FINAL

GROUNDWATER SAMPLING REPORT (November 2008 Sampling Event)

Multi Site G Operation, Maintenance & Monitoring

ServAll Laundry Site Bay Shore, Suffolk County, NY Site 1-52-077

Work Assignment No. D004445-14.2A

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

August 2009

Prepared by:

AECOM Technical Services Northeast, Inc. 300 Broadacres Drive Bloomfield, New Jersey

TABLE OF CONTENTS

Chapte	Pa Pa	ige
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	 FIELD ACTIVITIES 3.1 WATER LEVEL SURVEY 3.2 NOVEMBER 2008 GROUNDWATER SAMPLING EVENT 	1
	SAMPLING RESULTS.4.1LABORATORY DATA ISSUES.4.2VOLATILE ORGANIC COMPOUNDS	2 3
5.0	SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATIONACTIVITIES5.1SUMMARY OF VOCS5.2SUMMARY OF TAL METALS5.3FUTURE RECOMMENDATIONS	8 9

LIST OF TABLES

- 1 Monitoring Well Data
- 2 Groundwater Elevations
- 3 Summary of VOCs and Metals in Groundwater
- 4 Summary of Historic Tetrachloroethene Concentrations in Selected Monitoring Wells

LIST OF FIGURES

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Groundwater Contour Map – November 2008
- 4 Summary of VOCs and Metals in Groundwater

LIST OF APPENDICES

- А Well Sampling Forms
- В NYSDEC Monitoring Well Field Inspection Logs
- С Laboratory Data Summary Packages (Form 1's)

1.0 INTRODUCTION

Past releases from the ServAll Laundry Site in Bay Shore, New York (Site No. 1-52-077) resulted in the contamination of soil and groundwater at the Site and surrounding areas. AECOM Technical Services Northeast, Inc. (AECOM [formerly Earth Tech Northeast, Inc.]) was tasked with collecting four rounds of samples (once every five quarters) from selected monitoring wells as part of a long term monitoring plan. AECOM is performing this work under the New York State Department of Environmental Conservation (NYSDEC) Superfund Standby Contract Work Assignment No. D004445-14.2A. This report presents the results from third round of groundwater sampling conducted in November 2008. The first round of samples was collected in June 2006. A abbreviated round of groundwater sampling was conducted in April 2007 to confirm the concentration of tetrachloroethene (PCE) detected in monitoring well MW-6A; samples were collected from monitoring wells MW-4, MW-5, MW-6A and MW-6B. The second full round of samples was collected in August 2007. The third full round of samples were collected in November 2008.

2.0 SITE DESCRIPTION AND BACKGROUND

The ServAll Laundry site is located at 8 Drayton Avenue, Bay Shore, New York (see Figure 1). ServAll Uniform Rental, Inc. operated as a commercial laundry from 1969 to 1972, and as dry cleaner/laundry from 1972 to 1984. During this time, unknown quantities of wash water overflow containing PCE and heavy metals were pumped to, and occasionally overflowed from, onsite cesspools. A groundwater contaminant plume of PCE and vinyl chloride has migrated about two miles southeast of the Site. The contaminant plume may be entering Penataquit Creek, which empties into Great Cove. The leading front of the contaminant plume is apparently in close proximity to Awixa Creek. Fifteen monitoring wells were identified for sampling including MW-2, MW-3A, MW-3B, MW-4, MW-5, MW-6A, MW-6B, MW-9, MW-11, MW-12, MW-13, MW-14, MW-16, MW-23S and MW-23D (see Figure 2). Monitoring wells, MW-2, MW-3A and MW-9 could not be located during the first two sampling events (June 2006 and August 2007). MW-2 and MW-3A were located during the most recent sampling event; however, MW-9 remains missing.

3.0 FIELD ACTIVITIES

The third sampling event occurred on November 11 through 14, 2008. Sampling was conducted in accordance with the Sampling and Analysis Plan (SAP) prepared by AECOM, dated June 2007 (as part of Amendment 14.1). The SAP is comprised of the Field Sampling Plan (FSP), the Quality Assurance Project Plan (QAPP) and the Safe Work Plan (SWP). All field work was performed in Level D personnel protection.

3.1 Water Level Survey

Prior to the start of the November 2008 groundwater sampling event, water table measurements were collected from the 14 monitoring wells included in the sampling event. Once a well was identified, its location was photo-documented and measured from fixed points. A summary of well data is included on Table 1.

Water level measurements were also recorded for all wells that could be located. Water level measurements were recorded in the Field Notebook and on the Well Sampling Forms in Appendix A. A summary of groundwater elevations in selected monitoring wells is presented in Table 2. A groundwater contour map was prepared for the November 2008 sampling event and is presented in Figure 3. As

shown on the map, groundwater flow is to the south-southeast. This flow direction is similar to that found during previous investigations.

3.2 November 2008 Groundwater Sampling Event

Fifteen monitoring wells were identified for long term monitoring at the Site. The selected wells included MW-2, MW-3A, MW-3B, MW-48, MW-5, MW-6A, MW-6B, MW-9, MW-11, MW-12, MW-13, MW-14, MW-16, MW-23S and MW-23D. Monitoring well MW-9 could not be located in the field and is presumed destroyed. During the previous two sampling events, monitoring wells MW-2 and MW-3A could not be located and were not sampled. During the November 2008 sampling event, the field crew was able to locate these two wells for inclusion in the sampling effort. Each location was photo-documented and a hand-held GPS unit was used to record the coordinates. During the August 2007 sampling event MW-11 (round 2) could not be sampled due to an obstruction in the well. An obstruction was still present during the November 2008 event but the field crew was able to collect a sample.

A Grundfos electric submersible pump with polyethylene tubing was used to purge each monitoring well prior to sampling. Monitoring wells were purged of at least three casing volumes of water prior to sampling. Measurements of pH, specific conductance, temperature and turbidity were recorded on the Well Sampling Forms during purging. Well Sampling Forms are provided in Appendix A. A NYSDEC Monitoring Well Field Inspection Log was also completed for each well sampled and is included in Appendix B. Once the minimum volume of water had been evacuated, a dedicated Teflon bailer was used to collect a groundwater sample. The sample was carefully poured into laboratory supplied containers and placed in an ice-filled cooler. The samples were then transported to Mitkem Laboratory via FedEx. Proper chain-of-custody procedures and requirements were maintained throughout the sampling event in accordance with the QAPP.

4.0 SAMPLING RESULTS

Groundwater samples were analyzed by Mitkem Laboratory of Warwick, Rhode Island. Samples were analyzed for volatile organic compounds (VOCs) using SW-846 Method 8260B and for target analyte list (TAL) metals by SW-846 Method 6010B and Method 7470A for mercury. Data packages consisted of an NYS ASP Category B deliverable. As this is a long term monitoring project, data was not validated. An AECOM chemist provided a cursory review of the data packages for completeness. The laboratory Data Summary Packages are in Appendix C. Of the 15 wells selected for sampling, 14 were sampled as noted in Section 2.0.

4.1 Laboratory Data Issues

Two issues were noted with the data from the November 2008 sampling event. Upon review of the data, it appears that the sample results for monitoring well cluster MW-6A and MW-6B had been switched. Historically, MW-6A, the deep monitoring well (screened from 72 to 82 feet below ground surface [ft bgs]), has not had an exceedance of PCE since March 1990 (100 μ g/L), with only trace hits (less than the Class GA criterion of 5 μ g/L) in January 1998 and January 1999. PCE was not detected in the four sampling events (since July 2000). The shallow monitoring well MW-6B (screened 21 to 31 ft bgs) has historically been one of the most contaminated wells at the Site. The last three sampling events, June 2006, April 2007 and August 2007 reported PCE concentrations of 1,100 μ g/L, 650 μ g/L and 480 μ g/L. The results from the November 2008 sampling event reported the PCE concentration at MW-6A as 470 μ g/L and MW-6B as not detected. The field notes were reviewed to determine if the sampling crew had inadvertently mislabeled the samples during collection. There was no indication of mislabeling found. Consequently, Mitkem was contacted to determine if the samples were switched at the lab. The

lab could not find any indication that the samples were switched. There was a remaining unopened VOC vial from sample MW-6A (the vials from MW-06B were used during analysis). Mitkem was directed to analyze the remaining vial. The results came back as not detected. Therefore, only two possible explanations remain: that aquifer conditions have changed and MW-6A is now contaminated or that the sample vials were mislabeled at some point during collection and processing. Despite the lack of evidence that the samples were mislabeled, it is AECOM's contention that the most logical explanation is the samples were somehow switched and that aquifer conditions are the same as they have been historically since 1990. In all the text sections, tables and figures, these two samples (MW-6A, Lab ID G2115-12 and MW-6B, Lab ID G2115-10) have been switched to fit the historic trend.

Another issue noted during review of the data is the presence of acetone, 2-butanone and toluene in the November 2008 sample collected at MW-5. The concentration of 2-butanone is less than the Class GA criterion and is therefore not a groundwater issue. Acetone was present at a concentration of 170 μ g/L (Class GA criterion of 50 μ g/L). Toluene was present at a concentration of 1,200 μ g/L (Class GA criterion of 5 μ g/L). A review of the laboratory data report confirmed that peaks appear valid and these compounds are present in the sample. After discussions with NYSDEC, it was decided that these compounds might represent laboratory or possibly field contamination and are not representative of actual groundwater conditions. This well will be monitored during the next sampling round to determine if groundwater conditions have changed.

A summary of the detections is presented in Table 3. A summary of the exceedances is presented on Figure 4. The sampling results are described below.

4.2 Volatile Organic Compounds

VOCs were not detected in monitoring wells MW-3A, MW-3B, MW-4, and MW-6A during any of the three sampling events conducted at the ServAll Site.

Benzene was detected above the Class GA criterion of 1 μ g/L in monitoring well MW-2 at an estimated concentration of 1.7 μ g/L during the November 208 sampling event. Toluene was also detected at an estimated concentration of 1.4 μ g/L (Class GA criterion of 5 μ g/L). This well was not sampled during the two previous rounds (June 2006 and August 2007).

Two VOCs were detected above the Class GA criterion in MW-5 during the November 2008 sampling event: acetone was detected at a concentration of 170 μ g/L (Class GA criterion of 50 μ g/L) and toluene was detected at a concentration of 1,200 μ g/L (Class GA criterion of 5 μ g/L). VOCs were not detected above the Class GA criterion during any of the three previous sampling events at monitoring well MW-5. Estimated concentrations of cis-1,2-dichloroethene (3 μ g/L and 2 μ g/L) were noted during the June 2006 and April 2007 sampling events; cis-1,2-dichloroethene (PCE) was detected at an estimated concentration of 2 μ g/L only during the August 2007 sampling event (Class GA criterion of 5 μ g/L).

Three VOCs were detected in monitoring well MW-6B above the Class GA criteria. Cis-1,2-dichloroethene was detected above the Class GA criterion of 5 μ g/L during all four sampling events at concentrations of 210 μ g/L, 120 μ g/L, 130 μ g/L and 140 μ g/L. Trichloroethene (TCE) was detected above the Class GA criterion of 5 μ g/L during all four sampling events at concentrations of 85 μ g/L, 27 g/L, 26 μ g/L and 30 μ g/L. PCE was detected above the Class GA criterion of 5 μ g/L during all four sampling events at concentrations of 1,100 μ g/L, 650 μ g/L, 480 μ g/L and 470 μ g/L.

PCE was detected at a concentration of 56 μ g/L in monitoring well MW-11 above its Class GA criterion of 5 μ g/L during the June 2006 sampling event. An obstruction in MW-11 prevented the collection of a

groundwater sample during the August 2007 sampling event. During the November 2008 sampling event, PCE was detected at a concentration of 60 μ g/L. Toluene was also detected at a concentration of 63 μ g/L (Class GA criterion of 5 μ g/L). Estimated concentrations of chlorobenzene and methyl tert butyl ether were also detected at concentrations below the Class GA criteria.

Two VOCs were detected above the Class GA criterion in monitoring well MW-12. PCE (Class GA criterion of 5 μ g/L) was detected at concentration of 17 μ g/L during both the June 2006 and August 2007 sampling events and at 60 μ g/L during the November 2008 sampling event. 1,2-Dichlorobenzene was detected at a concentration of 9 μ g/L (Class GA criterion of 4.7 μ g/L) during the June 2006 sampling event only.

At MW-13, PCE had been detected at a concentration of 5 μ g/L, which is the same value as the Class GA criterion, during the June 2006 sampling event. VOCs were not detected in monitoring well MW-13 above the Class GA criteria during the August 2007 or November 2008 sampling events.

VOCs were not detected in monitoring well MW-14 during the June 2006 and November 2008 sampling events. PCE was detected at an estimated concentration of 2 μ g/L during the August 2007 sampling event.

Four VOCs were detected in monitoring well MW-16 above the Class GA criteria during the June 2006 sampling event: cis-1,2-dichloroethene at a concentration of 15 μ g/L (Class GA criterion of 5 μ g/L); 1,1,1-trichloroethane at a concentration of 5 μ g/L (Class GA criterion of 5 μ g/L); TCE at a concentration of 16 μ g/L (Class GA criterion of 5 μ g/L); and PCE at a concentration of 25 μ g/L (Class GA criterion of 5 μ g/L). During the August 2007 sampling event, PCE was detected at an estimated concentration of 2 μ g/L; no other VOCs were reported. During the November 2008 sampling event PCE was detected at a concentration of 6.9 μ g/L. Estimated concentrations of cis-1,2-dichloroethene (2.1 μ g/L) and TCE (1.1 μ g/L) were detected below their Class GA criteria.

Three VOCs were detected in monitoring well MW-23S above the Class GA criteria. Cis-1,2-dichloroethene was detected above the Class GA criterion of 5 μ g/L during all three sampling events at concentrations of 360 μ g/L, 180 μ g/L and 45 μ g/L. TCE was detected above the Class GA criterion of 5 μ g/L during all three sampling events at concentrations of 220 μ g/L, 99 μ g/L and 18 μ g/L. PCE was detected above the Class GA criterion of 5 μ g/L during all three sampling events at concentrations of 5,200 μ g/L, 1,700 μ g/L and 500 μ g/L.

One VOC, PCE (Class GA criterion of 5 μ g/L), was detected in monitoring well MW-23D in all three sampling events. PCE was detected below the criterion at an estimated concentration of 4 μ g/L during the June 2006 sampling event. The PCE concentration exceeded the criterion during both the August 2007 and November 2008 sampling events at concentrations of 6 μ g/L and 7.7 μ g/L.

4.3 TAL Metals

Five metals were detected above the groundwater criteria during the November 2008 sampling event at monitoring well MW-2. Cadmium was detected at a concentration of 8.8 μ g/L (Class GA criterion of 5 μ g/L). Chromium was detected at a concentration of 113 μ g/L (Class GA criterion of 50 μ g/L). Iron was detected at a concentration of 3,120 (Class GA criterion of 300 μ g/L). Manganese was detected at a concentration of 300 μ g/L). Nickel was detected at a concentration of 1,390 (Class GA criterion of 100 μ g/L).

Four metals were detected above their criterion in monitoring well MW-3A during the November 2008 sampling event. Antimony was detected at a concentration of 5.1 μ g/L (Class GA criterion of 3 μ g/L)

during the November 2008 sampling event but was not detected during the June 2006 and August 2007 sampling events. Cadmium was detected at a concentration of 5.9 μ g/L (Class GA criterion of 5 μ g/L) but was not detected in either the June 2007 or August 2007 sampling events. Chromium was detected above its Class GA criterion of 50 μ g/L during the June 2006 and August 2007 sampling events at concentrations of 55.8 μ g/L and 92.9 μ g/L, but was below the criterion during the November 2008 sampling event at 36.3 μ g/L. Iron was detected above the Class GA criterion of 300 μ g/L during all three sampling events at concentrations of 1,070 μ g/L, 911 μ g/L and 3,040 μ g/L. Manganese was detected at a concentration of 1,840 during the November 2008 sampling event which exceeded the Class GA criterion of 300 μ g/L, but was below the criterion during the Sung 2007 sampling events. During the June 2006 sampling event, sodium had been detected above the Class GA criterion of 20,000 μ g/L at a concentration of 129,000 μ g/L; however, sodium was detected below the criterion during the August 2007 and November 2008 sampling events.

Four metals were detected above their groundwater criterion during the November 2008 sampling event at monitoring well MW-3B. Chromium was detected at a concentration of 624 μ g/L (Class GA criterion of 50 μ g/L). Iron was detected at a concentration of 4,610 (Class GA criterion of 300 μ g/L). Manganese was detected at a concentration of 447 (Class GA criterion of 300 μ g/L). Nickel was detected at a concentration of 540 (Class GA criterion of 540 (Class GA criterion of 100 μ g/L).

Six metals were detected above their criteria during the November 2008 sampling event. Antimony had previously been detected at MW-4 during the April 2007 confirmation sampling at a concentration of 9.4 μ g/L which exceeded the Class GA criterion of 3 μ g/L; antimony was not detected during the other sampling events. Six metals were detected above their criterion in the April 2007 event and five metals were detected above their criterion in August 2007 at monitoring well MW-4. Cadmium was detected during the November 2008 sampling event at a concentration of 6.1 µg/L which exceeded the Class GA criterion of 5 µg/L; cadmium concentrations did not exceed the criterion during the previous three sampling events at MW-4. Chromium was detected above the Class GA criterion of 50 µg/L during each of the four sampling events at concentrations of 534 μ g/L, 337 μ g/L, 382 μ g/L and 321 μ g/L. Iron was detected above its criterion of 300 µg/L during all four sampling events: 1,710 µg/L, 1,970 µg/L, 2,970 µg/L and 3,280 µg/L. Manganese was detected above the Class GA criterion of 300 µg/L in the April and August 2007, and November 2008 sampling events at concentrations of 1,280 µg/L, 1,240 µg/L and 1,390 μ g/L. Nickel was detected above the Class GA criterion of 100 μ g/L during all four sampling events at concentrations of 240 μ g/L, 565 μ g/L, 702 μ g/L and 1,860 μ g/L. Sodium was detected above the Class GA criterion of 20,000 µg/L during the April and August 2007 and November 2008 sampling events at concentrations of 33,800 μ g/L, 39,300 μ g/L and 39,000 μ g/L.

Six metals (chromium, iron, manganese, nickel, sodium and thallium) were detected at concentrations exceeding the Class GA groundwater criteria during the four sampling events in monitoring well MW-5. Chromium was detected above the Class GA criterion of 50 μ g/L during all four sampling events at concentrations of 80.5 μ g/L, 79.8 μ g/L, 1,370 μ g/L and 116 μ g/L. Iron was detected above the Class GA criterion of 300 μ g/L during all four sampling events at concentrations of 930 μ g/L during all four sampling events at concentrations of 934 μ g/L, 483 μ g/L, 7,140 μ g/L and 49,400 μ g/L. Manganese was detected above the Class GA criterion of 300 μ g/L only during the August 2007 and November 2008 sampling events at concentrations of 3,550 μ g/L and 1,830 μ g/L, respectively. Nickel was detected above the Class GA criterion of 100 μ g/L during two of four sampling events, April and August 2007, at concentrations of 127 μ g/L and 135 μ g/L. Sodium was detected above the Class GA criterion of 20,000 μ g/L during the August 2007 and November 2008 sampling events at concentrations of 43,300 μ g/L and 59,200 μ g/L. Thallium was detected at an estimated concentration of 1.4 μ g/L exceeding the Class GA criterion of 0.5 μ g/L only during the during the June 2006 sampling event.

Seven metals were detected at concentrations exceeding the Class GA groundwater criteria in monitoring well MW-6A. Antimony was detected above the Class GA criterion of 3 μ g/L during the April 2007 sampling event at a concentration of 37.1 μ g/L. Chromium was detected above the Class GA criterion of 50 μ g/L during all four sampling events at concentrations of 607 μ g/L, 1,280 μ g/L, 639 μ g/L and 88.8 μ g/L. Iron was detected above the Class GA criterion of 300 μ g/L during all four sampling events at concentrations of 3,780 μ g/L, 6,330 μ g/L, 4,410 μ g/L and 4,200 μ g/L. Manganese was detected above the Class GA criterion of 300 μ g/L during all four sampling events at concentrations of 3,780 μ g/L and 3,250 μ g/L. Nickel was detected above the Class GA criterion of 100 μ g/L during all four sampling events at concentrations of 160 μ g/L, 273 μ g/L, 1,130 μ g/L and 196 μ g/L. Sodium was detected above the Class GA criterion of 20,000 μ g/L during three sampling events at concentrations of 59,600 μ g/L, 39,600 μ g/L and 31,600 μ g/L; sodium was below the criterion during the November 2008 sampling event. Thallium was detected above its Class GA criterion of 0.5 μ g/L only during the June 2006 sampling event at a concentration of 32.3 μ g/L.

Five metals were detected above the Class GA criteria at monitoring well MW-6B. Antimony was detected at a concentration of 7.9 μ g/L during the April 2007 sampling event which exceeds the Class GA criterion of 3 μ g/L; however, antimony was not detected during any of the other three sampling events. Chromium was detected above the Class GA criterion of 50 μ g/L during first three sampling events at concentrations of 62.2 μ g/L, 133 μ g/L and 143 μ g/L; the concentration during the November 2008 sampling event was 46.6 μ g/L. Iron was detected above the Class GA criterion of 300 μ g/L during all four sampling events at concentrations of 1,950 μ g/L, 5,500 μ g/L, 9,130 μ g/L and 5,950 μ g/L. Manganese was detected above the Class GA criterion of 300 μ g/L during the April and August 2007 and November 2008 sampling events at concentrations of 344 μ g/L and 429 μ g/L and 540 μ g/L. Sodium was detected above the Class GA criterion of 20,000 μ g/L during the April and August 2007 sampling events at concentrations of 20,000 μ g/L.

Three metals were detected above their Class GA criteria at MW-11. No sample was collected at monitoring well MW-11 during the August 2007 sampling event due to an obstruction in the well. During the June 2006 sampling event, chromium was detected at a concentration of 50.1 μ g/L which exceeded the Class GA criterion of 50 μ g/L but was less than the criterion during the November 2008 sampling event. Iron exceeded the Class GA criterion of 300 μ g/L during the June 2006 and November 2008 sampling events at concentrations of 1,510 μ g/L and 1,440 μ g/L. During the June 2006 sampling event, sodium was detected at a concentration of 23,700 μ g/L which exceeded the Class GA criterion of 20,000 μ g/L.

Seven metals were detected at concentrations exceeding the Class GA groundwater criteria in monitoring well MW-12. Antimony was detected above the Class GA criterion of 3 µg/L during the November 2008 sampling event at a concentration of 6.2 µg/L. Chromium was detected above the Class GA criterion of 50 µg/L during all three sampling events at concentrations of 1,130 µg/L, 1,730 µg/L and 1,170 µg/L. Iron was detected above the Class GA criterion of 300 during all three sampling events at concentrations of 2,810 µg/L, 7,040 µg/L and 4,720 µg/L. Manganese was detected above the Class GA criterion of 300 µg/L during all three sampling events at concentrations of 746 µg/L, 512 µg/L and 600 µg/L. Nickel was detected above the Class GA criterion of 100 µg/L during all three sampling events at concentrations of 1,290 µg/L, 130 µg/L and 519 µg/L. Sodium was detected above the Class GA criterion of 20,000 µg/L during all three sampling events at concentrations of 62,500 µg/L, 42,000 µg/L and 40,100 µg/L. Thallium (Class GA criterion of 0.5 µg/L) was detected at a concentration of 5 µg/L during the June 2006 sampling event only.

Seven metals were detected at concentrations exceeding the Class GA groundwater criteria in monitoring well MW-13. Antimony was detected at a concentration of 6.3 μ g/L (Class GA criterion of 3 μ g/L) during the June 2006 sampling event only. Cadmium was detected during all three sampling events and

exceeded the Class GA criterion of 5 μ g/L only during the August 2007 sampling event at a concentration of 48.1 μ g/L. Chromium was detected at a concentration of 263 μ g/L during the August 2007 sampling event which is above the Class GA criterion of 50 μ g/L but was below the criterion during the other two sampling events. Iron was detected below the Class GA criterion of 300 μ g/L during the June 2006 sampling event but exceeded the criterion during both the August 2007 sampling event (1,470 μ g/L) and the November 2008 sampling event (1,140 μ g/L). Manganese was detected below the Class GA criterion of 300 μ g/L during the first and second sampling events but exceeded the criterion during the November 2008 sampling event (343 μ g/L). Sodium was detected above the Class GA criterion of 20,000 μ g/L during all three sampling events at concentrations of 35,700 μ g/L, 41,000 μ g/L and 34,300 μ g/L. Thallium was detected at an estimated concentration of 1.7 μ g/L during the June 2006 sampling event only which exceeded the Class GA criterion of 0.5 μ g/L.

Four metals were detected at concentrations exceeding the Class GA groundwater criteria in monitoring well MW-14. Chromium was detected above the Class GA criterion of 50 μ g/L during the August 2007 and November 2008 sampling events at concentrations of 100 μ g/L and 59.6 μ g/L. Iron was detected above the Class GA criterion of 300 μ g/L during all three sampling events at concentrations of 449 μ g/L, 1,170 μ g/L and 821 μ g/L. Sodium was detected above the Class GA criterion of 20,000 μ g/L during all three sampling events at concentrations of 60,500 μ g/L, 31,700 μ g/L and 70,400 μ g/L. Thallium was detected above the Class GA criterion of 0.5 μ g/L during the June 2006 and August 2007 sampling events at concentrations of 1.3 μ g/L and 2.8 μ g/L.

Four metals were detected at concentrations exceeding the Class GA groundwater criteria in monitoring well MW-16. Chromium was detected above the Class GA criterion of 50 μ g/L during all three sampling events at concentrations of 1,660 μ g/L, 666 μ g/L and 184 μ g/L. Iron as detected above the Class GA criterion of 300 μ g/L during all three sampling events at concentrations of 7,270 μ g/L, 5,520 μ g/L and 2,440 μ g/L. Nickel was detected above the Class GA criterion of 100 μ g/L during the June 2006 and August 2007 sampling events at concentrations of 125 μ g/L and 110 μ g/L. Sodium was detected above the Class GA criterion of 20,000 μ g/L during the June 2006 and November 2008 sampling events at concentrations of 24,500 μ g/L and 33,600 μ g/L.

Six metals were detected at concentrations exceeding the Class GA groundwater criteria in monitoring well MW-23S. Antimony was detected at a concentration 7.5 μ g/L during the August 2007 sampling event which exceeds the Class GA criterion of 3 μ g/L but was not detected during the June 2006 or November 2008 sampling events. Iron was detected below the Class GA criterion of 300 μ g/L during the first two sampling events but exceeded the criterion during the November 2008 sampling event at concentration of 544 μ g/L. Manganese was detected above the Class GA criterion of 300 μ g/L during all three sampling events at concentrations of 1,570 μ g/L, 1,370 μ g/L and 1,230 μ g/L. Sodium was detected above the Class GA criterion of 20,000 μ g/L during all three sampling events at concentrations of 20,000 μ g/L. Thallium was detected at a concentration of 7.8 μ g/L during the June 2006 sampling event which exceeded the Class GA criterion of 0.5 μ g/L, but thallium was not detected during the August 2007 or November 2008 sampling events.

Three metals were detected at concentrations exceeding the Class GA groundwater criteria at monitoring well MW-23D. Antimony was detected below the Class GA criterion of 3 μ g/L during the June 2006 sampling event, exceeded the criterion during the August 2007 sampling event (4.7 μ g/L) and was not detected during the November 2008 sampling event. Iron was detected above the Class GA criterion of 300 μ g/L during the June 2006 and August 2007 sampling events at concentrations of 3,800 μ g/L and 563 μ g/L but was below the criterion during the November 2008 sampling event. Thallium was detected during the June 2006 sampling event at a concentration of 1.3 μ g/L which exceeded the Class GA criterion of 0.5 μ g/L but was not detected during the August 2007 or November 2008 sampling events.

5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES

5.1 Summary of VOCs

No VOCs were detected in monitoring wells MW-3A, MW-3B, MW-4 and MW-6A. All target VOCs were detected below their NYSDEC Class GA Groundwater Criterion in monitoring wells MW-5 (excluding the acetone and toluene as discussed in section 4.1) and MW-14. VOCs were detected at concentrations slightly above the Class GA criteria in monitoring well MW-13 during the June 2006 sampling event, but have not exceeded the criterion for the last two sampling events. VOCs concentrations at monitoring wells MW-16 and MW-23D during two of the sampling events but were below the criterion during the other sampling event. MW-2 was sampled for the first time during November 2008 and a slight exceedance of benzene was noted.

Five VOCs were detected at concentrations above their Class GA criteria in monitoring wells MW-6B, MW-11, MW-12, and MW-23S. These exceedances included cis-1,2 dichloroethene, 1,1,1-trichloroethane, TCE, PCE and 1,2 dichlorobenzene during the June 2006, August 2007 and November 2008 sampling events.

Concentrations of cis-1,2 dichloroethene (Class GA criterion of 5 μ g/L) were highest in monitoring wells MW-6B and MW-23S. 1,1,1-Trichloroethane (Class GA criterion of 5 μ g/L) was detected at a concentration of 5 μ g/L in monitoring well MW-16 during the June 2006 sampling event only. Concentrations of TCE (Class GA criterion 5 μ g/L) and PCE (Class GA criterion 5 μ g/L) were highest in monitoring wells MW-6B and MW-23S. 1,2-Dichlorobenzene (Class GA criterion 5 μ g/L) was detected in monitoring well MW-12 at a concentration of 9 μ g/L during the June 2006 sampling event only.

A summary of historic PCE concentration data for selected monitoring wells is shown on Table 4. The data presented on this table is a compilation of data available for review during the preparation of this report and may not include all groundwater sampling results. PCE concentrations show a significant increase in monitoring wells MW-6B and MW-23S during recent the June 2006 event but appear to be decreasing through the two subsequent sampling events. At MW-6B, PCE concentrations had decreased through the 1990s to a low of 22 μ g/L by January 1999. There was an increase noted in July 2000 to 160 μ g/L followed by an order of magnitude increase in the June 2006 sampling event to 1,100 μ g/L followed by a significant drop to 480 μ g/L by August 2007. The concentration remained constant through the November 2008 sampling event.

PCE concentrations have also significantly increased in monitoring well MW-23S. Historically, PCE concentrations at this location were less than 30 μ g/L and were below the Class GA criterion of 5 μ g/L during the May 2004 sampling event. During the June 2006 sampling event, the PCE concentration at this location was 5,200 μ g/L. The concentration has decreased significantly since that time to 1,700 μ g/L in August 2007 and 500 μ g/L in November 2008.

Concentrations of 1,1,1-trichloroethane, PCE and its breakdown daughter products (TCE and cis-1,2-dichloroethene) were detected in several monitoring wells. Of the five monitoring wells near the Site that were sampled (MW-3, MW-4, MW-5, MW-6A and MW-6B), PCE was only detected in shallow monitoring well MW-6B (480 μ g/L); it was not detected in the other four wells near the Site. Three of the monitoring wells sampled were located approximately halfway between the Site and the Bay Shore Middle School (MW-12, MW-13 and MW-14) along the Southern State Parkway. PCE was detected above the criterion in one well MW-12 (17 μ g/L) and below the criterion in monitoring well MW-14 at an

estimated concentration of 2 μ g/L. Of the two monitoring wells near the Bay Shore Middle School, the PCE concentrations at MW-11 were 56 μ g/L and 60 μ g/L for the June 2006 and November 2008 sampling events (an obstruction prevented the collection of a sample in August 2007). At MW-16, the other well near the school, the concentrations of VOCs have all decreased, although the PCE concentration is slightly above the criterion. The two most downgradient wells sampled (MW-23S and MW-23D) are located near the Sunrise Highway. PCE was detected in MW-23S at a concentration of 1,700 μ g/L along with high concentrations of two daughter products, TCE and cis-1,2-dichloroethene. PCE was detected above the criterion in MW-23D at a concentration of 6 μ g/L.

5.2 Summary of TAL Metals

Of the 23 TAL metals, eight metals were detected at concentrations above their Class GA criteria. These exceedances included antimony, cadmium, chromium, iron, manganese, nickel, sodium and thallium. Three of the metals, iron, manganese and sodium, are naturally occurring elements in Long Island groundwater and will not be discussed further.

Antimony was detected in five wells during the June 2006 sampling event at concentrations ranging from an estimated 1.4 μ g/L at MW-23D to 6.3 μ g/L at MW-13, the only location where antimony exceeded the Class GA criterion of 3 μ g/L. Of the four wells sampled in April 2007 (MW-4, MW-5, MW-6A and MW-6B), antimony exceeded the criterion at three locations. During the August 2007 sampling event, antimony exceeded the criterion at monitoring wells MW-23S and MW-23D. Cadmium has been detected in most of the samples collected at the Site but has only exceeded the criterion once. Chromium was detected in all samples during all three sampling events and exceeded the criterion in most of the samples. Nickel has exceeded the Class GA criterion of 100 μ g/L in five wells: MW-4, MW-6, MW-6A, MW-12, and MW-16. Thallium was detected at seven locations during the June 2006 sampling event, all of which exceeded the Class GA criterion of 4 μ g/L. During the August 2007 sampling event, there was only one exceedance of thallium.

5.3 Future Recommendations

Future recommendations for the ServAll Laundry Site are continued monitoring of selected monitoring wells for VOCs and TAL metals. The significant increase in PCE concentration at monitoring wells MW-6B and MW-23S will be reevaluated during the next sampling event. Chromium concentrations continue to exceed the criterion in most of the monitoring wells.

The next round of sampling is scheduled for February 2010.

TABLE 1 SERVALL LAUNDRY SITE (1-52-077) MONITORING WELL DATA

Well ID	NY State Plan	e Coordinates ¹	Total	Top of	
			Depth	Riser	
	Northing	Easting	of Well	Elevation	Comments
MW-1	193,973.43	2,204,502.95	86.7		Behind Servall Building
MW-2	194,178.63	2,204,535.21	82.2		Well could not be located prior to the November 2008 event
MW-3A	194,188.77	2,204,423.40	100.0	64.54	Well could not be located prior to the November 2008 event
MW-3B	198,189.80	2,204,411.51	88.3	64.54	West of the building on the north side of Drayton Avenue
MW-4	193,713.55	2,204,672.09	83.7	63.11	On north side of Frederick Avenue
MW-5	193,738.12	2,204,418.09	36.4	64.04	On north side of Frederick Avenue
MW-6A	193,723.62	2,204,573.71	62.6	63.87	On north side of Frederick Avenue
MW-6B	193,722.77	2,204,566.29	31.7	63.83	On north side of Frederick Avenue
MW-7	193,247.00	2,204,484.62	112		Well appears to be missing
MW-8	192,291.45	2,205,304.27	104		Well appears to be missing
MW-9	189,214.07	2,206,683.24	88		Well appears to have been paved over or removed
MW-11	188,889.82	2,207,272.76	89.0	37.07	In grass on field at Bay Shore Middle School
MW-12	191,051.70	2,205,475.34	89.2	50.61	In woods along Southern State Parkway near light pole
MW-13	190,990.06	2,205,989.11	96.5	50.33	In woods along Southern State Parkway near light pole
MW-14	191,009.26	2,206,506.46	93.7	49.98	In woods along Southern State Parkway near light pole
MW-16	188,111.44	2,207,779.29	94.0	36.50	South side of Abrew Street in roadway
MW-23S	187,099.54	2,208,295.49	69.3	24.38	In roadway on Cul-de-sac on Perkel Street
MW-23D	187,101.72	2,208,276.17	87.6	24.45	In roadway on Cul-de-sac on Perkel Street

Bolded monitoring wells are severely damaged and require repairs to the road box

1 - Coordinates from E.C. Jordan, January 1992.

TABLE 2 SERVALL LAUNDRY SITE (SITE 1-52-077) GROUNDWATER ELEVATIONS

Well #	Reference	Date	Depth	Water Table	Comments
MW-2	Elevation 57.80	6/6/06	To Water	Elevation	could not locate
IVIVV-Z	07.0U	8/20/07			could not locate
		11/11/08	23.82	33.98	November 2008 sampling event
MW-3A	64.54	6/6/06	20.68	43.86	June 2006 sampling event
	00.1	8/20/07	22.00	42.54	August 2007 sampling event
		11/11/08	23.61	40.93	November 2008 sampling event
MW-3B	63.97	6/6/06			could not locate
		8/20/07			could not locate
		11/11/08	23.81	40.16	November 2008 sampling event
MW-4	63.11	6/16/06	20.34	42.77	June 2006 sampling event
		8/20/07	21.50	41.61	August 2007 sampling event
		11/11/08	23.35	39.76	November 2008 sampling event
MW-5	64.04	6/15/06	20.98	43.06	June 2006 sampling event
		8/20/07 11/11/08	22.20 23.99	41.84 40.05	August 2007 sampling event November 2008 sampling event
	00.07				1 0
MW-6A	63.87	6/15/06 8/20/07	20.93 22.41	42.94 41.46	June 2006 sampling event August 2007 sampling event
		11/11/08	24.01	39.86	November 2008 sampling event
MW-6B	63.83	6/15/06	20.89	42.94	June 2006 sampling event
	00.00	8/20/07	22.16	41.67	August 2007 sampling event
		11/11/08	23.95	39.88	November 2008 sampling event
MW-11	37.07	6/8/06	8.80	28.27	June 2006 sampling event
		8/20/07	6.57	30.50	August 2007 sampling event
		11/11/08	10.13	26.94	November 2008 sampling event
MW-12	50.61	6/15/06	14.15	36.46	June 2006 sampling event
		8/20/07	15.42	35.19	August 2007 sampling event
		11/11/08	16.74	33.87	November 2008 sampling event
MW-13	50.33	6/15/06	18.51	31.82	June 2006 sampling event
		8/20/07 11/11/08	15.87 17.10	34.46 33.23	August 2007 sampling event November 2008 sampling event
	40.00				, °
MW-14	49.98	6/15/06 8/20/07	15.01 16.26	34.97 33.72	June 2006 sampling event August 2007 sampling event
		11/11/08	17.29	32.69	November 2008 sampling event
MW-16	36.50	6/15/06	10.52	25.98	June 2006 sampling event
	20.00	8/20/07	12.76	23.74	August 2007 sampling event
		11/11/08	12.35	24.15	November 2008 sampling event
MW-23S	24.38	6/8/06	5.25	19.13	June 2006 sampling event
		8/20/07	6.22	18.16	August 2007 sampling event
		11/11/08	6.09	18.29	November 2008 sampling event
MW-23D	24.45	6/8/06	5.15	19.30	June 2006 sampling event
		8/20/07	6.14	18.31	August 2007 sampling event
		11/11/08	6.00	18.45	November 2008 sampling event

	NYSDEC	MW-2		MW-2	MW-2	MW-3A	MW-3A	MW-3A	MW-3B	MW-3B	MW-3B
Sample ID	Class GA	Can't		Can't	SL-MW-2	SMW-3A	SMW-3A	SL-MW-3A	Can't	Can't	SL-MW-3B
Laboratory ID	Groundwater	Locate		Locate	G2115-14	E0773-18	F1174-02C	G2115-16	Locate	Locate	G2115-17
Sample Date	Criteria	6/6/06		8/21/07	11/14/08	6/6/06	8/21/07	11/14/08	6/6/06	8/21/07	11/14/08
Matrix	water	water		water	water	water	water	water	water	water	water
Units	µg/L	µg/L		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. (Ç	conc. Q	conc. Q			conc. Q	conc. Q	conc. Q	conc. Q
Volatile Organic Compoun	ds										
1,1-Dichloroethene	5				ND	ND	ND	ND			ND
Acetone	50				ND	ND	ND	ND			ND
Benzene	1				1.7 J	ND	ND	ND			ND
2-Butanone	50				ND	ND	ND	ND			ND
trans-1,2-Dichloroethene	5				ND	ND	ND	ND			ND
Methyl tert-butyl ether	10				ND	ND	ND	ND			ND
cis-1,2-Dichloroethene	5				ND	ND	ND	ND			ND
Chloroform	7				ND	ND	ND	ND			ND
1,1,1-Trichloroethane	5				ND	ND	ND	ND			ND
Trichloroethene	5				ND	ND	ND	ND			ND
Tetrachloroethene	5				ND	ND	ND	ND			ND
Toluene	5				1.4 J	ND	ND	ND			ND
Chlorobenzene	5				ND	ND	ND	ND			ND
1,2-Dichlorobenzene	4.7				ND	ND	ND	ND			ND
Number of TICs					1	0	0	1			1
Total TICs					38 J	ND	ND	19 J			19 J
TAL Metals											
Aluminum	NC				266	749	817	1,630			2,030
Antimony	3				ND	ND	ND	5.1 B			ND
Arsenic	25				ND	ND	ND	ND			ND
Barium	1,000				17.5 B	67.3 B	ND	83.9 B			31.5 B
Beryllium	3				ND	ND	ND	ND			ND
Cadmium	5				8.8 *E	ND	1.4 B	5.9 *E			2.2 B*E
Calcium	NC				15,300	10,800	5,740	15,000			9,700
Chromium	50				113 *	55.8	92.9	36.3 *			624 *

Earth Tech Northeast, Inc.

Sample Location		MW-2		MW-2		MW-2		MW-3A		MW-3A		MW-3A		MW-3E		MW-3	3	MW-3	
Sample ID	Class GA	Can't		Can't		SL-MW	-2	SMW-3	A	SMW-3		SL-MW		Can't		Can't		SL-MV	V-3B
Laboratory ID	Groundwater	Locate		Locate		G2115-	14	E0773-	18	F1174-	02C	G2115	-16	Locate		Locate	•	G2115	-17
Sample Date	Criteria	6/6/06		8/21/07	7	11/14/0	8	6/6/06		8/21/07	7	11/14/0	8(6/6/06		8/21/0	7	11/14/	28
Matrix	water	water		water		water		water		water		water		water		water		water	
Units	µg/L	µg/L		µg/L		µg/L		µg/L		µg/L		µg/L		µg/L		µg/L		µg/L	
		conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q
Cobalt	NC					20.4	В	2.4	4 B	1.8	3 B	7.3	ΒB					14.9	9 B
Copper	200					18.4	в	1:	3 B	20) B	66.2	2					74.	7
Iron	300					3,120		1,070)	911	1	3,040)					4,610)
Lead	25					3.3	вВ	NE)	3.6	6 B	33.1						14.4	4
Magnesium	35,000					1,250)	4,29	C	686	5	2,130)					1,49	C
Manganese	300					396		14	3	264	1	1,840)					447	7
Mercury	0.7					ND)	NE)	NE)	ND)					0.05	1 B
Nickel	100					1,390		23.	6 B	20.7	7 B	22.1	В					540)
Potassium	NC					1,980)	2,17	C	1,010)	2,550)					3,04	C
Selenium	10					ND)	NE)	NE)	ND)					N)
Silver	50					ND)	NE)	1.2	2 B	ND)					N)
Sodium	20,000					14,600)	129,000)	1,610)	9,900)					6,73	C
Thallium	0.5					ND)	NE)	ND)	NE)					N)
Vanadium	NC					2.8	вВ	1.4	4 B	1.1	1 B	8	8 B					5.9	9 B
Zinc	2,000					44.4	В	53.	7	46.6	6 B	594	ŀ					19	1

1 - See text Section 4.1 for details on sample ID

NC - No criterion

ND - Not detected

B - Estimated value, metals

D - Dilution

J - Estimated value, VOCs

NA - Data not available

BOLD/ITALICS - exceeds criterion

* - Estimated value, duplicate out of range

E - Estimated value due to interference

Sample Location	NYSDEC	MW-4	MW-4	MW-4	MW-4	MW-5	MW-5	MW-5	MW-5
Sample ID	Class GA	SMW-4	SMW-4	SMW-4	SL-MW-4	SMW-5	SMW-5	SMW-5	SL-MW-5
Laboratory ID	Groundwater	E0832-10	F0495-02B	F1174-03C	G2115-09	E0832-05	F0495-04B	F1174-13B	G2115-13
Sample Date	Criteria	6/16/06	4/20/07	8/21/07	11/13/08	6/15/06	4/20/07	8/27/07	11/13/08
Matrix	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q		conc. Q
Volatile Organic Compour	nds								
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	170
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	38 J
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	3.0 J	2 J	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	2 J	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	1,200
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	1
Total TICs		ND	ND	ND	28 J	ND	ND	ND	330 J
TAL Metals									
Aluminum	NC	82.5 B	271	721	1,450	391	264	2,740	383
Antimony	3	ND	9.4 B	ND	ND	ND	ND	ND	ND
Arsenic	25	2.2 B	ND	6.2 B	ND	1.7 B	ND	20.9	8 B
Barium	1,000	16.7 B	46.4 B	50.3 B	46.7 B	17.9 B	10.9 B	65.2 B	233
Beryllium	3	ND	ND	0.061 B	ND	ND	ND	0.26 B	ND
Cadmium	5	0.73 B	1.4 B	2.6 B	6.1 *E	2.4 B	2.1 B	1.3 B	0.41 B*E
Calcium	NC	13,600	18,700	19,600	52,000	20,700	20,400	18,700	31,400
Chromium	50	534	337	382	321 *	80.5	79.8	1,370	116 *

Earth Tech Northeast, Inc.

Sample Location	NYSDEC	MW-4	MW-4	MW-4	MW-4	MW-5	MW-5	MW-5	MW-5
Sample ID	Class GA	SMW-4	SMW-4	SMW-4	SL-MW-4	SMW-5	SMW-5	SMW-5	SL-MW-5
Laboratory ID	Groundwater	E0832-10	F0495-02B	F1174-03C	G2115-09	E0832-05	F0495-04B	F1174-13B	G2115-13
Sample Date	Criteria	6/16/06	4/20/07	8/21/07	11/13/08	6/15/06	4/20/07	8/27/07	11/13/08
Matrix	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Cobalt	NC	1.6 B	6.5 B	8.9 B	21.4 B	1.3 B	0.93 B	14.1 B	24.6 B
Copper	200	33.6	16 B	21.5 B	28.6 B	6.8 B	6.4 B	34.9	10.3 B
Iron	300	1,710	1,970	2,970	3,280	934	483	7,140	49,400
Lead	25	1.6 B	0.99 B	2.4 B	5.2 B	3.6 B	1.4 B	2.3 B	ND
Magnesium	35,000	3,310	4,910	5,130	3,820	3,420	3,230	3,380	5,590
Manganese	300	181	1,280	1,240	1,390	209	219	3,550	1,830
Mercury	0.7	ND	0.057 B	ND	ND	ND	0.05 B	ND	ND
Nickel	100	240	565	702	1,860	39.1 B	127	135	49 B
Potassium	NC	2,710	4,690	4,930	4,170	2,490	1,960	5,000	13,900
Selenium	10	ND	5.3 B	ND	ND	ND	1.2 B	ND	ND
Silver	50	ND	0.95 B	1.9 B	ND	ND	1.3 B	1.3 B	ND
Sodium	20,000	13,400	33,800	39,300	39,000	13,400	14,700	43,300	59,200
Thallium	0.5	ND	ND	ND	ND	1.4 B	ND	ND	ND
Vanadium	NC	1.4 B	1.4 B	1.8 B	1.9 B	0.89 B	0.79 B	13.1 B	3.5 B
Zinc	2,000	17.7 B	31 B	44 B	63.4	29.2 B	30.1 B	51.4	35.2 B

1 - See text Section 4.1 for details on sample ID

- NC No criterion
- ND Not detected
- B Estimated value, metals
- D Dilution
- J Estimated value, VOCs
- NA Data not available

BOLD/ITALICS - exceeds criterion

* - Estimated value, duplicate out of range

E - Estimated value due to interference

Sample Location	NYSDEC	MW-6A	MW-6A	MW-6A	MW-6A ¹	MW-6B	MW-6B	MW-6B	MW-6B ¹
Sample ID	Class GA	SMW-6A	SMW-6A	SMW-6A	SMW-6A	SMW-6B	SMW-6B	SMW-6B	SMW-6B
Laboratory ID	Groundwater	E0832-06	F0495-01B	F1174-04C	G2115-10	E0832-07	F0495-03B	F1174-05C	G2115-12
Sample Date	Criteria	6/15/06	4/20/07	8/21/07	11/13/08	6/15/06	4/20/07	8/21/07	11/13/08
Matrix	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Volatile Organic Compour	nds								
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	210 D	120	130	140
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	2 J
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	85	27	26	30
Tetrachloroethene	5	ND	ND	ND	ND	1,100 D	650	480 D	470 D
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	1
Total TICs		ND	ND	ND	28 J	ND	ND	ND	28 J
TAL Metals									
Aluminum	NC	527	3,300	855	2390	2,000	3,780	14,500	7,500
Antimony	3	ND	37.1	ND	ND	2.7 B	7.9 B	ND	ND
Arsenic	25	3.5 B	ND	8.2 B	ND	ND	ND	4.6 B	ND
Barium	1,000	72.2 B	52.9 B	33.4 B	57.7 B	19.3 B	27.7 B	33.1 B	24.6 B
Beryllium	3	ND	ND	ND	ND	ND	0.24 B	0.35 B	0.37 B
Cadmium	5	1.5 B	4.3 B	2.2 B	1.9 B*E	0.75 B	0.91 B	2.6 B	0.88 B*E
Calcium	NC	33,800	17,400	15,800	15,600	19,600	25,100	24,400	22,500
Chromium	50	607	1,280	639	88.8 *	62.2	133	143	46.6 *

Earth Tech Northeast, Inc.

Sample Location	NYSDEC	MW-6A	MW-6A	MW-6A	MW-6A ¹	MW-6B	MW-6B	MW-6B	MW-6B ¹
Sample ID	Class GA	SMW-6A	SMW-6A	SMW-6A	SMW-6A	SMW-6B	SMW-6B	SMW-6B	SMW-6B
Laboratory ID	Groundwater	E0832-06	F0495-01B	F1174-04C	G2115-10	E0832-07	F0495-03B	F1174-05C	G2115-12
Sample Date	Criteria	6/15/06	4/20/07	8/21/07	11/13/08	6/15/06	4/20/07	8/21/07	11/13/08
Matrix	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Cobalt	NC	11.3 B	16.8 B	13.6 B	28.2 B	2.2 B	11.6 B	9.6 B	8.6 B
Copper	200	16 B	53.3	37.6	65.3	17.5 B	37.2	150	96.6
Iron	300	3,780	6,330	4,410	4,200	1,950	5,500	9,130	5,950
Lead	25	4.1 B	16.7	4.3 B	25.9	2.8 B	9.1 B	18.5	9 B
Magnesium	35,000	5,070	2,870	2,660	2,870	3,430	4,520	5,030	3,600
Manganese	300	7,140	3,890	6,410	3,250	81.6	344	429	540
Mercury	0.7	ND	0.098 B	ND	ND	ND	0.065 B	ND	ND
Nickel	100	160	273	1,130	196	46.1 B	51.3	47 B	12.5 B
Potassium	NC	2,390	2,110	2490	9900	2,210	2,510	2460	1740
Selenium	10	1.7 B	9.8 B	ND	ND	ND	ND	ND	ND
Silver	50	ND	ND	3.3 B	ND	ND	1.3 B	ND	ND
Sodium	20,000	59,600	39,600	31,600	8,730	17,800	28,200	25,900	15,100
Thallium	0.5	32.3	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	2.6 B	7.2 B	2.8 B	5.3 B	1.1 B	3.7 B	7.9 B	3.3 B
Zinc	2,000	45.6 B	115	53.6	125	53.6	80.4	240	100

1 - See text Section 4.1 for details on sample ID

- NC No criterion
- ND Not detected
- B Estimated value, metals
- D Dilution
- J Estimated value, VOCs
- NA Data not available

BOLD/ITALICS - exceeds criterion

* - Estimated value, duplicate out of range

E - Estimated value due to interference

Sample Location	NYSDEC	MW-9	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12
Sample ID	Class GA		SMW-11	SMW-11	SL-MW-11	SMW-12	SMW-12	SL-MW-12
Laboratory ID	Groundwater	Destroyed	E0773-19		G2115-01	E0832-01	F1174-08C	G2115-06
Sample Date	Criteria	6/09/06	6/8/06	Aug 2007	11/11/08	6/15/06	8/22/07	11/12/08
Matrix	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Volatile Organic Compour	nds							
1,1-Dichloroethene	5		ND	NA	ND	ND	ND	ND
Acetone	50		ND	NA	ND	ND	ND	ND
Benzene	1		ND	NA	ND	ND	ND	ND
2-Butanone	50		ND	NA	ND	ND	ND	ND
trans-1,2-Dichloroethene	5		ND	NA	ND	ND	ND	ND
Methyl tert-butyl ether	10		ND	NA	1.8 J	ND	ND	ND
cis-1,2-Dichloroethene	5		3.0 J	NA	13	ND	2 J	3.1 J
Chloroform	7		ND	NA	ND	ND	ND	ND
1,1,1-Trichloroethane	5		ND	NA	ND	ND	ND	ND
Trichloroethene	5		4 J	NA	ND	ND	1 J	ND
Tetrachloroethene	5		56	NA	60	17	17	60
Toluene	5		ND	NA	63	ND	ND	ND
Chlorobenzene	5		ND	NA	4.8 J	4 J	ND	ND
1,2-Dichlorobenzene	4.7		ND	NA	ND	9	ND	ND
Number of TICs			1		1	0	0	1
Total TICs			6 J	NA	22 J	ND	ND	26
TAL Metals								
Aluminum	NC		1,440	NA	494	369	257	377
Antimony	3		ND	NA	ND	1.8 B	ND	6.2 B
Arsenic	25		1.7 B	NA	ND	8.2 B	20.2	ND
Barium	1,000		46.1 B	NA	29.3 B	67.6 B	81.8 B	163 B
Beryllium	3		ND	NA	ND	ND	ND	ND
Cadmium	5		4.4 B	NA	0.71 B*E		0.92 B	0.83 B*E
Calcium	NC		11,100	NA	10,100	17,000	17,600	19,500
Chromium	50		50.1	NA	8.9 B*	1,130	1,730	1,170 *

Earth Tech Northeast, Inc.

Sample Location		MW-9		MW-11		MW-11		MW-11		MW-12		MW-12		MW-12	
Sample ID	Class GA			SMW-1	1	SMW-1	1	SL-MW	/-11	SMW-1		SMW-1	2	SL-MW	-12
Laboratory ID	Groundwater	Destroy	/ed	E0773-	19			G2115	-01	E0832-	-01	F1174-	08C	G2115-	·06
Sample Date	Criteria	6/09/06	;	6/8/06		Aug 20	07	11/11/0)8	6/15/06	6	8/22/07	•	11/12/0	8
Matrix	water	water		water		water		water		water		water		water	
Units	µg/L	µg/L		µg/L		µg/L		µg/L		µg/L		µg/L		µg/L	
		conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q	conc.	Q
Cobalt	NC			2.7	В	NA	١	ND)	24.3	3 B	3.	9 B	6.	2 B
Copper	200			18.5	В	NA	۱	ND)	67.9)	59.	1	33.	9
Iron	300			1,510		NA	۱	1,440)	2,810)	7,04	0	4,720	0
Lead	25			ND		NA	۱	6.5	5 B	4.9) B	N	D	4.	4 B
Magnesium	35,000			3,560		NA	۱.	2,920)	3,050)	2,27	0	2,93	0
Manganese	300			30.7	В	NA	۱.	201		746	;	512	2	600	0
Mercury	0.7			ND		NA	۱.	ND)	NE)	N	D	N	C
Nickel	100			22.4	В	NA	۱.	7.7	′В	1,290)	130	0	519	9
Potassium	NC			1,940		NA	۱	2,560)	2,980)	5,70	0	5,02	0
Selenium	10			ND		NA	۱	ND)	3.1	ΙB	7.	3 B	N	C
Silver	50			ND		NA	۱	ND)	NE)	N	D	N	C
Sodium	20,000			23,700		NA	۱	15,500)	62,500)	42,00	0	40,100	0
Thallium	0.5			ND		NA	۱	ND)	5	5 B	N	D	N	D
Vanadium	NC			2.7	В	NA	۱	2.2	2 B	2.1	ΙB	4.	2 B	4.	6 B
Zinc	2,000			80.9		NA	۱	46.9) B	35.2	2 B	22.	9 B	3	8 B

1 - See text Section 4.1 for details on sample ID

- NC No criterion
- ND Not detected
- B Estimated value, metals
- D Dilution
- J Estimated value, VOCs
- NA Data not available

BOLD/ITALICS - exceeds criterion

* - Estimated value, duplicate out of range

E - Estimated value due to interference

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-14	MW-14	MW-14	MW-16	MW-16	MW-16
Sample ID	Class GA	SMW-13	SMW-13	SL-MW-13	SMW-14	SMW-14	SL-MW-14	SMW-16	SMW-16	SL-MW-16
Laboratory ID	Groundwater	E0832-02	F1174-07C	G2115-07	E0832-03	F1174-06C	G2115-18	E0832-04	F1174-12B	G2115-05
Sample Date	Criteria	6/15/06	8/22/07	11/12/08	6/15/06	8/22/07	11/14/08	6/15/06	8/27/07	11/12/08
Matrix	water	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Volatile Organic Compour	nds									
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	4 J	ND	ND
Acetone	50	4 J	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	2 J	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	15	ND	2.1 J
Chloroform	7	ND	6	2.7 J	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	5	ND	ND
Trichloroethene	5	3 J	ND	ND	ND	ND	ND	16	ND	1.1 J
Tetrachloroethene	5	5	ND	1 J	ND	2 J	ND	25	2 J	6.9
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	1	0	0	1	0	0	1
Total TICs		ND	ND	26 J	ND	ND	20 J	ND	ND	23 J
TAL Metals										
Aluminum	NC	38.5 B	328	417	139 B	360	209	534	453	672
Antimony	3	6.3 B	ND	ND	2.7 B	ND	ND	ND	ND	ND
Arsenic	25	1.7 B	5.2 B	ND	ND	3.2 B	ND	7 B	9 B	ND
Barium	1,000	55.5 B	43.6 B	47.3 B	48.6 B	55.3 B	58 B	13.6 B	ND	17.9 B
Beryllium	3	ND	0.13 B	0.3 B	ND	ND	ND	ND	0.064 B	ND
Cadmium	5	3.8 B	48.1	53.6 *E	1.3 B	1.8 B	2.8 B*E	0.71 B	1 B	0.54 B*E
Calcium	NC	18,200	10,900	10,500	7,550	19,300	16,700	9,750	2,220	10,000
Chromium	50	12.2 B	263	90 *	49.9	100	59.6 *	1,660	666	184 *

Earth Tech Northeast, Inc.

Sample Location	NYSDEC		MW-13	MW-13	MW-14	MW-14	MW-14	MW-16	MW-16	MW-16
Sample ID	Class GA	SMW-13	SMW-13	SL-MW-13		SMW-14	SL-MW-14	SMW-16	SMW-16	SL-MW-16
Laboratory ID	Groundwater	E0832-02	F1174-07C	G2115-07	E0832-03	F1174-06C	G2115-18	E0832-04	F1174-12B	G2115-05
Sample Date	Criteria	6/15/06	8/22/07	11/12/08	6/15/06	8/22/07	11/14/08	6/15/06	8/27/07	11/12/08
Matrix	water	water	water	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Cobalt	NC	1.3 B	5.7 B	5.7 B	1.3 B	2.1 B	ND	4 B	2.7 B	1.8 B
Copper	200	8.3 B	48.9	25.7 B	ND	29.9 B	8.5 B	8.6 B	24 B	9 B
Iron	300	153 B	1,470	1,140	449	1,170	821	7,270	5,520	2,440
Lead	25	2.1 B	3.4 B	5.8 B	1.7 B	ND	ND	2.8 B	1.2 B	4.3 B
Magnesium	35,000	8,570	3,470	2,840	3,540	2,780	2,630	4,790	628	3,530
Manganese	300	108	272	343	25.6 B	33.4 B	35 B	51.8	39.7 B	46.3 B
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	0.018 B
Nickel	100	12 B	80	95.4	24.3 B	68.8	79.9	125	110	90.1
Potassium	NC	1,310	2,480	3,060	1,550	1,240	2,150	1,040	1,330	2,530
Selenium	10	ND	ND	ND	1.4 B	ND	ND	2.2 B	ND	ND
Silver	50	ND	ND	ND	ND	1.4 B	ND	ND	ND	ND
Sodium	20,000	35,700	41,000	34,300	60,500	31,700	70,400	24,500	3,080	33,600
Thallium	0.5	1.7 B	ND	ND	1.3 B	2.8	ND	ND	ND	ND
Vanadium	NC	0.6 B	1.4 B	1.4 B	ND	1.2 B	ND	6.4 B	5.2 B	6 B
Zinc	2,000	28.9 B	115	106	22.2 B	16.1 B	24.7 B	25.9 B	37.2 B	68.8

1 - See text Section 4.1 for details on sample ID

NC - No criterion

ND - Not detected

B - Estimated value, metals

D - Dilution

J - Estimated value, VOCs

NA - Data not available

BOLD/ITALICS - exceeds criterion

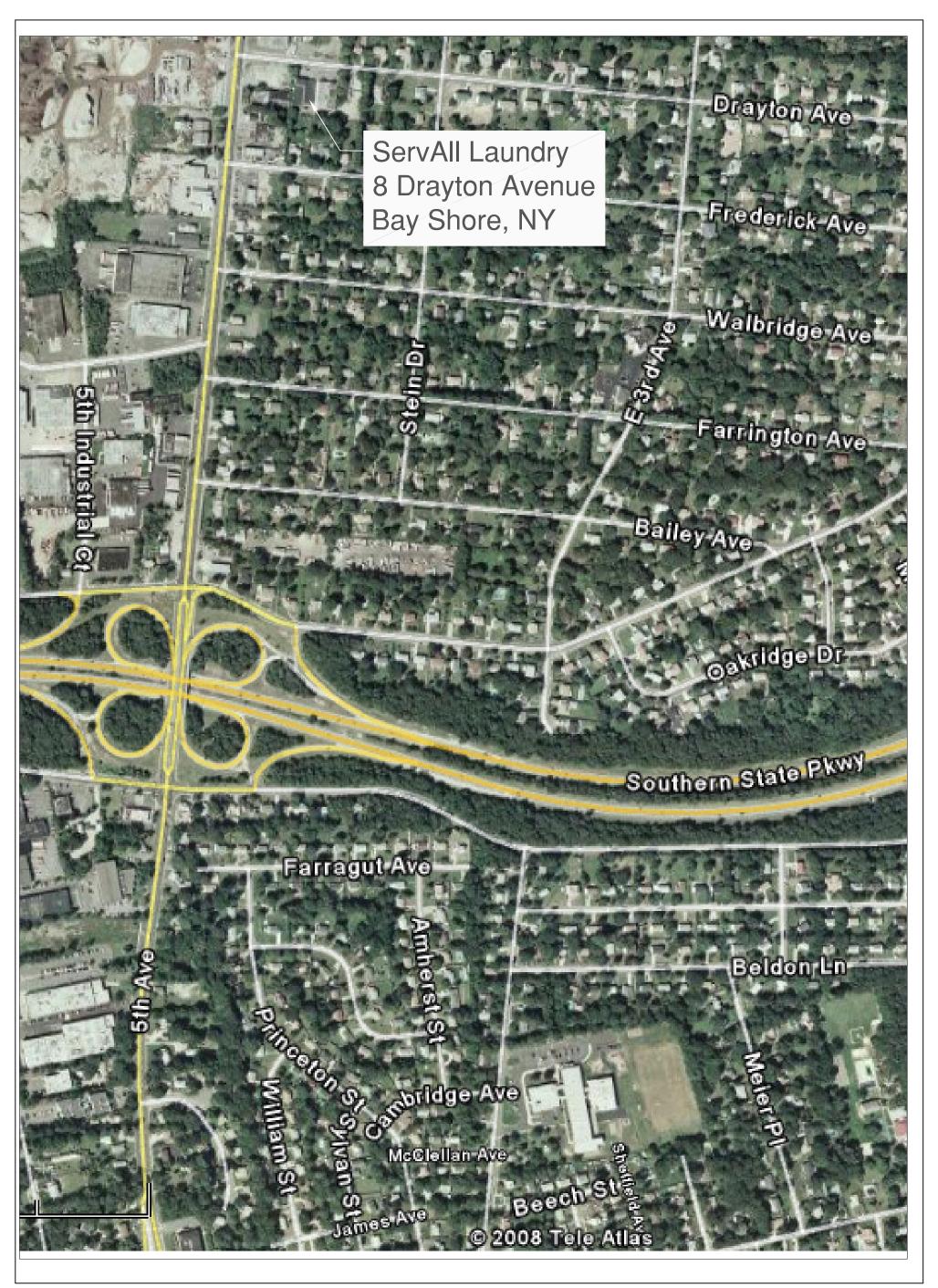
* - Estimated value, duplicate out of range

E - Estimated value due to interference

Sample Location	NYSDEC	MW-23S	MW-23S	MW-23S	MW-23D	MW-23D	MW-23D
Sample ID	Class GA	SMW-23S	SMW-23S	SL-MW-23S	SMW-23D	SMW-23D	SL-MW-23D
Laboratory ID	Groundwater	E0773-20	F1174-11B	G2115-03	E0773-21	F1174-09B	G2115-04
Sample Date	Criteria	6/8/06	8/27/07	11/12/08	6/8/06	8/27/07	11/12/08
Matrix	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Volatile Organic Compour	nds						
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	1 J	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	1 J	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	360 D	180 D	45	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	1.6 J	ND	ND	ND
Trichloroethene	5	220 D	99	18	ND	ND	ND
Tetrachloroethene	5	5,200 D	1,700 D	500 D	4 J	6	7.7
Toluene	5	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND
Number of TICs		2	0	1	1	0	1
Total TICs		1,250 NJD	ND	21 J	6 J	ND	25 J
TAL Metals							
Aluminum	NC	253	83.7 B	109 B	7,130	306	ND
Antimony	3	ND	7.5 B	ND	1.4 B	4.7 B	ND
Arsenic	25	ND	ND	ND	2.5 B	ND	ND
Barium	1,000	25.6 B	15 B	15.2 B	77.8 B	26 B	23.9 B
Beryllium	3	ND	ND	ND	0.6 B	0.07 B	ND
Cadmium	5	ND	3.3 B	9.4 *E	ND	0.25 B	0.24 B*E
Calcium	NC	17,800	18,300	12,400	14,800	14,100	17,600
Chromium	50	0.66 B	3.6 B	ND	12.2 B	3.4 B	ND

Earth Tech Northeast, Inc.

Sample Location		MW-23S		MW-23S		MW-23D	MW-23D
Sample ID	Class GA	SMW-23S	SMW-23S	SL-MW-23S			SL-MW-23D
Laboratory ID	Groundwater		F1174-11B	G2115-03	E0773-21	F1174-09B	
Sample Date	Criteria	6/8/06	8/27/07	11/12/08	6/8/06	8/27/07	11/12/08
Matrix	water	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Cobalt	NC	2 B	2.2 B	ND	5 B	2.4 B	ND
Copper	200	8.5 B	20.1 B	ND	27.2 B	22.3 B	ND
Iron	300	133 B	247	544	3,800	563	82.5 B
Lead	25	ND	ND	2.3 B	ND	1.7 B	ND
Magnesium	35,000	6,830	6,950	4,920	2,440	2,570	3,350
Manganese	300	1,570	1,370	1,230	109	77.9	15.7 B
Mercury	0.7	ND	ND	ND	ND	ND	ND
Nickel	100	15 B	18.3 B	14.7 B	7.6 B	3.3 B	ND
Potassium	NC	1,340	1,500	1,240	3,270	2,930	3,110
Selenium	10	ND	ND	ND	ND	ND	ND
Silver	50	ND	2.4 B	ND	ND	1.9 B	ND
Sodium	20,000	28,700	35,200	25,500	16,200	16,500	16,600
Thallium	0.5	7.8 B	ND	ND	1.3 B	ND	ND
Vanadium	NC	ND	0.44 B	1 B	14.5 B	1.3 B	ND
Zinc	2,000	15.2 B	105	71.9	53.8	30.6 B	17.8 B


1 - See text Section 4.1 for details on sample ID

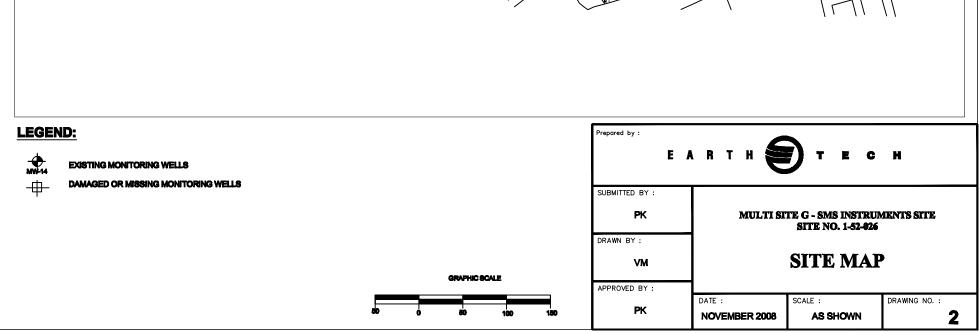
- NC No criterion
- ND Not detected
- B Estimated value, metals
- D Dilution
- J Estimated value, VOCs
- NA Data not available

BOLD/ITALICS - exceeds criterion

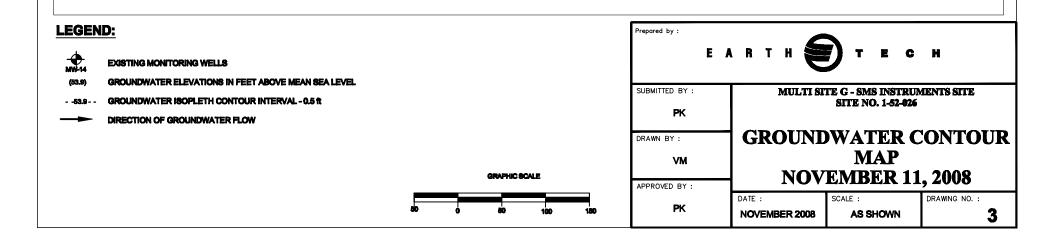
* - Estimated value, duplicate out of range

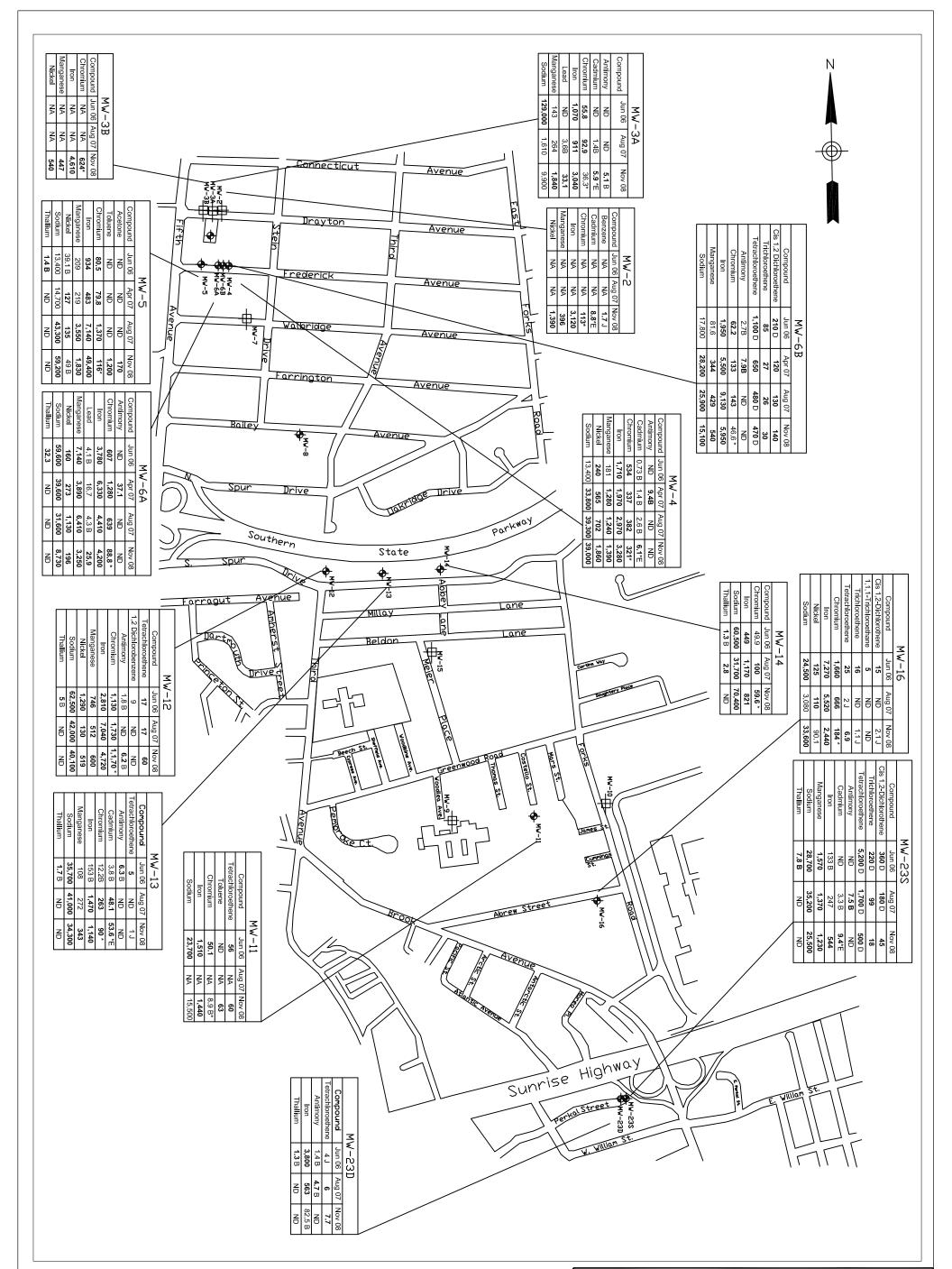
E - Estimated value due to interference

300 BROADACRES DRIVE BLOOMFIELD, NJ 07003


DRAWING NO. Figure 1
PROJECT NO. 95900.04
DATE: 8/8/2008
SCALE: As Shown
CHECKED BY: PK
DRAWN BY: KDS
Site Location Map
DRAWING TITLE:
ALL DURANSIONS WIST BE FIELD VERIFIED BY CONTRACTOR AND NOTIFY OWNER OF ANY DISCREPANCIES BEFORE PROCEEDING WITH WORK.

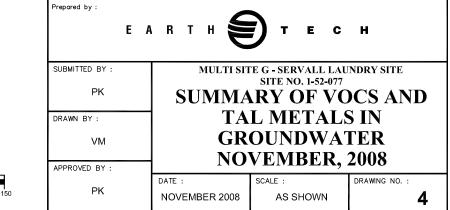
DOCUMENTS PREPARED BY EARTH TECH ARE INSTRUMEN OF SERVICE IN REGARDS TO THE PROJECT. THEY ARE	ENTS
NOT INTENDED OR PORTRAYED TO BE APPROPRIATE FOR REUSE BY OWNER OR OTHERS ON EXTENSIONS OF THE	ħЯ
PROJECT OR ON ANY OTHER PROJECT. ANY REUSE WITHOUT RECEIVING WRITTEN VALIDATION OR	
ADJUSTMENT BY EARTH TECH FOR THE SPECIFIC PURPOSE IS PROHIDITED.	
ALL DIMENSIONS MUST BE FIELD VERIFIED BY CONTRACTOR AND NOTIFY OWNER OF ANY DISCREPANCIES BEFORE PROCEEDING WITH WORK.	ŝ
DRAWING TITLE.	


PROJECT:			REVISIONS
Multi Site G	NO.	DATE	DESCRIPTION
Servall Laundry			
West Islip, New York			
CLIENT:			
New York Department of Environmental Conservation			
A D			
Albany, New York			



LEGEND:

EXISTING MONITORING WELLS


DAMAGED OR MISSING MONITORING WELL

Note:

All results are shown in micrograms per liter (ug/L) B: Estimated value, metals J: Estimated value, VOCs D: Dilution

GRAPHIC SCALE

100

APPENDIX A

WELL SAMPLING FORMS

WELL	NO.	MW-2
------	-----	------

PROJECT							PROJECT No.	SHEET S	HEETS		
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1		
LOCATION							DATE WELL STARTED	DATE WELL COMPLE			
ServAll L	aundry Si	te, Bay Sł	nore, NY	#1-52-077			11/14/08	11/14/08			
CLIENT											
New York	< State De	epartment	of Enviro	nmental Cor	nservation		Pete Lawler				
DRILLING COM	WPANY						SIGNATURE OF INSPECTOR				
ONE WELL VOLUME : 9.92 gallons WELL TD: 82.19 ft						PUMP INTAKE DEPTH	: 77 ft				
	Depth to	Purge		FIELD MEAS	UREMENTS						
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS			
-	(ft)	(gal/min)	(C)	(ms/cm)	•	(ntu)		-			
	23.82						Static Water Level				
9:33	23.92	1.5	14.8	0.216	6.21	391	Dump on ructy brow	10			
9:33	23.92	1.5	14.0	0.216	6.13	197	Pump on, rusty brov light brown	VII			
9:43	23.93	2	15.1	0.235	6.05	62	clear				
9:43	23.93	2	15.1	0.230	6.04	15	clear				
9:54	23.93	2	15.2	0.234	6.03	7	clear				
9.04	23.93	2	10.2	0.23	0.05	1	cieai				
10:00							Collect sample MW-	2			
10.00								2			
							MS/MSD				
							tubing and bailer left	t in well			
							<u> </u>				
Dumo Tu	no:	Crundfoo	oomole	d with Tofler	hailara						
Pump Ty	pe.	Grunalos	, sample	d with Teflon	Dallers						
Analytica	Paramet	tere:		Ce TAL Mot	ale						
/ indiyiica	nalytical Parameters: TCL VOCs, TAL Metals										

WELL NO.	MW-3A
----------	-------

PROJECT PROJECT SHEET							SHEET SI	HEETS			
WELL SA	AMPLING	FORM		MULTI SITE	E-G		95900 1 of 1 DATE WELL STARTED DATE WELL COMPLETED 11/14/08 11/14/08 11/14/08 11/14/08 NAME OF INSPECTOR Peter Lawler SIGNATURE OF INSPECTOR PUMP INTAKE DEPTH: 5' from I ft Jity REMARKS Static Water Level Static Water Level Pump on, Brown 4 It. brown 4 It. brown 4 clear 3 clear				
LOCATION							PROJECT No. SHEET SHEET 95900 1 of 1 DATE WELL STARTED DATE WELL COMPLETED 11/14/08 11/14/08 NAME OF INSPECTOR Peter Lawler SIGNATURE OF INSPECTOR PUMP INTAKE DEPTH: 5' from I ft REMARKS Static Water Level Pump on, Brown brown It. brown clear clear clear Collect sample MW-3A				
ServAll L	aundry Si	te, Bay Sł	nore, NY #	#1-52-077				11/14/08			
CLIENT											
	K State De	epartment	of Enviro	nmental Co	nservation						
DRILLING CON							SIGNATURE OF INSPECTOR				
ONE WELL VOLUME : 12.99 gallons WELL TD: est. 100 ft							PUMP INTAKE DEPTH:	5' from I ft			
	Depth			FIELD MEAS	UREMENTS						
Time	to	Purge Rate	Taman	Conduct		Turbidity	DEM				
rime	Water (ft)	(gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	(ntu)					
	(11)	(gai/iiii)	(0)	(III3/CIII)		(intu)					
	23.61						Static Water Level				
10:39	26.39	2	15.1	0.134	6.62	533	Pump on, Brown				
10:45	26.74	2.7	15.4	0.806	6.19	404	-				
10:50	26.87	3	15.6	0.831	6.19	164					
10:55	26.90	3	15.5	0.823	6.2	104					
11:00	26.92	3	15.5	0.813	6.22	103					
11:05	26.92	3	15.5	0.811	6.22	88					
				01011	0		0.000				
11:11							Collect sample MW-	3A			
							tubing and bailer left	in well			
Pump Ty	pe:	Grundfos	, sampled	with Teflon	h bailers						
Analytica	I Paramet	ters:	TCL VOC	Cs, TAL Met	als						

	-			PROJECT			PROJECT No.	SHEET SHEETS	
WELL SAMPLING FORM MULTI SITE-G							95900	1 оғ 1	
LOCATION			DATE WELL STARTED DATE WELL COMPLETED						
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/14/08	11/14/08	
	Chata D		NAME OF INSPECTOR						
New York State Department of Environmental Conservation							Peter Lawler SIGNATURE OF INSPECTOR		
ONE WELL VOLUME : 10.96 gallons				well td: 88.3 ft			pump intake depth: 83 ft		
	Depth to Water (ft)	Purge Rate		FIELD MEASUREMENTS					
Time			Temp.	Conduct.	рН	Turbidity	REM	ARKS	
-		(gal/min)	(C)	(ms/cm)	E.	(ntu)			
	23.81						Static Water Level		
11:33	23.97	2.5	15.2	0.13	6.31	291	Pump on, brown		
11:37	23.97	2.5	15.4	0.134	6.09	65	clear		
11:39	23.98	2.8	15.4	0.134	6.07	32	clear		
11:44	24.00	3.1	15.5	0.135	6.05	18	clear		
11:46	24.00	3.2	15.5	0.134	6.06	27	clear		
11:55							Collect sample MW-	3B	
							tubing and bailer left	in well	
		ļ							
							<u> </u>		
Pump Type: Grundfos, sampled with Teflon bailers									
гипр ту	pe.	Grunulus	, sample		Dallel 2				
Analytica	I Paramet	ters:	TCL VO	Cs, TAL Meta	als				

							PROJECT No.	SHEET SHEETS	
WELL SAMPLING FORM MULTI SITE-G							95900	1 оғ 1	
LOCATION							DATE WELL STARTED		
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/13/08 NAME OF INSPECTOR	11/13/08	
New York State Department of Environmental Conservation							Pete Lawler		
							SIGNATURE OF INSPECTOR		
		10.25		- 79 ft					
ONE WELL VOLUME : 10.2			gallons	well td: 83.66 ft) [[PUMP INTAKE DEPTH: 79 ft		
	Depth	Purge Rate		FIELD MEASUREMENTS					
Time	to Water		Temp.	Conduct.	pH Turbidity		DEMARKO		
Time	(ft)	(gal/min)	(C)	(ms/cm)	рп	(ntu)	REMARKS		
	(11)	(gui/iiii)	(0)	(, e)		(110)			
	23.35						Static Water Level		
9:50	23.51	2.4	14	0.469	6.46	385	Pump on, brown		
9:54	23.50	2.4	14.8	0.58	6.41	117	cloudy clear		
9:57	23.50	2.4	14.9	0.583	6.41	37	clear		
10:01	23.50	2.4	14.8	0.586	6.45	20	clear		
10:05	23.50	2.4	14.9	0.587	6.43	14	clear		
10:15							Collect sample MW-	4	
							tubing and bailer left	t in well	
						1			
							1		
Pump Type: Grundfos, sampled with Teflon bailers									
· •····		5	,						
Analytica	I Paramet	ters:	TCL VO	Cs, TAL Meta	als				

WELL	NO.	MW-5
------	-----	------

				PROJECT			PROJECT No.	SHEET SHEETS	
WELL SAMPLING FORM MULTI SITE-G							95900	1 OF 1	
							DATE WELL STARTED	DATE WELL COMPLETED	
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/13/08	11/13/08	
CLIENT							NAME OF INSPECTOR		
New York State Department of Environmental Conservation							Peter Lawler signature of inspector		
	WFANT		SIGNATORE OF INSPECTOR						
ONE WE	ELL VOLUME :	0.46	gallons	well td: 26.69 ft			PUMP INTAKE DEPTH: 25.5 ft		
	Depth to	Purge Rate	FIELD MEASUREMENTS						
Time	Water		Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)	-	(ntu)			
	23.99						Static Water Level		
11:52	24.14	0.3	15.8	0.431	6.18	116	Pump on, dk. Gray		
11:54	24.14	0.3	16.3	0.521	6.24	20	clear		
11:55	24.14	0.3	16.4	0.535	6.32	7	clear		
11:56	24.14	0.3	16.4	0.534	6.33	6	clear		
10.00								-	
12:00							Collect sample MW-	5	
						1			
						1			
							tubing and bailer left	tin well	
						1			
Pump Ty	pe:	Grundfos	, sampled	d with Teflon	bailers				
Analytica	Analytical Parameters: TCL VOCs, TAL Metals								

WELL NO.	MW-6A
----------	-------

	-			PROJECT			PROJECT No.	SHEET SHEETS	
WELL SAMPLING FORM MULTI SITE-G							95900	1 оғ 1	
							DATE WELL STARTED DATE WELL COMPLETED		
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/13/08	11/13/08	
	0 D			NAME OF INSPECTOR					
New York State Department of Environmental Conservation							Pete Lawler SIGNATURE OF INSPECTOR		
DRILLING CON			SIGNATURE OF INSPECTOR						
ONE WE	ELL VOLUME :	6.55	gallons	well td: 62.56 ft			PUMP INTAKE DEPTH: 57 ft		
	Depth to	Purge Rate		FIELD MEASUREMENTS					
Time	Water		Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)	-	(ntu)			
	24.01						Static Water Level		
11:21	24.16	1	14.9	0.149	6.24	999	Pump on, brown		
11:23	24.17	3.2	15.2	0.163	6.22	43	clear		
11:25	24.17	3.2	15.3	0.164	6.2	22	clear		
11:27	24.17	3.2	15.4	0.164	6.2	9	clear		
11:30							Collect sample MW-	6A	
							tubing and bailer left	in well	
Pump Ty	pe:	Grundfos	, sample	d with Teflon	bailers				
Analytica	I Paramet	ters:	TCL VO	Cs, TAL Meta	als				

WELL	NO.	MW-6B
------	-----	-------

WELL SAMPLING FORM MULTI SITE-G							PROJECT №. 95900	SHEET 1 of	sheets 1
LOCATION			DATE WELL STARTED	DATE WELL COMP					
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/13/08	11/13/08	
CLIENT New York	c State De	enartment	of Enviro	nmental Cor	nservation		NAME OF INSPECTOR Peter Lawler		
DRILLING CON		partmont					SIGNATURE OF INSPECTOR		
						<i>.</i>			
ONE WE	ELL VOLUME :	1.29	gallons	WELL TD:		ft	PUMP INTAKE DEPTH:	: 27 ft	
	Depth to	Purge		FIELD MEAS	UREMENTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)			
	22.05						Statia Water Laval		
	23.95						Static Water Level		
10:41	24.05	0.3	14.2	0.189	6.66	246	Pump on, It. brown		
10:44	24.00	0.3	14.6	0.195	6.36	187	cloudy		
10:45	24.10	0.65	14.7	0.196	6.19	80	clear		
10:47	24.10	0.65	14.8	0.196	6.14	20	clear		
10:49	24.10	0.65	14.8	0.196	6.13	14	clear		
10:57							Collect sample MW-	·6B	
							tubing and bailer left	t in well	
							and ballor lore		
						}			
						<u> </u>			
						1			
				1		•	•		
Pump Ty	pe:	Grundfos	, sampled	d with Teflon	bailers				
Analytica	l Paramet	ers:	ICL VO	Cs, TAL Meta	ais				

WELL NO.	MW-11
----------	--------------

							PROJECT No.	SHEET	SHEETS	
WELL SAMPLING FORM MULTI SITE-G							95900	1 оғ	1	
LOCATION		_	DATE WELL STARTED	DATE WELL COMP	PLETED					
ServAll L	aundry Si	te, Bay Sł	11/11/08	11/11/08						
CLIENT Now Vorl	k Stata Dr	nortmont	of Enviro	onmental Cor	aconvotion		NAME OF INSPECTOR Dan Simpson			
DRILLING COL		epartment			1501 Valion		SIGNATURE OF INSPECTOR			
ONE WI	ELL VOLUME :	1.85	gallons	WELL TD:	21.04	ft	PUMP INTAKE DEPTH:	: bailer		
	Depth			FIELD MEAS	UREMENTS					
	to	Purge								
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS		
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)				
	10.10									
	10.13						Static Water Level			
44.07	40.45	0.5	445	0.444	5.0	4.47	D			
14:07	10.15	0.5	14.5	0.114	5.9	147	Pump on			
14:10	10.16	0.5	14	0.094	6.05	296	brown			
14:14	10.15	0.5	13.3	0.093	6.21	164	brown			
14:17	10.15	0.5	13.2	0.093	6.24	88	brown			
44.00								4.4		
14:20							Collect sample MW-	·11		
							Total danth was my	ah laga than		
							Total depth was muc			
							anticipated, should be 89 ft.			
							Obstruction in the well. Used a bailer for purging.			
							Useu a baller für pul	rging.		
							bailer left in well			
						1				
							<u> </u>			
Pump Ty	pe:	Used a T	eflon bail	er to purae tl	he well, sa	mpled with	n Teflon bailers			
, ,	•		-		,	•				
Analytica	I Paramet	ers:	TCL VO	Cs, TAL Meta	als					
-										

WELL NO.	MW-12
----------	-------

				PROJECT			PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM MULTI SITE-G							95900	1 оғ	1
LOCATION			DATE WELL STARTED	DATE WELL COMPL					
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/12/08	11/12/08	
CLIENT Now York	<pre>< State Delivery in the second s</pre>	portmont		onmental Cor	envotion		NAME OF INSPECTOR Daniel Simpson		
DRILLING COM		spariment			1361 Valion		SIGNATURE OF INSPECTOR		
		40.00			00.40			04.4	
ONE WE	ELL VOLUME :	12.32	gallons	WELL TD:	89.19	π	PUMP INTAKE DEPTH:	84 ft	
	Depth			FIELD MEAS	UREMENTS				
	to	Purge							
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)			
	16.74						Static Water Level		
	10.74								
12:55	16.92	2.2	13.1	0.323	5.88	475	Pump on, brown		
12:59	16.92	2.2	13.9	0.328	5.57	157	lt. brown		
13:03	16.92	2.2	14	0.328	5.52	27	clear		
13:09	16.92	2.2	13.9	0.329	5.53	6	clear		
13:20							Collect sample MW-	12	
							tubing and bailer left	in well	
						1			
							-		
Pump Ty	pe:	Grundfos	, sample	d with Teflon	bailers				
Analytica	I Paramet	ters:	TCL VO	Cs, TAL Meta	als				

WELL NO.	MW-13
----------	-------

	•			PROJECT			PROJECT No.	SHEET	SHEETS
WELL SAMPLING FORM MULTI SITE-G							95900	1 оғ	1
LOCATION			DATE WELL STARTED	DATE WELL COMPLE					
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/12/08	11/12/08	
New York State Department of Environmental Conservation							NAME OF INSPECTOR		
DRILLING CON		epartment		onmental Cor	iservation		Pete Lawler SIGNATURE OF INSPECTOR		
ONE WE	ELL VOLUME :	13.5	gallons	WELL TD:	96.52	ft	PUMP INTAKE DEPTH:	91.5 ft	
	Depth to	Purge		FIELD MEAS	UREMENTS	ITS			
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)	•	(ntu)			
	17.10						Static Water Level		
13:40	17.42	2.7	12.5	0.326	5.76	337	Pump on, clear		
13:43	17.43	2.7	13	0.356	5.83	321	clear		
13:47	17.45	2.7	13.2	0.358	5.84	167	clear		
13:53	17.45	2.7	13.2	0.359	5.85	119	clear		
44.00								10	
14:00							Collect sample MW-	13	
							tubing and bailer left	in well	
		• ···		–					
Pump Ty	pe:	Grundfos	, sample	d with Teflon	bailers				
Amel C.				D. TAL MA -					
Analytica	Paramet	iers:	TCL VO	Cs, TAL Meta	ais				

WELL NO.	MW-14
----------	-------

	•			PROJECT			PROJECT No.	SHEET SHEETS
WELL SA	AMPLING	FORM	95900	1 OF 1				
LOCATION			DATE WELL STARTED	DATE WELL COMPLETED				
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/14/08	11/14/08
New York State Department of Environmental Conservation							NAME OF INSPECTOR	
DRILLING CON		epartment			ISEIVALION		Pete Lawler SIGNATURE OF INSPECTOR	
							•	
ONE WE	ELL VOLUME :	12.98	gallons	WELL TD:	93.63	ft	PUMP INTAKE DEPTH:	88.5 ft
	Depth	Purge		FIELD MEAS	UREMENTS			
Time	to Water	Rate	Temp.	Conduct.	рН	Turbidity	RFM	ARKS
TIME	(ft)	(gal/min)	(C)	(ms/cm)	pn	(ntu)		
		,	. ,	<i>,</i>				
	17.29						Static Water Level	
13:12	17.48	2.6	14	0.286	6.04	436	Pump on, brown	
13:17	17.51	3	14	0.274	5.86	60	clear	
13:22	17.51	3	13.8	0.273	5.81	47	clear	
13:26	17.51	3	13.8	0.273	5.81	31	clear	
13:33							Collect sample MW-	14
							tubing and bailer left	in well
							tubility and baller left	
						1		
							1	
						1		
			_					
Pump Ty	pe:	Grundfos	, sample	d with Teflon	bailers			
				D. TAL M.	- 1 -			
Analytica	Paramet	ers:	TUL VO	Cs, TAL Meta	ais			

WELL NO.	MW-16
----------	-------

				PROJECT			PROJECT No.	SHEET SHEETS
WELL SAMPLING FORM MULTI SITE-G							95900	1 of 1
LOCATION			DATE WELL STARTED	DATE WELL COMPLETED				
ServAll Laundry Site, Bay Shore, NY #1-52-077							11/12/08	11/12/08
CLIENT							NAME OF INSPECTOR	
New York	K State De	epartment	of Enviro	nmental Cor	nservation		Dan Simpson	
DRILLING COM	MPANY						SIGNATURE OF INSPECTOR	
ONE WE	ELL VOLUME :	13.86	gallons	WELL TD:	93.9	ft	PUMP INTAKE DEPTH:	89 ft
	Depth		-	FIELD MEAS				
	to	Purge			ONEMENTO			
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS
	(ft)	(gal/min)	(C)	(ms/cm)	•	(ntu)		
	12.35						Static Water Level	
11:05	12.81	2	12	0.199	6.07	778	Pump on, cleary bro	wn
11:13	12.81	2	12.4	0.201	6.07	222	clear	
11:19	12.82	2	12.5	0.201	6.03	25	clear	
11:26	12.82	2	12.6	0.201	6.03	32	clear	
11:35							Collect sample MW-	16
								-
							tubing and bailer left	in woll
							tubing and baller len	
		L						
Pump Ty	pe:	Grundfos	, sample	d with Teflon	bailers			
Analytica	I Paramet	ters:	TCL VO	Cs, TAL Meta	als			

WELL NO.	MW-23S
----------	--------

	•			PROJECT			PROJECT No.	SHEET SHEETS
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ 1
LOCATION							DATE WELL STARTED	DATE WELL COMPLETED
ServAll L	aundry Si	te, Bay Sh	nore, NY	#1-52-077			11/12/08 NAME OF INSPECTOR	11/12/08
	k State De	nartmont	of Enviro	nmental Cor	neervation		Pete Lawler	
DRILLING CO		spariment			1361 Valion		SIGNATURE OF INSPECTOR	
ONE WI	ELL VOLUME :	10.75	gallons	WELL TD:	69.32	ft	PUMP INTAKE DEPTH:	64 ft
	Depth			FIELD MEAS	UREMENTS			
	to	Purge						
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REMARKS	
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)		
	6.09						Static Water Level	
	0.09							
9:05	8.49	1.5	11.9	0.193	6.32	28	Pump on, clear	
9:09	8.49	2	12.4	0.197	5.79	3	clear	
9:15	8.48	2	12.6	0.196	5.75	6	clear	
9:21	8.52	2	12.7	0.196	5.71	2	clear	
9:25							Collect sample MW-	23S
							'	
							tubing and bailer left	in well
	ļ							
	ļ					<u> </u>		
						1		
Pump Ty	pe:	Grundfos	, sample	d with Teflon	bailers			
Analytica	l Paramet	ters:	TCL VO	Cs, TAL Meta	als			

	•			PROJECT			PROJECT No.	SHEET	SHEETS
	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1
	oundry Si	to Boy Sk	oro NV	#1-52-077			date well started 11/12/08	date well comp 11/12/08	PLETED
	aunury Si	ie, Day Si	101e, N1	#1-52-077			NAME OF INSPECTOR	11/12/00	
New York		epartment	of Enviro	onmental Cor	nservation		Pete Lawler		
DRILLING COM	MPANY						SIGNATURE OF INSPECTOR		
ONE WE	ELL VOLUME :	13.9	gallons	WELL TD:	87.79) ft	PUMP INTAKE DEPTH: 83 ft		
	Depth to	Purge		FIELD MEAS	UREMENTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity			
	(ft)	(gal/min)	(C)	(ms/cm)	-	(ntu)			
	0.00								
	6.00						Static Water Level		
9:42	16.20	1.4	12.2	0.171	5.92	129	Pump on, clear		
9:42	22.13	2	12.2	0.171	5.92	560	gray		
9:58	22.41	1.7	12.6	0.108	5.95	168	clear		
10:07	22.53	1.7	12.8	0.105	5.93	95	clear		
10:15	22.62	1.7	12.6	0.104	5.95	81	clear		
10:20							Collect sample MW-	23D	
							Duplicate sample M	W-73D	
							tubing and bailer left	in well	
						•			
Pump Ty	pe:	Grundfos	, sampled	d with Teflon	bailers				
Analytica	I Paramet	ers:	TCL VO	Cs, TAL Meta	als				

APPENDIX B

NYSDEC MONITORING WELL FIELD INSPECTION LOGS

C 11	
SITE NAME: Serval	SITE ID.: <u>SL</u>
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: P. L DATE/IIME: 11-14-67 0930 WEIIID: MN-2
BART I VICIDI DO COLLA	YESNO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 193,9777.43 NYTM Y 2.20 PDOP Reading from Trimble pathfinder: Satelites:	<u>4502.95</u>
GPS Method (circle) Trimble And/Or Magellan	· · · · ·
WELL I.D. VISIBLE?	YESNO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
SURFACE SEAL PRESENT?	YES NO
SURFACE SEAL COMPETENTS OF	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.012-0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Flick/and
AFASTIDE DE OTTOTESTE OLONIO	<u></u>
n na shekara da shekara ta shekar La <u>shekara ta shekara t</u>	YES NO
OCK FUNCTIONAL?	
DD YOU REPLACE THE LOCK?	
S THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet)	<u>62,17</u> 23,52
TEASURE WELL DIAMETER (Inches):	TABLE T
VELL CASING MATERIAL: HYSICAL CONDITION OF VISIBLE WELL CASING:	10 T (1 to 1 to 1 to 1 to 1
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	tool
ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruc ower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON B.	tions overhead
across spreet.	verhead lines
ESCRIBE WELL SETTING Processies Income Income	
ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement ND ASSESS THE TYPE OF RESTORATION REQUIRED.	, un a garden, etc.)
should should next to side walk	
	······································
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	
.g. Gas station, salt pile, etc.):	T
cats from trathe	
WARVO.	
MARKS: 1° Poly pipe around never	
Well previously doplanded as actidamental hit was find	the build in t
President and the second and the sec	V MOR LAURO OVEN.

•

•••••

SITE NAME:	PAYANI	SITE ID.:	<u>۶ ۲</u>
MONTEODING		INSPECTOR:	
MUNITORING	WELL FIELD INSPECTION LOG	DATE/TIME:	1-14-08
		WEII ID.:	MW-3A
			YESNO
	ot, provide directions below)	*********	
WELL COORDINATE		2.204.423.40	المحمد بالكلي
	from Trimble pathfinder: Satel	ites:	
GPS Method (ci	ircle) Trimble And/Or Magellan		· · · · · · · · · · · · · · · · · · ·
WELL I.D. VISIBLE?			YES NO
	ATCH SITE MAP? (if not, sketch actual location on back)	**********	···· \ <u>\</u>

WELL I.D. AS IT APPE	EARS ON PROTECTIVE CASING OR WELL:	******	
SURFACE SEAL PRES	EXITS	· · · · · ·	YES NO
	PETENT? (If cracked, heaved etc., describe below)	*********	
PROTECTIVE CASING	IN GOOD CONDITION? (If damaged, describe below)	Needs Tas Gle Men	
TYPE OF PROTECTING	G (ppm) AND INSTRUMENT USED Min Kor E CASING AND HEIGHT OF STICKUP IN FEET (If app		- Julie
PROTECTIVE CASING	XATEDIAT STUDIE		P ILSA
MEASURE PROTECTIV	VE CASING INSIDE DIAMETER (Inches):	17	····
		······································	YES NO
LOCK PRESENT?			
LOCK FUNCTIONAL?			
DID YOU REPLACE TH			
WELL MEASURING PC	THAT THE WELL IS DOUBLE CASED? (If yes, describe	below)	
		***************************************	LX
MEASURE WELL DEP	TH FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO MEASURE WELL DIAN			23.6
WELL CASING MATER		·····	<u></u>
	OAL: N OF VISIBLE WELL CASING:	****	··· <u>mettal</u>
ATTACH ID MARKER ((if well ID is confirmed) and IDENTIFY MARKER TYPE		
ROXIMITY TO UNDER	RGROUND OR OVERHEAD UTILITIES		10.5
DESCRIBE ACCESS TO	WELL: (Include accessibility to truck mounted rig, natura	I obstructions, evenhand	
ower lines, proximity to	pennament structures, etc.); ADD SKETCH OF LOCATIO	N ON BACK IF NECESSAI	V
in the right	of way along Drakton Aven	he feat of a	inter contro
J.		113 - 118/11 P. 12 12 12	ane yale
	N/		
ESCRIBE WELL SETT	ING (For example, located in a field, in a playground, on p	avement in a carden etc.)	
AND ASSESS THE TYP	E OF RESTORATION REQUIRED.	at a Baranth otto)	
In the oras		•	• •
N		<u> </u>	
		· · · · · · · · · · · · · · · · · · ·	····· ·
ENTIFY ANY NRAPD	Y POTENTIAL SOURCES OF CONTAMINATION, IF		
e.g. Gas station, salt pile,	eta)	KISBN1	• • •
Vetrand Veh		· · ·	·
	MAX INCLUS		
		·····	· · · · · · · · · · · · · · · · · · ·
EMARKS:			
well Man	ple wax needs replace ment. W	ell previously man	dial .
K up 1 1 Are 7		M PARNIBUSTY MAN	ked as a
- well the re	1977, dug lap Using Sharela		<u> </u>
		• •	· · · ·

•

MONITORING WELL FIE	LD INSPECTION LOC	INSPECTOR:	
		DATE/TIME: <u>۱۱ - (</u> WEII ID.:	. <u></u>
WELL VISIBLE? (If not, provide direction	ns below)		Y
WELL COORDINATES? NYTM	X 198 189 80 NYTMY	2,204,411.51	Ļ
PDOP Reading from Trimble path	finder: Satelite		
GPS Method (circle) Trimble	And/Or Magellan		ंत्र
WELL I.D. VISIBLE?	· · · · · ·		<u>Y</u>
WELL LOCATION MATCH SITE MAP?	(if not, sketch actual location on back)		5
WELL I.D. AS IT APPEARS ON PROTEC	CTIVE CASING OR WELL:		1
		1	Y
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If crac	Jand Lawred at 1	1 boker	<u>د.</u>
PROTECTIVE CASING IN GOOD CONE	DITION? (If damaged describe below)	J-plug present	Ľ
HEADSPACE READING (ppm) AND INS	TTO IL TO PT LIGITA		
TYPE OF PROTECTIVE CASING AND F	HEIGHT OF STICKUP IN FRET (If annli	cable)	<u>0</u> . 1
PROTECTIVE CASING MATERIAL TYP	PE:	•	ñ
MEASURE PROTECTIVE CASING INSI	DE DIAMETER (Inches):	*****	7
LOCK PRESENT?	*****	· · · · · · · ·	YI
LOCK FUNCTIONAL?		***************************************	
DID YOU REPLACE THE LOCK?		***	
IS THERE EVIDENCE THAT THE WELL WELL MEASURING POINT VISIBLE?		•	
MEASURE WELL DEPTH FROM MEASU		4, 9	Ļ
MEASURE DEPTH TO WATER FROM M	TEASURING POINT (Feet):		8
MEASURE WELL DIAMETER (Inches):			
WELL CASING MATERIAL PHYSICAL CONDITION OF VISIBLE WI		************	M
ATTACH ID MARKER (if well ID is confi	med) and IDENTIFY MARKER TYPE		<u>Gu</u> N
PROXIMITY TO UNDERGROUND OR O	VERHEAD UTILITIES		15
DESCRIBE ACCESS TO WELL: (Include a	accessibility to truck mounted rig, natural	obstructions, overhead	
power lines, proximity to permanent structur	res, etc.); ADD SKETCH OF LOCATION	ON BACK, IF NECESSARY.	
grassy area knower	Bad and side work,	overhead lines	
<u>a cross street.</u>		· · · · · · · · · · · · · · · · · · ·	
DESCRIBE WELL SETTING (For example	, located in a field, in a playeround, on pa	vement in a garden etc.)	• •
AND ASSESS THE TYPE OF RESTORAT	TION REQUIRED.	· ····································	
grossy area next to			
			,
IDENTIFY ANY NEARBY POTENTIAL S	OURCES OF CONTAMINATION, IF PR	RESENT	
(e.g. Gas station, salt pile, etc.):			
			.:
		·	
REMARKS:			· .
			•
Well hid is broken			
Well hid is broken			
Well hid is boken			
Well hid is broken			

•

.

.

·

.

SITE NAME:	serval	· .	SITE ID.: 🗴	what SL
	ELL FIELD INSPE	CTION LOG	INSPECTOR: DATE/IIME: A WEII ID.:	13/08 0958
WELL VISIBLE? (If not, pro WELL COORDINATES? PDOP Reading from GPS Method (circle)	NYTM X <u>193</u> 71	Acris H 1 3-55 NYTM Y 2 Satelites: Magellan	5 204 <u>672.69</u>	YES NO
WELL I.D. VISIBLE?	I SITE MAP? (if not, sketch a	-	- ,	YES NO
	ON PROTECTIVE CASING		******	× N/A
SURFACE SEAL PRESENT SURFACE SEAL COMPETE PROTECTIVE CASING IN (? INI? (If clacked, heaved etc. GOOD CONDITION? (If dam	, describe below)	1:2 surged	YES NO X X X
HEADSPACE READING (pr TYPE OF PROTECTIVE CA PROTECTIVE CASING MA	m) AND INSTRUMENT US SING AND HEIGHT OF STI	ED CKUP IN FEET (If applicab	e)	O 10/PSI Alurt and Meter
OCK PRESENT?				YES NO
DU YOU REPLACE THE LA S THERE EVIDENCE THAT WELL MEASURING POINT	I THE WELL IS DOUBLE C VISIBLE?	ASED? (If yes, describe below	w)	
MEASURE DEPTH TO WAT MEASURE WELL DIAMETT WELL CASING MATERIAL	ROM MEASURING POINT ER FROM MEASURING PO IR (Inches):	DINT (Feet):		83.65 23.75 23.75 mited
TTACH ID MARKER (if we	VISIBLE WELL CASING: 211 ID is confirmed) and IDEN OUND OR OVERHEAD UT	TIEY MARKER TYPE	*****	hood M/A 26. from ou
Side of street	LL: (Include accessibility to the anent structures, etc.); ADD S Over Lee lines	KETCH OF LOCATION OF Across street	NBACK, IF NECESSARY and Crussing S	· · ·
IND ASSESS THE TYPE OF	(For example, located in a fie RESTORATION REQUIRE SILL of stre	D.	ient, in a garden, etc.)	
DENTIFY ANY NEARBY PC 2. Gas station, salt pile, etc.) VCM 1016 for for c		ONTAMINATION, IF PRES	ENT	
MARKS: id instict but i	Narpped			· · · · · · · ·

		• .	
SITE NAME: Secrall		(1997)	21
		SITE ID.: INSPECTOR:	<u> </u>
MONITORING WELL FIELD INSP	PECTION LOG	DATE/TIME: 11/	
		WEII ID.:	11/08
WELL VISIBLE? (If not, provide directions below)		,	YES
WELL COORDINATES? NYTM X 193	738.12 NYTMY 2.20	24418.09	_ K≃1
PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or	Satelites:		
GPS Method (circle) Trimble And/Or	Magellan		·
WELL I.D. VISIBLE?		. • •	YES
WELL LOCATION MATCH SITE MAP? (if not, sketc	h actual location on back)	***********	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASI			
LETTE TT THT LARS ON TROTECTIVE CAS	ING OK WELL:		िक्रम्ब
SURFACE SEAL PRESENT?	(*************************************		YES
SURFACE SEAL COMPETENT? (If cracked, heaved	etc., describe below)	J-plug prient	- 30
PROTECTIVE CASING IN GOOD CONDITION? (If a	lamaged, describe below)	112 broken	e e contrato
HEADSPACE READING (ppm) AND INSTRUMENT	USED		0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF	STICKUP IN FEET (If applicable)	******	FINAL
PROTECTIVE CASING MATERIAL TYPE	****		me
MEASURE PROTECTIVE CASING INSIDE DIAMET	ER (Inches):		6
LOCK PRESENT?			YES
LOCK FUNCTIONAL?	*****		
DID TOO REFLACE THE FOCK?		*********	
IS THERE EVIDENCE THAT THE WELL IS DOUBLI			
		North	
MEASURE WELL DEPTH FROM MEASURING POIN	ΎГ (Feet):		266
MEASURE DEPTH TO WATER FROM MEASURING MEASURE WELL DIAMETER (Inches):		******	23,
WELL CASING MATERIAL:			2
PHYSICAL CONDITION OF VISIBLE WELL CASING			met
ATTACH ID MARKER (if well ID is confirmed) and ID	ENTIFY MARKER TYPE		<u>Jeod</u> Neve
PROXIMITY TO UNDERGROUND OR OVERHEAD I	UTILITIES	******	20 0
DESCRIBE ACCESS TO WELL: (Include accessibility t	o truck mounted rig. natural obstrue	tions overhead	0.4 <u>7 - 11</u>
power miles, proximity to permanent structures, etc.); AD	D SKETCH OF LOCATION ON B	ACK, IF NECESSARY	
Along the street			
2			
DESCRIBE WELL SETTING (For example, located in a	field, in a playground, on pavement	t, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUI	RED.		
row 1Dirt shaller along Fridrick	<u>51.</u>	<u>an an a</u>	e esta esta
		<u></u>	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF	CONTAMINATION, IF PRESEN	T	
(e.g. Gas station, salt pile, etc.):			
Vehical traffic			
RHMARKS			
Jell box needs replayement	<u>7 </u>		

SITE NAME: Serval	SITE ID.:
MONIFORING WELL FIELD INSPECTION LOG	INSPECTOR: <u>P. C</u>
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/13/69 MI
	Well ID .: Mins - 4 A
	YES NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X / 93 723.62 NYTM Y 7.24	
WELL COORDINATES? NYTM X 193, 723.62 NYTM Y 2,22 PDOP Reading from Trimble pathfinder: Satelites:	<u>14,513.11</u>
GPS Method (circle) Trimble And/Or Magellan	
	YES NO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
SURFACE SEAL PRESENT?	d boken YES NO
	J-plug pased
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0/PT
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	
PROTECTIVE CASING MATERIAL TYPE:	The second s
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
LOCK PRESENT?	YES NO
I CICK ET ALCOTIONTATO	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	X
WELL MEASURING POINT VISIBLE?	North
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	<u>E@c</u>
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	15 southe
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstru	ictions, overhead
power miles, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON J	BACK, IF NECESSARY.
Side of street, orectnesd lines across	street-
DES/PER WELL SETTING OF	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement AND ASSESS THE TYPE OF RESTORATION REQUIRED.	nt, in a garden, etc.)
and Assess the time of RESTORATION REQUIRED,	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESE	NTT .
(e.g. Gas station, salt pile, etc.):	
leaks from forfic	
A second s Second second se	

Ϊ.

. . . *.*

.

. .

REMARKS

• •

Ĵ

		······
	SITE NAME: Serval SITE ID.	
·	INSPECTOR	
		11/13/08 104
	WEII ID.	. MW-4B
		YES NO
	WELL VISIBLE? (if not, provide directions below) WELL COORDINATES? NYTM X 193,722,77 NYTM Y 2,204,566 29	
	PDOP Reading from Trimble pathfinder: Satelites:	
	GPS Method (circle) Trimble And/Or Magellan	
	WELL I.D. VISIBLE?	YES NO
	TIDE T TOO ADTON TO THE DESIGN OF THE STATE	······
	WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES NO
•	SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, beaved etc., describe below) T-plug. prese	
	SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) T- Qlug_ prese	AT SALES
	PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
	HEADSPACE READING (ppm) AND INSTRUMENT USED	<u>0.0/719</u>
	TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Ronligoe
	PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
		YES NO
	LOCK PRESENT?	·····
	LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?	
1	IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	
ï	WELL MEASURING POINT VISIBLE?	
į	MEASURE WELL DEPTH FROM MEASURING POINT (Feet);	
.]	MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	
	VEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:	
Ŧ	HYSICAL CONDITION OF VISIBLE WELL CASING:	Metel Good
F	VITACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
	ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	15 0 per ha
Ι	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
	ower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSA	· · · · · · · · · · · · · · · · · · ·
	Side of read, overhead limes on opposite side of str	< <u>c</u> +
· <u> </u>		
-	PESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
٠Ļ	AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
. 1	(2) 「「「「「「「「「「」」」」」」「「」」」」」」、「「」」、「」」、「」」、「	a a state of the state of the state of the
	dirt shoulder, off parted Bad	
	dirt stouler, ett pared Bad	
ر ب ب		
- 	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
- 	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.);	
- 	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
- 	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.);	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.);	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): hothe possion lifes EMARKS:	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.); hothe possibilities EMARKS:	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): hothe possion lifes EMARKS:	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): hothe possion lifes EMARKS:	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): hothe possion lifes EMARKS:	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): hothe possion lifes EMARKS:	

<u>site name: Serve</u>		
		INSPECTOR: DS
MONITORING WELL	FIELD INSPECTION LOG	DATE/TIME: 11/1/08
		WEILID.: <u>'SLMW'-</u>
WELL VICIDI DO (ISant and 1. 1		YE
WELL VISIBLE? (If not, provide di WELL COORDINATES?		2
PDOP Reading from Trimb	le pathfinder: Satelites:	207,272.76
	imble And/Or Magellan	
WALL IN WARDING		YE
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE	MAP? (if not, sketch actual location on back)	
		N/
WELL I.D. AS IT APPEARS ON PI	ROTECTIVE CASING OR WELL:	1 Vtoal
SURFACE SEAL PRESENT?		YE
SURFACE SEAL COMPETENT? ((If cracked, heaved etc., describe below)	5-plug present X
PROTECTIVE CASING IN GOOD	CONDITION? (If damaged, describe below)	2000 0.0
HEADSPACE READING (ppm) AN	ID INSTRUMENT USED MK R	e 2000 0.0
TYPE OF PROTECTIVE CASING	AND HEIGHT OF STICKUP IN FEET (If applicabl	e)
PROTECTIVE CASING MATERIA	L TYPE: 3 INSIDE DIAMETER (Inches):	ZII Me
MICHOND FROME CITYE CASING	JUNDILJE DIAMETER (Inches):	
LOCK PRESENT?		YES
LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?		
WELL MEASURING POINT VISID	WELL IS DOUBLE CASED? (If yes, describe below LE?	North
	ししい しょう 多端の 強力 シーク・アメリカ・ション	
MEASURE WELL DEPTH FROM N MEASURE DEPTH TO WATER FR	MEASURING POINT (Feet); OM MEASURING POINT (Feet);	
WELL CASING MATERIAL:		The second secon
PHYSICAL CONDITION OF VISIB	LE WELL CASING:	
PROXIMITY TO UNDERGROUND	s confirmed) and IDENTIFY MARKER TYPE	<u>No</u>
power lines, proximity to permanent s	clude accessibility to truck mounted rig, natural obst tructures, etc.); ADD SKETCH OF LOCATION ON	RACK IF NECESSARY
Drive across ath	vertic fields near twined	
		11. 11 J. J. G.G.)
DESCRIBE WELL SETTING (For ex	cample, located in a field, in a playground, on pavem	ent, in a garden, etc.)
AND ASSESS THE TYPE OF REST		
in the grass fu	st North of playing field	
· · · · · · · · · · · · · · · · · · ·		<u></u>
DENTIRY ANY NEADBY DOWN	TAL COLUMNED ON COMMISSION	
DENTIFY ANY NEARBY POTENT	IAL SOURCES OF CONTAMINATION, IF PRES	BN 1
(e.g. Gas station, salt pile, etc.):	IAL SOURCES OF CONTAMINATION, IF PRES	BN1.
DENTIFY ANY NEARBY POTENT (e.g. Gas station, salt pile, etc.): Nave	IAL SOURCES OF CONTAMINATION, IF PRES	5N1
(e.g. Gas station, salt pile, etc.):	IAL SOURCES OF CONTAMINATION, IF PRES	5N 1
(e.g. Gas station, salt pile, etc.):		5N 1
(e.g. Gas station, salt pile, etc.):		
(e.g. Gás station, salt pile, etc.):		

••••

: ...

•

		· · .		
		,		
TTTT BLAD AND				. .
SITE NAME:	Servall		SITE ID.: INSPECTOR: <i>Q</i>	
MONITORI	IG WELL FIELD INSPE	CTIONLOG	DATE/TIME:	
			WEII ID.: <u>A</u>	
	·····	West &O'thow pale 104	ic	YES NO
VELL VISIBLE? (I	f not, provide directions below) TES? NYTM X <u>191.05</u>	70 NYTMY	7 705 1175 34	LIXI
PDOP Read	ing from Trimble pathfinder:	Satelit	es:	
GPS Metho	l (circle) Trimble And/Or	Magellan		
ELL I.D. VISIBLI	29	•		YES NO
	MATCH SITE MAP? (if not, sketch	actual location on back)	******	X
	PPEARS ON PROTECTIVE CASIN			MVV-12
			**************************************	YES NO
URFACE SEAL PI				X
UKFACE SEAL CO	MPBTENT? (If cracked, heaved etc NG IN GOOD CONDITION? (If dai	., describe below)	J-flug	
	NNG (ppm) AND INSTRUMENT U IVE CASING AND HEIGHT OF ST	TCKUP IN FFFT Of sont	inahle)	<u>O O /PL</u> D Rush
COTECTIVE CASI	NG MATERIAL TYPE:		KaDIC)	mithen
EASURE PROTEC	TIVE CASING INSIDE DIAMETE	R (Inches):		
OCK PRESENT?		사이가 가 다. 앞, 가는 가 다.		YES NO
	L?			
ID YOU REPLACI	THE LOCK?			
THERE EVIDEN	E THAT THE WELL IS DOUBLE	CASED? (If yes, describe 1	below)	
EASURE WELL [RASINGE DEPTH	EPTH FROM MEASURING POINT FO WATER FROM MEASURING F			<u>07.17</u>
EASURE WELL D	IAMETER (Inches):		***************************************	<u>16.74</u>
ELL CASING MA	TERIAL:	 •}•••••••••••••••••••••••••••••••		meter
IYSICAL CONDE	TON OF VISIBLE WELL CASING: ER (if well ID is confirmed) and IDE		***********	Good
OXIMITY TO UN	DERGROUND OR OVERHEAD U	NHFY MARKER TYPE	*****	Unknowh.
	TO WELL: (Include accessibility to			<u>- UN KEROWEN</u>
wer lines, proximity	to permanent structures, etc.); ADD	SKETCH OF LOCATION	N ON BACK. IF NECESSARY	
Slong the	tree line 50' from t	ke east bound	SSRA-Y	
.				
	an a			
	TTING (For example, located in a f		avement, in a garden, etc.)	
The the	TYPE OF RESTORATION REQUIR	<u>т</u> п.		
				and the second
	a an ann an tar an tar an tar ann an tar an tar ann an tar an tar a Tar an tar an Tar an tar an			
ENTIFY ANY NE	RBY POTENTIAL SOURCES OF	CONTAMINATION, IF P	RESENT	
g. Gas station, salt				
Ve	nical Gludds tran-	Sauhin state	- PKWY Walfir	
MARKS				· · · · · · · · · · · · · · · · · · ·
MARKS:	box needs replay	enne int		

.

·. · ·				
• • •				
SITE NAME:	sovall	·····	SITE I	
MONITO	RING WELL FI	ELD INSPECTION LOG	INSPECTO DATE/TIN WEILI	E: 1/12/08
WELL VISIBL	E? (If not, provide directi	ans below) 5 yet of pole		YES NO
WELL COORE	DINATES? NYTI Reading from Trimble pat	X 190,990.66 NYTM	IY <u>2, 205, 989, 11</u>	
GPS M	ethod (circle) Trimble	And/Or Magellan	-	YESINO
WELL LD. VIS				
		? (if not, sketch actual location on bac ECTIVE CASING OR WELL:	k)	
		ECHIVE CASING OK WELL:	******	YES NO
SURFACE SEA SURFACE SEA PROTECTIVE	L COMPETENT? (If cr	icked, heaved etc., describe below) DITION? (If damaged; describe below	J- Clug prese	<i>F</i> × *
YPE OF PROT ROTECTIVE	CASING MATERIAL TY	HEIGHT OF STICKUP IN FEET (IF PE:		
		IDE DIAMETER (Inches):		YES NOT
DID YOU REPI	ONAL? ACE THE LOCK?	99999999999999999999999999999999999999	•••••••••••••••••••••••••••••••••••••••	······································
	JENCE THAT THE WE RING POINT VISIBLE?	L IS DOUBLE CASED? (If yes,desci	ibe below) North	
IEASURE DEI	LL DEPTH FROM MEA TH TO WATER FROM LL DIAMETER (Inches)	MEASURING POINT (Feet):		<u>96 52</u> <u>17, 15</u>
TTACH ID M	NDITION OF VISIBLE V ARKER (if well ID is con	WELL CASING: filmed) and IDENTIFY MARKER TY OVERHEAD UTILITIES		<u></u>
ower lines, prox	dmity to permanent struc	e accessibility to truck mounted rig, na nurs, etc.); ADD SKETCH OF LOCA منابع من جلم الم	TION ON BACK, IF NECES	SARY.
m gros	<u>> 03 1976</u>	my, pept to to	mp post, nex.	<u>Fo</u> 0400882
ND ASSESS 1	THE TYPE OF RESTOR		#1052 on pavement, in a garden, etc)
in que	<u>ss off side</u>	ot hybridg		
ENTIFY ANY	NEARBY POTENTIAT	SOURCES OF CONTAMINATION.	IF PRESENT	
e.g. Gas station,	saltpile, etc.): from Indfiz	on highbary		
EMARKS:				
	d is missing			
				المراجع والمراجع والمراجع

.

•

.

	SITE NAME: Servel		
	STRATE SCIVAL	SITE ID.: <u>St</u> INSPECTOR: 4.9	- · · · · · · · · · · · · · · · · · · ·
	MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11 - 14	the second s
· · ·		WEILID.: MAN	
			YES NO
	WELL VISIBLE? (If not, provide directions below) East of pole 10.56	******	Y X
•	WELL COORDINATES? NYTM X 191 000-26 NYTM Y 7 106	506.46	
	PDOP Reading from Trimble pathfinder: Satellites:	<u> </u>	·
			YES NO
	WELLID. VISIBLE?	*********	7
•••	WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		\geq
•	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	«»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»	_N/A
· ·	SURFACE SEAL PRESENT?	hotos	YES NO
	SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	elvy present	X
	SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	112 boken	
	HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0/250
	TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	******************************	Flish / groce
	PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		metal
	- 승규, 방어에는 것 이 이 이 것은 방법에서 전철에 관심을 위해 확실했다. 이 확실 것은 분락을 받으셨는지 않는다.	********	YES NO
	LOCK PRESENT?	****	
	LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		¥.
	IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		X
	WELL MEASURING POINT VISIBLE?	North	×
	MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	1+-++-v;v;v;v;v;v;v;v;v;v;v;v;v;v;v;v;v;v	93.63
	MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	**********	17.29
	WELL CASING MATERIAL	<u> </u>	metal
·	PHYSICAL CONDITION OF VISIBLE WELL CASING:	******	Good
	ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		<u>_N/A</u>
÷ .	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction		inknow
	power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACI	is, overnead K. IF NECESSARY.	
	grassy are off highing near wooded on	ca, Jud Bas	Fof
	114ht pole 1956		
· .	DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in		,
· ·	AND ASSESS THE TYPE OF RESTORATION REQUIRED.	a gaigen, etc.)	
	grassy overgroun side of pronusey		
. ` <i>`</i>			n na stan an in si
· · ·	IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
	(e.g. Gas station, sait pile, etc.):		; • •
··· ·			<u> </u>
· · ·			·
•	REMARKS:		
•	Well lid boken		
•	Well lie boken		
•	Wey ne voren		
•	Well I'E DOREA		
	Weil the boken		

	CYTED AT 4 A MY	
	SITE NAME: SEAN IN SITE II INSPECTO	
		E: 11/12/08 1120
		$D: M^{1/108} = 16$
		YESNO
	WELL VISIBLE? (If not, provide directions below)	X X
	WELL COORDINATES? NYTM X 188, 11.44 NYTM Y 2, 207, 779, 29	
	PDOP Reading from Trimble pathfinder: Satelites: Satelites: Satelites:	
		YESINO
	WELL I.D. VISIBLE?	X
	WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	<u>N/k</u>
	SURFACE SEAL PRESENT?	YES NO
÷.	SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X
· ·	PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	·····
	HEADSPACE READING (ppm) AND INSTRUMENT USED	the second se
	TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	
:	MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	<u>Metal</u>
		YES NO
	LOCK PRESENT? LOCK FUNCTIONAL?	
	DED VOU DEDI ACT THE LOOPS	
	IS THERE BYIDENCE THAT THE WELL IS DOUBLE CASED? (If yes; describe below)	
• • •	WELL MEASURING FUINT VISIBLE?	
	MEASURE WELL DEPTH FROM MEASURING POINT (Feet); MEASURE DEPUTH TO WATER PROMATE AUTOMIC POINT OF	<u> 95 90</u>
•	MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	<u> 1835</u>
	WILL CASING MATERIAL:	Metal
	PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	<u> 9052</u>
	PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	
	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
. 1	power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESS	SARY.
-	Side street, side of street, orachered loves on opposite	side of
÷	Threat, single overhered to house what of well	
1	DESCRIBE/WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)	
	AND ASSESS THE TYPE OF RESTORATION REQUIRED	
	So of street, side street limited tattic, gaved	
	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
)	(e.g. Gas station; salt pile, etc.): None	
نىد. مەر	na sena en	
<u>``</u>		
R	CEMARKS:	and a second
	In front of house \$44	
-	人名法格 人名法格 法法律法律 化合物 化合物 化合物 化合物 化合物 化合物 计算机 化合物化合物 医结晶体 法法 计分析 化乙烯酸 化化合物 化合物合物	
· 🚖		

÷.,

SITE NAME: Seculi SITE ID.: SITE ID.	
MONITORING WELL FIELD INSPECTION LOG DATE/TIME: u/	12/58 083
WEII ID.: M	286-1
WELL VISIBLE? (If not, provide directions below)	YES NO
WELL COORDINATES? NYTM X /87,099.54 NYTM Y 2,208,295.49	
PDOP Reading from Trimble pathfinder:	
GPS Method (circle) Trimble And/Or Magellan	
WELL I.D. VISIBLE?	YES NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW 23
것 것 같은 물건 물건 방법을 통하는 것 같아요. 그는 것 이 가지 않는 것 것 같은 것 같아요. 한 것 같아요. 같아요. 같아요. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	YES NO
SURPACE SEAL PRESENT?	×
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
白鹭山 医白喉的 医小脑上 医神经上颌 化化化合物 化中心 经资本 医子宫 人名英格兰人姓氏达尔 法公司 医子宫 经上生 网络拉拉 网络小口 化合合物 化合合物 化合合物	The second second
HEADSPACE READING (ppm) AND INSTRUMENT USED MAN Care 2000 TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	<u>00/21</u> RUNTA
PROTECTIVE CASING MATERIAL TYPE	Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6
LOCK PRESENT?	YES NO
LOCK FUNCTIONAL?	X
DID YOU REPLACE THE LOCK?	× X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?	2
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	<u>69.32</u>
ABASURE WELL DIAMETER (Inches):	<u>6 09</u> 2
WELL CASING MATERIAL:	Pory/M
TYSICAL CONDITION OF VISIBLE WELL CASING: VITACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	.යුංංඋ
ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	A/A 20 Sano
ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	1.45
ower lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.	
End of adesac orriched lines on side of road	- Tarka Jam
这些是我们的人,这些人都是你的你的,你是你们的你,你是你们的你,你们还是你们的?""你们,你们不是你们的,你们就是你们的,我们就是你是我们的你,你们就是你们的你,	

.

ť

. .

1. - -٠.

an an Indonesia. An <mark>An Anna an A</mark>n

Parred street limited traffic

.

·•. .

•••

-

.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

5-02 L

÷ •

.

(e.g. Gas station, salt pile, etc.):

REMARKS:

•

•

÷

SITE NAME: SECTON	SITE ID: 5	
	INSPECTOR:	
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: <u>4 (12)</u> WEII ID.: <u>Mix</u>	
		YES NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X 187.101.7.2. NYTM Y 2.207 PDOP Reading from Trimble pathfinder: Satelites:	3,276,17	
GPS Method (circle) Trimble And/Or Magellan		YESINÖ
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		MW 270
		YES NO
SURFACE SEAL PRESENT?		2
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X
	*****	0.0 PL
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		905h/2004
PROTECTIVE CASING MATERIAL TYPE:		nezz
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	****	6
LOCK PRESENT?		YES NO.
LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?	Jorth	X
MEASURE WEEL DEPTH FROM MEASURING POINT (Feet):		87.77
MEASURE DEPTH TO WATER FROM MEASURING FOINT (Feet):		<u>6.5</u> 7
WELL CASING MATERIAL:		Bar
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Gios
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	406.000.0000000000000000000000000000000	<u>N/A</u>
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		40' from our
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct power lines, proximity to permanent structures; etc.); ADD SKETCH OF LOCATION ON BA		
Bhd of Colderac, writed traffe preched the	A 1	and h
	<u>, , , , , , , , , , , , , , , , , , , </u>)
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, AND ASSESS THE TYPE OF RESTORATION REQUIRED.	, in a garden, etc.)	
Powed Street limited 470-ffic		19
na na na nananana kata kanana kata na kata kat		
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN (e.g. Gas station, salt pile, etc.):		
	<u>en an an de la servició de la servi</u>	<u></u>
,他们认为了他们的这个话,你就是这些人的,你是你们是你的,你不是你的。""你们,你不是你的。""你,你们不是你。"	an a	

• • •

.

APPENDIX C

LABORATORY DATA SUMMARY PACKAGES (FORM 1S)

Sample Location	NYSDEC	MW-2	MW-3A	MW-3B	MW-4	MW-5
Sample ID	Class GA	SL-MW-2	SL-MW-3A		SL-MW-4	SL-MW-5
Laboratory ID	Groundwater		G2115-16	G2115-17	G2115-09	G2115-13
Sample Date	Criteria	11/14/08	11/14/08	11/14/08	11/13/08	11/13/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
	µg/∟	Conc Q				
Volatile Organic Compounds			Cono Q	Conto Q		
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	50 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	50 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	50 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	50 U
	5	5 U	5 U	5 U	5 U	50 U
1,1-Dichloroethane						
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	50 U
1,1-Dichloropropene	5	5 U	5 U	5 U	5 U	50 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U	50 U
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U	50 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	50 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	5 U	50 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U	50 U
1,2-Dibromoethane	5	5 U	5 U	5 U	5 U	50 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	50 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	50 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	50 U
1,3,5-Trimethylbenzene	5	5 U	5 U	5 U	5 U	50 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	50 U
1,3-Dichloropropane	5	5 U	5 U	5 U	5 U	50 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	50 U
2,2-Dichloropropane	5	5 U	5 U	5 U	5 U	50 U
2-Butanone	50	5 U	5 U	5 U	5 U	38 J
2-Chlorotoluene	5	5 U	5 U	5 U	5 U	50 U
2-Hexanone	50	5 U	5 U	5 U	5 U	50 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U	50 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U	50 U
4-Methyl-2-pentanone	NC	5 U	5 U	5 U	5 U	50 U
Acetone	50	5 U	5 U	5 U	5 U	170
Benzene	1	1.7 J	5 U	5 U	5 U	50 U
Bromobenzene	5	5 U	5 U	5 U	5 U	50 U
Bromochloromethane	5	5 U	5 U	5 U	5 U	50 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	50 U
Bromoform	50	5 U	5 U	5 U	5 U	50 U
Bromomethane	5	5 U	5 U	5 U	5 U	50 U
Carbon disulfide	60	5 U	5 U	5 U	5 U	50 U
Carbon tetrachloride	5	5 U	5 U	5 U	5 U	50 U
Chlorobenzene	5	5 U	5 U	5 U	5 U	50 U
Chloroethane	5	5 U	5 U	5 U	5 U	50 U
Chloroform	7	5 U	5 U	5 U	5 U	50 U
Chloromethane	NC	5 U	5 U	5 U	5 U	50 U
cis-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	50 U
			00			000

Earth Tech Northeast, Inc.

Sample Location	NYSDEC	MW-2	MW-3A	MW-3B	MW-4	MW-5
Sample ID	Class GA	SL-MW-2	SL-MW-3A	SL-MW-3B	SL-MW-4	SL-MW-5
Laboratory ID	Groundwater	G2115-14	G2115-16	G2115-17	G2115-09	G2115-13
Sample Date	Criteria	11/14/08	11/14/08	11/14/08	11/13/08	11/13/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc Q				
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	50 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	50 U
Dibromomethane	5	5 U	5 U	5 U	5 U	50 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	50 U
Ethylbenzene	5	5 U	5 U	5 U	5 U	50 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	50 U
Iodomethane	NC	5 U	5 U	5 U	5 U	50 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U	50 U
m,p-Xylene	5	5 U	5 U	5 U	5 U	50 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U	50 U
Methylene chloride	5	5 U	5 U	5 U	5 U	50 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U	50 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U	50 U
Naphthalene	10	5 U	5 U	5 U	5 U	50 U
o-Xylene	5	5 U	5 U	5 U	5 U	50 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	50 U
Styrene	5	5 U	5 U	5 U	5 U	50 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U	50 U
Tetrachloroethene	5	5 U	5 U	5 U	5 U	50 U
Toluene	5	1.4 J	5 U	5 U	5 U	1,200
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	50 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	50 U
Trichloroethene	5	5 U	5 U	5 U	5 U	50 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	50 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U	50 U
Vinyl chloride	2	5 U	5 U	5 U	5 U	50 U
Xylene (Total)	5	5 U	5 U	5 U	5 U	50 U
Number of TICs		1	1	1	1	1
Total TICs		38 J	19 J	19 J	28 J	330 J

Notes:

1 - See Section 4.1 for sample IDs

NC - No criterion

U - Not detected

J - Estimated value, VOCs

D - Dilution

Sample Location	NYSDEC	MW-2	MW-3A	MW-3B	MW-4	MW-5
Sample ID	Class GA	SL-MW-2	SL-MW-3A	SL-MW-3B	SL-MW-4	SL-MW-5
Laboratory ID	Groundwater	G2115-14	G2115-16	G2115-17	G2115-09	G2115-13
Sample Date	Criteria	11/14/08	11/14/08	11/14/08	11/13/08	11/13/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc Q				
TAL Metals						
Aluminum	NC	266	1,630	2,030	1,450	383
Antimony	3	4.6 U	5.1 B	4.6 U	4.6 U	4.6 U
Arsenic	25	5.3 U	5.3 U	5.3 U	5.3 U	8 B
Barium	1,000	17.5 B	83.9 B	31.5 B	46.7 B	233
Beryllium	3	0.13 U				
Cadmium	5	8.8 *E	5.9 *E	2.2 B*E	6.1 *E	0.41 B*E
Calcium	NC	15300	15,000	9,700	52,000	31,400
Chromium	50	113 *	36.3 *	624 *	321 *	116 *
Cobalt	NC	20.4 B	7.3 B	14.9 B	21.4 B	24.6 B
Copper	200	18.4 B	66.2	74.7	28.6 B	10.3 B
Iron	300	3120	3,040	4,610	3,280	49,400
Lead	25	3.3 B	33.1	14.4	5.2 B	2.2 U
Magnesium	35,000	1250	2,130	1,490	3,820	5,590
Manganese	300	396	1840	447	1390	1830
Mercury	0.7	0.016 U	0.016 U	0.051 B	0.016 U	0.016 U
Nickel	100	1390	22.1 B	540	1,860	49 B
Potassium	NC	1980	2,550	3,040	4,170	13,900
Selenium	10	6.6 U				
Silver	50	0.59 U				
Sodium	20,000	14600	9,900	6,730	39,000	59,200
Thallium	0.5	4.2 U				
Vanadium	NC	2.8 B	8 B	5.9 B	1.9 B	3.5 B
Zinc	2,000	44.4 B	594	191	63.4	35.2 B

Notes:

1 - See Section 4.1 for sample IDs

NC - No criterion

U - Not detected

B - Estimated value, metals

* - Estimated value, duplicate out of range

E - Estimated value due to interference

Sample Location	NYSDEC	MW-6B ¹	MW-6A ¹	MW-11	MW-12	MW-13
Sample ID	Class GA	SI -MW-6B	SL-MW-6A		SL-MW-12	SL-MW-13
Laboratory ID	Groundwater		G2115-10	G2115-01	G2115-06	G2115-07
Sample Date	Criteria	11/13/08	11/13/08	11/11/08	11/12/08	11/12/08
Matrix	water	water	water	water	water	water
Units	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L
OTINS	µg/∟	μg/∟ Conc Q	Conc Q	Conc Q	Conc Q	μg/∟ Conc Q
Volatile Organic Compounds		Ounc Q				Conc Q
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene		5 U	5 U	5 U	5 U	5 U
1,1-Dichloropropene	5 5	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,2,3-Trichlorobenzene	5 5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
1,2,3-Trichloropropane	0.04	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,2,4-Trichlorobenzene	0.04 5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	5	5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,2-Dichloroethane	0.6	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,2-Dichloropropane		5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,3,5-Trimethylbenzene	1 5	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,3-Dichlorobenzene	3	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,3-Dichloropropane	5	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
2,2-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
2-Butanone	5 50	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 50	5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NC	5 U	5 U	5 U	5 U	5 U
	50	5 U	5 U	5 U	5 U	5 U
Acetone Benzene	1	5 U	5 U	5 U	5 U	5 U
Bromobenzene	5	5 U	5 U	5 U	5 U	5 U
Bromochloromethane	5	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
Bromodichloromethane	5 50	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
Bromoform	50 50	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Bromomethane	50 5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Carbon disulfide	60	5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U
Carbon tetrachloride	5	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Chlorobenzene		5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
Chloroethane	5					
	5 7	5 U	5 U	5 U	5 U	5 U
Chloroform		2 J	5 U	5 U	5 U	2.7 J
Chloromethane	NC	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	140	5 U	13	3.1 J	5 U

Earth Tech Northeast, Inc.

Sample Location	NYSDEC	MW-6B ¹	MW-6A ¹	MW-11	MW-12	MW-13
Sample ID	Class GA	SL-MW-6B	SL-MW-6A	SL-MW-11	SL-MW-12	SL-MW-13
Laboratory ID	Groundwater	G2115-12	G2115-10	G2115-01	G2115-06	G2115-07
Sample Date	Criteria	11/13/08	11/13/08	11/11/08	11/12/08	11/12/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	5 U
Iodomethane	NC	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	1.8 J	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	470 D	5 U	60	60	1 J
Toluene	5	5 U	5 U	63	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	30	5 U	4.8 J	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U	5 U
Xylene (Total)	5	5 U	5 U	5 U	5 U	5 U
Number of TICs		1	1	1	1	1
Total TICs		28 J	28 J	22 J	26 J	26 J

Notes:

1 - See Section 4.1 for sample IDs

NC - No criterion

U - Not detected

J - Estimated value, VOCs

D - Dilution

Sample Location	NYSDEC	MW-6B ¹	MW-6A ¹	MW-11	MW-12	MW-13
Sample ID	Class GA	SL-MW-6B	SL-MW-6A	SL-MW-11	SL-MW-12	SL-MW-13
Laboratory ID	Groundwater	G2115-12	G2115-10	G2115-01	G2115-06	G2115-07
Sample Date	Criteria	11/13/08	11/13/08	11/11/08	11/12/08	11/12/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc Q	Conc Q	Conc Q	Conc Q	Conc Q
TAL Metals						
Aluminum	NC	7,500	2,390	494	377	417
Antimony	3	4.6 U	4.6 U	4.6 U	6.2 B	4.6 U
Arsenic	25	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U
Barium	1,000	24.6 B	57.7 B	29.3 B	163 B	47.3 B
Beryllium	3	0.37 B	0.13 U	0.13 U	0.13 U	0.3 B
Cadmium	5	0.88 B*E	1.9 B*E	0.71 B*I	0.83 B*E	53.6 *E
Calcium	NC	22,500	15,600	10,100	19,500	10,500
Chromium	50	46.6 *	88.8 *	8.9 B*	1,170 *	90 *
Cobalt	NC	8.6 B	28.2 B	1.2 U	6.2 B	5.7 B
Copper	200	96.6	65.3	5 U	33.9	25.7 B
Iron	300	5,950	4,200	1,440	4,720	1,140
Lead	25	9 B	25.9	6.5 B	4.4 B	5.8 B
Magnesium	35,000	3,600	2,870	2,920	2,930	2,840
Manganese	300	540	3250	201	600	343
Mercury	0.7	0.016 U	0.016 U	0.016 U	0.016 U	0.016 U
Nickel	100	12.5 B	196	7.7 B	519	95.4
Potassium	NC	1,740	9,900	2,560	5,020	3,060
Selenium	10	6.6 U	6.6 U	6.6 U	6.6 U	6.6 U
Silver	50	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U
Sodium	20,000	15,100	8,730	15,500	40,100	34,300
Thallium	0.5	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U
Vanadium	NC	3.3 B	5.3 B	2.2 B	4.6 B	1.4 B
Zinc	2,000	100	125	46.9 B	38 B	106

Notes:

1 - See Section 4.1 for sample IDs

NC - No criterion

U - Not detected

B - Estimated value, metals

* - Estimated value, duplicate out of range

E - Estimated value due to interference

Sample Location	NYSDEC	MW-14	MW-16	MW-23S	MW-23D
Sample ID	Class GA	SL-MW-14	SL-MW-16	SL-MW-23S	SL-MW-23D
Laboratory ID	Groundwater		G2115-05	G2115-03	G2115-04
Sample Date	Criteria	11/14/08	11/12/08	11/12/08	11/12/08
-					
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
Malatila Organia Campanyala		Conc Q	Conc Q	Conc Q	Conc Q
Volatile Organic Compounds	F	5 11	E 11	5 U	C 11
1,1,1,2-Tetrachloroethane	5	5 U	5 U		5 U
1,1,1-Trichloroethane	5	5 U	5 U	1.6 J	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U
1,1-Dichloropropene	5	5 U	5 U	5 U	5 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U
1,2-Dibromoethane	5	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	5	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U
1,3-Dichloropropane	5	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U
2,2-Dichloropropane	5	5 U	5 U	5 U	5 U
2-Butanone	50	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NC	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U
Bromobenzene	5	5 U	5 U	5 U	5 U
Bromochloromethane	5	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U
Bromoform	50	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U
Carbon disulfide	60	5 U	5 U	5 U	5 U
Carbon tetrachloride	5	5 U	5 U	5 U	5 U
Chlorobenzene	5	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U
Chloromethane	NC	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	2.1 J	45	5 U

Earth Tech Northeast, Inc.

Sample Location	NYSDEC	MW-14	MW-16	MW-23S	MW-23D
Sample ID	Class GA	SL-MW-14	SL-MW-16	SL-MW-23S	SL-MW-23D
Laboratory ID	Groundwater	G2115-18	G2115-05	G2115-03	G2115-04
Sample Date	Criteria	11/14/08	11/12/08	11/12/08	11/12/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
	10	Conc Q	Conc Q	Conc Q	Conc Q
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	6.9	500 D	7.7
Toluene	5	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	1.1 J	18	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U
Xylene (Total)	5	5 U	5 U	5 U	5 U
Number of TICs		1	1	1	1
Total TICs		20 J	23 J	21 J	25 J

Notes:

1 - See Section 4.1 for sample IDs

NC - No criterion

U - Not detected

J - Estimated value, VOCs

D - Dilution

Sample Location	NYSDEC	MW-14	MW-16	MW-23S	MW-23D
Sample ID	Class GA	SL-MW-14	SL-MW-16	SL-MW-23S	SL-MW-23D
Laboratory ID	Groundwater	G2115-18	G2115-05	G2115-03	G2115-04
Sample Date	Criteria	11/14/08	11/12/08	11/12/08	11/12/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc Q	Conc Q	Conc Q	Conc Q
TAL Metals					
Aluminum	NC	209	672	109 B	56 U
Antimony	3	4.6 U	4.6 U	4.6 U	4.6 U
Arsenic	25	5.3 U	5.3 U	5.3 U	5.3 U
Barium	1,000	58 B	17.9 B	15.2 B	23.9 B
Beryllium	3	0.13 U	0.13 U	0.13 U	0.13 U
Cadmium	5	2.8 B*E	0.54 B*E	9.4 *E	0.24 B*E
Calcium	NC	16,700	10,000	12,400	17,600
Chromium	50	59.6 *	184 *	1.1 U*	1.1 U*
Cobalt	NC	1.2 U	1.8 B	1.2 U	1.2 U
Copper	200	8.5 B	9 B	5 U	5 U
Iron	300	821	2,440	544	82.5 B
Lead	25	2.2 U	4.3 B	2.3 B	2.2 U
Magnesium	35,000	2,630	3,530	4,920	3,350
Manganese	300	35 B	46.3 B	1,230	15.7 B
Mercury	0.7	0.016 U	0.018 B	0.016 U	0.016 U
Nickel	100	79.9	90.1	14.7 B	1.5 U
Potassium	NC	2,150	2,530	1,240	3,110
Selenium	10	6.6 U	6.6 U	6.6 U	6.6 U
Silver	50	0.59 U	0.59 U	0.59 U	0.59 U
Sodium	20,000	70,400	33,600	25,500	16,600
Thallium	0.5	4.2 U	4.2 U	4.2 U	4.2 U
Vanadium	NC	0.96 U	6 B	1 B	0.96 U
Zinc	2,000	24.7 B	68.8	71.9	17.8 B

Notes:

1 - See Section 4.1 for sample IDs

NC - No criterion

U - Not detected

B - Estimated value, metals

* - Estimated value, duplicate out of range

E - Estimated value due to interference

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

December 17, 2008

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

RE: Client Project: Multi Site G—Servall Lab Work Order #: G2115

Dear Mr. Kareth:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Shirley Ng Project Manager

* Data Summary Pack *

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : Multi Site G - SERVALL

SDG: <u>G2115</u>

1		Analytical Requirements						
	Laboratory							
	Sample ID	MSVOA	MSSEMI	GC*	ME	Other		
		Method #	Method #	Method #				
SL-MW-11	G2115-01	SW8260_W			SW6010_W			
SL-MW-11	G2115-01				SW7470			
TB-1	G2115-02	SW8260_W						
SL-MW-23S	G2115-03	SW8260_W			SW6010_W			
SL-MW-23S	G2115-03	· · · · · · · · · · · · · · · · · · ·			SW7470			
SL-MW-23D	G2115-04	SW8260_W			SW6010_W			
SL-MW-23D	G2115-04				SW7470			
SL-MW-16	G2115-05	SW8260_W			SW6010_W			
SL-MW-16	G2115-05				SW7470			
SL-MW-12	G2115-06	SW8260_W			SW6010_W			
SL-MW-12	G2115-06				SW7470			
SL-MW-13	G2115-07	SW8260_W			SW6010_W			
SL-MW-13	G2115-07				SW7470			
SL-MW-73D	G2115-08	SW8260_W			SW6010_W			
SL-MW-73D	G2115-08			· · · · · · ·	SW7470			
SL-MW-4	G2115-09	SW8260_W	······································		SW6010_W			
SL-MW-4	G2115-09				SW7470			
SL-MW-6B	G2115-10	SW8260_W			SW6010_W	•		
SL-MW-6B	G2115-10		·		SW7470			
TB-2	G2115-11	SW8260_W						
SL-MW-6A	G2115-12	SW8260_W			SW6010_W			
SL-MW-6A	G2115-12				SW7470			
SL-MW-5	G2115-13	SW8260_W			SW6010_W			
SL-MW-5	G2115-13			· · · · ·	SW7470			
SL-MW-2	G2115-14	SW8260_W			SW6010_W			
SL-MW-2	G2115-14				SW7470			
TB-3	G2115-15	SW8260_W						
SL-MW-3A	G2115-16	SW8260_W		[SW6010_W			
SL-MW-3A	G2115-16			<u> </u>	SW7470			
SL-MW-3B	G2115-17	SW8260_W			SW6010_W			
SL-MW-3B	G2115-17			······································				
SL-MW-14		SW8260_W			SW6010_W			
SL-MW-14	G2115-18							

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Multi Site G - SERVALL

SDG: <u>G2115</u>

Laboratory		Date	Date Received	Date	Date	
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed	
SW8260_W					L <u></u>	
G2115-01A	AQ	11/11/2008	11/13/2008	NA	11/20/2008	
G2115-02A	AQ	11/11/2008	11/13/2008	NA	11/20/2008	
G2115-03A	AQ	11/12/2008	11/13/2008	NA	11/20/2008	
G2115-03ADL	AQ	11/12/2008	11/13/2008	NA	11/21/2008	
G2115-04A	AQ	11/12/2008	11/13/2008	NA	11/21/2008	
G2115-05A	AQ	11/12/2008	11/13/2008	NA	11/21/2008	
G2115-06A	AQ	11/12/2008	11/13/2008	NA	11/20/2008	
G2115-07A	AQ	11/12/2008	11/13/2008	NA	11/20/2008	
G2115-08A	AQ	11/12/2008	11/13/2008	NA	11/20/2008	
G2115-09A	AQ	11/13/2008	11/14/2008	NA	11/20/2008	
G2115-10A	AQ	11/13/2008	11/14/2008	NA	11/20/2008	
G2115-11A	AQ	11/13/2008	11/14/2008	NA	11/20/2008	
G2115-12A	AQ	11/13/2008	11/14/2008	NA	11/20/2008	
G2115-12ADL	AQ	11/13/2008	11/14/2008	NA	11/21/2008	
G2115-13A	AQ	11/13/2008	11/14/2008	NA	11/21/2008	
G2115-14A	AQ	11/14/2008	11/15/2008	NA	11/20/2008	
G2115-14AMS	AQ	11/14/2008	11/15/2008	NA	11/20/2008	
G2115-14AMSD	AQ	11/14/2008	11/15/2008	NA	11/20/2008	
G2115-15A	AQ	11/14/2008	11/15/2008	NA	11/20/2008	
G2115-16A	AQ	11/14/2008	11/15/2008	NA	11/20/2008	
G2115-17A	AQ	11/14/2008	11/15/2008	NA	11/20/2008	
G2115-18A	AQ	11/14/2008	11/15/2008	NA	11/21/2008	

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Multi Site G - SERVALL

SDG : <u>G2115</u>

Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc	
Sample ID Matrix		Protocol	Method	Level	Factor	
SW8260_W						
G2115-01A	AQ	SW8260_W	NA	LOW	1	
G2115-02A	AQ	SW8260_W	NA	LOW	1	
G2115-03A	AQ	SW8260_W	NA	LOW	1	
G2115-03ADL	AQ	SW8260_W	NA	LOW	4	
G2115-04A	AQ	SW8260_W	NA	LOW	1	
G2115-05A	AQ	SW8260_W	NA	LOW	1 .	
G2115-06A	AQ	SW8260_W	NA	LOW	1	
G2115-07A	AQ	SW8260_W	NA	LOW	1	
G2115-08A	AQ	SW8260_W	NA	LOW	1	
G2115-09A	AQ	SW8260_W	NA	LOW	1	
G2115-10A	AQ	SW8260_W	NA	LOW	1	
G2115-11A	AQ	SW8260_W	NA	LOW	1	
G2115-12A	AQ	SW8260_W	NA	LOW	1	
G2115-12ADL	AQ	SW8260_W	NA	LOW	4	
G2115-13A	AQ	SW8260_W	NA	LOW	10	
G2115-14A	AQ	SW8260_W	NA	LOW	1	
G2115-14AMS	AQ	SW8260_W	NA	LOW	1	
G2115-14AMSD	AQ	SW8260_W	NA	LOW	1	
G2115-15A	AQ	SW8260_W	NA	LOW	1	
G2115-16A	AQ	SW8260_W	NA	LOW	1	
G2115-17A	AQ	SW8260_W	NA	LOW	1	
G2115-18A	AQ	SW8260_W	NA	LOW	1	

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : Multi Site G - SERVALL

SDG : <u>G2115</u>

Laboratory		Metals	Date Received	Date	
Sample ID	Matrix	Requested	By Lab	Analyzed	
SW6010_W		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	
G2115-01B	AQ	SW6010_W	11/13/2008	12/5/2008	
G2115-03B	AQ	SW6010_W	11/13/2008	12/5/2008	
G2115-04B	AQ	SW6010_W	11/13/2008	12/5/2008	
G2115-05B	AQ	SW6010_W	11/13/2008	12/5/2008	
G2115-06B	AQ	SW6010_W	11/13/2008	12/5/2008	
G2115-07B	AQ	SW6010_W	11/13/2008	12/5/2008	
G2115-08B	AQ	SW6010_W	11/13/2008	12/5/2008	
G2115-09B	AQ	SW6010_W	11/14/2008	12/5/2008	
G2115-10B	AQ	SW6010_W	11/14/2008	12/5/2008	
G2115-12B	AQ	SW6010_W	11/14/2008	12/5/2008	
G2115-13B	AQ	SW6010_W	11/14/2008	12/5/2008	
G2115-14B	AQ	SW6010_W	11/15/2008	12/5/2008	
G2115-14BDUP	AQ	SW6010_W	11/15/2008	12/5/2008	
G2115-14BMS	AQ	SW6010_W	11/15/2008	12/5/2008	
G2115-16B	AQ	SW6010_W	11/15/2008	12/5/2008	
G2115-17B	AQ	SW6010_W	11/15/2008	12/5/2008	
G2115-18B	AQ	SW6010_W	11/15/2008	12/5/2008	
SW7470					
G2115-01B	AQ	SW7470	11/13/2008	12/4/2008	
G2115-03B	AQ	SW7470	11/13/2008	12/4/2008	
G2115-04B	AQ	SW7470	11/13/2008	12/4/2008	
G2115-05B	AQ	SW7470	11/13/2008	12/4/2008	
G2115-06B	AQ	SW7470	11/13/2008	12/4/2008	
G2115-07B	AQ	SW7470	11/13/2008	12/4/2008	
G2115-08B	AQ	SW7470	11/13/2008	12/4/2008	
G2115-09B	AQ	SW7470	11/14/2008	12/4/2008	
G2115-10B	AQ	SW7470	11/14/2008	12/4/2008	
G2115-12B	AQ	SW7470	11/14/2008	12/4/2008	
G2115-13B	AQ	SW7470	11/14/2008	12/4/2008	
G2115-14B	AQ	SW7470	11/15/2008	12/4/2008	
G2115-14BDUP	AQ	SW7470	11/15/2008	12/4/2008	
G2115-14BMS	AQ	SW7470	11/15/2008	12/4/2008	
G2115-16B	AQ	SW7470	11/15/2008	12/4/2008	
G2115-17B	AQ	SW7470	11/15/2008	12/4/2008	
G2115-18B	AQ	SW7470	11/15/2008	12/4/2008	

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: Multi Site G-Servall

SDG# MG2115

Mitkem Work Order ID: G2115

December 17, 2008

Prepared For:

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to Earth Tech Northeast, Inc.'s Multi Site G—Servall project. Under this deliverable, analysis results are presented for eighteen aqueous samples that were received between November 13, 2008 to November 15, 2008. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries and replicate RPDs were within the QC limits.

Matrix spike/ matrix spike duplicate: duplicate analysis was performed on sample SL-W-2. Spike recoveries were within the QC limits with the exception of acetone in the MC. Replicate RPDs were within the QC limits with the exception of acetone.

Sample analysis: due to high concentration of target analytes, sample SL-MW-2 was initially analyzed at 10x dilution. Sample SL-MW-23S and sample SL-MW-6A were reanalyzed at 4x dilution. No other unusual observation was made for the analysis.

3. Metals analysis:

Lab control samples percent recoveries were within the QC limits.

Matrix spike analysis: matrix spike was performed on sample SL-MW-2. Spike recoveries were within the QC limits.

Duplicate analysis: duplicate analysis was performed on sample SL-MW-2. Percent recoveries were within the QC lineits with the exception of cadmium and chromium. These elements are flagged with a " " on the data reporting forms.

Sample analysis: serial dilution was performed on sample SL-MW-2. Percent differences were within the QC limits with the exception of cadmium. This element is flagged with an "E" on the data reporting forms. No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutives, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Project Manager 12/17/08

2683

Lab control sample: spike recoveries and replicate RPDs were within the QC limits.

Matrix spike/ matrix spike duplicate: duplicate analysis was performed on sample SL-MW-2. Spike recoveries were within the QC limits with the exception of acetone in the MS. Replicate RPDs were within the QC limits with the exception of acetone.

Sample analysis: due to high concentration of target analytes, sample SL-MW-5 was initially analyzed at 10x dilution. Sample SL-MW-23S and sample SL-MW-6A were reanalyzed at 4x dilution. No other unusual observation was made for the analysis.

3. Metals analysis:

Lab control sample: percent recoveries were within the QC limits.

Matrix spike analysis: matrix spike was performed on sample SL-MW-2. Spike recoveries were within the QC limits.

Duplicate analysis: duplicate analysis was performed on sample SL-MW-2. Percent recoveries were within the QC limits with the exception of cadmium and chromium. These elements are flagged with a "*" on the data reporting forms.

Sample analysis: serial dilution was performed on sample SL-MW-2. Percent differences were within the QC limits with the exception of cadmium. This element is flagged with an "E" on the data reporting forms. No other unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Shirley Ng N

Project Manager 12/17/08

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

_			
5L	-MW-	-11	
	ΞL	SL-MW-	SL-MW-11

Lab Name: MITKEM LABO	RATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE	R) WATER	Lab Sample ID:	G2115-01A
Sample wt/vol: 5	.00 (g/mL) ML	Lab File ID:	V1K1752.D
Level: (TRACE/LOW/MED)	I'OM	Date Received:	11/13/2008
% Moisture: not dec.		Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	3 Dichlorodifluoromethane	5.0	U
74-87-3	3 Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	3 Chloroethane	5.0	U
75-69-4	1 Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
	Acetone	5.0	U
74-88-4	1 Iodomethane	5.0	U
75-15-0) Carbon disulfide	5.0	U
75-09-2	2 Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	1.8	J
75-34-3	3 1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	3 2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	13	
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	3 Chloroform	5.0	U
71-55-6	5 1,1,1-Trichloroethane	5.0	U
563-58-6	5 1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	2 1,2-Dichloroethane	5.0	U
71-43-2	2 Benzene	5.0	U
79-01-6	5 Trichloroethene	4.8	J
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	B Dibromomethane	5.0	Ŭ
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	Ŭ
	3 Toluene	63	
10061-02-6	5 trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		VOLATILE	ORGANICS	ANALYSIS E	DATA :	SHEET	SL-MW-	11
Lab Name:	MITKEM LAE	BORATORIES		Contract:		· · · · · · · · · · · · · · · · · · ·	L	** ****
Lab Code:	MITKEM	Case No.:		Mod. Ref	No.:		SDG No.:	MG2115
Matrix: (S	OIL/SED/WAT	TER) WATER		Lab Sampl	e ID:	G2115-01A		

Lab Code: MITKEM Case No.:				Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2115-01A
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1K1752.D
Level: (TRACE/LOW/MED) L	OW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			- (mL)		· · · · · · · · · · · · · · · · · · ·

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	60	
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-11

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-01A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1752.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/13/2008
% Moisture: not dec.	Date Analyzed: 11/20/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.756 22 J
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-1		

L

Lab Name: MITKEM LABOF	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	G2115-02A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1763.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	40	(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
1	Acetone	5.0	Ŭ
74-88-4	Iodomethane	5.0	U
	Carbon disulfide	5.0	U
	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	ט
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	υ
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	υ
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
	Toluene	5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-1			 	
	TB-	1		

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	G2115-02A
Sample wt/vol: 5	.00 (g/mL) ML		Lab File ID:	V1K1763.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS	:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane	······································	5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene	· · · · · · · · · · · · · · · · · · ·	5.0	U
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene	······	5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene	······································	5.0	U
95-63-6	1,2,4-Trimethylbenzene	· · · · · · · · · · · · · · · · · · ·	5.0	U
	sec-Butylbenzene		5.0	U
99-87-6	4-Isopropyltoluene		5.0	U
541-73-1	1,3-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	5.0	υ
106-46-7	1,4-Dichlorobenzene		5.0	σ
104-51-8	n-Butylbenzene		5.0	Ū
95-50-1	1,2-Dichlorobenzene		5.0	U
96-12-8	1,2-Dibromo-3-chloropropane		5.0	U
	1,2,4-Trichlorobenzene		5.0	U
87-68-3	Hexachlorobutadiene		5.0	U
87-61-6	1,2,3-Trichlorobenzene		5.0	U
	Naphthalene		5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TB-1

Lab Name: MIT	KEM LABORATORIES		Contract:		
Lab Code: MII	KEM Case No.:		Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOIL,	SED/WATER) WATER		Lab Sample ID:	G2115-02A	
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V1K1763.D	
Level: (TRACE	or LOW/MED) LOW		Date Received:	11/13/2008	
% Moisture: no	ot dec.		Date Analyzed:	11/20/2008	
GC Column: DE	3-624 ID:	0.25 (mm)	Dilution Factor	: 1.0	
Soil Extract N	Volume:	(uL)	Soil Aliquot Vo	lume:	(uL)
CONCENTRATION	UNITS: (ug/L or ug/	Kg) UG/L	Purge Volume: 5	5.0	(mL)
CAS NUMBER	COMPOUNI) NAME	RT	EST. CONC.	Q
01	Unknown-01		12.757	30	J
E96679	6 ¹ Total Alkanes		N/A		

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-23S

Lab Name: MITKEM LAB	DRATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WAT	ER) WATER			Lab Sample ID:	G2115-03A
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1K1753.D
Level: (TRACE/LOW/MED) LOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	45	
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	ט
67-66-3	Chloroform	5.0	ט
71-55-6	1,1,1-Trichloroethane	1.6	J
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	18	
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLAT

EPA SAMPLE NO.

ILE	ORGANICS	ANALYSIS	DATA	SHEET	
-----	----------	----------	------	-------	--

SL-MW-23S

Lab Name: MITKEM LABOR	ATORIES	-	Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATEF) WATER		Lab Sample ID:	G2115-03A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1753.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.2	5 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	•	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	480	E
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	σ
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SL-MW-23S

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-03A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1753.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/13/2008
% Moisture: not dec.	Date Analyzed: 11/20/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.762 21 J
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-23SDL

Lab Name: MITKEM LABO	RATORIES			Contract:		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOIL/SED/WATE	R) WATER			Lab Sample ID:	G2115-03ADL	
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K1811.D	-
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/13/2008	
% Moisture: not dec.				Date Analyzed:	11/21/2008	
GC Column: DB-624	ID:	0.25 (:	mm)	Dilution Factor:	4.0	
Soil Extract Volume:		(*	uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0		(:	mL)			

		CONCENTRATION UNITS	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		20	U
74-87-3	Chloromethane		20	U
75-01-4	Vinyl chloride		20	U
	Bromomethane		20	U
75-00-3	Chloroethane		20	U
75-69-4	Trichlorofluoromethane		20	U
75-35-4	1,1-Dichloroethene		20	U
67-64-1	Acetone		20	U
74-88-4	Iodomethane		20	U
75-15-0	Carbon disulfide		20	U
75-09-2	Methylene chloride		20	U
	trans-1,2-Dichloroethene		20	U
1634-04-4	Methyl tert-butyl ether		20	U
75-34-3	1,1-Dichloroethane		20	U
108-05-4	Vinyl acetate		20	Ŭ
78-93-3	2-Butanone		20	U
156-59-2	cis-1,2-Dichloroethene		41	D
594-20-7	2,2-Dichloropropane		20	U
74-97-5	Bromochloromethane		20	U
67-66-3	Chloroform		20	U
71-55-6	1,1,1-Trichloroethane		20	U
	1,1-Dichloropropene		20	U
56-23-5	Carbon tetrachloride		20	U
107-06-2	1,2-Dichloroethane		20	U
71-43-2	Benzene		20	U
79-01-6	Trichloroethene		17	DJ
78-87-5	1,2-Dichloropropane		20	U
74-95-3	Dibromomethane		20	U
75-27-4	Bromodichloromethane		20	U
10061-01-5	cis-1,3-Dichloropropene		20	U
108-10-1	4-Methyl-2-pentanone		20	U
108-88-3	Toluene		20	U
10061-02-6	trans-1,3-Dichloropropene		20	U
79-00-5	1,1,2-Trichloroethane		20	U
142-28-9	1,3-Dichloropropane		20	U

1B - FORM I VOA-2 VOLATI

EPA SAMPLE NO.

ILE ORGANICS ANALYSIS DATA SHE	ET
--------------------------------	----

SL-MW-23SDL

Lab Name: MITKEM	LABORATO	DRIES			Contract:	
Lab Code: MITKEM	Ca	ase No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/	WATER)	WATER			Lab Sample ID:	G2115-03ADL
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1811.D
Level: (TRACE/LOW/	'MED) LO	WC			Date Received:	11/13/2008
% Moisture: not de	ec.				Date Analyzed:	11/21/2008
GC Column: DB-624		ID:	0.25	(mm)	Dilution Factor:	4.0
Soil Extract Volum	ne:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0)			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/2	L Q
127-18-4	Tetrachloroethene	500	D
591-78-6	2-Hexanone	20	U
124-48-1	Dibromochloromethane	20	U
106-93-4	1,2-Dibromoethane	20	U
108-90-7	Chlorobenzene	20	U
630-20-6	1,1,1,2-Tetrachloroethane	20	U
100-41-4	Ethylbenzene	20	U
1330-20-7	m,p-Xylene	20	U
95-47-6	o-Xylene	20	U
1330-20-7	Xylene (Total)	20	U
100-42-5	Styrene	20	U
75-25-2	Bromoform	20	U
98-82-8	Isopropylbenzene	20	U
	1,1,2,2-Tetrachloroethane	20	U
	Bromobenzene	20	U
96-18-4	1,2,3-Trichloropropane	20	U
	n-Propylbenzene	20	U
95-49-8	2-Chlorotoluene	20	Ū
108-67-8	1,3,5-Trimethylbenzene	20	U
	4-Chlorotoluene	20	U
98-06-6	tert-Butylbenzene	20	U
95-63-6	1,2,4-Trimethylbenzene	20	U
135-98-8	sec-Butylbenzene	20	U
99-87-6	4-Isopropyltoluene	20	U
	1,3-Dichlorobenzene	20	υ
106-46-7	1,4-Dichlorobenzene	20	U
	n-Butylbenzene	20	U
	1,2-Dichlorobenzene	20	U
	1,2-Dibromo-3-chloropropane	20	U
	1,2,4-Trichlorobenzene	20	U
	Hexachlorobutadiene	20	Ü
	1,2,3-Trichlorobenzene	20	U
	Naphthalene	20	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-23SDL

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-03ADL
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1811.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/13/2008
% Moisture: not dec.	Date Analyzed: 11/21/2008
GC Column: DB-624 ID: 0.25 (mr) Dilution Factor: 4.0
Soil Extract Volume: (ul) Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.752 67 DJ
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VO

EPA SAMPLE NO.

DLATILE ORGANICS ANALYSIS DATA SHEE	LATILE	ORGANICS	ANALYSIS	DATA	SHEE:
-------------------------------------	--------	----------	----------	------	-------

SL-MW-23D

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATEF	() WATER			Lab Sample ID:	G2115-04A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1828.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/21/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ŭ
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	ט
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-23D

Lab Name: MITKEM I	ABORATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/	WATER) WATER			Lab Sample ID:	G2115-04A
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1K1828.D
Level: (TRACE/LOW/	1ED) LOW			Date Received:	11/13/2008
% Moisture: not dec	··			Date Analyzed:	11/21/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume	2:		(uL)	Soil Aliquot Volu	ume: (uL)

Purge Volume: 5.0 (mL)

· · · · · · · · · · · · · · · · · · ·		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	7.7	
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	Ū
	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-23D

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	G2115-04A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	V1K1828.D
Level: (TRACE or LOW/MED) LOW	Date Received:	11/13/2008
% Moisture: not dec.	Date Analyzed:	11/21/2008
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor	: 1.0
Soil Extract Volume: (uL) Soil Aliquot Vo	olume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/1	L Purge Volume:	5.0 (mL)
CAS NUMBER COMPOUND NAME	RT	EST. CONC. Q
01 Unknown-01 E966796 ¹ Total Alkanes	12.750 N/A	25 J

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-16

	DODIMONTOO				
Lab Name: MITKEM LA	BORATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WA	ATER) WATER			Lab Sample ID:	G2115-05A
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1K1829.D
Level: (TRACE/LOW/M	CD) LOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/21/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	_ Q
75-71-8	B Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	3 1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	2.1	J
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	υ
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	1.1	J
	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
108-10-1	4-Methyl-2-pentanone	5.0	U
	Toluene	5.0	U
	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-16

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	G2115-05A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1829.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/21/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		6.9	
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	υ
1330-20-7	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	υ
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	ט
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene		5.0	U.
99-87-6	4-Isopropyltoluene		5.0	υ
541-73-1	1,3-Dichlorobenzene		5.0	U
106-46-7	1,4-Dichlorobenzene		5.0	υ
104-51-8	n-Butylbenzene		5.0	U
	1,2-Dichlorobenzene		5.0	U
96-12-8	1,2-Dibromo-3-chloropropane		5.0	U
	1,2,4-Trichlorobenzene		5.0	U
87-68-3	Hexachlorobutadiene		5.0	U
87-61-6	1,2,3-Trichlorobenzene		5.0	U
91-20-3	Naphthalene		5.0	U

1J - FORM I VOA-TIC SL-MW-16

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Contract:

Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOIL/SED	/WATER) WATER		Lab Sample ID:	G2115-05A	
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V1K1829.D	
Level: (TRACE or	LOW/MED) LOW		Date Received:	11/13/2008	
% Moisture: not d	lec.		Date Analyzed:	11/21/2008	
GC Column: DB-62	4 ID:	0.25 (mm)	Dilution Factor:	: 1.0	
Soil Extract Volu	me:	(uL)	Soil Aliquot Vol	lume:	(uL)
CONCENTRATION UNI	TS: (ug/L or ug/	Kg) UG/L	Purge Volume: 5	.0	(mL)
CAS NUMBER	COMPOUN	D NAME	RT	EST. CONC.	Q
01 UI	nknown-01		12.752	23	J
E9667961T	otal Alkanes		N/A	· · · · ·	

¹EPA-designated Registry Number.

Lab Name: MITKEM LABORATORIES

SW846

1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-12

Lab Name: MITKEM LABORAT	ORIES			Contract:	
Lab Code: MITKEM C	ase No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2115-06A
Sample wt/vol: 5.00	(g/mL)	ML		Lab File ID:	V1K1767.D
Level: (TRACE/LOW/MED) L	JOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	3.1	J
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	υ
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-12

Lab Name: MITKEM LABOR	ATORIES			Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2115-06A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1767.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	60	
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-12

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-06A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1767.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/13/2008
% Moisture: not dec.	Date Analyzed: 11/20/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.756 26 J
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

SW846

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-13

		~		
Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2115	
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2115-07A	
Sample wt/vol: 5.00 (g/mL) ML		Lab File ID:	V1K1768.D	
Level: (TRACE/LOW/MED) LOW		Date Received:	11/13/2008	
% Moisture: not dec.		Date Analyzed:	11/20/2008	
GC Column: DB-624 ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0	(mL)			

		CONCENTRATION UNITS	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane		5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
	1,1-Dichloroethene		5.0	U
	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
	Bromochloromethane		5.0	U
67-66-3	Chloroform		2.7	J
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane	······································	5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane	· · · · · · · · · · · · · · · · · · ·	5.0	U
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	υ
	4-Methyl-2-pentanone		5.0	Ū
108-88-3	Toluene		5.0	υ
10061-02-6	trans-1,3-Dichloropropene	······································	5.0	U
	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane	····	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

\sim	T			r 7		7	\sim	
<u> </u>		1	vr	IVI.	_	1	-	
v	т.		.1	**		т.	J	

Lab Name: MITKEM LABOR	ATORIES			Contract:	
				concruce.	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER		·	Lab Sample ID:	G2115-07A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1768.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	1.0	J
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	.5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	.5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	ט
99-87-6	4-Isopropyltoluene	5.0	
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-13

Lab Name: MITH	EM LABORATORI	ES		Contract:		
Lab Code: MITH	Case	e No.:		Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOIL/S	SED/WATER) W	ATER		Lab Sample ID:	G2115-07A	
Sample wt/vol:	5.00 (g/mL) ML		Lab File ID:	V1K1768.D	
Level: (TRACE or LOW/MED) LOW			Date Received: 11/13/2008			
% Moisture: not dec.			Date Analyzed: 11/20/2008			
GC Column: DB-	-624	ID: 0.2	5 (mm)	Dilution Factor	: 1.0	
Soil Extract Vo	olume:		(uL)	Soil Aliquot Vo	lume:	(uL)
CONCENTRATION	JNITS: (ug/L o	or ug/Kg)	UG/L	Purge Volume:	5.0	(mL)
CAS NUMBER	CC	MPOUND NAM	Ē	RT	EST. CONC.	Q
01	Unknown-01			12.762	26	J
E966796 ¹ Total Alkanes			N/A			

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOL

EPA SAMPLE NO.

ATILE	ORGANICS	ANALYSIS	DATA	SHEET

SL-MW-73D

Lab Name: MITKEM LABC	PRATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATH	ER) WATER		Lab Sample ID:	G2115-08A
Sample wt/vol: 5	.00 (g/mL)	ML	Lab File ID:	V1K1769.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/13/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)	

	· · · · · ·	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
	Chloroethane	5.0	Ū
	Trichlorofluoromethane	5.0	υ
	1,1-Dichloroethene	5.0	U
	Acetone	5.0	υ
	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-73D

Lab Name: MITKEM LABOR	RATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE	R) WATER			Lab Sample ID:	G2115-08A
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K1769.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/13/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		· · · · · · · · · · · · · · · · · · ·

		CONCENTRATION UNITS	:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene	· · · · · · · · · · · · · · · · · · ·	7.4	
591-78-6	2-Hexanone	· · · · · · · · · · · · · · · · · · ·	5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	Ŭ
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
103-65-1	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene	· · · · · · · · · · · · · · · · · · ·	5.0	U
99-87-6	4-Isopropyltoluene		5.0	U
541-73-1	1,3-Dichlorobenzene		5.0	U
106-46-7	1,4-Dichlorobenzene		5.0	Ū
104-51-8	n-Butylbenzene		5.0	U
95-50-1	1,2-Dichlorobenzene		5.0	υ
96-12-8	1,2-Dibromo-3-chloropropane		5.0	ט
	1,2,4-Trichlorobenzene		5.0	U
	Hexachlorobutadiene		5.0	U
87-61-6	1,2,3-Trichlorobenzene		5.0	U
	Naphthalene		5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-73D

Lab Name: MITKEM LABORATORIES	Contract:			
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115			
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-08A			
Sample wt/vol:5.00 (g/mL) ML	Lab File ID: V1K1769.D			
Level: (TRACE or LOW/MED) LOW	Date Received: 11/13/2008			
% Moisture: not dec.	Date Analyzed: 11/20/2008			
GC Column: DB-624 ID: 0.25 (m) Dilution Factor: 1.0			
Soil Extract Volume: (ui) Soil Aliquot Volume:(uL)			
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)			
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q			
01 Unknown-01	12.757 27 J			
E966796 ¹ Total Alkanes	N/A			

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	G2115-09A
Sample wt/vol: 5	.00 (g/mL)	ML	Lab File ID:	V1K1770.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/14/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

CAS NO.		CONCENTRATION UNITS:		
	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	B Dichlorodifluoromethane		5.0	U
74-87-3	3 Chloromethane		5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0) Carbon disulfide		5.0	IJ
	2 Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	ט
	Methyl tert-butyl ether		5.0	U
75-34-3	3 1,1-Dichloroethane		5.0	υ
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	Ū
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	U
71-55-6	5 1,1,1-Trichloroethane		5.0	U
	5 1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	B Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
108-88-3	J Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-4

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G	2115-09A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V	1K1770.D
Level: (TRACE/LOW/MED) LOW	Date Received: 1	1/14/2008
% Moisture: not dec.	Date Analyzed: 1	1/20/2008
GC Column: DB-624 ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Volum	ne:(uL)
Purge Volume: 5.0	(mL)	

CAS NO.	T	CONCENTRATION UNITS	CONCENTRATION UNITS:	
	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
	1,1,2,2-Tetrachloroethane		5.0	U
	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene		5.0	U
99-87-6	4-Isopropyltoluene		5.0	U
541-73-1	1,3-Dichlorobenzene		5.0	U
106-46-7	1,4-Dichlorobenzene		5.0	U
104-51-8	n-Butylbenzene		5.0	U
	1,2-Dichlorobenzene		5.0	U
1	1,2-Dibromo-3-chloropropane		5.0	U
	1,2,4-Trichlorobenzene		5.0	U
	Hexachlorobutadiene		5.0	U
	1,2,3-Trichlorobenzene	······································	5.0	U
	Naphthalene	······································	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-4

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-09A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1770.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/14/2008
% Moisture: not dec.	Date Analyzed: 11/20/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.762 28 J
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

SL-M₩-6B

VOLATIF	ORCANTOS	ANALYSIS	מידבת	SHEET
VOLAIILE	ORGANICS	ANALISIS	DAIA	JULI

Lab Name:	MITKEM LABORA	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115	
Matrix: (S	OIL/SED/WATER) WATER			Lab Sample ID:	G2115-10A	
Sample wt/	vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K1771.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	11/14/2008	
% Moisture	: not dec.				Date Analyzed:	11/20/2008	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volu	me: 5.0			(mL)			

Purge Volume: 5.0

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG	5/L Q	2
75-71-8	Dichlorodifluoromethane		5.0 U	
74-87-3	Chloromethane		5.0 U	
75-01-4	Vinyl chloride		5.0 U	
74-83-9	Bromomethane		5.0 U	
75-00-3	3 Chloroethane		5.0 U	
75-69-4	Trichlorofluoromethane		5.0 U	
75-35-4	1,1-Dichloroethene		5.0 U	
67-64-1	Acetone		5.0 U	
74-88-4	Iodomethane		5.0 U	
75-15-0) Carbon disulfide		5.0 U	
75-09-2	Methylene chloride		5.0 U	
156-60-5	trans-1,2-Dichloroethene	E.	5.0 U	
1634-04-4	Methyl tert-butyl ether		5.0 U	
75-34-3	3 1,1-Dichloroethane		5.0 U	
108-05-4	Vinyl acetate	2	5.0 U	
	3 2-Butanone		5.0 U	
156-59-2	cis-1,2-Dichloroethene	Ę	5.0 U	
	2,2-Dichloropropane		5.0 U	
74-97-5	Bromochloromethane		5.0 U	
67-66-3	3 Chloroform		5.0 U	
71-55-6	5 1,1,1-Trichloroethane		5.0 U	
563-58-6	1,1-Dichloropropene	Ę	5.0 U	
56-23-5	Carbon tetrachloride		5.0 U	
107-06-2	2 1,2-Dichloroethane	5	5.0 U	
71-43-2	2 Benzene	5	5.0 U	
79-01-6	Trichloroethene	5	5.0 U	
78-87-5	1,2-Dichloropropane	5	5.0 U	
	B Dibromomethane	5	5.0 U	
75-27-4	Bromodichloromethane		5.0 U	
10061-01-5	cis-1,3-Dichloropropene	5	5.0 U	
	4-Methyl-2-pentanone		5.0 U	
	3 Toluene	5	5.0 U	
	trans-1,3-Dichloropropene	5	.0 U	
	1,1,2-Trichloroethane	5	5.0 U	
	1,3-Dichloropropane	E	5.0 U	

EPA SAMPLE NO.

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

SL-MW-6B

Lab Name: MITKEM LAP	BORATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WA	TER) WATER	Lab Sample ID:	G2115-10A
Sample wt/vol:	5.00 (g/mL) ML	Lab File ID:	V1K1771.D
Level: (TRACE/LOW/ME)	D) LOW	Date Received:	11/14/2008
% Moisture: not dec.		Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SL-MW-6B

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2115 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: G2115-10A Lab File ID: V1K1771.D Sample wt/vol: 5.00 (g/mL) MLLevel: (TRACE or LOW/MED) Date Received: 11/14/2008 LOW % Moisture: not dec. Date Analyzed: 11/20/2008 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 (uL) Soil Extract Volume: (uL) Soil Aliquot Volume: UG/L CONCENTRATION UNITS: (ug/L or ug/Kg) Purge Volume: 5.0 (mL) CAS NUMBER COMPOUND NAME RT EST. CONC. Q 12.766 28 01 Unknown-01 J

N/A

E966796¹Total Alkanes ¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-2	

Lab Name: MIT	KEM LABORAI	ORIES			Contract:	
Lab Code: MIT	KEM (Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/	SED/WATER)	WATER			Lab Sample ID:	G2115-11A
Sample wt/vol:	5.00) (g/mL)	ML		Lab File ID:	V1K1764.D
Level: (TRACE/	LOW/MED) I	- WOL			Date Received:	11/14/2008
% Moisture: no	t dec.				Date Analyzed:	11/20/2008
GC Column: DB	-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract V	olume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume:	5.0			(mL)		

	· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	ט
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	υ
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ú
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET	

TB-2

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2115-11A
Sample wt/vol: 5.0) (g/mL)	ML		Lab File ID:	V1K1764.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/14/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25 ((mm)	Dilution Factor:	1.0
Soil Extract Volume:		((uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		((mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	υ
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TB-	2	

Lab	Name: MITK	EM LABORATO	RIES			Contract:			
Lab	Code: MITK	EM Ca	ase No.:			Mod. Ref No.:	SDG No.:	MG2115	
Mati	rix: (SOIL/S	ED/WATER)	WATER			Lab Sample ID:	G2115-11A		
Samp	ple wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1764.D		
Leve	el: (TRACE o	r LOW/MED)	LOW			Date Received:	11/14/2008		
8 Ma	oisture: not	dec.				Date Analyzed:	11/20/2008		
GC (Column: DB-	624	ID:	0.25	(mm)	Dilution Factor	: 1.0		
Soi	l Extract Vo	lume:			(uL)	Soil Aliquot Vo	lume:		(uL)
CON	CENTRATION U	NITS: (ug/I	or ug/H	(g) U(G/L	Purge Volume: 5	5.0		(mL)
	CAS NUMBER		COMPOUND	NAME		RT	EST. CONC.	Q	
01		Unknown-01	i in an			12.762	26	J	
	E966796 ¹	Total Alka	nes			N/A			

¹EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SL-MW-6A

Lab Name:	MITKEM LABOF	RATORI	ES			Contract:		
Lab Code:	MITKEM	Case	e No.:			Mod. Ref No.:	SDG No.: MG2115	
Matrix: (SC	DIL/SED/WATE	R) W.	ATER			Lab Sample ID:	G2115-12A	
Sample wt/v	701: 5.	.00 (g/mL)	ML		Lab File ID:	V1K1772.D	
Level: (TRA	ACE/LOW/MED)	LOW				Date Received:	11/14/2008	
% Moisture:	not dec.					Date Analyzed:	11/20/2008	
GC Column:	DB-624		ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extrac	ct Volume:		_		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volum	ne: 5.0				(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	υ
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	υ
75-69-4	Trichlorofluoromethane	5.0	U
	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	υ
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	ט
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	140	
	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	2.0	J
71-55-6	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ŭ
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	30	
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	ט
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-6A	-6A
----------	-----

Lab Name: MITKEM LABORA	TORTES		Contract:	
			concrace.	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2115-12A
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V1K1772.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/14/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	470	E
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
	sec-Butylbenzene	5.0	υ
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-6A

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-12A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1772.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/14/2008
% Moisture: not dec.	Date Analyzed: 11/20/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.763 28 J
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

SW846

.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

(uL)

SL-MW-6ADL

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	G2115-12ADL
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	V1K1832.D
Level: (TRACE/LOW/MED) LOW	Date Receivéd:	11/14/2008
% Moisture: not dec.	Date Analyzed:	11/21/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor:	4.0

(mL)

(uL) Soil Aliquot Volume:

Soil Extract Volume:

Purge Volume: 5.0

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	S: UG/L	Q
75-71-8	B Dichlorodifluoromethane		20	U
74-87-3	3 Chloromethane		20	U
75-01-4	4 Vinyl chloride		20	U
74-83-9	9 Bromomethane		20	U
75-00-3	3 Chloroethane		20	U
75-69-	4 Trichlorofluoromethane		20	U
75-35-4	4 1,1-Dichloroethene		20	U
67-64-1	1 Acetone		20	U
74-88-	4 Iodomethane		20	U
75-15-0) Carbon disulfide	· · ·	20	U
75-09-2	2 Methylene chloride		20	U
	5 trans-1,2-Dichloroethene		20	U
1634-04-4	4 Methyl tert-butyl ether		20	U
	3 1,1-Dichloroethane		20	U
	4 Vinyl acetate		20	U
	3 2-Butanone		20	U
156-59-2	2 cis-1,2-Dichloroethene		130	D
	7 2,2-Dichloropropane		20	U
	5 Bromochloromethane		20	U
67-66-3	3 Chloroform	······································	20	U
	5 1,1,1-Trichloroethane		20	U
	5 1,1-Dichloropropene		20	U
	5 Carbon tetrachloride		20	U
107-06-2	2 1,2-Dichloroethane		20	U
	2 Benzene		20	U
79-01-0	6 Trichloroethene		26	D
	5 1,2-Dichloropropane		20	U
	3 Dibromomethane		20	U
	4 Bromodichloromethane		20	U
	5 cis-1,3-Dichloropropene		20	U
	1 4-Methyl-2-pentanone		20	U
	3 Toluene		20	U
	6 trans-1,3-Dichloropropene		20	U
	5 1,1,2-Trichloroethane		20	U
	9 1,3-Dichloropropane		20	U

1B - FORM I VOA-2

.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM LABO	RATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE	R) WATER			Lab Sample ID:	G2115-12ADL
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K1832.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/14/2008
% Moisture: not dec.				Date Analyzed:	11/21/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	4.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		470	D
591-78-6	2-Hexanone		20	U
124-48-1	Dibromochloromethane		20	U
106-93-4	1,2-Dibromoethane		20	U
108-90-7	Chlorobenzene		20	U
630-20-6	1,1,1,2-Tetrachloroethane		20	U
	Ethylbenzene		20	U
1330-20-7	m,p-Xylene		20	U
95-47-6	o-Xylene		20	υ
1330-20-7	Xylene (Total)		20	U
100-42-5			20	U
75-25-2	Bromoform		20	U
98-82-8	Isopropylbenzene		20	U
79-34-5	1,1,2,2-Tetrachloroethane		20	U
108-86-1	Bromobenzene		20	σ
96-18-4	1,2,3-Trichloropropane		20	U
	n-Propylbenzene		20	U
95-49-8	2-Chlorotoluene		20	U
108-67-8	1,3,5-Trimethylbenzene		20	U
106-43-4	4-Chlorotoluene		20	U
98-06-6	tert-Butylbenzene		20	U
95-63-6	1,2,4-Trimethylbenzene		20	U
135-98-8	sec-Butylbenzene		20	U
99-87-6	4-Isopropyltoluene		20	U
541-73-1	1,3-Dichlorobenzene		20	U
106-46-7	1,4-Dichlorobenzene		20	U
104-51-8	n-Butylbenzene		20	U
95-50-1	1,2-Dichlorobenzene		20	U
96-12-8	1,2-Dibromo-3-chloropropane		20	U
	1,2,4-Trichlorobenzene		20	U
	Hexachlorobutadiene		20	U
	1,2,3-Trichlorobenzene		20	Ū
91-20-3	Naphthalene		20	U

EPA SAMPLE NO.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SL-MW-6ADL

Lab Name: M	b Name: MITKEM LABORATORIES			Contract:			
Lab Code: M	ITKEM Ca	se No.:			Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOI	L/SED/WATER)	WATER			Lab Sample ID:	G2115-12ADL	
Sample wt/vo	5.00	(g/mL)	ML		Lab File ID:	V1K1832.D	
Level: (TRAC	CE or LOW/MED)	LOW			Date Received:	11/14/2008	
<pre>% Moisture:</pre>	not dec.				Date Analyzed:	11/21/2008	· · · · ·
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor	: 4.0	·
Soil Extract	Volume:			(uL)	Soil Aliquot Vo	lume:	(uL)
CONCENTRATIO	N UNITS: (ug/I	, or ug/K	(g) (IG/L	Purge Volume: 5	5.0	(mL)
CAS NUMB	ER	COMPOUND	NAME	-,	RT	EST. CONC.	Q
01	Unknown-01				12.742	110	DJ

N/A

01

Unknown-01 E966796¹Total Alkanes ¹EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SL-MW-5

Lab Name: MITKEM LA	BORATORIES			Contract:	
Lab Code: MITKEM	Case No.:	<u></u>		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WA	TER) WATER			Lab Sample ID:	G2115-13A
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1K1835.D
Level: (TRACE/LOW/ME	D) LOW			Date Received:	11/14/2008
% Moisture: not dec.				Date Analyzed:	11/21/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	10.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

[CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	B Dichlorodifluoromethane		50	U
	Chloromethane		50	U
75-01-4	Vinyl chloride		50	U
	Bromomethane		50	U
75-00-3	Chloroethane		50	U
75-69-4	Trichlorofluoromethane		50	U
75-35-4	1,1-Dichloroethene		50	U
67-64-1	Acetone		170	
74-88-4	Iodomethane		50	U
75-15-0) Carbon disulfide		50	U
75-09-2	Methylene chloride		50	U
156-60-5	trans-1,2-Dichloroethene		50	U
1634-04-4	Methyl tert-butyl ether		50	U
75-34-3	3 1,1-Dichloroethane		50	U
108-05-4	Vinyl acetate	· · ·	50	U
78-93-3	2-Butanone		38	J
156-59-2	cis-1,2-Dichloroethene		50	U
	2,2-Dichloropropane		50	U
	Bromochloromethane		50	U
67-66-3	B Chloroform		50	U
71-55-6	5 1,1,1-Trichloroethane		50	U
	5 1,1-Dichloropropene		50	υ
56-23-5	Carbon tetrachloride		50	U
107-06-2	2 1,2-Dichloroethane		50	υ
71-43-2	Benzene		50	U
79-01-6	Trichloroethene		50	U
	1,2-Dichloropropane		50	U
74-95-3	B Dibromomethane		50	U
75-27-4	Bromodichloromethane		50	U
10061-01-5	cis-1,3-Dichloropropene		50	U
108-10-1	4-Methyl-2-pentanone		50	U
	3 Toluene	12	200	
	trans-1,3-Dichloropropene		50	U
79-00-5	1,1,2-Trichloroethane		50	U
142-28-9	1,3-Dichloropropane		50	U

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
----------	----------	----------	------	-------

SL-MW-5

Lab Name: MITKEM	LABORATO	RIES			Contract:	
Lab Code: MITKEM	Ca	ase No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED	/WATER)	WATER			Lab Sample ID:	G2115-13A
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1835.D
Level: (TRACE/LOW	/MED) LO	W			Date Received:	11/14/2008
% Moisture: not d	ec.				Date Analyzed:	11/21/2008
GC Column: DB-62	4	ID:	0.25	(mm)	Dilution Factor:	10.0
Soil Extract Volu	me:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.	0			- (mL)		

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		50	U
591-78-6	2-Hexanone		50	U
124-48-1	Dibromochloromethane		50	U
106-93-4	1,2-Dibromoethane		50	U
108-90-7	Chlorobenzene		50	U
630-20-6	1,1,1,2-Tetrachloroethane		50	U
100-41-4	Ethylbenzene	· · · · · · · · · · · · · · · · · · ·	50	υ
	m,p-Xylene		50	U
95-47-6	o-Xylene		50	U
1330-20-7	Xylene (Total)		50	U
100-42-5	Styrene		50	U
75-25-2	Bromoform		50	U
98-82-8	Isopropylbenzene		50	U
	1,1,2,2-Tetrachloroethane		50	U
108-86-1	Bromobenzene		50	U
96-18-4	1,2,3-Trichloropropane		50	U
	n-Propylbenzene		50	U
	2-Chlorotoluene		50	U
108-67-8	1,3,5-Trimethylbenzene		50	U
	4-Chlorotoluene		50	U
98-06-6	tert-Butylbenzene	· · · · · · · · · · · · · · · · · · ·	50	U
95-63-6	1,2,4-Trimethylbenzene		50	U
135-98-8	sec-Butylbenzene		50	U
99-87-6	4-Isopropyltoluene		50	U
	1,3-Dichlorobenzene		50	U
106-46-7	1,4-Dichlorobenzene		50	U
	n-Butylbenzene		50	Ū
	1,2-Dichlorobenzene	·····	50	U
	1,2-Dibromo-3-chloropropane		50	U
	1,2,4-Trichlorobenzene		50	Ū
	Hexachlorobutadiene	· · · · · · · · · · · · · · · · · · ·	50	U
	1,2,3-Trichlorobenzene		50	U
	Naphthalene		50	0

#### EPA SAMPLE NO.

### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SL-MW-5

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-13A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1835.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/14/2008
% Moisture: not dec.	Date Analyzed: 11/21/2008
GC Column: DB-624 ID: 0.25 (mm	) Dilution Factor: 10.0
Soil Extract Volume: (uI	) Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.747 330 J
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

# 1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

SL-MW-2

Lab Name: MITKEM LABORATORIES			Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	G2115-14A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1777.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/15/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	υ
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
	Benzene	1.7	J
	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	1.4	J
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-2

		14 A.			
Lab Name: MITKEM LABORA	FORIES			Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2115-14A
Sample wt/vol: 5.00	) (g/mL)	ML		Lab File ID:	V1K1777.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/15/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

	· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	υ
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	Ú
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ŭ
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	σ
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	υ
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

#### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-2

Lab Name: MITKEM LABORAT	ORIES	Contract:		
Lab Code: MITKEM C	ase No.:	Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2115-14A	
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V1K1777.D	
Level: (TRACE or LOW/MED)	LOW	Date Received:	11/15/2008	
% Moisture: not dec.		Date Analyzed:	11/20/2008	
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor	: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	lume:	(uL)
CONCENTRATION UNITS: (ug/	Lorug/Kg) UG/L	Purge Volume: 5	.0	(mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01 Unknown-01		12.761	38	J
E966796 ¹ Total Alka	nes	N/A		

E966796¹Total Alkanes ¹EPA-designated Registry Number.

#### 1A - FORM I VOA-1 VOLATILE OR

EPA SAMPLE NO.

RGANICS	ANALYSIS	DATA	SHEET	

SL-MW-2MS

Lab Name: MITKEM	LABORATO	RIES			Contract:	
Lab Code: MITKEM	Ca	se No.:	-		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED,	WATER)	WATER			Lab Sample ID:	G2115-14AMS
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1778.D
Level: (TRACE/LOW,	MED) LO	W			Date Received:	11/15/2008
% Moisture: not de	ec		-		Date Analyzed:	11/20/2008
GC Column: DB-624	:	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volum	ie:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	)			(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		67	
74-87-3	Chloromethane		57	
75-01-4	Vinyl chloride		54	
74-83-9	Bromomethane		51	
75-00-3	Chloroethane		55	
75-69-4	Trichlorofluoromethane		58	
75-35-4	1,1-Dichloroethene		57	
67-64-1	Acetone		83	
74-88-4	Iodomethane		52	-
75-15-0	Carbon disulfide		79	
	Methylene chloride		54	
156-60-5	trans-1,2-Dichloroethene		54	
1634-04-4	Methyl tert-butyl ether		58	
75-34-3	1,1-Dichloroethane		54	
108-05-4	Vinyl acetate		54	
78-93-3	2-Butanone		57	
156-59-2	cis-1,2-Dichloroethene		54	
	2,2-Dichloropropane		54	
74-97-5	Bromochloromethane		56	· ·
67-66-3	Chloroform		54	
71-55-6	1,1,1-Trichloroethane		56	
563-58-6	1,1-Dichloropropene		55	
56-23-5	Carbon tetrachloride		54	
107-06-2	1,2-Dichloroethane		56	
71-43-2	Benzene		57	
79-01-6	Trichloroethene		55	
78-87-5	1,2-Dichloropropane		54	
	Dibromomethane		57	
75-27-4	Bromodichloromethane		54	
10061-01-5	cis-1,3-Dichloropropene		53	
108-10-1	4-Methyl-2-pentanone		59	
	Toluene	· · · · · · · · · · · · · · · · · · ·	55	
10061-02-6	trans-1,3-Dichloropropene		53	
	1,1,2-Trichloroethane		57	
142-28-9	1,3-Dichloropropane		57	

### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-2MS	
-----------	--

Lab Name: MITKEM LAB	ORATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WAT	'ER) WATER	Lab Sample ID:	G2115-14AMS
Sample wt/vol:	5.00 (g/mL) ML	Lab File ID:	V1K1778.D
Level: (TRACE/LOW/MEI	)) LOW	Date Received:	11/15/2008
% Moisture: not dec.		Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)	

[		CONCENTRATION UNITS	:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q	
	Tetrachloroethene	59			
591-78-6	2-Hexanone		62		
124-48-1	Dibromochloromethane		55		
	1,2-Dibromoethane		58		
108-90-7	Chlorobenzene		56		
630-20-6	1,1,1,2-Tetrachloroethane		55		
100-41-4	Ethylbenzene		56		
1330-20-7	m,p-Xylene		110		
95-47-6	o-Xylene		56		
1330-20-7	Xylene (Total)		170		
	Styrene		56		
75-25-2	Bromoform		52		
98-82-8	Isopropylbenzene		54		
79-34-5	1,1,2,2-Tetrachloroethane		56		
108-86-1	Bromobenzene	53			
96-18-4	1,2,3-Trichloropropane	45			
	n-Propylbenzene		53		
95-49-8	2-Chlorotoluene		53		
108-67-8	1,3,5-Trimethylbenzene		52		
106-43-4	4-Chlorotoluene		55		
98-06-6	tert-Butylbenzene		54		
95-63-6	1,2,4-Trimethylbenzene		53		
135-98-8	sec-Butylbenzene		52		
99-87-6	4-Isopropyltoluene		53		
541-73-1	1,3-Dichlorobenzene		52		
106-46-7	1,4-Dichlorobenzene	54			
104-51-8	n-Butylbenzene		51	· · · ·	
95-50-1	1,2-Dichlorobenzene		53		
96-12-8	1,2-Dibromo-3-chloropropane		54		
	1,2,4-Trichlorobenzene		49		
	Hexachlorobutadiene		45		
87-61-6	1,2,3-Trichlorobenzene		45		
	Naphthalene		48		

# 1A - FORM I VOA-1

.

EPA SAMPLE NO.

SL-MW-2MSD

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	.) WATER		Lab Sample ID:	G2115-14AMSD
Sample wt/vol: 5.	00 (g/mL) ML	· · · · · · · · · · · · · · · · · · ·	Lab File ID:	V1K1779.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/15/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
	Dichlorodifluoromethane		61	
74-87-3	Chloromethane		55	
75-01-4	Vinyl chloride		54	
	Bromomethane		51	
	Chloroethane		54	
	Trichlorofluoromethane		57	
75-35-4	1,1-Dichloroethene		57	
67-64-1	Acetone		53	
	Iodomethane		53	
75-15-0	Carbon disulfide		78	
75-09-2	Methylene chloride		54	
156-60-5	trans-1,2-Dichloroethene		54	
1634-04-4	Methyl tert-butyl ether		56	
75-34-3	1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	54	
108-05-4	Vinyl acetate		53	
78-93-3	2-Butanone		55	
156-59-2	cis-1,2-Dichloroethene		55	· ·
594-20-7	2,2-Dichloropropane		53	
	Bromochloromethane		56	
67-66-3	Chloroform	· · · · · · · · · · · · · · · · · · ·	54	
71-55-6	1,1,1-Trichloroethane		56	
563-58-6	1,1-Dichloropropene	· · · · · · · · · · · · · · · · · · ·	54	
56-23-5	Carbon tetrachloride		53	
107-06-2	1,2-Dichloroethane		56	
71-43-2	Benzene		56	
79-01-6	Trichloroethene		55	
78-87-5	1,2-Dichloropropane	· · · · · · · · · · · · · · · · · · ·	55	
	Dibromomethane		56	
75-27-4	Bromodichloromethane		54	
10061-01-5	cis-1,3-Dichloropropene		53	
	4-Methyl-2-pentanone		58	
108-88-3			55	
10061-02-6	trans-1,3-Dichloropropene		53	
	1,1,2-Trichloroethane		56	
	1,3-Dichloropropane		55	

#### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-2MSD

Lab Name: MITKEM LABOR	RATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE)	R) WATER	Lab Sample ID:	G2115-14AMSD
Sample wt/vol: 5.	.00 (g/mL) ML	Lab File ID:	V1K1779.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/15/2008
% Moisture: not dec.		Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume:(uL)
Purge Volume: 5.0	· · ·	(mL)	

		CONCENTRATION UNIT	S:			
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q		
127-18-4	Tetrachloroethene	58				
591-78-6	2-Hexanone		57			
124-48-1	Dibromochloromethane		52			
106-93-4	1,2-Dibromoethane		56			
108-90-7	Chlorobenzene		55			
630-20-6	1,1,1,2-Tetrachloroethane		54			
100-41-4	Ethylbenzene		55			
1330-20-7	m,p-Xylene		110			
95-47-6	o-Xylene		55			
1330-20-7	Xylene (Total)		160			
100-42-5	Styrene		54			
75-25-2	Bromoform		50			
98-82-8	Isopropylbenzene		54			
	1,1,2,2-Tetrachloroethane					
108-86-1	Bromobenzene	54				
96-18-4	1,2,3-Trichloropropane	44				
	n-Propylbenzene					
95-49-8	2-Chlorotoluene	54				
108-67-8	1,3,5-Trimethylbenzene	53				
106-43-4	4-Chlorotoluene		53			
98-06-6	tert-Butylbenzene	53				
95-63-6	1,2,4-Trimethylbenzene	53				
135-98-8	sec-Butylbenzene	51				
99-87-6	4-Isopropyltoluene	52				
541-73-1	1,3-Dichlorobenzene		53			
106-46-7	1,4-Dichlorobenzene	53				
104-51-8	n-Butylbenzene	51				
95-50-1	1,2-Dichlorobenzene		54			
96-12-8	1,2-Dibromo-3-chloropropane		55			
	1,2,4-Trichlorobenzene	51				
87-68-3	Hexachlorobutadiene	47				
87-61-6	1,2,3-Trichlorobenzene	47				
91-20-3	Naphthalene		49			

## 1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-3

ATORIES		Contract:	
Case No.:		Mod. Ref No.:	SDG No.: MG2115
R) WATER		Lab Sample ID:	G2115-15A
00 (g/mL) ML		Lab File ID:	V1K1799.D
LOW		Date Received:	11/15/2008
		Date Analyzed:	11/20/2008
ID: 0.25	(mm)	Dilution Factor:	1.0
	(uL)	Soil Aliquot Vol	ume: (uL)
	(mL)		
	<pre>X) WATER 00 (g/mL) ML LOW</pre>	Case No.: WATER 00 (g/mL) ML LOW ID: 0.25 (mm) (uL)	Case No.:       Mod. Ref No.:         N       WATER       Lab Sample ID:         00 (g/mL)       ML       Lab File ID:         LOW       Date Received:         Date Analyzed:       Date Analyzed:         ID:       0.25 (mm)       Dilution Factor:         (uL)       Soil Aliquot Vol

	T	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	- U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
	Trichlorofluoromethane	5.0	U
	1,1-Dichloroethene	5.0	U
	Acetone	5.0	U
1	Iodomethane	5.0	U
	Carbon disulfide	5.0	υ
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

### 1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB-3

Lab Name: MITKEM LABOF	ATORIES		Contract:		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	G2115-15A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1799.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/15/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	υ
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	υ
108-90-7	Chlorobenzene	5.0	υ
630-20-6	1,1,1,2-Tetrachloroethane	5.0	ט
100-41-4	Ethylbenzene	5.0	ט
1330-20-7	m,p-Xylene	5.0	Ŭ
95-47-6	o-Xylene	5.0	υ
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

#### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

TB-3

Lab N	ame:	MITKEM	LABORATC	RIES		Со	ntract:				
Lab C	ode:	MITKEM	Ca	ase No.:		Мо	d. Ref No.:	S	DG No.:	MG21	L5
Matri	x: (S	OIL/SED/	WATER)	WATER		La	b Sample ID:	G2115-15A			
Sampl	e wt/	vol:	5.00	(g/mL)	ML	La	b File ID:	V1K1799.D			
Level	: (TR	ACE or I	LOW/MED)	LOW		Da	te Received:	11/15/2008			
8 Moi	sture	: not de	ec			Da	te Analyzed:	11/20/2008			
GC Co	lumn:	DB-624	1	ID:	0.25 (mm)	Di	lution Factor:	1.0			
Soil	Extra	ct Volum	ne:		(uL)	So	il Aliquot Vol	lume:			(uL)
CONCE	NTRAT	ION UNIT	IS: (ug/I	or ug/k	(g) UG/L	Pu	rge Volume: 5	.0			(mL)
CZ	AS NUI	MBER		COMPOUND	NAME		RT	EST. CON	С.		Q
01		Un	known-01		······		12.757		21	J	
	E96	6796 ¹ To	tal Alka	nes			N/A				

¹EPA-designated Registry Number.

### 1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-3A

Lab Name: MITKEM LABORA	FORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2115-16A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K1801.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/15/2008
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		· · · · · · · · · · · · · · · · · · ·

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	Ū
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	υ
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
	1,2-Dichloroethane	5.0	U
	Benzene	5.0	U
	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3	and the second se	5.0	U
	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-3A

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	G2115-16A
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V1K1801.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/15/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

	······································	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	ט
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	υ
99-87-6	4-Isopropyltoluene	5.0	U
	1,3-Dichlorobenzene	5.0	υ
	1,4-Dichlorobenzene	5.0	υ
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

#### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-3A

Lab Name: MITKEM LABORATORIES				Contract:						
Lab C	Code: MI	C C	ase No.:			Mod. Ref No.:		SDG No.:	MG2115	
Matri	x: (SOII	L/SED/WATER)	WATER			Lab Sample II	G2115-16A	7		
Sampl	e wt/vol	1: 5.00	(g/mL)	ML	-	Lab File ID:	V1K1801.D	)		
Level	: (TRACI	E or LOW/MED)	LOW			Date Received	a: <u>11/15/200</u>	8		
% Moi	.sture: 1	not dec.				Date Analyzed	A: 11/20/200	18		
GC Co	lumn: [	DB-624	ID:	0.25	(mm)	Dilution Fact	or: 1.0			
Soil	Extract	Volume:			(uL)	Soil Aliquot	Volume:			(uL)
CONCE	NTRATIO	N UNITS: (ug/	L or ug/F	(g) 1	UG/L	Purge Volume:	5.0			(mL)
C	AS NUMBE	CR	COMPOUND	NAME		RT	EST. C	ONC.	Q	
01		Unknown-01	L			12.763		19	J	
	E9667	96 ¹ Total Alka	anes			N/A				

E9667961 Total Alkanes 1 EPA-designated Registry Number.

#### 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

STMM_	

Lab Name: MITKEM LABOR	ATORIES		Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	) WATER		Lab Sample ID:	G2115-17A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1802.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/15/2008
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

[		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	ט
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	ט
142-28-9	1,3-Dichloropropane	5.0	U

#### EPA SAMPLE NO.

## 1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

SL-MW-3B

Lab Name: MITKEM LABORATO	RIES	Contract:	
Lab Code: MITKEM Ca	se No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2115-17A
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V1K1802.D
Level: (TRACE/LOW/MED) LO	W	Date Received:	11/15/2008
% Moisture: not dec.		Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25 (mm	) Dilution Factor:	1.0
Soil Extract Volume:	(uL	) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL	) ) ) )	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
	Ethylbenzene	5.0	U
	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SL-MW-3B

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2115-17A
Sample wt/vol: (g/mL) ML	Lab File ID: V1K1802.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/15/2008
% Moisture: not dec.	Date Analyzed: 11/20/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 Unknown-01	12.761 19 J
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

### 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-14

Lab Name:	MITKEM LABOR	ATORIES		Contract:	
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SC	)IL/SED/WATEF	() WATER		Lab Sample ID:	G2115-18A
Sample wt/v	vol:5.	00 (g/mL)	ML	Lab File ID:	V1K1803.D
Level: (TRA	CE/LOW/MED)	LOW	·····	Date Received:	11/15/2008
<pre>% Moisture:</pre>	not dec.			Date Analyzed:	11/21/2008
GC Column:	DB-624	ID:	0.25 (r	nm) Dilution Factor	: 1.0
Soil Extrac	t Volume:		(1	L) Soil Aliquot Vol	lume:(uL)
Purge Volum	ne: 5.0		(1	nL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	υ
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	υ
156-59-2	cis-1,2-Dichloroethene	5.0	U
	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	ט
71-43-2	Benzene	5.0	υ
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	υ
	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluëne	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	υ
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

#### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SL-MW-14

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	) WATER		Lab Sample ID:	G2115-18A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1803.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/15/2008
% Moisture: not dec.			Date Analyzed:	11/21/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene		5.0	Ŭ
96-18-4	1,2,3-Trichloropropane		5.0	U
	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		U	
98-06-6	tert-Butylbenzene		U	
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene		. 5.0	U
99-87-6	4-Isopropyltoluene		5.0	U
541-73-1	1,3-Dichlorobenzene	······································	5.0	U
106-46-7	1,4-Dichlorobenzene		5.0	U
	n-Butylbenzene		5.0	U
	1,2-Dichlorobenzene		5.0	U
	1,2-Dibromo-3-chloropropane		5.0	U
	1,2,4-Trichlorobenzene		5.0	U
	Hexachlorobutadiene		5.0	U
87-61-6	1,2,3-Trichlorobenzene	·····	5.0	U
	Naphthalene		5.0	Ū

SW846

0066

#### EPA SAMPLE NO.

### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

DATA SHE	'F.T.	SL-MW-14	
OMPOUNDS			
:			
	······		-

Lab Name:	MITKEM LABORAT	ORIES			Contract:		
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.:	MG2115
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	G2115-18A	
Sample wt/	vol: 5.00	) (g/mL)	ML		Lab File ID:	V1K1803.D	
Level: (TR	ACE or LOW/MED;	LOW			Date Received:	11/15/2008	
% Moisture	: not dec.				Date Analyzed:	11/21/2008	
GC Column:	DB-624	ID:	0.25	( mm )	Dilution Factor:	: 1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	lume:	(uL
CONCENTRAT	ION UNITS: (ug/	'L or ug/H	(g) U(	G/L	Purge Volume: 5	.0	(mL
CAS NUN	1BER	COMPOUNE	NAME		RT	EST. CONC.	Q
01	Unknown-0	1			12.759	20	J
E96	6796 ¹ Total Alk	anes			N/A		

¹EPA-designated Registry Number.

### 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1WLCS

Lab Name: MITKEM LABORAT	ORIES			Contract:	
	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	LCS-40195
Sample wt/vol: 5.00	) (g/mL)	ML		Lab File ID:	V1K1734.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	11/19/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0			(mL)		

CAS NO.		CONCENTRATION UNITS:		
	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	*******	59	
74-87-3	Chloromethane		53	
	Vinyl chloride		51	
	Bromomethane		51	
75-00-3	Chloroethane		53	
	Trichlorofluoromethane		54	
	1,1-Dichloroethene		54	- <u></u>
67-64-1			54	
74-88-4	Iodomethane		50	
75-15-0	Carbon disulfide		51	
	Methylene chloride		53	
156-60-5	trans-1,2-Dichloroethene		50	
1634-04-4	Methyl tert-butyl ether		58	
75-34-3	1,1-Dichloroethane		53	
108-05-4	Vinyl acetate		58	
78-93-3	2-Butanone		59	
156-59-2	cis-1,2-Dichloroethene		53	
594-20-7	2,2-Dichloropropane		53	
74-97-5	Bromochloromethane		53	
67-66-3	Chloroform		54	
71-55-6	1,1,1-Trichloroethane		54	
563-58-6	1,1-Dichloropropene		48	
56-23-5	Carbon tetrachloride		51	
107-06-2	1,2-Dichloroethane		57	
71-43-2	Benzene		53	
79-01-6	Trichloroethene		51	
78-87-5	1,2-Dichloropropane		54	
	Dibromomethane		57	
75-27-4	Bromodichloromethane		55	
10061-01-5	cis-1,3-Dichloropropene		55	
	4-Methyl-2-pentanone		60	
108-88-3			52	
10061-02-6	trans-1,3-Dichloropropene		56	
	1,1,2-Trichloroethane		56	
142-28-9	1,3-Dichloropropane		58	

EPA SAMPLE NO.

V1WLCS

### 1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name:	MITKEM LABOR	RATORIES			Contract:	
		· · · · · · · · · · · · · · · · · · ·				0D0 N
Lab Code:	MIIKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER					Lab Sample ID:	LCS-40195
Sample wt/v	vol:5	.00 (g/mL)	ML		Lab File ID:	V1K1734.D
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	
% Moisture:	not dec.				Date Analyzed:	11/19/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	t Volume: _			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volum	ne: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	54	<u> </u>
591-78-6	2-Hexanone	59	
124-48-1	Dibromochloromethane	56	1
106-93-4	1,2-Dibromoethane	57	
108-90-7	Chlorobenzene	54	1
630-20-6	1,1,1,2-Tetrachloroethane	54	
100-41-4	Ethylbenzene	54	
1330-20-7	m,p-Xylene	110	
95-47-6	o-Xylene	53	1
1330-20-7	Xylene (Total)	160	1
100-42-5	Styrene	56	
75-25-2	Bromoform	58	
98-82-8	Isopropylbenzene	53	
79-34-5	1,1,2,2-Tetrachloroethane	56	
108-86-1	Bromobenzene	52	
96-18-4	1,2,3-Trichloropropane	57	
103-65-1	n-Propylbenzene	49	
	2-Chlorotoluene	51	
108-67-8	1,3,5-Trimethylbenzene	51	
106-43-4	4-Chlorotoluene	51	
98-06-6	tert-Butylbenzene	52	
95-63-6	1,2,4-Trimethylbenzene	52	
135-98-8	sec-Butylbenzene•	50	
99-87-6	4-Isopropyltoluene	51	
541-73-1	1,3-Dichlorobenzene	51	
106-46-7	1,4-Dichlorobenzene	51	
104-51-8	n-Butylbenzene	49	
95-50-1	1,2-Dichlorobenzene	52	
96-12-8	1,2-Dibromo-3-chloropropane	54	
	1,2,4-Trichlorobenzene	48	
87-68-3	Hexachlorobutadiene	46	
87-61-6	1,2,3-Trichlorobenzene	43	
	Naphthalene	46	

## 1A - FORM I VOA-1

EPA SAMPLE NO.

V1WLCSD

VOLATILE ORGANICS	ANALYSIS	DATA	SHEET
-------------------	----------	------	-------

Lab Name: 1	MITKEM LABOF	RATORIES			Contract:			
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:		SDG No.:	MG2115
Matrix: (SO	IL/SED/WATE	R) WATER		·	Lab Sample ID:	LCSD-4019	5	
Sample wt/v	ol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1735.D		
Level: (TRA	CE/LOW/MED)	LOW			Date Received:			
<pre>% Moisture:</pre>	not dec.				Date Analyzed:	11/19/200	8	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0		
Soil Extrac	t Volume:			(uL)	Soil Aliquot Vol	ume:		(uL)
Purge Volum	e: 5.0			(mL)				

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		58	
74-87-3	Chloromethane		56	·····
	Vinyl chloride		56	
	Bromomethane		53	
	Chloroethane		56	
1	Trichlorofluoromethane		60	
	1,1-Dichloroethene		53	
	Acetone		42	
74-88-4	Iodomethane		54	
75-15-0	Carbon disulfide		57	
	Methylene chloride		54	
156-60-5	trans-1,2-Dichloroethene		53	
1634-04-4	Methyl tert-butyl ether		55	
75-34-3	1,1-Dichloroethane		55	
108-05-4	Vinyl acetate		56	
78-93-3	2-Butanone		50	
156-59-2	cis-1,2-Dichloroethene		54	
594-20-7	2,2-Dichloropropane		57	
74-97-5	Bromochloromethane		54	
67-66-3	Chloroform		56	
71-55-6	1,1,1-Trichloroethane		56	
563-58-6	1,1-Dichloropropene		53	
56-23-5	Carbon tetrachloride		54	
107-06-2	1,2-Dichloroethane		56	
71-43-2	Benzene		55	
79-01-6	Trichloroethene		53	
78-87-5	1,2-Dichloropropane		55	
74-95-3	Dibromomethane		56	
75-27-4	Bromodichloromethane		53	
10061-01-5	cis-1,3-Dichloropropene		56	
108-10-1	4-Methyl-2-pentanone		53	-
108-88-3	Toluene	······	54	
10061-02-6	trans-1,3-Dichloropropene	· · · · · · · · · · · · · · · · · · ·	56	
	1,1,2-Trichloroethane		54	
142-28-9	1,3-Dichloropropane		55	

## 1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1WLCSD

			Contract:	
Lab Name: MITKEM LABORA	ATUKIES		CONCLACE:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	) WATER		Lab Sample ID:	LCSD-40195
Sample wt/vol: 5.0	00 (g/mL) <u>N</u>	۹L	Lab File ID:	V1K1735.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	11/19/2008
GC Column: DB-624	ID: (	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT:	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		56	
591-78-6	2-Hexanone		54	
124-48-1	Dibromochloromethane	· · · · · · · · · · · · · · · · · · ·	55	
106-93-4	1,2-Dibromoethane		54	
108-90-7	Chlorobenzene		56	-
630-20-6	1,1,1,2-Tetrachloroethane		55	
100-41-4	Ethylbenzene		55	
1330-20-7	m,p-Xylene		110	
95-47-6	o-Xylene		55	
1330-20-7	Xylene (Total)		170	
	Styrene		57	
	Bromoform		55	
98-82-8	Isopropylbenzene		56	
	1,1,2,2-Tetrachloroethane		53	
	Bromobenzene		54	
96-18-4	1,2,3-Trichloropropane		53	
	n-Propylbenzene		52	
95-49-8	2-Chlorotoluene		54	
108-67-8	1,3,5-Trimethylbenzene		55	
	4-Chlorotoluene		55	
98-06-6	tert-Butylbenzene		56	
95-63-6	1,2,4-Trimethylbenzene		55	
135-98-8	sec-Butylbenzene		54	
	4-Isopropyltoluene		55	
	1,3-Dichlorobenzene		54	
106-46-7	1,4-Dichlorobenzene		54	
	n-Butylbenzene		54	
	1,2-Dichlorobenzene		54	
	1,2-Dibromo-3-chloropropane		51	
	1,2,4-Trichlorobenzene		51	
	Hexachlorobutadiene		50	
	1,2,3-Trichlorobenzene		49	
	Naphthalene		48	

# 1A - FORM I VOA-1

EPA SAMPLE NO.

V1XLCS

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM	LABORATO	DRIES			Contract:		
Lab Code: MITKEM	Ca	ase No.:			Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOIL/SED/	WATER)	WATER			Lab Sample ID:	LCS-40199	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1760.D	
Level: (TRACE/LOW/	MED) LO	WC			Date Received:		
% Moisture: not de	c				Date Analyzed:	11/20/2008	
GC Column: DB-624		ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volum	e:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0				(mL)			

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		53	
74-87-3	3 Chloromethane		52	
75-01-4	Vinyl chloride	· · · · · · · · · · · · · · · · · · ·	53	
	Bromomethane		50	
75-00-3	Chloroethane		54	
75-69-4	Trichlorofluoromethane		56	
75-35-4	1,1-Dichloroethene		56	
67-64-1	Acetone		42	
74-88-4	Iodomethane		52	
75-15-0	) Carbon disulfide		55	
75-09-2	2 Methylene chloride		53	
156-60-5	trans-1,2-Dichloroethene		51	
1634-04-4	Methyl tert-butyl ether		50	
75-34-3	3 1,1-Dichloroethane		53	
108-05-4	Vinyl acetate		52	
78-93-3	2-Butanone		46	
156-59-2	cis-1,2-Dichloroethene		52	
	2,2-Dichloropropane		43	
	Bromochloromethane		52	
67-66-3	Chloroform		53	
71-55-6	5 1,1,1-Trichloroethane		54	
	1,1-Dichloropropene		50	
56-23-5	Carbon tetrachloride		52	
107-06-2	1,2-Dichloroethane		53	
71-43-2	Benzene		53	
79-01-6	Trichloroethene		51	
78-87-5	1,2-Dichloropropane		53	
74-95-3	Dibromomethane		51	
	Bromodichloromethane		52	
	cis-1,3-Dichloropropene		51	
	4-Methyl-2-pentanone		47	
1	Toluene		52	
	trans-1,3-Dichloropropene		50	
	1,1,2-Trichloroethane		52	
142-28-9	1,3-Dichloropropane		53	

## 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1XLCS

Lab Name: MITKE	M LABORAT	ORIES			Contract:	
Lab Code: MITKE	MC	ase No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SE	D/WATER)	WATER			Lab Sample ID:	LCS-40199
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1760.D
Level: (TRACE/LC	W/MED) L	OW			Date Received:	
% Moisture: not	dec.				Date Analyzed:	11/20/2008
GC Column: DB-6	24	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Vol	ume:			(uL)	Soil Aliquot Volu	ume:(uL)
Purge Volume: 5	.0			(mL)		

		CONCENTRATION UNITS	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		55	
591-78-6	2-Hexanone		47	
124-48-1	Dibromochloromethane		51	
106-93-4	1,2-Dibromoethane		53	
108-90-7	Chlorobenzene		54	
630-20-6	1,1,1,2-Tetrachloroethane		53	
100-41-4	Ethylbenzene		53	
	m,p-Xylene		110	
95-47-6	o-Xylene		54	
	Xylene (Total)		160	
100-42-5	Styrene		55	
75-25-2	Bromoform		46	
	Isopropylbenzene		53	
79-34-5	1,1,2,2-Tetrachloroethane		49	
108-86-1	Bromobenzene		52	
96-18-4	1,2,3-Trichloropropane		44	
103-65-1	n-Propylbenzene		51	
95-49-8	2-Chlorotoluene		53	
108-67-8	1,3,5-Trimethylbenzene		53	
106-43-4	4-Chlorotoluene		52	
98-06-6	tert-Butylbenzene		53	
95-63-6	1,2,4-Trimethylbenzene		53	
135-98-8	sec-Butylbenzene		51	
99-87-6	4-Isopropyltoluene		51	
541-73-1	1,3-Dichlorobenzene		51	
	1,4-Dichlorobenzene		51	
104-51-8	n-Butylbenzene		49	
	1,2-Dichlorobenzene		51	
96-12-8	1,2-Dibromo-3-chloropropane		46	
120-82-1	1,2,4-Trichlorobenzene		46	
87-68-3	Hexachlorobutadiene		46	
	1,2,3-Trichlorobenzene		40	
91-20-3	Naphthalene		40	

## 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1XLCS	D
--------	---

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	) WATER		Lab Sample ID:	LCSD-40199
Sample wt/vol: 5.0	00 (g/ml) ML		Lab File ID:	V1K1761.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		61	
74-87-3	Chloromethane		55	
	Vinyl chloride		55	
74-83-9	Bromomethane		53	
	Chloroethane		57	
75-69-4	Trichlorofluoromethane		59	
75-35-4	1,1-Dichloroethene		59	
67-64-1	Acetone		46	
74-88-4	Iodomethane		56	
75-15-0	Carbon disulfide		57	
75-09-2	Methylene chloride		54	
156-60-5	trans-1,2-Dichloroethene		53	
1634-04-4	Methyl tert-butyl ether		52	
75-34-3	1,1-Dichloroethane		54	
108-05-4	Vinyl acetate		53	
78-93-3	2-Butanone		50	
156-59-2	cis-1,2-Dichloroethene		55	
594-20-7	2,2-Dichloropropane		45	
74-97-5	Bromochloromethane		53	
67-66-3	Chloroform		54	
71-55-6	1,1,1-Trichloroethane		55	
	1,1-Dichloropropene		52	
	Carbon tetrachloride		54	
	1,2-Dichloroethane		54	
71-43-2	Benzene		55	
79-01-6	Trichloroethene		53	
	1,2-Dichloropropane		55	
	Dibromomethane		54	
75-27-4	Bromodichloromethane		54	
	cis-1,3-Dichloropropene		52	
	4-Methyl-2-pentanone		49	
108-88-3	Toluene		54	· · · · ·
	trans-1,3-Dichloropropene		51	
	1,1,2-Trichloroethane		52	
	1,3-Dichloropropane		54	

# 1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

V1XLCSD

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	) WATER		Lab Sample ID:	LCSD-40199
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V1K1761.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25 (m	m) Dilution Factor:	1.0
Soil Extract Volume:		(ບ	L) Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(π	L)	

· · · · · · · · · · · · · · · · · · ·		CONCENTRATION UNITS	:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		57	
591-78-6	2-Hexanone		49 .	
124-48-1	Dibromochloromethane		52	
106-93-4	1,2-Dibromoethane		53	
108-90-7	Chlorobenzene		55	
630-20-6	1,1,1,2-Tetrachloroethane		55	
100-41-4	Ethylbenzene		55	
1330-20-7	m,p-Xylene		110	
95-47-6	o-Xylene		55	
1330-20-7	Xylene (Total)		170	
100-42-5	Styrene	·····	56	
75-25-2	Bromoform		48	
98-82-8	Isopropylbenzene		55	
	1,1,2,2-Tetrachloroethane	· · · · · · · · · · · · · · · · · · ·	49	
108-86-1	Bromobenzene		53	
96-18-4	1,2,3-Trichloropropane		44	
	n-Propylbenzene		53	
	2-Chlorotoluene		54	
108-67-8	1,3,5-Trimethylbenzene		54	
106-43-4	4-Chlorotoluene		54	
98-06-6	tert-Butylbenzene		54	
	1,2,4-Trimethylbenzene		54	
	sec-Butylbenzene		53	· · · · · · · · · · · · · · · · · · ·
99-87-6	4-Isopropyltoluene		53	
	1,3-Dichlorobenzene		52	
	1,4-Dichlorobenzene		53	
104-51-8	n-Butylbenzene		51	
	1,2-Dichlorobenzene		52	
96-12-8	1,2-Dibromo-3-chloropropane		47	
	1,2,4-Trichlorobenzene		48	
	Hexachlorobutadiene		46	
	1,2,3-Trichlorobenzene		43	
	Naphthalene		43	

## 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V	1	YT	.C	S

Lab Name:	MITKEM LABOR	ATORIES			Contract:	
Lab Code: 1	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SO	IL/SED/WATEF	R) WATER			Lab Sample ID:	LCS-40217
Sample wt/v	ol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1794.D
Level: (TRA	CE/LOW/MED)	LOW			Date Received:	
<pre>% Moisture:</pre>	not dec.				Date Analyzed:	11/20/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	t Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volum	.e: 5.0			(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		62	
	Chloromethane		52	
	Vinyl chloride		52	
74-83-9	Bromomethane		48	
	Chloroethane		52	
75-69-4	Trichlorofluoromethane		55	
75-35-4	1,1-Dichloroethene		55	
	Acetone		47	
74-88-4	Iodomethane		50	
75-15-0	Carbon disulfide		52	
75-09-2	Methylene chloride		52	
156-60-5	trans-1,2-Dichloroethene		51	
1634-04-4	Methyl tert-butyl ether		53	
75-34-3	1,1-Dichloroethane		52	
108-05-4	Vinyl acetate		53	
78-93-3	2-Butanone		53	
156-59-2	cis-1,2-Dichloroethene		52	
594-20-7	2,2-Dichloropropane		49	
74-97-5	Bromochloromethane		54	
67-66-3	Chloroform		52	
71-55-6	1,1,1-Trichloroethane		54	
563-58-6	1,1-Dichloropropene		51	
56-23-5	Carbon tetrachloride		52	
	1,2-Dichloroethane		53	
71-43-2	Benzene		52	
79-01-6	Trichloroethene		51	
78-87-5	1,2-Dichloropropane		53	
74-95-3	Dibromomethane		54	
75-27-4	Bromodichloromethane		52	
10061-01-5	cis-1,3-Dichloropropene		51	
108-10-1	4-Methyl-2-pentanone		54	
	Toluene		52	
10061-02-6	trans-1,3-Dichloropropene		51	
	1,1,2-Trichloroethane		55	
	1,3-Dichloropropane		53	

#### 1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1YLCS

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	LCS-40217
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1794.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.	·		Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume: _		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mT _i )		

		CONCENTRATION UNITS:	Т		
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q		
127-18-4	Tetrachloroethene	56			
591-78-6	2-Hexanone	53			
124-48-1	Dibromochloromethane	50			
106-93-4	1,2-Dibromoethane	54			
	Chlorobenzene	53			
630-20-6	1,1,1,2-Tetrachloroethane	53			
100-41-4	Ethylbenzene	53			
1330-20-7	m,p-Xylene	110			
	o-Xylene	54			
1330-20-7	Xylene (Total)	160	1		
	Styrene	54			
75-25-2	Bromoform	46			
98-82-8	Isopropylbenzene	53			
	1,1,2,2-Tetrachloroethane	52			
108-86-1	Bromobenzene	53			
96-18-4	1,2,3-Trichloropropane	44			
	n-Propylbenzene	51			
	2-Chlorotoluene	52			
108-67-8	1,3,5-Trimethylbenzene	52			
106-43-4	4-Chlorotoluene	54			
98-06-6	tert-Butylbenzene	52			
95-63-6	1,2,4-Trimethylbenzene	52			
	sec-Butylbenzene	51			
	4-Isopropyltoluene	52			
	1,3-Dichlorobenzene	51			
106-46-7	1,4-Dichlorobenzene	52			
	n-Butylbenzene	50	1		
	1,2-Dichlorobenzene	51			
96-12-8	1,2-Dibromo-3-chloropropane	48			
	1,2,4-Trichlorobenzene	46			
	Hexachlorobutadiene	46			
	1,2,3-Trichlorobenzene	42	1		
	Naphthalene	43	1		

#### 1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1YLCSD

Lab Name: MITKEM LA	BORATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WA	TER) WATER			Lab Sample ID:	LCSD-40217
Sample wt/vol:	5.00 (g/mL)	ML		Lab File ID:	V1K1795.D
Level: (TRACE/LOW/ME	D) LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25 (	mm )	Dilution Factor:	1.0
Soil Extract Volume:	· · · ·	(	uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(	mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	· ·	58	
74-87-3	Chloromethane		53	
75-01-4	Vinyl chloride		54	
74-83-9	Bromomethane		49	
75-00-3	Chloroethane		55	
75-69-4	Trichlorofluoromethane		55	
75-35-4	1,1-Dichloroethene		56	· · · · · · ·
67-64-1	Acetone		46	
74-88-4	Iodomethane		53	
75-15-0	Carbon disulfide		77	
75-09-2	Methylene chloride		52	
156-60-5	trans-1,2-Dichloroethene		52	· · · · · · · · · · · · · · · · · · ·
1634-04-4	Methyl tert-butyl ether		54	
75-34-3	1,1-Dichloroethane		53	
108-05-4	Vinyl acetate		54	
78-93-3	2-Butanone		53	
156-59-2	cis-1,2-Dichloroethene		54	
	2,2-Dichloropropane		49	
74-97-5	Bromochloromethane		54	
67-66-3	Chloroform		53	
71-55-6	1,1,1-Trichloroethane		54	
	1,1-Dichloropropene		52	
56-23-5	Carbon tetrachloride		53	
107-06-2	1,2-Dichloroethane		53	
71-43-2	Benzene		54	
79-01-6	Trichloroethene	· · · · · · · · · · · · · · · · · · ·	53	
78-87-5	1,2-Dichloropropane	· · · · · · · · · · · · · · · · · · ·	54	
	Dibromomethane		54	
75-27-4	Bromodichloromethane		53	
10061-01-5	cis-1,3-Dichloropropene		52	
	4-Methyl-2-pentanone	**************************************	54	
	Toluene		53	
10061-02-6	trans-1,3-Dichloropropene		52	
79-00-5	1,1,2-Trichloroethane		55	
142-28-9	1,3-Dichloropropane		55	

## 1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1YLCSD

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	() WATER			Lab Sample ID:	LCSD-40217
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1795.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.			•	Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	57	
	2-Hexanone	55	
124-48-1	Dibromochloromethane	52	
106-93-4	1,2-Dibromoethane	55	
108-90-7	Chlorobenzene	54	
630-20-6	1,1,1,2-Tetrachloroethane	54	
100-41-4	Ethylbenzene	54	
1330-20-7	m,p-Xylene	110	
95-47-6	o-Xylene	54	
1330-20-7	Xylene (Total)	160	
100-42-5	Styrene	55	
75-25-2	Bromoform	48	
98-82-8	Isopropylbenzene	53	
	1,1,2,2-Tetrachloroethane	53	
108-86-1	Bromobenzene	54	
96-18-4	1,2,3-Trichloropropane	45	
103-65-1	n-Propylbenzene	52	
95-49-8	2-Chlorotoluene	53	
108-67-8	1,3,5-Trimethylbenzene	53	
106-43-4	4-Chlorotoluene	54	
98-06-6	tert-Butylbenzene	54	
95-63-6	1,2,4-Trimethylbenzene	54	
135-98-8	sec-Butylbenzene	52	
99-87-6	4-Isopropyltoluene	52	
541-73-1	1,3-Dichlorobenzene	52	1
106-46-7	1,4-Dichlorobenzene	52	
104-51-8	n-Butylbenzene	51	
95-50-1	1,2-Dichlorobenzene	52	
96-12-8	1,2-Dibromo-3-chloropropane	51	
	1,2,4-Trichlorobenzene	49	
87-68-3	Hexachlorobutadiene	48	
	1,2,3-Trichlorobenzene	45	
	Naphthalene	47	

### 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V17	LCS
	100

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	ale ale - 1 - youngers (	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	LCS-40222
Sample wt/vol: 5	.00 (g/mL) ML		Lab File ID:	V1K1824.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.		**	Date Analyzed:	11/21/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		48	
74-87-3	Chloromethane		47	
	Vinyl chloride		49	
74-83-9	Bromomethane		45	
75-00-3	Chloroethane		50	
	Trichlorofluoromethane		51	
75-35-4	1,1-Dichloroethene		52	
67-64-1	Acetone		41	
74-88-4	Iodomethane		50	
75-15-0	Carbon disulfide		50	
75-09-2	Methylene chloride		49	
156-60-5	trans-1,2-Dichloroethene		49	
1634-04-4	Methyl tert-butyl ether		47	
75-34-3	1,1-Dichloroethane		49	
108-05-4	Vinyl acetate		47	
78-93-3	2-Butanone		46	
156-59-2	cis-1,2-Dichloroethene		50	
594-20-7	2,2-Dichloropropane		38	
74-97-5	Bromochloromethane		50	
67-66-3	Chloroform		50	
71-55-6	1,1,1-Trichloroethane		50	
563-58-6	1,1-Dichloropropene		48	
56-23-5	Carbon tetrachloride		48	
107-06-2	1,2-Dichloroethane		49	
71-43-2	Benzene		50	
79-01-6	Trichloroethene		49	
78-87-5	1,2-Dichloropropane		49	
74-95-3	Dibromomethane		49	
75-27-4	Bromodichloromethane		48	
10061-01-5	cis-1,3-Dichloropropene		47	
	4-Methyl-2-pentanone		45	
	Toluene		49	
10061-02-6	trans-1,3-Dichloropropene		45	
79-00-5	1,1,2-Trichloroethane		49	
142-28-9	1,3-Dichloropropane		50	

# 1B - FORM I VOA-2

EPA SAMPLE NO.

V1ZLCS

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATE)	R) WATER		Lab Sample ID:	LCS-40222
Sample wt/vol: 5	.00 (g/mL) 1	ML	Lab File ID:	V1K1824.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	11/21/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	_ Q
	Tetrachloroethene	53	
591-78-6	2-Hexanone	45	
124-48-1	Dibromochloromethane	47	
106-93-4	1,2-Dibromoethane	50	
108-90-7	Chlorobenzene	51	
630-20-6	1,1,1,2-Tetrachloroethane	50	
100-41-4	Ethylbenzene	51	
1330-20-7	m,p-Xylene	100	
95-47-6	o-Xylene	51	
1330-20-7	Xylene (Total)	150	
100-42-5	Styrene	51	
75-25-2	Bromoform	42	
98-82-8	Isopropylbenzene	50	
79-34-5	1,1,2,2-Tetrachloroethane	48	
108-86-1	Bromobenzene	50	
96-18-4	1,2,3-Trichloropropane	41	
103-65-1	n-Propylbenzene	50	
95-49-8	2-Chlorotoluene	50	
108-67-8	1,3,5-Trimethylbenzene	50	
106-43-4	4-Chlorotoluene	51	
98-06-6	tert-Butylbenzene	51	
95-63-6	1,2,4-Trimethylbenzene	50	
135-98-8	sec-Butylbenzene	49	
99-87-6	4-Isopropyltoluene	48	
541-73-1	1,3-Dichlorobenzene	49	
106-46-7	1,4-Dichlorobenzene	49	
104-51-8	n-Butylbenzene	45	
	1,2-Dichlorobenzene	49	
96-12-8	1,2-Dibromo-3-chloropropane	42	
	1,2,4-Trichlorobenzene	43	
87-68-3	Hexachlorobutadiene	42	
87-61-6	1,2,3-Trichlorobenzene	38	
	Naphthalene	37	

## 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V	1	Ζ	L	С	S	D	

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	LCSD-40222
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1825.D
Level: (TRACE/LOW/MED)	LOW	•	Date Received:	
% Moisture: not dec.			Date Analyzed:	11/21/2008
GC Column: DB-624	ID: 0.25	5 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		44	
74-87-3	Chloromethane		51	
75-01-4	Vinyl chloride		51	
74-83-9	Bromomethane		49	
75-00-3	Chloroethane		53	
75-69-4	Trichlorofluoromethane		55	
75-35-4	1,1-Dichloroethene		55	
67-64-1	Acetone		46	
74-88-4	Iodomethane		51	
	Carbon disulfide		51	
75-09-2	Methylene chloride		52	
156-60-5	trans-1,2-Dichloroethene		51	
1634-04-4	Methyl tert-butyl ether		51	
75-34-3	1,1-Dichloroethane		52	
108-05-4	Vinyl acetate		50	
78-93-3	2-Butanone		51	
156-59-2	cis-1,2-Dichloroethene		53	
594-20-7	2,2-Dichloropropane		39	
74-97-5	Bromochloromethane		53	
67-66-3	Chloroform		52	
71-55-6	1,1,1-Trichloroethane		52	
563-58-6	1,1-Dichloropropene		51	
56-23-5	Carbon tetrachloride		51	
107-06-2	1,2-Dichloroethane		52	
71-43-2	Benzene		53	
79-01-6	Trichloroethene		51	
78-87-5	1,2-Dichloropropane		53	
74-95-3	Dibromomethane		53	
	Bromodichloromethane		52	
10061-01-5	cis-1,3-Dichloropropene		50	
	4-Methyl-2-pentanone		48	
108-88-3	Toluene		52	
10061-02-6	trans-1,3-Dichloropropene		49	
79-00-5	1,1,2-Trichloroethane		51	
142-28-9	1,3-Dichloropropane	· · · · ·	52	

## 1B - FORM I VOA-2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V1ZLCSD

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER	Lab Sample II	D: LCSD-40222
Sample wt/vol: 5.00 (g/mL) M	L Lab File ID:	V1K1825.D
Level: (TRACE/LOW/MED) LOW	Date Received	1:
% Moisture: not dec.	Date Analyzed	1: 11/21/2008
GC Column: DB-624 ID: 0	.25 (mm) Dilution Fact	cor: 1.0
Soil Extract Volume:	(uL) Soil Aliquot	Volume: (uL)
Purge Volume: 5.0	(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG	G/L Q
127-18-4	Tetrachloroethene	5.	5
	2-Hexanone	4	9
124-48-1	Dibromochloromethane	5	1
106-93-4	1,2-Dibromoethane	5	
108-90-7	Chlorobenzene	5.	
630-20-6	1,1,1,2-Tetrachloroethane	5.	2
100-41-4	Ethylbenzene	5.	3
1330-20-7	m,p-Xylene	11	0 · ·
95-47-6	o-Xylene	5	3
1330-20-7	Xylene (Total)	16	D C
100-42-5	Styrene	5.	4
75-25-2	Bromoform	4	5
98-82-8	Isopropylbenzene	5:	2
	1,1,2,2-Tetrachloroethane	50	D
108-86-1	Bromobenzene	52	2
96-18-4	1,2,3-Trichloropropane	42	2
	n-Propylbenzene	5(	)
95-49-8	2-Chlorotoluene	5(	)
108-67-8	1,3,5-Trimethylbenzene	51	1
	4-Chlorotoluene	52	2
98-06-6	tert-Butylbenzene	52	2
95-63-6	1,2,4-Trimethylbenzene	50	)
	sec-Butylbenzene	5(	)
99-87-6	4-Isopropyltoluene	5(	)
541-73-1	1,3-Dichlorobenzene	50	)
	1,4-Dichlorobenzene	50	)
	n-Butylbenzene	4	7
	1,2-Dichlorobenzene	50	)
96-12-8	1,2-Dibromo-3-chloropropane	48	3
	1,2,4-Trichlorobenzene	44	1
	Hexachlorobutadiene	45	5
87-61-6	1,2,3-Trichlorobenzene	42	2
	Naphthalene	42	2

			U.S. E	PA - CLP			
				1		EPA SAM	PLE NO.
			INORGANIC ANAL	YSIS DATA SHE	ET	SL-MW-11	
Lab Name:	Mitkem Lab	oratories		Contract:	95900-04		<u></u>
Lab Code:	MITKEM	Case No.:		SAS No.:		SDG No.:	MG2115
Matrix (so:	il/water):	WATER		Lab Sample II	G2115-0	)1	
Level (low,	/med): MED			Date Received	i: <u>11/13/2</u>	2008	
% Solids:	0.0						

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	494			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	υ		P
7440-39-3	Barium	29.3	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	0.71	В	*E	P
7440-70-2	Calcium	10100			P
7440-47-3	Chromium	8.9	В	*	P
7440-48-4	Cobalt	1.2	U		P
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	1440			Р
7439-92-1	Lead	6.5	В		P
7439-95-4	Magnesium	2920			P
7439-96-5	Manganese	201			Р
7439-97-6	Mercury	0.016	υ		CV
7440-02-0	Nickel	7.7	В		P
7440-09-7	Potassium	2560			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	15500			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	2.2	В		Р
7440-66-6	Zinc	46.9	В		P

Comments:

_____

U.	S	. EPA	-	CLP
----	---	-------	---	-----

		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	SL-MW-12
Lab Name:	Mitkem Laboratories	Contract: 9590	0-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (so	il/water): WATER	Lab Sample ID:	G2115-06
Level (low	/med): MED	Date Received:	11/13/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	377		1	P
7440-36-0	Antimony	6.2	В		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	163	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	0.83	В	*E	P
7440-70-2	Calcium	19500			P
7440-47-3	Chromium	1170		*	P
7440-48-4	Cobalt	6.2	В		P
7440-50-8	Copper	33.9			P
7439-89-6	Iron	4720			P
7439-92-1	Lead	4.4	В		P
7439-95-4	Magnesium	2930			P
7439-96-5	Manganese	600			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	519			P
7440-09-7	Potassium	5020			P
7782-49-2	Selenium	. 6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	40100			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	4.6	В		Р
7440-66-6	Zinc	38.0	В		Р

Comments:

		U.S. EPA -	CLP		
		1			EPA SAMPLE NO.
	II	NORGANIC ANALYSIS	DATA SHI	EET	SL-MW-13
Lab Name:	Mitkem Laboratories	Cont	ract:	95900-04	_
Lab Code:	MITKEM Case No.:	SAS	No.:		SDG No.: MG2115
Matrix (so	il/water): WATER	Lab	Sample I	G2115-	-07
Level (low	/med): MED	Date	e Receive	ed: <u>11/13/</u>	2008
% Solids:	0.0				

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	417			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	47.3	В		P
7440-41-7	Beryllium	0.30	В		P
7440-43-9	Cadmium	53.6		*E	P
7440-70-2	Calcium	10500			P
7440-47-3	Chromium	90.0		*	P
7440-48-4	Cobalt	5.7	В		P
7440-50-8	Copper	25.7	В		P
7439-89-6	Iron	1140			P
7439-92-1	Lead	5.8	В		P
7439-95-4	Magnesium	2840	1		Р
7439-96-5	Manganese	343			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	95.4		1	P
7440-09-7	Potassium	3060			Р
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.59	U		Р
7440-23-5	Sodium	34300			Р
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	1.4	В	1	P
7440-66-6	Zinc	106			P

Comments:

_____

U.S. H	EPA -	CLP
--------	-------	-----

		1	EPA SAMPLE NO.
	INORGANIC A	NALYSIS DATA SHEET	SL-MW-14
Lab Name:	Mitkem Laboratories	Contract: 95900-	-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (so	il/water): WATER	Lab Sample ID: 0	G2115-18
Level (low	/med): MED	Date Received:	1/15/2008
0 0 1 1	0.0		

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	209			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	υ		P
7440-39-3	Barium	58.0	В		P
7440-41-7	Beryllium	0.13	U		Р
7440-43-9	Cadmium	2.8	В	*E	P
7440-70-2	Calcium	16700			P
7440-47-3	Chromium	59.6		*	P
7440-48-4	Cobalt	1.2	υ		P
7440-50-8	Copper	8.5	В		Р
7439-89-6	Iron	821			P
7439-92-1	Lead	2.2	U		P
7439-95-4	Magnesium	2630			P
7439-96-5	Manganese	35.0	В		P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	79.9			P
7440-09-7	Potassium	2150			Р
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	70400	<u> </u>		P
7440-28-0	Thallium	4.2	Ū		P
7440-62-2	Vanadium	0.96	U	+	P
7440-66-6	Zinc	24.7	В		P

Comments:

		U.S. EPA - CLP	
		1	EPA SAMPLE NO.
	I	NORGANIC ANALYSIS DATA SHEET	SL-MW-16
Lab Name:	Mitkem Laboratories	Contract: 95900-	04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (so	il/water): WATER	Lab Sample ID: G	2115-05
Level (low	/med): MED	Date Received: 1	1/13/2008
% Solids:	0.0		

CAS No. Analyte	Concentration	С	Q	М
7429-90-5 Aluminum	672			P
7440-36-0 Antimony	4.6	U		Р
7440-38-2Arsenic	5.3	U		P
7440-39-3Barium	17.9	В		P
7440-41-7 Beryllium	0.13	U		P
7440-43-9Cadmium	0.54	В	*E	P
7440-70-2Calcium	10000			Р
7440-47-3Chromium	184		*	P
7440-48-4 Cobalt	1.8	В		Р
7440-50-8Copper	9.0	В		Р
7439-89-6 Iron	2440			P
7439-92-1 Lead	4.3	В		P
7439-95-4 Magnesium	3530			P
7439-96-5Manganese	46.3	В		Р
7439-97-6Mercury	0.018	В		CV
7440-02-0Nickel	90.1			Р
7440-09-7 Potassium	2530			P
7782-49-2 Selenium	6.6	U		P
7440-22-4 Silver	0.59	U		P
7440-23-5 Sodium	33600		,, ,	P
7440-28-0 Thallium	4.2	U		P
7440-62-2Vanadium	6.0	В		P
7440-66-6Zinc	68.8			P

Comments:

.....

			U.S. E	PA - CLP			
				1			EPA SAMPLE NO.
			INORGANIC ANAI	LYSIS DATA SH	HEET		SL-MW-2
Lab Name:	Mitkem Lab	poratories		Contract:	9590	0-04	_
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.: MG2115
Matrix (so	il/water):	WATER		Lab Sample	ID:	G2115-	14
Level (low	/med): MED			Date Receiv	red:	11/15/	2008
% Solids:	0.0						

CAS No. Analyte Co		Concentration	C	Q	М
7429-90-5	90-5Aluminum 266				Р
7440-36-0	-36-0 Antimony 4.6		U		P
7440-38-2	Arsenic	5.3 (			Р
7440-39-3	Barium	17.5	В		Р
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	8.8		*E	P
7440-70-2	Calcium	15300			Р
7440-47-3	Chromium	113		*	P
7440-48-4	Cobalt	20.4	В		P
7440-50-8	Copper	18.4	В		P
7439-89-6	Iron	3120			P
7439-92-1	Lead	3.3	в		P
7439-95-4	Magnesium	1250			P
7439-96-5	Manganese	396			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1390			P
7440-09-7	Potassium	1980	1		Р
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.59	U		Р
7440-23-5	Sodium	14600			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	2.8	В		P
7440-66-6	Zinc	44.4	В		P

Comments:

			U.S. E	PA - CLP				
				.1			EPA SAM	IPLE NO.
			INORGANIC ANAL	LYSIS DATA SH	EET		SL-MW-23D	
Lab Name:	Mitkem Lab	poratories		Contract:	9590	0-04	_	
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.:	MG2115
Matrix (so	il/water):	WATER		Lab Sample :	ID:	G2115-	04	
Level (low,	/med): MED			Date Receive	ed:	11/13/	2008	
% Solids:	0.0							

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	56.0	U		P
7440-36-0	Antimony	. 4.6 U			P
7440-38-2	Arsenic	5.3 U			P
7440-39-3	Barium	23.9	в		P
7440-41-7	Beryllium	0.13	υ		Р
7440-43-9	Cadmium	0.24	В	*E	Р
7440-70-2	Calcium	17600	1		P
7440-47-3	Chromium	1.1	U	*	P
7440-48-4	Cobalt	1.2	υ		Р
7440-50-8	Copper	5.0	U		P
7439-89-6	Iron	82.5	В		Р
7439-92-1	Lead	2.2	U		Р
7439-95-4	Magnesium	3350			Р
7439-96-5	Manganese	15.7	В		P
7439-97-6	Mercury	0.016	υ		CV
7440-02-0	Nickel	1.5	υ		P
7440-09-7	Potassium	3110			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		Р
7440-23-5	Sodium	16600			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	0.96	U		P
7440-66-6	Zinc	17.8	В		P

Comments:

		U.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGAN	NIC ANALYSIS DATA SHEET	SL-MW-23S
Lab Name:	Mitkem Laboratories	Contract: 95900-04	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (soi	il/water): WATER	Lab Sample ID: G2115	5-03
Level (low,	/med): MED	Date Received: 11/13	3/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	7429-90-5 Aluminum 109		В		P
7440-36-0	7440-36-0Antimony		U		Р
7440-38-2	Arsenic	5.3	υ		Р
7440-39-3	Barium	15.2	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	9.4		*E	P
7440-70-2	Calcium	12400			P
7440-47-3	Chromium	1.1	U	*	P
7440-48-4	Cobalt	1.2	U		Р
7440-50-8	Copper	5.0	U	1	P
7439-89-6	Iron	544			P
7439-92-1	Lead	2.3	В		Р
7439-95-4	Magnesium	4920			Р
7439-96-5	Manganese	1230			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	14.7	В		P
7440-09-7	Potassium	1240			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	25500			P
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	1.0	В		P
7440-66-6	Zinc	71.9		1	P

Comments:

____

	Ţ	U.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANI	C ANALYSIS DATA SHEET	SL-MW-3A
Lab Name:	Mitkem Laboratories	Contract: 95900	)-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (so	il/water): WATER	Lab Sample ID:	G2115-16
Level (low	/med): MED	Date Received:	11/15/2008
% Solids:	0.0		

CAS No. Analyte		Concentration	С	Q	М
7429-90-5	Aluminum	1630			P
7440-36-0	Antimony	5.1			P
7440-38-2	Arsenic	5.3 1			Р
7440-39-3	Barium	83.9	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	5.9		*E	P
7440-70-2	Calcium	15000			P
7440-47-3	Chromium	36.3		*	P
7440-48-4	Cobalt	7.3	В		Р
7440-50-8	Copper	66.2			Р
7439-89-6	Iron	3040			P
7439-92-1	Lead	33.1			P
7439-95-4	Magnesium	2130			Р
7439-96-5	Manganese	1840			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	22.1	В		P
7440-09-7	Potassium	2550			Р
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	9900		1	P
7440-28-0	Thallium	4.2	U	1	P
7440-62-2	Vanadium	8.0	В		P
7440-66-6	Zinc	594	1		P

Comments:

		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	SL-MW-3B
Lab Name:	Mitkem Laboratories	Contract: 95900	)-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (so	il/water): WATER	Lab Sample ID:	G2115-17
Level (low	/med): MED	Date Received:	11/15/2008
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	2030	1		P
7440-36-0 Antimony		4.6	υ		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	31.5	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	2.2	В	*E	Р
7440-70-2	Calcium	9700			P
7440-47-3	Chromium	624		*	P
7440-48-4	Cobalt	14.9	В		P
7440-50-8	Copper	74.7			Р
7439-89-6	Iron	4610			Р
7439-92-1	Lead	14.4			P
7439-95-4	Magnesium	1490			P
7439-96-5	Manganese	447	1		P
7439-97-6	Mercury	0.051	В		CV
7440-02-0	Nickel	540			Р
7440-09-7	Potassium	3040			P
7782-49-2	Selenium	6.6	υ		P
7440-22-4	Silver	0.59	υ		P
7440-23-5	Sodium	6730	1		P
7440-28-0	Thallium	4.2	υ		Р
7440-62-2	Vanadium	5.9	в		P
7440-66-6	Zinc	191	1		P

Comments:

SW846

.

				1			EPA SAMPLE NO.
		1	INORGANIC ANAI	LYSIS DATA S	HEET		SL-MW-4
Lab Name:	Mitkem Lab	poratories		Contract:	959	00-04	_
Lab Code:	MITKEM	Case No.:		SAS No.:			SDG No.: MG2115
Matrix (so:	il/water):	WATER	· · · ·	Lab Sample	ID:	G2115-	09
Level (low,	/med): MED			Date Receiv	red:	11/14/	2008
% Solids:	0.0						

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Analyte		Concentration	С	Q	М
7429-90-5Aluminum		1450			Р
7440-36-0 Antimony		4.6	U		Р
7440-38-2	Arsenic	5.3	U		Р
7440-39-3	Barium	46.7	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	6.1		*E	P
7440-70-2	Calcium	52000			P
7440-47-3	Chromium	321		*	P
7440-48-4	Cobalt	21.4	В		P
7440-50-8	Copper	28.6	В		P
7439-89-6	Iron	3280			P
7439-92-1	Lead	5.2	В		P
7439-95-4	Magnesium	3820			P
7439-96-5	Manganese	1390			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	1860			P
7440-09-7	Potassium	4170			P
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	U		P
7440-23-5	Sodium	39000			P
7440-28-0	Thallium	4.2	U		Р
7440-62-2	Vanadium	1.9	В		P
7440-66-6	Zinc	63.4			P

Comments:

_____

			1		EPA SAMPLE NO.
		INORGAN	IC ANALYSIS DATA SHE	ET	SL-MW-5
Lab Name:	Mitkem Labo	ratories	Contract:	5900-04	
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.: MG2115
Matrix (so	il/water):	NATER	Lab Sample II	G2115-	-13
Level (low	/med): MED		Date Received	1: 11/14	/2008
% Solids:	0.0				

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	383			P
7440-36-0	Antimony	4.6	U		Р
7440-38-2	Arsenic	8.0	В		P
7440-39-3	Barium	233			P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	0.41	В	*E	P
7440-70-2	Calcium	31400			P
7440-47-3	Chromium	116		*	Р
7440-48-4	Cobalt	24.6	В		P
7440-50-8	Copper	10.3	В		P
7439-89-6	Iron	49400			P
7439-92-1	Lead	2.2	U		P
7439-95-4	Magnesium	5590			P
7439-96-5	Manganese	1830			P
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	49.0	В		P
7440-09-7	Potassium	13900			Р
7782-49-2	Selenium	6.6	U		P
7440-22-4	Silver	0.59	υ		Р
7440-23-5	Sodium	59200			Р
7440-28-0	Thallium	4.2	U		P
7440-62-2	Vanadium	3.5	В		P
7440-66-6	Zinc	35.2	В	1	P

Comments:

		U.S. EI	PA - CLP		
			1		EPA SAMPLE NO.
	]	INORGANIC ANAL	YSIS DATA SH	HEET	SL-MW-6A
Lab Name:	Mitkem Laboratories		Contract:	95900-0	4
Lab Code:	MITKEM Case No.:		SAS No.:		SDG No.: MG2115
Matrix (soi	l/water): WATER		Lab Sample	ID: <u>G2</u>	115-12
Level (low/	(med): MED		Date Receiv	red: 11	/14/2008
% Solids: (	0.0				

CAS No. Analyt	e Concentration	С	Q	М
7429-90-5Aluminum	7500			P
7440-36-0 Antimony	4.6	υ		Р
7440-38-2 Arsenic	5.3	υ		P
7440-39-3 Barium	24.6	В		P
7440-41-7Beryllium	0.37	В		P
7440-43-9 Cadmium	0.88	В	*E	P
7440-70-2 Calcium	22500			P
7440-47-3 Chromium	46.6		*	P
7440-48-4 Cobalt	8.6	В		P
7440-50-8 Copper	96.6	1		Р
7439-89-6 Iron	5950			P
7439-92-1 Lead	9.0	В		P
7439-95-4 Magnesium	3600			P
7439-96-5Manganese	540			P
7439-97-6Mercury	0.016	U		CV
7440-02-0Nickel	12.5	В	1	P
7440-09-7 Potassium	1740			P
7782-49-2 Selenium	6.6	U		P
7440-22-4 Silver	0.59	U		P
7440-23-5 Sodium	15100		1	P
7440-28-0Thallium	4.2	U	1	P
7440-62-2Vanadium	3.3	В	+	P
7440-66-6Zinc	100		1	P

Comments:

_____

	U	.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANIC	ANALYSIS DATA SHEET	SL-MW-6B
Lab Name:	Mitkem Laboratories	Contract: 95900-	04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (so:	il/water): WATER	Lab Sample ID: G	2115-10
Level (low	/med): MED	Date Received: 1	1/14/2008
% Solids:	0.0		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2390			P
7440-36-0	Antimony	4.6	U		P
7440-38-2	Arsenic	5.3	U		P
7440-39-3	Barium	57.7	В		P
7440-41-7	Beryllium	0.13	U		P
7440-43-9	Cadmium	1.9	В	*E	P
7440-70-2	Calcium	15600			P
7440-47-3	Chromium	88.8		*	P
7440-48-4	Cobalt	28.2	В		Р
7440-50-8	Copper	65.3			P
7439-89-6	Iron	4200			Р
7439-92-1	Lead	25.9			P
7439-95-4	Magnesium	2870			Р
7439-96-5	Manganese	3250			Р
7439-97-6	Mercury	0.016	U		CV
7440-02-0	Nickel	196			P
7440-09-7	Potassium	9900			P
7782-49-2	Selenium	6.6	U		Р
7440-22-4	Silver	0.59	U		Р
7440-23-5	Sodium	8730	1		P
7440-28-0	Thallium	4.2	U		Р
7440-62-2	Vanadium	5.3	В		Р
7440-66-6	Zinc	125			P

Comments:

	τ	J.S. EPA - CLP	
		1	EPA SAMPLE NO.
	INORGANI	C ANALYSIS DATA SHEET	SL-MW-73D
Lab Name:	Mitkem Laboratories	Contract: 95900	-04
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: MG2115
Matrix (so	il/water): WATER	Lab Sample ID: 0	G2115-08
Level (low	/med): MED	Date Received:	11/13/2008
% Solids:	0.0		

CAS No. Analyte	Concentration	С	Q	M
7429-90-5 Aluminum	56.0	υ		P
7440-36-0 Antimony	4.6	U		P
7440-38-2 Arsenic	5.3	U		P
7440-39-3 Barium	28.2	В		P
7440-41-7 Beryllium	0.13	U		P
7440-43-9 Cadmium	0.23	В	*E	Р
7440-70-2 Calcium	17300			P
7440-47-3 Chromium	1.1	В	*	P
7440-48-4 Cobalt	1.2	U		P
7440-50-8 Copper	5.0	υ		Р
7439-89-6 Iron	119	В		P
7439-92-1 Lead	2.2	U		Р
7439-95-4 Magnesium	3340		1	Р
7439-96-5Manganese	20.6	В		P
7439-97-6Mercury	0.016	U		CV
7440-02-0Nickel	1.5	U		P
7440-09-7 Potassium	3020	1		P
7782-49-2 Selenium	6.6	U		P
7440-22-4 Silver	0.59	υ		P
7440-23-5 Sodium	16200			P
7440-28-0 Thallium	4.2	U		Р
7440-62-2Vanadium	0.96	U		P
7440-66-6Zinc	25.8	В		P

Comments:

.

7

## LABORATORY CONTROL SAMPLE

Lab Name:	Mitkem Labora	atories	Contract:	95900-04		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	MG2115
Solid LCS	Source:				LCS(D) ID:	
Aqueous L	CS Source:				LCS-40501	

	Aque	eous (ug/L	)		Sol	id (mg	/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	۶R
Aluminum	9100.0	9588.10	105.4					
Antimony	455.0	497.36	109.3					
Arsenic	455.0	505.63	111.1					
Barium	9100.0	9471.44	104.1					
Beryllium	227.0	246.26	108.5					
Cadmium	227.0	245.97	108.4					
Calcium	22700.0	24026.49	105.8					
Chromium	910.0	970.21	106.6					
Cobalt	2270.0	2397.19	105.6					
Copper	1130.0	1201.06	106.3					
Iron	4550.0	4958.60	109.0					
Lead	455.0	497.69	109.4					
Magnesium	22700.0	24405.57	107.5					
Manganese	2270.0	2452.99	108.1					
Nickel	2270.0	2404.28	105.9					
Potassium	22700.0	23457.82	103.3				i.	
Selenium	455.0	497.62	109.4					
Silver	1130.0	1210.45	107.1					
Sodium	22700.0	23633.16	104.1					
Thallium	455.0	479.38	105.4					
Vanadium	2270.0	2410.02	106.2					
Zinc	2270.0	2426.86	106.9					

## LABORATORY CONTROL SAMPLE

Lab Name: Mitkem Laboratories		Contract:	95900-04			
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	MG2115
Solid LCS	Source:	·			LCS(D) ID:	
Aqueous LO	CS Source:				LCS-40505	

	Aque	ous (ug/L	)		Sol	id (mg/	'kg)	
Analyte	True	Found	%R	True	Found	С	Limits	۶R
Mercury	4.6	4.31	93.7					

FORM VII - IN

SW846

#### 2B - FORM II VOA-2

#### WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab	Name: MITKEM	LABORATO	RIES		Contract	:	
Lab	Code: MITKEM	I Ca	se No.:		Mod. Ref	No.:	SDG No.: MG2115
Leve	el: (TRACE or	LOW) LOW					
	EPA	VDMC1	VDMC2	VDMC3	VDMC4		TOT
	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB) #		OUT
01	VBLK1W	98	95	102	101		0
02	V1WLCS	99	99	103	104		0
03	V1WLCSD	100	96	102	101		0
04	SL-MW-11	98	94	101	98		0
05	SL-MW-23S	94	93	102	97		0
06	VBLK1X	97	95	101	96		0
07	V1XLCS	97	94	103	99		0
08	V1XLCSD	98	103	103	102		0
09	TB-1	98	97	104	100		0
10	ТВ-2	98	95	102	99		0
11	SL-MW-12	101	97	102	96		0
12	SL-MW-13	98	96	102	100		0
13	SL-MW-73D	94	89	104	97		0
14	SL-MW-4	98	99	100	97		0
15	SL-MW-6B	98	100	102	101		0
16	SL-MW-6A	99	99	99	98		0
17	SL-MW-2	97	100	102	100		0
18	SL-MW-2MS	98	109	103	100		0
19	SL-MW-2MSD	99	100	100	100		0
20	VBLK1Y	97	98	100	99		0
21	V1YLCS	97	103	101	100		0
22	V1YLCSD	97	98	100	101	147-177- <b>Barner</b>	0
23	ТВ-3	98	97	102	100		0
24	SL-MW-3A	98	98 -	101	99		0
25	SL-MW-3B	97	97	102	97		0
26	SL-MW-14	96	99	103	97		0
27	SL-MW-23SDL	96	95	101	96		0
28	VBLK1Z	98	98	101	97		0

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75-120)

# Column to be used to flag recovery values

* Values outside of contract required QC limits

Page 1 of 2

#### 2B - FORM II VOA-2

#### WATER VOLATILE DEUTERATED MONITORING COMPOUND RECOVERY

Lab Name: MITKEM LABORATORIES					Contract:						
Lab	Code: MITKEN	1 Ca	se No.: _		Mod. Ref No.:	SDG No.: MG2115					
Lev	el: (TRACE or	LOW) LOW									
	EPA	VDMC1	VDMC2	VDMC3	VDMC4	TOT					
_	SAMPLE NO.	(DBFM) #	(DCE) #	(TOL) #	(BFB) #	001					
29	V1ZLCS	96	99	102	100	0					
30	V1ZLCSD	97	99	100	101	0					
31	SL-MW-23D	99	97	101	98	0					
32	SL-MW-16	98	96	99	96	0					
33	SL-MW-6ADL	97	99	100	99	0					
34	SL-MW-5	99	101	100	96	0					

		QC LIMITS
VDMC1	(DBFM) Dibromofluoromethane	(85-115)
VDMC2	(DCE) = 1,2-Dichloroethane-d4	(70-120)
VDMC3	(TOL) = Toluene-d8	(85-120)
VDMC4	(BFB) = Bromofluorobenzene	(75-120)

# Column to be used to flag recovery values

* Values outside of contract required QC limits

Page 2 of 2

#### 3A - FORM III VOA-1

#### WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab 1	Name: MITKEM LABORATORIES	Contract	Contract:							
Lab (	Code: MITKEM Case N	Mod. Ref	No.:	SDG	No.:	MG211	5			
Matr	ix Spike - EPA Sample No.:	SL-MW-2								
Insti	cument ID: V1		GC Colum	n :		ID:	0.25	(mm		
		SPIKE	SAMPLE	MS			QC.	7		
	COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	MS %REC	#	LIMITS			
		(µg/L)	(µg/L)	(µg/L)			REC.			
	Dichlorodifluoromethane	50.0000	0.0000	66.6378	133		30-155	-		
	Chloromethane	50.0000	0.0000	56.8498	114		40-125			
	Vinyl chloride	50.0000	0.0000	54.0398	108		50-145			
	Bromomethane	50.0000	0.0000	51.3880	103		30-145			
	Chloroethane	50.0000	0.0000	55.3099	111		60-135			
	Trichlorofluoromethane	50.0000	0.0000	58.3699	117		60-145			
	1,1-Dichloroethene	50.0000	0.0000	56.7229	113		70-130			
	Acetone	50.0000	0.0000	82.7977	166	*	40-140			
	Iodomethane	50.0000			103		72-121			
	Carbon disulfide	50.0000			159		35-160			
	Methylene chloride	50.0000			107		55-140			
	trans-1,2-Dichloroethene	50.0000	0.0000	54.1746	108		60-140			
	Methyl tert-butyl ether	50.0000	0.0000	57.6290	115		65-125			
	1,1-Dichloroethane	50.0000	0.0000	54.4646	109		70-135			
	Vinyl acetate	50.0000			108		38-163			
	2-Butanone	50.0000	0.0000	57.2476	114		30-150			
	cis-1,2-Dichloroethene	50.0000	0.0000		109		70-125			
	2,2-Dichloropropane	50.0000	0.0000	54.2598	109		70-135			
	Bromochloromethane	50.0000	0.0000	56.3977	113		65-130			
	Chloroform	50.0000	0.0000	54.2174	108		65-135			
	1,1,1-Trichloroethane	50.0000	0.0000	55.6714	111		65-130			
	1,1-Dichloropropene	50.0000	0.0000	54.8732	110		75-130			
		F0 0000	0 0000		100	-1	CF 140	-		

Carbon tetrachloride	50.0000	0.0000	54.0553	108		65-140
1,2-Dichloroethane	50.0000	0.0000	55.7782	112		70-130
Benzene	50.0000	1.7339	56.9459	110		80-120
Trichloroethene	50.0000	0.0000	55.4193	111		70-125
1,2-Dichloropropane	50.0000	0.0000	54.4996	109		75-125
Dibromomethane	50.0000	0.0000	57.4513	115	ļ	75-125
Bromodichloromethane	50.0000	0.0000	54.4525	109		75-120
cis-1,3-Dichloropropene	50.0000	0.0000	53.2286	106		70-130
4-Methyl-2-pentanone	50.0000	0.0000	58.6049	117		60-135
Toluene	50.0000	1.3886	55.3797	108		75-120
trans-1,3-Dichloropropene	50.0000	0.0000	52.5837	105		55-140
1,1,2-Trichloroethane	50.0000	0.0000	56.9648	114		75-125
1,3-Dichloropropane	50.0000	0.0000	56.8225	114		75-125
Tetrachloroethene	50.0000	0.0000	59.3502	119		45-150
2-Hexanone	50.0000	0.0000	62.1388	124		55-130
Dibromochloromethane	50.0000	0.0000	54.7881	110		60-135
1,2-Dibromoethane	50.0000	0.0000	57.8650	116		80-120
Chlorobenzene	50.0000	0.0000	55.8313	112		80-120
1,1,1,2-Tetrachloroethane	50.0000	0.0000	55.3692	111		80-130
Ethylbenzene	50.0000	0.0000	56.2856	113		75-125
m,p-Xylene	100.0000	0.0000	112.9146	113		75-130
o-Xylene	50.0000	0.0000	56.4360	113		80-120

#### 3A - FORM III VOA-1

#### WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab 1	Name: MITKEM LABORATORIES	Contract	:					
Lab (	Code: MITKEM Case N	0.:	Mod. Ref	Mod. Ref No.: SDG No.: MG2				
Matr	ix Spike - EPA Sample No.:	SL-MW-2						
Inst	rument ID: V1		GC Colum	n: DB-62	24	ID: 0.25 (mm)		
	Xylene (Total)	150.0000	0.0000	169.350	06 113	81-121		
	Styrene	50.0000	0.000	56.398	31 113	65-135		
	Bromoform	50.0000	0.0000	52.082	23 104	70-130		
	Isopropylbenzene	50.0000	0.0000	54.365	59 109	75-125		
	1,1,2,2-Tetrachloroethane	50.0000	0.0000	55.635	57 111	65-130		
	Bromobenzene	50.0000	0.0000	53.406	52 107	75-125		
	1,2,3-Trichloropropane	50.0000	0.0000	45.324	1 91	75-125		
	n-Propylbenzene	50.0000	0.0000	53.313	107	70-130		
	2-Chlorotoluene	50.0000	0.0000	53.343	30 107	75-125		
	1,3,5-Trimethylbenzene	50.0000	0.0000	52.488	8 105	75-130		
	4-Chlorotoluene	50.0000	0.0000	54.639	1 109	75-130		
	tert-Butylbenzene	50.0000	0.0000	54.080	108	70-130		
	1,2,4-Trimethylbenzene	50.0000	0.0000	53.283	1 107	75-130		
	sec-Butylbenzene	50.0000	0.0000	51.631	.7 103	70-125		
	4-Isopropyltoluene	50.0000	0.0000	52.816	5 106	75-130		
	1,3-Dichlorobenzene	50.0000	0.0000	52.425	6 105	75-125		
	1,4-Dichlorobenzene	50.0000	0.0000	53.549	6 107	75-125		
	n-Butylbenzene	50.0000	0.0000	51.269	5 103	70-135		
	1,2-Dichlorobenzene	50.0000	0.0000	53.017	0 106	70-120		
	1,2-Dibromo-3-chloropropan	50.0000	0.0000	53.573	0 107	50-130		
	1,2,4-Trichlorobenzene	50.0000	0.0000	48.752	3 98	65-135		
	Hexachlorobutadiene	50.0000	0.0000	45.399	5 91	50-140		
	1,2,3-Trichlorobenzene	50.0000	0.0000	44.781	5 90	55-140		
	Naphthalene	50.0000	0.0000	47.913	6 96	55-140		
		SPIKE	MSD		[	QC LIMITS		
		ADDED	CONCENTRATION	MSD %REC #	%RPD #			
	COMPOUND	(µg/L)	(µg/L)			RPD REC.		

	SPIKE	MSD			}		QC	LIMITS
	ADDED	CONCENTRATION	MSD %REC	#	8RPI	) #		
COMPOUND	(µg/L)	(µg/L)					RPD	REC.
Dichlorodifluoromethane	50.0000	60.9745	122		9		40	30-155
Chloromethane	50.0000	55.2500	111		3		40	40-125
Vinyl chloride	50.0000	54.1665	108		0		40	50-145
Bromomethane	50.0000	51.4434	103		0		40	30-145
Chloroethane	50.0000	54.1590	108		2		40	60-135
Trichlorofluoromethane	50.0000	56.5197	113		3		40	60-145
1,1-Dichloroethene	50.0000	57.1782	114		1		40	70-130
Acetone	50.0000	52.9881	106		44	*	40	40-140
Iodomethane	50.0000	52.5166	105		2		40	72-121
Carbon disulfide	50.0000	77.5115	155		2		40	35-160
Methylene chloride	50.0000	53.8097	108		0		40	55-140
trans-1,2-Dichloroethene	50.0000	53.5998	107		1		40	60-140
Methyl tert-butyl ether	50.0000	56.2480	112		2		40	65-125
1,1-Dichloroethane	50.0000	53.6475	107		2		40	70-135
Vinyl acetate	50.0000	52.9335	106		2		40	38-163
2-Butanone	50.0000	55.2540	111		4		40	30-150
cis-1,2-Dichloroethene	50.0000	54.8480	110		1		40	70-125
2,2-Dichloropropane	50.0000	53.3176	107		2		40	70-135
Bromochloromethane	50.0000	56.1330	112		0		40	65-130

#### 3A - FORM III VOA-1 WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

#### Contract: Lab Name: MITKEM LABORATORIES Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2115 Matrix Spike - EPA Sample No.: SL-MW-2 Instrument ID: V1 GC Column : DB-624 ID: 0.25 (mm) 50.0000 54.0054 65-135 Chloroform 108 0 40 1,1,1-Trichloroethane 50.0000 55.7590 112 0 40 65-130 1,1-Dichloropropene 50.0000 53.5038 107 3 40 75-130 65-140 50.0000 53.3462 107 40 Carbon tetrachloride 1 1,2-Dichloroethane 50.0000 55.6777 111 0 40 70-130 50.0000 56.4528 109 40 80-120 1 Benzene Trichloroethene 50.0000 54.9319 110 1 40 70-125 75-125 50.0000 54.8331 110 40 1,2-Dichloropropane 1 50.0000 55.7587 112 3 40 75-125 Dibromomethane Bromodichloromethane 50.0000 54.2673 109 0 40 75-120 52.9452 106 40 70-130 cis-1,3-Dichloropropene 50.0000 1 116 40 60-135 4-Methyl-2-pentanone 50.0000 58.1349 1 Toluene 50.0000 54.5974 106 1 40 75-120 52.5706 55-140 trans-1,3-Dichloropropene 50.0000 105 0 40 1 1,1,2-Trichloroethane 50.0000 56.3896 113 40 75-125 1,3-Dichloropropane 50.0000 55.1365 110 3 40 75-125 Tetrachloroethene 50.0000 58.0489 116 2 40 45-150 2-Hexanone 50.0000 57.2395 114 8 40 55-130 Dibromochloromethane 50.0000 52.2872 105 5 40 60-135 2 1,2-Dibromoethane 50.0000 56.4609 113 40 80-120 55,4241 111 40 80-120 Chlorobenzene 50.0000 1 1,1,1,2-Tetrachloroethane 50.0000 53.5789 107 3 40 80-130 110 2 Ethylbenzene 50.0000 55.0655 40 75-125 100.0000 109.0683 109 3 40 75-130 m,p-Xylene 3 80-120 50.0000 54.6178 109 40 o-Xylene 163.6861 109 3 40 81-121 Xylene (Total) 150.0000 50.0000 40 Styrene 54.4561 109 4 65-135 Bromoform 50.0000 49.9376 100 4 40 70-130 50.0000 53.9368 108 1 40 75-125 Isopropylbenzene 1,1,2,2-Tetrachloroethane 50.0000 55.2893 111 1 40 65-130 Bromobenzene 50.0000 53.5579 107 0 40 75-125 87 4 40 75-125 1,2,3-Trichloropropane 50.0000 43.5578 n-Propylbenzene 50.0000 52.4431 105 2 40 70-130 50.0000 53.5769 107 0 40 75-125 2-Chlorotoluene 1,3,5-Trimethylbenzene 50.0000 53.4703 107 2 40 75-130 50.0000 53.4376 2 75-130 107 40 4-Chlorotoluene 70-130 tert-Butylbenzene 50.0000 53.3308 107 1 40 1,2,4-Trimethylbenzene 50.0000 53.1372 106 0 40 75-130 50.0000 51.4551 103 0 40 70-125 sec-Butylbenzene 75-130 4-Isopropyltoluene 50.0000 51.9407 104 2 40 106 75-125 50.0000 52.9990 40 1,3-Dichlorobenzene 1 1,4-Dichlorobenzene 50.0000 52.7667 106 1 40 75-125 50.0000 51.0517 102 0 40 70-135 n-Butylbenzene 50.0000 107 40 70-120 1,2-Dichlorobenzene 53.5418 1 50.0000 54.6200 109 2 40 50-130 1,2-Dibromo-3-chloropropan 1,2,4-Trichlorobenzene 50.0000 50.6380 101 4 40 65-135 Hexachlorobutadiene 50.0000 47.0392 94 4 40 50-140

### WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:	MITKEM LAB	ORATORIES		Contract:							
Lab	Code:	MITKEM	Case N	0.:	Mod. Ref No.:				SDG No.:		MG211	5
Matı	rix Spi	ke - EPA Sa	mple No.:	SL-MW-2								
Inst	rument	ID: V1			GC Column	:	DB-62	24		ID:	0.25	(mm)
	1,2,3	-Trichlorobe	enzene	50.0000	46.6355	9:	3	4	4	0	55-140	
	Napht	halene		50.0000	48.9034	98	8	2	4	0	55-140	
		be used to		ery and RPD value	s with an as	terisk						
RPD:	1	out of	58 outside	e limits								
Spik	e Recov	ery: 1	out of _	136 outside lim	its							
COMM	IENTS:											

EPA SAMPLE NO.

WATER LABORATORY CONTROL

SAMPLE RECOVERY

V1WLCS

Lab	Name:	MITKEM LABORATORIES		Contract:		
Lab	Code:	MITKEM	Case No.:	Mod. Ref No.:	 SDG No.:	MG2115
Lab	Sample	ID:	LCS-40195	LCS Lot No.:		

#### Date Extracted: 11/19/2008

Date Analyzed (1): 11/19/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
CONFOUND	1100000	231,021,11011 201V			"	REC.
Dichlorodifluoromethane	50.0000	0.0000	59.4493	119		30 - 15
Chloromethane	50.0000					40 - 12
Vinyl chloride	50.0000	0.0000				50 - 14
Bromomethane	50.0000					30 - 14
Chloroethane	50.0000					60 - 13
Trichlorofluoromethane	50.0000					60 - 14
1,1-Dichloroethene	50.0000					70 - 13
Acetone	50.0000					40 - 14
Iodomethane	50.0000					72 - 12
Carbon disulfide	50.0000					35 - 16
Methylene chloride	50.0000					55 - 14
trans-1,2-Dichloroethene	50.0000					60 - 14
Methyl tert-butyl ether	50.0000					65 - 12
1,1-Dichloroethane	50.0000					70 - 13
Vinyl acetate	50.0000					38 - 16
2-Butanone	50.0000			117		30 - 15
cis-1,2-Dichloroethene	50.0000					70 - 12
2,2-Dichloropropane	50.0000		52.8637	106		70 - 13
Bromochloromethane	50.0000					65 - 13
Chloroform	50.0000					65 - 13
1,1,1-Trichloroethane	50.0000					65 - 13
1,1-Dichloropropene	50.0000	0.0000		96		75 - 13
Carbon tetrachloride	50.0000	0.0000	51.2804	103		65 - 14
1,2-Dichloroethane	50.0000	0.0000	56.9379	114		70 - 13
Benzene	50.0000	0.0000	52.6986	105		80 - 12
Trichloroethene	50.0000	0.0000	50.8707	102		70 - 12
1,2-Dichloropropane	50.0000	0.0000	54.2931	109		75 - 12
Dibromomethane	50.0000	0.0000	57.3994	115		75 - 12
Bromodichloromethane	50.0000	0.0000	55.0284	110		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	55.1982	110		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	60.1964	120		60 - 13
Toluene	50.0000	0.0000	52.3836	105		75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	56.2085	112		55 - 14
1,1,2-Trichloroethane	50.0000	0.0000	56.2866	113		75 - 12
1,3-Dichloropropane	50.0000	0.0000	57.5098	115		75 - 12
Tetrachloroethene	50.0000	0.0000	54.2716	109		45 - 15
2-Hexanone	50.0000	0.0000	59.4570	119		55 - 13
Dibromochloromethane	50.0000	0.0000	55.9876	112		60 - 13
1,2-Dibromoethane	50.0000	0.0000	56.8349	114		80 - 12
Chlorobenzene	50.0000	0.0000				80 - 12
1,1,1,2-Tetrachloroethane	50.0000	0.0000				80 - 13
Ethylbenzene	50.0000	0.0000	100			75 - 12
m,p-Xylene	100.0000	0.0000				75 - 13
o-Xylene	50.0000	0.0000				80 - 12

EPA SAMPLE NO.

WATER LABORATORY CONTROL SAMPLE RECOVERY

V1WLCS

Lab	Name:	MITKEM LABOR.	ATORIES	Contract:					
Lab	Code:	MITKEM	Case No.:	Mod. Ref No.:	SDG No.:	MG2115			
Lab	Sample	ID: LCS-40	195	LCS Lot No.:					

Date Extracted: 11/19/2008

Date Analyzed (1): 11/19/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	159.1303	106		81 - 121
Styrene	50.0000	0.0000	55.6733	111		65 - 135
Bromoform	50.0000	0.0000	58.1158	116		70 - 130
Isopropylbenzene	50.0000	0.0000	52.8264	106		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	55.9477	112		65 - 130
Bromobenzene	50.0000	0.0000	52.4956	105		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	56.6976	113		75 - 125
n-Propylbenzene	50.0000	0.0000	48.9510	98		70 - 130
2-Chlorotoluene	50.0000	0.0000	50.6129	101		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	50.5781	101		75 - 130
4-Chlorotoluene	50.0000	0.0000	51.0337	102		75 - 130
tert-Butylbenzene	50.0000	0.0000	52.2897	105		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	51.6759	103		75 - 130
sec-Butylbenzene	50.0000	0.0000	50.1255	100		70 - 125
4-Isopropyltoluene	50.0000	0.0000				75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	50.6969	101		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	51.0794	102		75 - 125
n-Butylbenzene	50.0000	0.0000	49.3177	99		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	51.6942	103		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	54.2437	108		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	47.9869	96		65 - 135
Hexachlorobutadiene	50.0000	0.0000	46.1402	92		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	43.2256	86		55 - 140
Naphthalene	50.0000	0.0000	45.8552	92		55 - 140

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

SPIKE

ADDED

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

EPA SAMPLE NO.

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

LCSD

VIWLCSD

Lab	Name:	MITKEM	LABORATORIES

Contract:

LCS Lot No.:

58.1157

55.8336

56.2560

53.1349

56.4047

60.0632

52.8258

42.3763

54.4836

RPD

40

40

40

40

40

40

40

40

40

SRPD #

3

5

10

4

5

2

9

11

24

Lab Code: MITKEM

Case No.:

Mod. Ref No.:

CONCENTRATION LCSD %REC #

116

112

113

106

113

120

106

85

109

SDG No.: MG2115

QC LIMITS

REC.

30 - 155

40 - 125 50 - 145

30 - 145

60 - 135

60 - 145

70 - 130

40 - 140

72 - 121

Lab Sample ID:

LCSD-40195

COMPOUND

Dichlorodifluoromethane

Trichlorofluoromethane

1,1-Dichloroethene

Chloromethane

Bromomethane

Chloroethane

Iodomethane

Acetone

Vinyl chloride

TOTOTILE CHAILE	50.0000	54.4050	109	9	40	1/2 - 121
Carbon disulfide	50.0000	56.8924	114	12	40	35 - 160
Methylene chloride	50.0000	54.1396	108	1	40	55 - 140
trans-1,2-Dichloroethene	50.0000	53.3398	107	6	40	60 - 140
Methyl tert-butyl ether	50.0000	55.4244	111	5	40	65 - 125
1,1-Dichloroethane	50.0000	54.7610	110	4	40	70 - 135
Vinyl acetate	50.0000	55.8604	112	4	40	38 - 163
2-Butanone	50.0000	49.6086	99	17	40	30 - 150
cis-1,2-Dichloroethene	50.0000	54.4138	109	3	40	70 - 125
2,2-Dichloropropane	50.0000	56.6986	113	6	40	70 - 135
Bromochloromethane	50.0000	53.8225	108	2	40	65 - 130
Chloroform	50.0000	55.5162	111	4	40	65 - 135
1,1,1-Trichloroethane	50.0000	56.1571	112	5	40	65 - 130
1,1-Dichloropropene	50.0000	53.2071	106	10	40	75 - 130
Carbon tetrachloride	50.0000	54.4214	109	6	40	65 - 140
1,2-Dichloroethane	50.0000	55.6283	111	3	40	70 - 130
Benzene	50.0000	54.8247	110	5	40	80 - 120
Trichloroethene	50.0000	53.3302	107	5	40	70 - 125
1,2-Dichloropropane	50.0000	55.1598	110	1	40	75 - 125
Dibromomethane	50.0000	55.6585	111	4	40	75 - 125
Bromodichloromethane	50.0000	53.4874	107	3	40	75 - 120
cis-1,3-Dichloropropene	50.0000	55.6289	111	1	40	70 - 130
4-Methyl-2-pentanone	50.0000	52.5844	105	13	40	60 - 135
Toluene	50.0000	54.1543	108	3	40	75 - 120
trans-1,3-Dichloropropene	50.0000	55.7358	111	1	40	55 - 140
1,1,2-Trichloroethane	50.0000	53.9317	108	5	40	75 - 125
1,3-Dichloropropane	50.0000	55.3271	111	4	40	75 - 125
Tetrachloroethene	50.0000	56.3063	113	4	40	45 - 150
2-Hexanone	50.0000	53.7483	107	11	40	55 - 130
Dibromochloromethane	50.0000	55.2143	110	2	40	60 - 135
1,2-Dibromoethane	50.0000	54.3484	109	4	40	80 - 120
Chlorobenzene	50.0000	55.5207	111	4	40	80 - 120
1,1,1,2-Tetrachloroethane	50.0000	55.4849	111	4	40	80 - 130
Ethylbenzene	50.0000	54.7465	109	2	40	75 - 125
m,p-Xylene	100.0000	111.4249	111	5	40	75 - 130
o-Xylene	50.0000	54.8122	110	5	40	80 - 120
Xylene (Total)	150.0000	166.2371	111	5	40	81 - 121
Styrene	50.0000	57.0092	114	3	40	65 - 135
					SW84	

#### 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

V1WLCSD

Lab	Lab Name: MITKEM LABORATORIES		TORIES	Contract:						
Lab	Code:	MITKEM	Case No.:	Mod. Ref No.:	SDG No.:	MG2115				
Lab	Sample	ID: LCSD-40	195	LCS Lot No.:						

	SPIKE	LCSD	~			QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #		
COMPOUND						RPD	REC.
Bromoform	50.0000	55.0617	110		5	40	70 - 130
Isopropylbenzene	50.0000	55.8492	112		6	40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	52.6758	105		6	40	65 - 130
Bromobenzene	50.0000	54.4300	109		4	40	75 - 125
1,2,3-Trichloropropane	50.0000	52.8294	106		6	40	75 - 125
n-Propylbenzene	50.0000	52.3250	105		7	40	70 - 130
2-Chlorotoluene	50.0000	53.6898	107		6	40	75 - 125
1,3,5-Trimethylbenzene	50.0000	54.8300	110		9	40	75 - 130
4-Chlorotoluene	50.0000	54.5124	109		7	40	75 - 130
tert-Butylbenzene	50.0000	56.0285	112		6	40	70 - 130
1,2,4-Trimethylbenzene	50.0000	55.3130	111		7	40	75 - 130
sec-Butylbenzene	50.0000	54.3370	109		9	40	70 - 125
4-Isopropyltoluene	50.0000	54.5922	109		7	40	75 - 130
1,3-Dichlorobenzene	50.0000	53.8129	108		7	40	75 - 125
1,4-Dichlorobenzene	50.0000	53.7264	107		5	40	75 - 125
n-Butylbenzene	50.0000	53.6350	107		8	40	70 - 135
1,2-Dichlorobenzene	50.0000	53.9912	108		5	40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	51.2043	102		6	40	50 - 130
1,2,4-Trichlorobenzene	50.0000	51.0516	102		6	40	65 - 135
Hexachlorobutadiene	50.0000	49.6397	99		7	40	50 - 140
1,2,3-Trichlorobenzene	50.0000	48.5002	97		12	40	55 - 140
Naphthalene	50.0000	47.5568	95		3	40	55 - 140

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 68 outside limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

#### 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

V1XLCS

Lab	Name:	MITKEM LABORATORIES		Contract:					
Lab	Code:	MITKEN	M Case No.:	Mod. Ref No.: SI	DG No.: MG2115				
Lab	Sample	ID:	LCS-40199	LCS Lot No.:					
Date	e Extra	cted:	11/19/2008	Date Analyzed (1): 11/20/2	008				

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
			, ,			REC.
Dichlorodifluoromethane	50.0000	0.0000	53.3821			30 - 1
Chloromethane	50.0000	0.0000	52.2588	105		40 - 12
Vinyl chloride	50.0000	0.0000	52.5892			50 - 14
Bromomethane	50.0000	0.0000	50.1206			30 - 14
Chloroethane	50.0000	0.0000	54.0210			60 - 1:
Trichlorofluoromethane	50.0000	0.0000	55.6437			60 - 1
1,1-Dichloroethene	50.0000	0.0000	56.2746			70 - 1
Acetone	50.0000	0.0000	42.1600	1		40 - 1
Iodomethane	50.0000	0.0000	52.2381			72 - 12
Carbon disulfide	50.0000	0.0000				35 - 1
Methylene chloride	50.0000					55 - 1
trans-1,2-Dichloroethene	50.0000					60 - 1
Methyl tert-butyl ether	50.0000					65 - 1:
1,1-Dichloroethane	50.0000					70 - 1
Vinyl acetate	50.0000		51.8692		1	38 - 1
2-Butanone	50.0000		46.0760			30 - 1
cis-1,2-Dichloroethene	50.0000		52.2043			70 - 1
2,2-Dichloropropane	50.0000			1		70 - 1
Bromochloromethane	50.0000					65 - 13
Chloroform	50.0000					65 - 13
1,1,1-Trichloroethane	50.0000	0.0000	53.8582	1.08		65 - 13
1,1-Dichloropropene	50.0000	0.0000	50.3181	101		75 - 13
Carbon tetrachloride	50.0000	0.0000	51.5431	103		65 - 14
1,2-Dichloroethane	50.0000	0.0000	53.4133	107		70 - 13
Benzene	50.0000	0.0000	53.2673	107		80 - 12
Trichloroethene	50.0000	0.0000	51.4340	103		70 - 12
1,2-Dichloropropane	50.0000	0.0000	53.2276	106		75 - 12
Dibromomethane	50.0000	0.0000	50.7633	102		75 - 12
Bromodichloromethane	50.0000		51.9783	104		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	51.0426	102		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	47.4175	95		60 - 13
Toluene	50.0000	0.0000	52.4658			75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	49.5699	99		55 - 14
1,1,2-Trichloroethane	50.0000		51.6777	103		75 - 12
1,3-Dichloropropane	50.0000			107		75 - 12
Tetrachloroethene	50.0000		55.4046			45 - 15
2-Hexanone	50.0000	0.0000	47.1401	94		55 - 13
Dibromochloromethane	50.0000	0.0000	50.5672	101		60 - 13
1,2-Dibromoethane	50.0000	0.0000	52.7989	106		80 - 12
Chlorobenzene	50.0000	0.0000	53.8235	108		80 - 12
1,1,1,2-Tetrachloroethane	50.0000	0.0000	53.1838	106		80 - 13
Ethylbenzene	50.0000	0.0000	53.1377	106		75 - 12
m,p-Xylene	100.0000	0.0000	108.0253	108		75 - 13
o-Xylene	50.0000	0.0000	54.2127	108		80 - 12

#### 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

____

V1XLCS

Lab Name:		MITKEM	LABORATORIES	Contract:		
Lab	Code:		Case No.:	Mod. Ref No.:	SDG No.:	MG2115
Lab	Sample	ID:	LCS-40199	LCS Lot No.:		

Date Extracted: 11/19/2008

-----

Date Analyzed (1): 11/20/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	162.2380	108		81 - 121
Styrene	50.0000	0.0000	54.5590	109		65 - 135
Bromoform	50.0000	0.0000	46.1667	92		70 - 130
Isopropylbenzene	50.0000	0.0000	52.7045	105		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	48.7429	97		65 - 130
Bromobenzene	50.0000	0.0000	52.3177	105		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	43.7982	88		75 - 125
n-Propylbenzene	50.0000	0.0000	51.0776	102		70 - 130
2-Chlorotoluene	50.0000	0.0000	52.5421	105		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	52.7104	105		75 - 130
4-Chlorotoluene	50.0000	0.0000	52.0135	104		75 - 130
tert-Butylbenzene	50.0000	0.0000	52.5023	105		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	52.5842	105		75 - 130
sec-Butylbenzene	50.0000	0.0000	51.1973	102		70 - 125
4-Isopropyltoluene	50.0000	0.0000	50.7862	102		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	50.6726	101		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000	50.6919	101		75 - 125
n-Butylbenzene	50.0000	0.0000	48.9141	98		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	51.0426	102		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	45.7610	92		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	45.9976	92		65 - 135
Hexachlorobutadiene	50.0000	0.0000	45.5728	91		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	40.2838	81		55 - 140
Naphthalene	50.0000	0.0000	40.1293	80		55 - 140

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

EPA SAMPLE NO.

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

V1XLCSD

Lab Name:	MITKEM LABORATO	ORIES	Со	ntrac	t:	 	
Lab Code:	MITKEM Ca	ase No.:	Моо	d. Re:	f No.:	 SDG No.:	MG2115

Lab Sample ID:

LCSD-40199

LCS Lot No.:

Styrene

Ø	il and	

65 - 135

40

SW846

	SPIKE	LCSD		ш	ו חחחפ	QC	LIMITS
COMPOSING	ADDED	CONCENTRATION	LCSD %REC	#	%RPD #	RPD	REC.
COMPOUND	50.0000	60.0606	100		10	40	30 - 155
Dichlorodifluoromethane	50.0000				13 5	40	40 - 125
Chloromethane	50.0000			•	5	40	50 - 145
Vinyl chloride	50.0000				5	40	30 - 145 30 - 145
Bromomethane	50.0000				5	40	30 - 143 60 - 135
Chloroethane	50.0000				6	40	60 - 135 60 - 145
Trichlorofluoromethane	50.0000				5	40	70 - 130
1,1-Dichloroethene	50.0000		119		9	40	10 - 130 40 - 140
Acetone	50.0000				9		
Iodomethane	50.0000					40	72 - 121
Carbon disulfide	50.0000				4	40	35 - 160
Methylene chloride	50.0000				4	40	55 - 140
trans-1,2-Dichloroethene	50.0000				5	40	60 - 140
Methyl tert-butyl ether	50.0000				4	40	65 - 125 70 - 135
1,1-Dichloroethane	50.0000				2	40	
Vinyl acetate	50.0000				3	40	38 - 163
2-Butanone	50.0000				8	40	30 - 150
cis-1,2-Dichloroethene	50.0000				6	40	70 - 125
2,2-Dichloropropane	50.0000				3	40	70 - 135
Bromochloromethane	50.0000		L		2	40	65 - 130
Chloroform	50.0000				3	40	65 - 135
1,1,1-Trichloroethane	50.0000				1	40	65 - 130
1,1-Dichloropropene	50.0000				3	40	75 - 130
Carbon tetrachloride	50.0000				4	40	65 - 140
1,2-Dichloroethane	50.0000				2	40	70 - 130
Benzene	50.0000				3	40	80 - 120
Trichloroethene	50.0000				4	40	70 - 125
1,2-Dichloropropane	50.0000				4	40	75 - 125
Dibromomethane	50.0000				6	40	75 - 125
Bromodichloromethane	50.0000				5	40	75 - 120
cis-1,3-Dichloropropene	50.0000				1	40	70 - 130
4-Methyl-2-pentanone	50.0000				3	40	60 - 135
Toluene	50.0000				3	40	75 - 120
trans-1,3-Dichloropropene	50.0000				3	40	55 - 140
1,1,2-Trichloroethane	50.0000				2	40	75 - 125
1,3-Dichloropropane	50.0000				1	40	75 - 125
Tetrachloroethene	50.0000				3	40	45 - 150
2-Hexanone	50.0000		98		4	40	55 - 130
Dibromochloromethane	50.0000	52.4463			4	40	60 - 135
1,2-Dibromoethane	50.0000	53.3081	107		1	40	80 - 120
Chlorobenzene	50.0000	54.9712	110		2	40	80 - 120
1,1,1,2-Tetrachloroethane	50.0000	55.2016	110		4	40	80 - 130
Ethylbenzene	50.0000	55.4514	111		5	40	75 - 125
m,p-Xylene	100.0000	110.5151	111		3	40	75 - 130
o-Xylene	50.0000	54.9563	110		2	40	80 - 120
Xylene (Total)	150.0000	165.4713	110		2	40	81 - 121
Sturopo	50 0000	55 9402	112		3	40	65 - 135

55.9402

50.0000

112

3

EPA SAMPLE NO.

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

VIXLCSD

Lab	Name:	MITKEN	1 LABORATORIES	Contract:	 	
Lab	Code:	MITKEN	1 Case No.:	Mod. Ref No.:	SDG No.:	MG2115
Lab	Sample	ID:	LCSD-40199	LCS Lot No.:		

	SPIKE	LCSD					QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPI	) #		
COMPOUND		а. С					RPD	REC.
Bromoform	50.0000	47.8901	96		4		40	70 - 130
Isopropylbenzene	50.0000	55.3870	111		6		40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	49.2234	98		1		40	65 - 130
Bromobenzene	50.0000	52.8827	106		1		40	75 - 125
1,2,3-Trichloropropane	50.0000	43.5819	87		1		40	75 - 125
n-Propylbenzene	50.0000	52.7106	105		3		40	70 - 130
2-Chlorotoluene	50.0000	53.5942	107		2		40	75 - 125
1,3,5-Trimethylbenzene	50.0000	54.1823	108		3		40	75 - 130
4-Chlorotoluene	50.0000	53.9888	108		4		40	75 - 130
tert-Butylbenzene	50.0000	54.4795	109		4		40	70 - 130
1,2,4-Trimethylbenzene	50.0000	54.4864	109		4		40	75 - 130
sec-Butylbenzene	50.0000	53.3779	107		5		40	70 - 125
4-Isopropyltoluene	50.0000	52.8788	106		4		40	75 - 130
1,3-Dichlorobenzene	50.0000	52.4449	105		4		40	75 - 125
1,4-Dichlorobenzene	50.0000	53.4220	107		6		40	75 - 125
n-Butylbenzene	50.0000	50.9091	102		4		40	70 - 135
1,2-Dichlorobenzene	50.0000	52.2518	105		3		40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	47.0331	94		2		40	50 - 130
1,2,4-Trichlorobenzene	50.0000	48.0566	96		4		40	65 - 135
Hexachlorobutadiene	50.0000	46.0118	92		1		40	50 - 140
1,2,3-Trichlorobenzene	50.0000	42.7247	85		5		40	55 - 140
Naphthalene	50.0000	42.8781	86		7		40	55 - 140

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 68 outside limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

#### 3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY

EPA SAMPLE NO.

V1YLCS

Lab Name:	MITKEM	LABORATORIES		Contract:			
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:		SDG No.:	MG2115
Lab Sample	e ID: _	LCS-40217	-	LCS Lot No.:			

	SPIKE	SAMPLE	LCS			Ç
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LI
						R
Dichlorodifluoromethane	50.0000	0.0000	61.7654	124		30
Chloromethane	50.0000	0.0000	52.2467	104		40
Vinyl chloride	50.0000	0.0000	51.6064	103		50
Bromomethane	50.0000	0.0000	48.2557	97		30
Chloroethane	50.0000	0.0000	51.6422	103		60
Trichlorofluoromethane	50.0000	0.0000	55.0773	110		60
1,1-Dichloroethene	50.0000	0.0000	55.4387	111		70
Acetone	50.0000	0.0000	47.2494	94		40
Iodomethane	50.0000	0.0000	50.0197	100		72
Carbon disulfide	50.0000	0.0000	52.3649	105		35
Methylene chloride	50.0000	0.0000	51.9077	104		55
trans-1,2-Dichloroethene	50.0000	0.0000	51.0380	102		60
Methyl tert-butyl ether	50.0000	0.0000	52.7657	106		65
1,1-Dichloroethane	50.0000	0.0000	52.0207	104		70
Vinyl acetate	50.0000	0.0000	52.7745	106		38
2-Butanone	50.0000	0.0000	52.7266	105		30
cis-1,2-Dichloroethene	50.0000	0.0000	51.9998	104		70
2,2-Dichloropropane	50.0000	0.0000	49.2507	99		70
Bromochloromethane	50.0000	0.0000	53.5616	107		65
Chloroform	50.0000	0.0000	52.2959	105		65
1,1,1-Trichloroethane	50.0000	0.0000	53.7100	107		65
1,1-Dichloropropene	50.0000	0.0000	50.8909	102		75
Carbon tetrachloride	50.0000	0.0000	51.6007	103		65
1,2-Dichloroethane	50.0000	0.0000	52.8368	106		70
Benzene	50.0000	0.0000	52.4505	105		80
Trichloroethene	50.0000	0.0000	51.3169	103		70
1,2-Dichloropropane	50.0000	0.0000	52.6781	105		75
Dibromomethane	50.0000	0.0000	53.8660	108		75
Bromodichloromethane	50.0000	0.0000	51.7514	104		75
cis-1,3-Dichloropropene	50.0000		50.9676			70
4-Methyl-2-pentanone	50.0000		53.6110			60
Toluene	50.0000		51.9429			75
trans-1,3-Dichloropropene	50.0000					55
1,1,2-Trichloroethane	50.0000		54.5640			75
1,3-Dichloropropane	50.0000		53.0102			75
Tetrachloroethene	50.0000		56.0242			45
2-Hexanone	50.0000		53.4875			55
Dibromochloromethane	50.0000	0.0000	50.4195	101		60
1,2-Dibromoethane	50.0000	0.0000	54.0246	108		80
Chlorobenzene	50.0000	0.0000	53.1325	106		80
1,1,1,2-Tetrachloroethane	50.0000	0.0000	52.8922	106		80
Ethylbenzene	50.0000	0.0000	53.0950	106		75
m,p-Xylene	100.0000	0.0000	107.5184	108		75
o-Xylene	50.0000	0.0000	53.6275	107		80

EPA SAMPLE NO.

____

WATER	LABORA	TORY	CONTROL	
S.	AMPLE R	RECOV	ERY	

V1YLCS

Lab Name:	MITKEM LABORATORIES	Contract:	
Lab Code:	MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2115
Lab Sample	ID: LCS-40217	LCS Lot No.:	

Date Extracted: 11/20/2008

Date Analyzed (1): 11/20/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	161.1459	107		81 - 121
Styrene	50.0000	0.0000	54.0673	108		65 - 135
Bromoform	50.0000	0.0000	46.3825	93		70 - 130
Isopropylbenzene	50.0000	0.0000	52.9780	106		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	51.6846	103		65 - 130
Bromobenzene	50.0000			105		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	43.7928	88		75 - 125
n-Propylbenzene	50.0000	0.0000	51.4599	103	l	70 - 130
2-Chlorotoluene	50.0000	0.0000	51.7582	104		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000	51.7511	104		75 - 130
4-Chlorotoluene	50.0000	0.0000		107		75 - 130
tert-Butylbenzene	50.0000	0.0000	52.1033	104		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	51.7478	103		75 - 130
sec-Butylbenzene	50.0000					70 - 125
4-Isopropyltoluene	50.0000	0.0000	51.5049	103		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	50.5888	101		75 - 125
1,4-Dichlorobenzene	50.0000	0.000	51.6725			75 - 125
n-Butylbenzene	50.0000	0.0000		101		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	51.1861	102		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	47.5741	95		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000	45.8119	92		65 - 135
Hexachlorobutadiene	50.0000	0.0000				50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	42.3469	85		55 - 140
Naphthalene	50.0000	0.0000	42.9074	86		55 - 140

 $\ensuremath{\texttt{\#}}$  Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY EPA SAMPLE NO.

V1YLCSD

Name: MITKEM LABORATORIES		Contract	:		B		
Code: MITKEM Case No	).:	Mod. Ref	No.:	SDG No.: MG2115			
Sample ID: LCSD-40217		LCS Lot N	No.:				
	SPIKE	LCSD			QC LIMITS		
	ADDED	CONCENTRATION	LCSD %REC	# %RPD #	_		
COMPOUND					RPD	REC.	
Dichlorodifluoromethane	50.0000	57.8989	116	7	40	30 - 155	
Chloromethane	50.0000	53.4562	107	3	40	40 - 125	
Vinyl chloride	50.0000	53.9415	108	5	40	50 - 145	
Bromomethane	50.0000	49.0830	98	1	40	30 - 145	
Chloroethane	50.0000	54.5912	109	6	40	60 - 135	
Trichlorofluoromethane	50.0000		109	1	40	60 - 145	
1,1-Dichloroethene	50.0000		112	1	40	70 - 130	
Acetone	50.0000	46.0279	92	2	40	40 - 140	
Iodomethane	50.0000	53.1273	106	6	40	72 - 121	
Carbon disulfide	50.0000	77.1849	154	38	40	35 - 160	
Methylene chloride	50.0000	52.2664	105	1	40	55 - 140	
trans-1,2-Dichloroethene	50.0000	51.8237	104	2	40	60 - 140	
Methyl tert-butyl ether	50.0000	54.0255	108	2	40	65 - 125	
1,1-Dichloroethane	50.0000	53.4349	107	3	40	70 - 135	
Vinyl acetate	50.0000	53.7237	107	1	40	38 - 163	
2-Butanone	50.0000	52.8146	106	1	40	30 - 150	
cis-1,2-Dichloroethene	50.0000	54.0601	108	4	40	70 - 125	
2,2-Dichloropropane	50.0000	49.2650	99	0	40	70 - 135	
Bromochloromethane	50.0000	53.7796	108	1	40	65 - 130	
Chloroform	50.0000	53.1722	106	1	40	65 - 135	
1,1,1-Trichloroethane	50.0000	54.3505	109	2	40	65 - 130	
1,1-Dichloropropene	50.0000	52.1189	104	2	40	75 - 130	
Carbon tetrachloride	50.0000	52.5136	105	2	40	65 - 140	
1,2-Dichloroethane	50.0000	53.3849	107	1	40	70 - 130	
Benzene	50.0000	53.6928	107	2	40	80 - 120	
Trichloroethene	50.0000	53.3390	107	4	40	70 - 125	
1,2-Dichloropropane	50.0000	53.9254	108	3	40	75 - 125	
Dibromomethane	50.0000			0	40	75 - 125	
Bromodichloromethane	50.0000	52.9468	106	2	40	75 - 120	
cis-1,3-Dichloropropene	50.0000	51.8194	104	2	40	70 - 130	
4-Methyl-2-pentanone	50.0000	53.9630	108	1	40	60 - 135	
Toluene	50.0000	52.9480	106	2	40	75 - 120	
trans-1,3-Dichloropropene	50.0000	51.8615	104	3	40	55 - 140	
1,1,2-Trichloroethane	50.0000	55.1291	110	1	40	75 - 125	
1,3-Dichloropropane	50.0000	54.5149	109	3	40	75 - 125	
Tetrachloroethene	50.0000	57.1330	114	2	40	45 - 150	

54.5003

51.8763

55.1489

54.1072

53.7824

54.1791

54.0245

108.8299

162.8544

55.1557

50.0000

50.0000

50.0000

50.0000

50.0000

50.0000

100.0000

50.0000

50.0000

150.0000

2-Hexanone

Dibromochloromethane

1,1,1,2-Tetrachloroethane

1,2-Dibromoethane

Chlorobenzene

Ethylbenzene

Xylene (Total)

m,p-Xylene

o-Xylene

Styrene

109

104

110

108

108

108

109

108

109

110

2

3

2

2

2

2

1

1

2

2

40

40

40

40

40

40

40

40

40

40

55 - 130

60 - 135

80 - 120

80 - 120

80 - 130

75 - 125

75 - 130

80 - 120

81 - 121

65 - 135

#### 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

V1YLCSD

# Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2115 Lab Sample ID: LCSD-40217 LCS Lot No.:

· · · · · · · · · · · · · · · · · · ·	SPIKE	LCSD					QC LIMITS		
	ADDED	CONCENTRATION	LCSD %REC	#	%RPI	) #			
COMPOUND							RPD	REC.	
Bromoform	50.0000	47.8221	96		3		40	70 - 130	
Isopropylbenzene	50.0000	53.4320	107		1		40	75 - 125	
1,1,2,2-Tetrachloroethane	50.0000	53.2004	106		3		40	65 - 130	
Bromobenzene	50.0000	53.7561	108		3		40	75 - 125	
1,2,3-Trichloropropane	50.0000	45.0495	90		2		40	75 - 125	
n-Propylbenzene	50.0000	52.4954	105		2		40	70 - 130	
2-Chlorotoluene	50.0000	52.8427	106		2		40	75 - 125	
1,3,5-Trimethylbenzene	50.0000	52.5997	105		1		40	75 - 130	
4-Chlorotoluene	50.0000	53.7240	107		0		40	75 - 130	
tert-Butylbenzene	50.0000				3		40	70 - 130	
1,2,4-Trimethylbenzene	50.0000	53.5380	107		4		40	75 - 130	
sec-Butylbenzene	50.0000	52.4685	105		2		40	70 - 125	
4-Isopropyltoluene	50.0000	52.3756	105		2		40	75 - 130	
1,3-Dichlorobenzene	50.0000	51.9088	104		3		40	75 - 125	
1,4-Dichlorobenzene	50.0000	52.4841	105		2		40	75 - 125	
n-Butylbenzene	50.0000	50.7363	101		0		40	70 - 135	
1,2-Dichlorobenzene	50.0000	52.4787	105		3		40	70 - 120	
1,2-Dibromo-3-chloropropan	50.0000	51.1090	102		7		40	50 - 130	
1,2,4-Trichlorobenzene	50.0000	49.3467	1		7		40	65 - 135	
Hexachlorobutadiene	50.0000	48.4530	97		6		40	50 - 140	
1,2,3-Trichlorobenzene	50.0000	45.1434	90		6		40	55 - 140	
Naphthalene	50.0000	46.9426	94		9		40	55 - 140	

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 68 outside limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

EPA SAMPLE NO.

V1ZLCS

WATER LABORATORY CONTROL SAMPLE RECOVERY

Date Extracted: 11/20/2008

Date Analyzed (1): 11/21/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS REC.
Dichlorodifluoromethane	50.0000	0.0000	47.9206	96	[	30 - 15
Chloromethane	50.0000	0.0000	47.3498	95		40 - 12
Vinyl chloride	50.0000	0.0000	48.5281	97		50 - 14
Bromomethane	50.0000	0.0000	45.3944	91	1	30 - 14
Chloroethane	50.0000	0.0000	49.6616	99		60 - 13
Trichlorofluoromethane	50.0000	0.0000	50.7203	101		60 - 14
1,1-Dichloroethene	50.0000	0.0000	52.2771	105		70 - 13
Acetone	50.0000	0.0000	40.9213	82		40 - 14
Iodomethane	50.0000	0.0000	49.5242	99		72 - 12
Carbon disulfide	50.0000	0.0000	49.5306	99		35 - 10
Methylene chloride	50.0000	0.0000	48.5809	97		55 - 14
trans-1,2-Dichloroethene	50.0000	0.0000	48.6918	97		60 - 14
Methyl tert-butyl ether	50.0000	0.0000	47.2843	95		65 - 12
1,1-Dichloroethane	50.0000	0.0000	48.7009	97		70 - 13
Vinyl acetate	50.0000	0.0000	46.7533	94		38 - 10
2-Butanone	50.0000	0.0000	45.6198	91		30 - 1
cis-1,2-Dichloroethene	50.0000	0.0000	49.8478	100		70 - 12
2,2-Dichloropropane	50.0000	0.0000	38.1613	76		70 - 13
Bromochloromethane	50.0000	0.0000	50.2556	101		65 - 13
Chloroform	50.0000	0.0000	49.6929	99		65 - 13
1,1,1-Trichloroethane	50.0000	0.0000	50.3851	101		65 - 13
1,1-Dichloropropene	50.0000	0.0000	48.0658	96		75 - 13
Carbon tetrachloride	50.0000	0.0000	47.8984	96		65 - 14
1,2-Dichloroethane	50.0000	0.0000	48.7956	98		70 - 13
Benzene	50.0000	0.0000	49.9075	100		80 - 12
Trichloroethene	50.0000	0.0000	48.7629	98		70 - 12
1,2-Dichloropropane	50.0000	0.0000	49.1467	98		75 - 12
Dibromomethane	50.0000	0.0000	48.7830	98		75 - 12
Bromodichloromethane	50.0000	0.0000	47.8177	96		75 - 12
cis-1,3-Dichloropropene	50.0000	0.0000	46.5886	93		70 - 13
4-Methyl-2-pentanone	50.0000	0.0000	45.2631	91		60 - 13
Toluene	50.0000	0.0000	48.7256	97		75 - 12
trans-1,3-Dichloropropene	50.0000	0.0000	45.2000	90		55 - 14
1,1,2-Trichloroethane	50.0000	0.0000	49.2292	98		75 - 12
1,3-Dichloropropane	50.0000		50.3653	101		75 - 12
Tetrachloroethene	50.0000	0.0000	52.7354	105		45 - 1
2-Hexanone	50.0000		44.9779	90		55 - 13
Dibromochloromethane	50.0000		47.3971	95		60 - 13
1,2-Dibromoethane	50.0000		50.4022	101		80 - 12
Chlorobenzene	50.0000		51.4235	103		80 - 12
1,1,1,2-Tetrachloroethane	50.0000		50.3141	101		80 - 13
Ethylbenzene	50.0000			103		75 - 12
m,p-Xylene	100.0000			102		75 - 13
o-Xylene	50.0000					80 - 12

		3 - FORM III WATER LABORATORY CONTROL SAMPLE RECOVERY					EPA SAMPLE NO.				
							VIZLCS	5			
Lab N	Name:	MITKEM LABO	RATORIES		Contract:						
Lab (	Code:	MITKEM	Case No.:		Mod. Ref No.:		SDG No.:	MG2115			
Lab S	Sample	ID: LCS-4	0222		LCS Lot No.:						

Date Extracted: 11/20/2008

Date Analyzed (1): 11/21/2008

	SPIKE	SAMPLE	LCS			QC.
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	LCS %REC	#	LIMITS
						REC.
Xylene (Total)	150.0000	0.0000	152.5747	102		81 - 121
Styrene	50.0000	0.0000	50.8797	102		65 - 135
Bromoform	50.0000	0.0000	41.7918	84		70 - 130
Isopropylbenzene	50.0000	0.0000	50.1277	100		75 - 125
1,1,2,2-Tetrachloroethane	50.0000	0.0000	48.1108	96		65 - 130
Bromobenzene	50.0000	0.0000	49.5109	99		75 - 125
1,2,3-Trichloropropane	50.0000	0.0000	41.1954	82		75 - 125
n-Propylbenzene	50.0000	0.0000	49.6975	99		70 - 130
2-Chlorotoluene	50.0000	0.0000	50.3377	101		75 - 125
1,3,5-Trimethylbenzene	50.0000	0.0000				75 - 130
4-Chlorotoluene	50.0000	0.0000	50.8495	102		75 - 130
tert-Butylbenzene	50.0000	0.0000	50.5722	101		70 - 130
1,2,4-Trimethylbenzene	50.0000	0.0000	49.6373	99		75 - 130
sec-Butylbenzene	50.0000	0.0000	49.0940	98		70 - 125
4-Isopropyltoluene	50.0000	0.0000	48.3683	97		75 - 130
1,3-Dichlorobenzene	50.0000	0.0000	48.7066	97		75 - 125
1,4-Dichlorobenzene	50.0000	0.0000		97		75 - 125
n-Butylbenzene	50.0000	0.0000	45.1023	90		70 - 135
1,2-Dichlorobenzene	50.0000	0.0000	49.1648	98		70 - 120
1,2-Dibromo-3-chloropropan	50.0000	0.0000	42.4252	85		50 - 130
1,2,4-Trichlorobenzene	50.0000	0.0000		86		65 - 135
Hexachlorobutadiene	50.0000			84		50 - 140
1,2,3-Trichlorobenzene	50.0000	0.0000	37.9474	76		55 - 140
Naphthalene	50.0000	0.0000	37.4035	75		55 - 140

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

#### 3 - FORM III WATER LABORATORY CONTROL

EPA SAMPLE NO.

V1ZLCSD

			SAMPLE D	UPLICATE RECOV	VERY			VILL		
Lab Name:	MITKE	M LABORATORI	ES	Contract	:					
Lab Code:	MITKE	M Case	e No.:	Mod. Ref No.:			SDG No.:			
Lab Sample	ID:	D: LCSD-40222			LCS Lot No.:			·		
			SPIKE ADDED	LCSD CONCENTRATION	LCSD %REC	#	%RPD #	QC	LIMITS	
	COI	MPOUND						RPD	REC.	
Dich	lorodif	luoromethane	50.0000	43.7973	88		9	40	30 - 155	
Chlor	rometha	ne	50.0000	51.3220	103		8	40	40 - 125	
Viny	l chlor	ido	50,0000	51,1911	102		5	40	50 - 145	

					30 - 155
50.0000	51.3220		8		40 - 125
	l				50 - 145
					30 - 145
					60 - 135
			8		60 - 145
50.0000			4		70 - 130
					40 - 140
			2		72 - 121
50.0000			4		35 - 160
50.0000	52.2870		8		55 - 140
50.0000	51.4578		6		60 - 140
50.0000	50.6085	101	6	40	65 - 125
50.0000	52.0322	104	7	40	70 - 135
50.0000			6	40	38 - 163
50.0000	50.6472	101	10		30 - 150
50.0000	53.1856	106	6	40	70 - 125
50.0000	39.3020	79	4	40	70 - 135
50.0000	52.6356	105	4	40	65 - 130
50.0000	52.3899	105	6	40	65 - 135
50.0000	52.0667	104	3	40	65 - 130
50.0000	50.8885	102	6	40	75 - 130
50.0000	50.9398	102	6	40	65 - 140
50.0000	52.1818	104	6	40	70 - 130
50.0000	53.0904	106	6	40	80 - 120
50.0000	50.6919	101	3	40	70 - 125
50.0000	52.5719	105	7	40	75 - 125
50.0000	52.8149	106	8	40	75 - 125
50.0000	51.9781	104	8	40	75 - 120
50.0000	49.9677	100	7	40	70 - 130
50.0000	48.0281	96	5	40	60 - 135
50.0000	52.0210	104	7	40	75 - 120
50.0000	49.0739	98	9	40	55 - 140
50.0000	51.2976	103	5	40	75 - 125
50.0000	51.6738	103	2	40	75 - 125
50.0000	54.7109	109	4	40	45 - 150
50.0000	49.0890	98	9	40	55 - 130
50.0000	50.6250	101	6	40	60 - 135
50.0000	53.0455	106	5	40	80 - 120
50.0000	52.9292	106	3	40	80 - 120
50.0000	52.3228	105	4	40	80 - 130
50.0000	53.1998	106	3	40	75 - 125
100.0000	107.0901	107	5	40	75 - 130
50.0000	53.2500	107	5	40	80 - 120
	1.60 0.401	107	E	40	81 - 121
150.0000	160.3401	107	5	40	01 121
	50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000           50.0000 <td< td=""><td>50.0000         51.3220           50.0000         51.1911           50.0000         48.6227           50.0000         53.4632           50.0000         54.7104           50.0000         54.5637           50.0000         50.7183           50.0000         50.7183           50.0000         51.2915           50.0000         52.2870           50.0000         52.0322           50.0000         52.0322           50.0000         52.0322           50.0000         52.6356           50.0000         52.6356           50.0000         52.6356           50.0000         52.3899           50.0000         52.3899           50.0000         52.3899           50.0000         52.3899           50.0000         52.885           50.0000         52.8149           50.0000         52.8149           50.0000         52.8149           50.0000         52.8149           50.0000         52.8149           50.0000         52.0210           50.0000         52.0210           50.0000         52.0210           50.0000         <t< td=""><td>50.0000$51.3220$$103$$50.0000$$51.1911$$102$$50.0000$$48.6227$$97$$50.0000$$53.4632$$107$$50.0000$$54.7104$$109$$50.0000$$54.5637$$109$$50.0000$$54.5637$$109$$50.0000$$50.7183$$101$$50.0000$$51.2915$$103$$50.0000$$51.2915$$103$$50.0000$$52.2870$$105$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0667$$104$$50.0000$$52.0667$$104$$50.0000$$52.0667$$104$$50.0000$$52.0888$$102$$50.0000$$52.0888$$102$$50.0000$$52.0819$$101$$50.0000$$52.0719$$106$$50.0000$$52.0210$$104$$50.0000$$52.0210$$104$$50.0000$$52.0210$$104$$50.0000$$51.2976$$103$$50.0000$$51.29$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>50.0000$51.3220$$103$8$40$$50.0000$$51.1911$$102$$5$$40$$50.0000$$53.4632$$107$$8$$40$$50.0000$$54.7104$$109$$8$$40$$50.0000$$54.5637$$109$$4$$40$$50.0000$$54.5637$$109$$4$$40$$50.0000$$50.7183$$101$$2$$40$$50.0000$$50.7183$$101$$2$$40$$50.0000$$51.2915$$103$$4$$40$$50.0000$$51.2915$$103$$6$$40$$50.0000$$52.2870$$105$$8$$40$$50.0000$$52.0322$$104$$7$$40$$50.0000$$52.0322$$104$$7$$40$$50.0000$$52.0322$$101$$10$$40$$50.0000$$52.0322$$101$$10$$40$$50.0000$$52.6356$$105$$4$$40$$50.0000$$52.6356$$105$$4$$40$$50.0000$$52.667$$104$$3$$40$$50.0000$$52.9398$$102$$6$$40$$50.0000$$52.9398$$102$$6$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$</td></t<></td></td<>	50.0000         51.3220           50.0000         51.1911           50.0000         48.6227           50.0000         53.4632           50.0000         54.7104           50.0000         54.5637           50.0000         50.7183           50.0000         50.7183           50.0000         51.2915           50.0000         52.2870           50.0000         52.0322           50.0000         52.0322           50.0000         52.0322           50.0000         52.6356           50.0000         52.6356           50.0000         52.6356           50.0000         52.3899           50.0000         52.3899           50.0000         52.3899           50.0000         52.3899           50.0000         52.885           50.0000         52.8149           50.0000         52.8149           50.0000         52.8149           50.0000         52.8149           50.0000         52.8149           50.0000         52.0210           50.0000         52.0210           50.0000         52.0210           50.0000 <t< td=""><td>50.0000$51.3220$$103$$50.0000$$51.1911$$102$$50.0000$$48.6227$$97$$50.0000$$53.4632$$107$$50.0000$$54.7104$$109$$50.0000$$54.5637$$109$$50.0000$$54.5637$$109$$50.0000$$50.7183$$101$$50.0000$$51.2915$$103$$50.0000$$51.2915$$103$$50.0000$$52.2870$$105$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0322$$104$$50.0000$$52.0667$$104$$50.0000$$52.0667$$104$$50.0000$$52.0667$$104$$50.0000$$52.0888$$102$$50.0000$$52.0888$$102$$50.0000$$52.0819$$101$$50.0000$$52.0719$$106$$50.0000$$52.0210$$104$$50.0000$$52.0210$$104$$50.0000$$52.0210$$104$$50.0000$$51.2976$$103$$50.0000$$51.29$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>50.0000$51.3220$$103$8$40$$50.0000$$51.1911$$102$$5$$40$$50.0000$$53.4632$$107$$8$$40$$50.0000$$54.7104$$109$$8$$40$$50.0000$$54.5637$$109$$4$$40$$50.0000$$54.5637$$109$$4$$40$$50.0000$$50.7183$$101$$2$$40$$50.0000$$50.7183$$101$$2$$40$$50.0000$$51.2915$$103$$4$$40$$50.0000$$51.2915$$103$$6$$40$$50.0000$$52.2870$$105$$8$$40$$50.0000$$52.0322$$104$$7$$40$$50.0000$$52.0322$$104$$7$$40$$50.0000$$52.0322$$101$$10$$40$$50.0000$$52.0322$$101$$10$$40$$50.0000$$52.6356$$105$$4$$40$$50.0000$$52.6356$$105$$4$$40$$50.0000$$52.667$$104$$3$$40$$50.0000$$52.9398$$102$$6$$40$$50.0000$$52.9398$$102$$6$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$$52.919$$101$$3$$40$$50.0000$</td></t<>	50.0000 $51.3220$ $103$ $50.0000$ $51.1911$ $102$ $50.0000$ $48.6227$ $97$ $50.0000$ $53.4632$ $107$ $50.0000$ $54.7104$ $109$ $50.0000$ $54.5637$ $109$ $50.0000$ $54.5637$ $109$ $50.0000$ $50.7183$ $101$ $50.0000$ $51.2915$ $103$ $50.0000$ $51.2915$ $103$ $50.0000$ $52.2870$ $105$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0322$ $104$ $50.0000$ $52.0667$ $104$ $50.0000$ $52.0667$ $104$ $50.0000$ $52.0667$ $104$ $50.0000$ $52.0888$ $102$ $50.0000$ $52.0888$ $102$ $50.0000$ $52.0819$ $101$ $50.0000$ $52.0719$ $106$ $50.0000$ $52.0210$ $104$ $50.0000$ $52.0210$ $104$ $50.0000$ $52.0210$ $104$ $50.0000$ $51.2976$ $103$ $50.0000$ $51.29$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	50.0000 $51.3220$ $103$ 8 $40$ $50.0000$ $51.1911$ $102$ $5$ $40$ $50.0000$ $53.4632$ $107$ $8$ $40$ $50.0000$ $54.7104$ $109$ $8$ $40$ $50.0000$ $54.5637$ $109$ $4$ $40$ $50.0000$ $54.5637$ $109$ $4$ $40$ $50.0000$ $50.7183$ $101$ $2$ $40$ $50.0000$ $50.7183$ $101$ $2$ $40$ $50.0000$ $51.2915$ $103$ $4$ $40$ $50.0000$ $51.2915$ $103$ $6$ $40$ $50.0000$ $52.2870$ $105$ $8$ $40$ $50.0000$ $52.0322$ $104$ $7$ $40$ $50.0000$ $52.0322$ $104$ $7$ $40$ $50.0000$ $52.0322$ $101$ $10$ $40$ $50.0000$ $52.0322$ $101$ $10$ $40$ $50.0000$ $52.6356$ $105$ $4$ $40$ $50.0000$ $52.6356$ $105$ $4$ $40$ $50.0000$ $52.667$ $104$ $3$ $40$ $50.0000$ $52.9398$ $102$ $6$ $40$ $50.0000$ $52.9398$ $102$ $6$ $40$ $50.0000$ $52.919$ $101$ $3$ $40$ $50.0000$ $52.919$ $101$ $3$ $40$ $50.0000$ $52.919$ $101$ $3$ $40$ $50.0000$ $52.919$ $101$ $3$ $40$ $50.0000$

#### 3 - FORM III WATER LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

EPA SAMPLE NO.

V1ZLCSD

Lab	Name:	MITKEM I	LABORATORIES	Contract:	Contract:						
Lab	Code:	MITKEM	Case No.:	Mod. Ref No.:		SDG No.:	MG2115				
Lab	Sample	ID: LC	CSD-40222	LCS Lot No.:			· · · · · · · · · · · · · · · · · · ·				

	SPIKE	LCSD					QC	LIMITS
	ADDED	CONCENTRATION	LCSD %REC	#	%RPD	#		
COMPOUND							RPD	REC.
Bromoform	50.0000	44.9855	90		7		40	70 - 130
Isopropylbenzene	50.0000	52.3391	105		5		40	75 - 125
1,1,2,2-Tetrachloroethane	50.0000	49.6562	99		3		40	65 - 130
Bromobenzene	50.0000	51.5662	103		4		40	75 - 125
1,2,3-Trichloropropane	50.0000	42.0544	84		2		40	75 - 125
n-Propylbenzene	50.0000	50.2182	100		1		40	70 - 130
2-Chlorotoluene	50.0000	50.3703	101		0		40	75 - 125
1,3,5-Trimethylbenzene	50.0000	50.9286	102		2		40	75 - 130
4-Chlorotoluene	50.0000	52.1585	104		2		40	75 - 130
tert-Butylbenzene	50.0000	51.8788	104		3		40	70 - 130
1,2,4-Trimethylbenzene	50.0000	50.4474	101		2		40	75 - 130
sec-Butylbenzene	50.0000	49.6354	99		1		40	70 - 125
4-Isopropyltoluene	50.0000	49.9504	100		3		40	75 - 130
1,3-Dichlorobenzene	50.0000	49.7596	100		3		40	75 - 125
1,4-Dichlorobenzene	50.0000	50.1554	100		3		40	75 - 125
n-Butylbenzene	50.0000	47.3216	95		5		40	70 - 135
1,2-Dichlorobenzene	50.0000	50.3330	101		3		40	70 - 120
1,2-Dibromo-3-chloropropan	50.0000	47.5483	95		11		40	50 - 130
1,2,4-Trichlorobenzene	50.0000	44.3095	89		3		40	65 - 135
Hexachlorobutadiene	50.0000	44.7559	90		7		40	50 - 140
1,2,3-Trichlorobenzene	50.0000	41.5569	83		9		40	55 - 140
Naphthalene	50.0000	41.5701	83		10		40	55 - 140

# Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 68 outside limits

Spike Recovery: 0 out of 68 outside limits

COMMENTS:

	U.S	S. EPA - CLP	
		5A	EPA SAMPLE NO.
	SPIKE	SAMPLE RECOVERY	SL-MW-2S
Lab Name: Mitkem La	boratories	Contract: 95900-04	
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No.: MG2115
Matrix (soil/water):	WATER	Level (low/med): MED	
% Solids for Sample:	0.0		
-	tion Units (ug/L or mg,	/kq dry weight): UG/L	

	Control		1999				
	Limit	Spiked Sample	Sample	Spike			
Analyte	۶R	Result (SSR) C	Result (SR) C	Added (SA)	%R	Q	М
Aluminum	75-125	10222.2630	265.5990	9100.00	109.4		Р
Antimony	75-125	511.6658	4.6000 U	455.50	112.3		P
Arsenic	75-125	539.8512	5.3000 U	455.50	118.5		Р
Barium	75-125	9926.8792	17.5208 B	9100.00	108.9		P
Beryllium	75-125	259.3750	0.1300 U	227.00	114.3		P
Cadmium	75-125	264.1416	8.7575	227.00	112.5		Р
Chromium	75-125	1094.5267	113.2924	910.00	107.8		Р
Cobalt	75-125	2517.4852	20.3734 B	2270.00	110.0		P
Copper	75-125	1293.0950	18.3977 B	1130.00	112.8		Р
Iron	75-125	8128.4906	3117.2272	4550.00	110.1		Р
Lead	75-125	529.0118	3.3328 B	455.00	115.5		Р
Manganese	75-125	2931.2092	396.1405	2270.00	111.7		Р
Nickel	75-125	3888.3055	1391.1759	2270.00	110.0		P
Selenium	75-125	517.2205	6.6000 U	455.00	113.7		Р
Silver	75-125	1262.1252	0.5900 U	1130.00	111.7		Р
Thallium	75-125	508.9098	4.2000 U	455.00	111.8		Р
Vanadium	75-125	2529.5864	2.7780 B	2270.00	111.3		Р
Zinc	75-125	2595.1756	44.4349 B	2270.00	112.4		P
Mercury	75-125	4.3527	0.0160 U	4.55	95.7		CV

Comments:

_____

			U.S. E	PA - CLP			
6				6		EPA SAMPLE NO	•
			DUPL	ICATES		SL-MW-2D	
Lab Name:	Mitkem Laboratories			Contract:	95900-04		
Lab Code:	MITKEM	Case No.:		SAS No.:		SDG No.: MG2115	5
Matrix (so	il/water):	WATER		Level (low,	/med): MED		
% Solids for Ṣample: 0.0				% Solids for Duplicate: 0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L

	Control							
Analyte	Limit	Sample (S)	C	Duplicate (D)	С	RPD	0	м
211-12-12-12-12-12-12-12-12-12-12-12-12-		~				9.9		P
Aluminum	200.0	265.5990		240.6172		9.9		
Antimony		4.6000		4.6000				P
Arsenic		5.3000	U	5.3000				P
Barium		17.5208		16.0546		8.7		P
Beryllium		0.1300	U	0.1300	U			P
Cadmium	5.0	8.7575		2.9883	В	98.2	*	Р
Calcium		15324.5137		15535.2101		1.4		P
Chromium	20.0	113.2924		83.3294		30.5	*	Р
Cobalt		20.3734	В	20.3203	В	0.3		Р
Copper		18.3977	В	18.2741	В	0.7		P
Iron		3117.2272		3104.9400		0.4		Р
Lead		3.3328	В	2.9564	В	12		Р
Magnesium	500.0	1251.2513		1302.8475		4		P
Manganese		396.1405		412.6657		4.1		P
Nickel		1391.1759		1432.8127		2.9		Р
Potassium	1000.0	1975.3187		2051.6321		3.8		Р
Selenium		6.6000	U	6.6000	U			Р
Silver		0.5900	U	0.5900	U			Р
Sodium		14591.2956		15126.1374		3.6		P
Thallium		4.2000	U	4.2000	U			Р
Vanadium	-	2.7780	В	2.5809	В	7.4		Р
Zinc		44.4349	В	36.7439	В	18.9		Р
Mercury		0.0160	U	0.0160	U			CV

•

## 4A - FORM IV VOA

EPA SAMPLE NO.

VOLATILE METHOD BLANK SUMMARY

VBLK1W

Lab Name:	MITKEM	I LABORATC	RIES			Contract:		
Lab Code:	MITKEM	I Ca	se No.:			Mod. Ref No.:		SDG No.: MG2115
Lab File I	D:	V1K1733.C				Lab Sample ID:	MB-40195	
Instrument	ID:	V1						
Matrix: (S	SOIL/SEE	/WATER)	WATER			Date Analyzed:	11/19/20	08
Level: (TR	ACE or	LOW/MED)	LOW			Time Analyzed:	17:58	
GC Column:	DB-62	24	ID:	0.25	(mm)	Heated Purge: ()	(/N) N	

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V1WLCS	LCS-40195	V1K1734.D	18:27
02	V1WLCSD	LCSD-40195	V1K1735.D	18:56
03	SL-MW-11	G2115-01A	V1K1752.D	03:09
04	SL-MW-23S	G2115-03A	V1K1753.D	03:38

COMMENTS:

#### 1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK1W

Lab Name: MITKEM LABORATOR	TEC			Contract:			
Lab Name: MITREM LABORATOR.		<u>.</u>		Contract:			
Lab Code: MITKEM Cas	e No.:			Mod. Ref No.:		SDG No.:	MG2115
Matrix: (SOIL/SED/WATER) W	ATER			Lab Sample ID:	MB-40195		
Sample wt/vol: 5.00 (	(g/mL)	ML		Lab File ID:	V1K1733.C	)	
Level: (TRACE/LOW/MED) LOW				Date Received:			
% Moisture: not dec.		-		Date Analyzed:	11/19/200	8	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	-	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:		(uL)
Purge Volume: 5.0			(mL)				

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	_ Q
75-71-8	B Dichlorodifluoromethane	5.0	U
74-87-3	3 Chloromethane	5.0	υ
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	3 Chloroethane	5.0	U
75-69-4	1 Trichlorofluoromethane	5.0	υ
75-35-4	1,1-Dichloroethene	5.0	υ
67-64-1	Acetone	5.0	U
74-88-4	l Iodomethane	5.0	ט
75-15-0	) Carbon disulfide	5.0	U
75-09-2	2 Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	3 1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
	5 1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

### 1B - FORM I VOA-2

EPA SAMPLE NO.

VBLK1W

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATEF	WATER			Lab Sample ID:	MB-40195
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1733.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	******
% Moisture: not dec.				Date Analyzed:	11/19/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

	T	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	_ Q
	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

#### EPA SAMPLE NO.

#### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

VBLK1W

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.:	MG2115
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	MB-40195	
Sample wt/vol: 5.00 (g/mL) M	1L	Lab File ID:	V1K1733.D	
Level: (TRACE or LOW/MED) LOW		Date Received:		
% Moisture: not dec.		Date Analyzed:	11/19/2008	
GC Column: DB-624 ID: 0	).25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg)	UG/L	Purge Volume: 5.	0	(mL)
CAS NUMBER COMPOUND N	AME	RT	EST. CONC.	Q
01 Unknown-01		12.753	34	J
E9667961Total Alkanes		N/A		

E966/96 |Total Alkanes ¹EPA-designated Registry Number.

#### EPA SAMPLE NO.

## 4A - FORM IV VOA

VOLATILE METHOD BLANK SUMMARY

VBLK1X

Lab Name:	MITKEM	1 LABORATO	RIES			Contract:	
Lab Code:	MITKEM	1 Ca	ase No.:			Mod. Ref No.:	SDG No.: MG2115
Lab File I	D:	V1K1759.D	)			Lab Sample ID:	MB-40199
Instrument	ID:	V1					
Matrix: (S	OIL/SEI	O/WATER)	WATER			Date Analyzed:	11/20/2008
Level: (TR	ACE or	LOW/MED)	LOW			Time Analyzed:	06:33
GC Column:	DB-62	24	ID:	0.25	(mm)	Heated Purge: ()	//N) <u>N</u>

[	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V1XLCS	LCS-40199	V1K1760.D	07:02
02	V1XLCSD	LCSD-40199	V1K1761.D	07:31
03	TB-1	G2115-02A	V1K1763.D	08:52
04	тв-2	G2115-11A	V1K1764.D	09:21
05	SL-MW-12	G2115-06A	V1K1767.D	10:48
06	SL-MW-13	G2115-07A	V1K1768.D	11:17
07	SL-MW-73D	G2115-08A	V1K1769.D	11:46
08	SL-MW-4	G2115-09A	V1K1770.D	12:15
09	SL-MW-6B	G2115-10A	V1K1771.D	12:44
10	SL-MW-6A	G2115-12A	V1K1772.D	13:12
11	SL-MW-2	G2115-14A	V1K1777.D	15:38
12	SL-MW-2MS	G2115-14AMS	V1K1778.D	16:07
13	SL-MW-2MSD	G2115-14AMSD	V1K1779.D	16:36

COMMENTS:

Page 1 of 1

#### 1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		VOLAI	ILE ORG	ANICS	ANALYSIS DATA SHE	CET VBLK1X
Lab Name:	MITKEM LABORA	TORIES			Contract:	
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	MB-40199
Sample wt/	vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K1759.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	
% Moisture	: not dec.				Date Analyzed:	11/20/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volu	me: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ú
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	υ
	Dibromomethane	5.0	υ
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	U

#### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK1X

Lab Name:	MITKEM LABOR	ATORIES			Contract:			
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:		SDG No.:	MG2115
Matrix: (So	OIL/SED/WATER	.) WATER			Lab Sample ID:	MB-40199		
Sample wt/	vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1759.D	)	
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:			
% Moisture	: not dec.				Date Analyzed:	11/20/200	18	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0		
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:		(uL)
Purge Volu	me: 5.0			(mL)				

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/	L	Q
127-18-4	Tetrachloroethene	5.	.0 U	l
591-78-6	2-Hexanone	5.	.0 U	[
124-48-1	Dibromochloromethane	5.	.0 U	1
106-93-4	1,2-Dibromoethane	5.	. O U	ſ
108-90-7	Chlorobenzene	5.	0 U	1
630-20-6	1,1,1,2-Tetrachloroethane	5.	.0 U	
100-41-4	Ethylbenzene	5.	.0 U	F
1330-20-7	m,p-Xylene	5.	.0 U	[
95-47-6	o-Xylene	5.	0 U	[
	Xylene (Total)	5.	0 0	
100-42-5	Styrene	5.	0 U	ſ
75-25-2	Bromoform	5.	0 U	
98-82-8	Isopropylbenzene	5.	0 U	
79-34-5	1,1,2,2-Tetrachloroethane	5.	0 U	
108-86-1	Bromobenzene	5.	0 U	
96-18-4	1,2,3-Trichloropropane	5.	0 U	
103-65-1	n-Propylbenzene	5.	0 U	
95-49-8	2-Chlorotoluene	5.	0 U	
108-67-8	1,3,5-Trimethylbenzene	5.	0 U	
106-43-4	4-Chlorotoluene	5.	0 Ū	·····
98-06-6	tert-Butylbenzene	5.	0 U	
	1,2,4-Trimethylbenzene	5.	0 U	
135-98-8	sec-Butylbenzene	5.	0 U	
99-87-6	4-Isopropyltoluene	5.	0 U	
541-73-1	1,3-Dichlorobenzene	5.	0 U	
106-46-7	1,4-Dichlorobenzene	5.	0 U	·····
104-51-8	n-Butylbenzene	5.	0 U	`
95-50-1	1,2-Dichlorobenzene	5.	0 U	
96-12-8	1,2-Dibromo-3-chloropropane	5.	0 U	
	1,2,4-Trichlorobenzene	5.	0 U	
	Hexachlorobutadiene	5.		
87-61-6	1,2,3-Trichlorobenzene	5.	0 0	
	Naphthalene	5.	0 U	

#### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLK1X

Lab Name: MITKEM LABORATO	RIES	Contract:	i
Lab Code: MITKEM Ca	se No.:	Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	MB-40199
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V1K1759.D
Level: (TRACE or LOW/MED)	LOW	Date Received:	
% Moisture: not dec.	-	Date Analyzed:	11/20/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume:(uL)
CONCENTRATION UNITS: (ug/L	or ug/Kg) UG/L	Purge Volume: 5.	.0 (mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC. Q
01 Unknown-01		12.757	19 J
E966796 ¹ Total Alka	nes	N/A	

¹EPA-designated Registry Number.

## 4A - FORM IV VOA

EPA SAMPLE NO.

VOLATILE METHOD BLANK SUMMARY

VBLK1Y

Lab Name: MITKEM LABORAT		RATORIES	TORIES		
Lab Code: M	IITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2115
Lab File ID:	V1K17	93.D		Lab Sample ID:	MB-40217
Instrument I	D: V1				
Matrix: (SOI	L/SED/WATE	CR) WATER		Date Analyzed:	11/20/2008
Level: (TRAC	CE or LOW/M	IED) LOW		Time Analyzed:	19:28
GC Column:	DB-624	ID: 0.25	(mm)	Heated Purge: ()	Y/N) <u>N</u>

		TAD	T 7 D	TT ME
	EPA	LAB	LAB	TIMÉ
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V1YLCS	LCS-40217	V1K1794.D	19:57
02	V1YLCSD	LCSD-40217	V1K1795.D	20:26
03	TB-3	G2115-15A	V1K1799.D	22:22
04	SL-MW-3A	G2115-16A	V1K1801.D	23:19
05	SL-MW-3B	G2115-17A	V1K1802.D	23:48
06	SL-MW-14	G2115-18A	V1K1803.D	00:17
07	SL-MW-23SDL	G2115-03ADL	V1K1811.D	04:10

.....

COMMENTS:

Page 1 of 1

## 1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET	

VBLK1Y

Lab Name: MITKEM LABORATORIES		Contract:	
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	MB-40217
Sample wt/vol: 5.00 (g/mL)	ML	Lab File ID:	V1K1793.D
Level: (TRACE/LOW/MED) LOW		Date Received:	
% Moisture: not dec.		Date Analyzed:	11/20/2008
GC Column: DB-624 ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volu	ume:(uL)
Purge Volume: 5.0	(mL)		

[		CONCENTRATION UNIT.	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane		5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
	Methylene chloride		5.0	Ŭ
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	U
	1,1,1-Trichloroethane		5.0	U
	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
	Trichloroethene		5.0	U
	1,2-Dichloropropane		5.0	U
	Dibromomethane		5.0	U
	Bromodichloromethane		5.0	U
	cis-1,3-Dichloropropene		5.0	U
	4-Methyl-2-pentanone		5.0	U
	Toluene		5.0	U
	trans-1,3-Dichloropropene		5.0	U
	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

#### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK1Y		
--------	--	--

Lab Name: MITKEM LABORATORIES			Contract:		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WATER	WATER			Lab Sample ID:	MB-40217
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1793.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	
% Moisture: not dec.				Date Analyzed:	11/20/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	ט
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	Ū
87-61-6	1,2,3-Trichlorobenzene	5.0	U
	Naphthalene	5.0	U

#### EPA SAMPLE NO.

#### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

VBLK1Y

Lab Name: MITH	EN INDODAT	) D T F C			Cor	tract:					
	LADORAI	21110			COI.	ILLAUL.	-				
Lab Code: MITH	C C	ase No.:			Mod	l. Ref No.:			SDG No.:	MG2115	
Matrix: (SOIL/S	SED/WATER)	WATER		<u></u>	Lab	Sample ID	:	MB-40217			
Sample wt/vol:	5.00	(g/mL)	ML		Lab	File ID:	-	V1K1793.D	)		
Level: (TRACE o	or LOW/MED)	LOW			Dat	e Received	:				
% Moisture: not	dec.				Dat	e Analyzed	:	11/20/200	)8		
GC Column: DB-	-624	ID:	0.25	(mm)	Dil	ution Facto	or:	1.0			
Soil Extract Vo	olume:			(uL)	Soi	l Aliquot '	Volu	me:			(uL)
CONCENTRATION	JNITS: (ug/	L or ug/k	(g) (	UG/L	Pur	ge Volume:	5.0	)			(mL)
CAS NUMBER		COMPOUND	NAME			RT		EST. C	ONC.	Q	<u>}</u>
01	Unknown-01	-			1	12.762			25	J	
E966796	Total Alka	ines				N/A					

¹EPA-designated Registry Number.

### 4A - FORM IV VOA

EPA SAMPLE NO.

VOLATILE METHOD BLANK SUMMARY

VBLK1Z

Lab Name: MITK	Jab Name: MITKEM LABORATORIES			Contract:	
Lab Code: MITK	EM Case	No.:		Mod. Ref No.:	SDG No.: MG2115
Lab File ID:	V1K1823.D	÷ .		Lab Sample ID:	MB-40222
Instrument ID:	Vl				
Matrix: (SOIL/S	ED/WATER) WA	TER		Date Analyzed:	11/21/2008
Level: (TRACE o	r LOW/MED) I	WO		Time Analyzed:	08:48
GC Column: DB-	624	ID: 0.25	(mm)	Heated Purge: (Y	r/N) N

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	V1ZLCS	LCS-40222	V1K1824.D	09:32
02	V1ZLCSD	LCSD-40222	V1K1825.D	10:01
03	SL-MW-23D	G2115-04A	V1K1828.D	11:27
04	SL-MW-16	G2115-05A	V1K1829.D	11:56
05	SL-MW-6ADL	G2115-12ADL	V1K1832.D	13:23
06	SL-MW-5	G2115-13A	V1K1835.D	14:56

COMMENTS:

## 1A – FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V D D I L L L
---------------

Lab Name: MITKEM LA	BORATORI	ES			Contract:	
Lab Code: MITKEM	Case	e No.:			Mod. Ref No.:	SDG No.: MG2115
Matrix: (SOIL/SED/WA	TER) W	ATER		-	Lab Sample ID:	MB-40222
Sample wt/vol:	5.00 (	g/mL)	ML		Lab File ID:	V1K1823.D
Level: (TRACE/LOW/ME	D) LOW				Date Received:	
% Moisture: not dec.					Date Analyzed:	11/21/2008
GC Column: DB-624		ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:				(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0				(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	_ Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	υ
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	U
	1,3-Dichloropropane	5.0	U

#### 1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLK1Z

Lab Name:	MITKEM LABORA	ATORIES		<u></u>	Contract:		
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2115	
Matrix: (S	OIL/SED/WATER)	) WATER			Lab Sample ID:	MB-40222	
Sample wt/	vol: 5.(	00 (g/mL)	ML		Lab File ID:	V1K1823.D	
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	· · · · · · · · · · · · · · · · · · ·	
% Moisture	: not dec.				Date Analyzed:	11/21/2008	
GC Column:	DB-624	ID:	0.25	( mm )	Dilution Factor:	1.0	
Soil Extra	ct Volume:			_(uL)	Soil Aliquot Volu	ume: (1	uL)
Purge Volu	me: 5.0			(mL)			

	T	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U .
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū.
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	ט
	m,p-Xylene	5.0	U
	o-Xylene	5.0	U
	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	ט
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	ט
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	υ
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

#### 1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLK1Z	

Lab	Lab Name: MITKEM LABORATORIES					Contract:						
Lab	Code: MITH	KEM Ca	ase No.:			Mod. Ref No.:		SDG No.:	MG2115			
Mati	cix: (SOIL/S	SED/WATER)	WATER			Lab Sample ID	: MB-40222					
Samp	ple wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1823.D	) )				
Leve	el: (TRACE o	or LOW/MED)	LOW			Date Received	:					
% Ma	pisture: not	t dec.				Date Analyzed	: 11/21/200	8				
GC (	Column: DB-	-624	ID:	0.25	(mm)	Dilution Fact	or: 1.0					
Soil	l Extract Vo	olume:			(uL)	Soil Aliquot	Volume:			(uL)		
CON	CENTRATION U	JNITS: (ug/I	or ug/F	(g) U	JG/L	Purge Volume:	5.0			(mL)		
	CAS NUMBER		COMPOUND	NAME		RT	EST. C	ONC.	Ç	2		
01		Unknown-01				12.752		17	J			
	E966796	¹ Total Alka	nes			N/A						

¹EPA-designated Registry Number.

#### 3

Lab Name:	Mitkem Lab	oratories	Contract:	95900-04	- run de W	
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	MG2115
Preparatio	on Blank Ma	trix (soil/water):	WATER			Blank ID:
Preparatio	on Blank Co	ncentration Units (	ug/L or mg/kg): UG	/L	MB-4050	05
			FIMS1_081204B			
		Initial				

	Initial Calibration Blank (ug/L)		Continuing Calibration Blank (ug/L)						Preparation Blank		
Analyte		2	1	С	2	C	3	C		С	М
Mercury	0.016 U	J	0.016	U	0.016			0.016 U	0.016		

#### BLANKS

Lab	Name:	Mitkem J	Laborat	ories		Contract:	95900-04	_1			
Lab	Code:	MITKEM		Case No.:		SAS No.:		SDG No.	.:	MG2115	
Prej	paratio	on Blank	Matrix	(soil/water):	WATER			Met	hod	Blank ID:	

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

OPTIMA2_081204B

	Initial		· · · · · · · · · · · · · · · · · · ·								
	Calibration	n	Co	Continuing Calibration				1	Preparation		
	Blank (ug/I	,)			Blank (ug/L	)			Blank		
Analyte		С	1	С	2	С	3	С		С	М
Aluminum	69.9	В	56.0	υ	56.0	U	56.0	υ	56.000	U,	
Arsenic	5.3	U	5.3	υ	5.3	U	5.3	U	5.300	U	
Barium	8.5	υ	8.5	υ	8.5	U	8.5	υ	8.500	U	
Beryllium	0.1	U	0.1	υ	0.1	U	0.1	U	0.130	U	
Cadmium	0.1	В	0.1	В	0.1	υ	0.1	U	0.140	U	
Calcium	130.0	U	130.0	υ	132.3	В	130.0	U	134.817	В	
Chromium	1.1	U	1.1	U	1.2	В	1.1	υ	1.100	υ	
Cobalt	1.2	U	1.2	υ	1.2	U	1.2	υ	1.200		
Copper	5.0	υ	5.0	υ	5.0	U	5.0	U	5.000		
Iron	61.0	U	61.0	U	61.0	U	61.0	U	61.000		
Lead	2.2	U	2.2	U	2.2	U	2.2	U	2.200		
Magnesium	77.0	U	77.0	U	77.0	U	77.0	U	77.000		
Manganese	1.0	U	1.0	υ	1.0	υ	1.0	υ	4.233	В	
Nickel	1.5	U	1.5	υ	1.5	U	1.5	υ	1.500	U	
Selenium	6.6	U	6.6	U	6.6	υ	6.6	U	6.600	U	
Silver	0.6	U	0.6	υ	0.6	U	0.6	U	0.590		
Thallium	4.2	U	4.2	υ	4.2	U	4.7	В	4.200	U	
Vanadium	1.1	В	1.0	в	1.0	В	1.2	В	0.960	U	
Zinc	7.7	U	7.7	υ	7.7	U	7.7	U	7.700	U	

MB-40501

#### BLANKS

Lab	Name:	Mitkem Laborat	cories	Contract:	95900-04		
Lab	Code:	MITKEM	Case No.:	 SAS No.:		SDG No.:	MG2115
Prep	aratio	on Blank Matrix	(soil/water):			Method	Blank ID:

Preparation Blank Concentration Units (ug/L or mg/kg):

OPTIMA2_081204B

······································	Initial										
	Calibration		_	libratio	n		Preparation				
	Blank (ug/L)	B	lank (uợ	g/L)			Blank				
Analyte	C	1 C	2	C	3	С		С	Μ		
Aluminum		56.0 U	·····								
Arsenic		5.3 U									
Barium		8.5 U									
Beryllium		0.1 U									
Cadmium		0.2 B									
Calcium		154.3 B									
Chromium		1.1 U									
Cobalt		1.2 U									
Copper		5.0 U									
Iron		61.0 U									
Lead		2.2 U	-								
Magnesium		77.0 U									
Manganese		1.0 U									
Nickel		1.5 U									
Selenium		6.6 U									
Silver		0.6 U									
Thallium		4.2 U									
Vanadium		1.2 B									
Zinc		7.7 U									

#### 3

Lab Name:	Mitkem Labo	oratories	Contract: 95900-	04	
Lab Code:	MITKEM	Case No.:	SAS No.:	SDG No.:	MG2115
Preparati	on Blank Mat	rix (soil/water): W	ATER		Blank ID:
Preparati	on Blank Cor	centration Units (ug		MB-405	01
	1		OPTIMA3_081205A		

	Calibration		C	ont	inuing Calib	ra	tion		Preparation	,	
	Blank (ug/L)		Continuing Calibration Blank (ug/L)						Blank		
Analyte		С	· 1	C	2	С	3	С		С	М
Potassium	41.0	U	41.0	U	52.1	В	41.9	В	41.000	U	
Sodium	19.7	В	56.1	В	54.2	В	31.8	В	32.913	B	

#### 3 BLANKS

Lab Name:	Mitkem Labo	ratories	Contract:	95900-04		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	MG2115
Preparati	on Blank Mati	rix (soil/water):	1-2019-1-1-1		Method	Blank ID:
Preparati	on Blank Cond	centration Units (ug/L	or mg/kg):		_	

OPTIMA3_081205A

	Initial										
	Calibration		Continuing Calibration						Preparation		
	Blank (ug/L)				Blank (ug/	L)			Blank		
Analyte	C	1	<u></u>	C	2	C	3	C		С	М
Potassium			41.0	U							
Sodium	· · · · · · · · · · · · · · · · · · ·		50.9	в	111 1 2 Aug						

3	
•	

5	
BLANKS	

Lab Name:	Mitkem Lab	ooratories	Contract: 95900-0	04
Lab Code:	MITKEM	Case No.:	SAS No.:	SDG No.: MG2115
Preparatio	on Blank Ma	trix (soil/water): WA	TER	Method Blank ID:
Preparatio	on Blank Co	ncentration Units (ug/	L or mg/kg): UG/L OPTIMA3 081205B	MB-40501
		Initial		

	Calibration	L	(	Cont	inuing Cal	ibratio	n		Preparation	
	Blank (ug/L)	)			Blank (ug	/L)			Blank	
Analyte		С	1	С	2	C	3	С		С М
Antimony	4.6		4.	6 U	4	.6 U	4	.6 U	4.600	J

#### 3

#### BLANKS

Lab Name:	Mitkem Labora	tories	Contract:	95900-04		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	MG2115
Preparati	on Blank Matriz	<pre>(soil/water):</pre>			Method	Blank ID:
D						

Preparation Blank Concentration Units (ug/L or mg/kg):

OPTIMA3_081205B

Analyte		1	C	2	C	3	C		С	М
	Calibration Blank (ug/L)			uing Ca Blank (u		n		Preparatio Blank	n	

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	MITKEM LABOR	ATORIES		Contract:			
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:		SDG No.:	MG2115
GC Column:	DB-624	ID:	0.25 (mm)	Init. Calib. D	Date(s):	11/17/2008	11/17/2008
EPA Sample	No.(VSTD#####)	: VSTD050	)1W	Date Analyzed:	11/19/2008		·····
Lab File ID	(Standard):	V1K1731.D		Time Analyzed:	16:51		
Instrument	ID: <u>V1</u>			Heated Purge:	(Y/N) <u>N</u>		

	IS1 (S1 )		IS2 (S2 )		IS3 (S3 )	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	652343	5.901	429432	9.507	231963	12.443
UPPER LIMIT	1304686	6.401	858864	10.007	463926	12.943
LOWER LIMIT	326172	5.401	214716	9.007	115982	11.943
EPA SAMPLE NO	•	• • • • • • • • • • • • • • • • • • •				<u> </u>
VBLK1W	602519	5.905	405623	9.511	212822	12.428
2 VIWLCS	626388	5.901	418216	9.507	224397	12.424
VIWLCSD	632982	5.908	421508	9.505	220503	12.431
I SL-MW-11	653877	5.908	440621	9.514	219328	12.441
5 SL-MW-23S	669827	5.895	444524	9.521	219649	12.447

IS1 () = Fluorobenzene
IS2 () = Chlorobenzene-d5
IS3 () = $1, 4$ -Dichlorobenzene-d4
AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of
internal standard area
AREA LOWER LIMIT = $50\%$ (Low-Medium Volatiles) and $60\%$ (Trace Volatiles) of
internal standard area
RT UPPER LIMIT = $+0.50$ (Low-Medium Volatiles) and $+0.33$ (Trace Volatiles)
minutes of internal standard RT
RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)
minutes of internal standard RT
# Column used to flag values outside QC limits with an asterisk.

Page 1 of 1

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LAB		ATORIES		Contract:		
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.:	MG2115
GC Column:	DB-624	ID:	0.25 (mm)	<pre>Init. Calib. Date(s):</pre>	11/17/2008	11/17/2008
EPA Sample	No.(VSTD#####)	: VSTD05	01X	Date Analyzed: 11/20/200	)8	
Lab File ID	(Standard):	V1K1757.D		Time Analyzed: 05:34		
Instrument	ID: V1			Heated Purge: (Y/N) N	1	

	IS1 (S1 )		IS2 (S2 )		IS3 (S3 )	
	AREA #	RT #	AREA #	RT #	AREA #	RT #
12 HOUR STD	670244	5.912	441740	9.518	228746	12.435
UPPER LIMIT	1340488	6.412	883480	10.018	457492	12.935
LOWER LIMIT	335122	5.412	220870	9.018	114373	11.935
EPA SAMPLE NO	•					
01 VBLK1X	656090	5.909	439045	9.516	216501	12.442
02 V1XLCS	683410	5.905	450577	9.511	230466	12.447
03 V1XLCSD	673827	5.909	451107	9.515	235218	12.441
04 TB-1	710454	5.919	470474	9.525	237572	12.441
05 TB-2	659975	5.914	446084	9.520	225359	12.447
06 SL-MW-12	639109	5.908	424178	9.515	214331	12.441
07 SL-MW-13	643222	5.905	429175	9.521	221218	12.447
08 SL-MW-73D	713081	5.919	454526	9.515	224177	12.441
09 SL-MW-4	630898	5.924	430760	9.530	217668	12.447
10 SL-MW-6B	627359	5.928	413856	9.534	215795	12.451
11 SL-MW-6A	615442	5.915	426994	9.521	216323	12.438
12 SL-MW-2	631587	5.913	425672	9.519	222077	12.446
13 SL-MW-2MS	634619	5.909	426011	9.515	224795	12.441
14 SL-MW-2MSD	639264	5.914	437799	9.520	227934	12.446

IS1 () = Fluorobenzene

IS2 () = Chlorobenzene-d5

IS3 () = 1, 4-Dichlorobenzene-d4

```
AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of internal standard area
```

```
AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of internal standard area
```

```
RT UPPER LIMIT = +0.50 (Low-Medium Volatiles) and +0.33 (Trace Volatiles) minutes of internal standard RT
```

```
RT LOWER LIMIT = -0.50 (Low-Medium Volatiles) and -0.33 (Trace Volatiles)
minutes of internal standard RT
```

 $\ensuremath{\texttt{\#}}$  Column used to flag values outside QC limits with an asterisk.

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	MITKEM LABOR	ATORIES		Contract:				
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.:	MG2115		
GC Column:	DB-624	ID:	0.25 (mm)	<pre>Init. Calib. Date(s):</pre>	11/17/2008	11/17/2008		
EPA Sample	No. (VSTD#####)	: VSTD050	)1Y	Date Analyzed: 11/20/2	008			
Lab File ID	(Standard):	V1K1791.D		Time Analyzed: 18:30				
Instrument	ID: V1			Heated Purge: (Y/N)	N			

		IS1 (S1 )		IS2 (S2 )		IS3 (S3 )	
		area #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	642160	5.888	426238	9.504	228963	12.441
	UPPER LIMIT	1284320	6.388	852476	10.004	457926	12.941
	LOWER LIMIT	321080	5.388	213119	9.004	114482	11.941
	EPA SAMPLE NO.						
01	VBLK1Y	639819	5.894	431107	9.510	218584	12.446
02	V1YLCS	651733	5.903	437904	9.519	228216	12.436
03	V1YLCSD	653993	5.898	440282	9.514	229377	12.441
04	TB-3	634177	5.909	429029	9.515	219029	12.442
05	SL-MW-3A	628074	5.915	425520	9.521	218257	12.448
06	SL-MW-3B	658586	5.913	441596	9.519	222025	12.445
07	SL-MW-14	669506	5.911	448473	9.517	218073	12.444
08	SL-MW-23SDL	674959	5.914	454959	9.510	225112	12.437

IS1 () = Fluorobenzene
IS2 () = Chlorobenzene-d5
IS3 () = 1,4-Dichlorobenzene-d4
AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of
internal standard area
AREA LOWER LIMIT = $50\%$ (Low-Medium Volatiles) and $60\%$ (Trace Volatiles) of
internal standard area
RT UPPER LIMIT = $+0.50$ (Low-Medium Volatiles) and $+0.33$ (Trace Volatiles)
minutes of internal standard RT
RT LOWER LIMIT = $-0.50$ (Low-Medium Volatiles) and $-0.33$ (Trace Volatiles)
minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.

#### VOLATILE INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: MITKEM LABOR		ATORIES	Contract:		
Lab Code:	MITKEM	Case No.:	Mod. Ref No.:	SDG No.:	MG2115
GC Column:	DB-624	ID: 0.25 (mm)	<pre>Init. Calib. Date(s):</pre>	11/17/2008	11/17/2008
EPA Sample	No.(VSTD#####)	vstD0501z	Date Analyzed: 11/21/200	8	
Lab File ID	(Standard):	V1K1821.D	Time Analyzed: 07:34	-	
Instrument	ID: V1		Heated Purge: (Y/N) N	[	

		IS1 (S1 )		IS2 (S2 )		IS3 (S3 )	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	700959	5.899	467859	9.505	236667	12.431
	UPPER LIMIT	1401918	6.399	935718	10.005	473334	12.931
	LOWER LIMIT	350480	5.399	233930	9.005	118334	11.931
	EPA SAMPLE NO.		· · · · · · · · · · · · · · · · · · ·				
01	VBLK1Z	688161	5.904	463310	9.500	227544	12.436
02	V1ZLCS	701216	5.901	464893	9.507	238112	12.424
03	V1ZLCSD	674743	5.908	457747	9.505	242287	12.431
04	SL-MW-23D	643986	5.902	438759	9.498	220015	12.434
05	SL-MW-16	648593	5.904	443701	9.501	218402	12.427
06	SL-MW-6ADL	638832	5.884	430597	9.490	221625	12.426
07	SL-MW-5	644509	5.899	439888	9.505	221939	12.422

IS1 () = Fluorobenzene						
IS2 () = Chlorobenzene-d5						
IS3 () = 1,4-Dichlorobenzene-d4						
AREA UPPER LIMIT = 200% (Low-Medium Volatiles) and 140% (Trace Volatiles) of						
internal standard area						
AREA LOWER LIMIT = 50% (Low-Medium Volatiles) and 60% (Trace Volatiles) of						
internal standard area						
RT UPPER LIMIT = $+0.50$ (Low-Medium Volatiles) and $+0.33$ (Trace Volatiles)						
minutes of internal standard RT						
RT LOWER LIMIT = $-0.50$ (Low-Medium Volatiles) and $-0.33$ (Trace Volatiles)						
minutes of internal standard RT						

# Column used to flag values outside QC limits with an asterisk.

Page 1 of 1