Prepared by: AECOM Chestnut Ridge, NY 60277021 October 2016

Groundwater Sampling Report (May 2016 Sampling Event) ServAll Laundry Site Site #1-52-077 Work Assignment No. D007626-17.1

Final

:

Contents

1.0	Introd	uction		1-1
2.0	Back	round Information		2-1
	2.1	Site Description		2-1
	2.2	Site History		2-1
	2.3	Deviations from the Site Managen	nent Plan	2-2
3.0	Field	Activities		3-1
	3.1	Water Level Survey		3-1
	3.2	May 2016 Groundwater Sampling	Event	3-2
	3.3	Site Inspection		3-2
4.0	Samp	ling Results		4-1
	4.1	Volatile Organic Compounds		4-1
		4.1.1 Upgradient Monitoring W	/ells	4-1
		4.1.2 Source Area Monitoring	Wells	4-2
		4.1.3 Downgradient Monitoring	g Wells	4-3
		4.1.4 Sentinel Monitoring Wells	S	4-4
	4.2	Round 9 (May 2016) Data Quality	Review	4-5
5.0	Sumn	nary and Recommendations fo	or Future Site Remediation Activities	5-1
	5.1	Summary of VOCs		5-1
	5.2	Future Recommendations		5-3

List of Tables

Table 1 Monitoring Well Data
 Table 2 Groundwater Elevations
 Table 3 Periodic Sampling – 2006 through 2016 Sampling Events, Summary of VOCs in Groundwater
 Table 4 Field Duplicate Data – Volatile Organic Compounds in Groundwater
 Table 5 Summary of Historic Tetrachloroethene Concentrations in Selected Monitoring Wells

List of Figures

Figure 1	Site Location
Figure 2	Monitoring Well Location Map
Figure 3	Groundwater Contour Map, May 2016
Figure 4	Groundwater Hydrograph
Figure 5	Summary of VOCs in Groundwater, May 2016
Figure 6	Tetrachloroethene Concentrations in Selected Monitoring Wells
Figure 7	Trichloroethene Concentrations in Selected Monitoring Wells
Figure 8	Cis-1,2-Dichloroethene Concentrations in Selected Monitoring Wells
Figure 9	Historic PCE Concentrations in Selected Monitoring Wells
Figure 10A	PCE Isoconcentration Map, June 2006
Figure 10B	PCE Isoconcentration Map, November 2008
Figure 10C	PCE Isoconcentration Map, May 2011
Figure 10D	PCE Isoconcentration Map, August 2012
Figure 10E	PCE Isoconcentration Map, November 2013
Figure 10F	PCE Isoconcentration Map, March 2015

Figure 10G PCE Isoconcentration Map, May 2016

List of Appendices

Appendix A NYSDEC Monitoring Well Field Inspection Logs

Appendix B Monitoring Well Sampling Forms

Appendix C Site Inspection Form

Appendix D Laboratory Data Package

1.0 Introduction

AECOM Technical Services Northeast, Inc. (AECOM) has prepared this Groundwater Monitoring Report for the ServAll Laundry Site (Site) in Bay Shore, New York (Site No. 1-52-077). This work was performed for the New York State Department of Environmental Conservation (NYSDEC) under Work Assignment D007626-17.1. Previous long-term monitoring was performed under Work Assignment D004445-14. As part of the long-term monitoring plan for the Site, groundwater samples are collected from selected monitoring wells once every five quarters. This groundwater monitoring report provides the results of the groundwater sampling data collected in May 2016.

To date, nine sampling events have been conducted under AECOM's long-term monitoring work assignments:

- The first round of samples (Round 1) was collected in June 2006.
- An abbreviated round of groundwater sampling (Round 1A) was conducted in April 2007 to confirm the concentration of tetrachloroethene (PCE) detected in monitoring well MW-6A; samples were collected from monitoring wells MW-4, MW-5, MW-6A and MW-6B.
- The second full round of samples (Round 2) was collected in August 2007.
- The third full round of samples (Round 3) was collected in November 2008.
- The fourth round of samples (Round 4) was collected in February 2010.
- The fifth round of samples (Round 5) was collected in May 2011.
- The sixth round of samples (Round 6) was collected in August 2012.
- The seventh round of samples (Round 7) was collected in November 2013.
- The eighth round of samples (Round 8) was collected in March 2015.
- The ninth round of samples (Round 9) was collected in May 2016.

2.0 Background Information

2.1 Site Description

The Site is located at 8 Drayton Avenue in Bay Shore, Suffolk County, New York (Figure 1) in a mixed use industrial/residential area. The ServAll Laundry facility was located on a 20,000 square foot property. The ServAll Uniform Rental, Inc. operated as a commercial laundry from 1969 to 1972, and as dry cleaner/laundry from 1972 to 1984. During this time, unknown quantities of wash water overflow containing PCE and heavy metals were pumped to, and occasionally overflowed from, on-Site cesspools.

2.2 Site History

In 1978, the Suffolk County Department of Health Services (SCDHS) conducted an on-Site sampling of cesspools and storm drains. Results from some of the samples showed detections of tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride, chloroform, methylbenzenes, and a number of Target Analyte List (TAL) metals. ServAll Uniform cleaned the on-Site storm drains and an unknown number of cesspools in 1981 removing sludge and contaminated water.

In 1983, SCDHS performed a groundwater investigation and identified a volatile organics plume southeast of the Site. The plume was found to extend 0.3 miles upgradient from the Suffolk County Water Authority (SCWA) Thomas Avenue Wellfield (located 1 mile south of the Site). The Thomas Avenue Wellfield is located off Thomas Avenue, near the Bay Shore Middle School and northwest of MW-11 (see Figure 2).

A State-funded remedial investigation/feasibility study (RI/FS) was completed at the Site, in which field work was completed from November 1990 through December 1991. The results of the investigation were documented in the final report dated January 1992 (E.C. Jordon Co.). The RI/FS confirmed the presence of volatile organic compounds (VOCs) in groundwater, delineated the groundwater plume, and quantified on-Site contamination.

The plume is located in the Upper Glacial Aquifer, which consists of coarsely stratified, fine to medium sand with trace amounts of gravel, cobbles, coarse sand, and silt. The aquifer ranges in thickness from 120 feet at the Site to 86 feet 1.5 miles downgradient of the Site. Groundwater flows to the southeast towards Penataquit Creek at about 910 feet per year (ft/year). The RI concluded that the plume appeared to be moving at approximately 443 to 484 ft/year from 1974 to 1988, and 355 ft/year since 1988 (E.C. Jordan, October 1991).

A Record of Decision (ROD) was issued by the NYSDEC for the Site on March 31, 1992. The remedy presented in the ROD was in-situ source soil treatment/source area groundwater extraction. The

ROD stated that treatment of the entire plume emanating from the Site was not found to be practical, and therefore, the selected remedy would not satisfy the statutory preference for complete treatment as a principal element. Determination of the ultimate fate of the untreated portion of the plume was determined by the ROD directed discharge study (ABB Environmental Services, December 1995), which was conducted on the leading edge (hydraulically downgradient) of the plume.

The ROD specified source removal work consisting of a soil vapor extraction (SVE) system. The SVE system was in operation from the Spring of 1996 to the Spring of 1998. The groundwater pump and treat remedial system operated from March 1998 through November 2001. The operation of the remedial system was terminated in November 2001 when NYSDEC determined further operations were not necessary as stated in a letter dated October 18, 2001 from NYSDEC to Earth Tech.

2.3 Deviations from the Site Management Plan

There were no deviations from the Site Management Plan (SMP, AECOM, 2015) during this round of sampling. The field crew was unable to collect a groundwater sample at MW-2 as there was an obstruction in the well. MW-5 could not be sampled as there was insufficient water in the well for the pump to operate properly.

3.0 Field Activities

The ninth sampling event occurred May 9 through 12, 2016. Sampling was conducted in accordance with the SMP prepared by AECOM, dated July 2015 (revision 1). All field work was performed in Level D personnel protection. Sampling activities were conducted by Yu & Associates, a subconsultant of AECOM.

3.1 Water Level Survey

Prior to the start of the May 2016 groundwater sampling event, water table measurements were collected from the 13 monitoring wells included in the sampling event. A summary of well data is included on Table 1. Water level measurements were recorded on the NYSDEC Monitoring Well Field Inspection Forms in Appendix A. A summary of groundwater elevations in selected monitoring wells is presented in Table 2. A groundwater contour map was prepared using data from the May 2016 sampling event and is presented in Figure 3. As shown on the map, groundwater flow is to the south-southeast. A groundwater hydrograph is shown on Figure 4. The gradient was calculated for the Site. North of the Southern State Parkway (near the Site), the gradient is approximately 0.0018. At the southern end of the study area (near the Sunrise Highway), the gradient increases to approximately 0.0033. The gradient across the entire study area is 0.0031. These numbers represent fairly shallow gradients.

E.C Jordan (RI/FS Report, 1992) calculated the flow rate at the Site at 2.5 ft/day or 910 ft/year using the following equation:

$$flow \ rate = \frac{\text{K (hydaulic gradient)}}{n}$$

Where K is the hydraulic conductivity $(9.0 \times 10^{-2} \text{ cm/sec or } 255 \text{ ft/day and } n = \text{porosity}, 0.30$. E.C. Jordan measured the hydraulic gradient at 0.003, yielding a flow rate of 2.5 ft/day or 910 ft/year.

Using the same values for K and *n*, the estimated flow rate for the Site in May 2016 was:

Hydraulic gradient of 0.0018 (northern area) = 1.53 ft/day or 558 ft/year

Hydraulic gradient of 0.0033 (southern) = 2.81 ft/day or 1,024 ft/year

Hydraulic gradient of 0.0031 (study area) = 2.64 ft/day or 962 ft/year

3.2 May 2016 Groundwater Sampling Event

Fourteen monitoring wells were identified for long-term monitoring at the Site. The selected wells included MW-2, MW-3A, MW-3B, MW-4, MW-5, MW-6A, MW-6B, MW-11, MW-12, MW-13, MW-14, MW-16, MW-23S and MW-23D. Each location was photo-documented and a hand-held GPS unit was used to record the coordinates. There was an obstruction in MW-2 approximately 17 ft below ground surface (bgs) that blocked the pump; consequently it could not be sampled. There was insufficient water in MW-5 to purge the well during this round and the well was not sampled. Monitoring well MW-11 was vandalized in 2009 and had not been sampled during subsequent rounds. This well was properly abandoned in 2015 and a replacement well was installed. MW-1 was included in this sampling round as MW-2 and MW-5 could not be sampled.

In accordance with the SMP, the monitoring wells were purged and sampled using low flow sampling techniques. A QED bladder pump with Teflon discharge tubing was used to purge each monitoring well. The flow rate was typically set between 300 and 500 milliliters per minute. Measurements of pH, specific conductance, temperature, oxidation reduction potential, and turbidity were recorded on the Well Sampling Forms during purging at five minute intervals. Well Sampling Forms are provided in Appendix B. A NYSDEC Monitoring Well Field Inspection Log was also completed for each well sampled and is included in Appendix A. The sample was carefully poured into laboratory supplied containers and placed in an ice-filled cooler. The samples were then transported to Hampton-Clarke Veritech via their courier. Proper chain-of-custody procedures and requirements were maintained throughout the sampling event in accordance with the SMP.

3.3 Site Inspection

In accordance with the SMP, the Site was inspected on May 9, 2016 as part of the 5-quarterly sampling event. The Site inspection form is included in Appendix C. The Site is in general disrepair. There is evidence of unauthorized entry into the Site building. The padlock on the side door of the building is missing. The rollup door on the front of the building appears secure. The tenants next door reported observing people entering the ServAll building. Vegetation growth in the back of the building is overgrown and the fence along the back property line is damaged.

4.0 Sampling Results

Groundwater samples were analyzed by Hampton-Clarke Veritech of Fairfield, New Jersey. Samples were analyzed for VOCs using SW-846 Method 8260C. Data packages consisted of a New York State Analytical Services Protocol (NYS ASP) Category A deliverable. As this is a long-term monitoring project, data was not validated. An AECOM chemist provided a limited review of the data packages for completeness and readily apparent anomalies (see section 4.4, below). The laboratory Data Summary Packages are in Appendix D.

A summary of the VOC detections and criteria exceedances is presented in Table 3. A summary of the VOC exceedances is presented on Figure 5. The sampling results are described below in Section 4.1.

4.1 Volatile Organic Compounds

VOC data for the nine long-term sampling events are summarized in Table 3. VOCs exceedances are shown on Figure 5. During the nine sampling events conducted to date, 17 target compound list VOCs have been detected in the long-term monitoring wells. Of these 17 compounds, only nine have exceeded their Class GA criterion. Of these nine compounds, only three, cis-1,2-dichloroethene (DCE), TCE and PCE, have been detected three or more times in any one monitoring well. These three compounds (as well as 1,1-DCE, 1,1-dichloroethane [DCA] and vinyl chloride) are listed as compounds of concern (COCs) in the ROD (NYSDEC, 1992). Summaries of detections for these three compounds are presented in Figure 6 (PCE), Figure 7 (TCE) and Figure 8 (cis-1,2-DCE). On each of these three figures, monitoring wells were selected based on the presence of the COC at or above its criterion. As shown on Figure 6, PCE has been detected in eight monitoring wells at or above the 5 microgram per liter (µg/L) criterion. TCE concentrations have only exceeded the 5 µg/L criterion in four monitoring wells as shown on Figure 7. Cis-1,2-DCE concentrations have only exceeded the 5 µg/L criterion in six monitoring wells as shown on Figure 8. 1,1-DCE and 1,1-DCA have not been detected above the criterion in any monitoring well during the long-term sampling (2006 through 2015). Vinyl chloride was detected above its criterion (2 µg/L) once during the nine rounds of sampling, in Round 6 at MW-16 at an estimated concentration of 2.1 µg/L.

4.1.1 Upgradient Monitoring Wells

Three monitoring wells, MW-2, MW-3A and MW-3B, are located upgradient of the Site along Drayton Avenue as shown on Figure 2.

Monitoring well MW-2 was not located until the November 2008 sampling event. Benzene was detected above the Class GA criterion of 1 μ g/L in monitoring well MW-2 at an estimated concentration of 1.7 μ g/L during the November 2008 sampling event. Toluene was also detected at

an estimated concentration of 1.4 μ g/L (below the Class GA criterion of 5 μ g/L). No VOCs were detected during the February 2010 sampling event. PCE was detected at an estimate concentration of 2.1 μ g/L during the May 2011 sampling event. No VOCs were detected during the August 2012 or November 2013 sampling events. PCE was detected below the criterion during the March 2015 sampling event. As noted above in Section 3, an obstruction in the well prevented the field team from collecting a sample during this event.

VOCs were not detected in monitoring well MW-3A during any of the nine long-term monitoring events with one exception. During the August 2012 sampling event, chloroform was detected at an estimated concentration of 0.53 μ g/L (Class GA criterion of 7 μ g/L).

MW-3B was not located until the November 2008 Round 3 sampling event. VOCs were not detected in monitoring wells MW-3B during any of the seven long-term monitoring sampling events conducted at the ServAll Site between 2008 and 2016.

4.1.2 Source Area Monitoring Wells

Five monitoring wells are located in and around the ServAll Laundry building. Monitoring well MW-1 is located on the ServAll property. Four monitoring wells, MW-4, MW-5, MW-6A and MW-6B, are located immediately south of the Site along Frederick Avenue. Well locations are shown on Figure 2.

Monitoring Well MW-1 was located during the fourth sampling event and was included in this sampling round. PCE was detected at a concentration of 15 μ g/L (exceeding the Class GA criterion of 5 μ g/L). No other VOCs were detected in MW-1 during this sampling round. MW-1 was not sampled during May 2011 sampling event. Historically, PCE has been detected above the criterion in each of the five sampling events conducted at this location with concentrations ranging from 5.6 μ g/L to 50 μ g/L. TCE, cis-1,2-DCE, and total xylenes have also been detected at this location but at concentrations below their respective Class GA criteria.

No VOCs have been detected in MW-4 during sampling rounds 1 through 9. The well was not sampled during Round 8 as the field crew mistakenly identified PZ-4 as MW-4. PZ-4 has a damaged well lid and is filled with soil.

MW-5 could not be sampled during Round 9 as there was insufficient water in the well for the pump to operate properly; similar to the situation in Round 7. Estimated concentrations of cis-1,2-DCE (3 μ g/L and 2 μ g/L) were detected during the June 2006 and April 2007 sampling events (Round 1 and 1A) but have not been detected since. PCE was detected at an estimated concentration of 2 μ g/L only during the August 2007 sampling event (less than the Class GA criterion of 5 μ g/L). Acetone was detected at a concentration of 170 μ g/L (exceeding the Class GA criterion of 50 μ g/L) only during the November 2008 sampling event. 2-Butanone was detected only during the November 2008 sampling event at an estimated concentration of 38 μ g/L (less than the Class GA criterion of 50 μ g/L). During the Round 3 event in November 2008, toluene was detected at a concentration of 1,200 μ g/L and was

detected again during the February 2010 sampling event at a concentration of 230 μ g/L (Class GA criterion of 5 μ g/L) but was not detected in May 2011, August 2012 or March 2015.

VOCs were not detected in monitoring well MW-6A during any of the long-term monitoring events with five exceptions. During the February 2010 sampling event, PCE was detected at an estimated concentration of 1.2 μ g/L (Class GA criterion of 5 μ g/L). During the November 2013, March 2015, and May 2016 sampling events, chloroform was detected at concentrations of 5.7 μ g/L, 2.8 μ g/L, and 1.8 μ g/L, respectively (Class GA criterion of 7 μ g/L). TCE was detected at 1.1 μ g/L in May 2016.

Three VOCs were detected in monitoring well MW-6B above the Class GA criteria. Cis-1,2-DCE was detected above the Class GA criterion of 5 μ g/L during eight of nine sampling events (plus the Aril 2007 confirmation round) at concentrations ranging from 44 μ g/L to 210 μ g/L. TCE was detected above the Class GA criterion of 5 μ g/L during eight of nine sampling events (plus the April 2007 confirmation round) at concentrations ranging from 7.3 μ g/L to 85 μ g/L. PCE was detected above the Class GA criterion of 5 μ g/L during all nine sampling events (plus the April 2007 confirmation round) at concentrations ranging from 23 μ g/L to 2,000 μ g/L.

4.1.3 Downgradient Monitoring Wells

Five monitoring wells are located downgradient of the Site. Wells MW-12, MW-13 and MW-14 are located along the Southern State Parkway, approximately 3,000 ft south of the Site. Monitoring well MW-11 is located in the Bay Shore Middle School athletic fields. Monitoring well MW-16 is located on Abrew Street, south of the Middle School. Well locations are shown on Figure 2.

Three VOCs were detected above the Class GA criterion in monitoring well MW-12. PCE was detected during all nine sampling events and six samples (including this round) exceeded the criterion; concentrations ranged from an estimated 0.8 μ g/L to 60 μ g/L. 1,2-Dichlorobenzene was detected at a concentration of 9 μ g/L (Class GA criterion of 4.7 μ g/L) during the June 2006 sampling event only. cis-1,2-DCE was detected in four of nine sampling events but only exceed the Class GA criterion of 5 μ g/L during Round 6; it was not detected during this sampling round. Several compounds, including methyl-tert-butyl-ether (MTBE), TCE and chlorobenzene, have been sporadically detected in MW-12 at concentrations below their respective Class GA criteria.

There were no exceedances noted at MW-13 during the Round 9 sampling event. Historically, the only VOC exceedance at this location was during Round 1 (June 2006) where PCE was detected at a concentration of 5 μ g/L during the June 2006 sampling event and at an estimated 1 μ g/L during the November 2008 and August 2012 sampling events (Class GA criterion of 5 μ g/L). Several compounds, including acetone, MTBE, chloroform, and TCE, have been sporadically detected in MW-13 at concentrations below their respective Class GA criteria.

No VOCs were detected above the Class GA criteria in MW-14 during any of the nine sampling events. PCE was detected at an estimated concentration of 2 µg/L during the August 2007 sampling

event. MTBE was detected during the last six sampling events at concentrations ranging from an estimated 0.81 μ g/L to 8 μ g/L (Class GA criterion of 10 μ g/L).

MW-11 was vandalized after Round 3 (November 2011) and was not sampled in subsequent sampling rounds. The well was properly abandoned in 2015 and a replacement well was installed. PCE was detected at a concentration of $56 \,\mu g/L$ in monitoring well MW-11 above its Class GA criterion of $5 \,\mu g/L$ during the June 2006 sampling event. An obstruction in MW-11 prevented the collection of a groundwater sample during the August 2007 sampling event. Two VOCs were detected above the Class GA criterion in monitoring well MW-11 during the May 2016 sampling event. PCE was detected in all three rounds of sampling at concentrations ranging from $28 \,\mu g/L$ to $60 \,\mu g/L$. Cis-1,2-DCE was detected during all three rounds and two of the samples exceeded the criterion with concentrations ranging from $3 \,\mu g/L$ to $13 \,\mu g/L$. Historically, toluene was detected only in Round 3 at a concentration of $63 \,\mu g/L$ (Class GA criterion of $5 \,\mu g/L$). Concentrations of vinyl chloride, MTBE, TCE and chlorobenzene have been detected at concentration below their respective criteria.

Four VOCs were detected at MW-16 during the Round 9 sampling event, three of which exceeded the criteria (MTBE, cis-1,2-DCE and PCE). PCE was detected during eight of nine sampling events at concentrations ranging from an estimate 2 μ g/L to 100 μ g/L, six of which exceeded the Class GA criterion of 5 μ g/L. cis-1,2-DCE was detected in seven of nine rounds at concentrations ranging from 1.1 μ g/L to 20 μ g/L, five of which exceeded the criterion. MTBE also exceeded the criterion during Round 9 at a concentration of 13 μ g/L (Class GA criterion is 10 μ g/L). MTBE was also detected in three other rounds but at concentrations below the criterion. Vinyl chloride has been detected in two of nine sampling events at estimated concentrations of 1.2 μ g/L and 2.1 μ g/L, one of which exceeded the Class GA criterion of 2 μ g/L. TCE was detected in six of nine sampling events at concentrations ranging from an estimated 1.1 μ g/L to 16 μ g/L, four of which exceeded the Class GA criterion of 5 μ g/L. 1,1,1-Trichloroethane (1,1,1-TCA) was detected in three of nine sampling events at concentrations ranging from an estimated 1.7 μ g/L to 5 μ g/L, with one sample equaling the Class GA criterion of 5 μ g/L. Two other VOCs, 1,1-dichloroethene and acetone, have been sporadically detected in samples from MW-16 but at concentrations below their Class GA criteria.

4.1.4 Sentinel Monitoring Wells

Two monitoring wells, MW-23S and MW-23D, are located south of the Sunrise Highway on Perkel Street, approximately 7,600 ft south of the Site.

Two VOCs were detected in monitoring well MW-23S above the Class GA criteria during Round 9. PCE was detected above the Class GA criterion of 5 μ g/L during all nine sampling events at concentrations ranging from 390 μ g/L to 5,200 μ g/L. MTBE was also detected a concentration of 10 μ g/L, which equals the criterion. MTBE has been detected in five previous sampling events but at concentrations below the criterion. Historically, cis-1,2-DCE has been detected above the Class GA criterion of 5 μ g/L during seven of nine sampling events at concentrations ranging from 12 μ g/L to 360 μ g/L. TCE was detected above the Class GA criterion of 5 μ g/L during seven of nine sampling

events at concentrations ranging from 5.4 μ g/L to 220 μ g/L. Five other VOCs, including 1,1-DCE, trans-1,2-DEC, 1,1-dichloroethane, and 1,1,1-TCA, have been sporadically detected in samples from MW-23S at concentrations below their respective Class GA criterion.

Three VOCs were detected above the Class GA criteria during Round 9 at MW-23D. PCE has been detected during all nine sampling events at concentrations ranging from an estimated 4 μ g/L to 170 μ g/L, eight of which exceeded the 5 μ g/L criterion. cis-1,2-DCE was detected during the last five sampling events at concentrations ranging from an estimated 3 μ g/L to 10 μ g/L, four of which exceeded the 5 μ g/L criterion. TCE was detected during the last five sampling events at concentrations ranging from an estimated 1.2 μ g/L to 6.2 μ g/L, three of which were at or above the 5 μ g/L criterion. MTBE was detected in MW-23D at concentrations below the Class GA criteria during the last four rounds.

4.2 Round 9 (May 2016) Data Quality Review

In accordance with the project plans, data generated for this investigation were not subject to formal validation. However, AECOM's quality assurance officer (QAO) reviewed the data for reasonableness and the presence of any anomalies, including issues identified by the laboratory in the case narrative, and other items noted in review of shipping and handling documentation, inconsistencies with previous data, and review of the laboratory quality assurance (QA) forms. The QAO also reviewed the field duplicate data.

Samples from 13 monitoring wells were prepared by SW-846 method 5030C and analyzed for target compound list (TCL) VOCs by SW-846 method 8260C and reported as sample delivery group (SDG) AC91322. One trip blank was collected and submitted for VOC analysis. One field rinsate blank sample was collected. Sample MW-6B was designated as the quality control (QC) sample (matrix spike and spike duplicate analysis) for the Round 9 sampling event.

Samples were collected on May 9, 10, 11 and 12, 2016. Samples were received in good condition at the lab on May 12, 2016. Samples were properly preserved (pH \leq 2) and properly cooled (temperature between 0° and 6° C).

The laboratory did not flag any of the analytical results. Laboratory QC limits for the organic analysis were met for initial and continuing calibrations, and blanks. No target or non-target compounds were detected in the trip blank.

In SDG AC91322, the matrix spike and matrix spike duplicate for MW-6B and the laboratory control sample (LCS) had recoveries (for 9, 5, and 13 compounds respectively) that were outside of criteria. The relative percent difference (RPD) for the MS/MSD results exceeded criteria in one case. One site-specific field duplicate groundwater sample pair (MW-6B/ MW-56B) was collected for VOC analysis from the ServAll Site in Round 9. Precision for the field duplicate (see Table 4) was very good in that for the three compounds (including PCE) detected, the RPDs were 3.0 to 8.7%.

Due to high concentrations (exceeding the calibration range) of one target compound (PCE), one sample (MW-23S) required dilution at a dilution factor of 20.

A review of the analytical results from MW-6A and MW-6B for Round 9 showed anomalously high concentrations of cis-1,2-DCE, TCE and PCE in the sample labeled MW-6A (AC91322-002) and anomalously low concentrations in MW-6B (AC91322-006). Historically, MW-6B has shown consistently high concentrations of these three compounds while MW-6A has typically reported these three compounds as either not detected or below the criterion. After examining the sampling logs, it was determined that the field crew mistakenly labeled the sample bottles incorrectly based on the total depth of each well; MW-6B is the deeper of the two paired monitoring wells.

5.0 Summary and Recommendations for Future Site Remediation Activities

5.1 Summary of VOCs

Three monitoring wells are located upgradient of the Site: MW-2, MW-3A and MW-3B (Figure 2). Monitoring well MW-2 was sampled for the first time during November 2008 and a slight exceedance of benzene was noted; there were no further exceedances noted in the next five sampling events. MW-2 was not sampled during this round due to an obstruction in the well. No VOCs, other than a trace hit of chloroform, have been detected in MW-3A during the nine rounds of sampling (Table 3). No VOCs have been detected in MW-3B during any of the seven sampling rounds (MW-3B was first sampled during the November 2008 Round 3 sampling event).

Monitoring well MW-1 is the only on-Site well. It has been sampled five times during the nine long-term sampling events. PCE has exceeded the Class GA criterion of 5 μ g/L in each of these five events at concentrations ranging from 5.6 μ g/L to 50 μ g/L. Concentrations of cis-1,2-dichloroethene, TCE and total xylenes have been noted but at concentrations below their respective Class GA criteria.

Four monitoring wells are located immediately downgradient of the Site: MW-4, MW-5, MW-6A and MW-6B. No exceedances have been noted in MW-4 and MW-6A during any of the nine rounds of sampling. No exceedances (other than toluene and acetone which were attributed to laboratory artifacts) have been noted in MW-5 during eight rounds of sampling (MW-5 was not sampled during rounds 7 and 9 as there was insufficient water to operate the pump).

Exceedances of PCE, TCE and cis-1,2-dichloroethene have been noted at MW-6B during the nine rounds of long-term monitoring (plus the confirmation round in April 2007). A summary of historic PCE concentration data for selected monitoring wells is shown on Table 5. The data presented on this table is a compilation of data available for review during the preparation of this report. A graph of the historic PCE concentrations is also illustrated on Figure 9. Prior to the implementation of remedial measures, the PCE concentration at MW-6B was as high as 14,000 μ g/L. As noted in Section 2, the groundwater pump and treat system began operation in 1998 and by July 2000, the PCE concentration had decreased to 160 μ g/L. The treatment system was shut down in 2001. PCE concentrations rebounded during the June 2006 event (1,100 μ g/L), then decreased by more than half for 2007 and 2008. The concentration then rebounded to 2,000 μ g/L in February 2010, then dropped back to 23 μ g/L by August 2012 and spiked to 1,500 μ g/L in the November 2013 event and was at 1,200 μ g/L in the March 2015 sampling event. The concentration has decreased significantly during Round 9 to 330 μ g/L.

Three of the monitoring wells sampled as part of the long-term monitoring program are located approximately halfway between the Site and the Bay Shore Middle School (MW-12, MW-13 and MW-14) along the Southern State Parkway. PCE was detected above the criterion in MW-12, (in each event between 2006 and 2010 at concentrations ranging from 10 μ g/L to 60 μ g/L, but was detected below the criterion (at 1.6 μ g/L, 0.80 μ g/L and 2.4 μ g/L) in the May 2011, August 2012 and November 2013 sampling events. The concentrations in the March 2015 event (10 μ g/L) and May 2016 event (13 μ g/L) both exceeded the criterion, extending the plume to the south as shown in Figures 10F and 10G. PCE was detected at the criterion in MW-13 during the June 2006 sampling event; it has been below the criterion or not detected during the last eight sampling rounds. PCE has not been detected above the criterion in monitoring wells MW-14 during the previous nine sampling events.

Of the two monitoring wells near the Bay Shore Middle School, the PCE concentrations at MW-11 were $56 \,\mu g/L$ and $60 \,\mu g/L$ for the June 2006 and November 2008 sampling events (an obstruction prevented the collection of a sample in August 2007 through March 2015) and $28 \,\mu g/L$ during the May 2016 event. At MW-16, the other well near the school, the concentrations of VOCs have all decreased significantly since the August 2012 sampling event. The concentrations of vinyl chloride, cis-1,2-DCE, TCE and PCE all exceeded the criterion in August 2012; however, the concentrations of these four VOCs all dropped to below their respective criteria in November 2013 and were not detected in March 2015. The concentrations of PCE and cis-1,2-DCE rose during the May 2016 event and both now exceed the criterion. A bar chart of the PCE concentrations at MW-11 and MW-16 for the nine long-term sampling events is shown on Figure 6.

The two most downgradient monitoring wells, MW-23S and MW-23D, are located south of the Sunrise Highway (Figure 2). As shown on Figure 9, PCE concentrations in MW-23S spiked in June 2006 (5,200 μ g/L), then decreased by an order of magnitude by November 2008 (500 μ g/L). PCE concentrations increased over the next four sampling rounds peaking at 2,500 μ g/L in November 2013. The concentration decreased to 390 μ g/L during the March 2015 event then rose significantly to 2,300 μ g/L during the most recent event. PCE concentrations in MW-23D have been increasing since 2004 (0.6 μ g/L) through November 2013 (130 μ g/L) decreased slightly during the March 2015 event (110 μ g/L) and continued to rise during the May 2016 event (170 μ g/L).

Isoconcentration maps were prepared for PCE and are shown on Figure 10A (June 2006 data), Figure 10B (November 2008 data), Figure 10C (May 2011 data), Figure 10D (August 2012 data), Figure 10E (November 2013 data), Figure 10F (March 2015) and Figure 10G (May 2016). As shown on these maps, the PCE plume appears to have separated into two non-contiguous plumes starting with the May 2011 sampling event and continuing through the March 2015 sampling event: one near the Site and a second centered near MW-23S (immediately south of the Sunrise Highway). PCE concentrations in wells near the Site appear to be increasing at MW-6B as is the PCE concentration in MW-12 (adjacent to the Southern State Parkway). Further downgradient, near the Bay Shore High

School, the PCE concentrations appear to be increasing during the latest sampling event at MW-16, MW-23S and MW-23D.

TCE has been detected above the Class GA criterion of 5 μ g/L in four monitoring wells, MW-6B, MW-16, MW-23S and MW-23D. A graph of the TCE concentrations for these four wells is shown on Figure 7.

Cis-1,2-DCE has been detected above the Class GA criterion of 5 μ g/L in six monitoring wells, MW-6B, MW-12, MW-16, MW-23S and MW-23D. As shown on Figure 8, there does not appear to be any discernible trend in concentration.

5.2 Future Recommendations

Future recommendations for the ServAll Laundry Site are continued monitoring of selected monitoring wells for VOCs.

Monitoring well MW-5 could not be sampled during this round as there was insufficient water to operate the pump. This was also the case during the January 2013 sampling event. An obstruction was found in monitoring well MW-2 that prevented sampling during this round. An effort will be made to remove the obstruction before the next sampling event.

Monitoring well MW-1 should be included in future long-term sampling events.

The next round of groundwater sampling is scheduled for August 2017.

AECOM

Final Groundwater Sampling Report May 2016 Sampling Event ServAll Laundry, Site No. 1-52-077

Tables

TABLE 1
SERVALL LAUNDRY SITE (1-52-077)
MONITORING WELL DATA

Well ID	NY State Plane	e Coordinates ¹	Well	Top of	
			Screen	Riser	
	Northing	Easting	Depth (ft bgs)	Elevation ¹	Comments
MW-1	193,973.43	2,204,502.95	76.5 - 86.5	64.79	Behind Servall Building
MW-2	194,178.63	2,204,535.21	71.8 - 81.8	64.47	Well could not be located prior to the November 2008 event
MW-3A	194,188.77	2,204,423.40	110.0 - 120.0	64.37	Well could not be located prior to the November 2008 event
MW-3B	198,189.80	2,204,411.51	78.0 - 88.0	64.54	West of the building on the north side of Drayton Avenue
MW-4	193,713.55	2,204,672.09	74.0 - 84.0	63.11	On north side of Frederick Avenue
MW-5	193,738.12	2,204,418.09	74.0 - 84.0	64.06	On north side of Frederick Avenue
MW-6A	193,723.62	2,204,573.71	53.0 - 63.0	63.87	On north side of Frederick Avenue
MW-6B	193,722.77	2,204,566.29	25.0 - 35.0	63.83	On north side of Frederick Avenue
MW-7	193,247.00	2,204,841.62	102.0 - 112.0	60.79	Well appears to be missing
MW-8	192,291.45	2,205,304.27	94.0 - 104.0	54.6	Well appears to be missing
MW-9	189,214.07	2,206,683.24	78.0 - 88.0	40.91	Well appears to have been paved over or removed
MW-10	188,924.35	2,207,905.95	78.7 - 88.7	40.22	Well appears to be missing
MW-11	188,889.82	2,207,272.76	80.0 - 90.0	37.07	In grass on field at Bay Shore Middle School
MW-12	191,051.70	2,205,475.34	78.8 - 88.8	50.61	In woods along Southern State Parkway near light pole
MW-13	190,990.06	2,205,989.11	88.0 - 98.0	50.33	In woods along Southern State Parkway near light pole
MW-14	191,009.26	2,206,506.46	83.3 - 93.3	49.98	In woods along Southern State Parkway near light pole
MW-15	190,264.25	2,206,372.05	87.0 - 97.0	48.78	Well appears to be missing
MW-16	188,111.44	2,207,779.29	84.0 - 94.0	36.50	South side of Abrew Street in roadway
MW-23S	187,099.54	2,208,295.49	66.0 - 69.0	24.38	In roadway on Cul-de-sac on Perkel Street
MW-23D	187,101.72	2,208,276.17	83.0 - 88.0	24.45	In roadway on Cul-de-sac on Perkel Street
		·			,

Bolded monitoring wells are severely damaged and require repairs to the road box

1 - Coordinates and elevations taken from E.C. Jordan RI/FS Report, January 1992 and ABB Plume Discharge Study, December 1995.

TABLE 2 SERVALL LAUNDRY SITE (SITE 1-52-077) GROUNDWATER ELEVATIONS

Well #	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
MW-1	64.79	2/1/10	22.87	41.92	February 2010 sampling event
		5/9/11			not collected
		8/20/12	24.65	40.14	August 2012 sampling event
		11/11/13	26.42	38.37	November 2013 sampling event
		3/23/15	23.14	41.65	March 2015 sampling event
		5/9/16	25.31	39.48	May 2016 sampling event
MW-2	64.47	6/6/06			could not locate
		8/20/07			could not locate
		11/11/08	23.82	40.65	November 2008 sampling event
		2/1/10	22.27	42.20	February 2010 sampling event
		5/9/11	23.19	41.28	May 2011 sampling event
		8/20/12	24.00	40.47	August 2012 sampling event
		11/11/13	25.72	38.75	November 2013 sampling event
		3/23/15	23.14	41.33	March 2015 sampling event
		5/9/16	24.76	39.71	May 2016 sampling event
MW-3A	64.37	6/6/06	20.68	43.69	June 2006 sampling event
		8/20/07	22.00	42.37	August 2007 sampling event
		11/11/08	23.61	40.76	November 2008 sampling event
		2/1/10	22.07	42.30	February 2010 sampling event
		5/9/11	23.02	41.35	May 2011 sampling event
		8/20/12	23.81	40.56	August 2012 sampling event
		11/11/13	25.60	38.77	November 2013 sampling event
		3/23/15	22.75	41.62	March 2015 sampling event
		5/9/16	24.57	39.80	May 2016 sampling event
MW-3B	64.54	6/6/06			could not locate
		8/20/07			could not locate
		11/11/08	23.81	40.73	November 2008 sampling event
		2/1/10	22.29	42.25	February 2010 sampling event
		5/9/11	23.20	41.34	May 2011 sampling event
		8/20/12	24.02	40.52	August 2012 sampling event
		11/11/13	25.80	38.74	Nov 2013 sampling event, <0.5 ft of water
		3/23/15	22.90	41.64	March 2015 sampling event
		5/9/16	24.78	39.76	May 2016 sampling event
MW-4	63.11	6/16/06	20.34	42.77	June 2006 sampling event
		8/20/07	21.50	41.61	August 2007 sampling event
		11/11/08	23.35	39.76	November 2008 sampling event
		2/1/10	21.77	41.34	February 2010 sampling event
		5/9/11	22.57	40.54	May 2011 sampling event
		8/20/12	24.13	38.98	August 2012 sampling event
		11/11/13	25.21	37.90	November 2013 sampling event
		3/23/15	NA		well cap is missing
		5/9/16	24.16	38.95	May 2016 sampling event

TABLE 2 SERVALL LAUNDRY SITE (SITE 1-52-077) GROUNDWATER ELEVATIONS

Well #	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
MW-5	64.06	6/15/06	20.98	43.08	June 2006 sampling event
		8/20/07	22.20	41.86	August 2007 sampling event
		11/11/08	23.99	40.07	November 2008 sampling event
		2/1/10	22.42	41.64	February 2010 sampling event
		5/9/11	23.29	40.77	May 2011 sampling event
		8/20/12	23.47	40.59	August 2012 sampling event
		11/11/13	25.94	38.12	November 2013 sampling event
		3/23/15	22.92	41.14	March 2015 sampling event
		5/9/16	24.03	40.03	May 2016 sampling event
MW-6A	63.87	6/15/06	20.93	42.94	June 2006 sampling event
		8/20/07	22.41	41.46	August 2007 sampling event
		11/11/08	24.01	39.86	November 2008 sampling event
		2/1/10	22.49	41.38	February 2010 sampling event
		5/9/11	23.28	40.59	May 2011 sampling event
		8/20/12	24.15	39.72	August 2012 sampling event
		11/11/13	25.87	38.00	November 2013 sampling event
		3/23/15	22.89	40.98	March 2015 sampling event
		5/9/16	24.78	39.09	May 2016 sampling event
MW-6B	63.83	6/15/06	20.89	42.94	June 2006 sampling event
		4/20/07	20.50	43.33	April 2007 confirmation sampling event
		8/20/07	22.16	41.67	August 2007 sampling event
		11/11/08	23.95	39.88	November 2008 sampling event
		2/1/10	22.36	41.47	February 2010 sampling event
		5/9/11	23.62	40.21	May 2011 sampling event
		8/20/12	24.17	39.66	August 2012 sampling event
		11/11/13	25.89	37.94	November 2013 sampling event
		3/23/15	22.82	41.01	March 2015 sampling event
		5/9/16	24.84	38.99	May 2016 sampling event
MW-11	37.07	6/8/06	8.80	28.27	June 2006 sampling event
		8/20/07	6.57	30.50	August 2007 sampling event
		11/11/08	10.13	26.94	November 2008 sampling event
		2/1/10	9.13	27.94	February 2010 sampling event
		5/9/11	NA		vandalized, filled with debris
		8/20/12	NA		vandalized, filled with debris
		11/11/13	NA		vandalized, filled with debris
		3/23/15	NA		vandalized, filled with debris
		5/9/16	10.16	26.91	May 2016 sampling event

TABLE 2 SERVALL LAUNDRY SITE (SITE 1-52-077) GROUNDWATER ELEVATIONS

Well #	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
MW-12	50.61	6/15/06	14.15	36.46	lune 2006 compling overt
10100-12	30.61	8/20/07	15.42	35.19	June 2006 sampling event August 2007 sampling event
		11/11/08	16.74	33.87	November 2008 sampling event
		2/1/10	15.14	35.47	February 2010 sampling event
		5/9/11	15.14	35.01	May 2011 sampling event
		8/20/12	16.62	33.99	August 2012 sampling event
		11/11/13	18.41	32.20	November 2013 sampling event
		3/23/15	14.91	35.70	March 2015 sampling event
		5/9/16	17.02	33.59	May 2016 sampling event
		0/0/10	17.02	00.00	liviay 2010 Sampling event
MW-13	50.33	6/15/06	18.51	31.82	June 2006 sampling event
		8/20/07	15.87	34.46	August 2007 sampling event
		11/11/08	17.10	33.23	November 2008 sampling event
		2/1/10	15.54	34.79	February 2010 sampling event
		5/9/11	15.97	34.36	May 2011 sampling event
		8/20/12	16.93	33.40	August 2012 sampling event
		11/11/13	18.71	31.62	November 2013 sampling event
		3/23/15	15.20	35.13	March 2015 sampling event
		5/9/16	17.31	33.02	May 2016 sampling event
MW-14	49.98	6/15/06	15.01	34.97	June 2006 sampling event
''''	10.00	8/20/07	16.26	33.72	August 2007 sampling event
		11/11/08	17.29	32.69	November 2008 sampling event
		2/1/10	15.84	34.14	February 2010 sampling event
		5/9/11	16.25	33.73	May 2011 sampling event
		8/20/12	17.14	32.84	August 2012 sampling event
		11/11/13	18.99	30.99	November 2013 sampling event
		3/23/15	15.41	34.57	March 2015 sampling event
		5/9/16	17.53	32.45	May 2016 sampling event
MW-16	36.50	6/15/06	10.52	25.98	June 2006 sampling event
	55.55	8/20/07	12.76	23.74	August 2007 sampling event
		11/11/08	12.35	24.15	November 2008 sampling event
		2/1/10	11.52	24.98	February 2010 sampling event
		5/9/11	11.68	24.82	May 2011 sampling event
		8/20/12	11.82	24.68	August 2012 sampling event
		11/11/13	13.35	23.15	November 2013 sampling event
		3/23/15	10.89	25.61	March 2015 sampling event
		5/9/16	12.24	24.26	May 2016 sampling event

TABLE 2
SERVALL LAUNDRY SITE (SITE 1-52-077)
GROUNDWATER ELEVATIONS

Well#	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
MW-23S	24.38	6/8/06	5.25	19.13	June 2006 sampling event
		8/20/07	6.22	18.16	August 2007 sampling event
		11/11/08	6.09	18.29	November 2008 sampling event
		2/1/10	5.78	18.60	February 2010 sampling event
		5/9/11	5.62	18.76	May 2011 sampling event
		8/20/12	5.61	18.77	August 2012 sampling event
		11/11/13	6.60	17.78	November 2013 sampling event
		3/23/15	5.25	19.13	March 2015 sampling event
		5/9/16	5.85	18.53	May 2016 sampling event
MW-23D	24.45	6/8/06	5.15	19.30	June 2006 sampling event
		8/20/07	6.14	18.31	August 2007 sampling event
		11/11/08	6.00	18.45	November 2008 sampling event
		2/1/10	5.62	18.83	February 2010 sampling event
		5/9/11	5.67	18.78	May 2011 sampling event
		8/20/12	5.56	18.89	August 2012 sampling event
		11/11/13	6.52	17.93	November 2013 sampling event
		3/23/15	5.36	19.09	March 2015 sampling event
		5/9/16	5.78	18.67	May 2016 sampling event

All measurements and elevations are in feet, MSL.

All measurements were taken from the top of PVC casing.

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC		MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	Can't	Can't	SL-MW-2	SL-MW-2	SL-MW-2	SL-MW-2	SL-MW-2	SL-MW-2	SL-MW-2
Laboratory ID	Ground	Locate	Locate	G2115-14	J0196-06	K0834-09	L1786-11	AC75681-003	AC83904-009	
Sample Date	Water	6/6/06	8/21/07	11/14/08	2/4/10	5/11/11	08/22/12	11/12/13	3/23/15	
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	NA	NA	ND	ND	ND	ND	ND	ND	an
1,1-Dichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	obstruction
Acetone	50	NA	NA	ND	ND	ND	ND	ND	ND	in the well
Benzene	1	NA	NA	1.7 J	ND	ND	ND	ND	ND	prevented
2-Butanone	50	NA	NA	ND	ND	ND	ND	ND	ND	sampling
trans-1,2-Dichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	
Methyl tert-butyl ether	10	NA	NA	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	5	NA	NA	ND	ND	ND	ND	ND	ND	
cis-1,2-Dichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	
Chloroform	7	NA	NA	ND	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	5	NA	NA	ND	ND	ND	ND	ND	ND	
Trichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	
Tetrachloroethene	5	NA	NA	ND	ND	2.1 J	ND	ND	1.1	
Xylenes (Total)	5	NA	NA	ND	ND	ND	ND	ND	ND	
Toluene	5	NA	NA	1.4 J	ND	ND	ND	ND	ND	
Chlorobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	4.7	NA	NA	ND	ND	ND	ND	ND	ND	
Number of TICs				1						
Total TIC concentration				38 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-3A	MW-3A	MW-3A	MW-3A	MW-3A	MW-3A	MW-3A	MW-3A	MW-3A
Sample ID	Class GA	SMW-3A	SMW-3A	SL-MW-3A	SL-MW-3A	SL-MW-3A	SL-MW-3A	SL-MW-3A	SL-MW-3A	SL-MW-3A
Laboratory ID	Ground	E0773-18	F1174-02C	G2115-16	J0196-02	K0834-10	L1820-01	AC75711-005	AC83904-011	AC91322-010
Sample Date	Water	6/6/06	8/21/07	11/14/08	2/3/10	5/11/11	08/27/12	11/12/13	3/23/15	5/11/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	0.53 J	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	1						
Total TIC concentration		ND	ND	19 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-3B	MW-3B	MW-3B	MW-3B	MW-3B	MW-3B	MW-3B	MW-3B	MW-3B
Sample ID	Class GA	Can't	Can't	SL-MW-3B	SL-MW-3B	SL-MW-3B	SL-MW-3B	SL-MW-3B	SL-MW-3B	SL-MW-3B
Laboratory ID	Ground	Locate	Locate	G2115-17	J0196-07	K0834-11	L1820-02	AC75711-001	AC83904-013	AC91322-009
Sample Date	Water	6/6/06	8/21/07	11/14/08	2/4/10	5/11/11	08/27/12	11/12/13	3/23/15	5/10/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	NA	NA	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Acetone	50	NA	NA	ND	ND	ND	ND	ND	ND	ND
Benzene	1	NA	NA	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	NA	NA	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	NA	NA	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	NA	NA	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Toluene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	NA	NA	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	NA	NA	ND	ND	ND	ND	ND	ND	ND
Number of TICs				1						
Total TIC concentration				19 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
Sample ID	Class GA				SL-MW-1		SL-MW-1	SL-MW-1	SL-MW-1	SL-MW-1
Laboratory ID	Ground				J0196-01		L1786-10	AC75681-001	AC83904-001	AC91322-008
Sample Date	Water	6/6/06	8/21/07	11/14/08	2/3/10	5/11/11	08/22/12	11/12/13	3/23/15	5/10/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	NA	NA	NA	ND	NA	ND	ND	ND	ND
1,1-Dichloroethene	5	NA	NA	NA	ND	NA	ND	ND	ND	ND
Acetone	50	NA	NA	NA	ND	NA	ND	ND	ND	ND
Benzene	1	NA	NA	NA	ND	NA	ND	ND	ND	ND
2-Butanone	50	NA	NA	NA	ND	NA	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	NA	NA	NA	ND	NA	ND	ND	ND	ND
Methyl tert-butyl ether	10	NA	NA	NA	ND	NA	ND	ND	ND	ND
1,1-Dichloroethane	5	NA	NA	NA	ND	NA	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	NA	NA	NA	2.3 J	NA	1.2 J	ND	ND	ND
Chloroform	7	NA	NA	NA	ND	NA	ND	ND	ND	ND
1,1,1-Trichloroethane	5	NA	NA	NA	ND	NA	ND	ND	ND	ND
Trichloroethene	5	NA	NA	NA	1.8 J	NA	0.81 J	ND	ND	ND
Tetrachloroethene	5	NA	NA	NA	50	NA	18.0	5.6	14.0	15.0
Xylenes (Total)	5	NA	NA	NA	1.1 J	NA	ND	ND	ND	ND
Toluene	5	NA	NA	NA	ND	NA	ND	ND	ND	ND
Chlorobenzene	5	NA	NA	NA	ND	NA	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	NA	NA	NA	ND	NA	ND	ND	ND	ND
Number of TICs										
Total TIC concentration								ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMW-4	SMW-4	SMW-4	SL-MW-4	SL-MW-4	SL-MW-4	SL-MW-4	SL-MW-4	SL-MW-4	SL-MW-4
Laboratory ID	Ground	E0832-10	F0495-02B	F1174-03C	G2115-09	J0196-08	K0834-12	L1820-07	AC75711-01	_	AC91322-016
Sample Date	Water	6/16/06	4/20/07	8/21/07	11/13/08	2/4/10	5/12/11	08/29/12	11/13/13	3/23/15	5/12/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	well cap	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	is missing	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	and the	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	well is	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	filled with	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	soil	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND		ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND		ND
Number of TICs		0	0	0	1						
Total TIC concentration		ND	ND	ND	28 J				ND		

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
Sample ID	Class GA	SMW-5	SMW-5	SMW-5	SL-MW-5	SL-MW-5	SL-MW-5	SL-MW-5	SL-MW-5	SL-MW-5	SL-MW-5
Laboratory ID	Ground	E0832-05	F0495-04B	F1174-13B	G2115-13	J0196-09	K0834-15	L1820-06		AC83924-00	1
Sample Date	Water	6/15/06	4/20/07	8/27/07	11/13/08	2/4/10	5/12/11	08/29/12	1/13/13	3/24/15	5/10/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	Could not	ND	Could not
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	sample,	ND	sample,
Acetone	50	ND	ND	ND	170	ND	ND	ND	less than	ND	less than
Benzene	1	ND	ND	ND	ND	ND	ND	ND	1 ft of	ND	1.7 ft of
2-Butanone	50	ND	ND	ND	38 J	ND	ND	ND	water in	ND	water in
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	the well.	ND	the well.
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND		ND	
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND		ND	
cis-1,2-Dichloroethene	5	3.0 J	2.0 J	ND	ND	ND	ND	ND		ND	
Chloroform	7	ND	ND	ND	ND	ND	ND	ND		ND	
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND		ND	
Trichloroethene	5	ND	ND	ND	ND	ND	1.5 J	ND		ND	
Tetrachloroethene	5	ND	ND	2.0 J	ND	ND	ND	ND		ND	
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND		ND	
Toluene	5	ND	ND	ND	1,200	230 D	ND	ND		ND	
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND		ND	
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND		ND	
Number of TICs		0	0	0	1						
Total TIC concentration		ND	ND	ND	330 J					ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A
Sample ID	Class GA	SMW-6A	SMW-6A	SMW-6A	SMW-6A	SMW-6A	SMW-6A	SL-MW-6A	SL-MW-6A	SL-MW-6A	SL-MW-6A
Laboratory ID	Ground	E0832-06	F0495-01B	F1174-04C	G2115-10	J0196-10	K0834-13	L1820-03	AC75711-012	AC83904-020	
Sample Date	Water	6/15/06	4/20/07	8/21/07	11/13/08	2/4/10	5/12/11	08/27/12	11/13/13	3/24/15	5/10/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	5.7	2.8	1.8
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1
Tetrachloroethene	5	ND	ND	ND	ND	1.2 J	ND	ND	ND	ND	ND
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1						
Total TIC concentration		ND	ND	ND	28 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B
Sample ID	Class GA	SMW-6B	SMW-6B	SMW-6B	SMW-6B	SMW-6B	SMW-6B	SL-MW-6B	SL-MW-6B	SL-MW-6B	SL-MW-6B
Laboratory ID	Ground	E0832-07	F0495-03B	F1174-05C	G2115-12	J0196-11	K0834-14	L1820-04	AC75711-010	AC83904-018	AC91322-002
Sample Date	Water	6/15/06	4/20/07	8/21/07	11/13/08	2/4/10	5/12/11	08/27/12	11/13/13	3/24/15	5/10/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	3.7 J	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	210 D	120	130	140	190	44	0.50 J	140	100	44.0
Chloroform	7	ND	ND	ND	2.0 J	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	85	27	26	30	40	7.3	ND	30.0	31.0	12.0
Tetrachloroethene	5	1,100 D	650	480 D	470 D	2,000 D	150	23	1,500	1,200	330
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1						
Total TIC concentration		ND	ND	ND	28 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMW-12	SMW-12	SL-MW-12	SL-MW-12	SL-MW-12	SL-MW-12	SL-MW-12	SL-MW-12	SL-MW-12
Laboratory ID	Ground	E0832-01	F1174-08C	G2115-06	J0189-01	K0834-01	L1786-07	AC75711-027	AC83904-016	AC91322-011
Sample Date	Water	6/15/06	8/22/07	11/12/08	2/2/10	5/10/11	08/22/12	11/14/13	3/24/15	5/11/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	1.7 J	0.68 J	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	2.0 J	3.1 J	ND	1.8 J	5.6	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	1.0 J	ND	ND	ND	1.1 J	ND	ND	ND
Tetrachloroethene	5	17	17	60	10	1.6 J	0.80 J	2.4	10.0	13.0
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	4.0 J	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	9.0	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	1						
Total TIC concentration		ND	ND	26				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13	MW-13
Sample ID	Class GA	SMW-13	SMW-13	SL-MW-13	SL-MW-13	SL-MW-13	SL-MW-13	SL-MW-13	SL-MW-13	SL-MW-13
Laboratory ID	Ground	E0832-02	F1174-07C	G2115-07	J0189-02	K0834-02	L1786-04	AC75711-029	AC83924-007	AC91322-012
Sample Date	Water	6/15/06	8/22/07	11/12/08	2/2/10	5/10/11	8/21/12	11/14/13	3/24/15	5/11/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	4.0 J	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	6.7	1.2	1.4	0.57
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	6.0	2.7 J	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	3.0 J	ND	ND	ND	ND	0.71 J	ND	ND	ND
Tetrachloroethene	5	5.0	ND	1.0 J	ND	ND	1.0 J	ND	ND	ND
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	1						
Total TIC concentration		ND	ND	26 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14
Sample ID	Class GA	SMW-14	SMW-14	SL-MW-14	SL-MW-14	SL-MW-14	SL-MW-14	SL-MW-14	SL-MW-14	SL-MW-14
Laboratory ID	Ground	E0832-03	F1174-06C	G2115-18	J0189-04	K0834-05	L1786-08	AC75711-031	AC83924-003	AC91322-013
Sample Date	Water	6/15/06	8/22/07	11/14/08	2/2/10	5/10/11	08/22/12	11/14/13	3/25/15	5/11/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	1.1 J	8.0	4.6 J	6.8	0.81	0.67
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	2.0 J	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	1						
Total TIC concentration		ND	ND	20 J			ND	12.0 J	4.8 J	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11	MW-11
Sample ID	Class GA	SMW-11	SMW-11	SL-MW-11						
Laboratory ID	Ground	E0773-19		G2115-01						AC91322-001
Sample Date	Water	6/8/06	8/20/07	11/11/08	2/1/10	5/10/11	08/22/12	11/12/13	3/25/15	5/9/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	NA	ND	NA	NA	NA	NA	NA	1.8
1,1-Dichloroethene	5	ND	NA	ND	NA	NA	NA	NA	NA	ND
Acetone	50	ND	NA	ND	NA	NA	NA	NA	NA	ND
Benzene	1	ND	NA	ND	NA	NA	NA	NA	NA	ND
2-Butanone	50	ND	NA	ND	NA	NA	NA	NA	NA	ND
trans-1,2-Dichloroethene	5	ND	NA	ND	NA	NA	NA	NA	NA	ND
Methyl tert-butyl ether	10	ND	NA	1.8 J	NA	NA	NA	NA	NA	6.9
1,1-Dichloroethane	5	ND	ND	ND	NA	NA	NA	NA	NA	ND
cis-1,2-Dichloroethene	5	3.0 J	NA	13	NA	NA	NA	NA	NA	5.9
Chloroform	7	ND	NA	ND	NA	NA	NA	NA	NA	ND
1,1,1-Trichloroethane	5	ND	NA	ND	NA	NA	NA	NA	NA	ND
Trichloroethene	5	4.0 J	NA	ND	NA	NA	NA	NA	NA	2.4
Tetrachloroethene	5	56	NA	60	NA	NA	NA	NA	NA	28.0
Xylenes (Total)	5	ND	NA	ND	NA	NA	NA	NA	NA	ND
Toluene	5	ND	NA	63	NA	NA	NA	NA	NA	ND
Chlorobenzene	5	ND	NA	4.8 J	NA	NA	NA	NA	NA	ND
1,2-Dichlorobenzene	4.7	ND	NA	ND	NA	NA	NA	NA	NA	ND
Number of TICs		1		1						
Total TIC concentration		6 J	NA	22 J						

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC		MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16
Sample ID	Class GA	SMW-16	SMW-16	SL-MW-16	SL-MW-16	SL-MW-16	SL-MW-16	SL-MW-16	SL-MW-16	SL-MW-16
Laboratory ID			F1174-12B	G2115-05	J0189-05	K0834-08	L1786-09	AC75711-007	AC83924-005	AC91322-014
Sample Date	Water	6/15/06	8/27/07	11/12/08	2/2/10	5/11/11	08/22/12	11/12/13	3/24/15	5/11/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	1.2 J	ND	2.1 J	ND	ND	ND
1,1-Dichloroethene	5	4.0 J	ND	ND	2.4 J	ND	1.1 J	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	13.0	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	2.0 J	ND	ND	ND	ND	1.4 J	0.7	ND	13.0
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	15	ND	2.1 J	16	8.0	20	1.1	ND	6.8
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	5.0	ND	ND	2.8 J	ND	1.7 J	ND	ND	ND
Trichloroethene	5	16	ND	1.1 J	11	7.5	9.5	ND	ND	3.0
Tetrachloroethene	5	25	2.0 J	6.9	48	95	100	3.7	ND	22.0
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	1						
Total TIC concentration		ND	ND	23 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-23S	MW-23S	MW-23S	MW-23S	MW-23S	MW-23S	MW-23S	MW-23S	MW-23S
Sample ID	Class GA	SMW-23S	SMW-23S	SL-MW-23S	SL-MW-23S	SL-MW-23S	SL-MW-23S	SL-MW-23S	SL-MW-23S	SL-MW-23S
Laboratory ID	Ground	E0773-20	F1174-11B	G2115-03	J0196-03	K0834-06	L1786-03	AC75711-020	AC83924-009	AC91322-018
Sample Date	Water	6/8/06	8/27/07	11/12/08	2/3/10	5/11/11	8/21/12	11/13/13	3/25/15	5/12/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	2.5 J	2.2 J	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	1.0 J	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	1.0 J	ND	5.4	3.9 J	9.5	ND	2.4	10.0
1,1-Dichloroethane	5	ND	ND	ND	ND	1.6 J	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	360 D	180 D	45	38	83	47	ND	12	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	1.6 J	1.3 J	3.8 J	3.5 J	ND	ND	ND
Trichloroethene	5	220 D	99	18	15	46	28	ND	5.4	ND
Tetrachloroethene	5	5,200 D	1,700 D	500 D	590 D	1,500 D	1,800 D	2,500	390	2,300
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		2	0	1						
Total TIC concentration		1,250 JD	ND	21 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 3
SERVALL LAUNDRY SITE (SITE 1-52-077)
PERIODIC SAMPLING - 2006 THROUGH 2016 SAMPLING EVENTS
SUMMARY OF VOCs IN GROUNDWATER

Sample Location	NYSDEC	MW-23D	MW-23D	MW-23D	MW-23D	MW-23D	MW-23D	MW-23D	MW-23D	MW-23D
Sample ID	Class GA	SMW-23D	SMW-23D	SL-MW-23D	SL-MW-23D	SL-MW-23D	SL-MW-23D	SL-MW-23D	SL-MW-23D	SL-MW-23D
Laboratory ID	Ground	E0773-21	F1174-09B	G2115-04	J0196-04	K0834-07	L1786-01	AC75711-024	AC83924-011	AC91322-017
Sample Date	Water	6/8/06	8/27/07	11/12/08	2/3/10	5/11/11	8/21/12	11/13/13	3/25/15	5/12/16
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	0.97 J	1.8	1.5	1.1
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	3.0 J	5.5	10.0	9.3	9.3
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	1.1	ND
Trichloroethene	5	ND	ND	ND	ND	1.2 J	2.8 J	5.2	6.2	5.0
Tetrachloroethene	5	4.0 J	6.0	7.7	8.3	25	57	130	110	170
Xylenes (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		1	0	1						
Total TIC concentration		6 J	ND	25 J				ND	ND	

All values are in micrograms per liter (µg/L)

ND - Not detected

D - Dilution

J - Estimated value, VOCs

NA - Not analyzed

BOLD/ITALICS - exceeds criterion

TABLE 4
SERVALL LAUNDRY SITE (SITE 1-52-077)
FIELD DUPLICATE DATA - VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER
MAY 2016 SAMPLING EVENT

Sample Location Sample ID Laboratory ID Sample Date	SL-MW-6B AC91322-002	MW-6B SL-MW-56B AC91322-003 5/10/16 conc. Q	Precision as Relative Percent Difference (RPD)
Vinyl Chloride 1,1-Dichloroethene Acetone Benzene 2-Butanone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Xylenes (Total) Toluene Chlorobenzene 1,2-Dichlorobenzene	ND ND ND ND ND ND ND 44 ND ND 12 330 ND ND ND	ND ND ND ND ND ND A1 ND ND 11 340 ND ND ND ND	NC N

Only VOCs ever detected in any Round 1 through Round 6 sample are listed. All values in $\mu g/L$

NC - Not Calculable (analyte not detected in one or both analyses)

ND - Not Detected

J - Estimated value (greater than MDL but less than RL)

TABLE 5
SUMMARY OF HISTORIC TETRACHLOROETHENE CONCENTRATIONS IN SELECTED MONITORING WELLS
SERVALL LAUNDRY SITE (SITE 1-52-077)

	MW-2	MW-3A	MW-3B	MW-1	MW-4	MW-5	MW-6A	MW-6B	MW-12	MW-13	MW-14	MW-11	MW-16	MW-23S	MW-23D
May 2016	NA	ND	ND	15	ND	NA	ND	330	13	ND	ND	28	22	2,300	170
Mar 2015	1.1	ND	ND	14	NA	ND	ND	1,200	10	ND	ND	NA	ND	390	110
Nov 2013	ND	ND	ND	5.6	ND	NA	ND	1,500	2.4	ND	ND	NA	3.7	2,500	130
Aug 2012	ND	ND	ND	18	ND	ND	ND	23	0.80 J	1.0 J	ND	NA	100	1,800 D	57
May 2011	2.1 J	ND	ND	NA	ND	ND	ND	150	1.6 J	ND	ND	NA	95	1,500 D	25
Feb 2010	ND	ND	ND	50	ND	ND	1.2 J	2,000 D	10	ND	ND	NA	48	590 D	8.3
Nov 2008	ND	ND	ND	NA	ND	ND	ND	470 D	60	1.0 J	ND	60	6.9	500 D	7.7
Aug 2007	ND	ND	NA	NA	ND	2.0 J	ND	480 D	17	ND	2 J	NA	2.0 J	1,700 D	6.0
Apr 2007	NA	NA	NA	NA	ND	ND	ND	650	NA	NA	NA	NA	NA	NA	NA
June 2006	NA	ND	NA	NA	ND	ND	ND	1,100 D	17	5.0	ND	56	25	5,200 D	4.0 J
May 2004	NA	NA	NA	NA	NA	NA	NA	NA	7.0	0.3 J	ND	NA	410 E	4.0	0.6 J
July 2000	NA	ND	ND	NA	NA	ND	ND	160	820 D	6.0 J	ND	96	1,600 D	27	8.0 J
Jan 1999	ND	NA	ND	NA	ND	3.0 J	1.0 J	22 J	6.0 J	4.0 J	ND	290 J	NA	29 J	3.0 J
Jan 1998	NA	ND	NA	NA	4.0	ND	2.0	11,000	2.0	ND	ND	20	450	NA	ND
Dec 1995	NA	0.34 J	ND	NA	ND	NA	ND	8,400 E	NA	230	NA	800	1,700 E	7.8	ND
Mar 1990	1.0 J	ND	8.1 J	NA	ND	ND	100	13,000 DJ	ND	4,600 JD	ND	5,900	960 JD	NA	NA
Feb 1990	6.0	ND	6.0	NA	ND	ND	48	14,000	ND	5,800 D	ND	8,900	260	NA	NA

Concentrations in µg/L

ND - Not detected

NA - Not sampled or data not available

E - Concentration exceeded the QC criterion, no dilution run data found

D - Dilution

J - Estimated concentration

BOLD/ITALICIZED - equals or exceeds the Class GA criterion of 5 μg/L.

The data presented in this table is a compilation of data available at the time of this report and is not a comprehensive listing of all data collected.

May 2004 - Data is very confusing. It is difficult to establish which well is presented on the Form 1s. (taken from report.hw152077.2004-05.GW04.pdf)

July 2000 data from H2M Labs, (ServAll data Summary July 2000.pdf)

January 1999 & January 1998 (Harding Lawson, 1999 Groundwater Sampling Technical Memorandum (ServAll 1999 gw sampling.pdf)

December 1995 data from Plume Discharge Study (ServAll December 1995.pdf)

February and March 1990 data from E.C. Jordan, RI/FS 1992 (ServAll Jan 1992.pdf)

AECOM

Final Groundwater Sampling Report May 2016 Sampling Event ServAll Laundry, Site No. 1-52-077

Figures

Scale in Feet

PCE PLUME

Note: Monitoring wells MW-6B and MW-6A are screened at a higher elevation within the glacial drift sand (not directly on top of the glacial marine clay).

AECOM								
SUBMITTED BY:	MULTI SIT	ΓE G - SERVALL LAU SITE NO. 1-52-026	INDRY SITE					
PK	DOE 100	CONCENT						
DRAWN BY :	PCE ISO	CONCENT	RATION					
SC		MAP MAY 2016						
APPROVED BY :								
PK	DATE: AUGUST 2016	SCALE : AS SHOWN	DRAWING NO.:					

Appendix A

NYSDEC Monitoring Well Field Inspection Logs

SITE NAME:	ServAll Laundry Site	SITE ID.: <u>1-52-077</u>
		INSPECTOR: AF/JB

DATE/TIME: 5/9/16 0904
Well ID.: MW-1

	YES NO
WELL VISIBLE? (If not, provide directions below)	
WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satellites:	See Report
PDOP Reading from Trimble pathfinder: Satellites:	
GPS Method (circle) Trimble And/Or Magellan	lumali va I
	YES NO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	MW-1
	YES NO
SURFACE SEAL PRESENT?	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	·
HEADSPACE READING (ppm) AND INSTRUMENT USED	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
LOCK PRESENT?	YES NO
LOCK PRESENT? LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	
WELL MEASURING POINT VISIBLE?	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	86.72
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES NO OVERHEAD	, UNDER UNKOWN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions	. overhead
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK,	
LOCATED BEHIND KC SCHOOBS PRODUCTS IN PARKING LOT	
SOME SEMI-PERMANENT VEHICLES PARKED NEAR WELL	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a	garden, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	J , ,
WELL IN PAVED PARKING AREA	
WELLING THE TAINING THE T	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
PARKED CARS, LEAKY FLUIDS	
PARKED CARS, LEART FLOIDS	
REMARKS:	
TUBING IN WELL	

SITE NAME: ServAll Laundry Site	SITE ID.: 1-	
MONITORING WELL FIELD INCRECTION LOG	INSPECTOR: Al	
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 5/	
	Well ID.: M	
WELL WOLD TO #		YES NO
WELL VISIBLE? (If not, provide directions below)		
WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satellites:		ee Report
GPS Method (circle) Trimble And/Or Magellan		
of o woulde (onoic) Thinble Thiaret Magellan		YESINO
WELL I.D. VISIBLE?		X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
WELL I.D. ACTI ALL EARCON TROTECTIVE CACING OR WELL.		 YES NO
SURFACE SEAL PRESENT?		
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		X
HEADSPACE READING (ppm) AND INSTRUMENT USED	PID	0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable		
PROTECTIVE CASING MATERIAL TYPE:		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOOK PRESENTS		YES NO
LOCK PRESENT? LOCK FUNCTIONAL?		X
DID YOU REPLACE THE LOCK?		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe belo		X
WELL MEASURING POINT VISIBLE?	,	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		82.77
,		
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		STEEL
PHYSICAL CONDITION OF VISIBLE WELL CASING:		FAIR
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		<u>NA</u>
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES NO O	VERHEAD, UNDE	RUNKOWN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural o		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION (ON BACK, IF NECE	ESSARY.
ALONG SIDEWALK ON DRAYTON AVENUE		
ACROSS FROM SCHOOBS METAL PRODUCTS		

WELL IN SIDEWALK

(e.g. Gas station, salt pile, etc.):

ALLOW PUMP TO PASS

REMARKS:

SOIL, STORM WATER RUNOFF, GARBAGE

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

OBSTRUCTION (LIKELY TUBING) ENCOUNTERED IN WELL AT APPROXIMATELY 17 FEET – DOES NOT

SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077
		INCOPOTOD. AE/ID

INSPECTOR: AF/JB

DATE/TIME: 5/9/16 0930

Well ID.: MW-3A

	YES NO
WELL VISIBLE? (If not, provide directions below)	X
WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satellites:	See Report
PDOP Reading from Trimble pathfinder: Satellites:	
GPS Method (circle) Trimble And/Or Magellan	
	YES NO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED	D 0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	
PROTECTIVE CASING MATERIAL TYPE:	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6
	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	X
DID YOU REPLACE THE LOCK?	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	
WELL MEASURING POINT VISIBLE?	X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	114.29
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES NO OVERHEAD, UN	IDER UNKOWN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, over	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF N	
ALONG NORTH SIDEWALK OF DRAYTON AVE AT END OF CLOTHING BUILDING AND F	FENCE CORNER
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a gard	den, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
LOCATED IN GRASSY MEDIAN BETWEEN SIDEWALK AND STREET	
WELL LID MISSING, IN-FILLED WITH SOIL OVER J-PLUG	
<u> </u>	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
SOIL, STORM WATER RUNOFF, GARBAGE	_
REMARKS:	
COVERED WITH VEGETATION, TUBING IN WELLSLID DOWN DURING GAUGING	

SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077
		INCRECTOR: AE/IR

INSPECTOR: AF/JB

DATE/TIME: 5/9/16 0952

Well ID.: MW-3B

	YE	SNO
WELL VISIBLE? (If not, provide directions below)		Х
WELL COORDINATES? NYTM X NYTM	Y See Repo	rt
	ellites:	
GPS Method (circle) Trimble And/Or Magellan	-	
	YE	SNO
WELL I.D. VISIBLE?		X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on I	oack) <u>X</u>	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	YE	S NO
SURFACE SEAL PRESENT?		Х
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below	,	Х
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe b	pelow)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED	PID	0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET		LUSH
		TEEL
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		6
	YE	S NO
LOCK PRESENT?		Х
LOCK FUNCTIONAL?		Х
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, d	escribe below)	X
WELL MEASURING POINT VISIBLE?		X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		35.80
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	2	24.78
MEASURE WELL DIAMETER (Inches):		2
WELL CASING MATERIAL:		TEEL
PHYSICAL CONDITION OF VISIBLE WELL CASING:	_	GOOD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER T		NA
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	NO OVERHEAD, UNDER UNKC	VVIN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted r	ig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF L	LOCATION ON BACK, IF NECESSARY	.
12 FEET WEST OF MW-3A		
ALONG NORTHERN SIDEWALK OF DRAYTON AVE		
DESCRIBE WELL SETTING (For example, located in a field, in a playgro	ound, on pavement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	,	
WELL LOCATED IN GRASSY MEDIAN BETWEEN ROAD AND	SIDEWALK	
PROTECTIVE CASING IS DAMAGED, LID BROKEN AND SOIL		
THO TECHNE GROWN IS BRUNNINGED, EID BROKEN THE GOLD	TY IEEE OVER OF EGG	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION	N IF PRESENT	
(e.g. Gas station, salt pile, etc.):	1 , II T NEOEIVI	
STORM WATER RUNOFFS, SOIL GARBAGE		
STORM WATER RUNOFFS, SOIL GARBAGE		
REMARKS:		
VEGETATION COVERING THE WELL		

SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077
•		INIODEOTOD AE/ID

INSPECTOR: AF/JB

DATE/TIME: 5/9/16 1049

Well ID.: MW-4

	YES NO
WELL VISIBLE? (If not, provide directions below)	
WELL COORDINATES? NYTM X NYTM Y NYTM Y	See Report
PDOP Reading from Trimble pathfinder: Satellites:	
GPS Method (circle) Trimble And/Or Magellan	YESINO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
WELL LOCATION WATCH SITE WAP? (II Hot, Sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
SURFACE SEAL PRESENT?	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED	PID 0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applied	
PROTECTIVE CASING MATERIAL TYPE:	· · · · · · · · · · · · · · · · · · ·
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6
	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe	
WELL MEASURING POINT VISIBLE?	X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	83.56
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	2
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	IO OVERHEAD, UNDER UNKOWN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natu	ral obstructions, overhead
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION	·
LOCATED IN FRONT OF 15 FREDERICK AVE IN BETWEEN MW-6B A	ND PZ-4
	_
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on	navement in a garden etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	pavomoni, in a gardon, oto.)
LOCATED ON GRASSY MEDIAN BETWEEN SIDEWALK AND ROADW	A.V
LOCATED ON GRASST WEDIAN BETWEEN SIDEWALK AND ROADW	AT
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PR	RESENT
(e.g. Gas station, salt pile, etc.):	
SOIL, GARBAGE, STORM WATER RUNOFF	
REMARKS:	
TUBING IN WELL	

SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077
		INSPECTOR: AF/JB

DATE/TIME: 5/9/16 1014

Well ID.: MW-5

		YES NO
WELL VISIBLE? (If not, provide directions below)		X
WELL COORDINATES? NYTM X I	NYTM Y	See Report
PDOP Reading from Trimble pathfinder:	Satellites:	
GPS Method (circle) Trimble And/Or Magellan		
		YES NO
WELL I.D. VISIBLE?		
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location	on on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL	<u>:</u>	
		YES NO
SURFACE SEAL PRESENT?		Х
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describ	e below)	Х
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, description)	cribe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED	PI	D 0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
(s.,		YES NO
LOCK PRESENT?		
LOCK FUNCTIONAL?		X
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If	yes, describe below)	Х
WELL MEASURING POINT VISIBLE?		X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		24.53
MEASURE DEPTH TO WATER FROM MEASURING POINT (Fee		
MEASURE WELL DIAMETER (Inches):	•	
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MAR	KER TYPE	NA
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mou	inted rig, natural obstructions, ove	rhead
power lines, proximity to permanent structures, etc.); ADD SKETCH	HOF LOCATION ON BACK, IF N	ECESSARY.
LOCATED IN FRONT OF 9 FREDERICK AVE		
DESCRIBE WELL SETTING (For example, located in a field, in a p	playground, on pavement, in a gard	den, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		,
WELL IN NORTHERN SHOULDER OF ROAD (NO SIDEW	ALK)	
CASING AND LID BROKEN	7.2.1	
CAGING AIND EID BROKEIN		
IDENTIEV AND NEADBY DOTENTIAL SOLIDOES OF CONTAMIN	ATION IE DDESENT	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMIN	ATION, IF FRESEIN	
(e.g. Gas station, salt pile, etc.):		
SOIL, GARBAGE, STORM WATER RUNOFF		
DEMARKS		
REMARKS:		
UNABLE TO SAMPLE DUE TO LOW WATER LEVEL		

SITE NAME: ServAll Laundry Site	SITE ID.:		77	
	INSPECTOR:			
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:			
	Well ID.:	MW-6/	4	
			YES	NO
WELL VISIBLE? (If not, provide directions below)			Х	
WELL COORDINATES? NYTM X NYTM Y Satellites:		See R	eport	
PDOP Reading from Trimble pathfinder: Satellites: Sate				
of o wethou (onote) Thinble Thind of Wageham			YES	NO
WELL I.D. VISIBLE?				Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)			Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:				
			YES	NO
SURFACE SEAL PRESENT?			Х	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)				Х
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)			X	
HEADSPACE READING (ppm) AND INSTRUMENT USED			0.	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable PROTECTIVE CASING MATERIAL TYPE:	,		_	JSH EEL
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):			6	
			YES	NO
LOCK PRESENT?				Χ
LOCK FUNCTIONAL?				X
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below				X
WELL MEASURING POINT VISIBLE?	•			X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):			20	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):			28. 24.	
MEASURE WELL DIAMETER (Inches):			2	
WELL CASING MATERIAL:			STE	EEL
PHYSICAL CONDITION OF VISIBLE WELL CASING:				K
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE			N	
	OVERHEAD, U		UNKU	VVIN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural ob			DV	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION C 7 FEET WEST OF MW-6B	IN BACK, IF NE	CESSA	KY.	
IN FRONT OF 11 FREDERICK AVENUE				
IN FROIT OF IT FREDERICK AVENUE				
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pave	ament in a gord	on oto	`	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	əmeni, in a yalu	en, etc.)	
WELL IN SHOULDER OF ROAD (NO SIDEWALK)				

PROTECTIVE CASING AND LID BROKE, SOIL AND PLANT ROOTS IN FILLED

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

REMARKS:

STORM WATER RUNOFF, SOIL, GARBAGE

PLANT ROOTS COVERING WELL

MONITORING WELL INSPECTION LOG SKETCH

SITE NAME: ServAll Laundry Site		SITE ID.:	1-52-077	
·		INSPECTOR:	AF/JB	
MONITORING WELL FIELD INSP	ECTION LOG	DATE/TIME:	5/9/16 1032	
		Well ID.:	MW-6B	
WELL VISIBLE? (If not, provide directions below	λ		YES NO	
WELL COORDINATES? NYTM X	NYTM Y		See Report	
PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or	Satellites: r Magellan			
WELL IN MOINES	J		YESNO	

PDOP Reading from Trimble pathfinder: Satellites:	
GPS Method (circle) Trimble And/Or Magellan	
	YES NO
WELL I.D. VISIBLE?	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	Х
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
SURFACE SEAL PRESENT?	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	X
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	FLUSH
PROTECTIVE CASING MATERIAL TYPE:	STEEL
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	6
(1 11)	YES NO
LOCK PRESENT?	X
LOCK FUNCTIONAL?	Х
DID YOU REPLACE THE LOCK?	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	X
WELL MEASURING POINT VISIBLE?	X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	59.15
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	24.84
MEASURE WELL DIAMETER (Inches):	2
WELL CASING MATERIAL:	STEEL
PHYSICAL CONDITION OF VISIBLE WELL CASING:	OK
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	NA
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES NO OVERHEAD, UNER L	JNKOWN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESS	ARY.
7 FEET EAST OF MW-6A	
IN FRONT OF 11 FREDERICK AVENUE	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, et	C-)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	·.,
WELL IN SHOULDER OF ROAD (NO SIDEWALK), SURFACE SEAL BROKEN	
ROOT GROWTH COMING UP THROUGH PROTECTIVE CASING	
PROTECTIVE CASING LID DAMAGED, INFILLED WITH SOIL	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	
STORM WATER RUNOFF, SOIL, GARBAGE	
DEMADKS.	

TUBING IN WELL

MONITORING WELL INSPECTION LOG SKETCH

	SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077
--	------------	----------------------	--------------------

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: AF/JB

DATE/TIME: 5/9/16 1350

Well ID.: MW-11

	YES NO
WELL VISIBLE? (If not, provide directions below)	
WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satellites:	See Report
PDOP Reading from Trimble pathfinder: Satellites: Sate	
of o wethou (choic) Thinble Talatol Wagellan	YESINO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	
,	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	YES NO
SURFACE SEAL PRESENT?	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
HEADSPACE READING (ppm) AND INSTRUMENT USED	PID 0.5
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicate	
PROTECTIVE CASING MATERIAL TYPE:	•
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe be WELL MEASURING POINT VISIBLE?	' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	<u> </u>
	89.30
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIESNO	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural	obstructions overhead
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION	
LOCATED IN MIDDLE OF FIELD, NEAR TREE LINE AT BAY SHORE MID	•
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pa	avement, in a garden, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	e, e. geneen, e.e.,
WELL IN GRASSY FIELD AREA	
THE IN CIVICOUT HEED THE THE	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRES	SENT
(e.g. Gas station, salt pile, etc.):	
NONE	
	_
REMARKS:	

MONITORING WELL INSPECTION LOG SKETCH MW-11

SITE NAME: ServAll Laundry Site	SITE ID.: 1-52-077
	INSPECTOR: AF/JB
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 5/9/16 1120
	Well ID.: MW-12
WELL VISIBLE? (If not, provide directions below)	YES NO
	/TMYSee Report
	Satellites:
GPS Method (circle) Trimble And/Or Magellan	
	YES NO
	X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location	on back)XX
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
	X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe	·
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, descri	,
HEADSPACE READING (ppm) AND INSTRUMENT USED	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FE	OTEEL
PROTECTIVE CASING MATERIAL TYPE:	STEEL

MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):

LOCK FUNCTIONAL?

DID YOU REPLACE THE LOCK?

PHYSICAL CONDITION OF VISIBLE WELL CASING:

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)

.....

.....

...... NO OVERHEAD, UNDER UNKNOWN

IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)

LOCK PRESENT?

WELL MEASURING POINT VISIBLE?

MEASURE WELL DIAMETER (Inches):

WELL CASING MATERIAL:

(e.g. Gas station, salt pile, etc.):

REMARKS:

MEASURE WELL DEPTH FROM MEASURING POINT (Feet):

PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES

LOCATED 70 FT BEFORE LIGHT POST 1048

AND ASSESS THE TYPE OF RESTORATION REQUIRED.
LOCATED AT GRASSY AREA AT TREE LINE
LID MISSING, SOIL ON TOP OF J-PLUG

STORM WATER RUNOFF, SOIL, GARBAGE

MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):

ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE

MARKED WITH TWINE HANGING IN TREE ABOVE THE WELL

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

6 YES NO

89.10

17.02

2 STEEL

GOOD

NA

MONITORING WELL INSPECTION LOG SKETCH

SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: <u>AF/JB</u>

DATE/TIME: <u>5/9/16 1130</u>

Well ID.: <u>MW-13</u>

	YES NO
	X
WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satellites:	See Report
PDOP Reading from Trimble pathfinder: Satellites:	
GPS Method (circle) Trimble And/Or Magellan	VEOLVO
WELL I D 7/10/DI E0	YES NO
WELL I.D. VISIBLE?	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	YES NO
SURFACE SEAL PRESENT?	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
,	
HEADSPACE READING (ppm) AND INSTRUMENT USED	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If ap	· · · · · · · · · · · · · · · · · · ·
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	
WILAGONE FRO LECTIVE CASING INSIDE DIAMETER (INCHES)	YES NO
LOCK PRESENT?	
LOCK FUNCTIONAL?	
DID YOU REPLACE THE LOCK?	X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describ	
WELL MEASURING POINT VISIBLE?	X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	
MEASURE WELL DIAMETER (Inches):	
WELL CASING MATERIAL:	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	-
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, na	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCA	HON ON BACK, IF NECESSARY.
ALONG HIGHWAY, 7 FT. BEFORE LIGHT POLE 1052	
DESCRIBE WELL SETTING (For example, located in a field, in a playground,	on navement in a garden, etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	on pavement, in a garden, etc.)
GRASSY ROAD SIDE (SOUTHERN STATE PARKWAY)	
LID MISSING	
LID WILCOMAG	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF I	PRESENT
(e.g. Gas station, salt pile, etc.):	
STORM WATER RUNOFF, SOIL, GARBAGE	
, , , -	
REMARKS:	
TUBING IN WELL	

MONITORING WELL INSPECTION LOG SKETCH

SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077
	_	INIODEOTOD AE/ID

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: AF/JB

DATE/TIME: 5/9/16 1140

Well ID.: MW-14

		YES NO
, , ,	N/CTA A V	
WELL COORDINATES? NYTM X	NYTM Y	See Report
PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or Magellan	Satellites:	
GF 3 Method (chicle) Trimble And/Or Magellan		YESINO
WELL I.D. VISIBLE?		
WELL LOCATION MATCH SITE MAP? (if not, sketch actual loc		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
· ·	,	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR W	ELL:	VECLNO
SURFACE SEAL PRESENT?		YES NO
SURFACE SEAL COMPETENT? (If cracked, heaved etc., des	cribe below)	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, or	•	X
HEADSPACE READING (ppm) AND INSTRUMENT USED	•	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP		
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inche		
,	,	YES NO
LOCK PRESENT?		
LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED?	,	X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		
MEASURE DEPTH TO WATER FROM MEASURING POINT (I	•	
MEASURE WELL DIAMETER (Inches):		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY M		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck i	<u>-</u>	
power lines, proximity to permanent structures, etc.); ADD SKE	-	
45 FEET PAST LIGHT POLE 1056		1202007 (TT)
TO TEET THOSE EIGHT TO SEE TOOC		
DESCRIBE WELL SETTING (For example, located in a field, in	a playground, on payement, in a ga	rden. etc.)
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		, ,
GRASSY ROAD SIDE (SOUTHERN STATE PARKWAY	Y)	
LID BROKEN, SOIL IN FILL ABOVE J PLUG	. ,	
LIB BROKER, COLE IIVI ILLE, IBOVE OF LOC		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAI	MINATION, IF PRESENT	
(e.g. Gas station, salt pile, etc.):	,	
STORM WATER RUNOFF, SOIL, GARBAGE		
REMARKS:		
TUBING IN WELL		

MONITORING WELL INSPECTION LOG SKETCH

SITE NAME: ServAll Laundry Site	SITE ID.: 1-52-077 INSPECTOR: AF/JB
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 5/9/16 1200 Well ID.: MW-16
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satellites: GPS Method (circle) Trimble And/Or Magellan WELL I.D. VISIBLE?	See Report YES NO
	X
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicab PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	le)
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe believel MEASURING POINT VISIBLE?	ow)
	STEEL GOOD NA
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural of power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION LOCATED IN FRONT OF 44 ABREW STREET	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pa AND ASSESS THE TYPE OF RESTORATION REQUIRED. WELL SET IN PAVEMENT SOIL ON TOP OF PVC CAP, CAP CRACKED UP ONE SIDE	vement, in a garden, etc.)

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

PARKED CARS, STORM WATER RUNOFF, SOIL

TUBING IN WELL, PVC WELL CAP

(e.g. Gas station, salt pile, etc.):

REMARKS:

MONITORING WELL INSPECTION LOG SKETCH

SITE NAME:	ServAll Laundry Site	SITE ID.: 1-52-077
		INCRECTOR: AE/IR

MONITORING WELL FIELD INSPECTION LOG

INSPECTOR: AF/JB

DATE/TIME: 5/9/16 1220

Well ID.: MW-23D

WELL VICIDIES (If not provide directions below)		YES NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM Y		X
PDOP Reading from Trimble pathfinder: Satellites:	_ 566 1.6	эрогс
GPS Method (circle) Trimble And/Or Magellan	_	
		YES NO
WELL I.D. VISIBLE?		X
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		X
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
		YES NO
SURFACE SEAL COMPETENT? (If graphed heaved at a describe heles)		X
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		X
· · · · · · · · · · · · · · · · · · ·	'	! !
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:		FLUSH STEEL
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		6
		YES NO
LOCK PRESENT?		X
LOCK FUNCTIONAL?		X
DID YOU REPLACE THE LOCK?		X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?		X
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		87.65
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):		5.78 2
WELL CASING MATERIAL:		STEEL
PHYSICAL CONDITION OF VISIBLE WELL CASING:		GOOD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		NA
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES <u>NO OVERHEAD</u>	<u>, UNDER UN</u>	KNOWN
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions,		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, I	IF NECESSA	RY.
END OF PERKAL STREET, WEST OF MW 23S		
DECORIDE WELL CETTING (For exemple legated in a field in a plantage of a great in a		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a	garden, etc.))
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
WELL SET IN PAVEMENT		
LID BOLTED DOWN		
IDENTIEV ANV NEADRY DOTENTIAL SOURCES OF CONTAMINATION IF DRESENT		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT		
(e.g. Gas station, salt pile, etc.): PARKED CARS, STORM WATER RUNOFF, SOIL		
I AINILD CAINS, STOININI WATER RUNOFF, SOIL		
REMARKS:		_
TUBING IN WELL		

MONITORING WELL INSPECTION LOG SKETCH

SITE NAME: ServAll Laundry Site	SITE ID.:	1-52-077
	INSPECTOR:	AF/JB
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	5/9/16 1230
	Well ID.:	MW-23S
WELL VISIBLE? (If not, provide directions below)		YES NO
WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satellites:		See Report
GPS Method (circle) Trimble And/Or Magellan WELL I.D. VISIBLE?		YES NO

.....

.....

.....

.....

...... NO OVERHEAD, UNDER UNKNOWN

YES

NO

Χ

2.5

FLUSH

STEEL

Χ

69.25

5.85

2

STEEL

GOOD

NA

6 YES NO

Χ

WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)

SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)

PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)

TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)

IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

LOCK FUNCTIONAL?

DID YOU REPLACE THE LOCK?

PHYSICAL CONDITION OF VISIBLE WELL CASING:

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.)

WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:

HEADSPACE READING (ppm) AND INSTRUMENT USED

MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):

MEASURE WELL DEPTH FROM MEASURING POINT (Feet):

PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES

END OF PERKAL STREET, EAST OF MW 23D

AND ASSESS THE TYPE OF RESTORATION REQUIRED.

PARKED CARS, STORM WATER RUNOFF, SOIL

MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):

ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE

PROTECTIVE CASING MATERIAL TYPE:

WELL MEASURING POINT VISIBLE?

MEASURE WELL DIAMETER (Inches):

WELL SET IN PAVEMENT

LID BOLTED DOWN

(e.g. Gas station, salt pile, etc.):

TUBING IN WELL

REMARKS:

WELL CASING MATERIAL:

SURFACE SEAL PRESENT?

LOCK PRESENT?

MONITORING WELL INSPECTION LOG SKETCH

Appendix B

Monitoring Well Sampling Forms

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPL	ETED
8 Drayton Avenue, Bay Shore,	NY	5/10/2016		5/1	0/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 39.89 Gallons WELL TD: 86.72 ft PUMP INTAKE DEPTH: 81.50 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water (ft)	Rate (mL/min)	Temp.	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REMARKS
1530	25.41								Static water level
1535	25.41	250	19.29	0.178	11.41	7.88	262	0.0	Pump on at 35 psi, clear water
1540	25.41	300	15.36	0.750	0.36	6.33	246	0.0	Increase pressure to 40 psi
1545	25.41	300	15.32	0.789	0.00	6.40	244	0.0	
1550	25.41	300	15.29	0.846	0.00	6.45	236	0.0	
1555	25.41	300	15.30	0.894	0.00	6.46	234	0.0	
	25.41	300	15.31	0.904	0.00	6.44	229	0.0	
	25.41	300	15.36	0.898	0.00	6.45	230	0.0	
1610	25.41	300	15.61	0.902	0.00	6.45	225	0.0	
1615									Collect Sample: SL-MW-1
	-				-				

Pump Type: Bladder Pump

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPL	ETED
8 Drayton Avenue, Bay Shore,	NY	5/11/2016		5/1	1/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY	_	SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 14.34 Gallons WELL TD: 114.3 ft PUMP INTAKE DEPTH: 103.00 ft

	Depth to	Purge		FIELD MEASUREMENTS					
Time	Water (ft)	Rate (mL/min)	Temp.	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REMARKS
0810	24.65								Static water level
0830	24.65								Pump on at 50 psi
0835	24.65								No water pumping out-change tubing
0845	24.65								Pump on at 55 psi
0850	24.67	300	16.99	0.223	11.49	7.05	240	97.8	
0855	24.67	300	16.46	0.637	8.40	5.98	257	80.0	
0900	24.67	300	16.35	0.724	7.22	5.86	273	84.7	
0905	24.67	300	16.35	0.742	5.98	5.88	280	77.2	
0910	24.67	300	16.95	0.733	5.40	5.87	281	72.3	
0915	24.67	300	17.52	0.733	5.23	5.92	278	66.3	
0920	24.67	300	18.40	0.730	5.06	5.95	275	52.6	Change nitrogen tank
0925	24.67	300	18.20	0.738	5.24	5.93	273	41.2	
0930	24.67	300	17.02	0.736	4.98	5.87	281	35.2	
0935	24.67	300	16.81	0.719	4.41	5.99	268	31.1	
0940	24.67	300	16.78	0.728	4.11	5.96	271	32.5	
0945	24.72	300	16.84	0.742	3.29	6.01	275	33.0	
0950	24.72	300	16.87	0.732	3.04	6.00	282	31.4	
0955	24.72	300	16.88	0.733	3.42	6.02	281	27.3	
1000	24.72	300	16.85	0.733	2.83	5.94	282	24.9	
1005									Collect Sample SL-MW-3A
		l l						•	

Pump Type: Bladder Pump

 WELL NO.
 MW-3B

 PROJECT
 PROJECT No.
 SHEET
 SHEET

LOCATION
8 Drayton Avenue, Bay Shore, NY
CLIENT

DATE WELL STARTED
5/10/2016
5/10/2016
5/10/2016

NYSDEC Adam Freed, Jamie Briggs
DRILLING COMPANY SIGNATURE OF INSPECTOR

ONE WELL VOLUME: 9.76 Gallons WELL TD: 85.80 ft PUMP INTAKE DEPTH: 80.00 ft

	Depth FIELD MEASUREMENTS to Purge								
Time	Water (ft)	Rate (mL/min)	Temp. (°C)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REMARKS
1805	24.80								Static water level
1810	24.80	250	15.71	0.353	10.20	6.87	189	540	Pump on at 35 psi
1815	24.80	300	15.20	0.586	0.00	6.24	169	118	Increase pressure to 40 psi
1820	24.80	300	15.25	0.605	0.00	6.19	178	76.9	
1825	24.80	300	15.24	0.620	0.00	6.09	193	103	
1835	24.80	300	15.21	0.628	0.00	6.15	200	214	Clean flow cell
1845	24.80	300	14.95	0.621	0.00	6.11	220	200	
1855	24.80	300	15.15	0.637	0.00	6.13	218	107	
1900	24.80	300	15.15	0.649	0.00	6.10	205	54.7	
1905	24.80	300	15.14	0.655	0.00	6.10	197	43.6	
1910	24.80	300	15.14	0.656	0.00	6.13	190	45.2	
1915	24.80	300	15.13	0.658	0.00	6.11	188	47.1	
1920									Collect Sample: SL-MW-3B
									·
	1								
	1								1

Pump Type: Bladder Pump

A=COM WELL NO. MW-4 PROJECT No. WELL SAMPLING FORM ServAll Laundry Site (1-52-077) 60277021 1 1 OF DATE WELL STARTED DATE WELL COMPLETED 8 Drayton Avenue, Bay Shore, NY 5/12/2016 5/12/2016 NAME OF INSPECTOR CLIENT **NYSDEC** Adam Freed, Jamie Briggs DRILLING COMPANY SIGNATURE OF INSPECTOR 9.49 Gallons WELL TD: 83.56 ft ft ONE WELL VOLUME : 79.10 PUMP INTAKE DEPTH: FIELD MEASUREMENTS Depth to Purge Conduct. Water Rate DO ORP **Turbidity** Time Temp. pН **REMARKS** (mL/min) (µs/cm) (ft) (°C) (mg/L) (ntu) 0800 24.22 Static water level 0805 24.22 Pump on at 40 psi 0815 No water pumping out-change tubing 0825 24.22 Pump on at 45 psi 0830 24.22 400 16.13 0.303 0.00 6.27 267 169 Reduce pressure to 40 psi 0835 24.22 400 16.10 0.299 257 0.00 6.38 119 0840 24.22 400 15.89 0.299 0.00 6.35 262 106 102 0845 24.22 400 15.84 0.298 6.23 0.00 264 0850 24.22 400 15.84 0.298 0.00 262 92.7 6.22 24.22 0855 400 Change controller 0900 24.22 400 16.01 0.297 0.00 6.23 268 33.4 Pump on at 45 psi 0905 24.22 450 16.04 0.294 0.00 6.24 263 30.5 0910 24.22 450 15.90 0.297 0.00 6.27 258 20.7 0.297 0915 24.22 450 15.78 0.00 6.32 267 11.5 0920 Collect sample SL-MW-4 Pump Type: Bladder Pump

AECOM WELL NO. MW-5 PROJECT No. WELL SAMPLING FORM ServAll Laundry Site (1-52-077) 60277021 1 1 OF DATE WELL STARTED DATE WELL COMPLETED 8 Drayton Avenue, Bay Shore, NY 5/10/2016 5/10/2016 NAME OF INSPECTOR CLIENT **NYSDEC** Adam Freed, Jamie Briggs DRILLING COMPANY SIGNATURE OF INSPECTOR 0.26 Gallons WELL TD: 26.52 ft 25.31 ft ONE WELL VOLUME: PUMP INTAKE DEPTH: FIELD MEASUREMENTS Depth to Purge ORP Time Water Rate Conduct. DO **Turbidity REMARKS** Temp. рΗ (mL/min) (ft) (°C) (µs/cm) (mg/L) (ntu) 1055 24.88 Static water level 1100 24.88 Pump on at 30 psi 1110 24.88 Change nirogen tank 1115 24.88 Increase pressure to 35 psi 1120 24.88 No water--unable to sample due to low water level Pump Type: Bladder Pump *Water column=1.66 feet--unable to sample due to low water level

Analytical Parameters: NA

A=COM WELL NO. MW-6A PROJECT No. WELL SAMPLING FORM ServAll Laundry Site (1-52-077) 60277021 1 1 OF DATE WELL STARTED DATE WELL COMPLETED 8 Drayton Avenue, Bay Shore, NY 5/10/2016 5/10/2016 NAME OF INSPECTOR CLIENT **NYSDEC** Adam Freed, Jamie Briggs DRILLING COMPANY SIGNATURE OF INSPECTOR 4.80 Gallons WELL TD: 59.15 ft 54.90 ft ONE WELL VOLUME: PUMP INTAKE DEPTH: FIELD MEASUREMENTS Depth to Purge ORP Water Rate Temp. Conduct. DO **Turbidity** Time pН **REMARKS** (ft) (mL/min) (°C) (µs/cm) (mg/L) (ntu) 1350 24.85 Static water level 1350 24.85 400 pump on at 30 psi 1355 24.87 400 15.02 0.335 2.74 5.79 283 60.4 1400 24.87 400 14.92 0.332 0.00 5.78 270 42.9 1405 24.87 272 400 14.92 0.325 0.00 5.78 35.2 1410 24.87 400 14.88 0.00 5.83 267 35.2 0.323 1415 24.87 400 14.82 0.323 0.00 5.80 271 30.4 1420 Colect sample SL-MW-6B Pump Type: Bladder Pump Analytical Parameters: TCL VOCs

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WEL	L COMPL	ETED
8 Drayton Avenue, Bay Shore	, NY	5/10/2016		5/1	0/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 0.57 Gallons WELL TD: 28.42 ft PUMP INTAKE DEPTH: 25.00 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	•		(ntu)	
1205	24.80								Static water level
1210	24.80	100	18.38	0.225	3.82	6.14	219	124	pump on at 35 psi
1215	24.80	100	16.53	0.207	2.29	6.14	218	69.4	Increase pressure to 40 psi
1220	24.80	100	16.28	0.203	1.83	6.07	226	57.9	
1225	24.80	100	16.15	0.202	1.70	6.11	224	54.4	
1230	24.80	100	16.01	0.202	1.53	6.20	224	49.7	
1235	24.80	100	15.82	0.207	1.43	6.13	233	43.4	
1240	24.80	100	15.85	0.211	1.22	6.19	230	37.9	
1245	24.80	100	15.72	0.214	1.06	6.20	228	33.5	
1250	24.80	100	15.58	0.214	0.94	6.19	231	29.5	
1255	24.80	100	15.43	0.214	0.99	6.19	235	21.0	
1300									Collect Sample SL-MW-6A and
									QA/QC samples
									•

Pump Type: Bladder Pump

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPLI	ETED
8 Drayton Avenue, Bay Shore,	NY	5/9/2016		5/9	9/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 12.66 Gallons WELL TD: 89.30 ft PUMP INTAKE DEPTH: 84.00 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	-		(ntu)	
1525	10.16								Static water level
1530	10.16	120	13.71	0.363	0.00	5.75	106	174	pump on at 45 psi
1535	10.18	300	13.65	0.365	0.00	5.82	111	110	
1540	10.18	300	13.53	0.366	0.00	5.82	113	73.6	
1545	10.18	300	13.59	0.366	0.00	5.80	113	62.2	
1550	10.18	300	13.48	0.367	0.00	5.78	115	48.0	Ran out of nitrogen
1630	10.18	300	13.89	0.368	0.00	5.78	143	34.9	Pump on at 45 psi
1635	10.18	300	13.49	0.368	0.00	5.78	148	29.0	
1640	10.18	300	13.45	0.369	0.00	5.80	155	22.7	
1645	10.18	300	13.50	0.369	0.00	5.82	163	20.8	
1650	10.18	400	13.43	0.369	0.00	5.77	172	44.8	
1655	10.18	400	13.35	0.370	0.00	5.78	171	60.1	
1700	10.18	400	13.32	0.370	0.00	5.83	172	34.2	Collect Sample SL-MW-11
									·
									L

Pump Type: Bladder Pump

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPL	ETED
8 Drayton Avenue, Bay Shore,	NY	5/11/2016		5/1	1/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 11.58 Gallons WELL TD: 89.10 ft PUMP INTAKE DEPTH: 83.00 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water (ft)	Rate (mL/min)	Temp. (°C)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REMARKS
1105	17.05								Static water level
1110	17.05	275	15.26	0.190	1.42	5.27	359	1.3	Pump on at 40 psi
1115	17.05	350	14.08	0.294	0.00	5.45	355	8.3	Increase pressure to 45 psi
1120	17.05	350	14.32	0.297	0.00	5.66	336	4.1	Change nitrogen tank
		350	13.77	0.298	0.00	5.69	338	0.0	Clear water
1130	17.05	350	13.76	0.295	0.00	5.65	347	0.0	
1135	17.05	350	13.75	0.295	0.00	5.53	353	0.0	
1140	17.05	350	13.73	0.295	0.00	5.56	357	0.0	
1145									Collect sample SL-MW-12
	1								

Pump Type: Bladder Pump

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPL	ETED
8 Drayton Avenue, Bay Shore,	NY	5/11/2016		5/1	1/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY	_	SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 12.64 Gallons WELL TD: 96.38 ft PUMP INTAKE DEPTH: 90.30 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	pН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
	17.35								Static water level
	17.35	400	14.54	0.128	2.94	6.13	169	0.0	Pump on at 45 psi, clear water
1235	17.35	400	13.64	0.284	0.00	6.33	208	0.0	
1240	17.35	400	13.46	0.283	0.00	6.40	227	0.0	
1245	17.35	400	13.49	0.283	0.00	6.39	232	0.0	
1250	17.35	400	13.95	0.282	0.00	6.52	229	0.0	Change nitrogen tank
1255	17.35	400	13.38	0.287	0.00	6.40	231	0.0	
1300	17.35	400	13.41	0.286	0.00	6.52	230	0.0	
1305									Collect sample SL-MW-13
									·
									1

Pump Type: Bladder Pump

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPL	ETED
8 Drayton Avenue, Bay Shore,	NY	5/11/2016		5/1	1/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY	_	SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 11.64 Gallons WELL TD: 90.37 ft PUMP INTAKE DEPTH: 84.90 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	P	J	(ntu)	
1355		,			, ,				Static water level
1400		350	14.67	0.951	6.72	6.88	136	81.2	Pump on at 45 psi
1405	17.58	350	14.05	0.917	5.11	6.64	144	45.2	
1410	17.58	350	13.87	0.872	4.06	6.70	148	21.2	
1415	17.58	350	14.14	0.800	2.87	6.75	146	7.5	
1420	17.58	350	14.18	0.742	1.80	6.80	146	0.0	Clear water
1425	17.58	350	14.13	0.746	1.53	6.85	147	0.0	
1430	17.58	350	14.05	0.681	0.74	6.82	144	0.0	Changed nitrogen tank
1440	17.58	350	14.24	0.679	0.83	6.78	145	1.9	-
1445	17.58	350	14.09	0.685	0.77	6.84	145	0.0	
1450									Collect sample SL-MW-14
					<u> </u>				1

Pump Type: Bladder Pump

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPL	ETED
8 Drayton Avenue, Bay Shore,	NY	5/11/2016		5/1	1/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 12.94 Gallons WELL TD: 93.25 ft PUMP INTAKE DEPTH: 87.90 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	μ	J	(ntu)	
1620	12.39	,			, ,				Static water level
1625	12.42	250	19.27	0.352	0.02	6.06	-14	102	Pump on at 40 psi
1630									Controller leakingtroubleshoot
1635	12.42	350	18.55	1.52	0.00	5.95	-62	170	Pump on at 40 psi
1640	12.42	350	17.60	1.54	0.00	6.00	-61	166	·
1645	12.42	350	16.62	1.39	0.00	6.02	-74	167	
1650	12.42	350	17.30	1.27	0.00	6.11	-80	164	Clean flow cell
1700	12.42	350	13.87	1.13	0.00	6.09	-54	1000	
1710	12.42	350	13.97	0.952	0.00	6.14	-81	560	Change nitrogen tank
1720	12.42	350	15.63	0.812	0.00	6.15	-12	327	Clean flow cell
1725	12.42	350	14.67	0.800	0.00	6.08	-54	300	Change nitrogen tank
1735	12.42	350	14.62	0.742	0.00	6.09	-70	193	
1745	12.42	350	14.40	0.635	0.00	6.08	-65	75.2	
1750	12.42	350	14.10	0.611	0.00	6.04	-67	25.4	
1755	12.42	350	14.11	0.598	0.00	6.12	-71	21.7	
1800	12.42	350	13.97	0.578	0.00	6.05	-70	5.1	
1805	12.42	350	13.95	0.569	0.00	6.06	-74	0.2	Clear water
1810	12.42	350	14.05	0.561	0.00	6.03	-67	0.0	
1815									Collect sample SL-MW-16
									•
									I

Pump Type: Bladder Pump

WELL NO. MW-23S

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPL	ETED
8 Drayton Avenue, Bay Shore,	NY	5/12/2016		5/1	2/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY	_	SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 10.12 Gallons WELL TD: 69.25 ft PUMP INTAKE DEPTH: 64.50 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	μ	0	(ntu)	
1305	5.98	, ,	` ,	,	`			` '	Static water level
1310	6.00	450	15.49	0.246	0.00	5.61	282	0.0	Pump on at 45 psi, clear water
1315	6.07	450	18.79	0.290	6.64	4.98	285	0.0	Clean flow cell
1320	6.05	450	15.13	0.266	0.00	5.89	272	0.2	
1330	6.05	450	16.53	0.268	2.90	5.80	278	11.1	Change nitrogen tank
1335	6.05	450	15.02	0.27	2.50	6.65	283	7.2	
1340	6.05	450	15.05	0.272	1.85	5.80	281	5.6	
1345	6.05	450	15.15	0.271	1.27	5.69	278	3.3	
1350	6.05	450	14.93	0.271	1.06	5.66	286	2.3	
1355	6.05	450	14.97	0.271	1.06	5.61	285	2.3	
1400	6.05	450	15.01	0.272	0.50	5.73	289	1.0	
1405	6.05	450	14.94	0.271	0.16	5.90	270	0.7	
1410	6.05	450	15.02	0.271	0.00	5.96	276	0.8	
1415	6.05	450	14.91	0.273	0.00	5.93	272	0.2	
1420									Collect sample SL-MW-23S
								<u></u>	

Pump Type: Bladder Pump

WELL NO. MW-23D

	PROJECT	PROJECT No.	SHEET		SHEETS
WELL SAMPLING FORM	ServAll Laundry Site (1-52-077)	60277021	1	OF	1
LOCATION		DATE WELL STARTED	DATE WELL	COMPLI	ETED
8 Drayton Avenue, Bay Shore,	NY	5/12/2016		5/12	2/2016
CLIENT		NAME OF INSPECTOR			
NYSDEC		Adam Freed, Jamie	Briggs		
DRILLING COMPANY		SIGNATURE OF INSPECTOR			

ONE WELL VOLUME: 13.06 Gallons WELL TD: 87.65 ft PUMP INTAKE DEPTH: 82.90 ft

	Depth to	Purge		FIE	LD MEAS	SUREME	NTS		
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)	
1030	6.01								Static water level
1035	6.01	300	17.43	0.174	19.26	6.21	257	7.3	Pump on at 45 psi
1040	6.01	300	16.00	0.175	1.80	6.16	248	1.6	
1045	6.01	300	15.38	0.177	1.12	6.14	253	17.6	
1050	6.01	300	15.74	0.177	0.53	6.00	268	30.0	Change nitrogen tank
1145	6.01	300	17.17	0.178	1.60	6.19	256	51.2	Pump on at 45 psi
1150	6.01	300	15.82	0.180	0.63	6.27	253	15.9	
1155	6.01	300	15.51	0.182	0.36	6.25	260	47.8	
1200	6.01	300	15.41	0.183	0.20	6.25	260	42.0	
1205	6.01	300	15.35	0.183	0.07	6.19	264	46.4	
1210	6.01	300	15.30	0.164	0.10	6.27	267	35.9	
1215	6.01	300	15.38	0.186	0.00	6.08	265	29.0	
12220	6.01	300	15.30	0.186	0.00	6.07	272	13.2	
1225	6.01	300	15.31	0.187	0.00	6.11	268	14.1	
1230	6.01								Collect sample SL-MW-23D

Pump Type: Bladder Pump

Appendix C

Site Inspection Form

ServAll Laundry Site 8 Drayton Avenue, Bay Shore, NY NYSDEC Site ID # 1-52-077

Client: New York State Department of Environmental Conservation

Preparer's Name: Adam Freed, Jamie Briggs	Date/Time:	05/09/2016,	0900					
Asphalt Cap Has the condition of the asphalt degraded since the last inspection Are any cracks visible in the asphalt pavement? Is there evidence of uneven settling and or ponding? Is there damage to any surface coverage?	☐ YES ☐ YES ☐ YES ☐ YES	■ NO ■ NO ■ NO ■ NO		NA NA NA NA				
Fence Are there any breaks in the property fence? Are there any damaged or bent posts?	☐ YES ■ YES	■ NO □ NO		NA NA				
Site Condition Is the building door padlocked? Is the rollup door secured? Is there any evidence of illegal disposal? Is there uncontrolled vegetation growth? Is there any evidence of unauthorized entry?	☐ YES ☐ YES ☐ YES ☐ YES ☐ YES ☐ YES	■ NO □ NO ■ NO □ NO □ NO		NA NA NA NA				
If yes to any question above, provide additional information with photographic evidence below. According to the manager of Genesis Bakery, located adjacent to the former ServAll building, bakery								
employees have observed people trespassing at the Site building.								

Photo showing front of site from Drayton Avenue:

Photo showing door at west face of the site (no padlock on door):

Photo showing bent fence post behind the site building:

Appendix D

Laboratory Data Package

FAX: 973-244-9787 WWW.HCVLAB.COM

Analytical & Field Services

Project: Multi G Servall

Client PO: D004445-14-1

Report To: AECOM

100 Red School House Rd.

Suite B-1

Chestnut Ridge, NY 10977

Attn: Paul Kareth

Received Date: 5/12/2016

Report Date: 5/31/2016

Deliverables: NYDOH-CatA

Lab ID: AC91322

Lab Project No: 6051302

This report is a true report of results obtained from our tests of this material. The report relates only to those samples received and analyzed by the laboratory. All results meet the requirements of the NELAC Institute standards. Laboratory reports may not be reproduced, except in full, without the written approval of the laboratory.

In lieu of a formal contract document, the total aggregate liability of Hampton-Clarke to all parties shall not exceed Hampton-Clarke's total fee for analytical services rendered.

Robin Cousineau - Quality Assurance Director

OR

Jean Revolus - Laboratory Director

NY (ELAP11408) KY (90124) CT (PH-0671)

Analytical & Field Services

THIS CATEGORY "A" REPORT IS NUMBERED FROM 1 to 62

HC Case Narrative

Client: AECOM HC Project: 6051302

Project: Multi G Servall

Hampton-Clarke (HC) received the following samples on 05/12/2016:

Client ID	HC Sample ID	Matrix	<u>Analysis</u>
SL-MW-11	AC91322-001	Aqueous	VO (8260C)
SL-MW-6A	AC91322-002	Aqueous	VO (8260C)
SL-MW-56A	AC91322-003	Aqueous	VO (8260C)
SL-MW-6A MS	AC91322-004	Aqueous	VO (8260C)
SL-MW-6A MSD	AC91322-005	Aqueous	VO (8260C)
SL-MW-6B	AC91322-006	Aqueous	VO (8260C)
FIELD BLANK	AC91322-007	Aqueous	VO (8260C)
SL-MW-1	AC91322-008	Aqueous	VO (8260C)
SL-MW-3B	AC91322-009	Aqueous	VO (8260C)
SL-MW-3A	AC91322-010	Aqueous	VO (8260C)
SL-MW-12	AC91322-011	Aqueous	VO (8260C)
SL-MW-13	AC91322-012	Aqueous	VO (8260C)
SL-MW-14	AC91322-013	Aqueous	VO (8260C)
SL-MW-16	AC91322-014	Aqueous	VO (8260C)
TB-01	AC91322-015	Aqueous	VO (8260C)
SL-MW-4	AC91322-016	Aqueous	VO (8260C)
SL-MW-23D	AC91322-017	Aqueous	VO (8260C)
SL-MW-23S	AC91322-018	Aqueous	VO (8260C)

This case narrative is in the form of an exception report. Method specific and/or QA/QC anomalies related to this report only are detailed below.

Volatile Organic Analysis:

Sample AC91322-018 was analyzed at a dilution due to high concentration of target analytes.

The Method Blank Spike for batches 53480 and 53491 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

The MS/MSD RPD, Matrix Spike and Matrix Spike Duplicate for batch 53480 had recoveries outside QC limits. Please refer to the applicable Form 3 for the recoveries.

2-Chloroethylvinylether did not recover in the Matrix Spike and Matrix Spike Duplicate in batch 53480 due to acid preservation of sample. 2-Chloroethylvinylether readily decomposes under acidic conditions. The recovery of 2-Chloroethylvinylether is within QC limits in the Laboratory Control Sample. Please refer to the applicable Form 3 for the recoveries.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Robin Cousineau Or Jean Revolus Date

Quality Assurance Director Laboratory Director

	Hampton-Clarke inc (WRE/DRE/SRE)	
2_	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004	
9 2	Ph: 800-426-9992 973-244-9770 Fax: 973-244-9787 973-439-1458	7
0 (Service Center: 137-D Gaither Drive, Mount Laurel, New Jersey 08054	Hampton-Cla
0	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	A Women-Own
)	NELAC/NJ #07071 PA #88-00463 NY #11408 CT #PH-0671 KY #90124 I	I-0671 KY #9012
26	Customer Information	
3	1a) Customer: A ELOM	2a) Project:
51	Address: 100 Red School House Road STEB.	
0	Chestand Ridge, NY 10977-6715 2b) Project Mgr.	2b) Project Mgr:
E	1b) Email/Cell/Fax(Ph) 845-425-44450 ext 13	2c) Project Location

CHAIN OF CUSTODY RECORD

Project # (Lab Use Only)

2051500

Page_

| | |약

N

3) Reporting Requirements (Please Circle)

1d) Send Report to: 1c) Send Invoice to: AC11322 **Additional Notes** 10) Relinquished by: Lab Sample # FOR LAB Batch # ONLY USE 100 1004 90 000 100 1000 -007 8 600 g 5/1 SI- MW-3 >1-WW-11. 51-MW-1 51-MW-56A 51- MW-60 51-MW-6AMS 51105-6A Field Blunk 4) Customer Sample ID GW - Ground Water OT - Other (please specify under item 9, Comments) WW - Waste Water **DW** - Drinking Water Mw-6A M5D 751 faul . Karethe werom.com Parlakaretne occomicom ν A B **Matrix Codes** <u>은</u> - 0: S - Soil SL - Sludge ₹ **** (LW ₹ 7 MA Matrix 5001 911115 NOS 4 9110115 MA 911 MS MA 911015 Mc ===> Check If Contingent ===> 15/10/16 5110116 3/91 9/10/1S 5/10/16/1300 5/10/16 1300 A - Air 27-17-19-16-15 Date 6) Sample Aggepted by: Jyzo 005 1920 DOC! 1700 Time 2d) Quote/PO # (If Applicable) Composite (C) Sample × × × Grab (G) ¥ * \prec * ¥ TLL VOCS 7) Analysis (specify methods & parameter lists, DE HSCA Approved ed, Disadvantaged, Small Business Enterprise (City/State): 1-11-34460 Project Information 100 Date 9 2:30 となくこと Buy Shore 1 ~] Time Servall Addicate if low-level methods required to meet current groundwater standards (SPLP for soil): BN or BNA (8270D SIM) Check if applicable: 11) Sampler (print name): Please note NUMBERED items. If not completed your analytical work may be delayed.

A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis. SPLP (BN, BNA, Metals) **Project-Specific Reporting Limits** VOC (8260C SIM or 8011) NJ LSRP Project (also check boxes above/right) **High Contaminant Concentrations** 5 Business Days (25%) Other: Standor A 4 Business Days (35%) 3 Business Days (50%) 2 Business Days (75%) 10 Business Days (Stand.) Comments, Notes, Special Requirements, HAZARDS 1 Business Day (100%) When Available: Turnaround Expedited TAT Not Always Available. Please Check with Lab. <=== Check If Contingent <=== None MeOH En Core # of Bottles <u>@</u> NaOH Full / Category B PA Reduced Results + QC (Waste) Data Summary Electronic (PDF) Category A NY Reduced NJ Reduced For NNJ LSRP projects, indicate which standards need to be met: لئ س S w Report Type W S HCI H2SO4 NJDEP SRS Other (specify): NJDEP SPLP **NJDEP GWQS** HNO3 Other 1.40 m.1 3-40 × 3-40 milvials 3 your I vials (BI Hao 3-40 milvials 3-40mil vials 3-40mil vials 3-40m. | vials 3-40mil rials 3-40m.1 vials Cooler Temperature EQuIS (specify below): Excel - PA Regulatory Excel - NY Regulatory Excel - NJ Regulatory EnviroData 4-File/EZ/NYS/Reg. 2 or 5 Hazsite/CSV Electronic Deliv 9) Comments - Vials

		_							 			_				,			1.										0;		32	Q	01	90	3
	Additional Notes			4	La Man	Million	10) Relinguished by:		300	7017	6	2	464	-013	2/2	190	Lab Sample #		ACI 322	Batch #	←	ONLY	USE			1d) Send Report to:	1c) Send Invoice to:	1b) Email/Cell/Fax/6h		Address:	1a)Customer:		Ph (Service Cen	Ph: 800-426
	es S				Col		ned by:		SL-MW-235	4	5L-MW-4	18-01	SL-MW-16	SL- MW-19	SL-MW-13	5L-MW-12	4) Customer Sample ID		OI - Orner (please specify under item y, comments)	WW - Waste Water OL	GW - Ground Water S.	Matrix				Pail	Pal.	₽&	ᅏ	100 Red School	AF(OM	NELACINJ #07071 PA #68-00463 NY #11408 CT #PH-0671 KY #90124 DE HSCA Approved	Ph (Service Center): 856-780-6057 Fax: 856-780-6056	Service Center: 137-D Gaither Drive, Mount Laurel, New Jersey 08054	Ph: 800-426-9992 973-244-9770 Fay: 973-244-9787 973-439-1458
				•	3				6W 5/12/16	FW 5117116	41/2/12 WD		6W 211111	GW 5/11/16	1115 Meg	6W 5/11/	Matrix Date	5)	under item 9, Com	OL - Oil	S - Soil A - Air	les	===> Checl	MES.7		no)-momentendand	<u></u> -	49 80 pm	$\overline{}$	1 House Rd STEB		PA #68-00463 NY #	ax: 856-780-6056	aurel, New Jersey	244-9787 973-439
					11/11/11	7	Accepted by:		1420	16 1230	14 CA! 70		1815	16 M:50	5/11/18 13:05	5/11/16 11:45	Time	6) Sample	ments)		-	Sar	Check If Contingent ===>	1. L. Marine 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		<u>سر</u>				1	2a	11408 CT #PH-067			1458
			ī		-		7		*	4	メ	メ	メイ	*	*	メ	┝	ab (G	VO	<u></u>	iype	Sample		7)	,	2d) Quote/PO # (If Applicable):		2c) Project Location (City/State):	2b) Project Mgr:	1	2a) Project:	71 KY #90124 DE	A Women-Owner	dampton-Clar	
				116			Date																	7) Analysis (specify methods &	·	plicable):			٤	1,14: 6- 5	وا بک	HSCA Approved	A Women-Owned, Disadvantaged, Small Business Enterprise	Ke .	
11)		Cig		700		<u>)</u> 	Time																	ifv methods &				Buy Shore,	rareth	Servall	イリマー		Small Business Er	70075	PECOPD PECOPD
Sampler (print name):	High Contam	Project-Spec	SPLP (BN, BNA, Metals)	VOC (8260C SIM or 8011)	Int groundwater standards (SPLP for soil):	Me if low-level me																		naramotor lists		0	<u> </u>	? ⁴	4	3	2 -		terprise		T
ame):	High Contaminant Concentrations NJ LSRP Project (also check boxes above/right)	ific Reporting	NA, Metals)	SIM or 8011)	andards (SPLP fo	thods required to	omments. No										No	ne							* Exped	Other: Standard	10 Business Days (Stand.)	5 Business Days (25%)	4 Business Days (35%)*	3 Business Days (50%)*	2 Business Days (75%)*	When Available:	Turnaround	u	2
f not comple	trations	l imits			r soil):	meet	tes. Special I										├—	OH Core OH	# of Bottles	9			<=== Check If Contingent <===		d TAT Not		ਰੁ.) Reporting I	001700
200	'e/right)		Other (specify):	NJDEP SRS	NJDEP GWQS	For NNJ LSRP pro	Comments, Notes, Special Requirements, HAZARDS			3	3	(J)	3	3	ل ک	3	H2:	SO4 IO3	les				tingent <===	SIMILE.		Electronic (PDF)	ategory A	Full / Category B	PA Reduced	NY Reduced	NJ Reduced	Data Summary	Report Type	3) Reporting Requirements (Please Circle)	
Date:	Cooler Temperature	:	ecify):	P. KS	;WQS	For NNJ LSRP projects, indicate which standards	HAZARDS	 	3-40 m.	1:40h-E	3 .40 m.	3-40milvial- Tripstan	3-40m, I vials	3-40 milvials	3-40 m.1 v.als	3-40 m;1 vials	5 9) Comments							Wild Miles	Please Check with Lab.	Other:	4-File/EZ/NY	EQuIS (specify below):	Excel - PA Regulatory	Excel - NY Regulatory	Excel - NJ Regulatory		Electronic	(Please Circle)	
dolayed	mperature					ch standards			vials	vials	1 vials	16- Tripstant	vials	mil vials	1 vials	vials	nments							1.740010-	ab.		4-File/EZ/NYS/Reg. 2 or 5	ify below):	egulatory	Regulatory	egulatory	`	ic Deliv.		

CONDITION UPON RECEIPT

Batch Number AC91322

Entered By: maxwell

Date Entered 5/13/2016 7:50:00 AM

1	Yes	Is there a corresponding COC included with the samples?
2	Yes	Are the samples in a container such as a cooler or Ice chest?
3	NO	Are the COC seals intact?
4	T0054	< Thermometer ID. Please specify the Temperature inside the container (in degC). 2.9
5	Yes	Are the samples refrigerated (where required)/have they arrived on ice?
6	Yes	Are the samples within the holding times for the parameters listed on the COC? IF no, list parameters and samples:
7	Yes	Are all of the sample bottles intact? If no, specify sample numbers broken/leaking
8	Yes	Are all of the sample labels or numbers legible? If no specify:
9	Yes	Do the contents match the COC? If no, specify
10	Yes	Is there enough sample sent for the analyses listed on the COC? If no, specify:
11	Yes	Are samples preserved correctly?
12	Yes	Was temperature blank present (Place comment below if not)? If not was temperature of samples verified?
13	YES	Other comments Specify TRIP BLANK DATE 5/6/16
14	NA	Corrective actions (Specify item number and corrective action taken).

PRESERVATION DOCUMENT

Batch Number AC91322

Entered By: maxwell

Date Entered 5/13/2016 7:50:00 AM

Lab#:	Container Size	Container/Vial Check	Parameter	Preservative	Preservative Lot#	PН	pH Lot#
AC91322-001	40ML	G	VO	HCL	119768	1	HC57767
AC91322-002	40ML	G	VO	HCL	119768	1	HC57767
AC91322-003	40ML	G	VO	HCL	119768	1	HC57767
AC91322-004	40ML	G	VO	HCL	119768	1	HC57767
AC91322-005	40ML	G	VO	HCL	119768	1	HC57767
AC91322-006	40ML	G	VO	HCL	119768	1	HC57767
AC91322-007	40ML	G	VO	HCL	119768	1	HC57767
AC91322-008	40ML	G	VO	HCL	119768	1	HC57767
AC91322-009	40ML	G	VO	HCL	119768	1	HC57767
AC91322-010	40ML	G	VO	HCL	119768	1	HC57767
AC91322-011	40ML	G	VO	HCL	119768	1	HC57767
AC91322-012	40ML	G	VO	HCL	119768	1	HC57767
AC91322-013	40ML	G	VO	HCL	119768	1	HC57767
AC91322-014	40ML	G	VO	HCL	119768	1	HC57767
AC91322-015	40ML	G	VO	HCL	119768	1	HC57767
AC91322-016	40ML	G	VO	HCL	119768	1	HC57767
AC91322-017	40ML	G	VO	HCL	119768	1	HC57767
AC91322-018	40ML	G	VO	HCL	119768	1	HC57767

Internal Chain of Custody

		Loc	1 -					·		1.00		1	
	1		. A	1			i			Loc or Bot	۸,		
l ob#:	DataTima			Analysis				1 4.	DeteTime			A ! !	
Lab#:	DateTime:	User_Nu		Analysis		-		Lab#:	DateTime:	User Nu		Analysis	
AC91322-001	05/12/16 16:58	MAXW 0	М	Received			:	AC91322-012	05/13/16 08:19	R31 3	Α	PH/CHECK	
AC91322-001	05/13/16 07:49	MAXW 0	М	Login				AC91322-013	05/12/16 16:58	MAXW 0	М	Received	
AC91322-001	05/13/16 08:20	R31 1	A	NONE			į	AC91322-013	05/13/16 07:49	MAXW, 0	M	Login	
AC91322-001	05/13/16 08:20	R31 2	Α	NONE				AC91322-013	05/13/16 08:20	R31 1	Α	NONE	
AC91322-001	05/16/16 17:47	WP 2	Α	VOA				AC91322-013	05/13/16 08:20	R31 2	Α	NONE	
AC91322-001	05/13/16 08:19	R31 3	A,	PH/CHECK				AC91322-013	05/16/16 17:47	WP 2	Α	VOA	
AC91322-002	05/12/16 16:58	MAXW 0	м	Received				AC91322-013	05/13/16 08:19	R31 3	Α	PH/CHECK	
AC91322-002	05/13/16 07:49	MAXW 0	м	Login				AC91322-014	05/12/16 16:58	MAXW 0	М	Received	
AC91322-002	05/13/16 08:20	R31 1	Α	NONE				AC91322-014	05/13/16 07:49	MAXW 0	М	Login	
AC91322-002	05/13/16 08:20	R31 2	Ä	NONE				AC91322-014	05/13/16 08:20	R31 1	A	NONE	
AC91322-002	05/16/16 17:47	WP 2	Ā	VOA				AC91322-014			Â	NONE	
									05/13/16 08:20				
AC91322-002	05/13/16 08:19	R31 ,3	A	PH/CHECK				AC91322-014	05/16/16 17:47	WP 2	Α	VOA	
AC91322-002	05/13/16 08:20	R31 ; 3	A	NONE				AC91322-014	05/13/16 08:19	R31 3	Α	PH/CHECK	
AC91322-003	05/12/16 16:58	MAXW 0	M	Received				AC91322-015	05/12/16 16:58	MAXW 0	М	Received	
AC91322-003	05/13/16 07:49	MAXW 0	М	Login				AC91322-015	05/13/16 07:49	MAXW, 0	М	Login	
AC91322-003	05/13/16 08:20	:R31	Α	NONE				AC91322-015	05/13/16 08:20	R31 1	Α	NONE	
AC91322-003	05/13/16 08:20	R31 2	Α	NONE				AC91322-015	05/13/16 08:20	R31 2	Α	NONE	
AC91322-003	05/16/16 17:47	WP 2	Α	VOA				AC91322-015	05/16/16 17:47	WP 2	Α	VOA	
AC91322-003	05/13/16 08:19	'R31 ¹ 3	Α	PH/CHECK				AC91322-015	05/13/16 08:19	R31 3	Α	PH/CHECK	
AC91322-004	05/12/16 16:58	MAXW 0	М	Received				AC91322-016	05/12/16 16:58	MAXW 0	M	Received	
AC91322-004	05/13/16 07:49	MAXW 0	М	Login				AC91322-016	05/13/16 07:49	MAXW 0	М	Login	
AC91322-004	05/13/16 08:20	R31 1	A	NONE				AC91322-016	05/13/16 08:20	R31 1	Α	NONE	
AC91322-004	05/13/16 08:20	R31 2	Α	NONE				AC91322-016	05/13/16 08:20	R31 2	Α	NONE	
AC91322-004	05/16/16 17:47	WP 2	A	VOA				AC91322-016	05/16/16 17:47	WP 2	A	VOA	
AC91322-004	05/13/16 08:19	R31 3	A	PH/CHECK				AC91322-016	05/13/16 08:19	R31 3	A	PH/CHECK	
AC91322-004	05/13/16 08:20	R31 3	A	NONE				AC91322-017	05/12/16 16:58	MAXW 0	М	Received	
AC91322-005	05/12/16 16:58	MAXW 0	м	Received				AC91322-017			M		
	05/12/16 10:38						1		05/13/16 07:49	MAXW 0	1	Login	
AC91322-005		MAXW 0	М	Login				AC91322-017	05/13/16 08:20	R31 1	A	NONE	
AC91322-005	05/13/16 08:20	R31 1	A	NONE				AC91322-017	05/13/16 08:20	R31 2	A	NONE	
AC91322-005	05/13/16 08:20	R31 2	Α	NONE			-	AC91322-017	05/16/16 17:47	WP 2	A	VOA	
AC91322-005	05/16/16 17:47	WP 2	Α	VOA				AC91322-017	05/13/16 08:19	R31 3	Α	PH/CHECK	
AC91322-005	05/13/16 08:19	R31 3	Α	PH/CHECK				AC91322-018	05/12/16 16:58	MAXW 0	М	Received	
AC91322-005	05/13/16 08:20	R31 3	Α	NONE			1	AC91322-018	05/13/16 07:49	MAXW 0	M	Login	
AC91322-006	05/12/16 16:58	MAXW 0	М	Received			1	AC91322-018	05/13/16 08:20	R31 1	Α	NONE	
AC91322-006	05/13/16 07:49	MAXW 0	М	Login				AC91322-018	05/17/16 08:39	SG 1	М	VOA	
AC91322-006	05/13/16 08:20	R31 1	Α	NONE				AC91322-018	05/13/16 08:20	R31 2	·A	NONE	
AC91322-006	05/17/16 11:30	SG 1	Α	VOA				AC91322-018	05/16/16 17:47	WP 2	Α	VOA	
AC91322-006	05/13/16 08:20	R31 2	Α	NONE				AC91322-018	05/13/16 08:19	R31 3	Α	PH/CHECK	
AC91322-006	05/16/16 17:47	WP 2	Α	VOA			1						
AC91322-006	05/13/16 08:19	R31 3	Α	PH/CHECK			;						
AC91322-007	05/12/16 16:58	MAXW 0	м	Received		•							
AC91322-007	05/13/16 07:49	MAXW 0	M	Login									
		R31 1	Α	NONE									
AC91322-007	05/13/16 08:20												
AC91322-007	05/13/16 08:20	R31 2	A	NONE									
AC91322-007	05/16/16 17:47	WP 2	A	VOA									
AC91322-007	05/13/16 08:19	R31 3	Α	PH/CHECK									
AC91322-008	05/12/16 16:58	MAXW 0	М	Received									
AC91322-008	05/13/16 07:49	MAXW _i 0	M	Login									
AC91322-008	05/13/16 08:20	R31 1	Α	NONE									
AC91322-008	05/13/16 08:20	R31 2	Α	NONE									
AC91322-008	05/16/16 17:47	WP 2	Α	VOA									
AC91322-008	05/13/16 08:19	R31 3	Α	PH/CHECK									
AC91322-009	05/12/16 16:58	MAXW 0	М	Received									
AC91322-009	05/13/16 07:49	MAXW 0	;M	Login									
AC91322-009	05/13/16 08:20	R31 1	Α	NONE									
AC91322-009	05/13/16 08:20	R31 2	Α	NONE									
AC91322-009	05/16/16 17:47	WP 2	A	VOA									
AC91322-009	05/13/16 08:19	R31 3	A	PH/CHECK									
AC91322-009 AC91322-010	05/12/16 16:58	MAXW 0	М	Received									
i		1											
AC91322-010	05/13/16 07:49	MAXW 0	-{M	Login									
AC91322-010	05/13/16 08:20	R31 1	A	NONE									
AC91322-010	05/13/16 08:20	R31 2	A	NONE									
AC91322-010	05/16/16 17:47	WP 2	ĮΑ	·VOA			i						
AC91322-010	05/13/16 08:19	R31 3	Α	PH/CHECK									
AC91322-011	05/12/16 16:58	MAXW 0	М	Received									
AC91322-011	05/13/16 07:49	MAXW 0	М	Login	_		1						
AC91322-011	05/13/16 08:20	R31 1	Α	NONE			,						
AC91322-011	. 05/13/16 08:20	R31 ,2	,A	NONE									
AC91322-011	05/16/16 17:47	WP 2	A	VOA			į						
AC91322-011	05/13/16 08:19	R31 3	Α	PH/CHECK			!						
AC91322-012	05/12/16 16:58	MAXW 0	м	Received			:						
AC91322-012	05/13/16 07:49	MAXW 0	м	Login			1						
AC91322-012 AC91322-012			A	NONE									
	05/13/16 08:20	R31 1											
AC91322-012	05/13/16 08:20	R31 2	A	NONE									
AC91322-012	05/16/16 17:47	WP 2	Α	VOA									

Samples marked as received are stored in coolers or refrigerator R12, or R24 at 4 deg C until Login

Laboratory Chronicle

Client: AECOM

Project: Multi G Servall

HC Project #: 6051302

Lab#: AC91322-001		Sample ID: SL	-MW-11			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 19:39	WP
Lab#: AC91322-002		Sample ID: SL	-MW-6A			-
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 19:55	WP
Lab#: AC91322-003		Sample ID: SL	-MW-56A			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Volatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 20:11	WP
Lab#: AC91322-004		Sample ID: SL	-MW-6A MS			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 23:53	WP
Lab#: AC91322-005		Sample ID: SL	-MW-6A MSD			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Бу
Volatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/17/16 00:09	WP
Lab#: AC91322-006		Sample ID: SL	-MW-6B			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Volatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/17/16 11:55	SG

Laboratory Chronicle

Client: AECOM

Project: Multi G Servall

HC Project #: 6051302

Lab#: AC91322-007	5	Sample ID: FIE	LD BLANK			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 19:24	WP
Lab#: AC91322-008		Sample ID: SL	-MW-1			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
olatile Organics (no search) 8260	EPA5030/5035	- "		EPA 8260C	5/16/16 20:43	WP
Lab#: AC91322-009	S	Sample ID: SL	-MW-3B			
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Volatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	· 5/16/16 20:59	WP
Lab#: AC91322-010	\$	Sample ID: SL	-MW-3A			·· -
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 21:15	WP
Lab#: AC91322-011		Sample ID: SL				
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 21:31	WP
Lab#: AC91322-012		Sample ID: SL	-MW-13		· •	
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву
Volatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 21:46	WP

Laboratory Chronicle

Client: AECOM

Project: Multi G Servall

HC Project #: 6051302

Lab#:	A	C9	13	22-	01	3
-------	---	----	----	-----	----	---

Sample ID: SL-MW-14

Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву	
folatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 22:02	WP	
Lab#: AC91322-014		Sample ID: SL	-MW-16			-	
	Dron	Prep		Analysical			
Test Code	Prep Method	Date	Ву	Analytical Method	Analysis Date	Ву	
/olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 22:18	WP	
Lab#: AC91322-015		Sample ID: TB	-01				
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву	
/olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 19:08	WP	
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву	
Volatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 22:34	WP	
Lab#: AC91322-017	• • •	Sample ID: SL	-MW-23D				
•	_	_	-				
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву	
/olatile Organics (no search) 8260	EPA5030/5035			EPA 8260C	5/16/16 22:50	WP	
Lab#: AC91322-018		Sample ID: SL	-MW-23S	<u> </u>	<u>.</u>		
Test Code	Prep Method	Prep Date	Ву	Analytical Method	Analysis Date	Ву	
rest code	- INCLITOR				- Duto	_,	

HC Reporting Limit Definitions/Data Qualifiers

REPORTING DEFINITIONS

DF = Dilution Factor

MDL = Method Detection Limit

RL* = Reporting Limit

ND = Not Detected

RT = Retention Time

NA = Not Applicable

DATA QUALIFIERS

- A- Indicates that the Tentatively Identified Compound (TIC) is suspected to be an aldolcondensation product. These compounds are by-products of acetone and methylene chloride used in the extraction process.
- **B** Indicates analyte was present in the Method Blank and sample.
- d- For Pesticide and PCB analysis, the concentration between primary and secondary columns is greater than 40%. The lower concentration is generally reported.
- **E** Indicates the concentration exceeded the upper calibration range of the instrument.
- J- Indicates the value is estimated because it is either a Tentatively Identified Compound (TIC) or the reported concentration is greater than the MDL but less than the RL. For samples results between the MDL and RL there is a possibility of false positives or misidentification at the quantitation levels. Additionally, the acceptance criteria for QC samples may not be met.
- R- Retention Time is out.
- Y- Indicates a contaminant found in the blank at less than 10% of the concentration of a contaminant found in the sample.

^{*}Samples with elevated Reporting Limits (RLs) as a result of a dilution may not achieve client reporting limits in some cases. The elevated RLs are unavoidable consequences of sample dilution required to quantitate target analytes that exceed the calibration range of the instrument.

HC Report of Analysis

Client: AECOM

HC Project #: 6051302

Project: Multi G Servall

Sample ID: SL-MW-11 Lab#: AC91322-001 Collection Date: 5/9/2016 Receipt Date: 5/12/2016

Matrix: Aqueous

Analyte	DF	Units	RL	Result	
1,1,1-Trichloroethane	1	ug/l	1.0	ND .	
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND	
1,1,2-Trichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethene	1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND	
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND	
1,2-Dibromoethane	1	ug/i	1.0	ND	
1,2-Dichlorobenzene	1	ug/l	1.0	ND	
1,2-Dichloroethane	1	ug/l	0.50	ND	
1,2-Dichloropropane	1 .	ug/l	1.0	ND	
1,3-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dioxane	1	ug/l	50	ND	
2-Butanone	1	ug/i	1.0	ND .	
2-Hexanone	1	ug/I	1.0	ND	
4-Methyl-2-pentanone	1	ug/l	1.0	ND	
Acetone	1	ug/l	5.0	ND	
Benzene	1	ug/l	0.50	ND	
Bromochloromethane	1	ug/l	1.0	ND	
Bromodichloromethane	1	ug/l	1.0	ND	
Bromoform	1	ug/l	1.0	ND	
Bromomethane	1	ug/l	1.0	ND	
Carbon disulfide	1	ug/l	1.0	ND	
Carbon tetrachloride	1	ug/l	1.0	ND	
Chlorobenzene	1	ug/l	1.0	ND	
Chloroethane	1	ug/l	1.0	ND	-
Chloroform	1	ug/l	1.0	ND	
Chloromethane	1	ug/l	1.0	ND	
cis-1,2-Dichloroethene	1	ug/l	1.0	5.9	
cis-1,3-Dichloropropene	1	ug/l	1.0	ND ND	
Cyclohexane	1	ug/l	1.0	ND	
Dibromochloromethane	1	ug/l	1.0	ND	
Dichlorodifluoromethane	1	ug/l	1.0	ND	
Ethylbenzene	1	ug/l	1.0	ND	
Isopropylbenzene	1	ug/l	1.0	ND	
m&p-Xylenes	1	ug/l	1.0	ND	
Methyl Acetate	1	ug/l	1.0	ND	
Methylcyclohexane	1	ug/l	1.0	ND	
Methylene chloride	1	ug/l	1.0	ND	
Methyl-t-butyl ether	1	ug/l	0.50	6.9	
o-Xylene	1	ug/l	1.0	ND	
Styrene	1	ug/l	1.0	NDND	
Tetrachloroethene	1	ug/l	1.0	28	
Toluene	1	ug/i	1.0	28 ND	
trans-1,2-Dichloroethene	1				
nana-12-biolioroetiana		ug/l	1.0	ND Page 1 of	

Sample ID: SL-MW-11 Lab#: AC91322-001 Matrix: Aqueous				n Date: 5/9/2016 t Date: 5/12/2016
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	2.4
Trichlorofluoromethane	1	ug/I	1.0	ND
Vinyl chloride	1	ug/l	1.0	1.8
Xylenes (Total)	1	ug/I	1.0	ND

Sample ID: SL-MW-6A Lab#: AC91322-002 Matrix: Aqueous Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/I	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/I	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/I	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/t	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene		ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1		1.0	ND
	1	ug/I		
Bromoform		ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/I	1.0	ND
Chloroethane	1	ug/i	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	44
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/I	1.0	ND
Dibromochloromethane	1	ug/I	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/I	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	330
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/I	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND ND
Trichloroethene	1	ug/l	1.0	12
Trichlorofluoromethane	1	ug/I	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

Sample ID: SL-MW-56A Lab#: AC91322-003

Matrix: Aqueous

Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte		DF	Units	RL	Result
1,1,1-Trichloroethane		1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane		1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane		1	ug/l	1.0	ND
1,1,2-Trichloroethane		1	ug/l	1.0	ND
1,1-Dichloroethane	**	1	ug/I	1.0	ND
1,1-Dichloroethene		1	ug/l	1.0	ND
1,2,3-Trichlorobenzene		1	ug/I	1.0	ND ·
1,2,4-Trichlorobenzene		1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	=	1	ug/l	1.0	ND
1,2-Dibromoethane		1	ug/l	1.0	ND
1,2-Dichlorobenzene		1	ug/1	1.0	ND
1,2-Dichloroethane		1	ug/l	0.50	ND
1,2-Dichloropropane		1	ug/1	1.0	ND
1,3-Dichlorobenzene		1	ug/l	1.0	ND
1,4-Dichlorobenzene		1	ug/l	1.0	ND
1,4-Dioxane		1	ug/l	50	ND
2-Butanone		1	ug/l	1.0	ND
2-Hexanone		1	ug/l	1.0	ND
4-Methyl-2-pentanone		1	ug/l	1.0	ND
Acetone		1	ug/l	5.0	ND
Benzene		1	ug/l	0.50	ND
Bromochloromethane		1	ug/l	1.0	ND
Bromodichloromethane		t	ug/l	1.0	ND
Bromoform		1	ug/l	1.0	ND
Bromomethane	*	1	ug/l	1.0	ND
Carbon disulfide		1	ug/l	1.0	ND
Carbon tetrachloride		1	ug/l	1.0	ND
Chlorobenzene		1	ug/l	1.0	ND
Chloroethane	18.00	1	ug/l	1.0	ND.
Chloroform		1	ug/l	1.0	ND
Chloromethane		1	ug/l	1.0	ND
cis-1,2-Dichloroethene		1	ug/l	1.0	41
cis-1,3-Dichloropropene		1	ug/l	1.0	ND
Cyclohexane		1	ug/l	1.0	ND
Dibromochloromethane		1	ug/l	1.0	ND
Dichlorodifluoromethane		1	ug/l	1.0	ND
Ethylbenzene		1	ug/l	1.0	ND
Isopropylbenzene		1	ug/l	1.0	ND
m&p-Xylenes		1	ug/l	1.0	ND
Methyl Acetate		1	ug/i	1.0	ND
Methylcyclohexane		1	ug/l	1.0	ND
Methylene chloride		1	ug/i	1.0	ND
Methyl-t-butyl ether		1	ug/l	0.50	ND
o-Xylene		1	ug/l	1.0	ND
Styrene		1	ug/l	1.0	ND
Tetrachloroethene		1	ug/l	1.0	340
Toluene		1	ug/l	1.0	ND
trans-1,2-Dichloroethene		1	ug/l	1.0	ND
trans-1,3-Dichloropropene		1	ug/l	1.0	ND —
Trichloroethene		1	ug/l	1.0	11
Trichlorofluoromethane		1	ug/l	1.0	ND
Vinyl chloride		1	ug/t	1.0	ND
Xylenes (Total)			ug/l		ND

Sample ID: SL-MW-6A MS Lab#: AC91322-004

Matrix: Aqueous

Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL .	Result	
1,1,1-Trichloroethane	1	ug/I	1.0	27	
1,1,2,2-Tetrachloroethane	1	ug/I	1.0	20	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	25	
1,1,2-Trichloroethane	1	ug/l	1.0	23	
I,1-Dichloroethane	1	ug/l	1.0	24	
I,1-Dichloroethene	1	ug/l	1.0	24	
1,2,3-Trichlorobenzene	1	ug/l	1.0	20	
1,2,4-Trichlorobenzene	1	ug/l	1.0	22	
,2-Dibromo-3-chloropropane	1	ug/l	1.0	14	
,2-Dibromoethane	1	ug/l	1.0	21	
,2-Dichlorobenzene	1	ug/l	1.0	23	
1,2-Dichloroethane	1	ug/l	0.50	24	
,2-Dichloropropane	1	ug/l	1.0	23	
,3-Dichlorobenzene	1	ug/l	1.0	24	
,4-Dichlorobenzene	1	ug/l	1.0	23	
,4-Dioxane	1	ug/l	50	700	
2-Butanone	1	ug/l	1.0	17	
2-Hexanone	1	ug/l	1.0	4.9	
I-Methyl-2-pentanone	1	ug/l	1.0	17	
Acetone	1	ug/l	5.0	110	
Benzene	1	ug/l	0.50	21	
Bromochloromethane	1	ug/l	1.0	23	
Bromodichloromethane	1	ug/l	1.0	24	
Bromoform	1	ug/l	1.0	18	
Bromomethane	1	ug/l	1.0	28	
Carbon disulfide	1	ug/l	1.0	30	
Carbon tetrachloride	1	ug/l	1.0	26	
Chlorobenzene	1	ug/l	1.0	23	
Chloroethane	1	ug/l	1.0	32	
Chloroform	1	ug/l	1.0	26	
Chloromethane	1	ug/l	1.0	22	
cis-1,2-Dichloroethene	1	ug/l	1.0	67	
cis-1,3-Dichloropropene	1	ug/l	1.0	23	
Cyclohexane	1	ug/l	1.0	22	
Dibromochloromethane	1	ug/l	1.0	27	
Dichlorodifluoromethane	1	ug/l	1.0	20	
thylbenzene	1	ug/l	1.0	20	
sopropylbenzene	1	ug/l	1.0	23	
n&p-Xylenes	1	ug/l	1.0	43	
Nethyl Acetate	1	ug/l	1.0	25	
	1	ug/l	1.0	21	
Methylene chloride	1	ug/l	1.0	23	
Wethyl-t-butyl ether	1	ug/l	0.50	22	
o-Xylene	1	ug/l	1.0	21	
Styrene	1	ug/l	1.0	21	
Fetrachloroethene	1	ug/l	1.0	350	
Foluene	1	ug/l	1.0	21	
rans-1,2-Dichloroethene	1	ug/l	1.0	25	
rans-1,3-Dichloropropene	1	ug/l	1.0	20	
Frichloroethene	1	ug/l	1.0	35	
richlorofluoromethane	1	ug/l	1.0	36	
/inyl chloride	1	ug/l	1.0	20	
Xylenes (Total)	1	ug/l	1.0		

Sample ID: SL-MW-6A MSD Lab#: AC91322-005

Matrix: Aqueous

Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result	
1,1,1-Trichloroethane	1	ug/l	1.0	26	
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	19	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	23	
1,1,2-Trichloroethane	1	ug/l	1.0	22	
1,1-Dichloroethane	1	ug/l	1.0	21	
1,1-Dichloroethene	1	ug/l	1.0	22	
1,2,3-Trichlorobenzene	1	ug/l	1.0	20	
1,2,4-Trichlorobenzene	1	ug/l	1.0	21	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	13	
1,2-Dibromoethane	1	ug/l	1.0	20	
1,2-Dichlorobenzene	1	ug/l	1.0	21	
1,2-Dichloroethane	1	ug/l	0.50	23	
1,2-Dichloropropane	1	ug/l	1.0	21	
1,3-Dichlorobenzene	1	ug/l	1.0	22	
1,4-Dichlorobenzene	1	ug/l	1.0	21	
1,4-Dioxane	1	ug/l	50	610	
2-Butanone	1	ug/l	1.0	19	
2-Hexanone	1	ug/l	1.0	4.1	
4-Methyl-2-pentanone	1	ug/l	1.0	20	
Acetone	1	ug/l	5.0	110	
Benzene	1	ug/l	0.50	21	
Bromochloromethane	1	ug/l	1.0	21	
Bromodichloromethane	1	ug/l	1.0	22	
Bromoform	1	ug/l	1.0	16	
Bromomethane	1	ug/l	1.0	27	
Carbon disulfide	1	ug/l	1.0	29	
Carbon tetrachloride	1	ug/l	1.0	27	
Chlorobenzene	1	ug/I	1.0	23	
Chloroethane	1	ug/l	1.0	28	
Chloroform	1	ug/l	1.0	24	
Chloromethane	1	ug/l	1.0	20	
cis-1,2-Dichloroethene	1	ug/l	1.0	59	
cis-1,3-Dichloropropene	1	ug/l	1.0	21	
Cyclohexane	1	ug/l	1.0	20	
Dibromochloromethane	1	ug/l	1.0	24	
Dichlorodifluoromethane	1	ug/l	1.0	19	
Ethylbenzene	1	ug/l	1.0	21	
Isopropylbenzene	1	ug/l	1.0	21	
m&p-Xylenes	1	ug/l	1.0	41	
Methyl Acetate	1	ug/l	1.0	23	
Methylcyclohexane	1	ug/I	1.0	19	
Methylene chloride	1	ug/l	1.0	22	
Methyl-t-butyl ether	1	ug/l	0.50	20	
o-Xylene	1	ug/l	1.0	20	
Styrene	1	ug/l	1.0	20	
Tetrachloroethene	1	ug/l	1.0	330	
Toluene	1	ug/l	1.0	21	
trans-1,2-Dichloroethene	1	ug/l	1.0	24	
trans-1,3-Dichloropropene	1	ug/l	1.0	18	
Trichloroethene	1	ug/l	1.0	33	
Trichlorofluoromethane	1	ug/l	1.0	28	
Vinyl chloride	1	ug/l	1.0	19	

Sample ID: SL-MW-6B Lab#: AC91322-006

Matrix: Aqueous

Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/i	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	. 1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane		ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	1.8
Chloromethane	1	-	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene		ug/l		ND
	1	ug/l	1.0 1.0	
Cyclohexane		ug/l		ND
Dibromochloromethane Diabtass diffuses mathematical and a second	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l		ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/I	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/i	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	1.1
Trichlorofluoromethane	1	ug/I	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND

Sample ID: FIELD BLANK Lab#: AC91322-007

Matrix: Aqueous

Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/i	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/i	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/i	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/i	1.0	ND
2-Butanone	1		1.0	ND
2-nexanone 4-Methyl-2-pentanone	1	ug/l	1.0	ND ND
4-metryi-2-pentanone Acetone	1	ug/l	5.0	ND ND
Benzene		ug/l	0.50	ND
Bromochloromethane	1	ug/l		ND
		ug/l	1.0	
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l 	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/I	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/i	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/I	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/1	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND

Sample ID: SL-MW-1 Lab#: AC91322-008 Matrix: Aqueous Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result	
1,1,1-Trichloroethane	1	ug/l	1.0	ND	
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND	
1,1,2-Trichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethene	1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND	
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND	
1,2-Dibromoethane	1	ug/l	1.0	ND	
1,2-Dichlorobenzene	1	ug/I	1.0	ND	
1,2-Dichloroethane	1	ug/l	0.50	ND	
1,2-Dichloropropane	1	ug/l	1.0	ND	
1,3-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dichtorobenzene	1	ug/l	1.0	ND	
1,4-Dioxane	1	ug/l	50	ND	
2-Butanone	1	ug/l	1.0	ND	
2-Hexanone	1	ug/l	1.0	ND	
4-Methyl-2-pentanone	1	ug/l	1.0	ND	
Acetone	1	ug/i	5.0	ND	
Benzene	1	ug/l	0.50	ND	•
Bromochloromethane	1	ug/l	1.0	ND	
Bromodichloromethane	1		1.0	ND	
Bromoform	1	ug/l	1.0		
Bromomethane	1	ug/l		ND	
	· ·	ug/l	1.0	ND	
Carbon disulfide	1	ug/t 	1.0	ND	
Carbon tetrachloride	1	ug/l	1.0	ND	
Chlorobenzene	1	ug/l	1.0	ND	· engen
Chloroethane	1	ug/l	1.0	ND	
Chloroform	1	ug/l	1.0	ND	
Chloromethane	1	ug/l	1.0	ND	
cis-1,2-Dichloroethene		ug/l	1.0	ND	
cis-1,3-Dichloropropene	1	ug/l	1.0	ND	
Cyclohexane	1	ug/l	1.0	ND	
Dibromochloromethane	1	ug/l	1.0	ND	
Dichlorodifluoromethane	1	ug/l	1.0	ND	
Ethylbenzene	1	ug/l	1.0	ND	
Isopropylbenzene	1	ug/l	1.0	ND	
m&p-Xylenes	1	ug/l	1.0	ND	
Methyl Acetate	1	ug/l	1.0	ND	
Methylcyclohexane	1	ug/l	1.0	ND	
Methylene chloride	1	ug/l	1.0	ND	
Methyl-t-butyl ether	1	ug/l	0.50	ND	
o-Xylene	1	ug/l	1.0	ND	
Styrene	1	ug/l	1.0	ND	****
Tetrachloroethene	1	ug/l	1.0	15	
Toluene	1	ug/l	1.0	ND	
trans-1,2-Dichloroethene	1	ug/l	1.0	ND	
trans-1,3-Dichloropropene	1	ug/l	1.0	ND	
Trichloroethene	1	ug/l	1.0	ND	
Trichlorofluoromethane	1	ug/l	1.0	ND	

Sample ID: SL-MW-3B Lab#: AC91322-009

Matrix: Aqueous

Collection Date: 5/10/2016 Receipt Date: 5/12/2016

Analyte		DF	Units	RL	Result	
I,1,1-Trichloroethane		1	ug/l	1.0	ND	
1,1,2,2-Tetrachloroethane		1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane		1	ug/l	1.0	ND	
1,1,2-Trichloroethane		1	ug/l	1.0	ND	
1,1-Dichloroethane		1	ug/l	1.0	ND	
1,1-Dichloroethene		1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene		1	ug/I	1.0	ND	
1,2,4-Trichlorobenzene		1	ug/I	1.0	ND	
,2-Dibromo-3-chloropropane		1	ug/l	1.0	ND	
,2-Dibromoethane		1	ug/I	1.0	ND	
1,2-Dichlorobenzene		1	ug/I	1.0	ND	
,2-Dichloroethane		1	ug/l	0.50	ND	
,2-Dichloropropane		1	ug/l	1.0	ND	
,3-Dichlorobenzene		1	ug/l	1.0	ND	
,4-Dichlorobenzene		1	ug/l	1.0	ND	
,4-Dioxane		1	ug/l	50	ND	
-Butanone		1	ug/l	1.0	ND	
-Hexanone		1	ug/l	1.0	ND	
-Methyl-2-pentanone		1	ug/l	1.0	ND ND	
Acetone		1	ug/l	5.0	ND	
Benzene		1		0.50	ND	
Promochloromethane		1	ug/l	1.0	ND	
Promodichloromethane			ug/l			
		1	ug/l	1.0	ND	
Gromoform		1	ug/l	1.0	ND	
Promomethane		1	ug/l	1.0	ND	
Carbon disulfide		1	ug/l	1.0	ND	
Carbon tetrachloride		1	ug/l	1.0	ND	
Chlorobenzene		 1	ug/l	1.0	ND	
Chloroethane		1	ug/I	1.0	ND	
Chloroform		1	ug/I	1.0	ND	
Chloromethane		1	ug/l	1.0	ND	
is-1,2-Dichloroethene		 1	ug/l	1.0	ND	
is-1,3-Dichloropropene		1	ug/l	1.0	ND	
Cyclohexane		1	ug/I	1.0	ND	
Dibromochloromethane		1	ug/l	1.0	ND	
Dichlorodifluoromethane		1	ug/l	1.0	ND 	
thylbenzene		1	ug/i	1.0	ND	
sopropylbenzene		1	ug/l	1.0	ND	
n&p-Xylenes		1	ug/I	1.0	ND	
Methyl Acetate		 1	ug/I	1.0	ND	
Methylcyclohexane		 1	ug/I	1.0	ND	
Methylene chloride		1	ug/l	1.0	ND	
Methyl-t-butyl ether		1	ug/I	0.50	ND	
-Xylene		1	ug/I	1.0	ND	
Styrene	-	 1	ug/l	1.0	ND	
Tetrachloroethene		1	ug/l	1.0	ND	
foluene		1	ug/l	1.0	ND	
rans-1,2-Dichloroethene		1	ug/l	1.0	ND	
rans-1,3-Dichloropropene		 1	ug/l	1.0	ND	
Trichloroethene		1	ug/l	1.0	ND	
Trichlorofluoromethane		1	ug/l	1.0	ND	

Sample ID: SL-MW-3A Lab#: AC91322-010

Matrix: Aqueous

Collection Date: 5/11/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/i	1.0	ND
1,2-Dibromoethane	1	ug/I	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/I	1.0	ND
1,3-Dichlorobenzene	1	ug/I	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/t	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
1-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/t	5.0	ND
Benzene	1	ug/I	0.50	ND
Bromochloromethane	1	ug/I	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/I	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/I	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
sopropylbenzene	1	ug/l	1.0	ND
n&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Frichtoroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/I	1.0	ND

Sample ID: SL-MW-12 Lab#: AC91322-011 Matrix: Aqueous Collection Date: 5/11/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result	
1,1,1-Trichloroethane	1	ug/l	1.0	ND	
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND	
1,1,2-Trichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethane	 1	ug/l	1.0	ND	
1,1-Dichloroethene	1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene	1	ug/I	1.0	ND	
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND	
1,2-Dibromoethane	1	ug/l	1.0	ND	
1,2-Dichlorobenzene	1	ug/l	1.0	ND	
1,2-Dichloroethane	1	ug/l	0.50	ND	
1,2-Dichloropropane	1	ug/l	1.0	ND	
1,3-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dioxane	1	ug/l	50	ND	
2-Butanone	1	ug/l	1.0	ND	
2-Hexanone	1	ug/l	1.0	ND	
4-Methyl-2-pentanone	1	ug/l	1.0	ND	
Acetone	1	ug/l	5.0	ND	
Benzene	1	ug/l	0.50	ND	
Bromochloromethane	1	ug/l	1.0	ND	
Bromodichloromethane	1		1.0	ND	
Bromoform	1	ug/l	1.0	ND	
Bromomethane		ug/l	1.0	ND ND	
	1	ug/l			
Carbon disulfide	1	ug/l	1.0	ND	
Carbon tetrachloride	1	ug/l	1.0	ND	
Chlorobenzene	 1	ug/l	1.0	ND	
Chloroethane	1	ug/l	1.0	ND	
Chloroform	1	ug/l	1.0	ND	
Chloromethane	1	ug/I	1.0	ND	
cis-1,2-Dichloroethene	 1	ug/I	1.0	ND	
cis-1,3-Dichloropropene	1	ug/I	1.0	ND	
Cyclohexane	1	ug/i	1.0	ND	
Dibromochloromethane	1	ug/I	1.0	ND	
Dichlorodifluoromethane	1	ug/l	1.0	ND	
Ethylbenzene	1	ug/l	1.0	ND	
Isopropylbenzene	1	ug/I	1.0	ND	
m&p-Xylenes	1	ug/l	1.0	ND	
Methyl Acetate	 1	ug/l	1.0	ND	
Methylcyclohexane	1	ug/l	1.0	ND	
Methylene chloride	1	ug/l	1.0	ND	
Methyl-t-butyl ether	1	ug/l	0.50	ND	
o-Xylene	 1	ug/l	1.0	ND	
Styrene	 1	ug/l	1.0	ND	
Tetrachloroethene	1	ug/l	1.0	13	
Toluene	1	ug/l	1.0	ND	
trans-1,2-Dichloroethene	1	ug/l	1.0	ND	
trans-1,3-Dichloropropene	 1	ug/l	1.0	ND	
Trichloroethene	1	ug/l	1.0	ND	
Trichlorofluoromethane	1	ug/l	1.0	ND	
		ug/l	1.0	ND	

Sample ID: SL-MW-13 Lab#: AC91322-012

Matrix: Aqueous

Collection Date: 5/11/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result	
1,1,1-Trichloroethane	1	ug/l	1.0	ND	
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND	
1,1,2-Trichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethene	1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND	
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND	
1,2-Dibromoethane	1	ug/l	1.0	ND	
1,2-Dichlorobenzene	1	ug/l	1.0	ND	
1,2-Dichloroethane	1	ug/l	0.50	ND	
1,2-Dichloropropane	1	ug/l	1.0	ND	
1,3-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dioxane	1	ug/l	50	ND	
2-Butanone	1	ug/l	1.0	ND	
2-Hexanone	1	ug/l	1.0	ND	
4-Methyl-2-pentanone	1	ug/l	1.0	ND	
Acetone	1	ug/l	5.0	ND	
Benzene	1	ug/l	0.50	ND	
Bromochloromethane	1	ug/l	1.0	ND	
Bromodichloromethane	1		1.0	ND	
Bromoform		ug/l			
Bromomethane	1 	ug/l	1.0	ND	
		ug/l	1.0	ND	
Carbon disulfide	1	ug/l	1.0	ND	
Carbon tetrachloride	1	ug/l	1.0	ND	
	1	ug/l	1.0	ND	
Chloroethane	1	ug/I	1.0	ND	
Chloroform	1	ug/l	1.0	ND	
Chloromethane	1	ug/l	1.0	ND	
cis-1,2-Dichloroethene	1	ug/l	1.0	ND	
cis-1,3-Dichloropropene	1	ug/l	1.0	ND	
Cyclohexane	1	ug/l	1.0	ND	
Dibromochtoromethane	1	ug/l	1.0	ND	
Dichlorodifluoromethane	1	ug/l	1.0	ND	
Ethylbenzene	1	ug/I	1.0	ND	
Isopropylbenzene	1	ug/l	1.0	ND	
m&p-Xylenes	1	ug/I	1.0	ND	
Methyl Acetate	1	ug/I	1.0	ND	
Methylcyclohexane	1	ug/l	1.0	ND	
Methylene chloride	1	ug/l	1.0	ND	
Methyl-t-butyl ether	1	ug/l	0.50	0.57	
o-Xylene	1	ug/l	1.0	ND	
Styrene	1	ug/I	1.0	ND	
Tetrachloroethene	1	ug/l	1.0	ND	
Toluene	1	ug/I	1.0	ND	
trans-1,2-Dichloroethene	1	ug/l	1.0	ND	
trans-1,3-Dichloropropene	1	ug/l	1.0	ND	
Trichloroethene	1	ug/l	1.0	ND	
Trichlorofluoromethane	1	ug/l	1.0	ND	
				ND	

Sample ID: SL-MW-14 Lab#: AC91322-013

Matrix: Aqueous

Collection Date: 5/11/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene	1	ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
sopropylbenzene	1	ug/l	1.0	ND
n&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	 1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Wethyl-t-butyl ether	1	ug/l	0.50	0.67
p-Xylene	1	ug/l	1.0	ND
		ug/l	1.0	ND
Fetrachloroethene	1	ug/l	1.0	ND ND
Toluene	1	ug/l	1.0	ND
rans-1,2-Dichloroethene	1	ug/l	1.0	ND ND
rans-1,3-Dichloropropene	1		1.0	ND
Trichloroethene	1	ug/l	1.0	ND ND
richlorofluoromethane	1	ug/l		
		ug/l	1.0	ND
Vinyl chloride		ug/l	1.0	ND

Sample ID: SL-MW-16 Lab#: AC91322-014

Matrix: Aqueous

Collection Date: 5/11/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result	
1,1,1-Trichloroethane	1	ug/l	1.0	ND	
1,1,2,2-Tetrachloroethane	1	ug/i	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND	
1,1,2-Trichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethene	1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND	
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND	
1,2-Dibromoethane	1	ug/l	1.0	ND	
1,2-Dichlorobenzene	1	ug/l	1.0	ND	
1,2-Dichloroethane	1	ug/l	0.50	ND	
1,2-Dichloropropane	1	ug/l	1.0	ND	
1,3-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dioxane	1	ug/l	50	ND	
2-Butanone	1	ug/l	1.0	ND	
2-Hexanone	1	ug/l	1.0	ND	
4-Methyl-2-pentanone	1	ug/l	1.0	ND	
Acetone	1	ug/l	5.0	ND	
Benzene	. 1	ug/l	0.50	ND	
Bromochloromethane	1	ug/l	1.0	ND	
Bromodichloromethane	1	ug/l	1.0	ND	
Bromoform	1	ug/l	1.0	ND	
Bromomethane	1	ug/l	1.0	ND	
Carbon disulfide	1	ug/l	1.0	ND	
Carbon tetrachloride	1	ug/l	1.0	ND	
Chlorobenzene	1	ug/l	1.0	ND	
Chloroethane	1	ug/l	1.0	ND	
Chloroform	1	ug/l	1.0	ND	
Chloromethane	1	ug/l	1.0	ND	
cis-1,2-Dichloroethene	1	ug/l	1.0	6.8	
cis-1,3-Dichloropropene	1	ug/l	1.0	ND	
Cyclohexane	1	ug/l	1.0	ND	
Dibromochloromethane	1	ug/l	1.0	ND	
Dichlorodifluoromethane	1		1.0	ND	
Ethylbenzene	1	ug/l ug/l	1.0	ND	
Isopropylbenzene	1	ug/l	1.0	ND	
m&p-Xylenes	1		1.0	ND ND	
Methyl Acetate	1	ug/l	1.0	ND ND	
	1	ug/l		ND ND	
Methylcoc chloride		ug/l	1.0		
Methylene chloride	1	ug/l	1.0	ND	
Methyl-t-butyl ether	1	ug/l	0.50	13 ND	
o-Xylene Shanna	1	ug/l	1.0	ND	
Styrene	1	ug/l	1.0	ND	
Teluses	1	ug/l	1.0	22	
Toluene	1	ug/l	1.0	ND	
trans-1,2-Dichloroethene	1	ug/l	1.0	ND 	
trans-1,3-Dichloropropene	1	ug/l	1.0	ND	
Trichloroethene	1	ug/l	1.0	3.0	
Trichlorofluoromethane	1	ug/l	1.0	ND	
Vinyl chloride	1	ug/l	1.0	ND	

Sample ID: TB-01

Lab#: AC91322-015 Matrix: Aqueous Collection Date: 5/6/2016
Receipt Date: 5/12/2016

Analyte		DF	Units	RL	Result	
1,1,1-Trichloroethane		1	ug/l	1.0	ND	
1,1,2,2-Tetrachloroethane		1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroet	hane	1	ug/l	1.0	ND	
1,1,2-Trichloroethane		1	ug/l	1.0	ND	
1,1-Dichloroethane		1	ug/l	1.0	ND	
1,1-Dichloroethene		1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene		1	ug/l	1.0	ND	
1,2,4-Trichlorobenzene		1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane		1	ug/l	1.0	ND	
1,2-Dibromoethane		1	ug/l	1.0	ND	
1,2-Dichlorobenzene		1	ug/l	1.0	ND	
1,2-Dichloroethane		1	ug/l	0.50	ND	
1,2-Dichloropropane		1	ug/l	1.0	ND -	
1,3-Dichlorobenzene		1	ug/l	1.0	ND	
1,4-Dichlorobenzene		1	ug/l	1.0	ND	
1,4-Dioxane		1	ug/l	50	ND	
2-Butanone		1	ug/l	1.0	ND	
2-Hexanone		1	ug/l	1.0	ND	
4-Methyl-2-pentanone		1	ug/l	1.0	ND	
Acetone		1	ug/l	5.0	ND	
Benzene		1	ug/l	0.50	ND	
Bromochloromethane		1	ug/l	1.0	ND	
Bromodichloromethane		1	ug/l	1.0	ND	
Bromoform		1	ug/l	1.0	ND ND	
Bromomethane		1	ug/l	1.0	ND ND	
Carbon disulfide		1		1.0	ND	
Carbon tetrachloride		1	ug/l			
		1	ug/l	1.0	ND ND	
Chlorobenzene		1	ug/l	1.0	ND	
Chloroethane Chloroform		1	ug/l	1.0	ND	
			ug/l	1.0	ND	
Chloromethane		1	ug/l	1.0	ND	
cis-1,2-Dichloroethene	4 - M - M - M - M - M - M - M - M - M -	1	ug/l	1.0	ND	
cis-1,3-Dichloropropene		1	ug/l	1.0	ND	
Cyclohexane		1	ug/l	1.0	ND	
Dibromochloromethane		1	ug/l	1.0	ND	
Dichlorodifluoromethane		1	ug/l	1.0	ND -	
Ethylbenzene		1	ug/l	1.0	ND	
Isopropylbenzene		1	ug/l	1.0	ND	
m&p-Xylenes		1	ug/l	1.0	ND	
Methyl Acetate	****	 1	ug/l	1.0	ND	
Methylcyclohexane		1	ug/l	1.0	ND	
Methylene chloride		1	ug/l	1.0	ND	
Methyl-t-butyl ether		1	ug/l	0.50	ND	
o-Xylene		1	ug/l	1.0	ND	
Styrene		 1	ug/l	1.0	ND	
Tetrachloroethene		1	ug/l	1.0	ND	
Toluene		1	ug/l	1.0	ND	
trans-1,2-Dichloroethene		1	ug/l	1.0	ND	
trans-1,3-Dichloropropene		1	ug/l	1.0	ND	
Trichloroethene		1	ug/l	1.0	ND	
Trichlorofluoromethane		1	ug/l	1.0	ND	
Vinyl chloride		1	ug/l	1.0	ND	

Sample ID: SL-MW-4 Lab#: AC91322-016 Matrix: Aqueous Collection Date: 5/12/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/i	1.0	ND
1,1-Dichloroethane		ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	t	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/I	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/t	1.0	ND
Carbon tetrachloride	1	ug/l	1.0	ND
Chlorobenzene	1	ug/l	1.0	ND
Chloroethane	1	ug/l	1.0	ND
Chloroform	1	ug/l	1.0	ND
Chloromethane	1	ug/l	1.0	ND
cis-1,2-Dichloroethene	1	ug/l	1.0	ND
cis-1,3-Dichloropropene		ug/l	1.0	ND
Cyclohexane	1	ug/l	1.0	ND
Dibromochloromethane	1	ug/l	1.0	ND
Dichlorodifluoromethane	1	ug/l	1.0	ND
Ethylbenzene	1	ug/l	1.0	ND
Isopropylbenzene	1	ug/l	1.0	ND
m&p-Xylenes	1	ug/l	1.0	ND
Methyl Acetate	1	ug/l	1.0	ND
Methylcyclohexane	1	ug/l	1.0	ND
Methylene chloride	1	ug/l	1.0	ND
Methyl-t-butyl ether	1	ug/l	0.50	ND
o-Xylene	1	ug/l	1.0	ND
Styrene	1	ug/l	1.0	ND
Tetrachloroethene	1	ug/l	1.0	ND
Toluene	1	ug/l	1.0	ND
trans-1,2-Dichloroethene	1	ug/l	1.0	ND
trans-1,3-Dichloropropene	1	ug/l	1.0	ND
Trichloroethene	1	ug/l	1.0	ND
Trichlorofluoromethane	1	ug/l	1.0	ND
Vinyl chloride	1	ug/l	1.0	ND
Xylenes (Total)	1	ug/l	1.0	ND

Sample ID: SL-MW-23D Lab#: AC91322-017

Matrix: Aqueous

Collection Date: 5/12/2016 Receipt Date: 5/12/2016

Analyte		DF	Units	RL	Result	
1,1,1-Trichloroethane		1	ug/l	1.0	ND	
1,1,2,2-Tetrachloroethane		1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane		1	ug/l	1.0	ND	
1,1,2-Trichloroethane		1	ug/l	1.0	ND	
1,1-Dichloroethane	•	1	ug/l	1.0	ND	
1,1-Dichloroethene		1	ug/I	1.0	ND	
1,2,3-Trichlorobenzene		1	ug/I	1.0	ND	
1,2,4-Trichlorobenzene		1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane		1	ug/l	1.0	ND	
1,2-Dibromoethane		1	ug/l	1.0	ND	
1,2-Dichlorobenzene		1	ug/l	1.0	ND	
1,2-Dichloroethane		1	ug/l	0.50	ND	
1,2-Dichloropropane		1	ug/l	1.0	ND	
1,3-Dichlorobenzene		1	ug/l	1.0	ND	
1,4-Dichlorobenzene		1	ug/l	1.0	ND	
1,4-Dioxane		1	ug/l	50	ND	
2-Butanone		1	ug/l	1.0	ND	
2-Hexanone		1	ug/l	1.0	ND	
4-Methyl-2-pentanone		1	ug/l	1.0	ND	
Acetone		1	ug/l	5.0	ND	
Benzene		1	ug/l	0.50	ND	
Bromochloromethane		1	ug/l	1.0	ND	
Bromodichloromethane		1	ug/l	1.0	ND	
Bromoform		1	ug/l	1.0	ND	
Bromomethane		1	ug/l	1.0	ND	
Carbon disulfide		1	ug/l	1.0	ND	
Carbon tetrachloride		1	ug/l	1.0	ND	
Chlorobenzene		1	ug/l	1.0	ND	
Chloroethane			ug/l	1.0	ND	
Chloroform		1	ug/l	1.0	ND	
Chloromethane		1	·	1.0	ND	
cis-1,2-Dichloroethene		1	ug/l			
cis-1,3-Dichloropropene		1	ug/l	1.0	9.3	
Cyclohexane		1	ug/l	1.0	ND ND	
			ug/l	1.0	ND	
Dibromochloromethane		1	ug/l	1.0	ND	
Dichlorodifluoromethane		1		1.0	ND	
Ethylbenzene		1	ug/l	1.0	ND	
Isopropylbenzene		1	ug/l	1.0	ND	
m&p-Xylenes		1	ug/l	1.0	ND	
Methyl Acetate		1	ug/l	1.0	ND	
Methylcyclohexane		1	ug/l	1.0	ND	
Methylene chloride		1	ug/l	1.0	ND	
Methyl-t-butyl ether		1	ug/l	0.50	1,1	
o-Xylene		1	ug/l	1.0	ND	
Styrene		1	ug/l	1.0	ND	
Tetrachloroethene		1	ug/l	1.0	170	
Toluene		1	ug/l	1.0	ND	
trans-1,2-Dichloroethene		1	ug/l	1.0	ND	
trans-1,3-Dichloropropene		1	ug/l	1.0	ND	
Trichloroethene		1	ug/l	1.0	5.0	
Trichlorofluoromethane		1	ug/I	1.0	ND	
Vinyl chloride		1	ug/l	1.0	ND	

Sample ID: SL-MW-23S Lab#: AC91322-018

Matrix: Aqueous

Volatile Organics (no search) 8260

Collection Date: 5/12/2016 Receipt Date: 5/12/2016

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	20	ug/l	20	ND
I,1,2,2-Tetrachloroethane	20	ug/l	20	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	20	ug/l	20	ND
1,1,2-Trichloroethane	20	ug/l	20	ND
,1-Dichloroethane	20	ug/l	20	ND ND
,1-Dichloroethene	20	ug/l	20	ND
1.2.3-Trichlorobenzene	20	ug/t	20	ND
I,2,4-Trichlorobenzene	20	ug/t	20	ND
1,2-Dibromo-3-chloropropane	20	ug/l	20	ND
,2-Dibromoethane	20	ug/f	20	ND
,2-Dichlorobenzene	20	ug/l	20	ND
,2-Dichloroethane	20	ug/l	10	ND
,2-Dichloropropane	20	ug/l	20	ND
,3-Dichlorobenzene	20	ug/l	20	ND
,4-Dichlorobenzene	20	ug/l	20	ND
,4-Dioxane	20	ug/l	1000	ND
2-Butanone	20	ug/l	20	ND
2-Hexanone	20	ug/l	20	ND
I-Methyl-2-pentanone	20	ug/l	20	ND
Acetone	20	ug/l	100	ND
Benzene	20	ug/l	10	ND
Bromochloromethane	20	ug/i	20	ND
Bromodichloromethane	20	ug/l	20	ND
Bromoform	20	ug/l	20	ND
Bromomethane	20	ug/l	20	ND
Carbon disulfide	20	ug/l	20	ND
Carbon tetrachloride	20	ug/l	20	ND
Chlorobenzene	20	ug/l	20	ND
Chloroethane	20	ug/l	20	ND
Chloroform	20	ug/l	20	ND
Chloromethane	20	ug/l	20	ND
sis-1,2-Dichloroethene	20	ug/l	20	ND
cis-1,3-Dichloropropene	20	ug/l	20	ND
Cyclohexane	20	ug/l	20	ND
Dibromochloromethane	20	ug/l	20	ND
Dichlorodifluoromethane	20	ug/l	20	ND
Ethylbenzene	20	ug/l	20	ND
sopropylbenzene	20	ug/l	20	ND
n&p-Xylenes	20	ug/l	20	ND
Methyl Acetate	20	ug/l	20	ND
Methylcyclohexane	20	ug/I	20	ND
Wethylene chloride	20	ug/l	20	ND
Methyl-t-butyl ether	20	ug/l	10	10
p-Xylene	20	ug/l	20	ND
Styrene	20	ug/l	20	ND
Tetrachloroethene	20	ug/l	20	2300
Foluene	20	ug/l	20	ND ND
rans-1,2-Dichloroethene	20	ug/i	20	ND
rans-1,3-Dichloropropene	20	ug/l	20	ND
Frichloroethene	20	ug/l	20	ND
Frichlorofluoromethane	20	ug/l	20	ND
/inyl chloride	20	ug/l	20	ND
Xylenes (Total)	-0	ug/i		110

Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M90886.D

Analysis Date: 05/16/16 18:04

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			• • • • • • • • • • • • • • • • • • • •	~g· ~			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55 - 6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	บ	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

ColumnID: (^) Indicates results from 2nd column

J - Indicates an estimated value when a compound is detected at less than the

specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Form1

ORGANICS VOLATILE REPORT

Sample Number: DAILY BLANK

Client Id:

Data File: 3M90946.D

Analysis Date: 05/17/16 09:27

Date Rec/Extracted:

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	υ	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	υ	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	υ
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	υ
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	υ
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	υ
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93 - 3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	υ
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U

Worksheet #: 384264

Total Target Concentration

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Form1 ORGANICS VOLATILE REPORT

Sample Number: AC91322-001

Client Id: SL-MW-11 Data File: 3M90893.D

Analysis Date: 05/16/16 19:39 Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

		• • • • • • • • • • • • • • • • • • • •	~ g. —			
Compound	RL	Conc	Cas #	Compound	RL	Conc
1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	5.9
1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	6.9
2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	28
Benzene	0.50	U	108-88-3	Toluene	1.0	U
Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	2.4
Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	1.8
Xylenes (Total)	1.0	U		-		
	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluor 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropa 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2-Butanone 2-Hexanone 4-Methyl-2-Pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide	1,1,1-Trichloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2-Trichloro-1,2,2-trifluor 1.0 1,1,2-Trichloroethane 1.0 1,1-Dichloroethane 1.0 1,1-Dichloroethane 1.0 1,2,3-Trichlorobenzene 1.0 1,2,4-Trichlorobenzene 1.0 1,2-Dibromo-3-Chloropropa 1.0 1,2-Dibromoethane 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichloroethane 0.50 1,2-Dichloropropane 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,4-Dioxane 50 2-Butanone 1.0 4-Methyl-2-Pentanone 1.0 Acetone 5.0 Benzene 0.50 Bromochloromethane 1.0 Bromoform 1.0 Bromomethane 1.0 Carbon Disulfide 1.0	1,1,1-Trichloroethane 1.0 U 1,1,2,2-Tetrachloroethane 1.0 U 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 1,1,2-Trichloroethane 1.0 U 1,1-Dichloroethane 1.0 U 1,1-Dichloroethane 1.0 U 1,2-Trichlorobenzene 1.0 U 1,2,4-Trichlorobenzene 1.0 U 1,2-Dibromo-3-Chloropropa 1.0 U 1,2-Dibromoethane 1.0 U 1,2-Dichlorobenzene 1.0 U 1,2-Dichloroethane 0.50 U 1,2-Dichloropropane 1.0 U 1,2-Dichlorobenzene 1.0 U 1,3-Dichlorobenzene 1.0 U 1,4-Dioxane 50 U 2-Butanone 1.0 U 2-Hexanone 1.0 U 4-Methyl-2-Pentanone 1.0 U Acetone 5.0 U Benzene 0.50 U Bromochloromethane 1.0 U Bromodichloromethane 1.0 U </td <td>1,1,1-Trichloroethane 1.0 U 56-23-5 1,1,2,2-Tetrachloroethane 1.0 U 108-90-7 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 75-00-3 1,1,2-Trichloroethane 1.0 U 67-66-3 1,1-Dichloroethane 1.0 U 74-87-3 1,1-Dichloroethane 1.0 U 156-59-2 1,2,3-Trichlorobenzene 1.0 U 10061-01-5 1,2,4-Trichlorobenzene 1.0 U 110-82-7 1,2-Dibromo-3-Chloropropa 1.0 U 110-82-7 1,2-Dibromoethane 1.0 U 75-71-8 1,2-Dichlorobenzene 1.0 U 100-41-4 1,2-Dichloropenpane 1.0 U 79601-23-1 1,3-Dichlorobenzene 1.0 U 79-20-9 1,4-Dicklorobenzene 1.0 U 108-87-2 1,4-Dioxane 50 U 75-09-2 2-Butanone 1.0 U 1634-04-4 2-Hexanone 1.0 U</td> <td>1,1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1,1,2,2-Tetrachloroethane 1.0 U 108-90-7 Chlorobenzene 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 75-00-3 Chloroethane 1,1,2-Trichloroethane 1.0 U 67-66-3 Chloromethane 1,1-Dichloroethane 1.0 U 156-59-2 Cis-1,2-Dichloroethene 1,2-3-Trichlorobenzene 1.0 U 10661-01-5 cis-1,3-Dichloroptopene 1,2-3-Trichlorobenzene 1.0 U 10061-01-5 cis-1,3-Dichloroptopene 1,2-Dirblorobenzene 1.0 U 110-82-7 Cyclohexane 1,2-Dibromo-3-Chloropropa 1.0 U 75-71-8 Dichlorodifluoromethane 1,2-Dichlorobenzene 1.0 U 100-41-4 Ethylbenzene 1,2-Dichloroptopane 1.0 U 79601-23-1 m&p-Xylenes 1,3-Dichlorobenzene 1.0 U 79-20-9 Methyl Acetate 1,4-Dioxane 50 U 79-20-9 Methylcebharane</td> <td>1,1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1.0 1,1,2,2-Tertachloroethane 1.0 U 108-90-7 Chlorobenzene 1.0 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 75-00-3 Chloroethane 1.0 1,1-Dichloroethane 1.0 U 67-66-3 Chloroform 1.0 1,1-Dichloroethane 1.0 U 74-87-3 Chloromethane 1.0 1,1-Dichloroethane 1.0 U 156-59-2 cis-1,2-Dichloroethene 1.0 1,2,3-Trichlorobenzene 1.0 U 10061-01-5 cis-1,3-Dichloropropene 1.0 1,2-Dichlorobenzene 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dichlorobenzene 1.0 U 75-71-8 Dichloroderifuoromethane 1.0 1,2-Dichlorobenzene 1.0 U 10-41-4 Ethylbenzene 1.0 1,2-Dichlorobenzene 1.0 U 79601-23-1 m&p-Xylenes 1.0 1,2-Dichlorobenzene 1.0 U</td>	1,1,1-Trichloroethane 1.0 U 56-23-5 1,1,2,2-Tetrachloroethane 1.0 U 108-90-7 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 75-00-3 1,1,2-Trichloroethane 1.0 U 67-66-3 1,1-Dichloroethane 1.0 U 74-87-3 1,1-Dichloroethane 1.0 U 156-59-2 1,2,3-Trichlorobenzene 1.0 U 10061-01-5 1,2,4-Trichlorobenzene 1.0 U 110-82-7 1,2-Dibromo-3-Chloropropa 1.0 U 110-82-7 1,2-Dibromoethane 1.0 U 75-71-8 1,2-Dichlorobenzene 1.0 U 100-41-4 1,2-Dichloropenpane 1.0 U 79601-23-1 1,3-Dichlorobenzene 1.0 U 79-20-9 1,4-Dicklorobenzene 1.0 U 108-87-2 1,4-Dioxane 50 U 75-09-2 2-Butanone 1.0 U 1634-04-4 2-Hexanone 1.0 U	1,1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1,1,2,2-Tetrachloroethane 1.0 U 108-90-7 Chlorobenzene 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 75-00-3 Chloroethane 1,1,2-Trichloroethane 1.0 U 67-66-3 Chloromethane 1,1-Dichloroethane 1.0 U 156-59-2 Cis-1,2-Dichloroethene 1,2-3-Trichlorobenzene 1.0 U 10661-01-5 cis-1,3-Dichloroptopene 1,2-3-Trichlorobenzene 1.0 U 10061-01-5 cis-1,3-Dichloroptopene 1,2-Dirblorobenzene 1.0 U 110-82-7 Cyclohexane 1,2-Dibromo-3-Chloropropa 1.0 U 75-71-8 Dichlorodifluoromethane 1,2-Dichlorobenzene 1.0 U 100-41-4 Ethylbenzene 1,2-Dichloroptopane 1.0 U 79601-23-1 m&p-Xylenes 1,3-Dichlorobenzene 1.0 U 79-20-9 Methyl Acetate 1,4-Dioxane 50 U 79-20-9 Methylcebharane	1,1,1-Trichloroethane 1.0 U 56-23-5 Carbon Tetrachloride 1.0 1,1,2,2-Tertachloroethane 1.0 U 108-90-7 Chlorobenzene 1.0 1,1,2-Trichloro-1,2,2-trifluor 1.0 U 75-00-3 Chloroethane 1.0 1,1-Dichloroethane 1.0 U 67-66-3 Chloroform 1.0 1,1-Dichloroethane 1.0 U 74-87-3 Chloromethane 1.0 1,1-Dichloroethane 1.0 U 156-59-2 cis-1,2-Dichloroethene 1.0 1,2,3-Trichlorobenzene 1.0 U 10061-01-5 cis-1,3-Dichloropropene 1.0 1,2-Dichlorobenzene 1.0 U 110-82-7 Cyclohexane 1.0 1,2-Dichlorobenzene 1.0 U 75-71-8 Dichloroderifuoromethane 1.0 1,2-Dichlorobenzene 1.0 U 10-41-4 Ethylbenzene 1.0 1,2-Dichlorobenzene 1.0 U 79601-23-1 m&p-Xylenes 1.0 1,2-Dichlorobenzene 1.0 U

45

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Form₁

ORGANICS VOLATILE REPORT

Sample Number: AC91322-002

Client Id: SL-MW-6A Data File: 3M90894.D

Analysis Date: 05/16/16 19:55 Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00 Solids: 0

Units: ua/L

omes: ug/L										
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	44			
87-61 - 6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	υ	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U			
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	υ	79-20-9	Methyl Acetate	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U			
123-91-1	1,4-Dioxane	50	υ	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U			
591-78-6	2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	υ	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	5.0	υ	127-18-4	Tetrachloroethene	1.0	330			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U			
74-97-5	Bromochloromethane	1.0	υ	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	12			
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U			
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
1330-20-7	Xylenes (Total)	1.0	U		•					

³⁹⁰ R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-003

Client Id: SL-MW-56A Data File: 3M90895.D

Analysis Date: 05/16/16 20:11

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

				- g· –			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	41
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	υ	100-41-4	Ethylbenzene	1.0	υ
107-06-2	1,2-Dichloroethane	0.50	υ	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	υ	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	340
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	11
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330 20 7	Xylenes (Total)	1.0	U				

Worksheet #: 384264

Total Target Concentration

390

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Sample Number: AC91322-004(MS:AC91

Client Id: SL-MW-6A MS Data File: 3M90909.D Analysis Date: 05/16/16 23:53

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

			Omis. t	ıy/L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	27	56-23-5	Carbon Tetrachloride	1.0	26
79-34-5	1,1,2,2-Tetrachloroethane	1.0	20	108-90-7	Chlorobenzene	1.0	23
76-13-1	1,1,2-Trichloro-1,2,2-triflu	1.0	25	75-00-3	Chloroethane	1.0	32
79-00-5	1,1,2-Trichloroethane	1.0	23	67-66-3	Chloroform	1.0	26
75-34-3	1,1-Dichloroethane	1.0	24	74-87-3	Chloromethane	1.0	22
75-35-4	1,1-Dichloroethene	1.0	24	156-59-2	cis-1,2-Dichloroethene	1.0	67
87-61-6	1,2,3-Trichlorobenzene	1.0	20	10061-01-5	cis-1,3-Dichloropropene	1.0	23
120-82-1	1,2,4-Trichlorobenzene	1.0	22	110-82-7	Cyclohexane	1.0	22
96-12-8	1,2-Dibromo-3-Chloroprop	1.0	14	124-48-1	Dibromochloromethane	1.0	27
106-93-4	1,2-Dibromoethane	1.0	21	75-71-8	Dichlorodifluoromethane	1.0	20
95-50-1	1,2-Dichlorobenzene	1.0	23	100-41-4	Ethylbenzene	1.0	20
107-06-2	1,2-Dichloroethane	0.50	24	98-82-8	Isopropylbenzene	1.0	23
78-87-5	1,2-Dichloropropane	1.0	23	79601-23-1	m&p-Xylenes	1.0	43
541-73-1	1,3-Dichlorobenzene	1.0	24	79-20-9	Methyl Acetate	1.0	25
106-46-7	1,4-Dichlorobenzene	1.0	23	108-87-2	Methylcyclohexane	1.0	21
123-91-1	1,4-Dioxane	50	700	75-09-2	Methylene Chloride	1.0	23
78-93-3	2-Butanone	1.0	17	1634-04-4	Methyl-t-butyl ether	0.50	22
591-78-6	2-Hexanone	1.0	4.9	95-47-6	o-Xylene	1.0	21
108-10-1	4-Methyl-2-Pentanone	1.0	17	100-42-5	Styrene	1.0	21
67-64-1	Acetone	5.0	110	127-18-4	Tetrachloroethene	1.0	350
71-43-2	Benzene	0.50	21	108-88-3	Toluene	1.0	21
74-97-5	Bromochloromethane	1.0	23	156-60-5	trans-1,2-Dichloroethene	1.0	25
75-27-4	Bromodichloromethane	1.0	24	10061-02-6	trans-1,3-Dichloropropene	1.0	20
75-25-2	Bromoform	1.0	18	79-01-6	Trichloroethene	1.0	35
74-83-9	Bromomethane	1.0	28	75-69-4	Trichlorofluoromethane	1.0	36
75-15-0	Carbon Disulfide	1.0	30	75-01-4	Vinyl Chloride	1.0	20
1330-20-7	Xylenes (Total)	1.0	64				
			,				

Worksheet #: 384264

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Sample Number: AC91322-005(MSD:AC

Client Id: SL-MW-6A MSD Data File: 3M90910.D Analysis Date: 05/17/16 00:09

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Aqueous Initial Vol: 5ml

Final Vol. 9111

Final Vol. NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	26	56-23-5	Carbon Tetrachloride	1.0	27
79-34-5	1,1,2,2-Tetrachloroethane	1.0	19	108-90-7	Chlorobenzene	1.0	23
76-13-1	1,1,2-Trichloro-1,2,2-triflu	1.0	23	75-00-3	Chloroethane	1.0	28
79-00-5	1,1,2-Trichloroethane	1.0	22	67-66-3	Chloroform	1.0	24
75-34-3	1,1-Dichloroethane	1.0	21	74-87-3	Chloromethane	1.0	20
75-35-4	1,1-Dichloroethene	1.0	22	156-59-2	cis-1,2-Dichloroethene	1.0	59
87-61-6	1,2,3-Trichlorobenzene	1.0	20	10061-01-5	cis-1,3-Dichloropropene	1.0	21
120-82-1	1,2,4-Trichlorobenzene	1.0	21	110-82-7	Cyclohexane	1.0	20
96-12-8	1,2-Dibromo-3-Chloroprop	1.0	13	124-48-1	Dibromochloromethane	1.0	24
106-93-4	1,2-Dibromoethane	1.0	20	75-71-8	Dichlorodifluoromethane	1.0	19
95-50-1	1,2-Dichlorobenzene	1.0	21	100-41-4	Ethylbenzene	1.0	21
107-06-2	1,2-Dichloroethane	0.50	23	98-82-8	Isopropylbenzene	1.0	21
78-87-5	1,2-Dichloropropane	1.0	21	79601-23-1	m&p-Xylenes	1.0	41
541-73-1	1,3-Dichlorobenzene	1.0	22	79-20-9	Methyl Acetate	1.0	23
106-46-7	1,4-Dichlorobenzene	1.0	21	108-87-2	Methylcyclohexane	1.0	19
123-91-1	1,4-Dioxane	50	610	75-09-2	Methylene Chloride	1.0	22
78-93-3	2-Butanone	1.0	19	1634-04-4	Methyl-t-butyl ether	0.50	20
591-78-6	2-Hexanone	1.0	4.1	95-47-6	o-Xylene	1.0	20
108-10-1	4-Methyl-2-Pentanone	1.0	20	100-42-5	Styrene	1.0	20
67-64-1	Acetone	5.0	110	127-18-4	Tetrachloroethene	1.0	330
71-43-2	Benzene	0.50	21	108-88-3	Toluene	1.0	21
74-97-5	Bromochloromethane	1.0	21	156-60-5	trans-1,2-Dichloroethene	1.0	24
75-27-4	Bromodichloromethane	1.0	22	10061-02-6	trans-1,3-Dichloropropene	1.0	18
75-25-2	Bromoform	1.0	16	79-01-6	Trichloroethene	1.0	33
74-83-9	Bromomethane	1.0	27	75-69-4	Trichlorofluoromethane	1.0	28
75-15-0	Carbon Disulfide	1.0	29	75-01-4	Vinyl Chloride	1.0	19
1330-20-7	Xylenes (Total)	1.0	61				

Worksheet #: 384264

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Sample Number: AC91322-006

Client Id: SL-MW-6B
Data File: 3M90955.D
Analysis Date: 05/17/16 11:55
Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Aqueous Initial Vol: 5ml

Initial Vol: 5ml Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	1.8
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	υ
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61 - 6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	υ	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	υ	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	υ
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	1.1
74-83-9	Bromomethane	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

^{2.9} ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-007

Client Id: FIELD BLANK Data File: 3M90892.D

Analysis Date: 05/16/16 19:24 Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79 - 34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 384264

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

R - Retention Time Out

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.
d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea

Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Sample Number: AC91322-008

Client Id: SL-MW-1
Data File: 3M90897.D
Analysis Date: 05/16/16 20:43

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Omics. c	·9/ L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	υ
87-61 <i>-</i> 6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	υ	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	15
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	บ
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U		•		

Worksheet #: 384264

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

15

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-009

Client Id: SL-MW-3B Data File: 3M90898.D

Analysis Date: 05/16/16 20:59 Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

RL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Conc U U U U U U U U
1.0 1.0 1.0 1.0 1.0 1.0 1.0	U U U U U U U
1.0 1.0 1.0 1.0 1.0 1.0	U U U U U
1.0 1.0 1.0 1.0 1.0 1.0	U U U U
1.0 1.0 1.0 1.0 1.0	υ υ υ
1.0 1.0 1.0 1.0	U U U
1.0 1.0 1.0 1.0	U U
1.0 1.0 1.0	Ū
1.0 1.0	_
1.0	U
· · · ·	
	U
1.0	U
0.50	U
1.0	U
	1.0 1.0 1.0 1.0 1.0

Worksheet #: 384264

Total Target Concentration

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

 $^{{\}it J}$ - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-010

Client Id: SL-MW-3A Data File: 3M90899.D

Analysis Date: 05/16/16 21:15 Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	Ü
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	υ
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	Ü	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

R - Retention Time Out

U - Indicates the compound was analyzed but not detected. B - Indicates the analyte was found in the blank as well as in the sample.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-011

Client Id: SL-MW-12 Data File: 3M90900.D Analysis Date: 05/16/16 21:31

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Onto: ug/L										
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U			
87-61-6	1,2,3-Trichlorobenzene	1.0	บ	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U			
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	υ			
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	υ			
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U			
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	13			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U			
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U			
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U			
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
330-20-7	Xylenes (Total)	1.0	υ		•					

Worksheet #: 384264

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

13

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-012

Client Id: SL-MW-13
Data File: 3M90901.D
Analysis Date: 05/16/16 21:46

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

Cas#	Compound	RL	Conc	Cas#	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12 - 8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	0.57
591-78-6	2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 384264

Total Target Concentration

^{0.57} ColumnID: (^) Indicates results from 2nd column

 $[\]emph{U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-013

Client Id: SL-MW-14
Data File: 3M90902.D
Analysis Date: 05/16/16 22:02

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			O11160. (~9· –			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13 - 1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropyibenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	0.67
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	υ	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	υ	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	υ	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	υ	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	υ	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

^{0.67}

ColumnID: (^) Indicates results from 2nd column

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Sample Number: AC91322-014

Client Id: SL-MW-16
Data File: 3M90903.D
Analysis Date: 05/16/16 22:18

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

Office: agric										
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc			
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U			
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U			
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U			
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U			
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U			
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	6.8			
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U			
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U			
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U			
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U			
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U			
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U			
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U			
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U			
106-46-7	1,4-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U			
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U			
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	13			
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U			
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U			
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	22			
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U			
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U			
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U			
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	3.0			
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U			
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U			
1330-20-7	Xylenes (Total)	1.0	U		•					

Worksheet #: 384264

Total Target Concentration

ColumnID: (^) Indicates results from 2nd column

45

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-015

Client Id: TB-01 Data File: 3M90891.D Analysis Date: 05/16/16 19:08

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00

Solids: 0

Units: ug/L

			Units: (ug/L			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	υ
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
7 4-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 384264

Total Target Concentration

 $[\]it U$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-016

Client Id: SL-MW-4 Data File: 3M90904.D Analysis Date: 05/16/16 22:34

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA Dilution: 1.00 Solids: 0

Units: ug/L

			Onits: u	y/L			
Cas#	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	U	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	υ	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	U
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	υ	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	U
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	U
591-78-6	2-Hexanone	1.0	υ	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	υ	127-18-4	Tetrachloroethene	1.0	U
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	υ
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	U
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				
			,				

Worksheet #: 384264

Total Target Concentration

R - Retention Time Out

ColumnID: (^) Indicates results from 2nd column

 $^{{\}it U}$ - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

J - Indicates an estimated value when a compound is detected at less than the specified detection limit,

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-017

Client Id: SL-MW-23D Data File: 3M90905.D

Analysis Date: 05/16/16 22:50 Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 1.00

Solids: 0

Units: ug/L

			Oilles. u	9'-			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	1.0	U	56-23-5	Carbon Tetrachloride	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	108-90-7	Chlorobenzene	1.0	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	1.0	บ	75-00-3	Chloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U	67-66-3	Chloroform	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U	74-87-3	Chloromethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U	156-59-2	cis-1,2-Dichloroethene	1.0	9.3
87-61-6	1,2,3-Trichlorobenzene	1.0	U	10061-01-5	cis-1,3-Dichloropropene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U	110-82-7	Cyclohexane	1.0	U
96-12-8	1,2-Dibromo-3-Chloropropa	1.0	U	124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U	75-71-8	Dichlorodifluoromethane	1.0	Ų
95-50-1	1,2-Dichlorobenzene	1.0	U	100-41-4	Ethylbenzene	1.0	U
107-06-2	1,2-Dichloroethane	0.50	U	98-82-8	Isopropylbenzene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U	79601-23-1	m&p-Xylenes	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U	79-20-9	Methyl Acetate	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	υ	108-87-2	Methylcyclohexane	1.0	U
123-91-1	1,4-Dioxane	50	U	75-09-2	Methylene Chloride	1.0	υ
78-93-3	2-Butanone	1.0	U	1634-04-4	Methyl-t-butyl ether	0.50	1.1
591-78-6	2-Hexanone	1.0	U	95-47-6	o-Xylene	1.0	U
108-10-1	4-Methyl-2-Pentanone	1.0	U	100-42-5	Styrene	1.0	U
67-64-1	Acetone	5.0	U	127-18-4	Tetrachloroethene	1.0	170
71-43-2	Benzene	0.50	U	108-88-3	Toluene	1.0	U
74-97-5	Bromochloromethane	1.0	U	156-60-5	trans-1,2-Dichloroethene	1.0	U
75-27-4	Bromodichloromethane	1.0	U	10061-02-6	trans-1,3-Dichloropropene	1.0	U
75-25-2	Bromoform	1.0	U	79-01-6	Trichloroethene	1.0	5.0
74-83-9	Bromomethane	1.0	U	75-69-4	Trichlorofluoromethane	1.0	U
75-15-0	Carbon Disulfide	1.0	U	75-01-4	Vinyl Chloride	1.0	U
1330-20-7	Xylenes (Total)	1.0	U				

Worksheet #: 384264

Total Target Concentration

190

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

ORGANICS VOLATILE REPORT

Sample Number: AC91322-018(20X)

Client Id: SL-MW-23S Data File: 3M90952.D Analysis Date: 05/17/16 11:04

Date Rec/Extracted: 05/12/16-NA

Column: DB-624 25M 0.200mm ID 1.12um film

Method: EPA 8260C

Matrix: Aqueous

Initial Vol: 5ml

Final Vol: NA

Dilution: 20.0

Solids: 0

Units: ug/L

			Oilles. (49, L			
Cas #	Compound	RL	Conc	Cas #	Compound	RL	Conc
71-55-6	1,1,1-Trichloroethane	20	U	56-23-5	Carbon Tetrachloride	20	U
79-34-5	1,1,2,2-Tetrachloroethane	20	U	108-90-7	Chlorobenzene	20	U
76-13-1	1,1,2-Trichloro-1,2,2-trifluor	20	U	75-00-3	Chloroethane	20	U
79-00-5	1,1,2-Trichloroethane	20	U	67-66-3	Chloroform	20	U
75-34-3	1,1-Dichloroethane	20	U	74-87-3	Chloromethane	20	U
75-35-4	1,1-Dichloroethene	20	U	156-59-2	cis-1,2-Dichloroethene	20	U
87-61-6	1,2,3-Trichlorobenzene	20	U	10061-01-5	cis-1,3-Dichloropropene	20	U
120-82-1	1,2,4-Trichlorobenzene	20	U	110-82-7	Cyclohexane	20	U
96-12-8	1,2-Dibromo-3-Chloropropa	20	U	124-48-1	Dibromochloromethane	20	U
106-93-4	1,2-Dibromoethane	20	U	75-71-8	Dichlorodifluoromethane	20	U
95-50-1	1,2-Dichlorobenzene	20	Ü	100-41-4	Ethylbenzene	20	U
107-06-2	1,2-Dichloroethane	10	U	98-82-8	Isopropylbenzene	20	U
78-87-5	1,2-Dichloropropane	20	U	79601-23-1	m&p-Xylenes	20	U
541-73-1	1,3-Dichlorobenzene	20	U	79-20-9	Methyl Acetate	20	U
106-46-7	1,4-Dichlorobenzene	20	U	108-87-2	Methylcyclohexane	20	U
123-91-1	1,4-Dioxane	1000	U	75-09-2	Methylene Chloride	20	U
78-93-3	2-Butanone	20	U	1634-04-4	Methyl-t-butyl ether	10	10
591-78-6	2-Hexanone	20	U	95-47-6	o-Xylene	20	U
108-10-1	4-Methyl-2-Pentanone	20	U	100-42-5	Styrene	20	U
67-64-1	Acetone	100	U	127-18-4	Tetrachloroethene	20	2300
71-43-2	Benzene	10	U	108-88-3	Toluene	20	U
74-97-5	Bromochloromethane	20	U	156-60-5	trans-1,2-Dichloroethene	20	U
75-27-4	Bromodichloromethane	20	U	10061-02-6	trans-1,3-Dichloropropene	20	U
75-25-2	Bromoform	20	U	79-01-6	Trichloroethene	20	U
74-83-9	Bromomethane	20	U	75-69-4	Trichlorofluoromethane	20	U
75-15-0	Carbon Disulfide	20	U	75-01-4	Vinyl Chloride	20	U
1330-20-7	Xylenes (Total)	20	U				

Worksheet #: 384264

Total Target Concentration

2300

U - Indicates the compound was analyzed but not detected.

B - Indicates the analyte was found in the blank as well as in the sample.

E - Indicates the analyte concentration exceeds the calibration range of the instrument.

R - Retention Time Out

J - Indicates an estimated value when a compound is detected at less than the specified detection limit.

d - Pesticide %Diff>40% between columns due to coelution. Lower concentration usea Chlordane (Total) is sum of a-Chlordane and y-Chlordane.

Quantitation Report (QT Reviewed)

Qt Meth : 3M_A0513.M Qt On : 05/17/16 11:36 Qt Upd On: 05/16/16 14:48 Operator : SG Sam Mult : 1 Vial# : 12 Misc : A,5ML!1 SampleID : AC91322-018(20X) Data File: 3M90952.D Acq On : 05/17/16 11:04 Misc

Data Path : G:\GcMsData\2016\GCMS_3\Data\05-17-16\Qt Path : G:\GcMsData\2016\GCMS_3\MethodQt\Qt Resp Via : Initial Calibration

Compound		R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards							
4) Fluorobenzene		4.468	96	212158	30.00	ug/l	-0.02
52) Chlorobenzene-	d5	6.271	117	143002	30.00	ug/l	-0.01
70) 1,4-Dichlorobe	nzene-d4	7.678	152	68607	30.00	ug/l	-0.02
System Monitoring C	ompounds						
37) Dibromofluorom	ethane	4.035	111	82171	32.75	ug/l	-0.01
Spiked Amount	30.000			Recove	ry =	109.179	5
39) 1,2-Dichloroet	hane-d4	4.264	67	44384	30.72	ug/l	-0.01
Spiked Amount	30.000			Recove	ry =	102.409	\$
66) Toluene-d8		5.412	98	191914	30.43	ug/l	-0.02
Spiked Amount	30.000			Recove	ry =	101.439	\$
76) Bromofluoroben	zene	6.963	174	65464	29.45	ug/l	-0.02
Spiked Amount	30.000			Recove	ry =	98.179	i i
Target Compounds							Qvalue
26) Methyl-t-butyl	ether	2.911	73	2357m	0.51	29 ug/	1
65) Tetrachloroeth	ene	5.778	164	121540	117.28	49 ug/	/1 96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Form3 Recovery Data Laboratory Limits QC Batch: MBS53480

Data File

Sample ID:

Analysis Date

Spike or Dup: 3M90887.D

MBS53480

5/16/2016 6:20:00 PM

Non Spike(If applicable):

Inst Blank(If applicable):
Method: 8260C

Matrix: Aqueous

QC Type: MBS

Method: 8260C		Matrix: Aque	ous		QC Type: MBS		
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
Chlorodifluoromethane	1	22.0991	0	20	110	50	150
Dichlorodifluoromethane	1	16.5521	0	20	83	50	150
Chloromethane	1	20.5561	0	20	103	50	150
Bromomethane	1	21.3228	0	20	107	50	150
Vinyl Chloride	1	22.4	0	20	112	50	150
Chloroethane	1	21.4353	0	20	107	50	150
Trichlorofluoromethane	1	23.0011	0	20	115	50	150
Ethyl ether	1	18.284	0	20	91	50	150
Furan	1	22.6312	0	20	113	50	150
1,1,2-Trichloro-1,2,2-trifluoroethane	1	22.0414	0	20	110	50	150
Methylene Chloride	1	19.5451	0	20	98	70	130
Acrolein	1	92.5782	0	100	93	50	150
Acrylonitrile	1	14.7622	0	20	74	50	150
lodomethane	1	25.8394	0	20	129	50	150
Acetone	1	91.9718	0	100	92	50	150
Carbon Disulfide	1	27.9053	0	20	140	50	150
t-Butyl Alcohol	1	90.509	0	100	91	50	150
n-Hexane	1	20.2443	0	20	101	70	130
Di-isopropyl-ether	1	21.1279	0	20	106	70	130
1,1-Dichloroethene	1	21.6464	0	20	108	70	130
Methyl Acetate	1	21.7466	0	20	109	50	150
Methyl-t-butyl ether	1	20.301	0	20	102	70	130
1,1-Dichloroethane	1	20.0324	0	20	100	70	130
trans-1,2-Dichloroethene	1	22.3951	0	20	112	70	130
Ethyl-t-butyl ether	1	20.7669	0	20	104	70	130
cis-1,2-Dichloroethene	1	20.9848	0	20	105	70	130
Bromochloromethane	1	20.3138	0	20	102	70	130
2,2-Dichloropropane	1	21.9313	0	20	110	70	130
Ethyl acetate	1	20.473	0	20	102	50	130
1,4-Dioxane	1	746.0055	0	1000	75	50	150
1,1-Dichloropropene	1	20.2802	0	20	101	70	130
Chloroform	1	22.4355	0	20	112	70	130
Cyclohexane	1	20.4102	0	20	102	70 70	130
1,2-Dichloroethane	1	22.1428	0	20	111	70 50	130
2-Butanone	1	16.9738	0	20	85	50 70	150 130
1,1,1-Trichloroethane	1	22.8904	0 0	20 20	114 116	70 50	150
Carbon Tetrachloride		23.1586 17.319		20	87	50 50	150
Vinyl Acetate	1 1	20.8879	0 0	20	104	70	130
Bromodichloromethane	1	19.3807	0	20	97	70 70	130
Methylcyclohexane	1	20.4613	0	20	102	70	130
Dibromomethane 1,2-Dichloropropane	1	21.1888	0	20	106	70	130
Trichloroethene	1	21.1000	0	20	110	70	130
Benzene	i	21.3964	0	20	107	70	130
tert-Amyl methyl ether	1	20.5099	Ö	20	103	70	130
Iso-propylacetate	1	20.0749	Ö	20	100	70	130
Methyl methacrylate	i	17.5008	Ö	20	88	70	130
Dibromochloromethane	i	23.7948	Ö	20	119	70	130
2-Chloroethylvinylether	i	16.7474	Ö	20	84	70	130
cis-1,3-Dichloropropene	i	21.2698	Ŏ	20	106	70	130
trans-1,3-Dichloropropene	i	18.7441	Ö	20	94	70	130
Ethyl methacrylate	1	16.9074	ŏ	20	85	70	130
1,1,2-Trichloroethane	i	21.24	Ŏ	20	106	70	130
1,2-Dibromoethane	i	19.3329	Ö	20	97	70	130
1,3-Dichloropropane	1	20.0996	Ö	20	100	70	130
4-Methyl-2-Pentanone	i	22.641	Ö	20	113	50	150
2-Hexanone	i	12.5784	Ö	20	63	50	150
Tetrachloroethene	i	21.8586	ŏ	20	109	50	130
Toluene	1	19.6777	Ö	20	98	70	130
1,1,1,2-Tetrachloroethane	i	21.0637	Ö	20	105	70	130
Chlorobenzene	1	20.8498	Ŏ	20	104	70	130
		4				- -	

^{* -} Indicates outside of limits

^{# -} Indicates outside of standard limits but within method exceedance limits

Form3 Recovery Data Laboratory Limits QC Batch: MBS53480

	QU	batch: IVID	333400	!			
n-Butyl acrylate	1	11.6705	0	20	58*	70	130
n-Amyl acetate	1	15.352	0	20	77	70	130
Bromoform	1	15.5881	0	20	78	70	130
Ethylbenzene	1	20.7884	0	20	104	70	130
1,1,2,2-Tetrachloroethane	1	19.0327	0	20	95	70	130
Styrene	1	20.6424	0	20	103	70	130
m&p-Xylenes	1	40.8887	0	40	102	70	130
o-Xylene	1	20.3317	0	20	102	70	130
trans-1,4-Dichloro-2-butene	1	15.1421	0	20	76	50	150
1,3-Dichlorobenzene	1	21.9774	0	20	110	70	130
1,4-Dichlorobenzene	1	20.4299	0	20	102	70	130
1,2-Dichlorobenzene	1	20.348	0	20	102	70	130
Isopropylbenzene	1	20.9437	0	20	105	70	130
Cyclohexanone	1	84.7454	0	100	85	50	150
Camphene	1	19.7032	0	20	99	70	130
1,2,3-Trichloropropane	1	17.812	0	20	89	70	130
2-Chlorotoluene	1	20.4238	0	20	102	70	130
p-Ethyltoluene	1	20.8319	0	20	104	70	130
4-Chlorotoluene	1	18.8427	0	20	94	70	130
n-Propylbenzene	1	19.2674	0	20	96	70	130
Bromobenzene	1	18.9921	0	20	95	70	130
1,3,5-Trimethylbenzene	1	20.7917	0	20	104	70	130
Butyl methacrylate	1	17.2503	0	20	86	70	130
t-Butylbenzene	1	20.3155	0	20	102	70	130
1,2,4-Trimethylbenzene	1	20.0589	0	20	100	70	130
sec-Butylbenzene	1	19.4863	0	20	97	70	130
4-Isopropyltoluene	1	19.6657	0	20	98	70	130
n-Butylbenzene	1	20.8364	0	20	104	70	130
p-Diethylbenzene	1	19.1976	0	20	96	70	130
1,2,4,5-Tetramethylbenzene	1	16.7128	0	20	84	70	130
1,2-Dibromo-3-Chloropropane	1	14.2183	0	20	71	50	150
Camphor	1	173.2161	0	200	87	50	150
Hexachlorobutadiene	1	19.5946	0	20	98	50	150
1,2,4-Trichlorobenzene	1	20.0586	0	20	100	70	130
1,2,3-Trichlorobenzene	1	19.1635	0	20	96	70	130
Naphthalene	1	16.2329	0	20	81	50	150

Form3 **Recovery Data Laboratory Limits**

QC Batch: MBS53491

Data File

Sample ID:

Analysis Date

QC Type: MBS

Spike or Dup: 3M90951.D

MBS53491

Matrix: Aqueous

5/17/2016 10:48:00 AM

Non Spike(If applicable):

Inst Blank(If applicable):

Method: 8260C

Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Uppei Limit
Chlorodifluoromethane	1	26.5572	Ö	20	133	50	150
Dichlorodifluoromethane	1	25.3397	0	20	127	50	150
Chloromethane	1	25.9958	0	20	130	50	150
Bromomethane	1	29.0882	0	20	145	50	150
Vinyl Chloride	1	23.0859	0	20	115	50	150
Chloroethane	1	32.3835	Ó	20	162*	50	150
Trichlorofluoromethane	1	39.2955	0	20	196*	50	150
Ethyl ether	1	20.819	0	20	104	50	150
Furan	1	27.3267	0	20	137	50	150
1,1,2-Trichloro-1,2,2-trifluoroethane	1	28.2874	0	20	141	50	150
Methylene Chloride	1	24.1373	Ö	20	121	70	130
Acrolein	1	101.2711	Ŏ	100	101	50	150
Acrylonitrile	1	18.4193	Ö	20	92	50	150
lodomethane	1	31.6008	Ö	20	158*	50	150
Acetone	1	109.0613	ŏ	100	109	50	150
Carbon Disulfide	1	32.6432	Ŏ	20	163*	50	150
t-Butyl Alcohol	1	98.8037	ŏ	100	99	50	150
n-Hexane	1	25.8263	Ö	20	129	70	130
Di-isopropyl-ether	1	23.2533	ŏ	20	116	70	130
1,1-Dichloroethene	i	25.7173	Ö	20	129	70	130
Methyl Acetate	i	25.7174	ŏ	20	129	50	150
Methyl-t-butyl ether	1	23.4607	Ö	20	117	70	130
1,1-Dichloroethane	i	24.5936	Ö	20	123	70	130
trans-1,2-Dichloroethene	i	26.3892	ŏ	20	132*	70	130
Ethyl-t-butyl ether	i	23.342	Ö	20	117	70	130
cis-1,2-Dichloroethene	i	27.0997	ŏ	20	135*	70	130
Bromochloromethane	i	24.5901	ŏ	20	123	70	130
2,2-Dichloropropane	1	25.8818	Ŏ	20	129	70	130
Ethyl acetate	i	20.9091	Ö	20	105	50	130
1,4-Dioxane	i	770.3211	Ö	1000	77	50	150
1,1-Dichloropropene	i	23.5224	Ö	20	118	70	130
Chloroform	i	27.6349	Ö	20	138*	70	130
Cyclohexane	1	22.8141	0	20	114	70	130
1,2-Dichloroethane	1	25.1041	0	20	126	70	130
2-Butanone	1	17.794	0	20	89	50	150
2-Butanone 1,1,1-Trichloroethane	1	28.0167	0	20	140*	70	130
	1	29.2637	0	20	146	50	150
Carbon Tetrachloride	1	19.2556	0	20	96	50	150
Vinyl Acetate	1	23.6752	0	20	118	70	130
Bromodichloromethane	1	23.0752	0	20	119	70 70	130
Methylcyclohexane	1		0	20	118	70 70	130
Dibromomethane	1	23.51 23.9235	0	20	120	70 70	130
1,2-Dichloropropane	1		0	20	125	70 70	130
Trichloroethene		24.9492					
Benzene	1	23.028	0	20	115	70 70	130
tert-Amyl methyl ether	1	21.9527	0	20	110		130
Iso-propylacetate	1	18.3877	0	20	92	70 70	130
Methyl methacrylate	1	17.7024	0	20	89	70 70	130
Dibromochloromethane	1	26.4262	0	20	132*	70 70	130
2-Chloroethylvinylether	1	17.5373	0	20	88	70 70	130
aia 4 7 Diableranceana	4	74 4047					

24.1043

19.5933

18.6726

24.0813

23.7818

22.4174

19.3886

2.7422

26.0756

23.239

24.5746

24.4502

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

1,1,1,2-Tetrachloroethane

cis-1,3-Dichloropropene

Ethyl methacrylate

1,1,2-Trichloroethane

1,2-Dibromoethane

1,3-Dichloropropane

Tetrachloroethene

Chlorobenzene

2-Hexanone

Toluene

4-Methyl-2-Pentanone

trans-1,3-Dichloropropene

20

20

20

20

20

20

20

20

20

20

20

121

98

93

120

119

112

97

14*

130

116

123

122

70

70

70

70

70

70

50

50

50

70

70

70

130

130

130

130

130

130

150

150

130

130

130

130

^{* -} Indicates outside of limits

²⁰ # - Indicates outside of standard limits but within method exceedance limits

Form3 Recovery Data Laboratory Limits OC Batch: MBS53491

	QC	Batch: MB	S53491	1			
n-Butyl acrylate	1	11.8017	0	20	59*	70	130
n-Amyl acetate	1	13.0536	0	20	65 *	70	130
Bromoform	1	15.5126	0	20	78	70	130
Ethylbenzene	1	20.2485	0	20	101	70	130
1,1,2,2-Tetrachloroethane	1	18.2579	0	20	91	70	130
Styrene	1	19.5824	0	20	98	70	130
m&p-Xylenes	1	41.2505	0	40	103	70	130
o-Xylene	1	19.7804	0	20	99	70	130
trans-1,4-Dichloro-2-butene	1	10.1022	0	20	51	50	150
1,3-Dichlorobenzene	1	22.4225	0	20	112	70	130
1,4-Dichlorobenzene	1	20.523	0	20	103	70	130
1,2-Dichlorobenzene	1	23.0459	0	20	115	70	130
Isopropylbenzene	1	21.5067	0	20	108	70	130
Cyclohexanone	1	60.1489	0	100	60	50	150
Camphene	1	20.9065	0	20	105	70	130
1,2,3-Trichloropropane	1	18.822	0	20	94	70	130
2-Chlorotoluene	1	23.3874	0	20	117	70	130
p-Ethyltoluene	1	21.5798	0	20	108	70	130
4-Chlorotoluene	1	22.7511	0	20	114	70	130
n-Propylbenzene	1	20.9836	0	20	105	70	130
Bromobenzene	1	21.5814	0	20	108	70	130
1,3,5-Trimethylbenzene	1	22.3265	0	20	112	70	130
Butyl methacrylate	1	15.0496	0	20	75	70	130
t-Butylbenzene	1	21.9655	0	20	110	70	130
1,2,4-Trimethylbenzene	1	22.4634	0	20	112	70	130
sec-Butylbenzene	1	21.3397	0	20	107	70	130
4-Isopropyitoluene	1	21.6475	0	20	108	70	130
n-Butylbenzene	1	23.2593	0	20	116	70	130
p-Diethylbenzene	1	22.1234	0	20	111	70	130
1,2,4,5-Tetramethylbenzene	1	19.9805	0	20	100	70	130
1,2-Dibromo-3-Chloropropane	1	12.7936	0	20	64	50	150
Camphor	1	173.1907	0	200	87	50	150
Hexachlorobutadiene	1	20.9931	0	20	105	50	150
1,2,4-Trichlorobenzene	1	22.0724	0	20	110	70	130
1,2,3-Trichlorobenzene	1	22.1619	0	20	111	70	130
Naphthalene	1	18.3451	0	20	92	50	150

Form3 Recovery Data Laboratory Limits QC Batch: MBS53480

Data File Sample ID: Analysis Date

 Spike or Dup: 3M90909.D
 AC91322-004(MS:AC91322-002
 5/16/2016 11:53:00 PM

 Non Spike(If applicable): 3M90894.D
 AC91322-002
 5/16/2016 7:55:00 PM

Inst Blank(If applicable):

Method: 8260C Matrix: Aqueous QC Type: MS

Method: 8260C		Matrix: Aque	eous		QC Type: MS		
		Spike	Sample	Expected		Lower	Upper
Analyte:	Col	Conc	Conc	Conc	Recovery	Limit	Limit
Chlorodifluoromethane	1	22.3392	0	20	112	50	150
Dichlorodifluoromethane	1	19.7241	0	20	99	50	150
Chloromethane	1	22.1594	0	20	111	50	150
Bromomethane	1	27.9694	0	20	140	50	150
Vinyl Chloride	1	19.8072	0	20	99 450 t	50 50	150
Chloroethane Trichlorofluoromethane	1	31.854 36.1582	0 0	20 20	159 <i>*</i> 181 <i>*</i>	50 50	150 150
Ethyl ether	1	19.3706	0	20	97	50 50	150
Furan	i	26.4134	Ö	20	132	50	150
1,1,2-Trichloro-1,2,2-trifluoroethane	i	24.7138	ŏ	20	124	50	150
Methylene Chloride	1	23.4562	Ö	20	117	70	130
Acrolein	1	102.675	0	100	103	50	150
Acrylonitrile	1	17.8326	0	20	89	50	150
lodomethane	1	29.5283	0	20	148	50	150
Acetone	1	110.7552	0	100	111	50	150
Carbon Disulfide	1	29.9201	0	20	150	50	150
t-Butyl Alcohol	1	93.0704	0	100	93	50	150
n-Hexane	1	19.3164	0	20	97	70	130
Di-isopropyl-ether	1	23.7544	0	20	119	70	130
1,1-Dichloroethene	1	24.3271	0 0	20 20	122 124	70 50	130 150
Methyl Acetate Methyl-t-butyl ether	1 1	24.8533 21.546	0	20	108	70	130
1,1-Dichloroethane	1	24.0966	0	20	120	70	130
trans-1,2-Dichloroethene	i	24.7243	Ŏ	20	124	70	130
Ethyl-t-butyl ether	1	20.8551	Ŏ	20	104	70	130
cis-1,2-Dichloroethene	1	66.8598	43.5045	20	117	70	130
Bromochloromethane	1	23.2506	0	20	116	70	130
2,2-Dichloropropane	1	21.5423	0	20	108	70	130
Ethyl acetate	1	21.0628	0	20	105	50	130
1,4-Dioxane	1	697.3968	0	1000	70	50	150
1,1-Dichloropropene	1	23.0424	0	20	115	70	130
Chloroform	1	26.3968	0	20	132*	70	130
Cyclohexane	1	22.4335	0	20	112	70 70	130
1,2-Dichloroethane	1	23.8622	0	20	119	70 50	130
2-Butanone	1	16.9723	0 0	20 20	85 136*	50 70	150 130
1,1,1-Trichloroethane Carbon Tetrachloride	1	27.2494 26.2593	0	20	131	50	150
Vinyl Acetate	1	18.6567	Ö	20	93	50	150
Bromodichloromethane	i	23.9216	ŏ	20	120	70	130
Methylcyclohexane	1	21.3928	Ŏ	20	107	70	130
Dibromomethane	1	22.45	Ö	20	112	70	130
1,2-Dichloropropane	1	23.4932	0	20	117	70	130
Trichloroethene	1	35.414	11.9601	20	117	70	130
Benzene	1	20.5944	0	20	103	70	130
tert-Amyl methyl ether	1	20.2293	0	20	101	70	130
Iso-propylacetate	1	19.9297	0	20	100	70	130
Methyl methacrylate	1	17.2474	0	20	86	70 70	130
Dibromochloromethane	1	26.7773	0	20	134*	70 70	130
2-Chloroethylvinylether	1	0 23.0458	0 0	20 20	0* 115	70 70	130 130
cis-1,3-Dichloropropene	1	19.9811	0	20	100	70	130
trans-1,3-Dichloropropene Ethyl methacrylate	1	18.6681	0	20	93	70	130
1,1,2-Trichloroethane	1	22.8572	Ö	20	114	70	130
1,2-Dibromoethane	1	20.7192	ŏ	20	104	70	130
1,3-Dichloropropane	1	22.121	Ŏ	20	111	70	130
4-Methyl-2-Pentanone	1	17.3935	Ö	20	87	50	150
2-Hexanone	1	4.9044	Ö	20	25*	50	150
Tetrachloroethene	1	350.9709	331.0365	20	100	50	130
Toluene	1	21.2521	0	20	106	70	130
1,1,1,2-Tetrachloroethane	1	23.0364	0	20	115	70	130
Chlorobenzene	1	22.8079	0	20	114	70	130
* Indiantan autoida of limita - 4	411				thin mathad av		a limita

^{* -} Indicates outside of limits

^{# -} Indicates outside of standard limits but within method exceedance limits

Form3 Recovery Data Laboratory Limits

	QC	Batch: ME	S5348	0			
n-Butyl acrylate	1	13.0578	0	20	65*	70	130
n-Amyl acetate	1	15.2653	0	20	76	70	130
Bromoform	1	18.1206	0	20	91	70	130
Ethylbenzene	1	20.3149	0	20	102	70	130
1,1,2,2-Tetrachloroethane	1	19.8083	0	20	99	70	130
Styrene	1	21.3582	0	20	107	70	130
m&p-Xylenes	1	42.6162	0	40	107	70	130
o-Xylene	1	20.5362	0	20	103	70	130
trans-1,4-Dichloro-2-butene	1	10.2547	0	20	51	50	150
1,3-Dichlorobenzene	1	24.0533	0	20	120	70	130
1,4-Dichlorobenzene	1	22.98	0	20	115	70	130
1,2-Dichlorobenzene	1	23.2765	0	20	116	70	130
Isopropylbenzene	1	22.9096	0	20	115	70	130
Cyclohexanone	1	83.0652	0	100	83	50	150
Camphene	1	3.4509	0	20	17*	70	130
1,2,3-Trichloropropane	1	20.0478	0	20	100	70	130
2-Chlorotoluene	1	22.7613	0	20	114	70	130
p-Ethyltoluene	1	22.6327	0	20	113	70	130
4-Chlorotoluene	1	21.49	0	20	107	70	130
n-Propylbenzene	1	21.2954	0	20	106	70	130
Bromobenzene	1	20.4124	0	20	102	70	130
1,3,5-Trimethylbenzene	1	21.0654	0	20	105	70	130
Butyl methacrylate	1	17.7051	0	20	89	70	130
t-Butylbenzene	1	22.5397	0	20	113	70	130
1,2,4-Trimethylbenzene	1	21.7382	0	20	109	70	130
sec-Butylbenzene	1	21.3218	0	20	107	70	130
4-Isopropyltoluene	1	21.0002	0	20	105	70	130
n-Butylbenzene	1	21.901	0	20	110	70	130
p-Diethylbenzene	1	19.9925	0	20	100	70	130
1,2,4,5-Tetramethylbenzene	1	19.1086	0	20	96	70	130
1,2-Dibromo-3-Chloropropane	1	13.9134	0	20	70	50	150
Camphor	1	194.2807	0	200	97	50	150
Hexachlorobutadiene	1	20.3778	0	20	102	50	150
1,2,4-Trichlorobenzene	1	21.8099	0	20	109	70	130
1,2,3-Trichlorobenzene	1	20.4315	0	20	102	70	130
Naphthalene	1	17.327	0	20	87	50	150

Form3 Recovery Data Laboratory Limits

Sample ID:

QC Batch: MBS53480

Analysis Date

Spike or Dup: 3M90910.D Non Spike(If applicable): 3M90894.D

Data File

AC91322-005(MSD:AC91322-0 AC91322-002 5/17/2016 12:09:00 AM 5/16/2016 7:55:00 PM

Inst Blank(If applicable):

Method: 8260C Matrix: Aqueous QC Type: MSD

Method: 8200C		Matrix: Aque	30us		QC Type. MSD	<u> </u>	
Analyte:	Col	Spike Conc	Sample Conc	Expected Conc	Recovery	Lower Limit	Upper Limit
Chlorodifluoromethane	1	20.5426	0	20	103	50	150
Dichlorodifluoromethane	1	19.0433	0	20	95	50	150
Chloromethane	1	20.2182	0	20	101	50	150
Bromomethane	1	27.0212	0	20	135	50	150
Vinyl Chloride	1	18.8585	0	20	94	50	150
Chloroethane	1	28.0493	0	20	140	50	150
Trichlorofluoromethane	1	28.0863	0	20	140	50	150
Ethyl ether	1	18.4793	0	20	92	50	150
Furan	1	26.2584	0	20	131	50	150
1,1,2-Trichloro-1,2,2-trifluoroethane	1	23.0868	0	20	115	50	150
Methylene Chloride	1	21.7621	0	20	109	70	130
Acrolein	1	93.9189	0	100	94	50	150
Acrylonitrile	1	18.605	0	20	93	50	150
lodomethane	1	28.3117	0	20	142	50	150
Acetone	1	110.4308	0	100	110	50	150
Carbon Disulfide	1	28.585	0	20	143	50	150
t-Butyl Alcohol	1	87.6084	0	100	88	50	150
n-Hexane	1	18.3498	0	20	92	70 70	130
Di-isopropyl-ether	1	21.2848	0	20	106	70 70	130
1,1-Dichloroethene	1	22.3756	0	20	112	70 50	130
Methyl Acetate	1	22.7921	0	20	114	50 70	150 130
Methyl-t-butyl ether	1	20.2519	0 0	20 20	101 105	70 70	130
1,1-Dichloroethane	1	21.093 23.6779	0	20	118	70 70	130
trans-1,2-Dichloroethene	1	20.1168	0	20	101	70 70	130
Ethyl-t-butyl ether cis-1,2-Dichloroethene	1	59.0052	43.5045	20	78	70	130
Bromochloromethane	1	21.1959	43.5045	20	106	70	130
2,2-Dichloropropane	1	19.7229	0	20	99	70	130
Ethyl acetate	1	21.9014	Ö	20	110	50	130
1,4-Dioxane	1	606.2661	Ŏ	1000	61	50	150
1,1-Dichloropropene	1	22.2169	Ö	20	111	70	130
Chloroform	i	24.1062	Ŏ	20	121	70	130
Cyclohexane	1	20.3163	Ö	20	102	70	130
1,2-Dichloroethane	1	23.4427	Ŏ	20	117	70	130
2-Butanone	1	18.5787	Ŏ	20	93	50	150
1,1,1-Trichloroethane	1	25.9356	Ö	20	130	70	130
Carbon Tetrachloride	1	26.6926	Ō	20	133	50	150
Vinyl Acetate	1	17.9289	0	20	90	50	150
Bromodichloromethane	1	21.6859	0	20	108	70	130
Methylcyclohexane	1	19.2419	0	20	96	70	130
Dibromomethane	1	21.7207	0	20	109	70	130
1,2-Dichloropropane	1	21.442	0	20	107	70	130
Trichloroethene	1	32.8493	11.9601	20	104	70	130
Benzene	1	20.7252	0	20	104	70	130
tert-Amyl methyl ether	1	20.0244	0	20	100	70	130
Iso-propylacetate	1	20.1391	0	20	101	70	130
Methyl methacrylate	1	18.0046	0	20	90	70	130
Dibromochloromethane	1	23.9944	0	20	120	70	130
2-Chloroethylvinylether	1	0	0	20	0*	70	130
cis-1,3-Dichloropropene	1	21.3768	0	20	107	70	130
trans-1,3-Dichloropropene	1	18.405	0	20	92	70	130
Ethyl methacrylate	1	20.5483	0	20	103	70	130
1,1,2-Trichloroethane	1	22.2151	0	20	111	70	130
1,2-Dibromoethane	1	20.2407	0	20	101	70	130
1,3-Dichloropropane	1	20.1699	0	20	101	70	130
4-Methyl-2-Pentanone	1	19.7087	0	20	99	50	150
2-Hexanone	1	4.0571	0	20	20*	50 50	150
Tetrachloroethene	1		331.0365	20	-10*	50 70	130
Toluene	1	20.7704	0	20	104	70 70	130
1,1,1,2-Tetrachloroethane	1	23.6339	0	20 20	118	70 70	130
Chlorobenzene	1	22.5239	0	20	113	70	130
* - Indicates outside of limits #	¥ - Indi	cates outsid	le of standar	rd limits but w	ithin method ex	ceedanc	e limits

^{* -} Indicates outside of limits

^{# -} Indicates outside of standard limits but within method exceedance limits

Recovery Data Laboratory Limits

QC Batch: MBS53480									
n-Butyl acrylate	1	12.8654	0	20	64*	70	130		
n-Amyl acetate	1	12.7343	0	20	64*	70	130		
Bromoform	1	15.7545	0	20	79	70	130		
Ethylbenzene	1	20.7363	0	20	104	70	130		
1,1,2,2-Tetrachloroethane	1	19.2728	0	20	96	70	130		
Styrene	1	19.8125	0	20	99	70	130		
m&p-Xylenes	1	40.8809	0	40	102	70	130		
o-Xylene	1	19.8264	0	20	99	70	130		
trans-1,4-Dichloro-2-butene	1	10.2911	0	20	51	50	150		
1,3-Dichlorobenzene	1	21.5115	0	20	108	70	130		
1,4-Dichlorobenzene	1	21.0458	0	20	105	70	130		
1,2-Dichlorobenzene	1	21.4605	0	20	107	70	130		
Isopropylbenzene	1	20.9361	0	20	105	70	130		
Cyclohexanone	1	86.5031	0	100	87	50	150		
Camphene	1	3.2519	0	20	16*	70	130		
1,2,3-Trichloropropane	1	18.6958	0	20	93	70	130		
2-Chlorotoluene	1	20.0746	0	20	100	70	130		
p-Ethyltoluene	1	20.3987	0	20	102	70	130		
4-Chlorotoluene	1	20.3487	0	20	102	70	130		
n-Propylbenzene	1	19.6815	0	20	98	70	130		
Bromobenzene	1	19.1702	0	20	96	70	130		
1,3,5-Trimethylbenzene	1	20.4597	0	20	102	70	130		
Butyl methacrylate	1	15.8977	0	20	79	70	130		
t-Butylbenzene	1	21.1531	0	20	106	70	130		
1,2,4-Trimethylbenzene	1	20.5559	0	20	103	70	130		
sec-Butylbenzene	1	18.9456	0	20	95	70	130		
4-Isopropyltoluene	1	20.4129	0	20	102	70	130		
n-Butylbenzene	1	20.7859	0	20	104	70	130		
p-Diethylbenzene	1	18.6824	0	20	93	70	130		
1,2,4,5-Tetramethylbenzene	1	18.3121	0	20	92	70	130		
1,2-Dibromo-3-Chloropropane	1	13.4737	0	20	67	50	150		
Camphor	1	194.1628	0	200	97	50	150		
Hexachlorobutadiene	1	17.9813	0	20	90	50	150		
1,2,4-Trichlorobenzene	1	20.7641	0	20	104	70	130		
1,2,3-Trichlorobenzene	1	19.8542	0	20	99	70	130		
Naphthalene	1	17.8132	0	20	89	50	150		

Form3 RPD Data Laboratory Limits QC Batch: MBS53480

Data File

Sample ID:

Analysis Date

Spike or Dup: 3M90910.D

AC91322-005(MSD:AC91322-0 5/17/2016 12:09:00 AM

AC91322-006(MS:AC91322-00 5/16/2016 11:53:00 PM

Duplicate(If applicable): 3M90909.D Inst Blank(If applicable):

Method: 8260C

Matrix: Aqueous

QC Type: MSD

		Dup/MSD/MBSD	Sample/MS/MBS		
Analyte:	Column	Conc	Conc	RPD	Limit
Chlorodifluoromethane	1	20.5426	22.3392	8.4	20
Dichlorodifluoromethane	1	19.0433	19.7241	3.5	20
Chloromethane	1	20.2182	22.1594	9.2	20
Bromomethane	1	27.0212	27.9694	3.4	20
Vinyl Chloride	1	18.8585	19.8072	4.9	40
Chloroethane	1	28.0493	31.854	13	20
Trichlorofluoromethane	1	28.0863	36.1582	25*	20
Ethyl ether	1	18.4793	19.3706	4.7	20
Furan	1	26.2584	26.4134	0.59	20
1,1,2-Trichloro-1,2,2-trifluoroethane	1	23.0868	24.7138	6.8	20
Methylene Chloride	1	21.7621	23.4562	7.5	20
Acrolein	1	93.9189	102.675	8.9	20
Acrylonitrile	1	18.605	17.8326	4.2	20
lodomethane	1	28.3117	29.5283	4.2	20
Acetone	1	110.4308	110.7552	0.29	20
Carbon Disulfide	1	28.585	29.9201	4.6	20
t-Butyl Alcohol	1	87.6084	93.0704	6	20
n-Hexane	1	18.3498	19.3164	5.1	20
Di-isopropyl-ether	1	21.2848	23.7544	11	20
1,1-Dichloroethene	1	22.3756	24.3271	8.4	40
Methyl Acetate	1	22.7921	24.8533	8.7	20
Methyl-t-butyl ether	1	20.2519	21.546	6.2	20
1,1-Dichloroethane	1	21.093	24.0966	13	40
trans-1,2-Dichloroethene	1	23.6779	24.7243	4.3	20
Ethyl-t-butyl ether	1	20.1168	20.8551	3.6	20
cis-1,2-Dichloroethene	1	59.0052	66.8598	12	20
Bromochloromethane	1	21.1959	23.2506	9.2	20
2,2-Dichloropropane	1	19.7229	21.5423	8.8	20
Ethyl acetate	1	21.9014	21.0628	3.9	20
1,4-Dioxane	1	606.2661	697.3968	14	20
1,1-Dichloropropene	1	22.2169	23.0424	3.6	20
Chloroform	1	24.1062	26.3968	9.1	40
Cyclohexane	1	20.3163	22.4335	9.9	20
1,2-Dichloroethane	1	23.4427	23.8622	1.8	40
2-Butanone	1	18.5787	16.9723	9	40
1,1,1-Trichloroethane	1	25.9356	27.2494	4.9	20
Carbon Tetrachloride	1	26.6926	26.2593	1.6	40
Vinyl Acetate	1	17.9289	18.6567	4	20
Bromodichloromethane	1	21.6859	23.9216	9.8	20 20
Methylcyclohexane	1	19.2419	21.3928	11	
Dibromomethane	1	21.7207	22.45	3.3	20 20
1,2-Dichloropropane	1 1	21.442	23.4932	9.1 7.5	40
Trichloroethene	•	32.8493	35.414	7.5	
Benzene	1	20.7252	20.5944	0.63	40 20
tert-Amyl methyl ether	-	20.0244	20.2293	1 1	20 20
Iso-propylacetate	1	20.1391	19.9297	-	20
Methyl methacrylate	1	18.0046	17.2474 26.7773	4.3 11	20
Dibromochloromethane	1	23.9944 0	0	NA	20
2-Chloroethylvinylether	1	21.3768	23.0458	7.5	20
cis-1,3-Dichloropropene	1	18.405	19.9811	8.2	20
trans-1,3-Dichloropropene	1	20.5483	18.6681	9.6	20
Ethyl methacrylate 1,1,2-Trichloroethane	1	22.2151	22.8572	2.8	20
1,1,2-11/cnloroethane 1,2-Dibromoethane	1	20.2407	20.7192	2.3	20
1,2-Dibromoethane 1,3-Dichloropropane	1	20.1699	22.121	9.2	20
4-Methyl-2-Pentanone	1	19.7087	17.3935	12	20
4-Methyl-2-Pentanone 2-Hexanone	1	4.0571	4.9044	19	20
z-nexanone Tetrachloroethene	1	329.0463	350.9709	6.4	40
	1	20.7704	21.2521	2.3	40
Toluene 1,1,1,2-Tetrachloroethane	1	23.6339	23.0364	2.6	20
i, i, i,2-i cuacillordellialle		22.5239	22.8079	1.3	40
Chlorobenzene					
Chlorobenzene n-Butyl acrylate	1 1	12.8654	13.0578	1.5	20

Form3 RPD Data Laboratory Limits QC Batch: MBS53480

	4000	1011.1110000100			
Bromoform	1	15.7545	18.1206	14	20
Ethylbenzene	1	20.7363	20.3149	2.1	20
1,1,2,2-Tetrachloroethane	1	19.2728	19.8083	2.7	20
Styrene	1	19.8125	21.3582	7.5	20
m&p-Xylenes	1	40.8809	42.6162	4.2	20
o-Xylene	1	19.8264	20.5362	3.5	20
trans-1,4-Dichloro-2-butene	1	10.2911	10.2547	0.35	20
1,3-Dichlorobenzene	1	21.5115	24.0533	11	20
1,4-Dichlorobenzene	1	21.0458	22.98	8.8	40
1,2-Dichlorobenzene	1	21.4605	23.2765	8.1	40
Isopropylbenzene	1	20.9361	22.9096	9	20
Cyclohexanone	1	86.5031	83.0652	4.1	20
Camphene	1	3.2519	3.4509	5.9	20
1,2,3-Trichloropropane	1	18.6958	20.0478	7	20
2-Chlorotoluene	1	20.0746	22.7613	13	20
p-Ethyltoluene	1	20.3987	22.6327	10	20
4-Chlorotoluene	1	20.3487	21.49	5.5	20
n-Propylbenzene	1	19.6815	21.2954	7.9	40
Bromobenzene	1	19.1702	20.4124	6.3	20
1,3,5-Trimethylbenzene	1	20.4597	21.0654	2.9	20
Butyl methacrylate	1	15.8977	17.7051	11	20
t-Butylbenzene	1	21.1531	22.5397	6.3	20
1,2,4-Trimethylbenzene	1	20.5559	21.7382	5.6	20
sec-Butylbenzene	1	18.9456	21.3218	12	40
4-Isopropyltoluene	1	20.4129	21.0002	2.8	20
n-Butylbenzene	1	20.7859	21.901	5.2	20
p-Diethylbenzene	1	18.6824	19.9925	6.8	20
1,2,4,5-Tetramethylbenzene	1	18.3121	19.1086	4.3	20
1,2-Dibromo-3-Chloropropane	1	13.4737	13.9134	3.2	20
Camphor	1	194.1628	194.2807	0.06	20
Hexachlorobutadiene	1	17.9813	20.3778	12	20
1,2,4-Trichlorobenzene	1	20.7641	21.8099	4.9	20
1,2,3-Trichlorobenzene	1	19.8542	20.4315	2.9	20
Naphthalene	1	17.8132	17.327	2.8	20
		A14 D 11		14	

^{* -} Indicates outside of limits

NA - Both concentrations=0... no result can be calculated

Analytical & Field Services

Last Page of Report