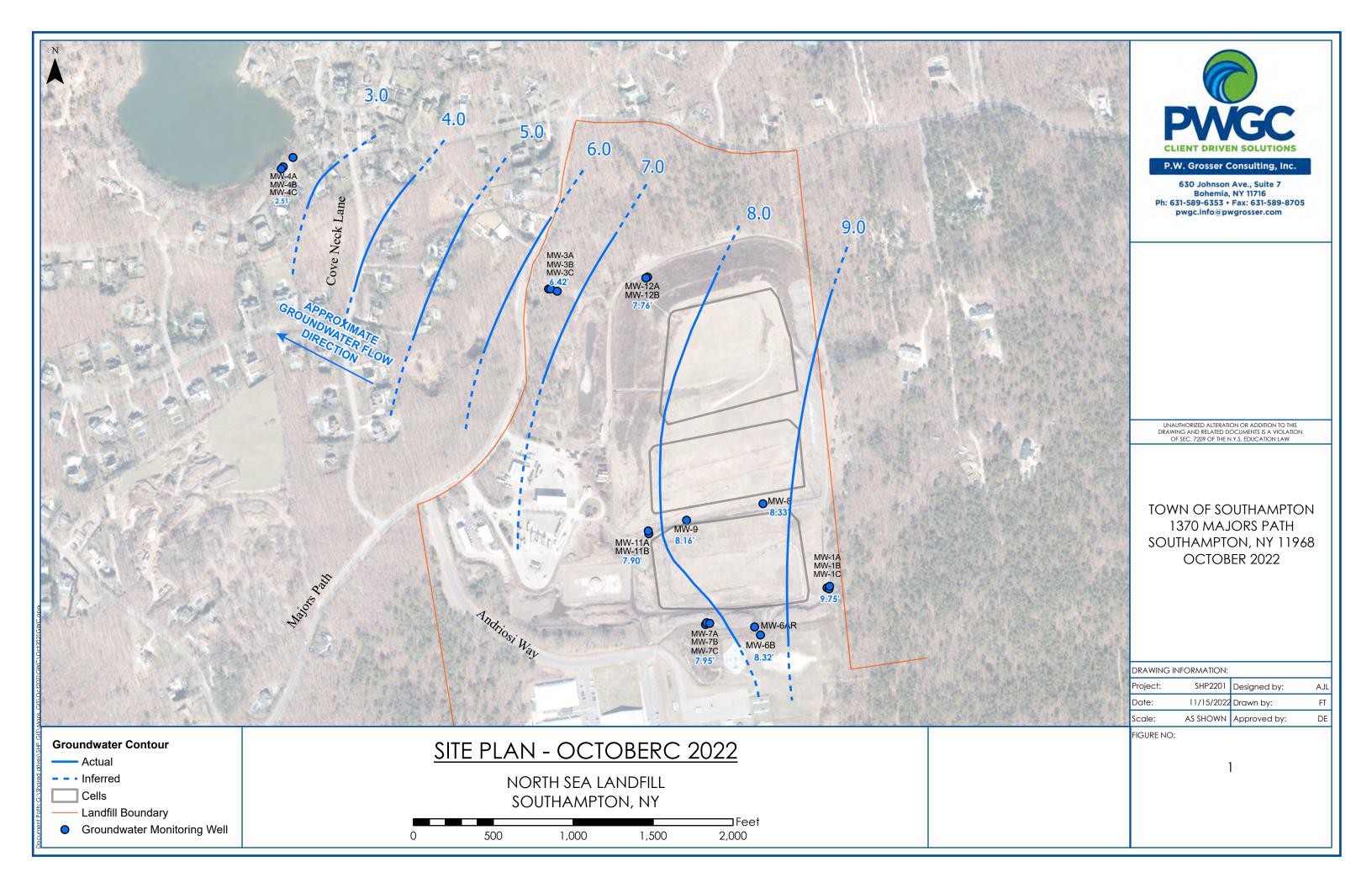


Figure 2 Monitoring Well 11A (1997 - 2022)

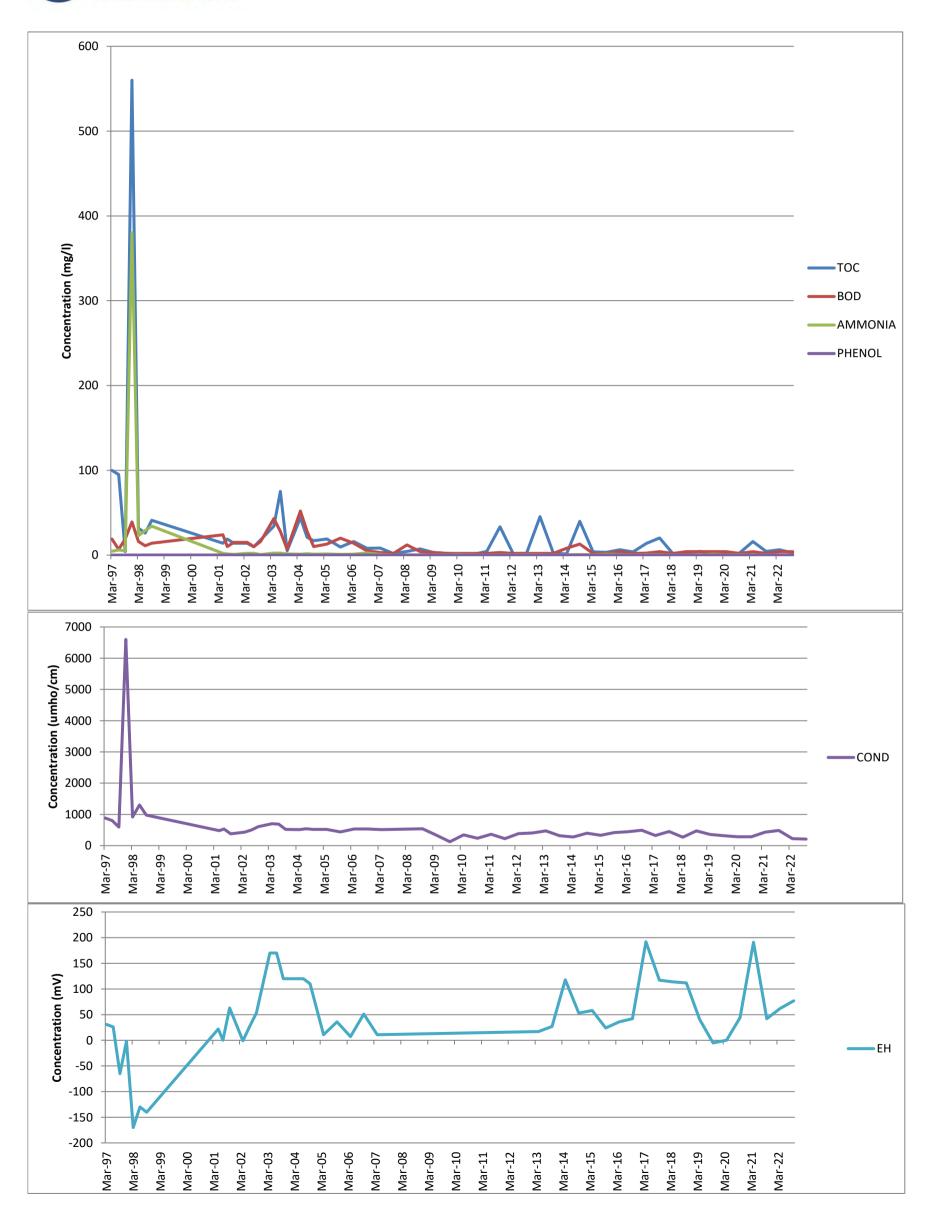


Figure 3
Monitoring Well 11B
(1997 - 2022)

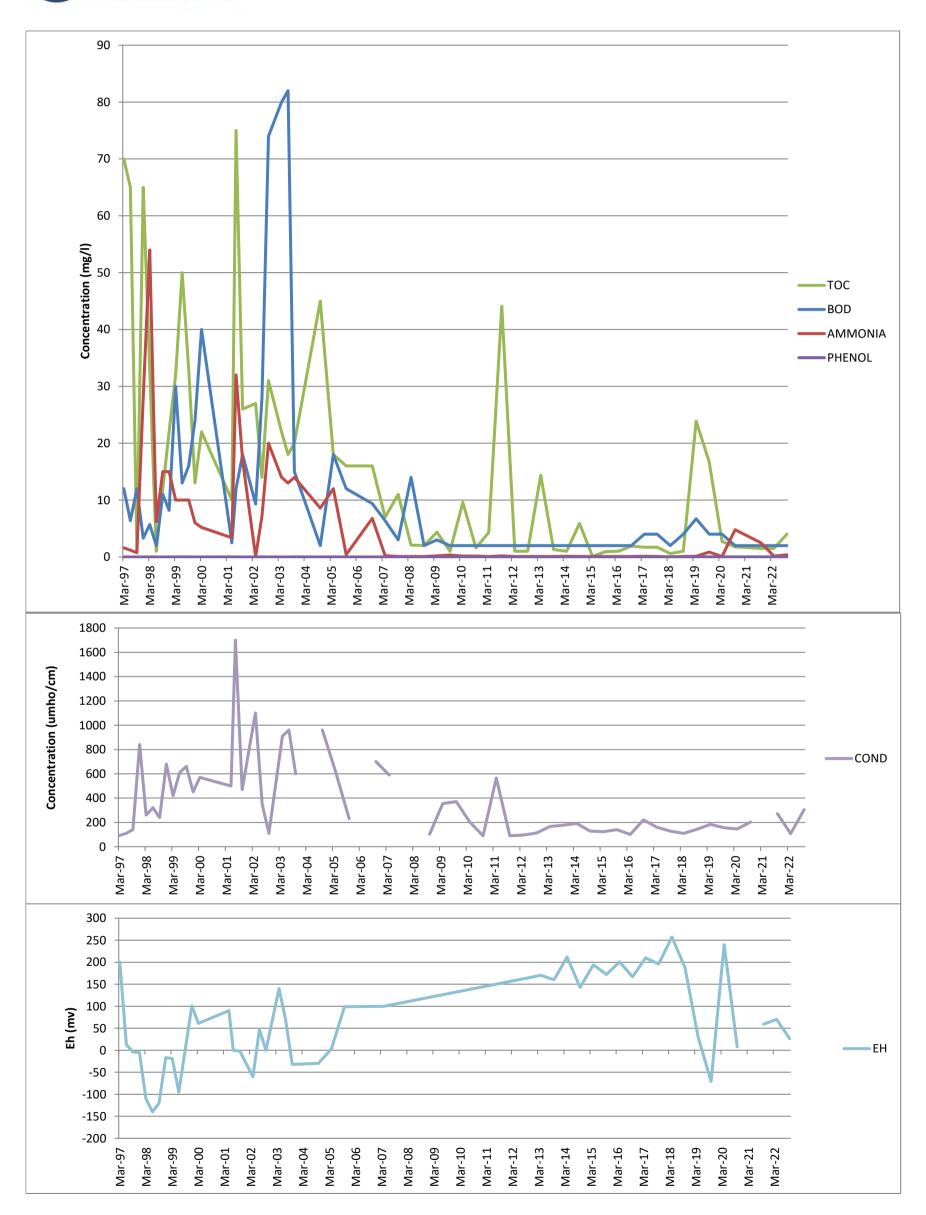


Figure 4
Monitoring Well Cluster 4
Ammonia Trends
(1993 - 2022)

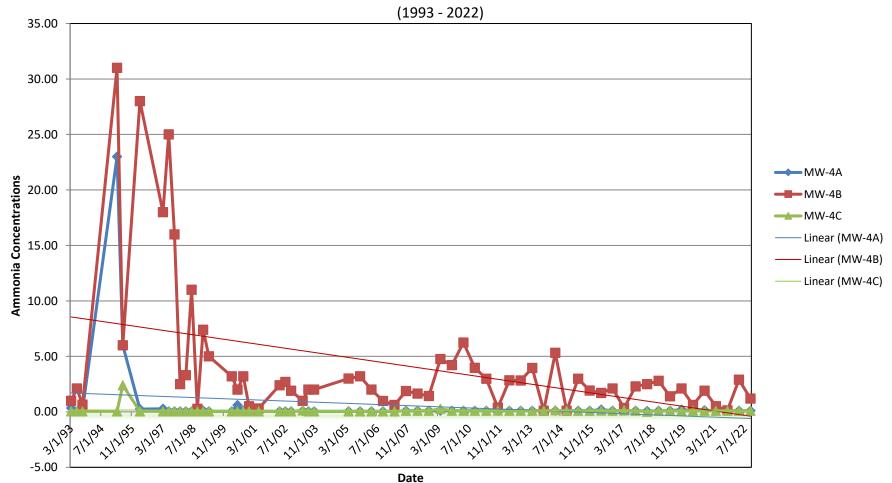


Figure 5 Monitoring Well Cluster 4 Chloride Trends (1995 - 2022)

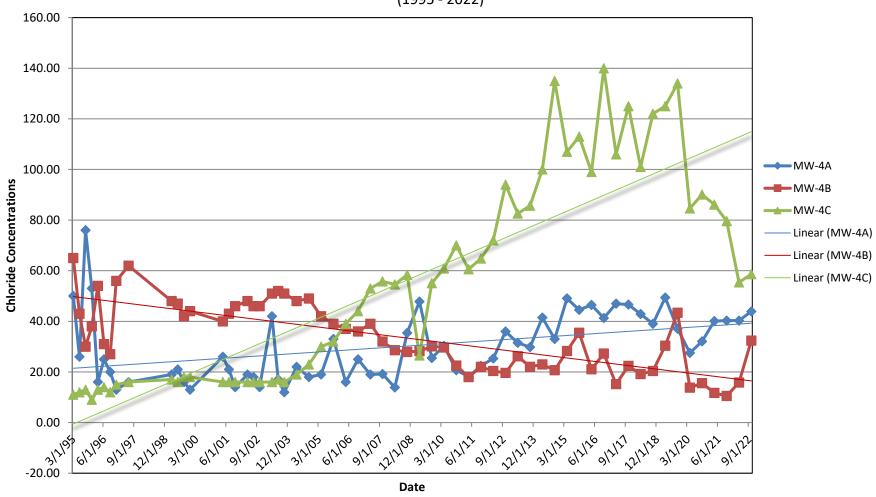


Figure 6 Monitoring Well Cluster 4 Chromium Trends

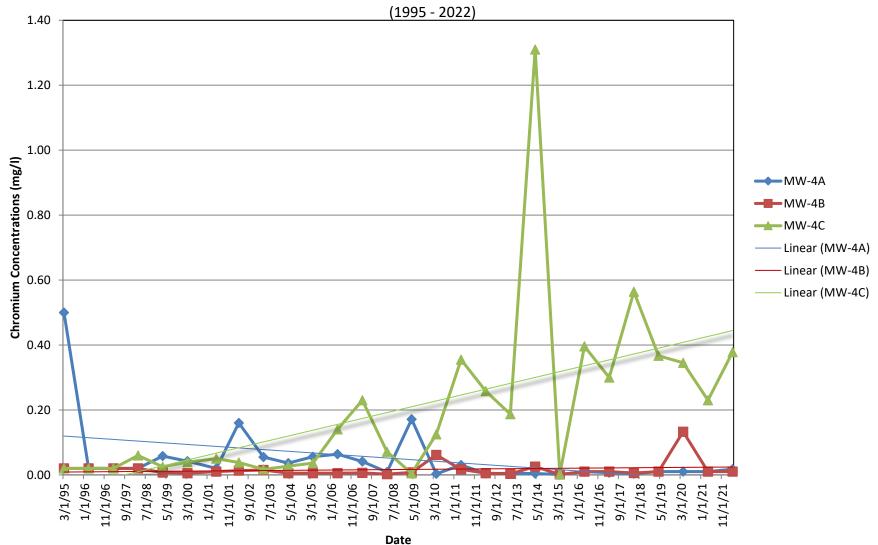


Figure 7
Monitoring Well Cluster 4
Conductivity Trends

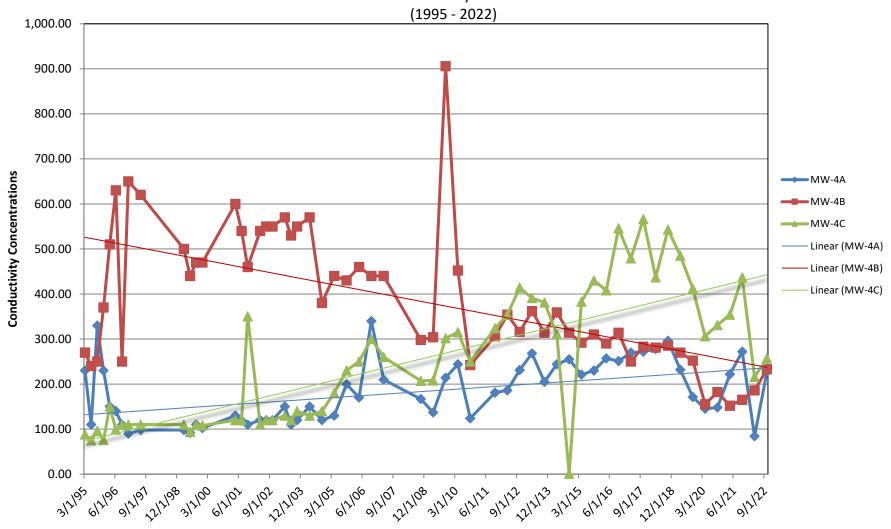


Figure 8
Monitoring Well Cluster 4
Iron Trends
(1993 - 2022)

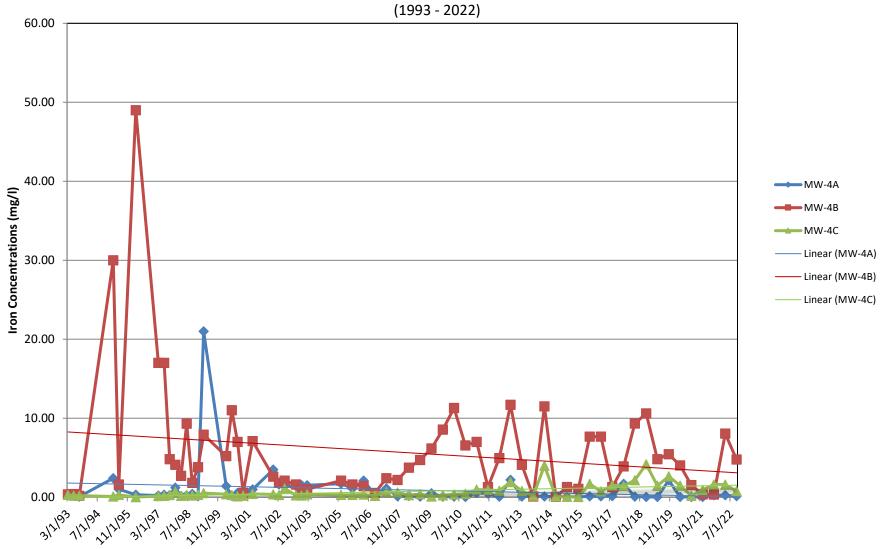


Figure 9
Monitoring Well Cluster 4
Manganese Trends

Figure 10 Monitoring Well Cluster 4 Nitrate Trends (1993 - 2022)

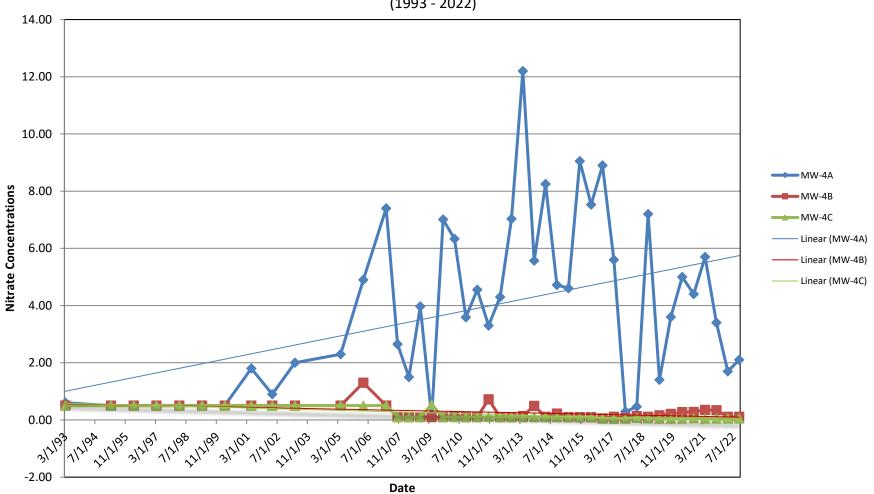
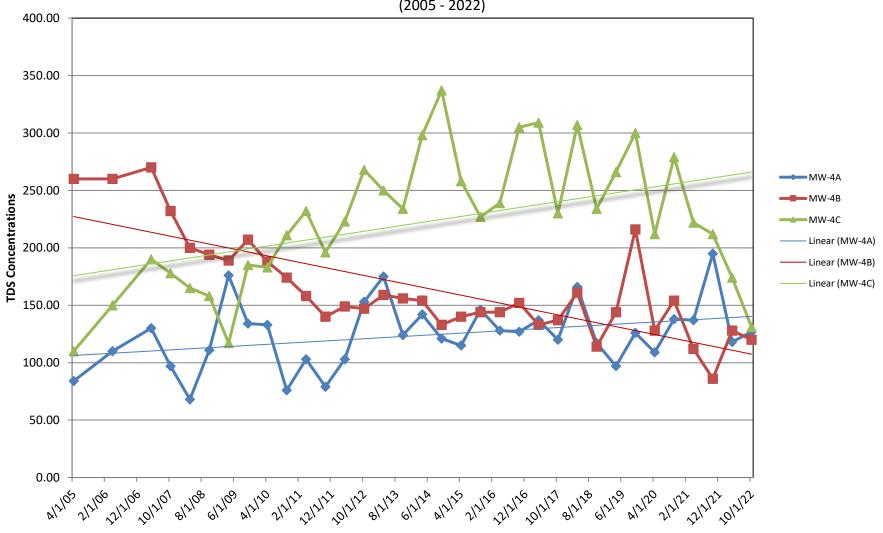



Figure 11 Monitoring Well Cluster 4 Total Dissolved Solids Trends (2005 - 2022)

APPENDIX A LABORATORY ANALYTICAL REPORTS

SHP2201 - 2nd SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

November 22, 2022

Tom Houghton
Town of Southampton
116 Hampton Road
Waste Management Division
Southampton, NY 11968

RE: Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Dear Tom Houghton:

Enclosed are the analytical results for sample(s) received by the laboratory on October 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting Richard Hodgson, Town of Southampton Amanda Lauth, PW Grosser

Ed Thompson, Town of Southampton

(631)694-3040

CERTIFICATIONS

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 2120B

Description: 2120B W Apparent Color Client: Town of Southampton Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method:SM22 2320BDescription:2320B AlkalinityClient:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 2340C

Description: 2340C Hardness, Total Client: Town of Southampton Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 2540C

Description: 2540C Total Dissolved Solids
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 280248

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1416501)
 Total Dissolved Solids
- QC Batch: 280249

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1416510)
 - Total Dissolved Solids

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- 11A (Lab ID: 70234792008)
- 11B (Lab ID: 70234792009)
- 1A (Lab ID: 70234792001)
- 1B (Lab ID: 70234792002)
- 1C (Lab ID: 70234792003)
- 8 (Lab ID: 70234792006)
- 9 (Lab ID: 70234792007)

H3: Sample was received or analysis requested beyond the recognized method holding time.

- 6AR (Lab ID: 70234792004)
- 6B (Lab ID: 70234792005)
- LEA-PRIMARY (Lab ID: 70234792010)
- LEA-SECONDARY (Lab ID: 70234792011)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 281327

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1422198)
 - Chemical Oxygen Demand

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method:SM22 5210BDescription:5210B BOD, 5 dayClient:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

- LEA-PRIMARY (Lab ID: 70234792010)
- LEA-SECONDARY (Lab ID: 70234792011)

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280155

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234863001,70234863002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1416125)
 - Bromide
 - Chloride
 - Sulfate
- MS (Lab ID: 1416127)
 - Bromide
 - Chloride
 - Sulfate

QC Batch: 280662

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234792006,70235213001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1418863)
 - Bromide
 - Chloride
 - Sulfate
- MS (Lab ID: 1418865)
 - Bromide
 - Chloride
 - Sulfate

QC Batch: 282458

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234908002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

• MS (Lab ID: 1427716)

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:Town of SouthamptonDate:November 22, 2022

QC Batch: 282458

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234908002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

BromideSulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 281329

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234792006,70235887002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MS (Lab ID: 1422207)Nitrogen, Kjeldahl, Total

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Town of Southampton

Date: November 22, 2022

General Information:

10 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 pres.

Client: Town of Southampton

Date: November 22, 2022

General Information:

1 sample was analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280302

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70235222001,70235228002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1417570)
 - Nitrate-Nitrite (as N)

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Southampton
Date: November 22, 2022

General Information:

11 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method: SM22 5310B

Description: 5310B TOC as NPOC **Client:** Town of Southampton **Date:** November 22, 2022

General Information:

11 samples were analyzed for SM22 5310B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Method:EPA 9014 Total CyanideDescription:9014 Cyanide, TotalClient:Town of SouthamptonDate:November 22, 2022

General Information:

11 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Sample: 1A	Lab ID: 702	234792001	Collected: 10/26/2	2 12:10	Received: 10)/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 6010	C Preparation Me	thod: E	PA 3005A			
	Pace Analytica	al Services - M	elville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 15:55	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 15:55	7440-43-9	
Calcium	60000	ug/L	200	1	11/01/22 09:23	11/01/22 15:55	7440-70-2	
ron	393	ug/L	100	1	11/01/22 09:23	11/01/22 15:55	7439-89-6	
Lead	<5.0	ug/L	5.0	1		11/01/22 15:55		
Magnesium	20300	ug/L	200	1		11/01/22 15:55		
Manganese	<10.0	ug/L	10.0	1		11/01/22 15:55		
Potassium	13500	ug/L	5000	1		11/01/22 15:55		
Sodium	19900	ug/L	5000	1	11/01/22 09:23	11/01/22 15:55	7440-23-5	
2120B W Apparent Color	Analytical Met	hod: SM22 212	20B					
	Pace Analytica	al Services - M	elville					
Apparent Color	6.0	units	5.0	1		10/27/22 21:35		
pH	6.5	Std. Units	0.10	1		10/27/22 21:35		
2320B Alkalinity	Analytical Met	hod: SM22 232	20B					
	Pace Analytica	al Services - M	elville					
Alkalinity, Total as CaCO3	142	mg/L	1.0	1		11/09/22 11:51		
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	273	mg/L	5.0	1		11/09/22 18:34		
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	342	mg/L	10.0	1		11/01/22 19:09		D6
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:29	18540-29-9	H1
410.4 COD	Analytical Met Pace Analytica		4 Preparation Met elville	hod: EP	A 410.4			
Chemical Oxygen Demand	20.8	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Met Pace Analytica		10B Preparation Melville	lethod:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:13	11/02/22 09:32		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica	hod: EPA 300.0 al Services - M						
Bromide	<0.50	mg/L	0.50	1		11/11/22 21:18	24959-67-9	
Chloride	39.0	mg/L	2.0	1		11/11/22 21:18	16887-00-6	
Sulfate	87.3	mg/L	5.0	1		11/11/22 21:18	14808-79-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 1A	Lab ID: 7023	34792001	Collected: 1	10/26/2	2 12:10	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Method: EPA 351.2 Preparation Method: EPA 351.2								
	Pace Analytical	Services -	- Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 13:11	7727-37-9	
353.2 Nitrogen, NO2/NO3 pres.	Analytical Meth								
	Pace Analytical	Services -	- Melville						
Nitrate-Nitrite (as N)	10.7	mg/L		0.25	5		11/02/22 17:04	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	- Melville						
Nitrite as N	<0.050	mg/L	(0.050	1		10/27/22 23:57	7 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:12	2 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	- Melville						
Total Organic Carbon	5.1	mg/L		1.0	1		11/04/22 03:02	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 9	014 Total Cyani	ide Pre	eparatio	n Method: EPA	9010C		
	Pace Analytical	Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:49	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792											
Sample: 1B	Lab ID: 702	34792002	Collected: 10/26/2	22 12:50	Received: 10)/27/22 11:30 N	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
010 MET ICP	Analytical Method: EPA 6010C Preparation Method: EPA 3005A										
	Pace Analytica	l Services -	Melville								
vrsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 15:58	7440-38-2				
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 15:58	7440-43-9				
calcium	4190	ug/L	200	1	11/01/22 09:23	11/01/22 15:58	7440-70-2				
ron	237	ug/L	100	1	11/01/22 09:23	11/01/22 15:58	7439-89-6				
ead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 15:58	7439-92-1				
lagnesium	2160	ug/L	200	1		11/01/22 15:58					
langanese	<10.0	ug/L	10.0	1		11/01/22 15:58					
otassium	<5000	ug/L	5000	1		11/01/22 15:58					
odium	7150	ug/L	5000	1	11/01/22 09:23	11/01/22 15:58	7440-23-5				
120B W Apparent Color	Analytical Method: SM22 2120B										
	Pace Analytica	l Services -	Melville								
pparent Color	7.0	units	5.0	1		10/27/22 21:36					
H	6.4	Std. Units	0.10	1		10/27/22 21:36					
320B Alkalinity	Analytical Meth	nod: SM22 2	320B								
,	Pace Analytica										
lkalinity, Total as CaCO3	14.7	mg/L	1.0	1		11/09/22 11:57					
340C Hardness, Total	Analytical Meth	nod: SM22 2	340C								
	Pace Analytica	l Services -	Melville								
ot Hardness asCaCO3 (SM 2340B	20.0	mg/L	5.0	1		11/09/22 18:36					
540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	540C								
	Pace Analytica	l Services -	Melville								
otal Dissolved Solids	93.0	mg/L	10.0	1		11/01/22 19:11					
Chromium, Hexavalent	Analytical Meth	nod: SM22 3	500-Cr B								
,	Pace Analytica										
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:29	18540-29-9	H1			
10.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation Me	thod: EP	A 410.4						
	Pace Analytica	l Services -	Melville								
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49					
5210B BOD, 5 day	Analytical Meth	nod: SM22 5	210B Preparation N	Method:	SM22 5210B						
, ,	Pace Analytica										
OD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:17	11/02/22 09:34					
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0								
• •	Pace Analytica										
Bromide	<0.50	mg/L	0.50	1		11/11/22 21:32	24959-67-9				
Chloride	12.1	mg/L	2.0	1		11/11/22 21:32					
Sulfate	9.4	mg/L	5.0	1		11/11/22 21:32					

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

/26/22 12:5	50 Received: 1	0/27/22 11:30 I	Matrix: Water	
nit DF	Prepared	Analyzed	CAS No.	Qual
Method: E	EPA 351.2			
.10 1	11/09/22 05:34	4 11/09/22 12:52	7727-37-9	
50 1		10/28/22 02:13	3 14797-55-8	
)50 1		10/28/22 02:13	3 7727-37-9	
)50 1		10/28/22 00:03	3 14797-65-0	
.10 1		10/31/22 14:13	7664-41-7	
1.0 1		11/04/22 03:13	7440-44-0	
Preparat	ation Method: EPA	9010C		
0.0 1	11/09/22 12:45	5 11/09/22 16:50	57-12-5	
	·	·	·	·

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792											
Sample: 1C	Lab ID: 702	34792003	Collected: 10/26/	22 13:30	Received: 10)/27/22 11:30 N	Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua			
010 MET ICP	Analytical Method: EPA 6010C Preparation Method: EPA 3005A										
	Pace Analytica	l Services -	Melville								
rsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:00	7440-38-2				
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:00	7440-43-9				
Calcium	4550	ug/L	200	1	11/01/22 09:23	11/01/22 16:00	7440-70-2				
on	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:00	7439-89-6				
ead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:00	7439-92-1				
1agnesium	2310	ug/L	200	1		11/01/22 16:00					
langanese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:00	7439-96-5				
otassium	<5000	ug/L	5000	1		11/01/22 16:00					
odium	7590	ug/L	5000	1	11/01/22 09:23	11/01/22 16:00	7440-23-5				
120B W Apparent Color	Analytical Method: SM22 2120B										
	Pace Analytica	l Services -	Melville								
Apparent Color	<5.0	units	5.0	1		10/27/22 21:38					
H	6.4	Std. Units	0.10	1		10/27/22 21:38					
320B Alkalinity	Analytical Meth	nod: SM22 2	:320B								
,	Pace Analytica										
Ikalinity, Total as CaCO3	16.8	mg/L	1.0	1		11/09/22 12:03					
340C Hardness, Total	Analytical Meth	nod: SM22 2	340C								
	Pace Analytica	l Services -	Melville								
ot Hardness asCaCO3 (SM 2340B	22.0	mg/L	5.0	1		11/09/22 18:38					
540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	:540C								
	Pace Analytica	l Services -	Melville								
otal Dissolved Solids	78.0	mg/L	10.0	1		11/01/22 19:21					
Chromium, Hexavalent	Analytical Meth	nod: SM22 3	500-Cr B								
,	Pace Analytica										
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:30	18540-29-9	H1			
110.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation Me	thod: EP	A 410.4						
	Pace Analytica	I Services -	Melville								
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49					
5210B BOD, 5 day	Analytical Meth	nod: SM22 5	210B Preparation	Method:	SM22 5210B						
2.02 202, 0 44,	Pace Analytica		•								
OD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:20	11/02/22 09:36					
800.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0								
	Pace Analytica										
Bromide	<0.50	mg/L	0.50	1		11/11/22 21:45	24959-67-9				
Chloride	11.1	mg/L	2.0	1		11/11/22 21:45					
Sulfate	10.6	mg/L	5.0	1		11/11/22 21:45					

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 1C	Lab ID: 7023	34792003	Collected:	10/26/2	2 13:30	Received: 1	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Preparat	ion Met	hod: EP	A 351.2			
	Pace Analytica	I Services -	- Melville						
Nitrogen, Kjeldahl, Total	0.12	mg/L		0.10	1	11/09/22 05:34	11/09/22 12:53	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrate as N	0.20	mg/L		0.050	1		10/28/22 02:22	14797-55-8	
Nitrate-Nitrite (as N)	0.20	mg/L		0.050	1		10/28/22 02:22	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:12	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:17	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	- Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:01	7440-44-0	
9014 Cyanide, Total	Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C								
	Pace Analytica	I Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	11/09/22 16:51	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 6AR	Lab ID: 702	234792004	Collected: 10/26/	22 10:30	Received: 10	0/27/22 11:30	Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua		
6010 MET ICP	Analytical Method: EPA 6010C Preparation Method: EPA 3005A									
	Pace Analytic	al Services -	Melville							
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:03	3 7440-38-2			
Cadmium	<2.5	ug/L	2.5	1		11/01/22 16:03				
Calcium	6930	ug/L	200	1		11/01/22 16:03				
ron	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:03	7439-89-6			
ead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:03	7439-92-1			
/lagnesium	2600	ug/L	200	1	11/01/22 09:23	11/01/22 16:03	7439-95-4			
langanese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:03	7439-96-5			
otassium	<5000	ug/L	5000	1		11/01/22 16:03				
Sodium	7430	ug/L	5000	1	11/01/22 09:23	11/01/22 16:03	3 7440-23-5			
120B W Apparent Color	Analytical Me	thod: SM22 2	120B							
	Pace Analytic	al Services -	Melville							
apparent Color	<5.0	units	5.0	1		10/27/22 21:33	3			
H	6.2	Std. Units	0.10	1		10/27/22 21:33				
2320B Alkalinity	Analytical Me	thod: SM22.2	320B							
SZOB ARAIIIILY	Pace Analytic									
Alkalinity, Total as CaCO3	17.8	mg/L	1.0	1		11/09/22 12:10)			
•		•		·		,00,== :=::0	•			
340C Hardness, Total	Analytical Me									
	Pace Analytic	al Services -	Melville							
ot Hardness asCaCO3 (SM 2340B	24.0	mg/L	5.0	1		11/09/22 18:40)			
2540C Total Dissolved Solids	Analytical Me	thod: SM22 2	:540C							
	Pace Analytic									
otal Dissolved Solids	82.0	mg/L	20.0	1		11/01/22 19:23	3			
Shramium Havayalant	Applytical Mo	thad: SM22 3	500 Cr B							
Chromium, Hexavalent	Analytical Me Pace Analytic									
Shramium Hayayalant	•			4		40/27/22 22:29	10540 20 0	110		
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:28	3 18540-29-9	H3		
110.4 COD	•		0.4 Preparation Me	thod: EP	A 410.4					
	Pace Analytic		Melville							
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49)			
5210B BOD, 5 day	Analytical Me	thod: SM22 5	210B Preparation	Method:	SM22 5210B					
	Pace Analytic	al Services -	Melville							
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:23	11/02/22 09:39)			
800.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	0.0							
	Pace Analytic									
Bromide	<0.50	mg/L	0.50	1		11/14/22 11:25	24959-67-9			
Chloride	16.0	mg/L	2.0			11/14/22 11:25				
711101140	10.0		2.0			11/17/22 11.20	10001-00-0			

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 6AR	Lab ID: 7023	34792004	Collected:	10/26/2	22 10:30	Received: 1	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Prepara	tion Met	hod: EP	A 351.2			
	Pace Analytica	I Services -	- Melville						
Nitrogen, Kjeldahl, Total	0.20	mg/L		0.10	1	11/09/22 05:34	11/09/22 12:54	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrate as N	0.21	mg/L		0.050	1		10/28/22 01:59	14797-55-8	
Nitrate-Nitrite (as N)	0.21	mg/L		0.050	1		10/28/22 01:59	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/27/22 23:50	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:18	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	- Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:12	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	I Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	11/09/22 16:52	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 6B	Lab ID: 702	34792005	Collected: 10/26/2	22 11:20	Received: 10)/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60°	10C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:06	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:06	7440-43-9	
Calcium	4080	ug/L	200	1	11/01/22 09:23	11/01/22 16:06	7440-70-2	
ron	150	ug/L	100	1	11/01/22 09:23	11/01/22 16:06	7439-89-6	
ead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:06	7439-92-1	
/lagnesium	2290	ug/L	200	1	11/01/22 09:23	11/01/22 16:06	7439-95-4	
Manganese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:06	7439-96-5	
otassium	<5000	ug/L	5000	1	11/01/22 09:23	11/01/22 16:06	7440-09-7	
Sodium	7760	ug/L	5000	1	11/01/22 09:23	11/01/22 16:06	7440-23-5	
120B W Apparent Color	Analytical Meth	nod: SM22 2	120B					
	Pace Analytica	l Services - l	Melville					
Apparent Color	<5.0	units	5.0	1		10/27/22 21:34		
H	6.2	Std. Units	0.10	1		10/27/22 21:34		
2320B Alkalinity	Analytical Meth	od: SM22 2	320B					
J20B Alkallinty	Pace Analytica							
lkalinity, Total as CaCO3	12.3	mg/L	1.0	1		11/09/22 12:15		
340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	22.0	mg/L	5.0	1		11/09/22 18:43		
2540C Total Dissolved Solids	Analytical Meth Pace Analytica							
Total Dissolved Solids	64.0	mg/L	10.0	1		11/01/22 19:33		
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:29	18540-29-9	Н3
10.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Meth Pace Analytica		210B Preparation Melville	Method:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:26	11/02/22 09:42		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/14/22 11:38	24959-67-9	
Chloride	12.9	mg/L	2.0	1		11/14/22 11:38		
Sulfate	8.7	mg/L	5.0	1		11/14/22 11:38		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 6B	Lab ID: 7023	34792005	Collected:	10/26/2	2 11:20	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ition Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.53	mg/L		0.10	1	11/09/22 05:34	11/09/22 12:57	7 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.16	mg/L		0.050	1		10/28/22 02:0	1 14797-55-8	
Nitrate-Nitrite (as N)	0.16	mg/L		0.050	1		10/28/22 02:0	1 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/27/22 23:5	1 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.33	mg/L		0.10	1		10/31/22 14:19	9 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:23	3 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:53	3 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 8	Lab ID: 702	34792006	Collected: 10/26/2	22 14:45	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:08	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:08	7440-43-9	
Calcium	7410	ug/L	200	1	11/01/22 09:23	11/01/22 16:08	7440-70-2	
on	221	ug/L	100	1	11/01/22 09:23	11/01/22 16:08	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/01/22 16:08		
/lagnesium	3130	ug/L	200	1		11/01/22 16:08		
Manganese	20.2	ug/L	10.0	1		11/01/22 16:08		
Potassium	<5000	ug/L	5000	1		11/01/22 16:08		
Sodium	7380	ug/L	5000	1	11/01/22 09:23	11/01/22 16:08	7440-23-5	
120B W Apparent Color	Analytical Meth	nod: SM22 2	120B					
	Pace Analytica	I Services -	Melville					
apparent Color	12.0	units	5.0	1		10/27/22 21:40		
H	6.0	Std. Units	0.10	1		10/27/22 21:40		
320B Alkalinity	Analytical Meth	nod: SM22 2	320B					
J20D Alkallility	Pace Analytica							
lkalinity, Total as CaCO3	25.7	mg/L	1.0	1		11/09/22 12:35		
2340C Hardness, Total	Analytical Meth	nod: SM22 2	340C					
	Pace Analytica	I Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	34.0	mg/L	5.0	1		11/09/22 18:45		
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	540C					
	Pace Analytica	I Services -	Melville					
otal Dissolved Solids	87.0	mg/L	10.0	1		11/01/22 19:33		D6
Chromium, Hexavalent	Analytical Meth	nod: SM22 3	500-Cr B					
,	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:32	18540-29-9	H1
110.4 COD	Analytical Meth	nod: EPA 41	0.4 Preparation Me	thod: EP	A 410.4			
	Pace Analytica		•					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
	Analytical Moth	and CMOO	240D Dranaration	Asthod	CM22 F240B			
3210B BOD, 5 day	Pace Analytica		210B Preparation I Melville	vietnoa.	SIVI22 32 IUB			
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:29	11/02/22 09:45		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
-	Pace Analytica	l Services -	Melville					
Bromide	<0.50	mg/L	0.50	1		11/14/22 11:52	24959-67-9	M1
Chloride	10.7	mg/L	2.0	1		11/14/22 11:52		M1
Sulfate	10	mg/L	5.0	1		11/14/22 11:52		M1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 8	Lab ID: 7023	34792006	Collected:	10/26/2	2 14:45	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Preparat	tion Met	hod: EP	A 351.2			
	Pace Analytica	Services -	- Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/09/22 05:34	11/09/22 13:12	2 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	- Melville						
Nitrate as N	0.67	mg/L		0.050	1		10/28/22 02:33	3 14797-55-8	
Nitrate-Nitrite (as N)	0.67	mg/L		0.050	1		10/28/22 02:33	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	- Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:20	14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:21	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	- Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 15:34	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytica	Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:54	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 9	Lab ID: 702	34792007	Collected: 10/26/2	22 15:15	Received: 10)/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	al Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:27	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:27	7440-43-9	
Calcium	3540	ug/L	200	1	11/01/22 09:23	11/01/22 16:27	7440-70-2	
ron	423	ug/L	100	1	11/01/22 09:23	11/01/22 16:27	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/01/22 16:27		
Magnesium	1740	ug/L	200	1		11/01/22 16:27		
Manganese	29.1	ug/L	10.0	1		11/01/22 16:27		
Potassium	<5000	ug/L	5000	1		11/01/22 16:27		
Sodium	6630	ug/L	5000	1	11/01/22 09:23	11/01/22 16:27	7440-23-5	
2120B W Apparent Color	Analytical Met	hod: SM22 2	120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	6.0	units	5.0	1		10/27/22 21:41		
pH	5.6	Std. Units	0.10	1		10/27/22 21:41		
2320B Alkalinity	Analytical Metl	hod: SM22 2	320B					
,	Pace Analytica							
Alkalinity, Total as CaCO3	12.2	mg/L	1.0	1		11/09/22 12:54		
2340C Hardness, Total	Analytical Metl Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	22.0	mg/L	5.0	1		11/09/22 18:53	;	
2540C Total Dissolved Solids	Analytical Metl Pace Analytica							
Total Dissolved Solids	62.0	mg/L	10.0	1		11/01/22 19:35	i	
Chromium, Hexavalent	Analytical Metl Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:34	18540-29-9	H1
410.4 COD	Analytical Metl Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49)	
5210B BOD, 5 day	Analytical Metl Pace Analytica		210B Preparation Melville	/lethod:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:37	11/02/22 09:49	1	
300.0 IC Anions 28 Days	Analytical Metl Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/14/22 12:33	24959-67-9	
Chloride	11.4	mg/L	2.0	1		11/14/22 12:33		
Sulfate	7.5	mg/L	5.0	1		11/14/22 12:33		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 9	Lab ID: 7023	34792007	Collected:	10/26/2	2 15:15	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ition Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 13:00	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.19	mg/L		0.050	1		10/28/22 02:2	5 14797-55-8	
Nitrate-Nitrite (as N)	0.19	mg/L		0.050	1		10/28/22 02:25	5 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:10	6 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:24	1 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/01/22 16:44	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:58	3 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792								
Sample: 11A	Lab ID: 702	34792008	Collected: 10/26	5/22 15:50	Received: 10	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation	Лethod: Е	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0) 1	11/01/22 09:23	11/01/22 16:30	7440-38-2	
Cadmium	<2.5	ug/L	2.	5 1	11/01/22 09:23	11/01/22 16:30	7440-43-9	
Calcium	17300	ug/L	20) 1	11/01/22 09:23	11/01/22 16:30	7440-70-2	
on	34900	ug/L	10) 1	11/01/22 09:23	11/01/22 16:30	7439-89-6	
ead	<5.0	ug/L	5.0) 1	11/01/22 09:23	11/01/22 16:30	7439-92-1	
/lagnesium	6910	ug/L	20) 1	11/01/22 09:23	11/01/22 16:30	7439-95-4	
langanese	1900	ug/L	10.0) 1	11/01/22 09:23	11/01/22 16:30	7439-96-5	
otassium	<5000	ug/L	500) 1	11/01/22 09:23	11/01/22 16:30	7440-09-7	
Sodium	7320	ug/L	500) 1	11/01/22 09:23	11/01/22 16:30	7440-23-5	
120B W Apparent Color	Analytical Metl	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	130	units	50.0	10		10/27/22 21:43		
H	6.0	Std. Units	0.10	10		10/27/22 21:43		
2320B Alkalinity	Analytical Metl	hod: SM22 2	2320B					
•	Pace Analytica							
Alkalinity, Total as CaCO3	58.5	mg/L	1.0) 1		11/09/22 13:01		
2340C Hardness, Total	Analytical Met	hod: SM22 2	2340C					
	Pace Analytica	al Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	86.7	mg/L	5.0) 1		11/09/22 18:55		
2540C Total Dissolved Solids	Analytical Metl	hod: SM22 2	2540C					
	Pace Analytica	al Services -	Melville					
Total Dissolved Solids	120	mg/L	20.0) 1		11/01/22 19:36		
Chromium, Hexavalent	Analytical Met	hod: SM22 3	3500-Cr B					
	Pace Analytica	l Services -	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.020) 1		10/27/22 22:34	18540-29-9	H1
110.4 COD	Analytical Metl	hod: EPA 41	0.4 Preparation M	ethod: EF	PA 410.4			
	Pace Analytica	al Services -	Melville					
Chemical Oxygen Demand	23.0	mg/L	10.0) 1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	Analytical Met	hod: SM22 F	5210B Preparation	Method:	SM22 5210B			
,,	Pace Analytica							
SOD, 5 day	<2.0	mg/L	2.0) 1	10/28/22 15:48	11/02/22 12:28		
800.0 IC Anions 28 Days	Analytical Metl	hod: EPA 30	0.0					
Jest to randing 20 Dayo	Pace Analytica							
Bromide	<0.50	mg/L	0.50) 1		11/14/22 12:46	24959-67-9	
Chloride	14.5	mg/L	2.0) 1		11/14/22 12:46	16887-00-6	
Sulfate	25.6	mg/L	5.0) 1		11/14/22 12:46	14808-79-8	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 11A	Lab ID: 7023	34792008	Collected:	10/26/2	2 15:50	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.49	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 13:01	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.20	mg/L		0.050	1		10/28/22 02:26	6 14797-55-8	
Nitrate-Nitrite (as N)	0.21	mg/L		0.050	1		10/28/22 02:20	6 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:18	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.12	mg/L		0.10	1		10/31/22 14:25	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	2.5	mg/L		1.0	1		11/01/22 16:57	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytical	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:59	9 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 11B	Lab ID: 702	34792009	Collected: 10/2	5/22 16:30	Received: 10	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation	Method: E	PA 3005A			
	Pace Analytic	al Services -	Melville					
Arsenic	<10.0	ug/L	10	0 1	11/01/22 09:23	11/01/22 16:32	2 7440-38-2	
Cadmium	<2.5	ug/L	2			11/01/22 16:32		
Calcium	17900	ug/L	20	0 1		11/01/22 16:32		
ron	9070	ug/L	10	0 1	11/01/22 09:23	11/01/22 16:32	7439-89-6	
ead	6.2	ug/L	5	0 1	11/01/22 09:23	11/01/22 16:32	7439-92-1	
1agnesium	2870	ug/L	20	0 1	11/01/22 09:23	11/01/22 16:32	7439-95-4	
Manganese	134	ug/L	10	0 1	11/01/22 09:23	11/01/22 16:32	7439-96-5	
Potassium	5400	ug/L	500	0 1	11/01/22 09:23	11/01/22 16:32	7440-09-7	
Sodium	8470	ug/L	500	0 1	11/01/22 09:23	11/01/22 16:32	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B					
	Pace Analytic	al Services -	Melville					
Apparent Color	130	units	50	0 10		10/27/22 21:46	3	
Н	6.5	Std. Units	0.1			10/27/22 21:46		
2320B Alkalinity	Analytical Met	hod: SM22 2	320B					
,	Pace Analytic							
Alkalinity, Total as CaCO3	31.4	mg/L	1	0 1		11/09/22 13:07	,	
2340C Hardness, Total	Analytical Met	hod: SM22 2	340C					
io ioo maramooo, rotar	Pace Analytic							
ot Hardness asCaCO3 (SM 2340B	66.7	mg/L	5	0 1		11/09/22 18:58	3	
`		•						
2540C Total Dissolved Solids	Analytical Met Pace Analytical							
	•							
otal Dissolved Solids	110	mg/L	20	0 1		11/01/22 19:46	5	
Chromium, Hexavalent	Analytical Met	hod: SM22 3	500-Cr B					
	Pace Analytic	al Services -	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.02	0 1		10/27/22 22:35	18540-29-9	H1
410.4 COD	Analytical Met	hod: EPA 41	0.4 Preparation I	lethod: El	PA 410.4			
	Pace Analytica	al Services -	Melville					
Chemical Oxygen Demand	75.8	mg/L	10	0 1	11/09/22 05:15	11/09/22 12:49)	
5210B BOD, 5 day	Analytical Met		210B Preparatio	Method:	SM22 5210B			
505, 0 day	Pace Analytica		•	. moniou.	J.M.L. 02 10D			
BOD, 5 day	<2.0	mg/L	2	0 1	10/28/22 15:51	11/02/22 12:31		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
	Pace Analytic	al Services -	Melville					
Bromide	<0.50	mg/L	0.5	0 1		11/14/22 13:00	24959-67-9	
Chloride	11.5	mg/L	2			11/14/22 13:00		
Sulfate	11.4	mg/L	5			11/14/22 13:00		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: 11B	Lab ID: 7023	34792009	Collected:	10/26/2	2 16:30	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ition Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	1.5	mg/L		0.10	1	11/09/22 05:34	1 11/09/22 13:02	2 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.33	mg/L		0.050	1		10/28/22 02:23	7 14797-55-8	
Nitrate-Nitrite (as N)	0.34	mg/L		0.050	1		10/28/22 02:27	7 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 00:19	9 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	0.40	mg/L		0.10	1		10/31/22 14:27	7 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	4.0	mg/L		1.0	1		11/01/22 17:09	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 16:59	9 57-12-5	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: LEA-PRIMARY	Lab ID: 702	234792010	Collected:	10/26/2	2 08:10	Received: 10	/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	hod: EPA 60	10C Prepara	ation Me	thod: EF	PA 3005A			
	Pace Analytic	al Services -	Melville						
rsenic	10.2	ug/L		10.0	1	11/01/22 09:23	11/01/22 16:35	7440-38-2	
admium	<2.5	ug/L		2.5	1	11/01/22 09:23	11/01/22 16:35	7440-43-9	
alcium	89600	ug/L		200	1	11/01/22 09:23	11/01/22 16:35	7440-70-2	
on	1380	ug/L		100	1	11/01/22 09:23	11/01/22 16:35	7439-89-6	
ead	<5.0	ug/L		5.0	1	11/01/22 09:23			
lagnesium	22100	ug/L		200	1	11/01/22 09:23			
langanese	172	ug/L		10.0	1	11/01/22 09:23			
otassium	68000	ug/L		5000	1	11/01/22 09:23			
odium	39800	ug/L		5000	1	11/01/22 09:23	11/01/22 16:35	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B						
	Pace Analytic	al Services -	Melville						
pparent Color	660	units		250	50		10/27/22 21:30)	
H	7.9	Std. Units		0.10	50		10/27/22 21:30	1	
320B Alkalinity	Analytical Met	hod: SM22 2	320B						
ozob Andinney	Pace Analytic								
Ikalinity, Total as CaCO3	347	mg/L		1.0	1		11/09/22 13:24		
340C Hardness, Total	Analytical Met Pace Analytic								
ot Hardness asCaCO3 (SM 2340B	327	mg/L		5.0	1		11/09/22 19:01		
540C Total Dissolved Solids	Analytical Met Pace Analytic								
otal Dissolved Solids	970	mg/L		100	1		11/01/22 19:46		
Chromium, Hexavalent	Analytical Met Pace Analytic								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		10/27/22 22:27	18540-29-9	НЗ
10.4 COD	Analytical Met Pace Analytic			tion Metl	hod: EP	A 410.4			
Chemical Oxygen Demand	296	mg/L		10.0	1	11/09/22 05:15	11/09/22 12:49		
210B BOD, 5 day	Analytical Met Pace Analytic			aration M	lethod: S	SM22 5210B			
OD, 5 day	<2.0	mg/L		2.0	1	10/28/22 09:40	11/02/22 09:51		H2
00.0 IC Anions 28 Days	Analytical Met Pace Analytic								
romide	<0.50	mg/L		0.50	1		11/22/22 09:36	24959-67-9	
ulfate	31.6	mg/L		5.0	1		11/22/22 09:36	14808-79-8	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: LEA-PRIMARY	Lab ID: 7023	34792010	Collected:	10/26/2	2 08:10	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytica	Services -	Melville						
Nitrogen, Kjeldahl, Total	5.1	mg/L		0.50	1	11/09/22 05:34	1 11/09/22 13:03	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	l Services -	Melville						
Nitrate as N	0.42	mg/L		0.050	1		10/28/22 01:42	2 14797-55-8	
Nitrate-Nitrite (as N)	0.48	mg/L		0.050	1		10/28/22 01:42	2 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	Services -	Melville						
Nitrite as N	0.067	mg/L		0.050	1		10/27/22 23:3	5 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	Melville						
Nitrogen, Ammonia	1.0	mg/L		0.10	1		10/31/22 14:30	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/04/22 19:05	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	l Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	5 11/09/22 17:00	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Date: 11/22/2022 08:04 PM

Sample: LEA-SECONDARY	Lab ID: 702	34792011	Collected: 10/26/2	22 08:30	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 601	0C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	al Services - N	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:38	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:38	7440-43-9	
Calcium	66700	ug/L	200	1	11/01/22 09:23	11/01/22 16:38	7440-70-2	
ron	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:38	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/01/22 16:38		
Magnesium	8810	ug/L	200	1		11/01/22 16:38		
Manganese	20.6	ug/L	10.0	1		11/01/22 16:38		
Potassium	17900	ug/L	5000	1		11/01/22 16:38		
Sodium	10900	ug/L	5000	1	11/01/22 09:23	11/01/22 16:38	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B					
	Pace Analytica	al Services - N	Melville					
Apparent Color	180	units	50.0	10		10/27/22 21:32		
Ĥ	7.6	Std. Units	0.10	10		10/27/22 21:32		
320B Alkalinity	Analytical Met	hod: SM22 23	320B					
•	Pace Analytica							
lkalinity, Total as CaCO3	189	mg/L	1.0	1		11/09/22 13:34		
2340C Hardness, Total	Analytical Met	hod: SM22 2	340C					
	Pace Analytica	al Services - N	Melville .					
ot Hardness asCaCO3 (SM 2340B	193	mg/L	5.0	1		11/09/22 19:03		
540C Total Dissolved Solids	Analytical Met	hod: SM22 2	540C					
	Pace Analytica	al Services - N	Melville					
Total Dissolved Solids	440	mg/L	100	1		11/01/22 19:47		
Chromium, Hexavalent	Analytical Met	hod: SM22 3	500-Cr B					
	Pace Analytica	al Services - N	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/27/22 22:28	18540-29-9	H3
110.4 COD	-		.4 Preparation Me	thod: EP	A 410.4			
	Pace Analytica	al Services - N	//elville					
Chemical Oxygen Demand	93.4	mg/L	10.0	1	11/09/22 05:15	11/09/22 12:49		
5210B BOD, 5 day	-		210B Preparation N	Method:	SM22 5210B			
	Pace Analytica	al Services - N	Melville					
BOD, 5 day	<2.0	mg/L	2.0	1	10/28/22 09:43	11/02/22 09:54		H2
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	0.0					
	Pace Analytica	al Services - N	Melville					
Bromide	<0.50	mg/L	0.50	1		11/22/22 10:03	24959-67-9	
Chloride	22.0	mg/L	2.0	1		11/22/22 10:03		
Sulfate	28.0	mg/L	5.0	1		11/22/22 10:03		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Sample: LEA-SECONDARY	Lab ID: 702	34792011	Collected: 1	0/26/2	2 08:30	Received: 1	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report L	imit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Preparatio	n Metl	hod: EP	A 351.2			
	Pace Analytica	I Services -	- Melville						
Nitrogen, Kjeldahl, Total	2.1	mg/L		0.50	1	11/09/22 05:34	11/09/22 13:04	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrate as N	1.7	mg/L	0	.050	1		10/28/22 01:46	14797-55-8	
Nitrate-Nitrite (as N)	1.7	mg/L	0	.050	1		10/28/22 01:46	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	- Melville						
Nitrite as N	<0.050	mg/L	0	.050	1		10/27/22 23:38	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	- Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		10/31/22 14:31	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	- Melville						
Total Organic Carbon	26.1	mg/L		1.0	1		11/01/22 22:35	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 90	014 Total Cyanio	de Pre	eparatio	n Method: EPA	9010C		
-	Pace Analytica	I Services -	- Melville						
Cyanide	<10.0	ug/L		10.0	1	11/09/22 12:45	11/09/22 17:01	57-12-5	

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

QC Batch: 280111 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

 $70234792008,\,70234792009,\,70234792010,\,70234792011$

METHOD BLANK: 1415989 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	ug/L	<10.0	10.0	11/01/22 15:47	
Cadmium	ug/L	<2.5	2.5	11/01/22 15:47	
Calcium	ug/L	<200	200	11/01/22 15:47	
Iron	ug/L	<100	100	11/01/22 15:47	
Lead	ug/L	<5.0	5.0	11/01/22 15:47	
Magnesium	ug/L	<200	200	11/01/22 15:47	
Manganese	ug/L	<10.0	10.0	11/01/22 15:47	
Potassium	ug/L	< 5000	5000	11/01/22 15:47	
Sodium	ug/L	<5000	5000	11/01/22 15:47	

LABORATORY CONTROL SAMPLE:	1415990					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	494	99	80-120	
Cadmium	ug/L	500	499	100	80-120	
Calcium	ug/L	25000	25000	100	80-120	
Iron	ug/L	12500	12500	100	80-120	
Lead	ug/L	500	506	101	80-120	
Magnesium	ug/L	25000	25100	100	80-120	
Manganese	ug/L	500	497	99	80-120	
Potassium	ug/L	25000	25200	101	80-120	
Sodium	ug/L	25000	25800	103	80-120	

MATRIX SPIKE SAMPLE:	1415992						
Parameter	Units	70234792006 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Arsenic	ug/L	<10.0	500	473	94	75-125	
Cadmium	ug/L	<2.5	500	476	95	75-125	
Calcium	ug/L	7410	25000	31300	96	75-125	
Iron	ug/L	221	12500	12100	95	75-125	
Lead	ug/L	<5.0	500	476	95	75-125	
Magnesium	ug/L	3130	25000	26900	95	75-125	
Manganese	ug/L	20.2	500	506	97	75-125	
Potassium	ug/L	< 5000	25000	25300	98	75-125	
Sodium	ug/L	7380	25000	32400	100	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Potassium

Date: 11/22/2022 08:04 PM

Sodium

SAMPLE DUPLICATE: 1415991 70234792006 Dup RPD Parameter Units Result Result Qualifiers <10.0 Arsenic ug/L <10.0 <2.5 Cadmium ug/L <2.5 7410 7230 2 Calcium ug/L Iron ug/L 221 220 0 Lead ug/L < 5.0 <5.0 Magnesium ug/L 3130 3040 3 ug/L 20.2 8 Manganese 18.7

<5000

7380

<5000

7080

4

ug/L

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279688 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1414148 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 10/27/22 21:29

LABORATORY CONTROL SAMPLE: 1414149

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Apparent Color** units 40 40.0 100 90-110

7000470000

SAMPLE DUPLICATE: 1414150

Date: 11/22/2022 08:04 PM

Parameter	Units	Result	Result	RPD	Qualifiers
Apparent Color	units	12.0	12.0	0	
рН	Std. Units	6.0	6.0	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 281354 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422282 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<1.0</td>1.011/09/22 10:54

LABORATORY CONTROL SAMPLE: 1422283

LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers 95 Alkalinity, Total as CaCO3 mg/L 25 23.7 85-115

MATRIX SPIKE SAMPLE: 1422285

70234792006 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 25.7 50 74.9 98 75-125 Alkalinity, Total as CaCO3 mg/L

SAMPLE DUPLICATE: 1422284

Date: 11/22/2022 08:04 PM

Parameter Units Result Result RPD Qualifiers

Alkalinity, Total as CaCO3 mg/L 25.7 26.6 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 281434 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

> Laboratory: Pace Analytical Services - Melville

> > Reporting

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422678 Matrix: Water

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples: Blank

70234792008, 70234792009, 70234792010, 70234792011

Parameter Limit Units Result Analyzed

Tot Hardness asCaCO3 (SM 2340B mg/L <2.5 11/09/22 18:15

LABORATORY CONTROL SAMPLE: 1422679

LCS LCS Spike % Rec Parameter Limits Units Conc. Result % Rec Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 100 90-110

MATRIX SPIKE SAMPLE: 1422680

70234696001 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 63.3 393 75-125 Tot Hardness asCaCO3 (SM 2340B 333 99 mg/L

MATRIX SPIKE SAMPLE: 1422682

70234792006 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 34.0 200 230 75-125

SAMPLE DUPLICATE: 1422681

70234696001 Dup Parameter Units Result Result RPD Qualifiers 63.3 Tot Hardness asCaCO3 (SM 2340B mg/L 63.3 0

SAMPLE DUPLICATE: 1422683

Date: 11/22/2022 08:04 PM

70234792006 Dup RPD Parameter Units Result Result Qualifiers 34.0 Tot Hardness asCaCO3 (SM 2340B 30.0 12 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 280248

QC Batch Method: SM22 2540C Analys

Analysis Description:

Analysis Method:

Laboratory:

SM22 2540C 2540C Total Dissolved Solids

Description. 25

Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003

METHOD BLANK: 1416497 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 11/01/22 18:06

LABORATORY CONTROL SAMPLE: 1416498

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result **Total Dissolved Solids** 500 566 113 85-115 mg/L

MATRIX SPIKE SAMPLE: 1416500

MS % Rec 70234596001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 71.0 **Total Dissolved Solids** mg/L 300 319 83 75-125

MATRIX SPIKE SAMPLE: 1416502

70234792001 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers Total Dissolved Solids 342 mg/L 300 616 91 75-125

SAMPLE DUPLICATE: 1416499

 Parameter
 Units
 70234596001 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 71.0
 75.0
 5

SAMPLE DUPLICATE: 1416501

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 Result Result
 Result RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 342
 376
 9 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

LABORATORY CONTROL SAMPLE:

Total Dissolved Solids

Date: 11/22/2022 08:04 PM

QC Batch: 280249 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009, 70234792010,

70234792011

METHOD BLANK: 1416505 Matrix: Water

1416506

Associated Lab Samples: 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009, 70234792010,

70234792011

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.011/01/22 19:22

Parameter Units Spike LCS LCS % Rec
Conc. Result % Rec Limits Qualifiers

 Total Dissolved Solids
 mg/L
 500
 504
 101
 85-115

 MATRIX SPIKE SAMPLE:
 1416509

 Parameter
 T0234792004
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

 Total Dissolved Solids
 mg/L
 82.0
 600
 608
 88
 75-125

 MATRIX SPIKE SAMPLE:
 1416511
 70234792006
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Total Dissolved Solids mg/L 87.0 300 340 84 75-125

SAMPLE DUPLICATE: 1416507 70234792004 Dup

Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L 82.0 86.0 5

mg/L

SAMPLE DUPLICATE: 1416510

70234792006 Dup

Parameter Units Result Repl Qualifiers

87.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

82.0

6 D6

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279687 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1414144 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chromium, Hexavalent mg/L <0.020 0.020 10/27/22 22:25

LABORATORY CONTROL SAMPLE: 1414145

Spike LCS LCS % Rec Units Conc. Result % Rec Limits Qualifiers Parameter Chromium, Hexavalent mg/L 0.2 0.19 95 85-115

MATRIX SPIKE SAMPLE: 1414193

MS MS 70234792006 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 0.20 75-125 H1 Chromium, Hexavalent 0.2 99 mg/L

SAMPLE DUPLICATE: 1414194

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 Result
 Result
 RPD
 Qualifiers

 Chromium, Hexavalent
 mg/L
 <0.020</td>
 <0.020</td>
 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Chemical Oxygen Demand

QC Batch: 281327 QC Batch Method: EPA 410.4 Analysis Method: Analysis Description: 410.4 COD

EPA 410.4

10.0

Laboratory:

Pace Analytical Services - Melville

11/09/22 12:49

MS

MS

% Rec

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422193 Matrix: Water

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

<10.0

Parameter Units Limit Qualifiers Result Analyzed mg/L

LABORATORY CONTROL SAMPLE: 1422194

LCS LCS Spike % Rec Parameter Units % Rec Limits Qualifiers Conc. Result Chemical Oxygen Demand mg/L 500 520 104 90-110

70234792006

MATRIX SPIKE SAMPLE: 1422195

Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 1030 102 Chemical Oxygen Demand 1000 90-110 mg/L

MATRIX SPIKE SAMPLE: 1422197

70234853001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 51.6 1000 1050 100 90-110

SAMPLE DUPLICATE: 1422196

70234792006 Dup Parameter Units Result Result RPD Qualifiers <10.0 Chemical Oxygen Demand mg/L <10.0

SAMPLE DUPLICATE: 1422198

Date: 11/22/2022 08:04 PM

70234853001 Dup **RPD** Parameter Units Result Result Qualifiers mg/L 51.6 40.6 24 D6 Chemical Oxygen Demand

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279754 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792010, 70234792011

METHOD BLANK: 1414389 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792010, 70234792011

 Parameter
 Units
 Blank Reporting Result
 Limit
 Analyzed
 Qualifiers

 BOD, 5 day
 mg/L
 <1.0</td>
 1.0
 11/02/22 09:07

LABORATORY CONTROL SAMPLE: 1414390

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 84.5-115.4 BOD, 5 day mg/L 198 210 106

SAMPLE DUPLICATE: 1414391

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 70234792006 Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 <2.0</td>
 <2.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279842 QC Batch Method: SM22 5210B Analysis Method:

SM22 5210B

Analysis Description:

5210B BOD, 5 day

Laboratory:

Pace Analytical Services - Melville

70234792008, 70234792009 Associated Lab Samples:

METHOD BLANK: 1414701

Matrix: Water

Associated Lab Samples:

Parameter

70234792008, 70234792009

Blank Result Reporting Limit

Analyzed

Qualifiers

BOD, 5 day

mg/L

Units

<1.0

1.0 11/02/22 10:24

LABORATORY CONTROL SAMPLE: 1414702

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

BOD, 5 day

BOD, 5 day

Units mg/L

Units

mg/L

198

179

86.6

84.5-115.4

7

SAMPLE DUPLICATE: 1414704

Date: 11/22/2022 08:04 PM

Parameter

70234798001 Result

93.2

Dup Result

RPD

91

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

LABORATORY CONTROL SAMPLE: 1416124

Date: 11/22/2022 08:04 PM

Pace Project No.: 70234792

QC Batch: 280155 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003

METHOD BLANK: 1416123 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	11/11/22 14:45	
Chloride	mg/L	<2.0	2.0	11/11/22 14:45	
Sulfate	mg/L	<5.0	5.0	11/11/22 14:45	

LABORATORT CONTROL SAMPLE.	1410124	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		1.0	102	90-110	
Chloride	mg/L	10	10.5	105	90-110	
Sulfate	mg/L	10	10.6	106	90-110	

MATRIX SPIKE SAMPLE:	1416125						
		70234863001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	1.2	118	90-110 M	11
Chloride	mg/L	29.0	10	41.6	127	90-110 M	11
Sulfate	mg/L	29.6	10	42.5	129	90-110 M	11

1416127						
Unite	70234863002	Spike	MS Posult	MS % Roc	% Rec	Qualifiers
			Mesuit	/0 NEC	LIIIIII	Qualifiers
mg/L	< 0.50	1	1.2	119	90-110	M1
mg/L	25.9	10	38.7	128	90-110	M1
mg/L	23.0	10	35.9	129	90-110	M1
	Units mg/L mg/L	Units 70234863002 Result mg/L <0.50	Units 70234863002 Result Spike Conc. mg/L mg/L <0.50	Units 70234863002 Result Spike Conc. MS Result mg/L mg/L <0.50	Units 70234863002 Result Spike Conc. MS Result MS % Rec mg/L mg/L <0.50	Units 70234863002 Result Spike Conc. MS Result MS Recond Result % Recond Result mg/L mg/L <0.50

SAMPLE DUPLICATE: 1416126					
		70234863001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	29.0	29.4	1	
Sulfate	mg/L	29.6	30.0	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

SAMPLE DUPLICATE: 1416128

Parameter	Units	70234863002 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	25.9	25.7	1	
Sulfate	mg/L	23.0	23.0	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

QC Batch: 280662 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

METHOD BLANK: 1418861 Matrix: Water

Associated Lab Samples: 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	11/14/22 10:58	
Chloride	mg/L	<2.0	2.0	11/14/22 10:58	
Sulfate	mg/L	<5.0	5.0	11/14/22 10:58	

LABORATORY CONTROL SAMPLE:	1418862					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		0.99	99	90-110	
Chloride	mg/L	10	9.9	99	90-110	
Sulfate	mg/L	10	10	100	90-110	

MATRIX SPIKE SAMPLE:	1418863						
		70234792006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	<0.50	1	1.1	112	90-110	M1
Chloride	mg/L	10.7	10	22.0	113	90-110	M1
Sulfate	mg/L	10	10	21.5	115	90-110	M1

MATRIX SPIKE SAMPLE:	1418865						
Parameter	Units	70235213001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	<0.50	1	1.3	128	90-110	M1
Chloride	mg/L	7.2	10	18.9	116	90-110	M1
Sulfate	mg/L	21.3	10	32.9	116	90-110	M1

SAMPLE DUPLICATE: 1418864					
		70234792006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	10.7	10.7	1	
Sulfate	mg/L	10	10.0	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

SAMPLE DUPLICATE: 1418866

		70235213001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	<0.50	<0.50		
Chloride	mg/L	7.2	7.2	1	
Sulfate	mg/L	21.3	21.1	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 282458 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0

Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70234792010, 70234792011

METHOD BLANK: 1427714

Date: 11/22/2022 08:04 PM

Matrix: Water

Associated Lab Samples: 70234792010, 70234792011

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	< 0.50	0.50	11/22/22 09:09	
Chloride	mg/L	<2.0	2.0	11/22/22 09:09	
Sulfate	mg/L	<5.0	5.0	11/22/22 09:09	

LABORATORY CONTROL SAMPLE:	1427715					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		1.0	102	90-110	
Chloride	ma/L	10	10	100	90-110	

10 9.9 Sulfate mg/L 99 90-110

MATRIX SPIKE SAMPLE:	1427716						
Parameter	Units	70234908002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Bromide	mg/L	0.061		1.3	126	90-110	M1
Chloride	mg/L		50	113	112	90-110	
Sulfate	ma/l	11.9	10	24.0	120	90-110	M1

SAMPLE DUPLICATE: 1427717 70224009002

Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	0.061	<0.50		
Chloride	mg/L		58.8	4	
Sulfate	mg/L	11.9	12.1	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 281329 QC Batch Method: EPA 351.2 Analysis Method: EPA 351.2 Analysis Description:

351.2 TKN

Laboratory:

Pace Analytical Services - Melville

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422205 Matrix: Water

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

Blank

Reporting

Parameter Units Result Limit Qualifiers Analyzed mg/L Nitrogen, Kjeldahl, Total < 0.094 0.094 11/09/22 12:40

LABORATORY CONTROL SAMPLE: 1422206

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. Nitrogen, Kjeldahl, Total mg/L 4 4.0 100 90-110

MATRIX SPIKE SAMPLE: 1422207

70235887002 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 7.8 11.4 88 90-110 M1 Nitrogen, Kjeldahl, Total 4 mg/L

MATRIX SPIKE SAMPLE: 1422209

70234792006 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L < 0.10 3.9 90-110

SAMPLE DUPLICATE: 1422208

70235887002 Dup Parameter Units Result Result RPD Qualifiers 7.8 7.3 7 Nitrogen, Kjeldahl, Total mg/L

SAMPLE DUPLICATE: 1422210

Date: 11/22/2022 08:04 PM

70234792006 Dup Result RPD Parameter Units Result Qualifiers mg/L < 0.10 Nitrogen, Kjeldahl, Total < 0.10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279690 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792004, 70234792005, 70234792010, 70234792011

METHOD BLANK: 1414213 Matrix: Water

Associated Lab Samples: 70234792001, 70234792004, 70234792005, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 10/27/22 23:25

LABORATORY CONTROL SAMPLE: 1414214

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 0.99 99 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414215

MS % Rec 70234714002 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.27 Nitrite as N mg/L 0.5 0.80 106 90-110

MATRIX SPIKE SAMPLE: 1414217

70234671002 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.53 102 90-110

Mildle as W 111g/L 20.000 0.5 0.55 102 90-110

SAMPLE DUPLICATE: 1414216

 Parameter
 Units
 70234714002 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 0.27
 0.27
 1

SAMPLE DUPLICATE: 1414218

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 70234671002 Result Result Result RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

NORTH SEA LANDFILL 10/26 Project:

Pace Project No.: 70234792

QC Batch: 279691 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

> Laboratory: Pace Analytical Services - Melville

70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009 Associated Lab Samples:

METHOD BLANK: 1414219 Matrix: Water

Associated Lab Samples: 70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009

> Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed

Nitrite as N < 0.027 0.027 10/28/22 00:01 mg/L

LABORATORY CONTROL SAMPLE: 1414220

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.0 101 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414221

MS 70234792002 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.51 101 90-110

MATRIX SPIKE SAMPLE: 1414223

70234792006 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050

Nitrite as N mg/L 0.5 0.52 104 90-110

SAMPLE DUPLICATE: 1414222

70234792002 Dup RPD Parameter Units Result Result Qualifiers < 0.050 Nitrite as N mg/L < 0.050

SAMPLE DUPLICATE: 1414224

Date: 11/22/2022 08:04 PM

70234792006 Dup RPD Qualifiers Parameter Units Result Result < 0.050 Nitrite as N < 0.050 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

NORTH SEA LANDFILL 10/26 Project:

Pace Project No.: 70234792

QC Batch: 280302

QC Batch Method: EPA 353.2 Analysis Method:

EPA 353.2

Analysis Description:

353.2 Nitrate + Nitrite, preserved

Laboratory:

Pace Analytical Services - Melville

Qualifiers

70234792001 Associated Lab Samples:

METHOD BLANK: 1417029 Matrix: Water

Associated Lab Samples: 70234792001

Blank

Reporting

Parameter Units Result Limit Analyzed

Nitrate-Nitrite (as N) < 0.037 0.037 11/02/22 16:30 mg/L

LABORATORY CONTROL SAMPLE: 1417030

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.1 109 90-110 mg/L

MATRIX SPIKE SAMPLE: 1417031

MS % Rec 70235222001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.8 Nitrate-Nitrite (as N) mg/L 0.5 2.4 110 90-110

MATRIX SPIKE SAMPLE: 1417570

70235228002 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 2.0 90-110 M1 Nitrate-Nitrite (as N) mg/L 0.5 2.4 69

SAMPLE DUPLICATE: 1417032

70235222001 Dup RPD Parameter Units Result Result Qualifiers 1.8 1.9 1 Nitrate-Nitrite (as N) mg/L

SAMPLE DUPLICATE: 1417571

Date: 11/22/2022 08:04 PM

70235228002 Dup Units **RPD** Qualifiers Parameter Result Result 2.0 Nitrate-Nitrite (as N) 2.0 0 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279694 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792004, 70234792005, 70234792010, 70234792011

METHOD BLANK: 1414233 Matrix: Water

Associated Lab Samples: 70234792004, 70234792005, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 10/28/22 01:34

LABORATORY CONTROL SAMPLE: 1414234

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.0 103 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414235

MS % Rec 70234668001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 4.7 Nitrate-Nitrite (as N) mg/L 2.5 7.2 102 90-110

MATRIX SPIKE SAMPLE: 1414237

70234818003 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers 3.0 Nitrate-Nitrite (as N) mg/L 2.5 5.5 102 90-110

SAMPLE DUPLICATE: 1414236

 Parameter
 Units
 70234668001 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 4.7
 4.7
 0

SAMPLE DUPLICATE: 1414238

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 70234818003 Result
 Dup Result
 RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 3.0
 2.9
 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279695 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009

METHOD BLANK: 1414239 Matrix: Water

Associated Lab Samples: 70234792002, 70234792003, 70234792006, 70234792007, 70234792008, 70234792009

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrate-Nitrite (as N) mg/L <0.037 0.037 10/28/22 02:11

LABORATORY CONTROL SAMPLE: 1414240

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.0 103 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414241

MS % Rec 70234792002 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.073 Nitrate-Nitrite (as N) mg/L 0.5 0.55 96 90-110

MATRIX SPIKE SAMPLE: 1414243

70234792006 MS MS % Rec Spike Qualifiers Parameter Units Result Conc. Result % Rec Limits 0.67 Nitrate-Nitrite (as N) mg/L 0.5 1.2 108 90-110

SAMPLE DUPLICATE: 1414242

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.073
 <0.050</td>

SAMPLE DUPLICATE: 1414244

Date: 11/22/2022 08:04 PM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Nitrate-Nitrite (as N)
 mg/L
 0.67
 0.67
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279982 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1415330 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrogen, Ammonia mg/L <0.050 0.050 10/31/22 14:05

LABORATORY CONTROL SAMPLE: 1415331

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1 97 90-110 Nitrogen, Ammonia mg/L 0.97

MATRIX SPIKE SAMPLE: 1415332

70234792006 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.10 0.91 87 75-125 Nitrogen, Ammonia mg/L

SAMPLE DUPLICATE: 1415333

Date: 11/22/2022 08:04 PM

ParameterUnits70234792006 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L<0.10</td><0.10</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 279960 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792001, 70234792002

METHOD BLANK: 1415261 Matrix: Water

Associated Lab Samples: 70234792001, 70234792002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/03/22 22:13

LABORATORY CONTROL SAMPLE: 1415262

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** mg/L 10 9.6 96 85-115

MATRIX SPIKE SAMPLE: 1415264

70234847004 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 13.4 **Total Organic Carbon** mg/L 22.6 10 92 75-125

SAMPLE DUPLICATE: 1415263

Date: 11/22/2022 08:04 PM

ParameterUnits70234847004 ResultDup ResultRPDQualifiersTotal Organic Carbonmg/L13.412.94

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

QC Batch: 280126 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

METHOD BLANK: 1416036 Matrix: Water

Associated Lab Samples: 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, 70234792008, 70234792009

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/01/22 14:04

LABORATORY CONTROL SAMPLE: 1416037

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L **Total Organic Carbon** 10 9.5 95 85-115

MATRIX SPIKE SAMPLE: 1416039

MS MS % Rec 70234792006 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <1.0 **Total Organic Carbon** mg/L 10 9.5 94 75-125

SAMPLE DUPLICATE: 1416038

Date: 11/22/2022 08:04 PM

ParameterUnits70234792006 ResultDup ResultRPDQualifiersTotal Organic Carbonmg/L<1.0</td><1.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NC

NORTH SEA LANDFILL 10/26

Pace Project No.:

70234792

QC Batch:
QC Batch Method:

280128

d: SM22 5310B

Analysis Method:

SM22 5310B

Analysis Description:

5310B TOC

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples:

Associated Lab Samples:

70234792010, 70234792011

METHOD BLANK: 1416044

70234792010, 70234792011

Blank Result

Matrix: Water

.

Reporting

Limit Analyzed

Qualifiers

Total Organic Carbon

Units mg/L

<0.50

0.50 11/01/22 19:49

LABORATORY CONTROL SAMPLE: 1416045

Parameter

.

Spike Conc.

LCS Result LCS % Rec

,

% Rec Limits Qualifiers

Parameter
Total Organic Carbon

Date: 11/22/2022 08:04 PM

Units mg/L

_____10

9.3

93 8

85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

NORTH SEA LANDFILL 10/26 Project:

Pace Project No.: 70234792

QC Batch: 281356 Analysis Method: EPA 9014 Total Cyanide QC Batch Method: **EPA 9010C** Analysis Description: 9014 Cyanide, Total

> Laboratory: Pace Analytical Services - Melville

> > 10.0

11/09/22 16:45

Associated Lab Samples: 70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007,

70234792008, 70234792009, 70234792010, 70234792011

METHOD BLANK: 1422290 Matrix: Water

70234792001, 70234792002, 70234792003, 70234792004, 70234792005, 70234792006, 70234792007, Associated Lab Samples:

70234792008, 70234792009, 70234792010, 70234792011

Blank Reporting

Parameter Units Result Limit Qualifiers Analyzed Cyanide

<10.0

1422291

ug/L

LCS LCS % Rec Spike Units Conc. Result % Rec Limits Qualifiers Parameter 85-115 Cyanide ug/L 75 80.6 107

MATRIX SPIKE SAMPLE: 1422292

70234792006 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 100 101 98 75-125 Cyanide ug/L

SAMPLE DUPLICATE: 1422293

Date: 11/22/2022 08:04 PM

LABORATORY CONTROL SAMPLE:

70234792006 Dup RPD Parameter Units Result Result Qualifiers Cyanide ug/L <10.0 <10.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/22/2022 08:04 PM

	D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
--	----	---

H1 Analysis conducted outside the EPA method holding time.

H2 Extraction or preparation conducted outside EPA method holding time.

H3 Sample was received or analysis requested beyond the recognized method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70234792001	1A	EPA 3005A	 280111	EPA 6010C	280181
0234792002	1B	EPA 3005A	280111	EPA 6010C	280181
0234792003	1C	EPA 3005A	280111	EPA 6010C	280181
0234792004	6AR	EPA 3005A	280111	EPA 6010C	280181
0234792005	6B	EPA 3005A	280111	EPA 6010C	280181
0234792006	8	EPA 3005A	280111	EPA 6010C	280181
0234792007	9	EPA 3005A	280111	EPA 6010C	280181
0234792008	11A	EPA 3005A	280111	EPA 6010C	280181
0234792009	11B	EPA 3005A	280111	EPA 6010C	280181
0234792010	LEA-PRIMARY	EPA 3005A	280111	EPA 6010C	280181
0234792011	LEA-SECONDARY	EPA 3005A	280111	EPA 6010C	280181
0234792001	1A	SM22 2120B	279688		
0234792002	1B	SM22 2120B	279688		
0234792003	1C	SM22 2120B	279688		
0234792004	6AR	SM22 2120B	279688		
0234792005	6B	SM22 2120B	279688		
0234792006	8	SM22 2120B	279688		
0234792007	9	SM22 2120B	279688		
0234792008	11A	SM22 2120B	279688		
0234792009	11B	SM22 2120B	279688		
0234792010	LEA-PRIMARY	SM22 2120B	279688		
0234792011	LEA-SECONDARY	SM22 2120B	279688		
0234792001	1A	SM22 2320B	281354		
0234792002	1B	SM22 2320B	281354		
0234792003	1C	SM22 2320B	281354		
0234792004	6AR	SM22 2320B	281354		
0234792005	6B	SM22 2320B	281354		
0234792006	8	SM22 2320B	281354		
0234792007	9	SM22 2320B	281354		
0234792008	11A	SM22 2320B	281354		
0234792009	11B	SM22 2320B	281354		
0234792010	LEA-PRIMARY	SM22 2320B	281354		
0234792011	LEA-SECONDARY	SM22 2320B	281354		
0234792001	1A	SM22 2340C	281434		
0234792002	1B	SM22 2340C	281434		
0234792003	1C	SM22 2340C	281434		
0234792004	6AR	SM22 2340C	281434		
0234792005	6B	SM22 2340C	281434		
0234792006	8	SM22 2340C	281434		
0234792007	9	SM22 2340C	281434		
234792008	11A	SM22 2340C	281434		
0234792009	11B	SM22 2340C	281434		
0234792010	LEA-PRIMARY	SM22 2340C	281434		
0234792011	LEA-SECONDARY	SM22 2340C	281434		
0234792001	1A	SM22 2540C	280248		
0234792002	1B	SM22 2540C	280248		
0234792002	1C	SM22 2540C	280248		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
70234792004	6AR	SM22 2540C	280249		
0234792005	6B	SM22 2540C	280249		
0234792006	8	SM22 2540C	280249		
0234792007	9	SM22 2540C	280249		
0234792008	11A	SM22 2540C	280249		
0234792009	11B	SM22 2540C	280249		
0234792010	LEA-PRIMARY	SM22 2540C	280249		
0234792011	LEA-SECONDARY	SM22 2540C	280249		
0234792001	1A	SM22 3500-Cr B	279687		
0234792002	1B	SM22 3500-Cr B	279687		
0234792003	1C	SM22 3500-Cr B	279687		
0234792004	6AR	SM22 3500-Cr B	279687		
0234792005	6B	SM22 3500-Cr B	279687		
0234792006	8	SM22 3500-Cr B	279687		
0234792007	9	SM22 3500-Cr B	279687		
0234792008	11A	SM22 3500-Cr B	279687		
0234792009	11B	SM22 3500-Cr B	279687		
0234792010	LEA-PRIMARY	SM22 3500-Cr B	279687		
0234792011	LEA-SECONDARY	SM22 3500-Cr B	279687		
0234792001	1A	EPA 410.4	281327	EPA 410.4	281404
0234792002	1B	EPA 410.4	281327	EPA 410.4	281404
0234792003	1C	EPA 410.4	281327	EPA 410.4	281404
0234792004	6AR	EPA 410.4	281327	EPA 410.4	281404
0234792005	6B	EPA 410.4	281327	EPA 410.4	281404
0234792006	8	EPA 410.4	281327	EPA 410.4	281404
0234792007	9	EPA 410.4	281327	EPA 410.4	281404
0234792008	11A	EPA 410.4	281327	EPA 410.4	281404
0234792009	11B	EPA 410.4	281327	EPA 410.4	281404
0234792010	LEA-PRIMARY	EPA 410.4	281327	EPA 410.4	281404
0234792011	LEA-SECONDARY	EPA 410.4	281327	EPA 410.4	281404
0234792001	1A	SM22 5210B	279754	SM22 5210B	280628
0234792002	1B	SM22 5210B	279754	SM22 5210B	280628
0234792003	1C	SM22 5210B	279754	SM22 5210B	280628
0234792004	6AR	SM22 5210B	279754	SM22 5210B	280628
0234792005	6B	SM22 5210B	279754	SM22 5210B	280628
0234792006	8	SM22 5210B	279754	SM22 5210B	280628
0234792007	9	SM22 5210B	279754	SM22 5210B	280628
0234792008	11A	SM22 5210B	279842	SM22 5210B	280631
0234792009	11B	SM22 5210B	279842	SM22 5210B	280631
0234792010	LEA-PRIMARY	SM22 5210B	279754	SM22 5210B	280628
0234792011	LEA-SECONDARY	SM22 5210B	279754	SM22 5210B	280628
0234792001	1A	EPA 300.0	280155		
0234792002	1B	EPA 300.0	280155		
0234792003	1C	EPA 300.0	280155		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234792005	— 	EPA 300.0	280662	_	
70234792006	8	EPA 300.0	280662		
70234792007	9	EPA 300.0	280662		
70234792008	11A	EPA 300.0	280662		
70234792009	11B	EPA 300.0	280662		
70234792010	LEA-PRIMARY	EPA 300.0	282458		
70234792011	LEA-SECONDARY	EPA 300.0	282458		
70234792001	1A	EPA 351.2	281329	EPA 351.2	281331
70234792002	1B	EPA 351.2	281329	EPA 351.2	281331
70234792003	1C	EPA 351.2	281329	EPA 351.2	281331
70234792004	6AR	EPA 351.2	281329	EPA 351.2	281331
70234792005	6B	EPA 351.2	281329	EPA 351.2	281331
70234792006	8	EPA 351.2	281329	EPA 351.2	281331
70234792007	9	EPA 351.2	281329	EPA 351.2	281331
70234792008	11A	EPA 351.2	281329	EPA 351.2	281331
70234792009	11B	EPA 351.2	281329	EPA 351.2	281331
70234792010	LEA-PRIMARY	EPA 351.2	281329	EPA 351.2	281331
70234792011	LEA-SECONDARY	EPA 351.2	281329	EPA 351.2	281331
70234792002	1B	EPA 353.2	279695		
70234792003	1C	EPA 353.2	279695		
70234792004	6AR	EPA 353.2	279694		
70234792005	6B	EPA 353.2	279694		
70234792006	8	EPA 353.2	279695		
70234792007	9	EPA 353.2	279695		
70234792008	11A	EPA 353.2	279695		
70234792009	11B	EPA 353.2	279695		
70234792010	LEA-PRIMARY	EPA 353.2	279694		
70234792011	LEA-SECONDARY	EPA 353.2	279694		
70234792001	1A	EPA 353.2	280302		
70234792001	1A	EPA 353.2	279690		
70234792002	1B	EPA 353.2	279691		
70234792003	1C	EPA 353.2	279691		
70234792004	6AR	EPA 353.2	279690		
70234792005	6B	EPA 353.2	279690		
70234792006	8	EPA 353.2	279691		
70234792007	9	EPA 353.2	279691		
70234792008	11A	EPA 353.2	279691		
0234792009	11B	EPA 353.2	279691		
70234792010	LEA-PRIMARY	EPA 353.2	279690		
70234792011	LEA-SECONDARY	EPA 353.2	279690		
70234792001	1A	SM22 4500 NH3 H	279982		
70234792002	1B	SM22 4500 NH3 H	279982		

Project: NORTH SEA LANDFILL 10/26

Pace Project No.: 70234792

Date: 11/22/2022 08:04 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70234792003	1C	SM22 4500 NH3 H	279982		
70234792004	6AR	SM22 4500 NH3 H	279982		
70234792005	6B	SM22 4500 NH3 H	279982		
70234792006	8	SM22 4500 NH3 H	279982		
70234792007	9	SM22 4500 NH3 H	279982		
70234792008	11A	SM22 4500 NH3 H	279982		
70234792009	11B	SM22 4500 NH3 H	279982		
0234792010	LEA-PRIMARY	SM22 4500 NH3 H	279982		
70234792011	LEA-SECONDARY	SM22 4500 NH3 H	279982		
70234792001	1A	SM22 5310B	279960		
70234792002	1B	SM22 5310B	279960		
70234792003	1C	SM22 5310B	280126		
0234792004	6AR	SM22 5310B	280126		
0234792005	6B	SM22 5310B	280126		
70234792006	8	SM22 5310B	280126		
0234792007	9	SM22 5310B	280126		
70234792008	11A	SM22 5310B	280126		
0234792009	11B	SM22 5310B	280126		
0234792010	LEA-PRIMARY	SM22 5310B	280128		
70234792011	LEA-SECONDARY	SM22 5310B	280128		
70234792001	1A	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792002	1B	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792003	1C	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792004	6AR	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792005	6B	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792006	8	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792007	9	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792008	11A	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
0234792009	11B	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
70234792010	LEA-PRIMARY	EPA 9010C	281356	EPA 9014 Total Cyanide	281474
70234792011	LEA-SECONDARY	EPA 9010C	281356	EPA 9014 Total Cyanide	281474

Section A

CHAIN-OF-CUSTODY / Analytical

The Chain-of-Custody is a LEGAL DOCUMENT. All

WO#:70234792

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions four

Section B

Section C Required Client Information: Required Project Information: Invoice Information: Report To: Attention: Company: Town of Southampton Fellen, Christine Company Name: Address: Waste Management Division Copy To: Address: Regulatory Agency Southampton, NY 11968 Email: Purchase Order #: Pace Quote: c.fellen@southamptontownny.gov Phone: (631)283-5210 Fax: Project Name: North Sea Landfill Pace Project Manager. State / Location kimberley.mack@pacelabs.com, Requested Due Date: Project #: Pace Profile #: 5479 Line 3 NY Requested Analysis Filtered (Y/N) (see valid codes to left) C=COMP) COLLECTED Preservatives MATRIX SAMPLE TEMP AT COLLECTION Drinking Water DW TAL Metals+B & Hardness Water BOD, Br, Cl, SO4, Color, Cr6 (G=GRAB Waste Water WW Residual Chlorine (Y/N) COD,NH3,NO3,TKN,Ph Product SAMPLE ID Soil/Solid SL START END # OF CONTAINERS OL WP AR OT Oil Dissloved Metals One Character per box Wipe MATRIX CODE SAMPLE TYPE AIK, NO2, TDS Аіг (A-Z, 0-9 / , -) Na2S203 Olher Methanol Sample lds must be unique Cyanide H2S04 TEM Tissue HN03 NaOH Olher TOC Unpr 무 DATE TIME DATE TIME 10/26 13:10 1 WT 1A 250 2 1B WT 330 3 1C WT -410 WT WT WT WT 48 MI WT AC -HOT 9 WT 13 2 10 6AR WT 10/26 1030 Х X 1120 11 WT X 6B 445 12 8 MS WT ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS 1010 (0 ic Part 360 ROUTINE Page SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: 74 of 드 TEMP SIGNATURE of SAMPLER: **DATE Signed:**

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require	Submitting a sample via this of A different Information:	Section B Required P			nowledgm	nent and	acceptar		Secti				Cor	nditior	is foui	nd at	http:	s://int	fo pa	celab	s.con	n/hubi	fs/pas	-stan	120	ge :	odf.	Of	2
Compar	y: Town of Southampton	Report To:		Christine					Allen	_							_					\neg			1 4	50.	-		-
Address	3	Сору То:							Comp	any N	lame:																		
	npton, NY 11968								Addre													_ [8		5.0	Regula	atory Age	псу	
Email:	c fellen@southamptontownny gov	Purchase Or								Quote																			
Phone:	(631)283-5210 Fax	Project Nam	e: No	rth Sea La	andfill				_	Proje					ley.ma	ck@	pacel	abs, c	om,					J		State	/Location	on	
Reques	ed Due Date:	Project #:					_		Pace	Profi	le #:	5479	Line	3	_	_	_										NY		
	MATRIX Dirikling Water Wasie W Product	WT	(see valid codes to left)		COLL	ECTED		COLLECTION			Pr	esen	ativ	es		t Y/N	ar,Cr6			ed Ar		SFIITE	ered ()	1/(1)		(N)			
	SAMPLE ID Soil/Soile One Character per box. Wipe	OL WP		ST	ART	Е	ND	ΑŢ	INERS	, l						es Test	304,Colc	S	03,1KN		-B & Har	etais			Н	Chlorine (Y/N)			
ITEM #	(A-Z, 0-9 / , -) Sample lds must be unique Tissue	AR OT TS	MATRIX CODE SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Unpreserved	HNO3	HCI	NaOH	Na2S203	Other	Analyses	BOD, Br, CI, SO4, Color, Cr6	Alk,NO2,TDS	COD, NH3, NO3, TKN, Phenol	Cyanide	TAL Metals+B & Hardness	Dissloved Metals				Residual Ch			
13	8 MSD		WT			10/26	1445		7 :	2 3	i		1				х	x :	x x	х	х			M					
14	9		wr				1515		1	11	1						x	x 2	x x	X	х								
15	11A		WT				1550		1								х	x z	x x	x	x			Ш					
16	118		WT			1	1630		1	UL	1		V				x	x :	x x	x	x								
17	TZA M8		wr														х	x :	x x	X	x								
18	TZB M {		WT														х	x :	x x	x	x								
19	LEA-Primary		w			10/26	OFFICE		٦	2 3	3 1		1																
20	LEA- secondary		m			L	0 430		L	11	1		V																
21	/			3			{					Ш																	
22												Ц																	
23																			H										
24															L	Ш					L					L			
	ADDITIONAL COMMENTS	214.5	RELINQUIS	SHED BY / /	AFFILIATIO	ON	DATE			IME		7		_	TED BY	/ AF	FILIAT	ION		17		DATE	71	TIME			SAMPLE	CONDITION	s
Add Add	ROUTINE Arsensi to LEA-Orinary & LEA-Section	Mindery PC	w Yes	Cl	2 MG	C	10/27	-	10		N	r	1	Z	~						1	7-7		leje					
							AND SIGI	VATI	IRE									20				-	1 3						
age							of SAMP								-	===			- 26			-			117	O E	uo pa	>	S
Page /5 of 94					SIG	NATURE	of SAMPI	ER:									Г	ATE	Signe	ed:						TEMP in C	Receive ce (Y/N)	Custody Sealed Cooler	Sample ntact 'Y'N)

	S	ampl	e Conditi	on Up	on Re	WO#	7023	4792
/ Pace Analytical®	Client N	lame:	950552		Pro	PM: KMM CLIENT:	Due	Date: 11/10/22
Courier - End Ev - LIDS - LISDS - Citizent	40				-	CLIENT:	105	
Courier: Fed Ex UPS USPS Client Tracking #:		erciai	Pace Dthe	ei				
Custody Seal on Cooler/Box Present:	no E Mo	Coal	s intact: Te	oc□ No ſ	= N/A	L	oratura Plank D	resent: Yes No-
Packing Material: Bubble Wrap Bubble				_	N/A	-	of Ice: Wet B	
Thermometer Used: THIES						• •		
Cooler Temperature (°C): 4.2			tor: $+ O.1$		2.7			g process has begun placed in freezer
Temp should be above freezing to 6.0°C	Coniei	remper	ature correct	real ci:	7/	nate/	Time busba kits	praced in freezer
	.)		4	Doto or	ad Initiala	of porson ov	amining conten	tentary /
USDA Regulated Soil (A, water sample							_	
Did samples originate in a quarantine zone w				A, FL, GA, IL), La, MS, N			rom a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		s \square No						uerto Rico)? U Yes 🗷 No
If Yes to either question, fill out a Regulat	ed Soil Ch	ecklist	(F-LI-C-010) a	and includ	le with SC	UR/COC pape		
Chain of Custody Description	- Lu			1			COMMENTS:	
Chain of Custody Present:	Yes	No		II.				
Chain of Custody Filled Out:	Yes	□No		2.				
Chain of Custody Relinquished:	Yes	□No	CN /4	3.				
Sampler Name & Signature on COC:	Yes	□No	□N/A	4.		_		
Samples Arrived within Hold Time:	Yes	□No		5.				
Short Hold Time Analysis (<72hr):	Yes	□No		6.				
Rush Turn Around Time Requested:	Yes	ENO		7.				
Sufficient Volume: (Triple volume provided for Correct Containers Used:	-	□No		8.				
	⊠Yes	□No		9.				
-Pace Containers Used: Containers Intact:	Eyes	□No		10.				
Filtered volume received for Dissolved tests	ΩYes	□No	ΕΝΙ/A	11.	Moto it	f andiment in	isible in the diss	alved apptainar
Sample Labels match COC:	□Yes	□No	₽N/A	12.	Note	seament is v	ASIDIE IA THE DISS	oived container.
-Includes date/time/ID/ Matrix: SL WP		LINU		12.				
All containers needing preservation have been		□No	□N/A	13.	□ HN0	J ₃ □ H ₂ SI	O₄ □ NaOH	□ HCl
checked?	Lies		LIN/ A	IS.		13 LI 11231	J4 LINGUN	L NO
pH paper Lot # LL193085								
All containers needing preservation are found	f to be			Sample	#			- 3
in compliance with method recommendation				1				
(HNO3, H2SO4, HCI, NaOH>9 Sulfide,	□Ves	□No	□N/A					
NAOH>12 Cyanide)								
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	rease,							
DRO/8015 (water).				Initial w	hen compl	eted: Lot # o	of added	Date/Time preservative
Per Method, VOA pH is checked after analysis						preser	vative:	added:
Samples checked for dechlorination:	□ Yes	□No	□N/A	14.				
KI starch test strips Lot # 14-540	1						b.	
Residual chlorine strips Lot # Scotte	-				Positive	for Res. Chlori	ne? Y 📉	
SM 4500 CN samples checked for sulfide?	Pyes	□No	□N/A	15.			1	
Lead Acetate Strips Lot # Scol21					Positive	for Sulfide?	Y W	
Headspace in VOA Vials (>6mm):	□Yes	- Alto	rDN/A	16.				
Trip Blank Present:	- Ves	□No	DN/A	17.				
	DYes	□No	□N/A					
Pace Trip Blank Lot # (if applicable):	1							
Client Notification/ Resolution:				Field Da	ta Require		Y / N	
Person Contacted:					Date/T	īme:		
Comments/ Resolution:								

Microbac Laboratories Inc., - Marietta, OH

Client Project ID:

70234792

For:

LATOYA SOBRATIE

Pace Analytical Melville

575 BROAD HOLLOW RD

MELVILLE, NY 11747

Project State of Origin: New York

Project Requested Certification:

Microbac Laboratories Inc., - Marietta, OH 10861 NY State Department of Health

All test results meet the requirements of the QAPP and other applicable contract terms and conditions. Any exceptions are attached to this cover page or addressed in the method narratives presented in the report. All results for soil samples are reported on a 'dry-weight' basis unless specified otherwise. Analytical results for water and wastes are reported on a 'as received' basis unless specified otherwise. A statement of uncertainty for each analysis is available upon request. The reported results are related only to the samples analyzed as received. This laboratory report may be released as a hardcopy and in computer-readable form submitted electronically or on diskette. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories, Inc.

Laboratory Project Manager:

Dichelle Tax

Michelle Taylor

Project Manager

Michelle.Taylor@microbac.com

Authorized By:

Dichelle Tay

Michelle Taylor
Project Manager

Issued: 11/15/2022

Microbac Laboratories, Inc.

Client Project ID: 70234792

Cooler Receipt Log

Cooler ID: Default Cooler	Temp:	0.2°C	
			Cooler Inspection Checklist
Ice Present or not required?		Yes	
Shipping containers sealed or not required?		Yes	
Custody seals intact or not required?		Yes	
Chain of Custody (COC) Present?		Yes	
COC includes customer information?		Yes	
Relinquished and received signature on COC?		Yes	
Sample collector identified on COC?		Yes	
Sample type identified on COC?		Yes	
Correct type of Containers Received		Yes	
Correct number of containers listed on COC?		Yes	
Containers Intact?		Yes	
COC includes requested analyses?		Yes	
Enough sample volume for indicated tests received?		Yes	
Sample labels match COC (Name, Date & Time?)		No	
Samples arrived within hold time?		Yes	
Correct preservatives on COC or not required?		Yes	
Chemical preservations checked or not required?		Yes	
Preservation checks meet method requirements?		Yes	
VOA vials have zero headspace, or not recd.?		Yes	

Client Project ID: 70234792

Case Narrative

Received extra containers for sample 8. The client confirmed the extra containers should be used for MS/MSD.

Client ID: 1A

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-01

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 12:10

Prep Date: 11/11/2022 12:12

Analyzed: 11/14/2022 13:20

Calibration: NA

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1

Instrument: UV-2600

Matrix: Aqueous

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0059	0.0028	0.0055		

Client ID: 1B

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-02

Matrix: Aqueous

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 12:50

Prep Date: 11/11/2022 12:12

Analyzed: 11/14/2022 13:20

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 1C

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 13:30

Prep Date: 11/11/2022 12:12 Analyzed: 11/14/2022 13:20

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Matrix: Aqueous Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1

Instrument: UV-2600

Laboratory ID: M2K0078-03

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 6AR

Laboratory ID: M2K0078-04

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 10:30

Prep Date: 11/11/2022 12:12 Analyzed: 11/14/2022 13:20

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Matrix: Aqueous Batch / Sequence: B2K0680 /

Instrument: UV-2600

Analytical Method: EPA 420.1

Analyst: EPT

Units: mg/L Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 6B

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-05

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 11:20

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600 Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Client ID: 8

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-06

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 14:45

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

Analyst: EPT

Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0038	0.0028	0.0055	J	
I FIIEHUIICS. IUlai	TOTPHEN	0.0038	0.002	8	8 0.0055	8 0.0055 3

Client ID: 9

Batch / Sequence: B2K0511 /

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 15:15

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Laboratory ID: M2K0078-07

Matrix: Aqueous

Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

Number Result	MDL	RL	Flag	Qualifier
PHEN ND	0.0028	0.0055	U	
F				

Client ID: 11A

Laboratory ID: M2K0078-08

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 15:50

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1

Instrument: UV-2600

Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	
	1		1			

Client ID: 11B

Batch / Sequence: B2K0511 /

Laboratory ID: M2K0078-09

Matrix: Aqueous

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 16:30

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analytical Method: EPA 420.1 Calibration: NA

Instrument: UV-2600 Units: mg/L

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0030	0.0028	0.0055	J	

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-10

Client ID: LEA-PRIMARY

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 08:10

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

File ID: Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Matrix: Aqueous Batch / Sequence: B2K0511 /

Instrument: UV-2600

Analytical Method: EPA 420.1 Units: mg/L

CAS Number	Result	MDL	RL	Flag	Qualifier
TOTPHEN	0.0132	0.0028	0.0055		
_			CAS Number Result MDL	CAS Number Result MDL RL	CAS Number Result MDL RL Flag

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Laboratory ID: M2K0078-11

Client ID: LEA-SECONDARY

CERTIFICATE OF ANALYSIS

Collection Date: 10/26/2022 08:30

Prep Date: 11/09/2022 11:56 Analyzed: 11/10/2022 16:55

Calibration: NA

Matrix: Aqueous Batch / Sequence: B2K0511 /

Instrument: UV-2600

Analytical Method: EPA 420.1 Units: mg/L

Analyst: EPT

Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0128	0.0028	0.0055		

Client Project ID: 70234792

Notes and Definitions

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

mg/L: Milligrams per Liter

U: The analyte was analyzed for but was not detected above the reported quantitation limit. The quantitation limit has been adjusted for any dilution or concentration of the sample.

MDL: Method Detection Limit

RL: Reporting Limit

Chain of Custody

PASI New York Laboratory

Workorder Name:

NORTH SEA LANDFILL 10/26

Results Requested By: 11/10/2022 Report / Invoice To Subcontract To Requested Analysis Kimberlev M. Mack P.O. 70234792KMM Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747 Microbac Laboratories, Inc. Phone (631)694-3040 Email: kimberley.mack@pacelabs.com 158 Starlite Drive Marietta, OH 45750 Phenols State of Sample Origin: NY Preserved Containers Collect Sample ID Date/Time Item Lab ID Matrix LAB USE ONLY 1A 10/26/2022 12:10 70234792001 Х Water 2 1B Χ 10/26/2022 12:50 70234792002 Water Χ 1C 10/26/2022 13:30 70234792003 Water Х 6AR 10/26/2022 10:30 70234792004 Water 5 6B Χ 10/26/2022 11:20 70234792005 Water Х 6 10/26/2022 14:45 70234792006 8 Water Х 10/26/2022 15:15 70234792007 Water Χ 11A 10/26/2022 15:50 70234792008 Water Χ 9 11B 10/26/2022 16:30 Water 70234792009 10 LEA-PRIMARY 10/26/2022 08:10 Water Χ 70234792010 11 LEA-SECONDARY Х 10/26/2022 08:30 70234792011 Water 12 13 14 15

Pace Analytical - Melville. NY Rec'd: 11/01/2022 09:46 By: Brenda Gregory Temp: 0.2

E CONTROL HISTORY	\triangle					Comments
Transfers	Released By	Date/Time	Received By	Date/Time	,	
1	May Add Wice II	10/31/18/90	Dinda ougou	11/1220	1946	
2	N. IV &	777			•	
3	0~					
Cooler Te	mperature on Receipt 💛 🥍 °C	Custod	y Seal Y or N Rece	ived on Ice	Y or N	Samples Intact Y or N

Work Order# U2K0078

COOLER TEMP >6° C LOG

2012010010	COOLER TEMP >6° C LOG									
	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6				
SAMPLE ID	°C	°C	°C	°c	°c	°c				
			-							
			-							
				<u> </u>						
			<u> </u>							
		1	2							
		101/013	:							
oH Lot # <u>#@9915</u> 9	Ù	рН	Exceptions	1	<u> </u>					
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6				

pH Lot # <u>HCA915</u> 90		рН	Exceptions			
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
,						
			-			
			-			
			:-			
				ST		
			19083			
			101			
·.						
			RVAIIVI			
	7870	LXCE!	PTIONS			
		<u> </u>	VOITE			

Document Control # 1957 Last 04-10-2019 _AS NOTED

Issued to: Document Master File

Microbac Laboratories Inc., - Marietta, OH

Level IV QA/QC Data Package Laboratory Report Number:

M2K0078

Client Project ID:

70234792

For:

LATOYA SOBRATIE

Pace Analytical Melville

575 BROAD HOLLOW RD

MELVILLE, NY 11747

Project Requested Certification:

Microbac Laboratories Inc., - Marietta, OH

10861

NY State Department of Health

Project State of Origin: New York

All test results meet the requirements of the QAPP and other applicable contract terms and conditions. Any exceptions are attached to this cover page or addressed in the method narratives presented in the report. I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions>.

Laboratory Project Manager:

Michelle Taylor

Project Manager

Michelle. Taylor@microbac.com

Authorized By:

Michelle Taylor
Project Manager
Issued: 11/15/2022

Microbac Laboratories, Inc.

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Cooler Receipt Log

Cooler ID: Default Cooler	Temp:	0.2°C		
			Cooler Inspect	tion Checklist
Ice Present or not required?		Yes	Shipping containers sealed or not required?	Yes
Custody seals intact or not required?		Yes	Chain of Custody (COC) Present?	Yes
COC includes customer information?		Yes	Relinquished and received signature on COC?	Yes
Sample collector identified on COC?		Yes	Sample type identified on COC?	Yes
Correct type of Containers Received		Yes	Correct number of containers listed on COC?	Yes
Containers Intact?		Yes	COC includes requested analyses?	Yes
Enough sample volume for indicated tests received?		Yes	Sample labels match COC (Name, Date & Time?)	No
Samples arrived within hold time?		Yes	Correct preservatives on COC or not required?	Yes
Chemical preservations checked or not required?		Yes	Preservation checks meet method requirements?	Yes
VOA vials have zero headspace, or not recd.?		Yes		

Case Narrative

Received extra containers for sample 8. The client confirmed the extra containers should be used for MS/MSD.

Table of Contents

Αr	nalysis Class (Wet Chemistry)	8
	Analysis (EPA 420.1)	10
	Form I, Certificate of Analysis (EPA 420.1)	11
	Form II, ICV CCV Summary (EPA 420.1)	23
	Form III, ICB CCB Prep Blanks (EPA 420.1)	25
	Form V, MS MSD Summary (EPA 420.1)	29
	Form VII, LCS LCSD (EPA 420.1)	31
	Section A. Batch and Sequence Raw Data (FPA 420.1)	34

Sample Summary

Sample Summary

Laboratory Report Number: M2K0078

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Client Sample ID:	Lab Sample ID:	Sampled:
1A	M2K0078-01	10/26/22 12:10
1B	M2K0078-02	10/26/22 12:50
1C	M2K0078-03	10/26/22 13:30
6AR	M2K0078-04	10/26/22 10:30
6B	M2K0078-05	10/26/22 11:20
8	M2K0078-06	10/26/22 14:45
9	M2K0078-07	10/26/22 15:15
11A	M2K0078-08	10/26/22 15:50
11B	M2K0078-09	10/26/22 16:30
LEA-PRIMARY	M2K0078-10	10/26/22 08:10
LEA-SECONDARY	M2K0078-11	10/26/22 08:30

Holding Time Summary

Specific Method: EPA 420.1 Hold Time

Laboratory Report Number: M2K0078

Matrix: Aqueous

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

	Date	Date	Date	Days to	Max Days to	
Laboratory ID	Collected	Received	Analyzed	Analysis	Analysis	Q
1A	10/26/22 12:10	11/01/22 09:46	11/14/22 13:20	19.05	28.00	
1B	10/26/22 12:50	11/01/22 09:46	11/14/22 13:20	19.02	28.00	
1C	10/26/22 13:30	11/01/22 09:46	11/14/22 13:20	18.99	28.00	
6AR	10/26/22 10:30	11/01/22 09:46	11/14/22 13:20	19.12	28.00	
6B	10/26/22 11:20	11/01/22 09:46	11/10/22 16:55	15.23	28.00	
8	10/26/22 14:45	11/01/22 09:46	11/10/22 16:55	15.09	28.00	
9	10/26/22 15:15	11/01/22 09:46	11/10/22 16:55	15.07	28.00	
11A	10/26/22 15:50	11/01/22 09:46	11/10/22 16:55	15.05	28.00	
11B	10/26/22 16:30	11/01/22 09:46	11/10/22 16:55	15.02	28.00	
LEA-PRIMARY	10/26/22 08:10	11/01/22 09:46	11/10/22 16:55	15.36	28.00	
LEA-SECONDARY	10/26/22 08:30	11/01/22 09:46	11/10/22 16:55	15.35	28.00	

^{* -} Holding time exceeded.

Analysis Class

Wet Chemistry

Wet Chemistry - Class Narrative and Notes

All test results meet the requirements of the QAPP and other applicable contract terms and conditions. Any exceptions are listed below in the sample and qc notes sections. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request.

QC Sample Notes

M2

Matrix spike recovery is outside of acceptance limits, biased low.

EPA 420.1

Phenolics, Total

B2K0511-MS1 Matrix Spike B2K0511-MSD1 Matrix Spike Dup

R1

Duplicate RPD is outside of acceptance limits.

EPA 420.1

Phenolics, Total

B2K0511-MSD1 Matrix Spike Dup

Wet Chemistry EPA 420.1

FORM I: Wet Chemistry EPA 420.1 RESULTS SUMMARY

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 1A **Collection Date:** 10/26/2022 12:10

 Laboratory ID:
 M2K0078-01
 Prep Date:
 11/11/2022
 12:12

 Matrix:
 Aqueous
 Analyzed:
 11/14/2022
 13:20

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

AnalyteCAS NumberResultMDLRLFlagQualifierPhenolics, TotalTOTPHEN0.00590.00280.0055

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 1B **Collection Date:** 10/26/2022 12:50

 Laboratory ID:
 M2K0078-02
 Prep Date:
 11/11/2022
 12:12

 Matrix:
 Aqueous
 Analyzed:
 11/14/2022
 13:20

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Analyst: EPT Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 1C **Collection Date:** 10/26/2022 13:30

 Laboratory ID:
 M2K0078-03
 Prep Date:
 11/11/2022
 12:12

 Matrix:
 Aqueous
 Analyzed:
 11/14/2022
 13:20

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 6AR **Collection Date:** 10/26/2022 10:30

 Laboratory ID:
 M2K0078-04
 Prep Date:
 11/11/2022
 12:12

 Matrix:
 Aqueous
 Analyzed:
 11/14/2022
 13:20

Batch / Sequence: B2K0680 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0680_2 21114021007.xls

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 6B **Collection Date:** 10/26/2022 11:20

 Laboratory ID:
 M2K0078-05
 Prep Date:
 11/09/2022
 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/2022
 16:55

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analyst: EPT Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 8 Collection Date: 10/26/2022 14:45

 Laboratory ID:
 M2K0078-06
 Prep Date:
 11/09/2022
 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/2022
 16:55

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0038	0.0028	0.0055	J	

Notes and Definitions

MDL: Method Detection Limit

RL: Reporting Limit

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 9 Collection Date: 10/26/2022 15:15

 Laboratory ID:
 M2K0078-07
 Prep Date:
 11/09/2022
 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/2022
 16:55

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analyst: EPT Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 11A **Collection Date:** 10/26/2022 15:50

 Laboratory ID:
 M2K0078-08
 Prep Date:
 11/09/2022
 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/2022
 16:55

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analyst: EPT Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	ND	0.0028	0.0055	U	

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: 11B **Collection Date:** 10/26/2022 16:30

 Laboratory ID:
 M2K0078-09
 Prep Date:
 11/09/2022
 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/2022
 16:55

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analyst: EPT Dilution: 1.1

Analyte	CAS Number	Result	MDL	RL	Flag	Qualifier
Phenolics, Total	TOTPHEN	0.0030	0.0028	0.0055	J	

Notes and Definitions

MDL: Method Detection Limit

RL: Reporting Limit

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: LEA-PRIMARY Collection Date: 10/26/2022 08:10

 Laboratory ID:
 M2K0078-10
 Prep Date:
 11/09/2022
 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/2022
 16:55

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

Analyst: EPT Dilution: 1.1

AnalyteCAS NumberResultMDLRLFlagQualifierPhenolics, TotalTOTPHEN0.01320.00280.0055

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

Client Project ID: 70234792

Microbac Laboratories Inc., - Marietta, OH

Inorganics Total

Client ID: LEA-SECONDARY Collection Date: 10/26/2022 08:30

 Laboratory ID:
 M2K0078-11
 Prep Date:
 11/09/2022
 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/2022
 16:55

Batch / Sequence: B2K0511 / Analytical Method: EPA 420.1 Calibration: NA

 Instrument:
 UV-2600
 Units:
 mg/L
 File ID:
 Phenols_UV2600-2022-10-18_B2K0511_2 21110032422.xls

AnalyteCAS NumberResultMDLRLFlagQualifierPhenolics, TotalTOTPHEN0.01280.00280.0055

Notes and Definitions

MDL: Method Detection Limit RL: Reporting Limit mg/L: Milligrams per Liter

FORM II: Wet Chemistry EPA 420.1 ICV/CCV SUMMARY

Laboratory Report Number: M2K0078

INITIAL AND CONTINUING CALIBRATION CHECK FORM II

Client Project ID: 70234792

Instrument: UV-2600 Method: EPA 420.1

Sequence: Calibration:

Control Limt: +/- 10.00% File ID: Phenols_UV2600-2022-10-18_B2

Analyst: EPT

Lab Sample ID	Analyte	True	Found	%R	Units	Date/Time	Q
B2K0511-CCV1	Phenolics, Total	0.0300	0.0298	99.3	mg/L	11/10/22 16:55	
B2K0511-CCV3	Phenolics, Total	0.0300	0.0275	91.6	mg/L	11/10/22 16:55	
B2K0680-CCV1	Phenolics, Total	0.0300	0.0271	90.3	mg/L	11/14/22 13:20	
B2K0680-CCV3	Phenolics, Total	0.0300	0.0282	94.1	mg/L	11/14/22 13:20	

^{*} Values outside of QC limits

FORM III: Wet Chemistry EPA 420.1 ICB/CCB/PREP BLANK SUMMARY

Laboratory Report Number: M2K0078 METHOD BLANK SUMMARY
Client Project ID: 70234792 FORM IIIA

 Blank ID:
 B2K0511-BLK1
 Batch:
 B2K0511

 Blank File ID:
 Phenols_UV2600-2022-10-18.
 Instrument:
 UV-2600

 Prepared:
 11/09/2022
 11:56
 Method:
 EPA 420.1

 Analyzed:
 11/10/2022
 16:55
 Analyst:
 EPT

This Method Blank Applies To The Following Samples:

Client Sample ID	Laboratory Sample ID	Lab File ID	Time Analyzed
Blank	B2K0511-BLK1	600-2022-10-18_B2K0511_221	11/10/2022 16:55
LCS	B2K0511-BS1	600-2022-10-18_B2K0511_221	11/10/2022 16:55
Calibration Check	B2K0511-CCV1	600-2022-10-18_B2K0511_221	11/10/2022 16:55
Calibration Check	B2K0511-CCV3	600-2022-10-18_B2K0511_221	11/10/2022 16:55
Matrix Spike	B2K0511-MS1	600-2022-10-18_B2K0511_221	11/10/2022 16:55
Matrix Spike Dup	B2K0511-MSD1	600-2022-10-18_B2K0511_221	11/10/2022 16:55
6B	M2K0078-05	600-2022-10-18_B2K0511_221	11/10/2022 16:55
8	M2K0078-06	600-2022-10-18_B2K0511_221	11/10/2022 16:55
9	M2K0078-07	600-2022-10-18_B2K0511_221	11/10/2022 16:55
11A	M2K0078-08	600-2022-10-18_B2K0511_221	11/10/2022 16:55
11B	M2K0078-09	600-2022-10-18_B2K0511_221	11/10/2022 16:55
LEA-PRIMARY	M2K0078-10	600-2022-10-18_B2K0511_221	11/10/2022 16:55
LEA-SECONDARY	M2K0078-11	600-2022-10-18_B2K0511_221	11/10/2022 16:55

Laboratory Report Number: M2K0078 METHOD BLANK SUMMARY
Client Project ID: 70234792 FORM IIIA

 Blank ID:
 B2K0680-BLK1
 Batch:
 B2K0680

 Blank File ID:
 Phenols_UV2600-2022-10-18.
 Instrument:
 UV-2600

 Prepared:
 11/11/2022 12:12
 Method:
 EPA 420.1

 Analyzed:
 11/14/2022 13:20
 Analyst:
 EPT

This Method Blank Applies To The Following Samples:

Client Sample ID	Laboratory Sample ID	Lab File ID	Time Analyzed
Blank	B2K0680-BLK1	600-2022-10-18_B2K0680_221	11/14/2022 13:20
LCS	B2K0680-BS1	600-2022-10-18_B2K0680_221	11/14/2022 13:20
Calibration Check	B2K0680-CCV1	600-2022-10-18_B2K0680_221	11/14/2022 13:20
Calibration Check	B2K0680-CCV3	600-2022-10-18_B2K0680_221	11/14/2022 13:20
1A	M2K0078-01	600-2022-10-18_B2K0680_221	11/14/2022 13:20
1B	M2K0078-02	600-2022-10-18_B2K0680_221	11/14/2022 13:20
1C	M2K0078-03	600-2022-10-18_B2K0680_221	11/14/2022 13:20
6AR	M2K0078-04	600-2022-10-18_B2K0680_221	11/14/2022 13:20

Laboratory Report Number: M2K0078 METHOD BLANK FORM IIIB

Client Project ID: 70234792

Sample ID: B2K0511-BLK1

Instrument: UV-2600

 Prep Date:
 11/09/22 11:56
 Matrix:
 Aqueous

 Analyzed:
 11/10/22 16:55
 Method:
 EPA 420.1

File ID: Phenols UV2600-2022 Sequence: Analyst: EPT

Batch: B2K0511 Units: mg/L Calibration:

Datom Bertoom		- Julioi ui				
Analyte	Result	MDL	RL	Dilution	Flag	Q
Phenolics, Total	0.0025	0.0025	0.0050	1	U	

Notes and Definitions

* - Detected in the associated method Blank at a concentration >= RL

U: The analyte was analyzed for but was not detected above the reported quantitation limit. The quantitation limit has been adjusted for any dilution or concentration of the sample.

Sample ID:	B2K0680-BLK1 UV-2600	Prep Date: Analyzed:			rix: Aqueou od: EPA 42			
1	Phenols_UV2600-2022 B2K0680	Sequence: Units:		Analyst: EPT Calibration:				
Analyte			Result	MDL	RL	Dilution	Flag	Q
Phenolics, Total			0.0025	0.0025	0.0050	1	U	

Notes and Definitions

^{* -} Detected in the associated method Blank at a concentration >= RL

U: The analyte was analyzed for but was not detected above the reported quantitation limit. The quantitation limit has been adjusted for any dilution or concentration of the sample.

FORM V: Wet Chemistry EPA 420.1 MS/MSD

Matrix Spike/Duplicate (MS/MSD)

Laboratory Report Number: M2K0078

Client Project ID: 70234792 FORM VA

Method: EPA 420.1 Parent Spike Duplicate

 Batch:
 B2K0511
 Sample ID: M2K0078-06
 B2K0511-MS1
 B2K0511-MSD1

 Matrix:
 Aqueous
 Prepared: 11/09/2022 11:56
 11/09/22 11:56
 11/09/22 11:56

 Units:
 mg/L
 Analyzed: 11/10/2022 16:55
 11/10/22 16:55
 11/10/22 16:55

Instrument: UV-2600 File ID: Phenols_UV2600-2022-10- Phenols_UV2600-2022-10- Phenols_UV2600-2022-10-

Calibration: Dilution: 1 1 1

Analyst: EPT

		MS	MS	MS	MSD	MSD	MSD		%Rec	RPD		ı
Analyte	Parent	Spiked	Found	%Rec	Spiked	Found	%Rec	%RPD	Limts	Limit	Q	l
Phenolics, Total	0.0038	0.0500	0.0396	71.5	0.0500	0.0068	5.96	141	80 - 120	20	# *	ĺ

^{* -} Exceeds %Rec Limit

^{# -} Exceeds RPD Limit

FORM VII: Wet Chemistry EPA 420.1 LCS/LCSD

Laboratory Report Number: M2K0078

Client Project ID: 70234792

BLANK SPIKE (BS)
FORM VII

Blank Spike

 Batch:
 B2K0511
 Spike ID:
 B2K0511-BS1

 Analyst:
 EPT
 Prepared:
 11/09/22 11:56

 Matrix:
 Aqueous
 Analyzed:
 11/10/22 16:55

Units: mg/L **File ID:** Phenols_UV2600-2022-10-18_B2

Instrument: UV-2600 Initial/Final: 50mL/50mL

Calibration:

Method: EPA 420.1

	BS	BS	BS	%Rec	
Analyte	Spiked	Found	%Rec	Limts	Q
Phenolics, Total	0.0500	0.0522	104	80 - 120	

^{* -} Does not meet %Rec acceptance criteria.

^{# -} Does not meet RPD acceptance criteria.

Laboratory Report Number: M2K0078

Client Project ID: 70234792

BLANK SPIKE (BS)
FORM VII

Method: EPA 420.1 Blank Spike

 Batch:
 B2K0680
 Spike ID:
 B2K0680-BS1

 Analyst:
 EPT
 Prepared:
 11/11/22 12:12

 Matrix:
 Aqueous
 Analyzed:
 11/14/22 13:20

Units: mg/L **File ID:** Phenols_UV2600-2022-10-18_B2

Instrument: UV-2600 Initial/Final: 50mL/50mL

Calibration:

	BS	BS	BS	%Rec	
Analyte	Spiked	Found	%Rec	Limts	Q
Phenolics, Total	0.0500	0.0507	101	80 - 120	

^{* -} Does not meet %Rec acceptance criteria.

^{# -} Does not meet RPD acceptance criteria.

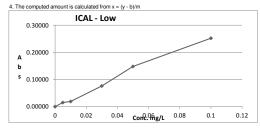
Section A: Wet Chemistry EPA 420.1 Batch / Sequence Raw Data

Phenols Laboratory: Microbac - OVD

Method:	EPA 420.1
Batch:	B2K0511
SOP:	K4201 rev 21
Instrument:	UV-2600
Balance ID:	

Analyst	Date	Time	Temp ^o C	Block
EPT	11/9/2022	17:15		IN
				OUT
EPT	11/10/2022	16:55	NA	Spec. Run

Curve ID:	2022-10-18 A	2022-10-18 APH
Range:	Low	High
Slope:	2.58365	0.104458
Y Intercept:	0.00103	0.00667


Calculation: Result = [(Absorbance-Intercept)/Slope] * Final Vol./Initial Vol.*Instument Dilution

		The state of the s				Low	High		Final					
				Initial Vol.	Final Vol.	Response	Response	Instrument	Dilution	Spike Amt.		Y Intercept	Phenols	Recovery
#	Sample ID	Sample Name	Sample Date	(mL)	(mL)	(Abs)	(Abs)	Dilution	Factor	mg/L	Slope (m)	(b)	mg/L	%
2	B2K0511-CCV1	Calibration Check		50.00	50.00	0.0780		1.0	1.00	0.03	2.58365	0.00103		99.30219
1	B2K0511-BLK1	Blank		50.00	50.00	0.0000		1.0	1.00		2.58365	0.00103	-0.00040	
3	B2K0511-BS1	LCS		50.00	50.00	0.1360		1.0	1.00	0.05	2.58365	0.00103	0.05224	
	B2K0511-BS2	LCS		50.00	50.00			1.0	1.00	0.50				#VALUE!
21	B2K0511-CCV3	Calibration Check		50.00	50.00	0.0720		1.0	1.00	0.03	2.58365	0.00103	0.02747	_
	B2K0511-CCV4	Calibration Check		50.00	50.00			1.0	1.00	1.00				#VALUE!
18	B2K0511-DUP1	Duplicate M2J1666-02	2	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
19	B2K0511-MS1	Matrix Spike M2K007	8-06	50.00	50.00	0.0940		1.1	1.10		2.58365	0.00103	0.03958	
20	B2K0511-MSD1	Matrix Spike Dup M2H	(0078-06	50.00	50.00	0.0170		1.1	1.10		2.58365	0.00103	0.00680	
4	M2J1666-01	FIELD BLANK	10/21/22 10:00	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
5	M2J1666-02	MW-7B	10/21/22 10:25	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
6	M2J1666-03	MW-6B	10/21/22 11:35	50.00	50.00	0.0420		1.1	1.10		2.58365	0.00103	0.01744	
7	M2J1666-04	MW-8B	10/21/22 12:30	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
8	M2J1746-01	LF6MW100	10/27/22 14:17	50.00	50.00	0.0070		1.1	1.10		2.58365	0.00103	0.00254	
9	M2K0078-05	6B	10/26/22 11:20	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
10	M2K0078-06	8	10/26/22 14:45	50.00	50.00	0.0100		1.1	1.10		2.58365	0.00103	0.00382	
11	M2K0078-07	9	10/26/22 15:15	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
12	M2K0078-08	11A	10/26/22 15:50	50.00	50.00	0.0040		1.1	1.10		2.58365	0.00103	0.00126	
13	M2K0078-09	11B	10/26/22 16:30	50.00	50.00	0.0080		1.1	1.10		2.58365	0.00103	0.00297	
14	M2K0078-10	LEA-PRIMARY	10/26/22 8:10	50.00	50.00	0.0320		1.1	1.10		2.58365	0.00103	0.01319	
15	M2K0078-11	LEA-SECONDARY	10/26/22 8:30	50.00	50.00	0.0310		1.1	1.10		2.58365	0.00103	0.01276	
16	M2K0225-05	BPA06_Outfall 007	11/1/22 15:30	50.00	50.00	0.0060		1.1	1.10		2.58365	0.00103	0.00212	
17	M2K0225-06	BPA06_Downstream	11/1/22 15:55	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
	B2K0511-CCV2	Calibration Check		50.00	50.00			1.0	1.00	1.00				#VALUE!

Linear Calibration Model y = mx + b Phenois - Low 2000387/10 10213 UV-2600 Instrument: 2022-10-18 APH Curve ID: 0.05 0.04489 ICV Conc (mg/L) ICV %REC 90% 460 sorbance (OD) 0.00000 -0.00040 -8.1314 3.00000 0.005 0.01500 0.00541 0.00695 30.4523 1.90000 0.01900 0.01 0.02902 3.2781 2.53333 0.05 0.14800 0.05688 -13.7682 2.96000 0.1 0.09714 2.52000 -0.00040

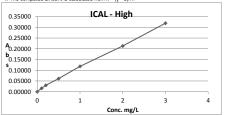
COC (r):	0.99543	Must be > 0.995
SLOPE (m):	2.58365	
y - INTERCEPT (b)	0.00103	
INTERCEPT TEST:	14.54469	Ratio should be > 5
% RELATIVE ERROR TEST:	-8.13139	Should be less than two times CCV criteria

- 1. R is the coefficient of correlation
- 2. The intercept test is the ratio of the response (y) of the low standard to the intercept (b): 3. Relative Error (%RE) = $(X^i Xi/X)^*$ 100. Where Xi = True value for the calibration standard $X^i = Measured$ concentration of the calibration standard.

Linear Calibration Model Phenols - High UV-2600 2022-10-18 APH 0.0540 0.45311

91%

% Relative	Response	Stan
(nm):	510	
Wavelength		
(cm):	1	
Cell Size	0.50	
Conc:	0.50	
Volume: ICV Working	50	
	50	
ICV Final		
Volume:	50	
ICV Initial		
ID:	213	
icv Stallualu	2000307/1010	


ICV Standard 2000387/1010

y = mx + b

Concentrati	Absorbance	Calculated	% Relative	Response	Standard
on (x)	(OD) (y)	Amount	Error	Factor	ID
0	0.00000	-0.06385		#DIV/0!	
0.1	0.01600	0.08932	10.6770	0.16000	
0.2	0.03000	0.22335	-11.6742	0.15000	
0.5	0.06100	0.52012	-4.0237	0.12200	
1	0.11800	1.06579	-6.5793	0.11800	
2	0.21300	1.97525	1.2374	0.10650	
3	0.31900	2.99001	0.3329	0.10633	

COC (r):	0.99934	Must be > 0.995
SLOPE (m):	0.10446	
y - INTERCEPT (b)	0.00667	
INTERCEPT TEST:	2.39898	Ratio should be > 5
% RELATIVE ERROR TEST:	10.67702	Should be less than two times CCV criteria

- 1. R is the coefficient of correlation
- 2. The intercept test is the ratio of the response (y) of the low standard to the intercept (b): 3. Relative Error (%RE) = (X'i Xi / Xi) * 100. Where Xi = True value for the calibration standard X'i = Measured concentration of the calibration standard.
- 4. The computed amount is calculated from x = (y b)/m

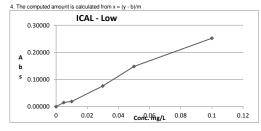
Phenols

EPA 420.1 B2K0680 K4201 rev 21 UV-2600

Analyst	Date	Time	Temp ºC	Block
EPT	11/11/2022	16:20		IN
				OUT
EPT	11/14/2022	13:20	NA	Spec. Run

Curve ID:	2022-10-18 A	2022-10-18 APH
Range:	Low	High
Slope:	2.58365	0.104458
Y Intercept:	0.00103	0.00667

Laboratory: Microbac - OVD


Calculation: Result = [(Absorbance-Intercept)/Slope] * Final Vol./Initial Vol.*Instument Dilution

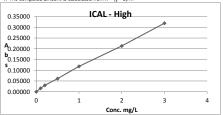
3 B2K068 1 B2K068 2 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K066 B2K066 B2K066 AK000 BK000	0680-BLK1 0680-BS1 0680-BS2 0680-CCV3 0680-CCV4	Sample Name Calibration Check Blank LCS LCS Calibration Check	Sample Date	Initial Vol. (mL) 50.00 50.00	Final Vol. (mL) 50.00	Response (Abs) 0.0710	Response (Abs)	Instrument Dilution	Dilution Factor	Spike Amt. mg/L	Slope (m)	Y Intercept (b)	Phenols mg/L	Recovery %
3 B2K068 1 B2K068 2 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 B2K068 AK0608 B2K068 B2K	0680-CCV1 0680-BLK1 0680-BS1 0680-BS2 0680-CCV3 0680-CCV4	Calibration Check Blank LCS LCS Calibration Check	Sample Date	50.00 50.00	50.00	0.0710	(Abs)					` '		
1 B2K068 2 B2K068 B2K068 B2K068 B2K068 B2K068 20 B2K068 4 M2K000 5 M2K000 7 M2K000 8 M2K000 9 M2K001 10 M2K001	0680-BLK1 0680-BS1 0680-BS2 0680-CCV3 0680-CCV4	Blank LCS LCS Calibration Check		50.00				1.0	1.00	0.00	2 50265	0.00103		
2 B2K068 22 B2K068 20 B2K068 21 B2K068 4 M2K008 5 M2K008 6 M2K008 7 M2K008 8 M2K008 9 M2K001 10 M2K001	0680-BS1 0680-BS2 0680-CCV3 0680-CCV4 0680-DUP1	LCS LCS Calibration Check			50.00			1.0	1.00	0.03	2.58365	0.00103	0.02708	90.27105
B2K068 22 B2K068 B2K068 20 B2K068 21 B2K068 4 M2K006 5 M2K006 6 M2K006 7 M2K006 9 M2K000 10 M2K000	0680-BS2 0680-CCV3 0680-CCV4 0680-DUP1	LCS Calibration Check		50.00		0.0000		1.0	1.00		2.58365	0.00103	-0.00040	
22 82K068 82K068 20 82K068 21 82K068 4 M2K008 5 M2K008 6 M2K008 7 M2K008 8 M2K008 9 M2K001 10 M2K001	0680-CCV3 0680-CCV4 0680-DUP1	Calibration Check		00.00	50.00	0.1320		1.0	1.00	0.05	2.58365	0.00103	0.05069	101.3826
B2K068 20 B2K068 21 B2K068 4 M2K008 5 M2K008 7 M2K008 8 M2K008 9 M2K001 10 M2K001	0680-CCV4 0680-DUP1			50.00	50.00			1.0	1.00	0.50				#VALUE!
20 B2K068 21 B2K068 4 M2K008 5 M2K008 7 M2K008 8 M2K008 9 M2K000 10 M2K000	0680-DUP1			50.00	50.00	0.0740		1.0	1.00	0.03	2.58365	0.00103	0.02824	94.14154
21 B2K068 4 M2K008 5 M2K006 6 M2K006 7 M2K006 8 M2K006 9 M2K007 10 M2K000		Calibration Check		50.00	50.00			1.0	1.00	1.00				#VALUE!
4 M2K008 5 M2K006 6 M2K006 7 M2K006 8 M2K006 9 M2K000 10 M2K000		Duplicate M2K0493-01	ı	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
5 M2K006 6 M2K006 7 M2K006 8 M2K006 9 M2K007	0680-MS1	Matrix Spike M2K0493	I-01	50.00	50.00	0.1170		1.1	1.10		2.58365	0.00103	0.04937	
6 M2K006 7 M2K006 8 M2K006 9 M2K007 10 M2K007	0055-03RE1	Outfall 605	11/1/22 9:05	50.00	50.00	0.0000		1.0	1.00		2.58365	0.00103	-0.00040	
7 M2K006 8 M2K006 9 M2K007 10 M2K007	0065-03	MW-3S	10/26/22 15:00	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
8 M2K006 9 M2K007 10 M2K007	0065-04	MW-4	10/26/22 14:15	50.00	50.00	0.0010		1.1	1.10		2.58365	0.00103	-0.00001	
9 M2K007	0065-05	DUPLICATE	10/26/22 16:00	50.00	50.00	0.0230		1.1	1.10		2.58365	0.00103	0.00935	
10 M2K007	0066-10	EB001	10/28/22 11:25	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
	0078-01	1A	10/26/22 12:10	50.00	50.00	0.0150		1.1	1.10		2.58365	0.00103	0.00595	
11 M2K007	0078-02	1B	10/26/22 12:50	50.00	50.00	0.0040		1.1	1.10		2.58365	0.00103	0.00126	
	0078-03	1C	10/26/22 13:30	50.00	50.00	0.0040		1.1	1.10		2.58365	0.00103	0.00126	
12 M2K007	0078-04	6AR	10/26/22 10:30	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
13 M2K027	0278-01	2110489-01 (Outfall (11/2/22 7:57	50.00	50.00	0.0020		1.1	1.10		2.58365	0.00103	0.00041	
14 M2K032	0325-01	2111362-04 (NPDES-	11/2/22 7:01	50.00	50.00	0.0090		1.1	1.10		2.58365	0.00103	0.00339	
15 M2K039	0390-01	2110102-02 (Outfall 5	11/3/22 9:05	50.00	50.00	0.0170		1.1	1.10		2.58365	0.00103	0.00680	
16 M2K049	0491-01	L2K0155-01 (Sample	11/3/22 11:25	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
17 M2K049	0493-01	T2K0454-01 (KJ2235	11/2/22 13:30	50.00	50.00	0.0000		1.1	1.10		2.58365	0.00103	-0.00044	
18 M2K049	0495-01	T2K0576-01 (NW223	11/3/22 8:30	50.00	50.00	0.0020		1.1	1.10		2.58365	0.00103	0.00041	
19 B2K068	0680-CCV2	Calibration Check		50.00	50.00			1.0	1.00	1.00				#VALUE!

Linear Calibration Model y = mx + b Phenois - Low 2000387/10 10213 UV-2600 Instrument: 2022-10-18 APH Curve ID: ICV (Abs): 0.05 0.04489 ICV Conc (mg/L) ICV %REC 90% 460 sorbance (OD) 0.00000 -0.00040 -8.1314 3.00000 0.005 0.01500 0.00541 0.00695 30.4523 1.90000 0.01900 0.01 0.02902 3.2781 2.53333 0.05 0.14800 0.05688 -13.7682 2.96000 0.1 0.09714 2.52000 -0.00040

COC (r):	0.99543	Must be > 0.995
SLOPE (m):	2.58365	
y - INTERCEPT (b)	0.00103	
INTERCEPT TEST:	14.54469	Ratio should be > 5
% RELATIVE ERROR TEST:	-8.13139	Should be less than two times CCV criteria

- 1. R is the coefficient of correlation
- 2. The intercept test is the ratio of the response (y) of the low standard to the intercept (b): 3. Relative Error (%RE) = $(X^i Xi/X)^*$ 100. Where Xi = True value for the calibration standard $X^i = Measured$ concentration of the calibration standard.

Linear Calibration Model Phenols - High


Instrument:	UV-2600
Curve ID:	2022-10-18 APH
ICV (Abs):	0.0540
ICV Conc (mg/L):	0.45311
ICV %REC	91%

y = mx + b	
ICV Standard ID:	2000387/1010 213
ICV Initial Volume:	50
ICV Final Volume:	50
ICV Working Conc:	0.50
Cell Size (cm):	1
Wavelength (nm):	510

Concentrati	Concentrati Absorbance		% Relative	Response	Standard
on (x)	(OD) (y)	Amount	Error	Factor	ID
0	0.00000	-0.06385		#DIV/0!	
0.1	0.01600	0.08932	10.6770	0.16000	
0.2	0.03000	0.22335	-11.6742	0.15000	
0.5	0.06100	0.52012	-4.0237	0.12200	
1	0.11800	1.06579	-6.5793	0.11800	
2	0.21300	1.97525	1.2374	0.10650	
3	0.31900	2.99001	0.3329	0.10633	

COC (r):	0.99934	Must be > 0.995
SLOPE (m):	0.10446	
y - INTERCEPT (b)	0.00667	
INTERCEPT TEST:	2.39898	Ratio should be > 5
% RELATIVE ERROR TEST:	10.67702	Should be less than two times CCV criteria

- 1. R is the coefficient of correlation
- 2. The intercept test is the ratio of the response (y) of the low standard to the intercept (b): 3. Relative Error (%RE) = (X'i Xi / Xi) * 100. Where Xi = True value for the calibration standard X'i = Measured concentration of the calibration standard.
- 4. The computed amount is calculated from x = (y b)/m

Page 36 of 41

Laboratory Report Number: M2K0078

Client Project ID: 70234792

BATCH LOG SUMMARY SECTION A1

Prepared: 11/9/2022 11:56:00AM

Prepared By: EPT

Matrix: Aqueous Method: EPA 420.1

Batch: B2K0511

Laboratory ID	Client / Source ID	Initial	Final			Spike(s)
B2K0511-MS1	M2K0078-06	50.0 mL	50.0 mL			2007329 2.5µL
M2K0078-09	11B	50.0 mL	50.0 mL			
M2K0078-05	6B	50.0 mL	50.0 mL			
M2K0078-06	8	50.0 mL	50.0 mL			
M2K0078-07	9	50.0 mL	50.0 mL			
B2K0511-BLK1		50.0 mL	50.0 mL			
B2K0511-CCV1		50.0 mL	50.0 mL			2000387 1.5μL
B2K0511-CCV3		50.0 mL	50.0 mL			2000387 1.5μL
B2K0511-BS1		50.0 mL	50.0 mL			2007329 2.5μL
M2K0078-08	11A	50.0 mL	50.0 mL			
M2K0078-11	LEA-SECONDARY	50.0 mL	50.0 mL			
B2K0511-MSD1	M2K0078-06	50.0 mL	50.0 mL			2007329 2.5µL
M2K0078-10	LEA-PRIMARY	50.0 mL	50.0 mL			

Standards used in the batch:

Standard ID	Description	Date Prepared	Prepared By
2000387	Phenol Calibration Standard (1000 mg/L)	1/19/2022 8:27:26AM	** Vendor **
2007329	Phenol BS/ICV Stock, 1000 ppm or mg/L Lot M061-2	9/2/2022 8:52:16AM	** Vendor **

Reagents used in the batch:

Reagent ID	Description	Prepared	Prepared By
2006232	Phenol Copper Sulfate Solution	7/27/2022 9:21:13AM	Andrew Hout
2008297	Chloroform Lot # 219451	10/6/2022 10:24:25AM	** Vendor **
2008657	Ammonia Buffer Solution (Phenol)	10/18/2022 11:37:29AM	Andrew Hout

Laboratory Report Number: M2K0078

Client Project ID: 70234792

BATCH LOG SUMMARY SECTION A1

SEC

Prepared: 11/11/2022 12:12:00PM

Prepared By: EPT

Batch: B2K0680

Matrix: Aqueous

Method: EPA 420.1

Laboratory ID	Client / Source ID	Initial	Final			Spike(s)
B2K0680-BS1		50.0 mL	50.0 mL			2007329 2.5µL
M2K0078-01	1A	50.0 mL	50.0 mL			
M2K0078-02	1B	50.0 mL	50.0 mL			
M2K0078-03	1C	50.0 mL	50.0 mL			
M2K0078-04	6AR	50.0 mL	50.0 mL			
B2K0680-BLK1		50.0 mL	50.0 mL			
B2K0680-CCV1		50.0 mL	50.0 mL			2000387 1.5µL
B2K0680-CCV3		50.0 mL	50.0 mL			2000387 1.5µL

Standards used in the batch:

Standard ID	Description	Date Prepared	Prepared By
2000387	Phenol Calibration Standard (1000 mg/L)	1/19/2022 8:27:26AM	** Vendor **
2007329	Phenol BS/ICV Stock, 1000 ppm or mg/L Lot M061-2	9/2/2022 8:52:16AM	** Vendor **

Reagents used in the batch:

Reagent ID	Description	Prepared	Prepared By
2006232	Phenol Copper Sulfate Solution	7/27/2022 9:21:13AM	Andrew Hout
2008297	Chloroform Lot # 219451	10/6/2022 10:24:25AM	** Vendor **
2008657	Ammonia Buffer Solution (Phenol)	10/18/2022 11:37:29AM	Andrew Hout

Chain of Custody

PASI New York Laboratory

Workorder: 70234792

Report / Invoice To

Kimberlev M. Mack

Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747

Phone (631)694-3040

State of Sample Origin:

Sample ID

1A

1B

1C

6AR

6B

8

11A

11B

LEA-PRIMARY

LEA-SECONDARY

Item

2

5

6

9

10

11

Page 39 of 41

Email: kimberley.mack@pacelabs.com

NY

Workorder Name:

Collect

Date/Time

NORTH SEA LANDFILL 10/26 Results Requested By: 11/10/2022 Subcontract To Requested Analysis P.O. 70234792KMM Microbac Laboratories, Inc. 158 Starlite Drive Marietta, OH 45750 Phenols Preserved Containers Lab ID Matrix LAB USE ONLY 10/26/2022 12:10 70234792001 Х Water Χ 10/26/2022 12:50 70234792002 Water Χ 10/26/2022 13:30 70234792003 Water Х 10/26/2022 10:30 70234792004 Water Χ 10/26/2022 11:20 70234792005 Water Х 10/26/2022 14:45 70234792006 Water Х 10/26/2022 15:15 70234792007 Water Χ 10/26/2022 15:50 70234792008 Water Χ 10/26/2022 16:30 70234792009 Water 10/26/2022 08:10 70234792010 Water Χ Х 10/26/2022 08:30 70234792011 Water

Pace Analytical - Melville. NY Rec'd: 11/01/2022 09:46 By: Brenda Gregory Temp: 0.2

Transfers	Released By	Date/Time	Received By	Date/Time	
1	Mall Wice II	10/31/18/19	Dionda oug	Ou 11/122e	7946
2	1.10	7 '			<u> </u>
3	0~				

Page 40 of 41

Table of Contents

Work Order # U2 K0078

COOLER TEMP >6° C LOG

MATIOUTO 1		COO	LER TEMP >6° C	LOG		
	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
SAMPLE ID	°C	°C	°C	°C	°c	°c
			-			
			<i>-</i>			
			i i			
			7			
		1/01/00%	· ·			
		11/3/				
pH Lot # <u>#@A915</u> 40	\					
		pH	Exceptions			
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
•						

pH Lot # <u>HCA915</u> 90		рН	Exceptions			
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
,						
			-			
			-			
			:-			
				ST		
			19083			
			101			
·.						
			RVAIIVI			
	7870	LXCE!	PTIONS			
		<u> </u>	VOITE			

Document Control # 1957 Last 04-10-2019 _AS NOTED

Issued to: Document Master File

November 10, 2022

Tom Houghton Town of Southampton 116 Hampton Road Waste Management Division Southampton, NY 11968

RE: Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Dear Tom Houghton:

Enclosed are the analytical results for sample(s) received by the laboratory on October 27, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com

Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting Richard Hodgson, Town of Southampton Amanda Lauth, PW Grosser

Ed Thompson, Town of Southampton

(631)694-3040

CERTIFICATIONS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: November 10, 2022

General Information:

4 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280111

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234792006

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1415992)
 - Barium
 - Silver

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved
Client: Town of Southampton
Date: November 10, 2022

General Information:

1 sample was analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 279787

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234794003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1414476)Barium, Dissolved
 - Silver, Dissolved

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 7470A

Description: 7470 Mercury

Client: Town of Southampton

Date: November 10, 2022

General Information:

4 samples were analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Method: EPA 7470A

Description: 7470 Mercury, Dissolved **Client:** Town of Southampton **Date:** November 10, 2022

General Information:

1 sample was analyzed for EPA 7470A by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 6AR	Lab ID: 702	34794001	Collected: 10/26/2	22 10:30	Received: 10)/27/22 11:30 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Aluminum	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	11/01/22 09:23	11/01/22 16:41	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-38-2	
Barium	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:41	7440-41-7	
Boron	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:41	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:41	7440-43-9	
Calcium	7180	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7440-70-2	
Chromium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-47-3	
Cobalt	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:41	7440-48-4	
Copper	<25.0	ug/L	25.0	1	11/01/22 09:23	11/01/22 16:41	7440-50-8	
Iron	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:41	7439-89-6	
Lead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:41	7439-92-1	
Magnesium	2680	ug/L	200	1	11/01/22 09:23	11/01/22 16:41	7439-95-4	
Manganese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7439-96-5	
Nickel	<40.0	ug/L	40.0	1	11/01/22 09:23	11/01/22 16:41	7440-02-0	
Potassium	<5000	ug/L	5000	1	11/01/22 09:23	11/01/22 16:41	7440-09-7	
Selenium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7782-49-2	
Silver	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-22-4	
Sodium	7680	ug/L	5000	1	11/01/22 09:23	11/01/22 16:41	7440-23-5	
Thallium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:41	7440-28-0	
√anadium	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:41	7440-62-2	
Zinc	<20.0	ug/L	20.0	1	11/01/22 09:23	11/01/22 16:41	7440-66-6	
7470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: E	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	10/31/22 12:16	11/01/22 12:59	7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Analytical Method: EPA 6010C Preparation Method: EPA 3005A Pace Analytical Services - Melville Aluminum <200 ug/L 60.0 1 11/01/22 09:23 11/01/22 16:43 7440-36-0 Arsenic <10.0 ug/L 00.0 1 11/01/22 09:23 11/01/22 16:43 7440-36-0 Arsenic <10.0 ug/L 00.0 1 11/01/22 09:23 11/01/22 16:43 7440-38-2 Barium <200 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-39-3 Beryllium <5.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-41-7 Boron <50.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-42-8 Cadmium <2.5 ug/L 2.5 1 11/01/22 09:23 11/01/22 16:43 7440-43-9 Cadmium <2.5 ug/L 2.5 1 11/01/22 09:23 11/01/22 16:43 7440-47-9 Chromium <10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-47-3 Cobalt <50.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron <10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron <10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron <10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron <10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7439-98-6 800 800 800 90/L 90.0 1 11/01/22 09:23 11/01/22 16:43 7440-20-0 Potassium <10.0 ug/L 	Sample: 6B	Lab ID: 702	34794002	Collected: 10/26/2	22 11:20	Received: 10)/27/22 11:30 N	/latrix: Water	
Pace Analytical Services - Melville Aluminum <200	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Aluminum 200 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7429-90-5 Antimony 460.0 ug/L 60.0 1 11/01/22 09:23 11/01/22 16:43 7440-36-0 Arsenic 410.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-38-2 Barium 4200 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7440-39-3 Beryllium 45.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-41-7 Boron 450.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-42-8 Cadmium 42.5 ug/L 2.5 1 11/01/22 09:23 11/01/22 16:43 7440-43-9 Calcium 4290 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7440-47-0 Chromium 410.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-47-3 Cobalt 450.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-48-4 Copper 425.0 ug/L 25.0 1 11/01/22 09:23 11/01/22 16:43 7440-48-4 Copper 425.0 ug/L 25.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron 410.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Lead 4.5.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7439-89-6 Iron 410.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7439-95-4 Manganese 410.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7439-95-4 Manganese 410.0 ug/L 40.0 1 11/01/22 09:23 11/01/22 16:43 7439-95-5 Manganese 410.0 ug/L 40.0 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Potassium 45000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Potassium 45000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Totassium 45000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Totassium 45000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Totassium 45000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Totassium 45000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Totassium 45000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-02	6010 MET ICP	Analytical Meth	nod: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
Antimony		Pace Analytica	l Services -	Melville					
Antimony	Aluminum	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:43	7429-90-5	
Barium	Antimony	<60.0	-	60.0	1	11/01/22 09:23	11/01/22 16:43	7440-36-0	
Barium	Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7440-38-2	
Seron Sero	Barium	<200	•	200	1	11/01/22 09:23	11/01/22 16:43	7440-39-3	
Cadmium <2.5 ug/L 2.5 1 11/01/22 09:23 11/01/22 16:43 7440-43-9 Calcium 4290 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7440-70-2 Chromium <10.0 ug/L 10.0 1 11/01/22 09:23 11/01/22 16:43 7440-47-3 Cobalt <50.0 ug/L 50.0 1 11/01/22 09:23 11/01/22 16:43 7440-48-4 Copper <25.0 ug/L 25.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron <100 ug/L 100 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Lead <5.0 ug/L 5.0 1 11/01/22 09:23 11/01/22 16:43 7439-92-1 Magnesium 2390 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7439-95-4 Manganese <10.0 ug/L 40.0 1 11/01/22 09:23 11/01/22 16:43 7440-02-0 Potassium <5000 <	Beryllium	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:43	7440-41-7	
Calcium 4290 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7440-70-2 Chromium <10.0	Boron	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:43	7440-42-8	
Chromium 10.0	Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:43	7440-43-9	
Cobalt	Calcium	4290	ug/L	200	1	11/01/22 09:23	11/01/22 16:43	7440-70-2	
Copper <25.0 ug/L 25.0 1 11/01/22 09:23 11/01/22 16:43 7440-50-8 Iron <100	Chromium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7440-47-3	
Company Comp	Cobalt	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:43	7440-48-4	
See See	Copper	<25.0	ug/L	25.0	1	11/01/22 09:23	11/01/22 16:43	7440-50-8	
Magnesium 2390 ug/L 200 1 11/01/22 09:23 11/01/22 16:43 7439-95-4 Manganese <10.0	ron	<100	ug/L	100	1	11/01/22 09:23	11/01/22 16:43	7439-89-6	
Manganese	Lead	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:43	7439-92-1	
Nickel	Magnesium	2390	ug/L	200	1	11/01/22 09:23	11/01/22 16:43	7439-95-4	
Potassium Selenium	Manganese	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7439-96-5	
Selenium Selenium	Nickel	<40.0	ug/L	40.0	1	11/01/22 09:23	11/01/22 16:43	7440-02-0	
Silver	Potassium	<5000	ug/L	5000	1	11/01/22 09:23	11/01/22 16:43	7440-09-7	
Sodium 8000 ug/L 5000 1 11/01/22 09:23 11/01/22 16:43 7440-23-5 Thallium <10.0	Selenium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7782-49-2	
Thallium	Silver	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7440-22-4	
Vanadium	Sodium	8000	ug/L	5000	1	11/01/22 09:23	11/01/22 16:43	7440-23-5	
Zinc 	Thallium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:43	7440-28-0	
Zinc <20.0 ug/L 20.0 1 11/01/22 09:23 11/01/22 16:43 7440-66-6 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A Pace Analytical Services - Melville	Vanadium	<50.0	Ū	50.0	1	11/01/22 09:23	11/01/22 16:43	7440-62-2	
Pace Analytical Services - Melville	Zinc	<20.0	•	20.0	1	11/01/22 09:23	11/01/22 16:43	7440-66-6	
•	7470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: El	PA 7470A			
Mercury <0.20 ug/l 0.20 1 10/31/22 12:16 11/01/22 13:00 7439-97-6		Pace Analytica	l Services -	Melville					
10.00.7	Mercury	<0.20	ug/L	0.20	1	10/31/22 12:16	11/01/22 13:00	7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 11A	Lab ID: 7	70234794003	Collected:	10/26/2	2 15:50	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical M	Method: EPA 60	10C Prepara	ation Me	thod: EF	PA 3005A			
	Pace Analyt	tical Services -	Melville						
Aluminum	<200	ug/L		200	1	11/01/22 09:23	11/01/22 16:5	3 7429-90-5	
Antimony	<60.0			60.0	1		11/01/22 16:5		
Arsenic	<10.0	U		10.0	1		11/01/22 16:5		
Barium	<200	J		200	1		11/01/22 16:5		
Beryllium	<5.0	U		5.0	1		11/01/22 16:5		
Boron	<50.0	J		50.0	1		11/01/22 16:5		
Cadmium	<2.5			2.5	1		11/01/22 16:5		
Calcium	17300	U		200	1		11/01/22 16:5		
Chromium	<10.0	U		10.0	1		11/01/22 16:5		
Cobalt	<50.0			50.0	1		11/01/22 16:5		
Copper	<25.0	U		25.0	1		11/01/22 16:5		
ron	37100			100	1		11/01/22 16:5		
_ead	<5.0	J		5.0	1		11/01/22 16:5		
Jeau Magnesium	6890	U		200	1		11/01/22 16:5		
Magnesium Manganese	2040	J		10.0	1		11/01/22 16:5		
lickel	<40.0	J			1				
otassium	<5000	J		40.0	1		11/01/22 16:53 11/01/22 16:53		
		J		5000					
Selenium	<10.0			10.0	1		11/01/22 16:53		
Silver	<10.0	J		10.0	1		11/01/22 16:53		
Sodium	7230	J		5000	1		11/01/22 16:5		
Thallium	<10.0	J		10.0	1		11/01/22 16:53		
/anadium	<50.0	U		50.0	1		11/01/22 16:53		
linc	60.4	ug/L		20.0	1	11/01/22 09:23	11/01/22 16:53	3 /440-66-6	
010 MET ICP, Dissolved	Analytical M	lethod: EPA 60)10C						
	Pace Analyt	tical Services -	Melville						
Aluminum, Dissolved	<200	ug/L		200	1		10/28/22 15:2	5 7429-90-5	
Antimony, Dissolved	<60.0	ug/L		60.0	1		10/28/22 15:2	5 7440-36-0	
Arsenic, Dissolved	<10.0	ug/L		10.0	1		10/28/22 15:2	5 7440-38-2	
Barium, Dissolved	<200	ug/L		200	1		10/28/22 15:2	5 7440-39-3	M1
Beryllium, Dissolved	<5.0	ug/L		5.0	1		10/28/22 15:2	5 7440-41-7	
Boron, Dissolved	<50.0	ug/L		50.0	1		10/28/22 15:2	5 7440-42-8	
Cadmium, Dissolved	<2.5	ug/L		2.5	1		10/28/22 15:2	5 7440-43-9	
Calcium, Dissolved	17600	ug/L		200	1		10/28/22 15:2	5 7440-70-2	
Chromium, Dissolved	<10.0	ug/L		10.0	1		10/28/22 15:2	5 7440-47-3	
Cobalt, Dissolved	<50.0			50.0	1		10/28/22 15:2	5 7440-48-4	
Copper, Dissolved	<25.0	_		25.0	1		10/28/22 15:2	5 7440-50-8	
ron, Dissolved	601	ug/L		100	1		10/28/22 15:2	5 7439-89-6	
ead, Dissolved	<5.0	_		5.0	1		10/28/22 15:2		
Magnesium, Dissolved	7000	-		200	1		10/28/22 15:2		
Manganese, Dissolved	1160	•		10.0	1		10/28/22 15:2		
Nickel, Dissolved	<40.0	U		40.0	1		10/28/22 15:2		
Potassium, Dissolved	<5000	•		5000	1		10/28/22 15:2		
		~ g, –			-				
	<10.0	ua/l		10.0	1		10/28/22 15:2	5 7782-49-2	
Selenium, Dissolved Silver, Dissolved	<10.0 <10.0	-		10.0 10.0	1 1		10/28/22 15:2 10/28/22 15:2		M1

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 11A	Lab ID: 702	34794003	Collected: 10/26/	22 15:50	Received: 1	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10C					
	Pace Analytica	l Services -	Melville					
Thallium, Dissolved	<10.0	ug/L	10.0	1		10/28/22 15:2	5 7440-28-0	
Vanadium, Dissolved	<50.0	ug/L	50.0	1		10/28/22 15:2	5 7440-62-2	
Zinc, Dissolved	29.2	ug/L	20.0	1		10/28/22 15:25	5 7440-66-6	
7470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation M	ethod: E	PA 7470A			
	Pace Analytica	l Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	10/31/22 12:10	6 11/01/22 13:02	2 7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	nod: EPA 74	70A Preparation M	ethod: E	PA 7470A			
•	Pace Analytica	l Services -	Melville					
Mercury, Dissolved	<0.20	ug/L	0.20	1	11/10/22 07:50	0 11/10/22 13:48	3 7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Sample: 11B	Lab ID: 7023	34794004	Collected: 10/26/2	22 16:30	Received: 10	/27/22 11:30 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	110C Preparation Me	ethod: E	PA 3005A			
	Pace Analytical	Services -	Melville					
Aluminum	1530	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7429-90-5	
Antimony	<60.0	ug/L	60.0	1	11/01/22 09:23	11/01/22 16:55	7440-36-0	
Arsenic	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-38-2	
Barium	<200	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7440-39-3	
Beryllium	<5.0	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:55	7440-41-7	
Boron	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:55	7440-42-8	
Cadmium	<2.5	ug/L	2.5	1	11/01/22 09:23	11/01/22 16:55	7440-43-9	
Calcium	17700	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7440-70-2	
Chromium	57.7	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-47-3	
Cobalt	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:55	7440-48-4	
Copper	<25.0	ug/L	25.0	1	11/01/22 09:23	11/01/22 16:55	7440-50-8	
ron	12300	ug/L	100	1	11/01/22 09:23	11/01/22 16:55	7439-89-6	
₋ead	8.8	ug/L	5.0	1	11/01/22 09:23	11/01/22 16:55	7439-92-1	
Magnesium	3000	ug/L	200	1	11/01/22 09:23	11/01/22 16:55	7439-95-4	
Manganese	192	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7439-96-5	
Nickel	55.9	ug/L	40.0	1	11/01/22 09:23	11/01/22 16:55	7440-02-0	
Potassium	5010	ug/L	5000	1	11/01/22 09:23	11/01/22 16:55	7440-09-7	
Selenium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7782-49-2	
Silver	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-22-4	
Sodium	7980	ug/L	5000	1	11/01/22 09:23	11/01/22 16:55	7440-23-5	
Гhallium	<10.0	ug/L	10.0	1	11/01/22 09:23	11/01/22 16:55	7440-28-0	
/anadium	<50.0	ug/L	50.0	1	11/01/22 09:23	11/01/22 16:55	7440-62-2	
Zinc	22.7	ug/L	20.0	1	11/01/22 09:23	11/01/22 16:55	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	70A Preparation Me	thod: El	PA 7470A			
	Pace Analytical	Services -	Melville					
Mercury	<0.20	ug/L	0.20	1	11/02/22 12:00	11/02/22 14:34	7439-97-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

QC Batch: 279787 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794003

METHOD BLANK: 1414473 Matrix: Water

Associated Lab Samples: 70234794003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum, Dissolved	ug/L	<200	200	10/28/22 15:14	
Antimony, Dissolved	ug/L	<60.0	60.0	10/28/22 15:14	
Arsenic, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Barium, Dissolved	ug/L	<200	200	10/28/22 15:14	
Beryllium, Dissolved	ug/L	<5.0	5.0	10/28/22 15:14	
Boron, Dissolved	ug/L	<50.0	50.0	10/28/22 15:14	
Cadmium, Dissolved	ug/L	<2.5	2.5	10/28/22 15:14	
Calcium, Dissolved	ug/L	<200	200	10/28/22 15:14	
Chromium, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Cobalt, Dissolved	ug/L	<50.0	50.0	10/28/22 15:14	
Copper, Dissolved	ug/L	<25.0	25.0	10/28/22 15:14	
Iron, Dissolved	ug/L	<100	100	10/28/22 15:14	
Lead, Dissolved	ug/L	<5.0	5.0	10/28/22 15:14	
Magnesium, Dissolved	ug/L	<200	200	10/28/22 15:14	
Manganese, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Nickel, Dissolved	ug/L	<40.0	40.0	10/28/22 15:14	
Potassium, Dissolved	ug/L	<5000	5000	10/28/22 15:14	
Selenium, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Silver, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Sodium, Dissolved	ug/L	<5000	5000	10/28/22 15:14	
Thallium, Dissolved	ug/L	<10.0	10.0	10/28/22 15:14	
Vanadium, Dissolved	ug/L	<50.0	50.0	10/28/22 15:14	
Zinc, Dissolved	ug/L	<20.0	20.0	10/28/22 15:14	

LABORATORY CONTROL SAMPLE:	1414474					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	25000	24900	100	80-120	
Antimony, Dissolved	ug/L	1000	992	99	80-120	
Arsenic, Dissolved	ug/L	500	497	99	80-120	
Barium, Dissolved	ug/L	500	490	98	80-120	
Beryllium, Dissolved	ug/L	500	506	101	80-120	
Boron, Dissolved	ug/L	1000	984	98	80-120	
Cadmium, Dissolved	ug/L	500	497	99	80-120	
Calcium, Dissolved	ug/L	25000	25100	100	80-120	
Chromium, Dissolved	ug/L	500	493	99	80-120	
Cobalt, Dissolved	ug/L	500	499	100	80-120	
Copper, Dissolved	ug/L	500	488	98	80-120	
Iron, Dissolved	ug/L	12500	12400	99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

LABORATORY CONTROL SAMPLE:	1414474					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Lead, Dissolved	ug/L	500	504	101	80-120	
Magnesium, Dissolved	ug/L	25000	24600	98	80-120	
Manganese, Dissolved	ug/L	500	496	99	80-120	
Nickel, Dissolved	ug/L	500	500	100	80-120	
Potassium, Dissolved	ug/L	25000	25000	100	80-120	
Selenium, Dissolved	ug/L	500	492	98	80-120	
Silver, Dissolved	ug/L	250	239	96	80-120	
Sodium, Dissolved	ug/L	25000	26100	104	80-120	
Thallium, Dissolved	ug/L	250	249	100	80-120	
Vanadium, Dissolved	ug/L	500	480	96	80-120	
Zinc, Dissolved	ug/L	500	499	100	80-120	

MATRIX SPIKE SAMPLE:	1414476						
		70234794003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum, Dissolved	ug/L	<200	25000	28200	113	75-125	
Antimony, Dissolved	ug/L	<60.0	1000	1120	112	75-125	
Arsenic, Dissolved	ug/L	<10.0	500	576	115	75-125	
Barium, Dissolved	ug/L	<200	500	464	72	75-125 N	Л1
Beryllium, Dissolved	ug/L	<5.0	500	569	114	75-125	
Boron, Dissolved	ug/L	<50.0	1000	1130	110	75-125	
Cadmium, Dissolved	ug/L	<2.5	500	569	114	75-125	
Calcium, Dissolved	ug/L	17600	25000	44100	106	75-125	
Chromium, Dissolved	ug/L	<10.0	500	564	113	75-125	
Cobalt, Dissolved	ug/L	<50.0	500	577	113	75-125	
Copper, Dissolved	ug/L	<25.0	500	551	110	75-125	
Iron, Dissolved	ug/L	601	12500	14500	112	75-125	
Lead, Dissolved	ug/L	<5.0	500	563	113	75-125	
Magnesium, Dissolved	ug/L	7000	25000	33800	107	75-125	
Manganese, Dissolved	ug/L	1160	500	1620	92	75-125	
Nickel, Dissolved	ug/L	<40.0	500	584	113	75-125	
Potassium, Dissolved	ug/L	<5000	25000	31400	114	75-125	
Selenium, Dissolved	ug/L	<10.0	500	597	119	75-125	
Silver, Dissolved	ug/L	<10.0	250	187	74	75-125 N	Л1
Sodium, Dissolved	ug/L	7510	25000	37000	118	75-125	
Thallium, Dissolved	ug/L	<10.0	250	283	112	75-125	
Vanadium, Dissolved	ug/L	<50.0	500	549	110	75-125	
Zinc, Dissolved	ug/L	29.2	500	603	115	75-125	

SAMPLE DUPLICATE: 1414475

Date: 11/10/2022 03:07 PM

		70234794003	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum, Dissolved	ug/L	<200	<200		
Antimony, Dissolved	ug/L	<60.0	<60.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

SAMPLE DUPLICATE: 1414475 70234794003 Dup Parameter Units Result Result RPD Qualifiers <10.0 Arsenic, Dissolved ug/L <10.0 <200 Barium, Dissolved ug/L <200 < 5.0 Beryllium, Dissolved ug/L < 5.0 Boron, Dissolved <50.0 <50.0 ug/L Cadmium, Dissolved <2.5 <2.5 ug/L Calcium, Dissolved ug/L 17600 17800 1 Chromium, Dissolved <10.0 ug/L <10.0 Cobalt, Dissolved <50.0 <50.0 ug/L Copper, Dissolved <25.0 <25.0 ug/L 601 Iron, Dissolved ug/L 711 17 < 5.0 Lead, Dissolved ug/L < 5.0 7000 0 Magnesium, Dissolved ug/L 6990 1160 Manganese, Dissolved ug/L 1160 0 Nickel, Dissolved ug/L <40.0 <40.0 ug/L Potassium, Dissolved <5000 <5000 Selenium, Dissolved <10.0 <10.0 ug/L Silver, Dissolved ug/L <10.0 <10.0 7510 Sodium, Dissolved ug/L 7440 1 Thallium, Dissolved <10.0 ug/L <10.0 <50.0 Vanadium, Dissolved <50.0 ug/L 29.2 2 Zinc, Dissolved 29.7 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

QC Batch: 279942 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794001, 70234794002, 70234794003

METHOD BLANK: 1415202 Matrix: Water

Associated Lab Samples: 70234794001, 70234794002, 70234794003

Blank Reporting
Parameter Units Result Limit

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 11/01/22 12:24

LABORATORY CONTROL SAMPLE: 1415203

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury ug/L 0.90 90 80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

QC Batch: 280290 Analysis Method: EPA 7470A

QC Batch Method: EPA 7470A Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794004

METHOD BLANK: 1416989 Matrix: Water

Associated Lab Samples: 70234794004

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.20 0.20 11/02/22 14:12

LABORATORY CONTROL SAMPLE: 1416990

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 0.97 97 80-120

MATRIX SPIKE SAMPLE: 1416991

70231628003 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.20 ug/L 0.83 75-125 H1 Mercury 83

SAMPLE DUPLICATE: 1416992

Date: 11/10/2022 03:07 PM

 Parameter
 Units
 70231628003 Result
 Dup Result
 RPD
 Qualifiers

 Mercury
 ug/L
 <0.20</td>
 <0.20</td>
 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

QC Batch:

281509

QC Batch Method: EPA 7470A

Analysis Method:

EPA 7470A

Analysis Description:

7470 Mercury Dissolved

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70234794003

METHOD BLANK: 1423202

Matrix: Water

Associated Lab Samples: 70234794003

Blank Result Reporting Limit

Analyzed

Qualifiers

Mercury, Dissolved

Units ug/L

< 0.20

0.20 11/10/22 13:45

LABORATORY CONTROL SAMPLE: 1423203

Parameter

Parameter

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Mercury, Dissolved

Units

ug/L

< 0.20

1.0

80-120

98

MATRIX SPIKE SAMPLE:

1423204

Units

ug/L

ug/L

70234794003 Result

Spike Conc.

Dup

< 0.20

MS Result

100

1.0

MS % Rec

% Rec Limits

75-125

Qualifiers

Mercury, Dissolved

Mercury, Dissolved

Date: 11/10/2022 03:07 PM

Parameter

SAMPLE DUPLICATE: 1423205

70234794003 Units Result

Result

< 0.20

RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

QC Batch: 280111 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234794001, 70234794002, 70234794003, 70234794004

METHOD BLANK: 1415989 Matrix: Water
Associated Lab Samples: 70234794001, 70234794002, 70234794003, 70234794004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Aluminum	ug/L	<200	200	11/01/22 15:47	
Antimony	ug/L	<60.0	60.0	11/01/22 15:47	
Arsenic	ug/L	<10.0	10.0	11/01/22 15:47	
Barium	ug/L	<200	200	11/01/22 15:47	
Beryllium	ug/L	<5.0	5.0	11/01/22 15:47	
Boron	ug/L	<50.0	50.0	11/01/22 15:47	
Cadmium	ug/L	<2.5	2.5	11/01/22 15:47	
Calcium	ug/L	<200	200	11/01/22 15:47	
Chromium	ug/L	<10.0	10.0	11/01/22 15:47	
Cobalt	ug/L	<50.0	50.0	11/01/22 15:47	
Copper	ug/L	<25.0	25.0	11/01/22 15:47	
Iron	ug/L	<100	100	11/01/22 15:47	
Lead	ug/L	<5.0	5.0	11/01/22 15:47	
Magnesium	ug/L	<200	200	11/01/22 15:47	
Manganese	ug/L	<10.0	10.0	11/01/22 15:47	
Nickel	ug/L	<40.0	40.0	11/01/22 15:47	
Potassium	ug/L	<5000	5000	11/01/22 15:47	
Selenium	ug/L	<10.0	10.0	11/01/22 15:47	
Silver	ug/L	<10.0	10.0	11/01/22 15:47	
Sodium	ug/L	<5000	5000	11/01/22 15:47	
Thallium	ug/L	<10.0	10.0	11/01/22 15:47	
Vanadium	ug/L	<50.0	50.0	11/01/22 15:47	
Zinc	ug/L	<20.0	20.0	11/01/22 15:47	

LABORATORY CONTROL SAMPLE:	1415990					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	25000	25100	100	80-120	
Antimony	ug/L	1000	996	100	80-120	
Arsenic	ug/L	500	494	99	80-120	
Barium	ug/L	500	498	100	80-120	
Beryllium	ug/L	500	501	100	80-120	
Boron	ug/L	1000	1010	101	80-120	
Cadmium	ug/L	500	499	100	80-120	
Calcium	ug/L	25000	25000	100	80-120	
Chromium	ug/L	500	501	100	80-120	
Cobalt	ug/L	500	498	100	80-120	
Copper	ug/L	500	504	101	80-120	
Iron	ug/L	12500	12500	100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

LABORATORY CONTROL SAMPLE:	1415990					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Lead	ug/L	500	506	101	80-120	
Magnesium	ug/L	25000	25100	100	80-120	
Manganese	ug/L	500	497	99	80-120	
Nickel	ug/L	500	501	100	80-120	
Potassium	ug/L	25000	25200	101	80-120	
Selenium	ug/L	500	494	99	80-120	
Silver	ug/L	250	254	102	80-120	
Sodium	ug/L	25000	25800	103	80-120	
Thallium	ug/L	250	252	101	80-120	
Vanadium	ug/L	500	502	100	80-120	
Zinc	ug/L	500	503	101	80-120	

MATRIX SPIKE SAMPLE:	1415992						
		70234792006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Aluminum	ug/L	<200	25000	24200	96	75-125	
Antimony	ug/L	<60.0	1000	940	94	75-125	
Arsenic	ug/L	<10.0	500	473	94	75-125	
Barium	ug/L	<200	500	313	58	75-125 N	/11
Beryllium	ug/L	<5.0	500	485	97	75-125	
Boron	ug/L	<50.0	1000	953	94	75-125	
Cadmium	ug/L	<2.5	500	476	95	75-125	
Calcium	ug/L	7410	25000	31300	96	75-125	
Chromium	ug/L	<10.0	500	482	96	75-125	
Cobalt	ug/L	<50.0	500	481	96	75-125	
Copper	ug/L	<25.0	500	480	96	75-125	
ron	ug/L	221	12500	12100	95	75-125	
_ead	ug/L	<5.0	500	476	95	75-125	
Magnesium	ug/L	3130	25000	26900	95	75-125	
Manganese	ug/L	20.2	500	506	97	75-125	
Nickel	ug/L	<40.0	500	493	96	75-125	
Potassium	ug/L	<5000	25000	25300	98	75-125	
Selenium	ug/L	<10.0	500	472	94	75-125	
Silver	ug/L	<10.0	250	186	74	75-125 N	/11
Sodium	ug/L	7380	25000	32400	100	75-125	
Γhallium	ug/L	<10.0	250	243	97	75-125	
√anadium	ug/L	<50.0	500	486	97	75-125	
Zinc	ug/L	<20.0	500	487	97	75-125	

SAMPLE DUPLICATE: 1415991

Date: 11/10/2022 03:07 PM

		70234792006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Aluminum	ug/L	<200	<200		
Antimony	ug/L	<60.0	<60.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

SAMPLE DUPLICATE: 1415991					
		70234792006	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Arsenic	ug/L	<10.0	<10.0		
Barium	ug/L	<200	<200		
Beryllium	ug/L	<5.0	< 5.0		
Boron	ug/L	<50.0	<50.0		
Cadmium	ug/L	<2.5	<2.5		
Calcium	ug/L	7410	7230	2	
Chromium	ug/L	<10.0	<10.0		
Cobalt	ug/L	<50.0	<50.0		
Copper	ug/L	<25.0	<25.0		
Iron	ug/L	221	220	0	
Lead	ug/L	<5.0	< 5.0		
Magnesium	ug/L	3130	3040	3	
Manganese	ug/L	20.2	18.7	8	
Nickel	ug/L	<40.0	<40.0		
Potassium	ug/L	<5000	<5000		
Selenium	ug/L	<10.0	<10.0		
Silver	ug/L	<10.0	<10.0		
Sodium	ug/L	7380	7080	4	
Thallium	ug/L	<10.0	<10.0		
Vanadium	ug/L	<50.0	<50.0		
Zinc	ug/L	<20.0	<20.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/10/2022 03:07 PM

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234794

Date: 11/10/2022 03:07 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234794001	6AR	EPA 3005A	280111	EPA 6010C	280181
70234794002	6B	EPA 3005A	280111	EPA 6010C	280181
70234794003	11A	EPA 3005A	280111	EPA 6010C	280181
70234794004	11B	EPA 3005A	280111	EPA 6010C	280181
70234794003	11A	EPA 6010C	279787		
70234794001	6AR	EPA 7470A	279942	EPA 7470A	280020
70234794002	6B	EPA 7470A	279942	EPA 7470A	280020
70234794003	11A	EPA 7470A	279942	EPA 7470A	280020
70234794004	11B	EPA 7470A	280290	EPA 7470A	280408
70234794003	11A	EPA 7470A	281509	EPA 7470A	281541

24

CHAIN-OF-CUSTODY / An

WO#:70234794

The Chain-of-Custody is a LEGAL DOCL Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Co

Section A Section B Section C Required Client Information: Required Project Information: Invoice Information: Of Company Town of Southampton Report To: Fetten, Christine Attention: Address Waste Management Division Copy To: Company Name: Southampton, NY 11968 Address: Regulatory Agency Email c fetten@southamptontownny gov Purchase Order #: Pace Quote: (631)283-5210 Fax: Project Name: Baseline-North Sea Landfill Pace Project Manager: kimberley mack@pacelabs.com, State / Location Requested Due Date: Project # Pace Profile #: 5479 NY Requested Analysis Filtered (Y/N) (see valid codes to left) C=COMP) X COLLECTED Preservatives MATRIX CODE SAMPLE TEMP AT COLLECTION **Drinking Water** DW GRAB Waste Water WW Residual Chlorine (Y/N) Product **Analyses Test** SAMPLE ID Soil/Solid SL 9 START END OL WP AR OT TS # OF CONTAINERS One Character per box. Wipe MATRIX CODE Air Unpreserved Solutions (A-Z, 0-9 / , -) # Other 6010/7470 Sample Ids must be unique Na2S203 Methanol SAMPLE ITEM Tissue H2S04 NaOH HN03 Other 를 드 DATE TIME DATE TIME P 10/26/10/30 1 6AR WT 2 6B 11:20 WT 3 15:50 11A WT 4 11B WT 1630 5 6 7 8 9 10 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME **ACCEPTED BY / AFFILIATION** DATE TIME SAMPLE CONDITIONS 10-1-12 010 Baseline Parameters 1shap 11:30 Page SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: TEMP in (23 of Ice (Y/N) Custody Sealed Cooler (Y/N) SIGNATURE of SAMPLER: DATE Signed:

	S	ampl	e Condit	ion Upo	n Re	WO#	:70	23	4794
Pace Analytical®	Client I		91055.	er	Proj	PM: KMM CLIENT:	TOS	Due	Date: 11/10/22
Courier: Fed Ex UPS USPS Client	-		Pace Dt						
		iei Gai							
Tracking #: Custody Seal on Cooler/Box Present:	No.	len2	e intact:	Vast I No T	ĪN/Δ	Temn	erature	Blank Pro	esent: Yes No-
Packing Material: Bubble Wrap Bubble					J 117/A		of Ice:		
			ctor: + O						process has begun
	-Cooler		rature Corre		1.3				process has began placed in freezer
	- Coolei	Temper	ature corre	Cled CJ.			THIE JUL	DA KICS F	, 0-2
Temp should be above freezing to 6.0°C	1			Data and	d Initiale	of person ex	zaminina	content	/
USDA Regulated Soil (And A water sample							_		
Did samples originate in a quarantine zone w				CA, FL, GA, ID,	LA, MS, N				om a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?		es 🗆 N				DUIDNI OOOL ALV	iing Hawa	ii anu Pui	erto Rico)? Yes 💢 No
If Yes to either question, fill out a Regulat	ed Soil Cl	necklist	[F-LI-U-UIU]	and include	with Sc	ок/сос рар	COMMEI	UTC.	
Obering (October 1 December 2)	med in a	- Olla		1			COMME	V15:	
Chain of Custody Present:	ZiYes	□No		2.		_			
Chain of Custody Filled Out:	ZYes	□No		3.			-		
Chain of Custody Relinquished:	Yes	□No		4.	_				4.5
Sampler Name & Signature on COC:	Yes	□No		5.			_		
Samples Arrived within Hold Time:	Yes	□No □No		6.					
Short Hold Time Analysis (<72hr): Rush Turn Around Time Requested:	□Yes	ONO		7					
Sufficient Volume: (Triple volume provided for	□Yes			8.					
Correct Containers Used:	Yes			9.				_	
-Pace Containers Used:	EXes			J.					
Containers Intact:	Yes	□No		10.					
Filtered volume received for Dissolved tests	□Yes	□No	· ·	11.	Note i	f sediment is	visible in	the disso	ved container.
Sample Labels match COC:	Ves			12.			-		
-Includes date/time/ID, Matrix: SL WD		۵.,۰۰							
All containers needing preservation have bee		□No	□N/A	13.)₃ □H₂S	i0₄ □	1 МаОН	□ HCl
checked?	1								
pH paper Lot # 423366									
All containers needing preservation are found				Sample	#				
in compliance with method recommendation									
(HNO ₃ , H ₂ SO ₄ , HCl, NaOH>9 Sulfide,	Ves	□No	□N/A						
NAOH>12 Cyanide)									
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	irease,	0				li . "			D. J. Tr
DRO/8015 (water).				Initial wh	en comp		of added		Date/Time preservative
Per Method, VOA pH is checked after analysis				14.		presei	rvative:		added:
Samples checked for dechlorination:	□Yes	□No	M/A	14.					
KI starch test strips Lot #			/	1	Docitivo	for Res. Chlor	ino2 V I	d	
Residual chlorine strips Lot # SM 4500 CN samples checked for sulfide?	□Yes	□No	ØÑ/A	15.	FUSITIVE	TOT RES. CHIOL	IIIC! I I	4	
Lead Acetate Strips Lot #	Lives		LAIN/ A	13.	Positiva	for Sulfide?	Υ 1	J	
Headspace in VOA Vials (>6mm):	□Yes	-DNO	₫N/A	16.	TOSITIVO	Tor ournes:			
Trip Blank Present:	□Ves	□No		17.					
Trip Blank Custody Seals Present	# Yes	□No							
Pace Trip Blank Lot # (if applicable)	Files	ال	4.77						
Client Notification/ Resolution:				Field Dat	a Require	ed?	Y	N	
Person Contacted:					Date/1		. ,		
Comments/ Resolution:					3010/	-			
							-		

 $[\]ensuremath{^{\circ}}$ PM (Project Manager) review is documented electronically in LIMS.

Pace Analytical Services, LLC 575 Broad Hollow Road Melville, NY 11747 (631)694-3040

December 16, 2022

Tom Houghton
Town of Southampton
116 Hampton Road
Waste Management Division
Southampton, NY 11968

RE: Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Dear Tom Houghton:

Enclosed are the analytical results for sample(s) received by the laboratory between October 27, 2022 and October 28, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Melville

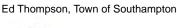
REVISION#1: Report re-issued 12/16/22 to update chloride results.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kimberley M. Mack

kimberley.mack@pacelabs.com


Kimberley Mack.

(631)694-3040

Project Manager

Enclosures

cc: Kaitlyn Crosby, P.W. Grosser Engineer & Hydrogeologist Derek Ersbak, P.W. Grosser Consulting Richard Hodgson, Town of Southampton Amanda Lauth, PW Grosser

(631)694-3040

CERTIFICATIONS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Pace Analytical Services Long Island

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208

Massachusetts Certification #: M-NY026 New Hampshire Certification #: 2987 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 6010C
Description: 6010 MET ICP
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280951

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234886005

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1420290)
 - Calcium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 6010C

Description: 6010 MET ICP, Dissolved
Client: Town of Southampton
Date: December 16, 2022

General Information:

1 sample was analyzed for EPA 6010C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 8260C/5030C
Description: 8260C Volatile Organics
Client: Town of Southampton
Date: December 16, 2022

General Information:

3 samples were analyzed for EPA 8260C/5030C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 279850

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 1414732)
 - 2-Butanone (MEK)
- MS (Lab ID: 1415187)
 - 2-Butanone (MEK)

QC Batch: 280925

IH: This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

- LCS (Lab ID: 1420208)
 - 2-Butanone (MEK)
- MS (Lab ID: 1420230)
 - 2-Butanone (MEK)
- MSD (Lab ID: 1420231)
 - 2-Butanone (MEK)

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 279850

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- 11B (Lab ID: 70234795002)
 - Acetone
- LCS (Lab ID: 1414732)
 - 2-Butanone (MEK)
 - Acetone
- MS (Lab ID: 1415187)
 - 2-Butanone (MEK)
 - Acetone
- v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.
 - 11A (Lab ID: 70234795001)
 - Carbon disulfide

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:December 16, 2022

QC Batch: 279850

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

- Chloromethane
- Vinyl chloride
- trans-1,4-Dichloro-2-butene
- 11B (Lab ID: 70234795002)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- BLANK (Lab ID: 1414731)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- DUP (Lab ID: 1415186)
 - Carbon disulfide
 - Chloromethane
 - Vinvl chloride
 - trans-1,4-Dichloro-2-butene
- LCS (Lab ID: 1414732)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene
- MS (Lab ID: 1415187)
 - Carbon disulfide
 - Chloromethane
 - Vinyl chloride
 - trans-1,4-Dichloro-2-butene

QC Batch: 280925

v1: The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

- LCS (Lab ID: 1420208)
 - Chloroethane
 - Trichlorofluoromethane
- MS (Lab ID: 1420230)
 - Chloroethane
 - Trichlorofluoromethane
- MSD (Lab ID: 1420231)
 - Chloroethane
 - Trichlorofluoromethane

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

• BLANK (Lab ID: 1420207)

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:December 16, 2022

QC Batch: 280925

v3: The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Vinyl acetate

• EB001 (Lab ID: 70234795012)

Vinyl acetate

• LCS (Lab ID: 1420208)

Vinyl acetate

• MS (Lab ID: 1420230)

Vinyl acetate

• MSD (Lab ID: 1420231)

Vinyl acetate

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 280925

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 1420208)
 - Acetone
 - Trichlorofluoromethane

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280925

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70235441001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 1420230)
 - Trichlorofluoromethane
- MSD (Lab ID: 1420231)
 - Trichlorofluoromethane

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 8260C/5030CDescription:8260C Volatile OrganicsClient:Town of SouthamptonDate:December 16, 2022

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 8260
Description: TIC MSV Water
Client: Town of Southampton
Date: December 16, 2022

General Information:

1 sample was analyzed for EPA 8260 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 2120B

Description: 2120B W Apparent Color Client: Town of Southampton Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 2120B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- 12A (Lab ID: 70234795009)
- 12B (Lab ID: 70234795010)
- 3A (Lab ID: 70234795003)
- 3B (Lab ID: 70234795004)
- 3C (Lab ID: 70234795005)
- 4A (Lab ID: 70234795006)
- 4B (Lab ID: 70234795007)
- 4C (Lab ID: 70234795008)
- DUP001 (Lab ID: 70234795011)
- EB001 (Lab ID: 70234795012)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:SM22 2320BDescription:2320B AlkalinityClient:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for SM22 2320B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 2340C

Description: 2340C Hardness, Total
Client: Town of Southampton
Date: December 16, 2022

General Information:

9 samples were analyzed for SM22 2340C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

BASELINE-NORTH SEA LANDFILL Project:

Pace Project No.: 70234795

Method: SM22 2540C

Description: 2540C Total Dissolved Solids Client: Town of Southampton Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 2540C by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 280457

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1417652) Total Dissolved Solids
- QC Batch: 280458

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1417656) • Total Dissolved Solids
- QC Batch: 280682

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1418979)
 - Total Dissolved Solids

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 3500-Cr B
Description: Chromium, Hexavalent
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 3500-Cr B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

- 4A (Lab ID: 70234795006)
- 4B (Lab ID: 70234795007)
- 4C (Lab ID: 70234795008)
- EB001 (Lab ID: 70234795012)

H3: Sample was received or analysis requested beyond the recognized method holding time.

- 12A (Lab ID: 70234795009)
- 12B (Lab ID: 70234795010)
- 3A (Lab ID: 70234795003)
- 3B (Lab ID: 70234795004)
- 3C (Lab ID: 70234795005)
- DUP001 (Lab ID: 70234795011)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 410.4 Description: 410.4 COD

Client: Town of Southampton

Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 410.4 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 410.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 5210B

Description: 5210B BOD, 5 day

Client: Town of Southampton

Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 5210B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H2: Extraction or preparation conducted outside EPA method holding time.

• DUP001 (Lab ID: 70234795011)

Sample Preparation:

The samples were prepared in accordance with SM22 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 300.0 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 280955

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70235291001,70235291002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1420305)
 - Bromide
 - Sulfate
- MS (Lab ID: 1420307)
 - Bromide
 - Sulfate

QC Batch: 282458

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70234908002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1427716)
 - Bromide
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 351.2

Description: 351.2 Total Kjeldahl Nitrogen
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 351.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 351.2 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 353.2

Description: 353.2 Nitrogen, NO2/NO3 unpres

Client: Town of Southampton

Date: December 16, 2022

General Information:

10 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: EPA 353.2

Description:353.2 Nitrogen, NO2Client:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for EPA 353.2 by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 4500 NH3 H
Description: 4500 Ammonia Water
Client: Town of Southampton
Date: December 16, 2022

General Information:

10 samples were analyzed for SM22 4500 NH3 H by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method: SM22 5310B

Description:5310B TOC as NPOCClient:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for SM22 5310B by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Method:EPA 9014 Total CyanideDescription:9014 Cyanide, TotalClient:Town of SouthamptonDate:December 16, 2022

General Information:

10 samples were analyzed for EPA 9014 Total Cyanide by Pace Analytical Services Melville. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 9010C with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11A	Lab ID: 702	234795001	Collected:	10/26/2	2 15:50	Received:	10/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C						
_	Pace Analytic	al Services -	Melville						
Acetone	<5.0	ug/L		5.0	1		10/29/22 00:1	5 67-64-1	
Acrylonitrile	<5.0	ug/L		5.0	1		10/29/22 00:1		
Benzene	<5.0	ug/L		5.0	1		10/29/22 00:1	5 71-43-2	
Bromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Bromodichloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1	5 75-27-4	
Bromoform	<5.0	ug/L		5.0	1		10/29/22 00:1	5 75-25-2	
Bromomethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
2-Butanone (MEK)	<5.0	ug/L		5.0	1		10/29/22 00:1		
Carbon disulfide	<5.0	ug/L		5.0	1		10/29/22 00:1		v3
Carbon tetrachloride	<5.0	ug/L		5.0	1		10/29/22 00:1		
Chlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Chloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Chloroform	5.0	ug/L		5.0	1		10/29/22 00:1		
Chloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		v3
,2-Dibromo-3-chloropropane	<5.0	ug/L		5.0	1		10/29/22 00:1		vo
Dibromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,2-Dibromoethane (EDB)	<5.0	ug/L		5.0	1		10/29/22 00:1		
Dibromomethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
.2-Dichlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:1		
,4-Dichlorobenzene	<5.0			5.0	1		10/29/22 00:1		
rans-1,4-Dichloro-2-butene	<5.0	ug/L		5.0	1		10/29/22 00:1		v3
1,1-Dichloroethane	<5.0 <5.0	ug/L ug/L		5.0	1		10/29/22 00:1		VS
,2-Dichloroethane	<5.0	•		5.0	1		10/29/22 00:1		
	<5.0 <5.0	ug/L		5.0	1		10/29/22 00:1		
,1-Dichloroethene		ug/L							
cis-1,2-Dichloroethene	<5.0	ug/L		5.0	1 1		10/29/22 00:1		
rans-1,2-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:1		
I,2-Dichloropropane	<5.0	ug/L		5.0			10/29/22 00:1		
cis-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:1		
rans-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Ethylbenzene	<5.0	ug/L		5.0	1		10/29/22 00:1		
2-Hexanone	<5.0	ug/L		5.0	1		10/29/22 00:1		
odomethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Methylene Chloride	<5.0	ug/L		5.0	1		10/29/22 00:1		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		10/29/22 00:1		
Styrene	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,1,2-Tetrachloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,2,2-Tetrachloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
etrachloroethene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Toluene	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,1-Trichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,1,2-Trichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
Trichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:1		
Trichlorofluoromethane	<5.0	ug/L		5.0	1		10/29/22 00:1		
,2,3-Trichloropropane	<5.0	ug/L		5.0	1		10/29/22 00:1	5 96-18-4	
/inyl acetate	<5.0	ug/L		5.0	1		10/29/22 00:1	5 108-05-4	
√inyl chloride	<5.0	ug/L		5.0	1		10/29/22 00:1	5 75-01-4	v3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11A	Lab ID: 702	34795001	Collected: 10/26/2	22 15:50	Received: 10	0/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met Pace Analytica							
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		10/29/22 00:15	5 1330-20-7	
1,2-Dichloroethane-d4 (S)	108	%	81-122	1		10/29/22 00:15	17060-07-0	
4-Bromofluorobenzene (S)	90	%	79-118	1		10/29/22 00:15	460-00-4	
Toluene-d8 (S)	97	%	82-122	1		10/29/22 00:15	2037-26-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11B	Lab ID: 702	234795002	Collected: 1	10/26/2	2 16:30	Received:	10/27/22 11:30	Matrix: Water	
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qua
3260C Volatile Organics	Analytical Met	hod: EPA 82	260C/5030C						
	Pace Analytic	al Services -	Melville						
Acetone	<5.0	ug/L		5.0	1		10/29/22 00:38	8 67-64-1	v1
Acrylonitrile	<5.0	ug/L		5.0	1		10/29/22 00:38		
Benzene	<5.0	ug/L		5.0	1		10/29/22 00:38	8 71-43-2	
Bromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
Bromodichloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38	8 75-27-4	
Bromoform	<5.0	ug/L		5.0	1		10/29/22 00:38	8 75-25-2	
Bromomethane	<5.0	ug/L		5.0	1		10/29/22 00:38	8 74-83-9	
2-Butanone (MEK)	<5.0	ug/L		5.0	1		10/29/22 00:38		
Carbon disulfide	<5.0	ug/L		5.0	1		10/29/22 00:38		v3
Carbon tetrachloride	<5.0	ug/L		5.0	1		10/29/22 00:38	8 56-23-5	
Chlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
Chloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
Chloroform	5.0	ug/L		5.0	1		10/29/22 00:38		
Chloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		v3
,2-Dibromo-3-chloropropane	<5.0	ug/L		5.0	1		10/29/22 00:38		
Dibromochloromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
,2-Dibromoethane (EDB)	<5.0	ug/L		5.0	1		10/29/22 00:38		
Dibromomethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
.2-Dichlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
,4-Dichlorobenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
rans-1,4-Dichloro-2-butene	<5.0	ug/L		5.0	1		10/29/22 00:38		v3
,1-Dichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		••
,2-Dichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
,1-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
cis-1,2-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
rans-1,2-Dichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
I,2-Dichloropropane	<5.0	ug/L		5.0	1		10/29/22 00:38		
cis-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:38		
rans-1,3-Dichloropropene	<5.0	ug/L		5.0	1		10/29/22 00:38		
Ethylbenzene	<5.0	ug/L		5.0	1		10/29/22 00:38		
2-Hexanone	<5.0	ug/L ug/L		5.0	1		10/29/22 00:38		
odomethane	<5.0	ug/L ug/L		5.0	1		10/29/22 00:38		
Methylene Chloride	<5.0	ug/L		5.0	1		10/29/22 00:38		
I-Methyl-2-pentanone (MIBK)	<5.0	ug/L		5.0	1		10/29/22 00:38		
Styrene	<5.0	-							
•	<5.0 <5.0	ug/L		5.0 5.0	1		10/29/22 00:38 10/29/22 00:38		
,1,1,2-Tetrachloroethane	<5.0 <5.0	ug/L ug/L		5.0	1 1		10/29/22 00:38		
etrachloroethene	<5.0	-		5.0	1		10/29/22 00:38		
		ug/L					10/29/22 00:3		
oluene	<5.0	ug/L		5.0	1				
,1,1-Trichloroethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
• •	<5.0	ug/L		5.0	1		10/29/22 00:38		
Frichloroethene	<5.0	ug/L		5.0	1		10/29/22 00:38		
Frichlorofluoromethane	<5.0	ug/L		5.0	1		10/29/22 00:38		
,2,3-Trichloropropane	<5.0	ug/L		5.0	1		10/29/22 00:38		
/inyl acetate	<5.0	ug/L		5.0	1		10/29/22 00:38		•
Vinyl chloride	<5.0	ug/L		5.0	1		10/29/22 00:38	8 75-01-4	v3

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 11B	Lab ID: 702	34795002	Collected: 10/26/2	22 16:30	Received: 10	0/27/22 11:30 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical Met Pace Analytica							
Xylene (Total) Surrogates	<5.0	ug/L	5.0	1		10/29/22 00:38	1330-20-7	
1,2-Dichloroethane-d4 (S)	107	%	81-122	1		10/29/22 00:38	17060-07-0	
4-Bromofluorobenzene (S)	92	%	79-118	1		10/29/22 00:38	460-00-4	
Toluene-d8 (S)	98	%	82-122	1		10/29/22 00:38	2037-26-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 3A	Lab ID: 702	34795003	Collected: 10/2	7/22 09:55	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	hod: EPA 60	10C Preparation	Method: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.) 1	11/04/22 10:28	11/05/22 14:03	7440-38-2	
Cadmium	<2.5	ug/L	2.	5 1	11/04/22 10:28	11/05/22 14:03	7440-43-9	
Calcium	20600	ug/L	20) 1	11/04/22 10:28	11/05/22 14:03	7440-70-2	
ron	5170	ug/L	10) 1	11/04/22 10:28	11/05/22 14:03	7439-89-6	
ead	<5.0	ug/L	5.) 1	11/04/22 10:28	11/05/22 14:03	7439-92-1	
Magnesium	6010	ug/L	20			11/05/22 14:03		
Manganese	1880	ug/L	10.			11/05/22 14:03		
Potassium	11300	ug/L	500			11/05/22 14:03		
Sodium	34600	ug/L	500) 1	11/04/22 10:28	11/05/22 14:03	3 7440-23-5	
120B W Apparent Color	Analytical Meth	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	140	units	50.) 10		10/31/22 13:45	5	H1
 H	6.5	Std. Units	0.1	10		10/31/22 13:45	5	H1
320B Alkalinity	Analytical Meth	hod: SM22 2	2320B					
O200 Andimity	Pace Analytica							
Ikalinity, Total as CaCO3	97.8	mg/L	1.) 1		11/10/22 14:33	3	
2340C Hardness, Total	Analytical Meth	hod: SM22 2	2340C					
	Pace Analytica	l Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	73.3	mg/L	5.) 1		11/10/22 18:09)	
2540C Total Dissolved Solids	Analytical Meth	hod: SM22 2	2540C					
	Pace Analytica							
Total Dissolved Solids	268	mg/L	20.) 1		11/02/22 20:26	;	
Chromium, Hexavalent	Analytical Metl	hod: SM22.3	8500-Cr B					
Jin Simani, Fiexavaient	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.02) 1		10/31/22 12:05	18540-29-9	НЗ
110.4 COD	Applytical Moth	hod: EDA 41	0.4 Preparation M	othod: EE	ν 410 4			
110.4 COD	Pace Analytica			elilou. Er	A 410.4			
Chemical Oxygen Demand	23.0	mg/L	10.) 1	11/11/22 05:35	11/11/22 07:47		
5210B BOD, 5 day	Analytical Meth	hod: SM22 5	5210B Preparation	Method:	SM22 5210B			
- , ,	Pace Analytica		•		-			
3OD, 5 day	<2.0	mg/L	2.) 1	10/29/22 06:21	11/03/22 10:47	•	
800.0 IC Anions 28 Days	Analytical Metl	hod: EPA 30	0.0					
-	Pace Analytica	al Services -	Melville					
Bromide	<0.50	mg/L	0.5) 1		11/15/22 01:04	24959-67-9	
Chloride	51.8	mg/L	10.			11/15/22 10:36		
Sulfate	15.4	mg/L	5.			11/15/22 01:04		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 3A	Lab ID: 7023	34795003	Collected:	10/27/2	2 09:55	Received: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.42	mg/L		0.10	1	11/14/22 05:42	2 11/14/22 12:1	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.17	mg/L		0.050	1		10/29/22 00:0	4 14797-55-8	
Nitrate-Nitrite (as N)	0.18	mg/L		0.050	1		10/29/22 00:0	4 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:0	9 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 11:45	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	4.5	mg/L		1.0	1		11/02/22 19:4	7 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:02	2 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 3B	Lab ID: 702	34795004	Collected: 10/27/2	22 10:40	Received: 10)/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Met	nod: EPA 601	0C Preparation Mo	ethod: El	PA 3005A			
	Pace Analytica	al Services - N	/lelville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:06	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:06	7440-43-9	
Calcium	18400	ug/L	200	1	11/04/22 10:28	11/05/22 14:06	7440-70-2	
ron	4140	ug/L	100	1	11/04/22 10:28	11/05/22 14:06	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/05/22 14:06		
/lagnesium	6370	ug/L	200	1		11/05/22 14:06		
Manganese	1640	ug/L	10.0	1		11/05/22 14:06		
Potassium	5930	ug/L	5000	1		11/05/22 14:06		
Sodium	19500	ug/L	5000	1	11/04/22 10:28	11/05/22 14:06	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	120B					
	Pace Analytica	al Services - N	/lelville					
Apparent Color	100	units	10.0	2		10/31/22 13:48	}	H1
Н	6.4	Std. Units	0.10	2		10/31/22 13:48	}	H1
2320B Alkalinity	Analytical Metl	hod: SM22 23	320B					
y	Pace Analytica							
lkalinity, Total as CaCO3	90.6	mg/L	1.0	1		11/10/22 14:41		
2340C Hardness, Total	Analytical Met	hod: SM22 23	340C					
	Pace Analytica	al Services - N	/lelville					
ot Hardness asCaCO3 (SM 2340B	66.7	mg/L	5.0	1		11/10/22 18:12		
2540C Total Dissolved Solids	Analytical Metl	hod: SM22 25	540C					
	Pace Analytica							
Total Dissolved Solids	184	mg/L	20.0	1		11/02/22 20:26	i	
Chromium, Hexavalent	Analytical Met	hod: SM22 34	500-Cr B					
Sill Officialit, Flexavalent	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:07	18540-29-9	НЗ
110.4.COD	Analytical Mot	hod: EDA 410	.4 Preparation Me	thad: ED	A 410 4			
110.4 COD	Pace Analytica		•	liiou. EF	A 410.4			
Chemical Oxygen Demand	18.7	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:47		
5210B BOD, 5 day	Analytical Met	hod: SM22 52	210B Preparation N	Method:	SM22 5210B			
	Pace Analytica	al Services - N	/lelville					
3OD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:24	11/03/22 10:49	ı	
300.0 IC Anions 28 Days	Analytical Metl	hod: EPA 300	.0					
•	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/15/22 01:18	24959-67-9	
Chloride	37.3	mg/L	2.0	1		11/15/22 01:18	16887-00-6	
Sulfate	12.8	mg/L	5.0	1		11/15/22 01:18	14808-79-8	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Parameters Results Units Report Limit DF Prepared Analyzed	La	b ID:	70234795004	Collected:	10/27/2	22 10:40	Received:	10/28/22 12:25	Matrix: Water	
Pace Analytical Services - Melville	Re	sults	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Nitrogen, Kjeldahl, Total 3.4 mg/L 0.10 1 11/14/22 05:42 11/14/22 12:18 353.2 Nitrogen, NO2/NO3 unpres Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrate as N 0.098 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N 40.050 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N 40.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	ogen Ana	lytical N	Method: EPA 35	51.2 Prepara	ition Met	hod: EP	A 351.2			
Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrate as N 0.098 mg/L 0.050 1 10/29/22 00:10 Nitrate-Nitrite (as N) 0.10 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pac	e Analy	tical Services -	Melville						
Pace Analytical Services - Melville		3.4	l mg/L		0.10	1	11/14/22 05:4	2 11/14/22 12:18	3 7727-37-9	
Nitrate as N 0.098 mg/L 0.050 1 1 10/29/22 00:10 Nitrate-Nitrite (as N) 0.10 mg/L 0.050 1 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 1 1/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	3 unpres Ana	lytical N	Method: EPA 35	53.2						
Nitrate-Nitrite (as N) 0.10 mg/L 0.050 1 10/29/22 00:10 353.2 Nitrogen, NO2 Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N <0.050	Pac	e Analy	tical Services -	Melville						
Analytical Method: EPA 353.2 Pace Analytical Services - Melville Nitrite as N 40.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		0.098	mg/L		0.050	1		10/29/22 00:10	14797-55-8	
Pace Analytical Services - Melville Nitrite as N <0.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		0.10	mg/L		0.050	1		10/29/22 00:10	7727-37-9	
Nitrite as N <0.050 mg/L 0.050 1 10/28/22 22:15 4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Ana	lytical N	Method: EPA 35	53.2						
4500 Ammonia Water Analytical Method: SM22 4500 NH3 H Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pad	e Analy	tical Services -	Melville						
Pace Analytical Services - Melville Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		<0.050	mg/L		0.050	1		10/28/22 22:1	5 14797-65-0	
Nitrogen, Ammonia 3.4 mg/L 0.10 1 11/01/22 11:47 5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Ana	lytical N	Method: SM22	4500 NH3 H						
5310B TOC as NPOC Analytical Method: SM22 5310B Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pac	e Analy	tical Services -	Melville						
Pace Analytical Services - Melville Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C		3.4	l mg/L		0.10	1		11/01/22 11:47	7664-41-7	
Total Organic Carbon 3.7 mg/L 1.0 1 11/02/22 20:00 9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Ana	lytical N	Method: SM22	5310B						
9014 Cyanide, Total Analytical Method: EPA 9014 Total Cyanide Preparation Method: EPA 9010C	Pac	e Analy	tical Services -	Melville						
		3.7	mg/L		1.0	1		11/02/22 20:00	7440-44-0	
Pace Analytical Services - Melville	Ana	lytical N	Method: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
	Pac	e Analy	tical Services -	Melville						
Cyanide <10.0 ug/L 10.0 1 11/10/22 13:07 11/10/22 15:03		<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:03	3 57-12-5	

Project: **BASELINE-NORTH SEA LANDFILL**

Date: 12/16/2022 11:25 AM

			0			100100 1		
Sample: 3C	Lab ID: 7023	34795005	Collected: 10/27/2	22 11:15	Received: 10	/28/22 12:25 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	od: EPA 601	IOC Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:09	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:09	7440-43-9	
Calcium	8630	ug/L	200	1	11/04/22 10:28	11/05/22 14:09	7440-70-2	
ron	<100	ug/L	100	1	11/04/22 10:28	11/05/22 14:09	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/05/22 14:09		
lagnesium	3890	ug/L	200	1	11/04/22 10:28	11/05/22 14:09	7439-95-4	
Manganese	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:09	7439-96-5	
otassium	<5000	ug/L	5000	1	11/04/22 10:28	11/05/22 14:09	7440-09-7	
Sodium	10700	ug/L	5000	1	11/04/22 10:28	11/05/22 14:09	7440-23-5	
120B W Apparent Color	Analytical Meth	od: SM22 2	120B					
	Pace Analytica	l Services - I	Melville					
Apparent Color	<5.0	units	5.0	1		10/31/22 13:50		H1
H	6.8	Std. Units	0.10	1		10/31/22 13:50		H1
320B Alkalinity	Analytical Meth	od: SM22 2	320B					
OZOD Alkallinty	Pace Analytica							
lkalinity, Total as CaCO3	45.7	mg/L	1.0	1		11/10/22 15:43		
2340C Hardness, Total	Analytical Meth	od: SM22 2	340C					
	Pace Analytica	l Services - I	Melville					
ot Hardness asCaCO3 (SM 2340B	36.0	mg/L	5.0	1		11/10/22 18:04		
2540C Total Dissolved Solids	Analytical Meth	od: SM22 2	540C					
	Pace Analytica	l Services - I	Melville					
Total Dissolved Solids	106	mg/L	10.0	1		11/02/22 20:27		
Chromium, Hexavalent	Analytical Meth	od: SM22 3	500-Cr B					
,	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:07	18540-29-9	НЗ
110.4 COD	Analytical Meth	od: EPA 410	0.4 Preparation Met	hod: EP	A 410.4			
	Pace Analytica		•					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:47		
5210B BOD, 5 day	Analytical Meth	od: SM22 5	210B Preparation N	/lethod:	SM22 5210B			
505, 0 daj	Pace Analytica		•		5 <u></u> 52.100			
3OD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:26	11/03/22 10:51		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
•	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/16/22 11:10	24959-67-9	
Chloride	13.2	mg/L	2.0	1		11/16/22 11:10		
Sulfate	5.8	mg/L	5.0	1		11/16/22 11:10		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 3C	Lab ID: 7023	34795005	Collected:	10/27/2	2 11:15	Received: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytica	Services -	Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/14/22 05:42	11/14/22 12:19	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	Services -	Melville						
Nitrate as N	0.20	mg/L		0.050	1		10/29/22 00:16	14797-55-8	
Nitrate-Nitrite (as N)	0.20	mg/L		0.050	1		10/29/22 00:16	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytica	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:19	14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	Melville						
Nitrogen, Ammonia	0.20	mg/L		0.10	1		11/01/22 11:48	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 20:10	7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90)14 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	11/10/22 15:04	57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 4A	Lab ID: 702	34795006	Collected: 10/27/2	22 14:20	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	nod: EPA 601	10C Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:12	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:12	7440-43-9	
Calcium	12500	ug/L	200	1	11/04/22 10:28	11/05/22 14:12	7440-70-2	
ron	135	ug/L	100	1	11/04/22 10:28	11/05/22 14:12	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/05/22 14:12		
/lagnesium	4410	ug/L	200	1		11/05/22 14:12		
Manganese	21.7	ug/L	10.0	1		11/05/22 14:12		
Potassium	<5000	ug/L	5000	1		11/05/22 14:12		
Sodium	20000	ug/L	5000	1	11/04/22 10:28	11/05/22 14:12	? 7440-23-5	
120B W Apparent Color	Analytical Meth	nod: SM22 2	120B					
	Pace Analytica	l Services - I	Melville					
Apparent Color	<5.0	units	5.0	1		10/31/22 13:57	,	H1
H	6.1	Std. Units	0.10	1		10/31/22 13:57	,	H1
320B Alkalinity	Analytical Meth	nod: SM22 2:	320B					
	Pace Analytica							
lkalinity, Total as CaCO3	16.6	mg/L	1.0	1		11/10/22 16:06	5	
2340C Hardness, Total	Analytical Meth	nod: SM22 2	340C					
	Pace Analytica	l Services - I	Melville					
ot Hardness asCaCO3 (SM 2340B	48.0	mg/L	5.0	1		11/10/22 18:16	;	
2540C Total Dissolved Solids	Analytical Meth	nod: SM22 2	540C					
	Pace Analytica	l Services - I	Melville					
Total Dissolved Solids	127	mg/L	10.0	1		11/02/22 20:27	•	
Chromium, Hexavalent	Analytical Meth	nod: SM22 3	500-Cr B					
	Pace Analytica	l Services - I	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:07	18540-29-9	H1
110.4 COD	Analytical Meth	nod: EPA 410	0.4 Preparation Me	thod: EP	A 410.4			
	Pace Analytica		•					
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Meth	nod: SM22 5	210B Preparation N	/lethod:	SM22 5210B			
505, v day	Pace Analytica		•		5 <u></u> 52.102			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:28	11/03/22 10:53	3	
800.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0					
• •	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/16/22 11:24	24959-67-9	
Chloride	43.9	mg/L	2.0	1		11/16/22 11:24	16887-00-6	
Sulfate	21.6	mg/L	5.0	1		11/16/22 11:24	14808-79-8	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 4A	Lab ID: 7023	34795006	Collected:	10/27/2	2 14:20	Received:	10/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	<0.10	mg/L		0.10	1	11/14/22 05:4	2 11/14/22 12:39	9 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	2.1	mg/L		0.25	5		10/29/22 00:5	3 14797-55-8	
Nitrate-Nitrite (as N)	2.1	mg/L		0.25	5		10/29/22 00:5	3 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:3	4 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 11:49	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 20:4	5 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical		-		•				
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:0	5 57-12-5	

Project: **BASELINE-NORTH SEA LANDFILL**

Date: 12/16/2022 11:25 AM

Commiss. 4D	Lab ID Zoo	1705007	O-II 40/07/	00 4 4 00	Daniburg 10	/00/00 40 05	America 101-1-	
Sample: 4B	Lab ID: 7023	34795007	Collected: 10/27/2	22 14:00	Received: 10	1/28/22 12:25 I	Matrix: Water	
Parameters	Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	od: EPA 601	IOC Preparation Me	ethod: El	PA 3005A			
	Pace Analytica	l Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/04/22 10:28	11/05/22 14:15	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/04/22 10:28	11/05/22 14:15	7440-43-9	
Calcium	14200	ug/L	200	1		11/05/22 14:15		
ron	4770	ug/L	100	1		11/05/22 14:15		
ead	<5.0	ug/L	5.0	1		11/05/22 14:15		
lagnesium	6830	ug/L	200	1		11/05/22 14:15		
Manganese	1040	ug/L	10.0	1		11/05/22 14:15		
otassium	<5000	ug/L	5000	1		11/05/22 14:15		
Sodium	13000	ug/L	5000	1	11/04/22 10:28	11/05/22 14:15	7440-23-5	
120B W Apparent Color	Analytical Meth	od: SM22 2	120B					
	Pace Analytica	l Services - I	Melville					
Apparent Color	55.0	units	25.0	5		10/31/22 13:56		H1
H	6.8	Std. Units	0.10	5		10/31/22 13:56		H1
320B Alkalinity	Analytical Meth	od: SM22 2	320B					
320B Alkallility	Pace Analytica							
Ikalinity, Total as CaCO3	62.5	mg/L	1.0	1		11/10/22 16:13		
340C Hardness, Total	Analytical Meth	od: SM22 2	340C					
	Pace Analytica	l Services - I	Melville					
ot Hardness asCaCO3 (SM 2340B	64.0	mg/L	5.0	1		11/10/22 18:19		
540C Total Dissolved Solids	Analytical Meth	od: SM22 2	540C					
5-700 Total Dissolved Collas	Pace Analytica							
Total Disastrad Oalida	•					44/00/00 00 00		
otal Dissolved Solids	120	mg/L	20.0	1		11/02/22 20:28		
Chromium, Hexavalent	Analytical Meth	od: SM22 3	500-Cr B					
	Pace Analytica	l Services - I	Melville					
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:08	18540-29-9	H1
110.4 COD	Analytical Meth	od: EPA 410	0.4 Preparation Met	hod: EP	A 410.4			
	Pace Analytica		•		-			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
		-						
3210B BOD, 5 day	Analytical Metr Pace Analytica		210B Preparation N Melville	/lethod:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:29	11/03/22 10:56		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
 , -	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/16/22 11:51	24959-67-9	
Chloride	32.4	mg/L	2.0	1		11/16/22 11:51		
Sulfate	15.4	mg/L	5.0	1		11/16/22 11:51		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 4B	Lab ID: 7023	34795007	Collected:	10/27/2	2 14:00	Received: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	tion Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	1.5	mg/L		0.10	1	11/14/22 05:42	2 11/14/22 12:20	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	0.11	mg/L		0.050	1		10/29/22 00:3	1 14797-55-8	
Nitrate-Nitrite (as N)	0.12	mg/L		0.050	1		10/29/22 00:3	1 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:3	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	1.2	mg/L		0.10	1		11/01/22 12:08	3 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 21:3	1 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	nide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:00	6 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 4C	Lab ID: 702	34795008	Collected: 10/27	/22 13:30	Received: 10)/28/22 12:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10C Preparation M	lethod: E	PA 3005A			
	Pace Analytica	l Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:02	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:02	7440-43-9	
Calcium	11700	ug/L	200	1	11/07/22 08:58	11/07/22 18:02	7440-70-2	
ron	764	ug/L	100	1	11/07/22 08:58	11/07/22 18:02	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/07/22 18:02		
/lagnesium	5220	ug/L	200	1	11/07/22 08:58	11/07/22 18:02	7439-95-4	
Manganese	20.8	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:02	7439-96-5	
otassium	<5000	ug/L	5000	1	11/07/22 08:58	11/07/22 18:02	7440-09-7	
Sodium	26500	ug/L	5000	1	11/07/22 08:58	11/07/22 18:02	7440-23-5	
120B W Apparent Color	Analytical Meth	hod: SM22 2	2120B					
	Pace Analytica	l Services -	Melville					
Apparent Color	7.0	units	5.0	1		10/31/22 13:53	3	H1
H	7.2	Std. Units	0.10	1		10/31/22 13:53	3	H1
2320B Alkalinity	Analytical Meth	hod: SM22 2	2320B					
,	Pace Analytica							
Alkalinity, Total as CaCO3	42.4	mg/L	1.0	1		11/10/22 16:20)	
2340C Hardness, Total	Analytical Meth	hod: SM22 2	2340C					
	Pace Analytica	l Services -	Melville					
ot Hardness asCaCO3 (SM 2340B	40.0	mg/L	5.0	1		11/10/22 18:21		
2540C Total Dissolved Solids	Analytical Meth	hod: SM22 2	2540C					
	Pace Analytica							
Total Dissolved Solids	131	mg/L	10.0	1		11/02/22 20:42		
Chromium, Hexavalent	Analytical Meth	hod: SM22 3	3500-Cr B					
Sinomani, nexavalent	Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:08	18540-29-9	H1
110.4 COD	Analytical Meth	hod: FPA 41	0.4 Preparation Me	ethod: FF	PA 410 4			
110.4 000	Pace Analytica		•	ouriou. Er	71410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day		•	5210B Preparation					
oz ivo boo, a day	Pace Analytica		•	wieli IOU.	OIVIZZ UZ IUD			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:31	11/03/22 10:58	}	
300.0 IC Anions 28 Days	Analytical Meth	hod: EPA 30	0.0					
•	Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/15/22 02:53	24959-67-9	
Chloride	58.6	mg/L	10.0			11/19/22 04:17	16887-00-6	
Sulfate	7.8	mg/L	5.0			11/15/22 02:53		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 4C	Lab ID: 7023	34795008	Collected:	10/27/2	2 13:30	Received:	10/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 3	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytica	Services -	Melville						
Nitrogen, Kjeldahl, Total	0.16	mg/L		0.10	1	11/14/22 05:4	2 11/14/22 12:2	1 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	Melville						
Nitrate as N	<0.050	mg/L		0.050	1		10/29/22 00:2	9 14797-55-8	
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		10/29/22 00:2	9 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 3	53.2						
	Pace Analytica	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:3	1 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytica	Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 12:09	9 7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytica	Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 21:52	2 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
	Pace Analytica	Services -	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:0	7 11/10/22 15:0	7 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 12A	Lab ID: 702	234795009	Collected: 10/27/2	2 08:35	Received: 10	/28/22 12:25 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 6010	OC Preparation Me	thod: El	PA 3005A			
	Pace Analytica	al Services - M	lelville					
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:05	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:05	7440-43-9	
Calcium	19100	ug/L	200	1	11/07/22 08:58	11/07/22 18:05	7440-70-2	
ron	<100	ug/L	100	1		11/07/22 18:05		
Lead	<5.0	ug/L	5.0	1		11/07/22 18:05		
/lagnesium	6000	ug/L	200	1		11/07/22 18:05		
Manganese	534	ug/L	10.0	1		11/07/22 18:05		
Potassium	5570	ug/L	5000	1		11/07/22 18:05		
Sodium	9930	ug/L	5000	1	11/07/22 08:58	11/07/22 18:05	7440-23-5	
2120B W Apparent Color	Analytical Met	hod: SM22 21	20B					
	Pace Analytica	al Services - M	lelville					
Apparent Color	<5.0	units	5.0	1		10/31/22 13:37		H1
ьН	6.3	Std. Units	0.10	1		10/31/22 13:37		H1
2320B Alkalinity	Analytical Met							
Alkalinity, Total as CaCO3	89.5	mg/L	1.0	1		11/10/22 16:28		
2340C Hardness, Total	Analytical Met Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	70.0	mg/L	5.0	1		11/10/22 18:24		
2540C Total Dissolved Solids	Analytical Met Pace Analytica							
Total Dissolved Solids	126	mg/L	10.0	1		11/02/22 20:43		D6
Chromium, Hexavalent	Analytical Met Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:09	18540-29-9	НЗ
410.4 COD	Analytical Met Pace Analytica		4 Preparation Met lelville	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Met Pace Analytica		10B Preparation Melville	fethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:32	11/03/22 11:02		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/22/22 10:17	24959-67-9	
Chloride	14.9	mg/L	2.0	1		11/22/22 10:17		
Sulfate	16.0	mg/L	5.0	1		11/22/22 10:17	14808-79-8	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 12A	Lab ID: 702	34795009	Collected: 10)/27/22	08:35	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report Li	mit _	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 35	51.2 Preparation	n Meth	od: EP/	A 351.2			
	Pace Analytica	l Services -	Melville						
Nitrogen, Kjeldahl, Total	3.9	mg/L	(0.10	1	11/14/22 05:42	11/14/22 12:22	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 35	53.2						
	Pace Analytica	I Services -	Melville						
Nitrate as N	0.80	mg/L	0.	.050	1		10/28/22 23:49	14797-55-8	
Nitrate-Nitrite (as N)	0.80	mg/L	0.	.050	1		10/28/22 23:49	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 35	53.2						
	Pace Analytica	l Services -	Melville						
Nitrite as N	<0.050	mg/L	0.	.050	1		10/28/22 21:53	3 14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	l Services -	Melville						
Nitrogen, Ammonia	3.8	mg/L	(0.10	1		11/01/22 12:11	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	l Services -	Melville						
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 22:04	7440-44-0	
9014 Cyanide, Total	Analytical Meth Pace Analytica		•	de Pre	paratio	n Method: EPA 9	9010C		
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	11/10/22 15:07	7 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: 12B	Lab ID: 702	34795010	Collected: 10/27/	22 08:55	Received: 10)/28/22 12:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Met	hod: EPA 60	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	al Services -	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:07	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:07	7440-43-9	
Calcium	17900	ug/L	200	1	11/07/22 08:58	11/07/22 18:07	7440-70-2	
ron	<100	ug/L	100	1	11/07/22 08:58	11/07/22 18:07	7439-89-6	
ead	<5.0	ug/L	5.0	1	11/07/22 08:58	11/07/22 18:07	7439-92-1	
Magnesium	5780	ug/L	200	1	11/07/22 08:58	11/07/22 18:07	7439-95-4	
Manganese	812	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:07	7439-96-5	
Potassium	8400	ug/L	5000	1		11/07/22 18:07		
Sodium	12500	ug/L	5000	1	11/07/22 08:58	11/07/22 18:07	7440-23-5	
120B W Apparent Color	Analytical Met	hod: SM22 2	2120B					
	Pace Analytica	al Services -	Melville					
Apparent Color	<5.0	units	5.0	1		10/31/22 13:39)	H1
H	6.3	Std. Units	0.10	1		10/31/22 13:39)	H1
2320B Alkalinity	Analytical Met	hod: SM22 2	2320B					
•	Pace Analytica	al Services -	Melville					
Alkalinity, Total as CaCO3	78.7	mg/L	1.0	1		11/10/22 16:36	i	
2340C Hardness, Total	Analytical Met	hod: SM22 2	2340C					
•	Pace Analytica	al Services -	Melville					
Tot Hardness asCaCO3 (SM 2340B	66.7	mg/L	5.0	1		11/10/22 18:27		
2540C Total Dissolved Solids	Analytical Met	hod: SM22 2	2540C					
10tal Dissolved Collas	Pace Analytica							
Total Dissolved Solids	150	mg/L	10.0	1		11/02/22 20:53		D6
		•		•		11/02/22 20:00	'	В0
Chromium, Hexavalent	Analytical Met							
	Pace Analytica					10/01/00 10 00	40540.00.0	1.10
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:09	18540-29-9	НЗ
110.4 COD	Analytical Met Pace Analytica		0.4 Preparation Me	thod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
		_						
5210B BOD, 5 day	Pace Analytical Met		5210B Preparation I Melville	viethod: 3	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:33	11/03/22 11:04		
300.0 IC Anions 28 Days	Analytical Met Pace Analytica							
Bromide	<0.50	mg/L	0.50	1		11/22/22 10:44	24050-67-0	
oronna6		•	0.50					
Chloride	20.8	mg/L	10.0	5		11/22/22 10:31	16887-00-6	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: 12B	Lab ID: 7023	34795010	Collected:	10/27/2	2 08:55	Received: 1	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	od: EPA 35	51.2 Prepara	ation Met	hod: EP	A 351.2			
	Pace Analytical	Services -	Melville						
Nitrogen, Kjeldahl, Total	3.5	mg/L		0.10	1	11/14/22 05:42	2 11/14/22 12:23	3 7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrate as N	1.4	mg/L		0.050	1		10/28/22 23:54	14797-55-8	
Nitrate-Nitrite (as N)	1.4	mg/L		0.050	1		10/28/22 23:54	4 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	od: EPA 35	53.2						
	Pace Analytical	Services -	Melville						
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 21:5	5 14797-65-0	
4500 Ammonia Water	Analytical Meth	od: SM22	4500 NH3 H						
	Pace Analytical	Services -	Melville						
Nitrogen, Ammonia	3.5	mg/L		0.10	1		11/01/22 12:12	7664-41-7	
5310B TOC as NPOC	Analytical Meth	od: SM22	5310B						
	Pace Analytical								
Total Organic Carbon	1.1	mg/L		1.0	1		11/02/22 22:38	3 7440-44-0	
9014 Cyanide, Total	Analytical Meth	od: EPA 90	014 Total Cya	anide Pr	eparatio	n Method: EPA	9010C		
-	Pace Analytical	Services -	Melville		•				
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	7 11/10/22 15:08	3 57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Date: 12/16/2022 11:25 AM

Pace Project No.: 70234795								
Sample: DUP001	Lab ID: 702	34795011	Collected: 10/27/	22 00:00	Received: 10)/28/22 12:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
010 MET ICP	Analytical Meth	hod: EPA 60°	10C Preparation M	ethod: El	PA 3005A			
	Pace Analytica	al Services - I	Melville					
Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:10	7440-38-2	
Cadmium	<2.5	ug/L	2.5	1	11/07/22 08:58	11/07/22 18:10	7440-43-9	
Calcium	20000	ug/L	200	1	11/07/22 08:58	11/07/22 18:10	7440-70-2	
on	4130	ug/L	100	1	11/07/22 08:58	11/07/22 18:10	7439-89-6	
ead	<5.0	ug/L	5.0	1		11/07/22 18:10		
/lagnesium	5850	ug/L	200	1		11/07/22 18:10		
Manganese	1710	ug/L	10.0	1		11/07/22 18:10		
Potassium	11500	ug/L	5000	1		11/07/22 18:10		
Sodium	34400	ug/L	5000	1	11/07/22 08:58	11/07/22 18:10	7440-23-5	
120B W Apparent Color	Analytical Meth	nod: SM22 2	120B					
	Pace Analytica	al Services - I	Melville					
Apparent Color	120	units	25.0	5		10/31/22 13:20)	H1
H	6.6	Std. Units	0.10	5		10/31/22 13:20)	H1
2320B Alkalinity	Analytical Meth	hod: SM22 2	320B					
,	Pace Analytica							
Ikalinity, Total as CaCO3	90.6	mg/L	1.0	1		11/10/22 16:44		
340C Hardness, Total	Analytical Meth Pace Analytica							
Tot Hardness asCaCO3 (SM 2340B	73.3	mg/L	5.0	1		11/10/22 18:29	1	
540C Total Dissolved Solids	Analytical Meth	hod: SM22.2	540C					
3340C Total Dissolved Solids	Pace Analytica							
otal Dissolved Solids	220	mg/L	20.0	1		11/02/22 20:54		
Chromium, Hexavalent	Analytical Meth Pace Analytica							
Chromium, Hexavalent	<0.020	mg/L	0.020	1		10/31/22 12:09	18540-29-9	НЗ
110.4 COD	Analytical Meth Pace Analytica		0.4 Preparation Me Melville	thod: EP	A 410.4			
Chemical Oxygen Demand	20.8	mg/L	10.0	1	11/11/22 05:35	11/11/22 07:48		
5210B BOD, 5 day	Analytical Metl Pace Analytica		210B Preparation Melville	Method:	SM22 5210B			
BOD, 5 day	<2.0	mg/L	2.0	1	10/29/22 06:36	11/03/22 11:06		H2
800.0 IC Anions 28 Days	Analytical Meth							
Bromide	<0.50	mg/L	0.50	1		11/22/22 10:58	24959-67-9	
Chloride	<2.0	mg/L	2.0	1		11/22/22 10:58		В
Sulfate	<5.0	mg/L	5.0	1		11/22/22 10:58		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: DUP001	Lab ID: 7023	34795011	Collected: 10	0/27/2	2 00:00	Received: 1	0/28/22 12:25 I	Matrix: Water	
Parameters	Results	Units	Report Li	imit _	DF	Prepared	Analyzed	CAS No.	Qual
351.2 Total Kjeldahl Nitrogen	Analytical Meth	nod: EPA 3	51.2 Preparatio	n Met	hod: EP	A 351.2			
	Pace Analytica	I Services	Melville						
Nitrogen, Kjeldahl, Total	0.53	mg/L	(0.10	1	11/14/22 05:42	11/14/22 12:25	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services	Melville						
Nitrate as N	0.24	mg/L	0.	.050	1		10/28/22 23:39	14797-55-8	
Nitrate-Nitrite (as N)	0.24	mg/L	0	.050	1		10/28/22 23:39	7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth	nod: EPA 3	53.2						
	Pace Analytica	I Services -	Melville						
Nitrite as N	<0.050	mg/L	0	.050	1		10/28/22 21:38	14797-65-0	
4500 Ammonia Water	Analytical Meth	nod: SM22	4500 NH3 H						
	Pace Analytica	I Services -	Melville						
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 12:13	7664-41-7	
5310B TOC as NPOC	Analytical Meth	nod: SM22	5310B						
	Pace Analytica	I Services	Melville						
Total Organic Carbon	4.4	mg/L		1.0	1		11/02/22 22:51	7440-44-0	
9014 Cyanide, Total	Analytical Meth	nod: EPA 9	014 Total Cyanio	de Pre	eparatio	n Method: EPA	9010C		
	Pace Analytica	I Services	Melville						
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	11/10/22 15:09	57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Analytical Method: EPA 6010C Preparation Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 3009A Pace Analytical Services - Method: EPA 500 Pace Analytical Services - Method: EPA 6010C Pace Anal	Sample: EB001	Lab ID: 702	34795012	Collected: 10/28/2	2 11:25	Received: 10)/28/22 12:25 I	Matrix: Water	
Pace Analytical Services - Melville	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Pace Analytical Services - Melville	6010 MET ICP	Analytical Meth	nod: EPA 60	110C Preparation Me	thod: El	PA 3005A			
Cadmium -2.5									
Cadmium Cadm	Arsenic	<10.0	ug/L	10.0	1	11/07/22 08:58	11/07/22 18:12	7440-38-2	
Agamium	Cadmium	<2.5	-	2.5	1	11/07/22 08:58	11/07/22 18:12	7440-43-9	
100	Calcium	<200	•	200	1	11/07/22 08:58	11/07/22 18:12	7440-70-2	
Lead	ron	<100	•	100	1	11/07/22 08:58	11/07/22 18:12	7439-89-6	
Alagnesium			•			11/07/22 08:58	11/07/22 18:12	7439-92-1	
Araganese			•						
Potentian Section Se	S		-						
Sedium S	_		•						
Analytical Method: EPA 6010C Pace Analytical Services - Melville Additivin, Dissolved 2.5 ug/L 2.5 1 10/31/22 14:06 7440-43-9 Calcium, Dissolved 200 ug/L 200 1 10/31/22 14:06 7440-70-2 Cron, Dissolved 400 ug/L 100 1 10/31/22 14:06 7439-89-6 Calcium, Dissolved 45.0 ug/L 5.0 1 10/31/22 14:06 7439-89-6 Calcium, Dissolved 45.0 ug/L 5.0 1 10/31/22 14:06 7439-89-6 Calcium, Dissolved 45.0 ug/L 5.0 1 10/31/22 14:06 7439-95-1 Calcium, Dissolved 45.0 ug/L 5.0 1 10/31/22 14:06 7439-95-1 Calcium, Dissolved 41.0 ug/L 10.0 1 10/31/22 14:06 7439-96-5 Cotassium, Dissolved 45.0 ug/L 5000 1 10/31/22 14:06 7439-96-5 Cotassium, Dissolved 45000 ug/L 5000 1 10/31/22 14:06 7440-09-7 Cotassium, Dissolved 45000 ug/L 5000 1 10/31/22 14:06 7440-09-7 Cotassium, Dissolved 45000 ug/L 5000 1 10/31/22 14:06 7440-09-7 Cotassium, Dissolved 45000 ug/L 5000 1 10/31/22 14:06 7440-09-7 Cotassium, Dissolved 45000 ug/L 5000 1 10/31/22 14:06 7440-93-5 Calcium, Dissolved 45000 ug/L 500 1 10/31/22 14:06 7440-93-5 Calcium, Dissolved 45000 ug/L 500 1 10/31/22 14:06 7440-93-5 Calcium, Dissolved 45000 ug/L 500 1 11/06/22 21:40 7440-93-5 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-43-2 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-97-5 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-97-5 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-97-5 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-97-5 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-97-5 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium, Dissolved 4500 ug/L 5.0 1 11/06/22 21:40 77-93-3 Calcium,	Sodium		-						
Pace Analytical Services - Melville 2.5	2010 MET ICP Discolved	Analytical Moth	_	1100					
Cadmium, Dissolved Cadmium	orto MET ICP, Dissolved								
Calcium, Dissolved Calcium		Ť							
ron, Dissolved	Cadmium, Dissolved	<2.5	ug/L	2.5	1		10/31/22 14:06	7440-43-9	
Lead, Dissolved	Calcium, Dissolved	<200	ug/L	200	1		10/31/22 14:06	7440-70-2	
Aggnesium, Dissolved	ron, Dissolved	<100	ug/L	100	1		10/31/22 14:06	7439-89-6	
Anaganese, Dissolved	_ead, Dissolved	<5.0	ug/L	5.0	1		10/31/22 14:06	7439-92-1	
Potassium, Dissolved Codium, Dissolved C	Magnesium, Dissolved	<200	ug/L	200	1		10/31/22 14:06	7439-95-4	
Sodium, Dissolved Sodi	Manganese, Dissolved	<10.0	ug/L	10.0	1		10/31/22 14:06	7439-96-5	
Analytical Method: EPA 8260C/5030C Pace Analytical Method: EPA 8260C/5030C Pace Analytical Services - Melville Services - Services - Melville Services - Melville Services - Melville Se	Potassium, Dissolved	<5000	ug/L	5000	1		10/31/22 14:06	7440-09-7	
Pace Analytical Services - Melville Serv	Sodium, Dissolved	<5000	•	5000	1		10/31/22 14:06	7440-23-5	
Pace Analytical Services - Melville Serv	3260C Volatile Organics	Analytical Meth	nod: EPA 82	260C/5030C					
Serve Serv	ū								
Serve Serv	Acetone	<5.0	ua/L	5.0	1		11/06/22 21:40	67-64-1	L1
Senzene			•						
Stromochloromethane Stromochloromethane	•		•						
Stromodichloromethane St. 0			-						
Stromoform Stromoform Stromoform Stromoform Stromoform Stromomethane Stromometha			•						
Stromomethane St.			•						
2-Butanone (MEK) 2-5.0 ug/L 2-arbon disulfide 3-5.0 ug/L 2-bit of tetrachloride 3-5.0 ug/L 3-5.0 ug/L 3-5.0 ug/L 3-5.0 ug/L 3-6.0 ug/L 3-6.0 ug/L 3-75-15-0			•						
Carbon disulfide <5.0 ug/L 5.0 1 11/06/22 21:40 75-15-0 Carbon tetrachloride <5.0 ug/L 5.0 1 11/06/22 21:40 56-23-5 Chlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 75-00-3 Chloroethane <5.0 ug/L 5.0 1 11/06/22 21:40 75-00-3 Chloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 75-00-3 Chloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 67-66-3 Chloromochloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-87-3 Q-Dibromochloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 124-48-1 Q-Dibromomethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 Q-Dibromomethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 Q-Dibromomethane <5.0 ug/L 5.			•						
Carbon tetrachloride <5.0 ug/L 5.0 1 11/06/22 21:40 56-23-5 Chlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 108-90-7 Chloroethane <5.0 ug/L 5.0 1 11/06/22 21:40 75-00-3 Chloroform <5.0 ug/L 5.0 1 11/06/22 21:40 67-66-3 Chloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 67-66-3 Chloromo-3-chloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 74-87-3 Q-Dibromo-3-chloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 96-12-8 Dibromochloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 124-48-1 Q-Dibromoethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 Q-Dibromoethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 Q-Dibromoethane <5.0 ug/L <	,		-						
Chlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 108-90-7 Chloroethane <5.0 ug/L 5.0 1 11/06/22 21:40 75-00-3 Chloroform <5.0 ug/L 5.0 1 11/06/22 21:40 67-66-3 Chloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 67-66-3 Chloromora-3-chloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 74-87-3 Je-Dibromo-3-chloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 74-87-3 Je-Dibromoethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 Je-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 Je-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 76-95-3 Je-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 76-95-3 Je-Dichlorobenzene <5.0 ug/L									
Chloroethane <5.0 ug/L 5.0 1 11/06/22 21:40 75-00-3 Chloroform <5.0 ug/L 5.0 1 11/06/22 21:40 67-66-3 Chloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-87-3 J.2-Dibromo-3-chloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 96-12-8 Dibromochloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 124-48-1 J.2-Dibromoethane (EDB) <5.0 ug/L 5.0 1 11/06/22 21:40 106-93-4 Dibromomethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 J.2-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 95-50-1 J.4-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 106-46-7 Trans-1,4-Dichloro-2-butene <5.0 ug/L 5.0 1 11/06/22 21:40 106-76-8			•		1				
Chloroform <5.0 ug/L 5.0 1 11/06/22 21:40 67-66-3 Chloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-87-3 1,2-Dibromo-3-chloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 96-12-8 Dibromochloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 124-48-1 1,2-Dibromoethane (EDB) <5.0 ug/L 5.0 1 11/06/22 21:40 106-93-4 Dibromomethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 1,2-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 95-50-1 1,4-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 106-46-7 rans-1,4-Dichloro-2-butene <5.0 ug/L 5.0 1 11/06/22 21:40 110-57-6			•		1				
Chloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-87-3 1,2-Dibromo-3-chloropropane <5.0									
,2-Dibromo-3-chloropropane <5.0									
Dibromochloromethane <5.0 ug/L 5.0 1 11/06/22 21:40 124-48-1 1,2-Dibromoethane (EDB) <5.0 ug/L 5.0 1 11/06/22 21:40 106-93-4 Dibromomethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 1,2-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 95-50-1 1,4-Dichlorobenzene <5.0 ug/L 5.0 1 11/06/22 21:40 106-46-7 rans-1,4-Dichloro-2-butene <5.0 ug/L 5.0 1 11/06/22 21:40 110-57-6									
,2-Dibromoethane (EDB) <5.0			_						
Dibromomethane <5.0 ug/L 5.0 1 11/06/22 21:40 74-95-3 1,2-Dichlorobenzene <5.0			_						
,2-Dichlorobenzene <5.0	1,2-Dibromoethane (EDB)		ug/L		1				
,4-Dichlorobenzene <5.0	Dibromomethane	<5.0	-	5.0	1				
rans-1,4-Dichloro-2-butene <5.0 ug/L 5.0 1 11/06/22 21:40 110-57-6	1,2-Dichlorobenzene	<5.0	ug/L	5.0	1		11/06/22 21:40	95-50-1	
· ·	,4-Dichlorobenzene	<5.0	ug/L	5.0	1		11/06/22 21:40	106-46-7	
· ·	trans-1,4-Dichloro-2-butene	<5.0	ug/L	5.0	1		11/06/22 21:40	110-57-6	
	1,1-Dichloroethane		ug/L						

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

1,2,3-Trichloropropane <5.0 ug/L 5.0 1 11/06/22 21:40 96-18-4 Vinyl acetate <5.0 ug/L 5.0 1 11/06/22 21:40 108-05-4 v3 Vinyl chloride <5.0 ug/L 5.0 1 11/06/22 21:40 75-01-4 x30-20-7 Xylene (Total) <5.0 ug/L 5.0 1 11/06/22 21:40 1330-20-7 340-20-1 330-20-7 340-20-1 340-20-2 340-20-1 340-20-1 <t< th=""><th>Sample: EB001</th><th>Lab ID: 702</th><th>34795012</th><th>Collected: 10/28/2</th><th>22 11:25</th><th>Received:</th><th>10/28/22 12:25</th><th>Matrix: Water</th><th></th></t<>	Sample: EB001	Lab ID: 702	34795012	Collected: 10/28/2	22 11:25	Received:	10/28/22 12:25	Matrix: Water	
Pace Analytical Services - Melville	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2-Dichloroethane	3260C Volatile Organics	Analytical Met	hod: EPA 82	60C/5030C					
1.4-Dichloroethene		Pace Analytica	al Services -	Melville					
1	1,2-Dichloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	0 107-06-2	
Trans-1,2-Dichloroethene	1,1-Dichloroethene	<5.0	_	5.0	1		11/06/22 21:40	75-35-4	
Tans-1,2-Dichloroethene	cis-1,2-Dichloroethene	<5.0	-	5.0	1		11/06/22 21:40	156-59-2	
Sist_1,3-Dichloropropene	rans-1,2-Dichloroethene	<5.0	ug/L	5.0	1		11/06/22 21:40	156-60-5	
rans-1,3-Dichloropropene	1,2-Dichloropropane	<5.0	ug/L	5.0	1		11/06/22 21:40	78-87-5	
Ethylbenzene	cis-1,3-Dichloropropene	<5.0	ug/L	5.0	1		11/06/22 21:40	10061-01-5	
2-Hexanone	rans-1,3-Dichloropropene	<5.0	ug/L	5.0	1		11/06/22 21:40	10061-02-6	
Apparent Color Appa	Ethylbenzene	<5.0	ug/L	5.0	1		11/06/22 21:40	100-41-4	
Methylene Chloride	2-Hexanone	<5.0	ug/L	5.0	1		11/06/22 21:40	591-78-6	
#Methyl-2-pentanone (MIBK)	odomethane	<5.0	ug/L	5.0	1		11/06/22 21:40	74-88-4	
Styrene	Methylene Chloride	5.0	ug/L	5.0	1		11/06/22 21:40	75-09-2	
1,1,2-Tetrachloroethane	1-Methyl-2-pentanone (MIBK)	<5.0	ug/L	5.0	1		11/06/22 21:40	108-10-1	
1,1,2,2-Tetrachloroethane	Styrene	<5.0	ug/L	5.0	1		11/06/22 21:40	100-42-5	
Tetrachloroethene	1,1,1,2-Tetrachloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	630-20-6	
Toluene	,1,2,2-Tetrachloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	79-34-5	
1,1-Trichloroethane	etrachloroethene	<5.0	ug/L	5.0	1		11/06/22 21:40	127-18-4	
1,1,2-Trichloroethane	Toluene Toluene	<5.0	ug/L	5.0	1		11/06/22 21:40	108-88-3	
Trichloroethene	,1,1-Trichloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	71-55-6	
Trichlorofluoromethane	,1,2-Trichloroethane	<5.0	ug/L	5.0	1		11/06/22 21:40	79-00-5	
2,3-Trichloropropane	Trichloroethene	<5.0	ug/L	5.0	1		11/06/22 21:40	79-01-6	
Viny acetate	Trichlorofluoromethane	<5.0	ug/L	5.0	1		11/06/22 21:40	75-69-4	L1
Vinyl chloride	1,2,3-Trichloropropane	<5.0	ug/L	5.0	1		11/06/22 21:40	96-18-4	
Apparent Color Source So	/inyl acetate	<5.0	ug/L	5.0	1		11/06/22 21:40	108-05-4	v3
11	/inyl chloride	<5.0	ug/L	5.0	1		11/06/22 21:40	75-01-4	
1,2-Dichloroethane-d4 (S) 111 % 81-122 1 11/06/22 21:40 17060-07-0 14-Bromofluorobenzene (S) 192 % 79-118 1 11/06/22 21:40 460-00-4 15 Toluene-d8 (S) 104 % 82-122 1 11/06/22 21:40 2037-26-5 TIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville TIC Search No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Analytical Services - Melville Apparent Color Std. Units 5.0 1 10/31/22 14:00 H 5.6 Std. Units 0.10 1 10/31/22 14:00 H 4320B Alkalinity Analytical Method: SM22 2320B	(Ylene (Total)	<5.0	ug/L	5.0	1		11/06/22 21:40	1330-20-7	
## Bromofluorobenzene (S) 92 % 79-118 1 11/06/22 21:40 460-00-4 Foluene-d8 (S) 104 % 82-122 1 11/06/22 21:40 2037-26-5 FIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville FIC Search No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Analytical Services - Melville 45.0 units 5.0 1 10/31/22 14:00 H 5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B	Surrogates								
Toluene-d8 (S) 104 % 82-122 1 11/06/22 21:40 2037-26-5 TIC MSV Water Analytical Method: EPA 8260 Pace Analytical Services - Melville TIC Search No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color	1,2-Dichloroethane-d4 (S)	111		81-122	1		11/06/22 21:40	17060-07-0	
Analytical Method: EPA 8260 Pace Analytical Services - Melville FIC Search No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color Apparent Color	1-Bromofluorobenzene (S)			79-118	1		11/06/22 21:40) 460-00-4	
Pace Analytical Services - Melville No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color	Toluene-d8 (S)	104	%	82-122	1		11/06/22 21:40	2037-26-5	
Pace Analytical Services - Melville No TIC's Found Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color	FIC MSV Water	Analytical Met	hod: EPA 82	60					
Found 2120B W Apparent Color Analytical Method: SM22 2120B Pace Analytical Services - Melville Apparent Color <5.0 units 5.0 1 10/31/22 14:00 H OH 5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B		•							
Pace Analytical Services - Melville Apparent Color <5.0 units 5.0 1 10/31/22 14:00 H 5.6 Std. Units 0.10 1 10/31/22 14:00 H 2320B Alkalinity Analytical Method: SM22 2320B	ΓIC Search				1		11/07/22 18:59)	
5.6 Std. Units 0.10 1 10/31/22 14:00 Hogge 2320B Alkalinity Analytical Method: SM22 2320B	2120B W Apparent Color	· ·							
5.6 Std. Units 0.10 1 10/31/22 14:00 Hogge 2320B Alkalinity Analytical Method: SM22 2320B	Apparent Color	<5.0	units	5.0	1		10/31/22 14:00)	H1
·	• •								H1
	2320B Alkalinity								
Alkalinity, Total as CaCO3	Alkalinity, Total as CaCO3	<1.0	mg/L	1.0	1		11/10/22 16:48	3	

ANALYTICAL RESULTS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Sample: EB001	Lab ID: 7023	34795012	Collected:	10/28/2	2 11:25	Received: 10	0/28/22 12:25	Matrix: Water	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical Meth								
Total Dissolved Solids	<10.0	mg/L		10.0	1		11/03/22 18:56	5	
Chromium, Hexavalent	Analytical Meth Pace Analytica								
Chromium, Hexavalent	<0.020	mg/L		0.020	1		10/31/22 12:10	18540-29-9	H1
410.4 COD	Analytical Meth Pace Analytica			tion Met	hod: EP	A 410.4			
Chemical Oxygen Demand	<10.0	mg/L		10.0	1	11/11/22 05:35	11/11/22 07:48	1	
5210B BOD, 5 day	Analytical Meth Pace Analytica			aration M	1ethod: \$	SM22 5210B			
BOD, 5 day	<2.0	mg/L		2.0	1	10/29/22 09:03	11/03/22 11:21		
300.0 IC Anions 28 Days	Analytical Meth Pace Analytica								
Bromide	<0.50	mg/L		0.50	1		11/22/22 11:11		
Chloride Sulfate	21.3 27.8	mg/L mg/L		2.0 5.0	1 1		11/22/22 11:11 11/22/22 11:11		
351.2 Total Kjeldahl Nitrogen	Analytical Meth Pace Analytica	od: EPA 35		tion Met	hod: EP	A 351.2			
Nitrogen, Kjeldahl, Total	0.11	mg/L		0.10	1	11/14/22 05:42	11/14/22 12:26	7727-37-9	
353.2 Nitrogen, NO2/NO3 unpres	Analytical Meth Pace Analytica								
Nitrate as N	<0.050	mg/L		0.050	1		10/29/22 00:47		
Nitrate-Nitrite (as N)	<0.050	mg/L		0.050	1		10/29/22 00:47	7 7727-37-9	
353.2 Nitrogen, NO2	Analytical Meth Pace Analytica								
Nitrite as N	<0.050	mg/L		0.050	1		10/28/22 22:5	14797-65-0	
4500 Ammonia Water	Analytical Meth Pace Analytica								
Nitrogen, Ammonia	<0.10	mg/L		0.10	1		11/01/22 12:14	7664-41-7	
5310B TOC as NPOC	Analytical Meth Pace Analytica								
Total Organic Carbon	<1.0	mg/L		1.0	1		11/02/22 23:01	7440-44-0	
9014 Cyanide, Total	Analytical Meth Pace Analytica		-	nide Pr	eparatio	n Method: EPA 9	9010C		
Cyanide	<10.0	ug/L		10.0	1	11/10/22 13:07	11/10/22 15:10	57-12-5	

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280006 Analysis Method: EPA 6010C

QC Batch Method: EPA 6010C Analysis Description: 6010 MET Dissolved

> Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1415386 Matrix: Water

Associated Lab Samples: 70234795012

LABORATORY CONTROL SAMPLE:

Date: 12/16/2022 11:25 AM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Cadmium, Dissolved	ug/L	<2.5	2.5	10/31/22 13:55	
Calcium, Dissolved	ug/L	<200	200	10/31/22 13:55	
Iron, Dissolved	ug/L	<100	100	10/31/22 13:55	
Lead, Dissolved	ug/L	<5.0	5.0	10/31/22 13:55	
Magnesium, Dissolved	ug/L	<200	200	10/31/22 13:55	
Manganese, Dissolved	ug/L	<10.0	10.0	10/31/22 13:55	
Potassium, Dissolved	ug/L	<5000	5000	10/31/22 13:55	
Sodium, Dissolved	ug/L	<5000	5000	10/31/22 13:55	

2,20,11,0,11,00,11,10		
	Spike	LCS

1415387

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Cadmium, Dissolved	ug/L	500	511	102	80-120	
Calcium, Dissolved	ug/L	25000	26400	106	80-120	
Iron, Dissolved	ug/L	12500	12700	101	80-120	
Lead, Dissolved	ug/L	500	502	100	80-120	
Magnesium, Dissolved	ug/L	25000	25800	103	80-120	
Manganese, Dissolved	ug/L	500	501	100	80-120	
Potassium, Dissolved	ug/L	25000	24600	98	80-120	
Sodium, Dissolved	ug/L	25000	25800	103	80-120	

MATRIX SPIKE SAMPLE:	1415389						
Parameter	Units	70234795012 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Cadmium, Dissolved	 ug/L	<2.5	500	498	100	75-125	
Calcium, Dissolved	ug/L	<200	25000	25300	101	75-125	
Iron, Dissolved	ug/L	<100	12500	12000	96	75-125	
Lead, Dissolved	ug/L	<5.0	500	473	95	75-125	
Magnesium, Dissolved	ug/L	<200	25000	24700	99	75-125	
Manganese, Dissolved	ug/L	<10.0	500	486	97	75-125	
Potassium, Dissolved	ug/L	<5000	25000	24200	94	75-125	
Sodium, Dissolved	ug/L	<5000	25000	24800	99	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1415388 70234795012 Dup RPD Parameter Units Result Result Qualifiers <2.5 Cadmium, Dissolved ug/L <2.5 <200 Calcium, Dissolved ug/L <200 <100 Iron, Dissolved ug/L <100 Lead, Dissolved ug/L < 5.0 < 5.0 Magnesium, Dissolved ug/L <200 <200 Manganese, Dissolved ug/L <10.0 <10.0 <5000 <5000 Potassium, Dissolved ug/L Sodium, Dissolved ug/L <5000 <5000

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280521 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007

METHOD BLANK: 1418204 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	ug/L	<10.0	10.0	11/05/22 12:51	
Cadmium	ug/L	<2.5	2.5	11/05/22 12:51	
Calcium	ug/L	<200	200	11/05/22 12:51	
Iron	ug/L	<100	100	11/05/22 12:51	
Lead	ug/L	<5.0	5.0	11/05/22 12:51	
Magnesium	ug/L	<200	200	11/05/22 12:51	
Manganese	ug/L	<10.0	10.0	11/05/22 12:51	
Potassium	ug/L	<5000	5000	11/05/22 12:51	
Sodium	ug/L	<5000	5000	11/05/22 12:51	

LABORATORY CONTROL SAMPLE: 14	418205
-------------------------------	--------

Date: 12/16/2022 11:25 AM

5 .	11.5	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	464	93	80-120	
Cadmium	ug/L	500	489	98	80-120	
Calcium	ug/L	25000	24600	98	80-120	
Iron	ug/L	12500	12100	97	80-120	
Lead	ug/L	500	498	100	80-120	
Magnesium	ug/L	25000	24200	97	80-120	
Manganese	ug/L	500	477	95	80-120	
Potassium	ug/L	25000	22500	90	80-120	
Sodium	ug/L	25000	24500	98	80-120	

MATRIX SPIKE SAMPLE:	1419231						
		30528090005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	 ug/L	ND	500	464	91	75-125	
Cadmium	ug/L	ND	500	479	96	75-125	
Calcium	ug/L	86700	12500	101000	114	75-125	
Iron	ug/L	403	5000	5180	96	75-125	
Lead	ug/L	ND	500	490	98	75-125	
Magnesium	ug/L	11200	12500	23100	95	75-125	
Manganese	ug/L	62.0	500	533	94	75-125	
Potassium	ug/L	9880	12500	21300	91	75-125	
Sodium	ug/L	10700	12500	24700	112	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Sodium

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1419230 30528090005 Dup RPD Parameter Units Result Result Qualifiers ND Arsenic ug/L <10.0 ND Cadmium ug/L <2.5 86700 88800 2 Calcium ug/L Iron ug/L 403 399 1 Lead ug/L ND <5.0 Magnesium ug/L 11200 11300 1 ug/L 62.0 2 Manganese 63.1 Potassium ug/L 9880 9970 1

ug/L

10700

10500

2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Sodium

Date: 12/16/2022 11:25 AM

QC Batch: 280951 Analysis Method: EPA 6010C
QC Batch Method: EPA 3005A Analysis Description: 6010 MET Water

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

METHOD BLANK: 1420287 Matrix: Water

Associated Lab Samples: 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	ug/L	<10.0	10.0	11/07/22 17:38	
Cadmium	ug/L	<2.5	2.5	11/07/22 17:38	
Calcium	ug/L	<200	200	11/07/22 17:38	
Iron	ug/L	<100	100	11/07/22 17:38	
Lead	ug/L	<5.0	5.0	11/07/22 17:38	
Magnesium	ug/L	<200	200	11/07/22 17:38	
Manganese	ug/L	<10.0	10.0	11/07/22 17:38	
Potassium	ug/L	<5000	5000	11/07/22 17:38	
Sodium	ug/L	<5000	5000	11/07/22 17:38	

LABORATORY CONTROL SAMPLE:	1420288					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	500	479	96	80-120	
Cadmium	ug/L	500	491	98	80-120	
Calcium	ug/L	25000	24800	99	80-120	
Iron	ug/L	12500	11900	95	80-120	
Lead	ug/L	500	497	99	80-120	
Magnesium	ug/L	25000	24300	97	80-120	
Manganese	ug/L	500	488	98	80-120	
Potassium	ua/L	25000	23800	95	80-120	

25000

ug/L

MATRIX SPIKE SAMPLE:	1420290						
		70234886005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	<10.0	500	499	99	75-125	
Cadmium	ug/L	<2.5	500	506	101	75-125	
Calcium	ug/L	117000	12500	144000	216	75-125	M1
Iron	ug/L	174	5000	5330	103	75-125	
Lead	ug/L	<5.0	500	506	101	75-125	
Magnesium	ug/L	20300	12500	35700	123	75-125	
Manganese	ug/L	<10.0	500	512	101	75-125	
Potassium	ug/L	<5000	12500	14600	108	75-125	
Sodium	ug/L	< 5000	12500	16600	118	75-125	

25100

100

80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1420289 70234886005 Dup RPD Parameter Units Result Result Qualifiers <10.0 Arsenic ug/L <10.0 <2.5 Cadmium ug/L <2.5 117000 120000 Calcium ug/L 3 Iron ug/L 174 175 1 Lead ug/L < 5.0 <5.0 Magnesium ug/L 20300 20600 1 Manganese ug/L <10.0 <10.0 Potassium ug/L <5000 <5000 <5000 Sodium ug/L <5000

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 279850 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795001, 70234795002

METHOD BLANK: 1414731 Matrix: Water

Associated Lab Samples: 70234795001, 70234795002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1,1-Trichloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1,2-Trichloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1-Dichloroethane	ug/L	<5.0	5.0	10/28/22 15:35	
1,1-Dichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
1,2,3-Trichloropropane	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dichlorobenzene	ug/L	< 5.0	5.0	10/28/22 15:35	
1,2-Dichloroethane	ug/L	< 5.0	5.0	10/28/22 15:35	
1,2-Dichloropropane	ug/L	< 5.0	5.0	10/28/22 15:35	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	10/28/22 15:35	
2-Butanone (MEK)	ug/L	<5.0	5.0	10/28/22 15:35	
2-Hexanone	ug/L	< 5.0	5.0	10/28/22 15:35	
4-Methyl-2-pentanone (MIBK)	ug/L	< 5.0	5.0	10/28/22 15:35	
Acetone	ug/L	< 5.0	5.0	10/28/22 15:35	
Acrylonitrile	ug/L	< 5.0	5.0	10/28/22 15:35	
Benzene	ug/L	< 5.0	5.0	10/28/22 15:35	
Bromochloromethane	ug/L	<5.0	5.0	10/28/22 15:35	
Bromodichloromethane	ug/L	<5.0	5.0	10/28/22 15:35	
Bromoform	ug/L	< 5.0	5.0	10/28/22 15:35	
Bromomethane	ug/L	<5.0	5.0	10/28/22 15:35	
Carbon disulfide	ug/L	<5.0	5.0	10/28/22 15:35	v3
Carbon tetrachloride	ug/L	<5.0	5.0	10/28/22 15:35	
Chlorobenzene	ug/L	<5.0	5.0	10/28/22 15:35	
Chloroethane	ug/L	< 5.0	5.0	10/28/22 15:35	
Chloroform	ug/L	<5.0	5.0	10/28/22 15:35	
Chloromethane	ug/L	< 5.0	5.0	10/28/22 15:35	v3
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
cis-1,3-Dichloropropene	ug/L	<5.0	5.0	10/28/22 15:35	
Dibromochloromethane	ug/L	< 5.0	5.0	10/28/22 15:35	
Dibromomethane	ug/L	<5.0	5.0	10/28/22 15:35	
Ethylbenzene	ug/L	< 5.0	5.0	10/28/22 15:35	
Iodomethane	ug/L	<5.0	5.0	10/28/22 15:35	
Methylene Chloride	ug/L	<5.0	5.0	10/28/22 15:35	
Styrene	ug/L	<5.0	5.0	10/28/22 15:35	
Tetrachloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
Toluene	ug/L	<5.0	5.0	10/28/22 15:35	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

METHOD BLANK: 1414731 Matrix: Water

Associated Lab Samples: 70234795001, 70234795002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	10/28/22 15:35	
trans-1,4-Dichloro-2-butene	ug/L	< 5.0	5.0	10/28/22 15:35	v3
Trichloroethene	ug/L	<5.0	5.0	10/28/22 15:35	
Trichlorofluoromethane	ug/L	<5.0	5.0	10/28/22 15:35	
Vinyl acetate	ug/L	<5.0	5.0	10/28/22 15:35	
Vinyl chloride	ug/L	<5.0	5.0	10/28/22 15:35	v3
Xylene (Total)	ug/L	<5.0	5.0	10/28/22 15:35	
1,2-Dichloroethane-d4 (S)	%	102	81-122	10/28/22 15:35	
4-Bromofluorobenzene (S)	%	93	79-118	10/28/22 15:35	
Toluene-d8 (S)	%	99	82-122	10/28/22 15:35	

LABORATORY CONTROL SAMPLE:	1414732					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		50.9	102	75-122	
1,1,1-Trichloroethane	ug/L	50	50.9	102	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	53.1	106	70-127	
1,1,2-Trichloroethane	ug/L	50	56.8	114	81-119	
1,1-Dichloroethane	ug/L	50	49.6	99	72-126	
1,1-Dichloroethene	ug/L	50	42.7	85	66-133	
1,2,3-Trichloropropane	ug/L	50	52.0	104	69-120	
1,2-Dibromo-3-chloropropane	ug/L	50	46.1	92	47-133	
1,2-Dibromoethane (EDB)	ug/L	50	52.7	105	81-123	
1,2-Dichlorobenzene	ug/L	50	51.0	102	80-117	
1,2-Dichloroethane	ug/L	50	55.4	111	69-134	
1,2-Dichloropropane	ug/L	50	54.3	109	75-125	
1,4-Dichlorobenzene	ug/L	50	48.9	98	80-117	
2-Butanone (MEK)	ug/L	50	68.7	137	33-165 I	H,v1
2-Hexanone	ug/L	50	50.4	101	50-128	
4-Methyl-2-pentanone (MIBK)	ug/L	50	51.4	103	62-131	
Acetone	ug/L	50	47.6	95	14-156 v	′ 1
Acrylonitrile	ug/L	50	50.5	101	60-136	
Benzene	ug/L	50	56.0	112	78-117	
Bromochloromethane	ug/L	50	47.1	94	77-122	
Bromodichloromethane	ug/L	50	57.9	116	80-123	
Bromoform	ug/L	50	56.0	112	49-138	
Bromomethane	ug/L	50	48.1	96	10-143	
Carbon disulfide	ug/L	50	38.8	78	66-133 v	/3
Carbon tetrachloride	ug/L	50	48.0	96	64-135	
Chlorobenzene	ug/L	50	51.9	104	79-117	
Chloroethane	ug/L	50	51.7	103	31-156	
Chloroform	ug/L	50	52.7	105	79-123	
Chloromethane	ug/L	50	32.0	64	39-116 v	′ 3
cis-1,2-Dichloroethene	ug/L	50	48.3	97	77-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

LABORATORY CONTROL SAMPLE:	1414732	0 "			0/ 5	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualifiers
cis-1,3-Dichloropropene	ug/L	50	52.3	105	78-131	
Dibromochloromethane	ug/L	50	58.5	117	65-123	
Dibromomethane	ug/L	50	53.3	107	81-123	
Ethylbenzene	ug/L	50	50.8	102	79-115	
odomethane	ug/L	50	40.0	80	10-183	
Methylene Chloride	ug/L	50	45.0	90	67-123	
Styrene	ug/L	50	55.3	111	82-121	
etrachloroethene	ug/L	50	53.9	108	65-120	
oluene	ug/L	50	53.4	107	80-114	
rans-1,2-Dichloroethene	ug/L	50	43.6	87	74-123	
rans-1,3-Dichloropropene	ug/L	50	50.0	100	73-135	
ans-1,4-Dichloro-2-butene	ug/L	50	38.6	77	52-137 v	3
richloroethene	ug/L	50	54.1	108	79-115	
richlorofluoromethane	ug/L	50	56.2	112	51-136	
inyl acetate	ug/L	50	38.8	78	49-136	
/inyl chloride	ug/L	50	38.0	76	49-118 v	3
Kylene (Total)	ug/L	150	155	103	80-118	
,2-Dichloroethane-d4 (S)	%			103	81-122	
I-Bromofluorobenzene (S)	%			97	79-118	
oluene-d8 (S)	%			98	82-122	

MATRIX SPIKE SAMPLE:	1415187						
		70233766011	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits Q	ualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	50	49.7	99	65-122	
1,1,1-Trichloroethane	ug/L	<1.0	50	51.7	103	72-123	
1,1,2,2-Tetrachloroethane	ug/L	<1.0	50	53.4	107	64-133	
1,1,2-Trichloroethane	ug/L	<1.0	50	58.0	116	78-120	
1,1-Dichloroethane	ug/L	<1.0	50	52.7	105	70-124	
1,1-Dichloroethene	ug/L	<1.0	50	46.4	93	61-139	
1,2,3-Trichloropropane	ug/L	<1.0	50	51.7	103	64-120	
1,2-Dibromo-3-chloropropane	ug/L	<1.0	50	46.7	93	32-137	
1,2-Dibromoethane (EDB)	ug/L	<1.0	50	52.7	105	78-121	
1,2-Dichlorobenzene	ug/L	<1.0	50	52.1	104	75-120	
1,2-Dichloroethane	ug/L	<1.0	50	57.6	115	58-138	
1,2-Dichloropropane	ug/L	<1.0	50	56.5	113	74-122	
1,4-Dichlorobenzene	ug/L	<1.0	50	50.4	101	76-118	
2-Butanone (MEK)	ug/L	<5.0	50	63.8	128	33-148 IH,v	1
2-Hexanone	ug/L	<5.0	50	48.3	97	49-124	
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	50	51.6	103	60-136	
Acetone	ug/L	2.0J	50	33.6	63	35-112 v1	
Acrylonitrile	ug/L	<1.0	50	49.1	98	45-132	
Benzene	ug/L	<1.0	50	57.7	115	70-130	
Bromochloromethane	ug/L	<1.0	50	49.7	99	70-122	
Bromodichloromethane	ug/L	<1.0	50	57.1	114	74-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

MATRIX SPIKE SAMPLE:	1415187						
		70233766011	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/L	<1.0	50	51.9	104	39-139	
Bromomethane	ug/L	<1.0	50	48.4	97	10-130	
Carbon disulfide	ug/L	<1.0	50	40.5	81	60-129 v	3
Carbon tetrachloride	ug/L	<1.0	50	47.3	95	56-143	
Chlorobenzene	ug/L	<1.0	50	52.8	106	74-122	
Chloroethane	ug/L	<1.0	50	60.0	120	35-146	
Chloroform	ug/L	<1.0	50	54.7	109	71-129	
Chloromethane	ug/L	<1.0	50	34.9	70	29-112 v	3
cis-1,2-Dichloroethene	ug/L	<1.0	50	49.7	99	73-129	
cis-1,3-Dichloropropene	ug/L	<1.0	50	50.9	102	67-130	
Dibromochloromethane	ug/L	<1.0	50	57.2	114	55-126	
Dibromomethane	ug/L	<1.0	50	53.9	108	71-127	
Ethylbenzene	ug/L	<1.0	50	51.8	104	70-126	
odomethane	ug/L	<4.0	50	46.7	93	10-167	
Methylene Chloride	ug/L	<1.0	50	45.6	91	69-117	
Styrene	ug/L	<1.0	50	55.8	112	79-123	
Tetrachloroethene	ug/L	<1.0	50	53.7	107	64-124	
Toluene	ug/L	<1.0	50	54.3	109	76-123	
rans-1,2-Dichloroethene	ug/L	<1.0	50	47.4	95	69-127	
rans-1,3-Dichloropropene	ug/L	<1.0	50	47.7	95	61-130	
rans-1,4-Dichloro-2-butene	ug/L	<1.0	50	40.5	81	18-144 v	3
Trichloroethene	ug/L	<1.0	50	55.2	110	73-125	
Trichlorofluoromethane	ug/L	<1.0	50	59.7	119	59-129	
Vinyl acetate	ug/L	<1.0	50	38.9	78	34-123	
Vinyl chloride	ug/L	<1.0	50	41.2	82	33-127 v	3
Kylene (Total)	ug/L	<3.0	150	157	105	78-123	
1,2-Dichloroethane-d4 (S)	%				107	81-122	
4-Bromofluorobenzene (S)	%				98	79-118	
Toluene-d8 (S)	%				97	82-122	

SAMPLE DUPLICATE: 1415186	SAMPI	_E D	UPL	ICAT	E:	14151	86
---------------------------	-------	------	-----	------	----	-------	----

Date: 12/16/2022 11:25 AM

		70233766013	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<1.0	<5.0		
1,1,1-Trichloroethane	ug/L	<1.0	< 5.0		
1,1,2,2-Tetrachloroethane	ug/L	<1.0	< 5.0		
1,1,2-Trichloroethane	ug/L	<1.0	< 5.0		
1,1-Dichloroethane	ug/L	4.2	5.0	5	
1,1-Dichloroethene	ug/L	<1.0	< 5.0		
1,2,3-Trichloropropane	ug/L	<1.0	< 5.0		
1,2-Dibromo-3-chloropropane	ug/L	<1.0	< 5.0		
1,2-Dibromoethane (EDB)	ug/L	<1.0	< 5.0		
1,2-Dichlorobenzene	ug/L	<1.0	< 5.0		
1,2-Dichloroethane	ug/L	<1.0	<5.0		
1,2-Dichloropropane	ug/L	<1.0	<5.0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1415186					
_		70233766013	Dup		_
Parameter	Units	Result	Result	RPD	Qualifiers
,4-Dichlorobenzene	ug/L	<1.0	<5.0		
-Butanone (MEK)	ug/L	<5.0	<5.0		
Hexanone	ug/L	<5.0	<5.0		
Methyl-2-pentanone (MIBK)	ug/L	<5.0	<5.0		
etone	ug/L	<5.0	<5.0		
ylonitrile	ug/L	<1.0	<5.0		
nzene	ug/L	<1.0	<5.0		
mochloromethane	ug/L	<1.0	<5.0		
modichloromethane	ug/L	<1.0	<5.0		
moform	ug/L	<1.0	<5.0		
momethane	ug/L	<1.0	<5.0		
bon disulfide	ug/L	<1.0	<5.0		v3
bon tetrachloride	ug/L	<1.0	<5.0		
orobenzene	ug/L	<1.0	<5.0		
oroethane	ug/L	<1.0	<5.0		
proform	ug/L	<1.0	<5.0		
romethane	ug/L	<1.0	<5.0		v3
,2-Dichloroethene	ug/L	4.5	5.0		7
,3-Dichloropropene	ug/L	<1.0	<5.0		
mochloromethane	ug/L	<1.0	<5.0		
momethane	ug/L	<1.0	<5.0		
benzene	ug/L	<1.0	<5.0		
nethane	ug/L	<4.0	<5.0		
nylene Chloride	ug/L	<1.0	<5.0		
ene	ug/L	<1.0	<5.0		
achloroethene	ug/L	5.5	5.4		3
ene	ug/L	<1.0	<5.0		
s-1,2-Dichloroethene	ug/L	<1.0	<5.0		
s-1,3-Dichloropropene	ug/L	<1.0	<5.0		
s-1,4-Dichloro-2-butene	ug/L	<1.0	<5.0		v3
nloroethene	ug/L	9.7	9.1		7
nlorofluoromethane	ug/L	<1.0	<5.0		
l acetate	ug/L	<1.0	<5.0		
l chloride	ug/L	<1.0	<5.0		v3
ene (Total)	ug/L	<3.0	<5.0		
Dichloroethane-d4 (S)	%	106	105		
romofluorobenzene (S)	%	92	91		
ene-d8 (S)	%	97	96		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 280925 Analysis Method: EPA 8260C/5030C

QC Batch Method: EPA 8260C/5030C Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1420207 Matrix: Water

Associated Lab Samples: 70234795012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1,1-Trichloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1,2,2-Tetrachloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1,2-Trichloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1-Dichloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,1-Dichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
1,2,3-Trichloropropane	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dibromo-3-chloropropane	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dibromoethane (EDB)	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dichlorobenzene	ug/L	< 5.0	5.0	11/06/22 12:58	
1,2-Dichloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dichloropropane	ug/L	<5.0	5.0	11/06/22 12:58	
1,4-Dichlorobenzene	ug/L	<5.0	5.0	11/06/22 12:58	
2-Butanone (MEK)	ug/L	<5.0	5.0	11/06/22 12:58	
2-Hexanone	ug/L	< 5.0	5.0	11/06/22 12:58	
4-Methyl-2-pentanone (MIBK)	ug/L	< 5.0	5.0	11/06/22 12:58	
Acetone	ug/L	< 5.0	5.0	11/06/22 12:58	
Acrylonitrile	ug/L	< 5.0	5.0	11/06/22 12:58	
Benzene	ug/L	< 5.0	5.0	11/06/22 12:58	
Bromochloromethane	ug/L	< 5.0	5.0	11/06/22 12:58	
Bromodichloromethane	ug/L	< 5.0	5.0	11/06/22 12:58	
Bromoform	ug/L	< 5.0	5.0	11/06/22 12:58	
Bromomethane	ug/L	<5.0	5.0	11/06/22 12:58	
Carbon disulfide	ug/L	<5.0	5.0	11/06/22 12:58	
Carbon tetrachloride	ug/L	<5.0	5.0	11/06/22 12:58	
Chlorobenzene	ug/L	<5.0	5.0	11/06/22 12:58	
Chloroethane	ug/L	<5.0	5.0	11/06/22 12:58	
Chloroform	ug/L	<5.0	5.0	11/06/22 12:58	
Chloromethane	ug/L	<5.0	5.0	11/06/22 12:58	
cis-1,2-Dichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
cis-1,3-Dichloropropene	ug/L	<5.0	5.0	11/06/22 12:58	
Dibromochloromethane	ug/L	<5.0	5.0	11/06/22 12:58	
Dibromomethane	ug/L	<5.0	5.0	11/06/22 12:58	
Ethylbenzene	ug/L	<5.0	5.0	11/06/22 12:58	
Iodomethane	ug/L	<5.0	5.0	11/06/22 12:58	
Methylene Chloride	ug/L	<5.0	5.0	11/06/22 12:58	
Styrene	ug/L	<5.0	5.0	11/06/22 12:58	
Tetrachloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
Toluene	ug/L	<5.0	5.0	11/06/22 12:58	
trans-1,2-Dichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

METHOD BLANK: 1420207 Matrix: Water

Associated Lab Samples: 70234795012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	<5.0	5.0	11/06/22 12:58	
trans-1,4-Dichloro-2-butene	ug/L	< 5.0	5.0	11/06/22 12:58	
Trichloroethene	ug/L	<5.0	5.0	11/06/22 12:58	
Trichlorofluoromethane	ug/L	<5.0	5.0	11/06/22 12:58	
Vinyl acetate	ug/L	<5.0	5.0	11/06/22 12:58	v3
Vinyl chloride	ug/L	<5.0	5.0	11/06/22 12:58	
Xylene (Total)	ug/L	<5.0	5.0	11/06/22 12:58	
1,2-Dichloroethane-d4 (S)	%	104	81-122	11/06/22 12:58	
4-Bromofluorobenzene (S)	%	91	79-118	11/06/22 12:58	
Toluene-d8 (S)	%	106	82-122	11/06/22 12:58	

LABORATORY CONTROL SAMPLE:	1420208					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.3	101	75-122	
1,1,1-Trichloroethane	ug/L	50	43.0	86	72-126	
1,1,2,2-Tetrachloroethane	ug/L	50	51.4	103	70-127	
1,1,2-Trichloroethane	ug/L	50	52.0	104	81-119	
1,1-Dichloroethane	ug/L	50	41.4	83	72-126	
1,1-Dichloroethene	ug/L	50	51.9	104	66-133	
1,2,3-Trichloropropane	ug/L	50	53.3	107	69-120	
1,2-Dibromo-3-chloropropane	ug/L	50	39.4	79	47-133	
1,2-Dibromoethane (EDB)	ug/L	50	49.2	98	81-123	
1,2-Dichlorobenzene	ug/L	50	50.5	101	80-117	
1,2-Dichloroethane	ug/L	50	47.4	95	69-134	
1,2-Dichloropropane	ug/L	50	47.5	95	75-125	
1,4-Dichlorobenzene	ug/L	50	48.8	98	80-117	
2-Butanone (MEK)	ug/L	50	51.1	102	33-165 II	1
2-Hexanone	ug/L	50	55.0	110	50-128	
4-Methyl-2-pentanone (MIBK)	ug/L	50	48.1	96	62-131	
Acetone	ug/L	50	78.3	157	14-156 L	1
Acrylonitrile	ug/L	50	43.6	87	60-136	
Benzene	ug/L	50	48.3	97	78-117	
Bromochloromethane	ug/L	50	45.4	91	77-122	
Bromodichloromethane	ug/L	50	50.5	101	80-123	
Bromoform	ug/L	50	55.3	111	49-138	
Bromomethane	ug/L	50	53.8	108	10-143	
Carbon disulfide	ug/L	50	50.5	101	66-133	
Carbon tetrachloride	ug/L	50	41.6	83	64-135	
Chlorobenzene	ug/L	50	50.6	101	79-117	
Chloroethane	ug/L	50	56.9	114	31-156 v	1
Chloroform	ug/L	50	46.3	93	79-123	
Chloromethane	ug/L	50	37.2	74	39-116	
cis-1,2-Dichloroethene	ug/L	50	42.4	85	77-125	
	•					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

ABORATORY CONTROL SAMPLE:	1420208					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
s-1,3-Dichloropropene	ug/L	50	44.6	89	78-131	
ibromochloromethane	ug/L	50	59.0	118	65-123	
bromomethane	ug/L	50	51.9	104	81-123	
hylbenzene	ug/L	50	47.9	96	79-115	
domethane	ug/L	50	58.0	116	10-183	
ethylene Chloride	ug/L	50	50.2	100	67-123	
yrene	ug/L	50	51.7	103	82-121	
rachloroethene	ug/L	50	52.1	104	65-120	
uene	ug/L	50	47.6	95	80-114	
ns-1,2-Dichloroethene	ug/L	50	53.0	106	74-123	
ns-1,3-Dichloropropene	ug/L	50	42.1	84	73-135	
ns-1,4-Dichloro-2-butene	ug/L	50	41.3	83	52-137	
chloroethene	ug/L	50	46.7	93	79-115	
chlorofluoromethane	ug/L	50	70.0	140	51-136 L	_1,v1
nyl acetate	ug/L	50	40.8	82	49-136 v	/3
nyl chloride	ug/L	50	38.4	77	49-118	
ene (Total)	ug/L	150	147	98	80-118	
-Dichloroethane-d4 (S)	%			107	81-122	
romofluorobenzene (S)	%			102	79-118	
luene-d8 (S)	%			108	82-122	

MATRIX SPIKE & MATRIX SPIKE	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1420230										
			MS	MSD							
	702	235441001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	47.1	44.5	94	89	65-122	6	
1,1,1-Trichloroethane	ug/L	ND	50	50	43.9	42.3	88	85	72-123	4	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	47.8	49.9	96	100	64-133	4	
1,1,2-Trichloroethane	ug/L	ND	50	50	51.7	48.4	103	97	78-120	7	
1,1-Dichloroethane	ug/L	ND	50	50	43.7	41.3	87	83	70-124	6	
1,1-Dichloroethene	ug/L	ND	50	50	44.5	41.4	89	83	61-139	7	
1,2,3-Trichloropropane	ug/L	ND	50	50	50.9	50.2	102	100	64-120	1	
1,2-Dibromo-3-chloropropane	ug/L	ND	50	50	37.4	37.1	75	74	32-137	1	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	48.1	44.7	96	89	78-121	7	
1,2-Dichlorobenzene	ug/L	ND	50	50	47.9	46.8	96	94	75-120	2	
1,2-Dichloroethane	ug/L	ND	50	50	47.5	46.3	95	93	58-138	3	
1,2-Dichloropropane	ug/L	ND	50	50	46.1	43.9	92	88	74-122	5	
1,4-Dichlorobenzene	ug/L	ND	50	50	46.6	45.5	93	91	76-118	2	
2-Butanone (MEK)	ug/L	ND	50	50	38.7	39.7	77	79	33-148	3 IF	ł
2-Hexanone	ug/L	ND	50	50	39.8	40.4	80	81	49-124	1	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	50	50	41.9	42.7	84	85	60-136	2	
Acetone	ug/L	ND	50	50	27.9	28.4	56	57	35-112	2	
Acrylonitrile	ug/L	ND	50	50	39.8	36.8	80	74	45-132	8	
Benzene	ug/L	ND	50	50	49.6	46.5	99	93	70-130	6	
Bromochloromethane	ug/L	ND	50	50	46.5	43.7	93	87	70-122	6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

MATRIX SPIKE & MATRIX SPIK	KE DUPLICATI	E: 14202	30		1420231						
			MS	MSD							
	_	35441001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
Bromodichloromethane	ug/L	ND	50	50	49.8	47.9	100	96	74-122	4	
Bromoform	ug/L	ND	50	50	48.0	51.0	96	102	39-139	6	
Bromomethane	ug/L	ND	50	50	56.7	55.4	113	111	10-130	2	
Carbon disulfide	ug/L	ND	50	50	43.2	40.3	86	81	60-129	7	
Carbon tetrachloride	ug/L	ND	50	50	43.4	43.4	87	87	56-143	0	
Chlorobenzene	ug/L	ND	50	50	48.1	46.5	96	93	74-122	4	
Chloroethane	ug/L	ND	50	50	63.1	59.7	126	119	35-146	6 v1	
Chloroform	ug/L	ND	50	50	48.0	45.9	96	92	71-129	4	
Chloromethane	ug/L	ND	50	50	37.7	35.2	75	70	29-112	7	
cis-1,2-Dichloroethene	ug/L	ND	50	50	44.4	43.0	89	86	73-129	3	
cis-1,3-Dichloropropene	ug/L	ND	50	50	41.8	40.5	84	81	67-130	3	
Dibromochloromethane	ug/L	ND	50	50	53.5	53.1	107	106	55-126	1	
Dibromomethane	ug/L	ND	50	50	49.1	47.4	98	95	71-127	4	
Ethylbenzene	ug/L	ND	50	50	47.0	44.8	94	90	70-126	5	
lodomethane	ug/L	ND	50	50	44.9	42.4	90	85	10-167	6	
Methylene Chloride	ug/L	ND	50	50	41.1	39.7	82	79	69-117	4	
Styrene	ug/L	ND	50	50	49.5	48.0	99	96	79-123	3	
Tetrachloroethene	ug/L	ND	50	50	50.5	47.2	101	94	64-124	7	
Toluene	ug/L	ND	50	50	48.2	45.5	96	91	76-123	6	
trans-1,2-Dichloroethene	ug/L	ND	50	50	45.5	42.3	91	85	69-127	7	
trans-1,3-Dichloropropene	ug/L	ND	50	50	39.0	39.5	78	79	61-130	1	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	36.4	36.5	73	73	18-144	0	
Trichloroethene	ug/L	ND	50	50	47.7	45.5	95	91	73-125	5	
Trichlorofluoromethane	ug/L	ND	50	50	75.3	67.2	151	134	59-129	11 M),v1
Vinyl acetate	ug/L	ND	50	50	30.1	36.6	60	73	34-123	19 v3	
Vinyl chloride	ug/L	ND	50	50	43.7	39.6	87	79	33-127	10	
Xylene (Total)	ug/L	ND	150	150	144	136	96	91	78-123	6	
1,2-Dichloroethane-d4 (S)	%						108	106	81-122		
4-Bromofluorobenzene (S)	%						97	97	79-118		
Toluene-d8 (S)	%						107	106	82-122		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280025 Analysis Method: SM22 2120B
QC Batch Method: SM22 2120B Analysis Description: 2120B Color

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1415454 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Apparent Color units <5.0 5.0 10/31/22 13:16

LABORATORY CONTROL SAMPLE: 1415455

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Apparent Color** units 40 40.0 100 90-110

70004705044

SAMPLE DUPLICATE: 1415456

Date: 12/16/2022 11:25 AM

Parameter	Units	70234795011 Result	Dup Result	RPD	Qualifiers
Apparent Color	units	120	110		9 H1
рН	Std. Units	6.6	6.5		0 H1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281536 QC Batch Method: SM22 2320B Analysis Method:

SM22 2320B

Analysis Description:

Laboratory:

2320B Alkalinity
Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004

METHOD BLANK: 1423271

Matrix: Water

Associated Lab Samples: 70234795003, 70234795004

004

Reporting

Parameter Units

Blank Result

Limit Analyzed

Qualifiers

Alkalinity, Total as CaCO3 mg/L <1.0 1.0 11/10/22 10:38

LABORATORY CONTROL SAMPLE: 14

Parameter

Parameter

1423272

Units

mg/L

Units

mg/L

Units

mg/L

Spike Conc.

LCS Result LCS % Rec % Rec Limits

Qualifiers

Alkalinity, Total as CaCO3

MATRIX SPIKE SAMPLE:

1423274

70234698001 Result

58.9

58.9

25

Spike Conc.

50

59.4

23.8

MS Result

95

109

1

MS % Rec

85-115

% Rec Limits

75-125

Qualifiers

Alkalinity, Total as CaCO3

Alkalinity, Total as CaCO3

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1423273

Parameter

70234698001 Result Dup Result

RPD

Qualifiers

100

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281538 Analysis Method: SM22 2320B
QC Batch Method: SM22 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011,

70234795012

METHOD BLANK: 1423279 Matrix: Water

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011,

70234795012

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersAlkalinity, Total as CaCO3mg/L<1.0</td>1.011/10/22 15:27

LABORATORY CONTROL SAMPLE: 1423280

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Alkalinity, Total as CaCO3 mg/L 25 25.8 103

MATRIX SPIKE SAMPLE: 1423282

70234795005 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 45.7 50 91.0 91 75-125 Alkalinity, Total as CaCO3 mg/L

SAMPLE DUPLICATE: 1423281

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 45.7
 46.0
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281560 Analysis Method: SM22 2340C

QC Batch Method: SM22 2340C Analysis Description: 2340C Hardness, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

METHOD BLANK: 1423379 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersTot Hardness asCaCO3 (SM 2340Bmg/L<2.5</td>2.511/10/22 17:33

LABORATORY CONTROL SAMPLE: 1423380

LCS LCS Spike % Rec Parameter Limits Qualifiers Units Conc. Result % Rec Tot Hardness asCaCO3 (SM 2340B mg/L 100 100 100 90-110

MATRIX SPIKE SAMPLE: 1423381

MS MS 70234853001 Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B 16.0 216 100 75-125 200 mg/L

MATRIX SPIKE SAMPLE: 1423383

70234886001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Tot Hardness asCaCO3 (SM 2340B mg/L 267 667 920 75-125

SAMPLE DUPLICATE: 1423382

 Parameter
 Units
 Result Result Result RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 16.0
 18.0
 12

SAMPLE DUPLICATE: 1423384

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234886001 Result
 Dup Result
 RPD
 Qualifiers

 Tot Hardness asCaCO3 (SM 2340B
 mg/L
 267
 253
 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280457 Analysis Method: SM22 2540C

QC Batch Method: SM22 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009

METHOD BLANK: 1417648 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 11/02/22 19:32

LABORATORY CONTROL SAMPLE: 1417649

Spike LCS LCS % Rec Conc. % Rec Limits Parameter Units Result Qualifiers **Total Dissolved Solids** 500 496 99 85-115 mg/L

MATRIX SPIKE SAMPLE: 1417651

MS % Rec 70234875001 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 834 Total Dissolved Solids mg/L 600 1320 81 75-125

MATRIX SPIKE SAMPLE: 1417653

70234795009 MS MS % Rec Spike % Rec Qualifiers Parameter Units Result Conc. Result Limits Total Dissolved Solids 126 mg/L 300 422 99 75-125

SAMPLE DUPLICATE: 1417650

Parameter Units 70234875001 Dup Result RPD Qualifiers
Total Dissolved Solids mg/L 834 880 5

SAMPLE DUPLICATE: 1417652

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234795009 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 126
 145
 14 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

BASELINE-NORTH SEA LANDFILL Project:

Pace Project No.: 70234795

QC Batch: 280458

QC Batch Method:

SM22 2540C

Analysis Method:

SM22 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Melville

70234795010, 70234795011 Associated Lab Samples:

METHOD BLANK: 1417654 Matrix: Water

Associated Lab Samples: 70234795010, 70234795011

> Blank Result

Reporting

Limit Analyzed

Qualifiers

Total Dissolved Solids

mg/L

Units

<5.0

5.0 11/02/22 20:44

LABORATORY CONTROL SAMPLE: 1417655

Parameter

Parameter

Parameter

Parameter

Parameter

Spike Conc.

LCS Result

150

LCS % Rec % Rec Limits

Qualifiers

MATRIX SPIKE SAMPLE:

Total Dissolved Solids

1417657

Units

mg/L

Units

mg/L

70234795010 Result

500

Spike Conc.

300

476

MS Result

427

95

MS % Rec

92

86

85-115

% Rec Limits

75-125

75-125

Qualifiers

MATRIX SPIKE SAMPLE:

Total Dissolved Solids

1417659

Parameter Units Total Dissolved Solids mg/L 70234464015 Result 128

Spike Conc. 300

MS Result

MS % Rec % Rec Limits

Qualifiers

SAMPLE DUPLICATE: 1417656

Total Dissolved Solids

Total Dissolved Solids

Date: 12/16/2022 11:25 AM

Units

mg/L

mg/L

70234795010 Result

150

Dup Result

161

124

RPD

7 D6

3

387

Qualifiers

SAMPLE DUPLICATE: 1417658

Units

70234464015 Result 128

Dup Result

RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280682

QC Batch Method: SM22 2540C

Analysis Method: SM22 2540C

Analysis Description:

2540C Total Dissolved Solids

Laboratory:

Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1418977 Matrix: Water

Associated Lab Samples: 70234795012

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 11/03/22 18:42

LABORATORY CONTROL SAMPLE: 1418978

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 500 492 98 85-115 mg/L

MATRIX SPIKE SAMPLE: 1418980

MS MS % Rec 70234828001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 312 **Total Dissolved Solids** mg/L 600 838 88 75-125

 MATRIX SPIKE SAMPLE:
 1418982
 70234795012
 Spike
 MS
 MS
 % Rec

 Parameter
 Units
 Result
 Conc.
 Result
 % Rec
 Limits
 Qualifiers

Total Dissolved Solids mg/L <10.0 300 255 84 75-125

SAMPLE DUPLICATE: 1418979

 Parameter
 Units
 70234828001 Result
 Dup Result
 RPD
 Qualifiers

 Total Dissolved Solids
 mg/L
 312
 334
 7 D6

SAMPLE DUPLICATE: 1418981

Date: 12/16/2022 11:25 AM

70234795012 Dup
Parameter Units Result Result RPD Qualifiers

Total Dissolved Solids mg/L <10.0 <10.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279977 Analysis Method: SM22 3500-Cr B

QC Batch Method: SM22 3500-Cr B Analysis Description: Chromium, Hexavalent by 3500

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1415311 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chromium, Hexavalent mg/L <0.020 0.020 10/31/22 12:02

LABORATORY CONTROL SAMPLE: 1415312

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Chromium, Hexavalent mg/L 0.2 0.21 103

MATRIX SPIKE SAMPLE: 1415313

70234795003 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.020 0.21 75-125 H3 Chromium, Hexavalent 0.2 99 mg/L

SAMPLE DUPLICATE: 1415314

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Chromium, Hexavalent
 mg/L
 <0.020</td>
 <0.020</td>
 H3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 281729 Analysis Method: QC Batch Method: EPA 410.4 Analysis Description:

Analysis Description: 410.4 COD

Laboratory: Pace Analytical Services - Melville

EPA 410.4

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1424245 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersChemical Oxygen Demandmg/L<10.0</td>10.011/11/22 07:47

LABORATORY CONTROL SAMPLE: 1424246

LCS LCS Spike % Rec Parameter Units % Rec Limits Qualifiers Conc. Result Chemical Oxygen Demand mg/L 500 520 104 90-110

MATRIX SPIKE SAMPLE: 1424247

70234795003 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 23.0 1080 106 Chemical Oxygen Demand 1000 90-110 mg/L

MATRIX SPIKE SAMPLE: 1424249

70235492001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Chemical Oxygen Demand mg/L 928 1000 1890 90-110

SAMPLE DUPLICATE: 1424248

 Parameter
 Units
 70234795003 Result
 Dup Result
 RPD
 Qualifiers

 Chemical Oxygen Demand
 mg/L
 23.0
 25.2
 9

SAMPLE DUPLICATE: 1424250

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Chemical Oxygen Demand
 mg/L
 928
 928
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279888 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

METHOD BLANK: 1415016 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011

BOD, 5 day

Blank Reporting Limit Analyzed Qualifiers

80D, 5 day

Result 1.0 11/03/22 09:45

LABORATORY CONTROL SAMPLE: 1415017

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 95 84.5-115.4 BOD, 5 day mg/L 198 188

SAMPLE DUPLICATE: 1415018

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 BOD, 5 day
 mg/L
 139
 140
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279890 Analysis Method: SM22 5210B
QC Batch Method: SM22 5210B Analysis Description: 5210B BOD, 5 day

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1415023 Matrix: Water

Associated Lab Samples: 70234795012

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

BOD, 5 day mg/L <1.0 1.0 11/03/22 11:08

LABORATORY CONTROL SAMPLE: 1415024

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units BOD, 5 day mg/L 198 190 96 84.5-115.4

SAMPLE DUPLICATE: 1415025

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 Result Result
 Dup Result
 RPD
 Qualifiers

 BOD, 5 day
 mg/L
 445
 442
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 280955 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

METHOD BLANK: 1420303 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	11/09/22 04:09	
Chloride	mg/L	<2.0	2.0	11/09/22 04:09	
Sulfate	mg/L	<5.0	5.0	11/09/22 04:09	

LABORATORY CONTROL SAMPLE:	1420304					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	1	1.0	104	90-110	
Chloride	mg/L	10	10.6	106	90-110	
Sulfate	mg/L	10	10.3	103	90-110	

MATRIX SPIKE SAMPLE:	1420305						
		70235291001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	ND	1	1.3	130	90-110	M1
Chloride	mg/L	83.7	50	125	82	90-110	
Sulfate	mg/L	45.9	10	58.2	123	90-110	M1

MATRIX SPIKE SAMPLE:	1420307						
		70235291002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	ND	1	1.3	131	90-110	M1
Chloride	mg/L	71.4	50	116	89	90-110	
Sulfate	mg/L	47.5	10	59.6	121	90-110	M1

SAMPLE DUPLICATE: 1420306					
		70235291001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	ND	<2.5		
Chloride	mg/L	83.7	83.9	0	
Sulfate	mg/L	45.9	46.1	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

SAMPLE DUPLICATE: 1420308

Parameter	Units	70235291002 Result	Dup Result	RPD	Qualifiers
Bromide	mg/L	ND	<2.5		
Chloride	mg/L	71.4	70.1	2	
Sulfate	mg/L	47.5	46.5	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 282458 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795009, 70234795010, 70234795011, 70234795012

METHOD BLANK: 1427714 Matrix: Water
Associated Lab Samples: 70234795009, 70234795010, 70234795011, 70234795012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Bromide	mg/L	<0.50	0.50	11/22/22 09:09	
Chloride	mg/L	<2.0	2.0	11/22/22 09:09	
Sulfate	mg/L	< 5.0	5.0	11/22/22 09:09	

LABORATORY CONTROL SAMPLE:	1427715					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L		1.0	102	90-110	
Chloride	mg/L	10	10	100	90-110	
Sulfate	mg/L	10	9.9	99	90-110	

MATRIX SPIKE SAMPLE:	1427716						
		70234908002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromide	mg/L	0.061	1	1.3	126	90-110	M1
Chloride	mg/L	56.6	50	113	112	90-110	
Sulfate	mg/L	11.9	10	24.0	120	90-110	M1

SAMPLE DUPLICATE: 1427717					
		70234908002	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Bromide	mg/L	0.061	<0.50		
Chloride	mg/L	56.6	58.8	4	4
Sulfate	ma/L	11.9	12.1		1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

QC Batch: 281952 Analysis Method: QC Batch Method: EPA 351.2 Analysis Description:

Laboratory: Pace Analytical Services - Melville

EPA 351.2

351.2 TKN

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1425234 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

ParameterUnitsBlank ResultResultLimitAnalyzedQualifiersNitrogen, Kjeldahl, Totalmg/L<0.094</td>0.09411/14/22 12:13

LABORATORY CONTROL SAMPLE: 1425235 Spike LCS LCS % Rec Units Result % Rec Limits Qualifiers Parameter Conc. Nitrogen, Kjeldahl, Total mg/L 4 4.2 105 90-110 MATRIX SPIKE SAMPLE: 1425236

70234795003 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.42 4.6 105 Nitrogen, Kjeldahl, Total 4 90-110 mg/L MATRIX SPIKE SAMPLE: 1425238

70235414002 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers Nitrogen, Kjeldahl, Total mg/L 1.3 5.4 101 90-110

 SAMPLE DUPLICATE: 1425237

 Parameter
 Units
 70234795003 Result
 Dup Result
 RPD
 Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 0.42
 0.46
 9

 SAMPLE DUPLICATE: 1425239

 Parameter
 Units
 Result
 Result
 RPD
 Qualifiers

 Nitrogen, Kjeldahl, Total
 mg/L
 1.3
 1.3
 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279874 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795009, 70234795010, 70234795011

METHOD BLANK: 1414927 Matrix: Water

Associated Lab Samples: 70234795009, 70234795010, 70234795011

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 10/28/22 21:28

LABORATORY CONTROL SAMPLE: 1414928

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.1 108 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414929

SAMPLE DUPLICATE: 1414932

Date: 12/16/2022 11:25 AM

MS MS % Rec 70234886001 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 0.51 90-110 H1 Nitrite as N mg/L 0.5 101

MATRIX SPIKE SAMPLE: 1414931 70234867003 Spike MS MS % Rec

Parameter Units Result Conc. Result % Rec Limits Qualifiers

Nitrite as N mg/L <0.050 0.5 0.50 100 90-110

SAMPLE DUPLICATE: 1414930 70234886001 Dup

Parameter Units Result Result RPD Qualifiers

Nitrite as N mg/L <0.050 <0.050 H1

70234867003 Dup
Parameter Units Result ReD Qualifiers

ParameterUnitsResultResultRPDQualifiersNitrite as Nmg/L<0.050</td><0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279875 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

METHOD BLANK: 1414933 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 10/28/22 22:03

LABORATORY CONTROL SAMPLE: 1414934

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N 1.1 109 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414935

MS % Rec 70234867006 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.50 99 90-110

MATRIX SPIKE SAMPLE: 1414937

70234855006 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers < 0.050 Nitrite as N mg/L 0.5 0.53 101 90-110

SAMPLE DUPLICATE: 1414936

 Parameter
 Units
 70234867006 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

SAMPLE DUPLICATE: 1414938

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234855006 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279876 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrite, Unpres.

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795012

METHOD BLANK: 1414939 Matrix: Water

Associated Lab Samples: 70234795012

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L <0.027 0.027 10/28/22 22:42

LABORATORY CONTROL SAMPLE: 1414940

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Nitrite as N mg/L 1.1 109 90-110

MATRIX SPIKE SAMPLE: 1414941

MS MS % Rec 70234896004 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 mg/L 0.53 90-110 Nitrite as N 0.5 104

SAMPLE DUPLICATE: 1414942

Date: 12/16/2022 11:25 AM

 Parameter
 Units
 70234896004 Result
 Dup Result
 RPD
 Qualifiers

 Nitrite as N
 mg/L
 <0.050</td>
 <0.050</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279880 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

> Laboratory: Pace Analytical Services - Melville

> > LCS

% Rec

Associated Lab Samples: 70234795003, 70234795004, 70234795009, 70234795010, 70234795011

METHOD BLANK: 1414994 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795009, 70234795010, 70234795011

> Blank Reporting

> > LCS

Qualifiers Parameter Units Result Limit Analyzed

Nitrate-Nitrite (as N) < 0.037 0.037 10/28/22 23:37 mg/L

LABORATORY CONTROL SAMPLE: 1414995

Spike Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 1.0 100 90-110 mg/L

MATRIX SPIKE SAMPLE: 1414996

MS % Rec 70234795011 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.24 Nitrate-Nitrite (as N) mg/L 0.5 0.77 105 90-110

MATRIX SPIKE SAMPLE: 1414998

70234867004 MS MS % Rec Spike % Rec Parameter Units Result Conc. Result Limits Qualifiers 0.46 Nitrate-Nitrite (as N) mg/L 0.5 0.98 105 90-110

SAMPLE DUPLICATE: 1414997

70234795011 Dup RPD Parameter Units Result Result Qualifiers 0.24 0 Nitrate-Nitrite (as N) mg/L 0.24

SAMPLE DUPLICATE: 1414999

Date: 12/16/2022 11:25 AM

70234867004 Dup Units **RPD** Qualifiers Parameter Result Result 0.46 Nitrate-Nitrite (as N) 0 mg/L 0.45

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 279881 Analysis Method: EPA 353.2

QC Batch Method: EPA 353.2 Analysis Description: 353.2 Nitrate, Unpres.

> Laboratory: Pace Analytical Services - Melville

> > LCS

% Rec

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795012

METHOD BLANK: 1415000 Matrix: Water

Associated Lab Samples: 70234795005, 70234795006, 70234795007, 70234795008, 70234795012

> Blank Reporting

> > LCS

Qualifiers Parameter Units Result Limit Analyzed

Nitrate-Nitrite (as N) < 0.037 0.037 10/29/22 00:14 mg/L

LABORATORY CONTROL SAMPLE: 1415001

Spike Conc. Result % Rec Limits Qualifiers Parameter Units Nitrate-Nitrite (as N) 0.96 96 90-110 mg/L

MATRIX SPIKE SAMPLE: 1415002

MS % Rec 70234795005 Spike MS Parameter Units Result Conc. Result % Rec Limits Qualifiers 0.20 Nitrate-Nitrite (as N) mg/L 0.5 0.69 99 90-110

MATRIX SPIKE SAMPLE: 1415004

70234896009 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers < 0.050 77 Nitrate-Nitrite (as N) mg/L 0.5 0.42 90-110

SAMPLE DUPLICATE: 1415003

70234795005 Dup RPD Parameter Units Result Result Qualifiers 0.20 1 Nitrate-Nitrite (as N) mg/L 0.20

SAMPLE DUPLICATE: 1415005

Date: 12/16/2022 11:25 AM

70234896009 Dup RPD Units Qualifiers Parameter Result Result < 0.050

Nitrate-Nitrite (as N) < 0.050 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280105 Analysis Method: SM22 4500 NH3 H
QC Batch Method: SM22 4500 NH3 H Analysis Description: 4500 Ammonia

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1415970 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersNitrogen, Ammoniamg/L<0.050</td>0.05011/01/22 11:41

LABORATORY CONTROL SAMPLE: 1415971

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1 90-110 Nitrogen, Ammonia mg/L 1.0 100

MATRIX SPIKE SAMPLE: 1415972

70234888001 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 29.8 38.0 83 75-125 Nitrogen, Ammonia 10 mg/L

SAMPLE DUPLICATE: 1415973

Date: 12/16/2022 11:25 AM

ParameterUnits70234888001 ResultDup ResultRPDQualifiersNitrogen, Ammoniamg/L29.829.03

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280377 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005

METHOD BLANK: 1417212 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.50 0.50 11/02/22 16:50

LABORATORY CONTROL SAMPLE: 1417213

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Organic Carbon** mg/L 10 9.0 90 85-115

MATRIX SPIKE SAMPLE: 1417215

70234855011 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers 9.8 **Total Organic Carbon** mg/L 18.7 10 89 75-125

SAMPLE DUPLICATE: 1417214

Date: 12/16/2022 11:25 AM

ParameterUnits70234855011 ResultDup ResultRPDQualifiersTotal Organic Carbonmg/L9.89.62

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

QC Batch: 280378 Analysis Method: SM22 5310B
QC Batch Method: SM22 5310B Analysis Description: 5310B TOC

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

METHOD BLANK: 1417219 Matrix: Water

Associated Lab Samples: 70234795006, 70234795007, 70234795008, 70234795009, 70234795010, 70234795011, 70234795012

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersTotal Organic Carbonmg/L<0.50</td>0.5011/02/22 20:21

LABORATORY CONTROL SAMPLE: 1417220

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L **Total Organic Carbon** 10 9.1 91 85-115

MATRIX SPIKE SAMPLE: 1417222

70234795006 MS MS % Rec Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers <1.0 **Total Organic Carbon** mg/L 10 11.1 103 75-125

SAMPLE DUPLICATE: 1417221

Date: 12/16/2022 11:25 AM

ParameterUnits70234795006 ResultDup ResultRPDQualifiersTotal Organic Carbonmg/L<1.0</td><1.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Cyanide

QC Batch: 281526 Analysis Method: EPA 9014 Total Cyanide
QC Batch Method: EPA 9010C Analysis Description: 9014 Cyanide, Total

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

METHOD BLANK: 1423230 Matrix: Water

Associated Lab Samples: 70234795003, 70234795004, 70234795005, 70234795006, 70234795007, 70234795008, 70234795009,

70234795010, 70234795011, 70234795012

Parameter Units Blank Reporting Result Limit Analyzed Qualifiers

ug/L <10.0 10.0 11/10/22 15:01

LABORATORY CONTROL SAMPLE: 1423231

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 85-115 Cyanide ug/L 75 75.5 101

MATRIX SPIKE SAMPLE: 1423232

70235432004 MS MS Spike % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers <10.0 100 103 103 75-125 Cyanide ug/L

SAMPLE DUPLICATE: 1423233

Date: 12/16/2022 11:25 AM

ParameterUnits70235432004 ResultDup ResultRPDQualifiersCyanideug/L<10.0</td><10.0</td>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/16/2022 11:25 AM

В	Analyte was detected in the associated method blank.
D6	The precision between the sample and sample duplicate exceeded laboratory control limits.
H1	Analysis conducted outside the EPA method holding time.
H2	Extraction or preparation conducted outside EPA method holding time.
H3	Sample was received or analysis requested beyond the recognized method holding time.
IH	This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
L1	Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
v1	The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
v3	The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
70234795003	3A	EPA 3005A	280521	EPA 6010C	280824
0234795004	3B	EPA 3005A	280521	EPA 6010C	280824
0234795005	3C	EPA 3005A	280521	EPA 6010C	280824
0234795006	4A	EPA 3005A	280521	EPA 6010C	280824
0234795007	4B	EPA 3005A	280521	EPA 6010C	280824
0234795008	4C	EPA 3005A	280951	EPA 6010C	281041
0234795009	12A	EPA 3005A	280951	EPA 6010C	281041
0234795010	12B	EPA 3005A	280951	EPA 6010C	281041
0234795011	DUP001	EPA 3005A	280951	EPA 6010C	281041
0234795012	EB001	EPA 3005A	280951	EPA 6010C	281041
0234795012	EB001	EPA 6010C	280006		
0234795001	11A	EPA 8260C/5030C	279850		
0234795002	11B	EPA 8260C/5030C	279850		
0234795012	EB001	EPA 8260C/5030C	280925		
0234795012	EB001	EPA 8260			
0234795003	3A	SM22 2120B	280025		
0234795004	3B	SM22 2120B	280025		
0234795005	3C	SM22 2120B	280025		
0234795006	4A	SM22 2120B	280025		
0234795007	4B	SM22 2120B	280025		
0234795008	4C	SM22 2120B	280025		
0234795009	12A	SM22 2120B	280025		
0234795010	12B	SM22 2120B	280025		
0234795011	DUP001	SM22 2120B	280025		
0234795012	EB001	SM22 2120B	280025		
0234795003	3A	SM22 2320B	281536		
0234795004	3B	SM22 2320B	281536		
0234795005	3C	SM22 2320B	281538		
0234795006	4A	SM22 2320B	281538		
0234795007	4B	SM22 2320B	281538		
0234795008	4C	SM22 2320B	281538		
0234795009	12A	SM22 2320B	281538		
0234795010	12B	SM22 2320B	281538		
0234795011	DUP001	SM22 2320B	281538		
0234795012	EB001	SM22 2320B	281538		
0234795003	3A	SM22 2340C	281560		
0234795004	3B	SM22 2340C	281560		
0234795005	3C	SM22 2340C	281560		
0234795006	4A	SM22 2340C	281560		
0234795007	4B	SM22 2340C	281560		
0234795008	4C	SM22 2340C	281560		
0234795009	12A	SM22 2340C	281560		
0234795010	12B	SM22 2340C	281560		
0234795011	DUP001	SM22 2340C	281560		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
0234795003	3A	SM22 2540C	280457	_	
0234795004	3B	SM22 2540C	280457		
0234795005	3C	SM22 2540C	280457		
0234795006	4A	SM22 2540C	280457		
0234795007	4B	SM22 2540C	280457		
0234795008	4C	SM22 2540C	280457		
0234795009	12A	SM22 2540C	280457		
0234795010	12B	SM22 2540C	280458		
0234795011	DUP001	SM22 2540C	280458		
0234795012	EB001	SM22 2540C	280682		
0234795003	3A	SM22 3500-Cr B	279977		
0234795004	3B	SM22 3500-Cr B	279977		
0234795005	3C	SM22 3500-Cr B	279977		
0234795006	4A	SM22 3500-Cr B	279977		
0234795007	4B	SM22 3500-Cr B	279977		
0234795008	4C	SM22 3500-Cr B	279977		
0234795009	12A	SM22 3500-Cr B	279977		
0234795010	12B	SM22 3500-Cr B	279977		
0234795011	DUP001	SM22 3500-Cr B	279977		
0234795012	EB001	SM22 3500-Cr B	279977		
0234795003	3A	EPA 410.4	281729	EPA 410.4	281740
0234795004	3B	EPA 410.4	281729	EPA 410.4	281740
0234795005	3C	EPA 410.4	281729	EPA 410.4	281740
0234795006	4A	EPA 410.4	281729	EPA 410.4	281740
0234795007	4B	EPA 410.4	281729	EPA 410.4	281740
0234795008	4C	EPA 410.4	281729	EPA 410.4	281740
0234795009	12A	EPA 410.4	281729	EPA 410.4	281740
0234795010	12B	EPA 410.4	281729	EPA 410.4	281740
0234795011	DUP001	EPA 410.4	281729	EPA 410.4	281740
0234795012	EB001	EPA 410.4	281729	EPA 410.4	281740
0234795003	3A	SM22 5210B	279888	SM22 5210B	280842
0234795004	3B	SM22 5210B	279888	SM22 5210B	280842
0234795005	3C	SM22 5210B	279888	SM22 5210B	280842
0234795006	4A	SM22 5210B	279888	SM22 5210B	280842
0234795007	4B	SM22 5210B	279888	SM22 5210B	280842
0234795008	4C	SM22 5210B	279888	SM22 5210B	280842
0234795009	12A	SM22 5210B	279888	SM22 5210B	280842
0234795010	12B	SM22 5210B	279888	SM22 5210B	280842
0234795011	DUP001	SM22 5210B	279888	SM22 5210B	280842
0234795012	EB001	SM22 5210B	279890	SM22 5210B	280844
0234795003	3A	EPA 300.0	280955		
0234795004	3B	EPA 300.0	280955		
0234795005	3C	EPA 300.0	280955		
0234795006	4A	EPA 300.0	280955		
0234795007	4B	EPA 300.0	280955		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234795008	4C	EPA 300.0	280955		
70234795009	12A	EPA 300.0	282458		
70234795010	12B	EPA 300.0	282458		
70234795011	DUP001	EPA 300.0	282458		
70234795012	EB001	EPA 300.0	282458		
70234795003	3A	EPA 351.2	281952	EPA 351.2	281955
70234795004	3B	EPA 351.2	281952	EPA 351.2	281955
70234795005	3C	EPA 351.2	281952	EPA 351.2	281955
70234795006	4A	EPA 351.2	281952	EPA 351.2	281955
70234795007	4B	EPA 351.2	281952	EPA 351.2	281955
70234795008	4C	EPA 351.2	281952	EPA 351.2	281955
70234795009	12A	EPA 351.2	281952	EPA 351.2	281955
70234795010	12B	EPA 351.2	281952	EPA 351.2	281955
70234795011	DUP001	EPA 351.2	281952	EPA 351.2	281955
70234795012	EB001	EPA 351.2	281952	EPA 351.2	281955
70234795003	3A	EPA 353.2	279880		
70234795004	3B	EPA 353.2	279880		
70234795005	3C	EPA 353.2	279881		
70234795006	4A	EPA 353.2	279881		
0234795007	4B	EPA 353.2	279881		
70234795008	4C	EPA 353.2	279881		
70234795009	12A	EPA 353.2	279880		
70234795010	12B	EPA 353.2	279880		
70234795011	DUP001	EPA 353.2	279880		
70234795012	EB001	EPA 353.2	279881		
70234795003	3A	EPA 353.2	279875		
70234795004	3B	EPA 353.2	279875		
70234795005	3C	EPA 353.2	279875		
70234795006	4A	EPA 353.2	279875		
70234795007	4B	EPA 353.2	279875		
70234795008	4C	EPA 353.2	279875		
70234795009	12A	EPA 353.2	279874		
70234795010	12B	EPA 353.2	279874		
70234795011	DUP001	EPA 353.2	279874		
70234795012	EB001	EPA 353.2	279876		
70234795003	3A	SM22 4500 NH3 H	280105		
70234795004	3B	SM22 4500 NH3 H	280105		
0234795005	3C	SM22 4500 NH3 H	280105		
0234795006	4A	SM22 4500 NH3 H	280105		
70234795007	4B	SM22 4500 NH3 H	280105		
70234795008	4C	SM22 4500 NH3 H	280105		
70234795009	12A	SM22 4500 NH3 H	280105		
70234795010	12B	SM22 4500 NH3 H	280105		

Project: BASELINE-NORTH SEA LANDFILL

Pace Project No.: 70234795

Date: 12/16/2022 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70234795012	EB001	SM22 4500 NH3 H	280105		
70234795003	3A	SM22 5310B	280377		
70234795004	3B	SM22 5310B	280377		
70234795005	3C	SM22 5310B	280377		
70234795006	4A	SM22 5310B	280378		
70234795007	4B	SM22 5310B	280378		
70234795008	4C	SM22 5310B	280378		
70234795009	12A	SM22 5310B	280378		
70234795010	12B	SM22 5310B	280378		
70234795011	DUP001	SM22 5310B	280378		
70234795012	EB001	SM22 5310B	280378		
70234795003	3A	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795004	3B	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795005	3C	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795006	4A	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795007	4B	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795008	4C	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795009	12A	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795010	12B	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795011	DUP001	EPA 9010C	281526	EPA 9014 Total Cyanide	281605
70234795012	EB001	EPA 9010C	281526	EPA 9014 Total Cyanide	281605

CHAIN-OF-CUSTODY / Analytical Requ

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant

WO#:70234795

DATE Signed:

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https: Section B Section A

Required Client Information: Required Project Information: Invoice Information: Report To: Fetten, Christine Attention: Town of Southampton Address: Waste Management Division Copy To: Company Name: Southampton, NY 11968 Address: Regulatory Agency c.fetten@southamptontownny.gov Purchase Order #: Pace Quote: (631)283-5210 Fax: Project Name: Pace Project Manager: North Sea Landfill kimberley.mack@pacelabs.com. State / Location Requested Due Date Project #: Pace Profile #: 5479 Line 3 NY Requested Analysis Filtered (Y/N) (see valid codes to left) N/A COLLECTED Preservatives MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water DW Water TAL Metals+B & Hardness BOD, Br, CI, SO4, Color, Cr6 COD, NH3, NO3, TKN, Phen GRAB WW Waste Water Residual Chlorine (Y/N) Product **Analyses Test** SAMPLE ID SL Soul/Solid START END # OF CONTAINERS OL Oil Dissloved Metals One Character per box. Wipe WP AR MATRIX CODE AIK, NO2, TDS Unpreserved (A-Z, 0-9 / , -) Olher Na2S203 Methanol Sample lds must be unique Cyanide SAMPLE ITEM H2S04 HN03 NaOH Other 豆 TIME DATE TIME 1A-MP WT TB-W WT 10 M) WT 3 3 10/37 0955 WT ЗА 1040 3B WT 1115 WT 1420 4A WT 1400 4B WT 4C 330 Х WT DAR W 10 WT OB_ MA WT Х Х X Х Х WT RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION ADDITIONAL COMMENTS DATE TIME SAMPLE CONDITIONS PWGC 10/20 Part 360 ROUTINE Add Noct preservative to 4A,4B,4L ascime unpreserval bottle age SAMPLER NAME AND SIGNATURE 93 of 104 PRINT Name of SAMPLER: TEMP in (

SIGNATURE of SAMPLER:

Pace

CHAIN-OF-CUSTODY / Analytical Reques

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant field

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://infi Section A Section C Required Client Information: Required Project Information: Invoice Information: Town of Southampton Report To: Fetten, Christine Attention: Address: Capy To: Waste Management Division Company Name: Southampton, NY 11968 Address: Regulatory Agency Email: c fellen@southamptontownny gov Purchase Order #: Pace Quote: Phone: (631)283-5210 Fax Project Name: North Sea Landfill Pace Project Manager: kimberley.mack@pacelabs.com, State / Location Requested Due Date: Project #: Pace Profile #: 5479 Line 3 NY Requested Analysis Filtered (Y/N) (G=GRAB C=COMP) X/N (see valid codes to COLLECTED Preservatives MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water DW TAL Metals+B & Hardness Water BOD, Br, CI, SO4, Color, Cr6 COD,NH3,NO3,TKN,Pher Waste Water ww Residual Chlorine (Y/N) **Analyses Test** Product SAMPLE ID SL Soil/Solid (4360 START END Oil OL Dissloved Metals One Character per box. Wipe WP SAMPLE TYPE MATRIX CODE AIK, NO2, TDS (A-Z, 0-9 / , -) Other ОТ # Na2S203 Methanol Sample lds must be unique Tissue Cyanide ITEM H2S04 HN03 NaOH Other TOC # OF 덛 DATE TIME DATE TIME 3 WSD MP 13 WT Х Х 14 WT LIA W 15 WT 118 NB 16 WT 3535 A 17 12A WT 7 0555 18 12B WT DIROUT 3 9 3 3 EBOOL 1125 21 22 23 24 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION SAMPLE CONDITIONS 128 10-282 Part 360 ROUTINE Add Naci Horeservathe to EBOO! 250 ml unpreserved wittle Page SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: 94 of 104 TEMP in SIGNATURE of SAMPLER: DATE Signed:

	Sa	ample	Condition	on Upon Rec	E WO#	70	234795
/ Pace Analytical	Client N	ame.		Pro <mark>je</mark>	PM: KMM		Due Date: 11/10/22
	OHOHE I	705		110,0	CLIENT:		
Courier: Fed Ex UPS USPS ☐Client	Comm	ercial 🗆	Pace 🗇 the	er	9222 (().		
Tracking #:			-				
Custody Seal on Cooler/Box Present:	s 🗖 No	Seals in	ntact: 🔲 Ye	s□ No ►N/A	Temper	rature Blan	k Present: Yes No
Packing Material: Bubble Wrap Bubble							Blue None
Thermometer Used: TH148			r: + 0.1		☐ Sample:	s on ice, cod	oling process has begun
Cooler Temperature(*CJ: 2.0		Temperat	ure Correct	ed(°C): 2(Date/T	ime 5035A l	kits placed in freezer
Temp-should-be-above freezing to 6.0°C	3						11/10/24
USDA Regulated Soil (DN/A, water sample	.)			Date and Initials	s of person exa	mining con	tents: KD 12922
Did samples originate in a quarantine zone w	ithin the U	nited Stat	es: AL, AR, CA	, FL, GA, ID, LA, MS, N	NC, Did sam	iples origna	te from a foreign source
NM, NY, OK, OR, SC, TN, TX, or VA (check map)?	□ Ye	s \square No			includin	g Hawaii an	id Puerto Rico)? 🛚 Yes🂢 No
If Yes to either question, fill out a Regulat	ed Soil Ch	ecklist (F	-LI-C-010) a	nd include with SO			
					(COMMENTS:	
Chain of Custody Present:	ZYes	□No		1.			
Chain of Custody Filled Out:	√⊿Yes	□No		2.			
Chain of Custody Relinquished:	⊠Yes	□No		3.			<u> </u>
Sampler Name & Signature on COC:	⊠Yes	□No	□N/A	4.			
Samples Arrived within Hold Time:	Yes	□No		5.			
Short Hold Time Analysis (<72hr):	. □Yes	□No		6.			
Rush Turn Around Time Requested:	□Yes	PNO		7.			
Sufficient Volume: (Triple volume provided for		□No		8.			
Correct Containers Used:	Yes	□No		9.			
-Pace Containers Used:	Elyes	□No		10			
Containers Intact:	∕∆Yes	□No	-NA/A	10.	if andimont in vi	oible is the	dissalved captainer
Filtered volume received for Dissolved tests	□Yes	□No	DN/A	11. Note 12.	ii seaiment is vi	Sible III the	dissolved container,
Sample Labels match COC: -Includes date/time/ID, Matrix: SL	Yes	□No		12.			
All containers needing preservation have bee	n Ewas	□No	□N/A	13. 🗆 HNI	0₃ □ H₂SO	4 □ Na	OH □ HCI
checked?	7163		LIN/A	10.	03 🗀 11200	4 110	on and
pH paper Lot # 1293088							
All containers needing preservation are found	to be			Sample #			
in compliance with method recommendation	?						
(HNO3, H2SO4, HCI, NaOH>9 Sulfide,	□Yes	□No	□N/A				
NAOH>12 Cyanide)	/						
Exceptions: VOA, Coliform, TOC/DOC, Oil and G	rease,						
DRO/8015 (water).				Initial when comp			Date/Time preservative
Per Method, VOA pH is checked after analysis					preserv	ative:	Jadded:
Samples checked for dechlorination:	Pres	□No	□N/A	14.			
KI starch test strips Lot #							
Residual chlorine strips Lot #	_/\(\)		-11/4		e for Res. Chlorin	ie? Y N	
SM 4500 CN samples checked for sulfide?	⊠Yes	□No	□N/A	15.	- f 0lf:- -0	V N	
Lead Acetate Strips Lot #		mu-	-N1/A		e for Sulfide?	Y N	
Headspace in VOA Vials (>6mm):	□Yes	No	□N/A □N/A	16.			
Trip Blank Present: Trip Blank Custody Seals Present	□Yes	OND.		17.			
Pace Trip Blank Lot # (if applicable):	□Yes	□No	≥N/A				
Client Notification/ Resolution:				Field Data Require	ed?	Υ /	N
Person Contacted:				Date/		' /	
Comments/ Resolution:				Date			

^{*} PM (Project Manager) review is documented electronically in LIMS.

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS M2K0066

Project Description

70234795

For:

LATOYA SOBRATIE

Pace Analytical Melville

575 BROAD HOLLOW RD

MELVILLE, NY 11747

Project Manager Michelle Taylor

Tuesday, November 15, 2022

Please find enclosed the analytical results for the samples you submitted to Microbac Laboratories. Review and compilation of your report was completed by Microbac Laboratories Inc., - Marietta, OH. If you have any questions, comments, or require further assistance regarding this report, please contact your service representative listed above.

I certify that all test results meet all of the requirements of the accrediting authority listed within this report. Analytical results are reported on a 'as received' basis unless specified otherwise. Analytical results for solids with units ending in (dry) are reported on a dry weight basis. A statement of uncertainty for each analysis is available upon request. This laboratory report shall not be reproduced, except in full, without the written approval of Microbac Laboratories. The reported results are related only to the samples analyzed as received.

Microbac Laboratories, Inc.

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

M2K0066

Pace Analytical Melville

Project Name: 70234795

LATOYA SOBRATIE 575 BROAD HOLLOW RD MELVILLE, NY 11747 Project / PO Number: N/A Received: 11/01/2022 Reported: 11/15/2022

Sample Summary Report

Sample Name 3A	<u>Laboratory ID</u> M2K0066-01	Client Matrix Aqueous	Sample Type	Sample Begin	Sample Taken 10/27/22 09:55	<u>Lab Received</u> 11/01/22 09:46
3B	M2K0066-02	Aqueous			10/27/22 10:40	11/01/22 09:46
3C	M2K0066-03	Aqueous			10/27/22 11:15	11/01/22 09:46
4A	M2K0066-04	Aqueous			10/27/22 14:20	11/01/22 09:46
4B	M2K0066-05	Aqueous			10/27/22 14:00	11/01/22 09:46
4C	M2K0066-06	Aqueous			10/27/22 13:30	11/01/22 09:46
12A	M2K0066-07	Aqueous			10/27/22 08:35	11/01/22 09:46
12B	M2K0066-08	Aqueous			10/27/22 08:55	11/01/22 09:46
DUP001	M2K0066-09	Aqueous			10/27/22 00:00	11/01/22 09:46
EB001	M2K0066-10	Aqueous			10/28/22 11:25	11/01/22 09:46

Microbac Laboratories Inc., - Marietta, OH CERTIFICATE OF ANALYSIS

M2K0066

Client Sample ID:	3A
Sample Matrix:	Aqueous
	NA0170000 04

Lab Sample ID: M2K0066-01 Collection Date: 10/27/2022 9:55

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 3B

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-02 Collection Date: 10/27/2022 10:40

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 3C

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-03 Collection Date: 10/27/2022 11:15

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 4A

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-04 Collection Date: 10/27/2022 14:20

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	0.0030	0.0028	0.0055	mg/L	1	J	11/14/22 0909	11/15/22 1605	APH

Client Sample ID: 4B

Sample Matrix: Aqueous

Lab Sample ID: M2K0066-05 Collection Date: 10/27/2022 14:00

Inorganics Total	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1									
Phenolics, Total	<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

M2K0066

Client Sample ID: Sample Matrix:	4C Aqueous									
Lab Sample ID:	M2K0066-06					C	Collection	Date: 10/27/2	022 13:30	
Inorganics Total		Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1										
Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH
Client Sample ID:	12A									
Sample Matrix: Lab Sample ID:	Aqueous M2K0066-07					C	Collection	Date: 10/27/2	022 8:35	
Inorganics Total		Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1 Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH
Client Sample ID: Sample Matrix:	12B Aqueous									
Lab Sample ID:	M2K0066-08					(Collection	Date: 10/27/2	022 8:55	
Inorganics Total		Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1 Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH
Client Sample ID:	DUP001									
Sample Matrix: Lab Sample ID:	Aqueous M2K0066-09					C	Collection	Date: 10/27/2	022	
Inorganics Total		Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1 Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/14/22 0909	11/15/22 1605	APH
Client Sample ID: Sample Matrix: Lab Sample ID:	EB001 Aqueous M2K0066-10						Collection	Dato: 10/28/2	022 11:25	
Inorganics Total	332710000 10	Result	MDL	RL	Units	DF	Note	Prepared	Analyzed	Analyst
Method: EPA 420.1 Phenolics, Total		<0.0028	0.0028	0.0055	mg/L	1	U	11/11/22 1212	11/14/22 1320	EPT

Microbac Laboratories Inc., - Marietta, OH CERTIFICATE OF ANALYSIS

M2K0066

Batch Log Summary

Method	Ва	tch	Labo	ratory ID		Client	/ Source	ID			
EPA 420.1	B2	K0680	B2K06	80-CCV1							
			B2K06	80-CCV3							
			M2K0	066-10		EB001					
			B2K06	680-BS1							
			B2K06	80-BLK1							
Method	Ва	tch	Labo	ratory ID		Client	/ Source	ID			
EPA 420.1	B2	K0751	M2K0	066-05		4B					
			M2K0	066-07		12A					
			M2K0	066-08		12B					
			M2K0	066-01		3A					
			M2K0	066-02		3B					
			M2K0	066-04		4A					
			B2K07	751-BS2							
			M2K0	066-06		4C					
			B2K07	751-BLK1							
			B2K07	B2K0751-CCV1 B2K0751-CCV2 B2K0751-CCV3 B2K0751-CCV4 M2K0066-09							
			B2K07								
							1				
			B2K0751-BS1								
			M2K0	066-03		3C					
Batch Quality Control Summ	nary: Microbac Labo	ratories I	nc., - Marie	etta, OH							
Batch Quality Control Summ	ary: Microbac Labo	oratories I	nc., - Marie	etta, OH	Spike	Source		%REC		RPD	
Batch Quality Control Summ	nary: Microbac Labo Result	oratories I	nc., - Marie RL	etta, OH Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Result	MDL			-		%REC		RPD		Notes
Inorganics Total	Result lethod Prep - EPA 4	MDL 20.1		Units	-	Result		Limits	RPD		Notes
Inorganics Total Batch B2K0680 - Wet Chem-N	Result	MDL		Units	Level	Result		Limits	RPD		Notes
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1)	Result lethod Prep - EPA 4	MDL 20.1	RL	Units Prepare	Level	Result 022 Analyz	ed: 11/14	Limits /2022	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total	Result lethod Prep - EPA 4	MDL 20.1	RL	Units Prepare	Level ed: 11/11/20	Result 022 Analyz	ed: 11/14	Limits /2022	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1)	Result Nethod Prep - EPA 4	MDL 20.1 0.0025	RL	Units Prepare mg/L Prepare	Level ed: 11/11/20	Result 022 Analyz	red: 11/14 red: 11/14	Limits /2022	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total	Result Nethod Prep - EPA 4	MDL 20.1 0.0025	RL	Prepare mg/L Prepare mg/L	Level ed: 11/11/20	Result 022 Analyz 022 Analyz	red: 11/14 red: 11/14 101	/2022 /2022 80-120	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N	Result Nethod Prep - EPA 4	MDL 20.1 0.0025	RL	Prepare mg/L Prepare mg/L	ed: 11/11/20	Result 022 Analyz 022 Analyz	red: 11/14 red: 11/14 101	/2022 /2022 80-120	RPD		
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N Blank (B2K0751-BLK1)	Result Method Prep - EPA 4 <0.0025 0.0507 Method Prep - EPA 4	MDL 20.1 0.0025 0.0025 20.1	0.0050 0.0050	Prepare mg/L Prepare mg/L Prepare mg/L	ed: 11/11/20	Result 022 Analyz 022 Analyz 022 Analyz	red: 11/14 red: 11/14 101 red: 11/15	/2022 /2022 80-120	RPD		U
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N Blank (B2K0751-BLK1) Phenolics, Total	Result Method Prep - EPA 4 <0.0025 0.0507 Method Prep - EPA 4	MDL 20.1 0.0025 0.0025 20.1	0.0050 0.0050	Prepare mg/L Prepare mg/L Prepare mg/L	Level ed: 11/11/20 ed: 11/11/20 0.0500	Result 022 Analyz 022 Analyz 022 Analyz	red: 11/14 red: 11/14 101 red: 11/15	/2022 /2022 80-120	RPD		U
Inorganics Total Batch B2K0680 - Wet Chem-N Blank (B2K0680-BLK1) Phenolics, Total LCS (B2K0680-BS1) Phenolics, Total Batch B2K0751 - Wet Chem-N Blank (B2K0751-BLK1) Phenolics, Total LCS (B2K0751-BS1)	Result Nethod Prep - EPA 4	MDL 20.1 0.0025 0.0025 20.1	0.0050 0.0050 0.0050	Prepare mg/L Prepare mg/L Prepare mg/L Prepare mg/L Prepare mg/L	Level ed: 11/11/20 ed: 11/11/20 0.0500 ed: 11/14/2	Result 022 Analyz 022 Analyz 022 Analyz	red: 11/14 101 red: 11/15 red: 11/15 96.4	/2022 /2022 80-120 /2022 /2022 80-120	RPD		U

Microbac Laboratories, Inc.

Microbac Laboratories Inc., - Marietta, OH

CERTIFICATE OF ANALYSIS

M2K0066

Definitions

DF: Dilution Factor representing the amount the sample was diluted during analysis and may not represent preparation

factors.

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte

in the sample.

MDL: Minimum Detection Limit mg/L: Milligrams per Liter RL: Reporting Limit

U: The analyte was analyzed for but was not detected above the reported quantitation limit. The quantitation limit has

been adjusted for any dilution or concentration of the sample.

Cooler Receipt Log

Cooler ID: Default Cooler Temp: 0.2°C

Cooler Inspection Checklist

Ice Present or not required?	Yes	Shipping containers sealed or not required?	Yes
Custody seals intact or not required?	Yes	Chain of Custody (COC) Present?	Yes
COC includes customer information?	Yes	Relinquished and received signature on COC?	Yes
Sample collector identified on COC?	Yes	Sample type identified on COC?	Yes
Correct type of Containers Received	Yes	Correct number of containers listed on COC?	Yes
Containers Intact?	Yes	COC includes requested analyses?	Yes
Enough sample volume for indicated tests received?	Yes	Sample labels match COC (Name, Date & Time?)	Yes
Samples arrived within hold time?	Yes	Correct preservatives on COC or not required?	Yes
Chemical preservations checked or not required?	Yes	Preservation checks meet method requirements?	Yes
VOA vials have zero headspace, or not recd.?	Yes		

Project Requested Certification(s)

Microbac Laboratories Inc., - Marietta, OH 10861

NY State Department of Health

Report Comments

Samples were received in proper condition and the reported results conform to applicable accreditation standard unless otherwise noted.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. The services were provided under and subject to Microbac's standard terms and conditions which can be located and reviewed at https://www.microbac.com/standard-terms-conditions.

Reviewed and Approved By:

Dichrelle Taylor

Michelle Taylor Project Manager

Reported: 11/15/2022 17:09

Microbac Laboratories, Inc.

Chain of Custody

PASI New York Laboratory

Workorder: 70234795

Report / Invoice To

Workorder Name:

Subcontract To

BASELINE-NORTH SEA LANDFILL

Results Requested By: 11/10/2022

Requested Analysis

Tropo.	ET III VOIGE IO	[GBBCO	illact 10		S90 Z#7/				\$2.75 F.S.					Reque	stea	Алаі	iysis.		~		(8,33)	
Pace 575 B	erley M. Mack Analytical Melville road Hollow Road	P.O. 70234795KMM																				
	le, NY 11747	Microbac	Laboratories,	Inc.																	- [
Fmail	e (631)694-3040 : kimberley.mack@pacelabs.com	158 Starl									1				1	1						
	sone jaon@paociabs.com	Marietta,	OH 45750							<u>«</u>											ı	
State of Sample Origin: NY Preserved Confainers								Phenols								ı						
State	or Sample Origin: NY		a Rational contraction	- Producerski klasic	i i	rese	rved C	onta	iners	्र द												
					¤																	
Item	Sample ID	Collect Date/Time	Lab ID	Matrix	H2S04										İ							
				Openies in hydrogen (<u> </u>			_		1	ļ			_					_	_		LAB USE ONLY
1	3A	10/27/2022 09:55	70234795003	Water				\perp		X		lacksquare										
2	3B	10/27/2022 10:40	70234795004	Water						Х												
3	3C	10/27/2022 11:15	70234795005	Water						Х												
4	4A	10/27/2022 14:20	70234795006	Water	l					X						T			T			
5	4B	10/27/2022 14:00	70234795007	Water		П				Х										寸		
6	4C	10/27/2022 13:30	70234795008	Water				1		X		H	1		\top	\top	T	1				
7	12A	10/27/2022 08:35	70234795009	Water	ļ					X	1				\top	\top	\top		_	\dashv	寸	
8	12B	10/27/2022 08:55	70234795010	Water				十		X	1	П		_					\dashv	_		
9	DUP001	10/27/2022 00:00	70234795011	Water	 					İχ		f	_		十	1				_	十	
10	EB001	10/28/2022 11:25	70234795012	Water	<u> </u>					X					\top	\top		十			+	
11										1	T			<u> </u>		┪		\top	\top	\dashv		
12								\top		1			\dashv	1		 	_	\top	\dashv			
13							$\neg \vdash$				П		\dashv		\top	1	_	十	\dashv	_	十	
14							-	\top	_	1					_	+		\top	\dashv	一十	\dashv	
														I								***************************************

Pace Analytical - Melville. NY
Rec'd: 11/01/2022 09:46
By: Brenda Gregory Temp: 0.2

				3 - 3 5 5 E S	Comments
Transfers	Released By	1 1 / \	Received By	Date/Time	
1	Mall Jule Pac 17	10/31/2218W	Porenda rugging	Illaac	1946
2					
3					
Cooler Te	mperature on Receipt 0, ₹ °C	Custod	y Seal Y or N Rece	eived on Ice	Y or N Samples Intact Y or N

Work Order# M2K0066

COOLER TEMP >6° C LOG

	B					
	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
SAMPLE ID	°C	°C	°C	°C	°C	٥c
			-			
			-			
		10/200				
		101100	1,2			
		1113	•			
	 					
/						
H Lot # <u>HCƏGIS</u> VI						

pH Lot # <u>서운공역/동</u> 생	U	pH	Exceptions			
SAMPLE ID	Bottle 1	Bottle 2	Bottle 3	Bottle 4	Bottle 5	Bottle 6
			-			
			-			
			-	0 -		
				Su.		
			1000			
			1 1 () 1			
		\	110			
	`					
		PRESE	RVAIIV			
			PTIONS			
		1 .	-			
			VONE		<u> </u>	

Document Control # 1957 Last 04-10-2019 _AS NOTED

Issued to: Document Master File

APPENDIX B WELL INSPECTION CHECKLIST

SHP2201 - 2nd SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

Well No.	1A	Da	ate	10/26/2022
Inspected By	MPP/JU	We	eather Conditions	Fog, 62-65 F
	WELL EX	KTERIOR CON	NDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASI	URING POINT	X		Top of Casing
WELL IS PROTECTED)	X		_
WELL IS CLEARLY M	ARKED	X		_
	INTERIO	OR WELL CON	IDITIONS	
DEPTH TO WATER (FEET) <u>104.1</u>	2		
DEPTH TO BOTTOM	1 (FEET) 113.3	5		
PID (ppm)	0.0			

Well No.	1 B	[Date	10/26/2022
Inspected By	MPP/JU	\	Weather Conditions	Fog, 62-65 F
	WELL EXT	ERIOR CO	ONDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		Top of Casing
DESIGNATED MEASI	URING POINT	X		
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	<u> X</u>		
	INTERIOR	R WELL CO	ONDITIONS	
DEPTH TO WATER (FEET) 106.39			
DEPTH TO BOTTOM	(FEET) 169.51			
PID (ppm)	0.0			

Well No.	1C	_	Date	10/26/2022
Inspected By	MPP/JU		Weather Condition	sFog, 62-65 F
	WELL EXT	ERIOR CO	ONDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATER	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	ole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STICE	(UP) STRAIGHT	X		
DESIGNATED MEASU	JRING POINT	X		Top of Casing
WELL IS PROTECTED)	X		
WELL IS CLEARLY MA	ARKED	X		
	INTERIOR	WELL CO	ONDITIONS	
DEPTH TO WATER (I	EET) <u>107.18</u>	_		
DEPTH TO BOTTOM	(FEET) 155.59	_		
PID (ppm)	0.0	_		

Well No.	3A/DUP001	D	ate	10/27/2022
Inspected By	MPP/JU	w	/eather Conditions	Clear, 60-64 F
	WELL EXT	ERIOR CO	NDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATE	R AROUND WELL		<u> </u>	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEAS	URING POINT	X		Top of Casing
WELL IS PROTECTED)	<u>X</u>		
WELL IS CLEARLY M	ARKED	<u>X</u>		
	INTERIOR	R WELL CO	NDITIONS	
DEPTH TO WATER (FEET) 48.88			
DEPTH TO BOTTOM	1 (FEET) 62.74			
PID (ppm)	0.0			

Well No.	3B	D	ate	10/27/2022			
Inspected By	MPP/JU	W	eather Conditions	Clear, 60-64 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			X				
Missing:			X				
PONDING OF WATE	R AROUND WELL		<u> </u>				
PROTECTIVE CASING	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	X					
Lock - Intact:		X					
WELL CASING (STIC	KUP) STRAIGHT	X					
DESIGNATED MEASI	URING POINT	X		Top of Casing			
WELL IS PROTECTED)	X		_			
WELL IS CLEARLY M	ARKED	X		_			
	INTERIO	R WELL CO	NDITIONS				
DEPTH TO WATER (FEET) 45.57						
DEPTH TO BOTTOM	1 (FEET) 116.74	<u> </u>					
PID (ppm)	0.0						

Well No.	3C	D	ate	10/27/2022
Inspected By	MPP/JU	W	eather Conditions	Clear, 60-64 F
	WELL EXT	ERIOR CO	NDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			<u> X</u>	
Missing:			<u> X</u>	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASU	JRING POINT	X		Top of Casing
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	X		
	INTERIOR	WELL CO	NDITIONS	
DEPTH TO WATER (FEET) 45.08			
DEPTH TO BOTTOM	(FEET) 115.16	_		
PID (ppm)	0.0			

Well No.	4A	Da	ate	10/27/2022
Inspected By	MPP/JU	W	eather Conditions	Clear, 60-64 F
	WELL EXT	TERIOR CO	NDITIONS	
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
Intact:		X		
Cracked:			X	
Missing:			X	
PONDING OF WATE	R AROUND WELL		X	
PROTECTIVE CASING	G/MANHOLE/LOCK			
Casing/Manh	nole - Intact:	X		
Lock - Intact:		X		
WELL CASING (STIC	KUP) STRAIGHT	X		
DESIGNATED MEASU	JRING POINT	X		Top of Casing
WELL IS PROTECTED)	X		
WELL IS CLEARLY M	ARKED	X		
	INTERIO	R WELL CON	NDITIONS	
DEPTH TO WATER (FEET) 13.49			
DEPTH TO BOTTOM	(FEET) 31.22			
PID (ppm)	0.0			

Well No.	4B	D	ate	10/27/2022			
Inspected By	MPP/JU	w	eather Conditions	Clear, 60-64 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			<u> X</u>				
Missing:			<u> X</u>				
PONDING OF WATE	R AROUND WELL		<u> X</u>				
PROTECTIVE CASING	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	X					
Lock - Intact:		X					
WELL CASING (STIC	KUP) STRAIGHT	X					
DESIGNATED MEASI	URING POINT	X		Top of Casing			
WELL IS PROTECTED)	X		_			
WELL IS CLEARLY M	ARKED	X		_			
	INTERIO	OR WELL CO	NDITIONS				
DEPTH TO WATER (FEET) 13.40)					
DEPTH TO BOTTOM	1 (FEET) 82.09)					
PID (ppm)	0.0						

Well No.	4C	Da	ate	10/27/2022			
Inspected By	MPP/JU	w	eather Conditions	Clear, 60-64 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			X				
Missing:			X				
PONDING OF WATE	R AROUND WELL		X				
PROTECTIVE CASIN	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	<u> </u>					
Lock - Intact:	:	X					
WELL CASING (STIC	KUP) STRAIGHT	X					
DESIGNATED MEAS	URING POINT	X		Top of Casing			
WELL IS PROTECTED)	X					
WELL IS CLEARLY M	ARKED	X		_			
	INTERIC	OR WELL CO	NDITIONS				
DEPTH TO WATER (FEET) 10.01						
DEPTH TO BOTTOM	1 (FEET) 138.26	5					
PID (ppm)	0.0						

Well No.	6AR	[Date	10/26/2022				
Inspected By	MPP/JU	\	Weather Conditions	Fog, 62-65 F				
	WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			<u> </u>					
Missing:			<u> </u>					
PONDING OF WATE	R AROUND WELL		<u> </u>					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:		X						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEASI	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X						
WELL IS CLEARLY M	ARKED	<u> X</u>						
	INTERIOR	R WELL CO	ONDITIONS					
DEPTH TO WATER (FEET) 93.84							
DEPTH TO BOTTOM	(FEET) 113.36							
PID (ppm)	0.0							

Well No.	6B	Da	ate	10/26/2022				
Inspected By	MPP/JU	w	eather Conditions	Fog, 62-65 F				
WELL EXTERIOR CONDITIONS								
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			X					
Missing:			X					
PONDING OF WATE	R AROUND WELL		X					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:		X						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEASI	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X		_				
WELL IS CLEARLY M	ARKED	X		_				
	INTERIO	OR WELL CO	NDITIONS					
DEPTH TO WATER (FEET) 95.14	4						
DEPTH TO BOTTOM	1 (FEET) 148.8	0						
PID (ppm)	0.0							

Well No.	7A		Date	10/26/2022			
Inspected By	MPP/JU		Weather Conditions	Fog, 62-65 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			<u> X</u>				
Missing:			<u> X</u>				
PONDING OF WATE	R AROUND WELL		<u> X</u>				
PROTECTIVE CASING	G/MANHOLE/LOCK		· <u> </u>				
Casing/Manh	nole - Intact:	X	. <u>—</u> .				
Lock - Intact:		X	· <u> </u>				
WELL CASING (STIC	KUP) STRAIGHT	X	. <u>—</u> .				
DESIGNATED MEASI	URING POINT	X	. <u>—</u> .	Top of Casing			
WELL IS PROTECTED)	X	. <u>—</u> .				
WELL IS CLEARLY M	ARKED	X	. <u>—</u> .				
	INTE	RIOR WELL C	CONDITIONS				
DEPTH TO WATER (FEET) <u>84</u>	.88					
DEPTH TO BOTTOM	(FEET) <u>99</u>	.48					
PID (ppm)	0	0.0					

Well No.	7B	Da	te	10/26/2022			
Inspected By	MPP/JU	We	eather Conditions	Fog, 62-65 F			
WELL EXTERIOR CONDITIONS							
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>			
Intact:		X					
Cracked:			X				
Missing:			X				
PONDING OF WATE	R AROUND WELL		X				
PROTECTIVE CASING	G/MANHOLE/LOCK						
Casing/Manh	nole - Intact:	X					
Lock - Intact:		X					
WELL CASING (STICE	KUP) STRAIGHT	X					
DESIGNATED MEASU	JRING POINT	X					
WELL IS PROTECTED)	X					
WELL IS CLEARLY M.	ARKED	X					
	INTERI	OR WELL CON	DITIONS				
DEPTH TO WATER (I	FEET) <u>84.6</u>	7					
DEPTH TO BOTTOM	(FEET) 113.2	22					
PID (ppm)	0.0						

Well No.	7C	D	ate	10/26/2022				
Inspected By	MPP/JU	w	eather Conditions	Fog, 62-65 F				
WELL EXTERIOR CONDITIONS								
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>				
Intact:		X						
Cracked:			<u> X</u>					
Missing:			<u> X</u>					
PONDING OF WATE	R AROUND WELL		<u> X</u>					
PROTECTIVE CASING	G/MANHOLE/LOCK							
Casing/Manh	nole - Intact:	X						
Lock - Intact:		X						
WELL CASING (STIC	KUP) STRAIGHT	X						
DESIGNATED MEASI	URING POINT	X		Top of Casing				
WELL IS PROTECTED)	X						
WELL IS CLEARLY M	ARKED	X		_				
	INTER	IOR WELL CO	NDITIONS					
DEPTH TO WATER (FEET) 86.	18						
DEPTH TO BOTTOM	I (FEET) 185	.64						
PID (ppm)	0.	0						

Well No.	8	Da	ate .	10/26/2022						
Inspected By	MPP/JU	w	eather Conditions	Fog, 62-65 F						
WELL EXTERIOR CONDITIONS										
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>						
Intact:		<u> </u>								
Cracked:			X							
Missing:			X							
PONDING OF WATE	R AROUND WELL	X		_						
PROTECTIVE CASING	G/MANHOLE/LOCK			_						
Casing/Manh	nole - Intact:	X		_						
Lock - Intact:	:	X								
WELL CASING (STIC	KUP) STRAIGHT	X								
DESIGNATED MEASI	URING POINT	X		Top of Casing						
WELL IS PROTECTED	O	X								
WELL IS CLEARLY M	ARKED	X								
INTERIOR WELL CONDITIONS										
DEPTH TO WATER (FEET) 77.6	9								
DEPTH TO BOTTOM	1 (FEET) 90.1	4								
PID (ppm)	0.0)								

Well No.	9	Da	ate	10/26/2022						
Inspected By	MPP/JU	W	eather Conditions	Fog, 62-65 F						
WELL EXTERIOR CONDITIONS										
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>						
Intact:		X								
Cracked:			<u> </u>							
Missing:			<u> X</u>							
PONDING OF WATE	R AROUND WELL		<u> </u>							
PROTECTIVE CASING	G/MANHOLE/LOCK									
Casing/Manh	nole - Intact:	X								
Lock - Intact:		X								
WELL CASING (STIC	KUP) STRAIGHT	X								
DESIGNATED MEASU	JRING POINT	X		Top of Casing						
WELL IS PROTECTED)	X								
WELL IS CLEARLY M	ARKED	X								
INTERIOR WELL CONDITIONS										
DEPTH TO WATER (FEET) 74.40									
DEPTH TO BOTTOM	(FEET) 91.53									
PID (ppm)	0.0									

Well No.	11A	_ D	ate	10/26/2022							
Inspected By	MPP/JU	_ w	eather Conditions	Fog, 62-65 F							
WELL EXTERIOR CONDITIONS											
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>							
Intact:		X									
Cracked:			<u> X</u>								
Missing:			<u> X</u>								
PONDING OF WATER	R AROUND WELL		<u> X</u>								
PROTECTIVE CASING	G/MANHOLE/LOCK										
Casing/Manh	ole - Intact:	X									
Lock - Intact:		X									
WELL CASING (STICE	KUP) STRAIGHT	X									
DESIGNATED MEASU	JRING POINT	X		Top of Casing							
WELL IS PROTECTED)	X									
WELL IS CLEARLY M.	ARKED	X									
INTERIOR WELL CONDITIONS											
DEPTH TO WATER (I	FEET) 72.88	_									
DEPTH TO BOTTOM	(FEET) 81.44	_									
PID (ppm)	0.0	_									

Well No.	11B		Date		10/26/2022
Inspected By	MPP/JU		Weath	er Condition	Fog, 62-65 F
	WELL	EXTERIOR	CONDI	ΓIONS	
CONCRETE PAD		<u>Yes</u>		<u>No</u>	<u>Remarks</u>
Intact:		X	_		
Cracked:			_	X	
Missing:				X	
PONDING OF WATER	R AROUND WELL			X	
PROTECTIVE CASING	G/MANHOLE/LOCK		_		
Casing/Manh	iole - Intact:	X	_		
Lock - Intact:		X	_		Lock rusted; hard to open
WELL CASING (STICE	KUP) STRAIGHT	X	_		
DESIGNATED MEASU	JRING POINT	X	_		Top of Casing
WELL IS PROTECTED)	X	_		
WELL IS CLEARLY MA	ARKED	X	_		
	INTEI	RIOR WELL	CONDI	ΓIONS	
DEPTH TO WATER (I	FEET) 74	.38			
DEPTH TO BOTTOM	(FEET) 97	.57			
PID (ppm)	0	.0			

Well No.	12A	Da	te	10/27/2022					
Inspected By	MPP/JU	We	ather Conditions	Clear, 60-64 F					
	WELL EX	TERIOR CON	IDITIONS						
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>					
Intact:		X							
Cracked:			X						
Missing:			X						
PONDING OF WATER A	AROUND WELL		X						
PROTECTIVE CASING/	MANHOLE/LOCK								
Casing/Manhol	e - Intact:	X							
Lock - Intact:		X							
WELL CASING (STICKU	P) STRAIGHT	X							
DESIGNATED MEASUR	ING POINT	X		Top of Casing					
WELL IS PROTECTED		X							
WELL IS CLEARLY MAR	KED	X							
INTERIOR WELL CONDITIONS									
DEPTH TO WATER (FEE	ET) <u>80.19</u>	<u> </u>							
DEPTH TO BOTTOM (F	EET) 94.63	<u> </u>							
PID (ppm)	0.0								

Well No.	12B	_ Da	ate	10/27/2022							
Inspected By	MPP/JU	_ w	eather Conditions	Clear, 60-64 F							
WELL EXTERIOR CONDITIONS											
CONCRETE PAD		<u>Yes</u>	<u>No</u>	<u>Remarks</u>							
Intact:		<u>X</u>									
Cracked:			<u> X</u>								
Missing:			<u> X</u>								
PONDING OF WATER	R AROUND WELL		<u> X</u>								
PROTECTIVE CASING	G/MANHOLE/LOCK										
Casing/Manh	ole - Intact:	<u>X</u>									
Lock - Intact:		X									
WELL CASING (STICE	KUP) STRAIGHT	X									
DESIGNATED MEASU	JRING POINT	X		Top of Casing							
WELL IS PROTECTED)	X									
WELL IS CLEARLY M.	ARKED	X									
INTERIOR WELL CONDITIONS											
DEPTH TO WATER (I	FEET) 81.70	_									
DEPTH TO BOTTOM	(FEET) 96.95	_									
PID (ppm)	0.0	_									

APPENDIX C MONITORING WELL SAMPLING LOGS

SHP2201 - 2nd SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

CLIENT/PROJECT No.	Town of Southhampton / SHP2201					
WELL No./OWNER		1A /	Town of Southhampt	on		
SAMPLE I.D.			MW-1A			
SAMPLING POINT	TOC	_	SAMPLED BY		MPP/JU	
DATE SAMPLED	10/26/2022	_	TIME SAMPLED		12:10	
WELL USE	Monitoring	_				
STATIC WATER ELEVATION	N104.12	_	FT. BELOW MEASU	JRING POINT	ТОС	
WELL DIAMETER	4	Inches				
TOTAL WELL DEPTH	113.35	_	FT. BELOW MEASU	JRING POINT	ТОС	
	CAMDI	ING INFOR	MATION			
	SAMPL	ING INFOR	<u>IMATION</u>			
PURGE METHOD Su	bmersible Pump	-	SAMPLE METHOD	Submers	sible Pump	
PURGE RATE	5 GPM	_	PURGE TIME		3.5	
CASING VOLUMES REMOVE	ED3	_	GALLONS	17.5		
SAMPLE APPEARANCE	Clear	_	ODORS OBSERVE	D Ro	otting Material	
PID (ppm)	0.0	_				
ANALYSIS	Routine	_	DATE SHIPPED	10/2	7/2022	
		_				
	SAMPI	ING PARA	METERS			
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
pH 6.75	6.69	6.64	6.59	6.60		
COND 0.570	0.570	0.562	0.599	0.578		
T 13.25	13.33	13.39	13.44	13.45		
ORP 148	152	15.59	157	157		
TURB 0.0	0.0	0.0	0.0	0.0		
D.O. 12.65	11.87	11.34	10.85	10.70		

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201 1B / Town of Southhampton						
WELL No./OWNER	₹ _							
SAMPLE I.D.	_			MW-1B				
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU		
DATE SAMPLED	_	10/26/2022		TIME SAMPLED		12:50		
WELL USE	_	Monitoring						
STATIC WATER EL	_EVATION	106.39		FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	тн	169.51		FT. BELOW MEASU	RING POINT	ТОС		
		SAMDI	ING INFO	PMATION .				
		SAMEL		MATION				
PURGE METHOD	Sub	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump		
PURGE RATE		5 GPM		PURGE TIME		.00		
CASING VOLUMES	S REMOVEI	3	_	GALLONS 12		2.00		
SAMPLE APPEARA	ANCE _	Clear		ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED	10/27	7/2022		
		SAMPI	LING PARA	METERS				
	1 (4) 1	1 \ / -	2.1/-1	7.1/-1	Dua aanadiaa			
рН	Initial 6.13	1 Vol 6.16	2 Vol 6.23	3 Vol 6.36	Pre-sampling 6.56			
COND	0.083	0.083	0.083	0.082	0.082			
T	12.44	12.57	12.70	12.68	12.70			
ORP	149	153	158	160	153			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	14.19	12.04	10.40	9.96	9.31			

CLIENT/PROJECT	No		lown o	f Southhampton / Sh	HP2201			
WELL No./OWNER		1C / Town of Southhampton						
SAMPLE I.D.			MW-1C					
SAMPLING POINT		TOC	_	SAMPLED BY	_	MPP/JU		
DATE SAMPLED		10/26/2022	_	TIME SAMPLED	_	13:30		
WELL USE		Monitoring	_					
STATIC WATER EL	EVATION	107.18	_	FT. BELOW MEASU	JRING POINT	ТОС		
WELL DIAMETER		4	_Inches					
TOTAL WELL DEP	ГН	155.59	_	FT. BELOW MEASU	JRING POINT	ТОС		
		SAMPL	ING INFO	RMATION				
PURGE METHOD	Subme	ersible Pump		SAMPLE METHOD	Subme	ersible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		19.00		
CASING VOLUMES	REMOVED	3	_	GALLONS		93.60		
SAMPLE APPEARA	NCE	Clear	<u> </u>	ODORS OBSERVE	None			
PID (ppm)		0.0	_					
ANALYSIS	F	Routine	_	DATE SHIPPED	10/	27/2022		
		SAMPL	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	6.56	6.26	6.38	6.56	6.90			
COND	0.085	0.085	0.087	0.086	0.086			
Т	12.31	12.51	12.49	12.46	12.44			
ORP	145	168	166	158	142			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	17.69	10.81	9.96	9.73	9.71			

CLIENT/PROJECT No. Town of Southhampton / SHP2201									
WELL No./OWNE	R _	3A / Town of Southhampton							
SAMPLE I.D.				MW-3A/DUP001					
SAMPLING POINT	_	тос	<u> </u>	SAMPLED BY		MPP/JU			
DATE SAMPLED	_	10/27/2022		TIME SAMPLED		9:55			
WELL USE	_	Monitoring							
STATIC WATER E	LEVATION	48.88	_	FT. BELOW MEASU	RING POINT	ТОС			
WELL DIAMETER		4	Inches						
TOTAL WELL DEF	PTH	62.74		FT. BELOW MEASU	RING POINT	ТОС			
		SAMPI	ING INFO	RMATION					
PURGE METHOD	Subr	nersible Pump	_	SAMPLE METHOD	Submers	ivle Pump			
PURGE RATE		5 GPM	_	PURGE TIME	9.	00			
CASING VOLUME	S REMOVED	3		GALLONS 45.0		.00			
SAMPLE APPEAR	ANCE _	Clear	_	ODORS OBSERVED No		None			
PID (ppm)		0.0							
ANALYSIS		Routine		DATE SHIPPED	10/28	/2022			
			_		-				
		SAMPI	ING PARA	METERS					
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling				
pH	6.97	6.87	6.76	6.76	6.65				
COND	0.430	0.401	0.382	0.381	0.375				
T ORP	10.92 164	10.63 177	10.58 185	10.56 185	10.54 190				
TURB	200	241	79.9	32.1	24.5				
D.O.	15.54	11.06	9.04	8.64	8.33				

CLIENT/PROJECT N	٠٥.	Town of Southhampton / SHP2201						
WELL No./OWNER	_		3B / Town of Southhampton					
SAMPLE I.D.	_			MW-3B				
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU		
DATE SAMPLED	_	10/27/2022	_	TIME SAMPLED		10:40		
WELL USE	_	Monitoring	-					
STATIC WATER ELE	EVATION	45.57	-	FT. BELOW MEASUR	ING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEPT	Н	116.74	_	FT. BELOW MEASUR	ING POINT	ТОС		
		SAMDLL	NG INFO	RMATION				
		<u>SAME</u>	110 1111 01	<u> MATION</u>				
PURGE METHOD _	Sub	mersible Pump	-	SAMPLE METHOD	Submer	sible Pump		
PURGE RATE		5 GPM	-	PURGE TIME		28		
CASING VOLUMES	REMOVED	3	_	GALLONS		39.00		
SAMPLE APPEARAI	NCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0	_					
ANALYSIS		Routine		DATE SHIPPED	10/2	28/2022		
			-					
		SAMPLI	NG PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
Н	6.54	6.56	6.57	6.64	6.64			
COND	0.275	0.270	0.298	0.298	0.300			
T	11.44	11.36	11.42	11.43	11.38			
ORP	77	13	1	-17	-3			
TURB	25.2	11.0	0.0	0.0	0.0			
D.O.	8.82	7.56	7.42	7.42	7.39			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _	3C / Town of Southhampton						
SAMPLE I.D.		MW-3C						
SAMPLING POINT	_	TOC	_	SAMPLED BY		MPP/JU		
DATE SAMPLED	_	10/27/2022	_	TIME SAMPLED		11:15		
WELL USE		Monitoring	_					
STATIC WATER EL	_EVATION	45.08	_	FT. BELOW MEASU	JRING POINT	ТОС		
WELL DIAMETER		4	_Inches					
TOTAL WELL DEP	тн	115.16	_	FT. BELOW MEASU	JRING POINT	ТОС		
		SAMDI	ING INFO	RMATION				
		SAMPL	IINO IINI OI	MATION				
PURGE METHOD	Subi	mersible Pump	_	SAMPLE METHOD	Submers	ible Pump		
PURGE RATE		5 GPM	_	PURGE TIME		28		
CASING VOLUMES	S REMOVE	3	_	GALLONS 136		.500		
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0	_					
ANALYSIS		Routine		DATE SHIPPED	10/28	3/2022		
		SAMPL	ING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	6.70	6.68	6.77	6.77	6.77			
COND	0.135	0.134	0.139	0.129	0.129			
T	11.14	12.12	12.22	12.21	12.19			
ORP	-31	-19	-7	12	20			
TURB	0.00	0.00	0.00	0.00	0.00			
D.O.	12.52	6.99	7.06	7.13	7.11			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _	4A / Town of Southhampton						
SAMPLE I.D.	_			MW-4A				
SAMPLING POINT	_	TOC	<u></u>	SAMPLED BY	MPP/JU			
DATE SAMPLED	_	10/28/2022	<u></u>	TIME SAMPLED		14:20		
WELL USE	_	Monitoring						
STATIC WATER ELEVATION 13.49				FT. BELOW MEASU	IRING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEPTH 31.22				FT. BELOW MEASU	IRING POINT	ТОС		
		SAMDI	LING INFOI	RMATION				
		<u> </u>		<u> </u>				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Submers	ible Pump			
PURGE RATE	URGE RATE 5 GPM			PURGE TIME 7.		.00		
CASING VOLUMES	S REMOVEI	3		GALLONS	35.00			
SAMPLE APPEARA	ANCE _	Clear		ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED	10/28	3/2022		
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	6.78	6.79	6.70	6.65	6.68			
COND	0.290	0.239	0.234	0.230	0.227			
T	12.39	12.72	12.64	12.66	12.65			
ORP	-1	40	62	81	87			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	10.77	7.71	7.46	7.31	7.22			

CLIENT/PROJECT I	۷o	Town of Southhampton / SHP2201						
WELL No./OWNER	_	4B / Town of Southhampton						
SAMPLE I.D.	_			MW-4B				
SAMPLING POINT	_	TOC	_	SAMPLED BY	MPP/JU			
DATE SAMPLED	_	10/27/2022	_	TIME SAMPLED		14:00		
WELL USE	_	Monitoring						
STATIC WATER ELEVATION 13.4			_	FT. BELOW MEASU	IRING POINT	ТОС		
WELL DIAMETER4			Inches					
TOTAL WELL DEPTH 82.09				FT. BELOW MEASU	IRING POINT	ТОС		
		SAMPI	ING INFO	RMATION				
		<u>57 ((1))</u>		<u> </u>				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Submers	ible Pump			
PURGE RATE	PURGE RATE 5 GPM		_	PURGE TIME 2		7.0		
CASING VOLUMES	REMOVE	3	_	GALLONS	134.0			
SAMPLE APPEARA	NCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS _		Routine		DATE SHIPPED 10/28/202		3/2022		
,								
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
На	6.53	6.48	6.74	6.64	6.68			
COND	0.145	0.167	0.212	0.231	0.233			
T	12.94	12.96	12.95	12.93	12.89			
ORP	83	89	38	-5	-6			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	11.88	7.80	7.40	7.30	7.30			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _	4C / Town of Southhampton						
SAMPLE I.D.	_			MW-4C				
SAMPLING POINT	_	TOC		SAMPLED BY	MPP/JU			
DATE SAMPLED	_	10/27/2022		TIME SAMPLED		13:30		
WELL USE	_	Monitoring						
STATIC WATER EL	EVATION	10.01		FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEPTH 138.3			<u> </u>	FT. BELOW MEASU	RING POINT	ТОС		
		SAMDI	ING INFO	RMATION				
		<u>57 ((1) 1</u>		XI II XI I OIX				
PURGE METHOD Submersible Pump		mersible Pump	_	SAMPLE METHOD	Submers	sible Pump		
PURGE RATE	PURGE RATE5 GPM			PURGE TIME		50		
CASING VOLUMES	REMOVE	3		GALLONS	250.00			
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED	10/28	3/2022		
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	6.95	6.81	6.70	6.62	6.55			
COND	0.334	0.263	0.264	0.261	0.257			
T	13.13	13.12	13.13	13.06	13.03			
ORP	143	13.12	120	90	86			
TURB	110	41.3	0.0	0.0	0.0			
D.O.	16.95	8.04	7.83	7.68	7.68			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201					
WELL No./OWNER	₹ _		6AR	/ Town of Southham	pton		
SAMPLE I.D.	_			MW-6AR			
SAMPLING POINT	_	ТОС	_	SAMPLED BY	MPP/JU		
DATE SAMPLED	_	10/26/2022	_	TIME SAMPLED		10:30	
WELL USE	_	Monitoring	_				
STATIC WATER ELEVATION 93.84			_	FT. BELOW MEASU	RING POINT	ТОС	
WELL DIAMETER		2	Inches				
TOTAL WELL DEPTH 113.4			_	FT. BELOW MEASURING POINT TOC			
		SAMPL	ING INFO	RMATION			
PURGE METHOD	Sub	mersible Pump		SAMPLE METHOD	Submers	ible Pump	
PURGE RATE	5 GPM			PURGE TIME	GE TIME 2		
CASING VOLUMES	S REMOVEI) 3	_	GALLONS	9.	.60	
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVED		None	
PID (ppm)		0.0	_				
ANALYSIS	Routine	e + Baseline Metals	_	DATE SHIPPED	10/27	7/2022	
			_				
		SAMPL	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	6.73	6.49	6.34	6.16	6.30		
COND	0.111	0.107	0.107	0.106	0.106		
T	13.71	13.17	13.10	13.09	13.10		
ORP	103	127	142	154	149		
TURB	23.9	0.0	0.0	0.0	0.0		
D.O.	17.88	13.62	11.87	11.13	10.84		

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201					
WELL No./OWNER	₹		6B /	[/] Town of Southhamp	oton		
SAMPLE I.D.	_			MW-6B			
SAMPLING POINT	_	TOC	_	SAMPLED BY	MPP/JU		
DATE SAMPLED		10/26/2022	_	TIME SAMPLED		11:20	
WELL USE	_	Monitoring	_				
STATIC WATER ELEVATION 95.14			_	FT. BELOW MEASU	RING POINT	ТОС	
WELL DIAMETER		4	Inches				
TOTAL WELL DEPTH 148.8			_	FT. BELOW MEASU	RING POINT	ТОС	
		SAMPI	ING INFO	RMATION			
		<u> </u>	1110 1111 01	(I I) (I I O I (
PURGE METHOD Submersible Pump			_	SAMPLE METHOD	Submer	sible Pump	
PURGE RATE		5 GPM	_	PURGE TIME		21	
CASING VOLUMES	REMOVED	3	<u> </u>	GALLONS	103.00		
SAMPLE APPEARA	NCE _	Clear	_	ODORS OBSERVED		None	
PID (ppm)		0.0	_				
ANALYSIS	Routine	+ Baseline Metals	_	DATE SHIPPED 10/2		7/2022	
		SAMPL	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
Н	6.40	6.27	6.28	5.99	6.16		
COND	0.40	0.085	0.089	0.089	0.089		
T	12.26	12.43	12.50	12.49	12.47		
ORP	137	141	135	148	140		
TURB	0.0	0.0	0.0	0.0	0.0		
D.O.	10.74	9.89	9.55	9.47	9.41		

CLIENT/PROJECT	Γ No. Town of Southhampton / SHP2201							
WELL No./OWNE	R _	8 / Town of Southhampton						
SAMPLE I.D.	_			MW-8 (MS/MSD)				
SAMPLING POINT	-	TOC	_	SAMPLED BY	MPP/JU			
DATE SAMPLED	<u>-</u>	10/26/2022		TIME SAMPLED		14:45		
WELL USE	_	Monitoring						
STATIC WATER ELEVATION 77.69				FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEPTH 90.1			_	FT. BELOW MEASU	RING POINT	ТОС		
		SAMPI	ING INFO	RMATION				
		<u>57 ((1))</u>		XI II XI I GIX				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Submers	ible Pump			
PURGE RATE	RGE RATE 5 GPM		_	PURGE TIME		5		
CASING VOLUME	S REMOVE	D3		GALLONS	25.00			
SAMPLE APPEAR	ANCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED 10/27/2022		//2022		
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
На	6.33	6.34	6.25	6.29	6.26			
COND	0.33	0.107	0.108	0.112	0.112			
T	13.65	12.60	12.61	12.61	12.61			
ORP	163	182	191	192	194			
TURB	21.8	15.9	5.6	0.0	0.0			
D.O.	26.40	14.14	12.51	11.96	11.56			

		TOWIT	of Southhampton / Sl	162201	
WELL No./OWNER		9/	Town of Southhamp	ton	
SAMPLE I.D.			MW-9		
SAMPLING POINT	ТОС		SAMPLED BY		MP/JU
DATE SAMPLED	10/26/2022		TIME SAMPLED		15:15
WELL USE	Monitoring				
STATIC WATER ELEVATION		FT. BELOW MEASU	RING POINT	ТОС	
WELL DIAMETER	4	Inches			
TOTAL WELL DEPTH		FT. BELOW MEASURING POINT TOO			
	SAMPI	LING INFO	RMATION		
	57.11.11				
PURGE METHOD Submersible Pump			SAMPLE METHOD	Submersi	ble Pump
PURGE RATE	E RATE 5 GPM		PURGE TIME	6	5
CASING VOLUMES REMOV	ED3		GALLONS	27.30	
SAMPLE APPEARANCE	Clear	_	ODORS OBSERVED		None
PID (ppm)	0.0				
ANALYSIS	Routine		DATE SHIPPED	10/27,	/2022
		_			
	SAMP	LING PARA	AMETERS		
Initial	1 Vol	2 Vol	3 Vol	Pre-sampling	
pH 6.64	6.71	6.67	6.63	6.56	
COND 0.072	0.074	0.074	0.074	0.057	
T 14.06	12.94	13.05	13.15	13.17	
ORP 161 TURB 5.0	172 2.6	179 0.0	186 0.0	192 0.0	
D.O. 22.25	2.6 14.17	12.54	11.55	15.69	

CLIENT/PROJECT	No	Town of Southhampton / SHP2201						
WELL No./OWNER	₹	11A / Town of Southhampton						
SAMPLE I.D.				MW-11A				
SAMPLING POINT	SAMPLING POINT TOC					MPP/JU		
DATE SAMPLED	AMPLED 10/26/2022			TIME SAMPLED		15:50		
WELL USE		Monitoring	<u>-</u>					
STATIC WATER ELEVATION 72.88			-	FT. BELOW MEASU	RING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEP	81.44	<u>-</u>	FT. BELOW MEASU	RING POINT	ТОС			
		CAMPLI	NC INFO	DMATION!				
		SAMPLII	NG INFOR	RMATION				
PURGE METHOD Submersible Pump			<u>.</u>	SAMPLE METHOD	Submers	ible Pump		
PURGE RATE	GE RATE 5 GPM			PURGE TIME		3.5		
CASING VOLUMES	REMOVE	3		GALLONS	17.55			
SAMPLE APPEARA	NCE _	Red/Turbid	_	ODORS OBSERVED		None		
PID (ppm)		0.0	_					
ANALYSIS	Routine+B	aseline VOCs/Metals		DATE SHIPPED 10/27/2022		7/2022		
•			•		-			
		SAMPLI	NG PARA	AMETERS				
-11	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH	7.02	6.93 0.225	6.90	6.75	6.77			
COND	0.231 15.07		0.220	2.130	0.212			
T ORP	15.07	13.96 99	13.78 81	13.75 79	13.67 77			
TURB	1000	1000	364	330	191			
D.O.	10.15	10.02	9.44	8.95	8.54			

CLIENT/PROJECT	Г No		Town	of Southhampton / Sl	HP2201	
WELL No./OWNE	R _		11B /	[/] Town of Southhamp	oton	
SAMPLE I.D.	_			MW-11B		
SAMPLING POINT		TOC		SAMPLED BY		MPP/JU
DATE SAMPLED	-	10/26/2022		TIME SAMPLED		16:30
WELL USE	-	Monitoring				
STATIC WATER E	LEVATION	74.38		FT. BELOW MEASU	RING POINT	ТОС
WELL DIAMETER		4	Inches			
TOTAL WELL DEPTH 97.6				FT. BELOW MEASURING POINT TOC		
		SAMDI IA	IG INFO	RMATION		
		SAMPLIN	NO IINI OI	MATION		
PURGE METHOD Submersible Pump			SAMPLE METHOD	Submer	sible Pump	
PURGE RATE	RGE RATE 5 GPM			PURGE TIME		9
CASING VOLUME	S REMOVE	D 3		GALLONS 44.85		4.85
SAMPLE APPEAR	ANCE _	Clear		ODORS OBSERVED		None
PID (ppm)		0.0				
ANALYSIS	Routine+I	Baseline VOCs/Metals		DATE SHIPPED 10/2		7/2022
		SAMPLIN	NG PARA	METERS		
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling	
рН	6.65	6.70	6.61	6.63	6.58	
COND	0.420	0.425	0.429	0.427	0.305	
T	13.27	13.01	12.83	12.83	12.76	
ORP	61	50	56	44	26	
TURB	0.0	0.0	0.0	0.0	0.0	
D.O.	6.73	6.65	6.58	6.49	6.44	

CLIENT/PROJECT No.			Town	of Southhampton / S	HP2201			
WELL No./OWNER	₹ _	12A / Town of Southhampton						
SAMPLE I.D.	_			MW-12A				
SAMPLING POINT	SAMPLING POINT TOC			SAMPLED BY		MPP/JU		
DATE SAMPLED	_	10/27/2022	_	TIME SAMPLED		8:35		
WELL USE	JSE Monitoring		_					
STATIC WATER EL	EVATION	80.19	_	FT. BELOW MEASU	JRING POINT	ТОС		
WELL DIAMETER 4			Inches					
TOTAL WELL DEPTH 94.63			_	FT. BELOW MEASU	JRING POINT	TOC		
		C A MDL I	NC INFO	RMATION				
		SAMPLI	INO IINI OI	MATION				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Subme	rsible Pump			
PURGE RATE	5 GPM		_	PURGE TIME		6		
CASING VOLUMES	REMOVEI	3	_	GALLONS		30		
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVE	_	None		
PID (ppm)		0.0	_					
ANALYSIS		Routine	_	DATE SHIPPED 10		28/2022		
			-					
		SAMPL	NG PARA	AMETERS				
	1 1	1)/	0.17.1	7.7.1				
m.l.l	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
pH COND	6.85 0.227	6.73	6.68	6.70	6.63 0.241			
T		0.232	0.238	0.238				
ORP	12.59 142	12.72 167	12.77 178	12.78 182	12.79 187			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	12.39	10.05	9.00	8.44	8.18			
			2.00	5	2110			

CLIENT/PROJECT	No.	Town of Southhampton / SHP2201						
WELL No./OWNER	₹ _	12B / Town of Southhampton						
SAMPLE I.D.	_			MW-12B				
SAMPLING POINT	_	TOC	_	SAMPLED BY	MPP/JU			
DATE SAMPLED	_	10/27/2022	<u> </u>	TIME SAMPLED		8:55		
WELL USE	_	Monitoring						
STATIC WATER ELEVATION 81.70				FT. BELOW MEASU	IRING POINT	ТОС		
WELL DIAMETER		4	Inches					
TOTAL WELL DEPTH 96.95			_	FT. BELOW MEASU	IRING POINT	ТОС		
		SAMPI	ING INFO	RMATION				
		<u>9, </u>		XIII XIII X				
PURGE METHOD Submersible Pump		_	SAMPLE METHOD	Submers	ible Pump			
PURGE RATE	PURGE RATE 5 GPM		_	PURGE TIME 6.		5.5		
CASING VOLUMES	REMOVE	D3		GALLONS	31			
SAMPLE APPEARA	ANCE _	Clear	_	ODORS OBSERVED		None		
PID (ppm)		0.0						
ANALYSIS		Routine		DATE SHIPPED 10/28/2022		3/2022		
		SAMP	LING PARA	AMETERS				
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling			
рН	6.54	6.55	6.63	6.65	6.66			
COND	0.172	0.253	0.03	0.267	0.262			
T	12.48	12.51	12.53	12.55	12.55			
ORP	195	196	187	182	181			
TURB	0.0	0.0	0.0	0.0	0.0			
D.O.	9.46	7.91	7.53	7.25	7.09			

CLIENT/PROJECT No.	Town of Southnampton / SHP2201					
WELL No./OWNER		LEA-	PRI / Town of Southh	nampton		
SAMPLE I.D.			LEA-PRI			
SAMPLING POINT	ТО	С	SAMPLED BY		MPP/JU	
DATE SAMPLED	10/26/	2022	TIME SAMPLED		8:10	
WELL USE	NA	<u> </u>				
STATIC WATER ELEVATION NA			FT. BELOW MEAS	URING POINT	NA	
WELL DIAMETER NA						
TOTAL WELL DEPTH NA			FT. BELOW MEAS	FT. BELOW MEASURING POINT NA		
		SAMPLING INFO	ORMATION .			
PURGE METHOD	NA		SAMPLE METHOD	В	ailer	
PURGE RATE	NA		PURGE TIME	1	NA	
CASING VOLUMES REMO	OVED	NA	GALLONS	NA		
SAMPLE APPEARANCE			ODORS OBSERVE	BSERVED No		
PID (ppm)	0.0					
ANALYSIS Routine	Parameters + A	rsenic	DATE SHIPPED	DATE SHIPPED 10/27/2022		
		SAMPLING PAF	<u>RAMETERS</u>			
Initi	al 1 Vo	ol 2 Vol	J 3 Vol	Pre-sampling		
pH -	-	-	-	6.24		
COND -	-	-	-	0.895		
T -	-	-	-	17.82		
ORP -	-	-	-	101		
TURB -	-	-	-	0.0		
D.O			-	13.26		

CLIENT/PROJECT No.		Town of Southhampton / SHP2201					
WELL No./OWNER		LEA-SEC / Town of Southhampton					
SAMPLE I.D.	_		LEA-SEC				
SAMPLING POIN	NT _	TOC	_	SAMPLED BY		MPP/JU	
DATE SAMPLED	_	10/26/2022	_	TIME SAMPLED		8:30	
WELL USE	_	NA	_				
STATIC WATER	ELEVATION	NA	_	FT. BELOW MEAS	URING POINT	NA	
WELL DIAMETE	R	NA	Inches				
TOTAL WELL D	EPTH	NA	<u> </u>	FT. BELOW MEAS	URING POINT	NA	
		SAMPL	ING INFO	RMATION			
PURGE METHOD		NA	_	SAMPLE METHOD	<u> </u>	Bailer	
PURGE RATE		NA	_	PURGE TIME		NA	
CASING VOLUM	IES REMOVEC	NA NA		GALLONS		NA	
SAMPLE APPEA	RANCE _		_	ODORS OBSERVE	ED	None	
PID (ppm)		0.0					
ANALYSIS Routine Parameters + Arsenic		_	DATE SHIPPED	10/2	27/2022		
		<u>SAMPI</u>	ING PARA	AMETERS			
	Initial	1 Vol	2 Vol	3 Vol	Pre-sampling		
рН	-	-	-	-	6.1		
COND	-	-	-	-	0.485		
T ORP	<u>-</u>	-	-	-	17.56 45		
TURB	- -	-	- -	-	0.0		
D.O.	-	-	-	-	15.51		

APPENDIX D 6 NYCRR PART 360-2: LANDFILLS

SHP2201 - 2nd SEMI-ANNUAL POST-CLOSURE GROUNDWATER MONITORING REPORT 2022

Division of Solid & Hazardous Materials

6 NYCRR Part 360 Solid Waste Management Facilities Title 6 of the Official Compilation of Codes,

Rules and Regulations

Revised November 24, 1999

Reprinted March 2001

New York State Department of Environmental Conservation

George E. Pataki, Governor

Erin M. Crotty, Acting Commissioner

6 NYCRR PART 360

SOLID WASTE MANAGEMENT FACILITIES

TABLE OF CONTENTS

		Page
SUBPART 360-1	GENERAL PROVISIONS	
Section 360-1.1	Purpose and applicability	1-1
(a) Purpose		
(b) Applicability		
Section 360-1.2	Definitions	1-1
(a) Solid waste and	d related terms	
(b) Other definition	ns of general applicability	
Section 360-1.3	References	1-14
(a) Federal		
(b) Other		
Section 360-1.4	Enforcement, inspection and reporting	1-15
(a) Enforcement		
(b) Inspection		
(c) Reporting		
Section 360-1.5	Prohibited disposal	1-16
(a) Solid waste dis	sposal facilities	
(b) Hazardous was	ste disposal facilities	
Section 360-1.6	Severability	1-17
Section 360-1.7	Permit requirements, exemptions and variances	1-17
(a) Permit require	ments	
(b) Exemptions		
(c) Variances		
Section 360-1.8	Permit application and registration procedures,	
	generally	1-22
(a) Uniform Proce	edures Act	
(b) SEQRA review	w	
(c) Preapplication	meetings	
(d) Permits, gener	ally	
(e) Permit modifie	cations	
(f) Permit renewa	ls	
(g) Local solid wa	aste management plan	
(h) Registration o	f facilities	
Section 360-1.9	Contents of applications, generally	1-24
(a) Initial permits	and level of detail	
(b) Nonspecific fa	acilities	

(c) Modification ap	plications	
(d) Renewal applica		
(e) Engineering pla	ns, reports and specifications	
(f) Comprehensive	recycling analysis	
(g) Inactive hazardo	ous waste disposal and corrective action sites	
(h) Contingency pla		
(i) Signature and ve	prification of applications	
Section 360-1.10	Permit issuance criteria	1-30
(a) Construction		
(b) Operation		
Section 360-1.11	Permit provisions	1-48
(a) Mitigation of ac	lverse impacts	
(b) Transferability	-	
(c) Duration of con	struction	
(d) Duration of pen	mits	
(e) Supervision and	certification of construction	
(f) Cessation of cor	nstruction or operation activities	
(g) Department insp	pection of activities	
(h) Recyclables rec	overy	
(i) Approved design	n capacity	
Section 360-1.12	Financial assurance	1-32
(a) Applicability		
(b) Liability covera	ge	
(c) Forms of finance		
Section 360-1.13	Research, development and demonstration permits	1-32
(a) Permit		
(b) Permit applicate		
(c) Permit restriction	ons	
(d) Renewal		
Section 360-1.14	Operational requirements for all solid waste	
	management facilities	1-33
(a) Applicability		
(b) Water		
(c) Public access		
(d) Control of acce		
· · ·	n for unauthorized waste	
(f) Maintenance an		
(g) Contingency pl		
(h) Monitoring san	ipies and results	
(i) Recordkeeping	Coalid worte	
(j) Confinement of	POHA Marie	
(k) Dust control		
(l) Vector control		

(m) Odor control		
(n) On-site roads		
(o) Equipment she	lter	
(p) Noise levels		
(q) Open burning		
(r) Department-app	proved facilities	
(s) Emergency nur	nbers	
(t) Facilities		
(u) Facility operate	or requirements	
(v) Salvaging		
(w) Closure		
Section 360-1.15	Beneficial use	1-36
(a) Applicability		
(b) Solid waste ces	ssation	
(c) Special reportii	ng requirements	
(d) Casc-specific b	cneficial use determinations	
SUBPART 360-2	LANDFILLS	
Section 360-2.1	Applicability	2-1
Section 360-2.2	Transition	2-1
Section 360-2.3	Permit application requirements	2-2
Section 360-2.4	Engineering drawings	2-3
Section 360-2.5	Operation drawings	2-4
Section 360-2.6	Landscape plan	2-4
Section 360-2.7	Engineering report	2-4
Section 360-2.8	Construction quality assurance/construction	2 4
	quality control plan	2-7
(a) Responsibilitie		
(b) Personnel qual		
(c) Inspection acti		
(d) Sampling strat		
(e) Documentation		
	Operation and maintenance manual	2-8
(a) Landfill dispos		
(b) Personnel requ		
(c) Machinery and		
(d) Landfill operat		
(e) Fill progression	n	
	and characterization	
(g) Solid waste rea		
	management plan	
(i) Environmental	<u> </u>	

(j) Leachate management plan	
(k) Gas monitoring program	
(1) Winter and inclement weather operations	
(m) Convenience station operation	
(n) First lift placement procedures	
(o) Fire prevention plan	
Section 360-2.10 Contingency plan	2-10
(a) Construction related contingency plan	
(b) Operation related contingency plan	
(c) Post-closure contingency plan	
Section 360-2.11 Hydrogeologic report	2-11
(a) Requirements of the site investigation plan	
(b) Site investigation report	
(c) Environmental monitoring plan	
(d) Site analytical plan	
(d)(6) Water Quality Analysis Tables	2-26
Section 360-2.12 Landfill siting	2-47
(a) Applicability	
(b) Exceptions	
(c) Landfill siting restrictions	
Section 360-2.13 Landfill construction requirements	2-51
(a) Horizontal separation requirements	
(b) Survey control	
(c) Location coordinates	
(d) Groundwater separation	
(e) Bedrock separation	
(f) Liner system description	
(g) Leachate collection and removal system design	
(h) Leachate collection pipe network design	
(i) Landfill subgrade	
(j) Soil component of the liner system	
(k) Geomembrane liners	
(l) Soil drainage layers	
(m) Leachate collection pipes	
(n) Geosynthetic drainage layers	
(o) Filter layer criteria	
(p) Gas venting layer	
(q) Low permeability barrier soil covers	
(r) Geomembrane covers	
(s) Composite covers	
(t) Topsoil	
(u) Construction certification report	
(v) Waste quantification	

(w) Equivalent design	žu	
Section 360-2.14	Industrial/commercial waste monofills and	
	solid waste incinerator ash residue monofills	2-63
(a) Industrial/comm	ercial waste monofills	
(b) Solid waste incir	nerator ash residue monofills	
Section 360-2.15	Landfill closure and post-closure criteria	2-65
(a) Closure site inve	stigation	
(b) Conceptual closs	ıre plan	
(c) Final closure pla	n	
(d) Final cover syste	em	
(e) Landfill gas cont	rol	
(f) Perimeter gas co	llection systems	
(g) Gas control usin	g flares	
(h) Condensate from	n gas processing or control systems	
(i) Leachate collecti	on system	
(j) Vectors		
(k) Post-closure ope	ration and maintenance	
(l) Closure and post	-closure registration report	
Section 360-2.16	Landfill gas recovery facilities	2-71
(a) Purpose		
(b) Applicability		
(c) Application requ	irements	
(d) Permit renewals		
(e) Operational requ	irements	
Section 360-2.17	Landfill operation requirements	2-72
(a) Water quality me	onitoring program	
(b) Waste placemen	t requirements	
(c) Daily cover		
(d) Intermediate cov		
(e) Final cover syste		
(f) Decomposition a		
(g) Leachate genera	_	
, ,	nedule for primary leachate collection	
and removal syst		
	dule for secondary leachate collection	
and removal syste		
(j) Leachate recircu	lation	
(k) Bulk liquids		
(l) Industrial/comm		
• •	te and low-level radioactive waste	
(n) Sludge disposal		
(o) Sludge and othe		
(p) Asbestos waste	disposal	

(q) Inspection of una	authorized waste	
(r) Tank disposal		
(s) Perimeter access	road	
(t) Annual report		
(u) Weight scales		
(v) Tires		
(w) Lead acid batter	ies	
(x) Air criteria		
` · ·	Landfill reclamation	2-76
(a) Applicability		2-70
(b) Feasibility study	work plans	
	field investigation and report	
(d) Landfill reclama		
(e) Landfill footpring	•	
(f) Contingency plan		
Section 360-2.19	Financial assurance criteria	2-78
(a) Applicability and	l effective date	2.0
(b) Financial assurar		
	ice for post-closure care	
	ace for corrective measures	
(e) Allowable financ	ial assurance mechanisms	
Section 360-2.20	Corrective measures report	2-84
(a) Corrective measu	ires assessment	
(b) Corrective measi	res selection	
(c) Corrective measu	ares implementation	
Section 360-2.21	Landfill gas collection and control systems	
	for certain municipal solid waste landfills	2-89
SURPART 360-3 SOLU	D WASTE INCINERATORS OR REFUSE-DERIVEI	a herrher
	ESSING FACILITIES OR SOLID WASTE PYROLY	
Section 360-3.1	Applicability	3-1
(a) Applicability	rippineubinty	J-1
(b) Exemptions		
(c) Registration		
Section 360-3.2	Definitions	3-1
Section 360-3.3	Application requirements for a permit to	
	construct and operate	3-2
(a) Engineering repo	<u>*</u>	- -
(b) Engineering plan		
(c) Comprehensive r		
(d) Landfill		
(e) Final disposition	of refuse-derived fuel	

(f) Facility operation	on and maintenance manual	
(g) Personnel traini	ng plan	
(h) Facility mainter	nance, monitoring and inspection plan	
(i) Staffing plan		
(j) Waste control pl	lan	
(k) Contingency pl	an	
(l) Closure plan		
(m) Additional requ	uirements	
(n) Operation and r	naintenance manual submission review	
Section 360-3.4	Operational requirements	3-9
(a) Operation and r	naintenance manual	
(b) Receipt and har	ndling of solid waste	
(c) Drainage		
(d) Process change	S	
(e) Access		
(f) Reporting		
(g) Preparedness ar	nd prevention	
Section 360-3.5	Ash residue requirements	3-11
(a) General	1	
(b) Additional requ	irements	
(c) Testing require		
(d) Testing procedu		
(e) Management re		
(f) Ash residue ma		
(g) Disposal		
(h) Landfill applica	ations	
(i) Ash residue ber		
(-)		
SUBPART 360-4	LAND APPLICATION FACILITIES	
Section 360-4.1	Applicability and exemptions	4-1
Section 360-4.2	Sewage sludge and septage: department review	4-2
Section 360-4.3	Sewage sludge and septage: permit application	4-2
Section 360-4.4	Sewage sludge and septage: operational	
	requirements	4-6
Section 360-4.5	Sludge and other solid waste: applicability	
	and department review	4-9
Section 360-4.6	Sludge and other solid waste: permit application	4-9
Section 360-4.7	Sludge and other solid waste: operational	
	requirements	4-10
Section 360-4.8	Research projects	4-10
Section 360-4.9	Storage facilities: permit application	4-10
Section 360-4.10	Storage facilities: operational requirements	4-11

TABLE OF CONTENTS TOC-8

SUBPART 360-5	COMPOSTING FACILITIES	
Section 360-5.1	Applicability and exemptions	5-1
(a) Applicability		
(b) Exemptions		
Section 360-5.2	Permit application: sludge and solid waste	5-1
Section 360-5.3	Operational requirements: sludge and solid waste	5-3
Section 360-5.4	Permit application: yard waste	5-6
Section 360-5.5	Operational requirements: yard waste	5-7
SUBPART 360-6	LIQUID STORAGE	
Section 360-6.1	Applicability	6-1
Section 360-6.2	General requirements	6-1
Section 360-6.3	Aboveground and on-ground tank requirements	6-1
Section 360-6.4	Underground tank requirements	6-2
Section 360-6.5	Surface impoundment requirements	6-2
Section 360-6.6	Closure of liquid storage facilities	6-3
SUBPART 360-7	CONSTRUCTION AND DEMOLITION DEBRIS L	andfill
Section 360-7.1	Applicability, exemptions and definitions	7-1
(a) Applicability	**************************************	
(b) Exemptions		
(c) Definitions		
(d) Landfill expan	sions	
Section 360-7.2	Registration	7-2
(a) Land clearing	debris landfills	
(b) Location restri	ctions	
(c) Additional ope	erational requirements	
Section 360-7.3	C&D debris landfills three acres or less	7-2
(a) Permit applica	tion requirements	
(b) Construction r		_ ^
Section 360-7.4	C&D debris landfills greater than three acres	7-6
(a) Permit applica		
(b) Construction r		7 10
Section 360-7.5	Operation requirements	7-10
	monitoring program	
(b) Annual report		
` ' '	e placement requirements	
(d) Cover		
(e) Final cover sy		
(f) Vegetative cov	rer	
(g) Leachate		

(h) Unauthorized w(i) Public access	vaste -	
(j) Recordkeeping		7.10
Section 360-7.6	Closure and post-closure criteria	7-12
(a) Final closure pl		
	ut an approved closure plan	
` '	maximum slope exceeds 33 percent	
(d) Maintenance		
	onitoring and maintenance manual	
(f) Transfer of owr		
·-·	st-closure registration report	= 10
Section 360-7.7	Corrective measures	7-13
SUBPART 360-8	LONG ISLAND LANDFILLS	
Section 360-8.1	Applicability	8-1
Section 360-8.2	Definitions	8-1
(a) Definitions		
(b) General definit	ions	
Section 360-8.3	General landfill requirements	8-1
(a) Site prohibition	ns .	
(b) Financial guara	antee	
(c) Methane gas		
(d) Operational lin	nitations	
(e) Existing landfi	11 liner requirements	
Section 360-8.4	Landfills in deep flow recharge areas	8-2
Section 360-8.5	Landfills outside deep flow recharge areas	8-3
Section 360-8.6	Disposal of clean fill	8-3
(a) Clean fill dispo	osal requirements	
(b) Exemptions		
(c) Permit requires	ments for clean fill sites two acres or less	
(d) Permit require	ments for clean fill sites larger than two acres	
SUBPART 360-9 ST.	ATE ASSISTANCE AND LOANS FOR MUNICIPA	AL LANDFILL
CL	OSURE PROJECTS	
Section 360-9.1	Purpose and applicability	9-1
(a) Purpose		
(b) Applicability		
(c)		
Section 360-9.2	Definitions	9-1
(a) Definitions fro	om Environmental Conservation Law	
(b) Other definition	ons	

TABLE OF CONTENTS TOC-10

Section 360-9.3	Application eligibility	9-3
(a) Ownership		
(b) Population		
(c) Additional requi		
(d) Applicable regul	ations	
(e) Obligation to clo	ose	
(f) Closure investiga	ation report	
(g) Waiver of assista		
(h) Phased landfill o	elosure	
Section 360-9.4	Application procedure	9-4
(a) Application form	1	
(b) Necessary inform	nation	
(c) Central office su		
(d) Regional office	submission	
Section 360-9.5	Department review	9-4
(a) Receipt of applic	cations	
(b) Initial review		
(c) Award of State a		
Section 360-9.6	Eligible and ineligible costs for State	
	assistance payments and loans	9-5
(a) Eligible costs		
(b) Ineligible costs		
Section 360-9.7	State assistance progress reviews and	
	reimbursement schedule	9-6
(a) Approval proces		
(b) Requirements fo		
(c) Department revi		
(d) Revision of awa		
Section 360-9.8	Loan approvals	9-6
(a) Loan requiremen	nts	
(b) Loan amount		
(c) Loan schedule		
Section 360-9.9	State assistance contract	9-7
Section 360-9.10	Return of State assistance for nonperformance	9-7
(a) Failure to compl		
(b) Violation of con		
Section 360-9.11		9-8
Section 360-9.12	Return of loan for nonperformance	9-8
(a) Failure to make	<u> </u>	
(b) Loan contract de	CIAUIT	

SUBPART 360-10 RE	GULATED MEDICAL WASTE STORAGE, TRANSFE	\mathbb{R}
AN	D DISPOSAL	
Section 360-10.1	Applicability and exemptions	10-1
(a) Applicability		
(b) Exemptions		
Section 360-10.2	Definitions	10-1
Section 360-10.3	Permit to construct and operate application	
	requirements	10-1
(a) Regional plan o		
(b) Engineering pla		
(c) Engineering rep	ort	
(d) Surety		
· · · · - -	nents for storage and transfer facilities	
(f) Operation plan		
(g) Contingency pla		
(h) Personnel traini		
Section 360-10.4	Operational requirements	10-3
Section 360-10.5	Disposal	10-4
SUBPART 360-11	TRANSFER STATIONS	
Section 360-11.1	Applicability and registration	11-1
(a) Applicability	Approximation	
(b) Registration		
Section 360-11.2	Additional permit application requirements	11-1
(a) Application req		
(b) Other requirem		
Section 360-11.3	Design requirements	11-2
(a) Unloading and	- -	
(b) On-site roads		
Section 360-11.4	Operational requirements	11-3
(a) Acceptable was	ite	
(b) Ultimate dispos	sal of waste	
(c) Signs		
(d) Public access		
(c) Control of litter	r, insects, odors and vectors	
(f) Drainage		
(g) Storage area		
(h) Recoverable so	lid waste	
(i) Operational reco	ords	
(j) Annual report		
(k) Fire protection		
(1) Removal of was	ste	

TABLE OF CONTENTS

(m) Asbestos waste

(n) Additional operational requirements

TOC-12

	ECYCLABLES HANDLING AND RECOVERY FAC	CILITIES
Section 360-12.1	Applicability	12
(a) Facilities regul		
(b) Exempt faciliti		
	smantlers reporting requirements	
(d) Registration		
(e) Other recycling		
Section 360-12.2	Operational requirements	12-2
• •	ndling of solid waste	
(b) Storage		
(c) Access		
(d) Reporting and	recordkeeping	
SUBPART 360-13	WASTE TIRE STORAGE FACILITIES	
Section 360-13.1	Applicability	13-1
(a) Storage		
(b) Temporary sto	rage	
(c) Agricultural so	ils	
(d) Registration		
(e) Other uses		
(f) Waste tire disp	osal	
(g) Transition		
Section 360-13.2	Additional application requirements for an	
	initial permit to construct and operate	13-3
(a) Report		
(b) Site plan		
(c) Market analysi	is	
(d) Plans and spec	ifications	
(e) Monitoring an	d inspection plan	
(f) Closure plan		
(g) Surety		
(h) Contingency p	lan	
(i) Storage plan		
(j) Vector control	•	
Section 360-13.3	Operational requirements	13-6
	maintenance manual	
(b) Sorting of was		
(c) Fire prevention	n and control	

(d) Access

(e) Reporting and a (f) Receipt and har	1 0	
SUBPART 360-14	USED OIL	
Section 360-14.1	Applicability	14-1
(a) Applicable requ		
(b) Waste oil comp	pared to used oil	
(c) Prohibitions		
(d) Exemptions	75 M 111	
Section 360-14.2	Definitions	14-4
Section 360-14.3	Additional application requirements for an initial	
	permit to construct and operate a used oil transfer,	14.6
(a) Other annices	storage or processing facility	14-6
(a) Other applicable		
(b) EPA identificat	uon number	
(c) Transition (d) Municipal requ	iromente	
, , , <u> </u>	s: Compliance with Petroleum Bulk Storage	
` '	ulations and Federal Underground Tank Regulations	
(f) Containers	ulations and rederal Oliderground Tank Regulations	
` '	on versus on-specification	
	ainer sign requirements	
(i) Engineering rep		
(j) Used oil quality		
(k) Contingency p	•	
(1) Closure plan	·	
•	ns and maintenance manual	
(n) Records and re		
• •	Used engine lubricating oil retention facilities	14-13
	bricating oil retention facilities	
(b) Service establi	shments	
(c) Retail establish	ment collection facilities	
(d) Retail establish	ments that elect not to maintain collection facilities	
Section 360-14.5	Transportation requirements for used oil facilities	14-15
(a) Shipping used	oil	
(b) Receipt of used	d oil by a facility	
SUBPART 360-15 CO	OMPREHENSIVE SOLID WASTE MANAGEMENT P	LANNINC
Section 360-15.1	Purpose and overview	15-1
Section 360-15.2	Definitions	15-1

Section 360-15.3	Grant application	15-2
Section 360-15.4	Department grant application review	15-2
Section 360-15.5	Contract content	15-3
Section 360-15.6	Payments under contract	15-3
Section 360-15.7	Eligible costs	15-3
Section 360-15.8	Ineligible costs	15-3
Section 360-15.9	Plan contents	15-4
Section 360-15.10	Plan approval	15-5
Section 360-15.11	Plan modification/update	15-6
Section 360-15.12	Plan compliance reports	15-70
SUBPART 360-16	CONSTRUCTION AND DEMOLITION DEBRIS	
	PROCESSING FACILITIES	
Section 360-16.1	Applicability	16-1
(a) Processing and o		
(b) Exempt facilitie	S	
(c) Prohibition		
(d) Registration		
Section 360-16.2	Definitions	16-1
Section 360-16.3	Additional application requirements for a	
	permit to construct and operate	16-2
(a) Regional map	_	
(b) Vicinity map		
(c) Site plan		
(d) Engineering rep		
(e) Fire protection a		
	ing and storage areas	
(g) On-site roads		
	and maintenance manual	
(i) Residue disposal	1	
(j) Daily cover use		
Section 360-16.4	Operational requirements	16-4
(a) O&M manual		
(b) Receipt and han	-	
(c) Disposal of proc		
at a landfill	bris as an alternative daily cover material	
(e) Beneficial uses	of C&D debris	
(f) Storage requiren		
	gement and drainage	
(h) Access		
(i) Reporting and re	cordkeeping	

TABLE OF CONTENTS

(j) Closure requirements(k) On-site environmental monitors

TOC-15

(l) Tracking docum	nent	
SIIRDADT 360 17 DE	GULATED MEDICAL WASTE TREATMENT FA	A
Section 360-17.1	Applicability	17-1
(a) Applicability	Applicability	1/-1
(b) Approved treat	ment methods	
(c) Exemption	mont incurous	
(d) Existing faciliti	es	
• •	e Department of Health approvals	
Section 360-17.2	Definitions	17-2
Section 360-17.3	Application requirements for a permit to	17-24
200002002,10	construct and operate	17-4
(a) Engineering rep	-	• • • • • • • • • • • • • • • • • • • •
• • •	ans and specifications	
	truction and disposal facility	
(d) Validation testi		
(e) Surety		
(f) Facility plans		
(g) Operation plan		
(h) Maintenance as	nd monitoring plan	
	ng and training plan	
(j) Waste control p	olan	
(k) Contingency pl	lan	
(l) Closure and fin	ancial assurance plans	
(m) Security plan		
Section 360-17.4	Operational requirements	17-13
(a) General		
` ' "	ndling of solid waste	
(c) Drainage		
(d) Process change	es	
(e) Reporting		
(f) Odor and volati	ile organic control	
(g) Certification		
Section 360-17.5	Requirements for treatment of regulated	
	medical waste	17-15
	meters for autoclaves	
(b) Validation test	•. •	
(c) Challenge testi	•	
(a) Operating para	meters for other RMW treatment technologies	

PREFACE

Organization and Numbering of Statutes and Regulations

The Environmental Conservation Law (ECL) is Chapter 43-B of the Consolidated Laws of New York.

Numbering system in the ECL:

Example

Article 25 Title 19 Section 25-1910 subdivision 25-1910.5 paragraph 25-1910.5(a)

This may be written as ECL 25-1910.5(a)

The regulations of the department are Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (NYCRR).

Numbering system in the department's regulations:

Example

Title 6
Part 360
Subpart 360-2
section 360-2.13
subdivision 360-2.13(k)
paragraph 360-2.13(k)(3)
subparagraph 360-2.13(k)(3)(iii)
clause 360-2.13(k)(3)(iii)(b)
subclause 360-2.13(k)(3)(iii)(b)(1)
item 360-2.13(k)(3)(iii)(b)(1)(i)

This may be written as 6 NYCRR Part 360-2.13(k)(3)(iii)(\underline{b})(\underline{l})(\underline{i})

This numbering system is described in the preface to the department's regulations, and in the regulations of the Department of State (19 NYCRR 261.4(b)).

service area under local laws or ordinances adopted or to be adopted under section 120-aa of the General Municipal Law.

- (e) Supervision and certification of construction. The construction of a solid waste management facility and each stage of one must be undertaken under the supervision of an individual licensed to practice engineering in the State of New York. Upon completion of construction, that individual must certify in writing that the construction is in accordance with the terms of the applicable permit and tested in accordance with generally accepted engineering practices. Except as specified elsewhere in this Part, this certification must be submitted to the department within three months after completion of construction and must include as-built plans. The operator must notify the department, in writing, of the date when solid waste will be first received at the facility.
- (f) Cessation of construction or operation activities. If construction or operation activities started under a permit issued pursuant to this Part cease for a period of 12 consecutive months, the permit automatically expires on the last day of the 12th month following cessation of activities. There is no automatic expiration when the cessation of construction or operation is caused by factors beyond the reasonable control of the permittee, as determined by the department, or when such cessation is in accordance with the provisions of the permit.
- (g) Department inspection of activities. The permittee must authorize the commissioner or authorized department staff, after presentation of department credentials, to undertake inspections in accordance with subdivision 360-1.4(b) of this Part.
- (h) Recyclables recovery. In the case of a permit relating to a landfill (other than one used exclusively for ash residue, clean fill or construction and demolition debris), a solid waste incinerator (other than one used exclusively to incinerate regulated medical waste), a refuse-derived fuel processing facility, a construction and demolition debris processing facility, a mixed solid waste composting facility or a transfer station (other than one used exclusively for transfer of regulated medical waste), the permit must contain a condition that the permittee must not accept at the facility solid waste which was generated within a municipality that has either not completed a comprehensive recycling analysis or is not included in another municipality's comprehensive recycling analysis satisfying the requirements of subdivision 360-1.9(f) of this Part which has been

approved by the department and implemented the recyclables recovery program determined to be feasible by the analysis.

(i) Approved design capacity. Every permit must set forth the facility's approved design capacity.

Section 360-1.12 Financial assurance,

- (a) Applicability.
- (1) In addition to any financial assurance requirements specifically addressed in a Subpart of this Part, the department may require a form of financial assurance, acceptable to the department, from a permit holder, and conditioned upon compliance with the terms of the permit issued to such holder pursuant to this Part.
- (2) A form of financial assurance, acceptable to the department, will be required to cover the cost of having the facility properly closed for facilities where the operator and the owner are not the same person.
- (3) A form of financial assurance, acceptable to the department, may be required from registered facilities.
- (b) Liability coverage. A form of financial assurance for claims arising out of injury to persons or property, relative to either sudden and accidental occurrences or non-sudden and accidental occurrences, may be required for solid waste management facilities. Such financial assurance may be in the form of liability insurance, self-insurance or other form acceptable to the department. The amount of such financial assurance is to be set by the department.
- (c) Forms of financial assurance. Section 373-2.8 of this Title provides guidance on the criteria and wording of financial assurance instruments that the department will consider in assessing the acceptability of financial assurance mechanisms.

Section 360-1.13 Research, development and demonstration permits.

(a) Permit. The department may issue a research, development and demonstration permit for any solid waste management facility proposing to utilize an innovative and experimental solid waste management technology or process, including a beneficial use demonstration project. The application for such

permit must clearly demonstrate adequate protection of public health and the environment and be consistent with federal and State laws and regulations and this Part. A permit issued under this section must not be for an activity of a continuing nature. The department may, at its discretion, waive or modify some or all of the application requirements for permits issued under this section.

- (b) Permit application. An application for a permit issued under this section must:
 - (1) describe the proposed activity in detail;
- (2) describe how the applicant intends to provide for the receipt and treatment or disposal by the proposed facility of only those types and quantities of solid waste necessary to determine the efficiency and performance capabilities of the technology or process and the effects of such technology or process on human health and the environment; and how the applicant intends to protect human health and the environment in the conduct of the project; and
- (3) state that the applicant will provide, on a timely basis, the department with any information obtained as a result of the activity undertaken under the permit. The information must be submitted in accordance with schedules identified in the permit.
 - (c) Permit restrictions. The permit must:
- (1) provide for the construction of facilities as necessary, and for the operation of the facility for not longer than one year (unless renewed as provided in subdivision (d) of this section);
- (2) provide for the receipt and treatment or disposal by the facility of only those types and quantities of solid waste that the department determines necessary to determine, the efficiency and performance capabilities of the technology or process and the effects of such technology or process on human health and the environment;
- (3) include such requirements as the department determines necessary to protect human health and the environment (including, but not limited to requirements regarding monitoring, operation, financial assurance and closure, and such requirements as the department deems necessary regarding testing and providing of information to the commissioner about the operation of the facility); and
- (4) provide that the commissioner, without affording the permittee a prior opportunity for a

hearing, may order an immediate termination of all operations at the facility at any time the commissioner determines that termination is necessary to protect human health and the environment, provided that the permittee is provided an opportunity for a hearing on the termination issue no later than 10 days after the issuance of the order and a decision is rendered no more than 20 days after the close of the hearing record. Nothing in this Part shall preclude or affect the commissioner's authority to issue summary abatement orders under section 71-0301 of the ECL or to take emergency actions summarily suspending a permit under section 401.3 of the State Administrative Procedure Act.

(d) Renewal. Permits issued under this section may be renewed not more than three times, unless the permittee demonstrates to the satisfaction of the department that a longer time period is required to adequately assess the long-term environmental effects of the technology or process being studied under authority of the permit. Each renewal period will not exceed one year and will be conditioned upon compliance with this section.

Section 360-1.14 Operational requirements for all solid waste management facilities.

- (a) Applicability. Except as elsewhere provided in this Part, any person who designs, constructs, maintains or operates any solid waste management facility subject to this Part must do so in conformance with the requirements of this section.
 - (b) Water.
- Solid waste must not be deposited in, and must be prevented from, entering surface waters or groundwaters.
- (2) Leachate. All solid waste management facilities must be constructed, operated and closed in a manner that minimizes the generation of leachate that must be disposed of and prevent the migration of leachate into surface and groundwaters. Leachate must not be allowed to drain or discharge into surface water except pursuant to a State Pollutant Discharge Elimination System permit and must not cause or contribute to contravention of groundwater quality standards established by the department pursuant to ECL section 17-0301.
- (c) Public access. Public access to facilities and receipt of solid waste may occur only when an attendant is on duty. This provision does not apply to

combustion-powered equipment used at the facility. Sound levels for such equipment must not exceed 80 decibels (A) at a distance of 50 feet from the operating equipment.

- (q) Open burning. Open burning at a solid waste management facility is prohibited, except for the infrequent burning of agricultural wastes, silvicultural wastes, land clearing debris (excluding stumps), diseased trees or debris from emergency cleanup operation, pursuant to a restricted burning permit issued by the department. Measures must be taken immediately to extinguish any non-permitted open burning and the department must be notified that it has occurred.
- (r) Department-approved facilities. Solid waste resulting from industrial or commercial operations, sludge, and septage must be processed, disposed, used or otherwise managed only at facilities that the department has specifically approved for such management of that specific waste.
- (s) Emergency numbers. Telephone numbers to emergency response agencies such as the local police department, fire department, ambulance and hospital must be conspicuously posted in all areas where telephones are available for use at the facility.
- (t) Facilities. Where operating personnel are required, certain facilities must be provided (except in the case of composting facilities using aerated static pile or windrow techniques and land application facilities). These facilities include adequately heated and lighted shelters, a safe drinking water supply, sanitary toilet facilities and radio or telephone communication.
 - (u) Facility operator requirements.
- (1) Except as otherwise specified in a Subpart of this Part pertaining to a specific type of solid waste management facility, the facility operator, during all hours of operation, must have available for use, a copy of the permit issued pursuant to this Part, including conditions, a copy of the operation and maintenance report, the contingency plan and the most recent annual report.
- (2) Operation of every landfill, and other solid waste management facilities as directed by the department, must be conducted under the direction of a facility operator. The facility operator must attend and successfully complete within 12 months from their date of employment. a course of instruction in solid

waste management procedures relevant to the facility at which the facility operator is employed. The course must be provided or approved by the department. The department will issue a certificate of attendance to each individual successfully completing the course. Attendance at a department-approved course before the effective date of this Part will adequately satisfy these training requirements.

- (v) Salvaging. Salvaging, if permitted by the facility owner or operator, must be controlled by the facility owner or operator within a designated salvage area and must not interfere with facility operations or create hazards or nuisances.
- (w) Closure. The owner or operator of any active or inactive solid waste management facility must, upon termination of use, properly close that facility and must monitor and maintain such closure so as to minimize the need for further maintenance or corrective actions and to prevent or remedy adverse environmental or health impacts such as, but not limited to, contravention of surface water and groundwater quality standards, gas migration, odors and vectors. Termination of use includes those situations where a facility has not received solid waste for more than one year, unless otherwise provided by permit, or if the permit has expired. Termination of use also results from permit denial or order of the commissioner or of a court. Specific closure measures which may also include corrective actions as specified in this Part are subject to approval by the department.

Section 360-1.15 Beneficial use.

- (a) Applicability.
- (1) This section applies to materials that, before being beneficially used (as determined by the department), were solid waste. This section does not apply to solid wastes subject to regulation under Subpart 360-4 of this Part, except in the manner identified in subdivision 360-1.15(b) of this Part.
- (2) Beneficial use determinations granted by the department before the effective date of this section shall remain in effect, subject to all conditions contained therein, unless specifically addressed by subsequent department action.
- (b) Solid waste cessation. The following items are not considered solid waste for the purposes of this Part when used as described in this subdivision:

- (1) materials identified in subparagraphs 371.1(e)(1)(vi)-(viii) of this Title that cease to be solid waste under the conditions identified in those subparagraphs:
- (2) compost and other distribution and marketing (D&M) products that satisfy the applicable requirements under Subpart 360-5 of this Part;
- (3) unadulterated wood, wood chips, or bark from land clearing, logging operations, utility line clearing and maintenance operations, pulp and paper production, and wood products manufacturing, when these materials are placed in commerce for service as mulch, landscaping, animal bedding, erosion control, wood fuel production, and bulking agent at a compost facility operated in compliance with Subpart 360-5 of this Part:
- (4) uncontaminated newspaper or newsprint when used as animal bedding;
- (5) uncontaminated glass when used as a substitute for conventional aggregate in asphalt or subgrade applications:
- (6) tire chips when used as an aggregate for road base materials or asphalt pavements in accordance with New York State Department of Transportation standard specifications, or whole tires or tire chips when used for energy recovery;
- (7) uncontaminated soil which has been excavated as part of a construction project, and which is being used as a fill material, in place of soil native to the site of disposition;
- (8) nonhazardous, contaminated soil which has been excavated as part of a construction project, other than a department-approved or undertaken inactive hazardous waste disposal site remediation program, and which is used as backfill for the same excavation or excavations containing similar contaminants at the same site. Excess materials on these projects are subject to the requirements of this Part. (Note: use of in-place and stockpiled soil from a site being converted to a realty subdivision, as defined by the Public Health Law (10 NYCRR 72), must be approved by the local health department.);
- (9) nonhazardous petroleum contaminated soil which has been decontaminated to the satisfaction of the department and is being used in a manner acceptable to the department;

- (10) solid wastes which are approved in advance, in writing, by the department for use as daily cover material or other landfill liner or final cover system components pursuant to the provisions of subdivision 360-2.13(w) of this Part when these materials are received at the landfill;
- (11) recognizable, uncontaminated concrete and concrete products, asphalt pavement, brick, glass, soil and rock placed in commerce for service as a substitute for conventional aggregate;
- (12) nonhazardous petroleum contaminated soil when incorporated into asphalt pavement products by a producer authorized by the department;
- (13) unadulterated wood combustion bottom ash. fly ash, or combined ash when used as a soil amendment or fertilizer, provided the application rate of the wood ash is limited to the nutrient need of the crop grown on the land on which the wood ash will be applied and does not exceed 16 dry tons per acre per year;
- (14) coal combustion bottom ash placed in commerce to serve as a component in the manufacture of roofing shingles or asphalt products; or as a traction agent on roadways, parking lots and other driving surfaces;
- (15) coal combustion fly ash or gas scrubbing by-products placed in commerce to serve as an ingredient to produce light weight block, light weight aggregate, low strength backfill material, manufactured gypsum or manufactured calcium chloride; and
- (16) coal combustion fly ash or coal combustion bottom ash placed in commerce to serve as a cement or aggregate substitute in concrete or concrete products; as raw feed in the manufacture of cement; or placed in commerce to serve as structural fill within building foundations when placed above the seasonal high groundwater table.
- (c) Special reporting requirements. No later than 60 days after the first day of January following each year of operation, the generator of coal combustion ash must submit a report to the department that identifies the respective quantities of coal combustion bottom ash, fly ash, and gas scrubbing by-products it generated during the calendar year to which it pertains and, with respect to coal combustion bottom ash, how much was sent to a manufacturer of roofing shingles or asphalt products, how much was used as a traction

agent on roadways, parking lots, and other driving surfaces, how much was sent to a manufacturer of cement, concrete or concrete products, and how much was used as structural fill; and, with respect to coal combustion fly ash and to gas scrubbing by-products, how much was used to produce light weight block, light weight aggregate, low strength backfill material (flowable fill), manufactured gypsum or manufactured calcium chloride.

- (d) Case-specific beneficial use determinations.
- (1) The generator or proposed user of a solid waste may petition the department, in writing, for a determination that the solid waste under review in the petition may be beneficially used in a manufacturing process to make a product or as an effective substitute for a commercial product. Unless otherwise directed by the department, the department may not consider any such petition unless it provides the following:
- (i) a description of the solid waste under review and its proposed use;
- (ii) chemical and physical characteristics of the solid waste under review and of each type of proposed product;
- (iii) a demonstration that there is a known or reasonably probable market for the intended use of the solid waste under review and of all proposed products by providing one or more of the following:
- (a) a contract to purchase the proposed product or to have the solid waste under review used in the manner proposed;
- (b) a description of how the proposed product will be used;
- (c) a demonstration that the proposed product complies with industry standards and specifications for that product; or
- (d) other documentation that a market for the proposed product or use exists; and
- (iv) a demonstration that the management of the solid waste under review will not adversely affect human health and safety, the environment, and natural resources by providing:
- (a) a solid waste control plan that describes the following:

- (1) the source of the solid waste under review, including contractual arrangements with the supplier;
- (2) procedures for periodic testing of the solid waste under review and the proposed product to ensure that the proposed product's composition has not changed significantly;
- (3) the disposition of any solid waste which may result from the manufacture of the product into which the solid waste under review is intended to be incorporated;
- (4) a description of the type of storage (e.g., tank or pile) and the maximum anticipated inventory of the solid waste under review (not to exceed 90 days) before being used;
- (5) procedures for run-on and run-off control of the storage areas for the solid waste under review; and
- (b) a program and implementation schedule of best management practices designed to minimize uncontrolled dispersion of the solid waste under review before and during all aspects of its storage as inventory and/or during beneficial use; and
- (b) a contingency plan that contains the information and is prepared in accordance with subdivision 360-1.9(h) of this Part.
- (2) The department will determine in writing, on a case-by-case basis, whether the proposal constitutes a beneficial use based on a showing that all of the following criteria have been met:
- (i) the essential nature of the proposed use of the material constitutes a reuse rather than disposal;
- (ii) the proposal is consistent with the solid waste management policy contained in section 27-0106 of the ECL;
- (iii) the material under review must be intended to function or serve as an effective substitute for an analogous raw material or fuel. When used as a fuel, the material must meet the requirements of paragraph 360-3.1(c)(4) of this Part and the facility combusting the material must comply with the registration requirements in subdivision 360-3.1(c) of this Part, if appropriate;
 - (iv) for a material which is proposed for

incorporation into a manufacturing process, the material must not be required to be decontaminated or otherwise specially handled or processed before such incorporation, in order to minimize loss of material or to provide adequate protection, as needed, of public health, safety or welfare, the environment or natural resources;

- (v) whether a market is existing or is reasonably certain to be developed for the proposed use of the material under review or the product into which the solid waste under review is proposed to be incorporated; and
- (vi) other criteria as the department shall determine in its discretion to be appropriate.
- (3) The department will either approve the petition, disapprove it, or allow the proposed use of the solid waste under review subject to such conditions as the department may impose. When granting a beneficial use determination, the department shall determine, on a case-by-case basis, the precise point at which the solid waste under review ceases to be solid waste. Unless otherwise determined for the particular solid waste under review, that point occurs when it is used in a manufacturing process to make a product or used as an effective substitute for a commercial product or used as a fuel for energy recovery. As part of its petition, the petitioner may request that such point occur elsewhere. In such a request, the petitioner must include a demonstration that there is little potential for improper disposal of the material or little potential for the handling, transportation, or storage of the solid waste under review to have an adverse impact upon the public health, safety or welfare, the environment or natural resources.
- (4) The department may revoke any determination made under this subdivision if it finds that one or more of the matters serving as the basis for the department's determination was incorrect or is no longer valid or the department finds that there has been a violation of any condition that the department attached to such determination.

perform in the same manner as the component specified in this section. When the equivalent design involves the substitution of waste materials for components of the landfill's liner or final cover system; and where it can be demonstrated that these material substitutions are within the landfill's environmental containment system (i.e. below the upper most layer of the barrier layer of the final cover and above the secondary composite liner), such equivalency determinations are not subject to the variance requirements of this Part and this use is consistent with the beneficial use provision of paragraph 360-1.15(b)(10) of this Part. It is highly recommended that the applicant discuss equivalent component design proposals with the department in a preapplication conference.

Section 360-2.14 Industrial/commercial waste monofills and solid waste incinerator ash residue monofills.

- (a) Industrial/commercial waste monofills. Monofills used solely for the disposal of solid waste resulting from industrial or commercial operations are subject to all requirements of this Subpart, unless the applicant demonstrates that specific landfill requirements in this Subpart are not necessary for the solid waste to be disposed of at the subject facility. The requirements in this Subpart may be modified on a case-specific basis. The department may impose additional or less stringent requirements on these monofills, based on the pollution potential of the waste. Pollution potential shall be based upon the volume and the physical, chemical, and biological properties of the solid waste, and, its variability. Changes in the monofill's design may include, but not be limited to, modifications to the leachate collection system, low permeability liners, and low permeability cover system designs. For those facilities where the applicant can demonstrate to the department that a specific regulatory requirement contained in either sections 360-2.13, 2.15 or 2.17 of this Subpart are not applicable as discussed in this subdivision, the need for a formal variance is waived. Alternative liner system designs for industrial waste monofills must demonstrate the following:
- (1) In the case where an alternative liner system is proposed for an industrial waste monofill, a demonstration must be made as to the proposed liner's ability to adequately prevent a negative impact on groundwater and must address the following factors: the volume and physical and chemical composition of the leachate that will be generated at the disposal facility; the climatological conditions in the vicinity of the proposed site; and the hydrogeologic

- characteristics of the proposed site. The demonstration must include an assessment of leachate quality and quantity, anticipated liner system leakage to the subsurface and related contaminant transport to the closest environmental monitoring point. The demonstration should focus on developing an accurate profile of leachate quality and production rates sufficient to be used in evaluating its fate and transport from the point of release to the first point of environmental monitoring in order to determine whether leachate constituents can be expected to exceed the State's groundwater quality standards. It must be demonstrated that the industrial wastes' chemical characterization be accurately defined and that there are no reasons to anticipate significant changes in the concentrations of compounds that could increase the wastes' pollution potential in the future. demonstration must include chemical compatibility test data run on the proposed liner and/or leachate collection and removal system materials with representative waste leachate, using an appropriate permeameter test to determine potential changes in the permeability of the proposed liner. The demonstration must include an estimate of the volumetric release of leachate from the proposed liner design based on analytical approaches supported by empirical data and/or be verified from other existing operational facilities of similar design. A dilution calculation must then be modelled to evaluate the impacts of the characterized leachate on groundwater quality based upon the calculated liner system's leakage rate.
- (2) Paper mill sludge monofills. The minimum components of the liner system, monofill closure, operation requirements and the environmental monitoring plan for paper mill sludge landfills must consist of the following:
- (i) Components of liner system. A single composite liner system is the minimal level of containment that the department will accept for paper mill sludge monofills. The composite liner system must consist of a minimum of two components, an upper geomembrane liner placed directly above a low permeability soil layer. A leachate collection and removal system must be located over the composite liner. The construction of each of the components must be in conformance with the appropriate requirements of section 360-2.13 of this Subpart unless expressly stated otherwise in this paragraph. The department may require additional liner components to the single composite liner or other restrictions depending upon the waste expected to be produced, monitorability of the site and/or other site conditions.
 - (ii) The soil component of the composite

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS ACTIVE SOLID WASTE FACILITIES

NYS DEC REGION 1

COUNTY Suffolk

360 PERMIT NUMBER: 1472000778000010 52A01 **Babylon Southern Ashfill** PERMIT ISSUED: OWNER TYPE: Municipal 05/04/97 REGULATORY STATUS: PERMIT EXPIRES: 05/03/02 Permit

OWNER: CONTACT: Ronald Kluesener Town of Babylon ADDRESS: Gleam Street ADDRESS: 200 East Sunrise Hwy

(MAILING) NY 11757 West Babylon NY 11704 Lindenhurst

PHONE: (631) 422-7640 PHONE: (516) 957-3072

WASTE TYPE: UTMEAST: RR Ash 636645 UTMNORTH: 4510592

360 PERMIT NUMBER: 1472200030000040 **Brookhaven SLF Cell 5** 52A03

OWNER TYPE: Municipal PERMIT ISSUED: 11/17/98 REGULATORY STATUS: Permit PERMIT EXPIRES: 08/31/05

OWNER: Town of Brookhaven CONTACT: Dennis Lynch

ADDRESS: ADDRESS: 3233 Route 112 3233 Route 112 Medford (MAILING) Medford NY 11763 NY 11763

PHONE: (516) 451-6224 PHONE: (516) 451-6224 WASTE TYPE: RR Ash UTMEAST: 674593 UTMNORTH: 4518097

360 PERMIT NUMBER: 1472000628000010 Northern U 52A39

PERMIT ISSUED: 10/19/94 OWNER TYPE: Municipal

REGULATORY STATUS: PERMIT EXPIRES: 04/30/05 Permit OWNER: CONTACT: Ronald Kluesener Town of Babylon

ADDRESS: 200 East Sunrise Highway ADDRESS: 200 East Sunrise Highway

Lindenhurst (MAILING) NY 11757 11757 Lindenhurst PHONE: (631) 422-7640

(516) 957-3072 PHONE:

WASTE TYPE: UTMEAST: 637078 UTMNORTH: 4510803 RR Ash

NYS DEC **REGION 3**

Westchester

COUNTY

360 PERMIT NUMBER: 3552200097000020 Sprout Brook LF 60A20

PERMIT ISSUED: 10/01/97 OWNER TYPE: County

PERMIT EXPIRES: REGULATORY STATUS: 10/01/02 Permit OWNER: CONTACT: mario Parise Westchester County DPW

ADDRESS: ADDRESS: Old Albany Post Road 270 North Avenue

Peekskill NY 10601 (MAILING) New Rochelle NY 10801 PHONE:

(914) 637-3000 (914) 637-3000 PHONE:

WASTE TYPE: UTMEAST: 590560 UTMNORTH: 4573986 Bottom Ash, Fly Ash, RR Ash

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION **DIVISION OF SOLID & HAZARDOUS MATERIALS** ACTIVE SOLID WASTE FACILITIES

NYS DEC REGION 3

COUNTY Orange

360 PERMIT NUMBER: 3334600011000018 Central Hudson Gas & Elec 36N01 PERMIT ISSUED: 05/09/00 OWNER TYPE: Private

REGULATORY STATUS: PERMIT EXPIRES: 05/09/05 Permit

OWNER: CONTACT: Mark McLean Central Hudson Gas & Elec

ADDRESS: 992 River Road ADDRESS 992 River Road Newburgh NY 12550 (MAILING) Newburgh NY 12550

PHONE: (914) 452-2000 PHONE: (914) 563-4805

585953 UTMNORTH: WASTE TYPE: Coal Ash UTMEAST: 4603521

COUNTY Rockland

360 PERMIT NUMBER: 3392800039000010 44N07 **Tomkins Cove Ash Facility**

PERMIT ISSUED: 06/30/94 OWNER TYPE: Private PERMIT EXPIRES: REGULATORY STATUS: 06/30/99 None

OWNER: CONTACT: C.A. Herbst Orange & Rockland Utility

ADDRESS: One Blue Hill Plaza ADDRESS: One Blue Hill Plaza Pearl River NY 10965 (MAILING) Pearl River NY 10965

(914) 786 8150 PHONE: PHONE: (914) 577-2582

WASTE TYPE: UTMEAST: 585526 UTMNORTH: 4567869 Coal Ash, Ash Residue

NYS DEC REGION 6

COUNTY Jefferson

360 PERMIT NUMBER: 62240000300000000 23N06 Deferiet Paper

PERMIT ISSUED: 02/15/94 OWNER TYPE: Private PERMIT EXPIRES: REGULATORY STATUS: 11/01/03 Permit

CONTACT: Todd Furnia OWNER: Deferiet Paper Company

ADDRESS: 400 Anderson Avenue ADDRESS: 400 Anderson Avenue

NY 13628 Deferiet (MAILING) Deferiet NY 13628

(315) 493-3540 PHONE: (315) 493-3540 PHONE:

WASTE TYPE: UTMEAST: 139729 UTMNORTH: 4884523 Caol Ash, Paper Sludge, Coal Rejects, Wood Yard Debris

360 PERMIT NUMBER: 6225200007000006 **23S13** DANC Landfill PERMIT ISSUED: 02/27/96 OWNER TYPE: Municipal

PERMIT EXPIRES: REGULATORY STATUS: 02/27/06 CONTACT: E. William Seifried OWNER: Develop. Authority N. Country

ADDRESS: NYS Route 177 ADDRESS: 317 Washington Street Rodman NY 13682 13601 (MAILING) Watertown NY

PHONE: (315) 232-3236 PHONE: (315) 785-2592

WASTE TYPE: UTMEAST: 427037 UTMNORTH: 4852232 Residential, Demo, Asbestos, Indus, Coal Ash, Cont. Soil, Sludge

NYS DEC **REGION 7**

COUNTY **Broome**

360 PERMIT NUMBER: 7033200020000010 Weber Ash Disposal Site 04N08 PERMIT ISSUED: 10/01/80 OWNER TYPE: Private

REGULATORY STATUS: PERMIT EXPIRES: 09/30/83 Consent Order

OWNER: CONTACT: Peter Huff **AES Creative Resources** ADDRESS: 720 Riverside Dr. ADDRESS: 720 Riverside Dr.

NY 13790 Johnson City (MAILING) Johnson City NY 13790

PHONE: (607) 729-6950 PHONE: (607) 729-6950 WASTE TYPE: UTMEAST: 431941 UTMNORTH: 4673115 Coal Ash, Sludge

COUNTY Tompkins

Cayuga 55N02 360 PERMIT NUMBER: 7503200069000010

 OWNER TYPE:
 Private
 PERMIT ISSUED:
 04/17/97

 REGULATORY STATUS:
 Permit
 PERMIT EXPIRES:
 04/17/02

OWNER: AES Cayuga, L.L.C. CONTACT: Daniel Hill

ADDRESS: 228 Cayuga Drive ADDRESS: Milliken Road
(MAILING) Lansing NY 14882

(MAILING) Lansing NY 14882 NY PHONE: (607) 533-7913 PHONE: (607) 533-7913

WASTE TYPE: Coal Ash, Sludge UTMEAST: 366998 UTMNORTH: 4718715

NYS DEC REGION 9

COUNTY Chautauqua

Chautauqua Landfill 07S12 360 PERMIT NUMBER: 906360000600013

OWNER TYPE: County PERMIT ISSUED: 07/22/99
REGULATORY STATUS: Permit PERMIT EXPIRES: 07/23/09

REGULATORY STATUS: Permit PERMIT EXPIRES: 07/23/09
OWNER: County of Chautauqua DPW CONTACT: Theodore Octorne

ADDRESS: Grace Office Building ADDRESS: 3889 Towerville Road

(MAILING) Mayville NY 14757 Jamestown NY 14701-9653

PHONE: (716) 985-4211 PHONE: (716) 985-4785

WASTE TYPE: Residential, C&D, Asbestos, Sludge, Industrial, Cont.Soil, Coal Ash UTMEAST: 143329 UTMNORTH: 4681819

COUNTY Niagara

Niagara Recycling Inc. 32S11 360 PERMIT NUMBER: 9291100119000050

OWNER TYPE: Private PERMIT ISSUED: 04/25/95
REGULATURY STATUS: Permit PERMIT EXPIRES: 04/30/05

OWNER: BFI (Allied Waste) CONTACT: David Hanson

ADDRESS: P.O. Box 344 LPO ADDRESS: 56th St. & Niagara Falls Blvd.

(MAILING) Niagara Falls NY 14304-0344 Niagara Falls NY 14304-0344

PHONE: (716) 285-3344 PHONE: (716) 285-3344

WASTE TYPE: Industrial, C&D, RR & Coal Ash, Sludge, Asbestos, Cont. Soil, MSW UTMEAST: 175230 UTMNORTH: 4779955

 Modern Landfill
 32S30
 360 PERMIT NUMBER:
 9292400016000310

OWNER TYPE: Private PERMIT ISSUED: 12/29/95
REGULATORY STATUS: Permit PERMIT EXPIRES: 12/31/05

OWNER: Modern Landfill, Inc. CONTACT: James Goehrig
ADDRESS: P.O. Box 209 ADDRESS: Pietcher & Harold Roads

ADDRESS: P.O. Box 209

(MAILING) Model City NY 14107-0209

Model City NY 14107-0209

NIONE. (216) 264 2016

PHONE: (716) 754-8226 PHONE: (716) 754-8226

WASTE TYPE: MSW, Industrial, Asbestos, Sludge, RR & Coal Ash, C&D, Cont. Soil UTMEAST: 176999 UTMNORTH 4792194

DEC

FACILITY LINE			INER	TYPE	<u> </u>	
NUMBER	FACILITY NAME	S	}	SC	D	DC
36N01	Central Hudson Gas & Elec	. F	•	.F.	.F.	.T.
44N07	Tomkins Cove Ash Facility	. F		.F.	. F .	.F.
23N06	Deferiet Paper	. F		.т.	.F.	.F.
23813	DANC Landfill	. F		.F.	.F.	.T.
04N08	Weber Ash Disposal Site	. Т		.F.	.F.	.F.
55N02	Cayuga	.F		.F.	.F.	.т.
07812	Chautauqua Landfill	.F		.F.	.F.	.т.
32511	Niagara Recycling Inc.	. F		.F.	.F.	.T.
32530	Modern Landfill	.F		.F.	.F.	.T.

Search DEC

Home » Regulations and Enforcement » Regulations » Chapter IV- Quality Services » Subpart 360-2: Landfills - Page 2

Outdoor Activities

Animals, Plants, Aquatic Life

Chemical and Pollution Control

Energy and Climate

Lands and Waters

Education

Permits and Licenses

Public Involvement and News

Regulations and Enforcement

Regulations

Chapter IV- Quality Services

Subpart 360-2: Landfills -Page 2

Publications, Forms, Maps

About DEC

Subpart 360-2: Landfills - Page 2

(Statutory authority: Environmental Conservation Law, Sections 1-0101, 3-0301, 8-0113, 19-0301, 19-0306, 23-2305, 23-2307, 27-0101, 27-0106, 27-0107, 27-0109, 27-0305, 27-0703. 27-0704, 27-0705, 27-0911, 27-1317, 27-1515, 52-0107, 52-0505, and 70-0107)

[Effective Date December 31, 1988]

[Amendment Dates:

Revised Effective March 27, 1990; with promulgation of new Subpart 15: Grants for Comprehensive Solid Waste Management Planning.

Revised Effective May 28, 1991; With repeal of existing Subpart 9 and promulgation of new Subpart 9:

State Assistance for Municipal Landfill Closure Projects

Revised Effective January 25, 1992; With repeal of existing Subpart 10 and promulgation of new Subpart10: Regulated Medical Waste Storage, Transfer, and Disposal, and new Subpart 17 Regulated Medical Waste Treatment Facilities.

Revised/Enhanced Effective October 9, 1993; with adoption of amendments to existing Subparts 1

Revised Effective December 14, 1994; with adoption of amendments to existing Subpart 9: State Assistance for Municipal Landfill Closure Projects

Revised Effective January 14, 1995; With repeal of existing Subpart 14 and promulgation of new Subpart

Revised Effective November 26, 1996; With adoption of amendments to existing Subparts 1, 2, 3, 7, 11, 14, and 17

Revised Effective September 29, 1997; With adoption of amendments to existing Subpart 9 Revised Effective November 21, 1998; With adoption of amendments to existing Subpart 2 Revised Effective November 24, 1999; With adoption of amendments to existing Subparts 2, 3, 4, 5, 9, 11, 14, and 16]

[This is page 2 of 3 of this Subpart. A complete list of Subparts in this regulation appears in the Chapter 4 contents page.]

Contents:

Sec.

360-2.11 Hydrogeologic report.

360-2.12 Landfill siting.

§360-2.11 Hydrogeologic report.

The hydrogeologic report must define the landfill site geology and hydrology and relate these factors to regional and local hydrogeologic patterns; define the critical stratigraphic section for the site; provide an understanding of groundwater and surface water flow at the site sufficient to determine the suitability of the site for a landfill; establish an environmental monitoring system capable of readily detecting a contaminant release from the facility and determining whether the site is contaminating surface or subsurface waters; and form the basis for design of the facility and contingency plans relating to ground or surface water contamination or gas migration as required in section 360-2.10 of this Subpart. The scope and extent of investigations necessary in the hydrogeologic report will vary based upon the hydrogeologic complexity of the site and the ability of the site to restrict contaminant migration. Additionally, the hydrogeologic report must define the engineering properties of the site as necessary for

proper design and construction of any facilities proposed to be built at the site.

- (a) Requirements of the site investigation plan. The site investigation plan must clearly define all methods used in investigating the hydrogeologic conditions of the site, the scope of the intended investigation, and any specific hydrogeologic questions to be addressed. The applicant is strongly encouraged to develop a draft version of the plan for review by the department before starting the hydrogeologic investigation that begins to define the critical stratigraphic section, and to keep the department informed of the findings and subsequent investigative proposals as the study proceeds. The final version of the plan, included in the hydrogeologic report section of the permit application, must fully describe all methods of investigation used. Unless otherwise approved by the department, the plan must comply with the following:
 - (1) General requirements for all methods used. In obtaining the required hydrogeologic information, the applicant must employ current, standard, and generally accepted procedures. All work must be done in accordance with applicable American Society for Testing Materials standards or current and appropriate U.S. Environmental Protection Agency and department guidance documents. Alternative or innovative methodologies may be approved by the department; however, the department may initially require redundant technologies to prove the reliability of a new methodology. All procedures must be conducted under the supervision of a qualified groundwater scientist having experience in similar hydrogeologic investigations, in a manner that ensures accuracy of the data and precludes environmental degradation. The location of all installations, geophysical and geochemical surveys, and seismic lines for the proposed investigation must be shown on a map with the same scale and coordinate grid system used on the engineering plans (see section 360-1.9[e] of this Part).
 - (2) Literature search. A comprehensive search must be made for pertinent and reliable information concerning regional and site specific hydrogeologic conditions. The literature search must include, as available, records and reports of the New York State Department of Health, the New York State Department of Transportation, the U.S. Soil Conservation Service, and the New York State Geological Survey; basin planning reports, groundwater bulletins, water supply papers, professional papers and other open file reports of the U.S. Geological Survey; bulletins, circulars, map and chart series, memoirs and other publications of the New York State Geologic Survey; publications and bulletins of the Geological Society of America and other professional organizations; and publications of the U.S. Environmental Protection Agency and the department, college and university reports; and aerial photography or remotely sensed imagery.
 - (3) Surficial geologic mapping. The site must be mapped to determine the distribution of surficial deposits on and surrounding the site based upon information from the hydrogeologic investigation, field evaluations, and field confirmation of all interpretations made on the site itself.
- (4) Test pits. Test pits may be used to determine shallow stratigraphy. The test pits must not create a health or safety hazard and must be logged by a geologist or geotechnical engineer with experience in similar hydrogeologic investigations. Logs must include: elevations; surface features before excavation; depth of the test pit and of all relevant horizons or features; moisture content of units; standard soil classifications (including the Unified Soil Classification System), stratigraphy, soil structure, bedrock lithology, brittle, or

secondary structures in soil and bedrock; and a sketch showing these features for each test pit constructed. Test pits must be promptly backfilled and compacted with excavated materials. The department may require that, if a test pit is dug, undisturbed soil samples be taken and tested in accordance with subparagraph (9)(ii) of this subdivision.

- (5) Water well surveys. A survey of public and private water wells within one mile downgradient and one-quarter mile upgradient of the proposed site must be conducted. Surveys must obtain, where available, the location of wells, which must be shown on a map with their approximate elevation and depth, name of owner, age and usage of the well; stratigraphic unit screened; well construction; static water levels; well yield; perceived water quality; and any other relevant data which can be obtained.
- (6) Geophysical and geochemical surveys. The department may require the use of geophysical and geochemical methods, such as electromagnetic, resistivity, seismic surveys, remote sensing surveys, downhole geophysics, isotope geochemistry, and soil gas analysis, where necessary to justify the interpretations and conclusions of the site investigation report and to provide information between boreholes, and aid in the siting of wells.
- (7) Tracer studies. The department may require the use of tracer studies to aid in understanding groundwater flow or to otherwise assist in devising an effective environmental monitoring plan.
 - (i) Where sites overlie weathered limestone or dolostone bedrock or where karst environments cannot be avoided, the department may require tracer studies before finalizing the bedrock monitoring plan. Tracer studies must identify, in specific detail, areas of groundwater flow from the facility attributed to secondary permeability, recharge and discharge areas on and surrounding the site, storage of groundwater, and variations of water quality seasonally and during high and low flow periods.
 - (ii) Where a site is otherwise unmonitorable because of existing contamination, the department may allow the use of tracers to aid in monitoring.
- (8) Monitoring wells and piezometers.
 - (i) Construction in general.
 - (a) Monitoring wells and piezometers must define the three-dimensional flow system within the critical stratigraphic section to justify the interpretations and conclusions of the hydrogeologic report.
 - (b) Construction techniques must be appropriate to ensure that groundwater samples and head level measurements characterize discrete stratigraphic intervals; and to prevent leakage of groundwater or contaminants along the well annulus. If leakage is detected, it must be corrected or the well abandoned.
 - (c) Monitoring wells and piezometers may be placed individually or as well clusters.
 Well clusters consist of individual wells at varying depths in close proximity, each installed in its own boring. Multiple wells placed into one large borehole are prohibited unless prior department approval in writing is obtained.
 - (d) Soil borings, soil samples, and rock cores must characterize each stratigraphic unit within the critical stratigraphic section to justify the interpretations and conclusions

of the hydrogeologic report.

- (e) Every precaution must be taken during drilling and construction of monitoring wells to avoid introducing contaminants into a borehole. Only potable water of known chemistry may be used in drilling monitoring wells or piezometers unless otherwise approved by the department.
- (f) All equipment placed into the boring must be properly decontaminated before use at the site and between boreholes. The initial cleaning at the site must ensure that no contaminants from the last site drilled will be introduced into the borings. All equipment must be steam cleaned between holes. Where possible, upgradient wells should be drilled first.
- (g) Use of drilling muds is to be avoided unless prior department approval in writing is granted. If drilling muds are used, the material used must avoid the introduction of stray contaminants. Drilling muds must not be used within 10 feet of the screened interval.
- (h) Air systems and drilling lubricants must not introduce contaminants into the borehole.
- (i) Well borings must have an inside diameter at least two inches larger than the outside diameter of the casing and screen to ensure that a tremie may be properly used.
- (j) Wells and borings must not be placed through or into waste unless prior department approval has been granted and sufficient safety precautions are employed. If waste is encountered unexpectedly during drilling, drilling of that boring must cease, the hole properly abandoned with cuttings properly disposed of and the department notified.
- (ii) Construction of monitoring wells and piezometers.
 - (a) Well screens and risers must be constructed of materials selected to last for the required monitoring period of the facility without contributing contaminants to, or removing contaminants from, the groundwater. All materials used are subject to department approval. Joints, caps, and end plugs are to be secured by welds, threads with teflon tape, or force fittings. Solvents and glues or other adhesives are prohibited. Caps must be vented to allow for proper pressure equalization. The inside diameter of each well screen or riser pipe must be nominally two inches in diameter and must allow for proper development, survey and sampling equipment to be used within the screen and casing. A permanent mark should be made at the top of the riser pipe to provide a datum for subsequent water level measurements.
 - (b) Unless otherwise approved by the department, well screens are required for all wells and piezometers. All screens used must be factory constructed non-solvent welded/bonded continuous slot wire wrap screens of a material appropriate for long-term monitoring without contributing contaminants to or removing contaminants from the groundwater. The slot size of the screen must be compatible with the sand pack. Water table variations, site stratigraphy, expected contaminant behavior, and groundwater flow must be considered in determining the screen length, materials, and position. Where existing contamination is suspected or known, down hole geophysical

techniques may be required by the department to aid in selecting well screen elevations.

- (c) The sand pack surrounding the well screen must consist of clean, inert, siliceous material. Grain size must be based upon a representative sieve analysis of the zone to be screened. The sand pack must minimize the amount of fine materials entering the well and must not inhibit water inflow to the well. The sand pack must be placed in the annular space around the well screen and extend two feet or 20 percent of the screen length (whichever is greater) above the top, and six inches below the bottom, of the screen. The sand pack material must be placed using the tremie method or another method approved by the department and must avoid bridging. The sand pack must be checked for proper placement. A finer grained sand pack material (100 percent passing the No. 30 sieve and less than two percent passing the No. 200 sieve) six inches thick must be placed at the top of the sand pack between the sand and the bentonite seal.
- (d) Bentonite must be placed above the sand pack using the tremie or other approved method to form a seal at least three feet thick. A 6 to 12 inch fine grained sand pack must be placed above the bentonite seal to minimize grout infiltration. If pellets or chips are used, sufficient time should be allotted to allow for full hydration of the bentonite prior to emplacement of overlying materials.
- (e) Grout of cement/bentonite, bentonite alone, or other suitable, low permeability material, if approved by the department, must completely fill the remaining annular space to the surface seal. The grout mixture must set up without being diluted by formation water, and must displace water in the annular space to ensure a continuous seal. The grout mixture must be placed under pressure using a tremie or other method approved by the department. Auger flights or casing must be left in the hole before grouting to prevent caving. The cement used must be appropriate for the groundwater chemistry of the site.
- (f) A protective steel casing, at least two inches larger in diameter than the well casing, must be placed over the well casing or riser pipe and secured in a surface well seal to adequately protect the well casing. A distinctive, readily visible marker must be permanently affixed to the protective casing or near the well to identify the well number and ensure visibility even in periods of high snow cover. A drain hole must be drilled at the base of the protective casing. A vent hole must be located near the top of the protective casing to prevent explosive gas build up and to allow water levels to respond naturally to barometric pressure changes. The annulus of the protective casing should be filled with gravel. A locking cap must be installed with one to two inches clearance between the top of the well cap and the bottom of the locking cap when in the locked position and a weather resistant padlock must be placed on the protective casing and duplicate keys provided to the department.
- (g) A concrete surface seal designed to last throughout the planned life of the monitoring well must be constructed. The surface seal must extend below the frost depth to prevent potential well damage. The top of the seal must be constructed by pouring the concrete into a pre-built form with a minimum of three foot long sides. The seal must be designed to prevent surface runoff from ponding and entering the well casing. In areas where traffic may cause damage to the well, bumperguards or other

suitable protection for the well is required. Any damaged or deteriorated surface seals must be reported to the department and repaired or replaced in an appropriate manner. The department may allow alternate designs when documentation is presented which demonstrates the intent of the regulations.

- (h) Where under the circumstances of a particular situation the department believes that the methods identified in this section are inadequate, it may require that additional measures be taken to prevent migration of contaminants along the annulus of the well or to protect the well.
- (i) Alternative construction methods for piezometers and wells which are not to be part of the environmental monitoring plan may be approved by the department if those methods meet the requirements set forth in clause (i)(b) of this paragraph.
- (iii) Well and piezometer development. All wells and piezometers must be developed as soon as possible after installation, but not before the well seal and grout have set. Water must not be introduced into the well for development, except with approval of the department. Any contaminated water withdrawn during development must be properly managed. Development must not disturb the strata above the water-bearing zone or damage the well. The entire saturated screened interval must be developed. The department may require multiple attempts at well development to increase the likelihood that sediment free water can be obtained. Development methods should be appropriate for conditions/stratigraphy encountered. Placement of screens in a fine grained strata may require gentle development techniques to avoid pulling sediment into the well. The selected method must minimize to the greatest extent possible the amount of turbidity in the well.
- (iv) Survey. The locations and elevations of all existing and abandoned test pits, soil borings, monitoring wells, and piezometers must be surveyed to obtain their precise location and plotted on a map in the hydrogeologic report. The vertical location of the ground surface and the mark made on the top of the monitoring well and piezometer risers must be accurately measured to the nearest 100th foot.
- (v) Replacement of wells. All wells must be properly protected to ensure their integrity throughout the active and post-closure period of the facility. If, in the opinion of the department, water quality or other data show that the integrity of a well is lost, the well must be replaced and sampled within a time period acceptable to the department (but not to exceed 120 days) after written notification by the department. The initial sample for the replacement well must be analyzed for baseline parameters in the Water Quality Analysis Tables in this section.
- (vi) Abandonment of wells. All soil borings or rock cores which are not completed as monitoring wells or piezometers and other abandoned wells must be fully sealed in a manner appropriate for the geologic conditions to prevent contaminant migration through the borehole. Generally, such sealing must include:
 - (a) Overboring or removal of the casing to the greatest extent possible, followed by perforation of any casing left in place. All casing and well installations in the upper five feet of the boring, or within five feet of the proposed level of excavation, must be removed.
 - (b) Sealing by pressure injection with cement bentonite grout, using a tremie pipe or

other method acceptable to the department, must extend the entire length of the boring to five feet below the ground surface or the proposed excavation level. The screened interval of the borehole must be sealed separately and tested to ensure its adequacy before sealing the remainder of the borehole. Where the surrounding geologic deposits are highly permeable, alternate methods of sealing may be required to prevent the migration of the grout into the surrounding geologic formation. The upper five feet must be backfilled with appropriate native materials compacted to avoid settlement.

(c) The sealed site must be restored to a safe condition. The site must be inspected periodically after sealing for settlement or other conditions which require remediation.

(9) Geologic sampling.

- (i) All borings and rock cores must be sampled continuously to the base of the critical stratigraphic section. For well clusters, continuous samples must be collected from the surface to the base of the deepest well. Other wells in the cluster must be sampled at all stratigraphic changes, and at the screened interval. At sites where the geology is not of a complex nature the department may allow a reduction in the number of wells requiring continuous sampling. Soil borings must be sampled using the split spoon method and bedrock or boulders must be sampled by coring with standard size NX or larger diameter core bits. Samples must be retained in labeled glass jars or wooden core boxes. All samples must be securely stored and accessible throughout the life of the facility. The location of the storage area must be designated in the operation and maintenance plan for the facility.
- (ii) A representative number of undisturbed samples must be collected from test pits and soil borings using appropriate methods to identify the soil characteristics of all cohesive soil units. Such samples must be analyzed in the laboratory for: Atterberg limits; gradation curves by sieve or hydrometer analysis or both, as appropriate; undisturbed permeabilities; and visual descriptions of undisturbed soil structures and lithologies.

(10) Logs.

- (i) Complete and accurate drilling logs must be provided to the department for all soil borings. These logs must provide detailed soil classification according to the Unified Soil Classification System (USCS). The USCS visual method must be used on all samples supplemented by the USCS laboratory tests on a representative number of samples from each stratigraphic unit and each screened interval. Logs also must contain a description of matrix and clasts, mineralogy, roundness, color, appearance, odor, and behavior of materials using an appropriate descriptive system. A clear description of the system used must be included with the logs. When undisturbed samples have been taken, the interval tested and the test results must be clearly shown on the logs. All well logs must contain drilling information as observed in the field including: moisture content, location of the water table during drilling, water loss during drilling; depth to significant changes in material and rock; sample recovery measured in tenths of a foot; hammer blow counts, and other pertinent comments; the method of drilling, anomalous features such as gas in the well, and the use and description of drilling fluids or additives, including the source, and calculated and actual amounts of materials used.
- (ii) Rock core logs must describe the lithology, mineralogy, degree of cementation, color, grain size, and any other physical characteristics of the rock; percent recovery and the

rock quality designation (RQD); other primary and secondary features, and contain all drilling observations and appropriate details required for soil boring logs. A clear photograph of all labeled cores must also be taken and submitted with the logs.

- (iii) Well completion logs must contain a diagram of the completed well, all pertinent details on well construction, a description of the materials used, and elevations of all well features.
- (iv) Copies of original field logs must be submitted to the department upon request.
- (11) In situ hydraulic conductivity testing. In situ hydraulic conductivity testing must be done in all monitoring wells and piezometers, unless other methods that are approved by the department, are used. The testing method used must not introduce contaminants into the well. If contamination is known or suspected to exist, all water removed must be properly managed. Hydraulic conductivities may be determined using pump tests, slug tests, packer tests, tracer studies, isotopic geochemistry, thermal detection, or other suitable methods.
- (b) Site investigation report. The site investigation report must include a final version of the site investigation plan, raw field data, analytical calculations, maps, flow nets, cross-sections, interpretations (and alternative interpretations where applicable), and conclusions. All maps, drawings and diagrams must have a minimum scale of 1:24,000, unless otherwise acceptable to the department. Such report must comprehensively describe:
 - (1) Regional geology. The discussion of regional geology must demonstrate how the regional geology relates to the formation of on-site geologic materials, the potential for and effects of off-site contaminant migration, and the location of nearby sensitive environments. This discussion must include available and appropriate information to describe:
 - (i) bedrock stratigraphy and structural features (represented on maps and columnar diagrams) constructed from field exposures and the geologic literature, describing formation and member names, geologic ages, rock types, thicknesses, the units' mineralogic and geochemical compositions and variabilities, rock fabrics, porosities and bulk permeabilities, including karst development, structural geology, including orientation and density or spacing of folds, faults, joints, and other features;
 - (ii) glacial geology, including a discussion of the formation, timing, stages, and distribution of glacial deposits, advances and retreats, hydrologic characteristics of the surficial deposits, such as kames, eskers, outwash moraines, etc.;
 - (iii) major topographic features, their origin and influence upon drainage basin characteristics; and
 - (iv) surface water and groundwater hydrologic features, including surface drainage patterns, recharge and discharge areas, wetlands and other sensitive environments, inferred regional groundwater flow directions, aquifers, aquitards and aquicludes, known primary water supply and principal aquifers, public water supply wells, and private water supply wells identified in the water supply well survey; any known peculiarities in surface water and groundwater geochemistry, and any other relevant features.
 - (2) Site-specific geology. The site investigation report must define site hydrogeologic conditions in three dimensions and their relationship to the proposed landfill. The report must define site geology, surface water and groundwater flow, and must relate site-specific conditions to the regional geology. The report must describe the potential impact the landfill

may have on surface and groundwater resources and other receptors, including future hydrogeologic conditions, which may occur with site development, and it must describe the hydrogeologic conditions in sufficient detail to construct a comprehensive understanding of groundwater flow, which can be quantified and verified through hydrologic, geochemical, and geophysical measurements. The report must provide sufficient data to specify the location and sampling frequency for environmental monitoring points; form the basis for contingency plans regarding groundwater and surface water contamination and explosive gas migration; and support the engineering design of the landfill. The site- specific hydrogeologic evaluation must specifically discuss all units in the critical stratigraphic section. Such evaluation must include maps, cross- sections, other graphical representations, and a detailed written analysis of the following:

- (i) all hydrogeologic units such as aquifers, aquitards and aquicludes, and how they relate to surface water and groundwater flow. This must include all hydrogeologic data collected during the site investigation and explain and evaluate the hydrologic and engineering properties of the site and each specific unit; and
- (ii) local groundwater recharge and discharge areas, high and low groundwater tables and potentiometric surfaces for each hydrologic unit, vertical and horizontal hydraulic gradients, groundwater flow directions and velocities, groundwater boundary conditions, surface water and groundwater interactions, and an evaluation of existing water quality.
- (c) Environmental monitoring plan. The environmental monitoring plan must describe all proposed on-site and off-site monitoring, including the location of all environmental, facility, and other monitoring points, sampling schedule, analyses to be performed, statistical methods, and reporting requirements. The plan must also include a schedule for construction of the groundwater monitoring wells based on site-specific hydrogeology and the sequencing of construction of landfill cells; a schedule for initiation of the existing water quality and operational water quality monitoring programs and a contingency water quality monitoring plan which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the plan must comply with the following:
 - (1) Groundwater sampling. Groundwater monitoring wells must be capable of detecting landfill-derived groundwater contamination within the critical stratigraphic section.
 - (i) Horizontal well spacing.
 - (a) Horizontal spacing of wells must be based upon site-specific conditions including groundwater flow rates, estimated longitudinal and transverse dispersivity rates, proximity to or presence of sensitive environments and groundwater users, the nature of contaminants disposed of at the site, and the proposed design and size of the landfill.
 - (b) In the first water-bearing unit of the critical stratigraphic section, monitoring well spacing must not exceed 500 feet along the downgradient perimeter of the facility. In sensitive environments or geologically complex environments, closer well spacing may be required. Upgradient or crossgradient well spacing must not exceed 1,500 feet and may be less in sensitive environments, or where up-gradient sources of contamination are known to exist. Subsequent water-bearing units must be monitored, as required by the department, based upon the potential for contaminant migration to that unit. Well spacing must provide at least one upgradient and three downgradient

monitoring wells or well clusters for each water- bearing unit of the critical stratigraphic section.

- (c) Sensitive environments or areas where public health concerns exist may be subject to more intensive groundwater monitoring requirements. In addition, the department may require the applicant to develop acceptable computer models of contaminant plume behavior from hypothetical leaks in the liner system, if necessary to determine optimum monitoring well spacing.
- (d) In areas where waterflow is irregular and unpredictable and where otherwise determined to be appropriate, the applicant may be required to conduct spring, sinkhole, or other sampling to enhance the monitoring.
- (e) All downgradient monitoring wells must be located as close as practical to but not more than 50 feet from the waste boundary, unless otherwise approved by the department due to site specific conditions, to ensure early detection of any contaminant plume.
- (f) All upgradient and crossgradient monitoring wells must be placed far enough from the waste boundary to avoid any facility derived impacts.
- (ii) Well screen placement.
 - (a) Well screens must be located to readily detect groundwater contamination within the saturated thickness of the first water-bearing unit, and must be installed at a representative number of points at each subsequent permeable unit throughout the critical stratigraphic section. Well screens must not act as conduits through impermeable layers. Wells monitoring the water table should be screened to ensure that the water table can be sampled at all times.
 - (b) Upgradient and crossgradient wells must monitor the same hydrologic units whenever possible within the critical stratigraphic section as the downgradient monitoring wells.
- (iii) Screen length. Well screens must not exceed 20 feet in length, unless otherwise approved by the department. The applicant must provide technical justification for the actual screen length chosen.
- (iv) Geophysical and geochemical techniques. Where existing contamination is suspected, the department may require the use of geophysical and geochemical techniques to locate contaminated zones before selecting well locations and screen depths for environmental monitoring points.
- (v) If a groundwater suppression system exists at a facility, the department may require representative sampling points to be designated as environmental monitoring points. Existing water quality monitoring at these points may not be required.
- (2) Surface water and sediment sampling. The environmental monitoring plan must designate monitoring points, for use in operational or contingency monitoring or both of the facility pursuant to subparagraphs (5)(ii) and (iii) of this subdivision, for all surface water bodies that may be significantly impacted by a contaminant release from the facility. Sampling activities at these monitoring points shall be for surface water and sediment. The department may require the sampling and analysis of surface water and sediment

sampling points during a site investigation to understand site hydrogeology or existing patterns of contamination. In bodies of standing water, these points must be located at the closest point to the facility and must be included in existing water quality monitoring. In flowing water bodies, these points must include sufficient upgradient and downgradient locations to allow the facility's impact to be measured. These points, however, do not require existing water quality analysis. The detailed analysis requirements of these points must be specified in the contingency monitoring plan and the detailed sampling requirements must be specified in the site analytical plan.

- (3) Leachate sampling. The environmental monitoring plan must specify the location of facility leachate sampling points and parameters to be analyzed so as to obtain a representative characterization of the leachate composition in the primary leachate collection and removal system and to determine the nature of liquids detected in the secondary leachate collection and removal system. The following must be included:
 - (i) Sampling points. All sampling points should be located to minimize pumping of leachate before sampling. Sampling points in the secondary leachate collection system should be adequate to sample liquids beneath each discrete leachate collection area or landfill cell.
 - (ii) Analysis required. Except as allowed by the department when a specific waste stream and its leachate are already well defined, analysis of the leachate in the primary and secondary leachate collection and removal systems must be performed semi-annually for expanded parameters. The department may require the use of specific analytical methods in these analyses when minimum detection levels are determined inadequate to fully characterize leachate.
- (4) Water supply well sampling. If sampling and analysis of water supply wells is to be performed, the analytical requirements must be in accordance with those specified in the site analytical plan. Sampling frequency and analysis shall be at least quarterly for baseline parameters. Sampling methods must be consistently applied each time a well is sampled and before sampling any residential well, the New York State Department of Health and/or local health department must be notified.
- (5) Water quality monitoring program. A water quality monitoring program must be implemented for all environmental monitoring points specified in the environmental monitoring plan. This program must be tailored to the site to establish existing water quality for the site prior to landfilling, operational water quality during operation of the site and the post-closure period, and contingency water quality, if contamination is detected at the site. These programs must meet the following minimum requirements:
 - (i) Existing water quality. The applicant must establish an existing water quality database to characterize the site geochemistry.
 - (a) The permit application must contain a preliminary evaluation of water quality, consisting of the first two rounds of sampling and analyses for a representative number of monitoring points at both upgradient and downgradient locations, in each water bearing hydrogeologic unit within the critical stratigraphic section, with a minimum of two samples taken from each well during the first round of sampling, unless otherwise approved by the department. The first round of these samples must be analyzed for the expanded parameters. The second round must be analyzed for the

baseline parameters, except as specified in clause (d) of this subparagraph. These samples should be taken in early spring and late summer, or equivalent, to approximate periods of high and low groundwater flow. The department may require sampling and analysis of additional monitoring points as necessary to define site hydrogeology and geochemistry in support of the interpretations and conclusions of the site investigation report.

- (b) Before deposition of waste in the facility, all environmental monitoring points not previously sampled must be sampled and analyzed for four rounds of quarterly sampling. The first of these sampling rounds must be analyzed for expanded parameters and the other three rounds must be analyzed for baseline parameters. Those environmental monitoring points which were sampled in accordance with clause (a) of this subparagraph must be sampled and analyzed for baseline parameters for two rounds of samples. The samples shall be obtained at different times of the year than when the sampling required by clause (a) of this subparagraph was performed. If elevated contaminant levels were detected during the preliminary evaluation of water quality, then the sampling required in this clause shall be as specified in clause (d) of this subparagraph. The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed. The sampling of these phased monitoring points shall commence at least one year prior to solid waste deposition and shall be in conformance with the requirements of clause (b) of this subparagraph or as approved by the department. As these phased monitoring points are added to the monitoring program, the procedures contained in clause (c) of this subparagraph shall be followed to reestablish existing water quality at the facility and recompute the standard deviation.
- (c) Prior to facility operation, existing water quality must be established for each hydrogeologic flow regime being monitored at the site. Existing water quality for each hydrogeologic flow regime shall be the arithmetic mean, per parameter, of the analytical results of the samples obtained from those environmental monitoring points within that flow regime prior to deposition of solid waste; provided there is no reason to believe that the distribution of the analytical results was non-uniform. The standard deviation of the analytical results for each parameter within each flow regime shall also be established at that time. Should the department determine that the sampling results are non-representative of existing water quality or do not constitute a normal, uniform distribution, then the department shall specify such additional sampling and analyses as it deems necessary to confidently establish existing water quality at the site. For those facilities where solid waste has been placed previously in other than a contiguous landfill cell, the existing water quality may be based on only some of the environmental monitoring points, subject to the approval of the department.
- (d) If elevated contaminant levels are detected and additional detailed information is needed to establish a complete existing water quality database, the department may require one or more rounds of baseline or expanded parameter sampling and analysis in any sampling point, using the procedure specified for contingency monitoring required in subparagraph (iii) of this paragraph when contamination is detected.
- (e) Additional sampling and analysis beyond the site boundaries may be required to determine the nature and extent of contamination and the source, if possible. This evaluation may include construction, sampling, and analysis of any additional

monitoring wells, and surface water sampling points required by the department. Based upon the results of this additional data, the department may require analysis for any and all expanded parameters, to be included in quarterly or annual operational water quality sampling.

- (ii) Operational water quality. The environmental monitoring plan must include a plan for operational water quality monitoring to be conducted during the operation, closure, and post-closure periods of the facility. The operational water quality monitoring plan must be able to distinguish landfill-derived contamination from the existing water quality at the site. The plan must also describe trigger mechanisms for initiating contingency water quality monitoring. The department may require modification of this plan as additional sampling data becomes available during the life of the facility. The minimum requirements for operational water quality monitoring are:
 - (a) Except as provided below, in each calendar year sampling and analysis must be performed at least quarterly, once for baseline parameters and three times for routine parameters. The baseline sampling event must be rotated quarterly; one round of baseline parameters to be analyzed in each calendar year will be sufficient unless a pattern of contamination exists which may require the department to change the sampling frequency. For double lined landfills, the department may allow omission of the winter sampling once a complete understanding of water chemistry has been obtained, provided that a demonstration of acceptable liner performance is made to the department. The department will require sampling and analysis on a quarterly basis, alternately analyzing for routine and baseline parameters, at all landfills which do not have a liner system constructed in accordance with section 360-2.13(f) of this Subpart.
 - (b) The department may approve phased sampling, where hydrogeologic conditions warrant, as landfill cells are constructed or as post-closure monitoring is completed as specified in section 360-2.15(i) of this Subpart. With department approval, sampling of specific environmental monitoring points which are not potentially impacted by the portions of the landfill already constructed, may be deferred, provided that scheduled sampling commences at least one year before landfill construction in the vicinity. The department may withdraw this approval at any time, based upon a change in facility design, operation, or performance.
 - (c) Operational water quality analysis must include at least those parameters specified in the Water Quality Analysis Tables for routine and baseline parameters. The department may modify these tables before granting a permit for the facility, or during the duration of the permit, if leachate composition so warrants. If subsequent leachate compositions vary or if the waste disposed of at the facility changes, the department may adjust analytical requirements accordingly.
 - (d) Within 90 days of completing the quarterly field sampling activities, the facility owner/operator must determine whether or not there is a significant increase from existing water quality levels established for each parameter pursuant to clause (c)(5)(i) (c) of this section.
- (1) In determining whether a significant increase has occurred, the facility owner/operator must compare the groundwater quality of each parameter at each monitoring well to the existing water quality value of that parameter.

- (2) A significant increase has occurred if:
 - (i) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section, by three standard deviations; or
 - (ii) the groundwater quality for any parameter at any monitoring well exceeds the existing water quality value for that parameter, as established pursuant to clause (c)(5)(i)(c) of this section and exceeds the water quality standards for that parameter as specified in Part 701, 702, or 703 of this Title. (e) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the routine parameters, excluding the field parameters, at any monitoring well, the facility owner/operator:
- (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and
- (2) must sample and analyze all monitoring points for the baseline parameters during the next quarterly sampling event. Subsequent sampling and analysis for baseline parameters must be conducted at least semiannually until the significant increase is determined not to be landfill-derived or the department determines such monitoring is not needed to protect public health or the environment.
- (f) If the owner/operator determines, pursuant to clause (d) of this subparagraph, that there is a significant increase from existing water quality levels for one or more of the parameters during field sampling for the baseline parameters, excluding the field parameters, at any monitoring well, the facility owner/operator:
 - (1) must, within 14 days of this finding, notify the department indicating which parameters have shown significant increases from existing water quality levels; and
 - (2) must establish a contingency monitoring program meeting the requirements of subparagraph (iii) of this paragraph within 90 days except as provided for in subclause (3) of this clause.
 - (3) The facility owner/operator may attempt to demonstrate to the department that a source other than the facility caused the contamination or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. A report documenting this demonstration must be submitted to the department for approval. If a successful demonstration is made, documented and approved by the department, the facility owner/operator may continue operational water quality monitoring as specified in this subparagraph. If, after 90 days, a successful demonstration is not made, the owner/operator must initiate a contingency monitoring program as required in subparagraph (iii) of this paragraph.
 - (iii) Contingency water quality. The environmental monitoring plan must include a plan for contingency water quality monitoring, as described in this subparagraph, which must be conducted when a significant increase over existing water quality has been detected pursuant to clause (c)(5)(ii)(d) of this section for one or more of the baseline parameters listed in the Water Quality Analysis Tables. All contingency water quality monitoring plans are subject to department approval, may be modified at any time by the department

when necessary to protect public health and the environment, and must include the following:

- (a) Within 90 days of triggering a contingency water quality monitoring program, the facility owner/operator must sample and analyze the groundwater for the expanded parameters listed in the Water Quality Analysis Tables. A minimum of one sample from each monitoring well (upgradient and downgradient) must be collected and analyzed during this sampling. If any constituents are detected in the downgradient wells as a result of the expanded parameter analysis, a minimum of two independent samples from each well (upgradient and downgradient) must be collected within 30 days of obtaining the results of the expanded parameter analysis and analyzed for the detected constituents. These samples must be collected within two weeks of each other and then compared to the existing groundwater quality values established pursuant to subparagraph (c)(5)(i) of this section. If an increase in the existing water quality values in the upgradient wells is indicated by this comparison, the existing water quality values for these parameters shall be revised to be the arithmetic mean of the results of each parameter for which analyses were performed in the upgradient wells within each hydrogeologic flow regime. The department may delete any of the expanded parameters if it can be shown that the removed parameters are not reasonably expected to be in, or derived from, the waste contained in the landfill based on the leachate sampling being performed pursuant to paragraph (c)(3) of this section.
- (b) After obtaining the results from the initial or subsequent sampling required in clause(a) of this subparagraph, the facility owner/operator must:
- (1) within 14 days, notify the department to identify the expanded parameters that have been detected;
- (2) within 90 days, and on a quarterly basis thereafter, resample all wells, conduct analyses for all baseline parameters, and for those expanded parameters that are detected in response to clause (a) of this subparagraph. In addition, the facility owner/operator shall sample and conduct analyses annually on all wells for the expanded parameters. At least one sample from each upgradient and downgradient well must be collected and analyzed during these sampling events. The department may reduce the requirements of this subclause based on site specific conditions; and
- (3) establish groundwater protection standards for all parameters detected pursuant to clause (a) of this subparagraph. The groundwater protection standards must be established in accordance with clause (f) of this subparagraph.
- (c) If the concentrations of any of the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department of this finding and, if approved by the department, may remove that parameter from the contingency water quality monitoring program. If the concentrations of all the expanded parameters are shown to be at or below existing water quality values for two consecutive sampling events, the owner/operator must notify the department and, if approved by the department, may return to operational water quality monitoring.
- (d) If the concentrations of any expanded parameters are above existing water quality values, but all concentrations are below the groundwater protection standard

established under clause (f) of this subparagraph, the owner/operator must continue contingency monitoring in accordance with this subparagraph.

- (e) If one or more expanded parameters are detected at significant levels above the groundwater protection standard established under clause (f) of this subparagraph in any sampling event, the facility owner/operator must, within 14 days of this finding, notify the department to identify the expanded parameters that have exceeded the groundwater protection standard, and notify all appropriate local government officials identified in the Contingency Plan, required pursuant to section 360-2.10 of this Subpart, that the notice has been sent to the department. The owner/operator must also:
- (1) characterize the nature and extent of the release by installing additional monitoring wells as necessary:
- (2) install at least one additional monitoring well at the facility boundary in the direction of contaminant migration, and sample this well in accordance with subparagraph (c) (5)(i) of this section;
- (3) notify all persons who own the land or reside on the land that is directly over any part of the plume of contamination if contaminants have migrated off-site as indicated by sampling of wells in accordance with subclause (1) of this clause; and
- (4) initiate an assessment of corrective measures as required by section 360-2.20 of this Subpart within 90 days; or
- (5) demonstrate that a source other than the landfill caused the contamination, or that the significant increase resulted from error in sampling, analysis, or natural variation in groundwater quality. This report must be submitted for approval by the department. If a successful demonstration is made, the facility owner/operator must continue monitoring in accordance with the contingency water quality monitoring program pursuant to subparagraph (c)(3)(iii) of this section, and may return to operational monitoring if the expanded parameters are at or below existing water quality as specified in subparagraph (c)(5)(i) of this section. Unless and until a successful demonstration is made, the owner/operator must comply with this clause, including initiating an assessment of corrective measures.
- (f) The owner/operator must establish a groundwater protection standard for each expanded parameter detected in the groundwater. The groundwater protection standard shall be:
- (1) for parameters for which a maximum contaminant level (MCL) has been established in section 1412 of the Safe Drinking Water Act under 40 CFR part 141 (see section 360-1.3 of this Part) or for which standard has been established pursuant to Part 701, 702, or 703 of this Title, whichever is more stringent when the parameters are the same, the MCL or standard for that constituent;
- (2) for parameters for which MCLs or standards have not been established, the existing water quality concentration for the parameter established from wells in accordance with subparagraph (c)(5)(i) of this section; or
- (3) for parameters for which the existing water quality level is higher than the MCL or standard identified under subclause (1) of this clause, the existing water quality

concentration.

- (iv) Reporting of data. Unless more rapid reporting is required to address an imminent environmental or public health concern, the owner or operator of the facility must report all water quality monitoring results to the department within 90 days of the conclusion of the sample collection. The report must include:
 - (a) A table showing the sample collection date, the analytical results (including all peaks even if below method detection limits [MDL]), designation of upgradient wells and location number for each environmental monitoring point sampled, applicable water quality standards, and groundwater protection standards if established, MDL's, and Chemical Abstracts Service (CAS) numbers on all parameters.
 - (b) In addition, tables or graphical representations comparing current water quality with existing water quality and with upgradient water quality must be presented. These comparisons may include Piper diagrams, Stiff diagrams, tables, or other analyses.
 - (c) A summary of the contraventions of State water quality standards, significant increases in concentrations above existing water quality, any exceedances of groundwater protection standards, and discussion of results, and any proposed modifications to the sampling and analysis schedule necessary to meet the requirements of subparagraphs (i) through (iii) of this paragraph.
 - (d) All AQA/AQC documentation must be submitted to the department in a form acceptable to the department.
 - (e) The annual report must contain a summary of the water quality information presented in clauses (b) and (c) of this subparagraph with special note of any changes in water quality which have occurred throughout the year.
 - (f) The data quality assessment report required pursuant to paragraph (d)(5) of this section.
 - (d) Site analytical plan. The site analytical plan must describe the method of sample collection and preservation, chain of custody documentation, analyses to be performed, analytical methods, data quality objectives, procedures for corrective actions, and procedures for data reduction, validation and reporting. The site analytical plan will pertain to existing water quality monitoring programs, operational water quality monitoring programs, and a contingency water quality monitoring program which specifies trigger mechanisms for its initiation. Unless otherwise approved by the department, the site analytical plan must comply with the following:
 - (1) Data quality objectives.
 - (i) The data quality objectives for the data generation activity must be established prior to the initiation of any sampling.
 - (ii) The data quality objectives shall define the goals of each phase of the water quality monitoring program, including, but not limited to, the following:
 - (a) reasons for the analytical program;
- (b) identification of any regulatory programs and standards applicable to the analytical program; and

- (c) minimum detection limits for each of the parameters listed in the Water Quality Analysis Tables.
- (iii) The data quality objectives shall be the basis for the development of all other portions of the site analytical plan.
- (2) Analytic quality assurance (AQA)/analytic quality control (AQC).
- (i) The site analytical plan must include a discussion of the AQA/AQC for the sampling program associated with the facility and shall be sufficient to ensure that the data generated by the sampling and analysis activities are of a quality commensurate with their intended use and the requirements of the department. The discussion shall detail the AQA/AQC goals and protocols for each type of environmental monitoring to be performed at the facility. Elements must include a discussion of the quality objectives of the project, identification of the qualifications of those persons who will be performing the work and their responsibilities and authorities, enumeration of AQC procedures to be followed, and reference to the specific standard operating procedures that will be followed for all aspects of the environmental monitoring program.
- (3) Field sampling procedures.
- (i) All field sampling procedures shall be described in detail in the site analytical plan. All field quality control procedures shall be described including types and frequency of field quality control samples to be collected such as field blanks, trip blanks, field duplicates, reference materials and material blanks.
- (ii) All samples must be collected and stored in the order of the parameter's volatilization sensitivity using methods, consistently applied, which ensure sample integrity.
- (iii) All sampling equipment must be constructed of inert materials designed to obtain samples with minimal agitation and contact with the atmosphere; be cleaned and protected during transport to avoid contamination; and checked before use. Dedicated equipment must be constructed of appropriate inert materials and must be appropriate for the types of sampling to be performed.
- (iv) Samples must be properly preserved and delivered to the laboratory with proper chain of custody within all appropriate holding times for the parameters to be analyzed.
- (v) The sampling procedures and frequencies must be protective of human health and the environment.
- (vi) Monitoring well sampling techniques. Monitoring well sampling techniques must be consistently performed each time a well is sampled, and must comply with the following:
- (a) In areas where the presence of explosive or organic vapors is suspected, ambient air in the well must be checked for their presence before the well is evacuated.
- (b) For wells with documented contamination, where contamination by non- aqueous phase liquids may be present, standing water in the well must be checked for immiscible layers or other contaminants that are lighter or heavier than water (floaters or sinkers). If present, floaters or sinkers must be sampled and analyzed separately by

a method described in the site analytical plan.

- (c) Evacuation of the well must replace stagnant water in the well and the sand pack with fresh water representative of the formation. Evacuation methods, including pumping rate, depth of pump intake, and method of determining sufficiency of evacuation must be consistently applied each time the well is sampled. Evacuation methods must create the least possible turbidity in the well and must not lower the water in the well below the top of the sand pack whenever feasible. Evacuated water must be properly managed.
- (d) After evacuation of the well, volatile organic samples must be collected.
- (e) analysis must be performed after volatile organic samples have been collected, either within the borehole using a probe or from the next sample collected. All field test equipment must be calibrated at the beginning of each sampling day and checked and recalibrated according to the manufacturer's specifications. Calibration data must be reported with the analytical results.
- (f) Groundwater samples shall not be filtered, unless otherwise approved by the department. If, due to site-specific conditions, sample turbidity cannot be reduced to 50 nephelometric turbidity units (NTUs) or less by good sampling technique or well redevelopment, the department may approve collection of both filtered and unfiltered samples for analyses of the inorganic parameters. All other analyses required will be on the unfiltered samples.
- (vii) Surface water and sediment sampling techniques. Surface water and sediment sampling methods must be consistently applied to all samples, and must comply with the following:
- (a) Surface water samples collected from shallow water should not include bottom sediment. In shallow moving water, downstream samples must be collected first to avoid disturbances from the bottom sediments.
- (b) Each water body over three feet deep that is sampled must be checked for stratification, and each stratum must be checked for contamination using field parameters. Each stratum showing evidence of contamination must be separately analyzed. If no stratum shows such evidence, a composite sample having equal parts of water from each stratum must be analyzed.
- (c) Sediment samples must be taken at each location from which surface water samples are taken, and should consist of the upper five centimeters of sediment.
- (viii) Water supply well sampling techniques. Sampling methods must be consistently applied each time a well is sampled and must comply with the following:
- (a) Samples should be collected directly from the well so as to yield water representative of the formations supplying the well. If this is not possible, samples must be collected as near to the well as possible and before the water is softened, filtered, or heated.
- (b) If possible, samples must be collected before the water enters the pressure tank, otherwise the water must run long enough to flush water stored in the tank and pipes.
- (c) Before sampling, water must be evacuated from the well to ensure a fresh sample

of aquifer water.

- (d) If samples are collected from a tap, aerators, filters, or other devices must be removed before sampling.
- (ix) Corrective action. Standard operating procedures must be established which describe the procedures used to identify and correct deficiencies in the sample collection process. The standard operating procedure shall specify that each corrective action must be documented in the sampling report submitted to the department, with a description of the deficiency, the corrective action taken, and the persons responsible for implementing the corrective action. Any alterations to the field sampling procedures shall be included as an amendment to the site analytical plan.
 - (4) Laboratory procedures.
 - (i) Laboratory analyses must be performed by a laboratory currently certified under the appropriate approval categories by the New York State Department of Health's Environmental Laboratory Approval Program (ELAP).
 - (ii) The site analytical plan should contain the standard operating procedures of all laboratory activities related to the environmental monitoring plan. Any revisions to these standard operating procedures must be documented. Standard operating procedures should be available for the following, at a minimum:
 - (a) receipt, storage and handling of samples;
 - (b) sample scheduling to ensure that holding time requirements are met;
 - (c) reagent/standard preparation;
 - (d) general laboratory techniques such as glassware cleaning procedures, operation of analytical balances, pipetting techniques and use of volumetric glassware;
 - (e) description of how analytical methods are actually to be performed including precise reference to the analytical method used; and not a simple reference to standard methods; and
 - (f) standard operating procedures for equipment calibration and maintenance to ensure that laboratory equipment and instrumentation are in working order, including, but not limited to procedures and schedules for calibration and maintenance in accordance with manufacturers' specifications; and
 - (g) for a corrective action, standard operating procedures must be established for identifying and correcting deficiencies in the laboratory procedures. The standard operating procedure shall specify that each corrective action must be documented in the sampling event report submitted to the department with a description of the deficiency, the corrective action taken, and the person responsible for implementing the corrective action. Any alterations to the laboratory procedures shall be included as an amendment to the site analytical plan.
 - (5) Data quality assessment. At the conclusion of each sampling event and analysis of the samples collected, data quality assessment shall occur. A data quality assessment report must be submitted with the results from each sampling event. Data quality assessment shall occur in two phases.

- (i) Data validation.
- (a) For those sampling events for which only routine parameters are analyzed, the data validation shall be performed by the laboratory that performed the sample analyses.
- (b) For those sampling events for which baseline or expanded parameters are analyzed, the data validation shall be performed by a person other than the laboratory that performed the analyses and that is acceptable to the department.
- (c) The data validation shall be performed on all analytical data for the facility at a rate acceptable to the department, but not less than five percent of the data generated, and shall consist, at a minimum, of the following:
- (1) field records and analytical data are reviewed to determine whether the data are accurate and defensible. All AQA/AQC information shall be reviewed along with any corrective actions taken during that sampling event; and
- (2) all data summaries shall be clearly marked to identify any data that are not representative of environmental conditions at the site, or that were not generated in accordance with the site analytical plan.
- (ii) Data usability analysis.
- (a) The data usability analysis shall be performed on all analytical data for the facility and shall consist of the following:
- (1) an assessment to determine if the data quality objectives were met;
- (2) for consistency, comparison of the analytical data with the results from previous sampling events;
- (3) evaluation of field duplicate results to indicate the samples are representative;
- (4) comparison of the results of all field blanks, trip blanks, equipment rinsate blanks, and method blanks with full data sets to provide information concerning contaminants that may have been introduced during sampling, shipping, or analyzing;
- (5) evaluation of matrix effects to assess the performance of the analytical method with respect to the sample matrix, and determine whether the data have been biased high or low due to matrix effects;
- (6) integration of the field and laboratory data with geological, hydrogeological, and meteorological data to provide information about the extent of contamination, if it occurs; and
- (7) comparison of precision, accuracy, representativeness, comparability, completeness, and defensibility of the data generated with that required to meet the data quality objectives established in the site analytical plan.
- (6) The following Water Quality Analysis Tables in this section list the routine, baseline, and expanded parameters for analysis of all monitoring samples.

WATER QUALITY ANALYSIS TABLES

ROUTINE PARAMETERS¹

Common Name2	CAS RN3	Suggested Methods	PQL4 (µg/I)
Field Parameters:			
Static water level(in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
Temperature			
рН		9040	
Eh		9041	
Dissolved Oxygen6			
Field Observations7			
Turbidity		180.1	
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41-7	351.4 350.1 350.2	200 60
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3 410.4	50000 50000 5000 80000
Biochemical Oxygen Demand (BOD ₅)		405.1	2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride	108-95-2	310.2 8040 9250	6000
Bromide		9251	
Total hardness as CaCO ₃		9252 320.1 130.1 130.2	2000 20000 30000
Inorganic Parameters:			
Cadmium	(Total)	3010 7130	40 50
Calcium		7131	1
Iron	(Total) (Total)	7140 7380	40 100
Lead	(Total)	7381 6010	4 400

		7420	1000
Magnesium		7421	10
Manganese	(Total) (Total)	7450 7460	4 40
Potassium		7461	0.8
Sodium	(Total) (Total)	7610 7770	40 8

The department may modify this list as necessary.

Notes

¹This list contains parameters for which possible analytical procedures are provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.

⁵Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁶Surface water only.

⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

BASELINE PARAMETERS¹

Common Name®	CAS RN3	Suggested Methods	(µg/I)
Field Parameters:			
Static water level (in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
рН		9040 9041	

	4		
Eh			
Dissolved Oxygen6			
Field Observations7		180.1	
Turbidity			
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41- 7	351.4 350.1 350.2	200 30
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3	50000 50000 50000
Biochemical Oxygen Demand (BOD ₅)		410.4 405.1	80000 2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride		310.2 9250	6000
Bromide		9251	
Total hardness as CaCO ₃		9252	
Color		320.1 130.1 130.2 110.1 110.2 110.3	2000 20000 30000 80
Boron	7440-42- 8		
Inorganic Parameters:			
Aluminum			
Antimony	(total) (total)	7020 6010 7040	10 300 2000
Arsenic	(total)	7041 6010 7060	30 500 10
Barium	(total)	7061 6010	20 20
Beryllium	(total)	7080 6010 7090	1000 3 50
Cadmium	(total)	7091 6010 7130	2 40 50

Calcium		7131	1
	2.2.2		
Chromium	(total)	7140 6010 7190	40 70 500
Chromium(Hexavalent)*	18540- 29-9	7191 7195 7196	10 600
Cobalt	(total)	7197 7198 6010	30 70
Copper	(total)	7200 7201 6010	500 10 60
Cyanide		7210	200
lron	(total)	7211 9010	10 200
Lead	(total) (total)	7380 7381 6010	100 4 400
Magnesium		7420	1000
Manganese	(total)	7421 7450	10 4
Mercury	(total)	7460	40
Nickel	(total)	7461 7470	0.8
Potassium	(total) (total)	6010 7520 7610	150 400 40
Selenium	(total)	6010 7740	750 20
Silver	(total)	7741 6010	20 70
Sodium		7760	100
Thallium	(total) (total)	7761 7770 6010	10 8 400
Vanadium	(total)	7840 7841 6010	1000 10 80
Zinc	(total)	7910 7911 6010 7950 7951	2000 40 20 50 0.5
Organic Parameters:			
Acetone	67-64-1	8260	100
Acrylonitrile	107-13-1	8030 8260	5 200
Benzene	71-43-2	8020 8021 8260	2 0.1 5
Bromochloromethane	74-97-5	8021 8260	0.1 5
Bromodichloromethane	75-27-4	8010 8021	1 0.2

	12255	8260	5
Bromoform; Tribromomethane	75-25-2	8010 8021 8260	2 15 5
Carbon disulfide	75-15-0	8260	100
Carbon tetrachloride	56-23-5	8010 8021 8260	1 0.1 10
Chlorobenzene	108-90-7	8010 8020 8021 8260	2 2 0.1 5
Chloroethane; Ethyl chloride	75-00-3	8010 8021	5 1
Chloroform; Trichloromethane	67-66-3	8010 8021	0.5 0.2
Dibromochloromethane; Chlorodibromomethane	124-48-1	8260 8010 8021	5 1 0.3
1,2-Dibromo-3-chloropro-pane; DBCP	96-12-8	8260 8011 8021	5 0.1 30
1,2-Dibromoethane; Ethyl-ene dibromide; EDB	106-96-4	8260 8011 8021	25 0.1 10
o-Dichlorobenzene; 1,2-Dichlorobenzene	95-50-1	8026 8010 8020 8021 8120 8260	5 2 5 0.5 10 5
p-Dichlorobenzene; 1,4-Dichlorobenzene	106-46-	8270 8010 8020 8021 8120 8260	10 2 5 0.1 15 5
trans-1,4-Dichloro-2-bu- tene		8270	10
1,1-Dichloroethane; Ethylidene chloride	110-57-6 75-34-3	8260 8010 8021	100 1 0.5
1,2-Dichloroethane; Ethylene dichloride	107-06-2	8260 8010 8021	8 0.5 0.3
1,1-Dichloroethylene;		8260	5
1,1-Dichloroethene;		8010	1
/inylidene chloride	75-35-4	8021	0.5
cis-1,2-Dichloroethylene;		8260	5
sis-1,2-Dichloroethene	-1	8021	0.2
rans-1,2-Dichloroethyl-ene;	156-59-2	8260	5
rans-1,2-Dichloro- ethene	156-60-5	8010 8021	1 0.5
,2-Dichloropropane;		8260	5
Pro-pylene dichloride	78-87-5	8010 8021	0.5 0.05
sis-1,3-Dichloropropene		8260	5

		8010	20
trans-1,3-Dichloropropene.	10061- 01-5 10061- 02-6	8260 8010 8260	10 5 10
Ethylbenzene	100-41-4	8020 8221 8260	2 0.05 5
2-Hexanone; Methyl butyl ketone	591-78-6	8260	50
Methyl bromide; Bromo- methane	74-83-9	8010 8021	20 10
Methyl chloride; Chloro- methane	74-87-3	8010 8021	1 0.3
Methylene bromide; Dibro- momethane	74-95-3	8010 8021	15 20
Methylene chloride; Dichloromethane	75-09-02	8260 8010 8021	5 0.2 10
Methyl ethyl ketone; MEK; 2-Butanone	78-93-3	8260 8010	100 40
4-Methyl-2-pentanone; Methyl isobutyl ketone	108-10-1	8260 8015	10 5
Styrene	100-42-5	8260 8020 8021	100 1 0.1
1,1,1,2-Tetrachloroethane.	630-20-6	8260 8010 8021	10 5 5
1,1,2,2-Tetrachloroethane	79-34-5	8260 8010 8021	0.5 0.1 0.05
Tetrachloroethylene; Tet- rachloroethene; Per- chloroethylene	127-18-4	8260 8010 8021	5 0.5 0.5
Toluene	108-88-3	8260 8020 8021	5 2 0.1
1,1,1-Trichloroethane; Methylchloroform	71-55-6	8260 8010 8021	5 0.3 0.3
1,1,2-Trichloroethane	79-00-5	8260 8010	5 0.2
Trichloroethylene; Tri- chloroethene	79-01-6	8260 8010 8021	5 1 0.2
Trichlorofluoromethane; CFC-11	75-69-4	8260 8010 8021 8260	5 10 0.3 5
1,2,3-Trichloropropane	96-18-4	8010 8021 8260	10 5 15
Vinyl acetate	108-05-4	8260	50
Vinyl chloride; Chloro- ethene	75-01-4	810 8021 8260	2 0.4 10
Xylenes	1330-20- 7	8020 8021	5 0.2

0000	-
8260	1.5

The department may modify this list as necessary.

Notes

¹This list contains 47 volatile organics for which possible analytical procedures provided in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised December 1987, includes Method 8260; 25 metals for which SW-846 provides either Method 6010 or a method from the 7000 series of methods; and additional parameters for which possible procedures are provided in *Methods for Chemical Analysis of Water and Wastes*, USEPA-600/4-79-020, March, 1979. The regulatory requirements pertain only to the list of parameters; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnote 4.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service Registry Number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation.

⁵Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁶Surface water only.

⁷Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

*The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0 .05 mg/l.

EXPANDED PARAMETERS¹

Common Name2	CAS RN3	Suggested Methods	PQL4 (µg/l)
Field Parameters:			
Static water level (in wells and sumps)			
Specific Conductance		9050	
Temperature			
Floaters or Sinkers5			
pH		9040 9041	

Eh			1
Dissolved Oxygen6			
Field Observations7		180.1	
Turbidity		1	
Leachate Indicators:			
Total Kjeldahl Nitrogen		351.1 351.2 351.3	60
Ammonia	7664-41- 7	351.4 350.1 350.2	200 30
Nitrate		350.3	100
Chemical Oxygen Demand		9200 410.1 410.2 410.3 410.4	50000 50000 50000 80000
Biochemical Oxygen Demand (BOD ₅)		405.1	2000
Total Organic Carbon			
Total Dissolved Solids		9060	
Sulfate		160.1 9035	40000
Alkalinity		9036 9038	
Phenols		310.1	20000
Chloride	108-95-2	310.2 8040 9250	6000
Bromide		9251	
Total hardness as CaCO ₃	24959- 67-9	9252 320.1 130.1 130.2	2000 20000 30000
Color		110.1 110.2 110.3	80
Boron	7440-42- 8		
norganic Parameters:			
Aluminum	(total)	7020	10
Antimony	(total)	6010 7040 7041	300 2000 30
Arsenic	(total)	6010 7060 7061	500 10 20
Barium	(total)	6010	20
Beryllium	(total)	7080 6010 7090	1000 3 50
Cadmium	(total)	7091 6010 7130	2 40 50

Calcium		7131	1
Chromium	(total) (total)	7140 6010 7190	40 70 500
Chromium(Hexavalent)*	18540- 29-9	7191 7195 7196 7197	10 600 30
Cobalt	(total)	7198 6010 7200	70 500
Copper	(total)	7201 6010	10 60
Cyanide		7211	10
Iron	(total) (total)	9010 7380	200 100
Lead	(total)	7381 6010 7420	4 400 1000
Magnesium		7421	10
Manganese	(total) (total)	7450 7460	4 40
Mercury	(total)	7461 7470	0.8
Nickel	(total)	6010 7520	150 400
Potassium	(total)	7610	40
Selenium	(total)	6010 7740 7741	750 20 20
Silver	(total)	6010 7760 7761	70 100 10
Sodium	(total)	7770	8
Thallium	(total)	6010 7840 7841	400 1000 10
Tin	(total)	6010	40
Vanadium	(total)	6010 7910 7911	80 2000 40
Zinc	(total)	6010 7950 7951	20 50 0.5
Organic Parameters:			
Acenaphthene	83-32-9	8100 8270	200 10
Acemaphthylene	208-96-8	8100 8270	200 10
Acetone	67-64-1	8260	100
Acetonitrile; Methyl cyanide	75-05-8	8015	100
Acetophenone	98-86-2	8270	10
2-Acetylaminofluorene; 2-AAF	53-96-3	8270	20

Acrolein	107-02-8	8030 8260	5 100
Acrylonitrile	107-13-1	8030 8260	5 200
Aldrin	309-00-2	8080 8270	10 5
Ally chloride	107-05-1	8010 8260	5 10
4- aminobiphenyl	92-67-1	8270	20
Anthracene	120-12-7	8100 8270	200 10
Benzene	71-43-2	8020 8021 8260	2 0.1 5
Benzo[a]anthracene; Benzanthracene	56-55-3	8100 8270	200 10
Benzo[b]fluoranthene	205-99-2	8100 8270	200 10
Benzo[k]fluoranthene	207-08-9	8100 8270	200 10
Benzo[ghi]perylene	191-24-2	8100 8270	200 10
Benzo[a]pyrene	50-32-8	8100 8270	200 10
Benzyl alcohol	100-51-6	8270	20
alpha-BHC	319-84-6	8080 8270	0.05 10
beta-BHC	319-85-7	8080 8270	0.05 10
delta-BHC	31986- 8	8080 8270	0.1 20
gamma-BHC; Lindane	58-89-9	8080 8270	0.05 20
Bis(2-chloroethoxy)methane	111-91-1	8110 8270	5 10
Bis(2-chloroethyl) ether; Dichloroethyl ether	111-44-4	8110 8270	3 10
Bis-(2-chloro-1-methyl-ethyl) ether; 2,21-Di- chlorodiisopropyl ether	108-60-1	8110 8270	10 10
DCIP, See note 9			
Bis(2-ethylhexyl)phthalate Bromochloromethane; Chlorobromomethane	117-81-7 74-97-5	8060 8021 8260	20 0.1 5
Bromodichloromethane; Dibromochloromethane	75-27-4	8010 8021	1 0.2
Bromoform; Tribromomethane	75-25-2	8260 8010 8021	5 2 15
4-Bromophenyl phenyl ether	101-55-3	8260 8110	5 25
Butyl benzyl phthalate; Benzyl butyl phthalate	85-68-7	8270 8060	10 5
Carbon disulfide		8270	10

Carbon tetrachloride	75-15-0 56-23-5	8260 8010 8021 8260	100 1 0.1 10
Chlordane	See Note 10	8080 8270	0.1 50
p-Chloroaniline	106-47-8	8270	20
Chlorobenzene	108-90-7	8010 8020 8021 8260	2 2 0.1 5
Chlorobenzilate	510-15-6	8270	10
p-Chloro-m-cresol; 4-Chloro-3-methylphenol	59-50-7	8040 8270	5 20
Chloroethane; Ethyl chloride	75-00-3	8010 8021 8260	5 1 10
Chloroform; Trichloromethane	67-66-3	8010 8021 8260	0.5 0.2 5
2-Chloronaphthalene	91-58-7	8120 8270	10 10
2-Chlorophenol	95-57-8	8040 8270	5 10
4-Chlorophenyl phenyl ether	7005-72- 3	8110 8270	40 10
Chloroprene	126-99-8	8010 8260	50 20
Chrysene	218-01-9	8100 8270	200 10
m-Cresol; 3-methylphenol	108-39-4	8270	10
o-Cresol; 2-methylphenol	95-48-7	8270	10
o-Cresol; 4-methylphenol	106-44-5	8270	10
2,4-D; 2,4-Dichlorophen- oxyacetic acid	94-75-7	8150	10
4,41-DDD	72-54-8	8080	0.1
4,41-DDE		8270	10
4,41-DDT	72-55-9	8080	0.05
Diallate		8270	10
Dibenz[a,h]anthracene	50-29-3	8080 8270	0.1
Dibenzofuran	2303-16- 4	8270	10
Dibromochloromethane; Chlorodibromomethane	53-70-3 132-64-9 124-48-1	8100 8270 8270 8010 8021 8260	200 10 10 1 0.3 5
1,2-Dibromo-3-chloro- propane; DBCP	96-12-8	8011 8021 8260	0.1 30 25
,2-Dibromoethane; Ethylene dibromide; EDB	106-93-4	8011 8021 8260	0.1 10 5

Di-n-butyl phthalate	84-74-2	8060	5
o-Dichlorobenzene; 1,2-Dichlorobenzene	95-50-1	8270 8010 8020 8021 8120 8260	10 2 5 0.5 10 5
m-Dichlorobenzene; 1,3-Dichlorobenzene	541-73-1	8270 8010 8020 8021 8120 8260	10 5 5 0.2 10 5
p-Dichlorobenzene; 1,4-dichlorobenzene	106-46-7	8270 8010 8020 8021 8120 8260	10 2 5 0.1 15 5
3,31-Dichlorobenzidine		8270	10
trans-1,4-Dichloro- 2-butene	91-94-1	8270	10
Dichlorodifluoromethane; CFC 12	110-57-6 75-71-8	8260 8021	100 0.5
1,1-Dichloroethane; Ethyldidene chloride	75-34-3	8260 8010	5
1,2-Dichloroethane; Ethylene dichloride	107-06	8021 8260 8010	0,5 5 .05
1,1-Dichloroethylene; 1,1-Dichloroethene; Vinylidene chloride	75-35-4	8021 8260 8010	0.3 5 1
cis-1,2-Dichloroethylene; cis-1,2-Dichloroethene		8021 8260	0.5 5
trans-1,2-Dichloroethylene	156-59-2	8021 8260	0.2 5
trans-1,2-Dichloroethene	156-60-5	8260 8010	5 1
2,4-Dichlorophenol	120-83-2	8021 8260 8040 8270	0.5 5 5 10
2,6-Dichlorophenol	87-65-0	8270	10
1,2-Dichloropropane; Propylene dichloride	78-87-5	8010 8021 8260	0.5 0.05 5
1,3-Dichloropropane; Trimethylene dichloride.	142-28-9	8021 8260	0.3 5
2,2-Dichloropropane; Isopropylidene chloride.	594-20-7	8021 8260	0.5 15
1,1-Dichloropropene	563-58-6	8021	0.2
cis-1,3-Dichloropropene	10061- 01-5	8260 8010	5 20
rans-1,3-Dichloropropene	10061- 02-6	8260 8010	10 5
Dieldrin	60-57-1	8260 8080	10 0.05
Diethyl phthalate	84-66-2	8270	10

	1 1	8060	5
0,0-Diethyl 0-2-pyrazinyl phosphorothioate; Thionazin	297-97-2	8270 8141 8270	10 5 20
Dimethoate	60-51-5	8141	3
p-(Dimethylamino)azo- benzene		8270	20
7,12-Dimethylbenz[a]- anthracene	60-11-7	8270	10
3,31-Dimethylbenzidine	57-97-6	8270	10
2,4-Dimethylphenol; m-Xylenol	199-93-7 105-67-9	8270 8040	10 5
Dimethyl phthalate		8270	10
m-Dinitrobenzene	131-11-3	8060	5
4,6-Dinitro-o-cresol 4,6- Dinitro-2-methylphenol	99-65-0	8270 8270	10 20
2,4-Dinitrophenol	534-52-1	8040 8270	150 50
2,4-Dinitrotoluene	51-28-5	8040 8270	150 50
2,6-Dinitrotoluene	121-14-2	8090 8270	0.2 10
Dinoseb; DNBP; 2-sec- Butyl-4,6-dinitrophenol.	606-20-2	8090 8270	0.1 10
Di-n-octyl phthalate	88-85-7 117-84-0	8150 8270 8060 8270	1 20 30 10
11 Diphenylamine	122-39-4	8270	10
Disulfoton	298-04-4	8140 8141	2 0.5
Endosulfan I	959-98-8	8270 8080	10 0.1
Endosulfan II	33213- 65-9	8270 8080	20 005
Endosulfan sulfate		8270	20
Endrin	1031-07- 8	8080 8270	0.5 10
Endrin aldehyde	72-20-8	8080	0.1
Ethylbenzene	7421-93- 4	8270 8080 8270	20 0.2 10
Ethyl methacrylate	100-41-4	8020 8021	2 0.05
Ethyl methanesulfonate		8260	5
Famphur	97-63-2	8015	5
Fluoranthene		8260 8270	10 10
Fluorene	62-50-0 52-85-7	8270 8270	20 20
Heptachlor	206-44-0	8100 8270	200 10
Heptachlor epoxide	86-73-7	8100	200

		8270	10
Hexachlorobenzene	76-44-8	8080 8270	0.05 10
Hexachlorobutadiene	1024-57- 3 118-74-1	8080 8270 8120	1 10 0.5
Hexachlorocyclopentadiene	87-68-3	8270 8021 8120	10 0.5 5
Hexachloroethane	77-47-7	8260 8270 8120	10 10 5
Hexachloropropene		8270	10
2-Hexanone; Methyl butyl ketone	67-72-1	8120 8260	0.5 10
Indeno(1,2,3-cd)pyrene	1888-71- 7 591-78-6 193-39-5	8270 8270 8260 8100 8270	10 10 50 200 10
Isobutyl alcohol	78-83-1	8015 8240	50 100
lsodrin	465-73-6	8270 8260	20 10
Isophorone	78-59-1	8090 8270	60 10
lsosafrole	120-58-1	8270	10
Kepone	143-50-0	8270	20
Methacrylonitrile	126-98-7	8015 8260	5 100
Methapyrilene	91-80-5	8270	100
Methoxychlor	72-43-5	8080 8270	2 10
Methyl bromide; Bromomethane	74-83-9	8010 8021	20 10
Methyl chloride; Chloromethane	74-87-3	8010 8021	1 0.3
3-Methylcholanthrene	56-49-5	8270	10
Methyl ethyl ketone; MEK; 2-Butanone	78-93-3	8015 8260	10 100
Methyl iodide;lodomethane	74-88-4	8010 8260	40 10
Methyl methacrylate	80-62-6	8015 8260	2 30
Methyl methanesulfonate	66-27-3	8270	10
2-Methylnaphthalene	91-57-6	8270	10
Methyl parathion; Parathion methyl	298-00-0	8140 8141 8270	0.5 1 10
I-Methyl-2-pentanone; Methyl isobutyl ketone	108-10-1	8015 8260	5 100
Methylene bromide; Dibromomethane	74-95-3	8010 8021 8260	15 20 10

Methylene chloride; Dichloromethane	75-09-2	8010 8021 8260	5 0.2 10
Naphthalene	91-20-3	8021 8100 8260 8270	0.5 200 5 10
1,4-Naphthoquinone	130-15-4	8270	10
1-Naphthylamine	134-32-7	8270	10
2-Naphthylamine	91-59-8	8270	10
o-Nitroaniline; 2-Nitroaniline	88-74-4	8270	50
m-Nitroaniline;			
3-Nitroaniline	99-09-2	8270	50
p-Nitroaniline; 4-Nitroaniline	100-01-6	8270	20
Nitrobenzene	98-95-3	8090 8270	40 10
o-Nitrophenol; 2-Nitrophenol	88-75-5	8040 8270	5 10
p-Nitrophenol; 4-Nitrophenol	100-02-7	8040 8270	10 50
N-Nitrosodi-n-butylamine.	924-16-3	8270	10
N-Nitrosodiethylamine	55-18-5	8270	20
N-Nitrosodimethylamine	62-75-9	8070	2
N-Nitrosodiphenylamine	86-30-6	8070	5
N-Nitrosodipropylamine; N-Nitroso-N-dipropyl- amine; Di-n- propylni- trosamine	621-64-7	8070	10
N-Nitrosomethylethalamine	10595- 95-6	8270	10
N-Nitrosopiperidine	100-75-4	8270	20
N-Nitrosopyrrolidine	930-55-2	8270	40
5-Nitro-o-toluidine	99-55-8	8270	10
Parathion	56-38-2	8141 8270	0.5 10
Pentachlorobenzene	608-93-5	8270	10
Pentachloronitrobenzene	82-68-8	8270	20
Pentachlorophenol	87-86-5	8040 8270	5 50
Phenacetin	62-44-2	8270	20
Phenanthrene	85-01-8	8100 8270	200 10
Phenol	108-95-2	8040	1
p-Phenylenediamine	106-50-3	8270	10
Phorate	298-02-2	8140 8141 8270	2 0.5 10
Polychlorinated biphenyls; PCB's; Aroclors	See Note 11	8080 8270	50 200
Polychlorinated dibenzo-p-dioxins; PCDD's	See Note 12	8280	0.01

Polychlorinated dibenzo- furans; PCDF's	See Note 13	8280	0.01
Pronamide	23950- 58-8	8270	10
Propionitrile; Ethyl cyanide	107-12-0	8015 8260	60 150
Pyrene	129-00-0	8100 8270	200 10
Safrole	94-59-7	8270	10
Silvex; 2,4,5-TP	93-72-1	8150	2
Styrene	100-42-5	8020 8021 8260	1 0.1 10
2,4,5-T; 2,4,5-trichloro- phenoxyacetic acid	93-76-5	8150	2
1,2,4,5-Tetrachlorobenzene 2,3,7,8-Tetrachlorodi- benzo-p-dioxin; 2,3,7,8-TCDD	95-94-3 1746-01- 6 630-20-6	8270 8280	10 0.005
1,1,1,2-Tetrachloroethane.	79-34-5	8010 8021 8260	5 0.05 5
1,1,2,2-Tetrachloroethane.	127-18-4	8010 8021 8260	0.5 0.1 5
Tetrachloroethylene; Tetrachloroethene; Perchloroethylene	58-90-2	8010 8021 8260	0.5 0.5 5
2,3,4,6-Tetrachlorophenol.	108-88-3	8270	10
Toluene	95-53-4	8020 8021 8260	2 01 5
o-Toluidine	See Note 14	8270	10
Toxaphene	120-82-1	8080	2
1,2,4-Trichlorobenzene	71-55-6	8021 8120 8260 8270	0.3 0.5 10 10
1,1,1-Trichloroethane; Methylchloroform	79-00-5	8010 8021 8260	0.3 0.3 5
1,1,2-Trichloroethane	79-01-6	8010 8260	0.2 5
Trichloroethylene; Trichloroethene	75-69-4	8010 8021 8260	1 0.2 5
Trichlorofluoromethane; CFC-11	95-95-4 88-06-2	8010 8021 8260	10 0.3 5
2,4,5-Trichlorophenol		8270	10
2,4,6-Trichlorophenol	96-18-4	8040 8270	5 10
1,2,3-Trichloropropane		8010 8021 8260	10 5 15
0,0,0-Triethyl phosphoro-	126-68-1	8270	10

thioate			
sym-Trinitrobenzene	99-35-4	8270	10
Vinyl acetate	108-05-4	8260	50
Vinyl chloride; Chloroethene	75-01-4	8010 8021 8260	2 0.4 10
Xylene (total)	See Note 15	8020 8021 8260	5 0.2 5

The department may modify this list as necessary. EXPANDED PARAMETERS¹

Notes

¹The regulatory requirements pertain only to the list of substances; the right hand columns (Methods and PQL) are given for informational purposes only. See also footnotes 4 and 5.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Chemical Abstracts Service registry number. Where "Total" is entered, all species in the groundwater that contain this element are included.

⁴Suggested Methods refer to analytical procedure numbers used in EPA Report SW-846 *Test Methods for Evaluating Solid Waste*, third edition, November 1986, as revised, December 1987 and *Methods for Chemical Analysis of Water and Wastes*, USEPA-600-4/79-020, March, 1979. CAUTION: The methods listed are representative procedures and may not always be the most suitable method(s) for monitoring an analyte under the regulations.

⁵Practical Quantitation Limits (PQLs) are the lowest concentrations of analytes in groundwaters that can be reliably determined within specified limits of precision and accuracy by the indicated methods under routine laboratory operating conditions. The PQLs listed are generally stated to one significant figure. PQLs are based on 5 ml samples for volatile organics and 1 L samples for semivolatile organics. CAUTION: The PQL values in many cases are based only on a general estimate for the method and not on a determination for individual compounds; PQLs are not a part of the regulation. ⁶Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁷Surface water only.

⁸Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

⁹This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2"-oxybis[2]-chloro- (CAS RN 39638-32-9).

¹⁰Chlordane: This entry includes alpha-chlordane (CAS RN 5103-71-9), beta-chlordane (CAS RN 5103-74-2), gamma-chlordane (CAS RN 5566-34-7), and constituents of chlordane (CAS RN 57-74-9 and CAS RN 12789-03-6). PQL shown is for technical chlordane. PQLs of specific isomers are about 20 μg/l by method 8270.

¹¹Polychlorinated biphenyls (CAS RN 1336-36-3): This category contains congener chemicals, including constituents of Aroclor 1016 (CAS RN 12674-11-2), Aroclor 1221 (CAS RN 11104-28-2), Aroclor 1232 (CAS RN 11141-16-5), Aroclor 1242 (CAS RN 53469-21-9), Aroclor 1248 (CAS RN 12672-29-6), Aroclor 1254 (CAS RN 11097-69-1), and Aroclor 1260 (CAS RN 11096-82-5). The PQL shown is an average value for PCB congeners.

¹²Polychlorinated dibenzo-p-dioxins: This category contains congener chemicals, including tetrachlorodibenzo-p-dioxins (see also 2,3,7,8-TCDD), pentachlorodibenzo-p-dioxins, and hexachlorodibenzo-p-dioxins. The PQL shown is an average value for PCDD congeners. Upon request of the applicant, the department may waive the requirement to analyze for dioxins, where appropriate.

¹³Polychlorinated dibenzofurans: This category contains congener chemicals, including tetrachlrodibenzofurans, pentachlorodibenzofurans, and hexachlorodibenzofurans. The PQL shown is an average value for PCDF congeners. Upon request of the applicant, the department may waive the requirement to analyze for furans, where appropriate.

¹⁴Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.

¹⁵Xylene (total): This entry includes o-xylene (CAS RN 96-47-6), m-xylene (CAS RN 108-38-3), p-xylene (CAS RN 106-42-3), and unspecified xylenes (dimethylbenzenes) (CAS RN 1330-20-7). PQLs for method 8021 are 0.2 for o-xylene and 0.1 for m- or p-xylene. The PQL for m-xylene is 2.0 μg/L by method 8020 or 8260.

*The department may waive the requirement to analyze Hexavalent Chromium provided that Total and Hexavalent and Trivalent Chromium values do not exceed 0.05 mg/l.

§360-2.12 Landfill siting.

- (a) Applicability. New landfills and lateral or vertical expansions of existing active landfills must be located on a site that exhibits the following characteristics unless the requirements of subdivision (b) of this section are met. A site selection study will be required only if the applicant proposes a site that does not exhibit all of the characteristics identified in either paragraph (1) or (2) of this subdivision.
 - (1) In the case of new landfills and lateral or vertical expansions of existing landfills:
 - (i) the site is not located in an area identified in section 360-1.7(a)(2) of this Part;
 - (ii) the site complies with the siting restrictions identified in subdivision (c) of this section;
 - (iii) bedrock subject to rapid or unpredictable groundwater flow must be avoided, unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system;
 - (iv) the site must not be in proximity of any mines, caves or other anomalous features that may alter groundwater flow;
 - (v) unconsolidated deposits underlying the proposed landfill must either exist or be constructed to be 20 feet or greater in thickness as measured from the base of the constructed liner system; and
 - (vi) the upper 20 feet of the unconsolidated deposits on the site must consist

predominantly (greater than 50 percent) of soils throughout the vertical section, with a maximum in situ coefficient of permeability of 5 x 10-6 centimeters per second, with no appreciable continuous deposits having a maximum coefficient of permeability of 5 x 10-4 centimeters per second.

- (2) In the case of an existing landfill active on or after November 4, 1992 operating under and in compliance with a current Part 360 permit or order on consent, the department may allow lateral or vertical expansions if the site has less than 20 feet of unconsolidated deposits provided that:
 - (i) the proposed landfill expansion is identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed landfill expansion must be consistent with the goals and objectives of such plan;
 - (ii) the unconsolidated deposits underlying the proposed landfill exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system;
 - (iii) the applicant demonstrates that the expansion site will have no significant adverse impact on human health, safety, or welfare, the environment, or natural resources; and
 - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision.
- (3) Except in Nassau and Suffolk Counties, in the case of ash monofills for the disposal offly ash treated in a manner consistent with section 360- 3.6(g)(3) of this Part, combined ash, or bottom ash, the department may allow ash monofill development at sites that have less than 20 feet of unconsolidated deposits provided that:
 - (i) the proposed monofill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the integrated solid waste management system for the planning unit in which the facility is located and the proposed monofill must be consistent with the goals and objectives of such plan;
 - (ii) the unconsolidated deposits underlying the proposed landfill on the site exist or are constructed to be 10 feet or greater in thickness as measured from the base of the constructed liner system;
 - (iii) the applicant demonstrates that the monofill site will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources; and
 - (iv) the site complies with subparagraphs (1)(i)-(iv) of this subdivision.
- (b) Exceptions. New landfills and lateral or vertical expansions of existing landfills may be located on sites that do not exhibit the characteristics identified in subdivision (a) of this section provided that the requirements of paragraphs (1) and (2) of this subdivision are met. The department may impose additional requirements to assure that the permitted activity will have no significant adverse impact on the public health, safety or welfare, the environment or natural resources for any site selected pursuant to this subdivision.
 - (1) The proposed landfill must be identified in the local solid waste management plan approved by the department under Subpart 360-15 of this Part as a component of the

integrated solid waste management system for the planning unit in which the facility is located, and the proposed landfill must be consistent with the goals and objectives of such plan.

- (2) The applicant must perform a site selection study and submit a site selection report as part of a complete application. This report must describe the factors that prevent the applicant from using a site exhibiting the characteristics identified in subdivision (a) of this section. Such factors may include, but are not limited to, the proximity to receiving waters or proximity to sewer lines or POTWs to ensure proper management of leachate during the operational and post-closure period of the landfill. The site selection report must also demonstrate that the chosen site will have no significant adverse impact on public health, safety, or welfare, the environment or natural resources, and will be consistent with the provisions of the ECL.
 - (i) The site selection process must be comprehensive and must identify and evaluate a reasonable range of alternative sites which are feasible considering the capabilities and objectives of the applicant. All of the criteria used to eliminate and evaluate the suitability of the potential sites must be clearly defined and consistently applied. A phased approach must be used, in which a more detailed evaluation of sites occurs as the number of potential sites is reduced.
 - (a) The applicant must exclude inappropriate siting areas by avoiding the prohibited siting areas identified in section 360-1.7(a)(2) of this Part and applying the landfill siting restrictions identified in subdivision (c) of this section.
 - (b) The applicant must evaluate potential siting areas to identify alternative sites that are suitable for landfill development. When applying the siting criteria, the evaluation must include the use of the type of data listed in section 360-2.11(a)(2) of this Subpart. Field reconnaissance to confirm the published information and a morphologic evaluation of landforms must be performed to identify the areas which are likely to have thick low permeable soils available within the study area. The applicant must use the following criteria in the landfill site selection study:
 - (1) Unconsolidated deposits on the site must be those most likely to minimize the migration of contaminants from the landfill. In evaluating the sites, preferred sites should have the greatest possible thickness of these materials to provide a barrier to contaminant migration into bedrock;
 - (2) bedrock subject to rapid or unpredictable groundwater flow must be avoided unless it can be demonstrated that a containment failure of the facility would not result in contamination entering the bedrock system resulting in a contravention of groundwater standards;
 - (3) probable groundwater flow patterns and water quality must be considered in finding areas where containment failure would do the least environmental damage and would be easiest to correct:
 - (4) proximity and hydrogeologic relationship to water supply sources;
 - (5) natural topography and its impacts upon the proposed facility; and
 - (6) relationship to mines, caves, or other anomalous hydrogeologic features that might alter groundwater flow.

- (c) Preliminary field investigations must be conducted at the highest ranking available site or sites, to identify any major obstacles to site development, and to provide sufficient data to differentiate among the preferred sites and support a siting decision.
- (ii) The report must describe the process used to select the proposed site, including evaluation criteria, deferral (elimination) criteria, assumptions, data sources, decisionmaking means (such as numerical ranking systems) and other factors used to make the siting decisions. The report must demonstrate that, considering the capabilities and objectives of the applicant, a reasonable range of alternative sites available throughout the planning unit in which the project is proposed were evaluated and that the selected site is the most appropriate alternative. The decisionmaking process must be described to provide a clear understanding of how and why the siting decisions were made, and at a level of detail sufficient to provide for a comparative assessment of the alternatives discussed. The report must also include maps of sites and describe the results of the field investigations, the comparative advantages and disadvantages of the highest ranked sites, and the basis for selecting the proposed sites.
- (c) Landfill siting restrictions. In addition to the provisions of section 360-1.7(a)(2) of this Part, the following landfill siting restrictions apply.
 - (1) Primary water supply, and principal aquifers:
 - (i) Except in Nassau and Suffolk Counties, and except as provided in subparagraph (ii) of this paragraph, no new landfill and no lateral or vertical expansion of an existing landfill may be constructed over primary water supply aquifers, principal aquifers, within a public water supply stabilized cone of depression area, or within a minimum distance of 100 feet to surface waters that are actively used as sources of municipal supply. Greater separation distances may be required in accordance with subparagraph (iii) of this paragraph.
 - (ii) The commissioner may allow lateral or vertical expansions of landfills, in operation pursuant to a valid Part 360 permit to operate or Order on Consent as of December 31, 1988, that are on principal aguifers, if there is a demonstrated public need for the capacity provided by the expansion that cannot be reasonably provided elsewhere, and that outweighs the potential risk of contamination to the aquifer. Additionally, the landfill expansion must promote the implementation of the State's solid waste management policy set forth in ECL 27-0106 and must be an integral part of any local solid waste management plan that may be in effect for the planning unit (as defined in ECL 27-0107) within which the facility is located; and the expansion must comply with all other requirements of this Part. However, the maximum time period allocated by the commissioner for any such expansion must not allow operation beyond December 31, 1995. In granting any expansion pursuant to this subparagraph, the department must impose specific conditions that are reasonably necessary to assure that the expansion will, to the extent practicable, have no significant adverse impact on public health or safety, welfare, the environment ornatural resources, and such approval contributes to the proper management of solid waste at the earliest possible time.
 - (iii) The required horizontal separation between deposited solid waste, and primary water supply aquifers, principal aquifers, public water supply stabilized cone of depression areas, or surface waters that are actively used as sources of municipal supply must be sufficient (based on the rate and direction of groundwater and surface water flow, landfill

design and requirements for corrective action in the event of failure of the landfill's containment system) to preclude contravention of groundwater standards in the aquifer and surface water standards in waters that are currently used as a source of municipal drinking water supply.

(2) Floodplains. Owners or operators of new landfill units, existing landfill units, and lateral expansions located in 100-year floodplains must demonstrate that the unit will not restrict the flow of the 100-year flood, reduce the temporary water storage capacity of the floodplain, or result in washout of solid waste so as to pose a hazard to human health and the environment.

(3) Aircraft safety.

- (i) A landfill or landfill subcell into which putrescible solid waste is to be disposed must be located no closer than 5,000 feet from any airport runway end used by piston-powered fixed-wing aircraft and no closer than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft.
- (ii) A landfill or landfill subcell into which putrescible solid waste is to be disposed, which is located within five miles of any airport runway end, must not, in the opinion of the Federal Aviation Administration, pose a potential bird or obstruction hazard to aircraft.
- (iii) The permittee of an existing landfill or landfill subcell that is authorized to dispose of putrescible solid waste and that is located less than 10,000 feet from any airport runway end used by turbine-powered fixed- wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft must provide in its permit renewal application documentation that the Federal Aviation Administration believes the landfill or landfill subcell does not pose a bird hazard to aircraft.
- (iv) Landfills containing only nonputrescible solid waste may be located less than 10,000 feet from any airport runway end used by turbine-powered fixed-wing aircraft or less than 5,000 feet from any airport runway end used only by piston-powered fixed-wing aircraft, if in the opinion of the Federal Aviation Administration they will not present a safety hazard to air traffic.
- (v) The final elevation of a new landfill or expansion of an existing landfill must not extend more than 200 feet above the highest elevation of the land surface that existed prior to landfill development, unless the Federal Aviation Administration believes that the proposed fill height in excess of 200 feet will not present a safety hazard to air traffic.
- (4) Unstable areas. A landfill must not be located in unstable areas where inadequate support for the structural components of the landfill exists or where changes in the substrate below or adjacent to the landfill are capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. An application for expansion of an existing landfill must demonstrate that adequate support for the structural components of the landfill exists or can be engineered to support any additional loads that may be generated by continued operation of the facility. For purposes of this paragraph:
 - (i) Unstable area means a location that is susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of the landfill structural components responsible for preventing releases from a landfill. Unstable areas can

include poor foundation conditions, areas susceptible to mass movements, and karst terrains.

- (ii) Structural components means liners, leachate collection systems, final covers, runon/run-off systems, and any other component used in the construction and operation of the landfill that is necessary for protection of human health and the environment.
- (iii) Poor foundation conditions means those areas where features exist which indicate that a natural or human-induced event may result in inadequate foundation support for the structural components of a landfill.
- (iv) Areas susceptible to mass movement means those areas of influence (i.e., areas characterized as having an active or substantial possibility of mass movement) where the movement of earth material at, beneath, or adjacent to the landfill because of natural or human-induced events, results in the downslope transport of soil and rock material by means of gravitational influence. Areas of mass movement include, but are not limited to, landslides, avalanches, debris slides and flows, soil fluctuation, block sliding and rock fall.
- (v) Karst terrains means areas where karst topography, with its characteristic surface and subterranean features, is developed as the result of dissolution of limestone, dolomite, or other soluble rock. Characteristic physiographic features present in karst terrains include, but are not limited to sinkholes, sinking streams, caves, large springs and blind valleys.
- (5) Unmonitorable or unremediable areas. New landfills must not be located in areas where environmental monitoring and site remediation cannot be conducted. Identification of these areas must be based upon ability to sufficiently characterize groundwater and surface water flow to locate upgradient and downgradient directions; ability to place environmental monitoring points which will detect releases from the landfill; ability to characterize and define a release from the landfill and determine what corrective actions may be necessary; and the ability to carry out those corrective actions. Lateral expansions adjacent to existing landfills which are already contaminating groundwater may be allowed by the department if the proposed expansion area can be constructed in a way that demonstrates compliance with the regulations. This may be demonstrated using remedial actions at the existing site resulting in a demonstrated improvement in groundwater quality; and any additional monitoring requirements that the department needs to ensure the integrity of the expansion area, such as leakage detection lysimeters installed beneath the new liner, statistical triggers of groundwater monitoring, tracers, additional monitoring wells surrounding the entire site, and any other monitoring methods required by the department.
- (6) Fault areas. New landfills and lateral expansions shall not be located within 200 feet of a fault that has had displacement in Holocene time unless the owner or operator demonstrates to the department that an alternative setback distance of less than 200 feet will not result in damage to the structural integrity of the landfill unit and will be protective of human health and the environment.
- (7) Seismic impact zones. New landfills and lateral expansions shall not be located in seismic impact zones, unless the owner or operator demonstrates to the department that all permanent containment structures, including liners, leachate collection systems, and surface water control systems, are designed to resist the maximum horizontal acceleration

in lithified earth material for the site pursuant to the provisions of section 360-2.7(b)(7) of this Subpart.

- (8) Federally regulated wetlands. For the purpose of this Subpart, federally regulated wetlands means those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marsh, bogs and similar areas. New landfills and lateral expansions shall not be located in federally regulated wetlands, unless the appropriate permits are obtained from the U.S. Army Corps of Engineers, and unless the owner or operator can make the following demonstrations to the department, to the extent required under federal or State law.
 - (i) The presumption that a practicable alternative to the proposed landfill is available, which does not involve federally regulated wetlands, is clearly rebutted.
 - (ii) The construction and operation of the landfill will not:
 - (a) cause or contribute to violations of any applicable water quality standard;
 - (b) violate any applicable toxic effluent standard or prohibition;
 - (c) jeopardize the continued existence of endangered or threatened species or result in the destruction or adverse modification of a critical habitat; and
 - (d) violate any requirement for the protection of a marine sanctuary.
 - (iii) The landfill will not cause or contribute to significant degradation of federally regulated wetlands. The owner or operator must demonstrate the integrity of the landfill and its ability to protect ecological resources by addressing the following factors:
 - (a) erosion, stability and migration potential of native wetland soils, muds, and deposits used to support the landfill;
 - (b) erosion, stability and migration potential of dredged and fill materials used to support the landfill;
 - (c) the volume and chemical nature of the waste managed in the landfill;
 - (d) impacts from release of the solid waste on fish, wildlife, and other aquatic resources and their habitat;
 - (e) the potential effects on catastrophic release of waste to the federally regulated wetland and the resulting impacts on the environment; and
 - (f) any additional factors, as necessary, to demonstrate that ecological resources in the federally regulated wetland are sufficiently protected.
- (iv) Steps have been taken to attempt to achieve no net loss of federally regulated wetlands to the extent required under federal or State law (as defined by acreage and function) by first avoiding impacts to federally regulated wetlands to the maximum extent practicable, then minimizing unavoidable impacts to the maximum extent practicable, and finally by offsetting remaining unavoidable wetland impacts through all appropriate and practicable compensatory mitigation actions (e.g. restoration of existing degraded wetlands or creation of new wetlands).

(v) Sufficient information is available to make a reasonable determination with respect to these demonstrations.

Privacy Policy | Website Usage and Policies | Website Accessibility | Employment | Contact Us | Website Survey Copyright © 2013 New York State Department of Environmental Conservation