Shaw Environmental & Infrastructure Engineering of New York, P.C.

13 British American Boulevard Latham, NY 12110-1405 518.783.1996 Fax 518.783.8397

Final Summary Report

Geoprobe and Indoor Air Assessment
Former EMR Circuits Facility
Hauppauge, Suffolk County, New York
Site Number 1-52-105

Contract Work Assignment Number: D006132-1

Prepared for Mr. Brian Jankauskas, P.E.

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau A 625 Broadway, 11th Floor Albany, New York 12233-7015

Prepared by Shaw Environmental & Infrastructure Engineering of New York, P.C.

13 British American Boulevard Latham, New York

May 2010

Table of Contents

1.0	INTRODUCTION
1.1	FACILITY DESCRIPTION AND LOCATION
2.0	SCOPE OF WORK
2.1 2.2 2.3 2.4 2.5 2.6	INTRODUCTIONSOIL SAMPLINGSOIL VAPOR POINTSSOIL VAPOR POINTSSOIL VAPOR POINTSSOIL VAPOR AND INDOOR AIR SAMPLINGSTRUCTURE SUB-SLAB SOIL VAPOR AND INDOOR AIR SAMPLING
3.0	ANALYTICAL RESULTS
3.1 3.2 3.3 3.4 3.5	SOIL ANALYTICAL RESULTS
List	of Tables

Table 1 – Soil Analytical Data

Table 2 – Groundwater Analytical Data

Table 3 – Air Analytical Data

List of Figures ______

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – Soil Vapor Analytical Results

List of Appendices_____

- A. Field Logs
- B. NYSDOH Indoor Air Quality Questionnaire and Building Inventory
- C. Validated Laboratory Data Packages

1.0 Introduction

Shaw Environmental and Infrastructure Engineering of New York, P.C. (Shaw) is pleased to provide this Final Summary Report discussing the collection of soil, groundwater, soil vapor, sub-slab vapor and indoor air samples at EMR Circuits, Inc. (Site Number 1-52-105) located at 85-99 Marcus Boulevard (site), Hauppauge, Suffolk County, New York (**Figure 1**). The site activities were conducted between January 11 and January 15, 2010. The work was performed in accordance with the Final Work Plan (March 2009), the Work Assignment (WA) D006132-1 provided to Shaw on January 13, 2009 and subsequent discussions with the New York State Department of Environmental Conservation (NYSDEC) project manager.

1.1 Facility Description and Location

Operational/Disposal History

The site is a former circuit board manufacturing facility that was operational between 1981 and 1984. From February, 1981 to 1983 the owner of EMR Circuits illegally discharged spent hazardous wastes into a floor drain which connected to two underground leaching pools located in the parking lot on the north side of the building according to information provided to Shaw by the NYSDEC. The discharge was first noticed by the Suffolk County Department of Health Services (SCDHS) when investigation of site operations identified liquids bubbling up through the on-site driveway. The property owner subsequently entered into a consent order with SCDHS and agreed to cease all discharges to the adjacent leaching pools, however additional documentation indicates that EMR Circuits continued to discharge hazardous wastes into the leaching pools until late 1983, based upon the information provided to Shaw by the NYSDEC.

Remedial History

On November 11, 1983 the known leaching pool was emptied and cleaned. During these site activities an additional leaching pool was identified immediately adjacent to the known pool. This second leaching pool was also emptied and cleaned on January 25, 1984. Both leaching pools were backfilled with clean sand and gravel. The leaching pools extended approximately 10 feet below ground surface (ft bgs) and 20 ft bgs, respectively. The floor drain within the building that reportedly led to the leaching pools was sealed with cement.

1

In March, 1985 the SCDHS collected two groundwater samples at depths of 115 feet and 130 feet below ground surface (bgs) in close proximity to the site. The volatile organic compound (VOC) 1,1,1-trichloroethane (TCA) was detected in the sample collected at 115 feet bgs at a concentration of 390 micrograms per liter (ug/l); 1,1,1-TCA was not detected in the sample collected at 130 feet bgs.

A Phase II site investigation was conducted by EMR Circuits (the Responsible Party). The results of this investigation were submitted to the NYSDEC in January, 1992. Soil samples collected as part of this investigation did not indicate the presence of VOCs or metals above contract reporting detection limits. The Responsible Party conducted additional groundwater sampling activities in June, 1992. Results indicated that the existing groundwater site conditions were not contributing to groundwater contamination in this area and remediation completed in 1984 (removal of the leaching pools) was adequate to remediate this site. The site was subsequently delisted in March, 1993.

The NYSDEC and New York State Department of Health (NYSDOH) have requested that the potential for vapor phase impacts be evaluated at this site. The proposed scope of work to complete these investigative activities was detailed in Shaw's March 2009 work plan and site activities were implemented with the consent of the property owner between January 11 and January 15, 2010.

2.0 Scope of Work

2.1 Introduction

The scope of work included the advancement of six direct push borings to assess soil, groundwater and soil vapor conditions at the site. The potential for soil vapor impacts within the former EMR Circuits building was also evaluated during site investigative activities. Specifically, two sub slab soil vapor samples, one indoor air sample and one ambient outdoor air sample were collected as part of this evaluation.

Prior to arrival at the site, Shaw contacted the local "one call" agency to schedule utility markouts. Shaw reviewed the utility mark out provided by the "one-call" agency and inspected the proposed locations with the utility locator on-site to ensure that the boring locations were clear of all underground utilities.

Four of the six borings, (borings SB-2, SB-3, SB-4 and SB-5) were advanced to approximately 8 feet below ground surface and completed as temporary soil vapor monitoring points to facilitate the collection of soil vapor samples. One boring, SB-1, installed adjacent to the historic release (leaching pools), was advanced to approximately 50 feet below ground surface. The proposed depth of 60 feet below ground surface for the soil boring could not be reached due to "refusal" encountered at 50 feet below ground surface. The soil vapor point, being of smaller diameter was able to be advanced to 60 feet below ground surface. A final boring, boring GW-1 located across Marcus Boulevard as depicted on **Figure 2**, was advanced to approximately 110 feet below the ground surface where a groundwater "grab" sample was collected for analysis. Once the ground water sample was collected, the bore hole was backfilled with the soil cuttings and a bentonite/grout slurry to the surface.

Two sub slab soil vapor (SSV-1 and SSV-2), one indoor air sample (IA-1) and one ambient outdoor air sample (OA-1) were collected at the locations shown on **Figure 2**, using the procedures outlined in the approved Work Plan dated March 2009. The sub-slab vapor sample SSV-1 was collected along the north wall of the building, just south of and in proximity to the former leaching pool (area of former known release). The second sub-slab vapor, SSV-2, was collected along the southern interior wall of the building, in-line with SSV-1. Indoor-air sample IA-1 was collected in proximity SSV-2 and out of the direct air flow of the ceiling mounted

heating units. Following collection of the sub-slab soil vapor the hole was backfilled with cement and smoothed with a trowel at the surface.

All sample locations (with the exception of the three interior air samples) were surveyed in order to update the existing site plan and correlate distances between existing monitoring wells (**Figure 2**). The procedures and results of the site investigative activities are detailed below.

2.2 Soil Sampling

As mentioned previously, six direct push borings were installed to assess soil, groundwater and soil vapor conditions at the site.

Continuous soil cores were collected to classify the geology of the site at five (SB-1 thru SB-5) of the six proposed sampling locations. Four borings (SB-2, SB-3, SB-4 and SB-5) were advanced to approximately 8 feet below ground surface and one boring, SB-1, was advanced to approximately 50 feet bgs. The soil borings were logged using the USCS classification scheme and field screened for VOCs using a PID with an 11.7 eV lamp (Boring logs are included in Appendix A). Depth discrete soil samples were collected from each boring as detailed in Shaw's December, 2008 Field Activities Plan. The two samples from within the 50 foot boring, exhibiting the highest PID readings were sent for laboratory analysis. The samples collected from the 50-foot soil boring included a duplicate and matrix spike/matrix spike duplicate (MS/MSD) sample. These samples were sent under proper chain of custody to Mitkem Laboratories (Mitkem) located in Warwick, Rhode Island, an approved ELAP-certified laboratory for analysis of VOCs, semi-volatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs) and metals by EPA methods 8260, 8270C, 8081A, 8082 and 6010, respectively.

The two samples that exhibited the highest PID reading collected from the remaining four eightfoot soil borings were secured for VOCs analysis according to EPA method 8260. All samples were labeled, handled, and packaged following the procedures described in the approved QAPP and analyzed by Mitkem.

All non-dedicated down-hole equipment (including such items as the drive rods, drive heads, cutting shoe, miscellaneous sampling equipment, and tools) was thoroughly cleaned using an alconox rinse and potable water rinse prior to reuse as detailed in the FAP.

2.3 Soil Vapor Points

Five of the six borings advanced at the site were completed as temporary soil vapor monitoring points (SV-1 thru SV-5). Each point consisted of a stainless steel screen attached to a dedicated section of laboratory or food grade Teflon-lined tubing and was placed in the borehole at the desired depth of eight feet below the ground surface. The borehole was backfilled with glass beads to a minimum of six inches above the screened interval and a bentonite slurry placed above the glass beads to the ground surface. The bentonite was allowed to cure for 24 hours prior to sample collection.

After the period of 24 hours and prior to the collection of the soil vapor samples, a tracer gas test was completed in accordance with NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, (October 2006) to ensure that no ambient air was infiltrating into the sample interval. Upon completion of a successful tracer gas test, the tubing was purged of approximately two to three probe volumes at a flow rate of less than 0.2 liters per minute. PID readings were collected and recorded during the purging process. An individually certified summa canister with a two hour regulator was connected to the sample tubing when a sufficient volume was purged. Sampling continued until there was approximately 5 inches +/- 1 inch of mercury (in. Hg) remaining in the canister. Field Logs are included in **Appendix A**.

A total of 6 soil vapor samples (5 locations plus a duplicate sample) were collected across the site. Samples were shipped under proper chain of custody to Mitkem for analysis of VOCs by EPA method TO-15 to an accuracy of 1 μ g/m³. Additional details regarding the sampling methods were included in Shaw's FAP, included as Appendix A of the approved Work Plan.

After completion of sampling, the sample tubing was removed from the borehole and the remaining annular space was backfilled with granular bentonite to the ground surface, hydrated and completed with an asphalt patch.

2.4 Temporary Well/Groundwater "Grab"

Soil Boring GW-1 (**Figure 2**) was advanced to 110 feet below ground surface to facilitate the collection of a groundwater grab sample as detailed with the approved Work Plan. Once the desired depth was reached (approximately 110-feet below ground surface) using a narrower diameter (than that of the macro core sampler for soils) drive rod with an inner screen and an expendable point at its base, "chase-rods" were sent down through the center of the drive rods.

The drive rods were then retracted approximately three feet, with the "chase rods" still in-place, to expose the screen to the desired sample interval. The "chase-rods" were then removed from the center of the rods and a section of laboratory – grade polyethylene tubing with a check-valve at the base was used to acquire the groundwater grab sample. The sample interval was first purged to help minimize the turbidity levels. The interval yielded a low volume of water, eventually going "dry". The sample interval was given a time to recharge prior to collection of the "grab" sample. Following sample collection the boring was abandoned using a bentonite/portland and soil cutting slurry and flagged to be surveyed.

2.5 Groundwater Sampling

Groundwater samples were collected from four of the five existing monitoring wells (MW-1A, MW-1, MW-3A and MW-3, **Figure 2**) and at the groundwater "grab" location (GW-1) as part of this investigation. Monitoring well MW-2 was not sampled because the location of the well could not be determined due to heavy snow and ice cover. Shaw made several attempts to locate the monitoring well using shovels and a metal detector but were unsuccessful. Shaw contacted the NYSDEC representative and informed him of the problem and was given permission not to sample that particular monitoring well.

Prior to sample collection, the depth to water was measured and recorded. The four existing monitoring wells were purged in accordance with EPA Region II and Shaw's FAP "low flow" sampling methods as described in the approved Work Plan dated March 2009. Purge data was recorded on Field Logs included in **Appendix A**. As indicated above the "grab" groundwater sample was collected from GW-1 once the interval was purged dry and allowed to recharge. All groundwater samples were labeled, handled, and packaged following the procedures described in the approved QAPP and analyzed for VOCs according to 8260 by Mitkem. In addition to the groundwater samples collected, a field blank, duplicate and matrix spike/matrix spike duplicate (MS/MSD) sample were collected from monitoring well MW-1 and analyzed for SVOCs, pesticides, PCBs and metals by EPA methods 8270C, 8081A, 8082 and 6010, respectively.

2.6 Structure Sub-Slab Soil Vapor and Indoor Air Sampling

Two sub slab soil vapor (SSV-1 and SSV-2), one indoor air sample (IA-1) and one ambient outdoor air sample (OA-1) were collected at the locations shown on **Figure 2**, using the procedures outlined in the approved Work Plan dated March 2009. One of the sub slab vapor points, SSV-1, was collected directly south of the former leaching pools, on the north side of the

building while the other sub slab vapor point (SSV-2) was collected from the south, subsectional wall of the building (**Figure 2**). The indoor air sample (IA-1) point was biased toward cracks observed during the building inventory process and away from direct air flow from the ceiling mounted heating units. These samples were collected concurrently with the soil vapor samples discussed in **Section 2.3**. The building contents, materials in storage, general building conditions, weather conditions, temperature, and pertinent PID readings were surveyed, photographed and documented in accordance with the questionnaire in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York document prior to the collection of the samples. The completed questionnaire is included in **Appendix B** and Field logs are included in **Appendix A**.

Individually certified 6-liter summa canisters, fitted with twenty-four hour flow regulators were utilized for the collection of sub-slab vapor, indoor air sampling and ambient outdoor air samples. Indoor and outdoor ambient samples were collected at a height within the breathing zone at pre-selected locations. No duplicate samples were collected with the sub-slab vapor, indoor air or ambient air samples. Upon completion of sample collection the summa canisters were secured, packaged and shipped following the procedures described in the approved QAPP and analyzed by Mitkem for VOCs by EPA method TO-15 to an accuracy of $1 \mu g/m^3$.

3.0 Analytical Results

The purpose of the investigation activities was to evaluate the potential for vapor phase impacts at this site. The scope of work to complete that activity was detailed in the March 2009 work plan; site activities were performed between January 11 and 15, 2009. During this evaluation, soil, groundwater, soil vapor and indoor air samples were collected at the site. The results of these samples are detailed below.

3.1 Soil Analytical Results

The two samples collected from the 50-foot soil boring including a duplicate and matrix spike/matrix spike duplicate (MS/MSD) sample were sent for analysis of VOCs, SVOCs, pesticides, PCBs and metals. The two soil samples collected from the 8 foot borings were sent for analysis of VOCs only.

Analytical results for the soil samples collected indicated detections above laboratory method detection limits (MDLs) for two VOCs, acetone in SB-1 at the 45-40 ft bgs interval and toluene in SB-1 at the 10-15ft bgs interval. Four SVOCs, (Di-n-butyl phthalate, fluoranthene, pyrene and bis-(2-ethylhexyl) phthalate) and several metals were detected above MDLs in SB-1 at both sample intervals. Two of the metals detected, chromium and iron were detected above the NYSDEC Soil Cleanup Objectives. No other analytes were detected above the NYSDEC Soil Cleanup Objectives for any other samples collected. Analytical results are presented on **Table 1**.

3.2 Groundwater Analytical Results

Groundwater samples were collected from four of the five existing monitoring wells (MW-1A, MW-1, MW-3A and MW-3, **Figure 2**) and the groundwater "grab" location for analysis of VOCs according to 8260. The sample collected from monitoring well MW-1 was also analyzed for SVOCs, pesticides, PCBs and metals by EPA methods 8270C, 8081A, 8082 and 6010, respectively

Analytical results indicate detections of two VOCs, acetone and 2-butanone (MEK) in GW-1, and several metals in MW-1 above laboratory method detection limits. Two detections of sodium in MW-1 and DUP 02 were above the NYSDEC groundwater standard. No other analytes were detected above the NYSDEC Groundwater Standards for any other samples collected. Analytical results are presented on **Table 2**.

3.3 Soil Gas Analytical Results

A total of 6 soil vapor (5 locations plus a duplicate sample) were collected from the site using six-liter summa canisters fitted with 2-hour flow controllers. Samples were shipped under proper chain of custody for analysis of VOCs by EPA method TO-15 to Mitkem. Analytical results indicated detections of several compounds above laboratory method detection limits. Specifically tetrachloroethene (PCE) was detected in four of the five soil vapor samples at concentrations ranging from 353.30 ug/m3 in SV-1 (located adjacent to the former leaching pools) to an estimated value of 2.03 ug/m3 at SV-2 located across Marcus Blvd. Trichloroethene (TCE) was also detected in four of the five soil vapor samples at concentrations ranging from 394.97 ug/m3 in SV-1 to 0.59 in the eastern sample SV-5. Lower concentrations of 1,1,1-trichloroethane (TCA) were observed in three of the five soil vapor samples ranging from 54.56 ug/m3 (SV-1) to 1.09 ug/m3 in SV-4 located on the north east corner of the on-site building. Analytical results are summarized on **Table 3** and presented on **Figure 3**.

3.4 Sub-Slab Soil Vapor and Indoor Air Analytical Results

Two sub-slab soil vapor, one indoor air sample and one ambient outdoor air sample were collected to assess air quality within the building using six-liter summa canisters fitted with 24-hour flow controllers and shipped to Mitkem under proper chain of custody for analysis of VOCs by EPA method TO-15. Analytical results indicated detections of several compounds above laboratory method detection limits. Specifically PCE was detected in both of the sub slab soil vapor samples at concentrations of 194.62 ug/m3 in SSV-2 and 37.43 in SSV-1. TCE was detected in SSV-1 at a concentration of 13.54 ug/m3 and SSV-2 at 180.57 ug/m3. TCA was detected only in SSV-2 at a concentration of 30.99 ug/m3. Carbon tetrachloride was not detected in either sub slab soil vapor sample. Analytical results are summarized on **Table 3** and presented on **Figure 3**.

Analytical results for the indoor ambient air sample indicated detections of several compounds above laboratory method detection limits. For comparative purposes these results were measured against NYSDOH's "Indoor Air Background Concentrations – Table C –EPA 2001 Building Assessment and Survey Evaluation Database (75 percentile)". Results indicated concentrations of ethanol, methylene chloride, 2-butanone and ethyl acetate above NYSDOH Indoor Air Background Concentrations. Detection limits for this sample were slightly elevated due to an elevated concentration of ethanol within the sample. The occurrence of ethanol within the sample can be attributed to the occurrence of ethanol in the solvent, specifically the

"denatured alcohol" (ethanol makes up approximately 45-50% of the matrix of this product) used by the current occupant to clean their product immediately after cutting. The MSDS sheets provided by the tenant are incorporated within **Appendix B** as well as the photo documentation depicting the product in the "shop" area. The manufacturing line was operational at the time that this sampling occurred. Analytical results are summarized on **Table 3** and presented on **Figure 3**.

3.5 Validation of Analytical Data

Upon receipt of the analytical data, it was sent to Environmental Data Services, Inc for a data usability summary report (DUSR). According to the DUSR report, there were no rejections of the data and all the data is considered acceptable for the intended purposes. All criteria were met regarding the data completeness, cover letter, narrative, data reporting forms, canister certification pressures differences, chains-of-custody, instrument tuning, and internal standards. The batch blank checks were non-detect, the samples were analyzed within the 30 day time limit, all surrogate spike recoveries were within the acceptable ranges, method blanks were free of contamination, and initial calibrations were within an acceptable percentage. The duplicate samples were within a normal percentage with the exception of acetone, therefore this compound was given an estimated qualifier. In addition, three compounds, 1,3,5-trimethyl benzene, 4-ethyltoluene and 1,2,4-trimethylbenzene were above the recommended percentage of deviation during the continued calibration, therefore the results for these compounds were given an estimated qualifier. A copy of the DUSR report is included in **Appendix C**.

Table 1 Soil Analytical Data EMR Circuits Hauppauge, Suffolk County, New York

Analyte		SB-1	DUP 01	SB-1	SB-3	SB-3
Depth Below Ground Surface	NYSDEC Soil Cleanup Guidance	10'-15'		45'-50'	0'-5'	5'-8'
Date Collected	Values	1/11/2010	1/11/2010	1/11/2010	1/12/2010	1/12/2010
		VOCs				
Dichlorodifluoromethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Chloromethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Vinyl chloride	0.02	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Bromomethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Chloroethane	1.9	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Trichlorofluoromethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,1-Dichloroethene	0.33	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Acetone	0.05	< 0.0049	< 0.0047	0.0074	< 0.0050	< 0.0050
Idomethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Carbon disulfide	2.7	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Methylene chloride	0.05	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
trans-1,2-Dichloroethene	0.19	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Methyl tert-butyl ether	0.93	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,1-Dichloroethane	0.27	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Vinyl acetate	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
2-Butanone	0.12	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
cis-1,2-Dichloroethene	0.25	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
2,2-Dichloropropane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Bromochloromethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Chloroform	0.37	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,1,1-Trichloroethane	0.68	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,1-Dichloropropene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Carbon tetrachloride	0.76	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2-Dichloroethane	0.02	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Benzene	0.06	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Trichloroethene	0.47	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2-Dichloropropane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Dibromomethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Bromodichloromethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
cis-1,3-Dichloropropene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
4-methyl-2-pentanone	1.0	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Toluene	0.7	0.0012 J	< 0.0047	< 0.0049	< 0.0050	< 0.0050
trans-1,3-Dichloropropene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,1,2-Trichloroethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,3-Dichloropropane	0.3	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Tetrachloroethene	1.3	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
2-Hexanone	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Dibromochloromethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050

Table 1 Soil Analytical Data EMR Circuits Hauppauge, Suffolk County, New York

Analyte		SB-1	DUP 01	SB-1	SB-3	SB-3
Depth Below Ground Surface	NYSDEC Soil Cleanup Guidance	10'-15'		45'-50'	0'-5'	5'-8'
Date Collected	Values	1/11/2010	1/11/2010	1/11/2010	1/12/2010	1/12/2010
1,2-Dibromoethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Chlorobenzene	1.1	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,1,1,2-Tetrachloroethane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Ethylbenzene	1	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
m,p-Xylene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
o-Xylene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Xylene (Total)	0.26	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Styrene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Bromoform	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Isopropylbenzene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,1,2,2-Tetrachloroethane	0.6	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Bromobenzene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2,3-Trichloropropane	0.4	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
n-Propylbenzene	3.9	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
2-Chlorotoluene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,3,5-Trimethylbenzene	8.4	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
4-Chlorotoluene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
tert-Butylbenzene	5.9	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2,4-Trimethylbenzene	3.6	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
sec-Butylbenzene	11	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
4-Isopropyltoluene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,3-Dichlorobenzene	2.4	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,4-Dichlorobenzene	1.8	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
n-Butylbenzene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2-Dichlorobenzene	1.1	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2-Dibromo-3-chloropropane	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2,4-Trichlorobenzene	3.4	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Hexachlorobutadiene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
1,2,3-Trichlorobenzene	NGV	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050
Naphthalene	12	< 0.0049	< 0.0047	< 0.0049	< 0.0050	< 0.0050

Notes:

All data are presented in mg/kg.

Standards taken from New York State Department of Environmental Conservation 6 NYCRR Part 375 Soil Cleanup Objective Unrestricted Use Tables and TAGM 4046 Soil Cleanup Objectives.

DUP 01 collected with SB-1 10-15'

Bold = Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Soil Cleanup Objectives

< = Analyte not detected above laboratory method detection limits

J = Indicates an estimated value

Table 1
Soil Analytical Data
EMR Circuits
Hauppauge, Suffolk County, New York

Analyte		SB-1	DUP 01	SB-1	SB-3	SB-3
Depth Below Ground Surface	NYSDEC Soil Cleanup Guidance	10'-15'		45'-50'	0'-5'	5'-8'
Date Collected	Values	1/11/2010	1/11/2010	1/11/2010	1/12/2010	1/12/2010
	•	SVOCs				
Phenol	0.33	< 0.350	< 0.350	< 0.360	NA	NA
Bis (2-chloroethyl) ether	NGV	< 0.350	< 0.350	< 0.360	NA	NA
2-Chlorophenol	0.8	< 0.350	< 0.350	< 0.360	NA	NA
1,3-Dichlorobenzene	2.4	< 0.350	< 0.350	< 0.360	NA	NA
1,4-Dichlorobenzene	1.8	< 0.350	< 0.350	< 0.360	NA	NA
1,2-Dichlorobenzene	1.1	< 0.350	< 0.350	< 0.360	NA	NA
2-Methylphenol	0.33	< 0.350	< 0.350	< 0.360	NA	NA
2,2-oxybis(1-Chloropropane)	NGV	< 0.350	< 0.350	< 0.360	NA	NA
4-Methylphenol	0.33	< 0.350	< 0.350	< 0.360	NA	NA
N-Nitroso-di-n-propylamine	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Hexachloroethane	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Nitrobenzene	0.2	< 0.350	< 0.350	< 0.360	NA	NA
Isophorone	4.4	< 0.350	< 0.350	< 0.360	NA	NA
2-Nitrophenol	0.33	< 0.350	< 0.350	< 0.360	NA	NA
2,4-Dimethylphenol	NGV	< 0.350	< 0.350	< 0.360	NA	NA
2,4-Dichlorophenol	0.4	< 0.350	< 0.350	< 0.360	NA	NA
1,2,4-Trichlorobenzene	3.4	< 0.350	< 0.350	< 0.360	NA	NA
Naphthalene	12	< 0.350	< 0.350	< 0.360	NA	NA
4-Chloroaniline	0.22	< 0.350	< 0.350	< 0.360	NA	NA
Bis (2-chloroethoxy) methane	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Hexachlorobutadiene	NGV	< 0.350	< 0.350	< 0.360	NA	NA
4-Chloro-3-methylphenol	0.24	< 0.350	< 0.350	< 0.360	NA	NA
2-Methylnaphthalene	36.4	< 0.350	< 0.350	< 0.360	NA	NA
Hexachlorocyclopentadiene	NGV	< 0.350	< 0.350	< 0.360	NA	NA
2,4,6-Trichlorophenol	NGV	< 0.350	< 0.350	< 0.360	NA	NA
2,4,5-Trichlorophenol	0.1	< 0.700	< 0.700	< 0.730	NA	NA
2-Chloronaphthalene	NGV	< 0.350	< 0.350	< 0.360	NA	NA
2-Nitroaniline	0.43	< 0.700	< 700	< 0.730	NA	NA
Dimethylphthalate	2.0	< 0.350	< 0.350	< 0.360	NA	NA
Acenaphthylene	100	< 0.350	< 0.350	< 0.360	NA	NA
2,6-Dinitrotoluene	1.0	< 0.350	< 0.350	< 0.360	NA	NA
3-Nitroaniline	0.5	< 0.700	< 0.700	< 0.730	NA	NA
Acenaphthene	20	< 0.350	< 0.350	< 0.360	NA	NA
2,4-Dinitrophenol	0.2	< 0.700	< 0.700	< 0.730	NA	NA
4-Nitrophenol	0.1	< 0.700	< 0.700	< 0.730	NA	NA
Dibenzofuran	6.2	< 0.350	< 0.350	< 0.360	NA	NA

Table 1 Soil Analytical Data EMR Circuits

Hauppauge, Suffolk County, New York

	1					
Analyte		SB-1	DUP 01	SB-1	SB-3	SB-3
Depth Below Ground Surface	NYSDEC Soil Cleanup Guidance	10'-15'		45'-50'	0'-5'	5'-8'
Date Collected	Values	1/11/2010	1/11/2010	1/11/2010	1/12/2010	1/12/2010
2,4-Dinitrotoluene	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Diethylphthalate	7.1	< 0.350	< 0.350	< 0.360	NA	NA
4-Chlorophenyl-phenylether	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Fluorene	30	< 0.350	< 0.350	< 0.360	NA	NA
4-Nitroaniline	NGV	< 0.700	< 0.700	< 0.730	NA	NA
4,6-Dinitro-2-methylphenol	NGV	< 0.700	< 0.700	< 0.730	NA	NA
N-Nitrosodiphenylamine	NGV	< 0.350	< 0.350	< 0.360	NA	NA
4-Bromophenyl-phenylether	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Hexachlorobenzene	0.41	< 0.350	< 0.350	< 0.360	NA	NA
Pentachlorophenol	0.8	< 0.700	< 0.700	< 0.730	NA	NA
Phenanthrene	100	< 0.350	< 0.350	< 0.360	NA	NA
Anthracene	100	< 0.350	< 0.350	< 0.360	NA	NA
Carbazole	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Di-n-butylphthalate	8.1	0.160 J	0.110 J	0.200 J	NA	NA
Fluoranthene	100	0.048 J	0.041 J	< 0.360	NA	NA
Pyrene	100	0.041 J	< 0.350	< 0.360	NA	NA
Butylbenzylphthalate	50	< 0.350	< 0.350	< 0.360	NA	NA
3,3'-Dichlorobenzidine	NGV	< 0.350	< 0.350	< 0.360	NA	NA
Benzo (a) anthracene	1	< 0.350	< 0.350	< 0.360	NA	NA
Chrysene	1	< 0.350	< 0.350	< 0.360	NA	NA
Bis (2-ethylhexyl) phthalate	50	0.120 J	< 0.350	0.700	NA	NA
Di-n-octylphthalate	50	< 0.350	< 0.350	< 0.360	NA	NA
Benzo (b) fluoranthene	1	< 0.350	< 0.350	< 0.360	NA	NA
Benzo (k) fluoranthene	0.8	< 0.350	< 0.350	< 0.360	NA	NA
Benzo (a) pyrene	1	< 0.350	< 0.350	< 0.360	NA	NA
Indeno (1,2,3-cd) pyrene	0.5	< 0.350	< 0.350	< 0.360	NA	NA
Dibenzo (a,h) anthracene	0.33	< 0.350	< 0.350	< 0.360	NA	NA
Benzo (g,h,i) perylene	100	< 0.350	< 0.350	< 0.360	NA	NA
Notes:						

Notes:

All data are presented in mg/kg.

Standards taken from New York State Department of Environmental Conservation 6 NYCRR Part 375 Soil Cleanup Objective Unrestricted Use Tables and TAGM 4046 Soil Cleanup Objectives.

DUP 01 collected with SB-1 10-15'

Bold = Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Soil Cleanup Objectives

< = Analyte not detected above laboratory method detection limits

J = Indicates an estimated value

NA = Not Analyzed

Table 1 Soil Analytical Data EMR Circuits

Hauppauge, Suffolk County, New York

Analyte		SB-1	DUP 01	SB-1	SB-3	SB-3
Depth Below Ground Surface	NYSDEC Soil Cleanup Guidance	10'-15'		45'-50'	0'-5'	5'-8'
Date Collected	Values	1/11/2010	1/11/2010	1/11/2010	1/12/2010	1/12/2010
		Pesticides				
alpha-BHC	0.02	< 0.0018	< 0.0018	< 0.0019	NA	NA
beta-BHC	0.036	< 0.0018	< 0.0018	< 0.0019	NA	NA
delta-BHC	0.04	< 0.0018	< 0.0018	< 0.0019	NA	NA
gamma-BHC (Lindane)	0.06	< 0.0018	< 0.0018	< 0.0019	NA	NA
Heptachlor	0.042	< 0.0018	< 0.0018	< 0.0019	NA	NA
Aldrin	0.005	< 0.0018	< 0.0018	< 0.0019	NA	NA
Heptachlor epoxide	0.02	< 0.0018	< 0.0018	< 0.0019	NA	NA
Endosulfan I	2.4	< 0.0018	< 0.0018	< 0.0019	NA	NA
Dieldrin	0.005	< 0.0035	< 0.0034	< 0.0036	NA	NA
4,4'-DDE	0.0033	< 0.0035	< 0.0034	< 0.0036	NA	NA
Endrin	0.014	< 0.0035	< 0.0034	< 0.0036	NA	NA
Endosulfan II	2.4	< 0.0035	< 0.0034	< 0.0036	NA	NA
4,4'-DDD	0.0033	< 0.0035	< 0.0034	< 0.0036	NA	NA
Endosulfan sulfate	2.4	< 0.0035	< 0.0034	< 0.0036	NA	NA
4,4'-DDT	0.0033	< 0.0035	< 0.0034	< 0.0036	NA	NA
Methoxychlor	10**	< 0.018	< 0.018	< 0.019	NA	NA
Endrin ketone	NGV	< 0.0035	< 0.0034	< 0.0036	NA	NA
Endrin aldehyde	NGV	< 0.0035	< 0.0034	< 0.0036	NA	NA
alpha-Chlordane	0.094	< 0.0018	< 0.0018	< 0.0019	NA	NA
gamma-Chlordane	0.54	< 0.0018	< 0.0018	< 0.0019	NA	NA
Toxaphene	NGV	< 0.180	< 0.180	< 0.190	NA	NA

Notes:

All data are presented in mg/kg.

Standards taken from New York State Department of Environmental Conservation 6 NYCRR Part 375 Soil Cleanup Objective Unrestricted Use Tables and TAGM 4046 Soil Cleanup Objectives.

DUP 01 collected with SB-1 10-15'

** = As per TAGM 4046 total pesticides <10 ppm

< = Analyte not detected above laboratory method detection limits

NA = Not Analyzed

Table 1 Soil Analytical Data EMR Circuits Hauppauge, Suffolk County, New York

Analyte		SB-1	DUP 01	SB-1	SB-3	SB-3					
Depth Below Ground Surface	NYSDEC Soil	10'-15'		45'-50'	0'-5'	5'-8'					
Date Collected	Cleanup Guidance Values	1/11/2010	1/11/2010	1/11/2010	1/12/2010	1/12/2010					
PCBs											
Aroclor-1016	0.1	< 0.035	< 0.034	< 0.036	NA	NA					
Aroclor-1221	0.1	< 0.035	< 0.034	< 0.036	NA	NA					
Aroclor-1232	0.1	< 0.035	< 0.034	< 0.036	NA	NA					
Aroclor-1242	0.1	< 0.035	< 0.034	< 0.036	NA	NA					
Aroclor-1248	0.1	< 0.035	< 0.034	< 0.036	NA	NA					
Aroclor-1254	0.1	< 0.035	< 0.034	< 0.036	NA	NA					
Aroclor-1260	0.1	< 0.035	< 0.034	< 0.036	NA	NA					

Notes:

All data are presented in mg/kg.

Standards taken from New York State Department of Environmental Conservation 6 NYCRR Part 375 Soil Cleanup Objective Unrestricted Use Tables and TAGM 4046 Soil Cleanup Objectives.

DUP 01 collected with SB-1 10-15'

< = Analyte not detected above laboratory method detection limits

NA = Not Analyzed

*** = Applies to the sum of these substances

Table 1 Soil Analytical Data EMR Circuits

Hauppauge, Suffolk County, New York

Analyte		SB-1	DUP 01	SB-1	SB-3	SB-3
Depth Below Ground Surface	NYSDEC Soil Cleanup Guidance	10'-15'		45'-50'	0'-5'	5'-8'
Date Collected	Values	1/11/2010	1/11/2010	1/11/2010	1/12/2010	1/12/2010
		Metals				
Aluminum	SB	3110	3190	1960	NA	NA
Antimony	SB	<0.16 N	<0.15 N	<0.17 N	NA	NA
Arsenic	13	0.83 B	1.2	1.1	NA	NA
Barium	350	15.8 *E	17.3 *E	10.6 *E	NA	NA
Beryllium	7.2	0.13 B	0.082 B	0.031 B	NA	NA
Cadmium	2.5	< 0.012	< 0.012	< 0.012	NA	NA
Calcium	SB	2950	140	88.7	NA	NA
Chromium	10 or SB	7.0 N*	6.5 N*	20.7 N*	NA	NA
Cobalt	30 or SB	3.6	2.4	1.7 B	NA	NA
Copper	50	42.5 E	44.7 E	35.9 E	NA	NA
Iron	2000 or SB	7310*	5390*	4850*	NA	NA
Lead	63	1.8*	2.3*	1.5*	NA	NA
Magnesium	SB	2390	716	475	NA	NA
Manganese	1600	234*	173*	138*	NA	NA
Mercury	0.18	< 0.0052	< 0.0058	< 0.0056	NA	NA
Nickel	30	7.4	7.2	6.6	NA	NA
Potassium	SB	275*	310*	236*	NA	NA
Selenium	3.9	< 0.72	< 0.75	< 0.71	NA	NA
Silver	2	< 0.070	< 0.068	< 0.075	NA	NA
Sodium	SB	20.4 B	17.8 B	37.0 B	NA	NA
Thallium	SB	< 0.22	< 0.23	< 0.22	NA	NA
Vanadium	150 or SB	7.1 E	6.5 E	4.6 E	NA	NA
Zinc	109	11.1	9.5	9.4	NA	NA

Notes:

Metals data are presented in mg/kg (ppm).

Standards taken from New York State Department of Environmental Conservation 6 NYCRR Part 375 Soil Cleanup Objective Unrestricted Use Tables and TAGM 4046 Soil Cleanup Objectives.

DUP 01 collected with SB-1 10-15'

Bold = Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Soil Cleanup Objectives

- < = Analyte not detected above laboratory method detection limits
- B = This flag indicates the compound was also detected in the associated Method Blank
- E = This flag indicates the compound concentration exceeded the Calibration Range.
- N = Indicates the matrix spike recovery falls outside of the control limit.
- NA = Not Analyzed
- SB = Site Background
- * = Indicates Relative Percent Difference for duplicate analyses is outside of the control limit.

Table 2
Groundwater Analytical Data
EMR Circuits
Hauppauge, Suffolk County, New York

Analyte	NYSDEC	MW-1	DUP 02	MW-1A	MW-3	MW-3A	GW-1	Trip Blank	Trip Blank
Date Collected	Guidance Criteria	1/14/2010	1/14/2010	1/13/2010	1/13/2010	1/13/2010	1/12/2010	1/13/2010	1/14/2010
			VC	Cs					
Dichlorodifluoromethane	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloromethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Vinyl chloride	2	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromomethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichlorofluoromethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Acetone	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	5.9	< 5.0	< 5.0
Idomethane	NGV	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Carbon disulfide	60	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Methylene chloride	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,2-Dichloroethene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Methyl tert-butyl ether	10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Vinyl acetate	NGV	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Butanone (MEK)	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	2.2 J	< 5.0	< 5.0
cis-1,2-Dichloroethene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2,2-Dichloropropane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromochloromethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chloroform	7	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,1-Trichloroethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloropropene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Carbon tetrachloride	5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	0.6	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Benzene	1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Trichloroethene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dibromomethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromodichloromethane	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	0.4**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Methyl-2-Pentanone (MIBK)	NGV	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	0.4**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	1	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,3-Dichloropropane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Tetrachloroethene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Hexanone	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Dibromochloromethane	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dibromoethane (EDB)	NGV	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Table 2 Groundwater Analytical Data EMR Circuits

Hauppauge, Suffolk County, New York

Analyte	NYSDEC	MW-1	DUP 02	MW-1A	MW-3	MW-3A	GW-1	Trip Blank	Trip Blank
1,1,1,2-Tetrachloroethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
m,p-Xylene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
o-Xylene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Xylene (Total)	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	50	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Isopropylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Bromobenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2,3-Trichloropropane	0.04	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
n-Propylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
2-Chlorotoluene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,3,5-Trimethylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Chlorotoluene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
tert-Butylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2,4-Trimethylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
sec-Butylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
4-Isopropyltoluene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,3-Dichlorobenzene	3	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,4-Dichlorobenzene	3	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
n-Butylbenzene	5*	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichlorobenzene	0.6	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dibromo-3-chloropropane	0.04	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2,4-Trichlorobenzene	10**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Hexachlorobutadiene	0.5	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
1,2,3-Trichlorobenzene	10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Naphthalene	10**	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Notes:

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998.

DUP 02 was collected with MW-1

Bold = Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Groundwater Guidance Values

< = Analyte not detected above laboratory method detection limits

J = Indicates an estimated value

- * = The principal organic contaminant standard for groundwater of 5 μg/l applies to this substance
- ** = Applies to the sum of cis- and trans-1,3-dichloropropene or 1,2,4-Trichlorobenzene and 1,2,3-Trichlorobenzene

Table 2
Groundwater Analytical Data
EMR Circuits
Hauppauge, Suffolk County, New York

Analyte	NYSDEC	MW-1	DUP 02	MW-1A	MW-3	MW-3A	GW-1	Trip Blank	Trip Blank
			SV	OCs					
Phenol	1***	<10	<10	NA	NA	NA	NA	NA	NA
Bis (2-chloroethyl) ether	1.0	<10	<10	NA	NA	NA	NA	NA	NA
2-Chlorophenol	1***	<10	<10	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene	3	<10	<10	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	3	<10	<10	NA	NA	NA	NA	NA	NA
1,2-Dichlolrobenzene	3	<10	<10	NA	NA	NA	NA	NA	NA
2-Methylphenol	1***	<10	<10	NA	NA	NA	NA	NA	NA
2,2-oxybis(1-Chloropropane)	NGV	<10	<10	NA	NA	NA	NA	NA	NA
4-Methylphenol	1***	<10	<10	NA	NA	NA	NA	NA	NA
N-Nitroso-di-n-propylamine	NGV	<10	<10	NA	NA	NA	NA	NA	NA
Hexachloroethane	5*	<10	<10	NA	NA	NA	NA	NA	NA
Nitrobenzene	0.4	<10	<10	NA	NA	NA	NA	NA	NA
Isophorone	50	<10	<10	NA	NA	NA	NA	NA	NA
2-Nitrophenol	1***	<10	<10	NA	NA	NA	NA	NA	NA
2,4-Dimethylphenol	50	<10	<10	NA	NA	NA	NA	NA	NA
2,4-Dichlorophenol	5*	<10	<10	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	10**	<10	<10	NA	NA	NA	NA	NA	NA
Naphthalene	10	<10	<10	NA	NA	NA	NA	NA	NA
4-Chloroaniline	5*	<10	<10	NA	NA	NA	NA	NA	NA
Bis (2-chloroethoxy) methane	5*	<10	<10	NA	NA	NA	NA	NA	NA
Hexachlorobutadiene	0.5	<10	<10	NA	NA	NA	NA	NA	NA
4-Chloro-3-methylphenol	1***	<10	<10	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	NGV	<10	<10	NA	NA	NA	NA	NA	NA
Hexachlorocyclopentadiene	5*	<10	<10	NA	NA	NA	NA	NA	NA
2,4,6-Trichlorophenol	1***	<10	<10	NA	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	1***	<20	<20	NA	NA	NA	NA	NA	NA
2-Chloronaphthalene	10	<10	<10	NA	NA	NA	NA	NA	NA
2-Nitroaniline	5*	<20	<20	NA	NA	NA	NA	NA	NA
Dimethylphthalate	50	<10	<10	NA	NA	NA	NA	NA	NA
Acenaphthylene	NGV	<10	<10	NA	NA	NA	NA	NA	NA
2,6-Dinitrotoluene	5*	<10	<10	NA	NA	NA	NA	NA	NA
3-Nitroaniline	5*	<20	<20	NA	NA	NA	NA	NA	NA
Acenaphthene	20	<10	<10	NA	NA	NA	NA	NA	NA
2,4-Dinitrophenol	10	<20	<20	NA	NA	NA	NA	NA	NA

Table 2 Groundwater Analytical Data EMR Circuits

Hauppauge, Suffolk County, New York

Analyte	NYSDEC	MW-1	DUP 02	MW-1A	MW-3	MW-3A	GW-1	Trip Blank	Trip Blank
4-Nitrophenol	1***	<20	<20	NA	NA	NA	NA	NA	NA
Dibenzofuran	NGV	<10	<10	NA	NA	NA	NA	NA	NA
2,4-Dinitrotoluene	5*	<10	<10	NA	NA	NA	NA	NA	NA
Diethylphthalate	50	<10	<10	NA	NA	NA	NA	NA	NA
4-Chlorophenyl-phenylether	NGV	<10	<10	NA	NA	NA	NA	NA	NA
Fluorene	50	<10	<10	NA	NA	NA	NA	NA	NA
4-Nitroaniline	5*	<20	<20	NA	NA	NA	NA	NA	NA
4,6-Dinitro-2-methylphenol	1***	<20	<20	NA	NA	NA	NA	NA	NA
N-Nitrosodiphenylamine	50	<10	<10	NA	NA	NA	NA	NA	NA
4-Bromophenyl-phenylether	NGV	<10	<10	NA	NA	NA	NA	NA	NA
Hexachlorobenzene	0.04	<10	<10	NA	NA	NA	NA	NA	NA
Pentachlorophenol	1***	<20	<20	NA	NA	NA	NA	NA	NA
Phenanthrene	50	<10	<10	NA	NA	NA	NA	NA	NA
Anthracene	50	<10	<10	NA	NA	NA	NA	NA	NA
Carbazole	NGV	<10	<10	NA	NA	NA	NA	NA	NA
Di-n-butylphthalate	50	<10	<10	NA	NA	NA	NA	NA	NA
Fluoranthene	50	<10	<10	NA	NA	NA	NA	NA	NA
Pyrene	50	<10	<10	NA	NA	NA	NA	NA	NA
Butylbenzylphthalate	50	<10	<10	NA	NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	5*	<10	<10	NA	NA	NA	NA	NA	NA
Benzo (a) anthracene	0.002	<10	<10	NA	NA	NA	NA	NA	NA
Chrysene	0.002	<10	<10	NA	NA	NA	NA	NA	NA
Bis (2-ethylhexyl) phthalate	5	<10	<10	NA	NA	NA	NA	NA	NA
Di-n-octylphthalate	50	<10	<10	NA	NA	NA	NA	NA	NA
Benzo (b) fluoranthene	0.002	<10	<10	NA	NA	NA	NA	NA	NA
Benzo (k) fluoranthene	0.002	<10	<10	NA	NA	NA	NA	NA	NA
Benzo (a) pyrene	ND	<10	<10	NA	NA	NA	NA	NA	NA
Indeno (1,2,3-cd) pyrene	0.002	<10	<10	NA	NA	NA	NA	NA	NA
Dibenzo (a,h) anthracene	NGV	<10	<10	NA	NA	NA	NA	NA	NA
Benzo (g,h,i) perylene	NGV	<10	<10	NA	NA	NA	NA	NA	NA

Notes:

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values, and Groundwater Effluent Limitations, June 1998.

DUP 02 was collected with MW-1

< = Analyte not detected above laboratory method detection limits

NA = Not Analyzed

NGV = No Guidance Value listed

* = The principal organic contaminant standard for groundwater of 5 μ g/l applies to this substance

*** = Applies to the sum of phenolic compounds

Table 2 Groundwater Analytical Data EMR Circuits

Hauppauge, Suffolk County, New York

Analyte	NYSDEC	MW-1	DUP 02	MW-1A	MW-3	MW-3A	GW-1	Trip Blank	Trip Blank
			Pesti	cides					
alpha-BHC	NGV	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
beta-BHC	NGV	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
delta-BHC	NGV	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
gamma-BHC (Lindane)	NGV	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
Heptachlor	0.04	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
Aldrin	ND	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
Heptachlor epoxide	0.03	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
Endosulfan I	NGV	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
Dieldrin	0.004	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
4,4'-DDE	0.2	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
Endrin	ND	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
Endosulfan II	NGV	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
4,4'-DDD	0.3	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
Endosulfan sulfate	NGV	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
4,4'-DDT	0.2	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
Methoxychlor	35	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA
Endrin ketone	5*	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
Endrin aldehyde	5*	< 0.10	< 0.10	NA	NA	NA	NA	NA	NA
alpha-Chlordane	0.05	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
gamma-Chlordane	0.05	< 0.050	< 0.050	NA	NA	NA	NA	NA	NA
Toxaphene	0.06	< 5.0	< 5.0	NA	NA	NA	NA	NA	NA

Notes:

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998.

DUP 02 was collected with MW-1

< = Analyte not detected above laboratory method detection limits

NA = Not Analyzed

ND = Non-Detect

NGV = No Guidance Value listed

* = Applies to the sum of these substances

PCBs										
Aroclor-1016	0.09*	<1.0	<1.0	NA	NA	NA	NA	NA	NA	
Aroclor-1221	0.09*	<1.0	<1.0	NA	NA	NA	NA	NA	NA	
Aroclor-1232	0.09*	<1.0	<1.0	NA	NA	NA	NA	NA	NA	
Aroclor-1242	0.09*	<1.0	<1.0	NA	NA	NA	NA	NA	NA	
Aroclor-1248	0.09*	<1.0	<1.0	NA	NA	NA	NA	NA	NA	
Aroclor-1254	0.09*	<1.0	<1.0	NA	NA	NA	NA	NA	NA	
Aroclor-1260	0.09*	<1.0	<1.0	NA	NA	NA	NA	NA	NA	

Notes:

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998.

DUP 02 was collected with MW-1

NA = Not Analyzed

* = Applies to the sum of these substances

Table 2 Groundwater Analytical Data EMR Circuits Hauppauge, Suffolk County, New York

Analyte	NYSDEC	MW-1	DUP 02	MW-1A	MW-3	MW-3A	GW-1	Trip Blank	Trip Blank		
Metals											
Aluminum	NGV	<12	<12	NA	NA	NA	NA	NA	NA		
Antimony	3	<4.2	<4.2	NA	NA	NA	NA	NA	NA		
Arsenic	25	<3.1	<3.1	NA	NA	NA	NA	NA	NA		
Barium	1,000	35.9 B	34.7 B	NA	NA	NA	NA	NA	NA		
Beryllium	3	< 0.037	< 0.037	NA	NA	NA	NA	NA	NA		
Cadmium	5	< 0.50	< 0.50	NA	NA	NA	NA	NA	NA		
Calcium	NGV	1,300	12,400	NA	NA	NA	NA	NA	NA		
Chromium	50	0.98 B	1.1 B	NA	NA	NA	NA	NA	NA		
Cobalt	NGV	2.4 B	2.6 B	NA	NA	NA	NA	NA	NA		
Copper	200	21.9 B	23.1 B	NA	NA	NA	NA	NA	NA		
Iron	300	<47	<47	NA	NA	NA	NA	NA	NA		
Lead	25	<2.1	<2.1	NA	NA	NA	NA	NA	NA		
Magnesium	35,000	6,790	6,780	NA	NA	NA	NA	NA	NA		
Manganese	300	7.7 B	31.3 B	NA	NA	NA	NA	NA	NA		
Mercury	0.7	< 0.056	< 0.056	NA	NA	NA	NA	NA	NA		
Nickel	100	2.9 B	3.1 B	NA	NA	NA	NA	NA	NA		
Potassium	NGV	1,690	1,700	NA	NA	NA	NA	NA	NA		
Selenium	10	<10	<10	NA	NA	NA	NA	NA	NA		
Silver	50	<2.4	<2.4	NA	NA	NA	NA	NA	NA		
Sodium	20,000	32,400	32,300	NA	NA	NA	NA	NA	NA		
Thallium	0.5	<5.7	< 5.7	NA	NA	NA	NA	NA	NA		
Vanadium	NGV	< 0.34	< 0.34	NA	NA	NA	NA	NA	NA		
Zinc	2,000	105	103	NA	NA	NA	NA	NA	NA		

Notes:

All data are presented in µg/l

Standards taken from NYSDEC Memorandum 1.1.1, Ambient Water Quailiy Standards and Guidance Values,

and Groundwater Effluent Limitations, June 1998.

DUP 02 was collected with MW-1

Bold = Analyte detected above laboratory method detection limits

Shaded = Analyte detected above NYSDEC Groundwater Guidance Values

< = Analyte not detected above laboratory method detection limits

B = Indicates the compound was also detected in the associated Method Blank.

NA = Not Analyzed

Table 3 Air Analytical Data EMR Circuits Hauppauge, Suffolk County, New York

	NYSDOH	~~-	au see	a= -	AT- 1	AT- 1	A*	0.077	0.077	Ŧ	0.1.1
Analyte	Background	SV-1	SV-DUPE A	SV-2	SV-3	SV-4	SV-5	SSV-1	SSV-2	IA-1	OA-1
Date Collected	Concentrations	1/13/2010		1/13/2010 VOCs	1/13/2010	1/13/2010	1/13/2010	1/13/2010	1/13/2010	1/13/2010	1/13/2010
Propene		23.06	20.31	41.13	9.07	22.72	14.59	<2.03	<2.03	<1.01	4.53
Dichlorodifluoromethane (Freon 12)	10.5	3.46	2.72	2.82	2.82	2.92	3.31	<4.81	<4.81	<2.40	3.21
Chloromethane	3.1	< 0.59	< 0.59	1.82	1.49	< 0.59	1.30	<2.38	<2.38	<1.18	1.45
1,2-Dichlorotetrafluoroethane (Freon 114)		<1.72	<1.72	<1.72	<0.35	<1.72	<0.35	<6.89 <2.38	<6.89	<3.45	<0.35
Vinyl chloride 1,3-Butadiene	<1.0 <2.7	<0.60 <0.57	<0.60 <0.57	<0.60 <0.57	<0.14	<0.60 <0.57	<0.14	<2.38	<2.38 <2.25	<1.19 <1.13	<0.14
Bromomethane	<1.1	< 0.82	<0.82	< 0.82	<0.15	<0.82	<0.15	<3.29	<3.29	<1.64	<0.15
Chloroethane	<1.0	< 0.71	< 0.71	< 0.71	< 0.15	< 0.71	< 0.15	< 2.85	<2.85	<1.42	< 0.15
Acetone	59.8	15.92	55.13	6.89	46.34	36.36	10.98	456.25	21.48	31.84	10.95
Trichlorofluoromethane (Freon 11) Ethanol	6.7 140	5.34 7.73	4.50 8.28	1.80 J 5.02	2.19* 5.58	<1.61 16.20	2.75* 4.13	<6.46 35.82	<6.46 16.59	<3.22 348.81 D	2.81*
Acrylonitrile		<0.33	<0.33	<0.33	< 0.06	<0.33	< 0.06	<1.31	<1.31	<0.66	< 0.06
1,1-Dichloroethene	<1.2	8.89	7.89	< 0.79	<0.13	< 0.79	<0.13	<3.14	<3.14	<1.57	<0.13
Methylene chloride	5	< 0.88	< 0.88	< 0.88	< 0.17	< 0.88	0.35	<3.54	<3.54	15.21	0.69
1,1,2-Trichlorotrifluoroethane (Freon 113) Carbon disulfide		87.38	77.41	<1.72	2.38	<1.72	<0.27	<6.89	48.44	<3.45	0.77
trans-1,2-Dichloroethene	2.1	4.17 <0.76	3.77 <0.76	0.96 J <0.76	0.62 J <0.14	1.18 J <0.76	0.25 J <0.14	<2.32 <3.03	<2.32 <3.03	<1.16 <1.51	<0.11
1,1-Dichloroethane	<0.5	2.75	2.47	<0.76	<0.14	<0.76	<0.14	<3.10	<3.10	<1.51	<0.14
Methyl tert-butyl ether	<6.4	< 0.69	< 0.69	< 0.69	< 0.16	< 0.69	< 0.16	<2.77	<2.77	<1.39	< 0.16
Isopropyl alcohol		5.01	4.86	4.25	3.80	8.25	0.86 J	346.01	14.04	28.47	8.07
2-Butanone (MEK)	7.5	10.88 4.92	10.88 4.56	12.27	8.70 <0.10	21.14	1.56 0.59	5.90 <2.14	<4.78	27.25	2.92 <0.10
cis-1,2-Dichloroethene Hexane	<1.2 6.4	3.10	3.67	<0.54 5.11	<0.10 0.60	<0.54 3.84	0.39 0.28 J	<2.14 4.94 J	<2.14 2.82 J	<1.07 4.23	<0.10 1.48
Ethyl acetate	3.2	< 0.70	<0.70	< 0.70	0.36	< 0.70	< 0.13	<2.79	<2.79	4.90	<0.13
Chloroform	<1.2	16.50	14.70	1.31 J	0.29 J	< 0.73	< 0.12	<2.94	8.57	<1.47	< 0.12
Tetrahydrofuran		< 0.66	< 0.66	< 0.66	0.44	< 0.66	< 0.14	<2.65	<2.65	2.42 J	< 0.14
1,2-Dichloroethane 1,1,1-Trichloroethane	<0.7 10.8	<0.57 54.56	<0.57 48.01	<0.57 <0.75	<0.11 1.91	<0.57 1.09 J	<0.11	<2.30 <3.00	<2.30 30.99	<1.15 <1.50	<0.11
Benzene	5.1	1.44 J	1.50 J	<0.75 4.05	0.70	4.05	<0.13	<3.00 2.93 J	<1.93	2.04 J	<0.13 2.14
Carbon tetrachloride	<1.1	<0.91	<0.91	< 0.91	< 0.15	< 0.91	< 0.15	<3.64	<3.64	<1.82	0.63*
Cyclohexane		< 0.74	< 0.74	< 0.74	< 0.33	< 0.74	< 0.33	< 2.95	< 2.95	<1.48	0.48
1,2-Dichloropropane	<1.6	<0.79	<0.79	<0.79	< 0.11	<0.79	< 0.11	<3.18	<3.18	<1.59	<0.11
Bromodichloromethane Trichloroethene	1.2	<1.21 394.47	<1.21 345.03	<1.21 <1.51	<0.24 5.48	<1.21 3.71	<0.24 0.59	<4.81 13.54	<4.81 180.57	<2.41 <3.03	<0.24
1,4-Dioxane		<1.41	<1.41	<1.41	< 0.08	<1.41	< 0.08	<5.61	<5.61	<2.81	<0.29
n-Heptane		< 0.57	< 0.57	3.36	< 0.12	3.57	< 0.12	<2.26	<2.26	1.80 J	0.70
4-Methyl-2-pentanone (MIBK)	3	< 0.94	< 0.94	< 0.94	< 0.16	< 0.94	< 0.16	<3.76	<3.76	<1.88	< 0.16
cis-1,3-Dichloropropene	<2.0	<0.86	<0.86	<0.86	< 0.16	< 0.86	< 0.16	<3.46	<3.46	<1.73	<0.16
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	<1.2 <1.4	<0.72 12.82	<0.72 12.55	<0.72 <1.28	<0.14	<0.72 <1.28	<0.14	<2.89 <5.11	<2.89 16.37	<1.44 <2.55	<0.14
Toluene	25.9	11.21	18.29	21.75	1.39	32.96	<0.11	18.66	30.85	12.34	5.31
2-Hexanone (MBK)		< 0.92	< 0.92	< 0.92	< 0.15	< 0.92	< 0.15	<3.67	<3.67	<1.83	< 0.15
Dibromochloromethane		<1.64	<1.64	<1.64	< 0.38	<1.64	< 0.38	<6.58	<6.58	<3.29	< 0.38
1,2-Dibromoethane (EDB) Tetrachloroethene	<1.4 5.9	<1.15 353.30	<1.15 305.83	<1.15 2.03 J	<0.24 4.27	<1.15 54.25	<0.24 <0.27	<4.61 37.43	<4.61 194.62	<2.31 <2.59	<0.24 0.54 J
Chlorobenzene	<0.8	<1.30	<1.30	<1.30	<0.22	<1.30	<0.27	<5.20	<5.20	<2.60	<0.22
1,1,1,2-Tetrachloroethane		<2.11	<2.11	<2.11	< 0.37	<2.11	< 0.37	<8.45	<8.45	<4.23	< 0.37
Ethylbenzene	3.4	3.42	3.29	2.95	< 0.15	11.45	< 0.15	<3.31	7.28 J	<1.66	0.74
m,p-Xylene	12.2	13.48	11.10	11.27	<0.36	36.37	<0.36	<8.50	28.44	<4.24	2.69
Bromoform Styrene	<2.3	<3.27 <0.80	<3.27 <0.80	<3.27 <0.80	<0.70 <0.17	<3.27 <0.80	<0.70 <0.17	<13.13 <3.18	<13.13 <3.18	<6.54 <1.59	<0.70 <0.17
o-Xylene	<2.3 4.4	3.86	2.90	3.25	<0.17	9.15	<0.17	< 4.64	8.15 J	<2.31	1.00
1,1,2,2-Tetrachloroethane		<2.99	<2.99	<2.99	< 0.55	<2.99	< 0.55	<11.95	<11.95	<5.98	< 0.55
Isopropylbenzene		<1.27	<1.27	<1.27	< 0.18	<1.27	< 0.18	< 5.11	<5.11	< 2.55	< 0.18
1,3,5-Trimethylbenzene	<4.6	1.72 J	<1.40	<1.40	<0.25	1.62 J	<0.25	<5.60	<5.60	<2.80	0.34 J
4-Ethyltoluene 1,2,4-Trimethylbenzene	<3.1 5.1	1.43 J 5.56	<1.38 1.67 J	<1.38 3.54	<0.27 <0.24	1.38 J 5.16	<0.27 <0.24	<5.51 <5.11	<5.51 12.00	<2.75 <2.57	0.29 J 0.74**
1,3-Dichlorobenzene	<1.1	<1.66	<1.66	<1.66	<0.24	<1.66	<0.24	< 6.67	<6.67	<3.32	<0.35
Benzyl chloride	<1.7	<1.27	<1.27	<1.27	<0.28	<1.27	<0.28	< 5.09	<5.09	<2.54	<0.28
1,4-Dichlorobenzene	1.4	<1.56	<1.56	<1.56	< 0.25	<1.56	< 0.25	<6.25	<6.25	<3.12	< 0.25
sec-Butylbenzene		<1.45	<1.45	<1.45	<0.26	<1.45	<0.26	<5.82	<5.82	<2.90	<0.26
4-Isopropyltoluene 1,2-Dichlorobenzene	<1.0	<1.31 <1.36	<1.31 <1.36	<1.31 <1.36	<0.25 <0.25	1.40 J <1.36	<0.25 <0.25	<5.27 <5.46	<5.27 <5.46	<2.63 <2.73	<0.25 <0.25
n-Butylbenzene	<1.0	<1.30	<1.30	<1.30	<0.23	<1.30	<0.23	<4.68	<4.68	<2.73	<0.23
1,2,4-Trichlorobenzene	<1.2	<1.19	<1.19	<1.19	< 0.18	<1.19	< 0.18	<4.74	<4.74	<2.37	< 0.18
Hexachlorobutadiene	<2.5	<2.64	<2.64	<2.64	< 0.45	<2.64	< 0.45	<10.58	<10.58	< 5.29	< 0.45
Notes:											

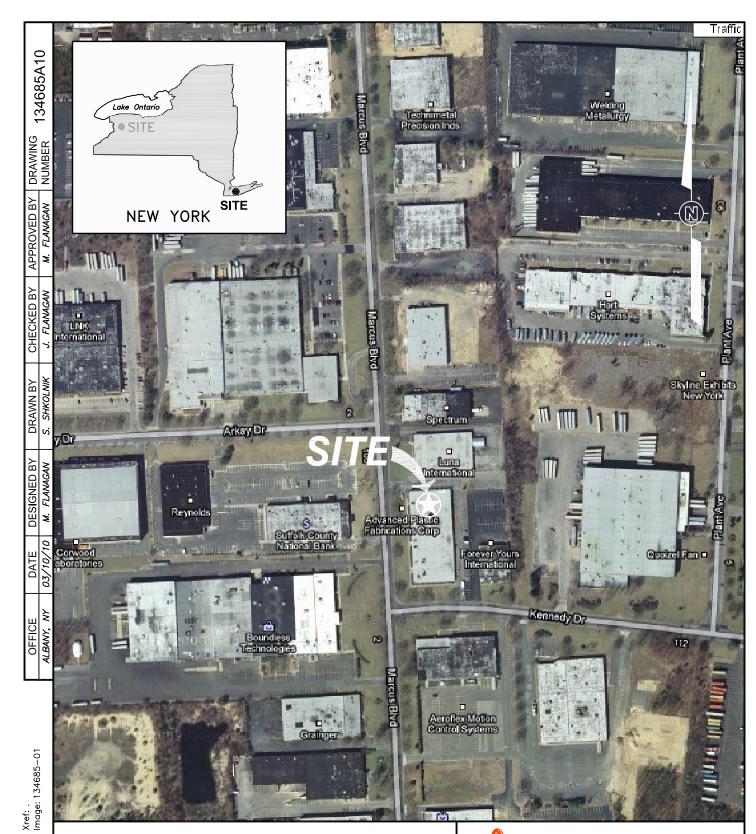
Notes:

All data are presented in μg/m³

Table C-2 EPA 2001 Building Assessment and survey evaluation database (75 percentile) was used for

New York State Department of Health (NYSDOH) Indoor Air Background Concentrations

SV DUPE A was collected with SV-1


Bold = Analyte detected above laboratory method detecton limits

Shaded = Analyted detected above NYSDOH Indoor Air Background Levels, for IA-1 only.

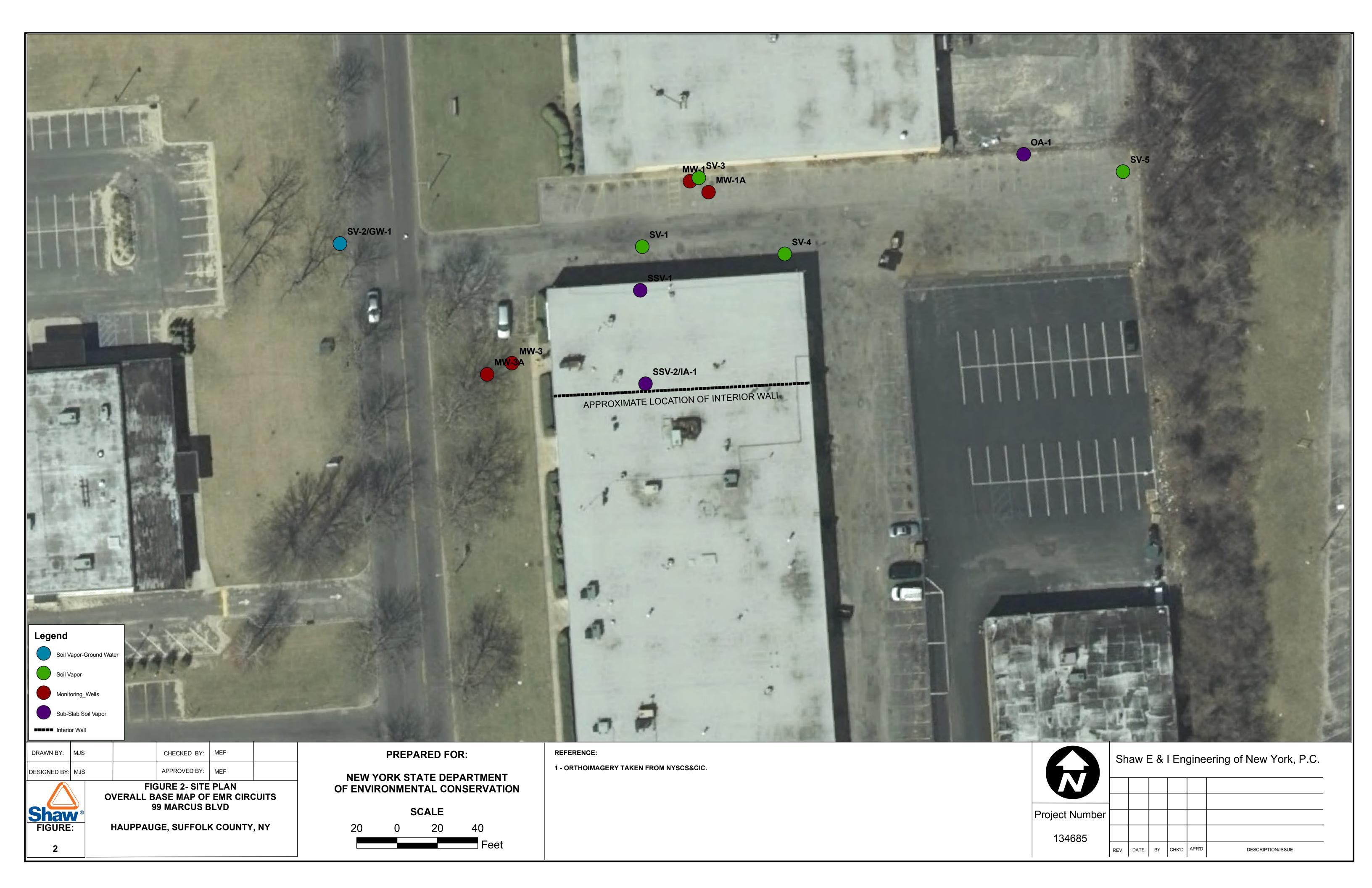
D = Analyte was analyzed at a dilution

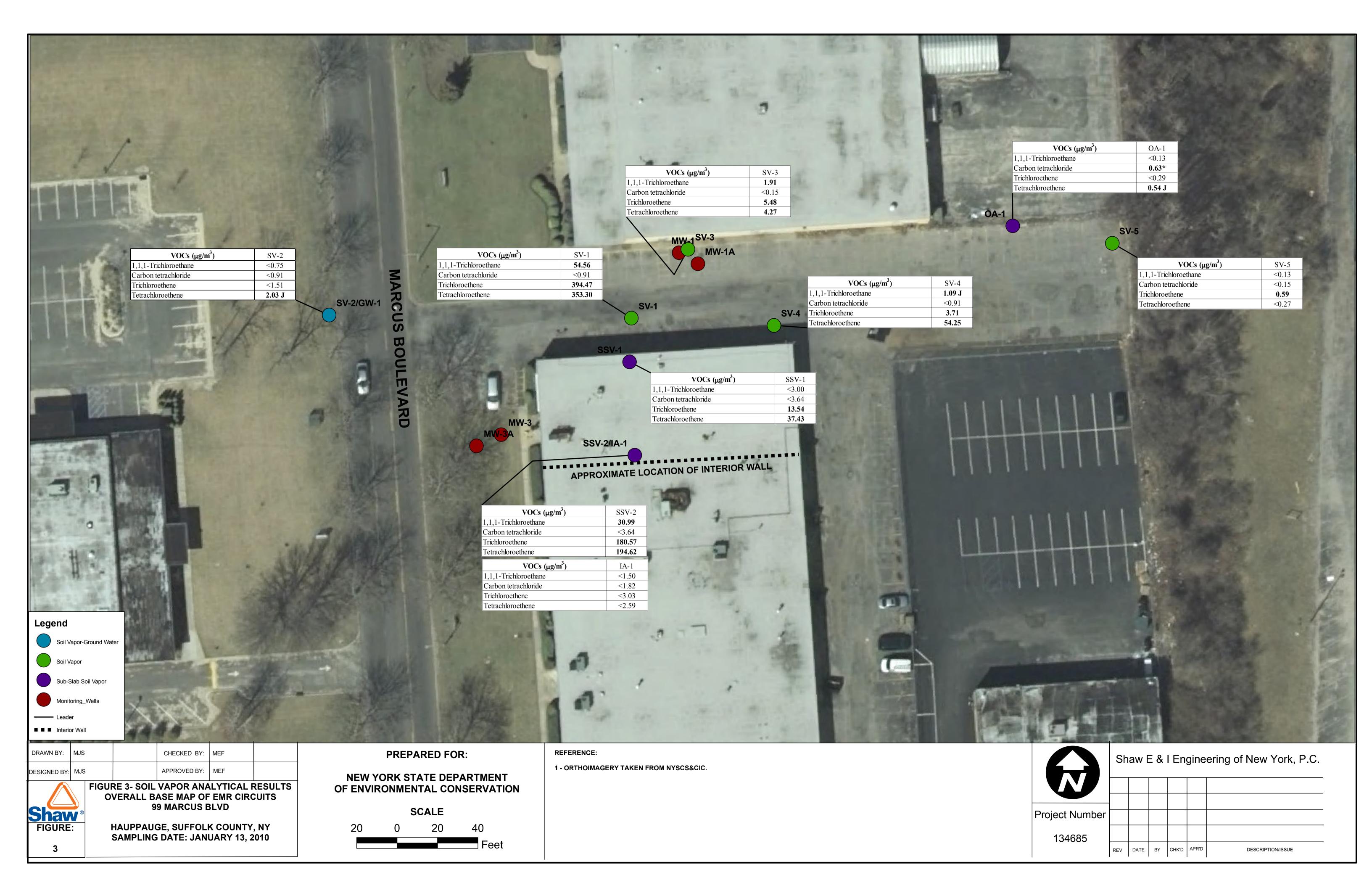
- J = Detected above the Method Detection Limit but below the Reporting limit; therefore, result is an estimated concentration
- * = Data for this analte may be biased high based on QC spike recoveries
- ** = Data for this analyte may be biased low beard on CCV spike recoveries

NOT TO SCALE

Shaw* Shaw Environmental, Inc.

NEW YORK STATE DEPARTMENT OF **ENVIRONMENTAL CONSERVATION**


> FIGURE 1 SITE LOCATION MAP


99 MARCUS BLVD HAUPPAUGE, NEW YORK

L:\project\134685\01\134685A10.dwg Plot Date/Time: 04/20/10 03:00pm Plotted by: samuil.shkolnik

REFERENCE:

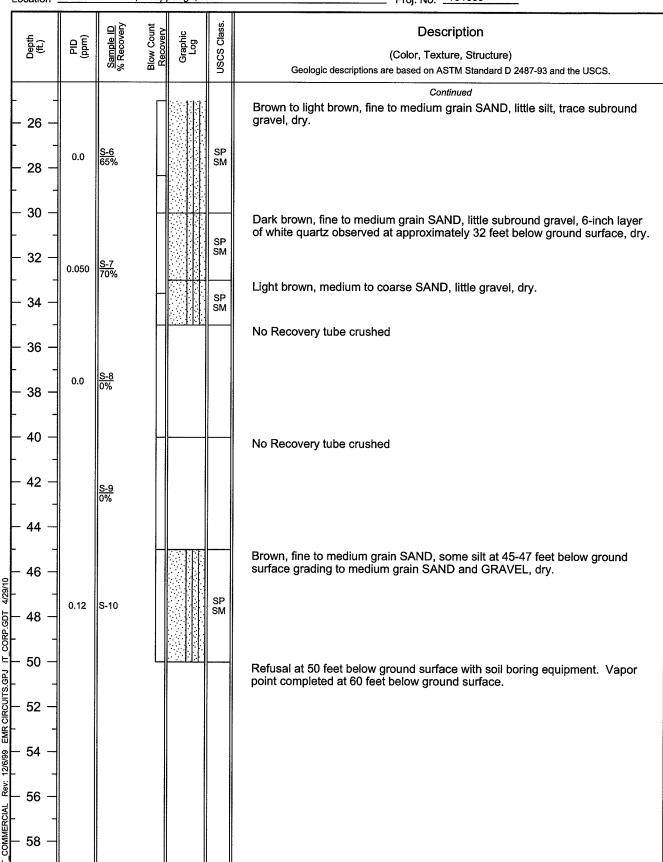
MAP FROM www.google.com

APPENDIX A FIELD LOGS

Soil Boring

SB-1/SV-1 Page: 1 of 2

Project _						Owner NYSDEC	COMMENTS					
Location	99 Mar	cus Blvd,	Наир	oauge, ∧	IY	Proj. No. <u>134685</u>	SV-1 completed immediately adjacent to 60 ft bgs boring, near historic leaching pools.					
Surface El	Surface Elev. NA Total Hole Depth 50.0 ft. North 40.812089 ft. East -73.246622 ft. Top of Casing NA Water Level Initial NA Static NA Diameter 2.25 in.											
Screen: Di												
				igth <u>//</u> igth <u>//</u>		Type/Size _ <i>NA</i> Type _ <i>NA</i>						
Casing: Di					1							
Fill Materia			ass Be			Rig/Core 6610						
Drill Co						Direct Push with 5 ft. macro core						
Driller <u>L</u>	Reiss		_ Log	ву <u>М</u>	. Flan	agan Date Permit #						
Checked E	3y <u>NA</u>				L	icense No. NA						
	T T				1							
_		Sample ID % Recovery	Blow Count Recovery	ပ္	ass.	Description						
Depth (ft.)	PID (mdd)	륌호	S S	Graphic Log	USCS Class	•						
		Sar Rear	Slow Rec	<u>ති</u>	SS	(Color, Texture, Structure)						
		-1.6)	Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.					
$\vdash \circ \dashv$						Asphalt						
├ ┤						Light brown, medium to fine SAND, little round grave	el, dry.					
- 2 -							•					
	0.0	<u>S-1</u> 75%										
F -		15%			SP							
			Н									
F +			Н			Light brown, medium to fine grain SAND, little subro	and gravel trace					
F 6 -						quartzite and large gravel horizon at 6 feet below gro	ound surface, dry.					
"							, ,					
† †	0.0	S-2			SP							
⊢ 8 −	0.0	<u>S-2</u> 75%			SM							
† †												
├ 10 -			Щ			Links have an adjum to fire area CAND 1991	and an all alm					
						Light brown, medium to fine gran SAND, little subrou	ına gravel, dry.					
⊢ 12 −		c 2			_							
	0.069	100%			SP SM							
9/10							:					
¥ - 14 -	0.013											
ğĹ												
Rev: 126/99 EMR CIRCUITS.GPJ IT_CORP.GDT 4/29/10			П			Light brown, medium to fine grain SAND, little subrou	und gravel, some iron					
ଞ୍ଚ⊢ 16 −					SP	staining at approximately 16 feet below ground surfa-	ce, dry.					
=[_	0.040				SM							
<u>a</u>	0.040 0.024	<u>S-4</u> 85%										
[18 -		85%				Grades at 18 feet below ground surface to light brow	n fine grain SAND					
₽					SP	some subround gravel, trace silt, dry.	n, mie gram SAND,					
ارَّ ا			H		SM	222 davidana gratta, tidoo oni, dry.						
[20 -			Н		$\vdash\vdash\vdash$	Light brown fine grain SAND, some subround gravel,	trace silt day					
<u></u>						Light brown line grain oallo, some subround graver,	u ao o siit, ui y.					
12/6/					SP							
[22 		S-5			SM							
	0.0	<u>S-5</u> 60%	Ш									
COMMERCIAL - 24 -					SP	Grades at 23 feet below ground surface to medium g	rain SAND, subround					
띩- 24 -					SM	large GRAVEL, dry.						
Š -			Ц									
<u> </u>						Continued Next Page						


Soil Boring

SB-1/SV-1

Page: 2 of 2

Project EMR Circuits Owner NYSDEC

Location 99 Marcus Blvd, Hauppauge, NY Proj. No. 134685

Soil Boring

SB-2/SV-2 Page: 1 of 1

Project _						Owner NYSDEC	COMMENTS Across Marsus Boulevard
Location .	99 Mai	cus Blvd	, Haup	pauge, N	IY	Proj. No. <u>134685</u>	Across Marcus Boulevard
						8.0 ft. North 40.812102 ft. East -73.247163 ft.	
			al <u>NA</u> Static <u>NA</u> Diameter <u>2.25 in.</u>				
Screen: D	ia <i>_NA</i>					Type/Size NA	
Casing: Di						Type	
Fill Materia	al <u>Ben</u>	tonite, G	lass Be	ads		Rig/Core <u>6610</u>	
Drill Co.	Zebra			M	lethod	Direct Push with 5 ft. macro core	
Driller <u>L</u>	Reiss		Log	ву <u></u>	Ada	ms Date Permit #	
Checked E	3y <u>NA</u>				L	icense No. NA	
		. >	[, i		
₽,	ΩÊ	Sample ID % Recovery	Blow Count Recovery	g je	USCS Class.	Description	
Depth (ft.)	PID (ppm)	Segil Res	ow C	Graphic Log	SS	(Color, Texture, Structure)	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8 4		Sn	Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
L 0 -							
"			П	71 VIV		Grass, roots, dark brown, coarse SAND, dry.	
				7.77.7			
				77.75			
├ 1 ┤				7.77.7		Light brown, fine to medium grain SAND, dry.	
						Light brown, fine to mediam grain SAND, dry.	
├ ┤							
					SP		
2	•						
	0.032	<u>S-1</u> 70%					
	0.032	70%				Light brown, fine to medium grain SAND, some roun	d gravel, dry.
⊢ 3 ⊣							
-			Н				
					SP		
4							
<u>_</u>							
- 5 –		<u> </u>					
j						Light brown, fine to medium grain SAND, little round	gravel, dry.
<u> </u>					SP		
Ö							•
<u>-</u> 6 ⊢					_	Light brown, fine SAND, little light brown silt, moist.	
95. GP.		S-2			SP SM	g.c s.c,c o, ato, itale agric blown siit, most.	
	0.040	<u>S-2</u> 100%		ا البائدات المائد ا المائد المائد	H	Light brown, coarse SAND, little round gravel, dry.	
1T_COMMERCIAL_Rev: 12/6/99 EMR CIRCUITS.GPJ IT_CORP.GDT 4/29/10 G 8 2 9 G H						3	
% 7 − 7 − 1					SP		
96					or		
12/6/							
<u>\$</u> 8 -			Ц		-	Raying terminated at 9 fact below ground audition	
-						Boring terminated at 8 feet below ground surface.	
<u>ğ</u> -			ļ				
MME							
[9 -							
· 				1			

Soil Boring

SB-3/SV-3 Page: 1 of 1

Pro	Project EMR Circuits Owner NYSDEC COMMENTS												
	Location 99 Marcus Blvd, Hauppauge, NY Proj. No. 134685 Located between monitoring wells MW-1 and MW-1A												
	Surface Elev. NA Total Hole Depth 8.0 ft. North 40.812181 ft. East -73.246518 ft.												
							North 10.012707 ib East 170.240070 ib.						
		-											
			Type/Size _ <i>NA</i>										
		ia <u><i>NA</i></u>					Type _ <i>NA</i> Rig/Core _6610						
Fill	Materi												
Dril	Drill Co. Zebra Method Direct Push with 5 ft. macro core												
Dril	Driller <u>L. Reiss</u> Log By <u>R. Adams</u> Date <u>1/12/10</u> Permit # <u>NA</u>												
	Checked By NA License No. NA												
			의중	₹≥		SS.	Description						
:	Depth (ff.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·						
'	₽ -	ੂ ਨੂੰ	- R	Şeç o	Gra L	ျွင္လ	(Color, Texture, Structure)						
1			w %	<u> </u>		š	Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.					
H	0 -			Н			Asphalt						
							, while						
F	-												
							Linkshamman and Cost Survey						
\vdash	1 -						Light brown, medium grain SAND, little round gravel	, dry.					
ŀ	_												
F	2 -					SP							
ı													
ŀ	-	0.073	<u>S-1</u> 70%										
			70%										
L	3 -					<u> </u>	1.11						
							Light brown, medium to coarse grain SAND, some ro dark brown brittle quartzite at 4 feet below ground so	ound gravel, layer of					
ŀ	_			H			dank brown brittle quartzite at 4 leet below ground st	inace, dry.					
L	4 –					SP							
	•					-							
L	_												
9													
4/29/10	5 -												
7	5						Light brown, medium grain SAND, little round gravel	, dry.					
<u>8</u> .	_					SP							
Š						"							
	6 -												
<u> </u>	0						White, fine to medium grain SAND, flakes of rock, dr	y. 					
S.G		0.111	<u>S-2</u>			SP							
튄	_	0.111	<u>S-2</u> 100%			35							
띪	7												
MR	7 –						Light brown, SAND, some round gravel, dry.						
9 E						_							
19/2	_					SP							
7	0												
Re	8 –						Boring terminated at 8 feet below ground surface.	l					
COMMERCIAL Rev: 12/6/99 EMR CIRCUITS.GPJ IT_CORP.GDT							-						
SE	-												
MM	^												
8	9 –												
=			L			1.							

Drilling Log

Soil Boring

SB-4/SV-4 Page: 1 of 1

Project _	EMR Cir	rcuits				Owner NYSDEC COMMENTS
Location .						,
Surface El	lev <i>N</i> /	4	_ Tot	al Hole [Depth	8.0 ft. North 40.812075 ft. East -73.246367 ft.
Top of Car	sing _ <i>N</i>	Α	_ Wa	ter Leve	l Initia	al <u>NA</u> Static <u>NA</u> Diameter <u>2.25 in.</u>
Screen: D	ia <i><u>NA</u></i>		_ Len	gth N	4	Type/Size _ <i>NA</i>
Casing: Di						Type _ <i>NA</i>
						Rig/Core 6610
						Direct Push with 5 ft. macro core
						ns Date 1/12/10 Permit # NA
			_	-		icense No. NA
	,					
_		리호	Blow Count Recovery	<u>.</u>	ass.	Description
Depth (ff.)	PID (ppm)	월양	ပို့ လ	Graphic Log	SCI	·
	_ =	Sample ID % Recovery	Blov	G	USCS Class.	(Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
						Geologic descriptions are based on ASTM Standard D 2467-95 and the OSCS.
├ o -						Asphalt
						πορπαϊί
				A YOUNG	SP	Light beige to brown, medium grain SAND, dry.
├ 1 ⊣					<u> </u>	Light brown, medium grain SAND, little round gravel, dry.
- 2 -					SP	
Г ′ 7					35	
<u> </u>	0.061	<u>S-1</u> 80%				
	0.00	80%				
⊢ 3 −					ļ	Double harrows fire a fee was divine awaits CANID at
					SP	Dark brown, fine to medium grain SAND, dry.
-						Light brown, medium grain SAND, little round gravel, dry.
						Light brown, modium grain of the fitting found graves, dry.
├ 4 ┤			H			
					SP	
- 5 –						
₽ 3 T			П			Light brown, SAND, little round to subround gravel, dry
9.						
SOR						
<u>≒</u> 6 −						
GP.						
- IIS	0.035	<u>S-2</u> 50%	Н		SP	
IN IN						
을 7 -						
Ē						
79/2/						
8 - [6]						
er ° 7						Boring terminated at 8 feet below ground surface.
- GIA						
TT_COMMERCIAL_Rev: 12/6/99 EMR CIRCUITS.GPJ IT_CORP.GDT 4/29/10 G 8 L O G C G G G G G G G G G G G G G G G G G						
§ 9 -						
<u> </u>						

Drilling Log

Soil Boring

SB-5/SV-5 Page: 1 of 1

Project _	EMR Cir	cuits				Owner NYSDEC COMMENTS
Location .	99 Mar	cus Blvd,	Haup	pauge, N	IY	Proj. No. 134685 Located at rear of property. Downgradient location.
Surface El	ev <i>NA</i>	1	_ Tot	tal Hole [epth	8.0 ft. North 40.812178 ft. East -73.24576 ft.
					-	NA Static NA Diameter 2.25 in.
Screen: Di						
Casing: Di						Type _ <i>NA</i>
Fill Materia						Rig/Core 6610
Drill Co.					ethod	Direct Push with 5 ft. macro core
Driller <u>L</u> .						
Checked E			`	ву <u></u>		icense No. NA
	7	I			I	
		일을	ŧ ĕ	ပ္	Class.	Description
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	S	•
)	Sar R	Blov	ত	nscs	(Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
						2000gio decempione die based on Activi dianada p 2407-00 and the 0000.
						,
						·
$\vdash \circ \dashv$			Г			Asphalt
						
† 1						
						Light brown, medium grain SAND, some round gravel, dry.
L 2 -						
F -	0.031	<u>S-1</u> 65%				
					SP	
3					SF	
			H			
f 1			Ì			
L 4 -						
4 7		İ				
2						
§ 5 -				1. V		Light brown, medium grain SAND, dry.
5						Light brown, medium grain SAND, dry.
<u> </u>						
3						
<u>-</u> 6 –					SP	
5	0.640	S-2				
	0.042	95%				
[, ,]						
					SP	Dark brown, organic fine grain SAND, dry.
<u> </u>						Limbs basses associations again CAND (Male association)
2					SP	Light brown, medium grain SAND, little round gravel, dry.
<u></u> 8 −			П			Boring terminated at 8 feet below ground surface.
						Soming terminated at 0 feet below ground surface.
<u> </u>						
and						
9 -						

		ID-1-1N	
		Project Name: EMR C.	reuits
		Date: 1/13/10	
Shall & Show E	in ironmental Inc		
Shaw ® Shaw E	nviorinental, inc.	Sampler(s): MF/RA	
estilla estrocemoustukouberkoub			The second of the second of the second
Sample ID:		Address/Location:	
3v-/+ S	Y - Dupe A He Detector Used:	199 Marcus Ave.	
PID Meter Used:	He Detector Used:	Weather Conditions: วินคร	ny + Cold, slight wind.
ppB Rae	MGD	SY-Dupe A	' . '
	Soil Gas	Ambient-Air	Comments
Hariotoff believed by the state of the state		nice in the fact of the second contract of the second	
Canister Serial Number:	026/	5569	
Flow Controller Number:	0036	2863	
Start Date / Time:	1/13/10 / 1335	1/13/10 / 1335	
Stop Date / Time:	1/13/10/ 10/5/1035	1/13/10 / 1535	
Duplicate Sample ID:	3Y-Dupe A		
Sample ID Category:	Soil Yapor	Soil Yapor	Shara same cample
Sample Depth:	60 ft bgs	60 A bas	Share some sample. line - use a "1"
Approximate GW Depth:	103 A bas	103 A bas	Tine - use a
Air Temperature:	2706	~ 27°F	
Direction/Distance from			
any Structure: 99 Marcus	10166	10/6"	
Distance to Roadway:	Parking Lot		
Any noticeable odor?	None	Parking Lot None	
PID Reading (ppb):		608 and	
He Detector Reading (% He):	0-25 ppm	608 ppB 0-25 ppm 10-15	Stack to O - 1.11 11-
Consituents Sampled:	10 - 15	10-15	Start @ O, slight inc, then back to Oppm
Container Description:	GL Summa	62 Summa	Dack to Oppm
	A CONTRACTOR OF THE PARTY OF TH		
Checked Seals:	Y Yes	□No	101
Took GPS Coordinates at Position	on: 📝 Yes	No	
Tracer Gas Test:	✓ Successful	Unsuccessful	
Sample: Both taken here	✓ Duplicate	Matrix Spike Duplicate	Matrix Spike Analysis
Photo Taken:	√ Yes	No	Tridetx Spine
Reg/Can Pressure:	Start @ 30" Ha Stop @ 1.5" Ha	hand 117	
)	Stop @ 15"H	Stort @ 30" Hg Stop @ 3" Hg	
	Jop G 1. J Hg	J. F. W J Ha	
	e	J	

Soil Gas Field Sampling Form

		Project Name: NYSDEC - EMR Circuits Date: 1/13/10				
	-					
Snaw Shaw E	Environmental, Inc.	Sampler(s): MF/RA				
Sample Location Information:						
Sample ID:		Address/Location: 99 Marcus Blvd.				
SY-2		Hauppauge, NY				
PID Meter Used: ppB Rae	He Detector Used: MGD 2002	Weather Conditions: Sun	ny + 601d.			
	Soil Gas	Ambient Air	Comments			
SUMMA CANISTER RECORD						
Canister Serial Number:	0263					
Flow Controller Number:	2989					
Start Date / Time:	1/13/10 1340		·			
Stop Date / Time:	1/13/10 1540					
Canister Start Pressure:	29 10 Hg					
Canister Stop Pressure:	0-lin Ha					
Duplicate Sample ID:	NA J					
Sample ID Category:	Soil Yapor					
Sample Depth:	8 ft bas					
Approximate GW Depth:	103 A bas					
Air Temperature:	27° ×					
Direction/Distance from	Across Marcus Blud,					
any Structure:	~2ft from curb					
Distance to Roadway:	~ 24					
Any noticeable odor?	None					
PID Reading (ppb):	137					
He Detector Reading (ppm):			+ 2000 in enclosure			
Consituents Sampled:	10-15					
Container Description:	6L Summa					
Checked Seals:	√ Yes	☐ No				
Tracer Gas Test:	✓ Successful	Unsuccessful				
Sample:	Duplicate	Matrix Spike Duplicate	☐ Matrix Spike			
Photo Taken:	✓ Yes	No				

		ID	
		Project Name: EMR Circ	cuits
		Date: 1/13/10	
Shaw * Shaw E	invironmental Inc		
Oliav L	nvionnental, inc.	Sampler(s): MF/RA	
Sample Location Internation			The second selection of the second se
Sample ID:		Address/Location:	
- 44 0 ,	0A-1	99 Marcus Blvd.	
PID Meter Used:	He Detector Used:	Weather Conditions:	
ppB Rae	MGD	Sunny, Cold, Slight B	reeze ·
	Soil Gas	Sunny, Cold, Slight B Ambient Air	Comments
Kadalokozaraelikelikakoykaminalka			
Canister Serial Number:	0669	0239	
Flow Controller Number:	2878	2968	
Start Date / Time:	1/13/10 / 1257	1/13/10 1049	
Stop Date / Time:	1/13/10 / 1520	1/14/10 1100	
Duplicate Sample ID:	NA	NA	
Sample ID Category:	Soil Yapor	Outside Ambient	
Sample Depth:	8 ft bas	Soloide Himpight	Z. V. 11. 11
Approximate GW Depth:	103 H bgs	NA	- Intake Height
Air Temperature:	~ mid 20 of	mid 20° F	
Direction/Distance from		Mil aco p	
any Structure:	17'3"	15 X Grom corner	
Distance to Roadway:	Parking Lot	B/N & parking Lots	
Any noticeable odor?	Maries	None	
PID Reading (ppb):	(MF) = 240		Good which I all I do
He Detector Reading (% He):	O ppm	N:A	from slight truck trollic
Consituents Sampled:	TO -15	YO ~15	
Container Description:	62 Summa	GL Summa	
Checked Seals:	¥Yes	l No	
Took GPS Coordinates at Positio	n: 🗸 Yes	No	
Tracer Gas Test:	✓ Successful	Unsuccessful	
Sample:	Duplicate	Matrix Spike Duplicate	☐ Matrix Spike ☑ Analysis
Photo Taken:	✓ Yes	No	THAT SPIKE TAILBIYSIS
Reg / Can Pressure:			
J / 32 / / 655 4.0 .	State & I. D III II	Start 30 in Ha	
	5top ~.5 in Hg	Stop 2" Ha	

Soil Gas Field Sampling Form

Page1 of

		ID. (A)	
		Project Name: EMR Cir	rcuity
		Date: 1/13/10	
Shaw® Shaw E	nvironmental Inc		
Ollaw L	-i vi Onnena, IIC.	Sampler(s): MF /RA	
Sample Location Information: Sample ID:			
Sample ID:	(MF) - 4	Address/Location:	
PID Meter Used:		99 ~	lareus
	He Detector Used:	Weather Conditions:	
ppB Rae	MGD	Sunny / Cold / Slight Ambient Air	Breeze
L. Estiningaceyarilendelegere oxoleger	Soil Gas	Ambient Air	Comments
Canister Serial Number:			
Flow Controller Number:	1010		
Start Date / Time:	9040		
	1/13/10 / 1307		
Stop Date / Time:	1/13/10 / 152		
Duplicate Sample ID:	NA		
Sample ID Category:	Soil Yapor		
Sample Depth:			
Approximate GW Depth: Air Temperature:	o Fr Das		
Direction/Distance from	mid 20°F		
any Structure:	811		
Distance to Roadway:	5 from 99 Mar	cies	
Any noticeable odor?	None (MF)		
PID Reading (ppb):	21/2		<u> </u>
He Detector Reading (% He):	300 *** pph		
Consituents Sampled:	10-15	i	*******
Container Description:	6 L Summa		
	U 2 Jumma		
Checked Seals:	Lv Yes	No	
Took GPS Coordinates at Position		□ No	
Tracer Gas Test:	✓ Successful	Unsuccessful	
Sample:	Duplicate	Matrix Spike Duplicate	Martin Cultin III
Photo Taken:	✓ Yes	No No	☐ Matrix Spike
Reg/Can Pressure			
J. The Hessure	·) 1976: 30 - 79		
	Stop 3" Hay		
	•)		

Soil Gas Field Sampling Form

Page1 of

		Decinet Name (CA 18	· · · · · · · · · · · · · · · · · · ·
		Project Name: EMR C	ircuits
		Date: 1/13/10	
Shaw Shaw E	invironmental Inc	0	
Sample Legiation Intompations	i Michillena, ilic.	Sampler(s): MF/RA	PS)/17/20/20 CS SUMD/STEETING
Sample ID:		In it is	
	* *.	Address/Location:	•
PID Meter Used:	He Detector Used:	99 Ma	ircus
	4	Weather Conditions:	
ppB Rae	MGD	Sunny/Cold/ SIN	ght Breeze
Summacyanismers herotoga	Soil Gas	Ambient Air	Comments
Canister Serial Number:			
Flow Controller Number:	0260		
	3865		
Start Date / Time:	1/13/10 / 1248		
Stop Date / Time:	1/13/10 / 1500		
Duplicate Sample ID:	N/A		
Sample ID Category:	Soil Yapor		
Sample Depth:	8 ft bas		
Approximate GW Depth:	102-103 ft bgs		
Air Temperature:	mid 20°F		1
Direction/Distance from	, , , , , , , , , , , , , , , , , , ,		
any Structure:	8. 6" From Fense		
Distance to Roadway:	Parking Lot - Rear		
Any noticeable odor?	None		
PID Reading (ppb):	121 ppb		
He Detector Reading (% He):	O pot pom		
Consituents Sampled:	0 pph ppm 10-15		
Container Description:	GL Summa		
Checked Seals:	y Yes	No	
Took GPS Coordinates at Positio	on: 📝 Yes	No	
Tracer Gas Test:	✓ Successful	Unsuccessful	
Sample:	Duplicate	Matrix Spike Duplicate	☐ Matrix Spike ☑ Analysis
Photo Taken:	✓ Yes	No	CITICAL OPINE CIAIDIYSIS
Reg/Can Pressure:	3+10 30 14		

Reg/Can Pressure: Stort @ 30"Hg

Stop @ 5" Hg

•		Project Name: NYSDEC - EMR Circuits	R Circuits	
		Date: 1/13/10 - 1/14/10		
Shaw Environmental,	ironmental, Inc.	Sampler(s): RA and MF		
Sample Location Information:				
Sample Location ID:	•	Address/Location:		
55Y-2 & I	IA-1	99 Marcus Blvd., Hauppauge, NY	NY	
PID Meter Used:	He Detector Used:	Weather Conditions:		Auto
ррв Кае	MGD 2002			
	Sub - Slab Vapor	Indoor Ambient Air	Outdoor Ambient Air	Comments
SUMMA CANISTER RECORD				
Canister Serial Number:	52.25	2494	NA	- Samoke Located
Flow Controller Number:	84880	46660		
Sample ID:	557-2	TA-1	/	
Start Date / Time:	1/13/10 1003	1/13/10		- >10,000 000 AB
Stop Date / Time:	1/14/10 1052	1/14/10 1051		
Start Pressure (inches Hg):	29	30		
Stop Pressure (inches Hg):	-	9		
Duplicate Sample ID (if applicable):	NA	AA		
Sample Intake Depth/Level:	~7" bas	+ 65" high		
Additional Tubing Added:	~ 20 1	NA J		
Air Temperature:	~ 50°F	~ 50°F	/	
Location/Direction/Distance from	5			
any Structure:	~ la from near wall			
Distance to Roadway:	NA	NA		
Any noticeable odor?	Slight methane, ?	Plastic cutting odor		
PID Reading (ppb):	334	İ	≯	
He Detector Reading (ppm):	020	NA	NA	
Consituents Sampled:	via TO-15	via TO-15	via TO-15	
Container Description:	6-Liter Summa w/ 24-hr FC	6-Liter Summa w/ 24-hr FC	6-Liter Summa w/ 24-hr FC	
Approximate GW Douth: 2.03				
-			and the state of t	
Checked Seals: Yes				
Tracer Gas Test:	▼ Successful	Unsuccessful		
Photo Taken:	✓ Yes	No	Tr. Transmission	

		Project Name: NYSDEC EMB Circuita	D Circuits	
		Date: 1/13/10 - 1/14/10		
		20020		
Shaw Environmental,	ironmental, Inc.	Sampler(s): RA and MF		
Sample Location Information:				
Sample Location ID:		Address/Location:		
1-ACC		99 Marcus Blvd., Hauppauge, NY	NY	
PID Meter Used:	He Detector Used:	Weather Conditions:		
ppB Rae	MGD 2002	Sunny +	+ cold	
	Sub - Slab Vapor	Indoor Ambient Air	Outdoor Ambient Air	Comments
SUMMA CANISTER RECORD				
Canister Serial Number:	5568	٩Z	ΨZ	Sample located
Flow Controller Number:	02855			
Sample ID:	55V -/			900
Start Date / Time:	1/13/10 942			1
Stop Date / Time:	1/14/10 1049			balage Hour root
Start Pressure (inches Hg):	30 " Ha			
Stop Pressure (inches Hg):	(/-0			©: ₩: 00001 < +
Duplicate Sample ID (if applicable):	NA A			10000000
Sample Intake Depth/Level:	(PIF) ~ \$ the " below surface			
Additional Tubing Added:	~ 36 "			
Air Temperature:	~ 50°Finside			
Location/Direction/Distance from				
any Structure:	2 20" from wall	*		
Distance to Roadway:	NA	NA		
Any noticeable odor?	None	24		
PID Reading (ppb):	945		->	
He Detector Reading (ppm):	Ó	NA	NA	
Consituents Sampled:	via TO-15	via TO-15	via TO-15	
Container Description:	6-Liter Summa w/ 24-hr FC	6-Liter Summa w/ 24-hr FC	6-Liter Summa w/ 24-hr FC	
		1		
Approximate GW Depth: ~ 103 #	इ०व १			
Checked Seals: 🏸 🤊	7			
Tracer Gas Test:	V Successful	Unsuccessful		
Photo Taken:	✓ Yes	ON [

Project Name:	EMR-1	UYSDEC		Project N	lumber: ,	34685	
Water Level Data					,	7 1 00 -	
Mater Level Data Date: 1/13 10 Initial Total Casing L Depth to Water (from a) Height of Water C Well Volume ([a] x volume ([a] x volume Data Date: 1/13/10	ength top of casion olumn olume factor	115.0 ng) 102 \2 *) = 12.25	75 (feet) x 2	(feet) feet) feet) MF gallons	*Volume	Factors: /ell = 0.041	
Method: Peristaltic	pump Blo	dden					
(Waterra, bailer, subr Purge Volume (3 to 5			Low Flow Sa	ampling			
Time	1/6/5	1645	1648	1651	1654	1657	1700
Volume 6 min		131 -			1/0/1	1077	1700
Specific Conductivity		,२७५	.960	1271	.,279	, 25/	,234
рН		4.36	6.32	6.33	4.35	6.34	524
Turbidity		-5.0	-5.0	-5.0+	-5,07	-5,0+	-S.OT
Temperature	1/\	7.37	77.3	7.04	7.01	8.02	9,71
ORP		175	175	173	170	162	761
DO	, /	8.58	8.84	11.29	11/15	11.13	11.18
Did well dry out? (If ye	es, how man	y times)		Actual Volu	ume Remo		(gallons)
Sample Date:	1/13/10		Sa	ample Time:	1310		
Appearance (visual)	Brown	Twbid	Color	Brown	Odo	r	_
Sampling Method:	Lo-Flow						_
Constituents Sampled VOCs		Container D Կմ _{տե} Vպ			Perservativ HU	<u>'e</u>	
	· .		1.0	- 			
	·						•
	-						
	•			• -			
Personnel:							
COMMENTS: 640	CPM	4 10 to S	, Fritial (os; 80	.0).		
14-5	course 522		1625	21 00	flow min	J. M.	
0.1.	allel Pum		loval a 1639	i →> <∩1 /	PSI @ 60	10 to 4	
AdTUSTAL SEL	to 80 psi	9 40 h		N. 7.	316 60	10 10 7	

	ALL VO	450EC		,	14111001.	37685		
Water Level Data			-			J		
Date: 1 14 10	Start Tim	e: 759		Well ID:	NAYAZ	- 1 × 1) wp = 02	une li
Initial Total Casing L		•			*Volume	Factors:	•	- VVI-> W
miliai rotai Casing L	.engtn	115.10	<u>, </u>	(feet)	1-inch we	ell = 0.041	gal/ft	
Depth to Water (from	top of casi	ng) /02.5	57(feet)	2)inch we	well = 0.09 ell = 0.163	2 gal/ft gal/ft	
a) Height of Water Co	olumn	12.5	03(feet)	3-inch we	ell = 0.367 (gal/ft	
Well Volume ([a] x vo	lume factor	*) = 1293	(feet) x	ر gallons	foot =)) 1.468 = الع gallon	gal/ft s	
Purge Data					, 0		-	
Date:	72	1120	(start) []4	(
Date. 1/19/10	1 ime:	71100	(start)	(fin	ish)			
Method:Peristaltic	pump Blad	1.	¥	10 (fin	apple 2 Mark	o natust	tel airling	
(Waterra, bailer, subn	nersible pur	np, etc.)	٠		redople	36P 04	of Pressing	A Chair
	The same of the sa	j			_		71	in Steel
Purge Volume (3 to 5				ampling	Pamp P	ossure not	normal 1	and die
Time		1-3 20 to		,	yu.	1 1215214	drawse.	
Volume	135 1120	775-1125	1001 1120	0 70061K	2 1134	1137	1140	1143
Specific Conductivity	1810/min	,347	7010	7.10				
рН	6.28		346	,349	.354	.359	,362	135व
Turbidity	-50 T	10:31 -5.0	6.35	6.36	6.37	6.52	6.41	6.4
Temperature	12.48	13.38	3.86Z	-50°	3.05	-50	-5.0	402
		11 D. 5 N	(5 X/Im 7	1 1 < ///	11.7 ia (1 × 66 7	17 01	
				13.41	13.45	13.42	13.02	J 13. 60
ORP	295	294	277	344	214	297		
							242	242
ORP DO	998 9,48	29 <u>4</u> 1.48	277	294 8.47	214 8.41)97 8.33		
ORP	998 9,48	294 ৭.48 y times)	277	るタタ おより Actual Vol	રૂપ <i>શૈયા</i> ume Remov	147 1433 red_	242	342
ORP DO Did well dry out? (If ye	998 9,48	294 ৭.48 y times)	277	るタタ おより Actual Vol	રૂપ <i>શૈયા</i> ume Remov	147 1433 red_	8.50 (gallons)	342
ORP DO	998 9,48	294 ৭.48 y times)	277	るタタ おより Actual Vol	રૂપ <i>શૈયા</i> ume Remov	147 1433 red_	242 8.50 (gallons)	24x 8.41 11.45
ORP DO Did well dry out? (If ye.	9,48 s, how man	294 ৭.48 y times)	277 8.98 W Tubing 1/4	294 2.47 Actual Vol	고 1년 용설 ume Remov 1110 년 4	147 1433 red_	8.50 (gallons)	343 841 1145
ORP DO Did well dry out? (If ye	9,48 s, how man	294 ৭.48 y times)	277 8.98 W Tubing 1/4	るタタ おより Actual Vol	고 1년 용설 ume Remov 1110 년 4	97 8.33 red erloyal	292 8.50 (gallons)	343 841 1145
ORP DO Did well dry out? (If yes Sampling Data Sample Date:	9,48 s, how man	294 1.48 y times)	277 8.98 W Tubing 1/4	Actual Vol	214 841 ume Remov 1110 tod	97 8.33 red erloyal	242 8.50 (gallons)	343 8.41 11.45 3.50 3.13.0
ORP DO Did well dry out? (If ye.	9,48 s, how man	294 1.48 y times)	277 8.98 W Tubing 1/4	294 2.47 Actual Vol	고 1년 용설 ume Remov 1110 년 4	97 8.33 red erloyal	gallons) (gallons)	343 8.41 11.45 350 3130
ORP DO Did well dry out? (If yes Sampling Data Sample Date:	9,48 s, how man	294 1.48 y times)	277 8.98 W Tubing 1/4	Actual Vol	214 841 ume Remov 1110 tod	97 8.33 red erloyal	gallons) (gallons) (c.mple	343 841 1145 -350 3130 132 292 3.47
ORP DO Did well dry out? (If ye. Sampling Data Sample Date: Appearance (visual) Sampling Method:	9,48 s, how man	294 1.48 y times)	277 8.98 W Tubing 1/4	Actual Vol	214 841 ume Remov 1110 tod	97 8.33 red erloyal	gallons) (gallons) (se,piple to toliums (re to Cl.	343 8.41 11.45 3.50 3.50 3.50 3.47 29.47
ORP DO Did well dry out? (If ye. Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled	9.48 s, how man	294 1.48 y times) Brize Container E	277 8.78 W Tubing 1/4 Sa Color	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (se,piple to tolowne	343 8.41 11.45 3.30 3.30 3.30 3.47 29.47
ORP DO Did well dry out? (If ye. Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs	9.48 s, how man	294 1.48 y times) Brize Container E	277 8.78 Ew Tubing 1/4 Sa Colo	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (semple the tolonial	343 8.41 11.45 3.30 3.30 3.30 3.47 29.47
ORP DO Did well dry out? (If ye. Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs ろみんしま	9.48 s, how man Frounish	294 1.48 y times) Brize Container E	277 8.78 W Tubing 1/4 Sa Color	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (semple the tolonial	343 8.41 11.45 3.50 3.13.0 13.22 29.47 Paving as imples as
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs ろよんしま	9.48 s, how man Frounish	294 7.48 y times) Brize Container E 40 L G	Color Discription (A) (2)	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (semple the tolonial	342 8.41 11.45 3.33 3.33 3.47 moles con otast
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs ろよんし ま らいだら ずみ70 に 下さられていると おきずれ	9.48 s, how man Frounish	294 1.48 y times)	Color Discription (A) (2)	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (semple the tolonial	343 343 3130 3130 347 24 11 12 i
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs ろんし 変 インにら ダンフルニアによる メンディアによる メンディアによる メンジョル・	9.48 s, how man Brownish	294 7.48 y times) Brize Container E 40 L G	Discription (1) (2)	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (semple the tolonial	342 8.41 1.45 3.53 3.47 24.47 24.11 12.0
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs ろよんし ま らいだら ずみ70 に 下さられていると おきずれ	9.48 s, how man Brownish	294 7.48 y times) Brize Container E 40 L G	Discription (1) (2)	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (semple the tolonial	342 8.41 3.30 3130 347 200 mples (a) 12 10 12
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs ろんし 変 インにら ダンフルニアによる メンディアによる メンディアによる メンジョル・	9.48 s, how man Brownish	294 7.48 y times) Brize Container E 40 L G	Discription (1) (2)	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (semple the tolonial	342 8.41 1.45 3.30 3.30 3.47 caving as mples con start
ORP DO Did well dry out? (If ye. Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs 3200 3 400 5 400 5 400 6 600 100 100 100 100 100 100 100 100	9.48 s, how man Brownish	294 7.48 y times) Brize Container E H Grill L Grill L Grill	Discription (2) (2)	Actual Vol addd @ ample Time:	ume Remov	97 8.33 red erloyal	gallons) (gallons) (che to wat Cl. Sa	1145 3130 3130 347 Paving 63 mples cult
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs 3200 3 5000 3000 1000 1000 1000 1000 1000 1000	398 9.48 s, how man Brownish	294 1.48 y times) Brize Container E 40 L G: L G: L CA	Discription (2) Plantic (C	Actual Vol addd @ ample Time:	ume Remov	erloyal	gallons) (gallons) (che to wat Cl. Sa	342 8.41 1145 330 3130 1232 247 247 247 124 12 148 148 148
ORP DO Did well dry out? (If yell Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs 3260 3 GVCCs 3270 5 GCGCs 3270 5 GC	9.48 s, how man Brownish	294 1.48 y times) Brize Container E 40 L G: L G: L CA	Discription (2) (2)	Actual Vol addd @ ample Time:	ume Remove 1110 teal	erloyal	gallons) (gallons) (che to wat Cl. Sa	343 8.41 11.45 3.30 3.30 3.47 20, 10, 63 moles (c) 12.4 12.4 12.4 13.8 14.8 14.8 14.8 14.8 14.8 16.42
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs 3200 3 5000 3100 5000 3 Instal 33100 5000 3 Personnel:	398 9.48 s, how man Brownish	294 1.48 y times) Brize Container E 40 L G: L G: L CA	Discription (2) Plantic (C	Actual Vol addd @ ample Time:	ume Remove 1110 teal	erloyal	gallons) (gallons) (che to wat Cl. Sa	342 8.41 1145 3.33 3130 1232 3.47 Faving 63 mples cut 12 V 1148 6.42 51.0
ORP DO Did well dry out? (If yes Sampling Data Sample Date: Appearance (visual) Sampling Method: Constituents Sampled VOCs 32003 GVCG 32005 FEGERICIAS 321/A FCGG 321/A	398 9.48 s, how man Brownish	294 1.48 y times) Brize Container E 40 L G: L G: L GA L GA Same Container Container Container E	277 8.78 So Tubing 1/4 So Color Discription (A (2) A (2) Plantic (Containen had n	Actual Vol addd @ ample Time:	Ume Remove 1110 toda 1155 Odor Perservative HIV?	erloyal	gallons) (gallons) (che to wat Cl. Sa	343 8.41 11.45 3.50 3.13.0 29.47 20.000 63 20.000 63 20.000 63 20.000 63 20.000 63 20.000 63 20.000 63 20.000 63 20.000 63 20.000 63 2

Project Name:	EMR.	NYSDE	<u>C</u>	Project N	lumber:	134685			
Water Level Data									
Date: 1/13/10	Start Tim	e: <u>103</u> 9		Well ID:	MW-3	•		. •	•
Initial Total Casing L	ength	112.57			*Volume 1-inch we	Factors:	gal/ft		
Depth to Water (from	top of casi	ng) 103.9	55. (f	eet)	1.5-inch w	vell = 0.09	2 gal/ft		
a) Height of Water Co	olumn	CO, P	(f	eet)	3-inch we	= 0.367	gal/ft		
Well Volume ([a] x vo	lume factor	TO. 1 = (*	_(feet) x \ 6	3 gallons/	6-inch we foot = <u>\.\\</u>	ell = 1.468 g gallon	gal/ft s		
Purge Data					,				
Date: 1/13/10	Time: ML	v-3	(start) _ <i>/] 40</i>	(fin	ish)				
Method: Peristaltic (Waterra, bailer, subn	DUMB	Bladder					•		•
Purge Volume (3 to 5			Low Flow Sa		Jell Wizar DEP contro	•			è
LPM 4	101	05		7	Sladder Pur	np			
Time Volume //min	1158	1202	1205	1208	1212	1215	1218	12-21	199
Specific Conductivity	Initial 0.704	0.766	0.40	0 - 7//					1
рН	4.31		0,769	0.774	.774	0:773	0,768	769	1.72
Turbidity	-S.O	614	4.06 461	4.07	4.08	4.08	4.10	4.12	4.14
Temperature	8,20	9.48	9.29	358	303.0	210	196	194	151
ORP		331		5-8-19.23	9.55	9.51	9.87	1.79	9.85
DO	306	6.05	334	336	338	339	338	339	337
Did well dry out? (If ye			5.85	5.73 Actual Volu	S. 744 ume Remov	5,71	<u>(gallons)</u>	5.47	5,48
Sampling Data			Flow	rale .31			_ (galloris)		
Sample Date:	1/13/10		Sa	mple Time:	1720		- L	[1233	_
Appearance (visual)	Clear	•		clear			V 31 Sc 1771	131	
•	Lo-fla		Color	Citar	Odor	······································	PH 4.15	4.16	
outing mourou.				····			NH 48	41	
Constituents Sampled		Container D	Discription	f	<u>Perservative</u>	7		10.2	
VOCs		40mL G		-	HCI	2	1338	1340	<i>i</i>
	'		***************************************	•	1141		- OU S.42	7 541	
				•			-		
				•	· · · · · · · · · · · · · · · · · · ·	***	-		
	,			•			•		
				•		**	•		
							•	•	
	•		· · · · · · · · · · · · · · · · · · ·				•		
	•			_					
001111	19dams	to local							
~ · · · · · · · · · · · · · · · · · · ·	O rechange		y						
	reach to so						***************************************		
	7 to 3	1141 1154 ADN							
	- 1 -								

Project Name:	EMR-IV	YSDEC	•	Project N	Number:	34685		•
Water Level Data								
Date: 1/13/10	Start Time	e: <u>1</u> 450		Well ID:	MW-	3 A		
Initial Total Casing L	ength	108.6	0 (feet)	*Volume		al/ft	
Depth to Water (from	top of casi	ng)_103.i	<u>را</u> (fe	eet)	1,5-inch	well = 0.092 ell = 0.163 g	gal/ft	
a) Height of Water Co	olumn	5.5	<u>3</u> (fe	eet)	3-inch w	ell = 0.367 g	al/ft	
Well Volume ([a] x vo	lume factor	*) = <u>9.99</u>	(feet) x .163	7 <u>) </u>	6-inch w foot = <u> </u>	ell = 1.468 g	al/ft	
Purge Data						•		
Date: 1/3/10	Time:	512	(start) 153	<u>7</u> (fin	ish)		=	
Method: _ Peristaltic (Waterra, bailer, € ubn	p ump [Sladden						
Purge Volume (3 to 5	well volume	es):	Low Flow Sa	mpling > veskich	ve Flor	2,21 due	to walnus	-6 L
Time	1521	1524	1527/	1530	137	1.	T	7
. Volume <i>Um</i> ih	Initial	.31	M	-	13)			┥
Specific Conductivity	9.51	1.80	1.43	1.41	1.31			7
pH	6.07	6.71	6.46	661	6.50			7
Turbidity	Salio	730	155,0	43.0	48			7
Temperature	9.80	10.54	10.18	10.14	10.17			1
ORP	537	298	529	524	524			7
DO	5.30	5.24	5.02	5.13	5./4]
Did well dry out? (If yes	s, how man	y times)		Actual Vol	ume Remo	ved	_(gallons)	
Sampling Data							_	
Sample Date:	1/13/10		Sa	mple Time:	1535	_	1	
Appearance (visual)	Ċ	leov	Color		Odor			
Sampling Method:	Lo-flour	,		**************************************	· · · · · · · · · · · · · · · · · · ·	***.		•
Constituents Sampled VOCs		Container E	Discription L Va		Perservativ	<u>e</u>		
		10 170	- 141		HCI_			
	•							
	•							
	•							•
Personnel:								
			- C					
CPM4 10 to			75					
TUC 1 667 58	172, 10	75 go 1525						

APPENDIX B

NYSDOH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

OSR-3

Proj. NYS Proj #	DEC	EMR	Circu	it5
File Code:	- (Q			

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

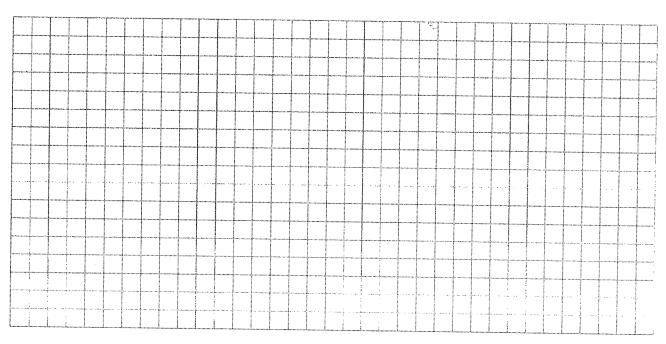
This form must be completed for each residence involved in indoor air testing.

Preparer's Name Marc Flanagan / Rob Adams Date/Time Prepared 1/13/10 @ 1100
Preparer's Affiliation Shaw Environmental, Inc. Phone No. (518) 783-1996
Purpose of Investigation Soil Yapor evaluation
1. OCCUPANT: Not available during investigation.
Interviewed: Y/N
Last Name: First Name:
Address: 99 Marcus Blvd., Hauppage, NY
County: Sulfolk
Home Phone: Office Phone:
Number of Occupants/persons at this location 3-5 Age of Occupants 20-60 (et)
2. OWNER OR LANDLORD: (Check if same as occupant) Not available during investigation
Interviewed: YN
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercia Multi-use Industrial Church Other:

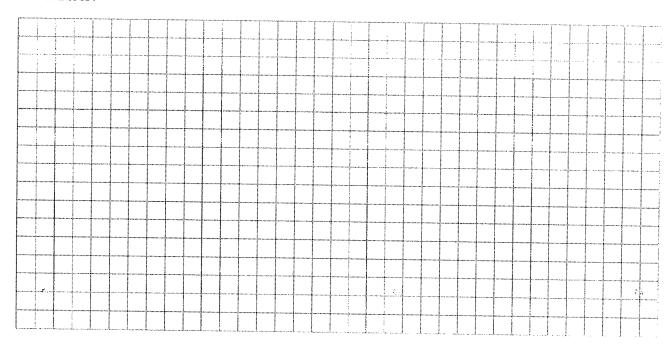
If the property is residential,	type? (Circle appropria	te response) No	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home		
If multiple units, how many?	NA		
If the property is commercial,	type?		
Business Type(s) Industr	ial manufacturing-p	plasties (HD poly etc)	
Does it include residences (i.e., multi-use)? YN	If yes, how many? <u>NA</u>	
Other characteristics:			
Number of floors &/	Buildi	ng age	
Is the building insulated? Y office - yea warehouse - no 4. AIRFLOW	/N~Both. Howa	air tight? Tight Average/Not Tight	
Use air current tubes or tracer	r smoke to evaluate ai	rflow patterns and qualitatively describe:	
Airflow between floors			
Airflow near source Celling mounte	d forced hot	zir - Nat. Gas	
Outdoor air infiltration Windows, C	Targo-bay door, P	Rear Entry door, formen utility entry	
Infiltration into air ducts	,		

5. BASEMENT AND COM	NSTRUCTIO	N CHARA	CTERISTIC	S (Circle all tha	it apply)		
a. Above grade construc	tion: wo	od frame	concrete	stone	brick		
b. Basement type: NA Warehouse	ful	<u> </u>	crawlspace	slab	other	-	
c. Basement floor:	cor	crete	dirt	stone	other		
d. Basement floor:	unc	overed	covered	covered with	th paint		
e. Concrete floor:	uns	ealed	sealed		paint, old		
f. Foundation walls:	pou	red	(block)	stone	other	•	
g. Foundation walls:	uns	ealed (sealed	sealed with	paint		
warehouse h. The basement is:	wet		damp	(dry)	moldy		
i. The basement is: NA	finis	shed	unfinished	partially find	ished		
j. Sump present?	Y (N)		, ,			
k. Water in sump?	Y/N (not a	pplicable			·		
Basement/Lowest level depth	below grade:	. 0	feet) 5/ab-c	on-grade.			
Identify potential soil vapor e							
6. HEATING, VENTING ar				hat apply)			
Type of heating system(s) used	d in this build	ling: (circle	all that apply	y – note prima	ry)		
Hot air circulation Space Heaters Electric baseboard	Strea	pump m radiation d stove	Radia	rater baseboard nt floor or wood boiler	Other <u>Ceili</u>	ng mountod	un
The primary type of fuel used	is:				-		
Natural Gas Electric Wood	Fuel Propa Coal		Kerose Solar	ene		et _e	
Domestic hot water tank fuele	d by: NG			_			
Boiler/furnace located in:	Basement	Outdoors	s Main I	Floor	Other		
Air conditioning:	Central Air	Window	units Open V	Windows	None		

Are there air distribution ducts present?

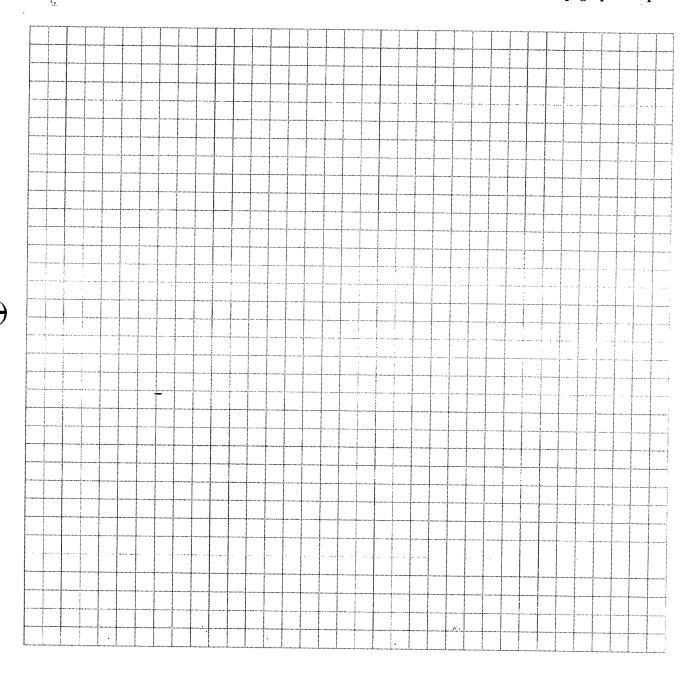

	/A			
7. OCCUP	ANCY			
Is basement	/lowest level occupied? Full-time O	ccasionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., family	room, bedr		
Basement				
l st Floor	None Office / Warehouse			
2 nd Floor	NA			
3 rd Floor	NA			
l th Floor	NA			
R FACTOR	S THAT MAY INFLUENCE INDOOR AIF			
	an attached garage warehouse.	R QUALIT	Y <i>T</i> VN	
	e garage have a separate heating unit?		⊘ /N/NA	
c. Are petr stored in	roleum-powered machines or vehicles n the garage (e.g., lawnmower, atv, car)		√ N / NA Please specify ★	FIF)
	building ever had a fire?		_	, , , , ,
d. Has the			V (N) Where?	
	sene or unvented gas space heater present?		T VIA MUEIG!	
e. Is a kero	sene or unvented.gas space heater present? a workshop or hobby/craft area?	Ŷ) N	Where & Type?	
e. Is a kero	•	Ý) N Y (Ñ)		Vare house
e. Is a kero f. Is there a g. Is there	a workshop or hobby/craft area?	<u> </u>	Where & Type? <u>(</u>	Vare house

j. Has painting/staining been done in the last 6 months?	Y / N Where & When?
k. Is there new carpet, drapes or other textiles?	Y (N) Where & When?
l. Have air fresheners been used recently?	Y (N) When & Type?
m. Is there a kitchen exhaust fan? NA	Y/N If yes, where vented?
n. Is there a bathroom exhaust fan?	Y(N) If yes, where vented?
o. Is there a clothes dryer?	Y(N) If yes, is it vented outside? Y/N
p. Has there been a pesticide application?	Y (N) When & Type?
Are there odors in the building? If yes, please describe: Sight plastic, just cut some	(D)/N = w/ table saw
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or au boiler mechanic, pesticide application, cosmetologist	Y/N ato body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at a cresponse)	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	(No) Unknown
Is there a radon mitigation system for the building/structure? Is the system active or passive? Active/Passive	Y (N) Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driven	Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach F	ield Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residential	emergency) NA
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to frien	ds/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement	explained? Y/N
d. Relocation package provided and explained to residents	s? Y/N


11. FLOOR PLANS See attached shetch

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

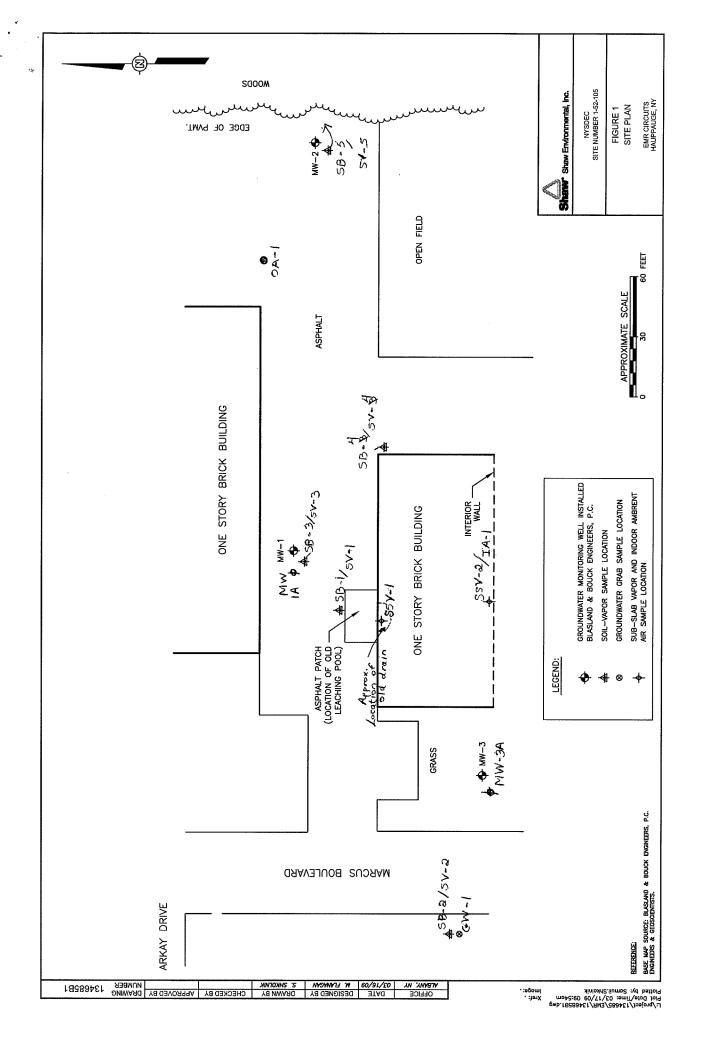

First Floor:

12. OUTDOOR PLOT - See attached figure

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

	13.	PRODUCT	INVENTORY	FORM
--	------------	----------------	-----------	------


Make & Model of field instrument used:	-PP	B	Rae	
--	-----	---	-----	--

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
shop	Sunnyside lacquer thinner	1 92/	Good	X & distolaton (XXX)	11.2pm	Y
shop			,			
Shop	MEK-Sunnyside.	Igal Igal	Good	MEK (UD) Kerosene (U)	149 ppb	
Shop	Klein strip Kerosene Klein strip 5-1-X Alcohol	′ 1	Good	(u)	3000 ppb	
	Denaturated				1 8	
-						
				. 14		
			:			
				ß.		
				*		

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Customer: NYSDEC Project Number: 134685

Site Name: EMR Circuits Site Location: 99 Marcus Blvd., Hauppauge, NY

Photographer:

MEF

Date:

1/13/10

Direction:

North wall of property.

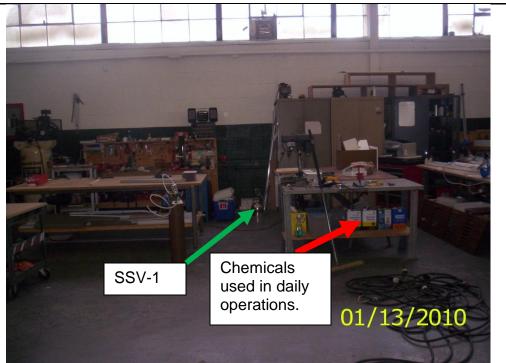
Comments:

SSV-1 sample location located just south and in proximity to former leaching pools.

Photographer:

MEF

Date:


1/13/10

Direction:

North

Comments:

Red arrow points to chemicals used during operations and are detailed in the inventory. Green arrow points to SSV-1.

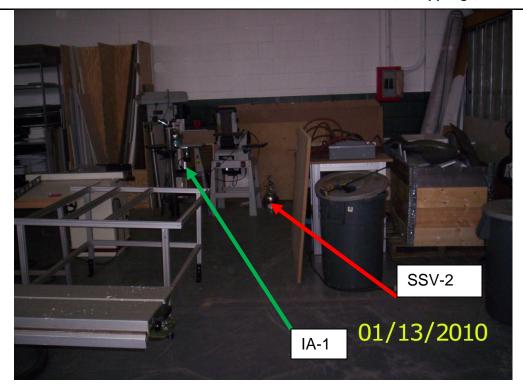
Customer: NYSDEC Project Number: 134685

Site Name: EMR Circuits Site Location: 99 Marcus Blvd., Hauppauge, NY

Photographer:

MEF

Date:


1/13/10

Direction:

South wall of property.

Comments:

SSV-2 (red arrow) and IA-1 sample locations located along south wall.

Photographer:

MEF

Date:

1/13/10

Direction:

East

Comments:

Interior of the production area. Plastic cutting saw in the foreground.

Customer: NYSDEC Project Number: 134685

Site Name: EMR Circuits Site Location: 99 Marcus Blvd., Hauppauge, NY

Photographer:

MEF

Date:

1/13/10

Direction:

North wall of property.

Comments:

SV-1 sample (and duplicate) location located in proximity to former leaching pools.

Photographer:

MEF

Date:

1/13/10

Direction:North

Comments:

SV-2 sample located across Marcus Blvd. In proximity to GW-1 grab location.

Customer: NYSDEC Project Number: 134685

Site Name: EMR Circuits Site Location: 99 Marcus Blvd., Hauppauge, NY

Photographer:

MEF

Date:

1/13/10

Direction:

NA.

Comments:

SV-3 sample location. Located between MW-1 and MW-1A.

Photographer:

MEF

Date: 1/13/10

Direction:

East

Comments:

SV-4 sample located at the northeast corner of the facility.

Customer: NYSDEC Project Number: 134685

Site Name: EMR Circuits Site Location: 99 Marcus Blvd., Hauppauge, NY

Photographer:

MEF

Date:

1/13/10

Direction:

North wall of property.

Comments:

OA-1 sample located along the northern fence line. SV-5 located in the background.

Photographer:

MEF

Date:

1/13/10

Direction:

North

Comments:

SV-5 located along the eastern edge of the site.

Customer: NYSDEC Project Number: 134685

Site Name: EMR Circuits Site Location: 99 Marcus Blvd., Hauppauge, NY

Photographer:

MEF

Date:

1/13/10

Direction:

West.

Comments:

Investigative area of the site.

Phot	ograp	her:
------	-------	------

Date: NA

Direction: NA

Comments:

NA.

MATERIAL SAFETY DATA SHEET Kerosene

Page: 1

HEALTH 2 FlamMABILITY 2 PHYSICAL HAZ. 0 PPE C

Printed: 10/14/2009 Revision: 07/11/2008 Supercedes Revision: 07/10/2008 Date Created: 07/10/2008

1. Product and Company Identification

Product Code:

1210.2

Product Name:

Kerosene

Reference #:

1210.2

Manufacturer Information

Company Name:

W. M. Barr

2105 Channel Avenue Memphis, TN 38113

Phone Number:

(901)775-0100

Emergency Contact:

3E 24 Hour Emergency Contact

(800)451-8346

Information:

W.M. Barr Customer Service

(800)398-3892

Web site address:

www.wmbarr.com

Preparer Name:

W.M. Barr EHS Dept

(901)775-0100

Synonyms

CKE83, CKE83M, CKE8336, CKKE08332, E08331, E08441, GKE83, GKE83BLK, GKE83UL, GKP85, GKKEDP

2. Composition/Information on Ingredients

Hazardous Components (Chemical Name)

CAS#

Concentration

OSHA PEL

ACGIH TLV

 Stoddard solvent {Mineral spirits; Aliphatic Petroleum Distillates; White spirits} 8052-41-3 95.0 -100.0 %

500 ppm

100 ppm

3. Hazards Identification

Emergency Overview

Caution! Combustible! Keep away from heat, sparks, flame and all other sources of ignition. Vapors may cause fire. Vapors may travel long distances to other areas and rooms away from work site. Do not smoke. Extinguish all flames and pilot lights, and turn off stoves, heaters, electric motors and all other sources of ignition anywhere in the structure, dwelling or building during use and until all vapors are gone from work site and all areas away from the work site. Keep away from electrical outlets and switches. Beware of static electricity that may be generated by synthetic clothing and other sources.

OSHA Regulatory Status:

This material is classified as hazardous under OSHA regulations.

Potential Health Effects (Acute and Chronic)

Inhalation Acute Exposure Effects:

Vapor concentration may cause headache, dizziness, irritation of the respiratory tract, eye irritation, stupor, depression of the central nervous system, watering of the eyes, weakness, nausea, muscle twitches, and kidney effects. Aspiration into lungs may cause pneumonia or death. Severe overexposure may cause convulsions, unconsciousness, and death.

Skin Contact Acute Exposure Effects:

May cause irritation.

Eye Contact Acute Exposure Effects:

Liquid contact may cause irritation.

Ingestion Acute Exposure Effects:

Kerosene

Page: 2 Printed: 10/14/2009

Revision: 07/11/2008 Supercedes Revision: 07/10/2008

Causes irritation of the stomach and intestines, resulting in nausea and vomiting.

Chronic Exposure Effects:

Reports have associated repeated and prolonged overexposure to solvents with neurological and other physiological damage. Repeated or prolonged skin contact may cause redness, irritation, and scaling of the skin. May cause skin irritation, anemia, bone marrow damage, liver damage, and jaundice.

Signs and Symptoms Of Exposure

See Potential Health Effects.

Medical Conditions Generally Aggravated By Exposure

None known.

4. First Aid Measures

Emergency and First Aid Procedures

Inhalation:

If user experiences breathing difficulty, move to air free of vapors. Administer oxygen or artificial respiration until medical assistance can be rendered.

Skin contact:

Wash with soap and large quantities of water for at least 15 minutes. Seek medical attention if irritation from contact persists.

Eye contact:

Immediately flush eyes with water, remove any contact lens, continue flushing with water for at least 15 minutes. Get medical attention.

Ingestion:

Do not induce vomiting. Call your poison control center, hospital emergency room, or physician immediately.

Note to Physician

Call your local poison control center for further instructions.

Fire Fighting Measures

Flammability Classification:

Ш

Flash Pt:

> 101.00 F Method Used: Setaflash Closed Cup (Rapid Setaflash)

Explosive Limits:

LEL: 0.5

UEL: 6

Autoignition Pt:

446.00 F

Fire Fighting Instructions

Self-contained respiratory protection should be provided for fire fighters fighting fires in buildings or confined areas. Storage containers exposed to fire should be kept cool with water spray to prevent pressure build-up. Stay away from heads of containers that have been exposed to intense heat or flame.

Flammable Properties and Hazards

Vapors can be heavier than air and may travel along the ground or be moved by ventilation and ignited by heat, sparks, flame, and other ignition sources distant from material handling point. Never use welding or cutting torch on or near container (even empty) because product (even residue) can ignite.

Hazardous Combustion Products

Carbon monoxide, carbon dioxide, and various hydrocarbons

Extinguishing Media

Use carbon dioxide, dry powder, or foam.

Unsuitable Extinguishing Media

Do not use a solid water stream, as this may spread the fire.

Kerosene

Page: 3
Printed: 10/14/2009
Revision: 07/11/2008

Supercedes Revision: 07/10/2008

Accidental Release Measures

Steps To Be Taken In Case Material Is Released Or Spilled

Isolate the immediate area. Prevent unauthorized entry. Eliminate all sources of ignition in area and downwind of the spill area. Stay upwind, out of low areas, and ventilate closed spaces before entering. All equipment used when handling this product must be grounded or non-sparking. Do not touch or walk through spilled material. Stop leak if you can do so without risk. Prevent entry into waterways, sewers, or confined areas. A vapor suppressing foam may be used to reduce vapors. Absorb or cover with dry earth, sand, or other non-combustible material and transfer to compatible containers. For large spills, dike ahead of the spill.

7. Handling and Storage

Precautions To Be Taken in Handling

Read carefully all cautions and directions on product label before use. Since empty container retains residue, follow all label warnings even after container is empty. Dispose of empty container according to all regulations. Do not reuse this container.

Precautions To Be Taken in Storing

Keep container tightly closed when not in use. Store in a cool, dry place. Do not store near flames or at elevated temperatures.

8. Exposure Controls/Personal Protection

Respiratory Equipment (Specify Type)

When refueling, if possible, use outdoors in an open air area. If refueling indoors, open all windows and doors and maintain a cross ventilation of moving fresh air across the work area. If strong odor is noticed or you experience slight dizziness, headache, nausea or eye-watering -- Stop -- ventilation is inadequate. Leave area immediately. Always follow appliance manufacturer's directions for fueling, ignition, and all other activities associated with use of the appliance.

A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements must be followed whenever workplace conditions warrant a respirator's use.

If the work area is not properly ventilated to keep airborne levels below their exposure limits, you must use a properly fitted and maintained NIOSH approved respirator for organic vapors. A dust mask does not provide protection against vapors.

Eye Protection

Safety glasses, chemical goggles or face shields are recommended to safeguard against potential eye contact, irritation, or injury.

Protective Gloves

Wear impermeable gloves. Gloves contaminated with product should be discarded. Promptly remove clothing that becomes soiled with product.

Other Protective Clothing

Various application methods can dictate use of additional protective safety equipment, such as impermeable aprons, etc., to minimize exposure.

Engineering Controls (Ventilation etc.)

Use only with adequate ventilation to prevent build-up of vapors. Open all windows and doors. Use only with a cross ventilation of moving fresh air across the work area. If strong odor is noticed or you experience slight dizziness, headache, nausea, or eye-watering -- Stop -- ventilation is inadequate. Leave area immediately.

Work/Hygienic/Maintenance Practices

A source of clean water should be available in the work area for flushing eyes and skin.

Do not eat, drink, or smoke in the work area. Wash hands thoroughly after use.

Kerosene

Page: 4
Printed: 10/14/2009
Revision: 07/11/2008

Supercedes Revision: 07/10/2008

Before reuse, thoroughly clean any clothing or protective equipment that has been contaminated by prior use. Discard any clothing or other protective equipment that cannot be decontaminated, such as gloves or shoes.

9. i	Physical an	d Chemica	al Properties		
Physical States:	[] Gas [)	X] Liquid [] Solid		
Melting Point:	No data.		-		
Boiling Point:	298.00 F - 425	5.00 F			
Autoignition Pt:	446.00 F				
Flash Pt:	> 101.00 F N	Method Used:	Setaflash Closed	Cup (Rapid Setafl	ash)
Explosive Limits:	LEL: 0.5	UEL:	6		,
Specific Gravity (Water = 1):	0.78				
Bulk density:	No data.				
Vapor Pressure (vs. Air or mm Hg):	0.22 MM HG	at 68.0 F			
Vapor Density (vs. Air = 1):	4.7				
Evaporation Rate (vs Butyl	No data.				
Acetate=1):					
Solubility in Water:	No data.				
Solubility Notes					
Slightly soluble in cold water (<0).1% w/w)				
Percent Volatile:	100.0 % by we	eight.			
VOC / Volume:	784.0000 G/L				
Heat Value:	No data.				
Particle Size:	No data.				
Corrosion Rate:	No data.				
pH:	No data.				
Appearance and Odor					
Transparent, colorless, solvent oc	lor				
	10. Stabili	ity and Rea	activity		
Stability:	Unstable []	Stable [X]]		
Conditions To Avoid - Instability					
No data available.					
Incompatibility - Materials To Avoid					
Incompatible with strong oxidizing	ng agents, strong	g acids, and all	kalies.		
Hazardous Decomposition Or Bypro	ducts				
Thermal decomposition may produce	duce carbon moi	noxide and car	rbon dioxide.		
Hazardous Polymerization:	Will occur []	Will not od	ccur [X]		
Conditions To Avoid - Hazardous Po	lymerization				
No data available.					
	11. Toxicol	ogical Info	rmation		
No data available.		•			
Carcinogenicity/Other Information					
No data available.					
Hazardous Components (Chemical Name)	CAS#	NTP	IARC	ACGIH	OSHA
Stoddard solvent {Mineral spirits; Aliphatic	8052-41-3	n.a.	n.a.	n.a.	n.a.

Petroleum Distillates; White spirits}

Kerosene

Page: 5
Printed: 10/14/2009
Revision: 07/11/2008

Supercedes Revision: 07/10/2008

12. Ecological Information

No data available.

13. Disposal Considerations

Waste Disposal Method

Dispose in accordance with applicable local, state, and federal regulations.

14. Transport Information

LAND TRANSPORT (US DOT)

DOT Proper Shipping Name

Not regulated

Additional Transport Information

For D.O.T. information, contact W.M. Barr Technical Services at 1-800-398-3892.

15. Regulatory Information

US EPA SARA Title III

Hazardous Components (Chemical Name)

CAS#

Sec.302 (EHS)

Sec.304 RQ

Sec.313 (TRI)

Sec.110

 Stoddard solvent {Mineral spirits; Aliphatic Petroleum Distillates; White spirits} 8052-41-3 No

No

No

US EPA CAA, CWA, TSCA

Hazardous Components (Chemical Name)

CAS#

EPA CAA

EPA CWA NPDES

CA PROP 65

 Stoddard solvent {Mineral spirits; Aliphatic Petroleum Distillates; White spirits} 8052-41-3 No

EPA TSCA Inventory

SARA (Superfund Amendments and Reauthorization Act of 1986) Lists:

Sec.302:

EPA SARA Title III Section 302 Extremely Hazardous Chemical with TPQ. * indicates 10000

LB TPQ if not volatile.

Sec.304:

EPA SARA Title III Section 304: CERCLA Reportable + Sec.302 with Reportable Quantity. **

indicates statutory RQ.

Sec.313:

EPA SARA Title III Section 313 Toxic Release Inventory. Note: -Cat indicates a member of a

chemical category.

Sec.110:

EPA SARA 110 Superfund Site Priority Contaminant List

TSCA (Toxic Substances Control

Act) Lists:

Inventory:

Chemical Listed in the TSCA Inventory.

5A(2):

Chemical Subject to Significant New Rules (SNURS)

6A:

Commercial Chemical Control Rules

8A:

Toxic Substances Subject To Information Rules on Production

8A CAIR:

Comprehensive Assessment Information Rules - (CAIR)

8A PAIR:

Preliminary Assessment Information Rules - (PAIR)

8C:

Records of Allegations of Significant Adverse Reactions

8D:

Health and Safety Data Reporting Rules

8D TERM:

Health and Safety Data Reporting Rule Terminations

12(b):

Notice of Export

Other Important Lists:

CWA NPDES:

EPA Clean Water Act NPDES Permit Chemical

CAA ODC:

EPA Clean Air Act Hazardous Air Pollutant

CAA ODC:

EPA Clean Air Act Ozone Depleting Chemical (1=CFC, 2=HCFC)

CA PROP 65:

California Proposition 65

International Regulatory Lists:

EPA Hazard Categories:

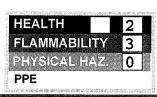
This material meets the EPA 'Hazard Categories' defined for SARA Title III Sections 311/312 as indicated:

Kerosene

Page: 6
Printed: 10/14/2009
Revision: 07/11/2008

Supercedes Revision: 07/10/2008

[X] Yes [] No	Acute (immediate) Health Hazard
[X] Yes [] No	Chronic (delayed) Health Hazard
[X] Yes [] No	Fire Hazard
[] Yes [X] No	Sudden Release of Pressure Hazard
[] Yes [X] No	Reactive Hazard


16. Other Information

Company Policy or Disclaimer

The information contained herein is presented in good faith and believed to be accurate as of the effective date shown above. This information is furnished without warranty of any kind. Employers should use this information only as a supplement to other information gathered by them and must make independent determination of suitability and completeness of information from all sources to assure proper use of these materials and the safety and health of employees. Any use of this data and information must be determined by the user to be in accordance with applicable federal, state and local laws and regulations.

Denatured Alcohol

Printed: 07/31/2009 Revision: 04/14/2009 Supercedes Revision: 11/13/2008

Page: 1

Date Created: 06/13/2005

Product and Company Identification

Product Code:

1625.6

Product Name:

Denatured Alcohol

Manufacturer Information

Company Name:

W. M. Barr

2105 Channel Avenue Memphis, TN 38113

Phone Number:

(901)775-0100

Emergency Contact:

Web site address:

3E 24 Hour Emergency Contact

W.M. Barr Customer Service

(800)451-8346 (800)398-3892

Information:

Preparer Name:

www.wmbarr.com W.M. Barr EHS Dept

(901)775-0100

Synonyms

QSL26, QSL26L

2. Composition/Information on Ingredients						
Hazardous Components (Chemical Name)	CAS#	Concentration	OSHA PEL	ACGIH TWA	ACGIH STEL	
Ethyl alcohol {Ethanol}	64-17-5	45.0 -50.0 %	1000 ppm	1000 ppm	No data.	
Methanol {Methyl alcohol; Carbinol; Wood alcohol}	67-56-1	50.0 -55.0 %	200 ppm	200 ppm	250 ppm	
 Methyl isobutyl ketone {Hexone; Isopropylacetone; MIBK; 4-Methyl-2-pentanone} 	108-10-1	1.0 -4.0 %	100 ppm	50 ppm	75 ppm	

3. Hazards Identification

Emergency Overview

Danger! Flammable! Keep away from heat, sparks, flame, and all other sources of ignition. Do not smoke. Extinguish all flames and pilot lights, and turn off stoves, heaters, electric motors and all other sources of ignition during use and until all vapors are gone. Beware of static electricity that mat be generated by synthetic clothing and other sources.

OSHA Regulatory Status:

This material is classified as hazardous under OSHA regulations.

Potential Health Effects (Acute and Chronic)

Inhalation Acute Exposure Effects:

Vapor harmful. May cause dizziness, headache, watering of eyes, irritation of respiratory tract, irritation to the eyes, drowsiness, nausea, other central nervous system effects, spotted vision, dilation of pupils, and convulsions.

Skin Contact Acute Exposure Effects:

May cause irritation, drying of skin, redness, and dermatitis. May cause symptoms listed under inhalation. May be absorbed through damaged skin.

Eye Contact Acute Exposure Effects:

May cause irritation.

Ingestion Acute Exposure Effects:

Poison. Cannot be made non-poisonous. May be fatal or cause blindness. May produce fluid in the lungs and pulmonary edema. May cause dizziness, headache, nausea, drowsiness, loss of coordination, stupor, reddening of

Denatured Alcohol

Page: 2 Printed: 07/31/2009

Revision: 04/14/2009 Supercedes Revision: 11/13/2008

face and or neck, liver, kidney and heart damage, coma, and death. May produce symptoms listed under inhalation.

Chronic Exposure Effects:

May cause symptoms listed under inhalation, dizziness, fatigue, tremors, permanent central nervous system changes, blindness, pancreatic damage, and death.

Signs and Symptoms Of Exposure

No data available.

Medical Conditions Generally Aggravated By Exposure

Diseases of the liver.

4. First Aid Measures

Emergency and First Aid Procedures

Inhalation:

If user experiences breathing difficulty, move to air free of vapors. Administer oxygen or artificial respiration until medical assistance can be rendered.

Skin Contact:

Wash with soap and water.

Eye Contact:

Flush with large quantities of water for at least 15 minutes. If irritation from contact persists, get medical attention.

Ingestion:

Call your poison control center, hospital emergency room or physician immediately for instructions to induce vomiting.

Note to Physician

Poison. This product contains methanol. Methanol is metabolized to formaldehyde and formic acid. These metabolites may cause metabolic acidosis, visual disturbances and blindness. Since metabolism is required for these toxic symptoms, their onset may be delayed from 6 to 30 hours following ingestion. Ethanol competes for the same metabolic pathway and has been used as an antidote. Methanol is effectively removed by hemodialysis. Call your local poison control center for further instructions.

5. Fire Fighting Measures

Flammability Classification:

OSHA Class IB

Flash Pt:

45.00 F Method Used: Setaflash Closed Cup (Rapid Setaflash)

Explosive Limits:

LEL: 1.00

UEL: No data.

Fire Fighting Instructions

Self-contained respiratory protection should be provided for fire fighters fighting fires in buildings or confined area. Storage containers exposed to fire should be kept cool with water spray to prevent pressure build-up. Stay away from heads of containers that have been exposed to intense heat or flame.

Flammable Properties and Hazards

No data available.

Extinguishing Media

Use carbon dioxide, dry powder, or foam.

Unsuitable Extinguishing Media

No data available.

Denatured Alcohol

Page: 3 Printed: 07/31/2009

Revision: 04/14/2009 Supercedes Revision: 11/13/2008

6. Accidental Release Measures

Steps To Be Taken In Case Material Is Released Or Spilled

Clean-up:

Keep unnecessary people away; isolate hazard area and deny entry. Stay upwind, out of low areas, and ventilate closed spaces before entering. Shut off ignition sources, keep flares, smoking or flames out of hazard area.

Small spills:

Take up liquid with sand, earth or other noncombustible absorbent material and place in a plastic container where applicable.

Large spills:

Dike far ahead of spill for later disposal.

7. Handling and Storage

Precautions To Be Taken in Handling

Read carefully all cautions and directions on product label before use. Since empty container retains residue, follow all label warnings even after container is empty. Dispose of empty container according to all regulations. Do not reuse this container.

Precautions To Be Taken in Storing

Keep container tightly closed when not in use. Store in a cool, dry place. Do not store near flames or at elevated temperatures.

8. Exposure Controls/Personal Protection

Respiratory Equipment (Specify Type)

For OSHA controlled work place and other regular users. Use only with adequate ventilation under engineered air control systems designed to prevent exceeding appropriate TLV. For occasional use, where engineered air control is not feasible, use properly maintained and properly fitted NIOSH approved respirator for organic solvent vapors. A dust mask does not provide protection against vapors.

Eye Protection

Safety glasses, chemical goggles or face shields are recommended to safeguard against potential eye contact, irritation, or injury. Contact lenses should not be worn while working with chemicals,

Protective Gloves

Wear impermeable gloves. Gloves contaminated with product should be discarded. Promptly remove clothing that becomes soiled with product.

Other Protective Clothing

Various application methods can dictate the use of additional protective safety equipment, such as impermeable aprons, etc., to minimize exposure. A source of clean water should be available in the work area for flushing eyes and skin. Do not eat, drink, or smoke in the work area. Wash hands thoroughly after use. Before reuse, thoroughly clean any clothing or protective equipment that has been contaminated by prior use. Discard any clothing or other protective equipment that cannot be decontaminated, such as gloves or shoes.

Engineering Controls (Ventilation etc.)

Use only with adequate ventilation to prevent build-up of vapors. Open all windows and doors. Use only with a cross ventilation of moving fresh air across the work area. If strong odor is noticed or you experience slight dizziness, headache, nausea, or eye-watering -- Stop -- ventilation is inadequate. Leave area immediately.

[] Solid

9. Physical and Chemical Properties

[X] Liquid

Physical States:

No data.

[] Gas

Melting Point:

Denatured Alcohol

Page: 4 Printed: 07/31/2009

Revision: 04/14/2009 Supercedes Revision: 11/13/2008

Boiling Point:

147.00 F

Autoignition Pt:

No data.

Flash Pt:

45.00 F Method Used: Setaflash Closed Cup (Rapid Setaflash)

Explosive Limits:

LEL: 1.00

UEL: No data.

Specific Gravity (Water = 1):

No data.

Bulk density:

6.61 LB/GA

Vapor Pressure (vs. Air or mm Hg):

No data.

Vapor Density (vs. Air = 1):

No data.

Evaporation Rate (vs Butyl

No data.

Acetate=1):

Solubility in Water:

No data.

Percent Volatile:

100.0 % by weight.

VOC / Volume:

792.0000 G/L

Heat Value:

No data.

Particle Size:

No data.

Corrosion Rate:

No data.

pH:

No data.

Appearance and Odor

No data available.

10. Stability and Reactivity

Stability:

Unstable []

Stable [X]

Conditions To Avoid - Instability

No data available.

Incompatibility - Materials To Avoid

Incompatible with strong oxidizing agents.

Hazardous Decomposition Or Byproducts

Decomposition may produce carbon monoxide and carbon dioxide.

Hazardous Polymerization:

Will occur []

CAS#

Will not occur [X]

Conditions To Avoid - Hazardous Polymerization

No data available.

11. Toxicological Information

No data available.

Carcinogenicity/Other Information

Hazardous Components (Chemical Name)

No data available.

1.	Ethyl alcohol {Ethanol}
2.	Methanol (Methyl alcohol; Carbinol; Wood
	alcohol}

64-17-5 n.a. 67-56-1 n.a.

NTP

IARC n.a. n.a.

Α4 n.a.

ACGIH

OSHA n.a.

n.a.

3. Methyl isobutyl ketone {Hexone; Isopropylacetone; MIBK;

4-Methyl-2-pentanone}

108-10-1 n.a.

n.a.

n a

n.a.

12. Ecological Information

No data available.

13. Disposal Considerations

Waste Disposal Method

Dispose in accordance with applicable local, state, and federal regulations.

Denatured Alcohol

Page: 5
Printed: 07/31/2009

Revision: 04/14/2009 Supercedes Revision: 11/13/2008

14. Transport Information

LAND TRANSPORT (US DOT)

DOT Proper Shipping Name Alcohols, n.o.s. (Ethyl Alcohol, Methanol)

DOT Hazard Class: 3

DOT Hazard Label: FLAMMABLE LIQUID

UN/NA Number: UN1987

Packing Group:

Additional Transport Information

The transportation information listed above is suitable for all modes of transportation. IMO/IMDG, ICAO/IATA, 49 CFR

For D.O.T. information, contact W.M. Barr Technical Services at 1-800-398-3892.

The supplier may apply one of the following exceptions: Combustible Liquid, Consumer Commodity, Limited Quantity, Viscous Liquid, Does Not Sustain Combustion, or others, as allowed under 49CFR Hazmat Regulations. Please consult 49CFR Subchapter C to ensure that subsequent shipments comply with these exceptions.

1.000 1.00 3.00 3.00 3.00 3.00 1	5. Regula	itory Infori	mation		
US EPA SARA Title III					
Hazardous Components (Chemical Name)	CAS#	Sec.302 (EHS)	Sec.304 RQ	Sec.313 (TRI)	Sec.110
Ethyl alcohol {Ethanol}	64-17-5	No	No	No	No
Methanol {Methyl alcohol; Carbinol; Wood alcohol}	67-56-1	No	Yes 5000 LB	Yes	No
 Methyl isobutyl ketone {Hexone; Isopropylacetone; MIBK; 4-Methyl-2-pentanone} 	108-10-1	No	Yes 5000 LB	Yes	Yes
US EPA CAA, CWA, TSCA					
Hazardous Components (Chemical Name)	CAS#	EPA CAA	EPA CWA NPDES	EPA TSCA	CA PROP 65
Ethyl alcohol {Ethanol}	64-17-5	No		Inventory	
Methanol {Methyl alcohol; Carbinol; Wood alcohol}	67-56-1	HAP		Inventory	
 Methyl isobutyl ketone {Hexone; Isopropylacetone; MIBK; 4-Methyl-2-pentanone} 	108-10-1	HAP		Inventory	

SARA (Superfund Amendments and Reauthorization Act of 1986) Lists:

Sec.302: EPA SARA Title III Section 302 Extremely Hazardous Chemical with TPQ. * indicates 10000

LB TPQ if not volatile.

Sec.304: EPA SARA Title III Section 304: CERCLA Reportable + Sec.302 with Reportable Quantity. **

indicates statutory RQ.

Sec.313: EPA SARA Title III Section 313 Toxic Release Inventory. Note: -Cat indicates a member of a

chemical category.

Sec.110: EPA SARA 110 Superfund Site Priority Contaminant List

TSCA (Toxic Substances Control

Act) Lists:

Inventory: Chemical Listed in the TSCA Inventory.

5A(2): Chemical Subject to Significant New Rules (SNURS)

6A: Commercial Chemical Control Rules

8A: Toxic Substances Subject To Information Rules on Production

Denatured Alcohol

Page: 6
Printed: 07/31/2009
Revision: 04/14/2009

Supercedes Revision: 11/13/2008

8A CAIR: Comprehensive Assessment Information Rules - (CAIR)
8A PAIR: Preliminary Assessment Information Rules - (PAIR)

8C: Records of Allegations of Significant Adverse Reactions

8D: Health and Safety Data Reporting Rules
 8D TERM: Health and Safety Data Reporting Rule Terminations

12(b): Notice of Export

Other Important Lists:

CWA NPDES: EPA Clean Water Act NPDES Permit Chemical
CAA HAP: EPA Clean Air Act Hazardous Air Pollutant

CAA ODC: EPA Clean Air Act Ozone Depleting Chemical (1=CFC, 2=HCFC)

CA PROP 65: California Proposition 65

International Regulatory Lists:

EPA Hazard Categories:

This material meets the EPA 'Hazard Categories' defined for SARA Title III Sections 311/312 as indicated:

[X] Yes [] No Acute (immediate) Health Hazard [X] Yes [] No Chronic (delayed) Health Hazard

[X] Yes [] No Fire Hazard

[] Yes [X] No Sudden Release of Pressure Hazard

[] Yes [X] No Reactive Hazard

16. Other Information

Company Policy or Disclaimer

The information contained herein is presented in good faith and believed to be accurate as of the effective date shown above. This information is furnished without warranty of any kind. Employers should use this information only as a supplement to other information gathered by them and must make independent determination of suitability and completeness of information from all sources to assure proper use of these materials and the safety and health of employees. Any use of this data and information must be determined by the user to be in accordance with applicable federal, state and local laws and regulations.

Complies with OSHA Hazard Communication Standard 29 CFR 1910.1200

Date of Prep:

09/15/05

SECTION 1

SUNNYSIDE CORPORATION

225 CARPENTER AVENUE

WHEELING, ILLINOIS 60090 **EMERGENCY TELEPHONE**

(847) 541-5700 (800) 424-9300 FOR INFORMATION:

(847) 541-5700

SUNNYSIDE CORPORATION

CHEM TREC

Product Class:

Trade Name:

Ketone

METHYL ETHYL KETONE

Manufacturer's Code: NPCA HMIS:

847 Health: 1

Flammability: 3 Reactivity: 0

Product Appearance and Odor. Clear, colorless liquid; characteristic, pungent odor.

SECTION 2 -- HAZARDOUS INGREDIENTS

OCCUPATIONAL EXPOSURE LIMITS

INGREDIENT

CAS#

PERCENT

ACGIH TLV

OSHA PEL (TWA) **OSHA** PEL (STEL)

VAPOR PRESSURE

Methyl Ethyl Ketone

78-93-3

(TWA) 200 PPM

ACGIH

TLV

(STEL) 300 PPM

200 PPM

300 PPM

83 MM Hg @ 75°F

SECTION 3 -- EMERGENCY AND FIRST AID PROCEDURES

Inhalation:

Using proper respiratory protection, immediately remove the affected victim from exposure. Administer artificial respiration if breathing is stopped. Keep at rest. Call for prompt medical attention.

Eye Contact:

Immediately flush eyes with water for at least 15 minutes. Get medical attention.

Skin Contact:

Flush with large amounts of water; use soap if available. Remove grossly contaminated clothing, including shoes,

and launder before reuse.

Ingestion:

If swallowed, do not induce vomiting, keep at rest. Get prompt medical attention.

SECTION 4 -- PHYSICAL DATA

The following data represent approximate or typical values. They do not constitute product specifications.

Boiling Range:

175-177° (F)

Vapor Density:

Heavier than air

Evaporation Rate:

Slower than ether

% Volatile By Volume:

100%

Weight Per Gallon:

Solubility in Water:

6.72 Lbs. 26%@68°F.

SECTION 5 -- FIRE AND EXPLOSION DATA

Flammability Classification:

Flammable Liquid - Class IB.

Flash Point:

20° (F) (Tag. Closed Cup), approximately

Autoignition Temperature:

860° (F)

Lower Explosive Limit

1.8% @ 77° F.

Extinguishing Media:

Either allow fire to burn under controlled conditions or extinguish with alcohol type foam and dry chemical. Try to

cover liquid spills with foam.

Unusual Fire and Explosion Hazards:

Extremely flammable. Vapors may cause a flash fire or ignite explosively. Vapors may travel considerable distance

to a source of ignition and flash back. Prevent buildup of vapors or gases to explosive concentrations.

Special Fire Fighting Procedures:

Use water spray to cool fire exposed surfaces and to protect personnel. Shut off "fuel" to fire. If a leak or spill has not

ignited, use water spray to disperse the vapors.

Trade Name:

METHYL ETHYL KETONE

Page 2 of 3

SECTION 6 -- HEALTH HAZARD DATA

THRESHOLD LIMIT VALUE: EFFECTS OF OVEREXPOSURE

See Section 2

Eye Contact

Severely irritating. If not removed promptly, will injure eye tissue, which may result in permanent damage.

Inhalation:

High vapor concentrations are irritating to the eyes and the respiratory tract, may cause headaches and dizziness, are

anesthetic and may have other central nervous system effects. Low order of toxicity.

Skin Contact:

Prolonged or repeated skin contact may irritate and cause dermatitis. Low order of toxicity.

Ingestion:

Minimal toxicity. Small amounts of the liquid aspirated into the respiratory system during ingestion, or from vomiting,

may cause bronchopneumonia or pulmonary edema.

Carcinogenicity:

MEK is not listed by the NTP, IARC, or OSHA.

Chronic:

There is no evidence that exposure to Methyl Ethyl Ketone alone causes progressive or irreversible neurotoxic effects. However, simultaneous overexposure to MEK and n-Hexane can potentiate the known irreversible neurotoxic effects of n-Hexane. There is no reported human evidence that these neurotoxic effects occur when exposure to both chemicals is maintained below established OSHA and ACGIH limits.

SECTION 7 -- REACTIVITY DATA

Stability:

Stable

Conditions to Avoid:

Heat, sparks and flame.

Incompatibility (Materials to Avoid):

Caustics, amines, alkanolamines, aldehydes, ammonia, strong oxidizing agents, and chlorinated compounds.

Hazardous Decomposition Products:

None known.

Hazardous Polymerization:

Will not occur.

SECTION 8 -- SPILL OR LEAK PROCEDURES

Steps to be taken in case material is spilled or released: Remove ignition sources, evacuate area, avoid breathing vapors or contact with liquid. Recover free liquid or stop leak if possible. Dike large spills and use absorbent material for small spills. Keep spilled material out of sewers, ditches and bodies of water. Warn occupants and shipping in surrounding and downwind areas of fire and explosion hazard and request all to stay clear.

Waste disposal method: Incinerate under safe conditions; dispose of in accordance with local, state and federal regulations.

SECTION 9 -- SAFE HANDLING AND USE INFORMATION

Respiratory Protection:

Where concentrations in air may exceed occupational exposure limits, NIOSH/MSHA approved respirators may be

necessary to prevent overexposure by inhalation.

Ventilation:

Exposure levels should be maintained below applicable exposure limits - see Section 2. This product should not be used in confined spaces, or in a manner that will allow accumulation of high vapor concentrations. However, for controlled industrial uses when this product is used in confined spaces, heated above ambient temperatures or

agitated, the use of explosion proof ventilation equipment is necessary.

Protective Gloves:

Chemical resistant gloves.

Eye Protection:

Chemical safety goggles and a face shield.

Other Protective Equipment:

Impervious clothing or boots where needed.

SECTION 10 -- SPECIAL PRECAUTIONS

Dept. of Labor Storage Category:

Flammable Liquid-Class IB.

Hygienic Practices:

Keep away from heat, sparks and open flame. Keep containers closed when not in use. Avoid eye contact. Avoid

prolonged or repeated contact with skin. Wash skin with soap and water after contact.

Additional Precautions:

Ground containers when transferring liquid to prevent static accumulation and discharge. Additional information regarding safe handling of products with static accumulation potential can be ordered by contacting the American Petroleum Institute (API) for API Recommended Practice 2003, entitled "Protection Against Ignitions Arising Out of Static, Lighting, and Stray Currents" (American Petroleum Institute, 1720 L Street Northwest, Washington, DC 20005), or the National Fire Protection Association (NFPA) for NFPA 77 entitled "Static Electricity" (National Fire Protection

Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101).

Empty Container Warning:

"Empty" containers retain residue (liquid and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind or expose such containers to heat, flame, sparks or other sources of ignition. They may explode and cause injury or death. Do not attempt to clean since residue is difficult to remove. "Empty" drums should be completely drained, properly bunged and promptly returned to supplier or disposed of in an environmentally safe manner and in accordance with governmental regulations.

SECTION 11 -- ADDITIONAL INFORMATION

This product contains the following toxic chemical(s) which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372:

TOXIC CHEMICAL

CAS#

APPROXIMATE % BY WEIGHT

NONE

NONE

NONE

SARA Title III Hazard Categories:

Immediate (Acute) Health, Delayed (Chronic)

Health, Fire.

Common Names:

2-Butanone, Ethyl Methyl Ketone, MEK

California Proposition 65:

This product contains trace amounts of Benzene, a chemical known to the State of California to cause cancer, and Toluene, a chemical known to the State of California to cause birth defects or other reproductive

harm.

TRANSPORTATION

U.S. D.O.T. Proper Shipping Name:

Methyl Ethyl Ketone

U.S. D.O.T. Hazard Class & Packing Group:

3, PG II

U.S. D.O.T. I.D. Number:

UN 1193

U.S. D.O.T. Hazardous Substance:

Methyl Ethyl Ketone RQ 5000 lbs.

Refer to 49 CFR for possible exceptions and exemptions.

Complies with OSHA Hazard Communication Standard 29 CFR 1910.1200

Date of Prep:

08/30/06

SECTION 1

SUNNYSIDE CORPORATION 225 CARPENTER AVENUE

WHEELING, ILLINOIS 60090 **EMERGENCY TELEPHONE**

(847) 541-5700 (800) 424-9300

FOR INFORMATION:

(847) 541-5700

SUNNYSIDE CORPORATION

CHEM TREC

Product Class:

Trade Name:

Mixed Solvents 461 LACQUER THINNER

Manufacturer's Code: NPCA HMIS:

Health: 2 Flammability: 3 Reactivity: 1

Product Appearance and Odor: Clear, colorless liquid; mild solvent odor.

SECTION 2 -- HAZARDOUS INGREDIENTS

OCCUPATIONAL EXPOSURE LIMITS

INGREDIENT	CAS#	PERCENT	ACGIH TLV (TWA)	ACGIH TLV (STEL)	OSHA PEL (TWA)	OSHA PEL (STEL)	VAPOR PRESSURE
Acetone Ethyl Acetate Methanol	67-64-1 141-78-6 67-56-1		500 PPM 400 PPM 200 PPM (SKIN)	750 PPM 250 PPM	750 PPM 400 PPM 200 PPM (SKIN)	1000 PPM 250 PPM	213 MM Hg @ 75° F. 86 MM Hg @ 20° C. 96 MM Hg @ 20° C.
Light Aliphatic Solvent Naphtha	64742-89-8		300 PPM (For VM&P Naphtha - CAS # 8032-32-4)		300 PPM	400 PPM	Approx. 60 MM Hg @ 25° C.
Toluene	108-88-3		50 PPM *(SKIN, A4)		100 PPM	150 PPM	Approx. 54 MM Hg @ 25° C.
2-Butoxyethanol	111-76-2		20 PPM (SKIN)		20 PPM (SKIN)		0.6 MM Hg @ 20° C.

*Not classifiable as a Human Carcinogen: Agents which cause concern that they could be carcinogenic for humans but which cannot be assessed conclusively because of a lack of data.

SECTION 3 -- EMERGENCY AND FIRST AID PROCEDURES

Eye Contact:

Move victim away from exposure and into fresh air. Flush eyes with plenty of water for at least 15 minutes while holding eyelids open. In case of irritation from airborne exposure, move to fresh air. Get prompt medical attention.

Skin Contact:

Remove contaminated shoes and clothing. Flush skin with water. Follow by washing with soap and water. If irritation or redness develops, get medical attention. Do not reuse clothing until cleaned.

Inhalation:

Using proper respiratory protection, immediately remove the affected victim from source of exposure and into fresh air. If respiratory symptoms or other symptoms persist seek immediate medical attention. If victim is not breathing, immediately begin artificial respiration. If breathing difficulties develop, oxygen should be administered by qualified personnel. Seek immediate medical attention.

Inaestion:

Do not induce vomiting. Call a physician, hospital emergency room or Poison Control Center immediately. Transport to medical attention immediately. Prompt action is essential.

Emergency Medical Treatment Procedures:

This product contains methanol which can cause intoxication and central nervous system depression. Methanol is metabolized to formic acid and formaldehyde. These metabolites can cause metabolic acidosis, visual disturbances and blindness. Since metabolism is required for these toxic symptoms, their onset may be delayed from 6 to 30 hours following ingestion. Ethanol competes for the same metabolic pathway and has been used to prevent methanol metabolism. Ethanol administration is indicated in symptomatic patients or at blood methanol concentrations above 20 ug/dl. Methanol is effectively removed by hemodialysis. Preexisting disorders of the following organs (or organ systems) may be aggravated by exposure to this material: skin, lung (for example, asthma-like conditions), liver, kidney, central nervous system, pancreas, heart. Exposure to this material may aggravate any preexisting condition sensitive to a decrease in available oxygen, such as chronic lung disease, coronary artery disease or anemias.

Trade Name:

461 LACQUER THINNER

Page 2 of 4

SECTION 4 -- PHYSICAL DATA

The following data represent approximate or typical values. They do not constitute product specifications.

Boiling Range: Evaporation Rate: 133-336° F.

Vapor Density: Slower than ether % Volatile By Volume: 6.564 lbs.

Heavier than air

100%

Weight Per Gallon: Solubility in Water: VOC:

Moderate 3.918 lbs./gal.

SECTION 5 -- FIRE AND EXPLOSION DATA

Flammability Classification:

Flammable liquid - Class IB.

Flash Point:

0° F. (Tag.Closed Cup)

Autoignition Temperature:

460° (F) minimum (approximate)

Lower Explosive Limit:

2.6% @ 77(F

Extinguishing Media:

Either allow fire to burn under controlled conditions or extinguish with alcohol type foam and dry chemical. Try to

cover liquid spills with foam.

Unusual Fire and Explosion Hazards:

Extremely flammable. Vapors may cause a flash fire or ignite explosively. Vapors may travel considerable distance

to a source of ignition and flash back. Prevent buildup of vapors or gases to explosive concentrations.

Special Fire Fighting Procedures:

Use water spray to cool fire exposed surfaces and to protect personnel. Shut off "fuel" to fire. If a leak or spill has not

ignited, use water spray to disperse the vapors.

SECTION 6 -- HEALTH HAZARD DATA

THRESHOLD LIMIT VALUE: EFFECTS OF OVEREXPOSURE: See Section 2.

Eye Contact

Severely irritating. If not removed promptly, will injure eye tissue, which may result in permanent damage.

Skin Contact:

Skin irritant. Prolonged or repeated skin contact can cause dermatitis, drying, cracking or irritation of the skin.

Inhalation:

Breathing high vapor concentrations may result in respiratory tract irritation, central nervous system depression, liver and kidney damage, may cause headaches and dizziness, drowsiness and unconsciousness. Brain cell damage

may result from long-term vapor inhalation.

Ingestion:

Swallowing as little as one to four ounces of Methanol has been reported to cause death or serious irreversible injury such as blindness in humans. Studies in experimental animals indicate that the metabolism of Methanol to formic acid results in metabolic acidosis and reversible or irreversible damage to the optic nerve. Ingestion of this product, even in small amounts can cause blindness and death. Onset of symptoms may be delayed for 18-24 hours. Treatment prior to onset of obvious symptoms may be lifesaving. Methanol is rapidly absorbed and emesis should be initiated early to be effective, within 30 minutes of ingestion, if possible. Administer syrup of ipecac. After the dose is given, encourage patient to take 6-8 ounces of clear, non-carbonated fluid. Dose may be repeated once if emesis does not occur within 20-30 minutes. Administration of an aqueous slurry of activated charcoal with magnesium citrate or sorbitol as a cathartic has been reported helpful.

Ethanol inhibits the formation of toxic metabolites. Ethanol therapy may prove beneficial. Maintain contact with a poison control center during all aspects of diagnosis and treatment.

Carcinogenicity:

There is inadequate data available to evaluate the risk of developing cancer from exposure to the Toluene present in this product. However, none of the solvents in this product are listed as carcinogens or potential carcinogens by the

NTP, IARC, or OSHA.

Target Organs:

There is a potential hazard (from Toluene) to the central nervous system, kidney, liver and sense of hearing.

Developmental:

Potential hazard to the fetus.

Chronic Effects:

WARNING: Concentrated, prolonged or deliberate inhalation of this product may cause brain and nervous system damage. Prolonged and repeated exposure of pregnant animals to Toluene (levels greater than approximately 1500 ppm) has been reported to cause adverse fetal developmental effects.

Medical Conditions Aggravated by Exposure:

Conditions aggravated by exposure may include skin disorders, respiratory (asthma-like) conditions, kidney disorders and liver disorders.

Studies in experimental animals with 2-Butoxyethanol have produced damage to the red blood cell by inhalation; skin absorption and ingestion. Toxic liver effects in male rats were also observed.

Trade Name:

SECTION 7 -- REACTIVITY DATA

Stability:

Stable (2-Butoxyethanol, however, forms peroxides of unknown stability). Inhibitor not been added to mitigate

Conditions to Avoid:

peroxide hazard. Heat, sparks, and flame.

Incompatibility (Materials to Avoid): Hazardous Decomposition Products:

Strong oxidizing agents like liquid chlorine or concentrated oxygen. Maybe corrosive to lead and aluminum. Thermal decomposition may yield carbon dioxide and carbon monoxide.

Hazardous Polymerization:

SECTION 8 -- SPILL OR LEAK PROCEDURES

Steps to be taken in case material is spilled or released: Remove ignition sources, evacuate area, avoid breathing vapors or contact with liquid. Use non-sparking tools and explosion proof equipment. Recover free liquid or stop leak if possible. Dike large spills and use absorbent material for small spills. Keep spilled material out of sewers, ditches and bodies of water. Warn occupants and shipping in surrounding and downwind areas of fire and explosion hazard and request all to stay clear.

Waste disposal method: Send to a licensed reclaimer or incinerator. Dispose of in accordance with local, state and federal regulations.

SECTION 9 -- SAFE HANDLING AND USE INFORMATION

Respiratory Protection:

Appropriate vapor canister, self-contained breathing apparatus or supplied-air hose mask, if needed.

Ventilation:

It is not recommended that this product be used in confined spaces or in a manner that will allow accumulation of high vapor concentrations. However, for controlled industrial uses when this product is used in confined spaces, heated above ambient temperatures or agitated, the use of explosion proof ventilation is necessary to maintain exposure levels below applicable exposure limits - see Section 2.

Protective Gloves:

Wear resistant gloves such as nitrile rubber.

Eye Protection:

Chemical safety goggles

Other Protective Equipment

Impervious clothing or boots, if needed.

SECTION 10 -- SPECIAL PRECAUTIONS

Dept. of Labor Storage Category:

Flammable liquid - Class IB.

Hygienic Practices:

Keep away from heat, sparks and flame. Keep containers closed when not in use. Avoid eye contact. Avoid prolonged contact with skin. Wash skin with soap and water after contact.

Additional Precautions:

Ground containers when transferring liquid to prevent static accumulation and discharge. Additional information regarding safe handling of products with static accumulation potential can be ordered by contacting the American Petroleum Institute (API) for API Recommended Practice 2003, entitled "Protection Against Ignitions Arising Out of Static, Lighting, and Stray Currents" (American Petroleum Institute, 1720 L Street Northwest, Washington, DC 20005), or the National Fire Protection Association (NFPA) for NFPA 77 entitled "Static Electricity" (National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101).

Empty Container Warning:

"Empty" containers retain residue (liquid and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind or expose such containers to heat, flame, sparks or other sources of ignition. They may explode and cause injury or death. Do not attempt to clean since residue is difficult to remove. "Empty" drums should be completely drained, properly bunged and promptly returned to supplier or disposed of in an environmentally safe manner and in accordance with governmental regulations.

SECTION 11 -- ADDITIONAL INFORMATION

This product contains the following toxic chemical(s) which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372:

TOXIC CHEMICAL

CAS#

APPROXIMATE % BY WEIGHT

Toluene

108-88-3

15.28%

Glycol Ethers

111-76-2

4.57%

(Ethylene Glycol Monobutyl Ether) Methanol

67-56-1

15.12%

SARA Title III Hazard Categories:

Immediate (Acute) Health, Delayed (Chronic)

Health, Fire.

Common Names:

Lacquer reducer, solvent mixture

California Proposition 65:

This product contains Toluene and may contain trace amounts of Benzene and Ethyl Benzene- which are known to the State of California to cause cancer, birth defects or other reproductive harm and may be subject to the requirements of California Proposition

TRANSPORTATION* (U.S.D.O.T. land transportation in packages of 119 gallons or less)

Proper Shipping Name:

Paint related material

Hazard Class:

3

Packing Group:

H

Identification Number:

UN 1263 Methanol RQ 5000 Lbs.

U.S. D.O.T. Hazardous Substance:

Ethyl Acetate RQ 1000 lbs. Acetone RQ 5000 lbs. Toluene RQ 1000 lbs.

RQ of mixture 5555 lbs.

*Refer to 49 CFR for additional information. Exceptions or exemptions may exist for smaller quantities.

APPENDIX C VALIDATED LABORATORY DATA PACKAGES

Proj. NYSDEC EMR Circuits
Proj # 134685-01
File Code: 8

RECEIVED
MAR 15 2010

March 12, 2010

Mr. Marc Flanagan Shaw Environmental & Infrastructure Group 13 British American Boulevard Latham, New York 12110-1405

RE: Submittal of Data Validation DUSR Reports for EMR Circuits, SDGs J0078 & SB06784

Dear Mr. Flanagan:

Environmental Data Services, Inc. (EDS) is pleased to submit the DUSR reports for the above referenced SDGs.

Please contact me at (757) 564-0090 or via email at nweaver@env-data.com with any questions.

Sincerely,

Environmental Data Services, Inc.

Senior Chemist

Enclosed

DATA USABILITY SUMMARY REPORT EMR CIRCUITS, HAUPPAUGE, NEW YORK

Client:

Shaw Environmental and Infrastructure Group, Latham, New York

SDG:

SB06784

Laboratory:

Spectrum Analytical, Inc., Agawam, Massachusetts

Site:

EMR Circuits, Hauppauge, New York

Date:

March 12, 2010

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	SV-5	SB06784-01	Air
2	SV-2	SB06784-02	Air
3	SV-1	SB06784-03	Air
4	SV-DUPE A	SB06784-04	Air
5	SV-3	SB06784-05	Air
6	SV-4	SB06784-06	Air
7	IA-1	SB06784-07	Air
7DL	IA-1DL	SB06784-07DL	Air
8	SSV-1	SB06784-08	Air
9	SSV-2	SB06784-09	Air
10	OA-1	SB06784-10	Air

A Data Usability Summary Review was performed on the analytical data for ten air samples collected by Shaw Environmental and Infrastructure Group at the EMR Circuits site in Hauppauge, New York. The samples were analyzed under "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition January 1999, EPA/625/R-96/010B", Compendium Method TO-15, "Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)".

The data have been evaluated according to the protocols and quality control (QC) requirements of the USEPA Region II Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Air Samples - Volatile Organic Analysis of Ambient Air in Canister and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed for this report:

- Data Completeness
- Cover letter, Narrative, and Data Reporting Forms
- Canister Certification Blanks
- Canister Certification Pressures Differences
- Chains-of-Custody and Traffic Reports
- Holding Times

- Laboratory Control Samples
- Surrogate Spike Recoveries
- GC/MS Tuning
- Method Blank
- Initial Calibration
- Continuing Calibration
- Compound Quantitation
- Internal Standard (IS) Area Performance
- Field Duplicate Sample Precision

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

Overall Evaluation of Data and Potential Usability Issues

There were no rejections of data.

The data is acceptable for the intended purposes. Data were qualified for the following deficiencies.

- Two compounds were qualified as estimated in two samples due to high LCS recoveries.
- Three compounds were qualified as estimated in three samples due to high continuing calibration %D values.
- Acetone was qualified as estimated in one sample due to a linear range exceedence.
- Two compounds were qualified as estimated in two samples due to poor field duplicate precision.

Data Completeness

All criteria were met.

Cover letter, Narrative, and Data Reporting Forms

• All criteria were met

Canister Certification Blanks

The batch blank checks were non-detect or < RL.

Canister Certification Pressures Differences

• All criteria were met.

Chains-of-Custody and Traffic Reports

• All criteria were met

Holding Times

• All samples were analyzed within 30 days for air samples.

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
1002050-BS1	Trichlorofluoromethane	152%	J	1, 10
	Carbon Tetrachloride	135%	J	10
	Benzyl Chloride	146%	None	All ND

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

GC/MS Tuning

• All criteria were met.

Method Blank

• The method blanks were free of contamination.

Field and Trip Blanks

Field QC samples were not analyzed.

Initial Calibration

The initial calibrations exhibited acceptable %RSD and average RRF values.

Continuing Calibration

• The following table presents compounds that exceeded 30 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
01/19/10	1,3,5-Trimethylbenzene	31.2%	J/UJ	1, 5, 10
	4-Ethyltoluene	30.7%		
	1,2,4-Trimethylbenzene	32.8%		

Compound Quantitation

- Sample SV-3 exhibited a high concentration of acetone that exceeded the instrument calibration range and was flagged (E) by the laboratory. The sample was diluted and reanalyzed and the dilution acetone result should be used for reporting. The laboratory reports both the original results and the dilution results on the same Form Is. Please use the first reported result on the Form Is except for acetone for reporting.
- Sample IA-1 exhibited a high concentration of ethanol that exceeded the instrument calibration range and was flagged (E) by the laboratory. The sample was diluted and reanalyzed and the dilution result for ethanol should be used for reporting.

Internal Standard (IS) Area Performance

All criteria were met.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. For a high RPD >100% for air samples, results are considered estimated and qualified (J). The results are valid and usable, however possibly biased.

Compound	SV-1	SV-DUPE A	RPD	Qualifier
	ug/m³	ug/m³		•
Propene	23.06	20.31	13%	None
Dichlorodifluoromethane	3.46	2.72	24%	None
Acetone	15.92	55.13	110%	J
Trichlorofluoromethane	5.34	4.50	17%	None
Ethanol	7.73	8.28	7%	None
1,1-Dichloroethene	8.89	7.89	12%	None
1,1,2-Trichlorotrifluoroethane	87.38	77.41	12%	None
Carbon Disulfide	4.17	3.77	10%	None

Compound	SV-1	SV-DUPE A	RPD	Qualifier
-	ug/m³	ug/m³		•
1,1-Dichloroethane	2.75	2.47	11%	None
Isopropyl Alcohol	5.01	4.86	3%	None
2-Butanone	10.88	10.88	0%	None
cis-1,2-Dichloroethene	4.92	4.56	8%	None
Hexane	3.10	3.67	17%	None
Chloroform	16.50	14.70	12%	None
1,1,1-Trichloroethane	54.56	48.01	13%	None
Benzene	1.44	1.50	4%	None
Trichloroethene	394.47	345.03	13%	None
1,1,2-Trichloroethane	12.82	12.55	2%	None
Toluene	11.21	18.29	48%	None
Tetrachloroethene	353.30	305.83	14%	None
Ethylbenzene	3.42	3.29	4%	None
m,p-Xylene	13.48	11.10	19%	None
o-Xylene	3.86	2.90	28%	None
1,3,5-Trimethylbenzene	1.72	1.40 U	NC	None
4-Ethyltoluene	1.43	1.38 U	NC	None
1,2,4-Trimethylbenzene	5.56	1.67	108%	J

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Very truly yours,

Environmental Data Services, Inc.

Nancy Weaver Senior Chemist

Date

Laury Weaver 3/12/10

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

SV-5

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project: Received: See Chain of Custody

Project Number:

<u>J0060</u>

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

SB06784-01

File ID:

B32307.D

Sampled:

01/13/10 12:48

Analyzed:

01/19/10 14:49

Dilution Factor:

.

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002050

Sequence:

S000458

Calibration:

1001027

Instrument:

Air2

Jucon.	Sequence. Sequence. Canolinion.	100,10,27	mistrament.	
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	8.4800	14.59	
75-71-8	Dichlorodifluoromethane (Freon12)	0.67000	3.31	
74-87-3	Chloromethane	0.63000	1.30	
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.050256	0.35	U
75-01-4	Vinyl chloride	0.053850	0.14	U
106-99-0	1,3-Butadiene	0.050719	0.11	U
74-83-9	Bromomethane	0.039878	0.15	U
75-00-3	Chloroethane	0.056395	0.15	U
67-64-1	Acetone	4.6200	10.98	
75-69-4	Trichlorofluoromethane (Freon 11)	0.49000	2.75	
64-17-5	Ethanol	2.1900	4.13	
107-13-1	Acrylonitrile	0.029810	0.06	U
75-35-4	1,1-Dichloroethene	0.033504	0.13	U
75-09-2	Methylene chloride	0.10000	0.35	
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.035536	0.27	U
75-15-0	Carbon disulfide	0.080000	0.25	J
156-60-5	trans-1,2-Dichloroethene	0.035536	0.14	U
75-34-3	1,1-Dichloroethane	0.035536	0.14	U
1634-04-4	Methyl tert-butyl ether	0.043253	0.16	U
67-63-0	Isopropyl alcohol	0.35000	0.86	J
78-93-3	2-Butanone (MEK)	0.53000	1.56	
156-59-2	cis-1,2-Dichloroethene	0.15000	0.59	
110-54-3	Hexane	0.080000	0.28	J
141-78-6	Ethyl acetate	0.036188	0.13	U
67-66-3	Chloroform	0.023691	0.12	U
109-99-9	Tetrahydrofuran	0.046885	0.14	U
107-06-2	1,2-Dichloroethane	0.028198	0.11	U
71-55-6	1,1,1-Trichloroethane	0.024658	0.13	U
71-43-2	Benzene	0.028198	0.09	U
56-23-5	Carbon tetrachloride	0.023691	0.15	U
110-82-7	Cyclohexane	0.097200	0.33	U
78-87-5	1,2-Dichloropropane	0.023691	0.11	U
75-27-4	Bromodichloromethane	0.035536	0.24	U
79-01-6	Trichloroethene	0.11000	0.59	
123-91-1	1,4-Dioxane	0.021627	0.08	U
142-82-5	n-Heptane	0.028198	0.12	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.039287	0.16	U
10061-01-5	cis-1,3-Dichloropropene	0.036188	0.16	U
	trans-1,3-Dichloropropene	0.030585	0.14	U

SV-5

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

SB06784-01

File ID:

B32307.D

Sampled:

01/13/10 12:48

Analyzed:

01/19/10 14:49

Dilution Factor:

1

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002050

Sequence:

S000458

Calibration:

1001027

Instrument:

Air2

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	0.039287	0.21	U
108-88-3	Toluene	0.028198	0.11	U
591-78-6	2-Hexanone (MBK)	0.035536	0.15	U
124-48-1	Dibromochloromethane	0.044321	0.38	U
106-93-4	1,2-Dibromoethane (EDB)	0.030585	0.24	U
127-18-4	Tetrachloroethene	0.039878	0.27	U
108-90-7	Chlorobenzene	0.047873	0.22	U
630-20-6	1,1,1,2-Tetrachloroethane	0.054282	0.37	U
100-41-4	Ethylbenzene	0.033504	0.15	U
179601-23-1	m,p-Xylene	0.083760	0.36	U
75-25-2	Bromoform	0.067702	0.70	U
100-42-5	Styrene	0.039287	0.17	U
95-47-6	o-Xylene	0.047382	0.21	U
79-34-5	1,1,2,2-Tetrachloroethane	0.080630	0.55	U
98-82-8	Isopropylbenzene	0.036188	0.18	U,
108-67-8	1,3,5-Trimethylbenzene	0.050256	0.25	g u
622-96-8	4-Ethyltoluene	0.054282	0.27	x u:
95-63-6	1,2,4-Trimethylbenzene	0.049316	0.24	øu:
541-73-1	1,3-Dichlorobenzene	0.058432	0.35	U
100-44-7	Benzyl chloride	0.053850	0.28	U
106-46-7	1,4-Dichlorobenzene	0.042158	0.25	U
135-98-8	sec-Butylbenzene	0.047873	0.26	U
99-87-6	4-Isopropyltoluene	0.045877	0.25	U
95-50-1	1,2-Dichlorobenzene	0.042158	0.25	U
104-51-8	n-Butylbenzene	0.038078	0.21	U
120-82-1	1,2,4-Trichlorobenzene	0.024658	0.18	U
87-68-3	Hexachlorobutadiene	0.042158	0.45	U

^{*} Values outside of QC limits

SV-2

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

SB06784-02

File ID:

A35627.D

Sampled:

01/13/10 13:40

Analyzed:

01/18/10 17:40

Dilution Factor:

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

1

Sequence:

S000434

Calibration:

1001022

Instrument:

Batch:	1002002 Sequence: S000434 Calibration:	1001022	Instrument:	<u>Air1</u>
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	23.9	41.13	
75-71-8	Dichlorodifluoromethane (Freon12)	0.570	2.82	
74-87-3	Chloromethane	0.880	1.82	
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.246	1.72	U
75-01-4	Vinyl chloride	0.233	0.60	U
106-99-0	1,3-Butadiene	0.256	0.57	U
74-83-9	Bromomethane	0.212	0.82	U
75-00-3	Chloroethane	0.270	0.71	U
67-64-1	Acetone	2.90	6.89	
75-69-4	Trichlorofluoromethane (Freon 11)	0.320	1.80	J
64-17-5	Ethanol	2.66	5.02	
75-35-4	1,1-Dichloroethene	0.198	0.79	U
107-13-1	Acrylonitrile	0.151	0.33	U
75-09-2	Methylene chloride	0.254	0.88	U
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.225	1.72	U
75-15-0	Carbon disulfide	0.310	0.96	J
156-60-5	trans-1,2-Dichloroethene	0.191	0.76	U
75-34-3	1,1-Dichloroethane	0.191	0.77	U
1634-04-4	Methyl tert-butyl ether	0.192	0.69	U
67-63-0	Isopropyl alcohol	1.73	4.25	
78-93-3	2-Butanone (MEK)	4.16	12.27	
156-59-2	cis-1,2-Dichloroethene	0.135	0.54	U
110-54-3	Hexane	1.45	5.11	
141-78-6	Ethyl acetate	0.194	0.70	U
67-66-3	Chloroform	0.270	1.31	J
109-99-9	Tetrahydrofuran	0.225	0.66	U
107-06-2	1,2-Dichloroethane	0.142	0.57	U
71-55-6	1,1,1-Trichloroethane	0.137	0.75	U
71-43-2	Benzene	1.27	4.05	
56-23-5	Carbon tetrachloride	0.145	0.91	U
110-82-7	Cyclohexane	0.214	0.74	Ŭ
78-87-5	1,2-Dichloropropane	0.172	0.79	U
75-27-4	Bromodichloromethane	0.180	1.21	U
79-01-6	Trichloroethene	0.281	1.51	U
123-91-1	1,4-Dioxane	0.391	1.41	U
142-82-5	n-Heptane	0.820	3.36	
108-10-1	4-Methyl-2-pentanone (MIBK)	0.230	0.94	U
10061-01-5	cis-1,3-Dichloropropene	0.190	0.86	U
10061-02-6	trans-1,3-Dichloropropene	0.159	0.72	U

SV-2

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

06784

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

SB06784-02

File ID:

A35627.D

Sampled:

01/13/10 13:40

Analyzed:

01/18/10 17:40

Dilution Factor:

1

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

Sequence:

S000434

Calibration:

1001022

Instrument:

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	0.234	1.28	U
108-88-3	Toluene	5.78	21.75	
591-78-6	2-Hexanone (MBK)	0.224	0.92	U
124-48-1	Dibromochloromethane	0.193	1.64	U
106-93-4	1,2-Dibromoethane (EDB)	0.150	1.15	U
127-18-4	Tetrachloroethene	0.300	2.03	J
108-90-7	Chlorobenzene	0.282	1.30	U
100-41-4	Ethylbenzene	0.680	2.95	
630-20-6	1,1,1,2-Tetrachloroethane	0.307	2.11	U
179601-23-1	m,p-Xylene	2.60	11.27	
75-25-2	Bromoform	0.316	3.27	U
100-42-5	Styrene	0.187	0.80	U
95-47-6	o-Xylene	0.750	3.25	
79-34-5	1,1,2,2-Tetrachloroethane	0.436	2.99	U
108-67-8	1,3,5-Trimethylbenzene	0.285	1.40	U
622-96-8	4-Ethyltoluene	0.280	1.38	U
95-63-6	1,2,4-Trimethylbenzene	0.720	3.54	
98-82-8	Isopropylbenzene	0.259	1.27	U
541-73-1	1,3-Dichlorobenzene	0.276	1.66	U
100-44-7	Benzyl chloride	0.247	1.27	U
106-46-7	1,4-Dichlorobenzene	0.259	1.56	U
95-50-1	1,2-Dichlorobenzene	0.227	1.36	U
120-82-1	1,2,4-Trichlorobenzene	0.160	1.19	U
87-68-3	Hexachlorobutadiene	0.248	2.64	U
135-98-8	sec-Butylbenzene	0.264	1.45	U
99-87-6	4-Isopropyltoluene	0.245	1.31	U
104-51-8	n-Butylbenzene	0.213	1.17	U

^{*} Values outside of QC limits

SV-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

06784

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

SB06784-03 File ID:

Analyzed:

01/18/10 18:22

A35628.D

Sampled:

01/13/10 13:35

General Air Prep

Initial/Final:

200 ml / 200 ml

Dilution Factor: Batch:

1 1002002

Preparation: Sequence:

Batch:	<u>1002002</u> Sequence: <u>S000434</u> Calibration:	1001022	Instrument:	<u>Air1</u>
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	13.4	23.06	
75-71-8	Dichlorodifluoromethane (Freon12)	0.700	3.46	
74-87-3	Chloromethane	0.286	0.59	U
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.246	1.72	U
75-01-4	Vinyl chloride	0.233	0.60	U
106-99-0	1,3-Butadiene	0.256	0.57	U
74-83-9	Bromomethane	0.212	0.82	U
75-00-3	Chloroethane	0.270	0.71	U
67-64-1	Acetone	6.70	15.92	J
75-69-4	Trichlorofluoromethane (Freon 11)	0.950	5.34	
64-17-5	Ethanol	4.10	7.73	
75-35-4	1,1-Dichloroethene	2.24	8.89	
107-13-1	Acrylonitrile	0.151	0.33	U
75-09-2	Methylene chloride	0.254	0.88	U
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	11.4	87.38	
75-15-0	Carbon disulfide	1.34	4.17	
156-60-5	trans-1,2-Dichloroethene	0.191	0.76	U
75-34-3	1,1-Dichloroethane	0.680	2.75	
1634-04-4	Methyl tert-butyl ether	0.192	0.69	U
67-63-0	Isopropyl alcohol	2.04	5.01	
78-93-3	2-Butanone (MEK)	3.69	10.88	
156-59-2	cis-1,2-Dichloroethene	1.24	4.92	
110-54-3	Hexane	0.880	3.10	
141-78-6	Ethyl acetate	0.194	0.70	U
67-66-3	Chloroform	3.39	16.50	
109-99-9	Tetrahydrofuran	0.225	0.66	U
107-06-2	1,2-Dichloroethane	0.142	0.57	U
71-55-6	1,1,1-Trichloroethane	10.0	54.56	
71-43-2	Benzene	0.450	1.44	J
56-23-5	Carbon tetrachloride	0.145	0.91	U
110-82-7	Cyclohexane	0.214	0.74	U
78-87-5	1,2-Dichloropropane	0.172	0.79	U
75-27-4	Bromodichloromethane	0.180	1.21	U
79-01-6	Trichloroethene	73.4	394.47	
123-91-1	1,4-Dioxane	0.391	1.41	U
142-82-5	n-Heptane	0.138	0.57	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.230	0.94	U
10061-01-5	cis-1,3-Dichloropropene	0.190	0.86	U
10061-02-6	trans-1,3-Dichloropropene	0.159	0.72	U

SV-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

06784

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

S000434

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

Preparation:

SB06784-03

File ID:

A35628.D

Sampled:

01/13/10 13:35

Analyzed:

01/18/10 18:22

Dilution Factor:

01/13/10 13.3

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

1

Sequence:

Calibration:

1001022

Instrument:

Air1

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	2.35	12.82	
108-88-3	Toluene	2.98	11.21	
591-78-6	2-Hexanone (MBK)	0.224	0.92	U
124-48-1	Dibromochloromethane	0.193	1.64	U
106-93-4	1,2-Dibromoethane (EDB)	0.150	1.15	U
127-18-4	Tetrachloroethene	52.1	353.30	
108-90-7	Chlorobenzene	0.282	1.30	U
100-41-4	Ethylbenzene	0.790	3.42	
630-20-6	1,1,1,2-Tetrachloroethane	0.307	2.11	U
179601-23-1	m,p-Xylene	3.11	13.48	
75-25-2	Bromoform	0.316	3.27	U
100-42-5	Styrene	0.187	0.80	υ
95-47-6	o-Xylene	0.890	3.86	
79-34-5	1,1,2,2-Tetrachloroethane	0.436	2.99	U
108-67-8	1,3,5-Trimethylbenzene	0.350	1.72	J
622-96-8	4-Ethyltoluene	0.290	1.43	J
95-63-6	1,2,4-Trimethylbenzene	1.13	5.56	J
98-82-8	Isopropylbenzene	0.259	1.27	U
541-73-1	1,3-Dichlorobenzene	0.276	1.66	U
100-44-7	Benzyl chloride	0.247	1.27	U
106-46-7	1,4-Dichlorobenzene	0.259	1.56	U
95-50-1	1,2-Dichlorobenzene	0.227	1.36	U
120-82-1	1,2,4-Trichlorobenzene	0.160	1.19	U
87-68-3	Hexachlorobutadiene	0.248	2.64	U
135-98-8	sec-Butylbenzene	0.264	1.45	U
99-87-6	4-Isopropyltoluene	0.245	1.31	U
104-51-8	n-Butylbenzene	0.213	1.17	U

^{*} Values outside of QC limits

SV-DUPE A

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

J0060

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

Preparation:

SB06784-04

File ID:

A35629.D

Sampled:

01/13/10 00:00

Analyzed:

01/18/10 19:04

Dilution Factor:

General Air Prep Initial/Final: 200 ml / 200 ml

Batch:

1002002

1

S000434

1001022

Batch:	<u>1002002</u> Sequence: <u>S000434</u> Calif	oration: <u>1001022</u>	Instrument:	<u>Air1</u>
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	11.8	20.31	
75-71-8	Dichlorodifluoromethane (Freon12)	0.550	2.72	
74-87-3	Chloromethane	0.286	0.59	U
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.246	1.72	U
75-01-4	Vinyl chloride	0.233	0.60	U
106-99-0	1,3-Butadiene	0.256	0.57	U
74-83-9	Bromomethane	0.212	0.82	U
75-00-3	Chloroethane	0.270	0.71	U
67-64-1	Acetone	23.2	55.13	丁
75-69-4	Trichlorofluoromethane (Freon 11)	0.800	4.50	
64-17-5	Ethanol	4.39	8.28	
75-35-4	1,1-Dichloroethene	1.99	7.89	
107-13-1	Acrylonitrile	0.151	0.33	U
75-09-2	Methylene chloride	0.254	0.88	U
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	10.1	77.41	
75-15-0	Carbon disulfide	1.21	3.77	
156-60-5	trans-1,2-Dichloroethene	0.191	0.76	U
75-34-3	1,1-Dichloroethane	0.610	2.47	
1634-04-4	Methyl tert-butyl ether	0.192	0.69	U
67-63-0	Isopropyl alcohol	1.98	4.86	
78-93-3	2-Butanone (MEK)	3.69	10.88	
156-59-2	cis-1,2-Dichloroethene	1.15	4.56	,
110-54-3	Hexane	1.04	3.67	
141-78-6	Ethyl acetate	0.194	0.70	U
67-66-3	Chloroform	3.02	14.70	
109-99-9	Tetrahydrofuran	0.225	0.66	U
107-06-2	1,2-Dichloroethane	0.142	0.57	U
71-55-6	1,1,1-Trichloroethane	8.80	48.01	
71-43-2	Benzene	0.470	1.50	J
56-23-5	Carbon tetrachloride	0.145	0.91	U
110-82-7	Cyclohexane	0.214	0.74	U
78-87-5	1,2-Dichloropropane	0.172	0.79	U
75-27-4	Bromodichloromethane	0.180	1.21	U
79-01-6	Trichloroethene	64.2	345.03	
123-91-1	1,4-Dioxane	0.391	1.41	U
142-82-5	n-Heptane	0.138	0.57	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.230	0.94	U
10061-01-5	cis-1,3-Dichloropropene	0.190	0.86	U
10061-02-6	trans-1,3-Dichloropropene	0.159	0.72	U

SV-DUPE A

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

06784

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

J0060

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

Preparation:

SB06784-04

File ID:

A35629.D

Sampled:

01/13/10 00:00

Analyzed:

01/18/10 19:04

Dilution Factor:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

1

Sequence:

S000434

Calibration:

1001022

Instrument:

Air1

	Ganoration,	1001022	msa ament.	THI I
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	2.30	12.55	
108-88-3	Toluene	4.86	18.29	
591-78-6	2-Hexanone (MBK)	0.224	0.92	υ
124-48-1	Dibromochloromethane	0.193	1.64	U
106-93-4	1,2-Dibromoethane (EDB)	0.150	1.15	U
127-18-4	Tetrachloroethene	45.1	305.83	
108-90-7	Chlorobenzene	0.282	1.30	U
100-41-4	Ethylbenzene	0.760	3.29	
630-20-6	1,1,1,2-Tetrachloroethane	0.307	2.11	U
179601-23-1	m,p-Xylene	2.56	11.10	
75-25-2	Bromoform	0.316	3.27	U
100-42-5	Styrene	0.187	0.80	U
95-47-6	o-Xylene	0.670	2.90	
79-34-5	1,1,2,2-Tetrachloroethane	0.436	2.99	U
108-67-8	1,3,5-Trimethylbenzene	0.285	1.40	U
622-96-8	4-Ethyltoluene	0.280	1.38	U
95-63-6	1,2,4-Trimethylbenzene	0.340	1.67	7
98-82-8	Isopropylbenzene	0.259	1.27	U
541-73-1	1,3-Dichlorobenzene	0.276	1.66	U
100-44-7	Benzyl chloride	0.247	1.27	U
106-46-7	1,4-Dichlorobenzene	0.259	1.56	U
95-50-1	1,2-Dichlorobenzene	0.227	1.36	U
120-82-1	1,2,4-Trichlorobenzene	0.160	1.19	U
87-68-3	Hexachlorobutadiene	0.248	2.64	U
135-98-8	sec-Butylbenzene	0.264	1.45	U
99-87-6	4-Isopropyltoluene	0.245	1.31	U
104-51-8	n-Butylbenzene	0.213	1.17	U

^{*} Values outside of QC limits

SV-3

Laboratory: Spectrum Analysical, Inc Agrawam, MA SDG: See Chain of Custody						
Project Number 10060 Received: 01/14/10 17-38 Waltrix Soil Gas Laboratory ID: \$106784-05 File ID: B32308.D Company ID: \$106784-05 File ID: \$106784-05 File ID: B32308.D Company ID: \$106784-05 File ID: \$1	Laboratory:	Spectrum Analytical, Inc Agawam, MA	SDG:	<u>06784</u>		
CAS NO. COMPOUND CONC. (gg/m3) Q	Client:	Mitkem Laboratories	Project:	See Chain of Cust	ody 1	108
CAS NO. COMPOUND CONC. (gg/m3) Q	Project Number:	<u>J0060</u>	Received:	01/14/10 17:38	arcoal.	Mana'
CAS NO. COMPOUND CONC. (gg/m3) Q	Matrix:	Soil Gas Laboratory ID: SB0	<u>06784-05</u>	File ID:	B32308.D	ony ks
CAS NO. COMPOUND CONC. (gg/m3) Q	Sampled:	01/13/10 12:57		Analyzed:	01/19/10 15:43	resurt
CAS NO. COMPOUND CONC. (gg/m3) Q	Dilution Factor:	1 Preparation: Gen	eral Air Prep	Initial/Final:	200 ml / 200 ml	O XCOP
CAS NO. COMPOUND CONC. (gg/m3) Q	Batch:	•	Calibration	1001027	Instrument:	Air2 / 1 / 1
CAS NO. COMPOUND CONC. (gg/m3) Q		Dequence.	Curioration.		1 Instrument.	
115-07-1 Propene	CAS NO.	COMPOUND		CONC. (ppbv)	CONC. (ug/m3)	Q
75-71-8	115-07-1	Propene		5.2700	9.07	
75-71-8	115-07-1			4.28	7.37	
74-87-3 Chloromethane 0.72000 1.49 74-87-3 Chloromethane 0.286 0.59 U 76-14-2 1.2-Dichlorotetrafluoroethane (Fron 114) 0.050256 0.35 U 75-14-2 1.2-Dichlorotetrafluoroethane (Fron 114) 0.246 1.72 U 75-01-4 Vinyl chloride 0.233 0.60 U 75-01-4 Vinyl chloride 0.050719 0.11 U 106-99-0 1.3-Butadiene 0.050719 0.11 U 106-99-0 1.3-Butadiene 0.035878 0.15 U 74-83-9 Bromomethane 0.039878 0.15 U 74-83-9 Bromomethane 0.056395 0.15 U 75-00-3 Chloroethane 0.056395 0.15 U 75-00-3 Chloroethane 0.0270 0.71 U 67-64-1 Acetone 19.53 46.41 ★ 75-69-4 Trichlorofluoromethane (Fron 11) 0.287 1.61 U 75-	75-71-8			0.57000	2.82	
74-87-3 Chloromethane 0.286 0.59 U 76-14-2 1,2-Dichlorotetrafluoroethane (Freon 114) 0.050256 0.35 U 76-14-2 1,2-Dichlorotetrafluoroethane (Freon 114) 0.246 1.72 U 75-01-4 Vinyl chloride 0.233 0.60 U 75-01-4 Vinyl chloride 0.053850 0.14 U 106-99-0 1,3-Butadiene 0.050719 0.11 U 106-99-0 1,3-Butadiene 0.055975 U 74-83-9 Bromomethane 0.039878 0.15 U 74-83-9 Bromomethane 0.056395 0.15 U 75-00-3 Chloroethane 0.056395 0.15 U 75-00-3 Chloroethane 0.056395 0.15 U 67-64-1 Acetone 19.530 46.41 .€ 75-69-4 Trichlorofluoromethane (Freon 11) 0.287 1.61 U 75-69-4 Trichlorofluoromethane (Freon 11) 0.39000 2.19 1	75-71-8	Dichlorodifluoromethane (Freon12)		0.570	2.82	
76-14-2 1,2-Dichlorotetrafluoroethane (Freon 114) 0.050256 0.35 U 76-14-2 1,2-Dichlorotetrafluoroethane (Freon 114) 0.246 1.72 U 75-01-4 Vinyl chloride 0.233 0.60 U 75-01-4 Vinyl chloride 0.053850 0.14 U 106-99-0 1,3-Butadiene 0.059719 0.11 U 106-99-0 1,3-Butadiene 0.2256 0.57 U 74-83-9 Bromomethane 0.039878 0.15 U 74-83-9 Bromomethane 0.212 0.82 U 75-00-3 Chloroethane 0.056395 0.15 U 75-00-3 Chloroethane 0.270 0.71 U 67-64-1 Acetone 19.530 46.41 € 75-00-3 Chloroethane 19.5 46.34 ✓ 75-69-4 Trichlorofluoromethane (Freon 11) 0.287 1.61 U 75-69-4 Trichlorofluoromethane (Freon 11) 0.399000 2.19 <td>74-87-3</td> <td>Chloromethane</td> <td></td> <td>0.72000</td> <td>1.49</td> <td></td>	74-87-3	Chloromethane		0.72000	1.49	
76-14-2	74-87-3	Chloromethane		0.286	0.59	U
75-01-4	76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)		0.050256	0.35	U
75-01-4 Vinyl chloride 0.053850 0.14 U 106-99-0 1,3-Butadiene 0.050719 0.11 U 106-99-0 1,3-Butadiene 0.059878 0.15 U 74-83-9 Bromomethane 0.039878 0.15 U 75-00-3 Chloroethane 0.056395 0.15 U 75-00-3 Chloroethane 0.056395 0.15 U 67-64-1 Acetone 19.530 46.41 € 67-64-1 Acetone 19.530 46.41 € 75-69-4 Trichlorofluoromethane (Freon 11) 0.287 1.61 U 75-69-4 Trichlorofluoromethane (Freon 11) 0.39000 2.19 64-17-5 Ethanol 2.9600 5.58 64-17-5 Ethanol 2.9600 5.58 64-17-1 Acrylonitrile 0.198 0.79 U 107-13-1 Acrylonitrile 0.02810 0.06 U 107-13-1 Acrylonitrile 0.015 0.33 <td>76-14-2</td> <td>1,2-Dichlorotetrafluoroethane (Freon 114)</td> <td></td> <td>0.246</td> <td>1.72</td> <td>U</td>	76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)		0.246	1.72	U
106-99-0	75-01-4	Vinyl chloride		0.233	0.60	U
106-99-0 1,3-Butadiene	75-01-4	Vinyl chloride		0.053850	0.14	U
T4-83-9 Bromomethane 0.039878 0.15 U T4-83-9 Bromomethane 0.212 0.82 U T4-83-9 Bromomethane 0.212 0.82 U T4-83-9 Bromomethane 0.056395 0.15 U T5-90-3 Chloroethane 0.270 0.71 U T5-90-3 Chloroethane 0.270 0.71 U T5-90-3 Chloroethane 19.530 46.41 M M T5-90-3 Trichlorofluoromethane (Freon 11) 0.287 1.61 U T5-69-4 Trichlorofluoromethane (Freon 11) 0.39000 2.19 T5-69-4 T1-75-69-4 T1-75-69-4 T1-75-75-75-4 1.1-10-10-10-10-10-10-10-10-10-10-10-10-10	106-99-0	1,3-Butadiene		0.050719	0.11	U
Table Tabl	106-99-0	1,3-Butadiene		0.256	0.57	U
75-00-3	74-83-9	Bromomethane		0.039878	0.15	U
T5-00-3	74-83-9	Bromomethane		0.212	0.82	U
19,530 46,41 19,5	75-00-3	Chloroethane		0.056395	0.15	U
19.5	75-00-3	Chloroethane		0.270	0.71	U
75-69-4 Trichlorofluoromethane (Freon 11) 0.287 1.61 U 75-69-4 Trichlorofluoromethane (Freon 11) 0.39000 2.19 64-17-5 Ethanol 2.9600 5.58 64-17-5 Ethanol 4.08 7.69 75-35-4 1,1-Dichloroethene 0.198 0.79 U 107-13-1 Acrylonitrile 0.029810 0.06 U 107-13-1 Acrylonitrile 0.151 0.33 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-90-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-19-0 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 U 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-6	67-64-1	Acetone		19.530	46.41	* J
75-69-4 Trichlorofluoromethane (Freon 11) 0.39000 2.19 64-17-5 Ethanol 2.9600 5.58 64-17-5 Ethanol 4.08 7.69 75-35-4 1,1-Dichloroethene 0.198 0.79 U 107-13-1 Acrylonitrile 0.029810 0.06 U 107-13-1 Acrylonitrile 0.151 0.33 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 U 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethane 0.191 0.76 U 75-34-3	67-64-1	Acetone	•	19.5	(46.34)	
64-17-5 Ethanol 2.9600 5.58 64-17-5 Ethanol 4.08 7.69 75-35-4 1,1-Dichloroethene 0.198 0.79 U 107-13-1 Acrylonitrile 0.029810 0.06 U 107-13-1 Acrylonitrile 0.151 0.33 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethene 0.035536 0.14 U 75-34-3 1,	75-69-4	Trichlorofluoromethane (Freon 11)		0.287	1.61	U
64-17-5 Ethanol 4.08 7.69 75-35-4 1,1-Dichloroethene 0.198 0.79 U 107-13-1 Acrylonitrile 0.029810 0.06 U 107-13-1 Acrylonitrile 0.151 0.33 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 156-60-5 trans-1,2-Dichloroethane 0.035536 0.14 U	75-69-4	Trichlorofluoromethane (Freon 11)		0.39000	2.19	
64-17-5 Ethanol 4.08 7.69 75-35-4 1,1-Dichloroethene 0.198 0.79 U 107-13-1 Acrylonitrile 0.029810 0.06 U 107-13-1 Acrylonitrile 0.151 0.33 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 156-60-5 trans-1,2-Dichloroethane 0.035536 0.14 U	64-17-5	Ethanol		2.9600	5.58	
107-13-1 Acrylonitrile 0.029810 0.06 U 107-13-1 Acrylonitrile 0.151 0.33 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 75-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 76-30-0 Isopropyl alcohol 1.28 3.14 <td></td> <td>Ethanol</td> <td></td> <td>4.08</td> <td>7.69</td> <td></td>		Ethanol		4.08	7.69	
107-13-1 Acrylonitrile 0.029810 0.06 U 107-13-1 Acrylonitrile 0.151 0.33 U 75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 75-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 76-30-0 Isopropyl alcohol 1.28 3.14 <td>75-35-4</td> <td>1,1-Dichloroethene</td> <td></td> <td>0.198</td> <td>0.79</td> <td>U</td>	75-35-4	1,1-Dichloroethene		0.198	0.79	U
75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		Acrylonitrile		0.029810	0.06	U
75-35-4 1,1-Dichloroethene 0.033504 0.13 U 75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 76-30-0 Isopropyl alcohol 1.28 3.14	107-13-1	Acrylonitrile		0.151	0.33	U
75-09-2 Methylene chloride 0.254 0.88 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14	75-35-4	1,1-Dichloroethene		0.033504	0.13	U
76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.250 1.92 J 75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		Methylene chloride			0.88	
75-09-2 Methylene chloride 0.050256 0.17 U 76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		1,1,2-Trichlorotrifluoroethane (Freon 113)				J
76-13-1 1,1,2-Trichlorotrifluoroethane (Freon 113) 0.31000 2.38 75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.191 0.77 U 156-60-5 trans-1,2-Dichloroethene 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		Methylene chloride		0.050256	0.17	U
75-15-0 Carbon disulfide 0.186 0.58 U 75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.191 0.77 U 156-60-5 trans-1,2-Dichloroethene 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		1,1,2-Trichlorotrifluoroethane (Freon 113)				-
75-15-0 Carbon disulfide 0.20000 0.62 J 156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.191 0.77 U 156-60-5 trans-1,2-Dichloroethene 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		Carbon disulfide		0.186	0.58	U
156-60-5 trans-1,2-Dichloroethene 0.191 0.76 U 75-34-3 1,1-Dichloroethane 0.191 0.77 U 156-60-5 trans-1,2-Dichloroethene 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		Carbon disulfide		0.20000		
75-34-3 1,1-Dichloroethane 0.191 0.77 U 156-60-5 trans-1,2-Dichloroethene 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14						
156-60-5 trans-1,2-Dichloroethene 0.035536 0.14 U 75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		1,1-Dichloroethane		0.191		
75-34-3 1,1-Dichloroethane 0.035536 0.14 U 1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14		trans-1,2-Dichloroethene				U
1634-04-4 Methyl tert-butyl ether 0.192 0.69 U 67-63-0 Isopropyl alcohol 1.28 3.14						
67-63-0 Isopropyl alcohol 1.28 3.14						
						-
						U

lew 3/12/10

SV-3

		EPA	A 10-15					******
Laboratory:	Spectrum Analytic	cal, Inc Agawam	<u>ı, MA</u>	SDG:	0678	<u>84</u>		
Client:	Mitkem Laborator	ries		Project:	See	Chain of Cust	tody	MAU
	J0060	<u></u>		· ·		14/10 17:38	<u>54,</u>	Will Oil
Project Number:				Received:				11/3 6
Matrix:	Soil Gas	Laborate	ory ID:	SB06784-05	File	ID:	<u>A35630.D</u>	redu x 5°
Sampled:	01/13/10 12:57				Ana	alyzed:	01/18/10 19:47	We origin results for except for
Dilution Factor:	1	Preparat	ation:	General Air Prep	Initi	ial/Final:	200 ml / 200 ml	/ non
Batch:	1002002	Sequence:	S000434	Calibration:	<u>100</u> '	1022	Instrument:	Air1
CAS NO.	COMPOUND				Cr	ONC. (ppbv)	CONC. (ug/m3)	Q
78-93-3	2-Butanone (MEK	<u>()</u>				2.93	8.64	
67-63-0	Isopropyl alcohol					1.5500	3.80	
78-93-3	2-Butanone (MEK					2.9500	8.70	
156-59-2	cis-1,2-Dichloroeth					0.135	0.54	U
156-59-2	cis-1,2-Dichloroeth					0.024658	0.10	U
110-54-3	Hexane					0.17000	0.60	
110-54-3	Hexane					0.131	0.46	U
141-78-6	Ethyl acetate			-		0.10000	0.36	
141-78-6	Ethyl acetate Ethyl acetate					0.1000	0.70	U
67-66-3	Chloroform					0.060000	0.70	J
	Chloroform							
67-66-3	Tetrahydrofuran					0.151	0.73	U
109-99-9						0.15000	0.44	**
109-99-9	Tetrahydrofuran					0.225	0.66	U
107-06-2	1,2-Dichloroethane					0.028198	0.11	U
107-06-2	1,2-Dichloroethane					0.142	0.57	U
71-55-6	1,1,1-Trichloroetha					0.35000	1.91	
71-55-6	1,1,1-Trichloroetha	ane				0.270	1.47	J
71-43-2	Benzene					0.22000	0.70	
71-43-2	Benzene					0.210	0.67	J
56-23-5	Carbon tetrachloric					0.023691	0.15	U
56-23-5	Carbon tetrachloric	.de				0.145	0.91	U
110-82-7	Cyclohexane					0.097200	0.33	U
110-82-7	Cyclohexane					0.214	0.74	U
78-87-5	1,2-Dichloropropa	ine				0.023691	0.11	U
78-87-5	1,2-Dichloropropa	ine				0.172	0.79	U
75-27-4	Bromodichloromet	thane				0.035536	0.24	U
75-27-4	Bromodichloromet	thane				0.180	1.21	U
79-01-6	Trichloroethene					1.0200	5.48	
79-01-6	Trichloroethene					0.950	5.11	
123-91-1	1,4-Dioxane					0.021627	0.08	U
123-91-1	1,4-Dioxane					0.391	1.41	U
142-82-5	n-Heptane					0.138	0.57	U
108-10-1	4-Methyl-2-pentan	none (MIBK)				0.230	0.94	U
142-82-5	n-Heptane					0.028198	0.12	U
108-10-1	4-Methyl-2-pentan	none (MIBK)				0.039287	0.12	U
10061-01-5	cis-1,3-Dichloropre					0.190	0.86	U
10061-01-5	cis-1,3-Dichloropro					0.036188	0.16	U
10061-01-3	trans-1,3-Dichlorop					0.159	0.72	U
10001-02-0	uans-1,J-Divinor-,	propene				U.133	V.12	U

SV-3

B32308.D

Laboratory: Spectrum Analytical, Inc. - Agawam, MA SDG: 06784

Soil Gas

Matrix:

Client: <u>Mitkem Laboratories</u> Project: <u>See Chain of Custody</u>

Project Number: <u>J0060</u> Received: <u>01/14/10 17:38</u>

Laboratory ID:

Sampled: 01/13/10 12:57 Analyzed: 01/19/10 15:43

SB06784-05

File ID:

Dilution Factor: 1 Preparation: General Air Prep Initial/Final: 200 ml / 200 ml

Batch: 1002050 Sequence: S000458 Calibration: 1001027 Instrument:

Batch:	<u>1002050</u>	Sequence:	<u>S000458</u>	Calibration:	<u>1001027</u>	Instrument:	Air2
CAS NO.	COMPOUNI	D			CONC. (ppbv)	CONC. (ug/m3)	Q
10061-02-6	trans-1,3-Dic	chloropropene			0.030585	0.14	ប
79-00-5	1,1,2-Trichlo	roethane			0.039287	0.21	U
108-88-3	Toluene				0.250	0.94	J
591-78-6	2-Hexanone	(MBK)			0.224	0.92	U
108-88-3	Toluene				0.37000	1.39	
591-78-6	2-Hexanone	(MBK)			0.035536	0.15	U
124-48-1	Dibromochlo	romethane			0.193	1.64	Ŭ
106-93-4	1,2-Dibromo	ethane (EDB)			0.150	1.15	U
124-48-1	Dibromochlo	romethane			0.044321	0.38	U
106-93-4	1,2-Dibromo	ethane (EDB)			0.030585	0.24	Ŭ
127-18-4	Tetrachloroet	thene			0.590	4.00	
108-90-7	Chlorobenzer	ne			0.282	1.30	U
127-18-4	Tetrachloroet	thene			0.63000	4.27	
108-90-7	Chlorobenzer	ne			0.047873	0.22	U
100-41-4	Ethylbenzene				0.191	0.83	U
630-20-6	1,1,1,2-Tetrae	chloroethane			0.054282	0.37	U
630-20-6	1,1,1,2-Tetrae	chloroethane			0.307	2.11	U
179601-23-1	m,p-Xylene				0.489	2.12	U
75-25-2	Bromoform				0.316	3.27	U
100-41-4	Ethylbenzene				0.033504	0.15	U
179601-23-1	m,p-Xylene				0.083760	0.36	U
100-42-5	Styrene				0.187	0.80	U
75-25-2	Bromoform				0.067702	0.70	U
95-47-6	o-Xylene				0.266	1.15	U
79-34-5	1,1,2,2-Tetrac	chloroethane			0.436	2.99	U
100-42-5	Styrene				0.039287	0.17	U
108-67-8	1,3,5-Trimeth	nylbenzene			0.285	1.40	U
95-47-6	o-Xylene				0.047382	0.21	U
79-34-5	1,1,2,2-Tetrac	chloroethane			0.080630	0.55	U
622-96-8	4-Ethyltoluen	ie			0.280	1.38	U
95-63-6	1,2,4-Trimeth	nylbenzene			0.261	1.28	U
98-82-8	Isopropylbena	zene			0.036188	0.18	U
98-82-8	Isopropylbena	zene			0.259	1.27	U
108-67-8	1,3,5-Trimeth	nylbenzene			0.050256	0.25	e us
541-73-1	1,3-Dichlorob	penzene			0.276	1.66	U
622-96-8	4-Ethyltoluen	ie			0.054282	0.27	ENJ
100-44-7	Benzyl chlori	de			0.247	1.27	U
95-63-6	1,2,4-Trimeth	nylbenzene			0.049316	0.24	y w
106-46-7	1,4-Dichlorob	enzene			0.259	1.56	Ū

(ue) 3/12/10

SV-3

Laboratory:	Spectrum Analytical, Inc.	- Agawam, MA	SDG:	<u>06784</u>			
Client:	Mitkem Laboratories		Project:	See Chain of Cust	ody	10 se	. 1
Project Number:	<u>J0060</u>		Received:	01/14/10 17:38		Wedn	N OC
Matrix:	Soil Gas	Laboratory ID:	SB06784-05	File ID:	A35630.D	ony	UK)
Sampled:	01/13/10 12:57	-		Analyzed:	01/18/10 19:47	w or	ঁর
Dilution Factor:	<u>1</u>	Preparation:	General Air Prep	Initial/Final:	200 ml / 200 ml	ONU	W.
Batch:	<u>1002002</u> Sequer	•	Calibration:	1001022	Instrument:	Original Origina Original Origina Origina Origina Origina Original	w
CAS NO.	COMPOUND			CONC. (ppbv)	CONC. (ug/m3)	Q	
91-20-3	Naphthalene			0.220	1.15	U	1
95-50-1	1,2-Dichlorobenzene	1,2-Dichlorobenzene			1.36	U	
541-73-1	1,3-Dichlorobenzene	1,3-Dichlorobenzene			0.35	U	
120-82-1	1,2,4-Trichlorobenzene			0.160	1.19	U	
100-44-7	Benzyl chloride			0.053850	0.28	U	
106-46-7	1,4-Dichlorobenzene			0.042158	0.25	U	
87-68-3	Hexachlorobutadiene			0.248	2.64	U	
135-98-8	sec-Butylbenzene			0.047873	0.26	U	
135-98-8	sec-Butylbenzene			0.264	1.45	U	
99-87-6	4-Isopropyltoluene			0.045877	0.25	U	
99-87-6	4-Isopropyltoluene			0.245	1.31	U	
95-50-1	1,2-Dichlorobenzene			0.042158	0.25	U	
104-51-8	n-Butylbenzene			0.038078	0.21	U	
104-51-8	n-Butylbenzene			0.213	1.17	U	
120-82-1	1,2,4-Trichlorobenzene			0.024658	0.18	U	
87-68-3	Hexachlorobutadiene			0.042158	0.45	U	

^{*} Values outside of QC limits

SV-4

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

06784

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

SB06784-06

File ID:

A35631.D

Sampled:

01/13/10 13:07

Analyzed:

01/18/10 20:29 200 ml / 200 ml

Dilution Factor:

1

Preparation:

General Air Prep

Initial/Final:

Batch:

1002002

Sequence:

S000434

Calibration:

1001022

<u>Airl</u> Instrument:

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	13.2	22.72	
75-71-8	Dichlorodifluoromethane (Freon12)	0.590	2.92	
74-87-3	Chloromethane	0.286	0.59	U
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.246	1.72	U
75-01-4	Vinyl chloride	0.233	0.60	U
106-99-0	1,3-Butadiene	0.256	0.57	U
74-83-9	Bromomethane	0.212	0.82	U
75-00-3	Chloroethane	0.270	0.71	U
67-64-1	Acetone	15.3	36.36	
75-69-4	Trichlorofluoromethane (Freon 11)	0.287	1.61	U
64-17-5	Ethanol	8.59	16.20	
75-35-4	1,1-Dichloroethene	0.198	0.79	U
107-13-1	Acrylonitrile	0.151	0.33	U
75-09-2	Methylene chloride	0.254	0.88	U
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.225	1.72	U
75-15-0	Carbon disulfide	0.380	1.18	J
156-60-5	trans-1,2-Dichloroethene	0.191	0.76	U
75-34-3	1,1-Dichloroethane	0.191	0.77	U
1634-04-4	Methyl tert-butyl ether	0.192	0.69	U
67-63-0	Isopropyl alcohol	3.36	8.25	
78-93-3	2-Butanone (MEK)	7.17	21.14	
156-59-2	cis-1,2-Dichloroethene	0.135	0.54	U
110-54-3	Hexane	1.09	3.84	
141-78-6	Ethyl acetate	0.194	0.70	U
67-66-3	Chloroform	0.151	0.73	U
109-99-9	Tetrahydrofuran	0.225	0.66	U
107-06-2	1,2-Dichloroethane	0.142	0.57	U
71-55-6	1,1,1-Trichloroethane	0.200	1.09	J
71-43-2	Benzene	1.27	4.05	
56-23-5	Carbon tetrachloride	0.145	0.91	U
110-82-7	Cyclohexane	0.214	0.74	U
78-87-5	1,2-Dichloropropane	0.172	0.79	U
75-27-4	Bromodichloromethane	0.180	1.21	U
79-01-6	Trichloroethene	0.690	3.71	
123-91-1	1,4-Dioxane	0.391	1.41	U
142-82-5	n-Heptane	0.870	3.57	
108-10-1	4-Methyl-2-pentanone (MIBK)	0.230	0.94	U
10061-01-5	cis-1,3-Dichloropropene	0.190	0.86	U
10061-02-6	trans-1,3-Dichloropropene	0.159	0.72	U

6

FORM I - AIR ANALYSIS DATA SHEET EPA TO-15

SV-4

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Soil Gas

Laboratory ID:

SB06784-06

File ID:

A35631.D

Sampled:

01/13/10 13:07

Analyzed:

01/18/10 20:29

Dilution Factor:

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

1

Sequence:

S000434

Calibration:

1001022

Instrument:

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	0.234	1.28	U
108-88-3	Toluene	8.76	32.96	
591-78-6	2-Hexanone (MBK)	0.224	0.92	U
124-48-1	Dibromochloromethane	0.193	1.64	U
106-93-4	1,2-Dibromoethane (EDB)	0.150	1.15	U
127-18-4	Tetrachloroethene	8.00	54.25	
108-90-7	Chlorobenzene	0.282	1.30	U
100-41-4	Ethylbenzene	2.64	11.45	
630-20-6	1,1,1,2-Tetrachloroethane	0.307	2.11	U
179601-23-1	m,p-Xylene	8.39	36.37	
75-25-2	Bromoform	0.316	3.27	U
100-42-5	Styrene	0.187	0.80	U
95-47-6	o-Xylene	2.11	9.15	
79-34-5	1,1,2,2-Tetrachloroethane	0.436	2.99	U
108-67-8	1,3,5-Trimethylbenzene	0.330	1.62	J
622-96-8	4-Ethyltoluene	0.280	1.38	J
95-63-6	1,2,4-Trimethylbenzene	1.05	5.16	
98-82-8	Isopropylbenzene	0.259	1.27	U
541-73-1	1,3-Dichlorobenzene	0.276	1.66	U
100-44-7	Benzyl chloride	0.247	1.27	U
106-46-7	1,4-Dichlorobenzene	0.259	1.56	U
95-50-1	1,2-Dichlorobenzene	0.227	1.36	U
120-82-1	1,2,4-Trichlorobenzene	0.160	1.19	U
87-68-3	Hexachlorobutadiene	0.248	2.64	U
135-98-8	sec-Butylbenzene	0.264	1.45	U
99-87-6	4-Isopropyltoluene	0.260	1.40	J
104-51-8	n-Butylbenzene	0.213	1.17	U

^{*} Values outside of QC limits

IA-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project: Received: See Chain of Custody

Project Number:

J0060

0

01/14/10 17:38

Matrix:

<u>Air</u>

Laboratory ID:

SB06784-07

File ID:

A35632.D

Sampled:

01/13/10 10:10

Analyzed:

01/18/10 21:10

Dilution Factor:

<u>2</u>

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

Sequence:

S000434

Calibration:

1001022

Instrument: A

Batch:	Sequence: Soud434 Calibration:	1001022	Instrument:	<u>AII I</u>
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	0.588	1.01	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.486	2.40	U
74-87-3	Chloromethane	0.573	1.18	U
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.493	3.45	U
75-01-4	Vinyl chloride	0.465	1.19	U
106-99-0	1,3-Butadiene	0.512	1.13	U
74-83-9	Bromomethane	0.423	1.64	U
75-00-3	Chloroethane	0.539	1.42	U
67-64-1	Acetone	13.4	31.84	
75-69-4	Trichlorofluoromethane (Freon 11)	0.573	3.22	U
64-17-5	Ethanol	-208 185	392.18. 34	8.81W
75-35-4	1,1-Dichloroethene	0.396	1.57	U
107-13-1	Acrylonitrile	0.303	0.66	U
75-09-2	Methylene chloride	4.38	15.21	
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.450	3.45	U
75-15-0	Carbon disulfide	0.373	1.16	U
156-60-5	trans-1,2-Dichloroethene	0.382	1.51	U
75-34-3	1,1-Dichloroethane	0.382	1.55	U
1634-04-4	Methyl tert-butyl ether	0.385	1.39	U
67-63-0	Isopropyl alcohol	11.6	28.47	
78-93-3	2-Butanone (MEK)	9.24	27.25	
156-59-2	cis-1,2-Dichloroethene	0.270	1.07	U
110-54-3	Hexane	1.20	4.23	
141-78-6	Ethyl acetate	1.36	4.90	
67-66-3	Chloroform	0.302	1.47	U
109-99-9	Tetrahydrofuran	0.820	2.42	J
107-06-2	1,2-Dichloroethane	0.285	1.15	U
71-55-6	1,1,1-Trichloroethane	0.275	1.50	U
71-43-2	Benzene	0.640	2.04	J
56-23-5	Carbon tetrachloride	0.290	1.82	U
110-82-7	Cyclohexane	0.429	1.48	U
78-87-5	1,2-Dichloropropane	0.343	1.59	U
75-27-4	Bromodichloromethane	0.359	2.41	U
79-01-6	Trichloroethene	0.563	3.03	U
123-91-1	1,4-Dioxane	0.782	2.81	U
142-82-5	n-Heptane	0.440	1.80	J
108-10-1	4-Methyl-2-pentanone (MIBK)	0.459	1.88	U
10061-01-5	cis-1,3-Dichloropropene	0.381	1.73	U
10061-02-6	trans-1,3-Dichloropropene	0.318	1.44	U

IA-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project: Received: See Chain of Custody

Project Number:

<u>J0060</u>

01/14/10 17:38

Matrix:

<u>Air</u>

Laboratory ID:

SB06784-07

File ID:

A35632.D

Sampled:

01/13/10 10:10

.....

Analyzed:

01/18/10 21:10

Dilution Factor:

<u>2</u>

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

Sequence:

S000434

Calibration:

1001022

Instrument:

201011.				
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	0.468	2.55	U
108-88-3	Toluene	3.28	12.34	
591-78-6	2-Hexanone (MBK)	0.447	1.83	U
124-48-1	Dibromochloromethane	0.386	3.29	U
106-93-4	1,2-Dibromoethane (EDB)	0.300	2.31	U
127-18-4	Tetrachloroethene	0.382	2.59	U
108-90-7	Chlorobenzene	0.564	2.60	U
100-41-4	Ethylbenzene	0.382	1.66	U
630-20-6	1,1,1,2-Tetrachloroethane	0.615	4.23	U
179601-23-1	m,p-Xylene	0.978	4.24	U
75-25-2	Bromoform	0.633	6.54	U
100-42-5	Styrene	0.374	1.59	U
95-47 - 6	o-Xylene	0.533	2.31	U
79-34-5	1,1,2,2-Tetrachloroethane	0.871	5.98	U
108-67-8	1,3,5-Trimethylbenzene	0.570	2.80	U
622-96-8	4-Ethyltoluene	0.559	2.75	U
95-63-6	1,2,4-Trimethylbenzene	0.522	2.57	U
98-82-8	Isopropylbenzene	0.519	2.55	U
541-73-1	1,3-Dichlorobenzene	0.553	3.32	U
100-44-7	Benzyl chloride	0.493	2.54	U
106-46-7	1,4-Dichlorobenzene	0.519	3.12	U
95-50-1	1,2-Dichlorobenzene	0.454	2.73	U
120-82-1	1,2,4-Trichlorobenzene	0.319	2.37	U
87-68-3	Hexachlorobutadiene	0.496	5.29	U
135-98-8	sec-Butylbenzene	0.529	2.90	U
99-87-6	4-Isopropyltoluene	0.491	2.63	U
104-51-8	n-Butylbenzene	0.426	2.34	U

^{*} Values outside of QC limits

IA-1

Laboratory:	Spectrum Analytical, Inc Agawam, MA	SDG:	06784		
Client:	Mitkem Laboratories	Project:	See Chain of Cust	ody	
Project Number:	J0060	_	01/14/10 17:38		
•		Received:			2
Matrix:	Air Laboratory ID: SBC	06784-07RE1	File ID:	A35667.D	1 Warn
Sampled:	01/13/10 10:10		Analyzed:	01/20/10 14:54	
Dilution Factor:	4 Preparation: Gen	eral Air Prep	Initial/Final:	200 ml / 200 ml	0, 1
Batch:	<u>1002066</u> Sequence: <u>S000494</u>	Calibration:	1001022	Instrument:	Airl POW
					· · · · · · · · · · · · · · · · · · ·
CAS NO.	COMPOUND		CONC. (ppby)	CONC. (ug/m3)	Q
115-07-1	Propene		1.18	2.03	U
75-71-8	Dichlorodifluoromethane (Freon12)		0.9/2	4.81	U
74-87-3	Chloromethane		1.15	2.38	U
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)		0.986	6.89	U
75-01-4	Vinyl chloride		0.931	2.38	U
106-99-0	1,3-Butadiene	/	1.02	2.25	U
74-83-9	Bromomethane		0.847	3.29	U
75-00-3	Chloroethane	/	1.08	2.85	U
67-64-1	Acetone		13.0	30.89	ø
75-69-4	Trichlorofluoromethane (Freon 11)		1.15	6.46	U
64-17-5	Ethanol		185	(348.81)	D/
75-35-4	1,1-Dichloroethene		0.792	3.14	Ű
107-13-1	Acrylonitrile		0.606	1.31	U,
75-09-2	Methylene chloride		4.20	14.58	ø
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)		0.899	6.89	U
75-15-0	Carbon disulfide		0.745	2.32	U
156-60-5	trans-1,2-Dichloroethene		0.765	3.03	U
75-34-3	1,1-Dichloroethane		0.765	3.10	U
1634-04-4	Methyl tert-butyl ether		0.769	2.77	U
67-63-0	Isopropyl alcohol		11.0	26.99	V
78-93-3	2-Butanone (MEK)		7.72	22.77	8
156-59-2	cis-1,2-Dichloroethene		0.540	2.14	U
110-54-3	Hexane		1.24	4.37	Л
141-78-6	Ethyl acetate		0.775	2.79	U
67-66-3	Chloroform		0.604	2.94	U
109-99-9	Tetrahydrofuran		0.898	2.65	U
107-06-2	1,2-Dichloroethane		0.569	2.30	U
71-55-6	1,1,1-Trichloroethane		0.550	3.00	U
71-43-2	Benzene		0.606	1.93	U
56-23-5	Carbon tetrachloride		0.579	3.64	U
110-82-7	Cyclohexane		0.858	2.95	U
78-87-5	1,2-Dichloropropane		0.687	3.18	U
75-27-4	Bromodichloromethane		0.718	4.81	U
79-01-6	Trichloroethene		1.13	6.07	U
123-91-1	1,4-Dioxane		1.56	5.61	U
142-82-5	n-Heptane		0.551	2.26	U
108-10-1	4-Methyl-2-pentanone (MIBK)		0.918	3.76	U
10061-01-5	cis-1,3-Dichloropropene		0.762	3.46	U
10061-01-3	trans-1,3-Dichloropropene		0.762	2.89	U

IA-1

Laboratory:	Spectrum Analytical, Inc Agawam, MA SDG:	<u>06784</u>		
Client:	Mitkem Laboratories Project:	See Chain of Cust	tody	
Project Number:	J0060 Received:	01/14/10 17:38		
Matrix:	Air Laboratory ID: SB06784-07RE1	File ID:	A35667.D	usl original
Sampled:	01/13/10 10:10	Analyzed:	01/20/10 14:54	1 MAN
Dilution Factor:	4 Preparation: General Air Prep	Initial/Final:	200 ml / 200 ml	Oliv
Batch:	1002066 Sequence: <u>S000494</u> Calibration:	1001022		Air1
Buton.	Sequence. <u>5555-77-</u> Cambration.	1001022	Instrument:	Ant
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	0.936	5.11	U
108-88-3	Toluene	2.76	10.39	78
591-78-6	2-Hexanone (MBK)	0.895	3.67	U
124-48-1	Dibromochloromethane	0.772	6.58	U
106-93-4	1,2-Dibromoethane (EDB)	0,600	4.61	U
127-18-4	Tetrachloroethene	0.764	5.18	U
108-90-7	Chlorobenzene	1.13	5.20	U
100-41-4	Ethylbenzene	0.764	3.31	U
630-20-6	1,1,1,2-Tetrachloroethane	1.23	8.45	U
179601-23-1	m,p-Xylene	1.96	8.50	U
75-25-2	Bromoform	1.27	13.13	U
100-42-5	Styrene	0.748	3.18	U
95-47-6	o-Xylene	1.07	4.64	U
79-34-5	1,1,2,2-Tetrachloroethane	1.74	11.95	U
108-67-8	1,3,5-Trimethylbenzene	1.14	5.60	U
622-96-8	4-Ethyltoluene	1.12	5.51	U
95-63-6	1,2,4-Trimethylbenzene	1.04	5.11	U
98-82-8	Isopropylbenzene	1.04	5.11	U
541-73-1	1,3-Dichlorobenzene	1.11	6.67	U
100-44-7	Benzyl chloride	0.987	5.09	U
106-46-7	1,4-Dichlorobenzene	1.04	6.25	U
95-50-1	1,2-Dichlorobenzene	0.908	5.46	U
120-82-1	1,2,4-Trichlorobenzene	0.638	4.74	U
87-68-3	Hexachlorobutadiene	0.992	10.58	U
135-98-8	sec-Butylbenzene	1.06	5.82	U
99-87-6	4-Isopropyltoluene	0.982	5.27	U
104-51-8	n-Butylbenzene	0.853	4.68	U

^{*} Values outside of QC limits

SSV-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Laboratory ID:

SB06784-08

File ID:

A35633.D

Sampled:

Sub Slab Vapor 01/13/10 09:42

Analyzed:

01/18/10 21:52

Dilution Factor:

4

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

Sequence:

S000434

Calibration:

1001022

Instrument:

Airl

Batch:	1002002 Sequence: S000434 Calibration:	1001022	Instrument:	<u>Airl</u>
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	1.18	2.03	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.972	4.81	U
74-87-3	Chloromethane	1.15	2.38	U
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.986	6.89	U
75-01-4	Vinyl chloride	0.931	2.38	U
106-99-0	1,3-Butadiene	1.02	2.25	U
74-83-9	Bromomethane	0.847	3.29	U
75-00-3	Chloroethane	1.08	2.85	U
67-64-1	Acetone	192	456.25	
75-69-4	Trichlorofluoromethane (Freon 11)	1.15	6.46	U
64-17-5	Ethanol	19.0	35.82	
75-35-4	1,1-Dichloroethene	0.792	3.14	U
107-13-1	Acrylonitrile	0.606	1.31	U
75-09-2	Methylene chloride	1.02	3.54	U
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.899	6.89	U
75-15-0	Carbon disulfide	0.745	2.32	U
156-60-5	trans-1,2-Dichloroethene	0.765	3.03	U
75-34-3	1,1-Dichloroethane	0.765	3.10	U
1634-04-4	Methyl tert-butyl ether	0.769	2.77	U
67-63-0	Isopropyl alcohol	141	346.01	
78-93-3	2-Butanone (MEK)	2.00	5.90	
156-59-2	cis-1,2-Dichloroethene	0.540	2.14	U
110-54-3	Hexane	1.40	4.94	J
141-78-6	Ethyl acetate	0.775	2.79	U
67-66-3	Chloroform	0.604	2.94	U
109-99-9	Tetrahydrofuran	0.898	2.65	U
107-06-2	1,2-Dichloroethane	0.569	2.30	U
71-55-6	1,1,1-Trichloroethane	0.550	3.00	U
71-43-2	Benzene	0.920	2.93	J
56-23-5	Carbon tetrachloride	0.579	3.64	U
110-82-7	Cyclohexane	0.858	2.95	U
78-87-5	1,2-Dichloropropane	0.687	3.18	U
75-27-4	Bromodichloromethane	0.718	4.81	U
79-01-6	Trichloroethene	2.52	13.54	
123-91-1	1,4-Dioxane	1.56	5.61	U
142-82-5	n-Heptane	0.551	2.26	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.918	3.76	U
10061-01-5	cis-1,3-Dichloropropene	0.762	3.46	U
10061-02-6	trans-1,3-Dichloropropene	0.636	2.89	U

SSV-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

J0060

Received:

01/14/10 17:38

Matrix:

Sub Slab Vapor

Laboratory ID:

SB06784-08

File ID:

A35633.D

Sampled:

01/13/10 09:42

Analyzed:

01/18/10 21:52

Dilution Factor:

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

Sequence:

S000434

Calibration:

1001022

Instrument:

<u>Air l</u>

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	0.936	5.11	U
108-88-3	Toluene	4.96	18.66	
591-78-6	2-Hexanone (MBK)	0.895	3.67	U
124-48-1	Dibromochloromethane	0.772	6.58	U
106-93-4	1,2-Dibromoethane (EDB)	0.600	4.61	U
127-18-4	Tetrachloroethene	5.52	37.43	
108-90-7	Chlorobenzene	1.13	5.20	U
100-41-4	Ethylbenzene	0.764	3.31	U
630-20-6	1,1,1,2-Tetrachloroethane	1.23	8.45	U
179601-23-1	m,p-Xylene	1.96	8.50	U
75-25-2	Bromoform	1.27	13.13	U
100-42-5	Styrene	0.748	3.18	U
95-47 - 6	o-Xylene	1.07	4.64	U
79-34-5	1,1,2,2-Tetrachloroethane	1.74	11.95	U
108-67-8	1,3,5-Trimethylbenzene	1.14	5.60	U
622-96-8	4-Ethyltoluene	1.12	5.51	U
95-63-6	1,2,4-Trimethylbenzene	1.04	5.11	U
98-82-8	Isopropylbenzene	1.04	5.11	U
541-73-1	1,3-Dichlorobenzene	1.11	6.67	U
100-44-7	Benzyl chloride	0.987	5.09	U
106-46-7	1,4-Dichlorobenzene	1.04	6.25	U
95-50-1	1,2-Dichlorobenzene	0.908	5.46	Ū
120-82-1	1,2,4-Trichlorobenzene	0.638	4.74	U
87- 68-3	Hexachlorobutadiene	0.992	10.58	U
135-98-8	sec-Butylbenzene	1.06	5.82	U
99-87-6	4-Isopropyltoluene	0.982	5.27	U
104-51-8	n-Butylbenzene	0.853	4.68	U

^{*} Values outside of QC limits

SSV-2

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories '

Project:

See Chain of Custody

Project Number:

Dilution Factor:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Laboratory ID:

SB06784-09

File ID:

Sub Slab Vapor

Analyzed:

A35634.D 01/18/10 22:33

Sampled:

01/13/10 10:03

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002002

Sequence:

S000434

Calibration:

1001022

Instrument:

<u>Airl</u>

aton.	Sequence. Sources Canoration:	1001022	instrument:	AILI
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	1.18	2.03	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.972	4.81	U
74-87-3	Chloromethane	1.15	2.38	U
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.986	6.89	U
75-01-4	Vinyl chloride	0.931	2.38	U
106-99-0	1,3-Butadiene	1.02	2.25	U
74-83-9	Bromomethane	0.847	3.29	U
75-00-3	Chloroethane	1.08	2.85	U
67-64-1	Acetone	9.04	21.48	
75-69-4	Trichlorofluoromethane (Freon 11)	1.15	6.46	U
64-17-5	Ethanol	8.80	16.59	
75-35-4	1,1-Dichloroethene	0.792	3.14	U
107-13-1	Acrylonitrile	0.606	1.31	U
75-09-2	Methylene chloride	1.02	3.54	U
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	6.32	48.44	
75-15-0	Carbon disulfide	0.745	2.32	U
156-60-5	trans-1,2-Dichloroethene	0.765	3.03	U
75-34-3	1,1-Dichloroethane	0.765	3.10	U
1634-04-4	Methyl tert-butyl ether	0.769	2.77	U
67-63-0	Isopropyl alcohol	5.72	14.04	
78-93-3	2-Butanone (MEK)	1.62	4.78	U
156-59-2	cis-1,2-Dichloroethene	0.540	2.14	U
110-54-3	Hexane	0.800	2.82	J
141-78-6	Ethyl acetate	0.775	2.79	U
67-66-3	Chloroform	1.76	8.57	J
109-99-9	Tetrahydrofuran	0.898	2.65	U
107-06-2	1,2-Dichloroethane	0.569	2.30	U
71-55-6	1,1,1-Trichloroethane	5.68	30.99	
71-43-2	Benzene	0.606	1.93	U
56-23-5	Carbon tetrachloride	0.579	3.64	U
110-82-7	Cyclohexane	0.858	2.95	U
78-87-5	1,2-Dichloropropane	0.687	3.18	U
75-27-4	Bromodichloromethane	0.718	4.81	U
79-01-6	Trichloroethene	33.6	180.57	
123-91-1	1,4-Dioxane	1.56	5.61	U
142-82-5	n-Heptane	0.551	2.26	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.918	3.76	U
10061-01-5	cis-1,3-Dichloropropene	0.762	3.46	U
10061-02-6	trans-1,3-Dichloropropene	0.636	2.89	U

SSV-2

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Preparation:

Received:

01/14/10 17:38

Matrix:

Sub Slab Vapor

Laboratory ID: SB06784-09 File ID:

<u>A35634.D</u>

Sampled:

Batch:

01/13/10 10:03

Analyzed:

01/18/10 22:33

Dilution Factor:

General Air Prep

Initial/Final:

200 ml / 200 ml

<u>4</u> 1002002

Sequence:

<u>S000434</u>

Calibration:

1001022

Instrument:

Air1

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	3.00	16.37	
108-88-3	Toluene	8.20	30.85	
591-78-6	2-Hexanone (MBK)	0.895	3.67	U
124-48-1	Dibromochloromethane	0.772	6.58	U
106-93-4	1,2-Dibromoethane (EDB)	0.600	4.61	U
127-18-4	Tetrachloroethene	28.7	194.62	
108-90-7	Chlorobenzene	1.13	5.20	U
100-41-4	Ethylbenzene	1.68	7.28	J
630-20-6	1,1,1,2-Tetrachloroethane	1.23	8.45	U
179601-23-1	m,p-Xylene	6.56	28.44	
75-25-2	Bromoform	1.27	13.13	U
100-42-5	Styrene	0.748	3.18	U
95-47-6	o-Xylene	1.88	8.15	J
79-34-5	1,1,2,2-Tetrachloroethane	1.74	11.95	U
108-67-8	1,3,5-Trimethylbenzene	1.14	5.60	U
622-96-8	4-Ethyltoluene	1.12	5.51	U
95-63-6	1,2,4-Trimethylbenzene	2.44	12.00	
98-82-8	Isopropylbenzene	1.04	5.11	U
541-73-1	1,3-Dichlorobenzene	1.11	6.67	U
100-44-7	Benzyl chloride	0.987	5.09	U
106-46-7	1,4-Dichlorobenzene	1.04	6.25	U
95-50-1	1,2-Dichlorobenzene	0.908	5.46	U
120-82-1	1,2,4-Trichlorobenzene	0.638	4.74	U
87-68-3	Hexachlorobutadiene	0.992	10.58	U
135-98-8	sec-Butylbenzene	1.06	5.82	U
99-87-6	4-Isopropyltoluene	0.982	5.27	U
104-51-8	n-Butylbenzene	0.853	4.68	U

^{*} Values outside of QC limits

OA-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

<u>J0060</u>

Received:

01/14/10 17:38

Matrix:

Outside Ambient

Laboratory ID:

SB06784-10

File ID:

<u>B32309.D</u>

Sampled:

01/13/10 10:49

Analyzed:

01/19/10 16:37

Dilution Factor:

1

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002050

Sequence:

S000458

Calibration:

1001027

Instrument:

Air2

Batch;	1002030 Sequence: S000438 Calibration:	1001027	Instrument:	Air2
CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
115-07-1	Propene	2.6300	4.53	
75-71-8	Dichlorodifluoromethane (Freon12)	0.65000	3.21	
74-87-3	Chloromethane	0.70000	1.45	
76-14-2	1,2-Dichlorotetrafluoroethane (Freon 114)	0.050256	0.35	U
75-01-4	Vinyl chloride	0.053850	0.14	U
106-99-0	1,3-Butadiene	0.050719	0.11	U
74-83-9	Bromomethane	0.039878	0.15	U
75-00-3	Chloroethane	0.056395	0.15	U
67-64-1	Acetone	4.6100	10.95	
75-69-4	Trichlorofluoromethane (Freon 11)	0.50000	2.81	
64-17-5	Ethanol	7.2500	13.67	***
107-13-1	Acrylonitrile	0.029810	0.06	U
75-35-4	1,1-Dichloroethene	0.033504	0.13	U
75-09-2	Methylene chloride	0.20000	0.69	
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.10000	0.77	
75-15-0	Carbon disulfide	0.035536	0.11	U
156-60-5	trans-1,2-Dichloroethene	0.035536	0.14	U
75-34-3	1,1-Dichloroethane	0.035536	0.14	U
1634-04-4	Methyl tert-butyl ether	0.043253	0.16	U
67-63-0	Isopropyl alcohol	3.2900	8.07	
78-93-3	2-Butanone (MEK)	0.99000	2.92	
156-59-2	cis-1,2-Dichloroethene	0.024658	0.10	U
110-54-3	Hexane	0.42000	1.48	, .
141-78-6	Ethyl acetate	0.036188	0.13	U
67-66-3	Chloroform	0.023691	0.12	U
109-99-9	Tetrahydrofuran	0.046885	0.14	U
107-06-2	1,2-Dichloroethane	0.028198	0.11	U
71-55-6	1,1,1-Trichloroethane	0.024658	0.13	U
71-43-2	Benzene	0.67000	2.14	
56-23-5	Carbon tetrachloride	0.10000	0.63	
110-82-7	Cyclohexane	0.14000	0.48	
78-87-5	1,2-Dichloropropane	0.023691	0.11	U
75-27-4	Bromodichloromethane	0.035536	0.24	U
79-01-6	Trichloroethene	0.053414	0.29	U
123-91-1	1,4-Dioxane	0.021627	0.08	U
142-82-5	n-Heptane	0.17000	0.70	
108-10-1	4-Methyl-2-pentanone (MIBK)	0.039287	0.16	U
10061-01-5	cis-1,3-Dichloropropene	0.036188	0.16	U
10061-02-6	trans-1,3-Dichloropropene	0.030585	0.14	U

OA-1

Laboratory:

Spectrum Analytical, Inc. - Agawam, MA

SDG:

<u>06784</u>

Client:

Mitkem Laboratories

Project:

See Chain of Custody

Project Number:

J0060

Received:

01/14/10 17:38

Matrix:

Outside Ambient

Laboratory ID:

SB06784-10

File ID:

B32309.D

Sampled:

01/13/10 10:49

Comment Alia Dania

Analyzed:

01/19/10 16:37

Dilution Factor:

1

Preparation:

General Air Prep

Initial/Final:

200 ml / 200 ml

Batch:

1002050

Sequence:

S000458

Calibration:

1001027

Instrument:

Air2

CAS NO.	COMPOUND	CONC. (ppbv)	CONC. (ug/m3)	Q
79-00-5	1,1,2-Trichloroethane	0.039287	0.21	U
108-88-3	Toluene	1.4100	5.31	
591-78-6	2-Hexanone (MBK)	0.035536	0.15	U
124-48-1	Dibromochloromethane	0.044321	0.38	U
106-93-4	1,2-Dibromoethane (EDB)	0.030585	0.24	U
127-18-4	Tetrachloroethene	0.080000	0.54	J
108-90-7	Chlorobenzene	0.047873	0.22	U
630-20-6	1,1,1,2-Tetrachloroethane	0.054282	0.37	U
100-41-4	Ethylbenzene	0.17000	0.74	
179601-23-1	m,p-Xylene	0.62000	2.69	
75-25-2	Bromoform	0.067702	0.70	U
100-42-5	Styrene	0.039287	0.17	U
95-47-6	o-Xylene	0.23000	1.00	
79-34-5	1,1,2,2-Tetrachloroethane	0.080630	0.55	U
98-82-8	Isopropylbenzene	0.036188	0.18	U
108-67-8	1,3,5-Trimethylbenzene	0.070000	0.34	15
622-96-8	4-Ethyltoluene	0.060000	0.29	71
95-63-6	1,2,4-Trimethylbenzene	0.15000	0.74	J
541-73-1	1,3-Dichlorobenzene	0.058432	0.35	U
100-44-7	Benzyl chloride	0.053850	0.28	U
106-46-7	1,4-Dichlorobenzene	0.042158	0.25	U
135-98-8	sec-Butylbenzene	0.047873	0.26	U
99-87-6	4-Isopropyltoluene	0.045877	0.25	U
95-50-1	1,2-Dichlorobenzene	0.042158	0.25	U
104-51-8	n-Butylbenzene	0.038078	0.21	U
120-82-1	1,2,4-Trichlorobenzene	0.024658	0.18	U
87-68-3	Hexachlorobutadiene	0.042158	0.45	U

^{*} Values outside of QC limits

INTENTIONALLY BLANK

DATA USABILITY SUMMARY REPORT EMR CIRCUITS, HAUPPAUGE, NEW YORK

Client:

Shaw Environmental and Infrastructure Group, Latham, New York

SDG:

10078

Laboratory:

Mitkem Laboratories, Warwick, Rhode Island

Site:

EMR Circuits, Hauppauge, New York

Date:

March 4, 2010

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-1	J0078-01A	Water
1MS	MW-1MS	J0078-01AMS	Water
1MSD	MW-1MSD	J0078-01AMSD	Water
2	DUP 02	J0078-02A	Water
3*	TRIP BLANK 01/14/2010	J0078-03A	Water
4	SB-1 45'-50'	J0078-04B	Soil
4MS	SB-1 45'-50'MS	J0078-04BMS	Soil
4MSD	SB-1 45'-50'MSD	J0078-04BMSD	Soil
5	SB-1 10'-15'	J0078-05B	Soil
6*	GW-1	J0078-06A	Water
7*	SB-3 0'-5'	J0078-07B	Soil
8*	SB-3 5'-8'	J0078-08B	Soil
9*	MW-3	J0078-09A	Water
10*	MW-3A	J0078-10A	Water
11*	MW-1A	J0078-11A	Water
12*	TRIP BLANK 01/13/2010	J0078-12A	Water
13	DUP01	J0078-13B	Soil

^{* -} VOC only

A Data Usability Summary Review was performed on the analytical data for six water samples, five soil samples and two aqueous trip blank samples collected by Shaw Environmental and Infrastructure Group at the EMR Circuits site in Hauppauge, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>

Method References

VOCs SVOCs Pesticides USEPA SW-846 Method 8260B

USEPA SW-846 Method 8270C USEPA SW-846 Method 8081A USEPA SW-846 Method 8082

PCB Metals/Mercury

USEPA SW-846 Method 6010B/7471

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 2, October 2006: Validating Volatile Organic Compounds by SW-846 Method 8260B;
- SOP Number HW-22, Revision 3, October 2006: Validating Semivolatile Organic Compounds by SW-846 Method 8270D;
- SOP Number HW-44, Revision 1, October 2006: Validating Pesticide Compounds by SW-846 Method 8081B;
- SOP Number HW-45, , Revision 1, October 2006, Validating PCB Compounds by SW-846 Method 8082A;
- SOP Number HW-2, Revision 13, September 2006: Evaluation of Metals Data for the CLP Program based on ILMO5.3;
- and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed for this report:

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Duplicate (LCS/LCSD) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Inorganics

The following items/criteria were reviewed:

- Data Completeness
- Holding times and sample preservation
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Duplicate (LCS/LCSD) recoveries
- Method blank and field blank contamination
- Initial and continuing calibration verifications
- Compound Quantitation
- ICP Serial Dilution
- Field Duplicate sample precision

Overall Usability Issues:

There were several rejections of data.

 Acetone was rejected in eleven samples and 2-butanone was rejected in twelve samples due low ICAL RRF values.

Overall the remaining data is acceptable for the intended purposes. Data were qualified for the following deficiencies.

- One VOC compound was qualified as estimated in one sample due to low MS/MSD recoveries.
- Twenty-seven VOC compounds were qualified as estimated in one sample due to low MS/MSD recoveries.
- Several VOC compounds were qualified as estimated in all samples due to high initial calibration %RSD values.
- One VOC compound was qualified as estimated in five samples due to high continuing calibration %D values.
- Several SVOC compounds were qualified as estimated in two samples due to low MS/MSD recoveries.
- Several SVOC compounds were qualified as estimated in several samples due to high initial calibration %RSD values.
- Several SVOC compounds were qualified as estimated in several samples due to high continuing calibration %D values.
- Two metals compounds were qualified as estimated in three samples due to low and high MS/MSD %R and RPD values.
- Several metals compounds were qualified as nondetected in several samples due to method blank contamination.
- Three metals compounds were qualified as estimated in three samples due to high ICP serial dilution recoveries.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Volatile Organics Compounds (VOCs)

Data Completeness

• All criteria were met.

Holding Times

• All samples were analyzed within 14 days for preserved water and soil samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents LCS percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS/MSD%R/RPD	Qualifier
1	2,2-Dichloropropane	55%/60%/Ok	J/UJ
4	Methyl tert-butyl ether	Ok/74%/Ok	J/UJ
	1,1-Dichloroethane	Ok/75%/Ok	J J
	2,2'-Dichloropropane	63%/62%/Ok	
	1,1,1-Trichloroethane	Ok/69%/Ok	
	Trichloroethene	Ok/73%/Ok	
	Chlorobenzene	Ok/74%/Ok	
	1,1,1,2-Tetrachloroethane	Ok/74%/Ok	
	Ethylbenzene	72%/70%/Ok	
	m,p-Xylene	73%/71%/Ok	
	o-Xylene	74%/73%/Ok	
	Xylene (Total)	74%/72%/Ok	
	Isopropylbenzene	70%/68%/Ok	
	n-Propylbenzene	61%/61%/Ok	
	2-Chlorotoluene	64%/64%/Ok	
	1,3,5-Trimethylbenzene	Ok/63%/Ok	
	4-Chlorotoluene	67%/66%/Ok	
	tert-Butylbenzene	62%/60%/Ok	
	1,2,4-Trimethylbenzene	64%/62%/Ok	
	sec-Butylbenzene	58%/56%/Ok	
	4-Isopropyltoluene	57%/56%/Ok	
	1,3-Dichlorobenzene	65%/64%/Ok	
	1,4-Dichlorobenzene	68%/66%/Ok	•
	n-Butylbenzene	52%/51%/Ok	
	1,2-Dichlorobenzene	69%/67%/Ok	
	1,2,4-Trichlorobenzene	42%/39%/Ok	
	Hexachlorobutadiene	37%/32%/Ok	
	1,2,3-Trichlorobenzene	42%/40%/Ok	

Laboratory Control Samples

The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
TRIP BLANK 01/13/2010	None - ND	-	-	-	
TRIP BLANK 01/14/2010	None - ND	-	-	-	_

GC/MS Tuning

All criteria were met.

Initial Calibration

• The following table presents compounds that exceeded 20 percent relative standard deviation (%RSD) and/or average RRF values <0.05 in the initial calibration (ICAL). A low RRF indicates poor indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %RSD may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

ICAL Date	Compound	%RSD/RRF	Qualifier	Affected Samples
01/15/2010	Bromomethane	28.1%	J/UJ	4, 5, 7, 8, 13
	Chloroethane	22.4%	1	
	Acetone	0.046 RRF	J/R	4, 5, 7, 8, 13
	2-Butanone	0.043 RRF]	
	n-Butylbenzene	23.0%	J/UJ	4, 5, 7, 8, 13
	Hexachlorobutadiene	20.2%]	
	Naphthalene	32.0%	1	
01/21/2010	Bromomethane	23.1%	J/UJ	1-3, 6, 9-12
	Acetone	22.2%/0.031 RRF J/R		1-3, 6, 9-12
	2-Butanone	0.036 RRF]	
	Bromoform	25.0%	J/UJ	1-3, 6, 9-12
	Hexachlorobutadiene	38.3%		

Continuing Calibration

• The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
01/19/2010	Trichlorofluoromethane	27.4%	J/UJ	5, 7, 8, 13
01/20/2010	Trichlorofluoromethane	36.3%	J/UJ	4
	Acetone	0.049 RRF	None	See ICAL
	2-Butanone	0.043 RRF		

Compound Quantitation

• All criteria were met.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate results are summarized below.

		VOC		W-W
Compound	MW-1 ug/L	DUP 02 ug/L	RPD	Qualifier
None	ND	ND	-	-

		VOC	· · · · · · · · · · · · · · · · · · ·	PATERANIUS AL.
Compound	SB-1 10'-15' ug/kg	DUP01 ug/kg	RPD	Qualifier
Toluene	1.2	4.7 Ŭ	NC	None

Semivolatile Organics Compounds (SVOCs)

Data Completeness

All criteria were met.

Holding Times

• All samples were extracted within 7 days for water samples, 14 days for soil samples and analyzed within 40 days for all samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/MSD Sample ID	Compound	MS/MSD %R/RPD	Qualifier
1	bis (2-Chloroethoxy) methane	39%/Ok/64	J/UJ
	N-Nitrosodiphenylamine	Ok/46%/Ok	. .
	Carbazole	Ok/Ok/53	None for RPD alone
	3,3'-Dichlorobenzidine	19%/Ok/Ok	J/UJ
4	2,4-Dimethylphenol	19%/22%/Ok	J/UJ
	4-Chloroaniline	Ok/Ok/95	None for RPD alone
	4-Nitroaniline	31%/Ok/Ok	J/UJ
	3,3'-Dichlorobenzidine	Ok/Ok/81	None for RPD alone

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
LCS-48660	Hexachlorocyclopentadiene	24%	None	See ICAL
LCS-48701	Benzo(b)fluoranthene	123%	None	All ND

Method Blank

• The method blanks were free of contamination.

Field Blank

• Field QC samples were not included in this data package.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The following table presents compounds that exceeded 20 percent relative standard deviation (%RSD) and/or average RRF values <0.05 in the initial calibration (ICAL). A low RRF indicates poor indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %RSD may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

ICAL Date	Compound	%RSD/RRF	Qualifier	Affected Samples
12/19/2009	Hexachlorocyclopentadiene	36.3%	J/UJ	1, 2
	2,4-Dinitrophenol	23.0%		·
	4-Nitrophenol	25.3%		
	Pentachlorophenol	38.3%		
	Di-n-octylphthalate	20.8%		
01/21/2010	Benzo(k)fluoranthene	28.3%	J/UJ	4, 5, 13

Continuing Calibration

• The following table presents compounds that exceeded 20 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
01/20/2010	2,2'-oxybis (1-Chloropropane)	21.2%	J/UJ	1, 2
	2-Nitrophenol	22.1%		
	Hexachlorobutadiene	27.6%	None	See ICAL
	2,4,5-Trichlorophenol	22.3%	J/UJ	1, 2
	2,4-Dinitrotoluene	21.5%		
	4-Chlorophenyl-phenyl ether	39.6%		
	Fluorene	24.4%		
	4-Nitroaniline	20.2%		
	Pentachlorophenol ·	37.0%	None	See ICAL
	Dibenzo(a,h)anthracene	21.4%	J/UJ	1, 2
01/21/2010	Benzo(b)fluoranthene	21.2%	J/UJ	4, 5, 13

Compound Quantitation

• No discrepancies were identified.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

• Field duplicate results are summarized below.

		SVOC		
Compound	MW-1 ug/L	DUP 02 ug/L	RPD	Qualifier
None	ND	ND	-	-

		SVOC		
Compound	SB-1 10'-15' ug/kg	DUP01 ug/kg	RPD	Qualifier
Di-n-butylphthalate	160	110	37%	None
Fluoranthene	48	41	16%	None
Pyrene	41	350 U	NC	None
Bis(2-ethylhexyl)phthalate	120	350 U	NC	None

Pesticides/Polychlorinated Biphenyls (Pest/PCB)

Holding Times

• All samples were extracted within 7 days for preserved water, 14 days for soil samples and analyzed within 40 days for all samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• All %R and RPD criteria were met.

Laboratory Control Samples

The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Initial Calibration

• All %RSD and/or correlation coefficient criteria were met.

Continuing Calibration

• All %D criteria were met.

Compound Quantitation

• All criteria were met.

Field Blank

• Field QC samples were not included in this data package.

Field Duplicate Sample Precision

• Field duplicate results are summarized below.

	THE PROPERTY OF THE PROPERTY O	Pest/PCB		
Compound	MW-1 ug/L	DUP 02 ug/L	RPD	Qualifier
None	ND	ND	-	

		Pest/PCB		
Compound	SB-1 10'-15' ug/kg	DUP01 ug/kg	RPD	Qualifier
None	ND	ND	-	- 1000 11100 to 1

GC Column Difference Results

• All criteria were met.

Metals

Data Completeness

• All criteria were met.

Holding Times

 All samples were prepared and analyzed within 28 days for mercury and 180 days for all other metals.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/MSD Sample ID	Compound	MS/MSD %R/RPD	Qualifier	Affected samples
4	Antimony	55%/Ok/Ok	J/UJ	4, 5, 13
	Chromium	126%/Ok/48	J	4, 5, 13

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. Detected sample concentrations less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc.	Action Level	Qualifier	Affected Samples
	_	ug/L	ug/L		1
MB-48720	Copper	17.379	173.79	U	1, 2
	Zinc	12.407	124.07		•
MB-48270	Sodium	31.623	316.23	None	All >10X

Blank ID	Compound	Conc. mg/kg	Action Level mg/kg	Qualifier	Affected Samples
MB-48789	Arsenic	0.217	2.17	U	4, 5, 13
MB-48721	Potassium	3.205	16.025	None	All >10X
	Sodium	0.970	4.85		
	Calcium	10.042	100.42	U	4
	Cobalt	0.056	0.56	None	All >10X
	Copper	3.111	31.111		
	Iron	4.687	46.87		
	Manganese	0.508	5.08		
	Zinc	1.610	16.10	U	4, 5, 13

Field Blank

• Field QC samples were not included in this data package.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Compound Quantitation

• All results reported with a (B) qualifier by the laboratory were further qualified as estimated (J) except those results already qualified.

ICP Serial Dilution

• ICP serial dilution percent differences (%D) were within acceptance limits except the following. A high %D may indicate a potential high bias.

ICP Sample ID	Compound	%D	Qualifier	Affected Samples
4	Barium	12%	J	4, 5, 13
	Copper	18%		
	Vanadium	24%		

Field Duplicate Sample Precision

Field duplicate results are summarized below. For a high RPD >100% for soil samples, results are considered estimated and qualified (J). A high %RPD may indicate a potential bias due to poor laboratory instrument precision.

		Metals		
Compound	MW-1 ug/L	DUP 02 ug/L	RPD	Qualifie
Barium	35.9	34.7	3%	None
Calcium	13000	12400	5%	None
Chromium	0.98	1.1	12%	None
Cobalt	2.4	2.6	8%	None
Magnesium	6790	6780	0%	None
Manganese	7.7	31.3	121%	J
Nickel	2.9	3.1	7%	None
Potassium	1690	1700	1%	None
Sodium	32400	32300	0%	None

		Metals		
Compound	SB-1 10'-15' mg/kg	DUP01 mg/kg	RPD	Qualifier
Aluminum	3110	3190	3%	None
Barium	15.8	17.3	9%	None
Beryllium	0.13	0.082	45%	None
Calcium	2950	140	182%	J
Chromium	7.0	6.5	7%	None
Cobalt	3.6	2.4	40%	None
Copper	42.5	44.7	5%	None
Iron	7310	5390	30%	None
Lead	1.8	2.3	24%	None
Magnesium	2390	716	108%	J
Manganese	234	173	30%	None
Nickel	7.4	7.2	3%	None
Potassium	275	310	12%	None
Sodium	20.4	17.8	14%	None
Vanadium	7.1	6.5	9%	None

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Very truly yours,

Environmental Data Services, Inc.

aucylleaver 3/12/10 Nancy Weaver

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

	CLIENT	SAMPLE	NO.
1	MW-1		•
ı			
ı			

Lab Name: MITKEM LABORA	ATORIES	·	Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	J0078-01A
Sample wt/vol: 5.0	00 (g/mL)	ML	Lab File ID:	V2L4665.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.			Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5 0		/mT.\		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
L	Chloromethane	5.0	U .
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	y us
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U .
67-64-1	Acetone	5.0	WR
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75 - 09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	V R
156-59-2	cis-1,2-Dichloroethene	5.0	TU.
594-20-7	2,2-Dichloropropane	5.0	1 W
74-97-5	Bromochloromethane	5.0	ับ
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	Ņ
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	Ū

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-1		

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	J0078-01A
Sample wt/vol: 5.00	0 (g/mL)	ML	Lab File ID:	V2L4665.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.			Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	<u>.</u>	(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		 (mT.)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/L	Q
127-18-4	Tetrachloroethene		5.0	Ū
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	ט
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	Ū ·
100-42-5	Styrene		5.0	Ū
75-25-2	Bromoform		5.0	B UJ
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U .
108-86-1	Bromobenzene		5.0	Ū
	1,2,3-Trichloropropane		5.0	ט
	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	Ū
	1,3,5-Trimethylbenzene		5.0	ט
	4-Chlorotoluene		5.0	Ū .
98-06-6	tert-Butylbenzene		5.0	Ū
95-63-6	1,2,4-Trimethylbenzene		5.0	Ū.
135-98-8	sec-Butylbenzene		5.0	Ū
99-87-6	4-Isopropyltoluene		5.0	Ū
541-73-1	1,3-Dichlorobenzene		5.0	Ū
106-46-7	1,4-Dichlorobenzene	·.	5.0	Ū
104-51-8	n-Butylbenzene		5.0	Ū
	1,2-Dichlorobenzene		5.0	Ū
	1,2-Dibromo-3-chloropropane		5.0	Ū
	1,2,4-Trichlorobenzene		5.0	Ū
87-68-3	Hexachlorobutadiene		5.0	W UJ
	1,2,3-Trichlorobenzene		5.0	U
91-20-3	Naphthalene		5.0	U

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIE	NT	SAMPLE	NO.
DUP	02		

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0078		Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	J0078-02A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L4666.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	01/15/2010
% Moisture: not dec.				Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume: _			(uL)	Soil Aliquot Vol	ume: (uL)
Domes Wellings E O			/ T \		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	y uj
75-00-3	Chloroethane	5.0	Ü
75-69-4	Trichlorofluoromethane	5.0	Ü
75-35-4	1,1-Dichloroethene	5.0	Ü
67-64-1	Acetone	5.0	PR
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ü
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	PR
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	ע עס
74-97-5	Bromochloromethane	5.0	Ü
67-66-3	Chloroform	5.0	Ü
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	ט
56-23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U ·
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	Ū
	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū ·
	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5,0	Ü

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIE	NT	SAMPLE	NO.
DUP	02		

Lab Name: MI	TKEM LABORAT	TORIES			Contract:	
Lab Code: MI	TKEM	Case No.:	J0078	, ,, ,,	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL	/SED/WATER)	WATER			Lab Sample ID:	J0078-02A
Sample wt/vol	: 5.00) (g/mL)	ML		Lab File ID:	V2L4666.D
Level: (TRACE	/LOW/MED)	LOW			Date Received:	01/15/2010
% Moisture: n	ot dec.				Date Analyzed:	01/21/2010
GC Column: D	B-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract	Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume:	5.0			(mT.)		

		CONCENTRATION UNIT	s:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/L	· Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	Ū
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	ט
108-90-7	Chlorobenzene		5.0	ט
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	ט
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	Ū
100-42-5	Styrene	·	5.0	Ū
75-25-2	Bromoform		5.0	ソルフ
98-82-8	Isopropylbenzene		5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane		5.0	Ū
	Bromobenzene	· · ·	5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	Ü
103-65-1	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	Ū
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U ·
	sec-Butylbenzene	` '	5.0	U
	4-Isopropyltoluene	·	5.0	U
541-73-1	1,3-Dichlorobenzene		5.0	Ū
106-46-7	1,4-Dichlorobenzene		5.0	U
	n-Butylbenzene		5.0	Ü.
	1,2-Dichlorobenzene		5.0	Ū
	1,2-Dibromo-3-chloropropane		5.0	U
120-82-1	1,2,4-Trichlorobenzene		5.0	U
	Hexachlorobutadiene		5.0	y us
	1,2,3-Trichlorobenzene		5.0	Ū
91-20-3	Naphthalene		5.0	Ū

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

TRIP BLANK 01/14/2010

Lab Name: MITKEM LABORA	ATORIES			Contract:		
Lab Code: MITKEM	Case No.:	J0078		Mod. Ref No.:	SDG No.: SJ0078	
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	J0078-03A	
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V2L4655.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	01/15/2010	
% Moisture: not dec.				Date Analyzed:	01/21/2010	
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:			uL)	Soil Aliquot Vol	ume: (1	uL)
Purge Volume: 5.0		1	mT.\			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
	Bromomethane	5.0	V u J
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	VR
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	. U
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	Ū
78-93-3	2-Butanone	5.0	VR
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	8 UJ
	Bromochloromethane	5.0	. U
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ü
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	5.0	Ū
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	To To

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

TRIP BLANK 01/14/2010

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No	0.: J0078 Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATE	R Lab Sample ID:	J0078-03A
Sample wt/vol: 5.00 (g/m	L) ML Lab File ID:	V2L4655.D
Level: (TRACE/LOW/MED) LOW	Date Received:	01/15/2010
% Moisture: not dec.	Date Analyzed:	01/21/2010
GC Column: DB-624 I	D: 0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Volu	me: (uL)
Purge Volume: 5.0	(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	
100-42-5	Styrene	5.0	
75-25-2	Bromoform	5.0	
98-82-8	Isopropylbenzene	5.0	1/ /
79-34-5	1,1,2,2-Tetrachloroethane	5.0	
108-86-1	Bromobenzene	5.0	
96-18-4	1,2,3-Trichloropropane	5.0	Ū
103-65-1	n-Propylbenzene	5.0	<u>ט</u>
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	<u>U</u> .
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	Ū
135-98-8	sec-Butylbenzene	5.0	Ū
99-87-6	4-Isopropyltoluene	5.0	Ū
541-73-1	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	
96-12-8	1,2-Dibromo-3-chloropropane	5.0	Ū
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
87-68-3	Hexachlorobutadiene	5.0	y uj
87-61-6	1,2,3-Trichlorobenzene	5.0	
	Naphthalene	5.0	U

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SB-1 45'-50'

Lab Name: MITKEM LABOR	ATORIES	1	Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER	soil		Lab Sample ID:	J0078-04B
Sample wt/vol: 5.	60 (g/mL)	G ·	Lab File ID:	V6H1658.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.	9.0		Date Analyzed:	01/20/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purae Volume: 10 0		/mT \		

	T :	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/KG	Q
75-71-8	Dichlorodifluoromethane	4.9	U
74-87-3	Chloromethane	4.9	Ū
75-01-4	Vinyl chloride	4.9	U .
74-83-9	Bromomethane	4.9	y us
75-00-3	Chloroethane	4.9	y us
75-69-4	Trichlorofluoromethane	4.9	y uj
75-35-4	1,1-Dichloroethene	4.9	Ū
67-64-1	Acetone	7.4	1 5
74-88-4	Iodomethane	4.9	U
75-15-0	Carbon disulfide	4.9	Ū
75-09-2	Methylene chloride	4.9	Ű
156-60-5	trans-1,2-Dichloroethene	4.9	Ü
1634-04-4	Methyl tert-butyl ether	4.9	UUJ
75-34-3	1,1-Dichloroethane	4.9	18 WJ
108-05-4	Vinyl acetate	4.9	Ū
78-93-3	2-Butanone	4.9	PR
156-59-2	cis-1,2-Dichloroethene	4.9	U
594-20-7	2,2-Dichloropropane	4.9	y us
74-97-5	Bromochloromethane	4.9	U
67-66-3	Chloroform	4.9	Ū
71-55-6	1,1,1-Trichloroethane	4.9	VUI
563-58-6	1,1-Dichloropropene	4.9	7 U
56-23-5	Carbon tetrachloride	4.9	Ū.
107-06-2	1,2-Dichloroethane	4.9	Ū
71-43-2	Benzene	4.9	Ü
79-01-6	Trichloroethene	4.9	V US
78-87-5	1,2-Dichloropropane	4.9	Ü
74-95-3	Dibromomethane	4.9	Ü
75-27-4	Bromodichloromethane	4.9	ט
10061-01-5	cis-1,3-Dichloropropene	4.9	Ū
108-10-1	4-Methyl-2-pentanone	4.9	Ū
	Toluene	4.9	Ū
10061-02-6	trans-1,3-Dichloropropene	4.9	Ū
	1,1,2-Trichloroethane	4.9	U
142-28-9	1,3-Dichloropropane	4.9	Ū

WW 3/4/10

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SB-1 45'-50'

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Mod. Ref No.: Case No.: J0078 SDG No.: SJ0078 Matrix: (SOIL/SED/WATER) SOIL Lab Sample ID: J0078-04B Sample wt/vol: 5.60 (g/mL) Lab File ID: V6H1658.D Level: (TRACE/LOW/MED) LOW Date Received: 01/15/2010 % Moisture: not dec. 9.0 Date Analyzed: 01/20/2010 GC Column: DB-624 (mm) Dilution Factor: 1.0 ID: 0.25 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 10.0 (mL)

		CONCENTRATION UNITS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/KG	Q
127-18-4	Tetrachloroethene	4.9	Ū
591-78 - 6	2-Hexanone	4.9	U
124-48-1	Dibromochloromethane	4.9	U
106-93-4	1,2-Dibromoethane	4.9	U ·
108-90-7	Chlorobenzene	4.9	9 U2
630-20-6	1,1,1,2-Tetrachloroethane	4.9	y us
100-41-4	Ethylbenzene	4.9	19 UJ
	m,p-Xylene	4.9	T I
95-47-6	o-Xylene	4.9	u J
	Xylene (Total)	4.9	पे 🗸
100-42-5	Styrene	4.9	Ū
75-25-2	Bromoform	4.9	U
98-82-8	Isopropylbenzene	4.9	V UJ
79-34 - 5	1,1,2,2-Tetrachloroethane	4.9	Ū
108-86-1	Bromobenzene	4.9	ט
96-18-4	1,2,3-Trichloropropane	4.9	U
103-65-1	n-Propylbenzene	4.9	す リノ
	2-Chlorotoluene	4.9	1 41
	. 1,3,5-Trimethylbenzene	4.9	y us
106-43-4	4-Chlorotoluene	4.9	V UI
98-06-6	tert-Butylbenzene	4.9	र्षण :
	1,2,4-Trimethylbenzene	4.9	4 .
135-98-8	sec-Butylbenzene	4.9	d
99-87-6	4-Isopropyltoluene	4.9	d l
541 - 73-1	1,3-Dichlorobenzene	4.9	d
	1,4-Dichlorobenzene	4.9	ט י
	n-Butylbenzene	4.9	W UJ
95-50-1	1,2-Dichlorobenzene	4.9	CNV
96-12-8	1,2-Dibromo-3-chloropropane	4.9	ט
120-82-1	1,2,4-Trichlorobenzene	4.9	12 UI
	Hexachlorobutadiene	4.9	y US
	1,2,3-Trichlorobenzene	4.9	y UJ
91-20-3	Naphthalene	4.9	18 US

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO. SB-1 10'-15'

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0078 Mod. Ref No.: SDG No.: SJ0078 Matrix: (SOIL/SED/WATER) Lab Sample ID: SOIL J0078-05B Sample wt/vol: 5.40 (g/mL)Lab File ID: V6H1633.D Level: (TRACE/LOW/MED) LOW Date Received: 01/15/2010 % Moisture: not dec. Date Analyzed: 01/19/2010 GC Column: DB-624 (mm) Dilution Factor: 1.0 ID: 0.25 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 10.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/Kg	G Q
75-71-8	Dichlorodifluoromethane	4.9	9 0
74-87-3	Chloromethane	4.9	ט פ
75-01-4	Vinyl chloride	4.0	0
74-83-9	Bromomethane	4.9	y uz
75-00-3	Chloroethane	4.9) V
75-69-4	Trichlorofluoromethane	4.9	
75-35-4	1,1-Dichloroethene	4.9	U U
67-64-1	Acetone	4.9	PR
74-88-4	Iodomethane	4.9) U
75-15-0	Carbon disulfide	4.9	O U
75-09-2	Methylene chloride	4.9	O U
156-60-5	trans-1,2-Dichloroethene	4.9	<u> </u>
1634-04-4	Methyl tert-butyl ether	4.9) U
75-34-3	1,1-Dichloroethane	4.9) U
108-05-4	Vinyl acetate	4.9) U
78-93-3	2-Butanone	4.9	V R
156-59-2	cis-1,2-Dichloroethene	4.9	
594-20-7	2,2-Dichloropropane	4.9	<u> </u>
74-97-5	Bromochloromethane	4.9	U (
67-66-3	Chloroform	4.9	U
71-55-6	1,1,1-Trichloroethane	4.9	U
563-58-6	1,1-Dichloropropene	4.9) U
56-23-5	Carbon tetrachloride	4.9) U
107-06-2	1,2-Dichloroethane	4.9) U
71-43-2	Benzene	4.9	U (
79-01-6	Trichloroethene	4.9	U
78-87-5	1,2-Dichloropropane	4.9	U U
74-95-3	Dibromomethane	4.9	U U
75-27-4	Bromodichloromethane	4.9	U
10061-01-5	cis-1,3-Dichloropropene	4.9	U
108-10-1	4-Methyl-2-pentanone	4.9	U U
108-88-3	Toluene	1.2	? J
10061-02-6	trans-1,3-Dichloropropene	4.9	U
79-00-5	1,1,2-Trichloroethane	4.9	ט פ
142-28-9	1,3-Dichloropropane	4.9) U

SOM_002

LW 3/4/10

SW846

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIEN	T	SAMPLE	NO.
SB-1	1	0'-15'	

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.: J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER	R) SOIL	Lab Sample ID:	J0078-05B
Sample wt/vol: 5.	40 (g/mL) G	Lab File ID:	V6H1633.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	01/15/2010
% Moisture: not dec.	6.0	Date Analyzed:	01/19/2010
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: _	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0	(mL)		

		CONCENTRATION UNIT	CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/KG	Q	
127-18-4	Tetrachloroethene		4.9	U	
591-78-6	2-Hexanone	·	4.9	Ū	
124-48-1	Dibromochloromethane		4.9	Ū	
106-93-4	1,2-Dibromoethane		4.9	Ū	
108-90-7	Chlorobenzene		4.9	Ū	
630-20-6	1,1,1,2-Tetrachloroethane		4.9	Ū	
	Ethylbenzene		4.9	บ	
1330-20-7	m,p-Xylene		4.9	U	
	o-Xylene		4.9	Ū	
	Xylene (Total)		4.9	Ū	
100-42-5	Styrene		4.9	ט	
	Bromoform		4.9	Ū	
	Isopropylbenzene		4.9	U	
79-34-5	1,1,2,2-Tetrachloroethane		4.9	U	
	Bromobenzene		4.9	U	
96-18-4	1,2,3-Trichloropropane		4.9	U	
103-65-1	n-Propylbenzene		4.9	U	
	2-Chlorotoluene		4.9	U	
108-67-8	1,3,5-Trimethylbenzene		4.9	U	
106-43-4	4-Chlorotoluene		4.9	U	
	tert-Butylbenzene		4.9	U	
	1,2,4-Trimethylbenzene		4.9	U	
	sec-Butylbenzene		4.9	U	
	4-Isopropyltoluene		4.9	U	
	1,3-Dichlorobenzene		4.9	U	
	1,4-Dichlorobenzene		4.9	U	
	n-Butylbenzene		4.9	B UI	
	1,2-Dichlorobenzene		4.9	ט	
	1,2-Dibromo-3-chloropropane		4.9	U	
	1,2,4-Trichlorobenzene		4.9	Ū	
	Hexachlorobutadiene		4.9	8 UJ	
	1,2,3-Trichlorobenzene	·	4.9	U	
91-20-3	Naphthalene		4.9	7 UJ	

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
GW-1		

Lab Name: MITKEM LABORA	ATORIES.		Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	J0078-06A
Sample wt/vol: 5.0	00 (g/mL)	ML	Lab File ID:	V2L4667.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.			Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purae Volume: 5.0		(mT.)		•

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	Ü
	Bromomethane	5.0	y us
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.9	ゴ
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U.
1634-04-4	Methyl tert-butyl ether	5.0	Ū
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	2.2	8 7
156-59-2	cis-1,2-Dichloroethene	5.0	Ü
594-20-7	2,2-Dichloropropane	5.0	1 UJ
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	Ū
563-58-6	1,1-Dichloropropene	5.0	Ū
56-23-5	Carbon tetrachloride	5.0	Ü
107-06 - 2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	Ū
	Dibromomethane	5.0	Ū
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	Ū
	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	Ü
142-28-9	1,3-Dichloropropane	5.0	U

feer 3/4/10

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
GW-1		-

Lab Name:	MITKEM LABORA	ATORIES			Contract:		
Lab Code:	MITKEM	Case No.:	J0078		Mod. Ref No.:	SDG No.: SJ0078	
Matrix: (SC	DIL/SED/WATER)	WATER			Lab Sample ID:	J0078-06A	
Sample wt/v	rol: 5.0	00 (g/mL)	ML		Lab File ID:	V2L4667.D	
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	01/15/2010	
% Moisture:	not dec.				Date Analyzed:	01/21/2010	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extrac	t Volume:			(uL)	Soil Aliquot Vol	ume: ((uL)
Purge Volum	.e: 5.0			(mT.)			

		CONCENTRATION UNITS	3:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	µG/L	Ω
127-18-4	Tetrachloroethene		5.0	Ū
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	Ū
106-93-4	1,2-Dibromoethane		5.0	Ū
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	Ū
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene	·	5.0	Ū
1330-20-7	Xylene (Total)		5.0	Ū
100-42-5	Styrene		5.0	Ū.
75-25-2	Bromoform		5.0	y UJ
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	Ū
108-86-1	Bromobenzene		5.0	Ū
96-18-4	1,2,3-Trichloropropane		5.0	Ū
103-65-1	n-Propylbenzene		5.0	Ū
95-49-8	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene	· · · · · · · · · · · · · · · · · · ·	5.0	U
106-43-4	4-Chlorotoluene		5.0	Ü ·
98-06- <i>6</i>	tert-Butylbenzene		5.0	U
	1,2,4-Trimethylbenzene		5.0	Ü
	sec-Butylbenzene		5.0	Ū
99-87-6	4-Isopropyltoluene		5.0	Ū
541-73-1	1,3-Dichlorobenzene		5.0	U
106-46-7	1,4-Dichlorobenzene		5.0	Ü
	n-Butylbenzene		5.0	Ū
	1,2-Dichlorobenzene		5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane		5.0	Ü
	1,2,4-Trichlorobenzene		5.0	Ū
	Hexachlorobutadiene		5.0	y us
	1,2,3-Trichlorobenzene		5.0	Ū
91-20-3	Naphthalene		5.0	ט

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO. SB-3 0'-5'

Lab Name: MITKEM LABORATORIES Contract: Mod. Ref No.: Lab Code: MITKEM Case No.: J0078 SDG No.: SJ0078 Matrix: (SOIL/SED/WATER) SOIL Lab Sample ID: J0078-07B Sample wt/vol: 5.40 (g/mL) Lab File ID: V6H1634.D Level: (TRACE/LOW/MED) Date Received: 01/15/2010 % Moisture: not dec. 7.0 Date Analyzed: 01/19/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 10.0 (mL)

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/KG	Q
	Dichlorodifluoromethane	5.0	Ū
	Chloromethane	5.0	U
	Vinyl chloride	5.0	ט
	Bromomethane	5.0	B UJ
	Chloroethane	5.0	8
L	Trichlorofluoromethane	5.0	y 4
	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	V R
	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	Ü
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	WR
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	Ū
71-55-6	1,1,1-Trichloroethane	5.0	ט
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ū
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	Ū
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	· U
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	ט
	4-Methyl-2-pentanone	5.0	Ū
108-88-3		5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	Ū

LW 314110

7

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO. SB-3 0'-5'

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0078 Mod. Ref No.: SDG No.: SJ0078 Matrix: (SOIL/SED/WATER) SOIL Lab Sample ID: J0078-07B Sample wt/vol: 5.40 (g/mL) Lab File ID: V6H1634.D Level: (TRACE/LOW/MED) LOW Date Received: 01/15/2010 % Moisture: not dec. 7.0 Date Analyzed: 01/19/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 10.0 (mL)

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/F	ιG Ç	2
127-18-4	Tetrachloroethene	5.	0 U	
591-78-6	2-Hexanone	5.	0 U	
124-48-1	Dibromochloromethane	5.	0 U	
106-93-4	1,2-Dibromoethane	5.	0 U	
108-90-7	Chlorobenzene	5.	0 U	
630-20-6	1,1,1,2-Tetrachloroethane	5.	0 U	
100-41-4	Ethylbenzene	5.	0 U	
1330-20-7	m,p-Xylene	5.	0. U	
95-47-6	o-Xylene	5.	0 U	
	Xylene (Total)	. 5.	0 U	
100-42-5	Styrene	5.	0 0	
75-25-2	Bromoform	5.	0 .0	
98-82-8	Isopropylbenzene	5.	0 0	
79-34-5	1,1,2,2-Tetrachloroethane	5.	0 U	
108-86-1	Bromobenzene	5.	0 U	
96-18-4	1,2,3-Trichloropropane	5.	0 U	
103-65-1	n-Propylbenzene	5.	0 U	
95-49-8	2-Chlorotoluene	5.	ט ס	
108-67-8	1,3,5-Trimethylbenzene	. 5.	0 0	
106-43-4	4-Chlorotoluene	5.	0 U	
98-06-6	tert-Butylbenzene	5.	0 U	
95-63-6	1,2,4-Trimethylbenzene	. 5.	0 U	
135-98-8	sec-Butylbenzene	5.	0 U	
99-87-6	4-Isopropyltoluene	5.	0 U	
541-73-1	1,3-Dichlorobenzene	5.	0 U	
106-46-7	1,4-Dichlorobenzene	5.	0 U	
104-51-8	n-Butylbenzene	5.	0 8 W	<u> </u>
95-50-1	1,2-Dichlorobenzene	5.		
	1,2-Dibromo-3-chloropropane	5.	0 U	
120-82-1	1,2,4-Trichlorobenzene	5.	0 0	
87-68-3	Hexachlorobutadiene	5.	0 U U-	1
	1,2,3-Trichlorobenzene	5.	ס ט	
91-20-3	Naphthalene	5.	0 V u =	<u> </u>

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIEN	IT SAMPLE	NO.
SB-3	5'-8'	

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	J0078-08B
Sample wt/vol: 5.	30 (g/mL)	G	Lab File ID:	V6H1636.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.	6.0		Date Analyzed:	01/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Durge Wellings 10 0		/T \		

		CONCENTRATION UNIT	S:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/KG	Q
75-71-8	Dichlorodifluoromethane		5.0	Ū
74-87-3	Chloromethane		5.0	Ū.
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	V UJ
75-00-3	Chloroethane		5.0	Vi
75-69-4	Trichlorofluoromethane		5.0	17 0
75-35-4	1,1-Dichloroethene		5.0	Ū
67-64-1	Acetone		5.0	V R
74-88-4	Iodomethane		5.0	Tu
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	Ū
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	Ū
108-05-4	Vinyl acetate		5.0	Ū.
78-93-3	2-Butanone		5.0	DR
156-59-2	cis-1,2-Dichloroethene		5.0	1 U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66 - 3	Chloroform		5.0	Ü
71-55-6	1,1,1-Trichloroethane		5.0	Ū
563-58-6	1,1-Dichloropropene		5.0	ט
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	Ū
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	Ü
78-87-5	1,2-Dichloropropane	`	5.0	Ü
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	Ū
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
108-88-3	Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	Ū

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIEN'	T SAMPLE	NO.
SB-3	5'-8'	

Lab Name: MITKEM LABOR	ATORIES		Contract:		
Lab Code: MITKEM	Case No.: JO	078	Mod. Ref No.:	SDG No.: SJ007	8
Matrix: (SOIL/SED/WATER	SOIL		Lab Sample ID:	J0078-08B	
Sample wt/vol: 5.	30 (g/mL) G		Lab File ID:	V6H1636.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010	
% Moisture: not dec.	6.0		Date Analyzed:	01/19/2010	
GC Column: DB-624	ID: 0.2	25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
Purce Volume: 10 0		/mT.)			

		CONCENTRATION UNITS:	- T
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/KG	G Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	Ū
	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	. 5.0	ט
98-82-8	Isopropylbenzene	5.0	U
79-34 - 5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	Ū
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ū
. 98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98 - 8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	Ū
106-46-7	1,4-Dichlorobenzene	5.0	Ū
	n-Butylbenzene	5.0	W UJ
	1,2-Dichlorobenzene	5.0	
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	Ū
	Hexachlorobutadiene	5.0	BUJ.
	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	W UJ

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-3		

Lab Name: MITKEM LA	BORATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WA	rer) water		Lab Sample ID:	J0078-09A
Sample wt/vol:	5.00 (g/mL)	ML	Lab File ID:	V2L4668.D
Level: (TRACE/LOW/ME)	D) LOW		Date Received:	01/15/2010
% Moisture: not dec.	***************************************		Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	-	(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	T .
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	y 47
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	PR
74-88-4	Iodomethane	5.0	Ū
75-15-0	Carbon disulfide	5.0	Ū
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	Ū
	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	ØR
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	עט ע
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ü
107-06-2	1,2-Dichloroethane	5.0	Ū
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	ט
	1,2-Dichloropropane	5.0	U.
	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U
108-88-3		5.0	U
	trans-1,3-Dichloropropene	5.0	ט
	1,1,2-Trichloroethane	5.0	ט
142-28-9	1,3-Dichloropropane	5.0	U

pm 3/4/10

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-3		
		-

Lab Name: MITKEM LABOR	ATORIES		Contract:		
Lab Code: MITKEM	Case No.: J0078	i.v	Mod. Ref No.:	SDG No.: SJ0078	
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	J0078-09A	
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V2L4668.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010	
% Moisture: not dec.			Date Analyzed:	01/21/2010	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (1	uL)
Purge Volume: 5.0	·	(mL)			

		CONCENTRATION UNIT	'S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/L	Q
	Tetrachloroethene	·	5.0	Ū
591-78-6	2-Hexanone		5.0	U
	Dibromochloromethane		5.0	U
	1,2-Dibromoethane		5.0	U
	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	Ū
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	Ū
100-42-5	Styrene		5.0	Ū
75-25-2	Bromoform		5.0	Ø UJ
98-82-8	Isopropylbenzene		5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane		5.0	Ū
108-86-1	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
	n-Propylbenzene		5.0	Ū
95-49-8	2-Chlorotoluene		5.0	Ū
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	Ü.
95-63-6	1,2,4-Trimethylbenzene		5.0	Ū
	sec-Butylbenzene		5.0	Ū
99-87-6	4-Isopropyltoluene		5.0	U
541-73-1	1,3-Dichlorobenzene		5.0	Ū
106-46-7	1,4-Dichlorobenzene		5.0	U
104-51-8	n-Butylbenzene		5.0	ไบ
95-50-1	1,2-Dichlorobenzene		5.0	U
96-12-8	1,2-Dibromo-3-chloropropane		5.0	บ
120-82-1	1,2,4-Trichlorobenzene		5.0	บ
	Hexachlorobutadiene	<u> </u>	5.0	U
87-61-6	1,2,3-Trichlorobenzene	· · · · · · · · · · · · · · · · · · ·	5.0	Ū
	Naphthalene		5.0	U

pm 3/4/10

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-3A		

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0078	****	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	J0078-10A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V2L4669.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	01/15/2010
% Moisture: not dec.				Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	,		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 5.0			/mT \		

		CONCENTRATION UNITS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
	Dichlorodifluoromethane	5.0	Ū
	Chloromethane	5.0	U
	Vinyl chloride	5.0	Ū
74-83-9	Bromomethane	5.0	y uJ
75-00-3	Chloroethane	5.0	U
	Trichlorofluoromethane	5.0	U
	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	VR.
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	10
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Viṇyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ø R
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	y ud
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	Ū
	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
	Trichloroethene	5.0	Ü
78-87-5	1,2-Dichloropropane	5.0	T _U
74-95-3	Dibromomethane	5.0	Ū
	Bromodichloromethane	5.0	Ü
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	T u
108-88-3		5.0	l ŭ
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U
	·		1~

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-3A		

Lab Name:	MITKEM LABOR	RATORIES			Contract:	
Lab Code:	MITKEM	Case No.:	J0078		Mod. Ref No.:	SDG No.: SJ0078
Matrix: (S	OIL/SED/WATER	R) WATER			Lab Sample ID:	J0078-10A
Sample wt/	vol: 5.	00 (g/mL)	ML	*	Lab File ID:	V2L4669.D
Level: (TR	ACE/LOW/MED)	LOW			Date Received:	01/15/2010
% Moisture	: not dec.				Date Analyzed:	01/21/2010
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:		·	(uL)	Soil Aliquot Vol	ume: (uL
Purge Volu	me: 5.0		•	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	5.0	<u> </u>
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	TI TI
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	V UJ
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	Ū
541-73-1	1,3-Dichlorobenzene	5.0	Ū
	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	ENV
	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	Ū

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-1A		

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:	J0078		Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	J0078-11A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V2L4670.D
Level: (TRACE/LOW/MED)	LOW	····		Date Received:	01/15/2010
% Moisture: not dec.				Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		····	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			/mT.i		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) p	G/L	Q
75-71-8	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane		5.0	Ü
75-01-4	Vinyl chloride			Ū
74-83-9	Bromomethane		5.0	BUS
75-00-3	Chloroethane		1	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone			V R
74-88-4	Iodomethane			U
75-15-0	Carbon disulfide			IJ
75-09-2	Methylene chloride			U
156-60-5	trans-1,2-Dichloroethene			U .
	Methyl tert-butyl ether			Ū
75-34-3	1,1-Dichloroethane			Ū
108-05-4	Vinyl acetate			Ū
78-93-3	2-Butanone			BR
156-59-2	cis-1,2-Dichloroethene			U
594-20-7	2,2-Dichloropropane			V UJ
74-97-5	Bromochloromethane			Ū
67-66-3	Chloroform		5.0	Ü
71-55-6	1,1,1-Trichloroethane		5.0	U
563 - 58-6	1,1-Dichloropropene		5.0	Ū
56-23-5	Carbon tetrachloride		5.0	Ü
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	Ū
	Trichloroethene			Ū
	1,2-Dichloropropane		5.0	Ū
74-95-3	Dibromomethane			Ū
	Bromodichloromethane			Ū
	cis-1,3-Dichloropropene	<u> </u>		Ū
	4-Methyl-2-pentanone			Ū
108-88-3	Toluene			Ū
10061-02-6	trans-1,3-Dichloropropene		5.0	Ū
	1,1,2-Trichloroethane			Ū
	1,3-Dichloropropane			Ü

Lew 3/4/10

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-1A		

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	J0078-11A
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V2L4670.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.			Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25 (r	mm) Dilution Factor:	1.0
Soil Extract Volume:		(1	uL) Soil Aliquot Vol	.ume: (uL)
Purge Volume: 5.0		(1	nT,)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	ט
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	Ū
75-25-2	Bromoform	5.0	D UJ
98-82-8	Isopropylbenzene	5.0	10
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	Ū
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	ט
95-63-6	1,2,4-Trimethylbenzene	5.0	บ
135-98-8	sec-Butylbenzene	5.0	Ū
99-87-6	4-Isopropyltoluene	5.0	Ū
541-73-1	1,3-Dichlorobenzene	5.0	ט
106-46-7	1,4-Dichlorobenzene	5.0	ט
104-51-8	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ū
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	. U
	Hexachlorobutadiene	5.0	V UJ
87-61-6	1,2,3-Trichlorobenzene	5.0	Ū
91-20-3	Naphthalene	5.0	Ū

12

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

TRIP BLANK 01/13/2010

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	J0078-12A
Sample wt/vol: 5.0	00 (g/mL)	ML	Lab File ID:	V2L4656.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.			Date Analyzed:	01/21/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

C70 C 120	COMPOSINE	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) μG/L	Q
75-71-8	B Dichlorodifluoromethane	5.0	Ū
74-87-3	Chloromethane	5.0	U
75-01-4	Yinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	V 41
75-00-3	Chloroethane	5.0	
75-69-4	Trichlorofluoromethane	5.0	Ū
75-35-4	1,1-Dichloroethene	5.0	Ū
67-64-1	Acetone	5.0	V R
74-88-4	1 Iodomethane	5.0	
75-15-0	Carbon disulfide	5.0	Ū
	Methylene chloride	5.0	U
	trans-1,2-Dichloroethene	5.0	Ū
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	3 1,1-Dichloroethane	5.0	ū
108-05-4	Vinyl acetate	5.0	U
	3 2-Butanone	5.0	V R
156-59-2	cis-1,2-Dichloroethene	5.0	U
	7 2,2-Dichloropropane	5.0	yuJ
	Bromochloromethane	5.0	
	Chloroform	5.0	ט
	1,1,1-Trichloroethane	5.0	U
	1,1-Dichloropropene	5.0	U
	Carbon tetrachloride	5.0	U .
	2 1,2-Dichloroethane	5.0	U
	2 Benzene	5.0	Ü
	Trichloroethene	5.0	U
	1,2-Dichloropropane	5.0	U
	B Dibromomethane	5.0	U
	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
	4-Methyl-2-pentanone	5.0	U .
	Toluene	5.0	U
	trans-1,3-Dichloropropene	5.0	ט
	1,1,2-Trichloroethane	5.0	Ü
142-28-9	1,3-Dichloropropane	5.0	Ū

few 3/4/10

SW846

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

TRIP BLANK 01/13/2010

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0078 Mod. Ref No.: SDG No.: SJ0078 Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: J0078-12A Sample wt/vol: 5.00 (g/mL)MLLab File ID: V2L4656.D Level: (TRACE/LOW/MED) LOW Date Received: 01/15/2010 % Moisture: not dec. Date Analyzed: 01/21/2010 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) Purge Volume: 5.0 (mL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) µG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	Ū
100-41-4	Ethylbenzene	5.0	Ū
. 1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	Ū
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	y uj
98-82-8	Isopropylbenzene	5.0	Ū
79-34-5	1,1,2,2-Tetrachloroethane	5.0	Ū
108-86-1	Bromobenzene	5.0	Ü
96-18-4	1,2,3-Trichloropropane	5.0	Ü
103-65 - 1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	Ü
	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ü
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
	n-Butylbenzene	5.0	U
	1,2-Dichlorobenzene	5.0	Ü
	1,2-Dibromo-3-chloropropane	5.0	U
	1,2,4-Trichlorobenzene	5.0	U
	Hexachlorobutadiene	5.0	UUJ
	1,2,3-Trichlorobenzene	5.0	Ú
91-20-3	Naphthalene	5.0	U

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
DUP01		

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.: <u>J0078</u>		Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	J0078-13B
Sample wt/vol: 5.	60 (g/mL) G		Lab File ID:	V6H1635.D
Level: (TRACE/LOW/MED)	LOM		Date Received:	01/15/2010
% Moisture: not dec.	5.0		Date Analyzed:	01/19/2010
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 10.0		(mL)	·	

		CONCENTRATION UNITS	3:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/KG	Q
75-71-8	Dichlorodifluoromethane		4.7	Ū
74-87-3	Chloromethane		4.7	U
	Vinyl chloride		4.7	U
	Bromomethane		4.7	4 41
	Chloroethane		4.7	u
75-69-4	Trichlorofluoromethane		4.7	lu J
75-35-4	1,1-Dichloroethene		4.7	U
67-64-1	Acetone		4.7	W/R
74-88-4	Iodomethane		4.7	To T
75-15-0	Carbon disulfide		4.7	U
	Methylene chloride		4.7	Ü
	trans-1,2-Dichloroethene		4.7	U
	Methyl tert-butyl ether		4.7	Ü
75-34-3	1,1-Dichloroethane		4.7	Ü
108-05-4	Vinyl acetate		4.7	U ·
78-93-3	2-Butanone		4.7	V R
	cis-1,2-Dichloroethene		4.7	U
	2,2-Dichloropropane		4.7	U
1	Bromochloromethane		4.7	U
67-66-3	Chloroform		4.7	U
71-55-6	1,1,1-Trichloroethane		4.7	Ū
	1,1-Dichloropropene		4.7	U
56-23-5	Carbon tetrachloride		4.7	U
107-06-2	1,2-Dichloroethane		4.7	U
71-43-2	Benzene		4.7	U
L	Trichloroethene		4.7	U
	1,2-Dichloropropane		4.7	U
	Dibromomethane		4.7	U
	Bromodichloromethane		4.7	Ü
	cis-1,3-Dichloropropene		4.7	U
	4-Methyl-2-pentanone		4.7	Ū
	Toluene		4.7	U
	trans-1,3-Dichloropropene		4.7	บ
79-00-5	1,1,2-Trichloroethane	•	4.7	Ū
142-28-9	1,3-Dichloropropane		4.7	U .

lu 314/10

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
DUP01		

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER	soil		Lab Sample ID:	J0078-13B
Sample wt/vol: 5.	60 (g/mL)	G	Lab File ID:	V6H1635.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	01/15/2010
% Moisture: not dec.	5.0		Date Analyzed:	01/19/2010
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)	•	

		CONCENTRATION UNITS	•	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	μG/KG	Q
127-18-4	Tetrachloroethene		4.7	U
591-78-6	2-Hexanone	· ·	4.7	Ū
124-48-1	Dibromochloromethane		4.7	Ū
106-93-4	1,2-Dibromoethane		4.7	Ū
108-90-7	Chlorobenzene		4.7	Ū
630-20-6	1,1,1,2-Tetrachloroethane		4.7	Ū
100-41-4	Ethylbenzene		4.7	Ū
1330-20-7	m,p-Xylene		4.7	Ū.
95-47-6	o-Xylene		4.7	Ü
1330-20-7	Xylene (Total)		4.7	Ū
100-42-5	Styrene		4.7	Ū
75-25-2	Bromoform		4.7	Ū
98-82-8	Isopropylbenzene		4.7	U
79-34-5	1,1,2,2-Tetrachloroethane		4.7	U
108-86-1	Bromobenzene		4.7	U
96-18-4	1,2,3-Trichloropropane		4.7	U
103-65-1	n-Propylbenzene		4.7	U
95-49-8	2-Chlorotoluene		4.7	U
108-67-8	1,3,5-Trimethylbenzene	,	4.7	U
106-43-4	4-Chlorotoluene		4.7	Ū
98-06-6	tert-Butylbenzene		4.7	U
95-63-6	1,2,4-Trimethylbenzene		4.7	Ū
135-98-8	sec-Butylbenzene		47	U
99-87-6	4-Isopropyltoluene		4.7	U
541 - 73-1	1,3-Dichlorobenzene		4.7	Ū
106-46-7	1,4-Dichlorobenzene		4.7	Ü
	n-Butylbenzene		4.7	V UI
	1,2-Dichlorobenzene		4.7	Ū
	1,2-Dibromo-3-chloropropane		4.7	Ū
	1,2,4-Trichlorobenzene	·	4.7	U ·
	Hexachlorobutadiene		4.7	アリコ
	1,2,3-Trichlorobenzene		4.7	Ū ·
91-20-3	Naphthalene		4.7	YUJ

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

MW-1	

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0078-01B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G1688.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 01/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

AS NO.	COMPOUND	CONCENTRATION UNITS: µG/L	_
108-95-2		(ug/L or ug/Kg)	_ U
	Bis(2-chloroethyl)ether	10	ū
	2-Chlorophenol	10	Ū
	1,3-Dichlorobenzene	10	U
	1,4-Dichlorobenzene	10	Ū
	1,2-Dichlorobenzene	10	Ū
	2-Methylphenol	10	U
	2,2'-oxybis(1-Chloropropane)	10	בע ע
	4-Methylphenol	10	U
	N-Nitroso-di-n-propylamine	10	Ü
	Hexachloroethane	10	TI .
	Nitrobenzene	10	U
	Isophorone	10	U
	2-Nitrophenol	10	リ Uフ
	2,4-Dimethylphenol	10	U
· .	2,4-Dichlorophenol	10	Ū
	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	U
	4-Chloroaniline	10	U
	Bis(2-chloroethoxy)methane	10	8 WJ
	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
	2-Methylnaphthalene	10	Ū
	Hexachlorocyclopentadiene	10	W UJ
	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	20	V UJ
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	20	U
131-11-3	Dimethylphthalate	10	Ū
208-96-8	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	U
99-09-2	3-Nitroaniline	20	Ū ·
83-32-9	Acenaphthene	10	ט
51-28-5	2,4-Dinitrophenol	20	10 US
100-02-7	4-Nitrophenol	20	BUJ
	Dibenzofuran	10	Ū
121-14-2	2,4-Dinitrotoluene	10	V UJ

SOM_002

pw 314/10

SW846

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
MW-1		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0078-01B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G1688.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 01/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/L (ug/L or ug/Kg)	_ Q
	Diethylphthalate	10	
	4-Chlorophenyl-phenylether	10	y us
	Fluorene	10	W UJ
100-01-6	4-Nitroaniline	20	y us
534-52-1	4,6-Dinitro-2-methylphenol	. 20	Ū
	N-Nitrosodiphenylamine	10	y 40
101-55-3	4-Bromophenyl-phenylether	10	Ū
	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	V UJ
85-01-8	Phenanthrene	10	, U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	1.0	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	b uj
56-55-3	Benzo(a)anthracene	10	Ū
	Chrysene	10	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	9 47
205-99-2	Benzo(b)fluoranthene	10	Ū
	Benzo(k)fluoranthene	10	U
	Benzo(a)pyrene	10	Ū .
193-39 - 5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	W 117
191-24-2	Benzo(g,h,i)perylene	10	Ū

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

DUP	02		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0078-02B
Sample wt/vol:1000 (g/mL) ML	Lab File ID: S1G1691.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL	Date Extracted: 01/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 01/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS: p	G/L
AS NO.	COMPOUND	(ug/L or ug/Kg)	<u> </u>
108-95-2		10	
	Bis(2-chloroethyl)ether	10	
	2-Chlorophenol	10	
	1,3-Dichlorobenzene	10	Ū
	1,4-Dichlorobenzene	10	Ü
	1,2-Dichlorobenzene	10	U
	2-Methylphenol	10	Ū
	2,2'-oxybis(1-Chloropropane)	10	y uj
	4-Methylphenol	10	Ū
	N-Nitroso-di-n-propylamine	10	U
	Hexachloroethane	10	Ū
	Nitrobenzene	10	Ū
	Isophorone	10	Ū
	2-Nitrophenol	10	y us
	2,4-Dimethylphenol	10	ט
	2,4-Dichlorophenol	10	Ū
	1,2,4-Trichlorobenzene	10	ט
	Naphthalene	10	Ū
106-47-8	4-Chloroaniline	10	U
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	ツ レゴ
88-06-2	2,4,6-Trichlorophenol	10	Ū
95-95-4	2,4,5-Trichlorophenol	20	リ リブ
	2-Chloronaphthalene	10	(U
88-74-4	2-Nitroaniline	20	Ū
131-11-3	Dimethylphthalate	10	Ū
	Acenaphthylene	10	Ū
	2,6-Dinitrotoluene	10	Ū
	3-Nitroaniline	20	Ü
83-32-9	Acenaphthene	10	U
	2,4-Dinitrophenol	20	EUD
	4-Nitrophenol	20	w u J
	Dibenzofuran	10	U
	2,4-Dinitrotoluene	10	Dud

SOM_002

LW 3/4/10

SW846

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIE	NT	SAMPLE	NO.
DUP	02		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0078-02B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1G1691.D
Level: (LOW/MED) LOW	Extraction: (Type) CONT
% Moisture: Decanted: (Y/N)	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/18/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 01/20/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	μG/L	Q
	Diethylphthalate	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.	U
	4-Chlorophenyl-phenylether		10	y uj
86-73-7	Fluorene		10	8.
100-01-6	4-Nitroaniline		20	8
534-52-1	4,6-Dinitro-2-methylphenol		20	U
	N-Nitrosodiphenylamine		10	U
101-55-3	4-Bromophenyl-phenylether		10	Ū
118-74-1	Hexachlorobenzene		10	U
87 - 86-5	Pentachlorophenol		20	VUJ
85-01-8	Phenanthrene		10	U
120-12-7	Anthracene		10	Ū
86-74-8	Carbazole		10	U
84-74-2	Di-n-butylphthalate		10	Ū
206-44-0	Fluoranthene		10	Ū
129-00-0	Pyrene		10	Ü
85-68-7	Butylbenzylphthalate		10	Ū
91-94-1	3,3'-Dichlorobenzidine		10	U
56-55-3	Benzo(a)anthracene		10	Ū
	Chrysene		10	U
	Bis(2-ethylhexyl)phthalate	·	10	Ū
	Di-n-octylphthalate		10	DU1
	Benzo(b)fluoranthene		10	U
	Benzo(k)fluoranthene		10	U
	Benzo(a)pyrene		10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene		10	U
	Dibenzo(a,h)anthracene		10	B UJ
191-24-2	Benzo(g,h,i)perylene		10	U

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.
SB-1 45'-50'

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: J0078-04A
Sample wt/vol:30.1 (g/mL) G	Lab File ID: S4D8186.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: 9.0 Decanted: (Y/N) N	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/20/2010
Injection Volume: (uL) GPC Factor:	Date Analyzed: 01/22/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

	and the state of t	CONCENTRATION UNITS: µG/KG		
AS NO. 108-95-2	COMPOUND	(ug/L or ug/Kg)	-	Q
		360	Ū	
	Bis(2-chloroethyl)ether	360	Ū	
	2-Chlorophenol	360	Ü	
	1,3-Dichlorobenzene	360	Ü	
	1,4-Dichlorobenzene	360	Ü	
	1,2-Dichlorobenzene	360	U	
	2-Methylphenol	360	U	
	2,2'-oxybis(1-Chloropropane)	360	U	
	4-Methylphenol	360	U	
	N-Nitroso-di-n-propylamine	360	U	
	Hexachloroethane	360	Ū	
	Nitrobenzene	360	U	
	Isophorone	360	U	
	2-Nitrophenol	360	Ū,	
	2,4-Dimethylphenol	360	Ø	u
	2,4-Dichlorophenol	360	U	
	1,2,4-Trichlorobenzene	. 360	U	
91-20-3	Naphthalene	360	U	
	4-Chloroaniline	360	Ū	
111-91-1	Bis(2-chloroethoxy)methane	360	Ü	
87-68-3	Hexachlorobutadiene	360	Ū	
59-50-7	4-Chloro-3-methylphenol	360	U	
91-57-6	2-Methylnaphthalene	. 360	U	
77-47-4	Hexachlorocyclopentadiene	360	U	
88-06-2	2,4,6-Trichlorophenol	360	Ū	
95-95-4	2,4,5-Trichlorophenol	730	Ū	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
91-58-7	2-Chloronaphthalene	360	Ū	
88-74-4	2-Nitroaniline	730	U	
131-11-3	Dimethylphthalate	360	Ū	
208-96-8	Acenaphthylene	360.	Ū	
	2,6-Dinitrotoluene	360	Ū	
	3-Nitroaniline	730	Ū	
83-32-9	Acenaphthene	360	Ū	
51-28-5	2,4-Dinitrophenol	730	Ū	
	4-Nitrophenol	730	Ū	
	Dibenzofuran	360	Ü	
	2,4-Dinitrotoluene	360	ĪŢ	

SOM_002

LW 3/4/10

SW846

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SB-1 45'-50'

Contract:
Mod. Ref No.: SDG No.: SJ0078
Lab Sample ID: J0078-04A
Lab File ID: S4D8186.D
Extraction: (Type) SONC
Date Received: 01/15/2010
Date Extracted: 01/20/2010
Date Analyzed: 01/22/2010
Dilution Factor: 1.0

GRG NO	COMPOSITION	CONCENTRATION UNITS: µG/KG	Ι .
CAS NO.	COMPOUND	(ug/L or ug/Kg)	Q
	Diethylphthalate	360	Ü
	4-Chlorophenyl-phenylether	360	U
	Fluorene	360	ט
	4-Nitroaniline	730	V UJ
	4,6-Dinitro-2-methylphenol	730	U
	N-Nitrosodiphenylamine	360	U
	4-Bromophenyl-phenylether	360	Ū
118-74-1	Hexachlorobenzene	360	Ū
87-86-5	Pentachlorophenol	730	Ū
85-01-8	Phenanthrene	. 360	Ū
120-12-7	Anthracene	360	U
86-74-8	Carbazole	360	Ū
84-74-2	Di-n-butylphthalate	200	J
206-44-0	Fluoranthene	360	Ū
129-00-0	Pyrene	360	Ū
85-68-7	Butylbenzylphthalate	360	Ū
	3,3'-Dichlorobenzidine	360	Ū
56-55-3	Benzo(a)anthracene	360	Ü
	Chrysene	360	Ū ·
	Bis(2-ethylhexyl)phthalate	700	
	Di-n-octylphthalate	360	Ū
205-99-2		360	V W
	Benzo(k) fluoranthene	360	B WJ
	Benzo(a)pyrene	360	U
	Indeno(1,2,3-cd)pyrene	360	Ū
	Dibenzo(a,h)anthracene	360	Ū.
	Benzo(g,h,i)perylene	360	lī -

5

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SB-1 10'-15'

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: J0078-05A
Sample wt/vol:30.4 (g/mL) G	Lab File ID: S4D8189.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: 6.0 Decanted: (Y/N) N	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/20/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 01/22/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

GPC Cleanup	M/N) N pH: Dilution Factor: 1.0			
77.0.110	GOVERNA	CONCENTRATION UNITS: µG/KG	1	
CAS NO. 108-95-2	COMPOUND	(ug/L or ug/Kg)	Q	
	Bis(2-chloroethyl)ether	350	U	
	2-Chlorophenol	350	U	
	1,3-Dichlorobenzene	350	U	
	1,4-Dichlorobenzene	350	U	
	1,2-Dichlorobenzene	350	Ū	
	2-Methylphenol	350	Ū	
		350	Ū	
	2,2'-oxybis(1-Chloropropane)	350	Ū	
	4-Methylphenol	350	U	
	N-Nitroso-di-n-propylamine	350	Ū	
	Hexachloroethane	350	U	
	Nitrobenzene	350	Ū	
	Isophorone	350	U	
	2-Nitrophenol	350	U	
	2,4-Dimethylphenol	350	U	
	2,4-Dichlorophenol	350	Ū	
	1,2,4-Trichlorobenzene	350	U	
	Naphthalene	350	U	
	4-Chloroaniline	350	Ü	
	Bis(2-chloroethoxy)methane	350	Ū	
	Hexachlorobutadiene	350	Ū	
	4-Chloro-3-methylphenol	350	Ū	
	2-Methylnaphthalene	350	U	
	Hexachlorocyclopentadiene	. 350	U	
88-06-2	2,4,6-Trichlorophenol	350	U	
	2,4,5-Trichlorophenol	700	Ū	
	2-Chloronaphthalene	350 .	Ū	
88-74-4	2-Nitroaniline	700	Ū	
131-11-3	Dimethylphthalate	350	Ü	
208-96-8	Acenaphthylene	350	U	
	2,6-Dinitrotoluene	350	U	
99-09-2	3-Nitroaniline	700	Ū	
83-32-9	Acenaphthene	350	U	
	2,4-Dinitrophenol	700	Ū	
	4-Nitrophenol	700	Ū	
	Dibenzofuran	350	Ū	
	2,4-Dinitrotoluene	350	Ū	
	<u> </u>		1	

SOM_002

LW 3/4/10

SW846

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SB-1 10'-15'

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: J0078-05A
Sample wt/vol: 30.4 (g/mL) G	Lab File ID: S4D8189.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: 6.0 Decanted: (Y/N) N	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/20/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 01/22/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/KG (ug/L or ug/Kg)	- 0
	Diethylphthalate	350	T _U
	4-Chlorophenyl-phenylether	350	U
	Fluorene	350	Ū
100-01-6	4-Nitroaniline	700	Ū
534-52-1	4,6-Dinitro-2-methylphenol	700	Ū
	N-Nitrosodiphenylamine	350	Ū
101-55-3	4-Bromophenyl-phenylether	350	Ū
	Hexachlorobenzene	350	Ū
87-86-5	Pentachlorophenol	700	Ū
85-01-8	Phenanthrene	350	U
120-12-7	Anthracene	350	U
86-74-8	Carbazole	350	Ü
84-74-2	Di-n-butylphthalate	160	J
206-44-0	Fluoranthene	48	J
129-00-0	Pyrene	41	J
85-68-7	Butylbenzylphthalate	350	U
91-94-1	3,3'-Dichlorobenzidine	350	Ū.
	Benzo(a)anthracene	350	Ū
	Chrysene	350	Ū
	Bis(2-ethylhexyl)phthalate	120	J
117-84-0	Di-n-octylphthalate	350	Ū .
	Benzo(b)fluoranthene	350	V UJ
	Benzo(k)fluoranthene	350	y us
	Benzo(a)pyrene	350	U
	Indeno(1,2,3-cd)pyrene	350	U.
	Dibenzo(a,h)anthracene	350	U
191-24-2	Benzo(g,h,i)perylene	350	บ

1D - FORM I SV-1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
DUP01		
İ		

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ007	8
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: J0078-13A	
Sample wt/vol: 30.1 (g/mL) G	Lab File ID: S4D8190.D	
Level: (LOW/MED) LOW	Extraction: (Type) SONC	
% Moisture: 5.0 Decanted: (Y/N) N	Date Received: 01/15/2010	
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/20/2010	
Injection Volume: (uL) GPC Factor: 1.00	Date Analyzed: 01/22/2010	
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0	

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/KG (ug/L or ug/Kg)	1 ,
108-95-2		350	_ <u>U</u>
	Bis (2-chloroethyl) ether	350	U
	2-Chlorophenol	350	Ū
	1,3-Dichlorobenzene	350	Ū
	1,4-Dichlorobenzene	350	Ū
	1,2-Dichlorobenzene	350	T _U
	2-Methylphenol	350	U
	2,2'-oxybis(1-Chloropropane)	350	U
	4-Methylphenol	350	U
	N-Nitroso-di-n-propylamine	350	$-$ U \overline{U}
	Hexachloroethane	350	U
	Nitrobenzene	350	Ū
	Isophorone	350	Ū
	2-Nitrophenol	350	U
	2,4-Dimethylphenol	350	Ū
	2,4-Dichlorophenol	350	Ū
	1,2,4-Trichlorobenzene	350	Ū
	Naphthalene	350	Ū
	4-Chloroaniline	. 350	Ū
111-91-1	Bis(2-chloroethoxy)methane	350	Ū
	Hexachlorobutadiene	350	T _U
59-50-7	4-Chloro-3-methylphenol	350	ט
	2-Methylnaphthalene	350	Ü
77-47-4	Hexachlorocyclopentadiene	350	Ū
	2,4,6-Trichlorophenol	350	Ü
	2,4,5-Trichlorophenol	700	Ū
91-58-7	2-Chloronaphthalene	350	Ū
88-74-4	2-Nitroaniline	700	Ū
131-11-3	Dimethylphthalate	350	Ū
	Acenaphthylene	350	Ū .
606-20-2	2,6-Dinitrotoluene	350	Ū
	3-Nitroaniline	700	Ü
83-32-9	Acenaphthene	350	Ü
51-28-5	2,4-Dinitrophenol	700	ΰ.
100-02-7	4-Nitrophenol	700	ט
	Dibenzofuran	350	Ū
121-14-2	2,4-Dinitrotoluene	350	Ū

SOM_002

SW846

1E - FORM I SV-2 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT	SAMPLE	NO.
DUP01		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: J0078-13A
Sample wt/vol: 30.1 (g/mL) G	Lab File ID: S4D8190.D
Level: (LOW/MED) LOW	Extraction: (Type) SONC
% Moisture: 5.0 Decanted: (Y/N) N	Date Received: 01/15/2010
Concentrated Extract Volume: 1000 (uL)	Date Extracted: 01/20/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Date Analyzed: 01/22/2010
GPC Cleanup: (Y/N) N pH:	Dilution Factor: 1.0

		CONCENTRATION UNITS: µG/KG	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	Q
	Diethylphthalate	350	ט
	4-Chlorophenyl-phenylether	350	Ü
	Fluorene	350	Ü
	4-Nitroaniline	700	Ü
	4,6-Dinitro-2-methylphenol	700	ט
86-30-6	N-Nitrosodiphenylamine	350	U
	4-Bromophenyl-phenylether	350	Ū
	Hexachlorobenzene	350	U
	Pentachlorophenol	700	U
85-01-8	Phenanthrene	350	U
120-12-7	Anthracene	350	U
86-74-8	Carbazole	350	Ü
84-74-2	Di-n-butylphthalate	110	J
206-44-0	Fluoranthene	41	J
129-00-0	Pyrene	350	Ū
85-68-7	Butylbenzylphthalate	350	Ū
91-94-1	3,3'-Dichlorobenzidine	350	Ū
56-55-3	Benzo(a)anthracene	350	Ū
218-01-9	Chrysene	350	Ū
117-81-7	Bis(2-ethylhexyl)phthalate	350	Ū
	Di-n-octylphthalate	350	Ū
	Benzo(b) fluoranthene	350	W 45
	Benzo(k) fluoranthene	350	V UJ
	Benzo(a)pyrene	350	U
	Indeno(1,2,3-cd)pyrene	350	U
	Dibenzo(a,h)anthracene	350	U
191-24-2		350	U

	·		

CLIENT	SAMPLE	NO.	
MW-1			

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0078-01B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E4F4617F.D/E4F4617R.D
% Moisture: Decanted: (Y/N)	Date Received: 01/15/2010
Extraction: (Type) SEPF	Date Extracted: 01/18/2010
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 01/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) Y

		CONCENTRATION UNITS: µG/L	
CAS NO.	COMPOUND	(ug/L_or ug/Kg) ————	Q
319-84-6	alpha-BHC	0.050	<u>ט</u>
319-85-7	beta-BHC	0.050	บ
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	U .
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4´-DDE	0.10	U
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	U ·
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U

SOM_002

CLIENT SAMPLE NO.

DUP 02

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.: J007	78 Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	J0078-02B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID:	E4F4620F.D/E4F4620R.D
% Moisture: Decanted: (Y/N)	Date Received:	01/15/2010
Extraction: (Type) SEPF	Date Extracted:	01/18/2010
Concentrated Extract Volume: 100	000 (uL) Date Analyzed:	01/19/2010
Injection Volume: 1.0 (uL) GPC Factor	: 1.00 Dilution Factor	: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup:	(Y/N) Y
	·	

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/L (ug/L or ug/Kg)	- Q
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	Ū ·
72-54-8	4,4'-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	Ŭ
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U

CLIENT SAMPLE NO.

SB-1 45'-50'

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: J0078 Mod. Ref No.: SDG No.: SJ0078 Matrix: (SOIL/SED/WATER) SOIL Lab Sample ID: J0078-04A Lab File ID: Sample wt/vol: 30.1 (g/mL) G E4F4832F.D/E4F4832R.D % Moisture: 9.0 Decanted: (Y/N) N Date Received: 01/15/2010 Date Extracted: 01/20/2010 Extraction: (Type) SONC Concentrated Extract Volume: 10000 (uL) Date Analyzed: 01/25/2010 Injection Volume: 1.0 (uL) GPC Factor: 1.00 Dilution Factor: 1.0 GPC Cleanup: (Y/N) Y pH: Sulfur Cleanup: (Y/N) Y

,		CONCENTRATION UNITS: µG/KG	T	
CAS NO.	COMPOUND	(ug/L or ug/Kg) ———	– Q	
319-84-6	alpha-BHC	1.9	U	
319-85-7	beta-BHC	1.9	U	
319-86-8	delta-BHC	1.9	Ū	
58-89-9	gamma-BHC (Lindane)	1.9	Ū	
76-44-8	Heptachlor	1.9	U	
309-00-2	Aldrin	1.9	U	
1024-57-3	Heptachlor epoxide	1.9	Ū	
959-98-8	Endosulfan I	1.9	U	
60-57-1	Dieldrin	3.6	Ū	
72-55-9	4,4'-DDE	3.6	Ū	
72-20-8	Endrin	3.6	U	
33213-65-9	Endosulfan II	3.6	U	
72-54-8	4,4'-DDD	3.6	Ū	
1031-07-8	Endosulfan sulfate	3.6	Ū	
50-29-3	4,4'-DDT	3.6	U	
72-43-5	Methoxychlor	19	U	
53494-70-5	Endrin ketone	3.6	U	
7421-93-4	Endrin aldehyde	3.6	U .	
5103-71-9	alpha-Chlordane	1.9	U	
5103-74-2	gamma-Chlordane	1.9	U	
8001-35-2	Toxaphene	190	ū	

CLIENT SAMPLE NO.

SB-1 10'-15'

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	J0078-05A
Sample wt/vol: 30.1 (g/mL) <u>G</u>	Lab File ID:	E4F4835F.D/E4F4835R.D
% Moisture: 6.0 Decanted: (Y/N) N	Date Received:	01/15/2010
Extraction: (Type) SONC	Date Extracted:	01/20/2010
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	01/25/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup: (Y/N) Y pH:	Sulfur Cleanup:	(Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/KG (ug/L or ug/Kg)	_ Q
319-84-6	alpha-BHC	1.8	Ū
319-85-7	beta-BHC	1.8	. U
319-86-8	delta-BHC	1.8	U
58-89-9	gamma-BHC (Lindane)	1.8	Ū
76-44-8	Heptachlor	1.8	Ū
309-00-2	Aldrin	1.8	U
1024-57-3	Heptachlor epoxide	1.8	U
959-98-8	Endosulfan I	1.8	U
60-57-1	Dieldrin	3.5	U
72-55-9	4,4'-DDE	3.5	U
72-20-8	Endrin	3.5	U
33213-65-9	Endosulfan II	3.5	U
72-54-8	4,4'-DDD	3.5	U
1031-07-8	Endosulfan sulfate	3.5	U
50-29-3	4,4'-DDT	3.5	ט
72-43-5	Methoxychlor	18	U
53494-70-5	Endrin ketone	3.5	U
7421-93-4	Endrin aldehyde	3.5	U
5103 - 71-9	alpha-Chlordane	1.8	U
5103-74-2	gamma-Chlordane	1.8	U
8001-35-2	Toxaphene	180	Ū

CLIENT	SAMPLE	NO.	
DUP01			

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	J0078-13A
Sample wt/vol: 30.4 (g/mL) G	Lab File ID:	E4F4836F.D/E4F4836R.D
% Moisture: 5.0 Decanted: (Y/N) N	Date Received:	01/15/2010
Extraction: (Type) SONC	Date Extracted:	01/20/2010
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	01/25/2010
Injection Volume: (uL) GPC Factor:	Dilution Factor:	1.0
GPC Cleanup: (Y/N) Y pH:	Sulfur Cleanup: (Y/N) Y

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/KG (ug/L or ug/Kg)	Q
319-84-6	alpha-BHC	1.8	U
319-85-7	beta-BHC	1.8	U
319-86-8	delta-BHC	1.8	U
58-89-9	gamma-BHC (Lindane)	1.8	U
76-44-8	Heptachlor	1.8	U
309-00-2	Aldrin	1.8	U
1024-57-3	Heptachlor epoxide	1.8	U
959-98-8	Endosulfan I	1.8	U
60-57-1	Dieldrin	. 3.4	U
72-55-9	4,4'-DDE	3.4	U
72-20-8	Endrin	3.4	U
33213-65-9	Endosulfan II	3.4	U
72-54-8	4,4'-DDD	3.4	Ū
1031-07-8	Endosulfan sulfate	3.4	Ū
50-29-3	4,4'-DDT	3.4	U
72-43-5	Methoxychlor	18	U
53494-70-5	Endrin ketone	3.4	U
7421-93-4	Endrin aldehyde	3.4	Ū
5103-71-9	alpha-Chlordane	1.8	<u></u>
5103-74-2	gamma-Chlordane	1.8	Ū
8001-35-2	Toxaphene	180	U

EPA	SAMPLE	NO.	
MW-	1		

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: J0078-01B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E3G9823F.D/E3G9823R.D
% Moisture: Decanted: (Y/N)	Date Received: 01/15/2010
Extraction: (Type) SEPF	Date Extracted: 01/18/2010
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 01/19/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) Y
Acid Cleanup: (Y/N) Y	

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	μG/L	Q
12674-11-2	Aroclor-1016		1.0	U
11104-28-2	Aroclor-1221		1.0	U
11141-16-5	Aroclor-1232		1.0	ט
53469-21-9	Aroclor-1242		1.0	ט
12672-29-6	Aroclor-1248		1.0	U
11097-69-1	Aroclor-1254		1.0	U
11096-82-5	Aroclor-1260		1.0	ט

EPA	SAMPLE	NO.	
DUP	02		

Lab Name: M	ITKEM LABORATORIES	Contract:	
Lab Code: M	ITKEM Case No.: J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOI	L/SED/WATER) WATER	Lab Sample ID:	J0078-02B
Sample wt/vo	l: 1000 (g/mL) ML	Lab File ID:	E3G9826F.D/E3G9826R.D
% Moisture:	Decanted: (Y/N)	Date Received:	01/15/2010
Extraction:	(Type) SEPF	Date Extracted:	01/18/2010
Concentrated	Extract Volume: 10000 (uL)	Date Analyzed:	01/19/2010
Injection Vo	lume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup:	(Y/N) N pH:	Sulfur Cleanup:	(Y/N) Y
Acid Cleanup	: (Y/N) Y		
CAS NO.	COMPOUND	CONCENTE (ug/L or	RATION UNITS: µG/L Q
12674-11-2	Aroclor-1016		1.0 U
11104-28-2	Aroclor-1221		1.0 U
111/1-16-5	Aroclor-1232		1.0 U

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg)	μG/L	Q
12674-11-2	Aroclor-1016		1.0	U
11104-28-2	Aroclor-1221		1.0	U
11141-16-5	Aroclor-1232		1.0	U
53469-21-9	Aroclor-1242		1.0	U
12672-29-6	Aroclor-1248		1.0	U
11097-69-1	Aroclor-1254		1.0	ט
11096-82-5	Aroclor-1260		1.0	U

EPA SAMPLE NO.

SB-1 45'-50'

36

36

36

36

36

Ū

U

Lab Name: M	MITKEM LABORATORIES	Contract:	
Lab Code: M	IITKEM Case No.: J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOI	IL/SED/WATER) SOIL	Lab Sample ID:	J0078-04A
Sample wt/vo	ol: 30.1 (g/mL) G	Lab File ID:	E5F4676F.D/E5F4676R.D
% Moisture:	9.0 Decanted: (Y/N) N	Date Received:	01/15/2010
Extraction:	(Type) SONC	Date Extracted:	01/20/2010
Concentrated	d Extract Volume: 10000 (uL)	Date Analyzed:	01/26/2010
Injection Vo	olume:1.0 (uL) GPC Factor:	Dilution Factor:	1.0
GPC Cleanup:	(Y/N) Y pH:	Sulfur Cleanup:	(Y/N) Y
Acid Cleanur	o: (Y/N) Y		
CAS NO.	COMPOUND	CONCENTF (ug/L or	ATION UNITS: µG/KG Q
12674-11-2	Aroclor-1016		36 U
11104-28-2	Aroclor-1221		36 U

11141-16-5

53469-21-9

12672-29-6

11097-69-1

11096-82-5

Aroclor-1232

Aroclor-1242

Aroclor-1248

Aroclor-1254

Aroclor-1260

EPA SAMPLE NO. SB-1 10'-15'

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.: SDG No.: SJ0078	
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: J0078-05A	
Sample wt/vol: 30.1 (g/mL) G	Lab File ID: E5F4677F.D/E5F4677R.D	
% Moisture: 6.0 Decanted: (Y/N) N	Date Received: 01/15/2010	
Extraction: (Type) SONC	Date Extracted: 01/20/2010	
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 01/26/2010	
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor: 1.0	
GPC Cleanup: (Y/N) Y pH:	Sulfur Cleanup: (Y/N) Y	

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/KG (ug/L or ug/Kg) ————————————————————————————————————	Q
12674-11-2	Aroclor-1016	35	ט
11104-28-2	Aroclor-1221	35	U
11141-16-5	Aroclor-1232	35	U
53469-21-9	Aroclor-1242	35	Ū
12672-29-6	Aroclor-1248	35	Ū
11097-69-1	Aroclor-1254	35	U
11096-82-5	Aroclor-1260	35	Ū .

Acid Cleanup: (Y/N) Y

EPA	SAMPLE	NO.	15
DUP	01		

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.: J0078	Mod. Ref No.:	SDG No.: SJ0078
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	J0078-13A
Sample wt/vol: 30.4 (g/mL) G	Lab File ID:	E5F4678F.D/E5F4678R.D
% Moisture: 5.0 Decanted: (Y/N) N	Date Received:	01/15/2010
Extraction: (Type) SONC	Date Extracted:	01/20/2010
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	01/26/2010
Injection Volume: 1.0 (uL) GPC Factor: 1.00	Dilution Factor:	1.0
GPC Cleanup: (Y/N) Y pH:	Sulfur Cleanup:	(Y/N) Y
Acid Cleanup: (Y/N) Y		

CAS NO.	COMPOUND	CONCENTRATION UNITS: µG/KG (ug/L or ug/Kg)	Q
12674-11-2	Aroclor-1016	34	U
11104-28-2	Aroclor-1221	34	U
11141-16-5	Aroclor-1232	34	Ū
53469-21-9	Aroclor-1242	34	U
12672-29-6	Aroclor-1248	34	ט
11097-69-1	Aroclor-1254	34	ט
11096-82-5	Aroclor-1260	34	Ū

lw 3/4/10

		·	

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Contract:

483217 OP

MITKEM

SAS No.:

SDG No.: SJ0078

Matrix (soil/water):

WATER

Case No.:

Mitkem Laboratories

Lab Sample ID:

J0078-01

Level (low/med): MED

Date Received:

01/15/2010

MW-1

% Solids: 0.0

Lab Name:

Lab Code:

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	12.0	U		P
7440-36-0	Antimony	4.2	Ū		P
7440-38-2	Arsenic	3.1	Ū		Р
7440-39-3	Barium	35.9	ø	J	Р
7440-41-7	Beryllium	0.037	Ū		P
7440-43-9	Cadmium	0.50	Ū		P
7440-70-2	Calcium	13000			P
7440-47-3	Chromium	0.98	Ð	ゴ	P
7440-48-4	Cobalt	2.4	3	J	P
7440-50-8	Copper	21.9	7	u	P
7439-89-6	Iron	47.0	ับ		Р
7439-92-1	Lead	2.1	Ū		P
7439-95-4	Magnesium	6790			P
7439-96-5	Manganese	7.7	P	J	P
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	2.9	ø	J	P
7440-09-7	Potassium	1690			P
7782-49-2	Selenium	10.0	Ū		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	32400	,		P
7440-28-0	Thallium	5.7	Ū		P
7440-62-2	Vanadium	0.34	Ū		P
7440-66-6	Zinc	105		u	P

Comments:		i		
	•			

U.S. EPA - CLP

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

DUP 02

Lab Name: Mitkem Laboratories

Contract: 483217 OP

SDG No.: SJ0078

Matrix (soil/water):

WATER

Case No.:

SAS No.: Lab Sample ID:

Lab Code: MITKEM

J0078-02

Level (low/med): MED

Date Received:

01/15/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

·CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	12.0	Ū		P
7440-36-0	Antimony	4.2	Ū		P
7440-38-2	Arsenic	3.1	Ū		P
7440-39-3	Barium	34.7	B	J	P
7440-41-7	Beryllium	0.037	υ		P
7440-43-9	Cadmium	0.50	U		P
7440-70-2	Calcium	12400			P
7440-47-3	Chromium	1.1	₽	J	P
7440-48-4	Cobalt	2.6	B	J.	P
7440-50-8	Copper	23.1	B	u	P
7439-89-6	Iron	47.0	Ū		P
7439-92-1	Lead	2.1	U		P
7439-95-4	Magnesium	6780			P
7439-96-5	Manganese	31.3	B	J	P
7439-97-6	Mercury	0.056	Ū		CV
7440-02-0	Nickel	3.1	#5	ゴ	P
7440-09-7	Potassium	1700			P
7782-49-2	Selenium	10.0	Ū		P
7440-22-4	Silver	2.4	Ū		P
7440-23-5	Sodium	32300			P
7440-28-0	Thallium	5.7	Ü		P
7440-62-2	Vanadium	0.34	Ū		P
7440-66-6	Zinc	103		u	P

Co	mm	en	t	s	:
----	----	----	---	---	---

U.S. EPA - CLP

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SB-1 45'-50'

Lab Name: Mitkem Laboratories

Contract:

483217 OP

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: SJ0078

Matrix (soil/water): SOIL

Lab Sample ID: J0078-04

Level (low/med): MED

Date Received: 01/15/2010

% Solids: 91.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	1960			P
7440-36-0	Antimony	0.17	18	V UJ	, P
7440-38-2	Arsenic	1.1		u	P
7440-39-3	Barium	10.6		*5	P
7440-41-7	Beryllium	0.031	В	J	P.
7440-43-9	Cadmium	0.012	U	-	P.
7440-70-2	Calcium	88.7		u	P
7440-47-3	Chromium	20.7		ツブ	Р
7440-48-4	Cobalt	1.7	P	J	Р
7440-50-8	Copper	35.9		V.T	P
7439-89-6	Iron	4850		*	P
7439-92-1	Lead	1.5		F	P
7439-95-4	Magnesium	475			P
7439-96-5	Manganese	138		f	P
7439-97-6	Mercury	0.0056	Ū		CA
7440-02-0	Nickel	6.6			P
7440-09-7	Potassium	236		1	P
7782-49-2	Selenium	0.71	U		P
7440-22-4	Silver	0.075	บ		P
7440-23-5	Sodium	37.0	Br		P
7440-28-0	Thallium	0.22	Ū		P
7440-62-2	Vanadium	4.6		PJ	P
7440-66-6	Zinc	9.4		И	P

Comm	~~	-	-	_

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

SB-1 10'-15'

Lab Name: Mitkem Laboratories

MITKEM

Contract:

483217 OP

Lab Code:

Case No.:

SOIL

SAS No.:

SDG No.: SJ0078

Matrix (soil/water):

Lab Sample ID:

J0078-05

Level (low/med): MED

Date Received:

01/15/2010

% Solids: 94.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	3110			P
7440-36-0	Antimony	0.16	U/	NUJ	P
7440-38-2	Arsenic	0.83	Ø	u	P
7440-39-3	Barium	15.8		炸丁	P
7440-41-7	Beryllium	0.13	B	J	P
7440-43-9	Cadmium	0.012	Ū		P
7440-70-2	Calcium	2950		J	P
7440-47-3	Chromium	7.0		ダブ	P
7440-48-4	Cobalt	3.6			P
7440-50-8	Copper	42.5		P J	P
7439-89-6	Iron	7310		A	P
7439-92-1	Lead	1.8	-	Į.	P
7439-95-4	Magnesium	2390		J	P
7439-96-5	Manganese	234		1	P
7439-97-6	Mercury	0.0052	Ü		CV
7440-02-0	Nickel	7.4			P
7440-09-7	Potassium	275		1 .	P
7782-49-2	Selenium	0.72	U		P
7440-22-4	Silver	0.070	U		P
7440-23-5	Sodium	20.4	B'	J	P
7440-28-0	Thallium	0.22	Ü		P
7440-62-2	Vanadium	7.1		y J	P
7440-66-6	Zinc	11.1		u	P

Comments	:

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

1

Lab Name: Lab Code: MITKEM

Mitkem Laboratories

Contract:

483217 OP

SDG No.: SJ0078

Matrix (soil/water):

SOIL

Case No.:

SAS No.: Lab Sample ID:

J0078-13

Level (low/med): MED

Date Received:

01/15/2010

% Solids: 95.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	3190			P
7440-36-0	Antimony	0.15	Jav	N WJ	P
7440-38-2	Arsenic	1.2		u	P
7440-39-3	Barium	17.3		メナ	P
7440-41-7	Beryllium	0.082	1	J	P
7440-43-9	Cadmium	0.012	Ū		P
7440-70-2	Calcium	140		J	Р
7440-47-3	Chromium	6.5		ダブ	Р
7440-48-4	Cobalt	2.4			P
7440-50-8	Copper	44.7		ダブ	P
7439-89-6	Iron	5390		**	P
7439-92-1	Lead	2.3		*	Р
7439-95-4	Magnesium	716		T	Р
7439-96-5	Manganese	173		*	P
7439-97-6	Mercury	0.0058	U		CV
7440-02-0	Nickel	7.2			Р
7440-09-7	Potassium	310	. ,	/	P
7782-49-2	Selenium	0.75	Ū		P
7440-22-4	Silver	0.068	Ü		P
7440-23-5		17.8	ø	J	P
7440-28-0	Thallium	0.23	Ü		P
7440-62-2	Vanadium	6.5			P
7440-66-6	Zinc	9.5		И	P

Comments:		*	·	
	•	•		