ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES

9

SUMMARY REPORT PRELIMINARY SITE ASSESSMENT

Westhampton Landfill Town of Southampton Suffolk County Site No. 152060

Prepared for:

New York State
Department of
Environmental Conservation
Wolf Road, Albany, New York 12233
Michael Zagata, Commissioner

Division of Hazardous Waste Remediation Michael J. O'Toole, Jr. Director

BY:

PARSONS ENGINEERING SCIENCE, INC.
Liverpool, New York

SEPTEMBER 1995

H:\GRAPHICS\726260\26260CV2.DS4 (PAGE 2)

SUMMARY REPORT

WESTHAMPTON LANDFILL SITE NYSDEC SITE NO. 152060 TOWN OF SOUTHAMPTON SUFFOLK COUNTY, NEW YORK

PRELIMINARY SITE ASSESSMENTS
WORK ASSIGNMENT NO. D002478-29
NEW YORK STATE SUPERFUND STANDBY CONTRACT

Prepared for

DIVISION OF HAZARDOUS WASTE REMEDIATION
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
50 WOLF ROAD
ALBANY, NEW YORK

Prepared by

Parsons Engineering Science, Inc. 290 Elwood Davis Road Liverpool, N.Y. 13088

AUGUST 1995

726260.03

575 /0 September 5, 1995

NOTICE

This Preliminary Site Assessment summary report about the Westhampton Landfill site, located in the Town of Southampton, Suffolk County, New York, was prepared for the New York State Department of Environmental Conservation (NYSDEC) under a Superfund Standby Contract (No. D002478, Work Assignment No. 29). The purpose of this report is to provide information necessary for NYSDEC to classify the site.

To achieve the investigation objectives stated in this report, Parsons Engineering Science, Inc. (Parsons ES) was required to base conclusions on the best information available during this investigation and within the limits prescribed by NYSDEC in the contract agreement.

No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information. Thus, Parsons ES cannot guarantee that the investigation completely defined the degree or extent of any contamination by hazardous or otherwise harmful substances described in the report or, if no such contamination was found, its absolute absence. Professional judgment was exercised in gathering and analyzing the information obtained, and Parsons ES is committed to the usual care, thoroughness, and competence of the engineering profession.

Conclusions in this report are based on limited record reviews, a site inspection, interviews, and limited sampling performed at the site. The health-based regulatory standards discussed in this report may change in the future. Levels of environmental contamination that are "acceptable" by current standards may not be so in the future.

Consistent with the objectives of the PSA investigation, this report includes an assessment of the presence of hazardous waste as defined by Title 6, Part 371 of the New York Codes, Rules, and Regulations (6NYCRR, Part 371) and "significant threat" to public health and environment as defined by 6NYCRR, Part 375. As such, the report does not include an evaluation of the presence of hazardous wastes regulated under federal law, except when federal and New York State regulations are identical. In particular, the presence of hazardous waste having the characteristic of toxicity as determined by the Toxicity Characteristic Leaching Procedure (TCLP) under 40CFR, Part 261.24 is not formally evaluated in this report. The characteristic of toxicity in New York State, at the time of the site investigation, was determined by the Extraction Procedure Toxicity (EP Tox) test under 6NYCRR, Part 371. Therefore, with the concurrence of the NYSDEC, analysis for characteristics of toxicity was conducted using the EP Tox method.

Information contained in this report may not be suitable for any other use without adaptation for the specific purpose intended. Any such reuse of or reliance on the information, assessments, or conclusions in this report without adaptation will be at the sole risk and liability of the party undertaking the reuse.

FINAL

TABLE OF CONTENTS

INTRODUCTION	1
PSA OBJECTIVE	1
BACKGROUND	2
Site Description	2
Site History	
Site Vicinity	
Hyrdrogeologic Setting	6
SCOPE OF WORK	7
SITE CONTAMINATION ASSESSMENT	8
Subsurface Soil Samples	9
Groundwater Samples	
PRESENCE OF HAZARDOUS WASTE	12
PRESENCE OF SIGNIFICANT THREAT	13
RECOMMENDATIONS	13
APPENDIX A - RECORD SEARCH CONTACTS	
APPENDIX B - LABORATORY ANALYTICAL DATA	
APPENDIX C - SELECTED REFERENCES	

FINAL

FIGURES

Figure 1 - Site Location Map	. 14
Figure 2 - Site Plan	. 15
Figure 3 - Former Waste Disposal Areas	. 16
Figure 4 - Cross Section Location Map	. 17
Figure 5 - Cross Section A-A'	. 18
Figure 6 - Cross Section B-B'	. 19
TABLES	
Table 1 - Summary of PSA Tasks	. 20
Table 2 - Sample Summary	. 23
Table 3 - Summary of Septic Waste Analytical Data for Manorville Landfill	. 24
Table 4 - Stratigraphic Summary	. 25
Table 5 - Subsurface Soil Analytical Data	. 26
Table 6 - Groundwater Analytical Data	20

INTRODUCTION

This report presents the results of the preliminary site assessment (PSA) at the Westhampton Landfill site. The PSA was conducted by Parsons Engineering Science, Inc. (Parsons ES) under Work Assignment No. D002478-29 of a Superfund Standby Contract between the New York State Department of Environmental Conservation (NYSDEC) and Parsons ES.

The septic waste treatment basin (SWTB) portion of the Westhampton Landfill site is classified as a 2a site (temporary administrative listing for sites with insufficient information) and is under investigation because of onsite septic waste disposal. Other municipal septic waste treatment facilities in Suffolk County were found to contain hazardous substances resulting from disposal of septic wastes. A 1987 Phase I investigation conducted by EA Science and Technology did not identify on-site disposal of hazardous wastes, but recommended additional site studies.

This summary report consists of this introduction, objectives of the PSA process, site and site vicinity background information, a description of the scope of work for this PSA, an assessment of the presence of hazardous waste and associated significant threat to the environment, and recommendations for additional work. This report also includes an Appendix A presenting a listing of record search contacts, an Appendix B with laboratory analytical data in data base format, and Appendix C with copies of selected references.

PSA OBJECTIVE

The primary objective of the PSA is to determine whether or not the site should be listed on the New York State Registry of Inactive Hazardous Waste Disposal Sites, and, if so to assign the appropriate site classification provided by Title 6, Part 375 of the New York Codes, Rules and Regulations (6NYCRR, Part 375)(NYSDEC, 1992b). Site classification is based on a determination of:

- 1. The documented presence of hazardous waste, as defined by 6NYCRR, Part 371 (NYSDEC, 1995); and
- 2. The presence of significant threat to the environment posed by on-site hazardous waste, as defined by 6NYCRR, Part 375.

Recommendations for site classification are based on classifications provided by 6NYCRR, Part 375, and are as follows:

- Class 1 Causes or presents an imminent danger of causing irreversible or irreparable damage to the environment.
- Class 2 Significant threat to the environment action required;
- Class 3 Does not present a significant threat to the environment action may be deferred;

- Class 4 Site is properly closed requires continued management; or
- Class 5 Site is properly closed, no evidence of present or potential adverse impact no further action is required.

Listed sites may be recommended for delisting if site data do not establish the presence, or indicate past disposal, of hazardous waste on-site. In the event that insufficient data are obtained for the determination of the presence or threat posed by hazardous waste at the site, recommendations for further work are made to obtain sufficient data. An administrative classification of 2a may be used for temporarily listing these sites.

BACKGROUND

Site Description

The Westhampton Landfill site (NYSDEC Site No. 152060) is an approximately 28-acre parcel located off of Old Country Road, Town of Southampton, Suffolk County, New York (Figure 1). The Town of Southampton owns and operates the site as a transfer station. Other site uses include limited mining (sand), yard waste composting, storage of sand and road salt, and as a firing range for the Town of Southampton Police Department (Parsons ES, 1994a). The site is rectangular in shape, and oriented in a north-south direction (Figure 2). Household waste transfer operations occur in the south portion of the site. Yard waste composting, storage of sand and road salt, and limited sand mining take place in the central portion of the site. The Town Police firing range is located adjacent to the north end of the site. The site is bordered by Old Country Road to the south, woods to the west and east, and woods north of the firing range. An intermittent stream also borders the west side of the site. The Village of Westhampton is located approximately one mile northwest of the site.

Site access to the transfer station portion of the site is restricted by a fence that is locked when the site is closed. The topography of the site is relatively flat, with a slight slope to the south in the southern portion and a slight slope to the north in the northern section of the site. Site elevation is approximately 45 to 50 feet above mean sea level. An inactive sand excavation pit exists along the east-central portion of the site and several soil mounds are located along the west-central portion of the site. The south portion of the site has paved roads and landscaped grass. The north portion of the site is sandy with spotty vegetation growth and a number of sand and soil mounds scattered throughout. The firing range consists of a finished concrete structure, an open-sided shelter area, and a U-shaped sand pile buffer.

Site History

Background documents indicate the site was "officially" used for landfilling only in 1968, with septic wastes disposed into on-site SWTBs from 1968 until 1985. The solid

wastes included household trash and landscaping debris. However ¹, Mr. Gilbride (Town of Southampton Department of Sanitation Supervisor) stated (Parsons ES, 1995):

- the Westhampton Landfill site operated as a landfill and septic waste disposal area from 1970 to 1974, and was initially operated and used by the Highway Department;
- solid wastes were disposed in a sand pit where the transfer station is currently located, and septic wastes were disposed in SWTBs located in the northwest corner of the site;
- the Westhampton Landfill site was closed from 1974 to 1978 with wastes brought to the Quogue site during this time;
- the Quogue Landfill was closed in 1978; and
- the Westhampton Landfill site was reactivated to receive brush and septic wastes from 1978 until 1985, with solid wastes brought to the North Sea Landfill.

In general, Town of Southampton wastes generated east of the Shinnecock Canal (Shinnecock Canal bisects the Town in a north-south direction) were disposed at the North Sea Landfill, and wastes generated west of the canal were disposed at several locations west of the canal (Greenman-Pedersen, no date). These locations included the Westhampton, Quogue, Hampton Bays, Eastport, and Sag Harbor Landfills, suggesting wastes disposed on-site were generated from western portions of the Town of Southampton.

Septic wastes were disposed in eight SWTBs located in the northwest portion of the site (NUS, 1983). No landfill records were located identifying specific wastes disposed on-site. Sludges were periodically removed from the pits and spread across the site. Although no background information was located detailing septic waste treatment operations, Parsons ES assumes operations were similar to operations at the nearby Manorville Landfill site. The reasonableness of this assumption is supported by:

- the two facilities being in close proximity to each other,
- the two facilities handled septic wastes in approximately the same time period, and
- the Manorville operation appears to have been common practice on Long Island because of the permeable subsurface conditions.

Background information for the Manorville site indicates septic wastes were comprised of domestic sewage (household and commercial/industrial sanitary waste removed directly from subsurface sewage disposal systems) and sewage sludge from

In several cases information was contradictory or unclear as to which location was being referred to (there were two landfills that were referred to as the Westhampton Landfill; the subject site and one located in Quogue).

Town sanitary waste treatment facilities (Dvirka and Bartilucci, 1981). The Manorville treatment system included settling basins, where solids were settled-out; infiltration basins, where liquids decanted from the settling basins would be allowed to drain to the subsurface; and drying basins where solids from the settling basins were placed for final dewatering prior to disposal as either fill material or landfill cover material. Analytical data collected from septic waste streams (i.e., SWTB sample, cesspool truck sample, and municipal sludge sample) at the Manorville site showed elevated concentrations of metals and low concentrations of organic compounds (Table 3) (Dvirka and Bartilucci, 1981). The Dvirka and Bartilucci report attributed the presence of these compounds to possible mixing of industrial discharge in wastes delivered to the site, as well as household cesspool additives and solvents.

Thirty 55-gallon drums of traffic paint, including some empty ones, were noted as being stored on-site during a 1982 site inspection by the Suffolk County Department of Health Services (SCDHS)(SCDHS, 1982a). Twenty-five drums were observed during a 1983 site inspection (NUS, 1983). Although no records were identified indicating final deposition of the drums, an anonymous source stated that the drums of traffic paint stored on-site in 1982 were buried at shallow depths on-site (Parsons ES, 1994). The drums were reportedly buried in proximity to sample location SB0408/GW04. Scanning of the area with a metal detector during the 1994 field investigation effort by Parsons ES indicated metal objects were present in the subsurface. investigation was conducted by the NYSDEC, on March 24, 1995, to address the potential presence of buried drums. The follow-up effort included scanning of the area around sample location SB0408/GW04 with a metal detector and limited excavation (by use of a hand shovel) at locations were the metal detector indicated metal objects were buried. Although metal debris was identified at depths of 1 to 3 feet, no drums were found. A steel probe rod inserted to depths of 3 to 5 feet below the ground surface was used to supplement the excavation effort. The fact that no refusals were noted during use of the probe rods further confirms that buried drums are not present.

NUS Corporation, under contract to the USEPA, conducted an inspection of the site in May 1983 (EA, 1987). Although hazardous waste was not identified on-site, NUS recommended the collection of samples from the SWTBs. No SWTB sample data were identified in the background information on the site. Background information indicates that methylene chloride was a contaminant of concern for the site because of elevated concentrations detected at the East Hampton Scavenger Pit site (SCDHS, 1984).

EA Science and Technology, under contract to the NYSDEC, conducted a Phase I site inspection in January 1986. HNU readings from directly above the SWTBs (after agitating pit contents) ranged from 7 to 13 parts per million (ppm). SWTB closure activities were in progress at the time of the EA Science and Technology site inspection. No samples were collected from the site.

An application for a Solid Waste Management Facility Permit at the Westhampton site was filed by the Town of Southampton in 1989 (McLean Associates, 1989).

Site Vicinity

The vicinity of the Westhampton Landfill site is a mix of residential, commercial/industrial, and undeveloped areas. Long Island Railroad tracks and recently constructed residential developments are located further south of the site, across Old Country Road. A single residence, the former Bomarc Air Force Base, Suffolk County Sheriff facilities, and a race track are located further west of the site. With the exception of the Town firing range, areas north and east of the site are primarily undeveloped, with residential areas further out. Suffolk County Airport (also a former Air Force Base) is located approximately 1.5 miles east of the site.

The topography directly west of the site slopes approximately 2 percent west-southwest (in the vicinity of the intermittent stream bed). The regional topography is relatively flat with a gradual slope to the south. Elevations in the vicinity of the site range from 40 to 50 feet above mean sea level.

A joint investigation by the SCDHS and the USEPA, in the mid-1980s, was conducted in the vicinity of Jagger Lane, located approximately 4,000 feet southwest of the Westhampton Landfill site (SCDHS, 1986; USEPA, 1985[?]). The investigation was conducted in response to the detection of volatile organic compounds in private wells. Monitoring wells installed between Old Country Road and South Country Road identified a contaminant plume flowing in a north to south direction and approximately 700 feet wide. Highest concentrations were found primarily at depths of 50 to 70 feet below ground surface. Maximum concentrations included trichloroethylene at 3,300 parts per billion (ppb); tetrachloroethylene at 180 ppb; trichloroethane at 35 ppb; 1,2dichloroethane at 43 ppb; 1,2-dichloropropane at 57 ppb; and cis-dichloroethylene at 420 ppb (SCDHS, 1986). Although a source for the contamination was not identified, the data indicates the plume originates northeast of the intermittent stream west of Jagger Lane. The Jagger Lane study concluded that the Westhampton Landfill site did not appear to be a potential source for the groundwater contamination. Twelve wells installed along the rail road tracks (south of the Westhampton Landfill) as part of the Jagger Lane study, had only low levels of chloroform detected in groundwater samples. Public water is reportedly now supplied to residences in the vicinity of Jagger Lane, south (downgradient) of the Westhampton Landfill site.

Nearest municipal wells are approximately 1,000 feet west of the site. Well depths range from 70 to 161 feet and draw water from the Upper Glacial aquifer (EA, 1987). The nearest perennial surface water body is a tributary to Beaverdam Pond located approximately 1,600 feet east (cross-gradient) of the site.

The nearest NYS-regulated wetland is E-4 located along a tributary to Beaverdam Pond, approximately 1,600 feet east of the site (NYSDEC, 1991). Two endangered vertebrates, three threatened plants, and one rare/unusual habitat were identified within three miles of the Westhampton Landfill site (NYSDEC, 1994).

Hyrdrogeologic Setting

Five major hydrogeologic units are present below Long Island: the Upper Glacial aquifer, the Gardiners Clay, the Magothy aquifer, the Raritan clay and the Lloyd aquifer. The properties (thicknesses, hydraulic conductivity, etc.) of these hydrogeologic units vary across Long Island. In the following discussion, the regional properties of the various units refer to reported average values within the Westhampton landfill vicinity.

The Westhampton landfill is located on a glacial-outwash plain, approximately 3.5 miles south of the Ronkonkoma terminal moraine. The outwash deposits are approximately 130 feet thick (McClymonds and Franke, 1972) and consist of brown and gray sand and gravel (Scorca, 1990). Site surficial soils are described as Carver and Plymoth sands (Warner et. al., 1975). Plymoth loamy sands, and Riverhead sands are found adjacent to the landfill. Carver and Plymoth sands are described as "deep, excessively drained, coarse-textured soils ... found on the side slopes of drainage channels on the outwash plains". Plymoth soils are described as "deep, excessively drained, coarse-textured soils that formed a mantle of loamy sand or sand over thick layers of stratified coarse sand and gravel". The description of Riverhead soils is similar, "deep, well-drained moderately coarse textured soils that formed a mantle of sandy loam or fine sandy loam over thick layers of coarse sand and gravel".

The lower 100 feet of the outwash deposits are saturated and constitute the Upper Glacial aquifer. The average hydraulic conductivity of the Upper Glacial aquifer is reported as approximately 270 ft/day, with a horizontal-to-vertical anisotropy ratio of 10:1 (McClymonds and Franke, 1972). Regional groundwater flow is generally to the south, towards Moriches Bay and the Atlantic Ocean. Based on groundwater flow data presented in the Jagger Lane study (south of the site) and a 1983 study conducted at the Suffolk County Airport (east of the site), groundwater flow beneath the site is assumed to be primarily to the south. The estimated depth-to groundwater is 30 to 35 feet and the intermittent stream (losing) west of the site indicates the southwest sloping topography in the vicinity of the site has minimal, if any, impact on local groundwater flow direction. Regional groundwater flow rates are reported as ranging between 1.0 to 1.7 ft/day (Scorca, 1990).

The Magothy aquifer underlies the Upper Glacial aquifer at a depth of about 130 feet below ground level. The Magothy aquifer consists of greater than 900 feet of fine to medium sand and silty sand containing layers of clay and sandy clay. The average hydraulic conductivity of the Magothy aquifer is reported as 44 ft/day (McClymonds and Franke, 1972).

Regionally, the Upper Glacial aquifer is separated from the Magothy aquifer by a 10- to 20-foot thick confining unit, the Gardiners clay. The northern limit of the Gardiners clay is several hundred feet north of the site (Jensen and Soren, 1974). Therefore, at the Westhampton landfill, the Upper Glacial aquifer is not in hydraulic connection with the underlying Magothy aquifer.

The Magothy aquifer is underlain by the Raritan Clay, a 200-foot thick confining unit. The Raritan Clay separates the Magothy aquifer from the Lloyd aquifer. The Lloyd aquifer consists of 400 feet of fine to coarse sand and gravel. Nearly impermeable metamorphic bedrock underlies the Lloyd aquifer.

SCOPE OF WORK

A summary of the scope of work for the Westhampton Landfill PSA is presented in Table 1. Table 2 presents a summary of samples collected during the PSA investigation. The scope of this PSA investigation was limited to investigation of the former SWTBs. Specifically, the landfill portion of the site and the adjacent firing range were not addressed as part of this investigation.

Field investigation activities consisted of the collection of subsurface soil samples and groundwater samples. The environmental samples were collected by Zebra Environmental Corporation of Cedarhurst, New York using the Geoprobe TM system. The Geoprobe TM is a hydraulically-powered probe capable of exerting 15,000 pounds of down-pressure. The pressure is used to drive 1-inch outside diameter steel rods into the subsurface to desired sample depths. This technique allows subsurface sampling without drilling and installation of wells. The soil and groundwater sampling units of the probes remain sealed until the desired sampling depths are reached.

SWTB sample locations were selected based on background information (aerial photographs and historic site figures) and site conditions (lush vegetation growth surrounded by sandy areas void of vegetation). Figure 3 shows approximate areas where background data indicates SWTBs were located. Continuous samples were initially collected in an attempt to identify sludge layers remaining in the SWTBs. In general, up to three attempts (relocations) were made at each sample location in an attempt to identify lagoon sludge layers, if any. The lagoon subsurface soil samples were either collected from what appeared to be sludge or from native soils just below the fill zones of what was believed to be the former SWTB pit locations. As stated in the Project Work Plan, if sludge was not encountered, it was assumed that SWTB sludges had been removed from the lagoons prior to closure. A total of 31 subsurface soil samples were collected.

Seven groundwater samples and seven subsurface soil samples were submitted for laboratory analysis. All of the subsurface soil samples were analyzed for Target Compound List (TCL) organics, Target Analyte List (TAL) metals, and cyanide. Subsurface soil samples SB0108 through SB0603 were also analyzed for toxic characteristics using the EP Tox testing method. Groundwater samples were analyzed for TCL organics (volatile organic compounds [VOCs], semivolatile organic compounds [SVOCs], pesticides, and polychlorinated biphenyls [PCBs]), TAL metals, and cyanide. Environmental sample analyses were conducted by Energy and Environmental Engineering, Inc. (E³I). All analyses were performed in accordance with NYSDEC Analytical Service Protocols (ASP) (September 1993) and the QAPP.

As directed by the NYSDEC, data validation was not conducted on analytical results for the Westhampton Landfill site. However, Parsons ES conducted sample tracking and contract compliance screening on all samples, and all support data necessary for conducting a full data validation were collected. Parsons ES conducted data validation on the Manorville Landfill (similar site assigned under this work assignment) data following guidelines in the most recent USEPA documents adapted to the QA/QC criteria in the NYSDEC ASP and in accordance with the QAPP. The Manorville data validation was performed by trained and experienced data validators who meet the NYSDEC approval criteria. The use of nonvalidated data for the Westhampton Landfill site is assumed to be adequate based on satisfactory results from validation of the Manorville Landfill data, because all analyses were conducted by the same laboratory, E³I, within an approximately 30-day period. It is also assumed that within this period all quality assurance/quality control protocols were followed in a similar manner and with similar results for the Manorville site.

Sample locations were surveyed by Bosk Associates, a licensed surveyor. The surveyor measured the locations and elevations for all soil boring and groundwater sample locations.

SITE CONTAMINATION ASSESSMENT

The following subsections summarize the results of the field investigation effort. Whenever possible, samples were collected upgradient of the site to establish ambient or background conditions. These levels were compared to those found on-site, downstream, or downgradient of the site. Concentrations downstream or downgradient of the site in excess of three times the upgradient or upstream concentrations may indicate a release from an on-site contaminant source. This criterion has generally been recognized by the USEPA and the NYSDEC as constituting a "significantly higher" concentration for purposes of determining an observed release for a particular pathway.

Downgradient or downstream results may also be used to determine the threat to the environment posed by hazardous waste on-site. Extraction Procedure Toxicity (EP Tox) testing was also conducted where deemed appropriate to address visible, or otherwise suspected, on-site contamination for confirmation of on-site hazardous waste. Where appropriate aqueous analytical results have been compared to applicable NYSDEC ambient water quality standards and guidance values. Inorganic results for soil and sediment samples have been compared to published naturally-occurring ranges in New York State. VOC, SVOC, and pesticide/PCB results for soil samples have been compared to USEPA human health-based levels for carcinogens and systemic toxicants (NYSDEC, 1992a).

Assessment of analytical results included reviewing of sample holding times and evaluating laboratory blank samples. In most cases, concentrations in field samples which were less than five times the blank sample concentrations were considered to be attributable to laboratory contamination and were identified as such. For common laboratory contaminants (methylene chloride, acetone, toluene, 2-butanone, and

common phthalate esters) the criterion used was ten times the blank sample concentrations.

Analytical results are summarized in Tables 5 and 6. Only those compounds that were detected are presented in the tables. Complete laboratory analytical results can be found in Appendix B.

Subsurface Soil Samples

The subsurface soil samples indicate site soils consist primarily of fill and sand (outwash deposits) as presented in Table 4. A cross-section location map and cross section diagrams are presented in Figures 4 through 6. The fill was generally described as dark brown to black, fine to coarse sand and fine gravel, containing debris such as wood, paper, plastic and metal. The sand consisted of light brown fine to coarse sand with trace of silt, in agreement with the published descriptions of the outwash deposits.

Seven subsurface soil samples were collected on-site and submitted for laboratory analysis. Sample location SB0108 was selected based on review of a 1984 aerial photograph. Shallow soils at SB0108 were described as grey and black with a dieseltype odor. Several attempts were required because of refusals by wood and other debris. The soil sample was collected from the fill material.

Sample locations SB0208, SB0309, and SB0408 were based on the 1984 aerial photograph, previous site figures, and lack of vegetation. A sludge-like layer was identified in SB0208 at between 4.2 and 4.5 feet below ground surface. No visually apparent sludge layers were identified at sample locations SB0309 or SB0408. However, fill material was identified to 9 and 7.5 feet below ground surface, respectively. Samples were collected from the transition zone between fill and native soil.

Samples SB0503 and SB0603 were collected from soil piles suspected of being weathered sludges excavated from the SWTBs prior to closure activities. Sample SB0707 was collected as a background sample. Native soil was encountered for the full depth of the sample (12 feet).

All of the subsurface soil samples were analyzed for TCL organics, TAL metals, and cyanide. Soil samples SB0108 through SB0603 were also analyzed for toxic characteristics using the EP Tox method. Analytical results are summarized in Table 5.

Volatile Organic Compounds

Five VOCs were detected in the subsurface soil samples. The presence of acetone, 2-butanone, and methylene chloride are attributed to laboratory contamination. Low levels of toluene and total xylenes were detected at estimated concentrations. Toluene was detected at 2 μ g/kg from soil samples SB0108 and SB0503. Total xylenes were detected in samples SB0108, SB0208, SB1208, SB0309, SB0408. and SB0503 at concentrations ranging from 0.8 μ g/kg to 5 μ g/kg. The presence of both compounds may be attributable to past septic waste disposal and/or Highway Department site activities.

Semi-Volatile Organic Compounds

Eighteen SVOCs were detected in one or more of the subsurface soil samples, consisting of PAHs, phthalates, and one amine. With the exception of three SVOC compounds detected in SB0603, all of the detected concentrations were estimated values below the quantitation limit. All of the concentrations were below the USEPA Health-Based Guidance values.

Thirteen of the SVOCs (including most of the PAHs detected) were only detected in sample SB0603. The presence of Di-n-butyl phthalate and Bis(2-ethylhexyl)phthalate was attributed to laboratory contamination. Butyl benzyl phthalate was detected in samples SB0108 at 240,000 μ g/kg, SB0208 at 57 μ g/kg, SB0503 at 31 μ g/kg, and SB0603 at 1,600 μ g/kg. 4-Chloroaniline was detected at 69 μ g/kg in sample SB0208. Flouranthene was detected at 37 μ g/kg in sample SB0408. Pyrene was detected in samples SB0408 at 110 μ g/kg, SB0503 at 26 μ g/kg, and SB0603 at 510 μ g/kg. All 18 of the SVOCs detected were detected in sample SB0603 with concentrations ranging from 26 μ g/kg to 1,600 μ g/kg

The lack of detected compounds in the upgradient sample indicates past site activities are responsible for the SVOCs detected on-site. The presence of PAHs may be attributable to on-site burning. The presence of phthalates and the 4-chloroaniline may be attributable to on-site disposal of septic wastes from industrial sources.

Pesticides

Fourteen pesticides were detected at low concentrations in the subsurface samples. None of the detected concentrations exceeded the USEPA health-based values. A majority of the compounds detected were identified in the two shallow soil samples collected from the suspected sludge piles (SB0503 and SB0603) and the background sample (SB0707). Chlordane was the only pesticide detected in all of the soil samples, with concentrations ranging from 0.89 μ g/kg to 38 μ g/kg. Potential sources for the pesticides identified include direct use on-site for insect control, household septic wastes disposed on-site, and commercial/industrial septic waste disposed on-site.

EP Tox test results indicate pesticides are significantly below the regulatory level for classification as a hazardous waste as defined by 6NYCRR, Part 371.

Polychlorinated Biphenyls

No PCBs were detected in the subsurface samples.

Inorganics

Nineteen metals were detected in the subsurface soil samples. Only the concentration of mercury in one of the suspected sludge pile samples and cyanide in sample SB1208 exceeded the published naturally occurring ranges. However, with the exception of aluminum, cadmium, cobalt, cyanide, and selenium, use of the "three times the background" rule indicates on-site concentrations of all metals are a result of past site activities. A majority of maximum concentrations were detected in sample SB0108. Potential sources for the elevated inorganic concentrations include Highway

Department activities (i.e., road salt for cyanide), household septic waste disposal, and industrial/commercial septic waste disposal. EP Tox test results indicate metals are significantly below the regulatory level for classification as a hazardous waste as defined by 6NYCRR, Part 371.

Groundwater Samples

Seven shallow groundwater samples were collected from on-site locations. Samples GW01 through GW04 were collected from adjacent to corresponding samples SB0108 through SB0408 to assess direct impacts of septic wastes to groundwater. Samples GW05 and GW06 were collected from downgradient locations along the Old Country Road fence line to assess potential off-site impacts. Sample GW07 was collected from an upgradient location adjacent to SB0707. Groundwater samples were analyzed for TCL organics, TAL metals, and cyanide. Analytical results are summarized in Table 6.

Volatile Organic Compounds

Four VOCs were detected at concentrations below NYS Class GA standards and guidance values in the groundwater samples. The presence of methylene chloride in samples GW02 and GW07, 1 μ g/l and 2 μ g/l respectively, is likely attributable to laboratory contamination. Methylene chloride was detected in the wash blank sample at 40 μ g/l. The presence of acetone in sample GW05, at 5 μ g/l is most likely attributable to laboratory contamination. Acetone was detected in the laboratory blank for soils. Although detected in GW04 and GW07, at 1 μ g/l, and not detected in laboratory blanks, chloroform is also a common laboratory contaminant. The presence of chlorobenzene in sample GW13, duplicate for sample GW03, may be attributable to solvents and septic system treatment chemicals in septic wastes. One unidentified tentatively identified compound (TIC) was detected at 8 μ g/l in sample GW01.

Semi-Volatile Organic Compounds

Three SVOCs were detected at concentrations below NYS Class GA standards and guidance values in the groundwater samples. 1,2-Dichlorobenzene and 1,4-dichlorobenzene were detected at 1 μ g/l and 0.8 μ g/l in sample GW03 and its duplicate, GW13. The presence of dichlorobenzene compounds may be attributable to solvents and septic system treatment chemicals in septic wastes. Dichlorobenzene compounds were not detected in subsurface soil samples. Up to 13 SVOC TICs were detected in each of the groundwater samples.

Bis(2-ethylhexyl)phthalate was detected in samples GW01, GW03, GW04, GW05, GW06, and GW07 at concentrations ranging from 1 μ g/l to 12 μ g/l. The compound is a common laboratory contaminant, and was detected as such during site subsurface soil sample analysis.

Pesticides

Endosulfan sulfate was the only pesticide detected in the groundwater samples (sample GW01). Endosulfan sulfate was also detected in subsurface soil sample

SB0603, in close proximity to sample location GW01. The concentration of 0.087 μ g/l is below the NYS Class GA standard.

Polychlorinated Biphenyls

No PCBs were detected in the groundwater samples.

Inorganics

Seventeen metals were detected in the groundwater samples. The concentrations of chromium, iron, lead, manganese, sodium, and zinc exceeded the Class GA groundwater standards in one or more samples. Maximum concentrations of iron, lead, and manganese, concentrations of 41,100 μ g/l, 223 μ g/l, and 645 μ g/l respectively, were detected in the upgradient groundwater sample GW07. The elevated lead concentration (greater than three times the concentrations of downgradient results) may be partially attributable to the firing range located further upgradient. The maximum chromium and zinc concentrations, 168 μ g/l and 1,110 μ g/l were detected in downgradient sample GW06. The concentration of zinc was greater than three times the upgradient concentration, indicating a possible release from the site. The elevated sodium concentration in sample GW06 may be attributable to road salt storage on-site.

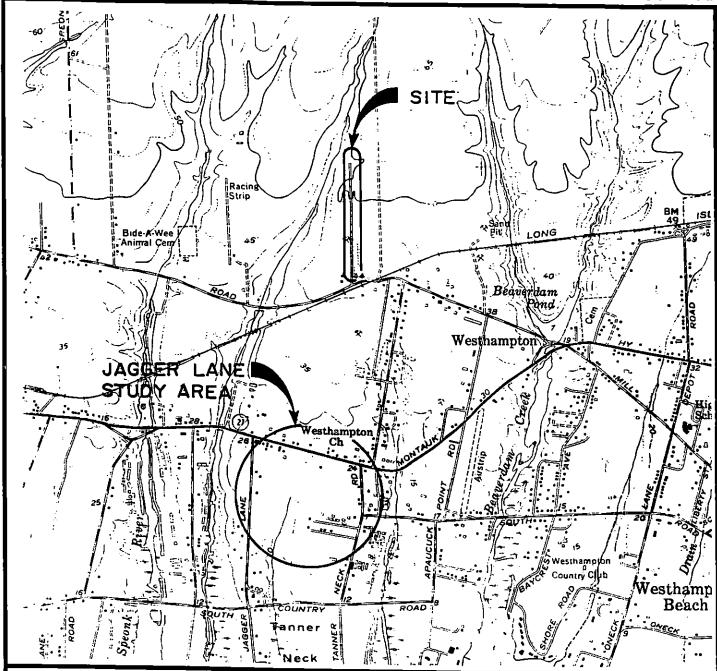
PRESENCE OF HAZARDOUS WASTE

6NYCRR, Part 371 regulations establish two categories of hazardous wastes: (1) listed hazardous wastes, and (2) characteristic hazardous wastes. Hazardous wastes are judged to have a substantial hazard or significant toxicity associated with them. Listed hazardous wastes are assigned USEPA hazardous waste numbers with the following prefixes: "F" (non-specific sources), "K" (specific sources), "P" (discarded commercial chemical products which are "acute hazardous wastes"), "U" (discarded commercial chemical products which are "toxic hazardous wastes", or "B" (PCB wastes containing at least 50 milligrams of PCBs per kilogram of dry weight solid or milligrams of PCBs per liter of liquid). Characteristic hazardous wastes are identified using analytical methods specified in 6NYCRR, Part 371, and are assigned "D" prefixes.

Background information and analytical data indicate industrial waste discharges may have been included with septic wastes disposed on-site. However, the presence of listed compounds on-site does not establish the presence of hazardous waste at the site because: (1) they cannot be directly attributed to specific or non-specific sources as required by 6NYCRR, Part 371.4(b) and (c), and (2) they cannot be directly attributed to the disposal of a "commercial chemical product, manufacturing chemical intermediates, or off-specification commercial chemical products" as required by 6NYCRR, Part 371.4(d). In addition, EP Tox concentrations of suspected SWTB sludges (or underlying soils) were significantly below regulatory thresholds for classification of hazardous waste.

Parsons ES anticipates that further work is unlikely to establish the presence of hazardous waste in regards to septic waste treatment activities at the Westhampton

Landfill site because the PSA investigation has primarily addressed areas identified as suspected hazardous waste sources in the background information.


PRESENCE OF SIGNIFICANT THREAT

The presence of a "significant threat" to public health or the environment, as defined by 6NYCRR, Part 375, may be established by analytical data showing that hazardous substances: (1) have been released to environmental media from hazardous waste disposed at the site, and (2) are present in concentrations exceeding accepted health or environmental standards or guidance values. As discussed previously, the presence of hazardous waste at the site was not established. Therefore, available analytical data cannot establish a significant threat to the environment, as defined by 6NYCRR, Part 375. However, the elevated groundwater concentration of lead from sample location GW07 raises concern for a previously unidentified source of lead contamination upgradient of the SWTB locations. Background information indicates that firing ranges can be a significant source for lead contamination (ASTDR, 1992).

RECOMMENDATIONS

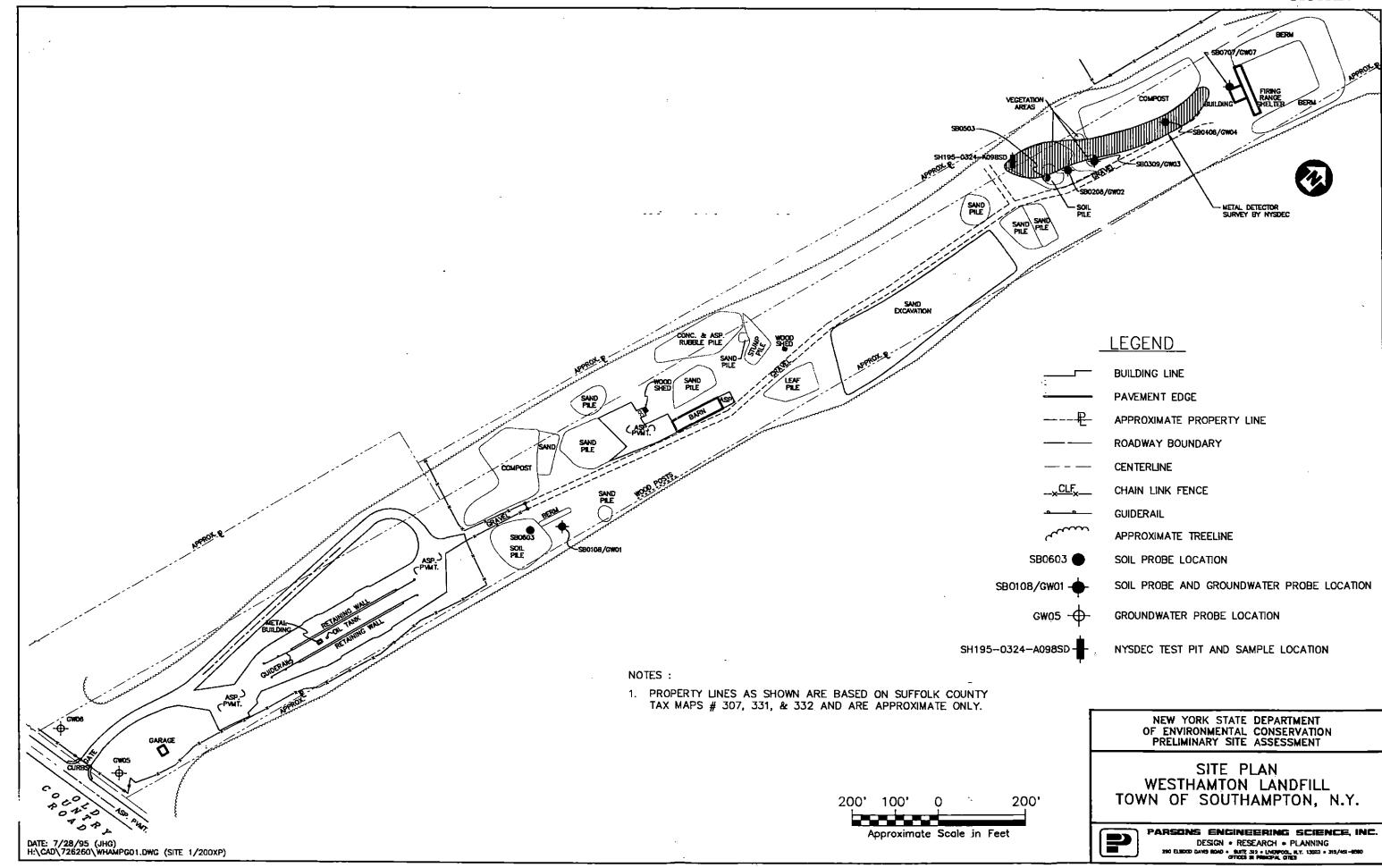
Although analytical data collected during this investigation indicate that contamination from septic waste disposed on-site may warrant concern because of exceedances of groundwater standards, the background and analytical data do not establish the presence of hazardous waste as defined by 6NYCRR, Part 371, in regards to on-site septic waste treatment activities. Therefore, Parsons ES recommends the Westhampton Landfill site be removed from the listing of Inactive Hazardous Waste Sites.

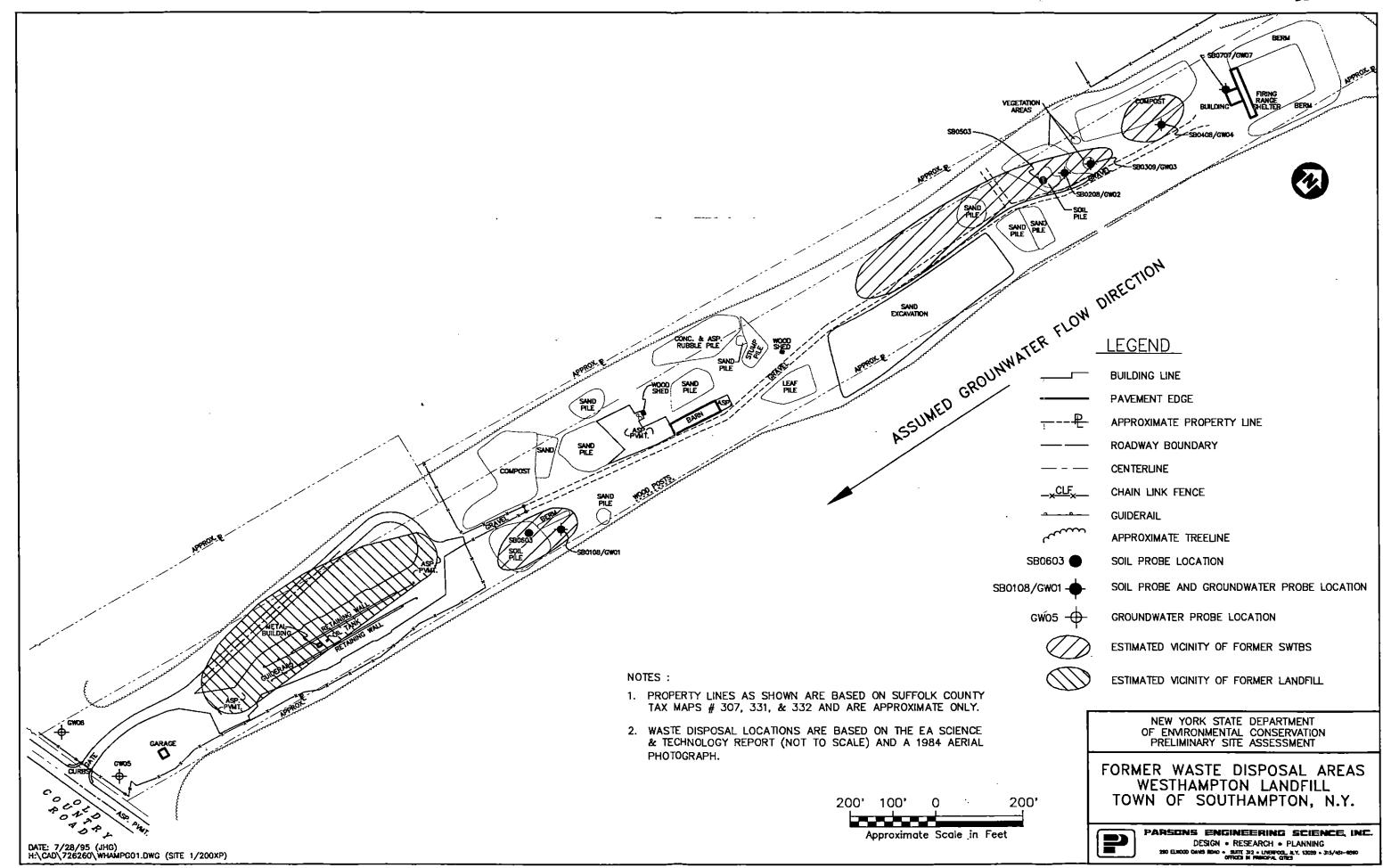
SOURCE: U.S.G.S. 7.5 MINUTE SERIES TOPOGRAPHIC MAP; EASTPORT, N.Y. (1956).

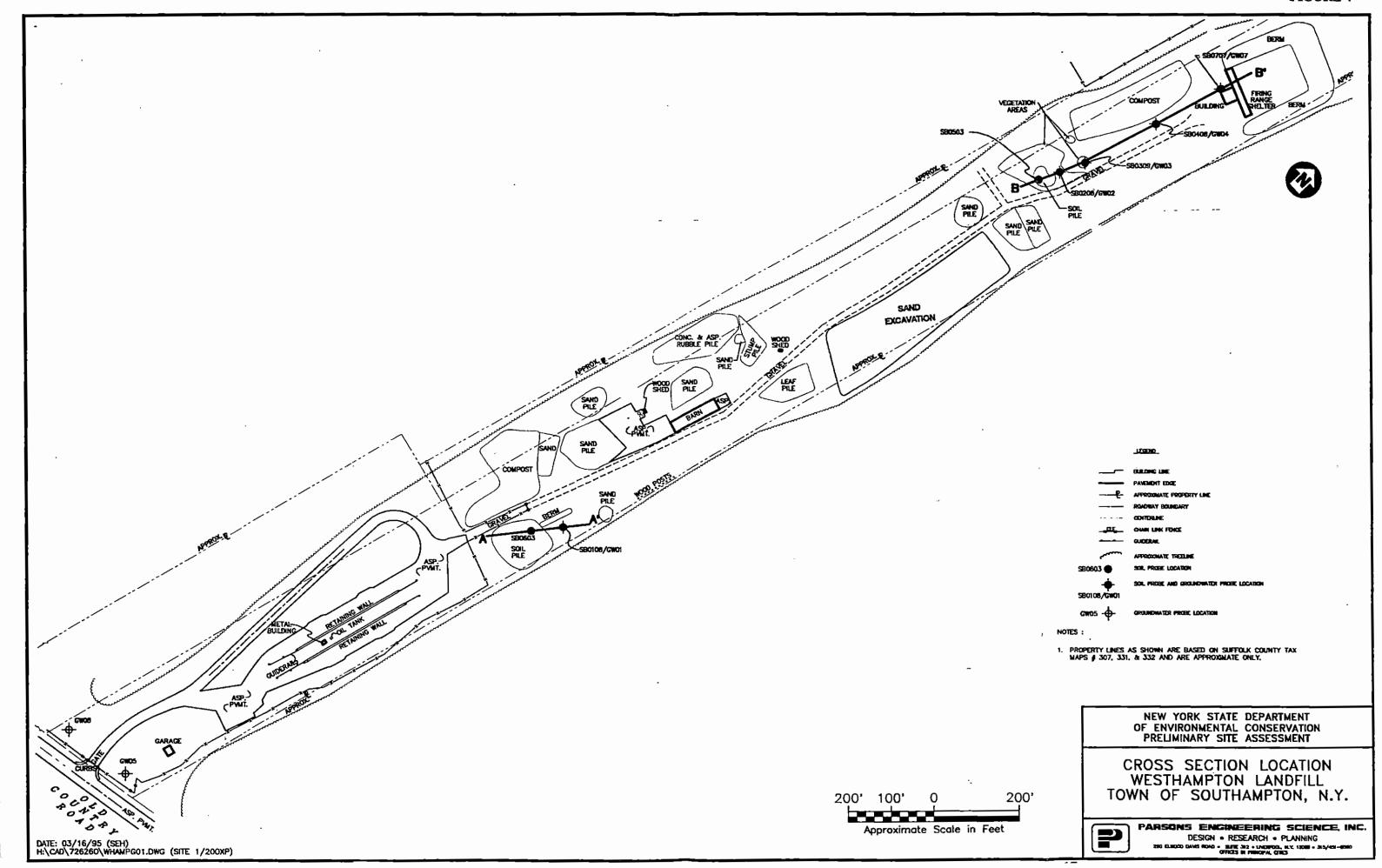
N

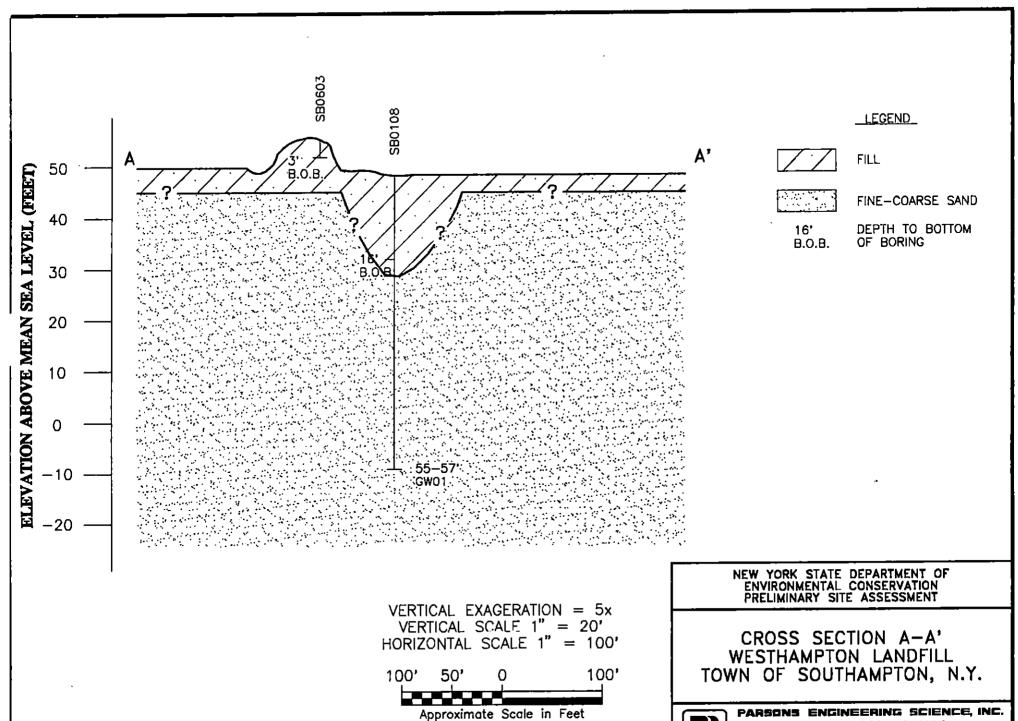
LATITUDE: 40° 50' 00" LONGITUDE: 72° 40' 35°

APPROXIMATE SCALE

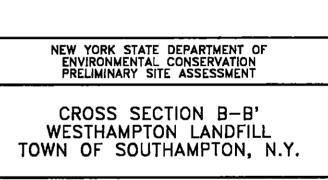

0 2000 4000 FT.


PARSONS ENGINEERING SCIENCE, INC.

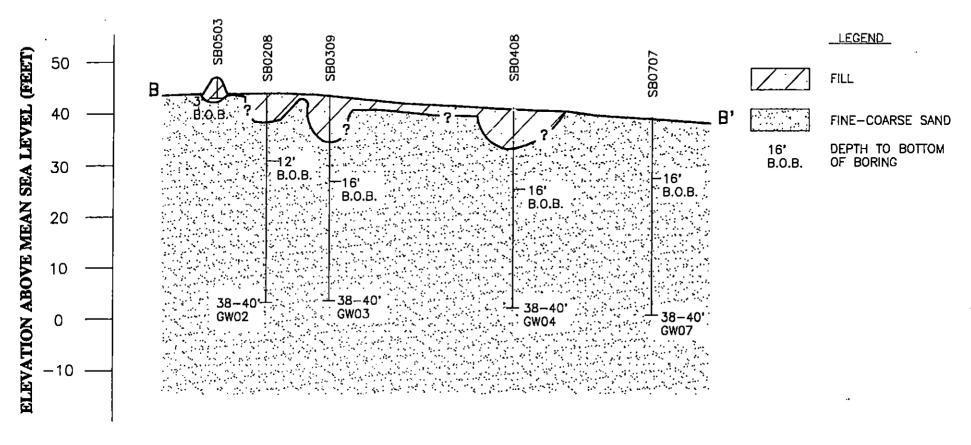

2000FT.


SITE LOCATION MAP

WESTHAMPTON LANDFILL TOWN OF SOUTHAMPTON NEW YORK



DATE: 03/15/95 (SEH) H:\CAD\726260\WHAMPG03.DWG FIGURE 5


290 ELNOCO DAMS ROAD . SUITE 312 . LIVERPOOL, N.Y. 13088 . 315/451-9660 OFFICES IN PRINCIPAL CITES

PARSONS ENGINEERING SCIENCE, INC.

DESIGN • RESEARCH • PLANNING

200 ELMOOD DAVIS ROAD • SUITE 372 • UNERFOOD, R.Y. 13056 • 316/461-9500

VERTICAL EXAGERATION = 5x VERTICAL SCALE 1" = 20' HORIZONTAL SCALE 1" = 100'

HORIZONTAL SCALE 1" = 100'
100' 50' 0 100'

Approximate Scale in Feet

DATE: 03/15/95 (SEH) H:\CAD\728280\WHAMPG02.DWG FIGURE 6

TABLE 1

SUMMARY OF PSA TASKS WESTHAMPTON LANDFILL SUFFOLK COUNTY, NEW YORK

Task	Description of Task				
Project Work Plan					
	Project work plan and budget sheets were prepared and submitted to NYSDEC on October 25, 1994 (revised budget sheets submitted January 13, 1995). Modifications were made to the NYSDEC site work plan based on discussions between Parsons ES and the NYSDEC during the initial site inspection.				
Record Review	Available state and local DEC and DOH, USEPA, Suffolk County, and Town of Southampton files were reviewed as a supplement to the June 1987 Phase I report.				
Site Inspection	A site inspection was conducted by Tom Abrams (Parsons ES), Jeff Poulson (Parsons ES), Sri Maddineni (NYSDEC-Albany), and Bob Stewart (NYSDEC-Region 1).				
H&S Plan/QAPP	The Health and Safety Plan and Quality Assurance Project Plan were submitted to NYSDEC on October 26, 1994.				

TABLE 1

SUMMARY OF PSA TASKS WESTHAMPTON LANDFILL SUFFOLK COUNTY, NEW YORK

Task	Description of Task				
Subsurface Soil Samples	Seven subsurface soil samples were collected using the Geoprobe TM sampling method, including four subsurface soil samples from suspected former SWTB locations; one background subsurface soil sample adjacent to the firing range; and two subsurface soil samples from soil mounds suspected of being sludge scrapings.				
Surveying	Seven groundwater samples were collected using the Geoprobe TM sampling method, including four groundwater samples from beneath the suspected former SWTB locations; two down gradient samples (along Old Country Road fence); and one upgradient groundwater sample (adjacent to the firing range).				
Surveying	Surveying and site map preparation were conducted by Bosk Associates. All sample locations were surveyed relative to a fixed datum.				

TABLE 1

SUMMARY OF PSA TASKS WESTHAMPTON LANDFILL SUFFOLK COUNTY, NEW YORK

Task	Description of Task					
Data Review	Assessment of analytical results included review of sample holding times and evaluating laboratory blank samples. Full data validation was conducted on analytical results for the Manorville site.					
Site Assessment	A preliminary site contamination assessment was conducted prior to report preparation for evaluation of background data and data from the field investigation.					
Report Preparation	A report was prepared containing a summary of background information, field data, and a site assessment.					

TABLE 2

LABORATORY SAMPLE SUMMARY

WESTHAMPTON LANDFILL

SAMPLE CATEGORY	SAMPLE ID	SAMPLE DEPTH (FT BGS)	SAMPLE DATE	ANALYSES	PID READING (PPM)	MS/MSD (Y/)	DESCRIPTION OF SAMPLE LOCATION
Soil	SB0108	8-13	12/15/94	1 – 7	14.8		North of transfer station.
Soil	SB0208	4-8	12/15/94	1 – 7	0.0		West side of access road, NW of sand pit, at edge of vegetated area.
Soil	SB1208	4-8	12/15/94	1 – 7	0.0		Duplicate for SB0208.
Soil	SB0309	8-12	12/15/94	1 – 7	0.0	Y	West side of access road, NW of sand pit, at edge of vegetated area.
Soll	SB0408	6-10	12/15/94	1 – 7	0.0		West side of access road, NW of sand pit, at edge of vegetated area.
Soil	SB0503	2-3	12/16/94	1 – 7	_		Downgradient sample; northeast corner of site.
Soil	SB0603	2-3	12/16/94	1 – 7	_		Downgradient sample; northwest corner of site.
Soil	SB0707	7-11	12/15/94	1 – 6	-		Upgradient sample; adjacent to firing range.
Groundwater	GW01	55-57	12/16/94	1 – 6	_	Y	North of transfer station.
Groundwater	GW02	40-42	12/16/94	1 – 6	_		West side of access road, NW of sand pit, at edge of vegetated area.
Groundwater	GW03	38-40	12/16/94	1 - 6	_		West side of access road, NW of sand pit, at edge of vegetated area.
Groundwater	GW13	38-40	12/16/94	1 – 6	_		Duplicate of GW03.
Groundwater	GW04	38-40	12/16/94	1 – 6	-		West side of access road, south of firing range, adjacent to large compost pile
Groundwater	GW05	43-45	12/16/94	1 – 6	-		Downgradient sample; northeast corner of site.
Groundwater	GW06	43-45	12/16/94	1 – 6	-		Downgradient sample; northwest corner of site.
Groundwater	GW07	38-40	12/16/94	1 – 6	_		Upgradient sample; adjacent to firing range.

^{1.} TCLVOCs 3. TCLPCBs

^{5.} TAL METALS

^{7.} EP Tox

^{2.} TCL SVOCe 4. TCL PESTICIDES

TABLE 3

SUMMARY OF SEPTIC WASTE ANALYTICAL DATA FOR MANORVILLE LANDFILL (1)

Parameters	Units	Concentration Range	
Benzene	ug/L	2	
Toluene	ug/L	300	
O-xylene	ug/L	9	
M-xylene	ug/L	20	
P-xylene	ug/L	7	
Methylene Chloride	ug/L	11	
1,1,1-Trichloroehtane	ug/L	44	
Trichloroethylene	ug/L	14	
Tetrachloroethylene	ug/L	80	
Cis-1,2-dichloroethane	ug/L	60	
1,1-Dichloethane	ug/L	8	
Acenaphthene	ug/L	1-3	(2)
1,2,4-Trichlorobenzene	ug/L	1-3	(2)
1,2-Dichlorobenzene	ug/L	27	
Flouranthene	ug/L	1-3	(2)
Napthalene	ug/L	26	
Bis(2-ethylhexyl)phthalate	ug/L	12	
Butyl benzyl phthalate	ug/L	1-3	(2)
Di-n-butyl phthalate	ug/L	1-3	(2)
Di-n-actyl phthalate	ug/L	1-3	(2)
Anthracene	ug/L	1-3	(2)
Phenanthrene	ug/L	1-3	(2)
Pyrene	ug/L	1-3	(2)
Phenois	ug/L	260	
Cadmium	ug/L	20 — 170	
Chromium (total)	ug/L	200 - 1,600	
Copper	ug/L	4,200 - 36,000	
Iron	ug/L	49,000 — 81,000)
Lead	ug/L	700 - 8,000	
Manganese	ug/L	200 — 1,500	
Mercury	ug/L	3 ·	
Nickel	ug/L	< 370 - 400	
Silver	ug/L	10 - 50	
Zinc	ug/L	5,600 - 60,000	

⁽¹⁾ Analytical data for sludge from one SWTB, a cesspool truck, and county sludge truck (Dvirka and Bartilucci, 1981).

⁽²⁾ Estimated range for one sample.

TABLE 4

STRATIGRAPHIC SUMMARY GEOPROBE SOIL SAMPLES WESTHAMPTON LANDFILL

STRATIGRAPHIC UNIT	SB0108 (47.6) ⁽¹⁾ (16) ⁽²⁾	SB0208 (42.4) ⁽¹⁾ (12.0) ⁽¹⁾	SB0309 (42.8) ⁽¹⁾ (16) ⁽²⁾	SB0408 (41.5) ⁽¹⁾ (16) ⁽²⁾	SB0503 (45.3) ⁽¹⁾ (3) ⁽²⁾	SB0603 (54.7) ⁽¹⁾ (3) ⁽²⁾	SB0707 (39.2) ⁽¹⁾ (12) ⁽²⁾
Fill	0 – 16'	0 - 4.0' 4.2 - 4.5'	0 - 9'	0 - 7.5'	_	_	-
Sludge ⁽³⁾	-	4.0 - 4.2'	-	-	-	_	_
Sand	-	4.2 – 4.5'	9 – 12'	7.5 – 16'	0 – 3'	0 – 3'	0 – 12'

⁽¹⁾ Ground surface elevation in feet above mean sea level.

⁽²⁾ Depth of boring in feet.

⁽³⁾ Suspected septic sludge.

SUBSURFACE SOIL ANALYTICAL DATA DETECTED COMPOUND SUMMARY **WESTHAMPTON LANDFILL**

CAS NO.	COMPOUND	USEPA (1) Health-Based Guidance	SAMPLE ID: DEPTH: SAMPLED:	SB0108 08-13' 12/15/94	SB0208 04-08' 12/15/94	SB1208 (2) 04-08'. 12/15/94 -	SB0309 08-12' 12/15/94	SB0408 06-10' 12/15/94	SB0503 00-03' 12/16/94	SB0603 00-03' 12/16/94	SB0707 07-11' 12/16/94
CAS NO.	COMPOUND	Values	UNITS:								
	VOLATILES										
67-64-1	Acetone	2 222 222									
78-93-3	2-Butanone	8,000,000	UG/KG	12 B	7 BJ	8 BJ	6 BJ	8 BJ	7 BJ	8 BJ	8 BJ
75-09-2	Methylene chloride	4,000,000	UG/KG	3 BJ	3 BJ	11 U	11 U	11 U	2 BJ	2 BJ	11 U
108-88-3	Toluene	93,000	UG/KG	3 BJ	2BJ	2 BJ	1 J	3 BJ	3 BJ	3 BJ	3 B J
1330-20-7	Xylenes, Total	20,000,000	UG/KG	2 J	11 U	11 U	11 U	11 U	2 J	10 U	11 U
1330-20-1	Aylenes, total	200,000,000	UG/KG	5 J	0.8 J	11 U	1.1	1 J	3 J	10 U	11 U
	SEMIVOLATILES										
208-95-8	Acenaphthylene	NS	UG/KG	19,000 U	350 U	350 U	350 U	360 U	350 U	36 J	360 U
120-12-7	Anthracene	20,000,000	UG/KG	19,000 U	350 U	350 U	350 U	380 U	350 U	54 J	360 U
56-55-3	Benzo(a)anthracene	220	UG/KG	19,000 U	350 U	350 U	350 U	360 U	350 U	260 J	360 U
50-32-8	Benzo(a)pyrene	81	UG/KG	19,000 U	350 U	350 U	350 U	380 U	350 U	260 J	360 U
205-99-2	Benzo (b) fluoranthene	NS	UG/KG	19,000 U	350 U	350 U	350 U	360 U	350 U	240 J	360 U
191-24-2	Benzo(ghi)perylene	NS	UG/KG	19,000 U	350 U	350 U	350 U	360 U	350 U	150 J	360 U
207-08-9	Benzo(k)fluoranthene	NS	UG/KG	19,000 U	350 U	350 U	350 U	360 U	350 U	_ 190 J	360 U
85-68-7	Butyl benzyl phthalate	20,000,000	UG/KG	240,000 J	57 J	350 U	350 U	360 U	31 J	1600	360 U
106-47-8	4-Chloroaniline	200,000	UG/KG	19,000 U	69 J	350 U	350 U	380 U	350 U	340 U	360 U
218-01-9	Chrysene	NS	UG/KG	19,000 U	350 U	350 U	350 U	350 U	350 U	260 J	360 U
84-74-2	DI-n-butyl phthalate	8,000,000	UG/KG	4,400 BJ	470 B	140 BJ	260 BJ	210 BJ	230 BJ	260 BJ	710 B
53-70-3	Dibenz(a,h)anthracene	14	UG/KG	19,000 U	350 U	350 U	350 U	380 U	350 U	59 J	360 L/
131-11-3	Dimethyl phthalate	60,000	UG/KG	19,000 U	350 U	350 U	350 U	360 U	350 U	26 J	380 L/
206-44-0	Fluoranthene	3,000,000	UG/KG	19,000 U	350 U	350 U	350 U	37 J	350 U	540	360 L/
193-39-5	Indeno(1,2,3-cd)pyrene	NS	UG/KG	19,000 U	350 ∪	350 U	350 U	380 U	350 U	140 J	360 U
8 5- 01-8	Phenanthrene	NS	UG/KG	19,000 U	350 U	350 U	350 U	360 U	350 U	170 J	360 U
129-00-0	Pyrene	2,000,000	UG/KG	19,000 U	350 U	350 U	350 U	110 J	28 J	510	360 U
11 7 -81-7	Bis(2-ethylhexyl)phthalate	50,000	UG/KG	95,000 B	300 BJ	51 BJ	220 BJ	380 U	23 BJ	31 BJ	21 BJ
	PESTICIDES/PCBs										
309-00-2	Aldrin	41	UG/KG	6 P	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	0.43 JP	1.8 U
72-54-8	4,4'-DDD	2,900	UG/KG	80	3 J	2.3 J	3.5 U	1.4 JP	4.5 P	5.3 P	1.8 JP
72-55-9	4,4'-DDE	2,100	UG/KG	32	3.3J	0.78 JP	3.5 U	1.9 J	9.2	1.1 JP	1.1 JP
50-29-3	4,4'-DDT	2,100	UG/KG	6.9 JP	3.5 U	1.6 JP	1,3 J	7.9	51P	16	1.5 JP
60-57-1	Dieldrin	440	UG/KG	9 P	2,4 JP	0.72 JP	3.5 U	1 J	1.8 J	1 JP	1.1 JP
33213-65-8	Endosulfan II	NS	UG/KG	7.6 U	3.5 U	3,5 U	3.5 U	3.8 U	2,4 JP	6.2 P	3.6 U
1031-07-8	Endosulfan sulfate	NS	UG/KG	7.6 U	3.5 U	3.5 U	3.5 U	3.6 U	4	8 P	3.6 U
72-20-8	Endrin	20,000	UG/KG	1.7 JP	3.5 U	3.5 U	3.5 U	1.2 J	1.1 J	2.5 JP	1.8 JP
53494-70-5	Endrin ketone	NS	UG/KG	7.8 U	3.5 U	3.5 U	3.5 U	3.6 U	0.91 JP	2,5 JP 3,4 U	3.8 U
1024-57-3	Heptachlor epoxide	77	UG/KG	3.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	0,49 JP	0.57 J
72-43-5	Methoxychior	400,000	UG/KG	38 U	18 U	18 U	18 U	18 U	0.64 JP	17 U	18 (
5103-71-9	alpha-Chlordane	540	UG/KG	35 P	5 P	1.2 JP	0.42 JP	2.4	1 JP	8 P	3.3 P
319-86-8	delta-BHC	NS	UG/KG	4.2 P	1.8 U	1.8 U	1.8 U	1.8 U	0.81 JP	1.8 P	1.8 U
5103-74-2	gamma-Chiordane	540	UG/KG	38 P	3.6 P	0.94 JP	1.8 U	1.8 U	0.89 JP	6.5 P	1.8 U 2.9 P
						· ·			J.35 Q1	0.9 F	2.30 17

⁽¹⁾ NYSDEC - Memorandum (11/16/92) - Determination of soil cleanup objectives and cleanup levels

Organic Data Qualifiers

⁽²⁾ Duplicate of SB0208.

U - indicates a compound was analyzed for but not detected.

J - Indicates an estimated value.

 $^{{\}sf B}-{\sf Indicates}$ the analyte is found in the associated blank as well as in the sample.

E - Indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument.

D - Indicates an analysis at a secondary dilution factor.

P -- Indicates a greater than 25% difference for detected concentrations between two GC columns for pesticide/Aroctor analytes.

R - Indicates unuseable results.

Indicates concentration exceeds applicable standard or guidance value.

Indicates concentration exceeds three times backround sample SB0707.

TABLE 5 (continued)

SUBSURFACE SOIL ANALYTICAL DATA DETECTED COMPOUND SUMMARY WESTHAMPTON LANDFILL

-											
			SAMPLE ID:	SB0108	SB0208	SB1208 (2)	SB0309	SB0408	SB0503	SB0603	SB0707
		NATURAL (1)	DEPTH: SAMPLED;	08-13° 12/15/94	04-08' 12/15/94	04-08'-	08-12'	06-10'	00~03'	00-03'	07-11
		RANGE	SAMIFLED,	12/13/94	12/15/94	12/15/94	12/15/94	12/15/94	12/16/94	12/ 16/94	12/16/94
CAS NO.	COMPOUND	IN SOILS	UNITS:								
	INORGANICS							- · - · -	<u>_</u>		
7429-90-5	Aluminum	700-100,000	MG/KG	1750 *	402 *	461 *	448 *	709 *	778 *	1080 *	968 *
7440-38-2	Arsenic	0.1-100	MG/KG	5.3	0.31 UW	0.53 BW	0.51 BW	0.65 B	0.87 B	1.5B	0.38 B
7440-39-3	Barium	10-500	MG/KG	39.5 B	2.3 B	4.3 B	2.4 B	6.8B	1.1 B	9.7B	1.8 B
7440-41-7	Beryllium	<1-7	MG/KG	0.22 U	0.2 U	0.21 U	0.2 U	0.98	0.2 U	0.2 U	0.2 U
7440-43-9	Cadmium	0.017 *	MG/KG	1.4	0.89 U	0.94 U	0.91 U	0.92 U	0.9 U	0,8 U	0.89 U
7440702	Calcium	130-333,000	MG/KG	14400	65,3 B	91.7 B	116 B	348B	279 B	17300	95.1 B
7440-47-3	Chromium	1-2000	MG/KG	10	2,9	5.5	2.5	7.1	3.6	3.8	2.7
7440484	Cobalt	<3-70	MG/KG	1.9 U	1.7 U	2.6 B	1.7 U	3.6 B	1.7 U	2.7 B	1.7 B
7440-50-в	Copper	1 - 700	MG/KG	18	5.2	10.4	5.2	19.2	4.3 B	6.8	2.2 B
57-12-5	Cyanide	ND	MG/KG	0.57 U	0.51 U	0.79	0.51 U	0,53 U	0.52 U	0.53 U	0.5 U
7439-89-6	lron	100-100,000	MG/KG	8930	757	1160	702	1830	2010	3750	1670
7439-92-1	Lead	<10-700	MG/KG	136 N*	10.7N*	7.1N*	2.1 N*	20.9N*	21.3N*	63.8N*	1.9 N
7439-95-4	Magnesium	50-50,000	MG/KG	6730	48.7B	49.9 B	42.8 B	114 B	193B	2770	80.6 B
7439-96-5	Manganese	<2-7,000	MG/KG	65.3 *	3*	5+	4.7 *	21.4 *	19.7 *	46.9 *	18.7 *
7439-97-6	Mercury	0.02-0.5	MG/KG	0.16 N	0.15 N	0.08 UN	0.09 UN	0.09 BN	0.1 UN	0.62N	0.09 U
7440-02-0	Nickel	<5-7,000	MG/KG	42.8	16.5	35.3	7.1 B	71.4	1.7 U	2.5 8	17.8
7782-49-2	Selenium	<0.1-3.9	MG/KG	0.49 BW	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
7440-62-2	Vanadium	20-500	MG/KG	7.6 B	3.8 B	2. 6 U	2.5 U	2.7 B	8.1B	5.2 B	2.4 U
7440-66-6	Zinc	<5-3,500	MG/KG	1170 *	41*	206*	25.8*	113*	10.9 *	47.3*	5,9 *
	EPTOX METALS										
7440-39-3	Barium	100000	UG/L	77 B	100 B	130 B	71 B	316	44 B	55 B	
7440-43-9	Cadmium	1000	UG/L	5 U	23.2	19.3	5 U	5.U	5 U	5U	
7439-92-1	Lead	5000	UG/L	55.9 U	55.9 U	55.9 U	55,9 U	55.9 U	55.9 U	55.9 U*	
7439-97-6	Mercury	200	UG/L	0.2 U*	0.20*	0.2 U*	0.23 *	0.2 U*	0.20*	0.2 U*	
7782-49-2	Selenium	1000	UG/L	86.5 *	51.8 U*	51.8 U*	94.8 *	51.8 U*	51.8 U*	51.8 U*	

- (1) Schacklette and Boerngen, 1984.
 - * Booz, Allen, and Hamilton, 1983
- ** USEPA, 1983
- (2) Duplicate of SB0208.

Inorganic Data Qualifiers

- B Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
- U Indicates element was analyzed for but not detected.
- E Indicates a value estimated or not reported due to the presence of interference.
- S Indicates a value determined by Method of Standard Addition.
- N indicates spike sample recovery is not within control limbs.
- * Indicates duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for method of standard addition is less than 0.995.
- M Indicates duplicate injection results exceeded control limits.
- W Post digestion spike for Furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method.
- L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method.
- R Indicates unuseable results.
 - Indicates concentration exceeds applicable standard or guidance value.
 - Indicates concentration exceeds three times backround sample SB0707.

GROUNDWATER ANALYTICAL DATA DETECTED COMPOUND SUMMARY WESTHAMPTON LANDFILL

CAS NO.	COMPOUND	NYSDEC Class GA Groundwater Standard/ Guidelines	SAMPLE ID: SAMPLED: UNITS:	GW01 12/15/94	GW02 12/16/94	GW03 12/16/94	GW13 (2) 12/16/94	GW04 12/16/94	GW05 12/16/94	GW06 12/16/94	GW07 12/16/94
	VOLATILES				-						
57-64 - 1	Acetone	50	UG/L	10 U	10 U	10 U	10 U	10 U	5 J	10 U	10 U
108-90-7	Chlorobenzene	5	UG/L	10 U	10 U	10 U	1 J	10 U	10 U	10 U	10 U
6766-3	Chloroform	7	UG/L	10 U	10 U	10 U	10 U	1 J	10 U	10 U	1J
75-09-2	Methylene chloride	5	UG/L	10 U	1 J	10 U	2 J	10 U	10 U	10 U	2 J
	SEMIVOLATILES										
84-74-2	Di-n-butyl phthalate	50	UG/L	2 BJ	2 BJ	3 BJ	2 BJ	5 BJ	10 U	2 BJ	3 BJ
106-46-7	1,4-Dichlorobenzene	4.7	UG/L	10 U	10 U	11	1J	11 U	10 U	10 U	10 U
95-50-1	1,2-Dichlorobenzene	4.7	UG/L	10 U	10 U	0.8J	U.8.0	11 U	10 U	10 U	10 U
117-81-7	bis (2-ethylhexyl) phthalate	50	UG/L	5 J	10 U	44	10 U	12	1 J	77	1J
1031 -07-8	PESTICIDES Endosulfan sulfate INORGANICS	NS	UG/L	0.087 JP	0.1 U	O.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
7429 - 90 - 5	Aluminum	NS	UG/L	754	7360	4370	2160	5790			
7440 -38-2	Arsenic	25	UG/L	2.3 B	4.2 B	4370 4.1 B	2100 4.1 B	3.8 B	3480 2.4 BW	1810	5210
7440-39-3	Sarium	1000	UG/L	180 B	30 B	18 B	11 B	3.8 B	2.4 DW	2.1 B 9 B	2.3 B 29 B
7440 -70 -2	Calcium	NS	UG/L	33000	14900	26300	25500	5800	22400	30900	29 B 2160 B
7440 -47-3	Chromium	50	UG/L	57.2	125	104	42.9	65.4	72.5	168	142
7440-50-8	Copper	200	UG/L	11.6 B	41.1	22.9 B	128	19.6 B	15.9 B	23.2 B	31.1
7439-89-6	lmn	300	UG/L	14200	30900	16700	8710	19200	18200	25100	41100
7440-09-7	Potessium	NS	UG/L	28000	3430B	3910B	3710B	1460 B	4720B	1120 B	955 B
7439-92-1	Lea d	25	UG/L	42.2 N	49.3N	26.4N	4,4 NW	10.8 N	47.9N	3.6 N	223N
7439 -95 -4	Magnesium	35000 (G)	UG/L	5260	4190 B	5750	5300	2520 B	7570	9900	1990 B
7439 - 96 - 5	Manganese	300	UG/L	2040	462	393	337	223	535	413	645
7439-97-6	Mercury	2	UG/L	0.2 UN	0.2 UN	0.2 UN	0.87 N	0.2 UN	0.2 UN	0.7N	0.2 UN
7440-02-0	Nickel	NS	UG/L	22 B	25,2 B	57.1	13.7 B	20 B	9.4 U	19.5 B	45.4
7440 −23~5	Sodium	20000	UG/L	17400	3740 B	5660	5640	4350 B	85000	6720	5370
7440-28-0	Thallium	4 (G)	UG/L	2.1 BW	1.8 U	1.8 U	1.8 U	3 BW	1.8 UW	1.8 U	1.8 U
7440 -62-2	Vanadium	NS	UG/L	13.7 U	30.6 B	15.8 B	13.7 U	24.6 B	13.7 U	13.7 U	17.4 B
7440 - 66 - 6	Zinc	300	UG/L	47.1	270	122	56.9	115	263	1110	238

⁽¹⁾ NYSDEC - Ambient Water Quality Standards and Guidance Values (11/22/93)

- (S) Standard
- (G) Guidance
- * Standard is Hardness Dependent (assume hardness of 150 ppm)

(2) Duplicate of GW03.

Indicates concentration exceeds applicable standard or guidance value.

Indicates concentration exceeds three times upgradient concentration in GW07.

Indicates concentration exceeds applicable standard or guidance value, and three times upgradient concentration in GW07.

Organic Data Qualifiers

- U Indicates a compound was analyzed for but not detected.
- J Indicates an estimated value,
- B Indicates the analyte is found in the associated blank as well as in the sample.
- P -- Indicates a greater than 25% difference for detected concentrations between two GC columns for pesticide/Aroclor analytes.
 - B Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
 - U Indicates element was analyzed for but not detected.
 - N indicates spike sample recovery is not within control limits.
 - W Post digestion spike for Furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.

REFERENCES

- ASTDR, 1992. Draft Toxilogical Profile for Lead. U.S. Department of Health and Human Services Agency for Toxic Substance and Disease Registry.
- Dvirka and Bartilucci, 1981. Scavenger Waste Landfill Leachate Study for Town of Brookhaven, dated September 1981. Dvirka and Bartilucci, Syosset, New York.
- Greenman-Pedersen, no date. Report on Solid Waste Disposal Management Town of Southampton. Greenman-Pedersen, Associates, P.C., Babylon, New York.
- Jensen, H.M. and J. Soren, 1974, Hydrogeology of Suffolk County, Long Island, New York, U.S. Geological Survey Hydrologic Investigations Atlas HA-501.
- McClymonds, N.E. and O.L. Franke, 1972, Water-Transmitting Properties of Aquifers on Long Island, New York, Geological Survey Professional Paper 627-E.
- McLean Associates, 1989. Application for Household Refuse Container Transfer Facility Westhampton, dated September 1989. Louis K. McLean Associates, P.C., Brookhaven, New York.
- NYSDEC, 1991. New York State Freshwater Wetlands Map, Eastport Quadrangle, Scale 1:24,000. New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1992a. Part 371, Title 6, New York Codes, Rules and Regulations, dated January 14, 1995. New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1992b. Part 375, Title 6, New York Codes, Rules and Regulations, dated May 1992. New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1994. Letter to William Bradford (Parsons ES) from the New York Natural Heritage Program Information Services, dated October 24, 1994. New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1995. Memorandum from Robert Stewart (NYSDEC, Region 1) to Srikanth Maddineni (NYSDEC, Albany) dated March 27, 1995. New York State Department of Environmental Conservation, Albany, New York.
- NYSDOH, 1982. New York State Atlas of Community Water System Sources, New York State Department of Health, Albany, New York.

REFERENCES (Continued)

- NUS, 1983. USEPA Potential Hazardous Waste Site Preliminary Assessment form, dated May 27, 1983. NUS Corporation, Edison, New Jersey.
- Parsons ES, 1994a. Field notes on field activities conducted by Parsons Engineering Science, Inc. personnel December 15 and 16, 1994. Parsons Engineering Science, Inc., Liverpool, New York.
- Parsons ES, 1995. Memorandum to File documenting telephone conversation between Tom Abrams (Parsons ES) and Brian Gilbride (Town of Southampton), dated January 23, 1995. Parsons Engineering Science, Inc., Liverpool, New York.
- SCDHS, 1982a. Site Inspection Report dated July 23, 1982. Suffolk County Department of Health Services, Hauppauge, New York.
- SCDHS, 1982b. Site Inspection Report dated October 14, 1982. Suffolk County Department of Health Services, Hauppauge, New York.
- SCDHS, 1984. Superfund Site Report Review Comments form, dated September 24, 1984. Suffolk County Department of Health Services, Hauppauge, New York.
- SCDHS, 1986. Summary of Jagger Lane Investigation, dated January 6, 1986. Suffolk County Department of Health Services, Hauppauge, New York.
- SCDHS, 1987. Site Inspection Report dated June 4, 1987. Suffolk County Department of Health Services, Hauppauge, New York.
- Scorca, M.P., 1990, Ground-Water Quality Near a Scavenger-Waste-Disposal Facility in Westhampton, Suffolk County, New York, U.S Geological Survey Water-Resources Investigation Report 88-4074.
- Shacklette, H.T., and J.G. Boerngen, 1984. Elemental Concentrations in Soils and other Surficial Materials of the Conterminous United States, U.S. Geological Survey Professional Paper 1270. U.S. Government Printing Office, Washington, D.C.
- USEPA, 1985(?). Immediate Removal Funding Request for Jagger Lane Groundwater Contamination Site memorandum from W. Tawadros (EPA) to Christopher Daggett (EPA). Document is not dated. United States Environmental Protection Agency, Edison, New Jersey.
- USGS, 1956. Topographic Map, 7.5 Minute Quadrangle, Eastport, N.Y., Scale 1:24,000. U.S. Geological Survey, Reston, Virginia.
- Warner, et. al., 1975, Soil Survey of Suffolk County, New York, U.S. D.A. Soil Conservation Service. Sheet 71.

APPENDIX A

RECORD SEARCH CONTACTS

APPENDIX A

RECORD SEARCH CONTACTS WESTHAMPTON LANDFILL SITE SUFFOLK COUNTY, NEW YORK

Source	Information Provided
NYSDEC - Albany, Srikanth Maddineni, Project Manager, (518) 457-2377.	Division of Hazardous Waste Remediation site files.
NYSDEC - Albany, Stephen Malsan, Environmental Engineer, (518) 457- 6072.	Division of Hazardous Substances Regulation site files.
NYSDEC - Albany, Robert Olazagasti, (518) 457-2553.	Division of Solid Waste - no information.
NYSDEC - Albany, William McGahay, (518) 457-7464.	Division of Water - no information.
NYSDEC - Albany, Tom Ryder, (518) 457-1148.	Division of Air; Division of Fish and Wildlife - no information.
NYSDEC - Latham, Nick Conrad, (518) 783-3932	New York Heritage Program Files.
NYSDEC-Region 1, Stony Brook, Sandra Boxenbaum, Regional Records Access Officer, (516) 444-0200.	Files from Division of Hazardous Waste Remediation and Natural Resources. No information from the following Divisions: Solid Waste, Water, Air, Spill Response, and Fish and Wildlife.
NYSDOH - Albany, Michael Kadlec, (518) 458-6305.	Bureau of Environmental Exposure Investigation files.

APPENDIX A (CONTINUED)

RECORD SEARCH CONTACTS WESTHAMPTON LANDFILL SITE SUFFOLK COUNTY, NEW YORK

Source	Information Provided
USEPA Region II - Manhattan, George Wilson, (212) 264-6012.	No information.
Suffolk County DHS - Hauppauge, Richard Sandstrom, (516)853-3055.	Files from the Division of Public Health.
Suffolk County DHS - Hauppauge, Martin Trent, (516)853-3076.	Files from the Division of Water Resources (Jagger Lane Study).
Suffolk County Real Property, Riverhead, (516) 852-1550.	Tax maps.
Suffolk County Planning Department, Hauppauge, Carl Lind, (516) 853- 6044.	Reviewed in-house aerial photographs
Federal Emergency Management Agency, (800) 358-9616	Flood insurance maps.
Ms. Barbara Ann Meyer, Town Clerk, Town of Southampton, (516) 283- 3198.	Town files.
Mr. Brian Gilbride, Department of Sanitation Supervisor, Town of Southampton, (516) 283-6222.	Department of Sanitation files (tipping permit applications and log books).

APPENDIX B

LABORATORY ANALYTICAL DATA

NYSDEC		SAMPLE ID:	SB0108	SB0108RE	SB0208	SB1208	SB0309	SB0408
WESTHAMPTO		DEPTH:	08-13'	08-13'	04-08'	04~08'	08-12	06-10'
SOIL BORING		LAB ID:	95053601	95053801 RE	95053802	95053805	95053606	95053603
SDG: SB0108		SDG:	SB0108	SB0108	SB0108	SB0108	SB0108	SB0108
		SAMPLED:	12/15/94	12/15/94	12/15/94	12/15/94	12/15/94	12/15/94
CAS NO.	COMPOUND	UNITS:						
	VOLATILES				ĺ			
74-87-3	Chioromethane	UG/KG	11 U		11 U	110	11 U	11 U
74-83-9	Bromomethane	UG/KG	11 U		11 U	110	11 U	11 U
75-01-4	Vinyl chloride	UG/KG	11 U		11 U	110	11 U	11 U
75-00-3	Chioroethane	UQ/KG	11 U		,11 U	11 Ū	11 U	11 Ü
75-09-2	Methylene chloride	UG/KG	3 BJ		2 BJ	2 BJ	1.j	3 BJ
67 -64-1	Acetone	UQ/KG	12 B		7BJ	8 BJ	6 BJ	8 BJ
75-15-0	Carbon disulfide	UG/KG	11 U		110	11 U	11 U	11 0
75-35-4	1,1 - Dichloroethene	UQ/KG	11 U		11 U	11 U	11 U	11 Ü
75-34-3	1,1 - Dichloroethane	UQ/KG	11 U	1	11 U	11 U	11 Ü	11 Ŭ
544-59-2	1,2~Dichloroethene, Total	UG/KG	11 U]	11 U	11 U	11 U	110
67-66-3	Chloroform	UG/KG	11 U		110	110	11 Ü	110
107-05-2	1,2-Dichloroethane	UG/KG	11 U	1	11 U	11 Ü	11 U	110
78-93-3	2-Butanone	UG/KG	3 BJ		3 BJ	11 Ü	11 U	11 Ü
71-55-6	1,1,1 - Trichloroethane	UG/KG	11 U	1	110	11 U	11 Ü	11 Ü
56-23-5	Carbon tetrachloride	UG/KG	11 U		110	11 U	11 U	11 U
75-27-4	Bromodichloromethane	UG/KG	11 U		110	11 Ü	11 Ŭ	11 Ŭ
78-87-5	1,2-Dichloropropane	UQ/KG	11 U		110	11 Ü	11 U	11 U
10001-01-5	cis-1,3-Dichloropropene	UG/KG	11 Ū		11 U	11 Ü	11 U	11 U
79-01-6	Trichloroethene	UQ/KG	11 Ū		110	11 0	11 Ü	110
124-48-1	Chlorodibromomethane	UQ/KQ	11 U		11 U	11 U	11 U	11 0
79-00-5	1,1,2-Trichloroethane	UG/KG	11 U		110	11 U	11 0	11 Ü
71-43-2	Benzene	UQ/KG	11 U		11 0	11 U	11 U	11 Ü
10081-02-8	trans-1,3-Dichloropropene	UQ/KG	11 U		11 Ŭ	11 Ü	11 U	11 Ŭ
75-25-2	Bromoform	UQ/KG	11 U		11 Ū	11 Ü	11 U	11 Ŭ
108-10-1	4-Methyl-2-pentanone	UQ/KG	11 U		11 Ū	11 U	11 U	11 Ü
591-78- 6	2-Hexanone	UQ/KG	11 U		11 Ü	11 0	1 1 Ū	110
127-18-4	Tetrachloroethene	UG/KG	11 U		11 Ū	110	11 Ü	110
79-34-5	1,1,2,2-Tetrachloroethane	UQ/KG	11 Ū		110	110	11 Ŭ	110
108-88-3	Toluene	UQ/KG	2 J		11 U	11 Ŭ	11 U	110
108-90-7	Chlorobenzene	UG/KG	11 U		11 U	11 Ü	11 U	110
100-41-4	Ethylbenzene	UQ/KG	11 Ū		11 Ŭ	11 Ŭ	11 U	11 0
100-42-5	Styrene	UQ/KG	11 U		11 U	11 Ŭ	11 U	110
1330-20-7	Xylenes, Total	UG/KG	5 J		0.8 J	110	1J	113

NYSDEC		0.00000			·			
WESTHAMPTO	ON LANDFILL	SAMPLE ID: DEPTH:	SB0108 08-13'	SB0108RE 08-13'	SB0208 04-08'	SB1208 04-08'	SB0309	SB0408
SOIL BORING		LAB ID:	95053601	95053601RE	95053602	95053605	08-12' 95053606	06-10° 95053803
SDG: SB0108		SDG:	SB0108	SB0108	SB0108	SB0108	SB0108	SB0108
_		SAMPLED:	12/15/94	12/15/94	12/15/94	12/15/94	12/15/94	12/15/94
CAS NO.	COMPOUND	UNITS:					12,12,2	1415,51
	SEMIVOLATILES						-	
108-95-2	Phenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
111-44-4	bis(2-chloroethyl)ether	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
95-57-8 541-73-1	2-Chlorophenol 1,3-Dichlorobenzone	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
108-46-7	1.4-Dichlorobenzene	UG/KG UG/KG	19000 U 19000 U	55000 U	350 U 350 U	350 U	350 U	360 U
95-50-1	1,2-Dichlorobenzene	UG/KG	19000 U	55000 U 55000 U	350 U	350 U 350 U	350 U	380 U
95~48-7	2-Methylphenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U 350 U	360 U 360 U
108-60-1	2,2'-oxybis (1-Chloro-propane)	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
106-44-5	4-Methylphenol	UG/KG	19000 U	55000 U	350 U	350 U	360 U	360 U
621-64-7	N-Nitrosodi-n-propylamine	UG/KG	19000 U	55000 U .	350 U	350 U	350 U	360 U
67-72-1	Hexachloroethane	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
98-95-3	Nitrobenzene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
78-59-1 88-75-5	Isophorone 2 - Nitrophenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
105-67-9	2,4-Dimethylphenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
111-91-1	bis(2-chloroethoxy)methane	UG/KG UG/KG	19000 U 19000 U	55000 U 55000 U	350 U 350 U	350 U 350 U	350 U	360 U 360 U
120-83-2	2.4-Dichlorophenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U 350 U	350 U
120-82-1	1.2.4 - Trichloropenzene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
91-20-3	Naphthalene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
106-47-8	4-Chloroaniline	UG/KG	19000 U	55000 U	69 J	350 U	350 U	350 U
87-68-3	Hexachlorobutadiene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
59-50-7	4-Chloro-3-methylphenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
91-57-6	2-Methylnaphthalene	UG/KG	19000 U	55000 ป	350 U	350 U	360 U	360 U
77-47-4 88-06-2	Hexachlorocyclopentadiene	UQ/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
95-95-4	2,4,6—Trichlorophenol 2,4,5—Trichlorophenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
91-58-7	2-Chloronaphthalene	UG/KG UG/KG	47000 U 19000 U	140000 U 55000 U	880 U 350 U	880 U	880 U	900 U
88-74-4	2-Nitroaniline	UG/KG	47000 U	140000 U	880 U	350 U 880 U	350 U 880 U	360 U 900 U
131-11-3	Dimethyl phthalate	UG/KG	19000 U	55000 U	350 U	360 U	360 U	360 U
208-95-8	Acenaphthylene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
606-20-2	2,6-Dinitrotoluene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 Ú
99-09-2	3-Nitroaniline	UG/KG	47000 U	140000 U	880 U	880 U	880 U	900 U
83-32-9	Acenaphthene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
51-28-5	2,4-Dinitrophenol	UG/KG	47000 U	140000 U	880 U	880 U	880 U	900 U
100-02-7 132-64-9	4-Nitrophenol Dibenzofuran	UG/KG	47000 U	140000 U	880 U	880 U	880 U	900 U
121-14-2	2.4 - Dinitrotoluene	UG/KG UG/KG	19000 U 19000 U	55000 U	350 U	350 U	350 U	350 U
84-66-2	Diethyl phthalate	UG/KG	19000 U	55000 U 55000 U	350 U 350 U	350 U 350 U	360 U 350 U	360 U 360 U
7005-72-3	4-Chlorophenyl phenyl ether	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
86-73-7	Fluorene	UQ/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
100-01-6	4-Nitroaniline	UG/KG	47000 U	140000 U	880 U	880 U	880 U	900 U
534-52-1	4,6-Dinitro-2-methylphenol	UG/KG	47000 U	140000 U	880 U	880 U	880 U	900 U
86-30-6	N-Nitrosodiphenylamine	UG/KG	19000 U	55000 U	350 U	350 U	360 U	360 U
101-55-3	4-Bromophenyl phenyl ether	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
118-74-1 87-86-5	Hexachlorobenzene Pentachlorophenol	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
85-01-8	Phenanthrene	UG/KG UG/KG	47000 U 19000 U	140000 U	880 U	880 U	880 U	900 U
120-12-7	Anthracene	UG/KG	19000 U	55000 U 55000 U	350 U 350 U	350 U 350 U	350 U 350 U	360 U 360 U
86-74-8	Carbazole	UQ/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
84-74-2	Di-n-butyl phthalate	UQ/KG	4400 BJ	55000 U	470 B	140 BJ	260 BJ	210 BJ
206-44-0	Fluoranthene	UQ/KG	19000 U	55000 U	350 U	350 U	350 U	37 J
129-00-0	Pyrene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	110 J
85-68-7	Butyl benzyl phthalate	UG/KG	240000 E	55000 U	57 J	350 U	350 U	360 U
91-94-1	3,3'-Dichlorobenzidine	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
56-55-3	Benzo(a)anthracene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	380 U
218-01-9	Chrysene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	350 U
117-81-7 117-84-0	bis(2-ethylhexyl)phthalate	UG/KG	95000 B	55000 U	300 BJ	51 BJ	220 BJ	360 U
205-99-2	Di-n-octyl phthalate Benzo(b)fluoranthene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U
207-08-9	Benzo(k)fluoranthene	UG/KG UG/KG	19000 U 19000 U	55000 U 55000 U	350 U 350 U	350 U	350 U 350 U	360 U
50-32-8	Benzo(a)pyrene	UG/KG	19000 U	55000 U	350 U	350 U 350 U	350 U	380 U 380 U
193-39-5	Indeno(1,2,3-cd)pyrene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	380 U
53-70-3	Dibenz(a,h)anthracene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	380 U
	Benzo(ghi)perylene	UG/KG	19000 U	55000 U	350 U	350 U	350 U	360 U

NYSDEC		SAMPLE ID:	SB0108	CRAMOORE	CD2000	004000	000000	000100
WESTHAMPTO	N I ANDEILI	DEPTH:	08-13'	SB0108RE 08-13'	SB0208 04-08'	SB1208 04-08'	SB0309	SB0408
SOIL BORING		LAB ID:	95053601	95053601RE	95053602	95053805	08-12' 95053606	06-10' 95053603
SDG: SB0108	Pala	SDG:	SB0108	SB0108	SB0108	SB0108	SB0108	
324. 020.00		SAMPLED:	12/15/94	12/15/94	12/15/94	12/15/94		SB0108
CAS NO.	COMPOUND	UNITS:	12/13/64	12/13/84	12/15/94	12/15/94	12/15/94	12/15/94
	PESTICIDES/PCBs			-				
319-84-6	alpha-BHC	UG/KG	3.8 U	!	1.8 U	1.8 U	1.8 U	1.8 U
319-85-7	beta-BHC	UG/KG	3.8 U	ŀ	1.8 U	1.8 U	1.8 U	1.8 U
319-86-8	delta-BHC	UG/KG	4.2 P		1.8 U	1.8 U	1.8 U	1.80
58-89-9	Lindane	UG/KG	3.8 U		.1.8 U	1.8 U	1.8 U	1.8 U
76-44-8	Heptachlor	UG/KG	3.8 U		1.8 U	1.8 U	1.8 U	1.8 U
309-00-2	Aldrin	UQ/KG	5.5 C		1.8 U	1.8 U	1.8 U	1.8 U
102457-3	Heptachlor epoxido	UG/KG	3.8 U		1.8 U	1.8 U	1.8 U	
959-98-8	Endosulfan I	UQ/KG	3.8 U		1.8 U	1.8 U	1.8 U	1.8 U 1.8 U
60-57-1	Dieldrin	UG/KG	9 P		2.4 JP	0.72 JP	3.5 U	1.8U 1J
72-55-9	4.4'-DDE	UQ/KG	32 .		3.3 J	0.78 JP	3.5 U	1.9 J
72-20-8	Endrin	UQ/KG	1.7 JP		3.5 U	3.5 U		1.2 J
33213-65-9	Endosultan II	UQ/KG	7.6 U		3.5 U	3.5 U	3.5 U 3.5 U	3.6 U
72-54-8	4.4'-DDD '	UQ/KG	80		3.50	2.3 J	3.5 U	1.4 JP
1031-07-8	Endosulfan sulfate	UQ/KG	7.6 U		3.5 U	3.5 U		3,6 U
50-29-3	4.4'-DDT	UQ/KG	6.9 JP		3.5 U	1.6 JP	3.5 U 1.3 J	7.9
72-43-5	Methoxychlor	UQ/KG	38 U		18U	1.0 JP	1.3 J 18 U	18U
53494-70-5	Endrin ketone	UQ/KG	7.6 U		3.5 U	3.5 U		3.6 U
7421-93-4	Endrin aldehyde	UQ/KG	7.5 U				3.5 U	
5103-71-9	alpha—Chlordane	UG/KG	7.5 U 35 P		3.5 U	3.5 U	3.5 U	3.6 U
5103-74-2	gamma-Chlordane	UG/KG	35 P 38 P		5 P 3.6 P	1,2 JP	0.42 JP	2.4 1.8 U
8001-35-2	Toxaphene	UQ/KG	380 U	ļ		0.94 JP	1.8 U	
12674-11-2	Aroclor 1016	UG/KG	380 U 76 U	1	180 U 35 U	180 U 35 U	180 U	180 U
11104-28-2	Aroclor 1221	UQ/KG	150 U	1			35 U	36 U
11141-18-5	Aroclor 1232	UG/KG	76 U		70 U	70 U	70 U	72 U
53469-21-9	Aroclor 1242	UQ/KG		1	35 U	35 U	35 U	36 U
12672-29-6	Arockor 1248	UQ/KG	76 U		35 U	35 U	35 U	36 U
11097-69-1	Aroclor 1254		76 U		35 U	35 U	35 U	38 U
11096-82-5	Aroclor 1260	ÜG/KG	76 U		35 U	35 U	35 U	36 U
11090-02-5	EPTOX HERBICIDES/PESTICIDES	UG/KG	78 U		35 U	35 U	35 U	38 U
58-89-9E	gamma-BHC				l l			
72-20-8E	Endrin	UG/KG	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U
72-20-6E	Methoxychlor	UQ/KG	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
8001-35-2E	Toxaphene	UG/KG	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U
94-75-1E	2,4-D	UG/KG	5 U		5 U	5 U	5 U	5 U
93-72-1E		UG/KG	10 U		100	10 U	10 U	10 U
93-72-15	2,4,5-TP (Silvex) INORGANICS	UG/KG	2 U		2 U	2 U	2 U	2U
7429-90-5	INORGANICS Aluminum		.=== .					
		MG/KG	1750 *		402 *	461 *	448 *	709 *
7440-36-0	Antimony	MG/KG	11.8 U		10.4 U	10.9 U	10.5 U	10.7 U
7440-38-2	Arsenic	MG/KG	5.3		0.31 UW	0.53 BW	0.51 BW	0.65 B
7440-39-3	Barium	MG/KG	39.5 B		2.3 B	4.3 B	2.4 B	6.8 B
7440-41-7	Beryllium	MG/KG	0.22 U	,	0.2 U	0.21 U	0.2 U	0.96
7440-43-9	Cadmium	MG/KG	1.4	,	0.89 U	0.94 U	0.91 U	0.92 U
7440-70-2	Calcium	MG/KG	14400		65.3 B	91.7 B	116 B	348 B
7440-47-3	Chromium .	MG/KG	10	į	2.9	5.5	2.5	7.1
7440-48-4	Cobalt	MG/KG	1.9 U		1.7 U	2.6 B	1.7 U	3.6 B
7440-50-8	Copper	MG/KG	18	i	5.2	10.4	5.2	19.2
7439-89-6	iron	MG/KG	8930	i	757	1160	702	1830
7439-92-1	Lead	MG/KG	136 N*	i	10.7 N*	7.1 N*	2.1 N*	20.9 N*
7439-95-4	Magnesium	MG/KG	6730	1	48.7 B	49.9 B	42.8 B	114 B
7439-96-5	Manganese	MG/KG	65.3 *	1	3 *	5 *	4.7 *	21.4 *
7439-97-6	Mercury	MG/KG	0:16 N	1	0.15 N	0.08 UN	0.09 UN	0.09 BN
7440-02-0	Nickel	MG/KG	42.8	1	16.5	35.3	7.1 B	71.4
7440-09-7	Potassium	MQ/KG	116 U	1	102 U	107 U	103 U	105 U
7782-49-2	Selonium	MG/KG	0.49 BW	1	0.22 U	0.22 U	0.22 U	0.22 U
7440-22-4	Silver	MG/KG	1.5 U	1	1.3 U	1.4 U	1.3 U	1.3 U
7440-23-5	Sodium	MG/KG	49.2 U	1	43.2 U	45.3 U	43.8 U	44.4 U
7440-28-0	Thallium	MG/KG	0.36 UW	1	0.33 U	0.33 U	0.33 U	0.33 U
7440-62-2	Vanadium	MG/KG	7.8 B	1	3.8 B	2.6 U	2.5 U	2.7 B
7440-66-6	Zinc	MG/KG	1170 *	1	41 *	206 *	25.8 *	113 *
57-12-5	Cyanide	MG/KG	0.57 U	1	0.51 U	0.79	0.51 U	0.53 U
	EPTOX METALS			1	į l			
7440-38-2	Arsenic	UG/L	97.3 ∪	1	97.3 U	97.3 U	97.3 U	97.3 U
7440-39-3	Barium	UG/L	77 B	1	100 B	130 B	71 B	316
7440-43-9	Cadmium	UG/L	5 U	1	23.2	19.3	5 U	5 U
7440-47-3	Chromium	UG/L	6.7 U	1	6.7 U	6.7 U	6.7 U	6.7 U
7439-92-1	Lead	UG/L	55.9 U	1	55.9 U	55.9 U	55.9 U	55.9 U
7439-97-6	Mercury	UG/L	0,2 U*	!	0.2 U*	0.2 U*	0.23 *	0.2 U*
7782-49-2	Selenium	UG/L	86.5 *	1	51.8 U*	51,8 U*	94.6 *	51.8 U*
7440-22-4	Silver	UG/L	7.2 U	1	7.2 U	7.2 U	7.2 U	7.2 U

NYSDEC		SAMPLE ID:	SB0408DL	SB0503	SB0503DL	SB0603	SB0707
WESTHAMPTO	ON LANDFILL	DEPTH:	06-10'	00-03'	00-03	00-03'	07~11'
SOIL BORING	DATA	LAB ID:	95053603DL	95055501	95055501DL	95055502	95053504
SDG: SB0108	l	SDG:	SB0108	SB0108	SB0108	SB0108	SB0108
		SAMPLED:	12/15/94	12/16/94	12/16/94	12/16/94	12/16/94
CAS NO.	COMPOUND	UNITS:				,	1313
	VOLATILES	***			1		
74-87-3	Chloromethana	UQ/KG		11 U		10 U	11 U
74-83-9	Bromomethane	UG/KG		11 U		10 U	11 U
75-01-4	Vinyl chloride	UG/KG	i	11 U		10 U	11 U
75-00-3	Chloroethane	UQ/KG	1	11 U		10 U	11 U
75-09-2	Methylene chloride	UQ/KG	1	3 BJ	•	3 BJ	3 BJ
67-64-1	Acetone	UG/KG		7BJ	ł	8 BJ	8 BJ
75-15-0	Carbon disulfide	UG/KG		11 0		10 U	11 U
75-35-4	1,1 - Dichloroethene	UG/KG		11 0	1	10 U	11 Ü
75-34-3	1,1 - Dichloroethano	UQ/KG		11 U		10 U	11 Ü
544-59-2	1,2-Dichloroethene, Total	UQ/KG		11 U		10 U	11 Ü
67-66-3	Chioroform	UQ/KG		11 U	1	10 U	11 Ü
107-06-2	1,2-Dichloroethane	UQ/KG		11 U		10 U	11 Ü
78-93-3	2-Butanone	UQ/KG		2 BJ		2 BJ	11 U
71~55-6	1,1,1 ~ Trichloroethane	UG/KG		11 U	1	10 U	11 Ŭ
58-23-5	Carbon tetrachloride	UQ/KG		110		10 U	11 U
75-27-4	Bromodichloromethane	UQ/KG		110		10 U	11 Ü
78-87-5	1,2-Dichloropropane	UG/KG		11 U		10 U	11 U
10061 -01 -5	cis-1,3-Dichloropropene	UG/KG		11 U		10 U	11 U
79-01-6	Trichloroethene	UQ/KQ		11 U		10 U	11 U
124-48-1	Chlorodibromomethane	UG/KG		11 U		10 U	11 U
79-00-5	1,1,2-Trichloroethane	UG/KG		11 U		10 U	11 U
71-43-2	Benzene	UG/KG		11 U		10 U	11 U
10061-02-6	trans-1,3-Dichloropropene	UG/KG	1	110		10 U	11 Ŭ
75-25-2	Bromoform	UG/KG	1	11 U		10 U	11 Ü
108-10-1	4-Methyl-2-pentanone	UQ/KG		11 U		10 U	11 U
591 - 78 - 6	2-Hexanone	UG/KG		11 U		10 U	11 U
127-18-4	Tetrachioroethene	UG/KG		11 U		10 U	110
79-34-5	1,1,2,2-Tetrachloroethane	UG/KG		11 U	1	10 U	110
108-88-3	Toluene	UG/KG		2 J		10 U	110
108-90-7	Chlorobenzene	UQ/KG		110		10 U	110
100-41-4	Ethylbenzene	UQ/KG		110		10 U	110
100-42-5	Styrene	UG/KG		11 Ü		10 U	11 Ü
1330-20-7	Xylenes, Total	UQ/KG		3 J		10 U	110

NYSDEC	- -	SAMPLE ID:	SB0408DL	SB0503	SB0503DL	SB0603	SB0707
WESTHAMPTO	ON LANDFILL	DEPTH:	08-10'	00-03,	00-03,	00-03,	07-11'
SOIL BORING		LAB ID:	95053803DL	95055501	95055501DL	95055502	95053604
SDG: SB0108	1	SDG:	SB0108	SB0108	SB0108	SB0108	SB0108
		SAMPLED:	12/15/94	12/16/94	12/16/94	12/16/94	12/16/94
CAS NO.	COMPOUND SEMIVOLATILES	UNITS:	ļ				
108~95-2	Phenol	ид/ка	1800 U	350 U		340 U	360 U
111-44-4	bis(2-chloroethyl)other	UG/KG	1800 U	350 U		340 U	360 U
95-57-8	2-Chlorophenol	UG/KG	1800 U	350 U		340 U	360 U
541-73-1	1,3-Dichlorobenzene	UG/KG	1800 U	350 U		340 U	360 U
106-46-7	1,4-Dichlorobenzene	UG/KG	1800 U	350 U	•	340 U	360 U
95~50-1	1,2-Dichlorobenzene	UG/KG	1800 U	350 U		340 U	360 U
95-48-7	2-Methylphenol	UG/KG	1800 U	350 U		340 U	380 U
108-60-1	2,2'-oxybis (1 Chloro - propane)	UG/KG	1800 U	350 U		340 U	360 U
106-44-5	4-Methylphenol	UG/KG	1800 U	350 U		340 U	360 U
621-64-7 67-72-1	N-Nitrosodi-n-propylamine	UG/KG	1800 U	350 U		340 U	360 U
98-95-3	Hexachloroethane Nitrobenzene	UG/KG UG/KG	1800 U	350 U		340 U	360 U
78-59-1	Isophorone	UG/KG	1800 U 1800 U	350 U 350 U		340 U 340 U	360 U 360 U
88-75-5	2-Nitrophenol	UG/KG	1800 U	350 U		340 U	360 U
105-67-9	2,4-Dimethylphenol	UG/KG	1800 U	350 U		340 U	360 U
111-91-1	bis(2-chloroethoxy)methane	UG/KG	1800 U	350 U		340 U	360 U
120-83-2	2,4-Dichlorophenol	UG/KG	1800 U	350 U		340 U	360 U
120-82-1	1,2,4-Trichlorobenzene	UG/KG	1800 U	350 U	•	340 U	360 U
91-20-3	Naphthalene	UG/KG	1800 U	350 U		340 U	360 U
106-47-8	4-Chloroaniline	UQ/KG	1800 U	350 U		340 U	360 U
87-68-3 59-50-7	Hexachlorobutadiene	UG/KG	1800 U	350 U		340 U	360 U
91-57-6	4-Chloro-3-methylphenol 2-Methylnaphthalene	UG/KG	1800 U	350 U		340 U	360 U
77-47-4	Hexachlorocyclopentadiene	UG/KG UG/KG	1800 U 1800 U	350 U 350 U		340 U 340 U	350 U 360 U
88-06-2	2,4,6—Trichlorophenol	UG/KG	1800 U	350 U		340 U	360 U
95-95-4	2,4,5-Trichlorophenol	UG/KG	4500 U	880 U	1	860 U	910 U
91-58-7	2-Chloronaphthalene	UG/KG	1800 U	350 U	1	340 Ú	360 U
88-74-4	2-Nitroaniline	UG/KG	4500 U	880 U	1	860 U	910 U
131-11-3	Dimethyl phthalate	UG/KG	1800 U	350 U		26 J	360 U
208-96-8	Acenaphthylene	UG/KG	1800 U	350 U		36 J	360 U
606-20-2	2,6 - Dinitrotoluene	UG/KG	1800 U	350 U		340 U	360 U
99-09-2	3-Nitroaniline	UG/KG	4500 U	880 U		880 U	910 U
83-32-9 51-28-5	Acenaphthene	UG/KG	1800 U	350 U	ļ	340 U	360 U
100-02-7	2,4-Dinitrophenol 4-Nitrophenol	UG/KG UG/KG	4500 U 4500 U	880 U 880 U	ŀ	880 U 860 U	910 U
132-64-9	Dibenzofuran	UQ/KG	1800 U	350 U		340 U	910 U 360 U
121-14-2	2,4 - Dinitrotoluene	UG/KG	1800 U	350 U		340 U	360 U
84-66-2	Diethyl phthalate	UQ/KG	1800 U	350 U		340 U	360 U
7005-72-3	4-Chlorophenyl phenyl ether	UQ/KG	1800 U	350 U	Ĭ	340 U	360 U
86-73-7	Fluorene	UG/KG	1800 U	350 U		340 U	360 U
100-01-6	4-Nitroaniline	UG/KG	4500 U	880 U		860 U	910 U
534-52-1	4,5-Dinitro-2-methylphenol	UG/KG	4500 U	880 U		860 U	910 U
86-30-6	N-Nitrosodiphenylamine	UQ/KG	1800 U	350 U		340 U	350 U
101-55-3	4-Bromophenyl phenyl ether	UG/KG	1800 U	350 U		340 U	360 U
118-74-1 87-86-5	Hexachlorobenzene Pentachlorophenol	UG/KG UG/KG	1800 U	350 U		340 U	360 U
85-01-8	Phenanthrene	UG/KG	4500 U 1800 U	880 U 350 U		860 U 170 J	910 U 360 U
120-12-7	Anthracene	UG/KG	1800 U	350 U		170 J 64 J	360 U
86-74-8	Carbazole '	UQ/KG	1800 U	350 U	}	340 U	360 U
84-74-2	Di-n-butyl phthalate	UQ/KG	230 BJD	230 BJ	İ	260 BJ	710 B
208-44-0	Fluoranthene	UQ/KG	1800 U	350 U	1	540	360 U
129-00-0	Pyrene	UQ/KG	1800 U	26 J		510	360 U
85-68-7	Butyi benzyi phthalate	UQ/KG	1800 U	31 J	1	1600	350 U
91-94-1	3,3'-Dichlorobenzidine	UG/KG	1800 U	350 U	1	340 U	360 U
56-55-3	Benzo(a)anthracene	UQ/KG	1800 U	350 U	1	260 J	360 U
218-01-9	Chrysene	UQ/KG	1800 U	350 U	1	260 J	350 U
117-81 <i>-</i> 7 117-84-0	bis(2-ethylhexyl)phthalate DI-n-octyl phthalate	UQ/KG	1800 U	23 BJ	1	31 BJ	21 BJ
117-84-0 205-99-2	Benzo(b)fluoranthene	UG/KG UG/KG	1800 U	350 U	1	340 U	360 U
207-08-9	Benzo(k)fluoranthene	UG/KG	1800 U 1800 U	350 U 350 U	1	240 J 190 J	350 U 360 U
50-32-8	Benzo(a)pyrene	UQ/KG	1800 U	350 U	1	260 J	360 U
193-39-5	Indeno(1,2,3-cd)pyrene	UQ/KG	1800 U	350 U	1	140 J	360 U
53-70-3	Dibenz(a,h)anthracene	UQ/KG	1800 U	350 U	1	59 J	360 U
	Benzo(ghi)perylene	UG/KG	1800 U	350 U	i	150 J	360 U

NYSDEC		SAMPLE ID:	SB0408DL	SB0503	SB0503DL	SB0503	SB0707
WESTHAMPTO	N LANDFILL	DEPTH:	06-10'	00-03,	00-03,	00-03,	07-11
SOIL BORING	DATA	LAB ID:	95053603DL	95055501	95055501DL	95055502	95053604
SDG: SB0108		SDG:	SB0108	SB0108	SB0108	SB0108	SB0108
		SAMPLED:	12/15/94	12/16/94	12/16/94	12/16/94	12/16/94
CAS NO.	COMPOUND	UNITS:					
l <u>.</u>	PESTICIDES/PCBs		(
319-84-6	alpha-BHC	UG/KG		1.8 U	3.5 U	1.7 U	1.8 U
319-85-7	betaBHC	UG/KG		1.8 U	3.5 U	1.7 U	1.8 U
319-85-8 58-89-9	delta-BHC	UG/KG		0.61 JP	3.5 U	1.8 P	1.8 U
78-44-8	Lindane Heptachior	UG/KG UG/KG		1.8 U	3.5 U	1.7 U	1.8 U
309-00-2	Aldrin	UG/KG		1,8 U 1,8 U	3.5 U 3.5 U	1.7 U 0.43 JP	1.8 U 1.8 U
1024~57-3	Heptachlor epoxido	UG/KG		1.8 U	3.5 U	0.43 JP 0.49 JP	1.8 U 0.57 J
959-98-8	Endosulfan I	UG/KG		1.8 U	3.5 U	1.7 U	1.8 U
60-57-1	Dieldrin	UG/KG		1.6 J	1.1 JP	1.7 U	1.1 JP
72-55-9	4.4'-DDE	UG/KG		9.2	7 J	1.1 JP	1.1 JP
72-20-8	Endrin	UG/KG		1.1 J	70	2.5 JP	1.8 JP
33213-65-9	Endosulfan il	UG/KG		2.4 JP	1.8 JP	6.2 P	3.6 U
72-54-8	4,4'-DDD	UG/KG		4.5 P	3.4 JP	5.3 P	1.8 JP
1031-07-8	Endosulfan sulfate	UG/KG	l i	4	3.2 J	8 P	3.8 U
50-29-3	4,4'-DDT	UG/KG		72 EP	51 P	16	1.5 JP
72-43-5	Methoxychlor	UG/KG	<u> </u>	0.64 JP	35 U	17 U	18 U
53494-70-5	Endrin ketone	UG/KG	1	0.91 JP	7 U	3.4 U	3.6 U
7421-93-4	Endrin aldehyde	UG/KG		3.5 U	7 U	3.4 U	3.6 U
5103-71-9	alpha-Chlordane	UG/KG		1 JP	3.5 U	8 P	3.3 P
5103-74-2 8001-35-2	gamma—Chiordane Toxaphene	UG/KG		0.89 JP	3.5 U	6.5 P	2.9 P
12674-11-2	Aroclor 1016	UG/KG UG/KG		180 U	350 U	170 U	180 U
11104-28-2	Aroclor 1221	UG/KG		35 U 70 U	70 U 140 U	34 U 69 U	36 U 72 U
1114116-5	Aroclor 1232	UG/KG		35 U	70 U	34 U	72 U
53469-21-9	Aroclor 1242	UĠ/KG		35 U	70 U	34 U	36 U
12672-29-6	Aroclor 1248	UG/KG		35 U	70 U	34 Ŭ	38 U
11097-69-1	Aroclor 1254	UG/KG		35 U	70 Ü	34 Ü	38 U
11096-82-5	Aroclor 1260	UG/KG	1	35 U	70 U	34 U	36 U
	EPTOX HEABIGIDES/PESTICIDES				, , , ,		
58-89-9E	gamma-BHC	UG/KG		0.05 U		0.05 ป	
72-20-8E	Endrin	UG/KG		0.1 U		0.1 U	
72-43-5E	Methoxychlor	UG/KG		0.5 U		0.5 U	
	Toxaphene	UG/KG	i	5 U		5 บ	
94-75-1E	2,4-D	UG/KG	1	10 U		10 U	
93-72-1E	2,4,5-TP (Silvox)	UG/KG		2 U		2 U	
7429-90-5	INORGANICS Aluminum	14040				4000	***
7440-35-0	Antimony	MG/KG MG/KG		776*		1060 *	968 *
7440-38-2	Arsenic	MG/KG		10.5 U 0.87 B		10.4 U 1.5 B	10.3 U 0.38 B
7440-39-3	Barium	MG/KG		1.1 B		9.7 B	1.8 B
7440-41-7	Beryllium	MG/KG		0.2 U		0.2 U	0.20
7440-43-9	Cadmium	MG/KG		0.9 U		0.E U	0.89.0
7440-70-2	Calcium	MG/KG		279 B		17300	95.1 B
7440-47-3	Chromium	MG/KG		3.6		3.8	2,7
7440-48-4	Cobalt	MG/KG		1.7 U	1	2.7 B	1.7 B
7440-50-8	Copper	MG/KG		4.3 B		6.8	2.2 B
7439-89-6	Iron	MG/KG		2010		3750	1670
7439-92-1	Lead	MG/KG	1	21.3 N*		63.8 N*	1.9 N*
7439-95-4	Magnesium	MG/KG		193 B		2770	80.6 B
7439-96-5	Manganese	MG/KG		19.7 *		48.9 *	16.7 *
7439-97-6	Mercury	MG/KG		0.1 UN		0.62 N	0,09 UN
7440-02-0	Nickel Betassium	MG/KG		1.7 U		2.5 B	17.8
7440-09-7 7782-49-2	Potassium Selenium	MG/KG		103 U		102 U	101 U
7782-49-2 7440-22-4	Selenium Silver	MG/KG		0.22 U		0.22 U	0,22 U
7440-22-4	Sodium	MG/KG MG/KG		1.3 U		1.3 U	1.3 U
7440-28-0	Thatiium	MG/KG		43.7 U 0.32 U	1	43.3 U 0.33 U	42.9 U 0.33 U
7440-62-2	Vanadium	MG/KG		8.1 B	1	5.2 B	0.33 U 2.4 U
7440-66-6	Zinc	MG/KG		10.9 *	1	47.3 *	5.9 ÷
57-12-5	Cyanide	MG/KG		0.52 U	1	0.53 U	0.5 U
'	EPTOX METALS			-22	1	5.55	
7440-38-2	Arsenic	UQ/L		97.3 U	1	97.3 U	
7440-39-3	Barium	UQ/L		44 B	1	55 B	
7440-43-9	Cadmium	UQ/L		รับ	1	5 U	
7440~47-3	Chromium	UQ/L		6.7 U		6.7 U	
7439-92-1	Lead	UQ/L		55.9 U		55.9 U*	
7439-97-6	Mercury	UQ/L		0.2 U*		0.2 U*	
7782-49-2	Selenium	UQ/L		51.8 U*		51.8 U*	
7440-22-4	Silver	UG/L		7.2 U		7.2 U	

NYSDEC		SAMPLE ID:	GW01	GW01RE	GW02	GW02RE	GW03	GW13
WESTHAMPTO	N LANDFILL	LAB ID:	95055001	95055001RE	95055002	95055002RE	95055003	95055008
GROUNDWATI	ER ANALYTICAL DATA	SDG:	GW01	GW01	GW01	GW01	GW01	GW01
SDG: GW01		SAMPLED:	12/15/94	12/15/94	12/16/94	12/16/94	12/10/94	12/16/94
CAS NO.	COMPOUND	UNITS:		1 - 1 - 1 - 1	. 4.5.5	,	12,10,0	12,13,00
	VOLATILES			1		-		
74-87-3	Chloromethane	UG/L	10 U		10 U		100	10 U
74-83-9	Bromomethane	UG/L	10 U		10 U		100	100
75~01-4	Vinyl chloride	UG/L	10 U		10 U		10 U	10 U
75-00-3	Chloroethane	UG/L	10 U		10 U		100	100
75-09-2	Methylene chloride	UG/L	10 U		11		10 U	2 J
67-64-1	Acetone	UG/L	10 U		10 U		10 U	100
75-15-0	Carbon disutfide	UG/L	10 U		10 U		10 U	10 U
75-35-4	1,1-Dichloroethene	UG/L	10 U		10 U		10 U	10 U
75-34-3	1,1 - Dichloroethane	UG/L	10 U		10 U		10 U	100
544-59-2	1,2-Dichloroethene, Total	UG/L	10 Ū		10 U		10 U	100
67-66-3	Chloroform	UG/L	10 U		10 U		10 U	10 U
107-08-2	1,2-Dichloroethane	UG/L	10 U		10 U		10 U	10 U
78-93-3	2-Butanone	UG/L	10 U		10 U		10 U	10 U
71-55-6	1,1,1—Trichloroethane	UG/L	10 U		10 U		10 U	10 U
56-23-5	Carbon tetrachioride	UG/L	10 U	ľ	10 U		100	10 U
75-27-4	Bromodichloromethane	UG/L	10 U		10 U		100	10 Ü
78-87-5	1,2-Dichloropropane	UG/L	10 U		10 U		100	10 U
10081-01-5	cis-1,3-Dichloropropene	UG/L	10 U		10 U		10 U	10 U
79-01-6	Trichloroethene	UG/L	10 U		10 U		100	10 U
124-48-1	Chlorodibromomethane	UG/L	10 U		10 U		100	10 U
79-00-5	1,1,2-Trichloroethane	UG/L	10 U		10 U		100	10 U
71-43-2	<u>Benzene</u>	UG/L	10 U		10 U		100	10 U
10081-02-6	trans-1,3-Dichloropropene	UG/L	10 U		10 U		100	10 U
75-25-2	Bromoform	UG/L	10 U		10 U		100	10 U
108-10-1	4-Methyl-2-pentanone	UG/L	10 Ū		10 U		100	10 U
591-78-6	2-Hexanone	UG/L	10 U		10 U		100	10 U
127-18-4	Tetrachioroethene	UG/L	10 U		10 U		10 U	10 U
79-34-5	1,1,2,2—Tetrachloroethane	UG/L	10 U		10 U		100	100
108-88-3	Toluene	UG/L	10 U		10 U		100	10 U
108 -9 0-7	Chiorobenzene	UG/L	10 U		100		100	1 1
100-41-4	Ethylbenzene	UG/L	10 U		10 U	1	100	10 Ŭ
100-42-5	Styrene	UG/L	10 U		10 U		100	10 U
1330-20-7	Xylenes, Total	UG/L	10 U		10 U		100	100

NYSDEC		SAMPLE ID:	GW01	GW01RE	GW02	GW02RE	GW03	GW13
WESTHAMPT		LAB ID:	95055001	95055001RE	95055002	95055002RE	95055003	95055008
	ER ANALYTICAL DATA	SDG:	GW01	GW01	GW01	GW01	GW01	GW01
SDG: GW01		SAMPLED:	12/15/94	12/15/94	12/18/94	12/16/94	12/16/94	12/16/94
CAS NO.	COMPOUND	UNITS:		<u>'</u>				
	SEMIVOLATILES						_	
108-95-2	Phenoi	UG/L	10 U	10 U	10 U	1	10 U	10 U
111-44-4	bis(2-chloroethyl)ether	UG/L	10 U	10 U	10 U		10 U	10 U
95-57-8	2-Chlorophenol	UG/L	10 U	10 U	10 U		10 U	10 U
541~73-1	1,3-Dichlorobenzene	UG/L	10 U	10 U	10 U		10 U	10 U
106-46-7	1,4~Dichlorobenzene	UG/L	10 U	10 U	10 U		1 J	1 J
95-50-1	1,2-Dichlorobenzene	UG/L	10 U	10 U	10 U		0.8 J	0.8 J
95-48-7	2-Methylphenol	UG/L	10 U	10 U	10 U		10 U	10 U
108-60-1	2,2'-oxybie (1 - Chloro - propane)	UG/L	10 U	10 U	10 U		100	10 U
105-44-5	4-Methylphenol	UG/L	10 U	10 U	10 U		10 Ü	10 U
621 -64 -7	N-Nitrosodi-n-propylamine	UG/L	10 U	10 U	10 U		10 U	10 U
67-72-1	Hexachloroethane	UGAL	10 U	10 Ü	10 U		10 U	100
98-95-3	Nitrobenzene	UG/L	10 U	10 U	100		100	10 U
78-59-1	Isophorone	UGAL	10 U	100	100		100	100
88-75-5	2-Nitrophenol	UGAL	10 U	100	100			
105-67-9	2,4 - Dimethylphenol	• •					10 U	10 U
111-91-1	bis(2—chloroethoxy)methane	UG/L	10 U	10 U	10 U		10 U	10 U
120-83-2	2,4-Dichlorophenol	UG/L	10 U	10 U	10 U		10 U	10 U
120-83-2		UG/L	10 U	100	10 U		10 U	10 U
	1,2,4—Trichlorobenzene	UG/L	10 U	10 U	10 U		10 U	10 U
91-20-3	Naphthalene	UG/L	10 U	10 U	10 U		10 U	10 U
106-47-8	4-Chloroaniline	UG/L	10 U	10 U	10 U		10 U	10 U
87-68-3	Hexachlorobutadiene	UG/L	10 U	10 U	10 U		10 U	10 U
59-50-7	4-Chloro-3-methylphenol	UG/L	10 U	10 U	10 U		10 U	10 U
91-57-6	2—Methylnaphthalene	UG/L	10 U	10 U	10 U		10 U	10 U
77-47-4	Hexachlorocyclopentadiene	UG/L	10 U	10 U	10 U		10 U	10 U
88-05-2	2,4,6-Trichlorophenol	UG/L	10 U	10 U	10 U		10 Ū	10 U
95-95-4	2,4,5-Trichlorophenol	UG/L	25 U	25 U	25 U		25 U	25 U
91-58-7	2-Chloronaphthalene	UG/L	10 U	10 U	10 U		10 U	10 U
88-74-4	2-Nitroaniline	UG/L	25 U	25 U	25 U	}	25 U	25 U
131-11-3	Dimethyl phthalate	UG/L	10 U	10 U	10 U		10 U	10 U
208-96-8	Acenaphthylene	UG/L	10 U	10 U	100	ľ	100	10 U
606-20-2	2.6 - Dinitrotoluene	UG/L	10 U	100	100	ŀ	100	100
99-09-2	3-Nitroaniline	UG/L	25 U	25 U	25 U	ļ		
83-32-9	Acenaphthene	UG/L	10 U				25 U	25 U
51-28-5	2,4-Dinitrophenol			10 U	10 U		100	10 U
100-02-7	4-Nitrophenol	UG/L	25 U	25 U	25 U		25 U	25 U
132-64-9	Dibenzoturan	UG/L	25 U	25 U	25 U		25 U	25 U
		UG/L	10 U	10 U	10 U		10 U	10 U
121-14-2	2,4-Dinitrotoluene	UQ/L	10 U	10 U	10 U		10 U	10 U
84-66-2	Diethyl phthalate	UG/L	10 U	10 U	10 U		10 U	10 U
7005-72-3	4-Chlorophenyl phenyl ather	UG/L	10 U	10 U	10 U		10 U	10 U
88-73-7	Fluorene	UG/L	10 U	10 U	10U		10 U	10 U
100-01-6	4-Nitroaniline	UG/L	25 U	25 U	25 U		25 U	25 ∪
534-52-1	4,6-Dinitro-2-methylphenol	UQ/L	25 U	25 U	25 U		25 U	25 U
88~30-6	N-Nitrosodiphenylamine	UQ/L	10 U	10 U	10 U		10 U	10 U
101-55-3	4—Bromophenyl phenyl other	UG/L	10 U	10 U	10 U		100	10 U
118-74-1	Hexachlorobenzene	UG/L	10 U	10 U	10 U		100	10 U
87-88-5	Pentachiorophenol	UG/L	25 U	25 U	25 U		25 U	25 U
85-01-8	Phenanthrene	UG/L	10 U	10 U	100		100	10 U
120-12-7	Anthracene	UG/L	10 U	10 U	100		100	10 U
80-74-8	Carbazole	UGAL	10 U	100	100		10 U	100
64-74-2	Di-n-butyi phthalate	UG/L	2 BJ	2BJ	2 BJ		3 BJ	2 BJ
206-44-0	Fluoranthene	UG/L	10 U	100	10U		1	
129-00-0	Pyrene	UG/L				1	10 U	10 U
85-68-7	Butyl benzyl phthalate		10 U	100	10 U		10 U	10 U
91-94-1		UG/L	10 U	10 U	10 U		10 U	10 U
	3,3'-Dichlorobenzidine	UG/L	10 U	10 U	10 U		10 U	10 U
56-55-3	Benzo(a)anthracene	UG/L	10 U	10 U	10 U		10 U	10 U
218-01-9	Chrysene	UQ/L	10 U	10 U	10 U		10 U	10 U
117-81-7	bis(2—ethylhexyi)phthalato	UG/L	5 J	5 J	10 U		4 J	10 U
117-84-0	Di-n-octyl phthalate	UG/L	10 U	10 U	10 U		10 U	10 U
205-99-2	Benzo(b)fluoranthene	UQ/L	10 U	10 U	10 U		10 U	10 U
207-08-9	Benzo(k)fluoranthene	UG/L	10 U	10 U	10 U		10 U	10 U
50-32-8	Benzo(a)pyrene	UG/L	10 U	10 U	10 U		10 U	10 U
193-39-5	Indeno(1,2,3-cd)pyrene	UQ/L	10 U	100	10 Ü		100	10Ŭ
53-70-3	Dibenz(a,h)anthracene	UQ/L	10 U	100	10 U	1	10 Ŭ	10 Ü
				, ,,,,,	, ,,,,,	1	, 100	, ,,,,,

NYSDEC		SAMPLE ID:	GW01	GW01RE	GW02	GW02RE	GW03	GW13
WESTHAMPTO		LAB ID:	95055001	95055001RE	95055002	95055002RE	95055003	95055008
	ER ANALYTICAL DATA	SDG:	GW01	GW01	GW01	GW01	GW01	GW01
SDG: GW01		SAMPLED:	12/15/94	12/15/94	12/18/94	12/18/94	12/16/04	12/16/94
CAS NO.	COMPOUND	UNITS:						
	PESTICIDES/PCBs			į į				
319-84-6	alpha-BHC	UG/L	0.05 U		0.05 U	0.05 U	0.05 U	0. 05 U
319-85-7	beta-BHC	UG/L	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U
319-86-8	delta-BHC	UG/L	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U
58-89-9	Lindan●	UG/L	0.05 U		0, 05 U	0.05 U	0.05 U	0.05 U
76-44-8	Heptachlor	UG/L	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U
309-00-2	Aldrin	UG/L	0.05 U		0. 05 U	0.05 U	0.05 U	0.05 U
1024-57-3	Heptachlor epoxide	UG/L	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U
959-98-8	Endosulfan I	UG/L	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U
60-57-1	Dieldrin	UG/L	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
72-55-9	4,4'-DDE	UG/L	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
72-20-8	Endrin	UG/L	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
33213-65-9	Endosulfan il	UG/L	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
72-54-8	4,4'-DDD	UG/L	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U
1031-07-8	Endosulfan sulfate	UG/L	0.087 JP		0.1 U	0.1 U	0.1 U	0.1 U
50-29-3	4.4'-DDT	UG/L	0.1 U		0.1 U	0.1 U	0.1 Ŭ	0.1 U
72-43-5	Methoxychlor	UG/L	0.5 U		0.5 U	0.5 U	0.5 Ŭ	0.5 U
53494-70-5	Endrin ketone	UG/L	0.1 U	[0.1 U	0.1 U	0.10	0.1 U
7421-93-4	Endrin aldehyde	UG/L	0.1 U	1	0.1 U	0.1 U	0.1 U	0.1 U
5103-71-9	aipha-Chiordane	UG/L	0.05 U	,	0.05 U	0.05 U	0.05 U	0.05 U
5103-74-2	gamma-Chlordane	UG/L	0.05 U		0.05 U	0.05 U	0.05 U	0.05 U
8001-35-2	Toxaphene	UG/L	5.U		5 U	50	5U	5 U
12674-11-2	Aroclor 1016	UG/L	10		10	10	10	10
11104-28-2	Aroclor 1221	UG/L	2 U		20	20	20	2 U
11141-16-5	Aroclor 1232	UG/L	1 U		10	10		20 10
53469-21-9	Aroclor 1242	UG/L	1 U				10	
12672-29-6	Aroclor 1248	UG/L	1 U		10	1.0	10	10
11097-69-1	Aroclor 1254	UG/L	1 U		1 U 1 U	10	10	10
11096~82-5	Aroclor 1250	UG/L	1 U		10	10	10	10
11000-02-0	INORGANICS	UG/L	10		יי	10	10	1 U
7429-90-5	Aluminum	UG/L	754					
7440-36-0	Antimony	UG/L			7360		4370	2160
7440-38-2	Arsenic		58 U		58 U	i	58 U	58 U
7440-39-3	Barium	UG/L	2.3 B		4.2 B		4.1 B	4.1 B
7440-41-7	Bervilium	UG/L	180 B		30 B		16 B	11 B
7440-43-9	Cadmium	UG/L	1.1 U		1.10		1.1 U	1. <u>1</u> U
7440-70-2	Calcium	UG/L	5 U		5 U		5 U	5 U
7440-47-3		UG/L	33000		14900		26300	25500
	Chromium	UG/L	57.2	ļ	125		104	42.9
7440-48-4	Cobalt	UG/L	9.3 U		9.3 U		9,3 U	9.3 U
7440-50-8	Copper	UG/L	11.6 B		41.1		22.9 B	12 B
7439-89-6	Iron	UG/L	14200		30900		16700	8710
7439-92-1	Lead	UG/L	42.2 N		49.3 N		28.4 N	4.4 NW
7439-95-4	Magnesium	UG/L	5260		4190 B		5750	5300
7439-96-5	Manganese	UG/L	2040		462		393	337
7439-97-6	Mercury	UG/L	0.2 UN		0.2 UN		0.2 UN	0.87 N
7440-02-0	Nickel	UG/L	22 B		25.2 B		57.1	13.7 B
7440-09-7	Potassium	UG/L	28000		3430 B		3910 B	3710 B
7782-49-2	Selonium	UG/L	1.2 UN		1.2 UN		1.2 UN	1.2 UN
7440-22-4	Silver	UG/L	7.2 U		7.2 U		7.2 U	7.2 U
7440-23-5	Sodium	UG/L	17400		3740 B		5660	5640
7440-28-0	Thallium	UG/L	2.1 BW		1.8 U		1.8 U	1:8 U
7440-82-2	Vanadium	UG/L	13.7 U		30.6 B		15.8 B	13.7 U
7440-66-6	Zinc	UG/L	47.1		270		122	56.9
57-12-5	Cyanide	UG/L	10 U		10 U		10 U	10 U

NYSDEC		SAMPLE ID:	GW04	GW05	GW06	GW07	WB01	TB02
WESTHAMPTO		LAB ID:	95055004	95055005	95055008	95055007	95055009	95055010
	ER ANALYTICAL DATA	SDG:	GW01	GW01	GW01	GW01	GW01	GW01
SDG: GW01		SAMPLED:	12/16/94	12/15/94	12/18/94	12/16/94	12/16/94	12/16/94
CAS NO.	COMPOUND	UNITS:			1	' '		' ' '
	VOLATILES	***					i	
74-87-3	Chloromethane	UG/L	10 U	100				
74-83-9	Bromomethane	UG/L	10 U					
75-01-4	Vinyl chloride	. UG/L	10 U	10 U	100	10 U	10 U	10 U
75~00-3	Chloroethane	UG/L	10 U	100				
75-09-2	Methylene chloride	UG/L	10 U	10 U	10 U	2 J	40	100
67-64-1	Acetone	UG/L	10 U	5 J	10 U	10 U	10 U	100
75-15-0	Carbon disulfide	UG/L	10 U	10 U	10 U	10 U	100	100
75~35-4	1,1-Dichloroethene	UG/L	10 U	10 U	100	10 U	100	100
75-34-3	1,1-Dichloroethane	UQ/L	10 U	10 U	10 U	10 U	100	100
544-59-2	1,2-Dichloroethene, Total	UG/L	10 U	100				
67-66-3	Chloroform	UQ/L	1 J	10 U	10 U	1 J	100	100
107-06-2	1,2-Dichloroethane	UG/L	10 U	10 U	10 U	10 U	100	100
78-93-3	2-Butanone	UQ/L	10 U	100				
71-55-6	1,1,1 Trichloroethane	UG/L	10 U	10 U	100	10 U	10 U	100
56-23-5	Carbon tetrachloride	UG/L	10 U	100				
75-27-4	Bromodichloromethane	UG/L	10 U	100				
78-87-5	1,2-Dichloropropane	UQ/L	10 U	100				
10061-01-5	cls-1,3-Dichloropropene	UQ/L	10 U	100				
79-01-6	Trichloroethene	UQ/L	10 U	10 U	100	10 U	10 U	100
124-48-1	Chlorodibromomethano	UQ/L	10 U	100				
79-00-5	1,1,2-Trichloroethane	UG/L	10 U	10 U	100	10 U	100	100
71-43-2	Benzene	UQ/L	10 U	100				
10061-02-6	trans-1,3-Dichloropropene	UQ/L	10 U	10 U	100	10 U	100	100
75-25-2	Bromoform	UG/L	10 U	10 U	100	10 U	10 0	100
108-10-1	4-Methyl-2-pentanone	UG/L	10 U	10 U	100	10 U	100	100
591 -78 -6	2-Hexanone	UQ/L	10 U	10 U	100	10 U	100	100
127-18-4	Tetrachloroethene	UG/L	10 U	10 U	100	10 U	100	100
79-34-5	1,1,2,2-Tetrachloroethane	UG/L	10 U	10 Ŭ	100	10 U	100	100
108-88-3	Toluene	UG/L	10 U	10 Ü	100	10 Ü	100	100
108-90-7	Chlorobenzene	UG/L	10 U	10 U	100	100	100	100
100-41-4	Ethylbenzene	UQ/L	10 U	10 U	100	10 U	100	100
100-42-5	Styrene	UG/L	10 U	100	100	10 U	100	100
1330-20-7	Xylenes, Total	UG/L	10 U	10 Ŭ	100	10 U	100	100

NYSDEC	Shi i Alineu i	SAMPLE ID:	GW04	GW05	GW06	GW07	WB01	TB02
WESTHAMPTO	ER ANALYTICAL DATA	LAB ID: SDG:	95055004 GW01	95055005 GW01	95055006 GW01	95055007	95055009	95055010
SDG: GW01	En Aloce HOAL DAIA	SAMPLED:	12/16/94	12/16/94	12/16/94	GW01 12/16/94	GW01 12/16/94	GW01 12/16/94
CAS NO.	COMPOUND	UNITS:	12,10,04	12/10/04	12/10/84	12/10/84	12/10/84	12/10/84
_	SEMIVOLATILES						-	
108-95-2	Phenol	UG/L	11 U	10 U	10 U	10 U	10 U	
111-44-4	bis(2-chloroethyl)ether	UG/L	11 U	10 U	10 U	10 U	10 U	
95-57-8	2Chlorophenol	UG/L	11 U	10 U	10 U	10 U	10 U	
541-73-1	1,3-Dichlorobenzeno	UG/L	11 U	10 U	,10U	10 U	10 U	
106-46-7 95-50-1	1,4-Dichlorobenzene	UG/L	11 U	10 U	10 U	10 U	10 U	
95-48-7	1,2-Dichlorobenzene 2-Methylphenol	UG/L	11 U	10 U	10 U	10 U	10 U	
108-60-1	2,2'-oxybis (1-Chloro-propane)	UG/L	11 U 11 U	10 U 10 U	10 U 10 U	10 U	10 U	
106-44-5	4-Methylphenol	UG/L	11 U	100	100	10 U 10 U	10 U 10 U	
821-84-7	N-Nitrosodi-n-propylamine	UG/L	11 U	100	100	100	100	
67-72-1	Hexachloroethane	UG/L	11 Ü	100	100	10 U	100	
98-95-3	Nitrobenzene	UG/L	11 Ū	100	100	10 U	10 Ŭ	
78-59-1	isophorone	UG/L	11 U	10 U	10 U	10 U	10 U	
88 - 75-5	2-Nitrophenol	UG/L	11 U	10 U	10 U	10 U	10 U	
105-67-9	2,4-Dimethylphenol	UG/L	11 U	10 U	10 U	10 U	10 U	
111-91-1	bis(2-chloroethoxy)methane	UG/L	11 U	10 U	10 U	10 U	10 U	
120-83-2 120-82-1	2,4 - Dichlorophenol	UG/L	11 U	10 U	10 U	10 U	10 U	
91-20-3	1,2,4—Trichlorobenzene Naphthalene	UG/L	11 U	10 U	100	10 U	100	
106-47-8	4-Chloroaniline	UG/L	11 U 11 U	10 U 10 U	10 U 10 U	10 U	2 J	
87-68-3	Hexachlorobutadiene	UG/L	11 U	100	100	10 U 10 U	10 U 10 U	
59-50-7	4-Chloro-3-methylphenol	UG/L	110	100	100	100	100	
91-57-8	2-Methylnaphthalene	UG/L	11 Ü	100	100	100	100	
77-47-4	Hexachlorocyclopentadiene	UG/L	11 Ü	100	10 U	100	100	
88-06-2	2,4,6—Trichlorophenol	UG/L	11 U	10 U	100	100	100	
95-95-4	2,4,5-Trichlorophonol	UG/L	28 U	25 U	25 U	25 U	25 U	
91-58-7	2-Chioronaphthalene	UG/L	11 U	10 U	10 U	10 U	10 U	
88-74-4	2-Nitroaniline	UG/L	28 U	25 U	25.U	25 U	25 U	
131-11-3	Dimethyl phthalate	UG/L	11 U	10 U	10 U	10 U	10 U	
208-95-8 605-20-2	Acenaphthylene	UG/L	11 U	10 U	10 U	10 U	10 U	
99-09-2	2,6-Dinitrotoluene 3-Nitroaniline	UG/L	11 U	10 U	10 U	10 U	10 U	
83-32-9	Acenaphthene	UG/L UG/L	28 U 11 U	25 U 10 U	25 U	25 U	25 U	
51-28-5	2,4 - Dinitrophenol	UG/L	28 U	25 U	10 U 25 U	10 U 25 U	10 U 25 U	
100-02-7	4-Nitrophenol	UG/L	28 U	25 U	25 U	25 U	25 U	
132-64-9	Dibenzofuran	UG/L	11 U	10 U	10 U	10 U	100	
121-14-2	2,4 - Dinitrotoluene	UG/L	11 U	10 U	10 U	10 U	10 U	
84-66-2	Diethyl phthalate	UG/L	11 U	10 U	10 U	10 U	10 U	
7005-72-3	4—Chlorophenyl phenyl ether	UG/L	11 U	10 U	10 U	10 U	10 U	
86-73-7	Fluorene	UG/L	11 U	10 U	10 U	10 U	10 U	
100-01-6	4-Nitroaniline	UG/L	28 U	25 U	25 U	25 U	25 U	ļ
534-52-1 86-30-6	4,6~Dinitro-2-methylphenol N-Nitrosodiphenylamine	UG/L	28 U	25 U	25 U	25 U	25 U	1
101-55-3	4-Bromophenyi phenyi ether	UG/L UG/L	11 U 11 U	10 U 10 U	100	10 U	100]
118-74-1	Hexachiorobenzene	UG/L	11 U	100	10 U 10 U	10 U 10 U	10 U 10 U	ĺ
87-86-5	Pentachlorophenol	UG/L	28 U	25 U	25 U	25 U	25 U	l
85-01-8	Phenanthrene	UG/L	11 Ŭ	10 U	10 U	10 U	10 U	l
120-12-7	Anthracene	UG/L	11 U	10 U	10 U	10 U	100	l
86-74-8	Carbazole	UG/L	11 Ū	10 U	10 U	10 U	10 U	
84-74-2	Di-n-butyl phthalate	UG/L	5 BJ	10 U	2 BJ	3 BJ	2 BJ	l
206-44-0	Fluoranthene	UG/L	11 U	10 U	10 U	10 U	10 U	l
129-00-0	Pyrene	UG/L	11 U	10 U	10 U	10 U	10 U	I
85-68-7 91-94-1	Butyl benzyl phthalato	UG/L	11 U	10 U	10 U	10 U	10 U	l
56-55-3	3,3'-Dichlorobenzidine Benzo(a)anthracene	UG/L UG/L	11 U	10 U	10U	10 U	100	l
218-01-9	Chrysene	UG/L	11 U 11 U	10 U 10 U	10 U	10 U	100	
117-81-7	bis(2-ethylhexyl) phthalate	UG/L	11 0	100 1 J	10U 7J	10 U	10 U 10 U	
117-84-0	Di-n-octyl phthalate	UG/L	110	100	100	100	100	
205-99-2	Benzo(b)fluoranthene	UG/L	11 U	100	100	100	100	l
207-08-9	Benzo(k)fluoranthene	UG/L	11 U	100	100	100	100	
50-32-8	Benzo(a)pyrene	UG/L	11 Ü	100	100	10 Ŭ	100	1
193-39-5	Indeno(1,2,3-cd)pyrene	UG/L	11 Ŭ	100	100	10.0	100	
53-70-3	Dibenz(a,h)anthracene	UG/L	11 U	10 U	10 U	10 U	10 U	l
191-24-2	Benzo(ghi)perylene	UG/L	11 U	10 U	10 U	10 U	10 U	I

NYSDEC		SAMPLE ID:	GW04	GW05	GW06	GW07	118004	TDAA
WESTHAMPTO	IN LANDEILI	LAB ID:	95055004	95055005	95055006	95055007	WB01	TB02
	ER ANALYTICAL DATA	SDG:	GW01	GW01	93033006 GW01	95055007 GW01	95055009 GW01	95055010
SDG: GW01	ZII NO CI HOLE DAIA	SAMPLED:	12/16/94	12/16/94	12/16/94			GW01
CAS NO.	COMPOUND	UNITS:	12/10/84	12/10/84	12/10/94	12/16/94	12/16/94	12/16/94
-	PESTICIDES/PCBs							
319-84-6	alpha-BHC	UG/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
319-85-7	betaBHC	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
319-86-8	delta-BHC	UG/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
58-89-9	Lindane	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
76-44-8	Heptachior	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
309-00-2	Aldrin	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
1024-57-3	Heptachlor epoxide	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
959-98-8	Endosulfan I	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
60-57-1	Dieldrin	UQ/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
72-55-9	4.4'-DDE	UQ/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
72-20-8	Endrin	UQ/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
33213-65-9	Endosulfan II	UG/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
72-54-8	4.4'-DDD	UQ/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
1031-07-8	Endosulfan sulfate	UG/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U ·	
50-29-3	4,4'-DDT	UQ/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
72-43-5	Methoxychlor	UQ/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
53494-70-5	Endrin ketone	UQ/L	0.1 U	0.1 U	0.3 U	0.1 U	0.1 U	
7421-93-4	Endrin aldohyde	UQ/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	
5103-71-9	sipha-Chlordane	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.15 0.05 U	
5103-74-2	gamma-Chlordane	UQ/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	
8001-35-2	Toxaphene	UQ/L	5.05 U	5.050	5 U	5 U	5 U	
12674-11-2	Arocior 1016	UQ/L	10	10	10	10	10	
11104-28-2	Aroclor 1221	ŪQ/L	žŪ	20	20	ŽÜ	20	
11141-16-5	Arocior 1232	UQ/L	10	10	10	10	10	
53469-21-9	Aroclor 1242	UQ/L	10	1 Ü	10	10	10	
12672-29-6	Arocior 1248	UQ/L	iŬ	10	liυ	1 0	iŭ	
11097-69-1	Aroclor 1254	UG/L	iŭ	10	iŭ	iŭ	iŭ	
11095-82-5	Aroclor 1260	ÜQL	1 Ŭ	10	เบ้	iŬ	iŭ	
	INORGANICS				'			
7429-90-5	Aluminum	UQ/L	5790	3480	1610	5210		
7440-36-0	Antimony :	UQ/L	58 U	58 U	58 U	58 U		
7440-38-2	Arsenic	ng/r	3.8 8	2.4 BW	2.1 B	2.3 B		
7440-39-3	Barium	UQ/L	26 B	77 B	9 B	29 B		
7440-41-7	Beryllium	UQ/L	1.1 U	1.1 U	1.1 0	1.1 U		
7440-43-9	Cadmium	UQ/L	5 U	5 U	รับ	5 U		
7440-70-2	Calcium	UG/L	5800	22400	30900	2160 B		
7440-47-3	Chromium	UG/L	65.4	72.5	168	142		
7440-48-4	Cobalt	UQ/L	9.3 U	9.3 U	9.3 U	9.3 U		
7440-50-8	Copper	UQ/L	19.6 B	15.9 B	23.2 B	31.1		
7439-89-6	Iron	UG/L	19200	18200	25100	41100]	
7439-92-1	Lead	UQ/L	10.8 N	47.9 N	3.5 N	223 N		
7439-95-4	Magnesium	UQ/L	2520 B	7570	9900	1990 B		
7439-96-5	Manganeso	UG/L	223	535	413	645		
7439-97-6	Mercury	UQ/L	0.2 UN	0.2 UN	0.7 N	0.2 UN		
7440-02-0	Nickel	ng/r	20 B	9.4 U	19.5 B	45.4		
7440-09-7	Potessium	UQ/L	1480 B	4720 B	1120 B	955 B		
7782-49-2	Selenium	UQ/L	1.2 UN	1.2 UN	1.2 UNW	1.2 UN		
7440-22-4	Silver	UQ/L	7.2 U	7.2 U	7.2 U	7.2 U		
7440-23-5	Sodium	UQ/L	4350 B	85000	6720	5370		
7440-28-0	Thallium	UG/L	3 BW	1.8 UW	1.8 U	1.8 U	1	
7440-62-2	Venedium	UQ/L	24.6 B	13.7 U	13.7 U	17.4 B		
7440-66-6	Zine	UG/L	115	263	1110	238		
57-12-5	Cyanide	UG/L	10 U	10 U	100	10 U		

APPENDIX C

SELECTED REFERENCES

UPDATE UPDATE UPDATE

Toxicological Profile for

IRAD

U.S. DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service

Agency for Toxic Substances and Disease Registry

Comment Period Ends:

February 18, 1992

DRAFT

TOXICOLOGICAL PROFILE FOR LEAD

Prepared by:

Clement International Corporation Under Contract No. 205-88-0608

Prepared for:

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service

Agency for Toxic Substances and Disease Registry

October 1991

5.4.3 Soil

The natural lead content of soil derived from crustal rock, mostly as galena (PbS), typically ranges from <10 to 30 μ g/g soil. However, the concentration of lead in the top layers of soil varies widely due to deposition and accumulation of atmospheric particulates from anthropogenic sources. The concentration of soil lead generally decreases as distance from contaminating sources increases. Next to roadways, it is estimated that the levels of lead in the upper layer of soil are typically 30-2,000 μ g/g higher than natural levels, although these levels drop exponentially up to 25 m from the roadway (EPA 1986a). Soil adjacent to a smelter in Missouri had lead levels in excess of 60,000 μ g/g (Palmer and Kucera 1980). Soils adjacent to houses with exterior lead-based paints may have lead levels of >10,000 μ g/g (EPA 1986a). Extractable lead in surface soil samples (0-5 cm depth) from an agricultural area near a car battery manufacturing plant (taken at 0.3 km from the source) decreased from 117 μ g/g to 1 μ g/g within 1 year after the plant stopped operating (Schalscha et al. 1987).

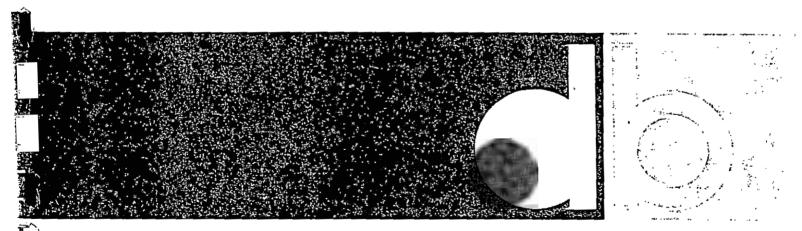
Studies carried out in Maryland and Minnesota indicate that within large light-industrial urban settings such as Baltimore, the highest soil lead levels generally occur in inner-city areas, especially where high traffic flows have long prevailed (Mielke et al. 1983, 1984/85, 1989). In 1981, soil lead levels in the Minneapolis/St. Paul inner-city area were 60 times higher (423 μ g/g) than levels found in rural Minnesota (6.7 μ g/g), with almost all the increase (95%) resulting from the combustion of leaded gasoline. In 1985, Minnesota legislated the reduction of lead in gasoline used in the state. A study conducted in Minnesota after the lead abatement act was in effect found that median soil lead levels taken from the foundations of homes, in yards, and adjacent to the street were 700 μ g/g, 210 μ g/g, and 160 μ g/g, respectively; comparable samples taken from the smaller city of Rochester, Minnesota did not exceed 100 μ g/g for any location (Mielke et al. 1989). A second survey was conducted of similar residential Minnesota locations that focused on soils where children might be expected to play. The survey showed that average lead levels continued to be elevated in samples taken from the foundations of homes, but that lead levels were low in play areas ($<50 \,\mu g/g$) and residential soils ($<300 \mu g/g$) when the exterior of the dwelling was free of lead-based paint (Schmitt et al. 1988). Severely contaminated soils were found in foundation samples adjacent to private dwellings with exterior leadbased paint at levels up to 20,136 μ g/g. Elevated soil lead concentrations were found in larger urban areas (St. Paul, Minneapolis, Duluth) and to a lesser extent in smaller urban areas (Rochester, St. Cloud) and in rural areas, although the concentrations in the latter areas were lower but equally widespread, possibly as a result of auto emissions (Schmitt et al. 1988).

In the state of Maine, soil samples taken from areas of high risk (within 1-2 feet of a foundation of a building more than 30 years old) indicated that 37% of the samples had high lead concentrations (>1,000 μ g/g). Forty-four percent of the private dwellings had high lead levels in the soil adjacent to the foundation, whereas only 10% of the public locations (playgrounds, parks, etc.) did. In addition, the largest percentage (54%) of highly contaminated soil was found surrounding homes built prior to 1950, whereas homes built after 1978 did not have any lead contamination in the soil (Krueger and Duguay 1989). In the Cincinnati prospective lead study of public and private low- and moderate-income housing, the lead concentration ranges were: painted interior walls, 0.1-35 mg/cm²; interior home surface dust, 0.04-39 mg/m² and 72-16,200 μ g/g; interior home dustfall, 0.0040-60 mg/m²/30 days; exterior dust scrapings, 20-108,000 μ g/g; and dust on children's hands, 1-191 μ g, with the lead levels in older, private, deteriorating or dilapidated housing being higher than the levels in newer, public and rehabilitated housing (Clark et al. 1985).

5. POTENTIAL FOR HUMAN EXPOSURE

In 1972, household dust samples taken near nonferrous ore smelters in El Paso, Texas, that were known to emit 1,012 metric tons of lead per year, had lead levels of 22,191 μ g/g (geometric mean) and 973 μ g/g at distances from the smelter of 1.6 km and 6.4 km, respectively (Landrigan and Baker 1981).

5.5 GENERAL POPULATION AND OCCUPATIONAL EXPOSURE


Information on occupational exposure to lead is obtained primarily from the National Occupational Exposure Survey (NOES) and industry surveys of workers. While occupational exposure is widespread, environmental monitoring data on levels of exposure in many occupations are not available. A permissible exposure limit (PEL) of 50 µg/m³ for workplace air has been established for lead by the OSHA (29 CFR 1910.1025). The NIOSH has estimated that more than 1 million American workers were occupationally exposed to inorganic lead in greater than 100 occupations (NIOSH 1977a, 1978f). The NOES, conducted by NIOSH between 1980 and 1983, estimated that 25,169 employees were exposed to tetraethyl lead; approximately 57,000 employees were exposed to various lead oxides mostly in non-ferrous foundries, lead smelters, and battery plants; 3,902 employees were exposed to lead chloride; and 576,579 employees were exposed to some other form of lead in the workplace in 1980 (NIOSH 1990).

Potentially high levels of lead may occur in the following industries: lead smelting and refining industries, battery manufacturing plants, steel welding or cutting operations, construction, rubber products and plastics industries, printing industries, firing ranges, radiator repair shops and other industries requiring flame soldering of lead solder, and gas stations (EPA 1986a; Feldman 1978; Goldman et al. 1987; NIOSH 1978a). In these work areas, the major routes of lead exposure are inhalation and ingestion of lead-bearing dusts and fumes. Airborne dusts settle onto food, water, clothing, and other objects, and may subsequently be transferred to the mouth. Therefore, in these occupational areas, good house-keeping and good ventilation have a significant impact on the extent of worker exposure. Workers involved in the production of gasoline additives, tetraethyl lead and tetramethyl lead, are exposed to both inorganic lead and alkyl lead. The major potential hazard to these workers appears to be from dermal exposure since alkyl leads may be absorbed through the skin (EPA 1986a). Other occupations where exposure to lead may occur are artists and craftsmen who may be exposed to lead used in paints, ceramic glazes, and lead solder for sculpture and stained glass (Hart 1987) and welders where lead concentrations in the welding fumes generated by gas metal arc welding of carbon steel ranged from 1.0 to 17.6 μ g/m³, well below the established PEL for the workplace (Larson et al. 1989).

Lead exposure is frequently monitored by biological testing (e.g., determination of urinary lead levels, blood lead levels, urinary coproporphyrin levels, or ALA levels) rather than monitoring the workplace environment for lead concentrations (EPA 1986a; NIOSH 1978a). A recent employer survey of California industries that use lead indicated that 229,434 employees were potentially exposed to lead in the workplace; of these workers, 59,142 (25%) had received routine biological monitoring (i.e., determination of blood lead levels), and only 24,491 (10%) were in positions where environmental monitoring (workplace air lead levels) had ever been conducted. In addition, approximately 12% of the potentially exposed individuals were in the construction industry which does not require air or blood monitoring (Rudolph et al. 1990). Workers in an electronic components plant that makes ceramic-coated capacitors and resisters using leaded glass for the ceramic coating were found to be exposed to ambient lead levels ranging from 61 to 1,700 μ g/m³ and to have blood lead levels ranging from 16 to 135 μ g/dL, with approximately 30% of the workforce on medical leave as a result of their blood lead levels exceeding 40 μ g/dL. An analysis of blood lead levels among family members of the exposed workers gave mean levels of 10.2 μ g/dL compared with 6.2 μ g/dL for families of nonexposed workers (Kaye ct al. 1987).

SCAVENGER WASTE LANDFILL LEACHATE STUDY FOR TOWN OF BROOKHAVEN

Dvirka and Bartilucci

Consulting Engineers

SCAVENGER WASTE
LANDFILL LEACHATE
STUDY

FOR

TOWN OF BROOKHAVEN

DVIRKA & BARTILUCCI CONSULTING ENGINEERS

SEPTEMBER 1981

B. Septage and Sludge

Wastes brought to the Town of Brookhaven's present scavenger waste treatment plant, located in Manorville, New York, originate from two principal sources:

- the pumpings of subsurface sewage disposal systems
 from private dwellings and commercial establishments;
- the treated sludge from sewage treatment plants located within the Town.

An investigation conducted by the Town on sources of scavenger waste received at the Manorville site estimated septage wastes to constitute 62% of the total scavenger load, and treatment plant sludge the remaining 38%. One essential factor in the development of alternatives for the Town is the ultimate sizing of the proposed system to handle present and projected flows for scavenger wastes, as well as landfill leachate.

In order that a proper determination of present and future flows may be conducted, relevant data from various sources require review and evaluation. Actual flows were determined through a review of Town records for the Manorville site.

Population estimates were based on Long Island Lighting Company and United States Census Data Reports.(6, 14) Utilizing this data, it was then possible to develop per capita generation values, from which future flows may be extrapolated. As stated in Table II-4, waste generation rates have averaged 0.15 gallons per capita per day. Maximum daily flows average 3.0 times

III WASTESTREAM CHARACTERISTICS

The three wastestreams addressed in this study - landfill leachate, cesspool septage and sewage sludge, required a thorough evaluation of their individual characteristics, so that a viable treatment/disposal alternative may be developed. The three wastes possess, in many ways, similar characteristics; while in others, the differences are distinct. The compatibility of these wastes required evaluation, since an optimal solution was required for processing all the wastes.

The first step in this evaluation encompassed a review of all analytical data provided by the Town, on each of the wastestreams involved. The data was initially screened, to determine possible gaps which might inhibit an effective evaluation of all the potential alternatives available to the Town. In order to fill these gaps, a series of samplings was conducted. The results of these samplings were tabulated and characteristic qualities developed; the summary of which is contained in Tables III-1 and III-2. A review of this data indicates the myriad of constituents found in these wastes, many of which will require reduction prior to discharge to the receiving environment.

TOWN OF BROOKHAVEN WASTE STREAM QUALITIES PRIORITY POLLUTANTS TABLE III - I

CONSTITUENT	LANDFILL LEACHATE	MANORVILLE * LAGOON (SEPTAGE/SLUDGE	TRUCKS (SEPTAGE)	COUNTY TRUCKS (SLUDGE)
рН	6.4	6.0	6.0	6.1
Total Alkalinity	5,125	428		
Hardness	3,892	186		
Chlorides	991	72	69	
Specific Conductance	12,929	793	1,173	
Total Solids	9,1850	10,568 9	10,8800	
Dissolved Solids	7,563 a	1,216 ^a	1,918 a	
Biochemical Oxygen Demand	2,425	6,864	6,510	2,600¢
Chemical Oxygen Demand	5,715	15,756	24,756	•
Total Kjeldahl Nitrogen	530	135		
Total Nitrogen	717	265	280	82 c
Total Phosphorus	0.2	24b		
Ortho Phosphate	0.2°	27b		
Sulfate	415	47		
Iron	611	49	81	52¢
Manganese	26	1.5	0.2°	
Cadmium	0.007	0.02	0.17	0.05
Copper	0.07	4.2	36	8.3
Lead	.127	0.7	8.0	1.7
Nickel	0.23	0.4	< 0.37	0.20
Total Chromium	0.66	0.2	1.6	0.3
Hexavalent Chromium	< 0.04	.02	0.5	
Potossium	572	27	25¢	
Sodium	724	130	85	
Mercury	0.001	.003		
Calcium	938	42	64c	
Silver	0.02	0.05	0.010	
Fluoride	0.2	0.3	1.20	
Zinc	18	19	60	5.6°
Arsenic	.006	.007		
Cyanide	< 0.04°	< 0.04		
Suspended Solids	175	17,810	9,242	5,000¢
Phenois	0.066¢			
Total Coliform	14	>2,400	> 2,400	
Fecal Coliform	< 3	>2,400	> 2,400	

a = Direct correlation cannot be drawn due to differing number of samples

Note: All values are mg/l except for pH units and fecal coliform (MPN/IOOml) values

b = Direct correlation cannot be drown due to differing number of samples

c = Limited analysis

TOWN OF BROOKHAVEN WASTE STREAM QUALITIES PRIORITY POLLUTANTS TABLE III-2 (Page 1 of 3)

ORGANIC CONSTITUENTS	LA NOFILL LEA CHATE	MANORVILLE I LAGOON (SEPTAGE/SLUDGE)			
Lindane	<0.05 a	< 1 a			
Heptachlor	< 0.05 a	< 0.4 a			
Aldrin	0.05 a	< 0.2 □			
Heptachlor epoxide	< 0.05 a	< 0.4 g			
Dieldrin	< 0.05 a	< 0.05 a			
Endrin, aldehyde	< 0.05 a	< 0.1 a			
o,p-DDT	< 0.05 a	< 0.4 a			
Methoxychiar	< 0.1 a	<0.1 a			
Toxaphene	< 1 0	< 4 a			
Chlordane	< 1 a	< 2 a			
a-Endosulfan	< 0.5 a	< 0.5 a			
b^Endosulfan	< 0.5 a	< 0.5 a			
o,p-DDE	< 0.05 a	< 0.4 a			
p,p-DDE	< 0.05 a	< 0.4 a			
0,p -DDD	<0.05 a	<0.05 a			
p,p-DDD	< 0.05 a	<0.4 a			
а внс	< 0.05 a	<1 a			
ь внс	< 0.05 a	<1 a			
g BHC	<0.05 a	<1 a			
w BHC	<0.05 d	<1 a			
Arochior 1016	< l a	< 5 a			
Arochior 1221	< 1 a	< 5 a			
Arochior 1232	< 1 a	<40 a			
Arochlor 1242	< 1 a	<40 a			
Arochlor 1248	< 1 a	<10 a			
Arochlor 254	< 1 a	< 2 g			
Arochlor 1260	< 1 a	<1 a			
C5 to CIO Aliphatic hydrocarbons	<12 a	10 a			
Pentane	b	- b			
Hexane	- b	- b			
Heptane	- b	- b			
Octane	- b	- b			
Nonane	- b	- b			

Note: All values in micrograms per liter.

a = Based on one sample
b = Included in C5 to ClO Aliphatic hydrocarbon value.

TOWN OF BROOKHAVEN WASTE STREAM QUALITIES PRIORITY POLLUTANTS TABLE III - 2 (Page 2 of 3)

TABLE III-2 (FOGS 20:37											
ORGANIC CONSTITUENTS	LANDFILL LEACHATE	MANORVILLE * LAGCON (SEPTAGE / SLUDGE)									
Decane	- b	- b									
Benzene	25 a	2 a									
Toluene	13 a	300 a									
O-xylene	38 a	9 a									
M-xylene	92 a	20 a									
P-xylene	21 a	7 a									
Methylene chloride	40	11									
I.I.2 Trichloro - I,2,2 trifluoroethane	- <3	< 1									
Chloroform	<3	<2									
I,I,! - Tríchloroethane	<3	44									
Carbon tetrachloride	<3	< 1									
1,2 - Dichloroethane	<8	< 5									
Trichloroethylene	6	14									
Bromodichloromethane	<3	< 1									
Tetrachloroethylene	<6	80									
Chlorodibromomethane	<3	</td									
Bromoform	<6	< 1 a									
Trans-1,2-dichloroethene	<₿	< 5 a									
Cis-1, 2-dichloroethene	< B	60 a									
I, 2 - Dichloropane	<8	<5 a									
I,I - Dichloroethane	<8	8 a									
I, I Dichloroethylene	< 8	< 5 a									
1,1,2 Trichlorosthane	< 8	< 5 a									
Vinyl Chloride	- c	- с									
Acenaphthene	<5 a	* a									
Benzidine	< 5 a	< 5 a									
1,2,4- Trichlorobenzene	< 5 a	* 0									
Hexachlorobenzene	< 5 0	< 5 Q									
Hexachloro ethane -	" < 5 a	< 5 a									
bis (2-chloroethyl) ether	<5 a	<5 a									
2-Chloronaphthalene	< 5 a	< 5 a									
1,2-Dichlorobenzene	< 5 a	20 a									
1,3 - Dichlorobenzene	< 5 a	< 5 a									
I,4- Dichlorobenzana	11 0	2 7 a									
3,3 -Dichlorobenzidine	<5 a	<5 a									

Note: All values in micrograms per liter.

^{* =} Values of 1-3 ppb still giving a reasonable spectrum. c = Interferences precluded a viable analysis a = Based on one sample.

b = Included in C5 to C10 Aliphatic hyrocarbon value

TOWN OF BROOKHAVEN WASTE STREAM QUALITIES PRIORITY POLLUTANTS TABLE III - 2 (Page 3 of 3)

ORGANIC CONSTITUENTS	LANDFILL LEACHATE	MANOR VILLE & I LAGOON (SEPTAGE / SLUDGE)
2,4-Dinitrotoluene	< 5 a	<5 a
2,6 - Dinitrotoluene	<5 a	<5 a
1,2 - Diphenylhydrazine	<5 a	<5 a
Fluoranthene	<5 a	* □
4-Chlorophenyi phenyi ether	<5 a	<5 a
4-Bromophenyl phenyl ether	<5 a	<5 α
bis(2-chloroisopropyl) ether	< 5 a	< 5 a
bis(2-chloroethoxy) methane	<5 a	< 5 a
Hexachlorobutad iene	<5 a	<5 a
Hexachlorocyclopentadiene	<5 a	<5 a
Isaphorone	<5 a	< 5 a
Napthalene	27 a	26 a
Nitrobenzene	<5 a	< 5 a
N-nitrosodimethylamine	< 5 a	< 5 a
N-nitrosodiph enylamine	2.7 a	< 5 a
N-nitrosodi-n-propylamine	< 5 a	<5 a
2,3,7,8 - Tetrachlorodibenzo - p - diaxin	<5 a	<5 a
bis (2-ethylhexyl) phthalate	< 5 a	12 a
butyl benzyl phthalate	< 5 a	* a
di-n-butyl phthalate	< 5 a	* ₩ a
di-n-actyl phthalate	<5 q	* a
Dimethyl phthalate	< 5 a	<5 a
Benzo-(a) anthracene	< 5 a	< 5 a
Benzo- (a) pyrene	<5 a	<5 a
3,4-benzofluoroanthene	<5 a	<5 a
Benzo (k) fluoroanthene	< 5 a	<5 a
Chrysene	< 5 a	<5 a
Anthracene	< 5 a	* a
Benzo (ghi) peryline	< 5 a	<5 a
Fluorene	< 5 a	<5 a
Phenanthrene	< 5 a	* a
Bibenzo (a,h) Anthracene	< 5 a	<5 a
Indeno (I,2,3-cd) pyrene	< 5 a	<5 o
Pyrene	< 5 a	* 0
p.p - DDT	< 0.05 a	< 0.4 a

Note: All values in micrograms per liter.

^{₩=}Values of 1-3 ppb still giving a reasonable spectrum.

a = Bosed on one sample.

Septage/sludge qualitative data was derived essentially from three sources:

- 1. cesspool pumpout trucks
- 2. County sludge trucks
- the No. 1 lagoon at the Manorville scavenger waste treatment plant (which received both septage and sludge wastes)

Samples collected out of the Manorville lagoon would be expected to possess somewhat lower concentrations for certain parameters than those collected from the trucks themselves, since wastes in the lagoon tend to settle with much of the constituents concentrating in the sediment. The data, for the most part, confirms this.

The scavenger wastes typically contain high amounts of suspended solids, both organic and inorganic, as well as significant BOD and COD values. Although heavy metals tend to accumulate in sewage sludge, and also in septic wastes, the values encountered at the Town's Manorville Scavenger Waste Treatment Plant are higher than normally found in domestic wastes. See Table III-1 for Manorville heavy metal concentrations. These relatively high mean concentrations are due to peaks in the data, indicative of industrial waste discharges. Considering the lack of effective monitoring and

control procedures at the Manorville facility, the receipt of periodic industrial waste loads is a distinct probability. The implementation of an effective surveillance program at the Town's future receiving station should substantially reduce septage heavy-metal concentrations.

The data also indicates the presence of certain synthetic, organic compounds in the septage waste, the sources of which are suspected to be cesspool additives and solvents (household, commercial and industrial). Solvent concentrations should also decline with the onset of an effective monitoring and surveillance program at the scavenger waste receiving facility.

The State's recently-enacted amendment to the Environmental Conservation Law entitled Article 39 prohibits the usage of sewage system cleaners and additives on Long Island. Once the full effects of this law are realized, concentrations of synthetic organic compounds in received septage wastes should commensurately diminish.

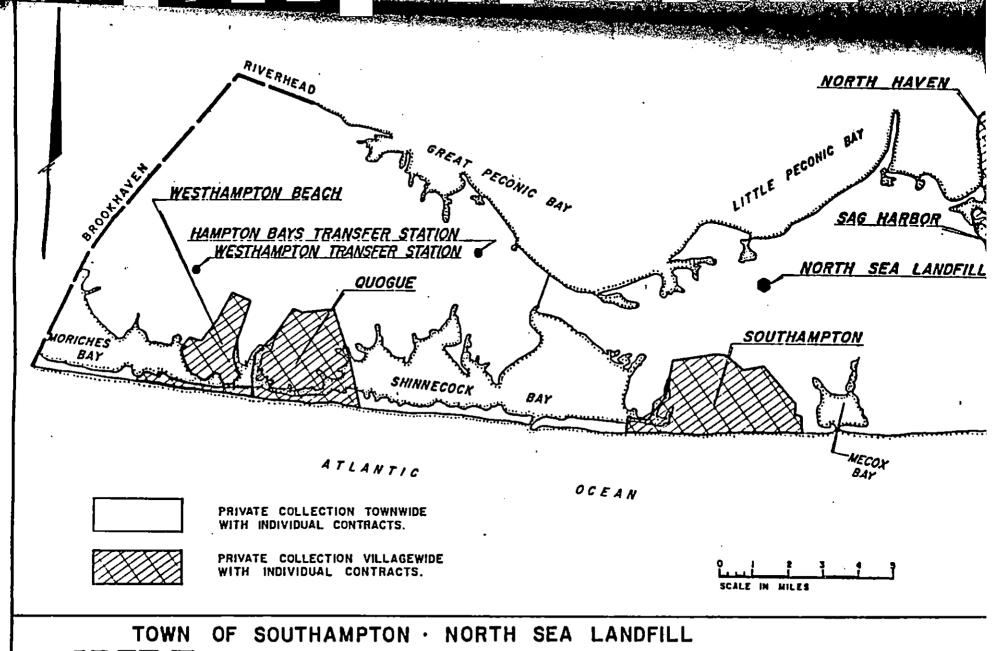
The integrated wastestreams which require treatment and disposal present a profile which is characterized by a slightly acidic pH, high solids concentrations (suspended and dissolved fractions), significant BOD, COD and nitrogen (primarily ammonia) loadings, substantial amounts of chlorides, iron and zinc, with somewhat lower quantities of heavy metals, and some small amounts of synthetic organics present.

REVISED

APPLICATION OF

TOWN OF SOUTHAMPTON

TO THE


NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
FOR HOUSEHOLD REFUSE CONTAINER TRANSFER FACILITY
WESTHAMPTON

NYSDEC NO. 10-89-0030

Prepared By:

LOUIS K. MCLEAN ASSOCIATES, P.C. Consulting Engineers 437 South Country Road Brookhaven, NY 11719

September, 1989

TOWN OF SOUTHAMPTON NORTH SEA LANDFILL

SOLID WASTE COLLECTION AREAS.

LOUIS K. McLEAN ASSOCIATES, P.C.

FIGURE NO. 2

NEW YORK STATE DEPARTMENT OF ENVIRON DIVISION OF SOLID AND HAZARI			. 1				
APPLICATION FOR APPROVAL SOLID WASTE MANAGEM		DEPARTMENT ACTION Approved Disabi	DATE				
LE APPLICATION INSTRUCTIONS ON REVERSE SIDE							
T. CWNER'S NAME Town of Southampton	2. ADDRESS (Street, City, State, Zi 116 Hampton Rd., Sc	,	3. TELEPHONE NUMBER (516) 283-6000				
4. OPERATOR'S NAME Sanitation Brian Gilbride, Superintendent		5. ADDRESS (Street, City, State, Zip Code) 11968 6. TELEPHONE NUM 116 Hampton Rd., Southampton, N.Y. (516) 283-5					
7A ENGINEER'S NAME Eugene F. Daly, P.E.	8. ADDRESS (Street, City, State, Zity) 437 South Country F		9. TELEPHONE NUMBER Y (516) 286-8668				
	ROSECT FACILITY: Composing tion Pyrolysis Resource Record Household refuse cont	very—Energy Resource Re	covery — Materials				
Project consist of a facility the refuse into refuse container traffeatures. When containers reach truck tractor for disposal at the DESCRIBE LOCATION OF FACILITY LAMBOR & USGS TO West Hampton Facility - Old Counter	ailers. These contains their capacity they ne Town's North Sea La opographic Map showing the exact local	ner trailers container transported in andfill.	ain self compacti				
13. COUNTY IN WHICH FACILITY IS LOCATED Suffolk	14. ENVIRONME Stony Bro		ON IN WHICH FACILITY IS LOCA				
Town of Southampton including the within the Township (Westhampton Southampton, Pine Valley, North	ne incorporated Villag	COUNTY	NO. OF MUNICIPALIT				
This facility is located at the dispose of their household refusemechanically compact the refuse	site of an inactive is	landfill. Town rood facilities.	esidents are able These facilities				
17. If facility is other than a sanitary landfill, describe the or, if recyclable, indicate markets.	residues in terms of quantities and type	s. Also indicate the methods a	nd locations of residue disposal				
Westhampton facility - 3990 t	ons/year household re	fuse					
•							
18. IF FACILITY IS A SANITARY LANDFILL, PROVIDE THE	FOLLOWING INFORMATION:	feet c. Depth to nearest g	roundwater;feet				

__feet e. Distance to nearest airport _____ miles f. Expected life of site: _____

Current

I hereby affirm under penalty of perjury that information provided on this form and attached statements and exhibits is true to the best of my knowledge.

and belief. False statements made herein are gunishable as a Class A misdemeanor pursuant to Section 210.55 on the Penal Law

20. ESTIMATED POPULATION SERVED

22. ESTIMATED DAILY TONNAGES OF SOLID WASTE

"Solid Waste Management Facilities Guidelines"

24. Are attached plans and specifications in substantial conformance with

50,000

Current 3990 tons

__(Use Unified Sail Classification Sys

12,499 tons

Design N/A

g. Is site on a flood plain? Yes ______year flood Wo h. Predominant type of soil on site _

19. ANTICIPATED CONSTRUCTION STARTING AND COMPLETION DATES

Annual

From Westhampton Completed 1985

d Depth to nearest rock: ___

23. OPERATING HOURS PER DAY

7:00 AM to 4:45 PM

ZI. ESTIMATED COST

25. CERTIFICATION

lattia!

NYSDEC, 1994.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Wildlife Resources Center 700 Troy-Schenectady Road Latham, NY 12110-2400

(518) 783-3932

Fax: 783-3916

Langdon Marsh Acting Commissioner

October 24, 1994

William L. Bradford Engineering Sciences, Inc. 290 Elwood Davis Road, Suite 312 Liverpool, New York 13088

Dear Mr. Bradford:

We have reviewed the New York Heritage Program files with respect to your recent request for biological information concerning the four Suspected Inactive Hazardous site investigations, locations as indicated on your enclosed maps, located in the Counties of Nassau, Suffolk and Ulster, New York State.

Enclosed is a computer printout covering the area you requested to be reviewed by our staff. The information contained in this report is considered <u>sensitive</u> and may not be released to the public without permission from the New York Natural Heritage Program.

Our files are continually growing as new habitats and occurrences of rare species and communities are discovered. In most cases, site-specific or comprehensive surveys for plant and animal occurrences have not been conducted. For these reasons, we can only provide data which have been assembled from our files. We cannot provide a definitive statement on the presence or absence of species, habitats or natural communities. This information should not be substituted for on-site surveys that may be required for environmental assessment.

This response applies only to known occurrences of rare animals, plants and natural communities and/or significant wildlife habitats. You should contact our regional office, Division of Regulatory Affairs, at the address <u>enclosed</u> for information regarding any regulated areas or permits that may be required (e.g., <u>regulated wetlands</u>) under State Law.

If this proposed project is still active one year from now we recommend that you contact us again so that we can update this response.

Sincerely, Information Services New York Natural Heritage Program

Encs.

cc: Reg. 1 and 3, Wildlife Mgr.

Reg. 1 and 3, Fisheries Mgr.

USERS GUIDE TO NATURAL HERITAGE DATA

<u>DATA SENSITIVITY</u>: The data provided in these reports is sensitive and should be treated in a sensitive manner. The data is for your in-house use only and may not be released to the general public or incorporated in any public document without prior permission from the Natural Heritage Program.

BIOLOGICAL AND CONSERVATION DATA SYSTEM ELEMENT OCCURRENCE REPORTS:

COUNTY NAME: County where the element occurrence is located.

TOWN NAME: Town where the element occurrence is located.

USGS 7 1/2: TOPOGRAPHIC MAP: Name of 7.5 minute US Geological Survey (USGS) quadrangle map (scale 1:24,000).

LAT: Centrum latitude coordinates of the location of the occurrence. Important: latitude and longitude <u>must</u> be used with PRECISION (see below). For example, the location of an occurrence with M (minute) precision is <u>not</u> precisely known at this time and is thought to occur somewhere within a 1.5 mile radius of the given latitude/longitude coordinates.

LONG: Centrum longitude coordinates of the location of the occurrence. See also LAT above.

PRECISION: S - seconds: Location known precisely. (within a 300 or 1-second radius of the latitude and longitude given.

M - minutes: Location known only to within a 1.5 mile (1 minute) radius of the latitude and longitude given.

SIZE (acres): Approximate acres occupied by the element at this location.

SCIENTIFIC NAME: Scientific name of the element occurrence.

COMMON NAME: Common name of the element occurrence.

ELEMENT TYPE: Type of element (i.e. plant, community, other, etc.)

LAST SEEN: Year element occurrence last observed extant at this location.

EO RANK: Comparative evaluation summarizing the quality, condition, viability and defensibility of this occurrence. Use in combination with LAST SEEN and PRECISION.

A-E = Extent: Amexcellent, Begood, Cemarginal, Depoor, Emextant but with insufficiently data to assign a rank of A - D.

F = Failed to find. Did not locate species, but habitat is still there and further field work is justified.

Historic. Historic occurrence without any recent field information.

X = Extirpated. Field/other data indicates element/habitat is destroyed and the element no longer exists at this location.

NYS STATUS - animals: Categories of Endangered and Threatened species are defined in New York State Environmental Conservation Law section 11-0535. Endangered, Threatened, and Special Concern species are listed in regulation 6NYCRR 182.5.

E = Endangered Species: any species which meet one of the following criteria:

1) Any native species in imminent danger of extirpation or extinction in New York.

 Any species listed as endangered by the United States Department of the Interior, as enumerated in the Code of Federal Regulations 50 CFR 17.11.

T = Threatened Species: any species which meet one of the following criteria:

1) Any native species likely to become an endangered species within the foreseeable future in NY.

 Any species listed as threatened by the U.S. Department of the Interior, as enumerated in the Code of the Federal Regulations 50 CFR 17.11.

SC = Special Concern Species: those species which are not yet recognized as endangered or threatened, but for which documented concern exists for their continued welfare in New York. Unlike the first two categories, species of special concern receive no additional legal protection under Environmental Conservation Law section 11-0535 (Endangered and Threatened Species).

P = Protected Wildlife (defined in Environmental Conservation Law section 11-0103): wild game, protected wild birds, and

endangered species of wildlife.

U = Unprotected (defined in Environmental Conservation Law section 11-0103): the species may be taken at any time without

limit; however a license to take may be required.

G = Game (defined in Environmental Conservation Law section 11-0103): any of a variety of big game or small game species as stated in the Environmental Conservation Law; many normally have an open season for at least part of the year, and are protected at other times.

NYS STATUS - plants: The following categories are defined in regulation 6NYCRR part 193.3 and apply to New York State Environmental Conservation Law section 9-1503.

(blank) = no state status

- E = Endangered Species: listed species are those with:
 - 1) 5 or fewer extant sites, or

fewer than 1,000 individuals, or

3) restricted to fewer than 4 U.S.G.S. 7 1/2 minute topographical maps, or

- 4) species listed as endangered by U.S. Department of Interior, as enumerated in Code of Federal Regulations 50 CFR 17.11. T = Threatened: listed species are those with:
 - 1) 6 to fewer than 20 extant sites, or

2) 1,000 to fewer than 3,000 individuals, or

- 3) restricted to not less than 4 or more than 7 U.S.G.S. 7 and 1/2 minute topographical maps, or
- 4) listed as threatened by U.S. Department of Interior, as enumerated in Code of Federal Regulations 50 CFR 17.11.
- R = Rare: "listed species have:
 - 20 to 35 extant sites, or
 - 2) 3,000 to 5,000 individuals statewide.

U = Unprotected

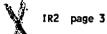
V = Exploitably vulnerable: listed species are likely to become threatened in the near future throughout all or a significant portion of their range within the state if causal factors continue unchecked.

NYS STATUS - communities: At this time there are no categories defined for communities.

Washanston - 1/1 - res to and wis

IR2 page 1

BIOLOGICAL AND CONSERVATION DATA SYSTEM - ELEMENT OCCURRENCE REPORT, 20 OCT 1994 Prepared by N.Y.S.D.E.C NATURAL HERITAGE PROGRAM


(This report contains sensitive information which should be treated in a sensitive marker. Refer to the Users Guide for explanation of codes and ranks.)

												•				•	
	COUNTY AND TOWN NAME	USGS 7 1/2' TOPOGRAPHIC MAP	LAT.	LONG.	PREC- S		SCIENTIFIC NAME	: COMHON NAME :	ELEMENT TYPE	LAST SEEN	EO RANK	NYS Status	FED. STATUS	GLOBAL RANK	STATE RANK	OFFICE	USE
* S	SUFFOLK																
	BROOKHAVEN	EASTPORT	404645	0724431	s	5	RYNCHOPS NIGER	BLACK SKIMMER	VERTEBRATE	1986	ВС	P		G 5	s2	4007276	11
	BROOKHAVEN	EASTPORT	404645	0724431	s	5	STERNA DOUGALLII	ROSEATE TERN	VERTEBRATE	1986	D	E	LELT	G3	S1	4007276	11
	BROOKHAVEN	EASTPORT	404645	0724431	s	5	STERNA HIRUNDO	COMMON TERN	VERTEBRATE	1985	A	т	C2NL	G 5	S3	4007276	11
	BROOKHAVEN Southampton	EASTPORT	404945	0 72 4327	Н	0	CAREX COLLINSII	COLLINS SEDGE	PLANT	1894	Н	R		G4	s1s2	4007276	17
	BROOKHAVEN	EASTPORT MORICHES	404607	0724443	S	1	POLYGONUM GLAUCUM	SEABEACH KNOTWEED	PLANT	1990	D	U		G3	s 3	4007276	23
	BROOKHAVEN	HOWELLS POINT PATTERSQUASH ISLAND	404417	0725233	K	0	AMARANTHUS PUNILUS	SEABEACH AMARANTH	PLANT	1918	F	U	LT	G 2	S1	4007268	1
	BROOKHAVEN	HOWELLS POINT PATTERSQUASH ISLAND	404434	0 725 240	H		GLYCERIA CANADENSIS VAR LAXA	RATTLESNAKE GRASS	PLANT	1967	H	U		G5TUQ	KS	4007268	5
	BROOKHAVEN .	HOWELLS POINT PATTERSQUASH ISLAND	404434	0 725 240	H		HELIANTHUS ANGUSTIFOLIUS	SWAMP SUNFLOWER	PLANT	1918	H	T		G5	S2	4007268	5
	BROOKHAVEN	MORICHES	405104	0724903	s	5	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1983	С	E		G 5	s 3	4007277	8
	BROOKHAVEN	MORICHES	405053	0724911	s	3	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	В	Ε		G5	S 3	4007277	10
	BROOKHAVEN	MORICHES	405203	0724858	s	5	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	В	E		G5	S 3	4007277	11
	BROOKHAVEN	MORICHES	405143	0724845	s	5	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	С	E		G 5	S 3	4007277	12

Endangered. Inveatened

BIOLOGICAL AND CONSERVATION DATA SYSTEM - ELEMENT OCCURRENCE REPORT, 20 OCT 1994 Prepared by N.Y.S.D.E.C NATURAL HERITAGE PROGRAM

COUNTY AND TOWN NAME	USGS 7 1/2' Topographic Mai	P LAT.	LONG.	PREC- SIZE		SCIENTIFIC NAME	COMMON NAME	ELEMENT TYPE	LAST SEEN	EO RANK	NYS Status	FED. STATUS	GLOBAL RANK	STATE RANK	OFFICE	USE
BROOKHAVEN	MORICHES	405213	0724808	s	4	AMBYSTONA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	A	E		G5	s 3	4007277	13
BROOKHAVEN	MORICHES	405115	0724738	s	3	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1983	A	E		G5	s 3	4007277	14
BROOKHAVEN	MORICHES	405105	0724722	s	3	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	A	Ε		G5	S3	4007277	15
BROOKHAVEN	MORICHES	405140	0724619	s	3	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	A	E		G5	S 3	4007277	16
BROOKHAVEN	MORICHES	405141	0724642	s	10	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	В	E		G 5	S3	4007277	17
BROOKHAVEN	MORICHES	405149	0 724539	s	1	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	С	E		G 5	S 3	4007277	18
BROOKHAVEN	MORICHES	405146	0724921	s	18	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	A	E		G 5	S 3	4007277	28
BROOKHAVEN	MORICHES	405204	0724832	S	13	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1984	A	E		G 5	s 3	400 7 277	29
BROOKHAVEN	MORICHES	405107	0724742	s	1	AMBYSTOMA TIGRINUM	TIGER SALAMANDER	VERTEBRATE	1982	E	E		G 5	83	4007277	30
BROOKHAVEN	MORICHES	404553	0724858	s	0	PANDION HALIAETUS	OSPREY	VERTEBRATE	1988	E	т		G5	S 4	4007277	31
BROOKHAVEN	MORICHES	404701	0724619	S	0	PANDION HALIAETUS	OSPREY	VERTEBRATE	1988	Е	Т		G 5	S 4	4007277	33
BROOKHAVEN	MORICHES	404551	0724746	s	1	STERNA HIRUNDO	COMMON TERM	VERTEBRATE	1986	A	T	C2NL	G 5	s3	4007277	4
BROOKHAVEN	MORICHES	404523	0724821	s	2	STERNA HIRUNDO	COMMON TERN	VERTEBRATE	1986	D	T	CZNL	G 5	S 3	4007277	5
BROOKHAVEN	MORICHES WADING RIVER	405226	0724821	И	0	CAREX HORMATHODES	SEDGE	PLANT		H	R	i	G4G5	S 2	4007277	26
BROOKHAVEN	MORICHES	404542 (0724923	s		CAREX VENUSTA VAR MINOR	A SEDGE	PLANT	1985	E I	R	ı	G4T 3 T4	S1	4007277	36

BIOLOGICAL AND CONSERVATION DATA SYSTEM - ELEMENT OCCURRENCE REPORT, 20 OCT 1994 Prepared by N.Y.S.D.E.C NATURAL HERITAGE PROGRAM

COUNTY AND TOWN NAME	USGS 7 1/2' TOPOGRAPHIC MA	P LAT.	LONG.	PREC- S ÍSION (SCIENTIFIC NAME	COMMON NAME	ELEMENT Type	LAST SEEN	EO RANK	NYS STATUS	FED. STATUS	GLOBAL Rank	STATE RANK	OFFICE	USE
BROOKHAVEN	MORICHES WADING RIVER	405217	0724822	M	0	DESMODIUM GLABELLUM	TALL TICK-CLOVER	PLANT	1873	K	Ť		G 5	\$1 \$2	4007277	23
BROOKHAVEN	MORICHES WADING RIVER	405218	0724740	М	0	DESMODIUM LAEVIGATUM	SMOOTH TICK-CLOVER	PLANT	1914	Н	U		G 5	SH	4007277	37
BROOKHAVEN	MORICHES	404824	0724520	H	0	DIGITARIA FILIFORMIS	SLENDER CRABGRASS	PLANT	1955	н	R		G5	S1S2	4007277	27
BROOKHAVEN	MORICHES WADING RIVER	405213	0724848	H	0	GLYCERIA CANADENSIS VAR LAXA	RATTLESNAKE GRASS	PLANT	1929	Н	U		G5TUQ	SH	4007277	38 ^
BROOKHAVEN	MORICHES	404742	0724634	H	0	GLYCERIA CANADENSIS VAR LAXA	RATTLESHAKE GRASS	PLANT	1975	Н	U		G5TUQ	SH	4007277	39
BROOKHAVEN	MORICHES	404552	0724909	s	1	HELIANTHUS ANGUSTIFOLIUS	SWAMP SUNFLOWER	PLANT	1 99 0	ВС	T		G 5	\$2	4007277	19
BROOKHAVEN	MORICHES	405217	0724853	s	1	LOBELIA NUTTALLII	NUTTALL'S LOBELIA	PLANT	1985	A	R		G4G5	S 3	4007277	21
BROOKHAVEN	MORICHES WADING RIVER	405213	0724848	H	0	POLYGONUM OPELOUSANUM	OPELOUSA SMARTWEED	PLANT	1914	Н	U		G5	S2S3	4007277	38
BROOKHAVEN	MORICHES	405213	0724810	s	1	ROTALA RAMOSIOR	TOOTH-CUP	PLANT	1985	AB	R		G 5	s2	4007277	13
SOUTHAMPTON	EASTPORT QUOGUE	405140	0723859	s	2450	DWARF PINE PLAINS	DWARF PINE PLAINS	COMMUNITY	1994	A	U		G1G2	S1	4007276	6
SOUTHAMPTON	EASTPORT	405007	0723908	s			PITCH PINE-OAK-HEATH WOODLAND	COMMUNITY	1994	AB	U		G3G4	s2s 3	4007276	19

IR2 page 4

BIOLOGICAL AND CONSERVATION DATA SYSTEM - ELEMENT OCCURRENCE REPORT, 20 OCT 1994 Prepared by N.Y.S.D.E.C NATURAL HERITAGE PROGRAM

																_	
	COUNTY AND TOWN NAME	USGS 7 1/2' TOPOGRAPHIC MAR	P LAT.	LONG.	PREC- SI		SCIENTIFIC NAME	COMMON NAME	ELEMENT TYPE	LAST SEEN	EO RANK	NYS Status	FED. STATUS	GLOBAL Rank	STATE RANK	OFFICE	USE
	SOUTHAMPTON	EASTPORT RIVERHEAD	405210	0724016	s	700	PITCH PINE-OAK-HEATH WOODLAND	PITCH PINE-OAK-HEATH WOODLAND	COMMUNITY	1994	A	υ		G3G4	\$2\$3	4007276	21
	SOUTHAMPTON	EASTPORT QUOGUE	405140	0723859	s	4000	ATRYTONOPSIS HIANNA	DUSTED SKIPPER	INVERTEBRATE	1989	A	U		G4	S3	4007276	6
	SOUTHAMPTON	EASTPORT QUOGUE	405140	0 7238 54	s	4000	CATOCALA HERODIAS GERHARDI	HERODIAS UNDERWING	INVERTEBRATE	1987	A	U		G3T3	s2s3	4007276	6
	SOUTHAMPTON	EASTPORT QUOGUE	405140	0723859	s	4000	CATOCALA JAIR SSP 2	JAIR UNDERWING	INVERTEBRATE	1987	В	บ		G4T4	S1S2	4007276	6
	SOUTHAMPTON	EASTPORT QUOGUE	405140	0723859	s	4000	CHAETAGLAEA CERATA	A NOCTUID MOTH	INVERTEBRATE	1986	AB	U		G3G4	\$1 \$2	4007276	6
	SOUTHAMPTON	EASTPORT	404718	0723953	s	130	CHARADRIUS MELODUS	PIPING PLOVER	VERTEBRATE	1993	AB	E	LELT	G3	s 2	4007276	13
:	SOUTHAMPTON	EASTPORT	404858	0724215	M	0	CISTOTHORUS PLATENSIS	SEDGE WREN	VERTEBRATE	1932	H	P SC		G5	s 2	4007276	5
;	SOUTHAMPTON	EASTPORT QUOGUE	405140	0723859	s ·	4000	EUXOA VIOLARIS	VIOLET DART	INVERTEBRATE	1987	8	ע		G4	SU	4007276	6
•		EASTPORT QUOGUE	405140 (0723855 !	s ·	1800	HEMILEUCA MAIA MAIA	COASTAL BARRENS BUCKMOTH	INVERTEBRATE	1987 .	A I	n sc		G4T2T3	\$2	4007276	6
\$		EASTPORT QUOGUE	405140 (0723855 \$	s ·	1800	HETEROCAMPA VARIA	A NOCTUID MOTH	INVERTEBRATE	1986 /	A (J	I	G3G4	\$1 \$2	4007276	6
S		EASTPORT QUOGUE	405140 ()72 38 59 s	5 4	4000	PSECTRAGLAEA CARNOSA	PINK SALLOW	INVERTEBRATE	1987	B. (J	(3 364	\$2	400727 6	6
s	NOT PRANTUO	EASTPORT	404718 0	1723953 s	5	130	STERNA ANTILLARUM	LEAST TERN	VERTEBRATE	1993	A (Į	(34 :	s3	4007276	13

IR2 page 5

BIOLOGICAL AND CONSERVATION DATA SYSTEM - ELEMENT OCCURRENCE REPORT, 20 OCT 1994 Prepared by N.Y.S.D.E.C NATURAL HERITAGE PROGRAM

COUNTY AND TOWN NAME	USGS 7 1/2' TOPOGRAPHIC MAR	P LAT.	LONG.	PREC- SIZE		SCIENTIFIC NAME	COMMON NAME	ELEMENT Type	LAST SEEN	EO RANK	NYS Status	FED. STATUS	GLOBAL Rank	STATE RANK	OFFICE	USE
SOUTHAMPTON	EASTPORT QUOGUE	405140	0723859	S 4	000	ZALE SP 1	(NEAR Z. LUNIFERA)	INVERTEBRATE	1989	A	U		G3Q	SU	4007276	6
SOUTHAMPTON	EASTPORT	405128	0724238	s	1	ALETRIS FARINOSA	STARGRASS	PLANT	1991	С	U		G5	s2	4007276	32
SOUTHAMPTON	EASTPORT QUOGÜĖ	404737	0 7238 45	Ś	2	AMARANTHUS PUMILUS	SEABEACH AMARANTH	PLANT	1993	В	U	LT	G2	S1	4007276	31
SOUTHAMPTON	EASTPORT	404902	0724208	М	0	ASCLEPIAS VARIEGATA	WHITE MILKWEED	PLANT	1945	Н	T		G 5	S1	4007276	3
SOUTHAMPTON	EASTPORT	404919	0723954	М .	0	ASTER SOLIDAGINEUS	FLAX-LEAF WHITETOP	PLANT		H	U		G 5	s1s 3	4007276	4
SOUTHAMPTON	EASTPORT	404856	0724208	M	0	CAREX COLLINSII	COLLINS SEDGE	PLANT	1927	н	R		G4	S1S2	4007276	16
SOUTHAMPTON	EASTPORT	405027	0723928	s	1	CYPERUS HOUGHTONII	HOUGHTON Umbrella-sedge	PLANT	1990	A	R		G3 G4	\$2	4007276	28
SOUTHAMPTON	EASTPORT	405122	0723850	s	1	CYPERUS HOUGHTONII	HOUGHTON UMBRELLA-SEOGE	PLANT	1991	D	R		G3G4	\$2	4007276	25
SOUTHAMPTON	EASTPORT	405158	0723849	S	0	CYPERUS HOUGHTONII	HOUGHTON Umbrella-sedge	PLANT	199 0	0	R		G3G4	S2	4007276	33
SOUTHAMPTON	EASTPORT	404948	0723939	s	1	DESMODIUM CILIARE	TICK-TREFOIL	PLANT	1990	D	т		G 5	s2s3	4007276	26
SOUTHAMPTON	EASTPORT	405120	072 39 05	H	1	DESMODIUM CILIARE	TICK-TREFOIL	PLANT	1991	E	T	I	G 5	s2s 3	4007276	1
SOUTHAMPTON	EASTPORT	404857 (0 7243 40	M	0	HELIANTHUS ANGUSTIFOLIUS	SWAMP SUNFLOWER	PLANT	1894	H '	T	(G 5	s 2	4007276	12
SOUTHAMPTON	EASTPORT	404827 (0723944	н	0	HELIANTHUS ANGUSTIFOLIUS	SWAMP SUNFLOWER	PLANT	19 26	H 1	г	(G5	S 2	4007276	20

IR2 page 6

BIOLOGICAL AND CONSERVATION DATA SYSTEM - ELEMENT OCCURRENCE REPORT, 20 OCT 1994 Prepared by W.Y.S.D.E.C NATURAL HERITAGE PROGRAM

(This report contains sensitive information which should be treated in a sensitive manner. Refer to the Users Guide for explanation of codes and ranks.)

COUNTY AND TOWN NAME	USGS 7 1/2' TOPOGRAPHIC MAI	P LAT.	LONG.	PREC- SI ISION (a	-	SCIENTIFIC NAME	COMMON NAME	ELEMENT Type	LAST SEEN	EO Rank	NYS F Status S		GLOBAL Rank	STATE RANK	OFFICE	ÜSE
SOUTHAMPTON	EASTPORT	404919	0723954	H	0	LESPEDEZA STUEVEI	VELVETY LESPEDEZA	PLANT	1952	н	R		G47	s2 s 3	4007276	4
SOUTHAMPTON	EASTPORT	404915	0724128	s	1	MAGNOLIA VIRGINIANA	SWEET-BAY	PLANT	1991	ВС	U		G 5	s1	4007276	18
SOUTHAMPTON	EASTPORT QUOQUE	404737	0723845	s	1	POLYGONUM GLAUCUM	SEABEACH KNOTWEED	PLANT	1991	D	U		G 3	S3	4007276	31
SOUTHAMPTON	EASTPORT	405057	0723848	s	1	PRUNUS PUMILA VAR DEPRESSA	SAND-CHERRY	PLANT	1990	С	R		G5 T5	\$2	4007276	29
SOUTHAMPTON	QUOGUE	405030	0723654	s	1	ASTER NEMORALIS	BOG ASTER	PLANT	1985	A	R		G5	S 3	4007275	22
SOUTHAMPTON	QUOGUE	404958	0723702	s	1	CAREX BULLATA	BUTTON SEDGE	PLANT	1985	В	т		G 5	S 1	4007275	25
SOUTHAMPTON	QUOGUE	404848	0723653	И	0	HELIANTHUS ANGUSTIFOLIUS	SWAMP SUNFLOWER	PLANT	1,893	Н	T	!	G 5	\$2	4007275	8
SOUTHAMPTON	QUOGUE	405030	0723654	s	1	HYPERICUM DISSIMULATUM	ST. JOHN'S-WORT	PLANT	1991	В	U	(G5Q	s2\$ 3	4007275	22
SOUTHAMPTON	QUOGUE	405030	0723654	s	1	LOBELIA NUTTALLII	NUTTALL'S LOBELIA	PLANT	1991	A	R	ſ	G4G5	s 3	4007275	22
SOUTHAMPTON	QUOGUE	404911	072364 3	М	0	OENOTHERA LACINIATA	CUT-LEAVED EVENING-PRIMROSE	PLANT	1977	H	U	(G 5	S1	4007275	28
SOUTHAMPTON	QUOGUE	405030	0723654	s			RETICULATED (PLANT	1985	C	R	(G5T3T5	s 3	4007275	22
SOUTHAMPTON Brookhaven	RIVERHEAD EASTPORT WADING RIVER MORICHES	405313	0724349	S	5600		COASTAL BARRENS BUCKMOTH	INVERTEBRATE	1984	D I	u s c	C	34T2T 3	\$2	4007286	6

75 Records Processed

SIGNIFICANT HABITATS DATE: 10/20/94

REPORT ID#	NAME OF AREA	TYPE OF AREA	COUNTY	TOWN OR CITY	QUADRANGLE	LATITUDE • (DEG	LONGITUDE MIN SEC)
	•						
SB 52-029	Long Island Dwarf Pine Plains	Rare/Unusual Plant Habitat	Suffolk	Southampton	Eastport	40 51 30	72 38 46
SW 52-501	Great South Bay	Protected Coastal Bay	Suffolk	Brookhaven	Bay Shore East	40 43 29	72 57 06
SW 52-502	Moriches Bay	Protected Coastal Bay	Suffolk	Brookhaven	Horiches	40 46 31	72 46 20
SW 52-511	West Pond (Seatuck Creek)	Waterfowl Wintering Area	Suffolk	Brookhaven	Eastport	40 49 39	72 43 27
SW 52-512	Quontuck Creek Quogue Refuge	Tidal Creek	Suffolk	Southampton	Quogue	40 50 23	72 36 49
SW 52-561	Manorville-Riverhead Pine Barrens	Pine Barrens	Suffolk	Brookhaven	Eastport	40 52 59	72 44 42
SW 52-575	South Manor Ponds	Tiger Salamander Ponds	Suffolk	Brookhaven	Moriches	40 51 04	72 49 06

New York State Department of Environmental Conservation

Building 40 - SUNY, Stony Brook, New York 11790-2356

Division of Hazardous Waste Remediation

Telephone: (516) 444-0240 Fecsimile: (516) 444-0373

Michael D. Zagata

Ruis Site Control

HAZARDOUS SITE CONTROL

HAZARDOUS

DIVISION OF HAZARDOUS

DIVISION OF HAZARDOUS

WASTE HEMEULATION

TO: Srikanth Maddi

Srikanth Maddineni, Eastern Investigation Section

MEMORANDUM

FROM:

Robert Stewart, Region 1 /64-3/24/95 Site Inspection

SUBJECT: 3/24/95 Site

Westhampton Landfill; Site ID #152060

DATE:

March 27, 1995

As requested, the regional staff went to the Westhampton Landfill site on 3/24/95 to look for the buried drums of highway paint reported by a confidential informant.

The drums were reportedly buried in the shallow surface soils in front of the pile of compost in the rear of the site. The consultant said that they were allegedly near to sample location SB0408/GW04.

To check for the buried drums, a Schonstedt Magnetic Locator was used to check for buried metal. The entire area between the large mound of compost and the dirt road was checked with the metal detector. The metal detector indicated that there were some subsurface metal in this area. The strongest readings were investigated by first digging with a shovel to about one foot below the surface. A slam bar was then inserted at the bottom of the test pits to about 3' below land surface to feel for buried drums. About ten shallow test pits were dug this way. The soils were compacted and difficult to dig. Various C & D materials, primarily scrap wood, were present in the surface soils. A water heater, a metal sign, various scrap metal, and nails in wood boards were found. No drums were discovered in this area.

The general area south of the compost pile was also investigated. The metal detector had numerous strong hits in one vegetated area. The ground was uneven throughout this area. One test pit to about 3' deep was dug in this area. A piece of black sheet metal was found. This may have been a drum at one time, however, the metal was so deformed that it was impossible to tell for sure. The slam bar was forced through the sheet metal to look for stained soils or paint. The soils beneath the sheet metal were moist but there was no odor or color to the liquid on the slam bar. A 5' long soil probe was then inserted besides the sheet metal to the capability of the instrument. A black layer

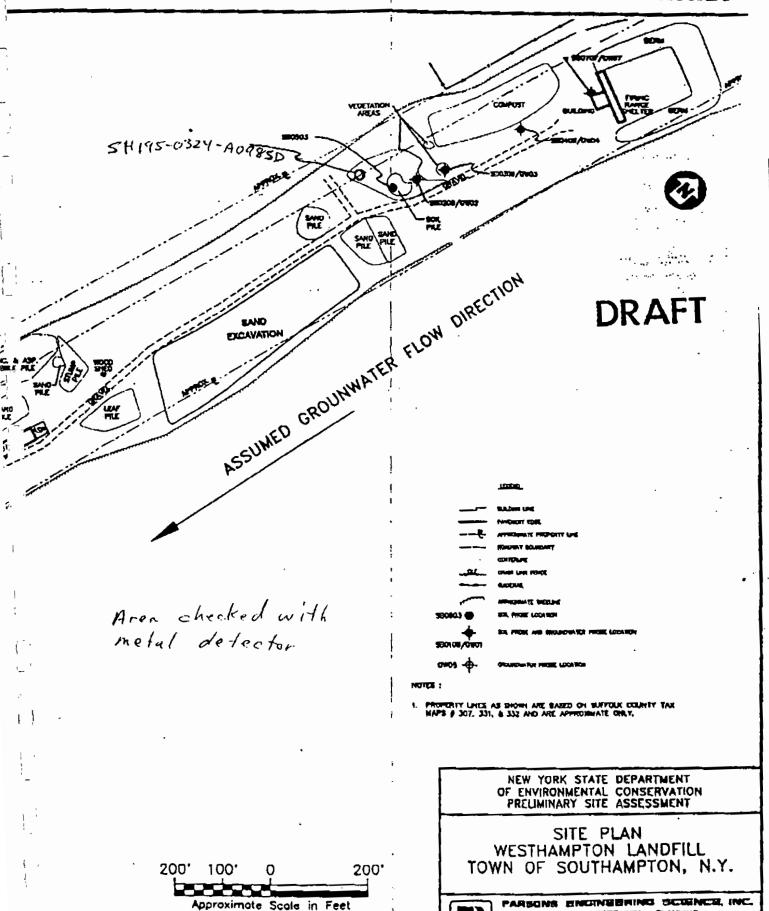
of soil with a slight sewage-like odor was found at about 5' below land surface. I concluded that this was a former lagoon and that the black soils were the sludge at the former bottom of the lagoon. This sludge layer was only about 2" thick. The sludge was dark black and had an oily appearance. I filled a 2 ounce jar with the sludge. As we discussed by telephone, it was decided to analyze these soils. The sample parameters for this sample were limited by the quantity of sample material. I choose to analyze for total metals and semi-volatiles. The sample will be analyzed using SW-846 protocols with the report by category B. There was not enough sample material for a matrix spike or matrix spike duplicate.

For your records, I have enclosed the following information:
1) a copy of my field notes, 2) a copy of the sample sheet, and
3) a copy of the Chain of Custody sheet, and 4) a copy of Figure
3 from the draft PSA Report with the location of the sample I
collected indicated on it. Two photographs were taken to
document the sample collected. I will send you a copy of these
photos when they are available.

If you have any questions, please do not hesitate to call me at (516) 444-0244.

cc: A. Shah

3/14/95 Woltangton Sandfill 3) soil tries with 5 capability


5/9,5 7 mary SK II JdH

SO.9 200.0N 20:21

LOZOBE MOJANDA مائدندم 14 an' I chn' NN an' CT CE TT IdH

15:06 No.005 P.07

DESIGN . RESEARCH . FLANNING

POTENTIAL HAZARDOUS WASTE SITE

EXECUTIVE SUMMARY

WESTHAMPTON LANDFILL	NY New Site
Site Name	EPA Site ID Number
Westhampton, NY	02-8303-18
Address	TDD Number
	5 (10 (07
Date of Site Visit:	5/18/83
SITE DESCRIPTION	
refuse and as a landfill pool waste. The househo landfill, Southampton, on Site and are used for	site serves as a Transfer station for household for white goods, landscape waste and cess- ld refuse is transferred to the Old North Sea NY. Six to eight leaching pools are present the disposal of cesspool waste.
PRIORITY FOR FURTHER A	ACTION: High Medium_X_ Low,
RECOMMENDATIONS	·
Lloyd and Magothy aquife the potential for cesspo	d and located in a recharge area for the Upper Glacers, the sole sources for drinking water in the are sol waste contamination exists. It is recommended to be sampled for presence of hazardous contaminants
	·
	
Prepared by: <u>Arthur J. Cla</u> of NUS Corpora	arke Date: 5/27/83

$\mathbf{\alpha}$		
~	$\vdash\vdash$	١
QD	$L \Gamma$	1

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT PART 1 - SITE INFORMATION AND ASSESSMENT

	IFICATION
31412 10 YN	New Site

PART	T 1 - SITE INFORM			ENT .	NY Ne	ew Site	
II. SITE NAME AND LOCATION			······································	•			
OI SIEHAMERANG COMMA D'ACCOMPTO AND D'OCA			•	SPECIFIC LOCATION I	ZHIFER		
Westhampton Landfill	•	01	d Country	Road			
03 CITY		04 STATE	05 21º COO€	06 COUNTY		01COUNTY	
		NY	11977	Suffolk		103	D-ST
Westhampton o coonomates Williams U	ONGITUDE		1			1 200	
	- -	.					
	<u> </u>		=				
Iong Island Expressway to F		ad to M	ontauk Hi	ghway West	to Old (Country	Road
Site is just North of LIRR	Tracks.						
III. RESPONSIBLE PARTIES							
OI OWNER 15 2000		02 STREE	T (8mmess, many, se	, by . art. f			
Town of Southampton	•	Ì	20 Jacks	on Ave			
63 GTY		- 12. 57.75	OS ZIP COOE _		ILLINGO T		
Hampton Bays		1	-				
		NY	11946	(516) 728-	3600		
DT OPERATOR Manager and effected bear award		OB STREE	ر بنده و دومند و ۱۹	i Control		-	
09 CITY		10 STATE	11 2₽ COOE	12 TELEPHONE M	JM8ER T	 -	
				(,)	1		
13 TYPE OF OWNERSHIP (Cauca and)		_ ,	i				_
A PRIVATE O B. FEDERAL:	[Aporty name]		O.C. STATE	□p.conил.	Q E. MUNK	IPAL .	
☐ F. OTHER:			. O G. UNKNO	own ,		•	
14 OWNER/OPERATOR NOTIFICATION ON FILE (Cases at our asset)							
A RCRA 3001 DATE RECEIVED:		LEO WASTE	SITE (CACLA 103	OATE RECEIVED		전 C.1	HOHE
IV. CHARACTERIZATION OF POTENTIAL HAZARD				<u> </u>			
	ورنهيد عبدا عدوا						
	EPA 🔯 B. EP. LOCAL HEALTH OFF				D. OTHER COI	NTRACTOR	
CONT	TRACTOR HAME(S):	NUS Co	rporation		···		
DZ SITE STATUS (Carel and	03 YEARS OF OPER						
MACTIVE DB. HACTIVE DC. UNKNOWN	<u> </u>	1968	R (#0+G Y		ликио ми		
04 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT, KNOWN	OR ALLEGED						
Cesspool waste in leaching poo	ls present o	on site	•				
1 1							
os DESCRIPTION OF POTENTIAL HAZARD TO ENTROPHIENT AND The site is in a recharge a	CAPOPULATION	sole s	Ource agui	ifer The	notenti:	al for c	2055-
pool waste contaminating the				1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
PRIORITY ASSESSMENT	 -						
I PROVIET FOR WSPECTION (Conce one, Page or June on the conce on the conce of the concern of th	C. LOW		D D. NONE	nus Candelans and ordisons			
I, INFORMATION AVAILABLE FROM							
I CONTACT	lozof una de la			Dente - ti	1011	ELEPHONE MU	MOEA
Mark Haulenbeek	Agency, En	wironm	ronmental ental Serv	Protection vices Divis	:	01 ¹ 321-	
THEMSON DESPONSION POR 3 THE THEMSON HOSPING THE THEMSON TO SHOW THE THEMSON THEMSON THE THE THEMSON THE THEMSON THE THEMSON THE THEMSON THE THEMSON THE THE THEMSON THE	03 AGENCY	06 ONGAM	RATION	OT TELEPHONE MU		ATE:	i
Arthur J. Clarke	EPA	NUS	FIT II	201 1 225-0	ľ	5,18	83

HAZARDOUS WASTE SITE PHASE I REPORT REVIEW REGION I

SITE NAME:	DOSTHAMPION LANDFILL
EPA NUMBER:	No #
CONSULTANT:	NUS
REVIEW:	
Page	Comments
	NESTHAMORN IS NOT A TOWN - IT IS A GAMEET
_	
	SMINS OF 25 DRUMI SYOULD BE NOTED -
(FULL POSSIBLE CONTENS ER)
	Majo sofower squa SCA-EINER WASTE
	STOWING MORE EXTENSIVE AREA.
	
	

FE8 1 -

Otto
Facility name: WESTHAMPTON LANDFILL (world-plm) DEC
Location: OLD CEUNTRY ROAD WESTNAMPTIN, N. Y. 11977
EPA Region: TO NY - NEN SETE
Person(s) in charge of the facility: TONA OF SOUTHAMPTIA
MIKE ZALAO - DEPITY SUPT NICHTYS
THEMAS LAUELLE - COMMISSINGE PUBLEC WORKE
Name of Reviewer: Liconard - Will Date: 11/25/83 General description of the facility:
(For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.)
SFF NUS PEPLET
<u> </u>
<u>. </u>
Scores: $S_M = (S_{gw} = 3.00 S_{sw} = 0.26 S_a = 0)$
S _{FF} = (3g _W - 3,700 3 _{SW} - 20,000 3 _a - 0)
S _{DC} =

HRS COVER SHEET NEEDS LEACHAR AND GLINDLING SAMPLING.

Possible PHASE TE AFRASED

Ground Water Route Work Sheet							
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)	
0	Observed Release	0 45	1		45	3.1	
1		given a score of 45, proceed to line 4. given a score of 0, proceed to line 2.					
2	Route Characteristics Depth to Aquifer of Concern	0 1 2 3	2	6	6	3.2	
	Net Precipitation Permeability of the Unsaturated Zone	0 1 2 3 0 1 2 3	1	3 2	3 3		
	Physical State	0 1 2 3	1	3	3		
		Total Route Characteristics Score		14	15		
3	Containment	0 1 2 3	1	تت	3	3.3	
4	Waste Characteristics Toxicity Persistence Hazardous Waste Quantity		1		18 8	3.4	
	_	Total Waste Characteristics Score		,	26		
5	Targets Ground Water Use Distance to Neares Well/Population Served	0 1 2 3	3	्र इ.ट.	9 40	3.5	
· ©	If line 1 is 45, mu	Total Targets Score	-	1732	49 57.330		
7	_	7.330 and multiply by 100	Sgw-	3,00	L		

FIGURE 2 . GROUND WATER ROUTE WORK SHEET

	Surrace Water Route Work Sheet									
	Rating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)				
1	Observed Release	45	1		45	4.1				
	If observed release is given a value of 45, proceed to line 2. If observed release is given a value of 0, proceed to line 2.									
2	Route Characteristics					4.2				
	Facility Slope and Intervented Terrain	_	1	1	3					
	1-yr. 24-hr. Rainfall Distance to Nearest Surf	0 1 (2) 3 ace 0 (1) 2 3	1 2	2	3 6					
	Water Physical State	0 1 2 3	1	<i>≈</i> .	3					
	Finysical State		<u> </u>	 _						
_		Total Route Characteristics Score		2	15					
回	Containment	0 1 2 🕙	1	2	3	4.3				
4	Waste Characteristics Toxicity/Persistence Hazardous Waste Ouantity	①.3 6 9 12 15 18 0 ① 2 3 4 5 6 7	1 E 1		15 8	4.4				
		Total Waste Characteristics Score		1	25					
[5]	Targets					4.5				
	Surface Water Use Distance to a Sensitive	0 1 2 3	3 2	3	9					
	Environment Population Served/Distate to Water Intake Downstream	_	1	0	40					
		Total Targets Score		7	55	·				
5	If line 1 is 45, multiply If line 1 is 0, multiply	1 x 4 x 5 2 x 3 x 4 x 5		168	64.350					
7	Divide line 6 by 64,350	and multiply by 100	S 5w =	0.2	6					

FIGURE 7 SURFACE WATER ROUTE WORK SHEET

A REPORT: ON

SOLID WASTE DISPOSAL MANAGEMENT

TOWN OF SOUTHAMPTON

SUFFOLK COUNTY NEW YORK

Greenman-Pedersen, Associates, P.C. 100 West Main Street

Babylon, New York 11702

II. METHODS OF SOLID WASTE DISPOSAL

The Town of Southampton presently uses the sanitary landfill method for solid waste disposal. Other methods customarily employed in other communities are high and low temperature incineration, pyrolytic incineration, shredding, low and high density baling and sanitary landfill super compaction. Comparisons of the above methods purely in terms of overall average volume reductions for all types of refuse, beginning at the collection point, are as follows:

- (A) Density of ordinary refuse at the collection point will vary depending upon where and when collected because refuse densities are correlated to source and season. In general, overall combined refuse typical to Southampton should average 125 #/CY and shall be so assumed in order to establish a basis of comparison in volume reductions
- (B) Collection trucks compact the refuse to a density averaging $400 \, \#/\text{CY}$ or a reduction of $32 \pm \%$ of its original volume.
- (C) Sanitary landfills with normal compaction and standard 6" earth coverage achieves an average in place density of 700 #/CY. (Super compaction may) increase densities by $150 \pm \#$ /CY, but is not practical to achieve without special equipment). The refuse is reduced to 18% of its original volume by normal compaction in the sanitary landfill method.
- (D) By incineration of refuse and residue burial, the refuse is reduced to 5% and of its original volume. Most residue is non-burnable material, but residue can increase substantially if the incinerator is not operating efficiently or properly.
- (E) Shredding of refuse prior to compaction at a sanitary landfill generally reduces landfill volumes by an additional 20% ±. Therefore, shredding with

IV: THE SOLID WASTE SITUATION IN SOUTHAMPTON

(A) introduction

The Town of Southampion is 27 ± miles long between its easterly and westerly boundary. The Shinnecock canal divides its length roughly in half: In general, solid waste is collected by the residents themselves or by private carting firms and disposed at Town owned and operated landfills. Because of the Town's length, refuse collected east of the Shinnecock Canal is normally disposed at sites east of the canal, primarily at the North Sea sanitary landfill. Similarily, refuse collected west of the canal is disposed of at sites west of the canal, primarily at the Westhampton landfill. All presently available landfill sites are a nearly exhaused with the exception of the 126 acre North Sea disposal area. Which is 70% ± undeveloped.

The North Sea site is moderate in size, according to landfill standards; for Southampton's present and future population. In fact, the 1970 Master Plan adopted by the Town of Southampton's recommended the purchase of 700 additional acres for solid waste disposal, evenly split east and west of the canal in order to meet the Town's needs to the year 1990. The master plan also recommended that the Town explore methods of improving upon its present practice of solid waste disposal so that landfill sites might be used more efficiently and thereby increase the life of disposal sites. The implementation of these recommendations has brought mixed results:

Unless prompt, positive action is taken by the Town to provide for solid waste disposal, a solid waste disposal problem can be anticipated within the next few years. In order to meet Southompton's future solid waste disposal

	Air Route Work Sheet								
	Rating Factor			ed Value e One)		-Muiti- pher	Score	Max. Score	Ref. (Section)
	Observed Release	e	10	45		1		45	5.1
	Date and Location	ı·							
	Sampling Protoco	t:		·					
	If time 1 is 0, to the time 1 is 45.		Enter on line ed to line 2						Į.
2	Waste Characteris Reactivity and Incompatibility	SUCS	0 1 2	3	-	1		3	5.2
	Toxicity Hazardous Waste Guantity	≜	G 1 2 G 1 2	3 3 4 5	ε 7 ε	3		9 8	
		To	ita! Wasie Ch	aracter:stic	s Score		ļ	20	
3	Targets Population Within 4-Mile Radius	;	0 9 12	15 18	·	;		30	5.3
	Distance to Sens Environment	itive	0 1 2			2		5	
	Land Use		0 1 2	3		1		3	
			Total Ta	rgets Score		1		39	
4	Multiply 1 x 2	2 x 3					0	35.100	
5	Divide line 🕘 b	y 35.100 and	multiply by	100		sa =	()		

FIGURE 9 AIR ROUTE WORK SHEET

	s	S ²
Groundwater Route Score (Sgw)	3.00	9.00
Surface Water Route Score (Ssw)	0.26	. 067
Air Route Score (Sa)	_	
$S_{gw}^2 + S_{sw}^2 + S_a^2$		7.57
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$		

FIGURE 10 WORKSHEET FOR COMPUTING S_M

	Fire a	nd Ex	(plos	sior	Wor	k Sheet				
Rating Factor		ssign (Circl			e		Multi- pher	Score	Max. Score	Ref. (Section)
Containment	1				3		1	-	3	7.1
Waste Characteristics Direct Evidence Ignitability Reactivity Incompatibility Hazardous Waste Ouantity	0	1 2	3	4	5 (5 7 8	1 1 1 1		3 3 3 8	7.2
	Total Was	te Cr.	arac	teri	stics	Score			20	
Targets Distance to Neares: Population	0	1 2	3	4	5		1		5	7.3
Distance to Nearest Building	C	1 2	3				1		3	
Distance to Sensitive Environment	C	1 2	3				1		3	
Land Use Population Within 2-Mile Radius			3	4	5		1 1		3 5	
Buildings Within 2-Mile Radius	C	1 2	3	4	5		1		5	
	Tot	at Tar	gets	Sc	ore				24	
4 Multiply 1 x 2 x 3		-							1,440	
5 Divide line 4 by 1,440 and multiply by 100 SFE =										

FIGURE 11 FIRE AND EXPLOSION WORK SHEET

Direct Contact Work Sheet										
	Rating Factor		ssigni (Circl		'alue ne)	Multi- plier	Score	Max. Score))
	Observed Incident	C			45	1		45		•
	If line 1 is 45, proceed If line 1 is 0, proceed							·		
2	Accessibility	6	1 2	3		1		3	-	-
3	Containment	0	15	- -		1		15	•	:
3	Waste Characteristics Toxicity	0	1 2	3		5		15	· · · •	-
5	Targets Population Within a 1-Mile Radius Distance to a Critical Habitat		1 2		4 5	4		20- 12		£
6	If line 1 is 45, multiply	1 x 4	x [5	s Score			32		
7	Divide line 6 by 21,600	and multip	ly by	100		SDC -				

FIGURE 12 DIRECT CONTACT WORK SHEET

-\$EI	PA
IL WASTE S	TATES, QUANTI
OT PHYSICAL	TATES POWER PAR
GYY 2000 D 8' bomos CXC' 25'00C	
□ 0.0TH€R	1500002)
IIL WASTE T	TYPE
CATEGORY	sve
SLU	SLUOGE
OLW	OILY WASI
SOL.	SOLVENTS
P\$0	PESTICIDE
occ	OTHEROR

POTENTIAL HAZARDOUS WASTE SITE

LIDENTIFICATION

SE	PA		PRELIMINARY PART 2 - WAST			NY New	
IL WASTES	TATES, QUANTITIES, AN	ID CHARACTER	ISTICS				
	TATES POWER OF PURE SHAPE	02 WASTE QUANT		C A TOXIC		BLE DINGHLY	
(1 8, POWOS	R, FINES DF, UOUIO	TONS .		C B, COAA	DACINE DIG FLAM	MABLE DIK REACTI	V€.
ļ		CUBIC YARDS .	unknown	O. PERSI	ISTENT CI H. ICHITA	RACOMIJO JUBA NATOMIJAOK	
□ p.oth€R	(Specify)	HOLOF DRUMS .	<u></u> _	1	·	· · · · · · · · · · · · · · · · · · ·	
IIL WASTE T	 						
CATECORY	SUBSTANCE N	AHE	 	OZ UNIT OF MEASUR			
SLU	SLUOGE .		unknown	<u> </u>		scavenger was	
OLW	OILY WASTE				present or	n site in ope	n leaching
soc	SOLVENTS		<u> </u>		pools.	<u> </u>	
PS0	PESTICIOES		<u> </u>				
occ	OTHER ORGANIC CH	IEMICALS	<u> </u>	<u> </u>	<u> </u>	<u>. </u>	
юс _	INORGANIC CHEMIC	us				<u> </u>	
ACO	ACIOS						
2AB	BASES				<u> </u>		
MES	HEAVY METALS	-					
IV. HAZARDI	OUS SUBSTANCES	بمصيودة لمهجم معا يكومهم	y card CAS Memberal	None suspec	ted		
01 CATEGORY	02 SUBSTANCE N	ME	03 CAS MUMBER	04 STORAGE/DI	SPOSAL METHOD	05 CONCENTRATION	06 MEASURE OF CONCENTRATION
							<u>l</u>
•					¥		
							Ī
	<u> </u>		 				
	-		-				
 	_						,
	· ·				<u></u>		
							
 							
							
			ļ 				
		 	ļ	<u> </u>			
			<u> </u>		•		
			<u>'</u>				
					<u>-</u>		<u> </u>
			<u></u>				
							<u> </u>
V. FEEDSTO	CKS (See Agreed) to CAS Paris.	~		<u> </u>			
CATEGORY	O1 FEEDSTOCK		OZ CAS MUMBER	CATEGORY	O1 FEEDSTO	CKNAME	OZ CAS MUMBER
FDS	<u> </u>			FOS			
FDS		 		FOS			
FDS				FOS			
FDS		-		FOS			
	OF INFORMATION C+++			L			
	C. All Cimerators (Code						

Site Inspection (5/18/83)

Interview Mike Zarro, Deputy Superintendent of Highways, Town of Southampton, (516) 728-3600

SEPA

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT

L IDENTIFICATION

PART 3 - DESCRIPTION O	F HAZARDOUS CONDITIONS AND INCIDE	NTS NY	New
HAZARDOUS CONDITIONS AND INCIDENTS			
DI LIVA GROUNOWATER CONTAUNATION DI POPULATION POTENTIALLY AFFECTED: 6000	02 DOBSERVED (DATE: 57.18/83) O1 NATRATIVE DESCRIPTION	M POTENTIAL	☐ ALEGEO
sspool scavenger waste is dumped aquifer recharge area, the pote	d in leaching pools on site. ential for groundwater contam:	Since the s ination exist	ite is s.
I D B. SURFACE WATER CONTAMINATION J POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	O POTENTIAL	□ ALLEGED
potential exists.	·		
I D C. CONTAMINATION OF AIR IS POPULATION POTENTIALLY AFFECTED:	02 O DESERVED (DATE:) 04 NARRATIVE DESCRIPTION	O POTENTIAL	O ALEGEO
potential exists.			
1 D D. FIRE/EXPLOSIVE CONDITIONS 3 POPULATION POTENTIALLY AFFECTED:	02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	☐ POTENTIAL	□ ALLEGEO
potential exists.	t.		
1 D E. DRECT CONTACT J POPULATION POTENTIALLY AFFECTED:	02 CI OBSERVED (DATE:] 04 NARRATIVE DESCRIPTION	O POTENTIAL	C ALLEGED
potential exists.	•		•
I S F. CONTAMINATION OF SOR 28 AMEA POTENTIALLY AFFECTED: 400 periodic	02*D OBSERVEO (DATE: 5/18/83) 04 NARRATIVE DESCRIPTION	O POTENTIAL	O ALEGEO
read over open areas on site.	created out by buridone.	ry and the s	addyd 15
POPULATION POTENTIALLY AFFECTED: 6000 e site lies in a recharge area for contaminants such as untreated e drinking water.		CAPOTENTIAL here is a great and a	
THE WORKER EXPOSUREMUNAY WORKERS POTENTIALLY AFFECTED: potential for workers being expo		X) POTENTIAL ste exists.	C) ALLEGED
·			
O I, POPULATION EXPOSUREANJURY POPULATION POTENTIALLY AFFECTED:	02 O OLSERVED (DATE:) 04 NAMMATIVE DESCRIPTION .	D POTENTIAL	C ALLEGEO
potential exists.			

$\mathbf{\Omega}$		
	ムレハ	
~		

POTENTIAL HAZARDOUS WASTE SITE PRELIMINARY ASSESSMENT

. 3_.

	CATION
STATE OF	New

	HAZARDOUS CONDITIONS AND INCIDENT	rs NY	New
IL HAZARDOUS CONDITIONS AND INCIDENTS		<u> </u>	
01 () J. DAVAGE TO FLORA 04 NARRATIVE DESCRIPTION	02 CI OUSERVED (DATE:1	O POTENTIAL	□ ALLEGEO
None observed			
01 D K DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION procure according	02 OBSERVED (OATE:]	☐ POTENTIAL	□ ALLEGEO
None observed	·		
01 DL CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 OBSERVED (DATE:)	☐ POTEMIUL	□ MT€GE0
None observed		•	
OT B M. UNSTABLE CONTAINMENT OF WASTES	02 O OBSERVED (DATE: 5/. 8/83)	O POTENTIAL	☐ ALLEGEO
OJ POPULATON POTENTIALY AFFECTED: 6,000 Untreated cesspool waste and ref sand areas are part of the sole	04 NARRATIVE DESCRIPTION use are dumped on site in sand source aquifer recharge area.	i leaching p	pools. The
01 D N. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	02 OBSERVED (OATE:1	O POTENTIAL	☐ WLEGEO
No potential exists.			
01 🗆 O. CONTAMNATION OF SEWERS, STORM DRAINS, W 04 NARRATIVE DESCRIPTION	MTPs 02 OBSERVED (DATE:)	☐ POTENTIAL	O ALLEGED
No potential exists.	<u> </u>	·	
OI D P. ELEGALAUNAUTHORIZED DUMPING O4 NARRATIVE DESCRIPTION	02 OBSERVEO (DATE:)	☐ POTENTIAL	☐ WTEGED
no potential exists.	•		
OS DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR	ALLEGED HAZARDS		
None	•		
III. TOTAL POPULATION POTENTIALLY AFFECTED:	6,000		
IV. COMMENTS			•
The site serves as a transfer stopool waste, white goods and brush North Sea Landfill, Southampton,	h. The household refuse is t	d a landfil ransfered t	l for cess- o the Old
V. SOURCES OF INFORMATION (Con some Per information, o. g., st.	ute fitte, a smale analytik, reports		
Site-Inspection: -5/18/83 Interview Mike Zarro, (516) 728-	3600		•

$\boldsymbol{\Lambda}$	-1	
	⊢ ∙	μu
	L_1	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT TI-SITE I COATION AND INSPECTION INFORMATIO

	FICATION
OI STATE	02 SITE MUMBER New

\ \		PART 1 - SIT	E LOCATION ANI	INSPE	CTION INFORM	IATION LITE	
IL SITE NAME AND LOC	ATIO	ν					
OI SITE NAME ROOK COMES		•	·	02 STRE	ET, POUTE NO., OR SI	PECIFIC LOCATION IDENTIFIER	ή.
West Hampton L	and:	Fill		014	Country R	oad	\
03 CITY				04 STATE	05 ZIP COOE	06 COUNTY	OTCOUNTY OR CONG
Westhampton				NY	11977	Suffolk	103 ost
09 COORDWATES	_	LOUCITUDE	10 TYPE OF OWNERS	Me torses of		-	
40° 49' 45". N	07	2° 39 30"W	U A PRIVATE O F. OTHER -	O 8. FE	DERAL	C. STATE D. COUNT	
III. INSPECTION INFORM							
01 DATE OF INSPECTION		02 SITE STATUS	03 YEARS OF OPERA		-		
5 , 18 83		EI ACTIVE		1968	prese		ا ا
04 AGENCY PERFORMING INS	PECTIO		8€G	NNING YE	AR ENDING YEAR	<u> </u>	
LA EPA LYB. EPAC		ACTOR NUS COR	poration	ПСЫ	HINICIPAL ON M	NUNICIPAL CONTRACTOR _	(
DESTATE OF STATE		RACTOR	ture of tree!	☐ G. O			[Harne of ferri]
05 CHIEF INSPECTOR			O6 TITLE			(Special 07 ORGANIZATION	08 TELEPHONE NO.
1							
Arthur J. Clar	ке		Chemist			NUS FIT II	20] 225-6160
			10 TITLE			11 ORGANIZATION	12 TELEPHONE NO.
John Grelis			Geologist			NUS FIT II	(20]) 225-6160
							0011005 636
Edward McTiern	an		Ecologist			NUS FIT II	20]1225-616
						•	
Patrick Sorense	en, P	h.D	Biochemis	t		NUS FIT II	201 225-616
					-		Ŋ.
			_]				()
l I							0.4
	_						()
13 SITE REPRESENTATIVES INT	ERVIEY	YEO	14 TITLE Deput	y 1	SADORESS TOWN	of Southampton	16 TELEPHONE NO
Mike Zarro			Super. of Highways		20 Jackson Hampton Ba	vs. NY 11946	516) 728-3600
			Commissio	ner	Town of So 20 Jackson		
Thomas Lavelle	;		of Public	İ	20 Jackson Hampton Ba	ys, NY 11946	5161 728-3600
		·	110210		-		
				j			()
				-			
							()
· · · · · · · · · · · · · · · · · · ·	-		 				
				- 1			()
 -			 				
			İ	ļ			(\cdot)
			 				
				-			1
17 ACCESS GAINED BY	1A TIME	OF INSPECTION	19 WEATHER CONDI	rywe I			
(CARCE BAR) CEPERMISSION		20, 110, 2011011	I WEATHER WHO	IICNS			\dot{i}
O WARRANT	9:	45a.m10:45a	M. Su	nny,	65°F		. !
IV. INFORMATION AVAIL	ABLE	FROM	<u>.</u>				
01 CONTACT			02 OF (Agency Organica	F F	nvironment	al Protection	OJ TELEPHONE NO.
Mark Haulenbee	k		Agency Env	ironm	ental Serv	ices Division	1201 321-6685
04 PERSON RESPONSIBLE FOR		SPECTION FORM	OS AGENCY	D6 ORG	UNIZATION	OT TELEPHONE NO.	08 DATE
				}			5 , 27, 83
Arthur J. Clar	ke		EPA	NUS	FIT II	(201) 225-6160	MONTH DAY YEAR
34 FAC: 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4							

POTENTIAL HAZARDOUS WASTE SITE

I, IDENT	IFICATION
OI STATE	02 SITE NUMBER
NY	OZ SITE HUMBER New

SEP	'A			TION REPORT E INFORMATION	ł	NY New	
IL WASTE ST	ATES, QUANTITIES, AN	D CHARACTER	ISTICS				
OLPHYSICAL STA	TES (Check of the work) O E. SLURRY FINES O F. LXXVID O G. GAS	THAUO STEAW SO	TY AT SITE	O3 WASTE CHARACT A. TOXIC B. CORRC C. RADIO C. PERSIS	ACTIVE G. FLAM	TIOUS DIL HIGHLY \ MABLE DIL HIGHLY \ MABLE DIL REACTE	IVE VE 'ATIOLE
□ 0.01KER _	(5p=cfy)	NO, OF DRUMS .		<u> </u>			
III, WASTE TY	PE						
CATEGORY	SUBSTANCEN	ME	01 GROSS AHOUNT	OZ UNIT OF MEASURE	03 COMMENTS		
รับบ	SLUDGE ·		unknown		Cesspool s	scavenger was	te is
OLW	OILY WASTE				present or	ı site in ope	n leaching
SOL	SOLVENTS				pools.		
PSO	PESTICIOES						
осс	OTHER ORGANIC CH	EMICALS					
юс	INORGANIC CHEMIC	ALS		Ī			
ACD	ACIDS						
BAS	BASES						
MES	HEAVY METALS						
IV. HAZARDO	US SUBSTANCES	pandis for mall beques	ty case CAS Members)	None suspec	ted		_
O1 CATEGORY	02 SUBSTANCE N	WE.	03 CAS NUMBER	04 STORAGE/DIS	POSAL METHOD	05 CONCENTRATION	06 MEASURE OF CONCENTRATION
					<u> </u>		
		-	 				
	 						
			 	 -			·
					<u> </u>		
			-				
			-				
			 				<u> </u>
							
			 	 	·		
			 				· · · · · · · · · · · · · · · · · · ·
<u> </u>				 			
			<u> </u>				
			<u> </u>	<u> </u>		<u></u>	<u> </u>
V. FEEDSTOC	KS ISON ADDRAGE FOR CAS MANDE		·	· · · · · · · · · · · · · · · · · · ·		204 1144	OZ CAS NUMBER
CATEGORY	01 FEEDSTOC	KNAME	02 CAS MUMBER	CATEGORY	O1 FEEDST	DCX NAME	- U2 CAS HUWBER
FOS			<u> </u>	FDS			
FOS			<u> </u>	FOS			<u> </u>
FOS				FDS			
FOS			<u> </u>	FOS			
VI. SOURCES	OF INFORMATION 1000	loothe relativests, e.g.,	, stota basil, compile analysist,	1-4-(1)			<u></u> _

Site Inspection (5/18/83)

Interview Mike Zarro, Deputy Superintendent of Highways, Town of Southampton, (516) 728-3600

- SEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

SITE INSPECTION REPORT

1. IDENTIFICATION
01 STATE 02 STE MANDER
NY NEW

PART 3 - DESCRIPTION OF HA	AZARDOUS CONDITIONS AND INCIDENT	5	
IL HAZARDOUS CONDITIONS AND INCIDENTS			
01 🗆 J. DAMAGE TO FLORU. 04 NARRATIVE DESCRIPTION	O2 OBSERVED (DATE:]	- POTENTIAL	O ALLEGED
None observed	·	<u> </u>	·
01 D K, DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION (Section Account) of London	02 OBSERVED (DATE:)	- POTENTIAL	O WIECED
None observed			
01 DL CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 OBSERVED (DATE:)	☐ POTENTIAL	O ATTECED
None observed	·		·····
01 B M. UNSTABLE CONTAINMENT OF WASTES	02 (FOBSERVEO (DATE: 5/18/83)	D POTENTIAL	D ALLEGED
O3 POPULATION POTENTIALLY AFFECTED: 6,000 Untreated cesspool waste and refuse sand areas are part of the sole sour	o4 NARRATIVE DESCRIPTION are dumped on site in sand ce aquifer recharge area.	leaching po	ols. The
01 () N. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	02 OBSERVED (DATE:)	☐ POTENTIAL	☐ ALLEGED
No potential exists.			, ,
01 D O. CONTAMINATION OF SEWERS, STORM ORAINS, WWTP: 04 NARRATIVE DESCRIPTION	02 OBSERVED (DATE:]	O POTENTIAL	D ALLEGED
No potential exists.	·		•
01 [] P. ILLEGAL/UNAUTHORIZED DUMPING 04 NARRATIVE DESCRIPTION	O2 OBSERVEO (DATE:)	D POTENTIAL	O ALLEGED
no potential exists.			* * * * * * * * * * * * * * * * * * *
OS DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLE	GED HAZAROS		
None	•		þ
W TOTAL BORD STION BOTTENTIALLY AFFECTED.	5,000		 ;
III. TOTAL POPULATION POTENTIALLY AFFECTED:		<u> </u>	
The site serves as a transfer static pool waste, white goods and brush. North Sea Landfill, Southampton, NY.	The household refuse is tra	a landfill ansfered to	for cess- the Old
V. SOURCES OF INFORMATION (Con sanctic references), a g., prain bires,	Exmedia analysial, respect ()		
Site Inspection: 5/18/83 Interview Mike Zarro, (516) 728-3600			¥ •
2112211211121212121	•		ja.

2		DΛ
	\Box	$\Gamma \mathcal{M}$

POTENTIAL HAZARDOUS WASTESITE

	IFICATION .
OI STATE	OZ SITE MUMBER
NY	New

SEPA .		E INSPECTION REPORT OF HAZARDOUS CONDITIONS AND I	NCIDENTS	NY N	lew
II. HAZARDOUS CONDI	TIONS AND INCIDENTS		<u>.</u>		
01 CA GROUNDWATE	ACONTAMINATION 6000	02 B OBSERVED (DATE: 57.18/		POTENTIAL	O WTECED
Cesspool scaver an aquifer rech	nger waste is dumpe harge area, the pot	d in leaching pools on s ential for groundwater c	ite. Sino ontaminati	ce the si on exists	te is
01 B. SURFACE WATE 03 POPULATION POTEN		02 CI OBSERVED (DATE:	1 0	POTENTIAL	□ WTE@E0
No potential ex	cists.				
01 C. CONTAMINATIO 03 POPULATION POTEN		02 () OBSERVED (DATE: 04 HARRATIVE DESCRIPTION		POTENTIAL	O ALLEGÉD
No potential ex	rists.				
01 D. FIRE/EXPLOSIVE 03 POPULATION POTENT		02 O OBSERVED (DATE: 04 NARRATIVE DESCRIPTION	1 □	POTENTIAL	O ALLEGED
No potential ex	rists.				
01 DE. DIRECT CONTAC 03 POPULATION POTENT		02 O OBSERVED (DATE:	1	POTENTIAL	() ALLEGEO
No potential ex	ists.	•			
	FEECTED: 20	02'D OBSERVEO (DATE: _5/18/ 04 NARRATIVE DESCRIPTION cally, cleaned out by bul		potentul	O ALEGEO ludge is
03 POPULATION POTENTI	n a recharge area s such as untreated	0250 OBSERVED (DATE: 5/18/8: 04 NARRATIVE DESCRIPTION for a sole source aquife cesspool waste reaching	r. There	is a grefer and e	D MIEGED eat potentia contamination
	LY AFFECTED:	02 OOSERVED (OATE: 04 NARRATIVE DESCRIPTION osed to untreated cesspo	·	EXISTS.	O WIEGED.
01 [] I. POPULATION EXPO 03 POPULATION POTENTIA		02 () OBSERVED (DATE:) Of	OTENTIAL	☐ WITEGED
No potential ex	ists.				

EPA FORM 2010-13 (7-81)

$\boldsymbol{\Omega}$	-	
	! —ı	μ_{Δ}
W 27		

POTENTIAL HAZARDOUS WASTE SITE

	IFICATION
OI STATE NY	New New

		SITEINS				NY NEW
	PART 4 - PERM	IT AND DE	SCRIP	TIVE INFORMAT	ION	
IL PERMIT INFORMATION						
O1 TYPE OF PERMIT ISSUED	02 PERMIT MUMBER	O3 DATE	ISSUED	04 EXPIRATION DATE	05 COMMENTS	į
O A. NPOES		-		ļ		
OB. UIC						
□ C. AIR						
O D. RCRA						
□ E. RCRA INTERIM STATUS		•		-		
OF. SPCCPLAN	·					
☐ G. STATE		1				
☐ H. LOCAL		- 			-	
DI. OTHER (Savely)						
₫ J. NONE						
III, SITE DESCRIPTION					_	
OT STORAGE/OISPOSAL (Check and lover)	TINU CO TNUOMA SO	OF MEASURE	O4 TR	EATMENT (CARES AF PAR AS	×41	05 OTHER
. I A. SURFACE IMPOUNDMENT		_	l	•	-	
☐ B. PILES				INCENERATION UNDERGROUND INJE	CDON	C. A. BUILDINGS ON
C. DRUMS, ABOVE GROUND				CHEMICAUPHYSICA		
O. TANK, ABOVE GROUND				BIOLOGICAL	-	1
D E. TANK, BELOW GROUND			O ε. 1	WASTE OIL PROCESS	ING	06 AREA OF SITE
£ F. LANDFILL D G. LANDFARM	<u>unknown</u>			SOLVENT RECOVERY		28-30
TO H. OPEN DUMP	unknown			OTHER RECYCLING/	RECOVERY	-20 50
2 · · · · · · · · · · · · · · · · · · ·			⊔ ਮ, ਹ	OTHER		
□ I, OTHER	<u> </u>			(\$044	(4)	1
(Sp-c47)				(50-4	(# _F)	
(Space ₇)				(5004	(4 ₀)	,
(Souce) 7 COMMENTS				(5004	(4 ₁)	,
7. CONTAINMENT CONTAINMENT OF WASTES (CARCO DOL)				(50+4		
(SO-CO) 7 COMMENTS .	☐ B. MODERATE	E3 C. IN		ATE, POOR		JRE, UNSOUND, DANGEROU
/. CONTAINMENT I CONTAINMENT OF WASTES (Care) and		ES C. IN		(50+4		JRE, UNSOUND, DANGEROU
(SONCE) TO COMMENTS TO CONTAINMENT CONTAINMENT OF WASTES (CARCE SAME) CONTAINMENT OF WASTES (CARCE SAME) CONTAINMENT OF DRUMS, DIKING, LINES DESCRIPTION OF DRUMS, DIKING, LINES	RS, BARRIERS, ETC.		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROU
(SOME) 7 COMMENTS 7. CONTAINMENT 1 CONTAINMENT OF WASTES (Check and) 1 A. ADEOUATE, SECURE 1 DESCRIPTION OF DRUMS, DIKING, LINES	RS, BARRIERS, ETC.		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROL
(SONCE) TO COMMENTS TO CONTAINMENT CONTAINMENT OF WASTES (CARCE SAME) CONTAINMENT OF WASTES (CARCE SAME) CONTAINMENT OF DRUMS, DIKING, LINES DESCRIPTION OF DRUMS, DIKING, LINES	RS, BARRIERS, ETC.		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROU
(SOME) 7 COMMENTS 7. CONTAINMENT 1 CONTAINMENT OF WASTES (Check and) 1 A. ADEOUATE, SECURE 1 DESCRIPTION OF DRUMS, DIKING, LINES	RS, BARRIERS, ETC.		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROU
(Social) TOUMENTS TOUTAINMENT CONTAINMENT OF WASTES (Social) O A ADEQUATE SECURE DESCRIPTION OF DRUMS, DIKING, LINES Approximately Twenty	RS, BARRIERS, ETC.		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROU
CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES (Care on) A ADEOUATE, SECURE DESCRIPTION OF DRUMS, DIKING, LINES Approximately Twenty	rs.BARNERS.ETC. / Five drums are p		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROL
CONTAINMENT CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES (CARC) COMP DESCRIPTION OF DRUMS, DIKING, LINES Approximately Twenty ACCESSIBILITY OF WASTEEASLY ACCESSIBLE:	rs.BARNERS.ETC. / Five drums are p		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROU
(South) 7. CONTAINMENT 1. CONTAINMENT 1. CONTAINMENT OF WASTES (CARE) ONLY 2. COSCRIPTION OF DRUMS, DIKING, LINES Approximately Twenty 3. ACCESSIBILITY 0.1 WASTE EASLY ACCESSIBLE: 12	rs.BARNERS.ETC. / Five drums are p		ADEQU	ATE, POOR		JRE, UNSOUND, DANGEROU
(South) 7. CONTAINMENT 1. CONTAINMENT 1. CONTAINMENT OF WASTES (CARE) ONLY 2. COSCRIPTION OF DRUMS, DIKING, LINES Approximately Twenty 3. ACCESSIBILITY 0.1 WASTE EASLY ACCESSIBLE: 12	RS. BARRIERS, ETC. y Five drums are provided the provide	present	ADEQU.	ATE, POOR		JRE, UNSOUND, DANGEROU
ACCESSIBILITY OF WASTE EASLY ACCESSIBLE: SOURCES OF INFORMATION RES	YES NO	present	ADEQU.	ATE, POOR		JRE, UNSOUND, DANGEROL
ACCESSIBILITY OR WASTE EASLY ACCESSIBLE:	TES D NO	present	ADEQU.	ATE, POOR		JRE, UNSOUND, DANGEROL

SE	PA ING WATER S	unni V	POTE	ENTIAL HAZA SITE INSPEC DEMOGRAPH	TION REPO	ORT	_	0157		FICATION OZ SITE NUMBER NEW		
				02 574705			_		· CVST	LUCE TO SITE		
OI TYPE OF DRINKING SUPPLY (Check as applicable)				OZ STATUS						03 DISTANCE TO SITE		
SURFACE COMMUNITY A. [] NON-COMMUNITY C. []		#ELL ENDANGERS B. Ď C O. C		ED AFFECTED 1 B. D E. CI		C. C	C. 🗆 A		nknown _(mi)			
III. GROU	NOWATER							·				
	WATER USE NY	CHITY (Chees o	nej									
Ď.A	NLY SOURCE FOR	DRINKING	B. DRINKING (Other sources a selected COMMERCIAL, IN: (NO series when source)	OUSTRIAL IRRIGATIO	~		NOUSTRIAL MRIGAT	non I	D. N	KOT USED, UNIUSE	LADLE	
02 POPULA	02 POPULATION SERVED BY GROUND WATER. 6000					03 DISTANCE TO NEAREST DRINKING WATER WELL_					0.8 (m/)	
04 DEPTH TO GROUNDWATER			05 DIRECTION OF GRO	06 DEPTH TO AQUIFER OF CONCERN		OF POTENTIAL YIELD		08 SOLE SOURCE AQUIFER				
10-20 _(ft)			south	0.0		4.5 x 10 (apd)		MYES D NO				
09 D€SCRIP	TION OF WELLS IN	-chargester	form, and incusion solutions to p	reputation and buildings]					_			
	one mile se wells		e site ther cated 0.8 mi	e are 12 w les southw	vells use vest of t	ed for the si	the publicite.	c wat	ter	supply.	Ten	
10 RECHARG	Do ah	11 DISCHARGE AREA										
© YES					TO YES COMMENTS							
IV. SURFA	CE WATER											
C A RE	E WATER USE COM- SERVOIR, RECR INKING WATER :	REATION		I, ECONOMICALLY TRESOURCES	ø c.co	MMERCIA	AL, INDUSTRIAL). NO	T CURRENTLY	USEO 	
02 AFFECTE	D/POTENTIALLY A	FFECTED BOO	XES OF WATER									
NAME:							AFFECTED		OIS	TANCE TO SITE		
Shinnecock Bay .			0					1.5	_ (mi)			
											_ (w) _ ()	
								_	_		(mi)	
V. DEMOG	RAPHIC AND F	PROPERTY	INFORMATION									
OI TOTAL POPULATION WITHIN					02 DISTANCE TO NEAREST POPULATION							
$A = \frac{1200 \text{ (est.)}}{6.2,500 \text{ (est)}}$ c. 6					1) MILES OF SIT , 000 {es:	(est) 0.25 (mi)						
D3 HUMBER OF BUILDINGS WITHIN TWO (2) MILES OF SITE					D4 DISTANCE TO NEAREST OFF-SITE BUILDING							
500					O.1 (mi)							
The sit		ated in	the seasona						sth	ampton		
	-Hampton	beach.										

SFPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION

OI STATE OZ SITE NUMBER

NY NEW SITE

	PARTS	- WATER, DEMOGRAPH	IIC. AND	ENVIRO	NMENTAL DA	TA LN	I NEW STCE	<u></u>
VI. ENVIRONMENTAL INFORMA	TION	·		•	_			
O I PERMEABILITY OF UNSATURATED Z	ONE ICAMS PAO							
□ A. 10 ⁻⁶ ~ 10 ⁻) B. 10-4 ← 10-4 cm/sec Č	☼ C. 10~4 — 10~3 cm/sec □ D. GREATER THAN 10~3 cm/sec						
02 PERMEAURITY OF BEDROCK (Check	pre)						 	
□ A, IMPERN Rest por	IEABLE C	3 8. RELATIVELY IMPERMEAS		16-3 - 10-			PERMEABLE Par 10 ⁻² (Arise)	
03 DEPTH TO BEDROCK	04 DEPTH OF	CONTAMINATED SOIL ZONE		05 SO4. p+	·			
1,600 (H)	1,600 unknown (n)				unknown 			
06 NET PRECIPITATION	NET PRECIPITATION 07 ONE YEAR 24 HOUR RAINFALL			06 SLOPE DIRECTION OF SITE SLOPE , TERRAIN AVERA				
(in)	_ 2.	, 8 (in)	0-5×		South		0-5	
09 FLOOD POTENTIAL	1	0	· 					
SITE IS INYEAR FLO	ODPLAIN	SITEIS ON BARRI	IER ISLAND	, COASTA	L HIGH HAZARO	AREA, RIVER	INE FLOODWAY	
11 DISTANCE TO WETLANDS (3 acomism	~ 		12 DISTAN	CE TO CRIT	KAL HABITAT (# #	ndergored species	1	
ESTUARINE		OTHER	5.0 (mi) Osprey					
A(mi)	8	(mi)	ENDANGERED SPECIES:					
13 LAND USE IN VICINITY	- -	•						
DISTANCE TO		RESIDENTIAL AREAS; NATIONALISTATE P			B0045	AGRICULTU	IRAL LANOS AG LAND	
COMMERCIAUINDUSTRI	AL	FORESTS, OR WILDLIF	E RESERVE	:5	PHIME	AG LAND	AG DANO	
0.25		0.50			5.0			
A(ml)		В	(mi)	C(mi] D(mi)				
14 DESCRIPTION OF SITE WIRELATION T	O SURROUNDA	IG TOPOGRAPHY					e site	

Site is located on the South Shore of Long Island's east end. The site 'lies in a recharge area for the Upper Glacial, Lloyd and Magothy' aquifers. The Atlantic Ocean and Shinnecock Bay are within 2 miles of the site.

VII, SOURCES OF INFORMATION (Can apriced references), e.g., tital title, carrier sortypie, capacit

Site Inspection 5/18/83

U.S.G.S. 7.5 Topographic Series

NY State Dept. of Transportation map, "Gazetteer" 1983.

NY State Dept of Health, "Atlas of Community Water System Sources," 1982

H. M. Jensen, "Hydrogeology of Suffolk County N.Y., 1974.

V	ŧ
À	•
,	

	p	OTENTIAL HAZARDOUS WASTE SITE		IDENTIFICATION
\$EPA		SITE INSPECTION REPORT		STATE 02 SITE NUMBER NY New
IL SAMPLES TAKEN NO SA		<u></u>		
SAMPLE TYPE	OT NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO		03 ESTIMATED DAT RESULTS AVARA
GROUNDWATER				
SURFACE WATER				
WASTE				
AIR				
RUNOFF				
SPILL.				
SOIL				
VEGETATION				
OTHER				
III, FIELD MEASUREMENTS TA	KEN -			
at TYPE	02 COMMENTS			
Air Quality	No read	ings above background were reco	orded by	y the HNU
	Photoio	nizer or MSA O2 meter/Explosime	ter	
IV. PHOTOGRAPHS AND MAPS				
01 TYPE & GROUND () AERIAL		02 N CUSTODY OF EPA Edison, N.J./NUS		Edison, N.J.
OJ MAPS O4 LOCATION	OFHAPS ttached as A			
V. OTHER FIELD DATA COLLEC			<u> </u>	
T. OTHER FIELD DATA COLLEC	- I I'M (Librarie Versing \$61)			
None				
M FOURSES OF WEST AND	Manager			-
VI. SOURCES OF INFORMATIO	IT (Cre specific relevenços, e	g , Iraia mes, tampie anarysis, reportij		
Site Inspectio	n: 5/18/83			

<u> </u>	ı	POTENTIAL HA	ZARDOUS WASTE SITE	1. IDENTIF	ICATION
≎ ÉPA	•	SITE INSP	PECTION REPORT VNER INFORMATION	OI STATE O	2 SITE MUMBER New
II. CURRENT OWNER(S)			PARENT COMPANY (F ACCESSAN)		'
OI NAME Town of Southampton		02 D+B MUMBEA	OB NAME		09 D+B MUMBER
D3 STREET ADDRESS (P.O. 800, AFD P. orc.)		04 S/C COO€	10 STREET ADDRESS (P.O. Bos, PEG.P. o.C.)		11 5/C COO€
20 Jackson Ave					
OS CITY	•	07 ZP COO€	12014	STATE CI	14 ZIP COOE
Hampton Bays	NY	11946			
OI NAME		020+8 MUMBER	OG NAME		09 D + B MUMBER
03 STREET ADORESS (P.O. Box, AFO F, sec.)		04 S/C COO€	10 STREET ADORESS (P.O. Bos, R/O F, sie)		115℃ COOE
OS CITY	OS STATE	O7 ZIP COOE	12 CITY	13 STATE	14 ZIP COO€
		·.			
O1 NAME	•	02 0+8 MUHBER	OB NAME		R384UM 8+0 60
03 STREET ADDRESS (F.O. Bas, AFD F, occ.)		04 SPC COO€	10 STREET ADORESS (P.O. 801, NO P. 00.)		115/C COOE
os aty	37A72 80	07 ZIP COO€	12 CITY	13 STATE	14 ZIP GOD€
O1 NAME	1	02 D+8 MUMBER	OB NAME		090+8 NU43ER
			İ		
OJ STREET ADDRESS (P.O dos, P/D 4, oic.)		04 S/C COO€	10 STREET ADDRESS IP 0 800 AFO . ac.		I 1 S/C CODE
os city	OS STATE	07 ZP COO€	12 017	13 STATE	14 ZIP COOE
III. PREVIOUS OWNER(S) Research			IV. REALTY OWNER(S) (# 2000C=004) 8.	it most recent Mail	<u> </u>
OI NAME		02 D+8 MUMBER	01 NAME		02 0 + 8 MUMBER
DI STREET ADDRESS (P.O. Boo, AFO P. exc.)		04 S/C COO€	OJ STREET ADDRESS (P.O. 801, RFO 1, AC.)		04 SIC CODE
os CITY	3TATE	07 ZIP COO€	os diry	06 STATE	07 21° COO€
I NAME	!	02 D+8 MJ-18ER	OI NAME		02 D+8 NUMBER
Lar, ADD, and DO 223ROOA TEERTE EC		04 S/C COO€	03 STREET ADORESS (P.O. 800, R/O 1, 144.)		04 SIC COO€
isary	06 STATE	07 ZP COO€	os city	OG STATE	07 ZIP COO€
NAME		02 D+8 NUMBER	O1 NAME		02 D+8 NUMBER
3 STREET ADORESSIP.O Bos, MFD P, 416.1		04 50 000€	03 STREET ADORESS (P.O Boo, AFD F, orc.)		04 SIC COOE
sary	[06STATE]	07 2₽ COO€	05 017	O6 STATE	07 ZIP COO€
V. SOURCES OF INFORMATION (C++ 44	>+CP4 (+)++=C+1, +	g., elete Hez, sample enalys	Ld, Pope#1)		
Interview Mike Zarro.	(516)	728- 3600			

		PC	DTEN	ITIAL HAZA	ARDOUS WASTE SIT		I. IOENTIF		
SEPA			5	SITE INSPE	CTION REPORT	[6	STATE OF		
QUEIT			PAR	T8-OPERA	TOR INFORMATION	L	NY		New
II. CURRENT OPERA	700				OPERATOR'S PARE	NT COMPANY			
OI NAME .	101/10		102.04	BNUMBER	10 NAME	TI COMPART P	2441	1	BHUMBER
UI RAME			10204	BNUMBER	TONAME			'''	В КОМРЕК
			<u> </u>						<u> </u>
OJ STREET ADORESS IP O	804, H/D /, eK J		104	SIC CODE	12 STREET AOORESS IF.O	604, A101, sec.)		Į,	3 SKC CODE
1			-					- 1	
05 CITY		D6 STATE	07 ZIP	COOE	14 CITY		15 STATE	16 24	CODE
		1 1	1						
08 YEARS OF OPERATION	09 NAME OF OWNER	ــــــــــــــــــــــــــــــــــــــ		_			لـــــــــــــــــــــــــــــــــــــ		
III. PREVIOUS OPERA	TOR(S) run ~ u recore	17E pro-do pri	سەمە د ج	bo o()	PREVIOUS OPERATO	DRS' PARENT COM	PANIES (#	ويلجود	⊌•]
OI NAME			02 D+	BNUMBER	10 NAME			11 D	B NUMBER
None		i						1	
OJ STREET ADDRESS (PO	Bos, AFD 4, 146.1		04	SIC COD€	12 STREET ADDRESS (F.O.	60+, F/O+, +IC]		با_ب	3 SIC CODE
			- 1		1			- 1	
OS CITY		06 STATE	07 ZIP	CODE	14 CITY		15 STATE	16 22	PCODE
		1		0000	[
								<u> </u>	
DE YEARS OF OPERATION	09 NAME OF OWNER	DURING THIS	SPERIC	0	1				
	ļ				ļ				
OI HAME			02 0+	BNUMBER	10 NAME			1104	B NUMBER
		ŀ			1				
OJ STREET ADDRESS (P.O. 8	ias, A/O 1, esc.)		04	SKC COOE	12 STREET ADDRESS (P O.	Soa, RFD F, atc.J		<u> </u>	3 SIC COOE
			- 1					-	
05 CITY		OS STATE	07.210	5005	14 CiTY		15 STATE	1 0 71	CODE
03011		3312.2	07 20	CODE	1.0.11		1.33	'''	- 0002
		LL			<u> </u>		L		
08 YEARS OF OPERATION	09 NAME OF OWNER	DURING THIS	SPERIC	ю					
]				•
01 HAME			02 D+E	RABMUNE	10 NAME			110	R38MUN B
OJ STREET ADORESS (P.O. A	or RFD / oke		04	SIC CODE	12 STREET ADDRESS IP.O. I	tor. R/O 1, erc.)		1	3 SKC CODE
,						,		- 1	
			بلب				T		
05 CITY		OS STATE	OF ZIP (C00E	14 CITY		15 STATE	16 ZiF	CODE
08 YEARS OF OPERATION	09 NAME OF OWNER	NURING THIS	PERIO	0					
IV. SOURCES OF INFO	RMATION COLUMN			4					
11.300ACCS OF INFO	THE PART OF PARTY	**********		-11. 100000 000011	. /+00411				

EPA FORM 2070-13 (7-61)

Interview Mike Zarro, (516) 728-3600

SEPA		SITE INSP	ZARDOUS WASTE SITE ECTION REPORT TRANSPORTER INFORMATION	I. IDENTIFIC.	
II. ON-SITE GENERATOR					
OI NAME MORE		03 0+8 MM8EH			
03 STREET ADDRESS IP O Boo, MED P. ONE.		04 SXC COO€			
os ary	06 STATE	07 ZIP COO€			
III. OFF-SITE GENERATOR(S)		1	<u></u>		
Town of Westham	otar	02 D+8 NUMBER	OI NAME	02	2 Q + B MUMBÉR
OJ STREET ADORESS (P.O. Dos, AFD F. onc.)	_	04 S/C COOE	03 STREET ADDRESS (P.O Bos, AFD P. ORL)		04 SIC CODE
os ary	06 STATE	07 ZIP CODE	os ary	OS STATE O	7 ZIP CODE
O1 NAME		02 D+B NUMBER	Q1 NAME	0:	Z D+8 NUMBER
OJ STREET ADDRESS (P.O. 800, APD P. 000)		04 SIC CODE	03 STREET ADDRESS (P O Box, AFD F, orc.)		04 SIC CODE
05 CITY	06 STATE	07 ZIP CODE	OS CITY	OG STATE OF	ZIP CODE ,
IV. TRANSPORTER(S)		l			
ON KNOWN		02 D+8 NUMBER	O1 NAME	0:	R38MUN 8 + 0 2
03 STREET ADDRESS (F.O. Soc. AFD F. sec.)		04 SIC CODE	03 STREET AOORESS (P.O. Bos, RFD F, SAC)		04 SIC CODE
os ary	06 STATE	O7 ZIP CODE	os city	OG STATE O	7 ZIP CÓDE
01 NAME .		02 D+8 NUMBER	O1 NAME		2 D+8 NUMBER
03 STREET ADORESS 19.0. Dos. PAD 4. ACS	•	04 SIC CODE	03 STREET ADDRESS (P.O. 800, AFD P. 0KJ		04 SIC CO0€
05 CITY	OS STATE	07 ZIP CODE	05 CITY	OS STATE O	7 ZIP COOE
V. SOURCES OF INFORMATION روم بادي	DE POÍSIONESE, O	.g., Elsiq birs, Esmilia analysis	s, reports)		.
Interview Mike Zarro,	(516)	728-3600			

EPA FORM 2070-13 (7-81)

			I then	TIFICATION
⊕ EDA	POTENTIAL HAZARDOUS WASTE SITE			OZ SITE NUMBER
\$EPA	SITE INSPECTION REPORT		NY	
	PART 10 - PAST RESPONSE ACTIVITIES			·
IL PAST RESPONSE ACTIVITIES .	02 DATE			
01 C A WATER SUPPLY CLOSED 04 DESCRIPTION	02 DATE	03 AGENCY		
No previous history.				
01 D B. TEMPORARY WATER SUPPLY PROVI		03 AGENCY		
No previous history.				
01 C. PERMANENT WATER SUPPLY PROVI 04 DESCRIPTION	DED 02 DATE	03 AGENCY		
No previous history.				
01 D. SPILLED MATERIAL REMOVED 04 DESCRIPTION	02 DATE	03 AGENCY		
No previous history.				
01 D E. CONTAMINATED SOIL REMOVED 04 DESCRIPTION	O2 DATE	03 AGENCY		
No previous history.				
01 O F. WASTE REPACKAGED 04 DESCRIPTION	02 DATE	03 AGENCY		
No previous history.				
01 G. WASTE DISPOSED ELSEWHERE 04 DESCRIPTION	02 DATE	03 AGENCY		
No previous history.				
01 D H. ON SITE BURIAL 04 DESCRIPTION	02 DATE	03 AGENCY		
No previous history.				
01 D I, IN SITU CHEMICAL TREATMENT 04 DESCRIPTION	O2 DATE	03 AGENCY		
No previous history.				
01 D J. IN SITU BIOLOGICAL TREATMENT 04 DESCRIPTION	02 DATE	OJ AGENCY	 -	
No previous history.				
01 D K. IN SITU PHYSICAL TREATMENT 04 DESCRIPTION	02 OATE	D3 AGENCY		
No previous history.				
01 D L ENCAPSULATION	OZ DATE	03 AGENCY		
No previous history.				
01 DM, EMERGENCY WASTE TREATMENT 04 DESCRIPTION	02 OATE	03 AGENCY		
No previous history.				
01 ON, CUTOFF WALLS 04 DESCRIPTION	02 DATE	03 AGENCY		
No previous history.				
01 0 O. EMERGENCY DIKING/SURFACE WATER	OIVERSION 02 OATE	03 AGENCY		
04 DESCRIPTION No previous history.				
01 D P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION	02 DATE	OJ AGENCY		
No previous history.	•			
01 D'O. SUBSURFACE CUTOFF WALL	02 DATE	03 AGENCY		
04 DESCRIPTION No previous history.				

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10-PAST RESPONSE ACTIVITIES

1. IDENTIFICATION
01 STATE 02 SITE NUMBER
NY NOW

YEIA	PART 10 - PAST RESPONSE ACTIVITIES		үи	New	
II PAST RESPONSE ACTIVITIES	•			-	
01 D R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	OZ DATE	03 AGENCY			
No previous history.					
01 D S. CAPPING/COVERING 04 DESCRIPTION	OZ DATE	03 AGENCY	<u>, </u>		
No previous history.		•			
01 () T. BULK TANKAGE REPAIRED 04 DESCRIPTION	OZ DATE	03 AGENCY		-	
No previous history.					
01 D U. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY	·	<u> </u>	
No previous history.					
01 () V. BOTTOM SEALED 04 DESCRIPTION	02 DATE	03 AGENCY			
No previous history.					
01 D W. GAS CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY			
No previous history.					
01 X. FIRE CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY		-	$\overline{}$
No previous history.					17
01 D Y. LEACHATE TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY			
No previous history.					
O1 D Z. AREA EVACUATED 04 DESCRIPTION	O2 DATE	03 AGENCY			
No previous history.					
01 D 1, ACCESS TO SITE RESTRICTED 04 DESCRIPTION	02 DATE	D3 AGENCY		· · · · · · · · · · · · · · · · · · ·	
No previous history.					
01 D 2. POPULATION RELOCATED 04 DESCRIPTION	02 DATE	03 AGENCY			
No previous history.					. "
01 D 3. OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	OZ DATE	03 AGENCY.			
None					

III. SOURCES OF INFORMATION (Con specific interests, a.g., state thes, sample encycle, exports)

Interview Mike Zarro, (516) 728-3600

٩	FPA	L
		١

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

I. IDENT	IFICATION
OI STATE	OZ SITE MUMBER
NY	New

11	ENFORCEM	CHI	INCODE	TION

OI PAST REGULATORY/ENFORCEMENT ACTION IN YES TO NO

OZ DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

III, SOURCES OF INFORMATION (Co-specifications, a.g., state tree, sumple marked, reports)

nterview Mike Zarro, (516) 728-3600

APPENDIX A

MAPS AND PHOTOS

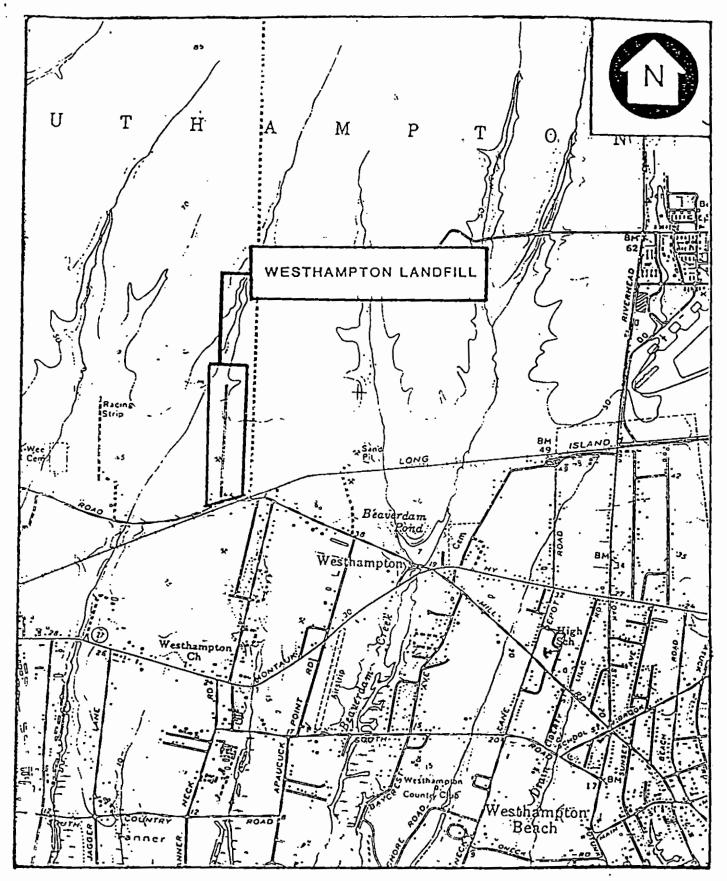

MAPS AND PHOTOS

Figure A-1 provides a Site Location Map.

Figure A-2 provides a Site Map.

Figure A-3 provides a Photo Location Map.

Exhibit A-1 provides photographs of the site.

WESTHAMPTON LANDFILL

WESTHAMPTON, N.Y. SITE LOCATION MAP

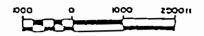
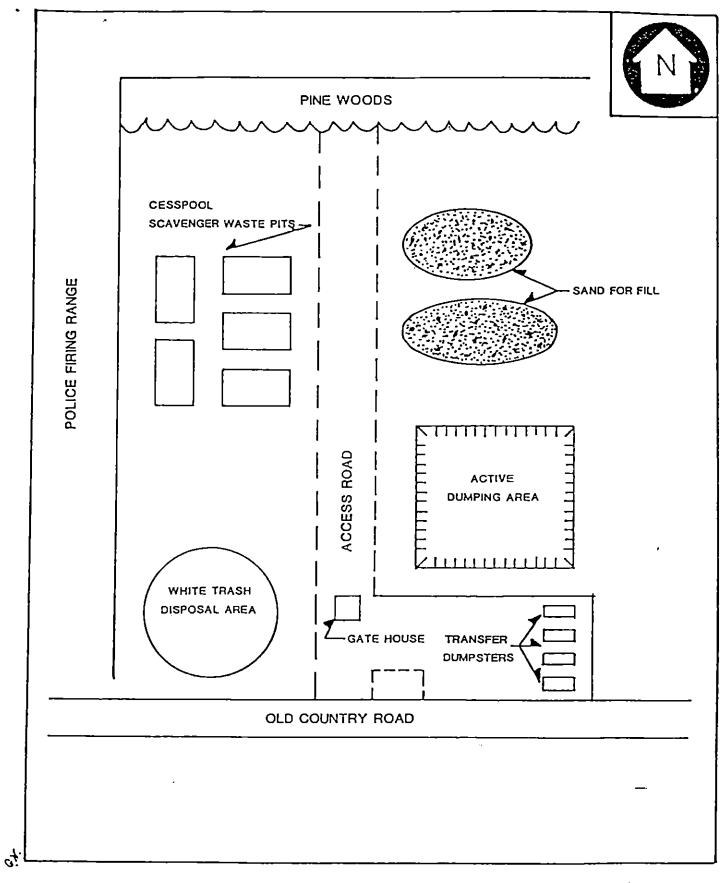



FIGURE A-1

WESTHAMPTON LANDFILL
WESTHAMPTON, N.Y.
SITE MAP

FIGURE A-2

	PINE WOODS
POLICE FIRING RANGE	CESSPOOL SCAVENGER WASTE PITS SAND FOR FILL OVER THE TRASH DISPOSAL AREA GATE HOUSE TRANSFER OUMPSTERS
	OLD COUNTRY ROAD
LEGEND:	$\stackrel{\bullet}{0}$
	IRECTION OF PHOTO

WESTHAMPTON LANDFILL
WESTHAMPTON, N.Y.
PHOTO LOCATION MAP

FIGURE A-3

Exhibit A-1 Photograph Index Westhampton Landfill

- View north of entrance gate to site.
- 2. View south of transfer containers and cesspool waste truck.
- 3. View north of white goods, brush, and construction debris.
- 4. View east of active face of Landfill.
- 5. North view of leaf dump area.
- 6. View west of cesspool waste leaching pools.
- 7. View south of cesspool leaching pool field.
- 8. Close up facing west of leaching pool.

1. View north of entrance gate to site.

View south of transfer containers and cesspool waste truck.

 View north of white goods, brush, and construction debris.

4. View east of active face of landfill.


5. North view of leaf dump area.

6. View west of cesspool waste leaching pools.

7. View south of desspool leaching pool fields.

8. Close up facing west of leaching pool.

MEMORANDUM TO FILE

Parsons ES, 1995.

,	JOB NO. 726260.03
	FILE DESIGNATION Westhampton
	DATE TIME
PHONE CALL FROM	
PHONE CALL TO Brown Gilbride	PHONE NO (5/6) 283~5210
CONFERENCE WITH	
PLACE	
SUBJECT Bra summeizea	Landfill history as follows:
- (andfilling	stanted on-site 1970-71 and
continued	until 1974, along with septic waste
disposa/	
- Solid was	tes were disposed into a sand pit
_	been excavoted by the Town Highway
Departme	it (where the transfer station is now
	septic wostes were disposed in Northwest
portion of	
- From 197	4 to 1978 all wastes were langualt to
Quiogul /	andfill (also referred to as westhampton
Landfill)	
- Quioque L	andfill was closed in 1978; brush and
se septic	unste were a gam disposed at
west han	pton; all other wostes were brought
-	th sea.
	waste disposal at Westhampton was stopped
in 1976	b
	· · · · · · · · · · · · · · · · · · ·
	SIGNED

CONTINUED: INSPECTORS OBSERVATIONS OR INTERVIEWS

	10/14/82 West Humprey Disposal and Transfer Site
Ì	Camplaint by Ma. Is My Bardowski ("can paymous) 55 old Country Road West Humpton, My phene 288-1736
. J.	Assigned Violation of Article 10 part 1014
-	To THE HEALTH, Sefety, and comfort of people and proposty
<u> </u>	
.1	fine was very smalley with Heavy orloand grand burning. Jongo persentage of Smalle Lewing Fine area - Small and
1	moderately strong odor noted as Bar away as ho gamile
	(wind Direction South easterly) Fly as H noted on Vehicles and ground of #55 old Country Avad - Note House is approximate 500 from Disposal area entrance
	Spoke with me hills Zanno of The Town Highway unit
	Note General and instructed Him to put line out. Note Gene Taken Mr. Taking Wheelow in Change in disposal
7	Now burning permit in ellert 10/11/2
- 1	
3	Copy of Report given To Jen for his disposition De
- 	

	· · ·					SCDHS, 1702a.
est hampton	1 TIPNSFER LANDED	OWNER	ER THUIN	9 Whole N	Y PAGE 1	OF
	TOWN FANDFILLS					
COUNTRY BO	d VILLAGE Weg	the	mf contown	SouthAnt.	Te ZIP	119
SNUThampto	N TOWN OF	FIC	<u>ک ر ی ۔</u>	CUT KEMP	FON	NY
R.L. TIME 3:46	ORIG. PERIODIC RE.	WASTE	NO WAST	,,	SEWAGE System	PUBLIC PRIVATE
LAND FIT	Transfer	1/1/11	iery)			
AL., YES NO PI	ERMIT NO.	3	360 PERMIT?	YES NO	PERMIT NO).
No.	Ne			TE	<u>L.</u>	
YES NO	PICK UP RECORDS AVAILABLE YES N		ECORDS CONSIST		YES N	10
S. M-MFG. NAME	/				FUEL TYPE	FIRING RATE
	NB				,	
	<u> </u>				WASTE BURNED	RATE
AGE YES NO DR	MBER OF ~ 30	TYPE C		WASTE RAT	w <u>B</u> C	отн
ABC	OVE UNDER DUND GROUND BOTH		PE OF	WASTE RA	.w E	вотн
· -	ONDITION DF BOVEGROUND TANKS GOOD	FAIR	POOR	ANY ART. XII VIOLATIONS Y	'ES	NO
		· -				
here Are Ab	bout 30 - 55 901	1 Dr	ums OF	n Yello	w Dr	4
	ing Store A ON					1
st Cot Ner of	F this IANd	FII	site.	The M	tums	Ale
14 FUIL . S	CAIL EUEN EM	1717	1 05 4	he Dry	Ye110	in _
CANCE, 17	11 the Drums	5/	DIE ON	Them-A	3013	prob
7,5590.	- N 645.	FFI	¿ PAIR	+ MF	196	77
195 TSO	-N 645.		:			
<u> </u>						
-[
				 		
5 TORMORAINS, AND OTHER	ILITY TO THE SUFFOLK COUNTY DISCHARGE POINTS AT THE FA	CILITY.			·	· · ·
ಗಳುವೆ SCHEDULED ON OR AFT! N A HEARING AND/OR FINE	ER FAILURE TO	CORREC	T UNSATISFACTO	RY CONDITIONS BY	REINSPECTI	ON DATE MAY

TITLE G'LLAID

I Dotoski

SUPER FUND SITE REPORT REVIEW COMMENTS SUFFOLK COUNTY DEPARTMENT OF HEALTH SERVICES HAZARDOUS MATERIALS MANAGEMENT SECTION

(W. Hougeton)
Site Name: Westhampton Landfill N.Y.I.D. # 152060
Report Type: I Contractor NUS EPA V State
Date of Report 5/27/83 Date of Review 9/24/84 Reviewer Fin
Comments: Since high buels of methylene
chloride were found in the East Sampton
and Southoupton scavorger pits at the
laudfills, this facility should also be
sampled. It should also be checked for
agricultural chemicals and oforwation
wells installed to define the leachate
plume.

JAGGER LANE INVESTIGATION

From January to August 1985, the Groundwater Resources and Reclamation Section of SCDHS defined a plume of contaminated groundwater in a residential area of Westhampton near Jagger Lane, between the Village of Westhampton Beach and the community of Remsenburg. The plume, whose origin is uncertain, contains high concentrations of trichloroethylene (TCE), tetrachloroethylene (TET), dichloropropane (DCP) and cis dichloroethylene (CIS).

The point of origin has not been precisely defined, but based on the interpretation of data collected from the groundwater profile wells installed, the contamination extends in a northeasterly direction from its discharge boundary along a small stream just west of Jagger Lane for approximately 1/2 mile. The plume is approximately 700 ft. wide.

Sixty-two homes in the area were sampled by the department's Drinking Water Supply Section to determine the impact of the contamination on residential wells. Nine of these wells located within the contaminated plume of groundwater were found to exceed the recommended New York State Department of Health (NYSDOH) guidelines. Two of these wells also exceeded the EPA 10-day Suggested No Adverse Response Levels (SNARLs), and one well had a concentration of trichloroethylene as high as 3300 ppb. In addition, 15 wells were found to have lower traces of trichloroethylene and 1,2 dichloropropane, ranging from 3 to 49 ppb-falling within acceptable limits for these compounds at the time of sampling.

In January 1985, the SCDHS requested to have public water extended to the residences of the affected area. The U.S. Environmental Protection Agency (EPA) was contacted to fund the extension of public water mains to the affected area under the provisions of the Comprehensive Environmental and Liability Act (Superfund).

Concurrently with these activities, the SCDHS continued the test well drilling program and the residential well sampling program. Forty-six groundwater profile test wells were installed and sampled at various levels. The actual source of the contamination was not pinpointed. However, a row of 12 test wells installed sufficiently upstream of the main bulk of the contamination ruled out a source further upgradient than Old Country Road.

In May of 1985, the EPA announced that this project met all the requirements for Superfund funding, and construction of public water mains began in June 1985. The mains were completed in August 1985; 63 homeowners have been hooked up to public water supply to date (altogether, 81 homes are ultimately scheduled to be hooked up to public water supply).

The SCDHS, the Town of Southampton and the EPA worked together to effectuate the speedy delivery of public water to the impacted residences. The EPA has issued requests to four private parties potentially responsible for contaminating the local water supply to step forward and assume the costs of the cleanup operation and water main extensions if they caused the contamination. Additionally, administratiave mechanisms for on-site cleanup and groundwater reclamation are being pursued by the SCDHS and EPA.

(5) RSEBLOCK PLACE, FA	-	, ,	I.D.	SCDHS, 198
OF Westhamfion Transfer Station	OWNER/ OFFICER Tom	LAUCHE	-	VIOLATIONS NOTED
	CONTACT ///r.	LAUelle		TEL. 728 -3600
TESS Old Country Ad. VILLAGE West	hampson tow	N Southan	ממם ת"ק	ZIP
SS JACKSON AVC. HAMPT-N BAYS			HYDRO.	MAP COORD.
R Southamfton Town				
6/4/87 TIME 1:30 ORIG PER. RE SAMPL	ART. 7	ART, IO	A	RT. 12
TRY GAT bage Transfer + Highway Deft.	100000 00	IT YES	(NO)	PERMIT NO.
ING SYSTEM-MFG NAME	F		IRING RAT	TANK SIZE
ER OF DRUMS NUMBER OF TANKS ABOVEGROUND UNDERGROUND	NUMBER OF OPE	N PROCESS TANK	I	WAGE PUBLIC STEM PRIVATE
ENGER Strobles Waste Oil TEL	PICK	UP RECORDS	ES (AG)	VOLUME GENERATE
ENGER DY COY CO				1.000/1/2 32/1
1) I Drum OF WAKNOWN FI	uid Waste	Noted	c	٠, د د ا
Ground NEAR the SANT Sto				
it should be Put into the h				
NA tet it can be dom Ped in		•		
2) IF ANY Drums OF A	Laste Cha	micals	are,	Found or
generated they must be				
Industrial Haste Scavense			•	
r				
,			,	
· ; 				
-3		_		
DUSTRIAL WASTES MUST NOT BE DISC				
A DUMPSTER, BUT MAY ONLY BE TRAN DUSTRIAL WASTE SCAVENGER FOR AN	ISPORTED AN Lapproved	DISPOS List com	ED OF	BY A LICENS
<u>Y.S. D.E.C. AT 751 - 7900</u>				
SPECTION SCHEDULED ON OR AFTER FAILURE TO CORE				
MISSION IS GRANTED BY THIS FACILITY TO THE SUFFOLK COUNTY	HE FACILITY.	ALTH SERVICES	TO CONDU	CT ROUTINE SAMPLE
TITLE al	لتساسكا	INSPECTOR	J	Dolosti.
1				TJK 12/

The same of the sa	LIEN ALS WEET TO SEE	r ,	AID	, rė
PROCESS	AND APPROXIMATE QUANTITY	LIQUID	CONTROL TYPE	ΕP
1-Above 91. 275 9Al. TANK	Waste oil	HIH		
1-~ 1000 9Al. Above St. TANK	Calcion Chloride liquid	Put onto SAND		
Old Cess Pool Scavenger MAST & lagoon	discontinued of Years 290 over	None		
GATBAGE TRANSFOR STATION	4 Compacting Trailers hydrig BAIDA.	Joes INTO ST	orm drains)	
SAND removal Pit + Scheening sand.		tain age		
Cold Patch Storage	Piles of ASPHALT	USCENTO	ads.	
OPEN bUTNING ATER	Brush debris (Permitted)		Non:	7
	have HO Truck on site + Hinux equit	MENT		
old Machinery Storage	Sciar Mital From old Equipm			
SAlt Storage - Bermed PAJ	Salt + Salt Sand	אין שקים נאיני א	7	
lad Pitched to underground TANK				,
Parge under ground TANK	SALT TUNOFF WATER	ONTO SAN	77	
-		Files		
Storage building	None			\neg
1-550 Above 91. TANK	Diesel	US C	,	\neg
1-275 Above gr. TANK.	Diesel or Gosoline	USC		\neg
	.07 (7)	•		
				\neg
				\neg
· · · · · · · · · · · · · · · · · · ·				\dashv
				\dashv
				\dashv
				\dashv

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region II

JBJECT.

Immediate Removal Funding Request for Jagger Lane Groundwater Contamination Site, Westhampton, Suffolk County, Logg Island, New York - ACTION MEMORANDUM

FROM

W. Gad Tawadros, On-Scene Coordinator Response and Prevention Branch

TO:

Christopher J. Daggett Regional Administrator

THRU:

William J. Librizzi, Director Emergency and Remedial Response Division

I. PURPOSE:

A request for an EPA Removal Action at Jagger Lane, Westhampton, Suffolk County, Long Island, has been received from the New York State Department of Environmental Conservation. The request, dated April 19, 1985, was signed by Mr. Norman Nosenchuck, Director, Division of Solid and Hazardous Wastes. Sampling of 30 private wells was conducted in 1982 by the Suffolk County Department of Health Services (SCDHS). In addition, one private well was resampled in August, 1984. Subsequent sampling of 33 private wells at the site area was also conducted by the SCDHS, from January through April, 1985. Table 1 presents a summary of groundwater sample analytical results obtained for each contaminated private well sampled to date.

The data set which was utilized to prepare this request for immediate removal funding includes the 1985 data obtained from the 33 sampled private wells, the 1984 data from the one private well and the 1982 data obtained from 9 private wells which were not resampled in 1985. In addition, analytical results obtained from groundwater sampling of test wells completed at the site by SCDHS are presented to document the high levels of contaminants present in the contaminant plume (Table 2).

€ Form 1320-6 (Rev. 3-76)

۲

Table 1

Jagger Lane, West Hampton, New York Summary of Reported Concentrations of Six Volatile Organic Contaminants Found In Residential Wells¹

Resi-2		1,2~	1,1,1-	1,1,2-	Cis-		1,1-	
dential	Sample	Dichloro-	Trichloro-	Trichloro-	Dichloro-	Tetrachloro-	Dichlor	o- Total Con.
Well	Date	ethane	ethane	ethylene	ethylene	ethylene	propane	of VOC's
					3			_
Duprez	3/8/82	4	-	-	-	-	550*	554*
•	3/11/85	-	_	-	-	-		-
Schneider	5/6/82	_	-	4	-	-	37	41
Hallinan	11/17/81	_	~	10	-	-	-	10
	2/27/85	_	_	-	-	-	3	3
Bartko	3/16/82	-	-	9	-	-	_	9
Smith	3/8/82	_	_	17	-	2	_	19
0.11.2.11	4/-/85	_	_	69 *	-	2	25	96
Plank	2/10/82	_	-	500*,**	-	47	-	547*
2 -0	3/11/85	_	-	35	-	_	_	3 5
Bengualid	6/7/82	43	35	3300*,**	-	180*,**	-	3558 *
	8/-/84	_	-	140*	_		_	140*
Hopkins	12/12/83	_	_	3	4	-	-	7
Leveen	3/8/82	_	5 [.]	-	-	-	_	5
Glasky	6/29/82	10	-	560*,**	59*	20	_	649*
	3/11/85	_	_	140*	3	4	47	197*
Hadlock	3/12/82	_	-	240*,**	_	3	_	243*
	2/27/85	-	_	-	- •	_	-	_
Scamme11	8/17/82	-	_	540*,**	-	_	-	540 *
Occimicat	3/11/85	-	_	22	_	-	_	22
Fugelsang	10/18/82	••	_	42	_	_	_	42
Barnet	6/29/82	_	_	41	-	-	_	41
Sposato	2/27/85	_	-	2000*,**	420*,**	21	9	2472*
<u> </u>	1/28/85	_	-	-	_	-	49	49
Wolff	2/20/85	-	_	10	-	-	3	13
Abbate	2/27/85	_	-	5		-	26	31
Nowak	2/20/85	-	-	6	→	-	· -	6
Stasse	3/11/85	_	_	-	-	-	7	7
Finkelstn	3/11/85	-		46	-	-	26	72
Kempster	4/-/85	_	- ,	12	•	-	57 *	77
Rogers	4/-/85	-	-	54 *	-	-	19	77

1 Sampling and analysis conducted by Suffolk County Department of Health Services. All values are in pph; - = Not detected.

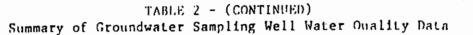

 Residences to receive bottled water indicated by underlined names.
 Concentration exceeds NYSDOH guideline for determining water unfit for drinking or cooking.
Concentration exceeds 10-Day EPA SNARLS.

TABLE 2
Summary of Groundwater Sampling Well Water Quality Data

Well No. 1	Sample Depth (Feet)	1-1-2 Tri- chloroethylene	Cis- Dichloroethylene	Tetrachloro- ethylene	1-2 Dichloro- propane	Total Con of VOC's
SL-1A	21	16	-	-		16
	42	15	-	-	6	21
	63	680	-	66	-	746
	84	. 320	-	30	-	350
	105	-	-	*	-	
	125	-	-	-	_	~
SL-2	24		•	-	-	-
	45	-	-	-	57	57
	65	-	-	••	-	
	75	_	<u></u>	<u></u>		
JA-3	23	_	_	-	-	-
	44	-	-	-	-	-
	65	26	-	8	26	60
	82	<u> </u>	<u> </u>	-		
JA-4	23	-	-	-	-	-
	44	-	-	-	-	-
	65	250	3	10	6	269
	75	1300	190	66	34	1590
JA-6	23	10	-	_	-	10
	44	3	-	-	-	3
	65	710	-	12		722
	75	110	-	. -	_	110
	96	-	-	-		-
	107			-	-	<u> </u>
JA-13	28	-	-		-	_
	44	<u>-</u>	-	-	-	-
	65	66		_	32	98
	86	3	-	-	-	3
14 17	96	<u></u>	-		-	
JA-17	28	-	-	-	-	-
	44	-	-	••	-	-
	65		-	-	-	-
	86	<u>б</u>		-	-	6
	96	33	<u>-</u>	_	-	33

^{- =} Not Detected.

¹All samples collected by Suffolk County Department of Health Services, January through April, 1985.

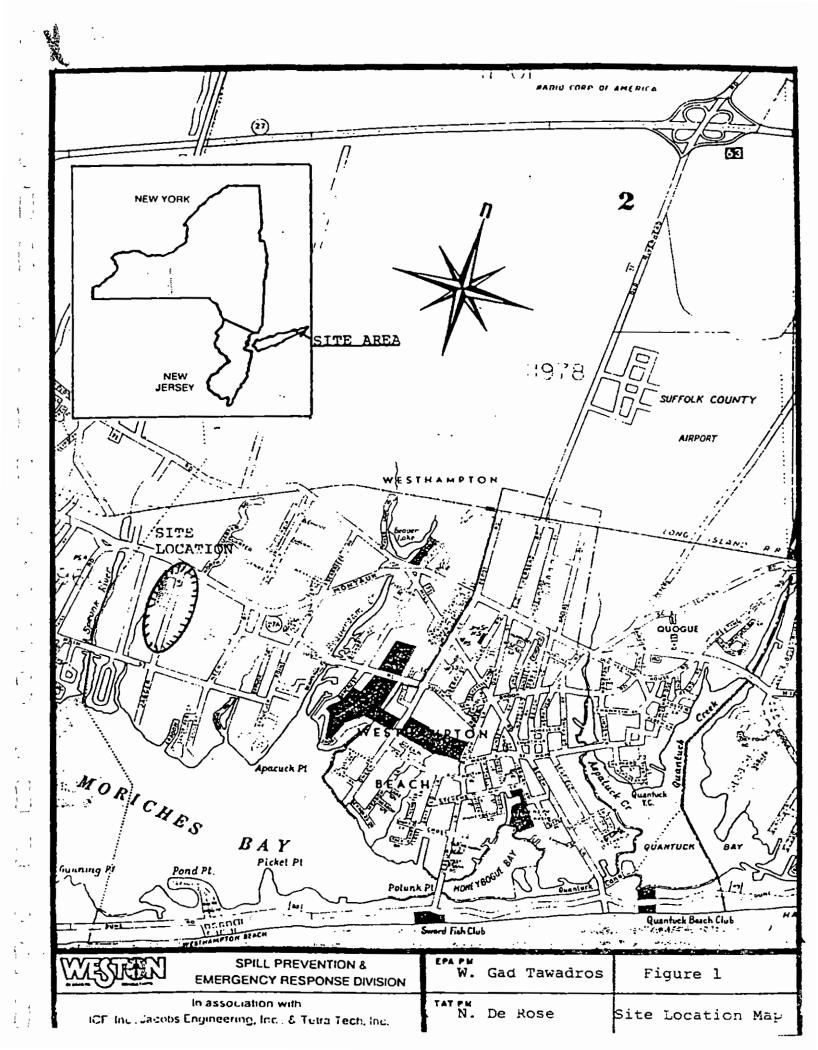
Well No. 1	Sample Depth (Feet)	l-1-2 Tri- chloroethylene	Cis- Dichloroethylene	Tetrachloro- ethylene	1-2 Dichloro- propane	Total Con of VOC's
JA-18	26	-	-	-	-	
	44	-	-	-	-	
	65	4	_	-	-	В
	86	. 7	~	· -	-	,
	96	2	~			
JA-19	29		_	-	-	
	46	~		-	-	
	66	3	-	-	.	•
	86	24		-	<u>.</u>	2.4
	96	-	-			
JA-23	49	-	_	-	-	•
	70	3	-	-	-	3
	91	4	-		-	4
	112	8	-	-	-	15
	124	-		.	-	-
JA	3 3	-	-	-	-	-
	56	-	-	-	13	13
	76				100	100
JA-25	26					
	44	-	-	-	-	-
	65	-	-	-	-	-
	86	910		. 13		923
JA-26	22	-	-	~		-
	44	_	_	-		-
	65	9	-	-	-	9
	86	1200	-	-	-	1200
	107	12		-		12
FW-1*	Unknown				3	3
FW-2*	Unknown				<u>-</u>	
FW-4*	Unknown	_		_	_	

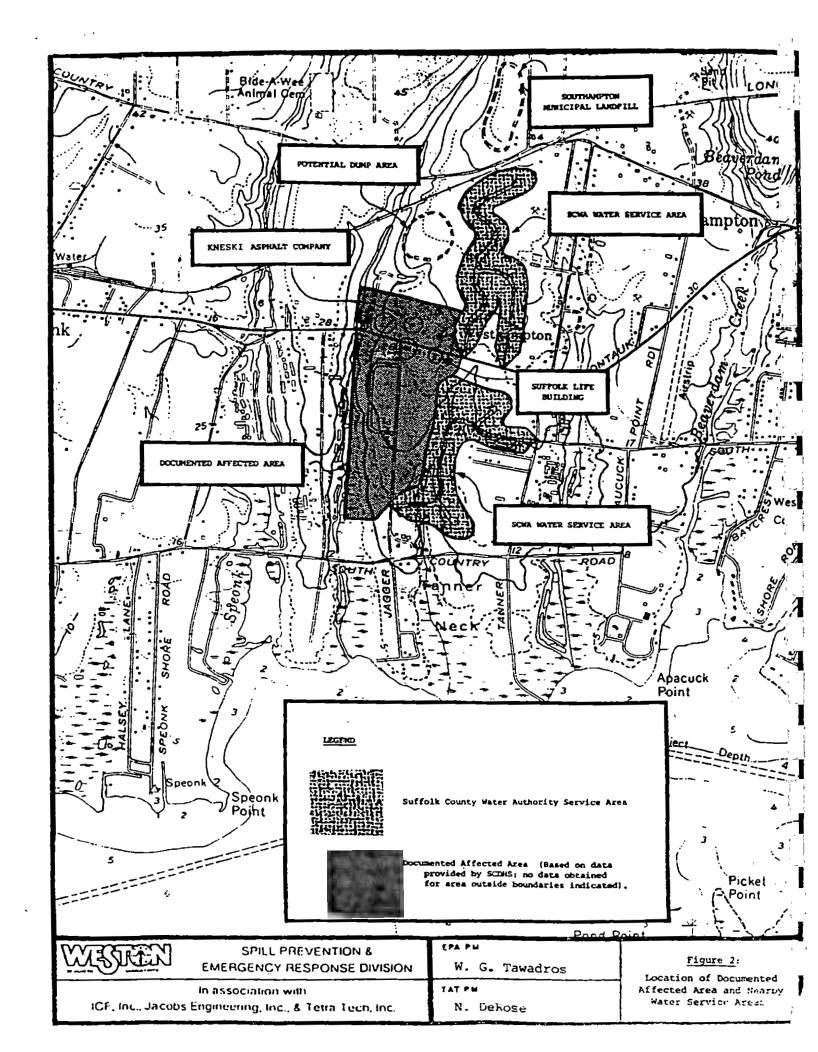
^{~ =} Not Detected.

¹All samples collected by Suffolk County Department of Health Services, January through April, 1985. *Existing Fire Well.

From the above-described data set a total of 22 homes have shown contamination at one time or another at the tap with toxic organic chemicals (Table 1). EPA's 10-Day SNARLS (Suggested No Adverse Response Levels) were exceeded in 6 of the 18 affected residential wells at one time or another, although 1985 sampling indicated only one supply well exceeded the 10-Day SNARL. Based on the latest sampling for each residence a total of six (6) wells show contamination by volatile organic compounds (VOC) at or above the State Department of Health (NYSDOH) limits for potable water.

The resident population at risk currently relies on their wells as their sole source of potable water and, as a result, this groundwater contamination poses an immediate and significant threat to human health. An immediate removal action under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) is recommended to provide protection to affected and threatened residents.


II. BACKGROUND:


A. Site Setting/Description:

The area of groundwater contamination includes portions of Jagger Lane (between Montauk Highway and South Country Road), Windwood Court, and Montauk Highway (near Jagger Lane) in the Village of Westhampton, located in the Township of Southampton, Suffolk County, New York (Figure 1). The area is suburban residential with some commercial facilities located along Montauk Highway. The Suffolk County Water Authority (SCWA), an autonomous subunit of county government, owns and operates the public water supply distribution system which services Suffolk County. At this time, the affected area is not serviced by the public water supply. The nearest water mains are located approximately 1,000 feet east of Jagger Lane at the intersection of Montauk Highway and approximately 1,000 feet east of Jagger Lane at the intersection of Sweetgrass Road (Figure 2).

B. Quantity and Types of Substances Present:

Six major designated hazardous substances have been identified in the affected wellwater. These are:

Maximum Concentration Statutory Source Found for Designation Contaminant Under CERCLA (ppb) 1,2-Dichloropropane 57 Clean Water Act, Sec. 307(a) Trichloroethylene 3,300 Clean Water Act, Sec. 311(b)(4) Tetrachloroethylene 180 Clean Water Act, Sec. 307(a) 1,2-Dichloroethane 43 Clean Water Act. Sec. 311(b)(4) Trichloroethane 35 Clean Water Act, Sec. 307(a) Cis-dichloroethylene 420 Clean Water Act. Sec. 307(a)

Concentrations of total volatile organics in samples of contaminated wellwater, at the tap, ranged from a low of 3 ppb to a high of 3,558 ppb and averaged about 465 ppb. Table 3 preaents a listing of the 6 major compounds and a summary of selected water quality standards for each compound. Table 4 summarizes the toxic properties associated with each of these compounds.

C. This site is not on the National Priorities List (NPL).

III. THREAT:

A. Threat of Public Exposure:

Sampling of 30 private wells, at the tap, was conducted during 1981, 1982, and 1983 by the Suffolk County Department of Health Services (SCDHS). Twenty-eight of the wells were sampled during 1982. The SCDHS analyzed the collected samples to detect the presence of volatile organic chemicals commonly found contaminating Long Island groundwater. This analysis includes testing for the presence of 52 volatile organic compounds. Analytical work was completed by

Table 3

Summary Of Maximum Reported Contaminant Concentration

At Jagger Lane - West Hampton Site and Drinking Water Quality Standards I

Volatile Organic Contaminant	Maximum Reported	EF	EPA SNARLS ³		Proposed Water Quality Criteria ⁴		NYSDOH
(SYNONYM)	Concentration ²	1 Day	10 Day	Chron	Cancer Risk	Tox.	<u>Guideline⁵</u>
1,2-Dichloroethane (Ethylene Chloride) ⁸	. 43	N/A6	N/A	N/A	, 0.94	N/A	50
l,l,l-Trichloroethane (Methyl Chloroform) ⁸	35	N/A	N/A	1000	N/A	18,400	
1,1,2-Trichloroethy- lene ⁸	3,300	2,000	200	75	2.7	N/A	50
Tetrachloroethylene (Perchloroethylene) ⁷	180	2,300	175	20	. •8	N/A	50
Cis-Dichloroethylene (1,2-Dichloroethylene)	8 420	4,000	400	N/A	N/A	N/A	50
1,1-Dichloropropane ⁹	57	N/A	N/A	N/A	N/A	200	50

All values (concentrations) are in ppb.

Based upon results of residential well sampling conducted by Suffolk County Department of Health Services.

³ Suggested No Adverse Response Levels (SNARLS) developed by the EPA's Office of Drinking Water based on exposure to a 10 Kg child.

⁴ Proposed Water Quality Criteria from EPA's Office of Water Planning and Standards, Division of Criteria and Standards. If levels are maintained below these criteria, it is predicted that the result will be (a) less than I extra cancer per one million exposed population or (b) no adverse non-cancerous health effects. Both cancer risk and adverse non-cancerous health effects (TOX) values assume consumption of fish as contributing to uptake of a chemial.

5 New York State Department Of Health (NYSDOH) Guideline for determining water unfit for drinking, or cooking. NYSDOH Gudelines for any single organic contaminants uses 50 ppb as a value not to be exceeded.

6 NA=Not Available.

7 Sample Date - 6/7/82. 8 Sample Date - 2/27/85. 9 Sample Date - 3/11/85.

Table 4

Summary Of Toxicological Characteristics Of Six Volatile Organic Contaminants At The Jagger Lane - West Hampton Site, New York

Contaminant	Toxic Properties l			
l,1,1-Trichloro-	s ·			
ethane	Skin absorption presents a limited health hazard. May cause irritation or burning of skin as a result of prolonged or frequent exposure. May cause cardiac arrest when massively inhaled. Fatty degeneration of liver has occurred after chronic exposures to 1000 ppm.			
1,2-Dichloro-				
et hane	Moderately toxic when inhaled or by absorption. Mild skin irritant.			
1,1,2-Trichloro-				
othylone	Highly toxic when inhaled at high concentrations. Moderately toxic by other routes. Chronic inhalation or skin absorption are only slightly hazardous. Potentially carcinogenic and mutagenic.			
Tetrachloro-				
ethylene	Highly toxic by ingestion at high levels. Moderately toxic by other routes at high levels. Moderately toxic from chronic exposure by all routes. Potentially carcinogenic and mutagenic.			
Cis-Dichloro-	·			
ethylene	At acute levels, moderately toxic via inhalation, ingestion, or skin contact. Chronic or repeated exposures are hazardous. May release explosive chloroacetylene by contact with copper or copper alloys. A mutagenic agent in animals.			
1,1-Dichloro-	·			
propane	Moderately toxic by ingestion, inhalation and skin absorption.			
, ,				

¹Based upon information obtained from the "Chemical Information System" data base as provided by CIS, Inc.

SCDHS' Laboratory which is certified by the New York State Department of Health. The results showed 14 private wells contaminated by toxic organic compounds. The well which was reportedly contaminated at the highest level was resampled in August, 1984 and found to decrease in contaminant strength (Table 1).

In January 1985, a well installed at a newly constructed residence was also sampled and analyzed by SCDHS and found to be contaminated. During February through April, 1985, 32 private wells were sampled by SCDHS. Twenty (20) of these wells were previously sampled during 1981, 1982, and 1983. Table 1 presents concentrations of the major volatile organic compounds found in the residential wells. Figure 3 shows the locations of the sampled residential wells, and Figure 4 summarizes the levels of contamination reported for each well based upon results obtained from the 33 wells sampled in 1985, the one well sampled in 1984 and the 9 wells sampled in 1982 which have not been resampled to date. Appendix A presents a list of each residence sampled and includes the resident's name and address as well as a summary of the water quality analytical results.

Comparison of the recent data for the twenty resampled homes with the previous sampling and analytical results, shows significant variations in levels and locations of contaminants. These variations may be the result of deeper vertical migration of the contaminants, changes in the lateral direction of groundwater flow, or the episodic release of contaminant pulses from the source(s). Present data, summarized in this report, does indicate levels of volatile organic compounds at the site area in excess of the EPA 10-Day SNARLS, detected at 5 test drilling sites sampled by SCDHS and in one residential well.

In addition to the potential for exposure through drinking the water or eating food prepared with the water, tests have been conducted at Pomona Oaks, New Jersey which showed that when showering with water contaminated with volatile organics the levels of the contaminants in the air becomes significantly elevated.

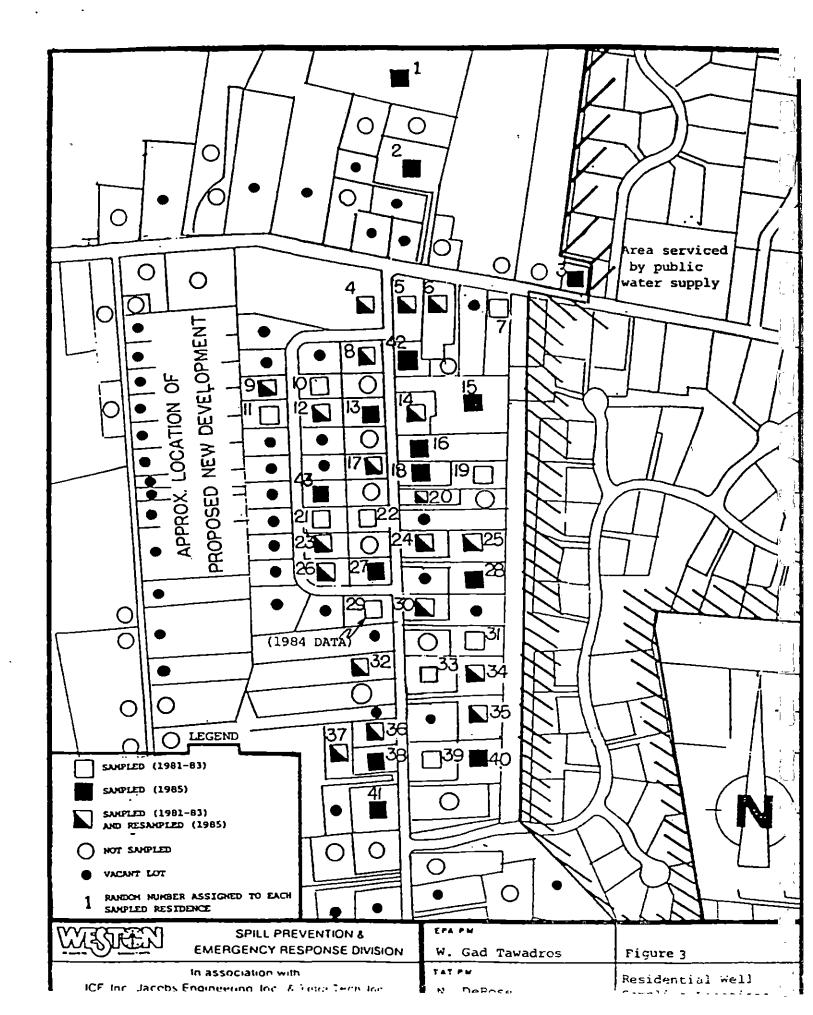


FIGURE 4 SUMMARY OF GROUNDWATER QUALITY FW 4 JA24 SUFFOLK LIFE BLDG. AREA SERVED BY **PUBLIC** WATER . SUPPLY FW2 s Arms of Grownbreter Iconding U.S. EPA 10-Day SHARLE X The presence of several chlorinated hydrocarbons chemicals within the groundwater also poses a potential for synergistic toxic effects resulting from exposure to a combination of these compounds.

B. Evidence of Extent of Release:

Sampling and analyses of residential wells by SCDBS has identified a plume of contaminated groundwater as described in Section III-A. In addition, approximately 15 groundwater sampling wells were installed by SCDHS during March and April, 1985, at the site area. Additional sampling wells may be installed as part of this investigation. The intent of installing these wells is to define the extent of groundwater contamination and to possibly locate the source(s) which are believed to be located north of the contamination area. recent sampling results obtained from the test wells indicate that the source of contamination is located north of Montauk Highway. Potential sources may include a local asphalt company, the Southampton Municipal Landfill and unreported illegal dumping or waste disposal (Figure 2).

Preliminary review of groundwater quality data from samples obtained at the well locations appears to correlate with the lateral distribution of contaminants indicated by the 1985 residential well sampling and analysis. Locations of the groundwater sampling wells are shown on Figure 4. Additional wells are located north of the site area. Water quality data obtained from sampling of the wells is presented in Table 2.

Five (5) of the test wells are contaminated by volatile organic compounds to levels in excess of the EPA 10-Day SNARLS. Highest contaminated strengths were encountered at depths generally between 50 and 90 feet below the ground surface. Figure 4 also presents an approximate outline of the minimum site area characterized by contamination in excess of the EPA 10-Day SNARLS as determined from residential well water sample analysis and/or samples obtained from groundwater sampling wells. The lateral extent of this area has not

been defined due to the limited number of sampling points located outside of this area.

C. Previous Actions to Abate Threat:

SCDHS has advised residents with contaminated wellwater in excess of the NYSDOH guideline limits for potable water, not to use it for drinking or cooking and to limit its use for bathing to short tepid showers, pending resolution of the contamination problem. However, it has been reported by SCDHS that some of these residents may not, in fact, be obtaining bottled water for drinking and cooking. A number of the affected residents have deepened their wells in attempts to obtain uncontaminated potable water. SCDHS reports that some of these residents have again encountered contaminated water after deepening the wells. Specific records of this data have not yet been obtained.

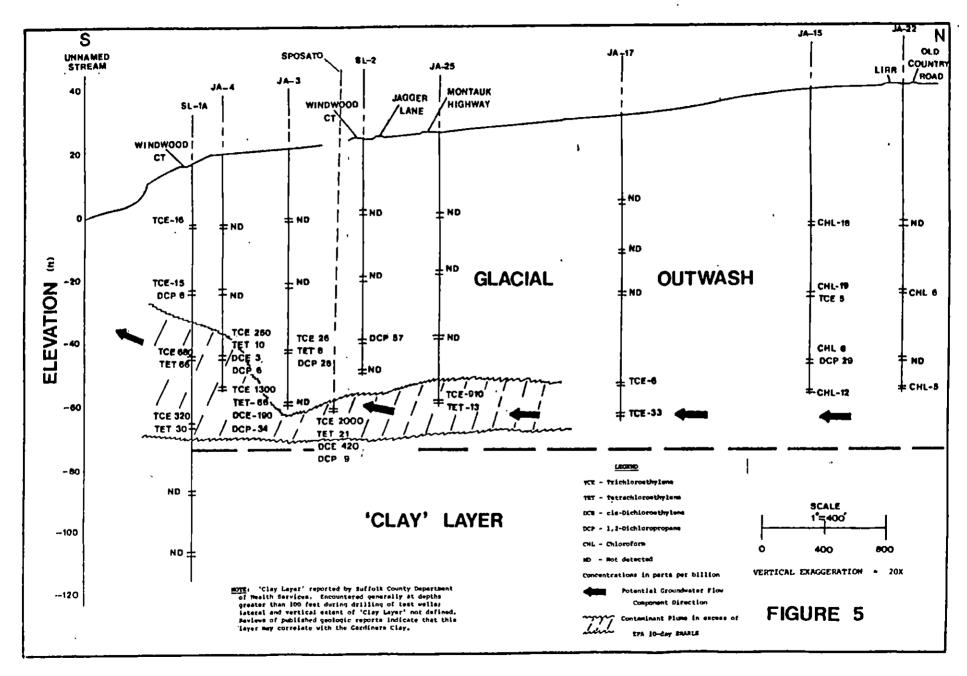
D. Current Actions to Abste Threst:

On May 3, 1985, the Regional Administrator verbally authorized the provision of bottled water as an interim measure to those homes exceeding NYSDOR standards.

IV. ENFORCEMENT:

ERRD-SIC Branch and the Office of Regional Counsel were notified verbally on March 11, 1985. Based upon the Agency's authority under CERCLA and the Resource Conservation and Recovery Act (RCRA), Information Request letters have been sent to three parties by ERRD-SIC. These parties are: Kneski Asphalt and Paving Company, of Westhampton, New York; Suffolk Life Newspaper of Riverhead, New York; and Southampton Municipal Sanitary Landfill, operated by the Town of Southampton, New York. Should a responsible party or parties be identified and be willing to undertake this action, all or part of the funds requested herein may not be spent, assuming that the responsible party or parties are willing to act promptly.

V. PROPOSED PROJECT AND COSTS:


A. Objective of the Project:

The primary objective of the proposed action is mitigation of the threat to public health by provision of an alternate potable water supply to the affected homes. To reach this objective in a timely manner, an initial action is underway which will allocate and deliver bottled water for drinking and cooking to the residents whose wells exceed New York State Department of Health Guidelines for Potable Water. This initial, temporary action will be followed by the installation of a permanent reliable alternative water supply to the residents whose drinking water wells are at risk from the contamination found.

Based upon a review of available data, 6 residential wells will receive bottled water (Table 1).

The SCDHS recommends initially one gallon of water per day should be allocated for each resident which the EPA will supply. Using an average household size of 6 people (to account for summer vacation guests), the weekly water usage at each household is estimated to be forty-two (42) gallons per week. For estimating purposes it is assumed that the bottled water will be provided for a period of 20 weeks, until a more permanent solution is implemented.

Figures 4 and 5 and the supporting data collected by SCDHS, document the existence of a potentially toxic contaminant plume which occurs within a potable water supply aquifer. As presented on Figure 4, a continuous plume of contamination, characterized by contaminant strengths in excess of the EPA 10-Day SNARLS, has been identified. Figure 5 presents a subsurface profile (crosssection) which is oriented generally northeast to southwest or parallel to the apparent trend of the contamnant plume. The location of this subsurface profile graphically illustrates the two dimensional vertical distribution of contaminants within the plume.

The contamination strength within the aquifer is greatest in the deepest portions of the aquifer, however as a result of the close proximity of the Jagger Lane site area to surface water streams, there is a potential for a localized upward ground-water flow component which may redistribute contaminants to shallower depths. The extent to which this redistribution of contaminants might occur is dependent upon seasonal and yearly rainfall, evaporation and transpiration fluctuations, and seasonal variations in water use from the private wells located at the site. The potential for contamination at each private well is expected to be related to the depth of the well.

As a result of the potential for lateral and for vertical migration of the high strength contaminant plume the supply of an alternative water supply will be completed to service the entire documented affected area. This action will eliminate the risks for the affected population and minimize the likelihood of future emergency actions at this This objective of the immediate removal action will be best accomplished by installing a water main and hookups to the documented affected The water main and hookups are expected to be provided to 50 homes located in this area. Additional homes may be hooked up outside of this area based upon additional sampling and analytical results obtained during/or after the water main installation.

Consideration was given to providing activated carbon treatment systems instead of a water main distribution system. As this is not presently an NPL site, remedial action would occur several years from now if the site ranked adequately high, if at all. It has been determined that these systems would be ineffective in providing an adequate degree of health and safety protection to the affected residents. Neither the state nor the county have agreed to maintain and operate the proposed activated carbon treatment systems over an extended period of time. Without a proper maintenance and operation program, it is likely that, over an extended period of time,

some of the homes would again show excessive contamination. Prior experience with long term state and county maintenance and operation of such systems has been unsatisfactory. In addition, the cost of associated monitoring programs together with the cost of the carbon units, will eventually exceed the cost of the tie-in to the public supply.

Installation of the water main and distribution system might be best reached by Letter Contract (1900-56) with the Suffolk County Water Authority (SCWA), under a special exemption to competitive requirements, if possible. The SCWA has a yearly low cost contractor in place. Sampling and analysis for continued monitoring of drinking water quality might be arranged through the Suffolk County Department of Health Services.

B. Project Estimated Costs:

The estimated quantity and consequent cost of providing bottled water to 6 residences is based upon delivering 42 gallons of water per household per week for a period of 20 weeks. The estimated costs for water main installation and hookups are stated below and include main, taps, meters and hookups to 50 affected homes.

Estimated project costs are as follows:

1.	5,040 Gallons Bottled	
	Water Delivered @ \$1.00/Gal.	\$ 5,040
2.	5,000 Linear Ft. Force Mains	
	in Place	218,000
3.	50 Taps and Meters at	•
	\$300/Ea.	15,000
4 -	50 Residential Hookups @	,
• •	\$2,000/Ea.	100,000
5.	15% Contingency of Items	200,000
	#2, #3, and #4	50,706
	Extramural (TAT) Costs	30,000
7.	15% TAT Contingency	4,500
	Intramural EPA Costs	30,000
	TOTAL ESTIMATED PROJECT COST	\$453,246

C. Project Schedule:

Further project initiation can occur immediately upon approval of additional fund authorization.

Mobilization of equipment and materials and completion of required surveys for the installation of the water main is expected to take 3 to 4 weeks. Excavation, placement of piping and backfill is estimated to require an additional 14 weeks for completion. Household connections may be installed within the same time period, however, disinfection and water quality testing of the main, tapping and meter installations are estimated to require an additional 4 to 6 weeks for completion.

A prerequisite for successful completion of the above work will be prior agreement by each homeowner to pay for their own water consumption following installation of the water main.

VI. RECOMMENDATIONS:

Conditions at the Jagger Lane, West Hampton site meet the NCP Section 300.65 criteria for an immediate removal because they present an immediate and significant risk of harm to human health due to the potential for direct human exposure to hazardous substances, and due to the documented contamination of a drinking water supply.

Therefore, I recommend your approval of this Immediate Removal Request. The estimated cost of this project is \$453,200 of which \$388,700 are for mitigation contracting.

Your authority to authorize these funds is pursuant to Deputy Administrator Alvin Alm's April 16, 1984 memorandum, Delegation Number 14-1-A.

Please indicate your approval or disapproval of this action by signing below and returning this memorandum to me.

Approval: Chutylu	Dayjett	Date: M44	14, 1985
, ,	1"	•	
Disapproval:		Date:	

Upon Approval:

cc: W. Librizzi, 2ERR

- F. Rubel, 2ERR-RP
- R. Ogg, 2ERR-SIC
- G. Pavlou, 2ERR-NYCRA
- J. Marshall, 20EP
- W. Mugdan, 20RC-WTS
- R. Gherardi, 20PM-FIN
- P. Flynn, WH-548B (EXPRESS MAIL)
- T. Fields, WH-548B
- W. Hedeman, WH-548
- N. Nosenchuck, NYSDEC

APPENDIX A

LIST OF RESIDENCES

SAMPLED AND SUMMARY OF

WATER QUALITY ANALYTICAL DATA

_	<u> </u>	J.			
AN- DECEMATE		y - ^	SCDHS SAMPLE RESULTS		
CAMPLE LOCATION	RESIDENT		1982	1985	
NUMBER	NAME A	ND ADDRESS			
1	Wolff -	134C Montauk Hwy.	Not Sampled	Greater Than 10 ppb TCE	
2	Fitzsimon	Montauk Hwy.	Not Sampled .	Not Detected	
3	Abbate	122 Montauk Hwy.	Not Sampled	Trace Contamina-	
4	Eagle	Montauk Hwy.	Not Detected	Not Detected	
5	Alpert's Furniture	Montauk Hwy.	Not Detected	Not Detected	
6	Alpert	71 Montauk Hwy.	Not Detected	Not Detected	
7	Suffolk Life Newspapers	Montauk Hwy.	Greater Than NYSDOH Guide- line	Not Sampled	
8	Calkin	Jagger Lane	Not Detected	Not Detected	
ų	Duprez	Windwood Court	Greater Than NYSDON Guide- line	Not Detected	
10	Schneider	18 Windwood Court	Trace Con- tamination	Not Detected	
11	Eagle	15 Windwood Court	Not Detected	Not Sampled	
1.2 *	Hallinan	16 Windwood Court	Greater Than 10 ppb ICE	Trace Con- tamination	
1	Burger	Jagger Lane	Not Sampled	Not Detected	
(Cusack	84 Jagger Lane	Not Detected	Not Detected	

PA DESIGNATED			SCDHS SAMPLE RESULTS	
E LOCATION JUMBER	RESIDENT NAME AND ADDRESS		1982	1985
15	Sposato	86 Jagger Lane	Not Sampled	Greater Than EPA 10-Day SNARL
16	Smith	Jagger Lane	Not Sampled	Not Detected
17	Van Rees	Jagger Lane	Not Detected	Not Detected
18	Stasse	76 Jagger Lane	Not Sampled	Trace Con- tamination
19	Pearson	427 Jagger Lane	Not Detected	Not Sampled
20	Leveen	Jagger Lane	Not Detected	Not Detected
21	Bartko	Windwood Court	Trace Con- tamination	Not Sampled
22	Fitzgerald	Jagger Lane	Not Detected	Not Sampled
23.	Smith	Windwood Court	Greater Than 10 ppb TCE	Greater Than NYSDOH Guideline
24	Glasky	Jagger Lane	Greater Than EPA 10-Day SNARL	Greater Than NYSDOH Guide- line
25	Reden	Jagger Lane	Not Detected	Not Detected
26	Plank	4 Windwood Court	Greater Than EPA 10-Day SNARL	Greater Than 10 ppb TCE
27	Alpert, J.	71 Jagger Lane	Not Sampled	Not Detected

a DESTGNATED			,	SCOHS SAMPLE RESULTS		
MPLE LOCATION NUMBER	RESIDENT NAME AND ADDRESS			1982	1985	
28	Finkëlstein	66 Jagger Lane		Not Sampled	Greater Than 10 ppb TCE	
29	Bengualid	32 Jagger Lane		Greater Than EPA 10-Day SNARI.	Greater Than NYSDOH Guidelines (1984)	
30	Hadlock	Jagger Lane		Greater Than EPA 10-Day SNARL	Not Detected	
31	Fugelsang	Jagger Lane		Greater Than 10 ppb TCE	Not Sampled	
32	0'Hara	65 Jagger Lane		Not Detected	Not Detected	
33	Rubio	54 Jagger Lane		Not Detected	Not Sampled	
14	Capozzola	62 Jagger Lane		Not Detected	Not Detected	
15	Scammel1	35 Jagger Lane		Greater Than EPA 10-Day SNARL	Greater Than 10 ppb TCE	
36	Libri	59 Jagger Lane		Not Detected	Not Detected	
17.4.4	Hopkins	37 Jagger Lane		Trace Con- tamination	Not Detected	
18	Nowak	59 Jagger Lane		Not Sampled	Trace Con- tamination	
30	Barnet	Jagger Lane		Greater Than 10 ppb TCE	Not Sampled	
40	Helfant	44 Jagger Lane		Not Sampled	Not Detected	
41	Martin	49 Jagger Lane		Not Detected	Not Detected_	

42	· '	linknown	Jagger Lane	Not Sampled	Greater Than NYSDOH Guideline
43		Smith	Windwood Court	Not Sampled	Greater Than NYSDOH Guideline

^{**}Sampled 12/83.