

AECOM 1255 Broad Street Suite 201, 2nd Floor Clifton, New Jersey 07013 <u>www.aecom.com</u>

August 4, 2021

Mr. Payson Long Project Manager Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 1223-7011

Re: ServAll Laundry Site, # 1-52-077 Soil Vapor Intrusion Sampling Results

Dear Mr. Long:

This letter report presents the results of the recent soil vapor sampling performed at the ServAll Laundry Site. The Site is located at 8 Drayton Avenue in Bay Shore, Suffolk County, New York (Figure 1) in a mixed use industrial/residential area. The ServAll Laundry facility was located on a 20,000 square foot property. The ServAll Uniform Rental, Inc. operated as a commercial laundry from 1969 to 1972, and as dry cleaner/laundry from 1972 to 1984. During this time, unknown quantities of wash water overflow containing PCE and heavy metals were pumped to, and occasionally overflowed from, on-Site cesspools.

In 1978, the Suffolk County Department of Health Services (SCDHS) conducted an on-Site sampling of cesspools and storm drains. Results from some of the samples showed detections of tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride, chloroform, methylbenzenes, and a number of Target Analyte List (TAL) metals. ServAll Uniform cleaned the on-Site storm drains and an unknown number of cesspools in 1981 removing sludge and contaminated water.

In 1983, SCDHS performed a groundwater investigation and identified a volatile organics plume southeast of the Site. The plume was found to extend 0.3 miles upgradient from the Suffolk County Water Authority (SCWA) Thomas Avenue Wellfield (located 1 mile south of the Site). The Thomas Avenue Wellfield is located off Thomas Avenue, near the Bay Shore Middle School and northwest of MW-11 (see Figure 2).

A State-funded remedial investigation/feasibility study (RI/FS) was completed at the Site, in which field work was completed from November 1990 through December 1991. The results of the investigation were documented in the final report dated January 1992 (E.C. Jordan Co.). The RI/ FS confirmed the presence of volatile organic compounds (VOCs) in groundwater, delineated the groundwater plume, and quantified on-Site contamination.

The plume is located in the Upper Glacial Aquifer, which consists of coarsely stratified, fine to medium sand with trace amounts of gravel, cobbles, coarse sand, and silt. The aquifer ranges in thickness from 120 feet at the Site to 86 feet 1.5 miles downgradient of the Site. Groundwater flows to the southeast towards Penataquit Creek at about 910 feet per year (ft/year). The RI concluded that the plume appeared to be

Payson Long Page 2 August 4, 2021

moving at approximately 443 to 484 ft/year from 1974 to 1988, and 355 ft/year since 1988 (E.C. Jordan, October 1991). Similar flow numbers were found during the long-term monitoring sampling events.

A Record of Decision (ROD) was issued by the NYSDEC for the Site on March 31, 1992. The remedy presented in the ROD was in-situ source soil treatment/source area groundwater extraction. The ROD stated that treatment of the entire plume emanating from the Site was not found to be practical, and therefore, the selected remedy would not satisfy the statutory preference for complete treatment as a principal element. Determination of the ultimate fate of the untreated portion of the plume was determined by the ROD directed discharge study (ABB Environmental Services, December 1995), which was conducted on the leading edge (hydraulically downgradient) of the plume.

The ROD specified source removal work consisting of a soil vapor extraction (SVE) system. The SVE system was in operation from the Spring of 1996 to the Spring of 1998. The groundwater pump and treat remedial system operated from March 1998 through November 2001. The operation of the remedial system was terminated in November 2001 when NYSDEC determined further operations were not necessary as stated in a letter dated October 18, 2001 from NYSDEC to Earth Tech. The groundwater treatment system inside the ServAll building was dismantled and disposed in April 2009. The extraction well and reinjection well were abandoned in August 2015.

The Site is currently in long term monitoring. Groundwater samples are collected from fifteen monitoring wells on a five-quarter basis. Samples are analyzed for VOCs. The results of the five-quarter sampling are summarized in a report after each sampling event. The last groundwater sampling event was conducted in May 2021. The locations of the monitoring wells are shown in Figure 2.

Soil Vapor Intrusion Sampling

At the request of NYSDEC, soil vapor intrusion samples were collected on March 30 and 31, 2021. Sampling was conducted in accordance with the NYSDEC Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006 and updates). Canister sampling field test data sheets are included in Attachment A.

Two subslab sampling points (SV1-1 and SV1-2) were installed inside the building as shown on Figure 3. As the ServAll facility is currently unoccupied, a pre-sampling building survey was not conducted. Two subslab samples were installed through the concrete floor using a hammer drill. Samples were set up on March 30, 2021 with 24-hours flow regulators. A field duplicate sample (SV1-2X) was collected at SV1-2. An indoor air sample (ID-1) and outdoor air sample (OD-1) were also collected (Figure 3). All samples were retrieved on March 31, 2021 and delivered to Eurofins Test America, Knoxville, Tennessee. The laboratory data was forwarded to Environmental Data Validation, Inc. (EDV) for validation. A Data Usability Summary Report (DUSR) was prepared and is included as Attachment B.

Sample results are shown on Table 1. Results were compared to the Soil Vapor Indoor Air Matrix Tables in the May 2017 updates to the NYSDEC Guidance document (Attachment C).

Several compounds were detected in the indoor air, outdoor air and subslab samples that do not have guidance values on the Matrix tables.

Matrix Table A has guidance values for trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-dichloroethene (1,1-DCE), and carbon tetrachloride. 1,1-DCE and carbon tetrachloride were not detected in the indoor air or either subslab sample; Matrix A recommends no further action for both compounds. Cis-1,2-DCE and TCE were not detected in the indoor air sample or subslab sample SV1-1. Cis-1,2-DCE (640 μ g/m³) and TCE (990 μ g/m³) were detected in subslab sample SV1-2; Indoor Matrix A recommends mitigation for both compounds.

Matrix Table B has guidance values for tetrachloroethene (PCE), 1,1,1-trichloroethene (1,1,1-TCE), and methylene chloride. 1,1,1-TCE and methylene chloride were not detected in the indoor air sample or either subslab sample; methylene chloride was detected in the outdoor sample at a concentration of $3.2 \,\mu\text{g/m}^3$. PCE was detected in the indoor air sample at a concentration of 64 $\mu\text{g/m}^3$ and the outdoor air sample at 69 $\mu\text{g/m}^3$. PCE was detected in subslab sample SV1-1 at a concentration of 90 $\mu\text{g/m}^3$; Matrix B recommends identifying the source and resampling or mitigation. PCE was detected in subslab sample SV1-2 at a concentration of 46,000 $\mu\text{g/m}^3$; Matrix B recommends mitigation.

Matrix Table C has a guidance value for vinyl chloride. Vinyl chloride was not detected in the indoor air sample or either subslab sample.

Previous SVI investigations

Subslab and indoor air samples were last collected at the Site in March 2009. The results were documented in the Final Soil Vapor Intrusion Sampling Report (AECOM, August 6, 2010). The PCE concentration in the ServAll building subslab sample was 66,138 μ g/m³ with the recommendation to mitigate the contamination. Subslab and indoor air samples collected from private residences along Frederick Avenue Walbridge Avenue indicated that no further action was warranted.

Conclusions and Recommendations

Groundwater samples were last collected in May 2021 (the results are presented in a separate report). These results found PCE groundwater contamination immediately downgradient of the Site at shallow monitoring well MW-6B. Depth to groundwater in the vicinity of the Site is approximately 24 ft bgs. The PCE plume extends over 1 ½ miles south of the Site to monitoring wells MW-23S and MW-213D, near the Sunrise Highway.

It appears that a PCE source exists in the unsaturated soil on the south side of the ServAll building. Based on these soil vapor samples, mitigation is recommended for the Site building. The PCE concentration in SV1-1 recommends "identify the source and resample or mitigate". In sample SV-1-2, concentrations of PCE, TCE and cis-1,2-DCE exceed the guidance values and mitigation is recommended.

Payson Long Page 4 August 4, 2021

A soil vapor extraction system should be installed at the ServAll facility to address soil vapor concentrations in the unsaturated soil zone.

If you have any questions on this submission, please call me at 973-883-8502.

Very truly yours,

AECOM Technical Services, Inc.

Paul Kaieth

Paul Kareth, P.G. Project Manager

Tables

TABLE 1152077 SERVALL LAUNDRYSUMMARY OF SOIL VAPOR INTRUSION SAMPLES

Location	Outdoor1	Indoor1	suhslah	suhslah	dunlicate
Sample ID			SV/1-1	SV/1-2	SV/1-2X
Lab Sample ID	140-22575-5	140-22575-4	140-22575-1	140-22575-2	140-22575-3
Lab Gampie ID Matrix	soil vapor				
Sample Date	3/31/21	3/31/21	3/31/21	3/31/21	3/31/21
Sample Date	$\frac{3}{3121}$	$\frac{3}{3121}$	$\frac{3}{3121}$	$\frac{3}{3121}$	$\begin{array}{c} 3/31/21\\ \end{array}$
1 1 1 Trichloroothana	0.44.11	4 4 11	2211	500 11	560 11
	0.44 0	1.1 0	2.2 0	500 U	
1,1,2,2-Tetrachioroethane		1.4 U	2.7 U	020 U	710 0
1, 1, 2-1 Inchioro-1, 2, 2-1 Innuoroethane	0.61 0	1.5 U	3.1 U	700 0	790 0
1, 1, 2-1 richloroethane	0.44 0	1.1 U	2.2 U	500 U	560 U
1,1-Dichloroethane	0.32 0	0.81 0	1.6 U	370 0	420 0
1,1-Dichloroethene	0.16 U	0.4 0	0.79 U	180 U	200 0
1,2,4-Irichlorobenzene	0.59 0	1.5 U	3.0 U	670 U	770 U
1,2,4-I rimethylbenzene	4.2	3.9	4.1	450 U	510 U
1,2-Dibromoethane (EDB)	0.61 U	1.5 U	3.1 U	700 U	790 U
1,2-Dichlorobenzene	0.48 U	1.2 U	2.4 U	550 UJ	620 UJ
1,2-Dichloroethane	0.32 U	0.81 U	1.6 U	370 U	420 U
1,2-Dichloropropane	0.37 U	0.92 U	1.8 U	420 U	480 U
1,2-Dichlorotetrafluoroethane	0.56 U	1.4 U	2.8 U	630 UJ	720 UJ
1,3,5-Trimethylbenzene	1.3	1.2	2.0 U	450 U	510 U
1,3-Dichlorobenzene	0.48 U	1.2 U	2.4 U	550 UJ	620 UJ
1,4-Dichlorobenzene	0.48 U	1.2 U	2.4 U	550 UJ	620 UJ
1,4-Dioxane	0.72 U	1.8 U	3.6 U	820 U	930 U
2,2,4-Trimethylpentane	17.0	16.0	13.0	1,100 U	1,200 U
Benzene	6.4	2.1	2.0	290 U	330 U
Benzyl chloride	0.83 U	2.1 U	4.1 U	940 UJ	1,100 UJ
Bromodichloromethane	0.54 U	1.3 U	2.7 U	610 U	690 U
Bromoform	0.83 U	2.1 U	4.1 U	940 U	1,100 U
Bromomethane	0.31 U	0.78 U	1.6 U	350 U	400 U
Carbon tetrachloride	0.42	0.5 U	1.0 U	230 UJ	260 UJ
Chlorobenzene	0.37 U	0.92 U	1.8 U	420 U	480 U
Chloroethane	0.21 U	0.53 U	1.1 U	240 U	270 U
Chloroform	0.39 U	0.98 U	2.0 U	440 U	500 U
Chloromethane	1.2	1.5	2.1 U	470 U	530 U
cis-1,2-Dichloroethene	0.16	0.4 U	0.79 U	640	650
cis-1,3-Dichloropropene	0.36 U	0.91 U	1.8 U	410 U	470 U
Cyclohexane	7.3	6.8	5.0	780 U	890 U
Dibromochloromethane	0.68 U	1.7 U	0.34 U	770 UJ	880 UJ
Dichlorodifluoromethane	0.9	1.4	13.0	450 UJ	510 UJ
Ethanol	290 D	180	250	4.300 U	4.900 U
Ethylbenzene	2.6	2.4	2.0	390 U	450 U
Hexachlorobutadiene	0.85 UJ	2.1 UJ	4.3 UJ	970 UJ	1.100 UJ
M.P-Xvlenes	8.8	8.1	6.3	390 U	450 U
Methyl Ethyl Ketone	3.0	24 U	47U	1 100 U	1 200 U
Methyl Isobutyl Ketone	1.7	2.0 U	4.1 U	930 U	1,100 U
Methylene chloride	3.2	35 U	690	1.600 U	1.800 U
Naphthalene	1.0 U	2.6 U	5.2 U	1,200 U	1,400 U
n-Hexane	9.5	8.2	5.7	800 U	910 U
o-Xylene	4.2	3.9	3.4	390 U	450 U

TABLE 1152077 SERVALL LAUNDRYSUMMARY OF SOIL VAPOR INTRUSION SAMPLES

Location	Outdoor1	Indoor1	subslab	subslab	duplicate
Sample ID	OD-1	ID-1	SV1-1	SV1-2	SV1-2X
Lab Sample ID	140-22575-5	140-22575-4	140-22575-1	140-22575-2	140-22575-3
Matrix	soil vapor				
Sample Date	3/31/21	3/31/21	3/31/21	3/31/21	3/31/21
	Conc. Q				
Styrene	0.34 U	0.85 U	1.7 U	390 U	440 U
tert-Butyl alcohol	7.2	5.3	4.9 U	1,100 U	1,300 U
Tert-Butyl Methyl Ether	0.58 U	1.4 U	2.9 U	650 U	740 U
Tetrachloroethene	69.0	64.0	90.0	46,000	47,000
Toluene	12.0	11.0	8.2	510 U	580 U
trans-1,2-Dichloroethene	1.3	0.79 U	1.6 U	360 U	410 U
trans-1,3-Dichloropropene	0.36 U	0.91 U	1.8 U	410 U	470 U
Trichloroethene	0.38	0.48 U	0.97 U	990	1,000
Trichlorofluoromethane	1.1	1.5	2.2 U	510 U	580 U
Vinyl chloride	0.1 U	0.26 U	0.51 U	120 U	130 U

Notes:

All concentrations in μ g/m³

BOLD - detected concentration

U - Not Detected

J - Estimated value

T - LCS and/or LCSD is outside acceptable limits, high baised

D - Dilution

Soil Vapor / Indoor Air Matrix A Soil Vapor / Indoor Air Matrix B Soil Vapor / Indoor Air Matrix C

Figures

LEGEND:

MW-16 MW-10

EXISTING MONITORING WELLS

DAMAGED OR MISSING MONITORING WELLS

Prepared by :						
SUBMITTED BY :						
PK/jk	MULTI SITE G - SERVALL LAUNDRY SITE SITE NO. 1-52-026					
DRAWN BY :		ITODINC V	VFLI			
SC	LOCATION MAP					
APPROVED BY :			-			
РК	DATE : AUGUST 2016	SCALE : AS SHOWN	DRAWING NO. :			

		Dray	ton Ave			2	1
1.	Lax Ret	1				AK	1
without the second		Strange P	and Pr	1.1		de	
All I	SV1-1	500	Fr a	1	and the second s		THE
Analyte (µg/m³)	3/31/21		1.05	100		aroni	
cis-1,2-Dichloroeth	nene 0.79 U		1 -	1			10000
Trichloroethene	90.0		A Barris & St.	1	The second		
Themologinene	0.97 0				The state of the s		
	PARE SEA			Rittad	THE PARTY OF	- 1	P.H
	1 States	SVI-1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.11	1 deter	4	1
	100000	A CALLER AND			1. A. 1. A.		
	ID-1			11111		2.73	
Analyte (µg/m³)	3/31/21	X ·		12210197	PER AL		1911 1
	64 0	\mathbf{A}		T LA	Without of L		R. L.
Trichloroethene	0.48 U			HA JCh	See MATTER	Sand	4
	100			5	RAN		
	And the second s	ID-I SVI-2		COMPACT IN		egend	
SV1-2	2 Duplicate			10.000	1.1.1	Logona	
Analyte (μg/m ³) 3/31/2 ⁻	1 3/31/21			NHE W	ALL P	🔺 Inc	loor Air Sample
Cis-1,2-Dichloroethene 64	40 650		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0308	🔺 Οι	Itdoor Air Sample
Trichloroethene 40,00	00 47,000 20 1,000			1000	A State of the second s		h Slah Samala
	1,000	OD-1		NEW	and -		
	OD-1			1 1 1 1 1	ALCONT NO.	0	SIVITOITIVE
Analyte (µg/m ³)	3/31/21	N. T N	and the second second	Prepared by:	Prepared for:	K STATE	N
cis-1,2-Dichloroeth	nene 0.16		and the second			MENT OF	
Tetrachloroethene	69.0		Comber 1		Multi Site G		
Trichloroethene	0.38		Want Rosting		ServAll Laundry	v Site	
	and the second	A LOS				d Outdoor	Air
IT IS INC.		The Stall	STATE OF ALL		Sampling Results M	larch 2021	All
TO TAKE			the set	Date:	Scale: 1 inch = 33 feet		Figure No. :

Attachment A

Canister Sampling Field Test Data Sheets

Sam	Site Location: Site Address: Field ID No: pling Date(s): hipping Date:	Serv All 1 8 DRAYI SV 3-	aundry #152077 ON AVE. BAY SHORE, NY 1 - 1 31-21 31-21	Siz Canis Flow (Job Number: e of Canister: fer Serial No: controller No:	2063/073 6L 7910 10443
			Samona	intormati	<u></u>	
	Temperature	MENT READING	6 (Ouiside)		SARIPLI	NG TIMES (24 bour cloud)
Stort		(T) Baroma	atric Pressure (inches of Hg)		Local Times	Elapsed Time Mater Door
Jan	50		50.43	Start	1015	24 HR
sop 1	33		30.18	Stop	1015	
	CANISTER PH	ESSURE (inches	s of Ha) From Gaune			
Start	and a constant of the second	-30	· ·		INTER	NOR TEMPERATURE °F
Stop		-5		Start		50
					the ,	E
Shippi fro Rec	FLOW BATE ing out m Lab xiving in Lab	S (mi/min) Flow	Laboration Controller Readout required (from lab record log) after return (if applicable only if changed)	V Informati Initial Pre (to Final Pre (trom	Ión CANISTEF Ssure field) Ssure	Signature/Title Investigator PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
Shippi fro Rec Data S Date I Indivi Batch	FLOW RATE ng out m Lab saving in Lab Shipped Out: Received Back: dual Canister Co dual Canister Co	S (mi/min) Flow S (mi/min) Flow Statistication (prov rovide Batch 104	Laborration Controller Readout required (from lab record log) after return (if applicable only if changed) ide File #): ;	y Information	Idii CANISTEF SSURE field) SSURE field)	Signature/Title Investigator IPRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
Shippi fro Rec Data s Data s Indivi Batch	FLOW RATE ng out m Lab in Lab in Lab Shipped Out: Received Back: dual Canister Generation (p	S (mi/min) Flow	Controller Readout required (from lab record log) after return (if applicable only if changed) ide File #):):	Y Information	Ión CANISTEF Ssure field) field)	Signature/Title Investigator IPRESSURE (Inches of Hg) required (from lab record log) after return required (from lab record log) after return.

TestAmerica Burlington

			Hald Toel Denies Stre		
3	Sile Localion: Se	WAII Launda #152	nonnalion		14 m
	Sile Address:	B DRANTON AND BALLEN	Job Number	60631073	
	Field ID No:	SVI-2	Size of Canister		1
Sam	pling Date(s);	3-31-21	Canister Serial No:	100-	37
9	hipping Date:	3-31 81	Flow Controller No.	883	0
		3-31-21			
4 - 24 4 See 25 4	ALARIENT	Sampling	Information.		
	Temperature (PF)	Readings (Outside)	SAT	PI INC TIMES (or a	
itart	50	Caromeanic Pressure (inches of Hg)	Local Tim	es Elect	our clock)
top	55		Start 10:02	Lidit	7/1 Ho
<u> </u>		30.18	Stop /0:07		ZAHR
	CANISTER PRESS	RE Garber of the Free Co			Manuary and a second state of the second state
tart		- 30	IP	TERIOR TEMPERA	
top		-/	Start	50	
		- 0	Stop	.55	
			11		
			K		
			-Ala		
				Signature/Title	
				investigator	
	and the second second			-	
สนักกรัก	FLOW RATES (ml/	nin) Flow Controller Readout	Information		
fron	ILab	required (from lab record	CANIS	TER PRESSURE (In	ches of Hg)
Rece	iving	(if applicable only if	(to field)		required (from lab record
1	ILAD	changed)	Final Pressure	Production of the State of the St	required (from lab record
		2			log) after return.
aia si	inned One				
año D.					
	waved rack		•		
uiviti	uai Ganister Geriifica	ion (provide File #):			
atch (Certification (provide	Batch ID#):			
	÷				4
		1 8 5 5 F	54 - 11 (94		4. 1 TO 10
	- 11 ¹²			Circuit	
				- TRANSFERRENT & STATE	
				GCAIS Amount	

BRFA1050:10.18.13:0 TestAmerica Burlington

. .

.e

4

And the second se			
Sile Location:	Serv All Laundar # 152077	Internation	
Site Address:	8 DRANTON AND BAN SUL OF	Job Number:	60631073
Field ID No:	SVI - 2 X	Size of Canister:	GL
Sampling Date(st	3-31-21	Canister Serial No:	8050
Shinning Date	3-31-21	Flow Controller No:	7403
Martin Contraction	Sampline	Information.	
Tompost	ABIENT READINGS (Outside)	SADD	
Plant CA	e ('F) Barometric Pressure (inches of Hg)	Local Times	s Closed -
	30.43	Start /bn2	Elapsed Time Meter Reading
Stop 55	30.18	Sinn 1002	ZYHRS
		1002	
GANUSIERI	PRESSURE (Inches of Hg) From Gauge	INT	
SIER	-30	Start	
Stop	-6	Sino	50
			55
		1000	
		AT	
			Simalwelling
		A	Signature/Title
		A	Signature/Title Investigator
	Laboration		Signature/Title Investigator
FLOW BAI	ES (ml/min) Flow Controller Readout		Signature/Title Investigator
FLOW RAT Shipping out from Lab	TES (ml/min) Flow Controller Readout required (from lab record	/Information CANIST	Signature/Title Investigator TER PRESSURE (Inches of Hg)
FLOW RAT Shipping out from Lab Receiving	ES (ml/min) Flow Controller Readout required (from lab record log) after return (fi amlicable only if	/Information CANIST Initial Pressure (to field)	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record loc) after miss
FLOW RAT Shipping out from Lab Receiving in Lab	ES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/ Information CANIST Initial Pressure (to field) Final Pressure	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record
FLOW RAT Shipping out from Lab Receiving in Lab	TES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/ Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
FLOW RAT Shipping out from Leb Receiving in Leb	ES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/ Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator TER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
FLOW PAI Shipping out from Lab Receiving in Lab : Data Shipped Out:	TES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
FLOW RAT Shipping out from Lab Receiving in Lab : Data Shipped Out: Data Received Back	ES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
FLOW RAI Shipping out from Lab Receiving in Lab : Data Shipped Out: Data Received Back Individual Canister	TES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (Inches of Hg) required (from lab record log) after return required (from lab record log) after return.
FLOW RAT Shipping out from Lab Receiving in Lab : Data Shipped Out: Date Received Back Individual Canister Batch Certification	ES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/ Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return
FLOW RAI Shipping out from Lab Receiving in Lab : Data Shipped Out: Data Shipped Out: Data Received Back Individual Canister (Batch Certification (ES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed) c	/ Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
FLOW PAN Shipping out from Lab Receiving in Lab : Data Shipped Out: Data Shipped Out: Data Received Back Individual Canister Batch Certification (ES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/ Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (Inches of Hg) required (from lab record log) after return required (from lab record log) after return
FLOW RAI Shipping out from Lab Receiving in Lab : Data Shipped Out: Data Shipped Out: Data Received Back Individual Canister (Batch Certification (ES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (inches of Hg) required (from lab record log) after return required (from lab record log) after return.
FLOW RAI Shipping out from Lab Receiving in Lab : Data Shipped Out: Data Shipped Out: Data Received Back Individual Canister Batch Certification (TES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if (if applicable only if changed)	/ Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator ER PRESSURE (Inches of Hg) required (from lab record log) after return required (from lab record log) after return
FLOW PAN Shipping out from Lab Receiving in Lab : Data Shipped Out: Data Shipped Out: Data Received Back Individual Canister Batch Certification (Laboration TES (ml/min) Flow Controller Readout required (from lab record log) after return (if applicable only if changed)	/ Information CANIST Initial Pressure (to field) Final Pressure (from field)	Signature/Title Investigator IER PRESSURE (Inches of Hg) required (from lab record log) after return required (from lab record log) after return

BRFAI050:10.18.13:0 TestAmerica Burlington

e .

Stills Learning, Serv. M. Learning, # US2011 Job Number: <u>GM3/073</u> Bried HD Re: <u>D-1</u> Sempoling Date: <u>COMISTER PRESSURE (Infor</u>				Same Contractor		
Site Address: B DeArrow Ave., ISAY Strade, AVY Fedd ID No: ID - 1 Sampling Dete(s): 3 - 31 - 21 Suppring Dets:	differentia	Sile Location: Se	NAIL Launda, #152077	110 (10 20)	OR	
Print ID No. Stap 10 - 2.1 Stap of Consister: CL Sampling Debiolog: 3 - 31 - 2.1 Four Controller No: 702.0 Suppling Debiolog: 3 - 31 - 2.1 Four Controller No: 702.0 Multiput reachings (Outlable) Saturpland Debiolog: 3 - 31 - 2.1 Saturpland Debiolog: Multiput reachings (Outlable) Saturpland Debiolog: Saturpland Debiolog: 702.0 Multiput reachings (Outlable) Saturpland Debiolog: Saturpland Debiolog: 702.0 Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Saturpland Debiolog: Satur		Site Address:	B Dearing In 13 2011		Job Number:	60631073
Sampling Delege: 3 - 3 - 2 Shipping Date: 3 - 3 - 2 Sector Controller No: 702.0 Austream resource (T) Sector Controller No: Step 5 5 3 0.18 Sector Processor Step 7000 Step 7000 Controller Processor 24 Hocs Step 7000 Step 7000 Step 7000 Step 7000 Step 7000 Step 7000 Step 55 Step 7000 Step 55 Step 55 Step	2.2 million from the	Field ID No:	TD-1	SI	ze of Canister-	64
Shipping Dets: 3 - 31 - 21 Four Controller No: 702.0 Stipping Dets: 3 - 31 - 21 Stipping Dets: 702.0 Stipping Dets: 702.0 Stipping Dets: Termposition (77) AMBIEWER PERADINGOS (Outside) Stipping Dets: Stipping Dets: Stipping Dets: Stipping Dets: Stipping Dets: Stipping Dets: OUTCOME STORE PERSONAL Environmentation Stipping Dets: OUTCOME STORE PERSONAL Environmentation Stipping Dets: CANDISTER PRESSUME (Inches of Hig) From Gauge MITERIOR TEINPERSONAL Environmentation Stipping Dets: Construction of High From Gauge MITERIOR TEINPERSONAL Environmentation Stipping Dets: Construction of High From Gauge Stipping Dets: EN	Sam	niing Dele/e)-	3-31 21	Cani	ister Serial Noc	34000.356
AUXIENT READINGS (Ordated) AUXIENT READINGS (Ordated) Start SO SO. 43 Start SO SO. 13 Start SO SO. 13 Start SO SO. 13 Start CLOST Times (Readers of Hig) From Gauge Start SO SO. 13 Start SO. 50 SO. 14 Start SO. 50 SO. 14 Start SO. 50 SO. 50 Start Solidate Controlier Readout <	s	hinning Date	3-51-21	Flow	Controller No:	702.0
Alignetic reactions Alignetic reactions Sampandure (FF) Barometic Pressure (inches of Hig) Sampandure (FF) Pressure (inches of Hig) From Gauge Bart 2.0 / 2.4 HeS Sampandure (FF) Sampandure (Inches of Hig) From Gauge Bart 2.0 / 2.4 HeS Sampandure (Inches of Hig) From Gauge Bart 2.0 / 2.4 HeS Sampandure (Inches of Hig) From Gauge Bart 2.0 / 2.0 / 4 HeS Sampandure (Inches of Hig) From Gauge Bart 2.0 / 2.0 / 4 HeS Sampandure (Inches of Hig) From Gauge Bart 1.0 / 0.0			3-31-21			
AUSPENDIT READINGS Statistical printing AUSPENDIT READINGS Statistical printing Statistical printing Statistical prini Statistical printing	12.9.15					
Imperature (F) Baromatic Pressure (inches of Hg) SAUPLING TRIES (28 hour chool) Stat SO SO 43 Stat SO SO 43 Stat SO SO 43 Stat SO SO 43 Stat SO 43 Stat Stat SO 43 Stat CAMISTER PRESSURE (inches of Hg) From Gauge Stat Stat Stat -30 Stat SO Stat -30 Stat SO Stat -6 Stat SO Stat SO SO SO Stat -30 Stat SO Stat SO SO SO Stat -6 SO SO Stat SO SO SO SO Stat -6 SO SO SO Stat SO SO SO SO Stat SO SO SO SO Statistics So SO SO SO <td><u>tha Color</u></td> <td>and the second second</td> <td>Sampling</td> <td>nomai</td> <td>inn.</td> <td></td>	<u>tha Color</u>	and the second second	Sampling	nomai	inn.	
Centrements (P) Berometric Pressure (inches of Hg) Start SO SO 43 Stop SS SO 2.4 H Stop SS SO 2.4 H CANUSTEER PRESSURE (inches of Hg) From Cauge Intel Times Time Mole Reading Start 30 Stop SO Start 30 Stop SO SO Start 6 Stop SO SO Start 6 Stop SO Stop Start 6 Stop So So Start So So So So So Start 6 Stop So So So Start So So So So So So Start 6 So So So So So Start So <		AMBIENT	READINGS (Ouiside)		CADE	DI BIO TINUNA (ALL
Start 5.0 30.43 Start Edged 1mme (Metr Reading Start 5.5 30.18 Start 2.4 Hcs CANISTER PRESSURE (Inches of Hig) From Gauge INTERIOR TEMPERATURE % 2 Start -30 Start 5.0 Stop -6 Start 5.0 2.4 Hcs Start -30 Start 5.0 2.4 Hcs Start 5.0 Start 5.0 3.0 Start 5.0 Start 5.0 Start 5.0 Stop -6 Start 5.0 Start 5.0 Start 5.0 Start 5.0 Start 5.0 Start 1.0 Start 5.0 Start 5.0 Start 1.0 1.0 1.0 1.0 1.0 1.0 Start 1.0	<u>a</u>	Temperature (°F)	Barometric Pressure (inches of Hg)		Local Times	CLINE INVES (24 hour clock)
Stop SS 30.18 NUMERIC TENTPERSONNE (Inches of Hig) Prom Gauge Stan -30 Stap -6 Stap <t< td=""><td>Start</td><td>50</td><td>30.43</td><td>Start</td><td>IDAS</td><td>Elapsed Time Meter Reading</td></t<>	Start	50	30.43	Start	IDAS	Elapsed Time Meter Reading
CANISTER PRESSURE (Inches of Hg) From Gauge Start -30 Stop -6	Stop	55	30.18	Stop	Inne	24 Hes
United for Pressure (inches of Hg) From Gauge Start -30 Stop -6 Stop -6 Start 500 Stop -6 Stop -55 Marcine 500 Stop -6 Stop -6 Stop -55 Marcine 55 Stop -55 Marcine 55 Stop -55 Stop -55 Marcine 55 Stop -55 Marcine -56 Stop -55 Marcine -56 Stop -55 Marcine -56 Stop -55 Marcine -56 Stop -57 Stop -57 Stop -56		CABICTED			1005	1
Stap -SO Stap -G Total Pressure -CANISTER PRESSURE (Inches of Hg) Initial Pressure -CANISTER PRESSURE (Inches of Hg) Indishidual Canister Cerilincation only if	Start		HE (Inches of Hg) From Gauge		INT	TERIOR TEMPERATURE
Sup 55 Junction Signature/Title Signature/Title Investigator Stopping out Signature/Title Stopping out Initial Pressure Stopping out Initial Pressure Initial Pressure required (from lab record (to field) Initial Pressure Initial Pressure Initial Pressure required (from lab record (to field) Data Shipped Out: Initial Pressure Data Shipped Out: Initial Pressure Bate Received Back: Initial Pressure Individual Cantister Cartification (provide File #): Signature/Title Signature/Title Signature/Title GC/NIS Analyst Signature/Title	Stan		-36	Start		50
June 1 June 1 Signature/Title Signature/Title Investigator Signature/Title Shiping out required (from lab record (og) after return Initial Pressure required (from lab record (from lab record (from lab record) Initial Pressure required (from lab record (from field) Data Shipped Out:	omh		- 6	Stop	-	55
Data Shipped Out: Data Shipped Out: <t< td=""><td></td><td></td><td></td><td>Contraction in the second s</td><td>11</td><td><u></u></td></t<>				Contraction in the second s	11	<u></u>
Data Shipped Out:					K	
Signature/Title Investigator Signature/Title Investigator Liebebredont Liebebredont CANISTER PRESSURE (inclues of Hg) Initial Pressure In Lab CANISTER PRESSURE (inclues of Hg) Initial Pressure In Lab CANISTER PRESSURE (inclues of Hg) Initial Pressure In Lab CANISTER PRESSURE (inclues of Hg) Data Shipped Out: Initial Pressure (from field) Data Received Back: Initial Pressure (from field) Data Shipped Out: Signature/Title GC/BIS Analyst					1hm	
Investigator Investigator Listicitation intervention Shipping out intervention CANISTER PRESSURE (inches of Hg) Name Initial Pressure required (from lab record in the record intervention Beceiving (if applicable only if changed) CANISTER PRESSURE (inches of Hg) Intervention intervention intervention intervention intervention intervention intervention intervention Data Shipped Out: Intervention intervention (provide File #): Intervention intervention intervention (provide File #): Intervention intervention intervention intervention intervention (provide Batch ID#): Batch Certification (provide Batch ID#): Signature/Title GC/NIS Analyst						Signature/Title
Laboration Information FLOW RATES (mi/min) Flow Controller Readout CANISTER PRESSURE (inches of Hg) Shipping out required (from lab record torn Lab Initial Pressure required (from lab record log) after return Receiving (if applicable only if changed) Initial Pressure required (from lab record log) after return Initial Pressure log) after return log) after return Data Shipped Out: required (from field) log) after return Data Shipped Out:						investigator
FLOW BATES (ml/min) How Controller Readout CANISTER PRESSURE (inches of Hg) Shipping out required (from lab record Initial Pressure log) after return Date Shipped Outs required (from lab record Batch Certification (provide File #): Signature/Title GO/INIS Analyst Signature/Title <td>14 . A</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	14 . A					-
Shipping out from Lab required (from lab record log) after return CANISTER PRESSURE (inches of Hg) Receiving in Lab (if applicable only if changed) Initial Pressure (from field) required (from lab record log) after return Data Shipped Outs (if onvide File if):		FLOW RATES (m)/	min) Flow Combot	Intórna	lión	
tom Lab tog) after return initial Pressure required (from lab record log) after return Receiving in Lab (if applicable only if changed) Final Pressure required (from lab record log) after return Data Shipped Out:	Shippi	ng out	required from tob many	-	CANIST	TER PRESSURE (inches of Ha)
In Lab (if applicable only if changed) Final Pressure (from field) log) after return required (from fab record log) after return. Data Shipped Out:	Rec	m Lab	log) after return	Initial Pr	essure	required (from lab recor
Unanged) (from field) required (rom lab record log) after return. Data Shipped Out:		in Lab	(if applicable only if	Final Pr	essure	log) after return
Data Shipped Out: Date Received Back: Individual Canister Certification (provide File #): Batch Certification (provide Batch ID#): Signature/Title GC/NIS Analyst	-		Griangeo)	(from	n field)	log) after return .
Data Shipped Out: Date Received Back: Individual Canister Certification (provide File #): Batch Certification (provide Batch ID#): Signature/Title GC/MIS Analyst						
Date Received Back:	Data S	Shipped Out:	-			
Individual Canister Certification (provide File #): Batch Certification (provide Batch ID#): Signature/Title GC/MIS Analyst	Date P	leceived Back:		-		
Batch Certification (provide Batch ID#): Signature/Title GC/MS Analyst	Individ	iual Canister Certifica	tion (provide File #-	2		
Signature/Title GC/MS Analyst	Batch	Certification (provide	Baich IDE-			
Signature/Title GC/MS Analyst			- new side for			
Signature/Title GC/MS Analyst						
Signature/Title GC/MS Analyst						8
Signature/Title GC/MS Analyst					an a	
GCANS Analyst			· · · ·			Signature/Title
	а. С.					GUIIIS Analyst

. #

e.

i'm.

BRFA1050:10.18.13:0 TestAmerica Burlington

	Site Location: 50	~ All Laundry # 152077	HOURISH	On the Street	
	Site Address: 8	DRANTTAL AVE BAY SHOP IN	23	Job Number:	6063/073
	Field ID No:	OD - 1	St	ze of Canister:	6L
Sam	pling Date(s):	3-31-21	Cani	ster Serial No:	11046
S	hipping Date:	3 31 21	Flow	Controller No:	12143
		3-3-21			
1998. 1998.					
	AMBIENT	PEADINGS (Ontrill)	Informat	ion	
	Temperature (°F)	Barometric Broastras Gashan attack	<u> </u>	SAMF	PLING TIMES (24 hour clock)
Start	50	So 112		Local Times	Elapsed Time Meter Reading
Stop	55	30.43	Start	1012	24 HRS
_oup]		30.18	Stop	1012	
	CANISTER PRESSU	RE (Inches of Ha) From Gaune			
Start		-30		INT	ERIOR TEMPERATURE °F
Stop		-6	Start		50
			Stop		55
				01	<i>P</i> .
				/A-	- Fal
				Vh-	tent
					Signature/Title
					nivesigator
			Table Long Cont		
	FLOW RATES (ml/	min) Flow Controller Readout	Intormal	ion	
Shippi	ng out	required (from lab record	Initial Pre	CANIST	ER PRESSURE (inches of Hg)
Rec	eiving	log) after return	(it	field)	required (from lab record
i	in Lab	(u applicable only if changed)	Final Pre	ssure	required (from lab record
		3-4		n tield)	log) after return.
Data S	hipped Out:				
Date F	leceived Back:		-		
Individ	lual Canister Certifica	tion (provide File #)-	.7		
Batch	Certification (provide	Batch ID#			
					*
					Circulture 1971
		in the second			
					Gums Analyst

4 1

. 8

1.4.1

BRFAI050:10.18.13:0 TestAmerica Burlington

Attachment B

DUSR

DATA USABILITY SUMMARY REPORT

For

ServAll Laundry #152077 AIR SAMPLES

VOA SDG No. 140-22575-1

Sampling Date: March 31, 2021

Submitted to:

AECOM 257 West Genesee Street Suite 400 Buffalo, New York, USA 716-856-5636

Prepared by: Environmental Occupational & Public Health Consultants Inc. (EOPHC) Environmental Data Validation Inc. (EDV, Inc.) 1326 Orangewood Ave Pittsburgh, PA 15216 (412) 341-5281

DATA USABILITY SUMMARY REPORT Organics USEPA REGION II

Site: <u>ServAll Laundry #152077</u> Client: <u>AECOM</u> SDG #: <u>140-22575-1</u> Date: <u>April 30, 2021</u>

Laboratory: Eurofins TestAmerica

Reviewer: D. McGuire

Sample Identification Table

Client Sample ID	Laboratory ID	Matrix	VOC
SV1-1	140-22575-1	Air	Х
SV1-2	140-22575-2	Air	Х
SV1-2X	140-22575-3	Air	Х
ID-1	140-22575-4	Air	Х
OD-1	140-22575-5	Air	Х

The data package contained five (5) air samples. The samples were analyzed via Method TO-15. The adherence of laboratory analytical performance to this method's analytical specifications was evaluated during the data validation process. The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (DER-10, 11/09). USEPA Region II standard operating procedures were used as guidance documents. According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, laboratory controls, surrogate recoveries, spike recoveries, and sample data.

The following Attachments are a part of this report— all validated Form 1s are presented in Attachment A. All Case Narrative and Chain of Custody (COC) records are presented in Attachment B.

All QC data were within quality control limits, except the following issues:

<u>Cover letter, Narrative and Data Reporting Forms (Form 1s)</u>: The deficiencies noted in the case narrative that affect data usability have been discussed in applicable sections. Data that have no impact on data usability are not discussed.

Chain of Custody (COC): All samples listed in the Sample Identification Table were present on the COC.

Preservation: Preservation was acceptable.

Holding Time: Holding times were within acceptable criterion for all samples.

Blanks Quality Control: There was no blank contamination present.

Calibration Quality Control: The following were qualified due to calibration issues;

DATA USABILITY SUMMARY REPORT Organics USEPA REGION II

Sample ID	Compound	Qualifier
SV1-2 SV1-2X	1,2-Dichlorotetrafluoroethane, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzyl chloride, Carbon tetrachloride, Dibromochloromethane, Dichlorodifluoromethane, Hexachlorobutadiene	UJ
SV1-1 ID-1 OD-1	Hexachlorobutadiene	UJ

Laboratory Control Sample (LCS): The recoveries were acceptable.

Surrogates: The recoveries were acceptable.

Internal Standards: All results were acceptable.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD): MS/MSD samples were not analyzed.

<u>Field Duplicate</u>: RPDs are calculated when both parent and duplicate sample report detects. The following RPDs were calculated;

Compound	Sample ID	Duplicate ID	RPD
	conc. (ug/mg3)	conc. (ug/mg3)	
	SV1-2	SV1-2X	
cis-1,2-Dichloroethene	640	650	1.55
Tetrachloroethene	46000	47000	2.15
Trichloroethene	990	1000	1.005

<u>Compound Quantitation:</u> Quantitations were acceptable. Sample OD-1 ethanol result shall be considered rejected (R) due to exceeding the calibration range. The diluted ethanol result shall be considered useable.

Tentatively Identified Compounds: Not Applicable.

<u>Additional Comments</u>: Some Form 1s and case narratives are reporting criteria out of QC limits. If data were impacted due to the deficiency, it is discussed in the DUSR and appropriate qualifier(s) applied. Therefore, all discussions in the DUSR relate to all conditions that affected data usability. When there are multiple analyses, the validator presents the best run (Attachment A).

<u>Data usability</u>: Data qualified with the "UJ" qualifier are to be used cautiously as they are estimated data with some quality control issues. Data qualified with the "J" qualifier are to be used cautiously as they are estimated data with some quality control issues. Data qualified with the "R" qualifier are not usable due to severe quality control issues. Data qualified with the "U" qualifier are usable at the reporting limit.

ATTACHMENT A

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-1	Lab Sample ID: 140-22575-1				
Matrix: Air	Lab File ID: RD08P101.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:15				
Sample wt/vol: 100(mL)	Date Analyzed: 04/08/2021 14:52				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		0.40	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		0.40	
79-00-5	1,1,2-Trichloroethane	133.41	ND		0.40	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		0.40	
75-34-3	1,1-Dichloroethane	98.96	ND		0.40	
75-35-4	1,1-Dichloroethene	96.94	ND		0.20	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		0.40	
95-63-6	1,2,4-Trimethylbenzene	120.20	0.83		0.40	
106-93-4	1,2-Dibromoethane	187.87	ND		0.40	
95-50-1	1,2-Dichlorobenzene	147.00	ND		0.40	
107-06-2	1,2-Dichloroethane	98.96	ND		0.40	
78-87-5	1,2-Dichloropropane	112.99	ND		0.40	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		0.40	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		0.40	
541-73-1	1,3-Dichlorobenzene	147.00	ND		0.40	
106-46-7	1,4-Dichlorobenzene	147.00	ND		0.40	
123-91-1	1,4-Dioxane	88.11	ND		1.0	
540-84-1	2,2,4-Trimethylpentane	114.23	2.8		1.0	
78-93-3	2-Butanone	72.11	ND		1.6	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		1.0	
71-43-2	Benzene	78.11	0.62		0.40	
100-44-7	Benzyl chloride	126.58	ND		0.80	
75-27-4	Bromodichloromethane	163.83	ND		0.40	
75-25-2	Bromoform	252.75	ND		0.40	
74-83-9	Bromomethane	94.94	ND		0.40	
56-23-5	Carbon tetrachloride	153.81	ND		0.16	
108-90-7	Chlorobenzene	112.56	ND		0.40	
75-00-3	Chloroethane	64.52	ND		0.40	
67-66-3	Chloroform	119.38	ND		0.40	
74-87-3	Chloromethane	50.49	ND		1.0	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.20	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.40	
110-82-7	Cyclohexane	84.16	1.4		1.0	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-1	Lab Sample ID: 140-22575-1				
Matrix: Air	Lab File ID: RD08P101.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:15				
Sample wt/vol: 100(mL)	Date Analyzed: 04/08/2021 14:52				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND		0.40	
75-71-8	Dichlorodifluoromethane	120.91	2.6		0.40	
64-17-5	Ethanol	46.07	130		10	
100-41-4	Ethylbenzene	106.17	0.46		0.40	
87-68-3	Hexachlorobutadiene	260.76	ND		0.40	UJ
110-54-3	Hexane	86.17	1.6		1.0	
1634-04-4	Methyl tert-butyl ether	88.15	ND		0.80	
75-09-2	Methylene Chloride	84.93	ND		2.0	
179601-23-1	m-Xylene & p-Xylene	106.17	1.5		0.40	
91-20-3	Naphthalene	128.17	ND		1.0	
95-47-6	o-Xylene	106.17	0.78		0.40	
100-42-5	Styrene	104.15	ND		0.40	
75-65-0	t-Butyl alcohol	74.12	ND		1.6	
127-18-4	Tetrachloroethene	165.83	13		0.40	
108-88-3	Toluene	92.14	2.2		0.60	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		0.40	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.40	
70.01.0	e	121 20	ND		0.10	
79-01-0	TITCHIOFOethene	107.07	ND		0.18	
/5-69-4	Trichlorofluoromethane	13/.3/	ND		0.40	
75-01-4	Vinyl chloride	62.50	ND		0.20	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	102		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-1	Lab Sample ID: 140-22575-1				
Matrix: Air	Lab File ID: RD08P101.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:15				
Sample wt/vol: 100(mL)	Date Analyzed: 04/08/2021 14:52				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		2.2	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		2.7	
79-00-5	1,1,2-Trichloroethane	133.41	ND		2.2	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		3.1	
75-34-3	1,1-Dichloroethane	98.96	ND		1.6	
75-35-4	1,1-Dichloroethene	96.94	ND		0.79	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		3.0	
95-63-6	1,2,4-Trimethylbenzene	120.20	4.1		2.0	
106-93-4	1,2-Dibromoethane	187.87	ND		3.1	
95-50-1	1,2-Dichlorobenzene	147.00	ND		2.4	
107-06-2	1,2-Dichloroethane	98.96	ND		1.6	
78-87-5	1,2-Dichloropropane	112.99	ND		1.8	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		2.8	
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		2.0	
541-73-1	1,3-Dichlorobenzene	147.00	ND		2.4	
106-46-7	1,4-Dichlorobenzene	147.00	ND		2.4	
123-91-1	1,4-Dioxane	88.11	ND		3.6	
540-84-1	2,2,4-Trimethylpentane	114.23	13		4.7	
78-93-3	2-Butanone	72.11	ND		4.7	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		4.1	
71-43-2	Benzene	78.11	2.0		1.3	
100-44-7	Benzyl chloride	126.58	ND		4.1	
75-27-4	Bromodichloromethane	163.83	ND		2.7	
75-25-2	Bromoform	252.75	ND		4.1	
74-83-9	Bromomethane	94.94	ND		1.6	
56-23-5	Carbon tetrachloride	153.81	ND		1.0	
108-90-7	Chlorobenzene	112.56	ND		1.8	
75-00-3	Chloroethane	64.52	ND		1.1	
67-66-3	Chloroform	119.38	ND		2.0	
74-87-3	Chloromethane	50.49	ND		2.1	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.79	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		1.8	
110-82-7	Cyclohexane	84.16	5.0		3.4	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-1	Lab Sample ID: 140-22575-1				
Matrix: Air	Lab File ID: RD08P101.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:15				
Sample wt/vol: 100(mL)	Date Analyzed: 04/08/2021 14:52				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND		3.4	
75-71-8	Dichlorodifluoromethane	120.91	13		2.0	
64-17-5	Ethanol	46.07	250		19	
100-41-4	Ethylbenzene	106.17	2.0		1.7	
87-68-3	Hexachlorobutadiene	260.76	ND		4.3	UJ
110-54-3	Hexane	86.17	5.7		3.5	
1634-04-4	Methyl tert-butyl ether	88.15	ND		2.9	
75-09-2	Methylene Chloride	84.93	ND		6.9	
179601-23-1	m-Xylene & p-Xylene	106.17	6.3		1.7	
91-20-3	Naphthalene	128.17	ND		5.2	
95-47-6	o-Xylene	106.17	3.4		1.7	
100-42-5	Styrene	104.15	ND		1.7	
75-65-0	t-Butyl alcohol	74.12	ND		4.9	
127-18-4	Tetrachloroethene	165.83	90		2.7	
108-88-3	Toluene	92.14	8.2		2.3	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		1.6	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		1.8	
79-01-6	e Trichloroethene	131 39	ND		0.97	
75-69-4	Trichlorofluoromethane	137 37			2.2	
75-01-4	Vinyl chloride	62.50	ND		0.51	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	102		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1		
SDG No.:			
Client Sample ID: SV1-2	Lab Sample ID: 140-22575-2		
Matrix: Air	Lab File ID: SD07P115.D		
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 1	0:02	
Sample wt/vol: 15(mL)	Date Analyzed: 04/08/2021 02	:39	
Soil Aliquot Vol:	Dilution Factor: 34.04		
Soil Extract Vol.:	GC Column: RTX-5 ID	: 0.32(mm)	
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 48523	Units: ppb v/v		

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		91	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		91	
79-00-5	1,1,2-Trichloroethane	133.41	ND		91	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		91	
75-34-3	1,1-Dichloroethane	98.96	ND		91	
75-35-4	1,1-Dichloroethene	96.94	ND		45	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		91	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		91	
106-93-4	1,2-Dibromoethane	187.87	ND		91	
95-50-1	1,2-Dichlorobenzene	147.00	ND	*+	91	UJ
107-06-2	1,2-Dichloroethane	98.96	ND		91	
78-87-5	1,2-Dichloropropane	112.99	ND		91	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		91	UJ
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		91	
541-73-1	1,3-Dichlorobenzene	147.00	ND	*	91	UJ
106-46-7	1,4-Dichlorobenzene	147.00	ND	**	91	UJ
123-91-1	1,4-Dioxane	88.11	ND		230	
540-84-1	2,2,4-Trimethylpentane	114.23	ND		230	
78-93-3	2-Butanone	72.11	ND		360	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		230	
71-43-2	Benzene	78.11	ND		91	
100-44-7	Benzyl chloride	126.58	ND	*+	180	UJ
75-27-4	Bromodichloromethane	163.83	ND		91	
75-25-2	Bromoform	252.75	ND		91	
74-83-9	Bromomethane	94.94	ND		91	
56-23-5	Carbon tetrachloride	153.81	ND	*	36	UJ
108-90-7	Chlorobenzene	112.56	ND		91	
75-00-3	Chloroethane	64.52	ND		91	
67-66-3	Chloroform	119.38	ND		91	
74-87-3	Chloromethane	50.49	ND		230	
156-59-2	cis-1,2-Dichloroethene	96.94	160		45	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		91	
110-82-7	Cyclohexane	84.16	ND		230	

Lab Name: Eurofins TestAmerica, Knoxville	ville Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-2	Lab Sample ID: 140-22575-2				
Matrix: Air	Lab File ID: SD07P115.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:02				
Sample wt/vol: 15(mL)	Date Analyzed: 04/08/2021 02:39				
Soil Aliquot Vol:	Dilution Factor: 34.04				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48523	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND	*+	91	UJ
75-71-8	Dichlorodifluoromethane	120.91	ND	*+	91	UJ
64-17-5	Ethanol	46.07	ND		2300	
100-41-4	Ethylbenzene	106.17	ND		91	
87-68-3	Hexachlorobutadiene	260.76	ND	*+	91	UJ
110-54-3	Hexane	86.17	ND		230	
1634-04-4	Methyl tert-butyl ether	88.15	ND		180	
75-09-2	Methylene Chloride	84.93	ND		450	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		91	
91-20-3	Naphthalene	128.17	ND		230	
95-47-6	o-Xylene	106.17	ND		91	
100-42-5	Styrene	104.15	ND		91	
75-65-0	t-Butyl alcohol	74.12	ND		360	
127-18-4	Tetrachloroethene	165.83	6800		91	
108-88-3	Toluene	92.14	ND		140	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		91	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		91	
70.01.0	e	121 20	100		4.1	
/9-01-0	Trichloroethene	131.39	180		41	
75-69-4	Trichlorofluoromethane	137.37	ND		91	
75-01-4	Vinyl chloride	62.50	ND		45	

CAS NO.	SURROGATE		Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	101		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-2	Lab Sample ID: 140-22575-2				
Matrix: Air	Lab File ID: SD07P115.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:02				
Sample wt/vol: 15(mL)	Date Analyzed: 04/08/2021 02:39				
Soil Aliquot Vol:	Dilution Factor: 34.04				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48523	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		500	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		620	
79-00-5	1,1,2-Trichloroethane	133.41	ND		500	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		700	
75-34-3	1,1-Dichloroethane	98.96	ND		370	
75-35-4	1,1-Dichloroethene	96.94	ND		180	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		670	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		450	
106-93-4	1,2-Dibromoethane	187.87	ND		700	
95-50-1	1,2-Dichlorobenzene	147.00	ND	*	550	UJ
107-06-2	1,2-Dichloroethane	98.96	ND		370	
78-87-5	1,2-Dichloropropane	112.99	ND		420	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		630	UJ
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		450	
541-73-1	1,3-Dichlorobenzene	147.00	ND	**	550	UJ
106-46-7	1,4-Dichlorobenzene	147.00	ND	*	550	UJ
123-91-1	1,4-Dioxane	88.11	ND		820	
540-84-1	2,2,4-Trimethylpentane	114.23	ND		1100	
78-93-3	2-Butanone	72.11	ND		1100	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		930	
71-43-2	Benzene	78.11	ND		290	
100-44-7	Benzyl chloride	126.58	ND	*+	940	UJ
75-27-4	Bromodichloromethane	163.83	ND		610	
75-25-2	Bromoform	252.75	ND		940	
74-83-9	Bromomethane	94.94	ND		350	
56-23-5	Carbon tetrachloride	153.81	ND	*+	230	UJ
108-90-7	Chlorobenzene	112.56	ND		420	
75-00-3	Chloroethane	64.52	ND		240	
67-66-3	Chloroform	119.38	ND		440	
74-87-3	Chloromethane	50.49	ND		470	
156-59-2	cis-1,2-Dichloroethene	96.94	640		180	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		410	
110-82-7	Cyclohexane	84.16	ND		780	

Lab Name: Eurofins TestAmerica, Knoxville	Knoxville Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-2	Lab Sample ID: 140-22575-2				
Matrix: Air	Lab File ID: SD07P115.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:02				
Sample wt/vol: 15(mL)	Date Analyzed: 04/08/2021 02:39				
Soil Aliquot Vol:	Dilution Factor: 34.04				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48523	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND	*+	770	UJ
75-71-8	Dichlorodifluoromethane	120.91	ND	*+	450	UJ
64-17-5	Ethanol	46.07	ND		4300	
100-41-4	Ethylbenzene	106.17	ND		390	
87-68-3	Hexachlorobutadiene	260.76	ND	*+	970	UJ
110-54-3	Hexane	86.17	ND		800	
1634-04-4	Methyl tert-butyl ether	88.15	ND		650	
75-09-2	Methylene Chloride	84.93	ND		1600	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		390	
91-20-3	Naphthalene	128.17	ND		1200	
95-47-6	o-Xylene	106.17	ND		390	
100-42-5	Styrene	104.15	ND		390	
75-65-0	t-Butyl alcohol	74.12	ND		1100	
127-18-4	Tetrachloroethene	165.83	46000		620	
108-88-3	Toluene	92.14	ND		510	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		360	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		410	
70.01.0	e	121 20	0.0.0		220	
/9-01-6	Trichloroethene	131.39	990		220	
/5-69-4	'l'richlorofluoromethane	137.37	ND		510	
75-01-4	Vinyl chloride	62.50	ND		120	

CAS NO.	SURROGATE		Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	101		60-140

ab Name: Eurofins TestAmerica, Knoxville Job No.: 140-22575-1					
SDG No.:					
Client Sample ID: SV1-2X	Lab Sample ID: 140-22575-3				
Matrix: Air	Lab File ID: SD07P110.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:02				
Sample wt/vol: 15(mL)	Date Analyzed: 04/07/2021 22:51				
Soil Aliquot Vol:	Dilution Factor: 38.73				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48523	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		100	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		100	
79-00-5	1,1,2-Trichloroethane	133.41	ND		100	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		100	
75-34-3	1,1-Dichloroethane	98.96	ND		100	
75-35-4	1,1-Dichloroethene	96.94	ND		52	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		100	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		100	
106-93-4	1,2-Dibromoethane	187.87	ND		100	
95-50-1	1,2-Dichlorobenzene	147.00	ND	**	100	UJ
107-06-2	1,2-Dichloroethane	98.96	ND		100	
78-87-5	1,2-Dichloropropane	112.99	ND		100	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		100	UJ
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		100	
541-73-1	1,3-Dichlorobenzene	147.00	ND	*	100	UJ
106-46-7	1,4-Dichlorobenzene	147.00	ND	*+	100	U.T
123-91-1	1,4-Dioxane	88.11	ND		260	
540-84-1	2,2,4-Trimethylpentane	114.23	ND		260	
78-93-3	2-Butanone	72.11	ND		410	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		260	
71-43-2	Benzene	78.11	ND		100	
100-44-7	Benzyl chloride	126.58	ND	*+	210	UJ
75-27-4	Bromodichloromethane	163.83	ND		100	
75-25-2	Bromoform	252.75	ND		100	
74-83-9	Bromomethane	94.94	ND		100	
56-23-5	Carbon tetrachloride	153.81	ND	*+	41	UJ
108-90-7	Chlorobenzene	112.56	ND	·	100	
75-00-3	Chloroethane	64.52	ND		100	
67-66-3	Chloroform	119.38	ND		100	
74-87-3	Chloromethane	50.49	ND		260	
156-59-2	cis-1,2-Dichloroethene	96.94	160		52	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		100	
110-82-7	Cyclohexane	84.16	ND		260	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-2X	Lab Sample ID: 140-22575-3				
Matrix: Air	Lab File ID: SD07P110.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:02				
Sample wt/vol: 15(mL)	Date Analyzed: 04/07/2021 22:51				
Soil Aliquot Vol:	Dilution Factor: 38.73				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48523	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND	*+	100	UJ
75-71-8	Dichlorodifluoromethane	120.91	ND	*	100	UJ
64-17-5	Ethanol	46.07	ND		2600	
100-41-4	Ethylbenzene	106.17	ND		100	
87-68-3	Hexachlorobutadiene	260.76	ND	*+	100	UJ
110-54-3	Hexane	86.17	ND		260	
1634-04-4	Methyl tert-butyl ether	88.15	ND		210	
75-09-2	Methylene Chloride	84.93	ND		520	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		100	
91-20-3	Naphthalene	128.17	ND		260	
95-47-6	o-Xylene	106.17	ND		100	
100-42-5	Styrene	104.15	ND		100	
75-65-0	t-Butyl alcohol	74.12	ND		410	
127-18-4	Tetrachloroethene	165.83	6900		100	
108-88-3	Toluene	92.14	ND		150	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		100	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		100	
BO 01	e	101.00	100		1.6	
/9-01-6	'l'richloroethene	131.39	190		46	
75-69-4	Trichlorofluoromethane	137.37	ND		100	
75-01-4	Vinyl chloride	62.50	ND		52	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	100		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-2X	Lab Sample ID: 140-22575-3				
Matrix: Air	Lab File ID: SD07P110.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:02				
Sample wt/vol: 15(mL)	Date Analyzed: 04/07/2021 22:51				
Soil Aliquot Vol:	Dilution Factor: 38.73				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48523	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		560	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		710	
79-00-5	1,1,2-Trichloroethane	133.41	ND		560	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		790	
75-34-3	1,1-Dichloroethane	98.96	ND		420	
75-35-4	1,1-Dichloroethene	96.94	ND		200	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		770	
95-63-6	1,2,4-Trimethylbenzene	120.20	ND		510	
106-93-4	1,2-Dibromoethane	187.87	ND		790	
95-50-1	1,2-Dichlorobenzene	147.00	ND	**	620	UJ
107-06-2	1,2-Dichloroethane	98.96	ND		420	
78-87-5	1,2-Dichloropropane	112.99	ND		480	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		720	UJ
108-67-8	1,3,5-Trimethylbenzene	120.20	ND		510	
541-73-1	1,3-Dichlorobenzene	147.00	ND	Mt.	620	UJ
106-46-7	1,4-Dichlorobenzene	147.00	ND	*+	620	UJ
123-91-1	1,4-Dioxane	88.11	ND		930	
540-84-1	2,2,4-Trimethylpentane	114.23	ND		1200	
78-93-3	2-Butanone	72.11	ND		1200	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		1100	
71-43-2	Benzene	78.11	ND		330	
100-44-7	Benzyl chloride	126.58	ND	*	1100	UJ
75-27-4	Bromodichloromethane	163.83	ND		690	
75-25-2	Bromoform	252.75	ND		1100	
74-83-9	Bromomethane	94.94	ND		400	
56-23-5	Carbon tetrachloride	153.81	ND	**	260	UJ
108-90-7	Chlorobenzene	112.56	ND		480	
75-00-3	Chloroethane	64.52	ND		270	
67-66-3	Chloroform	119.38	ND		500	
74-87-3	Chloromethane	50.49	ND		530	
156-59-2	cis-1,2-Dichloroethene	96.94	650		200	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		470	
110-82-7	Cyclohexane	84.16	ND		890	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: SV1-2X	Lab Sample ID: 140-22575-3				
Matrix: Air	Lab File ID: SD07P110.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:02				
Sample wt/vol: 15(mL)	Date Analyzed: 04/07/2021 22:51				
Soil Aliquot Vol:	Dilution Factor: 38.73				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48523	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND	*	880	UJ
75-71-8	Dichlorodifluoromethane	120.91	ND	**	510	UJ
64-17-5	Ethanol	46.07	ND		4900	
100-41-4	Ethylbenzene	106.17	ND		450	
87-68-3	Hexachlorobutadiene	260.76	ND	*+	1100	UJ
110-54-3	Hexane	86.17	ND		910	
1634-04-4	Methyl tert-butyl ether	88.15	ND		740	
75-09-2	Methylene Chloride	84.93	ND		1800	
179601-23-1	m-Xylene & p-Xylene	106.17	ND		450	
91-20-3	Naphthalene	128.17	ND		1400	
95-47-6	o-Xylene	106.17	ND		450	
100-42-5	Styrene	104.15	ND		440	
75-65-0	t-Butyl alcohol	74.12	ND		1300	
127-18-4	Tetrachloroethene	165.83	47000		700	
108-88-3	Toluene	92.14	ND		580	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		410	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		470	
70.01.0	e	101.00	1000		0.5.0	
/9-01-6	Trichloroethene	131.39	1000		250	
75-69-4	Trichlorofluoromethane	137.37	ND		580	
75-01-4	Vinyl chloride	62.50	ND		130	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	100		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: ID-1	Lab Sample ID: 140-22575-4				
Matrix: Air	Lab File ID: RD08P102.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:05				
Sample wt/vol: 200(mL)	Date Analyzed: 04/08/2021 15:42				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		0.20	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		0.20	
79-00-5	1,1,2-Trichloroethane	133.41	ND		0.20	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		0.20	
75-34-3	1,1-Dichloroethane	98.96	ND		0.20	
75-35-4	1,1-Dichloroethene	96.94	ND		0.10	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		0.20	
95-63-6	1,2,4-Trimethylbenzene	120.20	0.79		0.20	
106-93-4	1,2-Dibromoethane	187.87	ND		0.20	
95-50-1	1,2-Dichlorobenzene	147.00	ND		0.20	
107-06-2	1,2-Dichloroethane	98.96	ND		0.20	
78-87-5	1,2-Dichloropropane	112.99	ND		0.20	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		0.20	
108-67-8	1,3,5-Trimethylbenzene	120.20	0.25		0.20	
541-73-1	1,3-Dichlorobenzene	147.00	ND		0.20	
106-46-7	1,4-Dichlorobenzene	147.00	ND		0.20	
123-91-1	1,4-Dioxane	88.11	ND		0.50	
540-84-1	2,2,4-Trimethylpentane	114.23	3.4		0.50	
78-93-3	2-Butanone	72.11	ND		0.80	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		0.50	
71-43-2	Benzene	78.11	0.65		0.20	
100-44-7	Benzyl chloride	126.58	ND		0.40	
75-27-4	Bromodichloromethane	163.83	ND		0.20	
75-25-2	Bromoform	252.75	ND		0.20	
74-83-9	Bromomethane	94.94	ND		0.20	
56-23-5	Carbon tetrachloride	153.81	ND		0.080	
108-90-7	Chlorobenzene	112.56	ND		0.20	
75-00-3	Chloroethane	64.52	ND		0.20	
67-66-3	Chloroform	119.38	ND		0.20	
74-87-3	Chloromethane	50.49	0.72		0.50	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.10	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.20	
110-82-7	Cyclohexane	84.16	2.0		0.50	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: ID-1	Lab Sample ID: 140-22575-4				
Matrix: Air	Lab File ID: RD08P102.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:05				
Sample wt/vol: 200(mL)	Date Analyzed: 04/08/2021 15:42				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND		0.20	
75-71-8	Dichlorodifluoromethane	120.91	0.28		0.20	
64-17-5	Ethanol	46.07	94		5.0	
100-41-4	Ethylbenzene	106.17	0.56		0.20	
87-68-3	Hexachlorobutadiene	260.76	ND		0.20	UJ
110-54-3	Hexane	86.17	2.3		0.50	
1634-04-4	Methyl tert-butyl ether	88.15	ND		0.40	
75-09-2	Methylene Chloride	84.93	ND		1.0	
179601-23-1	m-Xylene & p-Xylene	106.17	1.9		0.20	
91-20-3	Naphthalene	128.17	ND		0.50	
95-47-6	o-Xylene	106.17	0.90		0.20	
100-42-5	Styrene	104.15	ND		0.20	
75-65-0	t-Butyl alcohol	74.12	1.8		0.80	
127-18-4	Tetrachloroethene	165.83	9.5		0.20	
108-88-3	Toluene	92.14	2.9		0.30	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		0.20	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.20	
FO 01 C	e	101.00			0.000	
/9-01-6	Trichloroethene	131.39	ND		0.090	
75-69-4	Trichlorofluoromethane	137.37	0.27		0.20	
75-01-4	Vinyl chloride	62.50	ND		0.10	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	103		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: ID-1	Lab Sample ID: 140-22575-4				
Matrix: Air	Lab File ID: RD08P102.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:05				
Sample wt/vol: 200(mL)	Date Analyzed: 04/08/2021 15:42				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		1.1	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		1.4	
79-00-5	1,1,2-Trichloroethane	133.41	ND		1.1	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		1.5	
75-34-3	1,1-Dichloroethane	98.96	ND		0.81	
75-35-4	1,1-Dichloroethene	96.94	ND		0.40	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		1.5	
95-63-6	1,2,4-Trimethylbenzene	120.20	3.9		0.98	
106-93-4	1,2-Dibromoethane	187.87	ND		1.5	
95-50-1	1,2-Dichlorobenzene	147.00	ND		1.2	
107-06-2	1,2-Dichloroethane	98.96	ND		0.81	
78-87-5	1,2-Dichloropropane	112.99	ND		0.92	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		1.4	
108-67-8	1,3,5-Trimethylbenzene	120.20	1.2		0.98	
541-73-1	1,3-Dichlorobenzene	147.00	ND		1.2	
106-46-7	1,4-Dichlorobenzene	147.00	ND		1.2	
123-91-1	1,4-Dioxane	88.11	ND		1.8	
540-84-1	2,2,4-Trimethylpentane	114.23	16		2.3	
78-93-3	2-Butanone	72.11	ND		2.4	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	ND		2.0	
71-43-2	Benzene	78.11	2.1		0.64	
100-44-7	Benzyl chloride	126.58	ND		2.1	
75-27-4	Bromodichloromethane	163.83	ND		1.3	
75-25-2	Bromoform	252.75	ND		2.1	
74-83-9	Bromomethane	94.94	ND		0.78	
56-23-5	Carbon tetrachloride	153.81	ND		0.50	
108-90-7	Chlorobenzene	112.56	ND		0.92	
75-00-3	Chloroethane	64.52	ND		0.53	
67-66-3	Chloroform	119.38	ND		0.98	
74-87-3	Chloromethane	50.49	1.5		1.0	
156-59-2	cis-1,2-Dichloroethene	96.94	ND		0.40	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.91	
110-82-7	Cyclohexane	84.16	6.8		1.7	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1			
SDG No.:				
Client Sample ID: ID-1	Lab Sample ID: 140-22575-4			
Matrix: Air	Lab File ID: RD08P102.D			
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:05			
Sample wt/vol: 200(mL)	Date Analyzed: 04/08/2021 15:42			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 48569	Units: ug/m3			

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND		1.7	
75-71-8	Dichlorodifluoromethane	120.91	1.4		0.99	
64-17-5	Ethanol	46.07	180		9.4	
100-41-4	Ethylbenzene	106.17	2.4		0.87	
87-68-3	Hexachlorobutadiene	260.76	ND		2.1	UJ
110-54-3	Hexane	86.17	8.2		1.8	
1634-04-4	Methyl tert-butyl ether	88.15	ND		1.4	
75-09-2	Methylene Chloride	84.93	ND		3.5	
179601-23-1	m-Xylene & p-Xylene	106.17	8.1		0.87	
91-20-3	Naphthalene	128.17	ND		2.6	
95-47-6	o-Xylene	106.17	3.9		0.87	
100-42-5	Styrene	104.15	ND		0.85	
75-65-0	t-Butyl alcohol	74.12	5.3		2.4	
127-18-4	Tetrachloroethene	165.83	64		1.4	
108-88-3	Toluene	92.14	11		1.1	
156-60-5	trans-1,2-Dichloroethene	96.94	ND		0.79	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.91	
	e	101.00				
79-01-6	Trichloroethene	131.39	ND		0.48	
75-69-4	Trichlorofluoromethane	137.37	1.5		1.1	
75-01-4	Vinyl chloride	62.50	ND		0.26	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	103		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: OD-1	Lab Sample ID: 140-22575-5				
Matrix: Air	Lab File ID: RD08P103.D				
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:12				
Sample wt/vol: 500(mL)	Date Analyzed: 04/08/2021 16:34				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		0.080	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		0.080	
79-00-5	1,1,2-Trichloroethane	133.41	ND		0.080	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		0.080	
75-34-3	1,1-Dichloroethane	98.96	ND		0.080	
75-35-4	1,1-Dichloroethene	96.94	ND		0.040	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		0.080	
95-63-6	1,2,4-Trimethylbenzene	120.20	0.85		0.080	
106-93-4	1,2-Dibromoethane	187.87	ND		0.080	
95-50-1	1,2-Dichlorobenzene	147.00	ND		0.080	
107-06-2	1,2-Dichloroethane	98.96	ND		0.080	
78-87-5	1,2-Dichloropropane	112.99	ND		0.080	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		0.080	
108-67-8	1,3,5-Trimethylbenzene	120.20	0.26		0.080	
541-73-1	1,3-Dichlorobenzene	147.00	ND		0.080	
106-46-7	1,4-Dichlorobenzene	147.00	ND		0.080	
123-91-1	1,4-Dioxane	88.11	ND		0.20	
540-84-1	2,2,4-Trimethylpentane	114.23	3.5		0.20	
78-93-3	2-Butanone	72.11	1.0		0.32	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	0.41		0.20	
71-43-2	Benzene	78.11	2.0		0.080	
100-44-7	Benzyl chloride	126.58	ND		0.16	
75-27-4	Bromodichloromethane	163.83	ND		0.080	
75-25-2	Bromoform	252.75	ND		0.080	
74-83-9	Bromomethane	94.94	ND		0.080	
56-23-5	Carbon tetrachloride	153.81	0.067		0.032	
108-90-7	Chlorobenzene	112.56	ND		0.080	
75-00-3	Chloroethane	64.52	ND		0.080	
67-66-3	Chloroform	119.38	ND		0.080	
74-87-3	Chloromethane	50.49	0.59		0.20	
156-59-2	cis-1,2-Dichloroethene	96.94	0.042		0.040	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.080	
110-82-7	Cyclohexane	84.16	2.1		0.20	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1			
SDG No.:				
Client Sample ID: OD-1	Lab Sample ID: 140-22575-5			
Matrix: Air	Lab File ID: RD08P103.D			
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:12			
Sample wt/vol: 500(mL)	Date Analyzed: 04/08/2021 16:34			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 48569	Units: ppb v/v			

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND		0.080	
75-71-8	Dichlorodifluoromethane	120.91	0.18		0.080	
64-17-5	Ethanol	46.07	130	E	2.0	R
100-41-4	Ethylbenzene	106.17	0.60		0.080	
87-68-3	Hexachlorobutadiene	260.76	ND		0.080	UJ
110-54-3	Hexane	86.17	2.7		0.20	
1634-04-4	Methyl tert-butyl ether	88.15	ND		0.16	
75-09-2	Methylene Chloride	84.93	0.91		0.40	
179601-23-1	m-Xylene & p-Xylene	106.17	2.0		0.080	
91-20-3	Naphthalene	128.17	ND		0.20	
95-47-6	o-Xylene	106.17	0.96		0.080	
100-42-5	Styrene	104.15	ND		0.080	
75-65-0	t-Butyl alcohol	74.12	2.4		0.32	
127-18-4	Tetrachloroethene	165.83	10		0.080	
108-88-3	Toluene	92.14	3.2		0.12	
156-60-5	trans-1,2-Dichloroethene	96.94	0.32		0.080	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.080	
70.01.0	e	121 20	0 071		0.020	
/9-01-0	Trichloroethene	131.39	0.071		0.036	
/5-69-4	'l'richlorofluoromethane	137.37	0.19		0.080	
75-01-4	Vinyl chloride	62.50	ND		0.040	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	107		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1				
SDG No.:					
Client Sample ID: OD-1	Lab Sample ID: <u>140-22575-5</u>				
Matrix: Air	Lab File ID: RD08P103.D				
Analysis Method: <u>TO 15 LL</u>	Date Collected: 03/31/2021 10:12				
Sample wt/vol: 500(mL)	Date Analyzed: 04/08/2021 16:34				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-5</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 48569	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	133.41	ND		0.44	
79-34-5	1,1,2,2-Tetrachloroethan e	167.85	ND		0.55	
79-00-5	1,1,2-Trichloroethane	133.41	ND		0.44	
76-13-1	1,1,2-Trichlorotrifluoro ethane	187.38	ND		0.61	
75-34-3	1,1-Dichloroethane	98.96	ND		0.32	
75-35-4	1,1-Dichloroethene	96.94	ND		0.16	
120-82-1	1,2,4-Trichlorobenzene	181.45	ND		0.59	
95-63-6	1,2,4-Trimethylbenzene	120.20	4.2		0.39	
106-93-4	1,2-Dibromoethane	187.87	ND		0.61	
95-50-1	1,2-Dichlorobenzene	147.00	ND		0.48	
107-06-2	1,2-Dichloroethane	98.96	ND		0.32	
78-87-5	1,2-Dichloropropane	112.99	ND		0.37	
76-14-2	1,2-Dichlorotetrafluoroe thane	170.92	ND		0.56	
108-67-8	1,3,5-Trimethylbenzene	120.20	1.3		0.39	
541-73-1	1,3-Dichlorobenzene	147.00	ND		0.48	
106-46-7	1,4-Dichlorobenzene	147.00	ND		0.48	
123-91-1	1,4-Dioxane	88.11	ND		0.72	
540-84-1	2,2,4-Trimethylpentane	114.23	17		0.93	
78-93-3	2-Butanone	72.11	3.0		0.94	
108-10-1	4-Methyl-2-pentanone (MIBK)	100.16	1.7		0.82	
71-43-2	Benzene	78.11	6.4		0.26	
100-44-7	Benzyl chloride	126.58	ND		0.83	
75-27-4	Bromodichloromethane	163.83	ND		0.54	
75-25-2	Bromoform	252.75	ND		0.83	
74-83-9	Bromomethane	94.94	ND		0.31	
56-23-5	Carbon tetrachloride	153.81	0.42		0.20	
108-90-7	Chlorobenzene	112.56	ND		0.37	
75-00-3	Chloroethane	64.52	ND		0.21	
67-66-3	Chloroform	119.38	ND		0.39	
74-87-3	Chloromethane	50.49	1.2		0.41	
156-59-2	cis-1,2-Dichloroethene	96.94	0.16		0.16	
10061-01-5	cis-1,3-Dichloropropene	110.97	ND		0.36	
110-82-7	Cyclohexane	84.16	7.3		0.69	

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: 140-22575-1			
SDG No.:				
Client Sample ID: OD-1	Lab Sample ID: 140-22575-5			
Matrix: Air	Lab File ID: RD08P103.D			
Analysis Method: TO 15 LL	Date Collected: 03/31/2021 10:12			
Sample wt/vol: 500(mL)	Date Analyzed: 04/08/2021 16:34			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 48569	Units: ug/m3			

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
124-48-1	Dibromochloromethane	208.28	ND		0.68	
75-71-8	Dichlorodifluoromethane	120.91	0.90		0.40	
64-17-5	Ethanol	46.07	240	Ε	3.8	R
100-41-4	Ethylbenzene	106.17	2.6		0.35	
87-68-3	Hexachlorobutadiene	260.76	ND		0.85	UJ
110-54-3	Hexane	86.17	9.5		0.70	
1634-04-4	Methyl tert-butyl ether	88.15	ND		0.58	
75-09-2	Methylene Chloride	84.93	3.2		1.4	
179601-23-1	m-Xylene & p-Xylene	106.17	8.8		0.35	
91-20-3	Naphthalene	128.17	ND		1.0	
95-47-6	o-Xylene	106.17	4.2		0.35	
100-42-5	Styrene	104.15	ND		0.34	
75-65-0	t-Butyl alcohol	74.12	7.2		0.97	
127-18-4	Tetrachloroethene	165.83	69		0.54	
108-88-3	Toluene	92.14	12		0.45	
156-60-5	trans-1,2-Dichloroethene	96.94	1.3		0.32	
10061-02-6	trans-1,3-Dichloropropen	110.97	ND		0.36	
70.01.0	e	121 20	0.20		0 10	
79-01-6	Trichioroethene	131.39	0.38		0.19	
/5-69-4	Trichlorofluoromethane	13/.3/	1.1		0.45	
75-01-4	Vinyl chloride	62.50	ND		0.10	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	107		60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: <u>140-22575-1</u>			
SDG No.:				
Client Sample ID: OD-1 DL	Lab Sample ID: <u>140-22575-5 DL</u>			
Matrix: Air	Lab File ID: RD08P103DL.D			
Analysis Method: <u>TO 15 LL</u>	Date Collected: 03/31/2021 10:12			
Sample wt/vol: 100(mL)	Date Analyzed: 04/09/2021 07:48			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: <u>RTX-5</u> ID: <u>0.32(mm)</u>			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 48569	Units: ppb v/v			

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
64-17-5	Ethanol	46.07	160	D	10	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)			60-140

Lab Name: Eurofins TestAmerica, Knoxville	Job No.: <u>140-22575-1</u>			
SDG No.:				
Client Sample ID: OD-1 DL	Lab Sample ID: <u>140-22575-5 DL</u>			
Matrix: Air	Lab File ID: RD08P103DL.D			
Analysis Method: <u>TO 15 LL</u>	Date Collected: 03/31/2021 10:12			
Sample wt/vol: 100(mL)	Date Analyzed: 04/09/2021 07:48			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: <u>RTX-5</u> ID: <u>0.32(mm)</u>			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: <u>48569</u>	_ Units: ug/m3			

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	
64-17-5	Ethanol	46.07	290	D	19	

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)			60-140

ATTACHMENT B

Comments

No additional comments.

Receipt

The samples were received on 4/1/2021 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice.

Air - GC/MS VOA

Methods D1946, TO 15 LL, TO-14A, TO-15: EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

Method TO 15 LL: The continuing calibration verification (CCV) associated with batch 140-48523 exhibited % difference of > 30% for the following analyte(s) 1,2-Dichloro-1,1,2,2-tetrafluoroethane; however, the results were within the LCS acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria.

Method TO 15 LL: The continuing calibration verification (CCV) associated with batch 140-48523 recovered above the upper control limit for 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzyl chloride, Carbon tetrachloride, Chlorodibromomethane, Dichlorodifluoromethane and Hexachlorobutadiene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method TO 15 LL: The laboratory control sample (LCS) for analytical batch 140-48523 recovered outside control limits for the following analytes: 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzyl chloride, Carbon tetrachloride, Chlorodibromomethane, Dichlorodifluoromethane and Hexachlorobutadiene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method TO 15 LL: The continuing calibration verification (CCV) associated with batch 140-48569 exhibited % difference of > 30% for the following analyte(s) Hexachlorobutadiene; however, the results were within the LCS acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike

Canister Samples Chain of Custody Record

140-22575 Chain of Custody

	4315
	584
2	865
-594	fay
7921	3000
TN 3	291.
e lle	865
NOXV	hone
×	Q

TestAmerica Laboratories, Inc. assumes no liability with respect to the collection and shipment of these samples

TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica Form No. CA-C-WI-003, Rev. 2.23, dated 5/4/2020 (See below for Add'l Items) Sample Specific Notes: cocs 1 b = X, Fedex Po For Lab Use Only TALS Project # Walk-in Client: -ab Sampling: Job / SDG No. é 6 flows 6 Calhs, COC No: Other (Please specify in notes section) eso liñbne. (3VS) noitostraction (SVE) dombient, isc sed lios × Х del2-du2 × 3 × ndoor AirlAmbient Air × 1ber adyT alqma2 20 405 Other (Please specify in notes section) Q¢ 2 91/31 A93 vi 8461-0 MT2A 00 EPA 25C Samples Collected By: S. LIBERT, CeiV 0 SPA 3C MIS SI-OJ Γ ē. (Ievel wol / branners) 21/41-01 × × × X OSAR . MARTIN × 2 11046 34600357 Ł Canister JI BL Samples Received by: ≙ 12143 Received by: Flow Controller ID Received by: 7403 Condition: 10443 \$530 1020 Temperature (Fahrenheit) Ambient 50 Pressure (inches of Hg) Ambient **30.43** Vacuum in Field, Canister "Hg (Stop) Client Project Manager: PAUL KALETH Ģ S, 9-6 1 N Email: Pave. / LARE THE AECOM. COM 30. 30 Canister Vacuum in Field, -30 Analysis Turnaround Time "Hg (Start) -30 121 -30 1002 2101 1001 1005 5101 Time Interior **30**.43 Date / Time: 3 - 31 - 21 iol. Date / Time: Date / Time: Opened by: 3/31/21 Sample End Date Standard (Specific) Interior ≽ Rush (Specifiy): Site Contact: Phone: 2001 3-30-21 1015 Tel/Fax Time Start 1005 2101 2001 Start Stop Start Stop Sample Start Date Site/Location: & DRANTON ANE, Buy SHARE, NY € Special Instructions/QC Requirements & Comments: - Site 152077 Project Name: SERVALL LAUNDRY -IBER 51 Shipper Name: Sample Identification CLIFTON, NJ BEDHD TEVE Phone: 773 885 8500 4 Ecom Client Contact Information Samples Relinquished by: Samples Shipped by: P 0 # 6663 1073 2 X X Address: /2.5 5 Company Name: Relinquished by: 51-12 ALab Use Only: City/State/Zip 1 511-1-01 1 3 < 1 AO FAX

Attachment C

NYSDEC Soil Vapor/Indoor Air Matrices

Soil Vapor/Indoor Air Matrix A May 2017

Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)				
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 0.2	0.2 to < 1	1 and above		
< 6	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE		
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE		
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE		

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX A Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix B May 2017

Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (111-TCA), Methylene Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)				
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 3	3 to < 10	10 and above		
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE		
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE		
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE		

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX B Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix C May 2017

Analytes Assigned:

Vinyl Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)		
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 0.2	0.2 and above	
< 6	1. No further action	2. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE	
6 to < 60	3. MONITOR	4. MITIGATE	
60 and above	5. MITIGATE	6. MITIGATE	

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX C Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.