LEGGETTE, BRASHEARS & GRAHAM, INC. PROFESSIONAL GROUND-WATER CONSULTANTS

REMEDIAL INVESTIGATION REPORT VOLUME II

ROWE INDUSTRIES GROUND-WATER CONTAMINATION SITE

SAG HARBOR, NEW YORK

JULY 1992

WILTON

ST. PAUL MINNESOTA

RAMSEY NEW JERSEY TAMPA FLORIDA

EXTON PENNSYLVANIA FISHKILL NEW YORK

SIOUX FALLS SOUTH DAKOTA ALBUQUERQUE NEW MEXICO

NASHUA NEW HAMPSHIRE

TABLE 1

Ground-Water Quality for Soffel Residence1/

Parameter	House well January 12, 1983 (40 feet deep)2/	House well June 8, 1983 (40 feet deep)2/	New well June 8, 1983 (95 feet deep) ² /
Chloroform	<5	<5	<5
1,1,1-Trichloroethane	2,300	780	3
Carbon Tetrachloride	<1	<1	<1
1,1,2-Trichloroethylene	1,200	470	6
Chlorodibromomethane	<2	<2	<2
Bromoform	<5	<5	<5
Tetrachloroethylene	100	20	<2
1,1,2-Trichloroethane	<5	<5	<5
Benzene	<3	<3	<3
Toluene	<3	<3	<3
Total xylenes	<3	<3	<3
Ethylbenzene	<3	<3	<3
Freon 113	<4	<4	<4

¹/ Located on plate 1 as House 1.

 $[\]frac{1}{2}$ All concentrations reported in ug/l (parts per billion).

 < Denotes less than.</pre>

TABLE 2

SCDHS Laboratory Analysis for Sludge Taken from Pipes Leading to Dry Well A August 1, 1984

Parameter	Concentration1/
Methylene chloride	620
Chloroform	<25
1,1,1-Trichloroethane	3,800
Carbon tetrachloride	<5
1,1,2-Trichloroethylene	500
Chlorodibromomethane	<15
Bromoform	<25
Tetrachloroethylene	170
1,1,2-Trichloroethane	<25
Benzene	<250
Toluene	<250
Total xylenes	600
Ethylbenzene	<250
Freon 113	<20
P-ethyltoluene	280
1,2,4-Trimethylbenzene	640

¹/ All values reported in parts per billion.

< Denotes less than.

TABLE 3

Laboratory Parameters for Onsite Soil Borings Collected During Phase I and Phase II

Boring no.	Depth interval	Volatile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Cyanide	Freon 113	Split samples taken by Alliance Technology					
	PHASE I													
B-1	2 - 4	х						Х						
B-1	12 - 14	Х						X						
B - 2	.5 - 2.5	X						X						
B-2	13 - 15	Х	Х	Х	Х	Х	Х	Х						
B-2	15 - 17	Х						X						
B-3	14 - 16 (clay)	Х						Х						
B-3	14 - 16	Х	Х	Х	Х	Х	Х	X	* (12 - 14)					
B-3	16 - 18	Х						X						
B-4	8 - 10	Х						X						
B-4	22 - 24	Х						X						
B-5	4 - 6	Х						X						
B-5	12 - 14	X						X						
B-6	4 - 6	Х						Х						
B-6	12 - 14	Х						X	*					
B-7	0 - 2	Х						Х						

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Laboratory Parameters for Onsite Soil Borings Collected During Phase I and Phase II

Boring no.	Depth interval	Volatile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Cyanide	Freon 113	Split samples taken by Alliance Technology
B-7	2 - 4	х						х	
B-8	0 - 2	х						х	
B-8	2 - 4	х						х	
				PHASE II					
B-9	6 - 8 19 - 21 27 - 29	x x x						X X X	* * *
B-10	4 - 6 12 - 14 24 - 26 42 - 44	X X X X	х	х	х	х	х	х	*
B-13	12 - 14	х		_				х	
B-15	2 - 4	х						х	
B-16	2 - 4	х						х	
B-45	4 - 6 24 - 26	x x						x x	
B-47	26 - 28	х						X	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Laboratory Parameters for Onsite Soil Borings Collected During Phase I and Phase II

Boring no.	Depth interval	Volatile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Cyanide	Freon 113	Split samples taken by Alliance Technology
B-48	2 - 4 8 - 10 14 - 16					X X X			

TABLE 4

Turbidity Measurements During Development of Monitor Wells

Wells	NTU	Measured after number of gallons removed	Total gallons removed
New Wells			
MW-42A	26	180	225
MW-42B	30	190	
MW-42C	21		350
MW-43A	1	80	90
MW-43B	2	225	250
MW-43C	1	250	300
SCDHS Wells			
N-6	3	45	45
N-11	3	25	25
N-16	4	45	50
N-17	>100	35	50
N-19	2	50	50
N-20	>50		35
N-24			25
N-25			23
N-26	1	65	72.5
N-27	1	50	65
N-28	3	55	55
N-32	2	55	60
N-33	86	10	25
N-36	>50		28
N-37	2	40	40
N-39	12	25	35

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Turbidity Measurements During Development of Monitor Wells

Wells	NTU	Measured after number of gallons removed	Total gallons removed
N-40	>50		15
MW-44A	4	120	140
MW-44B	10	233	273
MW-44C	37	405	446
MW-45A	32	235	235
MW-45B	25	460	460
MW-46A	19	200	209
MW-46B	35	1,430	1,525
MW-47A	15	170	670
MW-47B	39	425	855
MW-48A	16	180	220
MW-48B	32	333	371
MW-49A	5	300	320
MW-49B	2	200	465
MW-49C	3	835	975
MW-50A	0.6	480	520
MW-50B	0.5	440	480
MW-50C	8.2	400	480
MW-28B	28	309	309
MW-51A	9.6	110	150
MW-52A	>100	145	180

> Denotes greater than.

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Volatile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Dissolved metals	Cyanide	Freon 113	Split samples taken by Alliance Technology
·			01	NSITE					
Round 1									
N-24	х							х	
N-25	х							х	
N-26	x							х	*
N-27	х	x	х	х	Х		х	х	*
N-28	х							х	*
N-32	Х							х	
N-33	Х							х	*
Round 2									
N-24	х							х	
N-25	х							х	
N-26	х							х	*
N-27	х				х	х		х	*
N-28	х							х	*
N-32	х							х	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Volatile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Dissolved metals	Cyanide	Freon 113	Split samples taken by Alliance Technology
N-33	х							Х	
			OF	FSITE					
Round 1									
N-06	х	х	х	х	x		x	х	
N-11	х							х	*
N-16	х							х	
N-17	х	х	х	х	х		X	х	*
N-19	х						_ x	х	
N-20	х							х	
N-36	x							х	
N-37	Х							х	
N-39	х	X	х	х	x		х	Х	
N-40	х							х	
MW-42A	х	х	х	х	х		Х	Х	
MW-42B	х	х	Х	х	х		Х	х	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Volstile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Dissolved metals	Cyanide	Freon 113	Split samples taken by Alliance Technology
MW-42C	х	х	Х	х	х		х	х	
MW-43A	х	х	х	х	х		х	х	
MW-43B	Х	Х	х	х	х		х	х	*
MW-43C	х	х	х	х	Х		х	х	
Round 2									
N-06	NA	NA	NA	NA	NA	NA	NA	NA	
N-11					х	х			*
N-16	NA	NA	NA	NA	NA	NA	NA	NA	
N-17	NA	NA	NA	NA	NA	NA	NA	NA	
N-19					х	х			
N-20	NA	NA	NA	NA	NA	NA	NA	NA	
N-36	х							х	
N-37	х							х	
N-39	х				х	х	_	х	*
N-40	х							х	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Volatile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Dissolved metals	Cyanide	Freon 113	Split samples taken by Alliance Technology
MW-42A	х				Х	Х		х	*
MW-42B	X				X	х		х	*
MW-42C	Х				Х	х		х	
MW-43A	х				Х	х		х	
MW-43B	х				Х	х		х	*
MW-43C	х				Х	х		х	
			RESIDEN	TIAL WELL	s				
Round 1									
1 (Noyack Road)	х	х	Х	х	х		Х	х	
2 (Noyack Road)	Х							х	
6 (Caroll Street)	х	Х	x	х	Х		х	х	
7 (Carroll Street)	Х							х	
24 (Sag Harbor/Bridgehampton Turnpike)	х							х	
9 (Hildreth Street)	х							х	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Analytical Parameters for the Two Sets of Ground-Water Samples Obtained During Phase I

Well no.	Volatile organics	Semi-volatile organics	Pesticides	PCB's	Metals	Dissolved metals	Cyanide	Freon 113	Split samples taken by Alliance Technology
10 (Hildreth Street)	х							x	
25 (Sag Harbor/Bridgehampton Turnpike)	Х							х	
Round 2									
29 (Lily Pond Road)	Х				х			х	*
44 (Lily Pond Road)	х				х			х	

^{*} Denotes location of split sample taken by Alliance Technologies.

NA Not analyzed.

NABISCO BRANDS INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Current Homeowner Names and House Identifications (as shown on plate 2)

Homeowner	Street	House location
J. Distefano	Carroll Street	14
S. Distefano	Carroll Street	12
S. Distefano	Carroll Street	13
W. Page	Carroll Street	7
G. Page	Carroll Street	8
J. Tedesco	Carroll Street	5
G. Ward	Carroll Street	17
S. Willson	Carroll Street	6
B. Aldrich	Noyack Road	1
C. Soffel	Noyack Road	2
M. Vacca	Noyack Road	36
R. Reynolds	Brick Kiln Road	4
C. Shipkowski	Hildreth Street	9
P. Mott	Hildreth Street	10
A. Cicale	Sag Harbor Turnpike	23
A. Fabiano	Sag Harbor Turnpike	24
I. Lacina	Sag Harbor Turnpike	22
SHI	Sag Harbor Turnpike	25
M. Tierney (Gingerbread)	Sag Harbor Turnpike	21
Christensen	Lily Pond Road	29
Hagerman	Lily Pond Road	44

TABLE 7

Well no.	Volatile organics	Metals	Freon 113	Split samples taken by Alliance Technology
ONSITE				
Round 1				
N-24	х	х	X	
N-27	Х	X	Х	
N-28A	Х	Х	Х	
MW-28B	Х	Х	Х	*
N-32	Х	X	Х	
MW-44A	Х	X	Х	
MW-44B	Х	Х	Х	*
MW-44C	Х	Х	Х	
MW-45A	Х	Х	Х	*
MW-45B	Х	Х	X	*
MW-46A	Х	Х	Х	
MW-46B	Х	Х	Х	
MW-47A	Х	X	Х	
MW-47B	х	X	Х	
Round 2				
N-24	х		Х	
N-27	х	_	Х	
N-28A	х		Х	
MW-28B	х		Х	
N-32	х		х	
N-33	х		х	
MW-44A	х		Х	
MW-44B	Х		Х	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Volatile organics	Metals	Freon 113	Split samples taken by Alliance Technology
MW-44C	x		Х	
MW-45A	Х		Х	
MW-45B	X	<u>x</u> 1/	Х	
MW-46A	Х		Х	
MW-46B	Х		X	
MW-47A	Х		X	
MW-47B	X		Х	
MW-51A	Х		Х	
MW-52A	X		X	
OFFSITE				
Round 1				
N-06	Х	Х	Х	
N-36	X	X	Х	
N-37	Х	Х	Х	
N-39	Х	X	Х	
N-40	х	Х	Х	
MW-42A	Х	X	Х	
MW-42B	Х	Х	X	
MW-42C	Х	X	Х	
MW-43A	Х	Х	Х	
MW-43B	Х	X	X	
MW-43C	х	Х	Х	
MW-48A	Х	Х	X	*
MW-48B	х	Х	Х	*

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Analytical Parameters for the Two Sets of Ground-Water Samples Obtained During Phase II

Well no.	Volatile organics	Metals	Freon 113	Split samples taken by Alliance Technology
MW-49A	х	х	х	
MW-49B	Х	Х	X	*
MW-49C	Х	Х	X	
MW-50A	Х	Х	Х	*
MW-50B	Х	Х	Х	*
MW-50C	Х	X	Х	
#10 (Hildreth Street)	Х	Х	Х	
Round 2				
N-16	х		Х	
MW-48A	х	x2/	Х	
MW-48B	Х	<u>x2</u> /	Х	
MW-49A	Х		X	
MW-49B	Х		Х	
MW-49C	Х		Х	
MW-50A	Х		Х	
MW - 50B	х		Х	
MW-50C	Х		Х	

^{1/} Analyzed for antimony only.

 $[\]frac{2}{}$ Analyzed for lead only.

TABLE 8

Effects of Tides on Ground-Water Elevations February 22, 1990

Well no.	Time (hour)	Water elevation (feet)
N-20	0927 1232 1426	2.75 2.73 2.67
N-19	0935 1239 1429	1.63 1.32 1.21
MW-43A	0951 1252 1434	5.24 5.23 5.24
MW-43B	0956 1253 1437	5.08 5.08 5.08
MW-43C	0958 1258 1438	5.03 5.03 5.03
Stream (adjacent to N-20)	0928 1234 1427	2.24 2.24 2.24

TABLE 9

Well no.	Measuring point elevation (toc)	02/01/90	02/09/90	04/05/90	05/24/90	07/02/90	08/14/90	09/06/90	10/09/90	11/16/90
				0NS	ITE					
N-23	12.89			9.82	9.80	9.35	8.90	8.47	8.28	8.48
N-24	27.24	9.12	9.33	9.37	9.32	8.85	8.47	8.00	7.80	7.59
N-25	25.44	9.20	9.50	9.45	9.88	*	*	*	*	*
N-26	25.18	9.56	9.78	9.79	9.80	9.30	8.84	8.43	8.21	8.00
N-27	24.90	9.65	9.87	9.89	9.86	9.40	8.94	8.51	8.31	8.08
N-28	26.76	9.68	9.77	9.78	9.83	9.36	8.83	8.39	8.20	7.99
N-31	28.91	9.15	1	9.40	9.38	10.48				
N-32	32.12	8.94	9.40	9.18	9.20	8.73	8.29	7.92		8.69
N-33	22.43	9.76	9.96	9.98	9.95	9.44	9.03	8.60	8.44	8.16
				OFFS	ITE					
N-06	17.36	4.58	4.76	4.79	4.73	4.47	4.19	4.08	3.84	3.67
N-11	23.10	4.98	5.22	5.20	5.19	4.80	4.72	4.47	4.25	4.06
N-16	19.92	6.78	7.03	6.92	6.97	6.55	6.29	5.93	5.75	5.59
N-17	17.57	6.48	7.66	6.60	6.58	6.18	6.01	5.59	5.41	4.25

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Measuring point elevation (toc)	02/01/90	02/09/90	04/05/90	05/24/90	07/02/90	08/14/90	09/06/90	10/09/90	11/16/90
N-19	10.65	1.91	1.47	2.53	2.21	2.25	1.71	2.06	1.72	1.50
N-20	5.00	3.04	3.10	3.39	3.23	3.09	3.94	2.80	2.65	2.40
N-36	26.27	8.59	8.81	8.77	8.80	8.28	7.95	7.57	7.38	7.15
N-37	31.47	8.62	8.85	8.79	8.96	8.56	8.07	7.82	7.58	7.41
N-39	27.19	8.52	8.80	8.71	8.76	8.25	7.89	7.50	7.32	7.10
N-40	25.11	8.51	8.72	8.71	8.75	8.23	7.88	7.52	7.29	7.09
MW-42A	22.80	7.02	7.30	7.16	7.22	6.78	6.47	6.18	5.96	5.79
MW-42B	23.06	7.18	7.42	7.33	7.38	6.93	6.63	6.30	6.10	5.90
MW-42C	22.98	7.44	7.70	7.62	7.68	7.21	6.89	6.56	6.36	6.15
MW-43A	22.81	5.33	5.61	5.54	5.59	5.22	4.94	4.71	4.52	4.34
MW-43B	22.97	5.21	5.45	5.42	5.46	5.12	4.67	4.68	4.43	4.24
MW-43C	23.06	5.17	5.40	5.37	5.43	5.09	4.76	4.63	4.39	4.21
Ligonee Brook at N-20	5.87		2.38	2.29	2.27	2.34	2.30	2.18	2.23	2.28

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Measuring point elevation (toc)	02/01/90	02/09/90	04/05/90	05/24/90	07/02/90	08/14/90	09/06/90	10/09/90	11/16/90
N-19	10.65	1.91	1.47	2.53	2.21	2.25	1.71	2.06	1.72	1.50
N-20	5.00	3.04	3.10	3.39	3.23	3.09	3.94	2.80	2.65	2.40
N-36	26.27	8.59	8.81	8.77	8.80	8.28	7.95	7.57	7.38	7.15
N-37	31.47	8.62	8.85	8.79	8.96	8.56	8.07	7.82	7.58	7.41
พ-39	27.19	8.52	8.80	8.71	8.76	8.25	7.89	7.50	7.32	7.10
N-40	25.11	8.51	8.72	8.71	8.75	8.23	7.88	7.52	7.29	7.09
MW-42A	22.80	7.02	7.30	7.16	7.22	6.78	6.47	6.18	5.96	5.79
MW-42B	23.06	7.18	7.42	7.33	7.38	6.93	6.63	6.30	6.10	5.90
MW-42C	22.98	7.44	7.70	7.62	7.68	7.21	6.89	6.56	6.36	6.15
MW-43A	22.81	5.33	5.61	5.54	5.59	5.22	4.94	4.71	4.52	4.34
MW-43B	22.97	5.21	5.45	5.42	5.46	5.12	4.67	4.68	4.43	4.24
MW-43C	23.06	5.17	5.40	5.37	5.43	5.09	4.76	4.63	4.39	4.21
Ligonee Brook at N-20	5.87		2.38	2.29	2.27	2.34	2.30	2.18	2.23	2.28

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

1990 Monthly Ground-Water Elevations

Well no.	Measuring point elevation (toc)	02/01/90	02/09/90	04/05/90	05/24/90	07/02/90	08/14/90	09/06/90	10/09/90	11/16/90
Ligonee Brook at west side of Bridgehampton- Sag Harbor Turnpike	8.58			4.62	4.08	4.89				4.46

- * Paved over July 2, 1990.
- -- Not measured.

toc Measured from top of casing.

TABLE 10

Well no.	Measuring point elevation (too)	01/29/91	02/26/91	03/28/91	04/25/91	05/28/91	07/02/91	07/25/91	08/27/91	09/24/91	10/25/91	12/16-17/91
					0	NSITE						
N-23	12.89	8.60	8.26	9.04	9.06	8.95	8.01	7.46			7.59	7.70
N-24	27.24	8.20	7.80	8.61	8.64	8,43	7,63	7.23	7.96	7.44	7.17	7.31
N-25	25.44	•	•		•	_ *		*				
м-26	25.18	8.53	8.19	8,98	8.99	8.77	7.97	7.40		7.71	7.54	7.65
N-27	24.90	8.63	8.29	9.00	9.10	8.89	8.07	7.58	8.51	7.85	7.64	7.73
N-28A	26.76	8.55	8.20	8.97	9.02	8.84	8.01	7.48	8.38	7.75	7.57	7.64
MW-28B_	26.74						8.17	7.61	8.61	7.92	7.73	_ 7.80
พ-31	28.91											
N-32	32.12	8.13	7.72	8.50							7.28	7.17
N-33	22.43	8.73	8.34	9.20	9.17	8.97	8.14	7.61	8.57	7.87	7.71	7.88
MU-44A	29.33				<u>-</u> _		7.59	7.06	7.90	7.31	7,11	7.23
MW-44B	29.39						7.54	6.99	7.95	7.25	7.10	7,19
MW-44C	29.64						7.60	7.06	7.99	7.32	7.15	7.26
MW-45A	27.90						8.46	7.90	8.84	8.18	8.01	8.09
MW-458	27.67						8.39	7.82	8.79	8.09	7.93	8.04
MU-46A	15,84			•	••		8,08	7.53	8.48	7.82	7.67	7.77
MV-468	16.40			•		••	8.15	7.60	8.56	7.89	7.71	10.76
MW-47A	14.98			••	•		7.87	7.35	8.29	7.63	7.45	7.58
MW-47B	15.10						7.82	7.28	8,26	7.57	7.40	7.53

TABLE 10 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Measuring point elevation (toc)	01/29/91	02/26/91	03/28/91	04/25/91	05/28/91	07/02/91	07/25/91	08/27/91	09/24/91	10/25/91	12/16-17/91
MW-51A	26.21			••		••					7.88	7.94
MW-52A	26.81					••					7.87	7.98
					OF	FSITE						
N-06	17.36	4.17	3.96	4.62	4.57	5.24	3.91	3.62	4.13	3.78	3.72	3.60
N <u>-11</u>	23.10	4.55	4.30	5.03	4.98		4.27	3.98	4.54	4,13	4.05	3.28
N-16	19.92										5.33	5.38
N-17	17.57										5.22	5.25
ม-19	10.65	1.89	2,06	2.11	1.91		1.77	1.75	1.81	1.88	1.60	1.40
N-20	5.00	_ 2.81	2.71	3.14	3.07	2.80	2.50	2.36	2.66	2.51	2.39	2.33
N-36	26.27	7.76	7.38	8,16	8.17	7.93	7.17	6.67	7.56	6.91	6.76	6.88
N-37	31.47	7.97	7.59	8.35	8.38	8.20	7.49	7.09	7.69	7.12	6.96	7.02
_N-39	27.19	7.71	7.33	8.12	8.13	7.91	7.16	6.64	7.49	6.87	6.72	6.83
N-40	25.11	7.71	7.31	8.09	8.11	7.89	7.15	6.64	7.53	6.87	6.72	6.84
MW-42A	22.80	6.41	6.00	6.78	6.76	6.50	5.91	5.45	6.23	5.64	5.53	5.59
MW-42B	23.06	6.46	6.13	6.91	6.90	6,61	6.03	5.57	6.34	5.77	5.65	5.73
MW-42C	22.98	6.70	6.38	7.09	7.28	6.89	6.27	5.81	6.28	6.00	5.87	5,94
MW-43A	22.81	4.83	4.59	5.31	5.27	4.95	4.53	4.18	4.81	4,35	4.27	4.23
MW-43B	22.97	4.74	4.48	5.20	5.16	4.85	4.43	4.15	_4.72_	4.26	4.20	4.14
MW-43C	23.06	4.72	4.45	5.17	5.11	4.86	4.41	4.07	4.98	4.26	4.16	4.11

TABLE 10 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

1991 Monthly Ground-Water Elevations

Well no.	Measuring	01/29/91	02/28/91	03/28/91	04/25/91	05/28/91	07/02/91	07/25/91	08/27/91	09/24/91	- 10/25/91	12/16-17/91
	point elevation (toc)											
MV-48A	31.26						8.96	8.38	9.09	8.63	8,45	8.51
MW-488	32.13						8.93	8.34	9.34	8.61	8.43	8,52
MU-49A	11.75							2.90	3.19	3.06	2.85	2.80
MW-498	11.75							2.89	3.19	3,05	2.83	2.77
MW-49C	11.86							2.88	3.17	3.07	2.82	2.78
MW-50A	7.71							1.64	1.82	1.78	1.57	1.44
MW-50B	7.58							1.66	1.84	1.81	1.60	1.45
MW-50C	7.31							1.66	1.83	1.82	1.64	1.46
Pond Gauge	10.52	·-					7.32	6.82	7.72	7.12	6.97	7.02
Ligonee Brook at N-20	5.87	2.22	2.17	2.25	2.44	2.14	2.05	1.97	2.25	2.15	2.17	2.19
Ligonee Brook at west side of Bridgehampton-Sag Marbor Turnpike	8.58	4.39		4.53				4.08	4.58		4.34	

Paved over July 2, 1990.
Not measured.
Top of casing.

labis.tbl/91-46

TABLE 11

Effects of Tides on Ground-Water Elevations August 27, 1991

Well no.	Time	Water elevation (feet)
MW-49A	0633 0729 0828 0918 1126 1235	3.13 3.10 3.10 3.10 3.20 3.25
	1330 1445 1607 1805 1834	3.28 3.26 3.19 3.10 3.08
MW-49B	0635 0730 0830 0920 1129 1236 1332 1456 1604 1807 1836	3.08 3.06 3.07 3.09 3.20 3.24 3.27 3.24 3.19 3.06 3.03
MW-49C	0637 0732 0833 0923 1131 1239 1334 1458 1607 1809 1838	3.07 3.06 3.06 3.08 3.20 3.22 3.26 3.23 3.17 3.04 3.04

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Effects of Tides on Ground-Water Elevations August 27, 1991

Well no.	Time	Water elevation (feet)
MW-50A	0620 0716 0817 0927 1116 1224 1319 1444 1551	1.68 1.65 1.62 1.63 1.74 1.82 1.84 1.86 1.86
MW-50B	1822 0623 0720 0820 0929 1118 1226 1321 1446 1553 1748 1825	1.62 1.67 1.65 1.63 1.64 1.74 1.84 1.89 1.89 1.89 1.84 1.66 1.64
MW-50C	0625 0723 0822 0931 1120 1230 1323 1448 1555 1750 1828	1.66 1.63 1.63 1.65 1.76 1.85 1.89 1.90 1.83 1.65

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Piezometer Measurements

	Measuring point elevation	07/24/91	07/25/91	08/27/91	09/24/91	10/25/91
Piezometer No. 1	9.26					
Ground-water elevation Surface-water elevation		5.57 Dry	5.58 Dry	5.48 Dry	5.81 Dry	5.71 Dry
Piezometer No. 2	6.90					
Ground-water elevation Surface-water elevation		4.22 4.07	4.23 4.06	4.80 4.15	4.40 4.09	4.32 4.10
Piezometer No. 3	4.25					
Ground-water elevation Surface-water elevation		2.88	2.90 1.98	3.14 2.05	3.00 2.10	2.87 2.09
Piezometer No. 41/	9.02					
Ground-water elevation Surface-water elevation						7.00 7.07
Piezometer No. 52/						
Depth to ground water3/ Depth to surface water				0.45 0.83		

^{1/} Installed permanently in onsite pond.

^{2/} Installed temporarily on August 24, 1991 in Sag Harbor Cove.

^{3/} Measurement taken from top of piezometer.

NABISCO BRANDS INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Hydraulic Conductivities

Well no.	Hydraulic conductivity (feet/day)
MW-42A	226
MW-42B	250
MW-42C	43
MW-43A	236
MW-43B	155
MW-43C	230
MW-44A	253
MW-44C	95
MW-45A	308
MW-46A	23
MW-47A	315
MW-47B	208
MW-49A	171

NABISCO BRANDS INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Calculated Vertical Gradients (foot/foot)

Well cluster	Well	Calculated vertical gradient					
	OFFSITE						
MW-421/	A to B B to C A to C	+.0022 +.0088 +.0047					
MW-431/	A to B B to C A to C	0025 0015 0022					
MW-482/	A to B	0004					
MW-492/	A to B B to C A to C	0003 0003 0003					
MW-502/	A to B B to C A to C	+.0006 +.0015 +.0009					
	ONSITE						
MW-282/3/	A to B	+.0045					
MW-44 ² /	A to B B to C A to C	0004 +.0014 +.0007					
MW-452/	A to B	0022					
MW-46 ² /	A to B	+.0014					
MW-472/	A to B	0020					

^{1/} Calculations based on measurements collected February 9, 1990.

^{2/} Calculations based on measurements collected October 25, 1991.

 $[\]underline{3}/$ Cluster consists of SCDHS shallow well and LBG intermediate well.

⁺ Upward gradient.

⁻ Downward gradient.

TABLE 15

Characteristics of Onsite Borings

Boring no.	Date completed	Depth below grade (feet)	Depth to water (feet)	Geology	
B-1	9/28/89	17.5	16.1	Coarse sand fining down boring; some gravel; trace clay bands from 15 to 17.5 feet	
B-2	9/28/89	17	16.3	Medium to fine sand; some gravel; clay bands 0.5 to 1 foot thick from 12.5 to 15.5 feet.	
B-3	9/28/89	18	16.9	Medium to fine sand and gravel; clay bands from 13 to 18 feet.	
B-4	9/29/89	26	25.2	Medium to coarse sand; some gravel; clay from 11 to 14 feet; material coarsens down spoon at 16 feet.	
B-5	9/29/89	16	14.5	Medium to fine sand; some gravel; trace of clay bands from 10.5 to 12 feet.	
B-6	9/30/89	16	14.5	Medium to very fine sand; trace of gravel; trace of clay at 11 feet and from 14 to 16 feet.	
B-7	9/30/89	4	3	Medium to fine sand; organic rich (top 0.5 feet); coarser material at 3 feet.	
B - 8	9/39/89	6	5	Medium to fine sand; organic rich (top 5 feet).	
B-9	5/16/91	45	18.6	Fine to coarse sand; some medium to fine gravel; trace silt; clay bands 0.50 to 0.75 feet thick from 22.5 to 26 feet and 38 feet.	
B-10	5/20/91	46	22.0	Fine to coarse sand; some medium to fine gravel; silty clay bands 0.15 to 0.70 feet thick from 25 to 45 feet.	
B-11	5/20/91	14		Medium to very fine sand; some silt; trace medium to very fine gravel.	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Characteristics of Onsite Borings

Boring no.	Date completed	Depth below grade (feet)	Depth to water (feet)	Geology
B-12	5/21/91	14		Medium to fine sand; trace medium to fine gravel; clay band at 13 feet.
B-13	5/21/91	14		Medium to fine sand; trace medium to fine gravel; clay layer 0.50 feet thick at 13 feet.
B-14	5/21/91	14		Medium to fine sand; trace silt and fine gravel; clay band at 13 feet.
B-15	6/4/91	10		Medium to fine sand; some medium to fine gravel; trace cobble.
B-16	6/5/91	10		Medium to fine sand; trace fine to very fine gravel; trace silt.
B-28 (well cluster)	5/24/91	50	18	Medium to fine sand; some very fine and coarse sand; trace medium to fine gravel; clay bands from 23 to 29 feet; trace silt and clay from 34 to 50 feet.
B-44 (well cluster)	6/3/91	69	25	Medium to fine sand; some coarse and very fine sand; some medium to coarse gravel; trace silt; clay band 0.50 feet thick at 36 and 44.5 feet.
B-45 (well cluster)	5/22/91	52	18	Fine to coarse sand; trace medium to fine gravel; trace silt and very fine sand; clay bands from 11, 18 and 51 feet.
B-46 (well cluster)	5/29/91	32	7.5	Fine to coarse sand; trace medium to fine gravel; silty clay bands at 6.5, 14.5, 16 and 29.5 feet.
B-47 (well cluster)	5/30/91	40	5	Fine to coarse sand (coarsens down borehole); trace medium to fine gravel and silt; clay at 27 feet.

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Characteristics of Onsite Borings

Boring no.	Date completed	Depth below grade (feet)	Depth to water (feet)	Geology
B-51A (well cluster)	10/22/91	27	18	Very fine to coarse sand; trace fine gravel; silty clay at 18.5, 22, 24.5 and 27.5 feet.
B-52A (well cluster)	10/23/91	29	19	Very fine to medium sand; little fine gravel; silty clay at 18 feet.

TABLE 16

 $\mathtt{PID}^{\underline{1}}$ Readings for Onsite Borings and Pilot Holes

Boring no.	Depth Interval (feet)	PID measurement (ppm)2/	Analysis performed
	РНА	SE I	
B-1 (East parking lot)	0 - 2.5 2.5 - 5.0 5.0 - 7.5 7.5 - 10 10 - 12.5 12.5 - 15 15 - 17.5	0.3 0.6 0.4 0.2 0.4 0.1 0.2	*
B-2 (East parking lot)	0.5 - 2.5 3 - 5 5 - 7 7 - 9 11 - 13 13 - 15 15 - 17	7.0 4.5 0.4 0.1 3.2 6.5	* ** *
B-3 (East parking lot)	0.5 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 14 - 16 (clay) 16 - 18	3.0 2.0 20.0+ 0.5 20.0+ 1.0 30.0 30.0 60.0 7.0	*** ** * *
B-4 (Loading dock)	0.5 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 18 - 20 20 - 22 22 - 24	0.0 0.0 0.1 0.0 0.2 0.0 0.1 0.1 0.1 0.1 0.0	*

TABLE 16 (continued)

PID Readings for Onsite Borings and Pilot Holes

Boring no.	Depth interval (feet)	PID measurement (ppm)2/	Analysis performed
B-5 (East parking lot)	0.5 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 10 - 12 (clay) 12 - 14	0.3 0.2 1.0 0.0 1.0 0.0 0.8 0.0	*
B-6 (East parking lot)	0.5 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16	0.0 0.0 0.4 0.0 0.0 0.0 0.0	*
B-7 (Dry Well A area)	0 - 2 2 - 4	0.0	*
B-8 (Dry Well A area)	0 - 2 2 - 4	0.0	*

TABLE 16 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Boring no.	Depth interval (feet)	PID measurement (ppm)2/	Analysis performed			
	РНА	SE II				
B-9 (Drum storage area)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 13 - 15 15 - 17 water 17 - 19 table 19 - 21 21 - 23 23 - 25 25 - 27 27 - 29 29 - 31 31 - 33 33 - 35	200 300 250 300 290 50 140 18 19 110 10 17 10 5 3 3	*/*** *** *			
	35 - 37 37 - 39 39 - 41 41 - 43 43 - 45	4 4 3 3.5 0.5				

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Boring no.	Depth interval	PID measurement (ppm)2/	Analysis performed
B-10 (Drum storage area)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 18 - 20 water 20 - 22 table 22 - 24 24 - 26 26 - 28 28 - 30 30 - 32 32 - 34 34 - 36 36 - 38 38 - 40 40 - 42 42 - 44 44 - 46	300 380 380 250 300 200 300 150 50 10 15 110 200+ 6 5 7 11 6 13 4 60 120 35	*** * */***
B-11 (Drum storage area)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14	3 120 90 80 300 100 80	
B-12 (Drum storage area)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14	12 80 40 150 120 190 60	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Boring no.	Depth interval (feet)	PID measurement (ppm)2/	Analysis performed
B-13 (Drum storage area)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 13 (sand) 13.5 - 14 (clay)	110 300 100 180 300 330 200 500	*
B-14 (Drum storage area)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14	20 80 100 100 400 350 200	
B-15A (Building)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10	0.4 0.2 0.0 0.2 0.3	*
B-16 (Building)	0 - 2 2 - 4 6 - 8 8 - 10	0.2 0.4 0.3 0.2	*

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Boring no.	Depth interval (feet)	PID measurement (ppm)2/	Analysis performed
B-28 (well cluster)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 water 18 - 20 table 20 - 22 22 - 24 24 - 26 26 - 28 28 - 30 30 - 32 32 - 34 34 - 36 36 - 38 38 - 40 40 - 42 42 - 44 44 - 46 46 - 48 48 - 50	0.0 0.2 0.8 0.6 0.2 1 5.5 2 4 5 6 3 6 6 15 4 8 4 7 7 7 5 8	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Boring no.	Depth interval (feet)	PID measurement (ppm)2/	Analysis performed
B-44 (well cluster)	0 - 2 5 - 7 10 - 12 15 - 17 20 - 22 water 25 - 27 table 30 - 32 35 - 37 37 - 39 39 - 41 41 - 43 43 - 45 45 - 47 47 - 49 49 - 51 51 - 53 53 - 55 55 - 57 60 - 62 67 - 69	6 5 7 4 6 4 7.5 3.5 4 4.5 17 15 11 11 12 9 0.3 3 0.7 0.5	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Boring no.	Depth interval (feet)	PID measurement (ppm)2/	Analysis performed
B-45 (well cluster)	0 - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 water 18 - 20 table 20 - 22 22 - 24 24 - 26 26 - 28 28 - 30 30 - 32 32 - 34 34 - 36 36 - 38 38 - 40 40 - 42 42 - 44 44 - 46	4 5 90 4 70 15 6 17 18 5 3 8/9 18 3/9 10 9 11 11 11 12 4 6 6 6	*
	46 - 48 48 - 50 50 - 52	7 7 7	

TABLE 16 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Boring no.	Depth interval	PID measurement	Analysis performed
	(feet)	(ppm) ² /	
B-46	0 - 2	10	
(well cluster)	2 - 4	8	
1	4 - 6	3	
	6 - 8 water 8 - 10 table	8 9	
	10 - 12	7	
	12 - 14	6	
	14 - 16	6	
	16 - 18	4	
	18 - 20	1	
	20 - 22 22 - 24	1	
	24 - 26	4 6	
	26 - 28	3	
	28 - 30	2	
	30 - 32	3.5	
B-47	0 - 2	8.5	
(well cluster)	2 - 4	9	
	4 - 6	9	
	water 6 - 8 table	8.5	
	8 - 10 10 - 12	10.5 10.5	
	12 - 14	9.5	
	14 - 16	10	
	16 - 18	9	
	18 - 20	9	
	20 - 22 22 - 24	10 8	
	24 - 26	δ 5	
	26 - 28	16	*
	28 - 30	17	
	30 - 32	15	
	32 - 34	16	
	34 - 36 36 - 38	16 16	
	30 - 38	10	

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PID Readings for Onsite Borings and Pilot Holes

Boring no.	Depth interval (feet)	PID measurement (ppm)2/	Analysis performed
B-51A (well)	3.5 - 5.5 8.5 - 10.5 13.5 - 15.5 water 18 - 20 table 20 - 22 22 - 24 24 - 26 26 - 28	0.6 0.8 0.6 6 1 3 0.4 0.6	
B-52A (well)	4 - 6 9 - 11 14 - 16 water 18 - 20 table 21 - 23 23 - 25 25 - 27	20 4 2 0.2 0 0 0	

- $\underline{1}$ / Photoionization detector.
- 2/ Parts per million.
- * Analyzed for TCL, VOA and Freon 113.
- ** Analyzed for full TCL and Freon 113.
- *** Split samples collected by Alliance Technologies.
- + Value drifted slightly beyond printed scale.

nabis.tbl/nabis2

TABLE 17 (page 1 of 5)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
BORING	SAMPLE		RI														
NUMBER	DEPTH (F	T) DATE	SAMPLE II) =========		*******	15115151 11 11	======REF	PORTED VALUE	Seesses		=======			**********	*********	*********
01	02.0	09/28/89	9	ND6	ND6	98J	ND6	ND6	ND6	2.3JR	ND6	ND6	ND6	ND6	55 JR	33R	98
	02.0	09/28/89	9	ND6	8J	130J	ND6	ND6	ND6	2.6JR	ND6	ND6	ND6	ND6	66 JR	15R	138
	12.0	09/28/89	10	ND5	ND5	ND5	ND5	ND5	ND5	1.5JR	ND5	ND5	ND5	ND5	ND 10	2BJR	C
02	00.5	09/28/89	11	100J	ND5	ND5	ND5	ND5	ND5	3.3JR	ND5	ND5	2JR	ND5	9JR	7R	100
	13.0	09/28/89	12	ND6	ND6	ND6	ND6	ND6	ND6	9.6JR	ND6	ND6	ND6	ND6	38R	8BR	0
	13.0	09/28/89	13	ND6	ND6	ND6	ND6	ND6	ND6	1.6JR	ND6	ND6	ND6	ND6	ND 12	6BJR	0
	15.0	09/28/89	14	ND5	ND5	ND5	ND5	ND5	ND5	1.2JR	ND5	ND5	ND5	ND5	8JR	4BJR	0
03	14.0	09/28/89	15	ND5	ND5	ND5	ND5	ND5	ND5	1.1JR	ND5	ND5	ND5	ND5	16R	6BR	0
	14.0	09/28/89	16	ND5	ND5	ND5	ND5	ND5	ND5	1.6JR	ND5	ND5	ND5	ND5	ND 11	4BJR	0
	14.0	09/28/89	17	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	8JR	ND5	0
	16.0	09/28/89	18	ND5	ND5	ND5	ND5	ND5	ND5	1.4JR	ND5	ND5	ND5	ND5	ND 10	3BJR	0
04	08.0	09/29/89	19	ND5	ND5	ND5	ND5	ND5	ND5	1.5JR	ND5	ND5	ND5	ND5	18R	38JR	0
	22.0	09/29/89	20	ND5	ND5	ND5	ND5	ND5	ND5	1.1JR	ND5	ND5	ND5	ND5	13R	2BJR	0

TABLE 17 (page 2 of 5)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
BOR ING NUMBER	SAMPLE DEPTH (FT) DATE	RI SAMPLE	10 *********		EXERTISE EX		=====REF	PORTED VALUE	E\$======		*******	********				
05	04.0	09/29/89	21	9,1	ND5	ND5	ND5	ND5	ND5	1.7JR	ND5	ND5	ND5	ND5	ND11	3BJR	9
	12.0	09/29/89	22	ND5	ND5	ND5	ND5	ND5	ND5	1.3JR	ND5	ND5	ND5	ND5	16R	ND5	0
06	04.0	09/30/89	23	ND5	ND5	NOS	ND5	ND5	ND5	1.1JR	ND5	ND5	ND5	ND5	ND11	ND5	0
	12.0	09/30/89	24	ND5	ND5	ND5	ND5	ND5	ND5	6.2JR	ND5	ND5	ND5	ND5	ND10	ND5	0
07	00.0	09/30/89	25	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND11	10BR	0
	02.0	09/30/89	26	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND 11	ND6	0
08	00.0	09/30/89	27	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND11	3JR	0
	02.0	09/30/89	28	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND11	ND5	0
09	06.0	05/16/91	140	19000	ND 1000	ND 1000	ND1000	ND 1000	ND 1000	ND 1000	ND 1000	ND 1000	ND 1000	ND 1000	ND2100	ND 1000	19000
	19.0	05/16/91	141	17	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND12J	ND6	17
	27.0	05/16/91	142	31	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	15J	ND6	18

TABLE 17 (page 3 of 5)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
BOR ING	SAMPLE DEPTH (F		RI SAMPLE I	D ======	**********	**********		======REF	PORTED VALU	E\$=====	********						=======================================
10	04.0 12.0	05/17/91 05/17/91	145 146	30000 67000	ND 1400 ND 2800	620J ND2800	ND 1400 ND 2800	ND1400 ND2800	ND1400 ND2800	ND 1400 ND 2800	ND 1400 ND 2800	66000E	2100 ND2800	ND3800 ND2800	ND2800 1300BJ	ND 1400 ND 2800	98720 68300
	24.0	05/17/91	147	800	ND31	ND31	ND31	ND31	ND31	ND31	ND31	180	ND31	16J	ND62	ND31	996
	42.0	05/20/91	150	110	ND30	ND30	ND30	ND30	ND30	ND30	ND30	180	ND30	7J	29BJ	ND30	326
13	12.0	05/21/91	152	2100E	ND5	ND5	ND5	ND5	ND5	ND5	ND5	21	130	ND5	6BJ	ND5	3787
15	02.0	06/04/91	160	13	ND5	ND5	ND5	ND5	ND5	ND5	NDS	ND5	ND5	ND5	ND 10	ND5	1
16	02.0	06/05/91	162	ND5	ND5	ND5	ND10	ND 10	ND 10	ND 10	ND 10	1J	1J	Sì	ND10	ND10	4
45	04.0	05/22/91	154		ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND 10J	ND5	0
	24.0	05/22/91	155	ND30	ND30	ND30	ND30	ND30	ND30	ND30	ND30	ND30	ND30	ND30	ND60	ND30	0
47	26.0	05/30/91	157	ND6	ND6	ND6	ND6	ND6	ND 6	ND6	ND6	ND6	ND6	ND6	ND12	2J	2

TABLE 17 (page 4 of 5)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETI	ERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
BOR I NG NUMBER	SAMPLE DEPTH (F		RI SAMPLE	ID ======	***********	ERESSEEREES		=====REF	PORTED VALUE	S=======							
DSGS	01.0	05/17/91	143	16J	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6J	ND6J	ND6J	ND11R	ND6	16
s01	00.5	07/23/91 07/23/91	202 202	ND6J	L9DN 9DN	мD61 мD61	ND6	ND6	ND6	ND6	ND6J	ND6J	3J	ND6J	ND11 ND11	1JR ND6R	6 5
s02	00.5	07/23/91	203	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	2J	ND5	ND11	ND5	2
s03	00.5	07/23/91	204	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	2J	ND5	ND11	ND5	7
s04	00.5	07/23/91	205	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND 10	ND5	2
\$05	00.5	07/23/91	206	ND6J	ND6J	ND6J	ND6J	ND6J	ND6J	ND6	ND6J	ND6J	4.J	ND6J	ND 12J	4,1	8
\$06	00.5	07/23/91 07/23/91	207 208	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND6 ND5	ND11J ND11J	ND6 ND5	0
\$08	00.5	07/23/91	209	ND5J	ND5J	ND5J	ND5	ND5	ND5	ND5	ND5J	ND5J	2J	ND5J	ND 10	NO5	2

TABLE 17 (page 5 of 5)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for the Soil Borings and Surface Samples

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
BOR ING NUMBER	SAMPLE DEPTH (F		RI SAMPLE II) ******	**************	, *******	********	======REF	PORTED VALUE	S=======	*******			*****	=========	*********	
\$09	00.5	07/23/91	210	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	41	ND5	ND10J	1,1	5
\$10	00.5	07/23/91	211	ND5J	ND5J	ND5J	ND5	ND5	ND5	ND5	ND5J	ND5J	ND5J	ND5J	ND11	ND5	0
\$11	00.5	07/23/91	212	ND5J	NDSJ	ND5J	L5DN	ND5J	ND5J	ND5	ND5J	ND5J	2,	ND5J	ND11J	ND5J	2
s12	00.5	07/23/91	213	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND 12	ND6	0
s13	00.5	07/23/91	214	ND6J	ND6J	ND6J	ND6J	ND6J	ND6J	ND6	ND6J	ND6J	ND6J	ND6J	ND11J	MD6J	0

CONCENTRATIONS REPORTED IN UG/KG (PPB)

SAMPLE ID NUMBER 13 IS A DUPLICATE ANALYSIS OF NUMBER 12

SAMPLE ID NUMBER 15 IS A CLAY PORTION FROM THE SAMPLER

SAMPLE ID NUMBER 17 IS A DUPLICATE ANALYSIS OF NUMBER 16

A LABORATORY REPLICATE ANALYSIS WAS PERFORMED ON SAMPLE NUMBER 9

J = ESTIMATED VALUE
R = REJECTED BY VALIDATOR
ND# = SAMPLE BELOW DETECTION LIMIT
(NUMBER 1S DETECTION LIMIT)
DSGS = SAMPLE FROM STAINED SOIL IN DRUM STORAGE AREA

TABLE 18 (page 1 of 2)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Metals Results for Drywells, Soil Borings, and Surface Samples

		P	ARAMETERS	AL	SB	AS	ВА	BE	CD	CA	CR	со	cu	FE	PВ	MG	MN	HG	NI	K	SE	AG	NA	TL	V	ZN	CN
BORING OR DRYWELL NUMBER	SAMPLE DEPTH (FT)	DATE	RI SAMPLE ID	=======		*******	*********		=========	********	*******		=======================================	REPORTED	VALUES====	=======	*********		=========	*****		********			******		=======
B02	13	09/28/89	12	9990	ND.96NR	1.88	29.1B	0.26B	4.1NR	3148	21J	ND7.2	16.5	14900	10.2JSN*	1920	100	ND.12	10.1	669	ND.24	ND.72N	116B	ND.72	34.3	30.7J	ND1.5
в03	14 14	09/28/89 09/28/89			ND.84NR ND.83NR	0.46B ND.42	88 8.48	ND.21 ND.21	0.7NBR ND.62NR	1898 1208	3.2J 2.5J	ND6.3 ND6.2	4.8B 4.3B		3.2JSN* 2.1SNJ*	251B 1998	51.7 84.9	ND.1	ND5.2 ND5.2	1898 1428	ND.21	ND.63N ND.62N	47.18 42.28	ND.63 ND.62	6.28 4.68	8.4J 6.8J	ND1.3
B10	4	05/17/91	145	4750J	ND4.4J	ND.66	15.1	ND.66	1.7	331J	6.5	ND1.3	8480J	7670J	16.8J	423	43.4J	ND.11J	5.2	220	ND.22	17.8J	46.5	ND.66	7.7	209J	ND1.4
B48	14 8 2	06/21/91 06/21/91 06/21/91	185	1950J 6850J 4200J	ND6.3J ND6.9J ND6.4J	0.91 1.5 0.84	10.4 19.3 12.4	ND.21 0.3 ND.21	ND.63 1.4 0.7	428 858 2110	3.6 12.1 21.3	1.1 2.4 1.6	3.3 9.4 4.7	3300J 10200J 5730J	3.4 6.3 3.6	597 1510 1620	55.9J 82.6J 58.3J	ND.10 ND.12 ND.11	1.8 4.5 3.7	307 527 194	ND.21 ND.23 ND.21	ND1.1J ND1.2J ND1.1J	ND21J 53.9J 53.4J	ND.63 ND.64J ND.64J	5.8 21.6 7.9	7.3J 21JJ 9.9J	NA NA NA
DW-A	0	11/27/89 11/27/89		2510* 2290*	ND1.1 ND1.1	1.2B 1B	19.68 27.28	ND1.1 ND1.1	4.1 4.6	3120 1510	382* 320*	2.98 2.98	3550 3250	9090 8590	75.2 65.8	1230B 625B	58.3 35.6	ND.14 ND.14	22.9 23.3	2648 2328	ND.28 ND.28	10.9 11.7	76.88 1018	ND .83 ND .85	8.48 7.78	1060E* 563	ND1.7
s01	1	07/23/91	202	6350	ND6.4J	4.10	39.3	0.37	1.3	1500	8.4	2.4	48.4	8000J	53.8	899	226	ND.11	5.4	330	ND.43J	2.4	81.8J	ND.43J	13.5	74.1J	NA
s02	1	07/23/91	203	6380	ND6.5J	2.10	22.4	0.29	1.0	2420	10.3	1.4	23.5	5690J	25.5J	1310	118	ND.11	1.9	250	ND.43J	ND1.1	66.21	ND.43J	12.4	18.8	NA
s03	1	07/23/91	204	7810	ND6.3J	1.50	17.2	0.26	1.1	272	6.5	1.5	3.7	7830J	5.7J	547	27.5	ND.11	2.3	172	ND.42J	ND1	63.91	ND.42J	11.5	61	NA
s04	1	07/23/91	205	5420	ND6.3J	1.30	17.4	0.26	0.71	450	5.1	2.2	10.5	5500J	5.7J	729	69.9	ND.10	2.6	348	0.43J	ND1.1	56.4J	ND -41J	8.3	7.1J	NA
s05	1	07/23/91	206	4330	ND7.4J	12.1	43.9	0.39	4.0	10000	438	5.7	2420	13400J	522J	5420	183	ND.12	22.3	392	ND.49J	75.6	134J	ND.49J	22.7	612	NA

TABLE 18 (page 2 of 2)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Metals Results for Drywells, Soil Borings, and Surface Samples

		P	PARAMETERS	AL	SB	AS	BA	BE	CD	CA	CR	со	CU	FE	PB	MG	MN	HG	NI	ĸ	SE	AG	NA	TL	V	ZN	CN
BORING OR DRYWELL NUMBER	SAMPLE DEPTH (FT)		RI SAMPLE 1D	=========	*********			********		*********	7512252E	********	=======	REPORTED V	/ALUES====		========			E222222		.=======		*********		========	
s06	1	07/23/91 07/23/91		4970 4390	ND6.5J ND6.5J	2.1 2.5	29.4 12.2	0.23 0.24	1.6 1.2	9900 18400	87.7 19.1	5.0 3.9	62.3 50.8	7390J 8000J	32.2 23.1	6510 9480	131 115	ND.11 ND.11	6.3 4.1	274 218	ND.43J ND.43J	2.0 2.3	109J 106J	ND.43J ND.43J	15.5 12.9	73.9 49.1	NA NA
\$08	1	07/23/91	209	7480	ND6.2J	2.9	13.9	0.25	2.6	24800	7.8	10.5	56.4	16200J	62.4J	14100	244	ND.10	8.1	267	ND.40J	1.6	242J	ND.40J	33.4	126	NA
\$09	1	07/23/91	210	3410	ND6.2J	9.1	23.4	0.25	4.4	46800	318	6.3	368	28400J	149J	27400	245	ND.10	19	209	ND.41J	28.4	115J	ND.41J	16.4	533	NA
s10	1	07/23/91	211	2390	ND6.5J	1.4	6.3	ND.22	0.8	2000	6	ND1.1	37.6	3320J	27.4J	1150	21	ND.11	ND1.1	163	ND.43J	1.5	51.3J	ND.43J	7.3	10.5J	NA
s11	1	07/23/91	212	2080	ND6.4J	1.5	4.5	ND.21	ND .64	52	2.3	ND1.1	5.6	2170J	18J	143	8.8	ND.11	ND1.1	137	ND.43J	ND1.1	48.1J	ND.43J	6.2	2J	- NA
s12	1	07/23/91	213	1950	ND8.4J	1.6	6.1	ND.28	ND .84	126	2.8	ND1.4	9.5	955J	9.21J	145	9	ND.14	ND1.4	274	ND.56	ND1.4	76J	ND.56J	6.3	10.5J	NA
s13	1	07/23/91	214	3400	ND6.7J	0.8	10.1	ND.22	ND.67	171	3.2	ND1.1	3.8	2650J	9.31	245	12.1	ND . 11	ND1.1	210	ND.44J	ND1.1	61.1J	ND.44J	7.8	7.71	NA

PARAMETERS ARE LISTED BY THEIR ELEMENTAL SYMBOLS ALL CONCENTRATIONS REPORTED IN MG/KG (PPM)

J = ESTIMATED VALUE

E = CONCENTRATION EXCEEDED THE CALIBRATION RANGE OF THE GC/MS INSTRUMENT

B = ANALYTE WAS FOUND IN ASSOCIATED BLANK

R = REJECTED BY VALIDATOR

S = VALUE DETERMINED BY THE METHOD OF STANDARD ADDITION

N = SPIKE SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS

* = DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS

ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)

DW = DRYWELL SLUDGE SAMPLE

B## = SOIL BORING SAMPLE NUMBER

S## = SURFACE SOIL SAMPLE

NOTE: IF TWO SETS OF RESULTS ARE SHOWN FOR
A SINGLE DATE AT THE SAME SAMPLE LOCATION,
THEN THE SECOND SET IS A DUPLICATE SAMPLE
PROVIDED FOR QUALITY ASSURANCE

TABLE 19 (page 1 of 1)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Pond Sediment Samples

PARAMETERS				TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
SAMPLE LOCATION	SAMPLING INTERVAL	DATE	RI SAMPLE ID	********	*********	************	********	********	REPORTED VAL	.UE\$====	*********	*******	17411641P	i 法有事 企业用 有销售	********		***********
POND 1	0.5	11/28/89 11/28/89	76 76	ND7	ND 7	ND7	ND7	NO7	ND7	6R 6R	ND7	ND7	5BJR 2BJR	ND 7	42BR 140R	ND7 6BJR	0
POND2	0.5	11/28/89	78	ND28	HD28	ND 28	ND28	ND28	ND28	48R	ND28	ND28	ND28	ND 28	288JR	268R	0
POND3	0.5	11/28/89	77	ND8	ND8	ND8	ND8	NO8	ND8	5BR	80%	ND8	ND8	ZJ	218R	58JR	5

ALL CONCENTRATIONS REPORTED IN UG/KG (PPB)

B = ANALYTE WAS FOUND IN THE ASSOCIATED BLANK

J = ESTIMATED VALUE

R = REJECTED BY VALIDATOR

POND1 = SAMPLE TAKEN FROM BENEATH DRUM IN POND

POND2 = SAMPLE TAKEN FROM SOUTH END OF POND

PONDS = SAMPLE TAKEN FROM NORTH END OF POND

ALL SAMPLES COLLECTED IN TOP 6 INCHES OF SAMPLE LOCATION

TABLE 20 (page 1 of 1)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Metals Results for Stream, Bay and Pond Samples

PARAMETERS			AL	SB	AS	BA	BE	CD	CA	CR	co	CU	FE	PB	MG	MN	HG	NI	K	SE	AG	NA	TL	V	ZN	CN
SAMPLE LOCATI		RI SAMPLE ID	*********										OTEO VALL													
2 SED	ON DATE 11/28/89	81	988*	ND1.2	ND0.58	6.5B	ND1.2	3.1	460B	5.6*	3.58	====KEPU 4.6B	9370	22.3s	:======= 264в	 68.8						· · · · · · · · · · · · · · · · · · ·				ND1.8
2 320	11/28/89	82	1800	ND1.6		15B	ND1.6	2	1170B	8.3*	ND3.9	11.7	4060	32.5	450B	28.5	ND.14 ND.2	4.3B ND5.1	1838 2028	ND.29 ND.39	ND.87	48.98 137B	ND.87 ND1.2	6.3B 7.7B	13.4E* 37E*	ND2.4
2 WAT	11/28/89	79	ND50	5.48	ND2	ND21	ND4	ND3	4160B*	ND6	ND10	ND6	661	2.28	1990B	38.5	ND.2	ND 13	1160B	ND1	ND3	9520	ND3	ND8	22	ND10
	11/28/89	80	ND50	ND4	ND2	ND21	ND4	ND3	4310B	7B	ND10	ND6	678	2.7B	2000B	38.8	ND.2	13.58	1120B	ND1	ND3	9680	ND3	ND8	18B	ND10
4 SED	11/28/89	84	1690*	ND1.1	2.28	68	ND1.1	3	271B	4.5*	ND2.8	1.78	5200	8.6	296B	31.7	ND.14	4.48	181B	ND.28	ND.85	2928	ND.85	8.98	9.6E*	ND1.8
4 WAT	11/28/89	83	ND50	4.2B	ND2	ND21	ND4	ND3	18300	ND6	ND 10	ND6	926	ND2	44800	95.5	ND.2	ND13	16500	28	ND3	386000	ND31	ND8	28.7	ND 10
POND 1	11/27/89	76	10700*	1.3B	0.87B	27.7B	ND1.2	3.1	8168	12.9*	ND3.1	18.1	6530	15.8s	669B	43.5	ND.15	6.7B	2908	ND.31	ND.92	72.3B	ND0.92	13.5B	43.7E*	ND1.9

PARAMETERS ARE LISTED BY THEIR ELEMENTAL SYMBOLS
ALL WATER CONCENTRATIONS REPORTED IN UG/L (PPB)
ALL SEDIMENT CONCENTRATIONS REPORTED IN MG/KG (PPM)
E = CONCENTRATION EXCEEDED THE CALIBRATION RANGE OF THE GC/MS INSTRUMENT
B = ANALYTE WAS FOUND IN ASSOCIATED BLANK

NOTE: IF TWO SETS OF RESULTS ARE SHOWN FOR
A SINGLE DATE AT THE SAME SAMPLE LOCATION,
THEN THE SECOND SET IS A DUPLICATE SAMPLE
PROVIDED FOR QUALITY ASSURANCE

* = DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS

ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)

WAT = STREAM OR BAY WATER SAMPLE

SED = STREAM OR BAY SEDIMENT SAMPLE

POND = POND SEDIMENT SAMPLE

TABLE 21 (page 1 of 3)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Drywell Wash and Sediment Samples

PARAMETERS				TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
DRYWELL AND DESCRIPTION	SAMPLING INTERVAL	DATE	RI SAMPLE ID	*********		***********		=====REP	ORTED VAULE	S======		282288228	******	*********			********
ASLDG	2.0	06/05/91	165A	ND6	ND6	ND6	ND6	ND2	ND6	ND6	ND6	ND6	ND6	ND6	ND11	ND6	0
	2.0	06/05/91	164	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND12	ND6	0
	0.5	11/27/89	68	210J	150J	250J	61	ND7	ND7	4BR	ND7	ND7	4JR	ND7	19BR	88R	616
	0.5	11/27/89	68	180J	71 J	130J	2J	ND7	ND7	220JR	ND7	ND7	15BR	ND7	9BJR	14BR	383
	0.5	11/27/89	69	170J	100J	170J	5J	ND7	ND7	4BR	ND7	ND7	2JR	ND7	24BR	9BR	445
CSLDG	2.0	06/05/91	165	1100	ND28	ND28	ND28	ND28	ND28	ND28	ND28	ND28	ND28	ND28	ND56	ND28	1100
	0.5	11/27/89	72	6900J	ND 1300	ND 1300	ND 1300	ND1300	ND 1300	790BJR	ND1300	ND 1300	ND 1300	ND 1300	ND2600	ND 1300	6900
DSLDG	4.0	06/05/91	163	ND 28	ND28	ND28	ND28	ND28	ND28	ND28	ND28	7J	ND28	ND28	ND56	ND 28	7
	2.0	07/09/91	195N	160	100	820	ND28	ND28	17J	ND28	ND28	89	30	20J	ND56	ND 28	1236
	2.0	07/09/91	195T	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND630	ND310	0
	0.5	07/09/91	194N	9100	5300	27000	2400	ND930	28000	ND930	ND930	20000	7000	2300	19000	ND930	120470
	0.5	07/09/91	194T	1700J	5400J	3300J	2200	ND310J	23000	ND310J	ND310J	20000J	8900J	ND310J	2700J	ND310J	68050
	0.5	11/27/89	70	ND660	ND660	ND660	ND660	ND660	ND660	4908JR	ND660	3900	710	310J	ND1300	990B R	4920
	L	07/18/84	0	7	3	10	NA	NA	ND 16	ND4	ND16	18	13	ND10	NA	NA	51

TABLE 21 (page 2 of 3)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Drywell Wash and Sediment Samples

PARAMETERS				TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
DRYWELL AND DESCRIPTION	SAMPLING INTERVAL	DATE	RI SAMPLE ID	252222232	ereristri		********	=====REP1	ORTED VAULE	[\$====###			.22552555	*******		***********	*******
DWASH		08/22/89	2	1R	ND1	ND1	ND1	ND1	ND1	4.2BJR	ND1	ND1	ND1	ND1	ND2	2BR	0
ESLDG	2.0	06/05/91	167	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND 11	ND6	
	0.5	11/27/89	73	ND400	ND400	ND400	ND400	ND400	ND400	28 R	ND400	ND400	230J	ND400	1400BR	360BJR	230
EWASH		08/22/89	3	ND1	ND1	ND1	ND1	ND1	ND1	24BJR	ND1	ND1	ND 1	ND1	ND2	3BR	0
FSLDG	2.0	07/09/91	197N	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND 11	ND6	0
	2.0	07/09/91	197T	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND310	ND630	ND310	0
	2.0	06/05/91	168	ND320	ND320	ND320	ND320	ND320	ND320	2100	ND320	ND320	620	ND320	ND650	ND320	2720
	0.5	07/09/91	196N	ND 1400	ND 1400	ND 1400	ND 1400	ND1400	ND1400	230000	ND 1400	2900	27000	ND1400	ND2800	4403	260340
	0.5	07/09/91	196T	ND310J	ND310J	ND310J	ND310J	ND310J	ND310J	26000R	ND310J	1500J	30000R	2300J	840J	ND310J	4640
	0.5	11/27/89	71	ND890	ND890	ND890	ND890	ND890	ND890	160BJR	ND890	ND890	13000J	ND890	6300BR	6808JR	13000

TABLE 21 (page 3 of 3)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Drywell Wash and Sediment Samples

PARAMETERS				TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
DRYWELL AND DESCRIPTION	SAMPLING INTERVAL	DATE	RI SAMPLE ID	**********	*********		********	====REP	ORTED VAULES		*******	*********	*********	***********	*********	********	******
FSLDG	ι	07/18/84	0	ND2	ND2	NO5	NA	NA	ND 16	28	NO 10	ND10	45	ND 10	HA	NA	73
FWASH	_	08/22/89	5	NO 1	ND1	ND 1	ND 1	ND1	ND 1	98JR	ND 1	HD1	HD1	ND 1	ND2	SBR	0

ALL WASH CONCENTRATIONS REPORTED IN UG/L (PPB)

ALL SEDIMENT CONCENTRATIONS REPORTED IN UG/KG (PPB)

J = ESTIMATED VALUE

B = ANALYTE WAS FOUND IN THE ASSOCIATED BLANK

R = REJECTED BY VALIDATOR

NA = SAMPLE NOT ANALYZED

ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)

WASH = RINSE SAMPLE

SLDG = SLUDGE SAMPLE

RI SAMPLE ID

N= SAMPLE ANALYZED BY

NET-CAMBRIDGE

T= SAMPLE ANALYZED BY

TECHNICAL TESTING

LABORATORY

NOTE: IF TWO SETS OF RESULTS ARE SHOWN FOR
A SINGLE DATE AT THE SAME SAMPLE LOCATION,
THEN THE SECOND SET IS A DUPLICATE SAMPLE
PROVIDED FOR QUALITY ASSURANCE

L = SAMPLE COLLECTED FROM LIQUID IN DRYWELL

TABLE 22

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Date sampled	Volumes removed	рĦ	Conduc- tivity	Temperature	Turbidity
1		(gallons)		(umhos)1/	(°F) ² /	(NTU's) ^{3/}
 		PHASE	I			
ONSITE						
N-24	11/15/89 02/05/90	10 11	6.63	228 190	56 52	>100 95
N-25	11/14/89 02/05/90	5 8	6.49 6.00	464 320	58 48	66 21
N-26	11/20/89 02/05/90	14 7.5	6.11	278 190	59 55	35
N−27	11/14/89 02/06/90	7 20	5.73 5.05	289 150	61 55	>100 39
N−28	11/14/89 02/06/90	7.5 9	5.83 5.95	222 170	59 57	85 62
N-32	11/15/89 02/06/90	5 7	6.12	130 135	58 57	>100 8
N-33	11/14/89 02/05/90	10 20	6.30 5.30	193 115	57 49	>100 >100
OFFSITE						
N-06	11/16/89	21	6.12	260	56	>100
N-11	11/20/89 02/09/90	19 12	5.84 5.85	133 90	54 53	>100 23
N-16	11/17/89	10	5.98	186	56	27
N-19	11/20/89 02/09/90	20 12	6.11	102 70	55 52	21 11
N-20	11/20/89	10	6.73	86	51	68
N-17	11/20/89	25	6.11	760	55	72
N-36	11/15/89 02/09/90	15 11	6.31 6.30	143 120	53 55	>100 61
N-37	11/15/89 02/06/90	8 7.5	5.57 5.30	315 195	56 52	46 50

TABLE 22 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Date sampled	Volumes removed (gallons)	Ħq	Conductivity (umhos)	Temperature	Turbidity (NTU's)3/
N-39	11/15/89 02/05/90	9.5 9.0	6.45 6.40	307 220	54 54	>100 78
N-40	11/15/89 02/07/90	7 3	5.77 5.80	102 80	54 50	21 25
MW-42A	11/17/89 02/07/90	22 50	6.46	153 100	52 52	17 39
MW-42B	11/17/89 02/07/90	25 29	6.67 5.65	114 110	52 52	20 16
MW-42C	11/17/89 02/07/90	40 40	6.69 5.70	133 80	50 54	6 37
MW-43A	11/16/89 02/08/90	25 21	5.62 5.70	172 150	57 53	15 31
MW-43B	11/16/89 02/08/90	30 35	6.62 6.15	235 170	56 54	21 5
MW-43C	11/16/89 02/08/90	45 43	6.33 5.65	135 100	54 55	18 11
HOMEOWNERS						
1 (Noyack Rd)	12/06/89	25	5.60	120	56	
2 (Noyack Rd)	12/07/89	35	5.20	101	58	
6 (Carroll St)	12/06/89	45	5.80	205	52	
7 (Carroll St)	12/06/89	40	5.50	195	55	
9 (Hildreth St)	12/06/89	15	5.55	40	52	
10 (Hildreth St)	12/07/89	55	5.30	240	56	
24 (Sag Harbor/ Bridgehampton Turnpike)	12/06/89	40	5.20	430	56	

TABLE 22 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

	Well no.	Date sampled	Volumes removed (gallons)	рн	Conductivity (umhos)1/	Temperature	Turbidity (NTU's) ^{3/}
	25 (Sag Harbor/ Bridgehampton Turnpike)	12/07/89	150	5.40	70	50	
	29 (Lily Pond Rd)	02/09/90	30	5.80	70	57	19
ľ	44 (Lily Pond Rd)	02/09/90	30	6.55	145	55	
			PHASE	11			
	ONSITE						
	N-24	07/29/91 11/06/91	pump dry	6.95 6.42	258 176	61 61	>100/34 ^{4/} 95
	N-27	07/29/91 11/06/91	10 8	5.73 5.28	197 181	58 61	>100/6 ^{4/} 7
-	N-28A	07/29/91 11/06/91	6 12	6.36 6.17	170 172	60 78	37 <u>4</u> /
-	MW-28B	07/29/91 11/06/91	33.5 18	6.53 5.63	151 134	60 62	12 7
	N-32	07/29/91 11/06/91	pump dry 3	6.49 5.81	186 162	60 61	>100 >100
	N-33	07/29/91 11/05/91	10 14	5.89 5.65	119 193	59 58	50 30
	MW-44A	08/01/91 11/05/91	10 17	6.28	178 149	60 61	>100/31 ^{4/} 46
	MW-44B	08/01/91 11/05/91	12 17	6.63	212 184	60 58	45 9
-	MW-44C	08/01/91 11/05/91	24 29	6.18 5.94	124 110	62 58	8 3
	MW-45A	07/31/91 11/04/91	13 13	6.18	160 126	62 58	70/34 ^{<u>4</u>/} 32
	MW-45B	07/31/91 11/04/91	42 24	9.35 6.87	216 172	60 56	86 20

TABLE 22 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Well no.	Date sampled	Volumes removed (gallons)	рН	Gonduc- tivity (umhos)	Temperature	Turbidity (NTU's)2/
MW-46A	07/30/91 11/05/91	10 14	6.57 6.19	172 138	56 58	17 23
MW-46B	07/30/91 11/05/91	33 21	6.38 6.03	115 112	57 56	14 22
MW-47A	07/30/91 11/04/91	20 17	6.49 6.30	180 193	60 58	7 30
MW-47B	07/30/91 11/04/91	29 20	6.27 6.14	130 114	60 58	19 13
MW-51A	10/23/91 11/06/91	30 12	5.75 5.98	116 128	59 60	70 <100
MW-52A	10/23/91 11/06/91	180 14	6.06 5.92	106 315	62 61	<100 42
OFFSITE						
N-06	08/05/91	18	5.90	272	59	55
N-16	11/07/91	6	5.76	119	62	36
N-36	08/05/91	6	6.37	112	62	>100
N-39	08/02/91	8	6.70	338	60	>100
N-40	08/05/91	1.5	6.20	107	58	40
MW-42A	08/01/91	18	5.92	122	62	>100/27 4 /
MW-42B	08/01/91	24	6.50	137	63	20
MW-42C	08/01/91	45	6.55	151	61	4
MW-43A	08/05/91	15	5.56	286	56	>100/37 <u>4</u> /
MW-43B	08/05/91	26	6.23	217	56	10
MW-43C	08/05/91	45	5.95	168	_ 57	11
MW-48A	08/02/91 11/04/91	10 12	5.82 5.78	147 135	64 63	25 12

TABLE 22 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Final Measurements of Stabilized Parameters for all Wells Sampled During Phase I and Phase II

Well no.	Date sampled	Volumes removed (gallons)	рН	Conductivity (umhos)1/	Temperature	Turbidity (NTU's)3/
MW-48B	08/02/91	22	6.37	132	64	5
	11/04/91	30	6.16	117	60	6
MW-49A	07/30/91	20	5.45	151	60	20
	11/07/91	10	5.35	177	61	4
MW-49B	07/30/91	41	5.85	194	62	4
	11/07/91	35	5.64	157	60	2.5
MW-49C	07/30/91	50	6.65	143	58	42
	11/07/91	50	6.52	121	59	10
MW-50A	07/31/91	18	6.47	297	64	3 <u>4</u> /
	11/07/91	15	6.02	138	62	5
MW-50B	07/31/91	27	6.36	109	60	13
	11/07/91	25	5.75	113	61	3.5
MW-50C	07/31/91	42	6.84	176	63	36
	11/07/91	40	6.77	188	60	10
10 (Hildreth St)	07/31/91	55	6.11	305	60	2.5

 $[\]overline{ t I}$ / umhos/cm - micromhos per centimeter.

abis2.tbl/nabis2

^{2/} OF- degrees Farenheit.

[/] NTU - nephelometric turbitity units.

Turbidity after development.

TABLE 23 (page 1 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	ERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL Benzene	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL	SAMPLE		RI														
NUMBER	DEPTH (F	T) DATE	SAMPLE II) #=======		***********	=========	======R	EPORTED VAL	.UES====	========						
N-01	12	03/07/84	0	ND2	2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA		2
	42	03/07/84	0	ND2	120	25	10	12	ND2	ND2	ND3	4	ND3	ND3	NA	ND2	171
N-02	22	03/08/84	0	5	29	3	ND2	3	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	40
	42	03/08/84	0	8	38	4	ND2	4	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	54
N-03	22	03/12/84	0	3	12	5	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	20
	42	03/12/84	0	30	390	120	13	32	8	ND2	ND3	ND9	ND3	ND3	NA	ND2	591
N-04A	23	10/04/84	0	14	2	ND2	ND2	ND2	ND2	ND2	ND3	6	6	ND3	NA	ND2	28
	45	10/04/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-04	22	03/12/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	42	03/12/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-05	22	03/20/84		ND2	25	16	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	41
	42	03/20/84	0	8	310	210	32	37	20	ND2	ND3	ND9	ND3	ND3	NA	ND2	621
	62	03/20/84	0	ND2	49	2	7	8	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	66
N-06	22	08/05/91	272	2000	270	240	ND5	30J	ND5	ND1	ND1	ND 1	ND 1	ND1	ND2	ND1	254
	22	08/05/91	272	160E	22	21	0.8J	3	0.61	3	ND1	ND 1	ND1	ND 1	ND2	ND 1	210.4
	22	11/16/89	55	100B	37	23	ND5	43	NO5	0.7BJR	ND5	ND5	ND5	ND5	ND 100	10BR	164
	22	03/20/84	0	74	190	43	3	19	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	329
	42	03/20/84	0	190	460	110	5	31	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	798
	62	03/20/84	0	360	940	220	25	74	18	ND2	ND3	ND9	ND3	ND3	NA	ND2	1642

TABLE 23 (page 2 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHÉNE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL NUMBER	SAMPLE DEPTH (FI) DATE	RI SAMPLE	ID ========	**********	######################################	**********	======R	EPORTED VAI	LUES====			********	*********			
N-07	22	03/26/84	0	57	180	30		17	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	287
	42 62	03/26/84 03/26/84	0	49 29	160 95	26 17	3 2	19 9	ND2	ND2 ND2	ND3 ND3	ND9	ND3	ND3 ND3	NA NA	ND2 ND2	257 152
N-08	32	03/27/84	0	55	52	24	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	131
M-00	42	03/27/84	0	88	120	33	ND2	13	ND2	7	ND3	ND9	ND3	ND3	NA NA	ND2	261
	62	03/27/84	0	18	57	14	3	7	ND2	ND2	ND3	ND9	ND3	ND3	MA	ND2	99
N-09	22	04/17/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA.	ND2	0
	42	04/17/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	62	04/17/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	82	04/17/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-10	40	04/24/84	0	110	220	59	2	18	ND2	ND2	ND3	ND9	ND3	ND3	NA.	ND2	409
	61	04/24/84	0	36	58	15	ND2	9	NDZ	ND2	ND3	ND9	ND3	ND3	NA	ND2	118
	82	04/24/84	0	150	550	98	15	63	13	ND2	ND3	ND9	ND3	ND3	NA	ND2	889
	103	04/24/84	0	5	18	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	23
	124	04/24/84	0	ND2	2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	2
	145	04/24/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-11	21	11/20/89	64	ND 1	ND 1	ND1	ND1	ND 1	ND 1	0.8BJR	ND1	ND 1	0.6JR	ND 1	ND20	2BR	0
	21	04/26/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	42	04/26/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	63	04/26/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0

TABLE 23 (page 3 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	ERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL NUMBER	SAMPLE DEPTH (F	T) DATE	RI SAMPLE ID	******	**********	*********	*********	********	EPORTED VAL	.UES====	********	******	*******		********	**********	*********
H-11	84	04/26/84	0	NOZ	ND2	MD2	ND2	ND2	* ND2	ND2	ND3	ND9	ND3	ND3	HA	ND2	0
	105	04/26/84	0	NDZ	ND2	ND2	ND2	ND2	ND2	ND2	ND3	MD9	ND3	ND3	MA	NDZ	0
	120	04/26/84	0	NO2	ND2	NO2	MDZ	MD2	NO2	ND2	ND3	ND9	NO3	ND3	NA	MDZ	0
N-12	43	05/09/84	0	ND2	NDZ	NO2	MDS	ND2	ND2	ND2	ND3	MD9	ND3	ND3	NA.	ND2	0
	64	05/09/84	0	ND2	ND2	NO2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	85	05/09/84	0	ND2	NO2	ND2	ND2	ND2	NDZ	ND2	ND3	ND9	ND3	ND3	NA	MD2	0
H-13	43	05/07/84	0	ND2	MD2	MD2	MD2	MD2	ND2	ND2	ND3	ND9	ND3	ND3	NA NA	ND2	0
	64	05/07/84	0	NO2	ND2	ND2	ND2	ND2	NDS	ND2	ND3	MD9	ND3	ND3	NA	MD2	0
	85	05/07/84	0	MDS	ND2	ND2	ND2	ND2	NO2	ND2	NO3	ND9	ND3	ND3	NA	NO2	0
N-14	22	05/10/84	0	ND2	NO2	MD2	NO2	MDS	HD2	MD2	NO3	ND9	MD3	NO3	NA.	NOZ	
	43	05/10/84	0	H02	MD2	HDZ	MD2	NDZ	ND2	NDZ	NO3	ND9	RD3	ND3	NA	ND2	0
	64	05/10/84	0	ND2	NDS	MD2	ND2	ND2	ND2	ND2	ND3	MD9	ND3	ND3	NA	ND2	0
	85	05/10/84	0	NOS	ND2	NO2	ND2	ND2	NO2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-15	22	05/15/84	0	MO2	ND2	. ND2	MD2	MD2	ND2	ND2	NO3	ND9	NO3	ND3		MD2	
	43	05/15/84	0	NO2	MDZ	ND2	NO2	ND2	ND2	NO2	NO3	ND9	ND3	ND3	NA	MO2	0
	64	05/15/84	0	NO2	MD2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	85	05/15/84	0	ND2	NO2	ND2	NO2	ND2	ND2	NO2	NO3	ND9	NO3	ND3	NA	ND2	0
H-16	23	11/07/91	323	ND5	3	2	0.4J	0.6J	ND1	ND 1	MD 1	NO1	HO1	ND 1	75R	0.68J	6.6
	23	11/07/91	324	NO4	3	2	0.41	0.51	ND1	ND1	ND 1	NO1	NO1	NO 1	86R	0.5BJ	6.4
	23	11/17/89	62	106	13	8	0.9J	1	NO1	0.88JR	ND 1	ND1	ND1	WD1	ND20	281	32.9

TABLE 23 (page 4 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL NUMBER	SAMPLE DEPTH (F		RI SAMPLE I	D =========		*=========	=======================================	=======R	EPORTED VAL	UES====	********	*******					********
N-16	23	05/16/84	0	15	41	14	2	ND2	ND2	ND2	ND3	ND9	3	ND3	NA	ND2	75
M-10	44	05/16/84	0	1000	1300	460	41	79	45	ND2	ND3	ND9	ND3	ND3	NA	2	2935
	65	05/16/84	ō	380	1000	300	98	130	56	ND2	ND3	4	ND3	ND3	NA	ND2	1975
N-17	22	11/20/89	63	1BR	14	21	6	0.4J	ND1	2BR	ND1	0.5JR	0.7JR	ND1	ND20	8BR	41.4
	22	05/21/84	0	3	85	86	31	6	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	211
	44	05/21/84	0	ND2	55	6	11	3	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	75
	65	05/21/84	0	ND2	210	44	19	14	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	287
N-18	34	05/22/84	0	ND2	ND2	ND2	ND2	ND2	ND2	19	ND3	ND9	ND3	ND3	NA.	ND2	19
	44	05/22/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	65	05/22/84	0	3	3	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	6
N-19	23	11/20/89	66	ND1	ND1	ND1	ND1	ND1	ND1	1BJR	ND1	ND1	ND 1	ND 1	ND20	2BR	0
	23	05/23/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	43	05/23/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	64	05/23/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	85	05/23/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-20	23	11/20/89	67	ND 1	ND 1	ND1	ND 1	ND 1	ND 1	0.8BJR	ND1	ND1	ND 1	ND1	ND20	38R	0
	23	06/04/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	44	06/04/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	65	06/04/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0

TABLE 23 (page 5 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENÉ	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL	SAMPLE		RI														
NUMBER	DEPTH (F) DATE	SAMPLE II	*********	*********	**********	********	***********	EPORTED VAL	UES====	**********	*******	*******	********	***********	**********	************
N-21	22	06/04/84	0	ND2	ND2	ND2	ND2	ND2	ND2	MD2	ND3	ND9	ND3	ND3	NA	ND2	0
	43	06/04/84	0	NDZ	ND2	ND2	ND2	ND2	ND2	ND2	NO3	ND9	ND3	NO3	NA	ND2	0
	64	06/04/84	0	ND2	SON	NDS	NO2	ND2	NDS	ND2	ND3	NO9	ND3	ND3	NA	MDS	0
	85	06/04/84	0	ND2	ND2	ND2	ND2	ND2	ND2	MD2	ND3	NO9	ND3	ND3	NA	ND2	0
N-22	26	07/31/84	0	ND2	34	39	7	ND2	4	NDZ	ND3	ND9	ND3	ND3	NA	MD2	84
	47	07/31/84	0	MD2	MD2	ND2	ND2	ND2	NDZ	ND2	ND3	NO9	ND3	ND3	NA	NO2	0
	68	07/31/84	0	ND2	MD2	ND2	ND2	ND2	NO2	NDZ	NO3	ND9	ND3	ND3	NA	ND2	0
	110	07/31/84	0	ND2	ND2	ND2	NDZ	ND2	MDS	ND2	ND3	ND9	ND3	ND3	WA	MD2	0
	120	07/31/84	0	MD2	ND2	NOS	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-228	70	10/09/84	0	8	3	ND2	ND2	ND2	ND2	HD2	ND3	ND9	ND3	ND3	NA	ND2	11
	90	10/09/84	0	5	NDZ	ND5	NA	HA	NO4	ND4	MD3	ND9	ND3	ND3	NA	NA	5
	110	10/09/84	0	MD2	MD2	NDZ	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	130	10/09/84	0	H02	MD2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-23	10	08/01/84	0	ND2	ND2	ND2	NDZ	ND2	NO2	ND2	NO3	15	13	ND3	NA	ND2	28
	21	08/01/84	0	WD2	ND2	ND2	NDZ	ND2	ND2	ND2	ND3	ND9	ND3	MD3	NA	ND2	0
	29	08/01/84	0	ND2	ND2	MD2	ND2	ND2	ND2	ND2	NO3	ND9	ю3	ND3	MA	ND2	0
N-24	24	11/06/91	314	1200	NO50	30J	ND50	ND50	250	NO50	ND50	ND50	ND50	ND50	2700R	ND50	1480
	24	07/29/91	2 32 T	59R	45J	52R	5.9J	3.6J	ND 1	ND1	MD1J	ND1J	ND1J	NOTJ	ND1R	ND 1	54.5
	24	07/29/91	2321	1100R	25	473	ND 25	ND 25	ND25	NO 25	ND25J	ND25J	ND25J	ND25J	ND25R	ND25	47
	24	07/29/91	232N	26000	520J	720 J	ND120	ND120	5600	NO 120	ND120	ND 120	ND 120	ND 120	NO250	ND 120	3284
	24	07/29/91	232N	590R	46R	57R	5	4	270R	MD 1	MD1J	0.5JY	ND1J	WOTJ	ND2	ND1	9.5
	24	02/05/90	109	2400	160	140	NO100	ND 100	ND 100	NO50	ND50	ND 100	NO 100	NO 100	MD 200J	608J	2700

TABLE 23 (page 6 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL Benzene	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL	SAMPLE		RI														
NUMBER	DEPTH (FT) DATE	SAMPLE II	*********				*======R	EPORTED VA	LUES====		********		********	**********		
N-24	24	11/15/89	43	2100	140	130	ND 100	ND100	ND 100	22BJR	ND 100	ND 100	ND 100	ND 100	ND2000	80BJR	2370
	24	08/08/84	0	610	500	150	4	5	ND2	ND2	ND3	310	ND3	ND3	NA	ND2	1579
	45	08/08/84	0	330	290	81	5	7	ND2	ND2	ND3	140	ND3	ND3	NA	ND2	853
N-25	24	02/05/90	107	100	30	87	ND5	ND5	ND S	45BJ	ND5	ND5	ND5	ND5	24BR	4.1	262
	24	11/14/89	41	110	25	83	ND5	ND5	ND5	1.7BJR	ND5	ND5	ND5	ND5	ND 100	21BR	218
	24	08/08/84	0	47	49	25	4	ND2	ND2	ND2	ND3	19	ND3	ND3	NA	ND2	144
	45	08/08/84	0	2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	2
N-26	23	02/06/90	112	6900	4401	ND500	ND500	ND500	ND500	1500BJ	ND500	ND500	ND500	ND500	1000BR	260』	7340
	23	11/14/89	38	1500	190	50	ND100	ND100	ND 100	200BR	ND 100	ND 100	ND 100	ND 100	ND2000	460BR	1740
	23	11/14/89	39	1300	160	30	ND 100	ND 100	ND 100	370BR	ND 100	ND 100	ND100	ND100	ND2000	420BR	1490
	23	08/13/84	0	2300	1700	510	17	17	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	4544
	45	08/13/84	0	3	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND9	ND3	ND3	NA	ND2	3
N-27	23	11/06/91	308	6000	210J	62J	ND250	ND250	ND250	ND250	ND250	ND250	ND250	ND250	ND500	588J	6330
	23	11/06/91	307	5200	ND2500	ND2500	ND2500	ND2500	ND2500	ND2500	ND2500	ND2500	ND5000	ND 2500	ND 2500	540BJ	5740
	23	11/06/91	307	4200D	ND250	ND250	ND 250	ND250	ND250	ND250	ND 250	ND250	ND250	ND250	ND500	ND250	4200
	23	07/29/91	2291	1200JR	140J	ND 100	ND 100	ND 100	ND 100	ND100	ND100J	ND 100J	ND 100J	ND 100J	ND 100R	ND 100	140
	23	07/29/91	2291	75R	83R	36J	1.2J	ND1	ND 1	ND1J	ND1J	ND1J	ND1J	ND1J	ND1R	ND1	37.2
	23	07/29/91	229N	22000	520J	260 J	ND120	ND120	ND 120	ND 120	ND120	ND120	ND 120	ND120	ND250	ND120	2278
	23	07/29/91	229N	1100R	110R	41R	1	0.61	ND1	ND1	ND1	2Y	ND1	ND1	ND2	ND1	3.6
	23	02/06/90	111	760	90	ND50	ND50	ND50	ND50	100BJ	ND50	ND50	ND50	ND50	ND 100	568J	850
	23	11/14/89	37	1200	160	30	ND 100	ND 100	ND 100	140BJR	ND 100	ND 100	ND 100	ND 100	ND2000	370BR	1390

TABLE 23 (page 7 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL NUMBER	SAMPLE DEPTH (F		RI SAMPLE ID) =========	=======================================		********	======R	EPORTED VA	LUES=====	*******		*******	**********	********	**********	
N-27	23	08/15/84	0	5900	3000	1400	20	17	ND2	ND2	ND3	210	ND3	ND3	NA	ND2	10550
	45	08/15/84	0	3	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	3
N-27A	23	10/03/84	0	8000	3700	1100	30	24	3	ND2	ND3	300	3	15	NA.	ND2	13177
	45	10/03/84	0	8	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	8
N-28	23	11/06/91	311	5600	100J	78J	ND 250	ND250	ND250	ND250	ND250	ND250	ND250	ND250	ND500	170BJ	5948
	23	07/29/91	230N	640R	59R	49R	0.9J	3	94	ND1	ND 1	ND 1	ND 1	ND1	ND2	ND1	4.3
	23	07/29/91	230T	1900R	ND 100	ND 100	ND 100	ND 100	ND 100	ND 100	ND100J	ND100J	ND 100J	ND100J	ND 100R	ND 100	0
	23	07/29/91	230N	2400D	6001	53DJ	ND120	ND120	92DJ	ND120	ND120	ND 120	ND120	ND 120	ND250	ND120	2605
	23	07/29/91	230T	79R	461	361	ND1	1.7J	ND1	ND1	ND1J	ND1J	ND1J	ND1J	ND1R	ND1	83.7
	23	02/06/90	113	12000	690	530	ND250	ND250	ND250	5000BJ	ND250	ND250	ND250	ND250	ND500	380BJ	13220
	23	11/14/89	35	3700	240	180	ND100	ND100	ND 100	190BJR	ND 100	ND 100R	ND 100	ND 100	ND2000	530BR	4120
	23	08/20/84	0	2100	660	380	31	7	ND2	ND2	ND3	510	ND3	15	NA	ND2	3709
	45	08/20/84	0	33	6	3	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	42
MW-28B	48	11/06/91	312	0.61	ND1	ND1	ND1	ND1	ND1	ND 1	ND 1	ND 1	ND1	ND1	140B	0.4BJ	141.2
	48	07/29/91	231	0.9J	ND1J	ND 1	ND 1	ND 1	ND1	ND1	ND1	ND1J	ND1J	ND1J	ND2	ND 1	0.9
N-29		08/20/84	0	780	150	130	3	ND2	ND2	ND2	ND3	50	ND3	ND3	NA	ND2	1117
	45	08/20/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-30	23	08/22/84	0	41	15	10	ND2	ND2	ND2	ND2	ND3	8	ND3	ND3	NA	ND2	74
	45	08/22/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	NDZ	0

TABLE 23 (page 8 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	ERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE	TOTAL OF DETECTED COMPOUNDS
WELL	SAMPLE		RI														
NUMBER	DEPTH (F	T) DATE	SAMPLE	10	**********	**********	*********	=======R	EPORTED VAL	JES zzzz	*******		******	*******	1222 Q 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	***********	*****
N-31	23	08/23/84	0	90	36	26	ND2	ND2	2	MD2	ND3	ND9	ND3	ND3	NA	ND2	154
	45	08/23/84	0	3000	900	810	9	24	2	7	ND3	10	ND3	ND3	NA	MDZ	4765
N-32	23	11/06/91	313	390	ND25	14J	ND 25	7BJ	15J	NO 25	ND25	ND 25	ND25	ND25	MD50	68J	432
	23	07/29/91	233	290	16	16	ND 10	31	37	ND 10	ND 10J	ND10J	ND 10J	NO 10 J	ND20	ND 10	362
	23	02/06/90	114	1200	46J	56	ND50	ND50	MD50	ND 25	MD50	NO50	ND50	ND50	NO 100	90BR	1302
	23	11/15/89	42	800	46	45	ND25	NO 25	ND25	9JBR	ND 25	ND 25	ND 25	NO 25	ND500	1108R	891
	23	09/10/84	0	5	ND2	ND2	ND2	NO 2	NOZ	MO2	ND3	ND9	ND3	ND3	HA	ND2	5
	45	09/10/84	0	260	99	68	NDZ	ND2	ND2	NDS	ND3	ND9	ND3	ND3	NA	NDZ	427
N-33	23	11/05/91	294	470	50	ND2	MDZ	ND2	MD2	MD2	ND2	ND2	NO2	ND2	90	190J	70
	23	11/05/91	294	46	5	0.2J	ND1	0.21	ND1	1.9	ND 1	ND 1	ND1	ND 1	16R	0.3BJ	58.6
	23	07/29/91	227	6	0.9J	ND1	ND1	NO1	ND 1	ND1	NO 1	ND 1	NO 1	NO 1	MDZ	ND1	6.9
	23	02/05/90	105	78	16	NO5	ND5	NO5	ND5	35JR	ND5	ND5	ND5	ND5	ND10	58R	94
	23	11/14/89	34	80	17	ND5	NO5	ND5	ND5	9BR	ND5	ND5	ND5	ND5	100R	228R	97
	23	09/10/84	0	23	37	MD2	ND2	NOS	MDZ	MD2	ND3	ND9	ND3	ND3	MA	MDZ	60
	45	09/10/84	0	NO2	ND2	ND2	ND2	ND2	ND2	MD2	ND3	ND9	MD3	ND3	NA	NDZ	0
N-34	23	09/12/84	0	2200	510	190	ND2 ·	ND2	MD2	ND2	ND3	1800	8	120	AK	MD2	4828
	45	09/12/84	0	NO2	ND2	NOS	ND2	ND2	ND2	MD2	ND3	ND9	ND3	ND3	NA	ND2	0
N-35	42	09/25/84	0	11	3	3	MDS	NDZ	ND2	HD2	ND3	ND9	MD3	MD3	NA	ND2	17
	23	09/24/84	0	MD2	MD2	MDZ	ND2	MD2	ND2	ND2	MD3	ND9	ND3	ND3	MA	ND2	0
	32	09/24/84	0	ND2	ND2	MDZ	NOZ	ND2	ND2	102	ND3	ND9	ND3	ND3	MA	MD2	0

TABLE 23 (page 9 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

				TETRA	1,1,1		1,1	1,1	1,2	FREON				ETHYL		METHYLENE	TOTAL OF
PARAMETE	ERS			CHLORO ETHYLENE	TRICHLORO ETHANE	TRICHLORO ETHENE	DICHLORO ETHANE	DICHLORO ETHENE	DICHLORO ETHENE	113	BENZENE	XYLENE	TOLUENE	BENZENE	ACETONE	CHLORIDE	DETECTED COMPOUNDS
WELL NUMBER	SAMPLE DEPTH (F		RI SAMPLE ID						FPORTED VAL	UFS====	*********						
NUMBER	DEFIN (F	I) DAIL	SAMPLE ID														
N-36	32	08/05/91	274	ND1	ND1	ND1	2	ND1	ND 1	ND1	ND1	ND 1	ND1	ND1	ND1	ND1	5
	32	02/09/90	133	ND1	ND 1	ND1	0.61	ND1	ND 1	ND0.5	ND 1	ND1	ND 1	ND1	5B	ND 1	5.6
	32	11/15/89	48	0.9JR	ND1	ND1	0.81	ND1	ND 1	0.3BJR	ND 1	0.7JR	0.9JR	ND1	ND20	4BR	0.8
	32	09/25/84	0	ND2	ND2	ND2	NDZ	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	45	09/25/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
N-37	25	07/31/91	251	0.2J	ND1	ND1	ND1	ND1	ND1	1	ND1	0.3JY	ND1	ND1	ND2R	ND1	1.5
	25	02/06/90	117	ND1	ND 1	ND1	ND1	ND1	ND 1	3BR	ND 1	ND1	ND 1	ND1	3BR	ND 1	0
	25	11/15/89	44	0.2JR	ND 1	ND1	ND 1	ND1	ND1	2BR	ND1	ND1	0.2JR	ND1	ND20	3BR	0
	25	08/30/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	40	08/30/84	0	4	4	ND2	ND2	ND2	ND2	24	ND3	ND9	ND3	ND3	NA	ND2	32
N-38	30	09/06/84	0	31	8	6	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	45
	45	09/06/84	0	410	260	160	5	10	ND2	NDZ	ND3	ND9	ND3	ND3	NA	ND2	845
N-39	33	08/02/91	265	600R	49E	41E	2	3	1	0.6J	ND 1	ND1	ND1	ND1	ND2	0.4BJ	97
	33	08/02/91	265	1200D	ND 100	360	ND 100	ND 100	ND 100	ND100	ND 100	ND 100	ND 100	ND 100	ND200	ND 100	1200
	33	02/06/90	115	290	48	38	ND 10	ND10	ND 10	30BR	ND 10	ND10	ND 10	ND 10	ND20	18BR	376
	33	11/15/89	46	200	51	36	2J	ND5	41	5JBR	ND5	ND5	1JR	ND5	ND 100R	17BR	293
	33	09/20/84	G	1800	1300	1100	17	33	7	ND2	ND3	ND9	ND3	ND3	NA	ND2	3157
	45	09/20/84	0	1900	1800	1400	37	67	18	ND2	ND3	8	ND3	ND3	NA	ND2	5230
N-40	23	08/05/91	273	4		4	1	0.3J	ND 1	ND 1	ND1	ND 1	ND1	ND1	ND2	ND1	19.3
	23	02/09/90	123	25	22	20	2	2	0.61	ND0.5	ND1	ND1	ND1	ND 1	10B	ND1	81.6
	23	11/15/89	47	50	54	43	31	5	5	5JBR	ND5	ND5	ND5	ND5	ND 100R	10BR	160

TABLE 23 (page 10 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL NUMBER	SAMPLE DEPTH (F		RI SAMPLE ID	********	********	=======================================	*******	=======R	EPORTED VAL	.UES====	=============	=========			**********		
N-40	23	09/24/84	0	3	7	5	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	15
	45	09/24/84	0	71	200	140	10	8	ND2	ND2	ND3	4	ND3	ND3	NA	ND2	433
N-41	23	10/11/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
	45	10/11/84	0	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND3	ND9	ND3	ND3	NA	ND2	0
MW-42A	27	08/01/91	258	340	290	500	5D	1DJ	1DJ	ND2	ND2	ND2	ND2	ND2	40	0.48JD	125.3
	27	08/01/91	268	26	32J	57R	6	1	2	ND1	ND1J	ND1J	ND 1 J	ND1J	18JR	ND 1	71
	27	02/07/90	119	42	34	38	3	3	ND 1	3BJ	ND1	ND 1	ND1	ND 1	ND2	1BR	121
	27	11/17/89	58	ND2	22	30	2	ND2	ND2	ND2R	ND2	ND2	ND2	ND2	ND40	5BR	54
	27	11/17/89	57	658	49	54	43	31	ND5	1 JBR	ND5	ND5	ND5	ND5	ND 100	11BR	175
MW-42B	67	08/01/91	259	0.6J	ND1	0.5J	ND 1	ND1	ND1	ND 1	ND1J	ND1J	ND1J	ND1J	0.7BJR	ND1	1.1
	67	02/07/90	120	ND1	0.9J	ND1	ND1	ND1	ND1	3BJ	ND 1	ND 1	ND1	ND 1	5R	1BR	0.9
	67	02/07/90	121	2BR	0.9J	ND1	ND 1	ND 1	ND 1	ND.5J	1 מא	ND1	ND1	ND1	5BR	2BR	0.9
	67	11/17/89	59	1BR	ND1	0.8J	ND1	ND 1	ND1	0.4BJR	ND 1	0.8JR	1R	ND1	ND20	2BR	0.8
MW-42C	98	08/01/91	260	ND1	ND1	0.6J	ND1	ND 1	ND 1	ND 1	ND1 J	ND1J	ND1J	ND1J	0.9BJR	ND1	0.6
	98	02/07/90	123	1BR	ND1	ND1	ND1	ND 1	ND1	ND.5J	ND 1	ND1	ND 1	ND1	3BR	ND1	0
	98	11/17/89	61	0.3BJR	ND1	ND1	ND1	ND1	ND 1	1BJR	ND 1	C.9JR	18	ND 1	ND20	3BR	0
MW-43A	29	08/05/91	269	60	7	6	ND2	0.5J	ND2		ND1	ND1	ND1	ND1	ND2	0.5	76
	29	08/05/91	268	140	17	13	ND5	ND5	ND5	43	ND 1	ND1	ND 1	ND 1	ND2	2BJ	198
	29	02/08/90	125	41	12	8	ND1	1	ND1	ND.5J	ND1	ND1	ND1	ND 1	ND2	ND 1	62
	29	11/16/89	50	20	6	3	ND 1	ND 1	0.61	0.5BJR	ND 1	ND1	ND1	ND 1	ND20	3BR	29.6
	29	11/16/89	51	28	9	5	ND1	NO 1	0.8J	0.6BJR	ND 1	ND1	ND 1	ND1	ND 20	3BR	42.8

TABLE 23 (page 11 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREDN 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE	TOTAL OF DETECTED COMPOUNDS
WELL	SAMPLE		Rf														
NUMBER	DEPTH (FT) DATE	SAMPLE ID		204422442242	**********	**********	*===#==R	EPORTED VAI	rne z=====	********	********	******	3227 3278 21	***********		*********
MW-43B	74	08/05/91	207	4	0.8J	0.61	ND 1	NO 1	ND 1	ND1	NO 1	ND 1	ND 1	NO 1	NO2	0.2BJ	5.8
	74	02/08/90	126	70	27	15	NO5	NDS	NO5	NO.5J	ND5	ND5	ND5	ND5	16BR	27BR	112
	74	11/16/89	52	45	17	11	0.5J	ND 1	2	0.48JR	ND 1	ZR	3R	0.5J	ND 20	3BR	76
MW-43C	107	08/05/91	271	13	2	2	ND 1	0.2J	ND 1	0.8J	ND5	ND5	NO5	ND5	ND 10	0.2BJD	18.3
	107	02/08/90	127	68	3	1	ND1	ND 1	ND1	0.68J	ND 1	ND1	NO 1	∕ ND1	68	128	28.7
	107	11/16/89	53	5R	2	1	ND 1	ND1	ND 1	0.5BJR	ND 1	ZR	4	0.5J	ND20	5BR	7.5
HU-44A	36	11/05/91	291	520	11	13	ND 10	ND 10	ND 10	NO 10	ND 10	NO 10	NO 10	ND 10	23R	ND 10	521
	36	11/05/91	291	4500	ND 25	11DJ	ND 25	ND 25	ND25	ND25	NO25	ND 25	ND 25	MD 25	ND 25	ND25	461
	36	08/01/91	255	680R	19	26	0.91	0.61	3	NO 1	ND1J	ND1J	ND1J	ND1J	ND 2	ND 1	49.5
	36	08/01/91	255	7000	ND 100	ND 100	ND 100	ND 100	ND 100	ND 100	ND 100	ND 100	ND 100	ND 100	MD200	ND 100	700
MV-44B	49	11/05/91	292	25000	ND 120	32D J	MD 120	ND 120	ND 120	ND 120	ND 120	ND120	ND 120	ND 120	ND250	NO 120	2532
	49	11/05/91	292	4600E	NO 100	57J	ND 100	20J	ND 100	ND 100	ND 100	ND 100	ND 100	ND 100	ND200	228J	4699
	49	08/01/91	256	930R	41R	48R	0.7J	2	0.41	MD2	ND1J	ND1J	NO1J	ND1J	ND2	NO 1	5.4
	49	08/01/91	256	17000	NO 120	28	ND 120	ND120	ND 120	ND 120	ND 120	ND120	ND 120	ND 120	ND250	ND120	1755.9
MV-44C	71	11/05/91	293	2	ND 1	жо1	ND 1	ND1	NO1	1.5J	ND1	ND 1	ND 1	MD1	4R	0.381	6.8
	71	08/01/91	257	16	ND 1	0.41	NO 1	ND 1	ND 1	ND 1	ND1J	MD1J	ND1J	MD1J	ND2	ND 1	16.6
MV-45A	29	11/04/91	282	8	ND1	HD1	ND 1	ND1	MD1	ND1	ND1	ND1	ND 1	ND1	120R	0.48J	8.7
	29	07/31/91	249	47	13	ND5	MD5	NO5	ND5	2	MD5	1JY	ND5	ND5	ND 10R	48J	57

TABLE 23 (page 12 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summery of Volatile Organic Compounds for Monitor Wells

PARAMETE	ERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE	TOTAL OF DETECTED COMPOUNDS
WELL MUMBER	SAMPLE DEPTH (F		RI SAMPLE II) ========	**********	*********	22222222 <u>2</u>	************	EPORTED VALI	ÆS====	*******		*********	**********	*******		**********
MW-458	51	11/04/91	281	24	0.2J	0.3J	NO 1	0.23	NO1	ND 1	ND 1	NO1	ND1	ND T	88R	0.58J	25.5
	51	07/31/91	250	7	ND 1	ND 1	NO1	ND 1	HO1	0.5J	ND1	NO 1	ND1	NO 1	NO1	0.381	8.2
MV-46A	14	11/05/91	289	6	9	18	0.21	0.2J	NO1	NO 1	ND 1	ND1R	ND 1	NO 1	20R	0.4BJ	34.1
	14	07/30/91	236	16	7J	7	0.2J	NO 1	NO1	NO 1	ND1J	ND1J	ND1J	HD1J	ND2	HD 1	30.5
MW-46B	43	11/05/91	290	ND 1	ND1	ND 1	ND1	ND 1	ND1	ST	ND 1	NO 1R	ND1	но1	14R	0.4BJ	2.6
	43	07/30/91	237	ND1	ND 1	ND 1	1 סא	NO 1	ND1	ND1	ND 1	NO 1	ND1	ND1	ND23	ND 1	0
MU-47A	14	11/04/91	286	21	68	140	0.8J	0.41	4	ND 1	ND 1	ND 1	1 סא	ND 1	400R	0.4BJ	262.2
	14	11/04/91	286	220	740	1600	ND5	10 J	4DJ	ND5	ND5	NO5	HD5	ND5	260R	381D	264.0
	14	07/30/91	238	14	46	75	0.61	ND2	2	ND2	ND2J	MDZJ	ND2J	NDSJ	ND4	NDS	138.3
MJ-478	38	11/14/91	285	3	NO 1	ND 1	ND1	ND 1	ND1	ND 1	ND 1	ND 1	ND1	ND 1	170R	0.4BJ	4.1
	38	07/30/91	240	0.31	NO1	ND 1	ND 1	NO 1	NO 1	ND 1	NO 1	ND 1	ND 1	ND1	NDS	ND 1	0.6
	38	07/30/91	239	0.31	1 סא	ND 1	ND1	ND 1	MD 1	NO 1	ND 1	ND 1	ND 1	ND 1	MD2	NO 1	0.5
	35	11/04/91	284	ND1	ND1	NO1	ND 1	0.23	ND1	NO1	ND 1	ND 1	HD1	ND1	220R	0.6BJ	0.8
	35	08/02/91	263	NO 1	NO 1	ND 1	NO 1	NO 1	NO 1	NO T	NO 1	ND1	ND 1	NO 1	MDS	0.48J	0.6
MV-488	69	11/04/91	283	ND1	жо1	0.31	ND 1	0.23	0.2J	ND1	ND 1	ND1	ND 1	MD1	39R	0.48J	1.5
	69	08/02/91	264	NO1	ND1	0.31	NO1	ND1	NO1	NO1	ND1	ND1	NO1	ND1	MD2	0.4BJ	1.2

TABLE 23 (page 13 of 13)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summery of Volatile Organic Compounds for Monitor Wells

PARAMETE	RS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
WELL NUMBER	SAMPLE DEPTH (FT) DATE	RI SAMPLE ID				***********	********	EPORTED VAL	UESamme	*******	******	*********		**********	**********	***********
																	5.4
MU-49A	23 23	11/07/91 07/30/91	320 241	2 3	2 4	1	ND1 0.4J	ND1 0.4J	ND1	ND 1	Ю1 ИО1J	ИО 1 ИО 1 J	НО1 НО1Ј	НО 1 НО 1 Ј	72R NO 1	0.4BJ ND1	17.8
MU-498	68	11/07/91	321	470	300	160	28	74	28	ND 25	ND 25	MD25	ND25	ND25	NO50	68J	1084
	68	07/30/91	242	370	330	170	27	62	26	ND 10	LO10A	MD10J	ND 10J	LO1 DM	ND20	ND10	994
MW-49C	99	11/07/91	322	29	11	7	0.8J	28	ND 1	ND 1	ND1	HD1	ИО 1	ND 1	6R	0.4BJ	50.4
	99	07/30/91	243	28	15	8	0.9J	2	ND 1	NO 1	ND1J	MD1J	NO1J	ND1J	ND2	NO 1	54.2
MV-50A	29	11/07/91	317	ND 1	NO 1	ND 1	ND 1	ND1	ND 1	ND 1	NO 1	ND 1	ND 1	NO 1	26R	0.48J	0.8
	29	07/31/91	246	NO 1	ND 1	ND 1	NO1	ND 1	ND 1	ND 1	NO 1	ND 1	ND1	NO 1	ND2	0.3BJ	1.1
	29	07/31/91	246	0.91	ND 1	NO 1	ND1	NO1	ND 1	ND 1	ND 1	ND 1	ND1	ND 1	0.5BJ	0.2BJ	2.6
MW-508	59	11/07/91	318	ND1	ND 1	ND 1	ND1	HD1	ND 1	ND 1	ND1	NO 1	ND 1	1 DK	39R	0.4BJ	1.2
	59	07/31/91	247	ND1	MD 1	NO 1	ND 1	NO 1	ND 1	0.41	ND1	MD1	, ND 1	ND 1	ND2	0.38J	1.3
HW-50C	86	11/07/91	319	HD 1	ND 1	ND 1	ND1	ND1	ND 1	ND 1	ND1	ND1	ND1	ND 1	52R	0.381	0.3
	86	07/31/91	248	NO 1	ND 1	ND1	ND1	ND1	NO 1	0.5J	MD1	NO1	MD1	NO 1	ND 1	0.38J	1.7
MW-51A	28	11/06/91	309	140	8	2,1	Sl	ND5	ND5	ND5	MD5	MO5	ND5	ND5	13R	28J	154
	28	10/23/91	278	410	. 23	43	41	ND 10	ND 10	ND 10	NO 10	ND 10	ND 10	ND10	29R	ND5	444
	28	10/23/91	278	3100	160J	ND 25	ND 25	580 J	ND 25	ND25	ND 25	ND 25	ND 25	ND 25	290	128JD	372
MV-52A	29	11/06/91	310	38	3	0.8J	ND2	18J	ND2	ND2	NO2	MOS	NO2	SON	MD4	0.88J	43.6
	29	10/23/91	277	59	23	ND5	NO5	MOS	ND5	ND5	ND5	NO5	ND5	ND5	ND10	ND5	61

ALL CONCENTRATIONS REPORTED IN UG/L (PPB)

J * ESTIMATED VALUE

B = ANALYTE WAS FOUND IN THE ASSOCIATED BLANK

R = REJECTED BY VALIDATOR

NA = SAMPLE NOT AMALYZED

ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)

NOTE: IF TWO SETS OF RESULTS ARE SHOWN FOR

A SINGLE DATE AT THE SAME SAMPLE LOCATION,

THEN THE SECOND SET IS A DUPLICATE SAMPLE

PROVIDED FOR QUALITY ASSURANCE

RI SAMPLE 10

N=SAMPLE ANALYZED

BY NET-CAMBRIDGE

T=SAMPLE ANALYZED BY TECHNICAL TESTING

LEGGETTE, BRASHEARS & GRAHAM, INC.

TABLE 24 (page 1 of 4)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Metals Results for Homeowner and Monitor Wells

PARAMETERS			AL	SB	AS	BA	BE	CD	CA	CR	CO	CU	FE	PB	MG	MN	HG	NI	K	SE	AG	NA	TL	V	ZN	CN
WELL NO.	DATE	SAMPLE ID	========	=======	========			=======			.=======	====REP	ORTED VAI	.UES=====	========			20222222			=======	=========	::=======			
N-06	08/05/91	272	212	ND30	ND3	41.4	ND1	8.8	8430	ND5	ND5	196	66000	34.41	4220	311	ND.2	14.2	1550	ND2	ND5J	30500J	ND2J	ND5	84.4J	NA
	11/16/89	55	400EJ*	5.4BR	ND2	33.5B	ND4	10NR	8400J	12.7*	ND10	ND6	22200J	22N	42808	179J	NDO.2	38.8BR	2000B	ND 1	ND3	29700	ND3N	ND8	167	ND 10
N-11	02/09/90	132	230	6.4BJ	ND4	ND35	ND2	15.2	8130EJ	16	ND 15	14.7B	55200	24.6N*J	2940BJ	284	ND0.2	72	2540B	ND2	ND9	10500	ND5	ND 13	147*J	NA
N-11(D)	02/09/90	132	ND35	12.6BJ	ND4	ND35	ND2	ND4	7970EJ	ND7	ND 15	6.5B	803	10.4BJ	2870BJ	288	ND0.2	ND18	2310B	ND2	ND9	10700	ND5	ND 13	52.8*J	NA
N-17	11/20/89	63	333EJ*	ND4	ND2	133B	ND4	8.1NR	18200J	13*	ND 10	ND6	13200J	70.9N	5010	801J	NDO.2	15.4BR	28708	1.2B	ND3	119000	ND3N	ND8	195	ND 10
N-19	02/09/90	131	47.48	ND6	ND4	ND35	ND2	6.2	3740BEJ	14.6	ND15	10.5B	17200	26.3N*J	1890BJ	163	ND0.2	25.48	457B	ND2	ND9	11200	ND5	ND 13	64.1*J	NA
N-19(D)	02/09/90	131	ND35	13.6BJ	ND4	ND35	ND2	ND4		ND7	ND 15	7.18	3080	19.9N*J	1920BJ	145	ND0.2	ND18	950B	ND2	ND9	11800	ND5	ND15	68.26*J	NA
N-24	07/29/91	232	3560	ND30J	ND3	59.8	ND 1	17	9120	57.8	20.7	67	157000	37.8J	3180	4560	ND.2	53.2	2290	ND2	ND5J	11900J	NDSJ	11.9	141J	NA NA
N-27	07/29/91	229	180	ND30J	ND3	45.8	ND 1	8.91	14700	34.7	ND5	46.8	82000	37.6J	2880	360	ND.2	43.3	1660	ND2	ND5J	11300J	ND2J	ND5		NA
	02/06/90	111	70.6B	ND6	ND4	48.7B	ND2	4.6B		7.1B	ND15	ND5	8050	29.1N*J	4980B	428	ND0.2	ND18	1840B	ND2	ND9	11500	ND5	ND 13		NA
	11/14/89	37	485JE*	6.1BR	ND2	51.9B	ND4	7.6R	23300	10.6*	ND10	ND6	11000J	60.1SN	7060	319J	ND0.2	35.6BR	17708	1.1B	ND3	11600	ND3N	ND8	128	ND 10
N-27(D)	02/06/90	111	ND35	8.6BJ	ND4	42.3B	ND2	ND4	16400EJ	ND7	ND 15	ND5	3040	14.2N*J	4770B	405	ND0.2	ND18	18208	ND2	ND9	14400	ND5	ND 13	107*J	NA
N-28	07/29/91	230	182	ND30J	ND3	18.6	ND1	3.2J	5900	10.8	ND5	10	30500	11.5J	1610	337	ND.2	9	2080	ND2	ND5J	16900J	ND2J	ND5	778J	NA
MW-28B	07/29/91	231	766	ND30J	ND3	16.3	ND1	ND31	20100	7.4	ND5	7.7	763	8.91	2040	26.9	ND.2	6.7	4230	ND2	ND5J	12200J	ND2J	13.2	54.31	NA
N-32	07/29/91	233	2840	ND30J	ND3	48.6	ND1	12.8J	6790	37.3	8.1	26.2	120000	46.8	2540	2060	ND.2	55.8	1920	ND2	ND5J	13300J	ND2J	10.2	167J	NA
N-33	07/29/91	227	150	ND30J	ND3	20.1	ND1	9.5J	4680	21	ND5	24.6	88700	30.3	1660	226	ND.2	40.4	500	ND2J	ND5J	11800J	ND2J	ND5	59.8J	NA
N-36	08/05/91	274	6350	40.9J	ND3	43.5	ND 1	8.4	9750	61.8	11.2	35.3	55700	11.3J	3870	357	ND.2	66.2	1340	ND2	ND5J	3760J	NDSJ	16.2	111J	NA
N-37	07/31/91	251	1680	ND30	ND3	98.4	ND1	32.1	8450	ND5	ND5	15.1	228000	13.3J	3770	268	ND.2	7.1	2260	ND2J	ND5J	58100J	ND2J	ND 5	420J	NA
N-39	08/02/91	265	1570	ND30	ND3	34.6	ND 1	13.6	43700	10.3	ND5	17.7	92800	12.2J	4850	1570	ND.2	18.2J	2620	ND2	ND5J	11800J	ND2J	ND5	100J	NA NA
	02/06/90	115	479	7.3BJ	ND4	ND35	ND2	8.1	39500EJ	14.6	ND15	6.88	15700		4780B	1170	NDO.2	ND18	33103	ND2	ND9	15100	ND5	NO13	131*J	NA
	11/15/89	46	1740EJ*	ND4	ND2	53.6B	ND4	8.8NR	35900	98*	ND10	ND6	17400J	ND2N	4370B	1490J	ND0.2	26.2BR	3480B	1.68	ND3	17700	ND3N	9.2B	81.1	ND 10
N-39(D)	02/06/90	115	ND35	ND6	4.7BJ	ND35	ND2	ND4	40200EJ	7.3B	ND15	ND5	2120	32.5SN*J	4810B	1110	ND0.2	ND18	33008	ND2	ND9	ND75	ND5	ND13	80.4*J	NA

TABLE 24 (page 2 of 4)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Metais Results for Homeowner and Monitor Wells

PARAMETERS			AL	SB	AS	BA	BE	CD	CA	CR	co	cu	FE	PB	MG	MN	HG	NI	K	SE	AG	MA	TL	V	ZN	CN
WELL NO.	DATE	SAMPLE ID	*******	3222222			*******	********	********			====REP	ORTED VAL	.UES=====	25555222	********	******	*******	********	*******		*******	*******	*********	2222222	: # # # # # # # # # # # # # # # # # # #
N-40	08/05/91	273	449	ND30	ND3	11.6	ND1	8	4940	17.4	ND5	15.5	58700	16.5J	1690	134	ND.2	29.9	1050	ND2J	ND5J	4960J	ND2J	ND5	152J	NA
MW-42A(D)	02/07/90	119	ND35	ND6	ND4	ND35	ND2	ND4	11100EJ	ND7	ND 15	ND5	755	19.5BJ	2560B	216	NDO.2	ND18	3340B	ND2	ND9	9400	ND5	ND 13	37.9*J	NA NA
MW-42A	08/01/91	258	7710	ND30J	13.9	50.1	ND1	10.6J	9740	87.6	7.5	59	108000	48.6	3810	367	ND.2	17.2	2350	ND2	ND5J	7800J	ND10J	21.6	63.9J	NA
	02/07/90	119	590	8.8BJ	ND4	ND35	ND2	ND4	11400J	8.4B	ND15	ND5	4440	19.3N*J	2400B	176	NDO.2	ND18	3520B	ND2	ND9	9400	ND5	ND13	73.9*J	NA
	11/17/89	57	3730EJ*	5.8BR	3BJ	ND21	ND4	ND3N	7780J	9.8B*	ND 10	ND6	4340J	5.6N	1860B	188J	NDO.2	ND13	16700	1.1B	ND3	11300	ND3	ND8	50.6	ND10
MW-42B(D)	02/07/90	121	ND35	ND6	ND4	ND35	ND2	5.1	4960BEJ	7.1B	ND15	ND5	4670	12.6BJ	1970B	32.2	ND0.2	ND 18	1780B	ND2	ND9	11400	ND5	ND13	102*J	NA
	02/07/90	121	109B	ND6	ND4	ND35	ND2	5	5160EJ	14.6	ND15	22.7	5360	76.2NS*J	1960B	34.4	ND0.2	ND18	2630B	ND2	ND9	11600	ND5	ND13	239*J	NA
MW-42B	08/01/91	259	168	ND30J	ND3	12	ND1	7.7J	5260	45.3	ND5	171	7670	49.3J	2170	49.6	ND.2	28.6	6420	ND2	ND5J	11300J	ND10J	7.6	69.81	NA
	02/07/90	120	ND35	ND6	ND4	ND35	ND2	ND4	4550BEJ	ND7	ND 15	ND5	4590	28.7SN*J	1860B	31.7	ND0.2	ND18	1800B	ND2	ND9	11500	ND5	ND13	110*J	NA
	02/07/90	120	180B	ND6	ND4	ND35	ND2	7.9	4940BJ	51.3	ND15	26	5670	50.2SN*J	1960B	41.6	NDO.2	45.4	2430B	ND2	ND9	11300	ND5	ND13	211*J	NA
	11/17/89	59	488EJ*	4.6BR	ND2	ND21	ND4	4.1BNR	45708J	30*	ND 10	18.9B	5170J	104NS	1800B	46.7J	0.2	47.9R	2010B	ND1	ND3	11100	ND3N	12.68	94	ND10
MW-42C	08/01/91	260	55.5	ND30J	ND3	20	ND 1	ND3J	4570	11.4	ND5	58.5	14900	29	2000	43.7	ND.2	14.8	1150	ND2	ND5J	10000J	ND2J	ND5	60.5J	NA
	02/07/90	123	247	ND6	ND4	ND35	ND2	10.5	5350J	20.3	ND 15	38.9	6630	93.3SN*J	2060B	38.6	ND0.2	43.8	1280B	ND2	ND9	9940	ND5	ND13	192*J	NA
	02/07/90	123	ND35	ND6	ND4	ND35	ND2	6.8	4890BJ	7.2B	ND15	ND5	4740	17.5N*J	2000B	33.8	ND0.2	28.68	1210B	ND2	ND9	10200	ND5	ND13	98.3*J	NA
	11/17/89	61	66.9BJE*	ND4R	ND2	ND21	ND4	6.3NR	4120BJ	44*	ND10	9.5B	13300J	14.8N	17908	41.7J	NDO.2	47.2R	6068	ND1	ND3	9500	ND3H	ND8	66.5	ND10
MW-43A	08/05/91	269	10900	ND30	7.2	119	ND1	10.4	10400	7210	5.6	62.1	47300	39.2J	6340	342	ND.2	42.3J	3760	ND2	ND5J	31300J	ND10J	50.8	109J	NA NA
	08/05/91	268	12700	ND30	6.7	127	ND1	10.4	10800	585 0	8.7	55.6	44500	36.61	7070	501	ND.2	31.5J	3840	ND2	ND5J	29200J	ND10J	48	117J	NA
	02/08/90	125	1340	ND6	ND4	56.7B	ND2	8.1	9060EJ	188	ND15	18B	2950	28.4N*J	4630B	109	ND0.2	19.1B	24508	ND2	ND9	29100	ND5	ND 13	65.8*J	NA
	11/16/89	51	210EJ*	5.3BR	ND2	35.18	ND4	ND3NR	809 0	ND6*	10.4B	6.4B	581J	ND 10N	3780B	44.1J	ND0.2	ND13	1850B	ND1	ND3	24100	ND3N	ND8	79.4	ND10
	11/16/89	50	4110EJ*	4BR	ND2	74.68	ND4	ND3NR	8630	22*	11.6B	41.9	5880J	56SN	4390B	217J	ND0.2	33.1BR	2590B	ND1	ND3	24300	MD3N	10.3B	98.9	ND10
MW-43A(D)	02/08/90	125	ND35	20.88J	ND4	ND35	ND2	ND4	8480EJ	10.7	ND15	ND5	43.7B	21.6N*J	4280B	11.3B	ND0.2	ND18	2410B	ND2	ND9	28500	ND5	ND13	131*J	NA
MW-438	08/05/91	270	161	ND30	ND3	26.9	ND1	33.4	10700	13.5	ND5	65.1	340	27 J	4090	9	ND.2	11.2J	4100	ND2	ND5J	19500J	NO10J	ND5	302J	NA
	02/08/90	126	115B	ND6	ND4	ND35	ND2	4.2B	9990EJ	18.7	ND 15	22.2B	148	57.2N*J	4400B	9.88	ND0.2	ND18	5440	ND2	ND9	20600	ND5	ND13	114*J	NA
	11/16/89	52	435EJ*	ND4	ND2	26.28	ND4	ND3NR	11800	22.6*	11.2B	27.4	268J	84.7SN	4480B	31.3J	ND0.2	36.8BR	6810	1.2B	ND3	22300	ND3N	ND8	62	ND10
MW-43B(D)	02/08/90	126	ND35	20BJ	ND4	ND35	ND2	ND4	9510J	ND7	ND 15	ND5	ND40	24.5N*J	44008	3.48	ND0.2	ND18	5600	ND2	ND9	21100	ND5	ND13	63*J	NA
MW-43B(P)	08/05/91	270	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-43C(D)	02/08/90	127	98.98	6.88J	ND4	ND35	ND2	ND4	7420J	ND7	ND15	20.5B	106	25.2N*J	3190BJ	8.6B	NDO.2	ND18	1480B	ND2	ND9	15300	ND5	ND13	117*J	NA

TABLE 24 (page 3 of 4)

NABISCO BRANDS, INC. ROME INDUSTRIES SITE SAG HARBOR, NEW YORK

Metals Results for Homeowner and Monitor Wells

PARAMETERS			AL	SB	AS	BA	8E	CD	CA	CR	co	œ	FE	PB	MG	MN	HG	NI	K	SE	AG	NA	TL	٧	ZN	CN
WELL NO.	DATE	SAMPLE ID	*********	*******		42222 2 23				*******	132328833	====REP(ORTED VAL	UES=====	2222223	1222234T		********	12222320	######################################		******	********		34472422;	1222222
MW-43C	08/05/91	271	130	ND30	NO3	22.1	ND1	NO3	8220	22.6	ND5	73.6	419	39.31	3470	9.4	ND.2	22.61	1160	ND2	ND5J	14900J	ND10J	ND5	118J	NA
	02/08/90	127	322	ND6	ND4	ND35	ND2	ND4	7430J	35.7J	ND15	47	628	52.1SN*J	32408J	22.5	ND0.2	36.68	1450B	SOK	ND9	15200	ND5	ND13	109*J	NA
	11/16/89	53	165BEJ*	4.68R	NDZ	21.68	NO4	NO3NR	7360	6.48*	NO10	32.3	3481	74.7SN	3120B	28.7J	NO0.2	34.2BR	1200B	ND1	ND3	14200	NO3	8DN	49.6	ND 10
MW-44A	08/01/91	255	34500	ND30J	ND3	279	2.1	9.21	13400	66.4	24.6	72.1	74400	39.51	8000	4250	ND.2	34.3	6530	NO2	NDSJ	11300J	MD2J	59.8	185J	NA
MW-448	08/01/91	256	1910	ND30J	ND3J	43.6	1 OK	LEGN	8360	5.6	NO5	11.3	11000	12.3J	2310	1090	ND.2	6.4	11600	ND2	ND5J	16800J	ND10J	10.8	67J	NA
MW-44B(P)	08/01/91	256	NA	NA	NA.	NA	NA	NA	NA	NA .	NA	NA	NA	5	NA	NA	AK	NA	NA	NA	NA	NA	AK	NA	NA	NA
MU-44C	08/01/91	257	46.7B	NO301	ND3	17.5	NO1	FEON	6270	ND5	ND5	NO5	519	F2DN	2 23 0	26.4	ND.2	NDS	1650	NO2	NO5R	9810J	NDZJ	ND5	21.91	NA
MW-45A	07/31/91	249	10300	34.4	ND 15	64.3	2.1	7.2	6450	71.3	6.7	46.7	31900	16.6J	4690	134	ND.2	9	2520	ND10	NDSJ	16700J	ND2J	138	129J	NA
MW-45B	11/04/91	281	HA	NA	MA	NA	NA	AK	NA	MA	NA	NA	NA	NA	AA	NA	NA	NA	NA	NA	ND5	NA	NA	NA	NA	NA
	07/31/91	250	2320	ND30	9.3	53.3	ND1	ND3	9560	17.8	NO5	36.6	10200	13.1J	2740	82.3	ND.2	6.6	21500	ND2	54.81	16900J	ND2J	40.5	82.3J	NA
MW-46A	07/30/91	236	2920	м030J	NO3	31.3	ND1	LEGN	15300	12.8	NO5	28.1	8980	12.2J	3050	226	ND.2	NDS	1380	ND2	NOSJ	10400J	NDZJ	24.9	82.7J	NA.
MW-46B	07/30/91	237	415	ND301	NO3	10.9	NO 1	FEON	5700	6.8	ND5	6.4	1310	31.6J	2230	31.2	ND.2	5	1080	ND2	F50M	10300J	ND2J	6.4	33.7J	NA
MW-47A	07/30/91	238	2320	и0301	ND3	25.1	ND1	TEON	21500	9.1	NO5	20.8	9110	7.41	3130	60.8	ND.2	NO5	1370	ND2	N05J	86901	NDZJ	15.5	51.8J	NA.
MW-47A(P)	07/30/91	238	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.91	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-478	07/30/91	239	554	MD301	ND3	10.6	NO1	LEGN	5880	8.4	ND5	6.5	2330	24.3J	2710	40.3	ND.2	ND5	1100	ND2	NOSJ	10600J	LO10N	5.3	24.71	NA
	07/30/91	240	477	ND301	NO3	11.5	ND 1	FEGN	6110	ND5	NDS	HD5	2220	31.4	2760	40.7	NO.2	NO5	N0400	ND2	NO5J	106001	LSON	ND5	36.81	NA
MW-48A	11/04/91	284	NA	· NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	13.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/02/91	263	12500	ND30	NO3	83.8	ND 1	4.6	10100	36	5.2	38.7	20400	12.51	5080	183	ND.2	9.81	2400	NO2	ND5J	12 700J	LSDN	56.3	149J	NA
MW-488	11/04/91	283	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15	NA	MA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/02/91	264	338	ND30	ND3	37.2	ND1	NO3	6530	103	ND5	14.1	2720	18.3J	2900	46.3	ND.2	56.61	945	NDZ	NO5J	11200J	LSDN	ND5	71.8J	NA
MW-49A	07/30/91	241	5310	мо301	MD3J	51.5	ND1	ND3J	9600	6	NO5	12.3	4270	11.2J	3360	213	ND.2	NO5	2500	ND2	ND5J	10800J	ND2J	6.1	55.91	NA.
MW-49B	07/30/91	242	84.2	ND301	ND3	51.6	NO1	FEON	8160	14.2	ND5	9.7	201	59.4J	4180	26.5	ND.2	ND5	3070	ND2	NDSJ	14800J	ND2J	ND5	40.31	NA
MW-49C	07/30/91	243	96.9	ND301	ND3J	17.4	ND1	ND31	8540	14.5	NO5	8.5	12600	62.1J	2130	117	NO.2	NO5	2200	NOS	NDSJ	9450J	ND21	ND5	443	NA
MW-50A	07/31/91	246	48.3	ND30	ND3	18.4	ND1	NO3	16900	NO5	NO5	18.8	133J	7.43	5490	22.3	ND.2	7.5	1160	NDSJ	HD5J	1 3300J	LSGN	NDS	44.21	· NA
MW-50B	07/31/91	247	155	ND30	ND3	12.8	NO1	NO3	6520	96.7	ND5	69.3	1210	5 5.8 J	2220	24	ND.2	82.5	753	ND2J	ND5J	9100J	LSGN	ND5	62.81	NA
MW-50C	07/31/91	248	168	ND30	3.1	22.2	ND1	NO3	12000	70	ND5	47.6	5860	35.5j	3020	42.4	ND.2	57.1	1570	NOZJ	ND5J	16500J	ND2J	ND5	54.5J	NA

TABLE 24 (page 4 of 4)

NABISCO BRANDS, INC. ROME INDUSTRIES SITE SAG HARBOR, NEW YORK

Metals Results for Homeowner and Monitor Wells

PARAMETERS			AL	S8	AS	BA	8E	CD	CA	CR	CO	æ	FE	PB	MG	MN	HG	NI	K	SE	AG	HA	TL	V	ZN	CN
WELL NO.	DATE	SAMPLE ID	1822332323	******	*********	**********			*********		128223P4E:	====REF	PORTED VAL	UES sassas	*********	*******	1222222		********	(8222222)	电量波发光器 电阻器		********		ERE 22 22 22 22 22 22 22 22 22 22 22 22 22	*********
MW-51A	10/23/91	278	14000	NO30	NSON	1038	ND1	NO3	6730	27.4	10.3B	36.9	21700	15	5520	642	ND.2	188	3210B	NO2	ND5	15300	ND2	51.9	58.40	NA
MW-5ZA	10/23/91	277	18200	ND30	NSGN	1408	4.38	9.9	6730	115	138	71.10	62800	32.35	4330B	305	ND.2	22.48	3790B	ND2	NOS	12900	ND2N	284	80.2	NA
HOME1	12/06/89 12/06/89	93 94	ND50 ND50	ND4	ND2	33.28 33.78	ND4 ND4	ND3N ND3N	6100 6390	ND6	ND10	ND6		9.6 10.2	3590B 3620B	24.4	ND0.2	28.18R 288R	17308 1820B	ND1	ND3	10600 11000	ND3 ND3	80k 80k	907JNE* 969JNE*	ND10
HOME6	12/06/89	96	51.68	ND4	ND2	508	ND4	ND3N	13800	9B	ND 10	ND6	2200JN*	14	5030	1050	ND0.2	ND 13	3030B	ND1	ND3	22700	ND3	ND8	487JNE*	ND10
HOME10	07/31/91	252	ND20	ND30	ND3	28.9	ND1	ND3	7950	ND5	ND5	27.8	553	5.51	2150	4.2	ND.2	NDS	2060	ND2	HD5J	51100J	ND2J	NDS	73.44	NA
HOME29	02/09/90	134	342	ND6	ND4	ND35	NO2	ND4	5920EJ	ND7	ND 15	21.18	1630	22N*J	26208J	21.8	ND0.2	ND 18	1040B	ND2	ND9	8950	ND5	19.68	57 * J	NA
HOME44	02/09/90	135	NO35	ND6	ND4	ND35	ND2	4.18	14500EJ	ND7	ND 15	29.2	ND40	12.78SN*	4560B	ND3	ND0.2	ND 18	15608	ND2	ND9	10100	NO5	ND13	28 7* J	NA

PARAMETERS ARE LISTED BY THEIR ELEMENTAL SYMBOLS

ALL CONCENTRATIONS REPORTED IN UG/L (PPB)

D = SAMPLES WERE FIELD FILTERED AND RESULTS REPRESENT DISSOLVED METALS

J = ESTIMATED VALUE

E = CONCENTRATION EXCEEDED THE CALIBRATION RANGE OF THE GC/MS INSTRUMENT

B = ANALYTE WAS FOUND IN ASSOCIATED BLANK

HOME1 = RESIDENTIAL WELL LOCATION

NOTE: IF TWO SETS OF RESULTS ARE SHOWN FOR
A SINGLE DATE AT THE SAME SAMPLE LOCATION,
THEN THE SECOND SET IS A DUPLICATE SAMPLE
PROVIDED FOR QUALITY ASSURANCE

R = REJECTED BY VALIDATOR

S = VALUE DETERMINED BY THE METHOD OF STANDARD ADDITION

N = SPIKE SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS

* = DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS

ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)

NA = SAMPLE NOT ANALYZED

HOME1 = RESIDENTIAL WELL LOCATION

TABLE 25

NABISCO BRANDS INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Tentatively Identified Compounds $^{1\!\!/}$ from Boring B-10

Compound name	RT ² /	Concentration
Volatile Organic TICs		
Substituted alkane	13.42	31000Ј
C8H16 Isomer	15.44	36000J
Unknown	17.49	31000J
Unknown	26.64	19000Ј
Naphthalene, decahydro-,isom	28.61	33000J
Unknown	29.11	18000J
Unknown	29.39	31000J
Unknown	29.71	64000J
Unknown	30.09	28000J
Substituted benzene isomer	30.47	22000J
Semivolatile organic TICs		
Unknown aldol	5.30	6100J
Unknown alkane	9.70	5900J
Unknown	10.00	13000Ј
Unknown alkane	10.90	13000Ј
Unknown	11.10	38000J
Unknown alkane	11.20	12000J
Unknown alkane	11.30	2500Ј
Unknown alkane	11.40	10098
Unknown alkane	11.50	5700J
Unknown alkane	11.70	5000J
Unknown alkane	11.80	4500J
Unknown alkane	11.90	4100J

NABISCO BRANDS INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Tentatively Identified Compounds 1/2 from Boring B-10

Compound name	RT ² /	Concentration
Unknown alkane	11.90	3400Ј
Unknown alkane	12.00	4700J
Unknown alkane	12.60	7000J
Unknown alkane	12.80	3400Ј
Unknown	16.50	3800Ј
Unknown	17.80	4000Ј
Unknown alkane	22.60	9200Ј
Unknown alkane	23.60	9200Ј

- <u>1</u>/ TICs
- $\frac{\overline{2}}{/}$ Retention time (expressed in seconds). J Estimated value.

Note: All concentrations reported in ug/kg.

nabis.tbl/nabis2

TABLE 26

NABISCO BRANDS, INC. ROWE INDUSTRIES SAG HARBOR, NEW YORK

Water-Quality Results Collected at B-15 June 4, 1991

Tetrachloroethylene	ND500
1,1,1-Trichloroethane	ND500
Trichloroethene	ND500
Toluene	3,400
Ethylbenzene	500
Xylene	2,700
Benzene	1,000

nabis.tbl/nabis2

TABLE 27 (page 1 of 3)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Residential Wells

PARAMETERS			TETRA CHLORO ETHENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
	0475	RI	******		*********	- 05000750	VALUES			*======	
HOUSE LOCATION	DATE	SAMPLEID 93	ND25	ND25	ND25	ND25	ND25	ND25	ND50	78R	0
01	12/06/89 12/06/89	94	310	640	320	88	43	ND25	ND50	65BR	1401
	12/06/89	93	320	620	300	84	41	ND25	ND50	16BJR	1365
	06/08/83	0	20	780	470	NA	NA	ND4	NA	NA	1270
02	12/06/89	0	3в	21	24	0.9J	3	ND1	ND2	0.6BJR	51.9
	12/10/84	0	<10	50	56	<10	<10	<10	NA	NA	106
	01/04/84	0	4	190	170	NA	NA	ND4	NA	NA	364
04	12/10/84	0	ND10	203	94	14	16	ND10	NA	NA	327
	05/14/84	0	ND2	150	48	NA	NA	ND4	NA	NA	198
05	12/10/84	0	39	110	33	<10	11	ND10	NA	NA	193
	05/14/84	0	57	170	59	NA	NA	NA	NA	NA	286
06	12/06/89	96	510	180	150	28	20J	ND25	ND50	72BR	888
	12/10/84	0	1800	2600	910	130	330	92	NA	NA	5862
	04/09/84	0	1100	2300	840	300	310	100	NA	ND2	3850
07	12/06/89	98	56B	15	11	ND5	ND5	ND5	ND10	14BR	82
	12/10/84	0	68	72	21	ND 10	<10	ND 10	NA	NA	161
	04/09/84	0	44	70	17	ND2	4	ND2	NA	ND2	135
08	12/10/84	0	35	37	<10	ND10	<10	ND10	NA	NA	72
	04/18/84	0	42	88	19	ND2	7	ND2	NA	ND2	156
09	12/07/89	102	ND 1	ND1	ND 1	ND1	ND 1	ND1	ND2	5BR	0
	04/18/84	0	ND2	ND2	ND2	ND2	ND2	ND2	NA	ND2	0

TABLE 27 (page 2 of 3)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Residential Wells

PARAMETERS			TETRA CHLORO ETHENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
HOUSE LOCATION	DATE	RI SAMPLEID	222222	******	*****	≖ REPORTED	VALUES ====		=======================================	=======================================	**********
10	07/31/91	252	ND1	ND 1	ND1	ND1	ND1	ND 1	2	0.4BJ	2.4
	12/07/89	104	0.9BJR	0.7J	0.8J	ND1	ND 1	ND1	ND2	4BR	1.5
	05/24/84	0	ND2	ND2	ND2	ND2	ND2	ND2	NA	ND2	0
12	12/10/84	0	37	76	18	ND 10	10	ND 10	NA	NA	141
	12/10/84	0	60	133	26	ND10	<10	ND10	NA	NA	219
	04/18/84	0	61	190	35	4	18	ND2	NA	ND2	308
	04/18/84	0	ND2	6	ND2	ND2	ND2	ND2	AA	ND2	6
13	05/08/84	0	2	6	ND2	ND2	ND2	ND2	NA	ND2	8
14	12/10/84	0	50	61	16	ND 10	<10	ND 10	NA	NA	127
	12/10/84	0	41	85	20	ND 10	10	ND 10	NA	NA	156
	12/10/84	0	43	60	17	ND 10	<10	ND 10	NA	NA	120
	07/16/84	0	31	83	20	ND2	5	ND2	NA	ND2	139
	04/09/84	0	44	110	23	4	13	ND2	NA	ND2	194
17	05/08/84	0	ND2	5	ND2	ND2	ND2	ND2	NA	ND2	5
	01/04/84	0	4	ND2	NA	NA	NA	ND4	NA	AA	4
21	12/10/84	0	<10	128	84	<10	<10	ND10	NA	NA NA	212
	04/09/84	0	3	170	78	27	6	ND2	NA	ND2	284
22	12/10/84	0	60	480	403	16	15	<10	NA	NA NA	974
	04/09/84	0	36	270	140	16	10	4	NA	ND2	476

TABLE 27 (page 3 of 3)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Residential Wells

PARAMETERS			TETRA CHLORO ETHENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
HOUSE LOCATION	DATE	RI SAMPLEID			======================================	REPORTED	VALUES ====	********		=======================================	
23	12/10/84	0	ND 10	<10	ND 10	ND 10	ND 10	ND10	NA	NA	0
24	12/06/89	99	19B	3	2	0.63	ND1	ND 1	ND2	4BR	24.6
	12/10/84	0	420	220	97	<10	12	ND 10	NA	NA	122
	12/10/84	0	410	190	95	<10	11	ND10	NA	NA	706
	04/18/84	0	65	42	15	ND2	ND2	ND2	NA	ND2	749
25	12/06/89	101	2в	1	1	ND 1	ND1	ND 1	ND2	3BR	4
29	02/09/90	134	ND1	ND1	ND1	ND 1	ND1	ND1	6BR	ND1	0
	05/01/84	0	ND2	ND2	ND2	ND2	ND2	ND2	NA	ND2	0
36	01/04/84	0	ND 10	8	6	ND 10	ND 10	ND10	NA	NA	14
44	02/09/90	135	ND 1	ND 1	ND 1	ND 1	ND 1	ND1	6BR	ND 1	0

ALL CONCENTRATIONS REPORTED IN UG/L (PPB)

J = ESTIMATED VALUE

B = ANALYTE WAS FOUND IN THE ASSOCIATED BLANK

R = REJECTED BY VALIDATOR

S = VALUE DETERMINED BY THE METHOD OF STANDARD ADDITION

ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)
NA = SAMPLE NOT ANALYZED

NOTE: IF TWO SETS OF RESULTS ARE SHOWN FOR

THEN THE SECOND SET IS A DUPLICATE SAMPLE PROVIDED FOR QUALITY ASSURANCE

TABLE 28

NABISCO BRANDS, INC. ROWE INDUSTRIES SAG HARBOR, NEW YORK

Additional Compounds Detected During Phase II of RI

Compound	Location	Depth	Date	RI sample	Concentration (ug/l unless otherwise noted)		
Chlorodibromomethane							
	FB FAUC1/		10/17/89	34	4J		
	FB HYD ² ∕		10/17/89	33	2Ј		
	FB HYD3/		07/02/91	188	0.6J		
	FB DR4		07/11/91	201	0.5J		
Chloroform			_				
	MW-42A		08/01/91	258	0.9BDJ		
	MW-44B		08/01/91	256	24DJ		
	MW-47A		07/30/91	238	0.7BJ		
	MW-49B		07/30/91	242	9BJ		
	FB HYD3/		07/02/91	188	1B		
_	FB SHI5/		07/02/91	190	0.3BJ		
	FB SSSC ⁶		07/11/91	200	0.4BJ		
	FB DR4		07/11/91	201	18		
	BB ⁷ /		07/31/91	245	6BJ		
	ВВ		08/05/91	267	0.6BJ		
	MW-50A		11/07/91	317	0.4J		
	MW-50B		11/07/91	318	0.4J		

LEGGETTE, BRASHEARS & GRAHAM, INC.

NABISCO BRANDS INC. ROWE INDUSTRIES SAG HARBOR, NEW YORK

Additional Compounds Detected During Phase II of RI

Compound	Location	Depth	Depth Date		Concentration (ug/l unless otherwise noted)		
2-Butanone							
	SS <u>13</u> /		06/05/91	161	25J		
	TB§/		08/01/91	253	44E		
	FB PVCCAS9/		07/02/91	191	20J		
	FB PVCSC10/		07/02/91	192	22J		
	FB SSCAS ^{II}		07/11/91	199	26J		
	FB SSSC12/		07/11/91	200	9J		
	FB DR4		07/11/91	201	26J		
	ВВ		07/01/91	254	18J		
	ВВ		07/31/91	245	21J		
	ВВ		08/02/91	262	21/19D		
	ВВ		07/29/91	228	11J/22J		
	ВВ		11/06/91	306	4		

NABISCO BRANDS INC. ROWE INDUSTRIES SAG HARBOR, NEW YORK

Additional Compounds Detected During Phase II of RI

Compound	Location	Depth	Date	RI sample ID	Concentration (ug/l unless otherwise noted)		
Chlorobenzene							
	B-13	12-14	05/21/91	152	130 ug/kg		
Chloroethane							
	Dry Well D	0.5	07/09/91	194	370J ug/kg		
Carbon Disulfide							
	Stream Point 1	H ₂ O	07/24/91 11/05/91	215 303	10 2		
	Stream Point 3	H ₂ O	07/24/91	217	41		
	Stream Point 4	H ₂ O	07/24/91 11/05/91	218 297	0.5J 0.6J		
	N-28		07/29/91	230	0.4J		
	MW-28B		11/06/91	312	0.2J		
	N-33		11/05/91	294	5		
	N-36		08/05/91	274	3		
	N-40		08/05/91	273	7		
	MW-44B		08/01/91	256	0.2J		

NABISCO BRANDS INC. ROWE INDUSTRIES SAG HARBOR, NEW YORK

Additional Compounds Detected During Phase II of RI

Compound	Location	Depth	Date	RI sample	Concentration (ug/l unless otherwise noted)
	MW-44C		08/01/91 11/05/91	257 293	0.2J 3
	MW-46A		07/30/91 11/05/91	236 289	0.3J 0.3J
	MW-47B		07/30/91 07/30/91 11/11/91	239 240 285	0.2J 0.3J 0.7J
	MW-48A		08/02/91	263	0.2J
	MW-48B		08/02/91 11/04/91	264 283	0.5J 0.4J
	MW-49B		11/07/91	321	18J
	MW-49C		07/30/91 11/07/91	243 322	0.3J 0.2J
	MW-50A		07/31/91	246	0.2J/0.4J
	MW-50B		07/31/91	247	0.2J
	MW-50C		07/31/91	248	0.4j
	MW-51A		10/23/91	278	3Ј
	ВВ		11/06/91	306	1

NABISCO BRANDS INC. ROWE INDUSTRIES SAG HARBOR, NEW YORK

Additional Compounds Detected During Phase II of RI

Compound	Location	Depth	Date	RI sample ID	Concentration (ug/l unless otherwise noted)
1,2-Dichloroethane					
	Stream Point 1	H ₂ O H ₂ O	07/24/91 11/05/91	215 303	0.4J 0.7J

- 1/ Field blank collected from Gingerbread Bake Shop outdoor tap.
- 2/ Field blank collected from hydrant located on Carroll Street.
- 3/ Field blank collected from hydrant located on Noyack Road.
- 4/ Field blank collected from water stored in driller's water tank.
- 5/ Field blank collected from SHI tap.
- 6/ Field blank collected from stainless-steel screen.
- 7/ Field blank collected from decontaminated bailer.
- 8/ Trip blank supplied by NET Cambridge Laboratory.
- 9/ Field blank collected from PVC casing.
- 10/ Field blank collected from PVC screen.
- 11/ Field blank collected from stainless-steel casing.
- 12/ Field blank collected from stainless-steel screen.
- 13/ Field blank collected from decontaminated stainless-steel split spoon.

nabis2.tbl/nabis2

TABLE 29

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Depth Interval	PID measurement (ppm)
I	3-42
4 - 6	0.0
9 - 11	0.0
14 - 16	0.0
19 - 21	0.3
25 - 27	1.6
29 - 31	1.6
34 - 36	0.6
29 - 51	0.0
54 - 56	0.2
59 - 61	0.2
64 - 66	0.5
69 - 71	0.2
74 - 76	0.3
79 - 81	0.0
81 - 83	0.0
84 - 86	0.2
89 - 91	0.0
94 - 96	0.2
99 - 101	0.0
104 - 106	0.0
109 - 111	0.0
1	B-43
4 - 6	0.0
9 - 11	0.0

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Depth interval	PID measurement (ppm)
14 - 16	0.0
24 - 26	0.0
29 - 31	0.0
34 - 36	0.0
39 - 41	0.2
44 - 46	0.0
48 - 51	0.0
54 - 56	0.0
59 - 61	0.0
64 - 66	0.0
69 - 71	0.0
74 - 76	0.0
79 - 81	0.0
84 - 86	0.2
89 - 91	0.1
94 - 96	0.1
99 - 101	0.6
104 - 106	0.2
109 - 111	0.1
E	3-48
2 - 4	0.0
8 - 10	0.0
14 - 16	0.0
20 - 22	0.0
25 - 27	0.0

TABLE 29 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Depth interval	PID measurement (ppm)
30 - 32	0.0
35 - 37	0.0
40 - 42.5	0.0
42.5 - 45	0.0
45 - 47.5	0.1
47.5 - 50	0.0
50 - 52.5	0.0
55 - 57	0.0
60 - 62	0.0
65 - 67	0.1
	B-49
5 - 7	0.0
10 - 12	0.0
15 - 17	0.0
20 - 22	0.0
25 - 27	0.0
30 - 32	0.1
35 - 37	0.0
40 - 42	0.0
42 - 44	0.0
44 - 46	0.1
46 - 48	0.2
48 - 50	0.1
50 - 52	0.1
55 - 57	0.3

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Depth interval	PID measurement (ppm)
60 - 62	0.7
65 - 67	0.0
70 - 72	0.0
75 - 77	0.0
80 - 82	0.0
85 - 87	0.6
90 - 92	0.0
95 - 99	0.0
97 - 99	0.0
F	3-50
5 - 7	0.0
10 - 12	0.0
15 - 17	0.1
20 - 22	0.5
25 - 27	0.3
30 - 32	0.3
35 - 37	0.0
40 - 42	0.3
42.5 - 44.5	0.3
45 - 47.5	0.0
47.5 - 50	0.1
50 - 52	0.0
55 - 57	0.6
60 - 52	0.5
65 - 67	0.5

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Headspace PID Readings for Offsite Pilot Holes

Depth interval	PID measurement (ppm)
70 - 72	0.4
75 - 77	0.3
80 - 82	0.2
85 - 87	0.3
90 - 92	0.0
95 - 97	0.0
98 - 100	0.0

nabis2.tbl/nabis2

TABLE 30 (page 1 of 2)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Stream and Bay Water and Sediment Samples

PARAMETERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
SAMPLE LOCATION		RI														
AND DESCRIPTION	DATE	SAMPLE ID	E122222				=====RE	PORTED VALUE	ES======			********		**********	**********	**********
SED1	11/05/91	304	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	5.1	ND7	55	2,	62
	11/05/91	304	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	11	ND7	14	51	17
	07/24/91	220	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND11	ND6	0
	11/28/89	88	ND6	ND6	ND6	ND6	ND6	ND6	3BJR	ND6	ND6	2BJR	ND6	ND11	5BJR	0
SED2	11/05/91	302	ND6	ND6	ND6	ND6	1BJ	ND6	ND6	ND6	ND6	ND6	3.1	ND 12	2BJ	6
	07/24/91	221	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND10	ND5	0
	11/28/89	81	ND7	ND7	ND7	ND7	ND7	ND7	4BJR	ND7	ND7	6JR	ND7	67BJR	10BR	0
	11/28/89	82	ND8	ND8	ND8	ND8	ND8	ND8	2BR	ND8	ND8	3JR	ND8	69BJR	12BR	0
SED3	11/05/91	300	4.J	4.J	2J	ND6	1,	ND6	ND6	ND6	ND6	ND6	ND6	ND12		13
	07/24/91	222	ND6	ND6	ND6	31	ND6	7	ND6	ND6	ND6	ND6	ND6	ND13	ND6	10
	11/28/89	86	ND6	ND6	2J	43	91	8J	2R	ND6	ND6	2BJR	ND6	ND6	5BJR	23
	11/28/89	86	2J	ND6	5 J	ND6	91	8J	5BJR	ND6	ND6	4BJR	ND6	7BJR	7BR	24
SED4	11/05/91	298	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	ND6	41	2BJ	43
	07/24/91	223	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND 13	ND7	0
	11/28/89	84	340J	32J	30J	ND8	ND8	ND8	88 JR	ND8	ND8	6BJR	ND8	ND17	12BR	402
SED5	11/05/91	296	ND8	ND8	ND8	ND8	28J	ND8	ND8	ND8	ND8	ND8	ND8	ND 16	38J	5
	07/24/91	224	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND 13	ND7	0
	11/28/89	75	ND7	ND7	ND7	ND7	ND7	ND7	6BJR	ND7	ND7	3BJR	ND7	ND 14	8BR	Ó
	11/28/89	75	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND7	ND 14	6BJR	0

TALBE 30 (page 2 of 2)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Stream and Bay Water and Sediment Samples

PARAMETERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORG ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
SAMPLE LOCATION		RI														
AND DESCRIPTION	DATE	SAMPLE ID	*******	**********	********	********	********	PORTED VALUE	S=====	*******	*******	*********		********	**********	***********
WAT1	11/05/91	303	ND1	0.7J	ND1	NO 1	0.2BJ	ND1	ND 1	4	0.7J	ND 1	ND1	ND2R	0.4BJ	8.7
	07/24/91	215	ND 1	ND 1	ND 1	ND 1	NO 1	NO1	ND 1	1	NO 1	ND1	ND1	ND8	ND 1	11.4
	11/28/89	87	1 OK	ND 1	ND1	ND 1	ND 1	ND1	2R	ND 1	ND1	ND1	ND1	ND2	2BR	0
WATZ	11/05/91	301	ND1	ND1	ND1	ND1	0.2J	ND1	ND 1	0.8J	ND1	H01	ND1	MD2	0.2BJ	1.2
	07/24/91	216	ND1	ND1	ND1	NO 1	NO 1	ND 1	ND 1	0.2J	ND1	ND 1	ND1	NDZ	NO1	0.2
	11/28/89	79	0.3JR	ND1	ND1	NO 1	ND 1	ND1	10R	ND 1	ND1	0.3JR	ND1	NDS	ND1	0
	11/28/89	80	0.3JR	ND 1	ND 1	ND1	ND 1	ND 1	8R	ND 1	ND1	0.2JR	ND1	ND2	ND1	0
WAT3	11/05/91	299	12	21	14	4	4	6	NO 1	0.2J	ND1		MD1	ND2	0.3BJ	61.5
	07/24/91	217	13	30	18	6	6	8	ND 1	ND 1	ND 1	NO 1	ND1	NDZ	NO 1	122
	11/28/89	85	31	15J	71	51	S1	ND1	2R	ND 1	ND 1	ND 1	ND1	ND2	2BR	29
WAT4	11/05/91	297	4	3	2	0.3J	0.68J	0.3J	0.5J	0.2J	ND 1	ND 1	ND1	3R	0.4BJ	11.4
	07/24/91	218	5	6	3	0.93	1	1	0.2J	NO1	ND 1	NO 1	ND1	NDZ	NO 1	17.6
	11/28/89	83	4.1	13J	61	21	21	ND 1	3R	ND1	ND1	0.2JR	0.2JR	HD2	3BR	27
WATS	11/05/91	295	1	1	0.8J	0.2J	0.41	0.2J	ND 1	ND1	ND1	ND1	ND1	8R	0.38J	11.9
	07/24/91	219	2	3	2	NO1	ND 1	ND 1	ND1	ND1J	NO1J	ND1J	ND1J	ND2	ND1	7
	11/28/89	74	1R	4J	ZJ	0.41	0.5J	ND1	2R	ND1	ND1	NO1	ND1	ND2	2BR	6.9

ALL WATER CONCENTRATIONS REPORTED IN UG/L (PPB)
ALL SEDIMENT CONCENTRATIONS REPORTED IN UG/KG (PPB)
J = ESTIMATED VALUE

B = ANALYTE WAS FOUND IN THE ASSOCIATED BLANK

R = REJECTED BY VALIDATOR

ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)

NOTE: IF TWO SETS OF RESULTS ARE SHOWN FOR
A SINGLE DATE AT THE SAME SAMPLE LOCATION,
THEN THE SECOND SET IS A DUPLICATE SAMPLE
PROVIDED FOR QUALITY ASSURANCE

LEGGETTE, BRASHEARS & GRAHAM, INC.

TABLE 31 (pege 1 of 4)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Quality Assurance Blanks

PARAMETERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
SAMPLE		RI														
DESCRIPTION	DATE	SAMPLE ID	*********	***********	********		******	EPORT VALUE	S======	*******	*******	*******	******	*******	*******	********
88	11/04/91	280	ND1	ND1	ND1	NO 1	ND1	ND 1	ND 1	NO 1	0.41	0.61	NO 1	180R	ND1	1
	11/05/91	288	ND 1	NO 1	ND 1	ND1	ND 1	ND 1	ND 1	ND 1	R	ND 1	ND 1	420R	ND 1	0
	11/06/91	306	1	ND 1	ND1	ND1	ND 1	NO 1	ND 1	ND1	0.2J	ND 1	ND 1	78	ND1	79.2
	11/07/91	316	1	ND 1	ND 1	ND 1	ND1	ND 1	NO 1	ND 1	NO 1	ND1	ND 1	230R	ND 1	1
	10/23/91	276	ND250	ND250	ND250	ND250	480 J	ND 250	ND 250	ND250	ND250	ND250	ND250	6200R	54BJD	102
	10/23/91	276	ND 100	ND 100	ND 100	ND 100	ND20	ND 100	ND 100	ND 100	MD100	ND 100	ND 100	4400BE	ND43	4400
	08/05/91	267	ND1	ND 1	ND 1	ND1	NO 1	ND1	ND 1	ND1	NO1	ND 1	NO 1	18	0.3BJ	18.9
	08/02/91	262	NO 1	ND1	ND1	NO 1	ND1	ND1	ND 1	ND1	ND1	0.2J	NO 1	550	0.7BJ	75.5
	08/01/91	254	ND1	ND 1	ND1	ND1	ND 1	ND1	0.8BJ	MD1J	0.43	0.41	ND1J	16BR	ND 1	19.9
	07/31/91	245	NO 10	NO 10	ND10	ND 10	ND 10	ND 10	ND10	ND 10	73	ND 10	ND10	561	9 8 J	99
	07/30/91	235	ND10	ND 10	ND10	NO10	ND 10	ND10	ND 10	NO 10J	ND 10J	ND 10J	NO 10 J	120J	ND10	126
	07/29/91	228	ND5	ND5	ND5	NO5	ND5	ND5	ND5	ND5J	NO5J	MD5J	ND5J	321	ND5	44
	02/09/90	130	NO 1	NO 1	ND1	ND 1	ND 1	ND1	NO.5	ND 1	NO 1	ND 1	ND 1	22BR	ND1	0
	02/08/90	124	ND1	ND1	ND1	NO1	ND 1	ND 1	NO.5	NO1	ND 1	ND1	NO 1	16BR	0.88JR	0
	02/07/90	118	ND 1	ND 1	ND1	ND 1	ND1	ND1	88R	ND 1	MD 1	ND1	ND 1	6BR	0.91	0.9
	02/06/90	110	ND 1	ND1	NO1	ND 1	ND 1	NO 1	8BR	ND 1	NO 1	NO 1	ND 1	31BJ	3BR	31
	02/05/90	106	ND 1	ND 1	NO1	NO1	ND1	ND1	1JBR	NO 1	ND 1	ND 1	ND1	3	0.5BJR	3
	11/20/89	65	ND 1	ND1	ND 1	ND1	ND 1	ND 1	0.98JR	NO1	3R	ND 1	0.6JR	NDZO	38R	0
	11/17/89	60	MD1	NO 1	NO1	MD1	ND 1	ND 1	0.3BJR	NO 1	ND1	0.4JR	NO 1	ND20	3BR	0
	11/16/89	54	0.48JR	NO 1	ND1	ND 1	ND1	ND1	0.5BJR	NO 1	ND1	NO1	· ND1	MD20	2BR	0
	11/15/89	45	MD1	NO 1	NO1	ND 1	NO 1	ND 1	0.98JR	ND.1	NO1	0.2JR	ND 1	NDZO	2BR	0
	11/14/89	36	0.3JR	NO 1	ND1	ND 1	ND 1	ND 1	28R	ND 1	NO1	0.2JR	NO 1	ND 20	4BR	0
FB CASE	07/11/91	199	жо1	ND 1	ND1	ND1	ND1	ND 1	1	ND1	0.5J	ND 1	0.5J	741	2	102
	10/17/89	32	ND1	ND 1	ND1	ND 1	ND 1	ND1	1.1JR	NO 1	2 R	28R	0.5J	NOS	3BR	0.5
FB DIP	08/22/89	4	NO 1	ND1	ND1	ND1	ND1	ND 1	19BJR	ND1	ND1	1R	HD1	NO2	3BR	0

TABLE 31 (page 2 of 4)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Quality Assurance Blanks

PARAMETERS			TETRA CHLORO ETHYLENE	1,1,1 TRICHLORO ETHANE	TRICHLORO ETHENE	1,1 DICHLORO ETHANE	1,1 DICHLORO ETHENE	1,2 DICHLORO ETHENE	FREON 113	BENZENE	XYLENE	TOLUENE	ETHYL BENZENE	ACETONE	METHYLENE CHLORIDE	TOTAL OF DETECTED COMPOUNDS
SAMPLE DESCRIPTION	DATE	RI SAMPLE ID	*********	********	*******	**********	======================================	EPORT VALUE	S*****	3888¥4#82#	· 医重常工程学生活力	*******	金元学业务等等学品等		1为12222211111111111	*********
FB FAUC	10/17/89	34	ND 1	HD 1	ND1	ND 1	ND 1	ND 1	2.2JR	ND5	NO 1	ND 1	ND 1	ND2	3BR	4
FB HYD	07/02/91 10/17/89	188	ND 1	ND 1	ND 1	ND1	ND1	ND1	NO 10	NO 1	ND 1	ND1	HD1	ND4	0.2BJ 0.68JR	2.3
FB SCRE	07/11/91 10/17/89	200 31	ND 2 ND 1	ND2 ND1	ND 2	NO2	NO2	ND2	ND2	HD2	0.7J 24	0.7J 28R	ИО 1 0.6J	78J ND2	2 38R	90.8 24.6
FB SLDG	11/29/89	91	0.2JR	NO 1	ND1	HD 1	ND 1	ND1	3JR	ND 1	ND1	0.5JR	0.2JR	ND2	2BR	0
FB SOIL	09/28/89	6	ND5	NO5	ND5	ND5	ND 5	NDS	1JR	ND5	ND5	NO5	ND5	ND 10	NO5	0
FBDR	07/11/91	201	ND1	ND 1	ND1	ND 1	ND 1	ND1	ND 1	NO 1	ND1	ND1	ND1	20J	ND1	48.3
FBPVCCAS	07/02/91	191	ND 1	NO 1	NO1	ND 1	ND 1	ND 1	0.9J	ND 1	NO1	0.2J	ND 1	ND36	28	23.1
FBPVCSC	07/02/91	192	ND1	NO 1	MD1	ND 1	ND1	ND1	ND4	ND 1	0.2J	0.2J	ND1	ND37	18	23.4
FBSHI	07/02/91	190	ND1	. ND 1	ND 1	ND 1	ND 1	ND 1	0.91	ND 1	HD1	ND 1	ND 1	ND 1	0.4BJ	1.6
SB	06/05/91 06/04/91 06/04/91	161 158 158	ND 2 ND 1 ND 5	ND2 ND1	ND2 ND1 ND5	ND2 ND1 ND5	ND2 ND1 ND5	ND2 ND1 ND5	0.8J ND1	ND2 ND1 ND5	ND 2 ND 1	ND2 0.3J ND5	ND2 ND1 ND5	63 81J 830	5ND 5 ND6	88.8 153.6 150.6
	05/30/91 05/22/91 05/21/91	156 153 151	ND1 ND1 ND1	ND1 ND1 ND1	ND1 ND1 ND1	NO 1 NO 1 NO 1	ND1 ND1 ND1	ND1 ND1 ND1	ND1 ND1 ND1	NO1	NO1 NO1 NO1	0.4J ND1 ND1	ND 1 ND 1 ND 1	23 15 J 16	1 0.98J	24.4 15.9 17
	05/20/91	149	ND1	NO 1	ND 1	1 ОК	ND 1	NO 1	ND 1	ND1	ND1	ND1	ND 1	10J	0.88J	10.8

LEGGETTE, BRASHEARS & GRAHAM, INC.

TABLE 31 (page 3 of 4)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Quality Assurance Blanks

			TETRA	1,1,1		1,1	1,1	1,2	FREON				ETHYL		METHYLENE	TOTAL OF
PARAMETERS			CHLORO	TRICHLORO	TRICHLORO	DICHLORO	DICHLORO	DICHLORO	113	BENZENE	XYLENE	TOLUENE	BENZENE	ACETONE	CHLORIDE	DETECTED
			ETHYLENE	ETHANE	ETHENE	ETHANE	ETHENE	ETHENE								COMPOUNDS
SAMPLE		RI					_		_							
DESCRIPTION	DATE	SAMPLE ID	*******	===±=========	*****	3222223222	****************	EPORT VALUES	222222	******	*****	*******	# 22 2 2 2 2 2 2 2 2	228222222	*********	**********
	05/17/91	144	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND1	NO1	ND 1	ND1	ND 1	ND2	18	1
	05/16/91	138	ND 1	ND 1	NO 1	ND 1	NO 1	ND1	ND 1	ND 1	ND 1	ND1	ND1	8,1	0.71	10.7
	09/30/89	29	ND 1	NO 1	ND1	ND 1	NO 1	ND 1	ND 1	ND 1	2R	1R	ND1	ND2	3BR	0
	09/28/89	8	ND 1	ND 1	NO 1	ND 1	ND 1	ND 1	ND.5	ND 1	0.6JR	1R	ND 1	ND2	ZBR	0
SB GRAV	07/09/91	193	NDS		1,1	NO5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND5	ND 10	
	09/28/89	7	ND5	NO5	NO5	ND5	NO5	ND5	1.3JR	ND5	ND5	ND5	NO5	ND11	28JR	0
TB	11/04/91	279	ND 1	NO1	NO1	ND1	ND 1	ND 1	ND 1	HD1	ND1	ND1	ND1	31	ND 1	
	11/05/91	287	ND1	ND 1	NO 1	ND 1	ND 1	NO 1	ND 1	NO 1	R	ND1	ND1	ND1	ND1	0
	11/06/91	305	ND 1	NO 1	ND 1	ND 1	NO 1	ND1	ND1	ND1	ND 1	ND1	ND 1	10	NO1	10
	11/07/91	315	ND 1	ND 1	NO 1	NO 1	0.2J	ND 1	ND 1	ND 1	ND 1	ND 1	NO 1	3	ND1	3.2
	10/23/91	275	ND5	ND5	ND5	ND5	ND5	ND5	NOS	NO5	ND5	ND5	ND5	ND 10	MD5	0
	08/05/91	266	0.4J	ND 1	NO 1	ND 1	NO 1	ND 1	0.4J	ND 1	ND1	ND 1	ND1	ND2	0.78J	1.5
	08/02/91	261	ND 1	NO 1	NO 1	ND 1	ND 1	ND 1	0.7J	ND 1	ND1	ND1	ND1	ND2	1	1.7
	08/01/91	253	NO 1	ND 1	NO 1	ND1	NO 1	NO 1	ND1	MD1J	10YJ	ND1J	1,1	1BJR	NO1	55
	07/31/91	244	0.43	NO 1	ND 1	ND 1	ND 1	NO 1	0.61	ND1	ND 1	ND1	ND 1	ND2	0.88J	1.8
	07/30/91	234	ND 1	ND 1	ND 1	ND 1	NO 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	ND3	ND1	0.9
	07/29/91	226	NO1	ND 1	ND 1	ND 1	NO 1	ND1	ND 1	ND1J	ND1J	ND1J	ND1J	NO2	ND1	0
	07/24/91	225	ND1	ND 1	NO 1	MD 1	ND 1	ND1	ND1	MD1J	MD1J	NO1J	NO1J	ND2	98	9
	07/11/91	198	ND 1	ND1	ND 1	NO 1	ND 1	ND 1	ND 1	NO 1	NO 1	0.2J	NO 1	ND2R	8	8.8
	07/02/91	189	ND 1	ND1	ND 1	ND 1	NO 1	NO1	ND 1	ND1	ND1	ND1	ND1	NO2	0.5BJ	0.5
	05/16/91	139	ND1	NO 1	NO 1	NO 1	ND 1	ND 1	0.3J	ND 1	NO 1	ND1	ND1	NO2	0.78J	1
	02/09/90	136	ND 1	ND 1	NO1	NO 1	ND 1	ND 1	0.5J	NO 1	ND 1	ND1	ND 1	2BR	1 J	1.5
	02/09/90	137	ND 1	NO1	NO1	ND 1	ND1	ND1	31	NO1	ND1	ND1	ND 1	ND2	2,	5
	02/08/90	129	ND T	ND1	ND 1	ND1	NO 1	ND1	ND.5	NO1	NO 1	ND1	ND1	6BR	3BR	0
	02/08/90	128	ND 1	NO 1	ND1	NO 1	NO1	ND1	MD.5	ND1	NO 1	NO1	NO1	4BR	48R	0
	02/07/90	122	0.5J	ND 1	ND 1	ND1	ND1	NO 1	6BR	ND1	ND1	0.2J	ND1	4BR	1,	1.7
	02/06/90	116	ND1	ND 1	ND1	NO1	ND1	ND1	4BR	ND 1	ND1	NO1	NO1	ND2		0

TABLE 31 (page 4 of 4)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Summary of Detected Volatile Organic Compounds for Quality Assurance Blanks

			TETRA	1,1,1		1,1	1,1	1,2	FREON				ETHYL		METHYLENE	TOTAL OF
PARAMETERS			CHLORO	TRICHLORO	TRICHLORO	DICHLORO	DICHLORO	DICHLORO	113	BENZENE	XYLENE	TOLUENE	BENZENE	ACETONE	CHLORIDE	DETECTED
			ETHYLENE	ETHANE	ETHENE	ETHANE	ETHENE	ETHENE								COMPOUNDS
SAMPLE		RI														
DESCRIPTION	DATE	SAMPLE ID	*******	**********	******	*******	*******	EPORT VALUE	\$== ==	*********	*******	********	*********	**********	***********	*********
18	02/05/90	108	ND 1	ND 1	ND 1	ND 1	NO 1	NO 1	8J8R	NO 1	ND 1	ND 1	NO 1	ND2	3BR	0
	12/07/89	103	NO 1	NO 1	ND 1	ND1	ND1	ND 1	5BR	NO1	ND 1	ND 1	NO 1	MOZ	3BR	0
	12/06/89	92	18R	ND1	ND 1	ND 1	ND 1	NO1	3BR	NO 1	ND 1	0.5JR	ND1	ND2	2BR	0
	11/28/89	89	0.2JR	ND 1	ND 1	ND1	ND1	ND1	4R	ND 1	ND1	0.2JR	ND1	ND2	38R	0
	11/28/89	90	ND 1	ND 1	ND 1	ND 1	ND 1	ND 1	8R	NO 1	ND1	0.2JR	ND1	MD2	3BR	0
	11/16/89	56	NO 1	ND 1	ND 1	ND 1	ND 1	NO 1	3JBR	ND 1	ND1	0.3JR	ND1	ND20	4BR	0
	11/15/89	49	0.68JR	NO 1	ND 1	ND 1	ND1	NO 1	0.6BJR	ND1	ND1	ND1	ND1	ND20	3BR	0
	11/14/89	40	0.3JR	NO 1	NO 1	ND 1	ND 1	ND1	4.88R	ND 1	ND1	0.21	ND1	ND20	6BR	0.2
	09/30/89	30	0.2JR	NO 1	ND 1	ND 1	ND 1	NO1	NO1	ND 1	ND 1	0.6JR	ND 1	ND2	2BR	0
	09/28/89	6	NO 1	NO 1	ND1	ND 1	ND 1	ND 1	18BJR	ND5	ND 1	ND 1	ND 1	ND2	3BR	0

ALL SEDIMENT CONCENTRATIONS (*) REPORTED IN UG/KG (PPB)
ALL WATER CONCENTRATIONS REPORTED IN UG/L (PPB)

J = ESTIMATED VALUE

B = ANALYTE WAS FOUND IN THE ASSOCIATED BLANK

R = REJECTED BY VALIDATOR

NA = SAMPLE NOT ANALYZED

D = CONCENTRATION AFTER DILUTION

NO# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)

BB = BAILER FIELD BLANK

SB = SPLIT SPOON FIELD BLANK

SB GRAV = SPLIT SPOON FIELD BLANK OF GRAVEL PIT

TB = TRIP BLANK

FB CASE = WELL CASING FIELD BLANK

FBSHI = SAG HARBOR IND. WATER SUPPLY FIELD BLANK

FBDR = DRILLER RIG FIELD BLANK

FB DIP = TEFLON DIPPER FIELD BLANK

FB FAUC * SAMPLE OF GINGERBREAD BAKESHOP FAUCET

FB HYD = SAMPLE OF CARROLL STREET HYDRANT

FB SCRE = WELL SCREEN FIELD BLANK

FB SLDG = SLUDGE SAMPLER FIELD BLANK

FB SOIL = PRESCREEN SOIL FROM GRAVEL PIT

FBPVCCAS = PVC CASING FIELD BLANK

FBPVCSC = PVC SCREEN FIELD BLANK

TABLE 32 (page 1 of 1)

NABISCO BRANOS, INC. ROME INDUSTRIES SITE SAG HARBOR, NEW YORK

Metals Results for Quality Assurance Blanks

PARAMETERS			AL	88	AS	BA	BE	æ	CA	CR	co	cu	FE	P B	MG	MN	HG	NI	K	SE	AG	NA	TL	V	ZN	CN
SAMPLE	DATE	RI SAMPLE ID	**********		**********		122222222	227322E	135522###	*********	********	====REPC	ORTED VAL	JES ====	**********	********	********	******	· Carabana	12472 882 21		E22112322		2333222	**********	1122222
88	11/04/91	280	NA	NA	NA	NA	NA	NA	NA	AK	NA	NA	NA	NO2	NA	NA	NA	NA	NA	NA	ND5	NA	NA	NA	NA	NA
	10/23/91	276	ND20	ND30	NDZN	ND5	ND1	ND3	54.48	ND5	NOS	NO5	2 7.68	ND2	ND50	NO1	ND.2	ND5	ND400	ND2	ND5	2038	NDZ	NO5	6.6B	NA
	08/05/91	267	44.4	NO30	ND3	NDS	NO1	NO3	257J	NDS	NOS	5.6	67.9J	LSON	ND50	NO 1	ND.2	NO51	ND400	ND2	ND51	LOOLON	ND2J	ND5	31.64	NA
	08/02/91	262	26.6	ND30	NO3	ND5	ND1	ND3	24 8 J	ND5	NOS	7.9	15 7 J	LSDN	NO50	ND1	NO.2	NOSJ	ND400	NOZ	ND5J	NO100J	NO2J	NO5	33.7J	NA
	08/01/91	254	41	F0204	NO3	ND5	ND1	LEGM	3641	ND5	NOS	ND5	37.9J	2.8J	NDSO	1.9	ND.2	ND5	ND400	NDZ	LCON	L0010N	LSON	NO5	45J	NA
	07/31/91	245	31.7	ND30	NO3	NOS	ND 1	ND3	2 86 J	ND5	ND5	ND5	72.41	2.13	ND50	1	ND.2	NO5	NO400	NOZ	ND5J	L0010N	LSON	NO5	18.8J	NA
	07/30/91	235	ND20	FDSON	ND3	ND5	ND1	LEGN	361J	ND5	NO5	ND5	84.61	6.7J	ND50	1.1	ND.2	NDS	ND400	SON	LEGK	ND100J	LSON	ND5	38.31	NA
	07/29/91	228	ND20	FOSON	NO3	ND5	ND1	LEGN	5 81 J	ND5	ND5	ND5	30.4 J	2.41	ND50	NO1	ND.2	ND5	ND400	ND2	NDSJ	ND100J	LSON	NO5	19.1J	NA
	02/09/90	130	ND35	ND6	ND4	ND35	NDZ	ND4	168BEJ	ND7	ND15	NO5	ND40	15.2BSN*	ND34	NO3	ND0.2	ND18	NO 150	ND2	ND9	NO 75	NO5	ND13	10.8B*J	NA
	02/08/90	124	ND35	ND6	ND4	NO35	ND2	ND4	1318EJ	ND7	NO15	NO5	ND40	15.7BSN*	ND34	ND3	ND0.2	ND18	2388	SON	ND9	1348	ND5	ND13	NO 7*	NA
	02/07/90	118	ND35	ND6	ND4	ND35	ND2	ND4	223BJ	ND7	ND15	ND5	ND40	31.5SN*J	ND34	ND3	NDG.2	ND18	NO150	NOZ	ND9	8640	NO5	ND13	15.58J	NA
	02/06/90	110	ND35	ND6	NO4	ND35	ND2	ND4	1908EJ	ND7	NO15	NOS	ND40	40.2SN*J	NO34	NO3	ND0.2	ND18	ND150	ND2	ND9	11400	NO5	ND13	32.4*J	NA
FB FAUC	10/17/89	34	NO50	ND4R	ND2	ND35	ND4	ND4NR	9310	NO10NJ	ND10	32.1	62.2B	8.1J	1 7908J	ND6	ND0.2	ND 13	7388	2.28	LMSON	6960	ND3	ND8	29.1JE	ND10
FB HYD	10/17/89	33	ND50	ND4R	ND2	ND35	ND4	HD4NR	8600	ND 1 ON	ND 10J	ND5	78.48	ND4.1SN*	1720BJ	ND6	ND0.2	ND 13	5648	ND 1	LNSDN	6780	ND3	8DN	23.4JE	ND 10

PARAMETERS ARE LISTED BY THEIR ELEMENTAL SYMBOLS

ALL CONCENTRATIONS REPORTED IN UG/L (PPB)

- J = ESTIMATED VALUE
- E = CONCENTRATION EXCEEDED THE CALIBRATION RANGE OF THE GC/MS INSTRUMENT
- 8 = ANALYTE WAS FOUND IN ASSOCIATED BLANK
- R = REJECTED BY VALIDATOR
- S = VALUE DETERMINED BY THE METHOD OF STANDARD ADDITION

- N = SPIKE SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS
- * = DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS
- ND# = SAMPLE BELOW DETECTION LIMIT (NUMBER IS DETECTION LIMIT)
- BB = BAILER BLANK
- FB FAUC = GINGERBREAD BAKESHOP FAUCET BLANK
- FB HYD = CARROLL STREET HYDRANT BLANK
- NA = SAMPLE NOT ANALYZED

TABLE 33

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Physical Properties of Primary/Secondary Plume Constituents

Properties	Tetrachloroethylene	1,1,1-Trichlorosthana	1,1,2-Trichloroethene	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloro- ethene	Chlorodibro- momethene	Freon 113	Xylene
Molecular weight	116	133	131	99	96.95	97	163.8	187	106
Specific gravity ¹	1,6230	1.3376	1.4649	1.1757	1.2129	1.28	1.971	1.5635	.86
Boiling point ^{2/}	121	74	87	57	3	55	90	48	137 - 140
Melting point ^{3/}	-22	-38	-86	-97	-122.5	-49	-55	-35	-2448
Flash point3'	*	*	*	-8	-15	2		*	29
Vapor pressure⁴	14	100	58	182	500	180		284	7 - 9
Solubility ^S	.015	.07	.1	<.1	<u>i</u> *	.3563	i	.02	.00003
Incompatibilities	Strong oxidizers chemically active metals such as lit- hium, barium, bery- lium	Strong caustics, strong oxidizers, chemically active metals such as alumi- num, magnesium, sodi- um, potassium	Strong caustic, chemically active metals such as barium, lithium, sodium, magnesium, titanium	Strong oxidizers and caustics		Strong oxidizers	Chemically active metals such as calcium, powdered aluminum, zinc, magnesium	Chemically active metals calcium, zinc, magnesium, beryllium, powede- red aluminum	Strong oxidizers
Comment		Solidifies at -32.5°C			Polymerizes to plastic in pres- ence of oxygen				

1/ Specific gravity 19° Celsius referred to water at 4° Celsius.

2/ Specific gravity 19 Celsius referred to water at 4 Celsius.
2/ Boiling point at 1 atmosphere in degrees Celcius.
3/ Measured in degrees Celsius.
4/ Vapor pressure measured at 20° Celsius mmHg.
5/ Solubility in water, grams per 100 grams water at 20° Celsius (percentage).
1/ Insoluble.

nabis2.tbl/nabis2

TABLE 34

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Federal Chemical-Specific Standards Considered for Ground-Water Cleanup Criteria

Compound	CAS Number	SDWA Drin	sking Water Standards (mg/l) ^{1/}	
		MCLs ² /	MCLGs3/	SMCLs ² /
ORGANICS				
Acetone	67-64-1	NRNR	NR	NR
Chlorodibromomethane	124-48-1	0.1†	NR NR	NR
1,1-Dichloroethane	75-34-3	NR	NR NR	NR
1,1-Dichloroethylene	75-35-4	0.007	0.007	NR
cis-1,2-Dichloroethylene	156-59-2	0.07††	0.07 ††	NR
trans-1,2-Dichloroethylene	156-60-5	0.1 	0.1 	NR_
Ethylbenzene	100-41-4	0.7	0.7	NR
Freon 113	76-13-1	NR	NR	NRNR
Methylene Chloride	75-09-2	NR	NR	NR
Tetrachloroethylene	127-18-4	0.005	<u>0++</u>	NR
Toluene	108-88-3	1++	1 ††	NR
1,1,1-Trichloroethane	71-55-6	0.20	0.20	NR
Trichloroethylene	79-01-6	0.005	0	NR
Xylenes	1330-20-7	10++	10 11	NR
INORGANICS				
Antimony	7440-36-0	NR	NR	NR
Cadmium	7440-43-9	0.005#	0.005††	NR
Iron	SEQ NO. 17-8	NR	NR	0.3

TABLE 34 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Federal Chemical-Specific Standards Considered for Ground-Water Cleanup Criteria

Compound	CAS Number	SDWA	Drinking Water Standards (mg/l)	/
		MCLs ² /	MCLGs3/	SMCL9 ⁴ /
Lead	7439-92-1	0.05	NR	NR
Manganese	7439-96-5	NR	NR	0.05

1/ Milligrams per liter.

- 2/ 40 CFR § 141.11, 141.12, 141.61 and 141.62. 3/ 40 CFR § 141.50 and 141.51. 4/ 40 CFR § 143.3. NR Not regulated.

- Total trihalomethanes cannot exceed 0.1 mg/l.
- T "National Primary Drinking Water Regulations; Final Rule", Federal Register, Volume 56, January 30, 1991, effective July 30, 1991.

nabis.tbl/91-2

TABLE 35

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Federal Guidance Values to be Considered for Ground-Water Cleanup Criteria

			Federal	Guidance Values (mg/l) ¹ /	
Compound	CAS Number	DWHA ² / (lifetime non- carcinogenic)	DWHA ^{2/} † (carcinogenic)	RfD3/ Exposure Level	₩QC ^{4/} (non- carcinogenic)	ugc ⁴ /† (carcinogenic)
ORGANICS						
Acetone	67-64-1	NL	NL	NL	NL _	NL
Chlorodibromomethane	124-48-1	0.02	NL	0.70	NL	NL_
1,1-Dichloroethane	75-34-3	NL	NL	NL_	NL	NL_
1,1-Dichloroethylene	75-35-4	0.007	NL	0.315	0	0.0033
cis-1,2-Dichloroethylene	156-59-2	NL	NL	NL	NL	NL
trans-1,2-Dichloroethylene	156-60-5	NL	NL	NL_	NL	NL_
Ethylbenzene	100-41-4	0.7	NL	3.5	2.4	NL_
Freon 113	76-13-1	NL.	NL_	NL	NL	NL_
Methylene Chloride	75-09-2	NL	NL	NL.	NL	NL
Tetrachloroethylene	127-18-4	NL_	0.07	0.35	0	0.088
Toluene	108-88-3	1.0	NL	3.5	15	NL
1,1,1-Trichloroethane	71-55-6	0.2	NL	1.23	19	NL
Trichloroethylene	79-01-6	NL_	0.3	0.245	0	0.28
Xylenes	1330-20-7	10	NL_	70	NL	NL_
INORGANICS						
Antimony	7440-36-0	0.003	NL_	0.014	0.146	NL
Cadmium	7440-43-9	0.005	NL	0.018	0.01	NL NL
Iron	SEQ. NO. 17-18	NL	NL	NL	NL	NL

TABLE 35 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Federal Guidance Values to be Considered for Ground-Water Cleanup Criteria

			Federal Guidance Values (mg/l) ¹ /								
Compound	CAS Number	DWHA ² / (lifetime non- carcinogenic)	DWHA ² /† (carcinogenic)	RfD3/ Exposure Level	WQC ⁴ / (non- carcinogenic)	woc ^{4/†} (carcinogenic)					
Lead	7439-92-1	NL	NL	NL_	5.2	NL					
Manganese	7439-96-5	NL	NL_	4.9	NL	NL					

1/ Milligrams per liter.

2/ EPA Drinking Water Health Advisories (USEPA, 1990).

🛂/ Reference Dose (Acceptable Daily Intakes) Exposure Level for Non-Carcinogenic Effects via Oral Route for 70 kilogram adult consuming 2 liters of water per day (USEPA, 1990).

Water Quality Criteria adjusted for Drinking Water (USEPA, 1986).

Not listed.

The concentration value given for potential carcinogens corresponds to a lifetime risk of 10^{-4} . To obtain concentrations corresponding to risks of 10^{-6} , the 10^{-4} concentrations should be divided by 100.

nabis.tbl/91-2

TABLE 36

NABISCO BRANDS, INC. ROME INDUSTRIES SITE SAG HARBOR, NEW YORK

New York Chemical-Specific Standards and Guidelines for Ground-Water Cleanup Criteria

			New York State Standard	ds and Guidelines (mg/l)	ν
Compound	CAS Number	Ground-water quality stan- dards-	Drinking water standards ²	Raw water quality standards ⁴	Ground-water quality guidance values ²
ORGANICS				_	
Acetone	67-64-1	NR	0.05 ^u	NR	NR
Chlorodibromomethane	124-48-1	NR	0.1	NR NR	NR _
1,1-Dichloroethane	75-34-3	NR	0.005 ^P	NR	NR _
1,1-Dichloroethylene	75-35-4	NR	0.005 ^p	NR	NR
cis-1,2-Dichloroethylene	156-59-2	NR NR	0.005 ^P	NR	NR
trans-1,2-Dichloroethylene	156-60-5	NR	0.005 ^P	NR	, NR
Ethylbenzene	100-41-4	NR	0.005 ^p	NR NR	NR NR
Freon 113	76-13-1	NR	0.05 ^u	NR	NR _
Methylene Chloride	75-09-2	NR	0.005 ^p	NR	NR
Tetrachloroethylene	127-18-4	NR	0.0 <u>0</u> 5 ^p	NR	NR
Toluene	108-88-3	NR	0.005 ^p	NR	NR
1,1,1-Trichloroethane	71-55-6	NR	0.005 ^P	NR NR	NR
Trichloroethylene	79-01-6	0.01	0.005 ^p	NR	NR
Xylenes	1330-20-7	NR	0.005 ^p	NR	NR
INORGANICS					
Antimony	7440-36-0	NR	NR	NR	0.003
Cadmium	7440-43-9	0.01	0.01	0.01	NR

TABLE 36 (continued)

NABISCO BRANDS, INC. ROME INDUSTRIES SITE SAG HARBOR, NEW YORK

New York Chemical-Specific Standards and Guidelines for Ground-Water Cleanup Criteria

			New York State Standard	ds and Guidelines (mg/l)	ע
Compound	CAS Number	Ground-water quality stan- dards=	Drinking water standards ²	Raw water quality standards4/	Ground-water quality guidence values ²
Iron	SEQ No. 17-8	0.3	0.3	NR	NR
Lead	7439-92-1	0.025	0.05	0.05	NR
Manganese	7439-96-5	0.3	0.3 ^{††}	NR	NR

- 1/ Milligrams per liter.

- / Militgrams per liter.
 2/ 6 NYCRR, Chapter X, Part 703.5(2).
 3/ 10 NYCRR, Chapter I, Subpart 5-1.
 4/ 10 NYCRR, Chapter III, Part 170.
 5/ NYSDEC Division of Water Technical and Operational Guidance Series.
- NR Not regulated.
- NL Not listed.
- The total of all trihalomethanes cannot exceed 0.1 mg/l.
- Ħ If iron and manganese are present, the total concentration of both should not exceed 0.05 mg/l.
- +++ Applies to each isomer individually.
- Principle Organic Contaminant; each cannot exceed 0.005 mg/l. р
 - Unspecified Organic Contaminant; each cannot exceed 0.05 mg/l.

The total of all principle and unspecified organic contaminants cannot exceed 0.1 mg/l. This rule is proposed for deletion.

nabis.tbl/91-2

TABLE 37

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Chemical-Specific ARARs Considered for Ground-Water Cleanup Criteria

Compound	CAS Number	Minimum ARAR-Based Ground-Water Cleanup Criteria (mg/l) ¹ /
ORGANICS		
Acetone	67-64-1	0.05
Chlorodibromomethane	124-48-1	0.1†
1,1-Dichloroethane	75-34-3	0.005
1,1-Dichloroethylene	75-35-4	0.005
cis-1,2-Dichloroethylene	156-59-2	0.005
trans-1,2-Dichloroethylene	156-60-5	0.005
Ethylbenzene	100-41-4	0.005
Freon 113	76-13-1	0.05
Methylene Chloride	75-09-2	0.005
Tetrachloroethylene	127-18-4	0.005
Toluene	108-88-3	0.005
1,1,1-Trichloroethane	71-55-6	0.005
Trichloroethylene	79-01-6	0.005
Xylenes	1330-20-7	0.005
INORGANICS		
Antimony	7440-36-0	NR
Cadmium	7440-43-9	0.005
Iron	SEQ. NO. 17-18	0.3††

TABLE 37 (continued)

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

Chemical-Specific ARARs Considered for Ground-Water Cleanup Criteria

Compound	CAS Number	Minimum ARAR-Based Ground-Water Cleanup Crîterîa (mg/l) ^{1/}
Lead	7439-92-1	0.025
Manganese	7439-96-5	0.3††

 $\underline{1}$ / Milligrams per liter. NR Not regulated.

† Total trihalomethanes cannot exceed 0.1 mg/l.

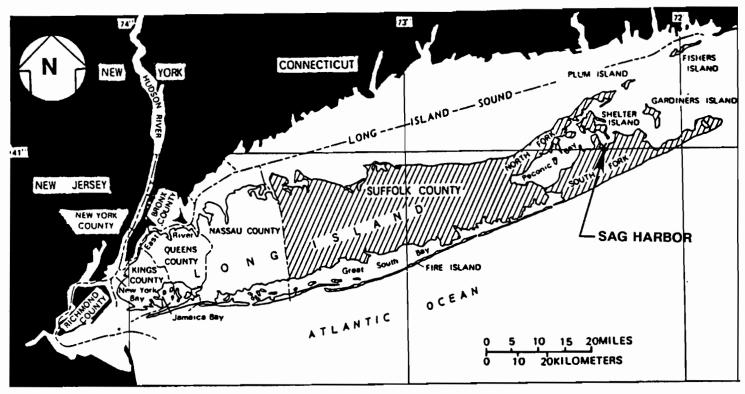
If iron and manganese are pressent, the total concentration of both should not exceed 0.05 mg/l.

††† Applies to each isomer individually.

nabis.tbl/91-2

TABLE 38

NABISCO BRANDS, INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

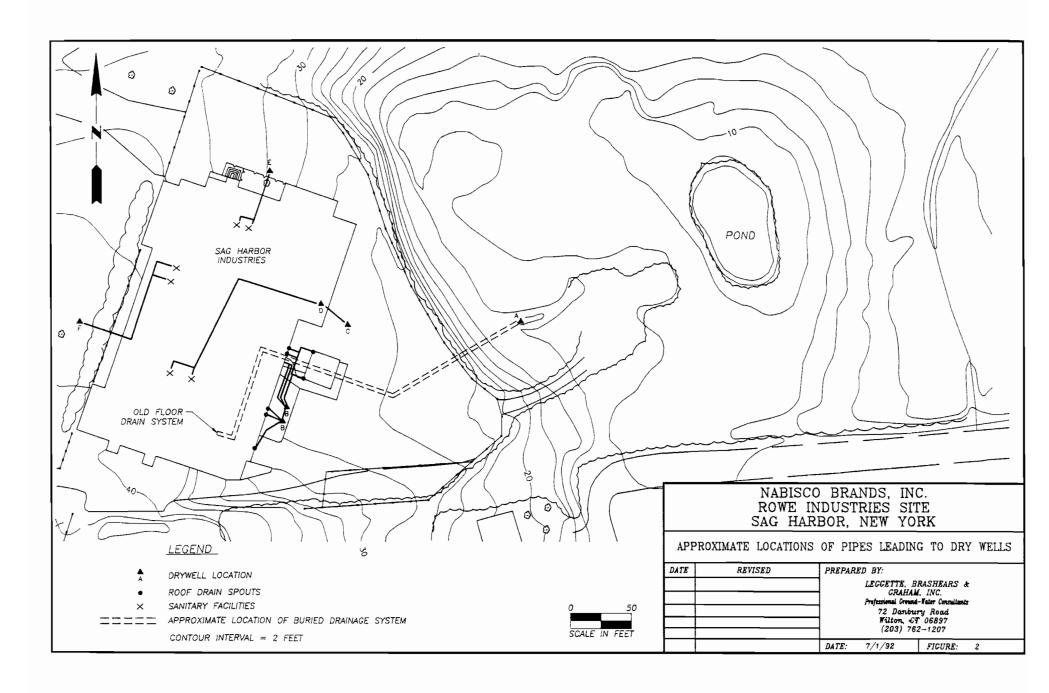

Background Soil Quality

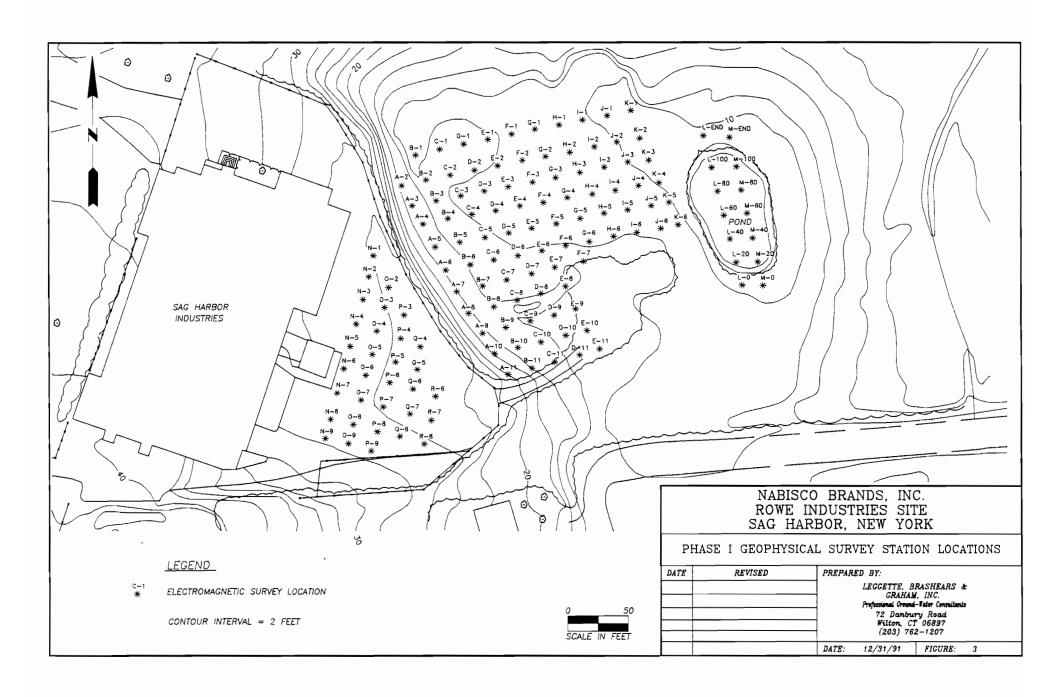
Metal	Eastern United States 1/
Aluminum	7,000 - >100,000
Antimony	<1 - 8.8
Arsenic	<0.1 - 73
Barium	10 - 1,500
Beryllium	<1 - 7
Cadmium	
Calcium	100 - 280,000
Chromium	1 - 1,000
Cobalt	<0.3 - 70
Copper	<1 - 700
Iron	100 - >100,000
Lead	<10 - 300
Magnesium	50 - 50,000
Manganese	<2 - 7,000
Nickel	<5 - 700
Potassium	50 - 37,000
Selenium	<0.1 - 3.9
Silver	
Sodium	<500 - 50,000
Thallium	2.2 - 23
Vanadium	<7 - 300
Zinc	<5 - 2,900

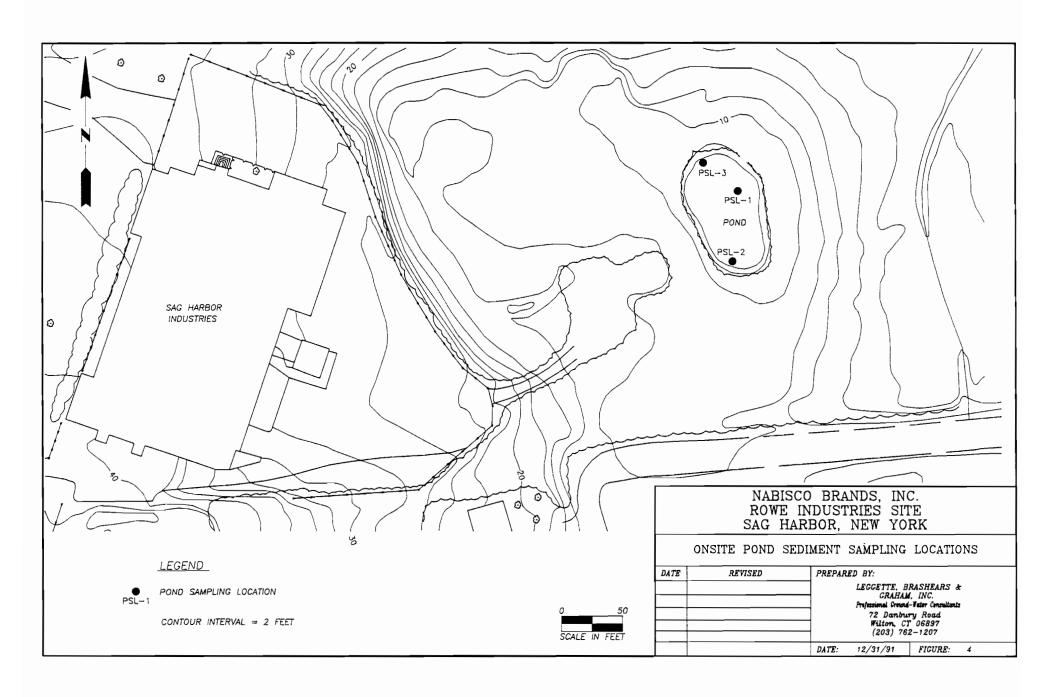
United States Geological Survey Professional Paper 1270 (1984), Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, Shacklette, Hansford, T. et al.

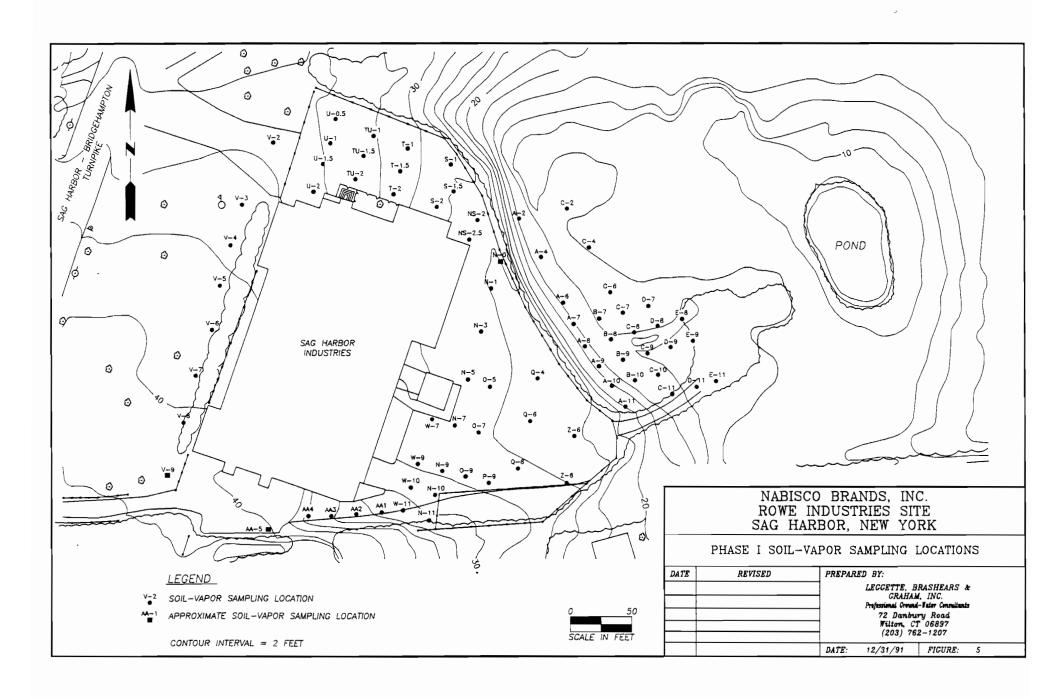
NOTE: All concentrations reported in parts per million (milligrams per kilogram).

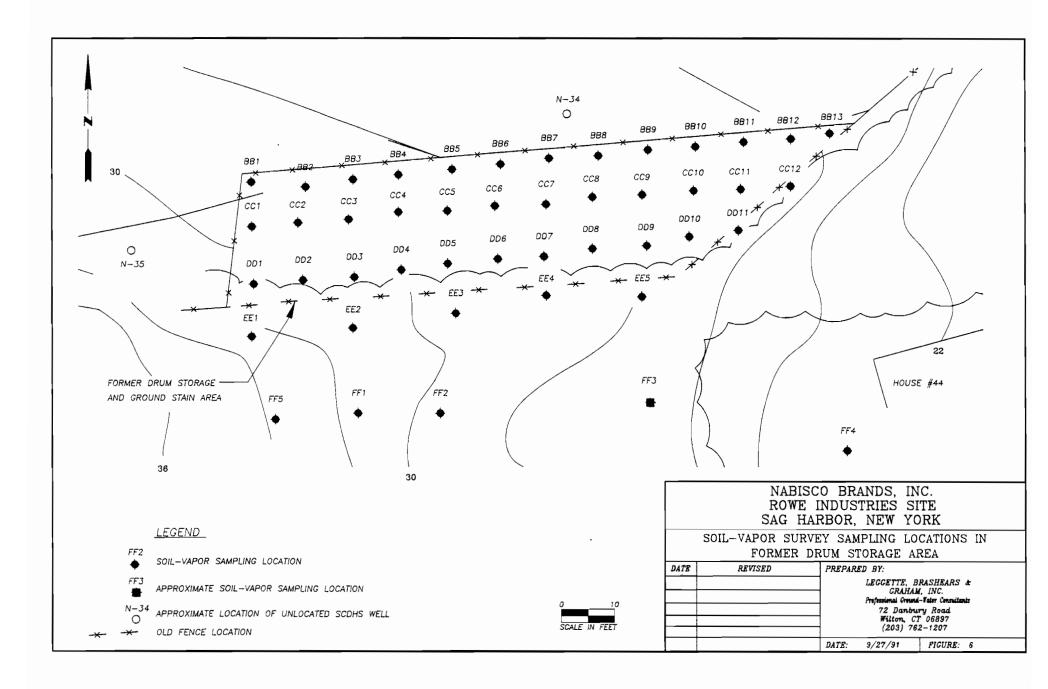
nabis2.tbl/nabis2

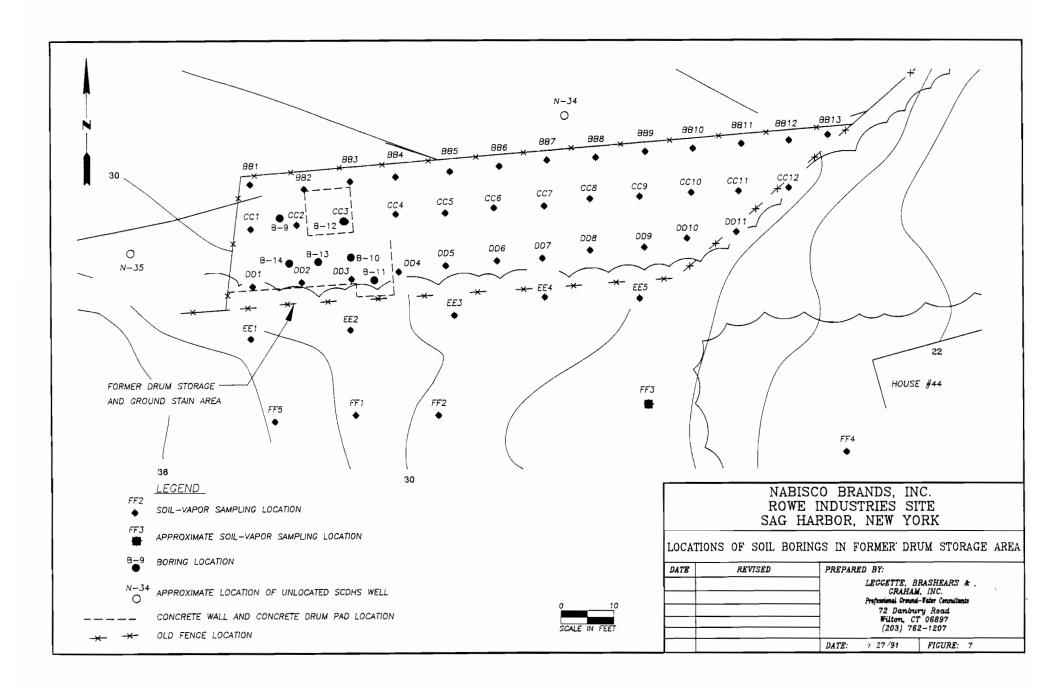


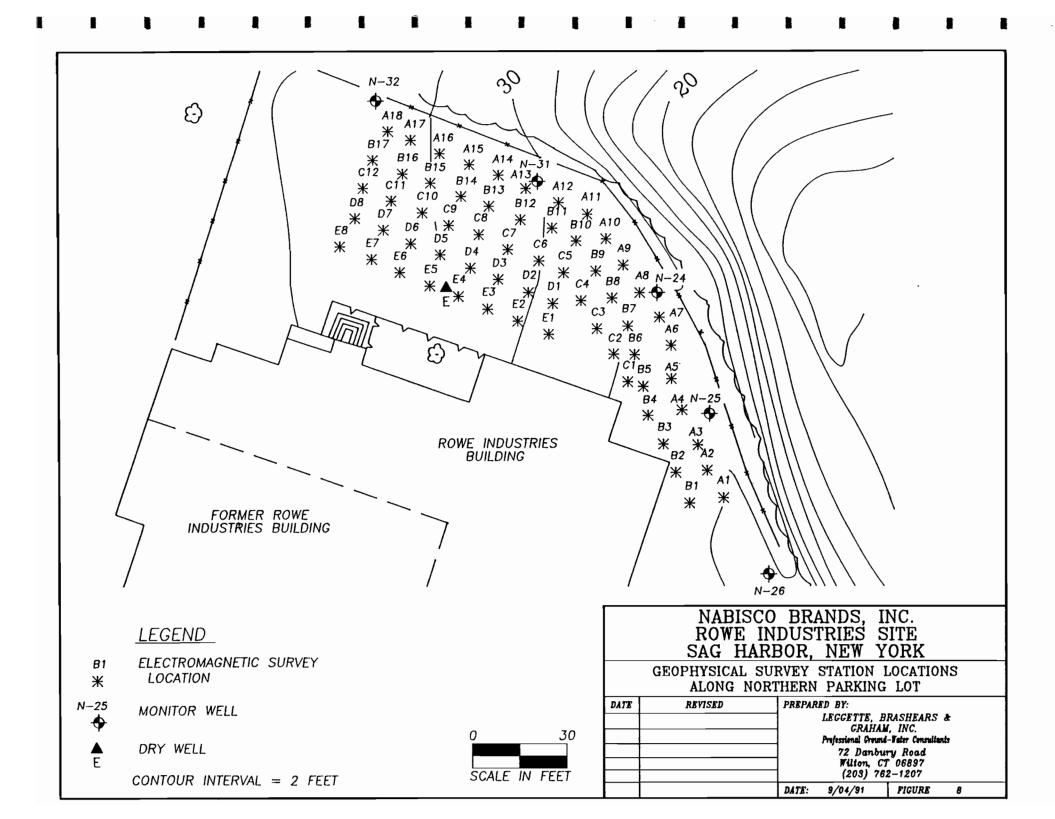

NOTE: MAP OF LONG ISLAND SHOWING LOCATION OF SUFFOLK COUNTY. (MODIFIED FROM JENSEN AND SOREN, 1971, PAGE 3)

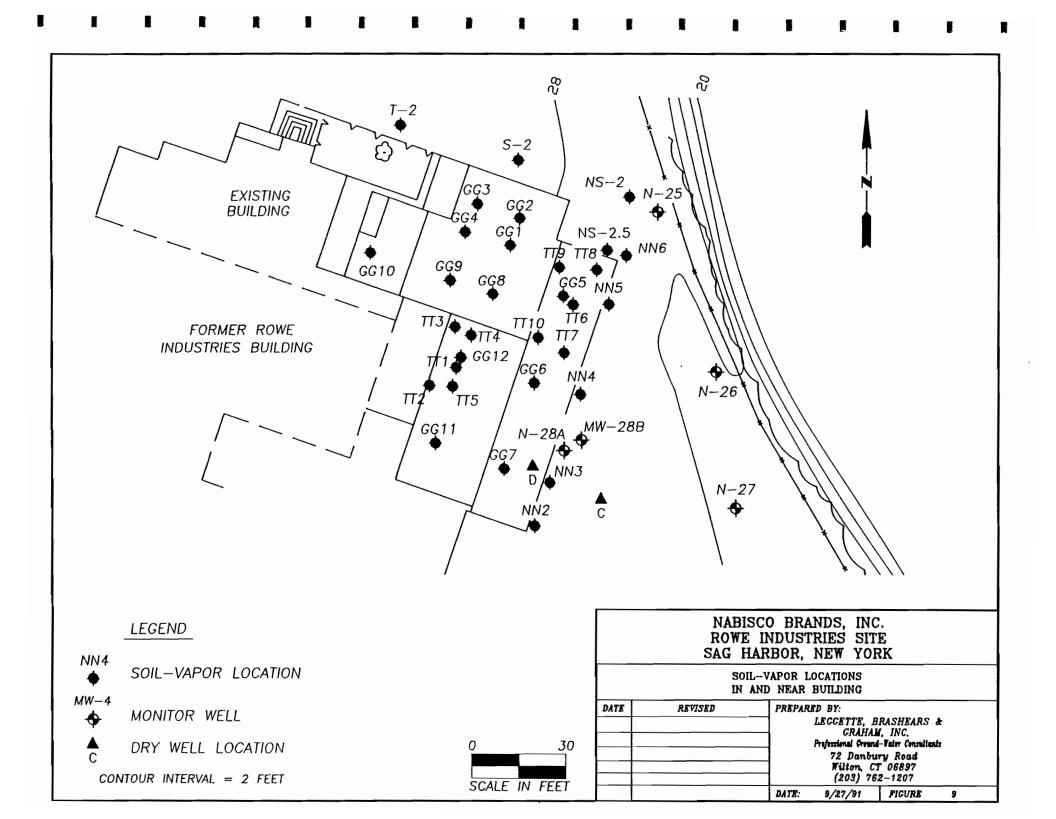

NABISCO BRANDS INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

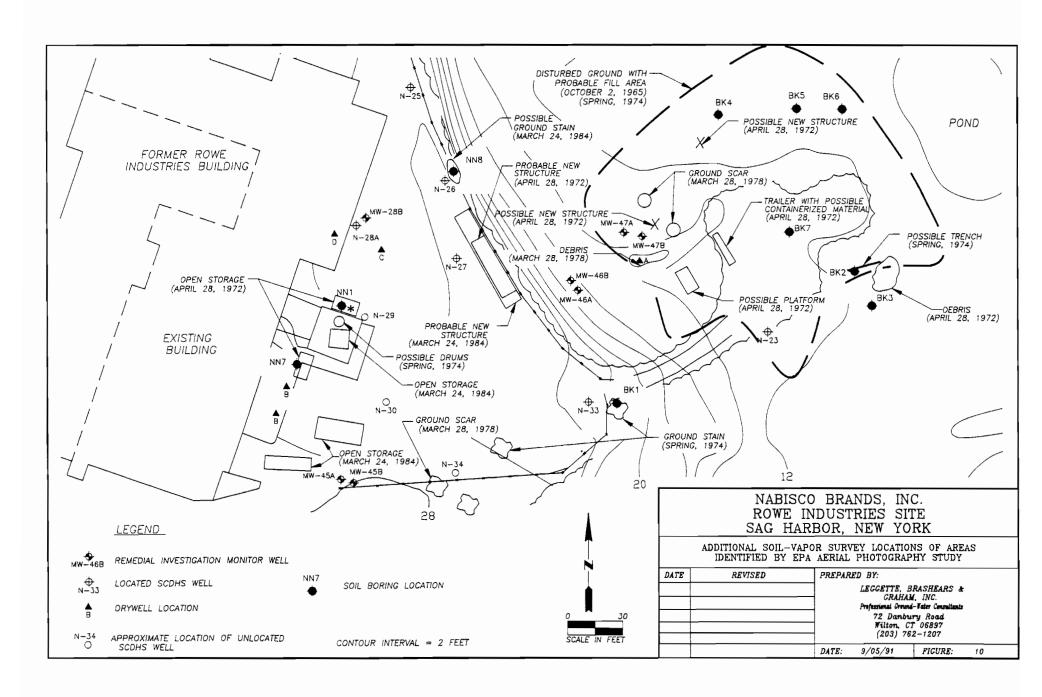

SITE LOCATION MAP

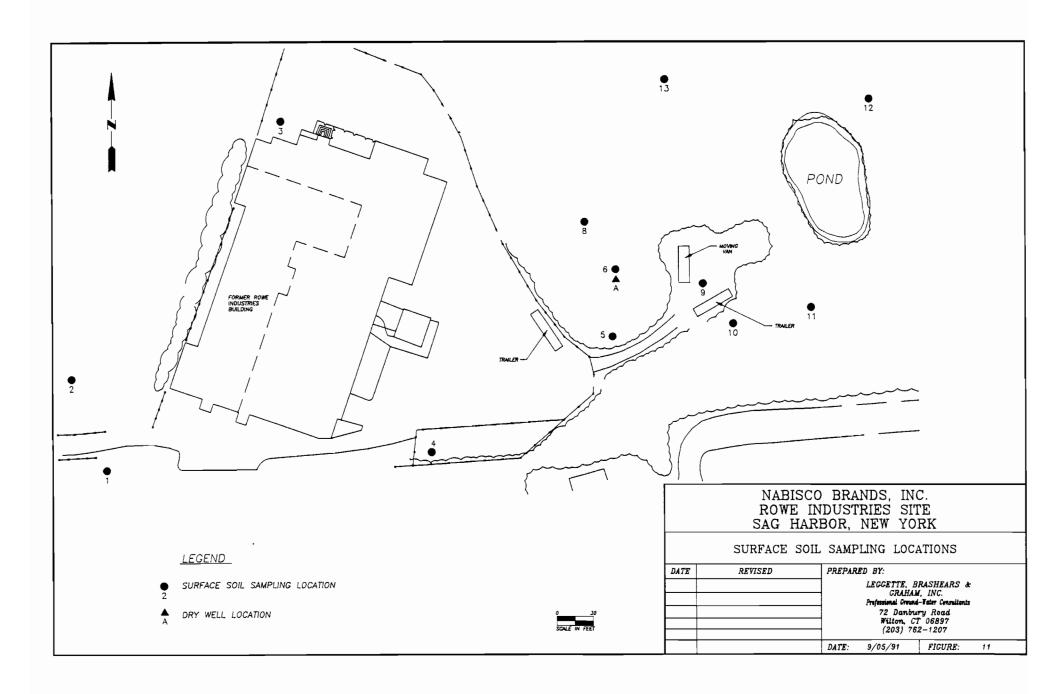

DATE	REVISED	PREPARED BY:	LECGETTE, BRASHEARS & GRAHAM, INC. Professional Ground-Water Consultants 72 Danbury Road Wilton, CT 06897 203-762-1207
		DATE:	FIGURE 1

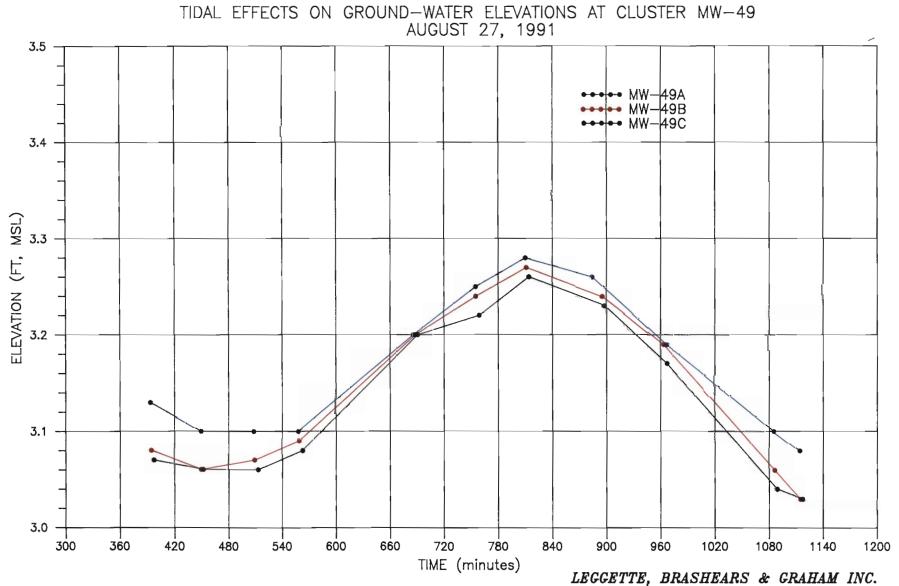


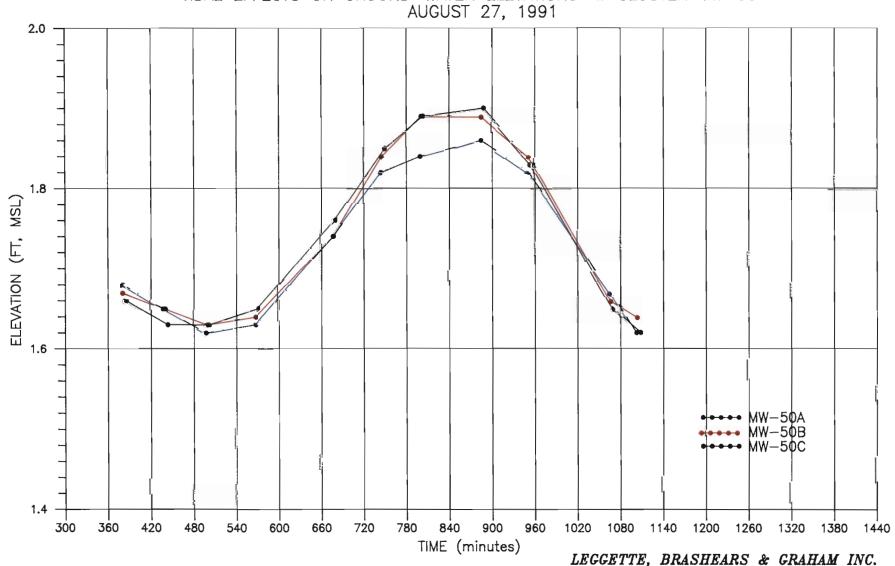


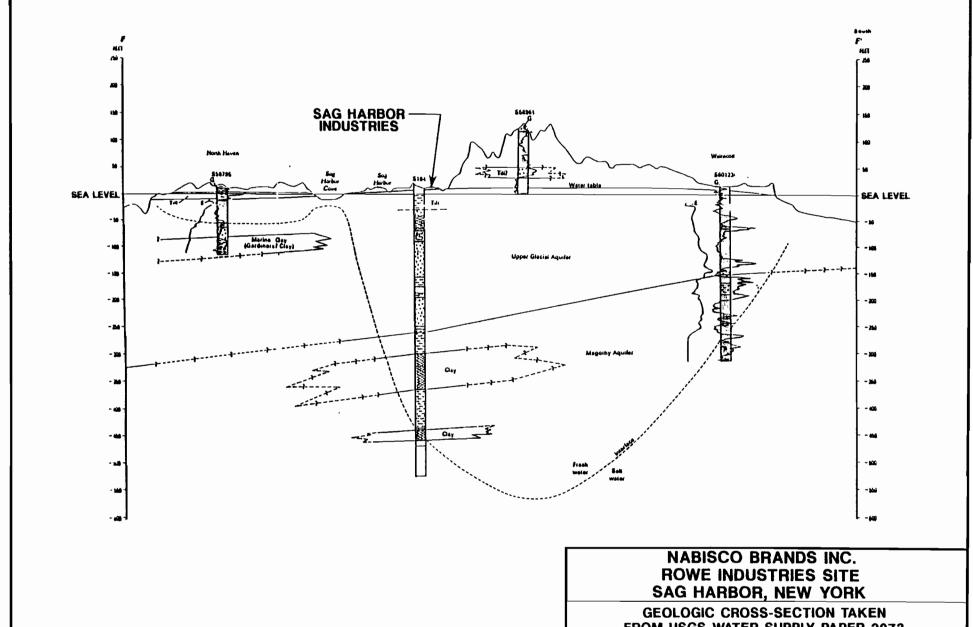




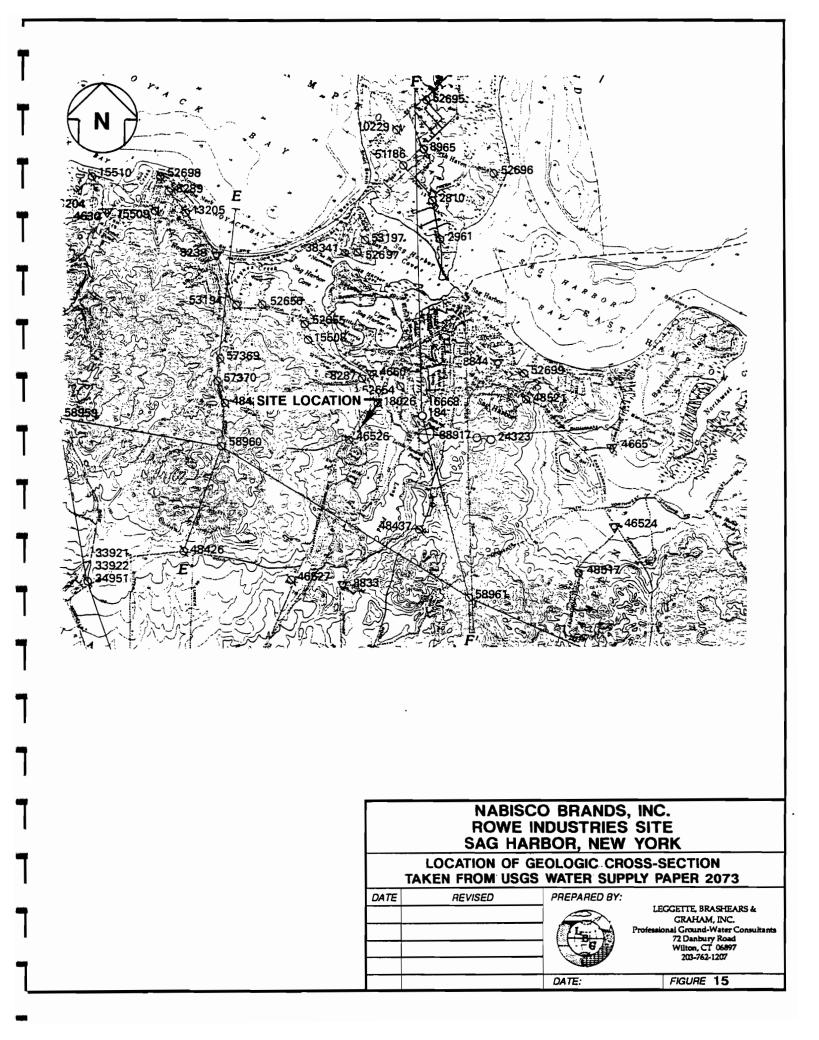


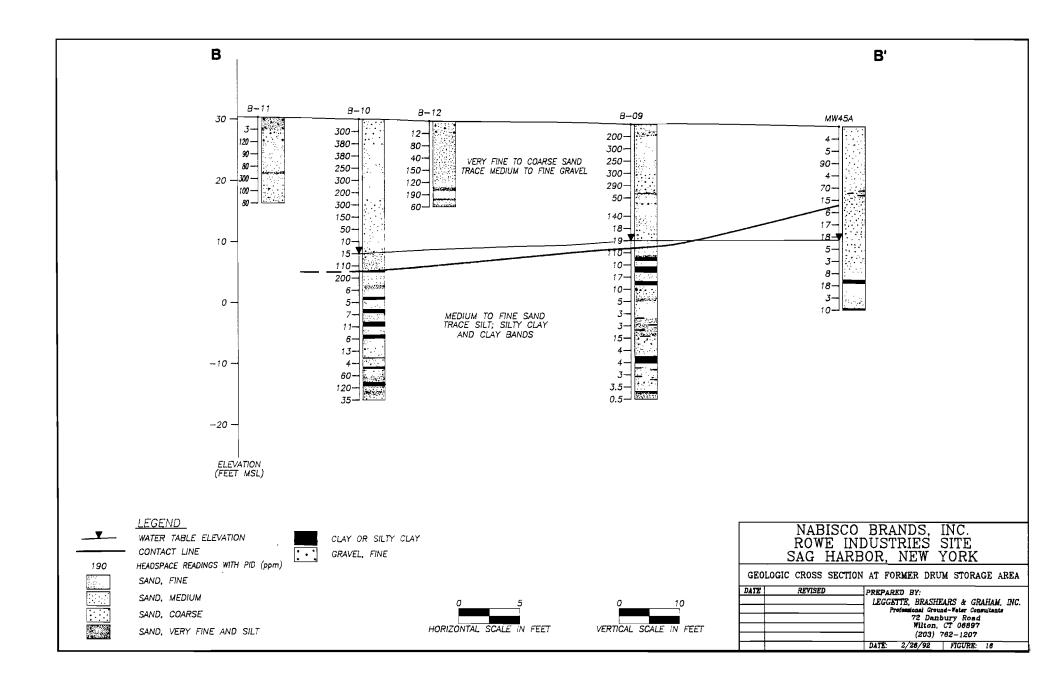


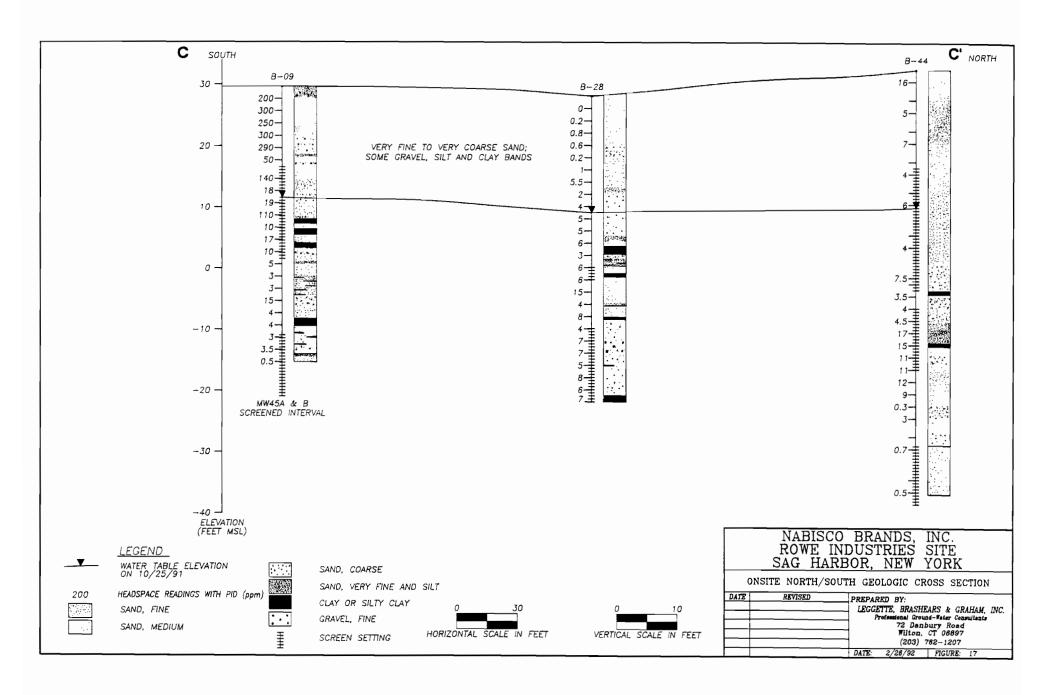


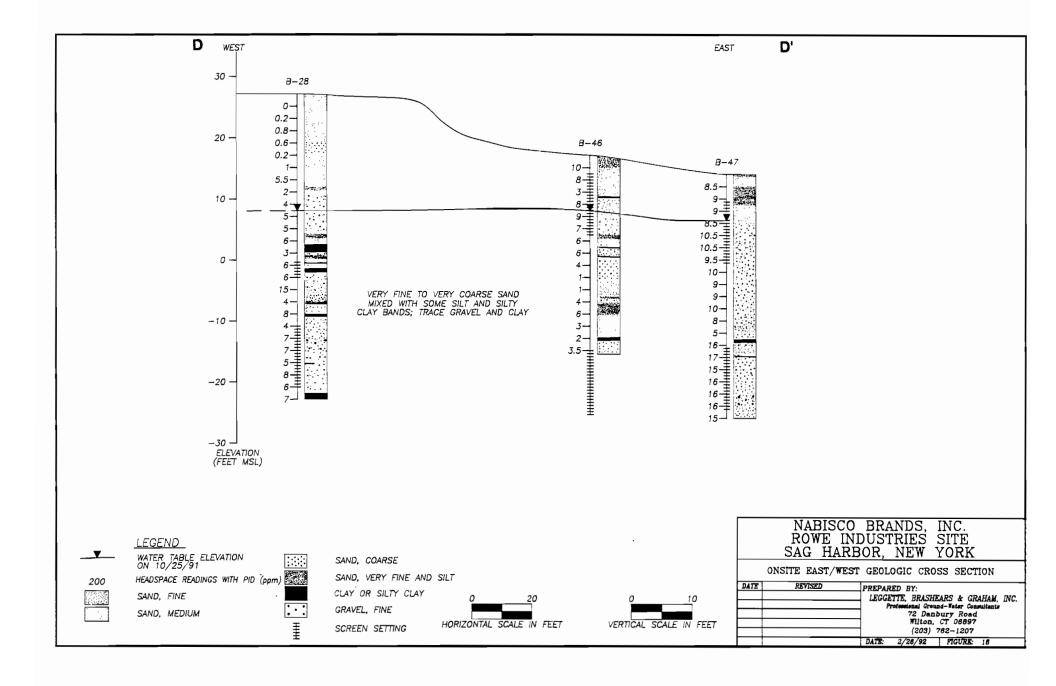


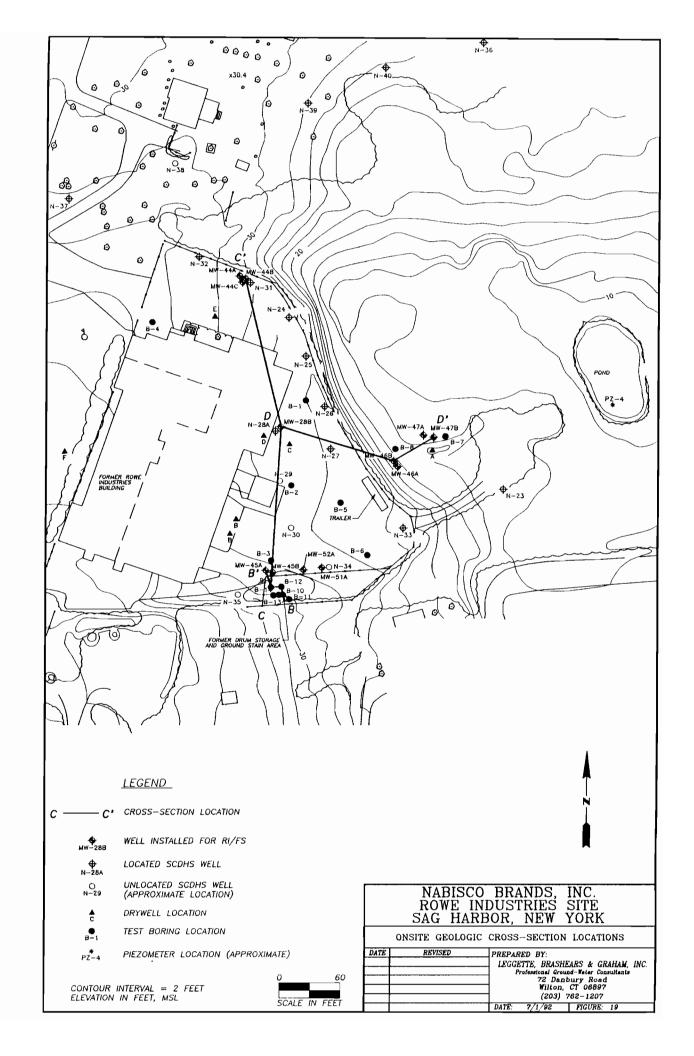
FIGURE

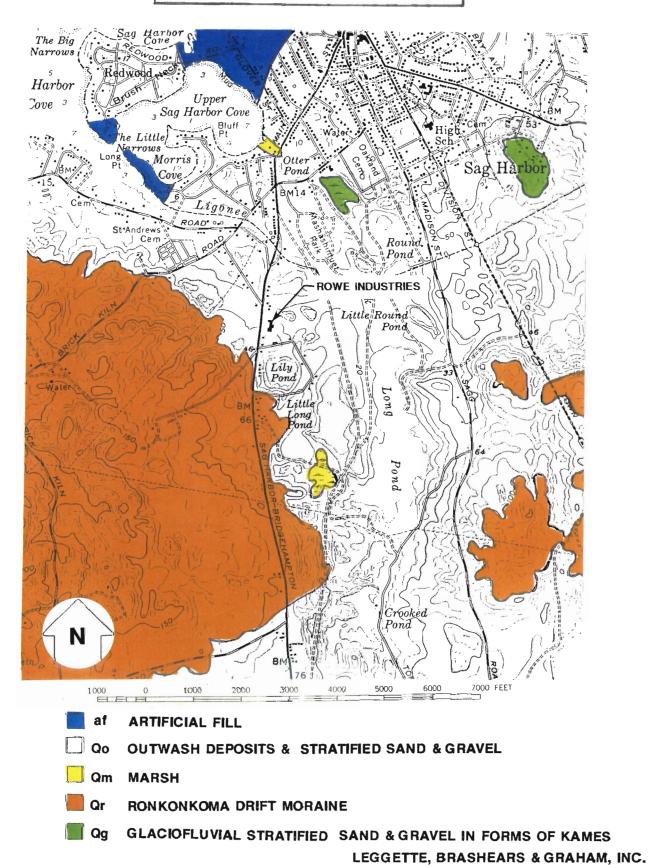

TIDAL EFFECTS ON GROUND-WATER ELEVATIONS AT CLUSTER MW-50

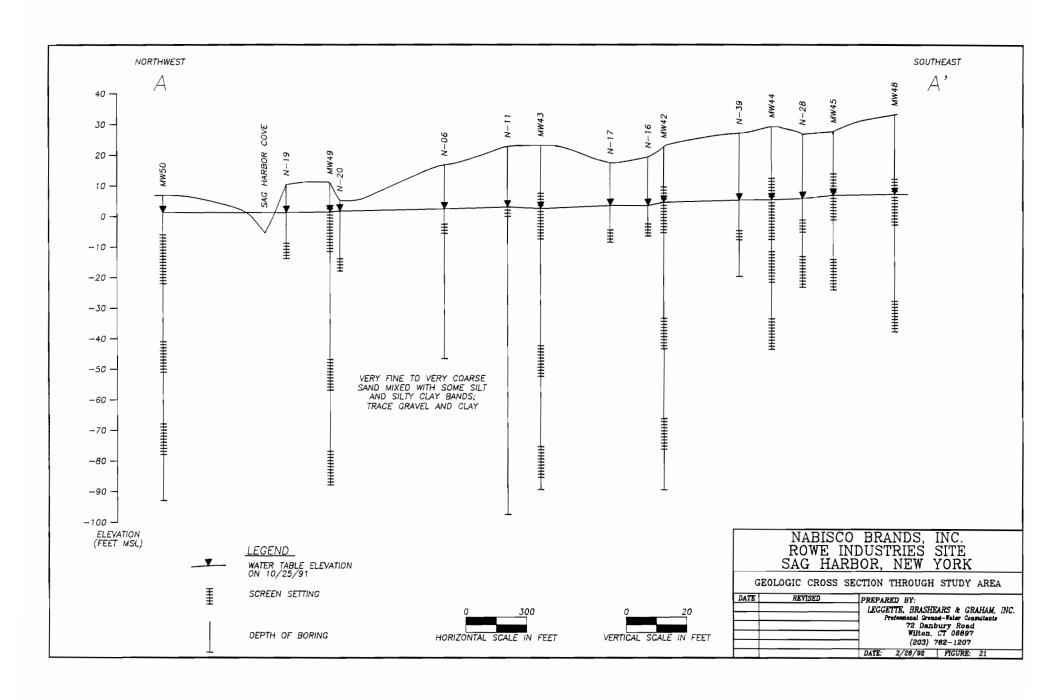


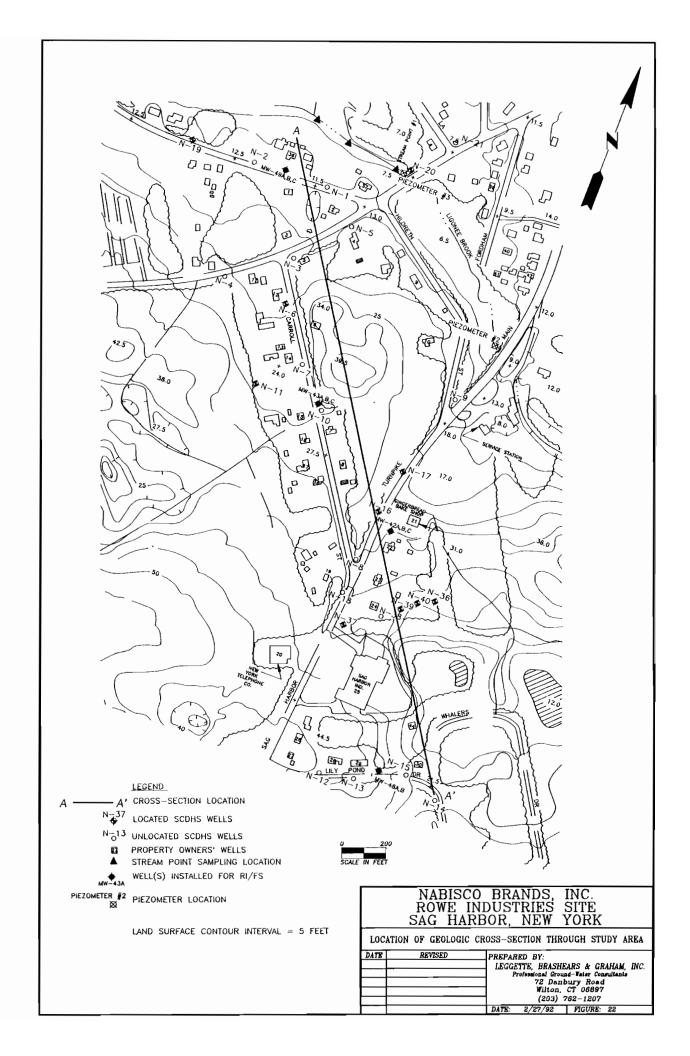


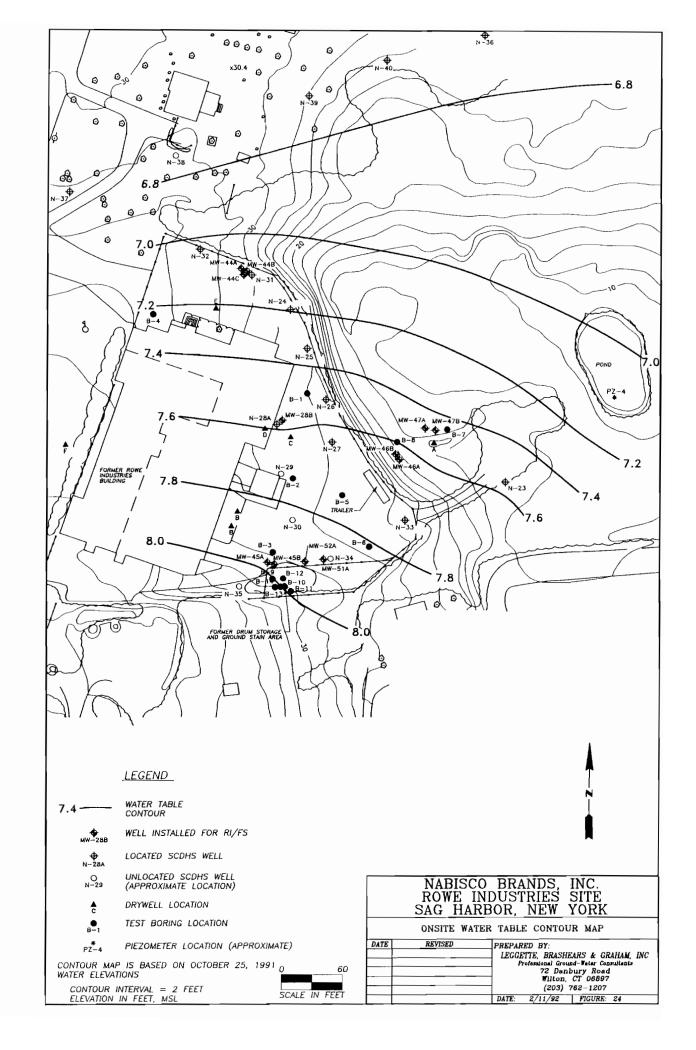

FROM USGS WATER SUPPLY PAPER 2073

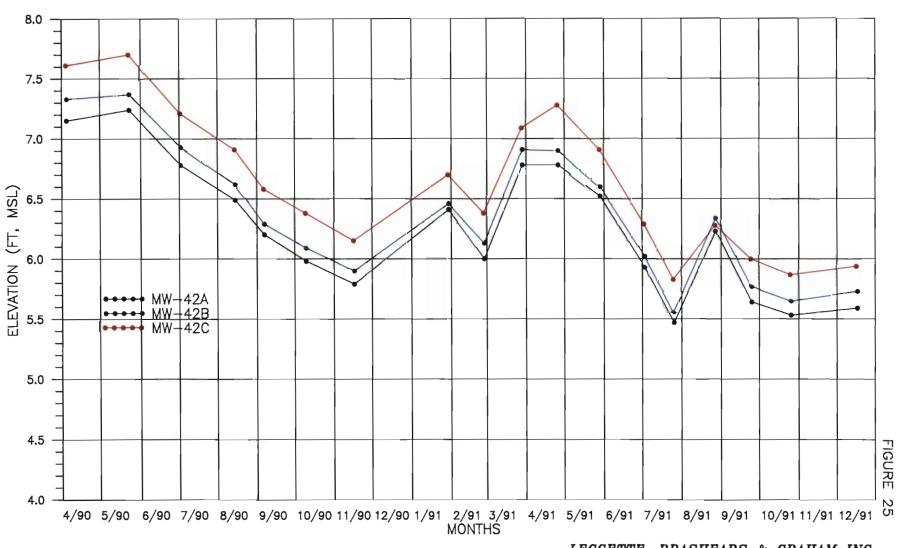

DATE	REVISED	PREPARED BY:	
			LEGGETTE, BRASHEARS & GRAHAM, INC.
		The last	Professional Ground-Water Consultants
		FEE	72 Danbury Road Wilton, CT 06897
			203-762-1207
		DATE:	FIGURE 14



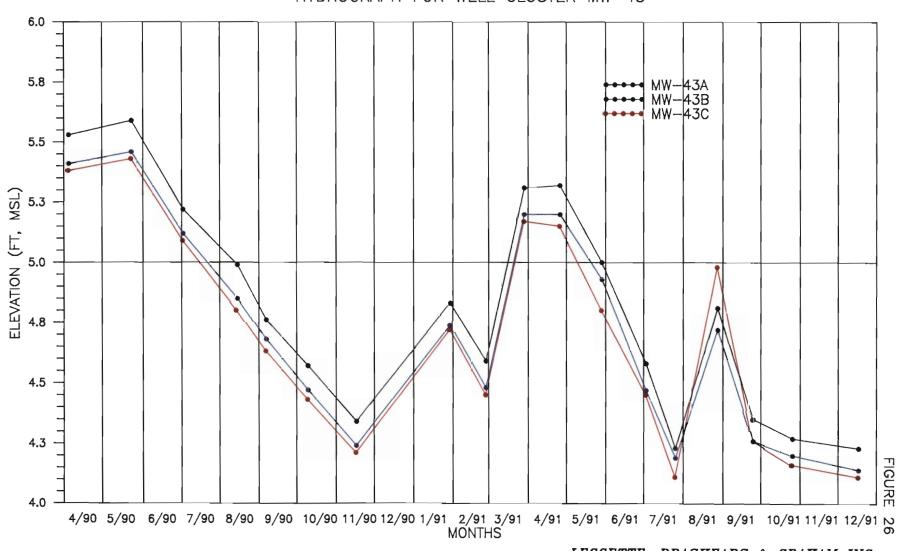




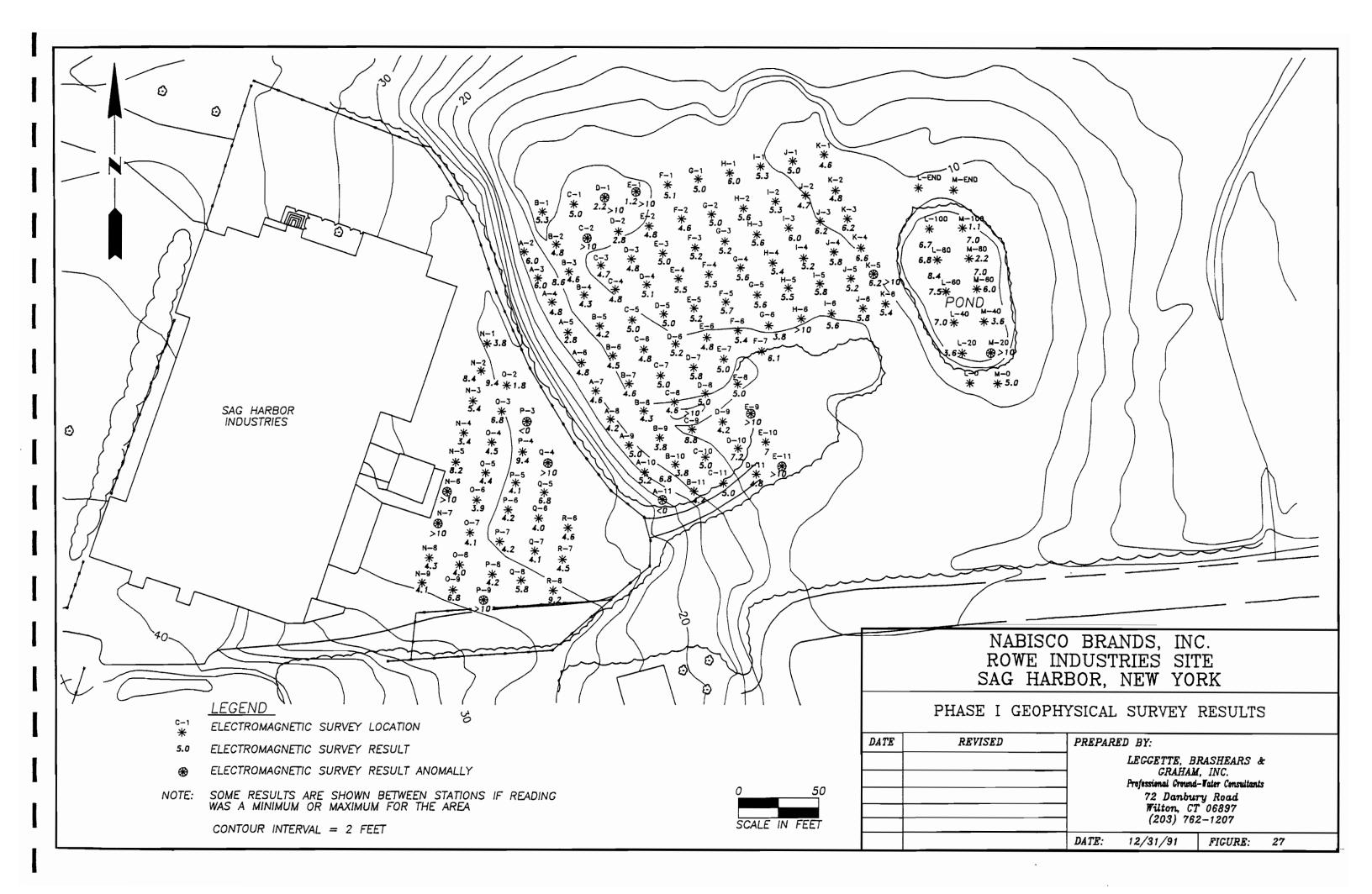

SURFICIAL GEOLOGY
OF THE SAG HARBOR AREA

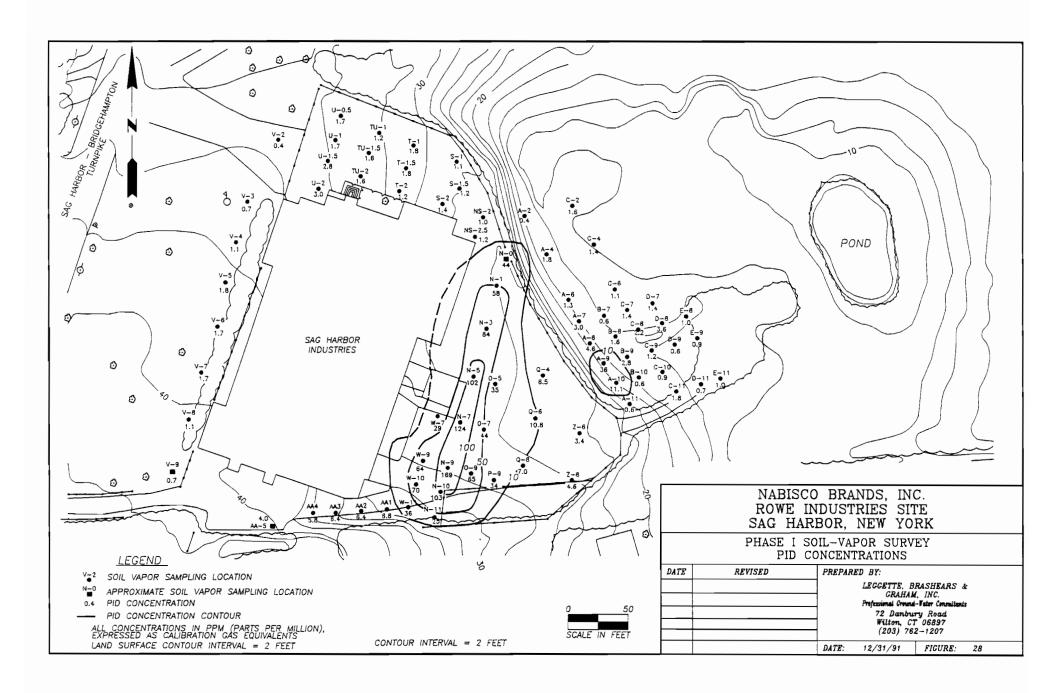


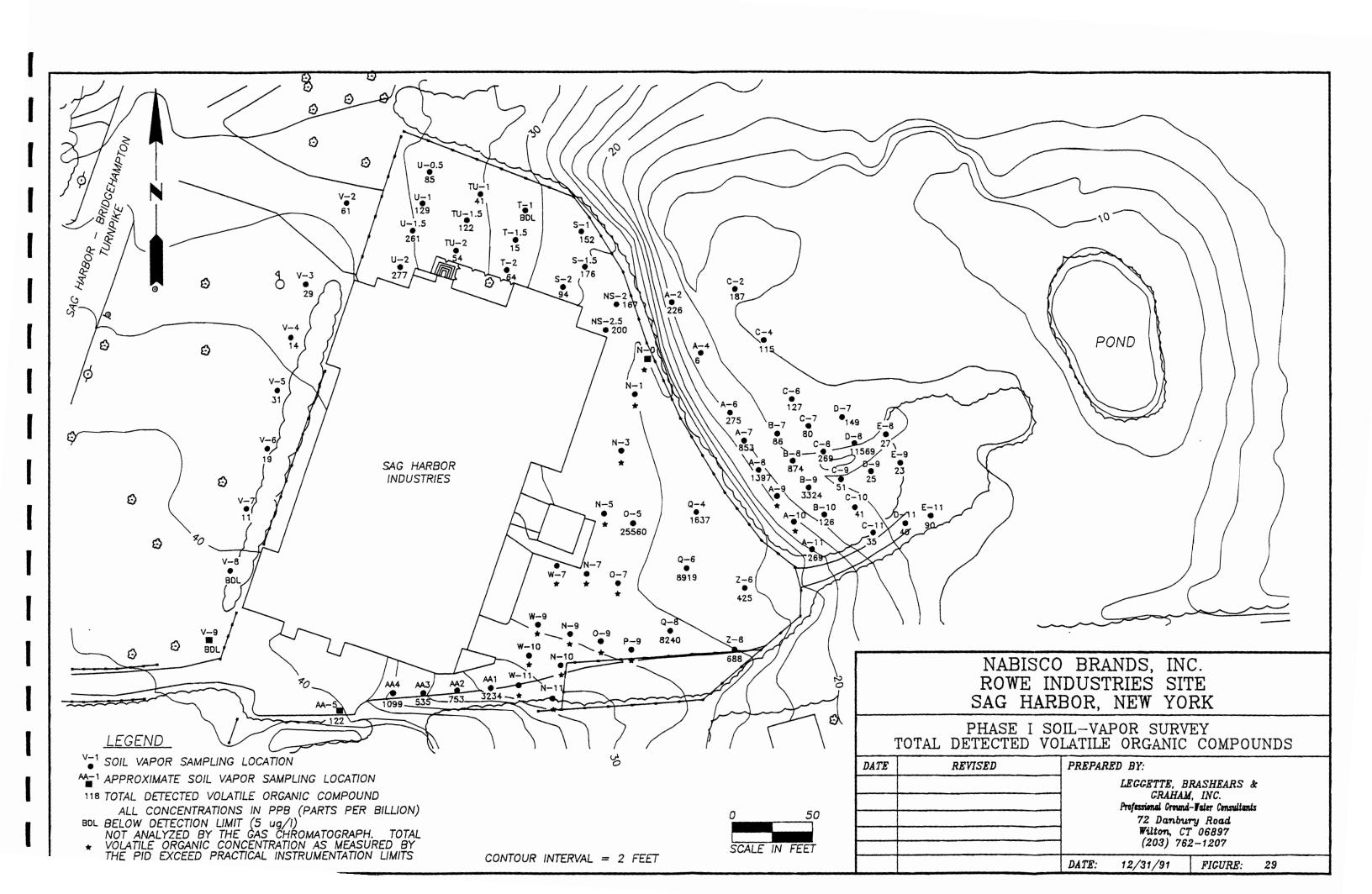
MORRIS

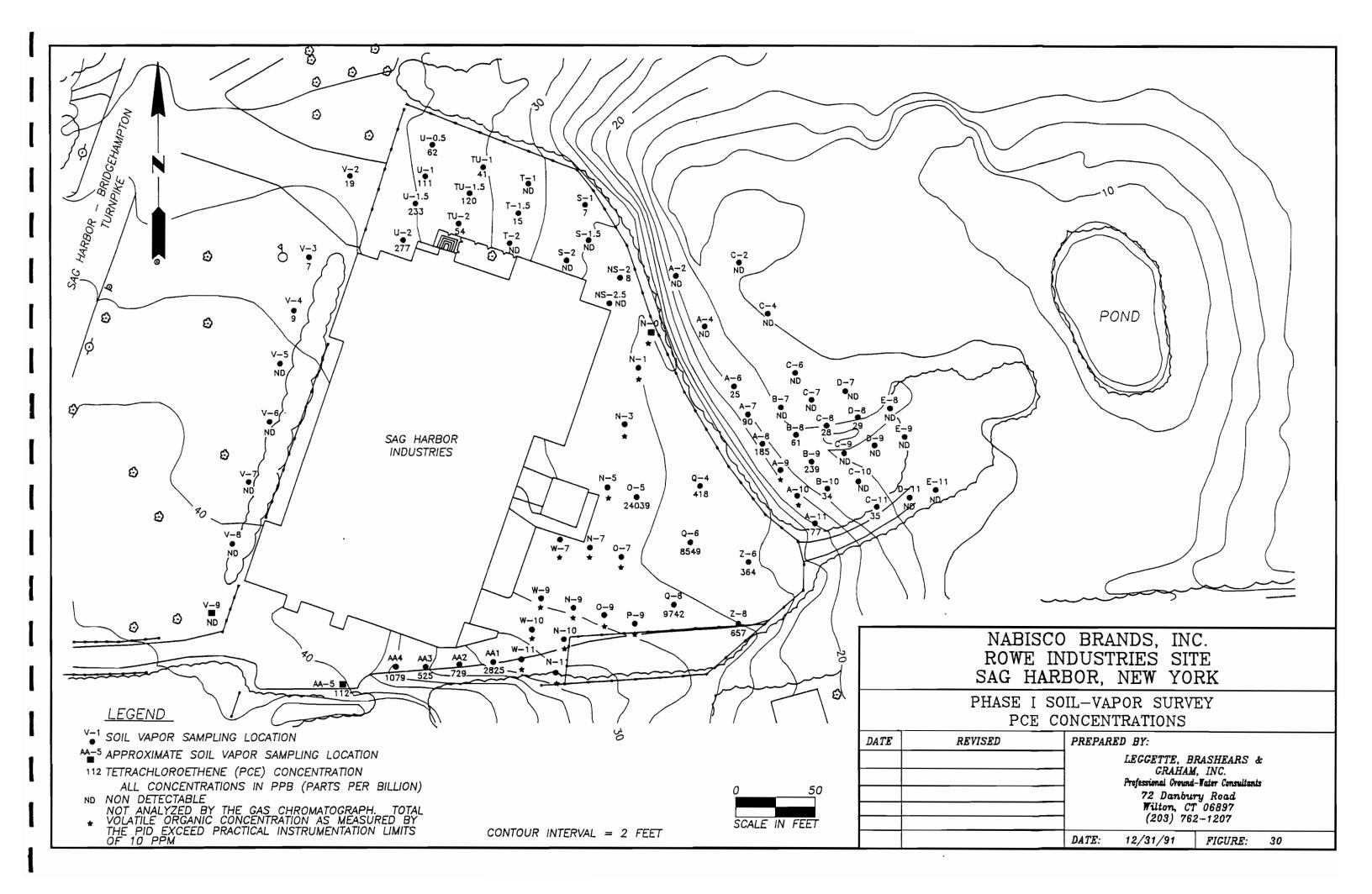


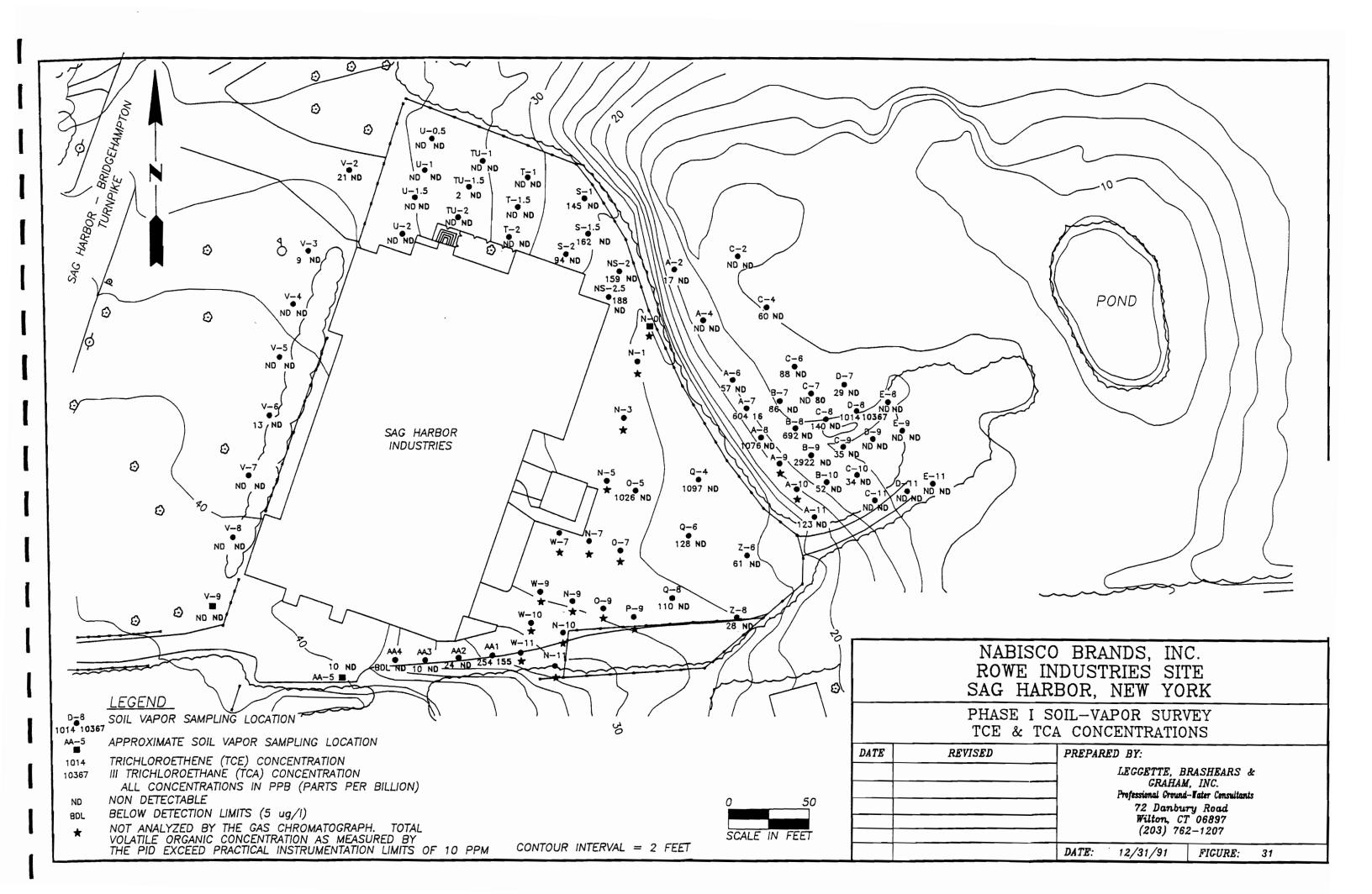
HYDROGRAPHS FOR WELL CLUSTER MW-42



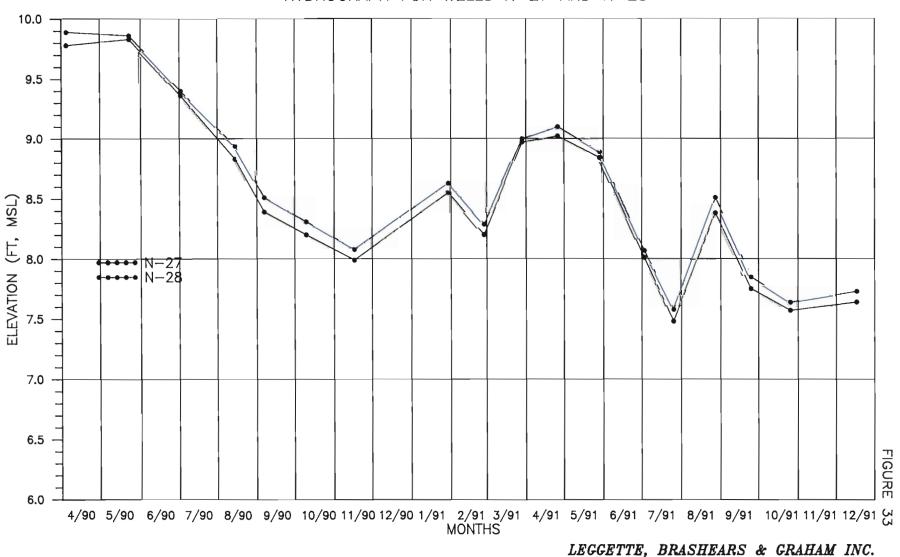

LEGGETTE, BRASHEARS & GRAHAM INC.

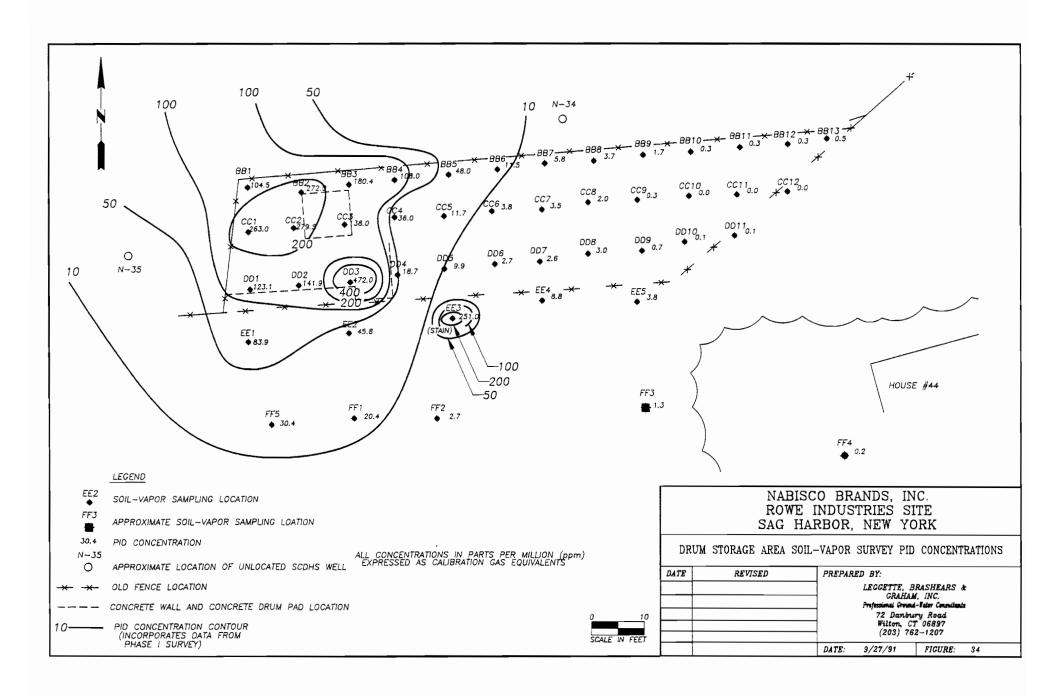

HYDROGRAPH FOR WELL CLUSTER MW-43

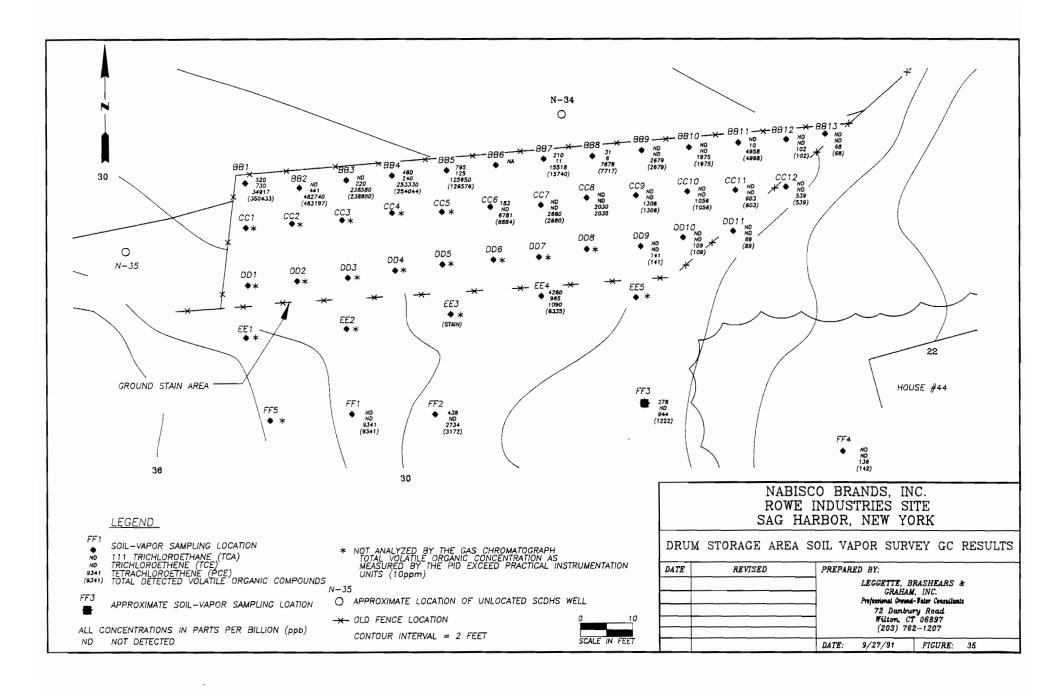


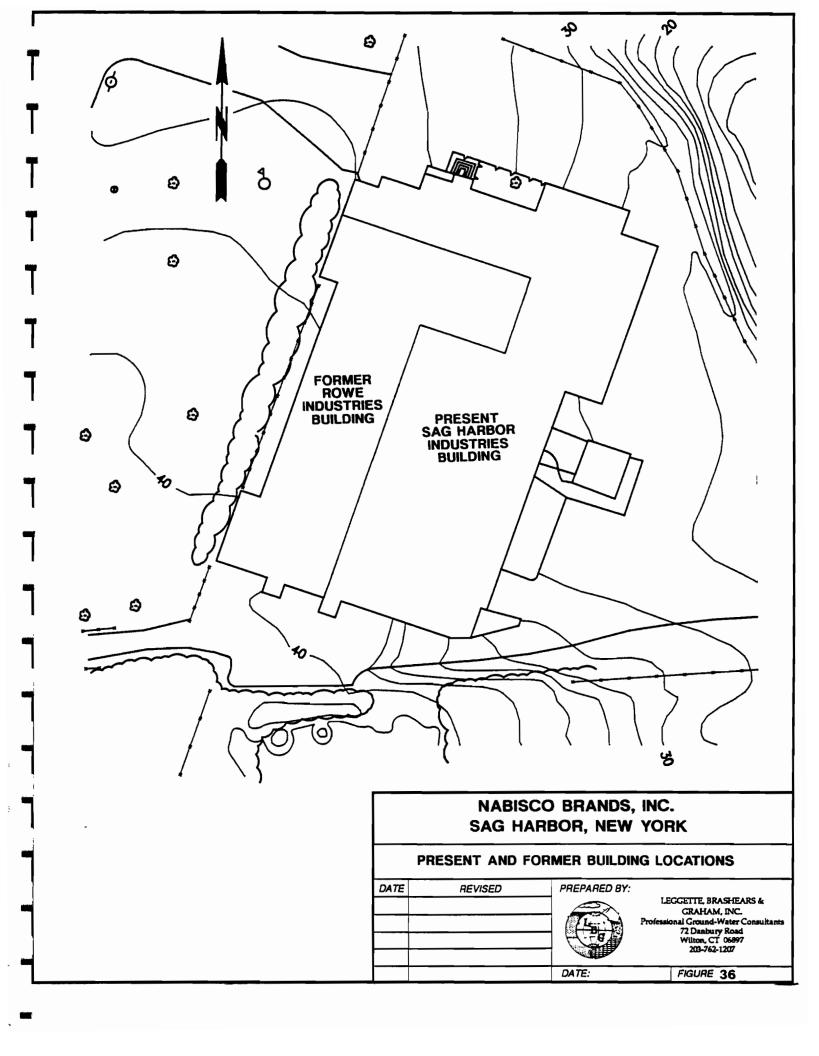

LEGGETTE, BRASHEARS & GRAHAM INC.

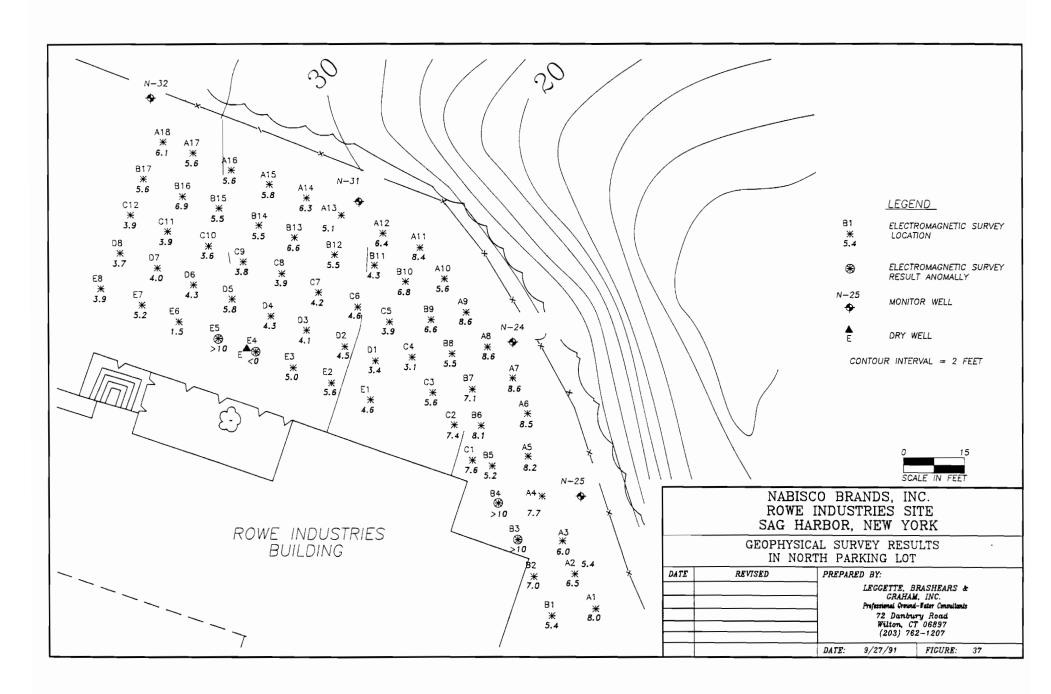


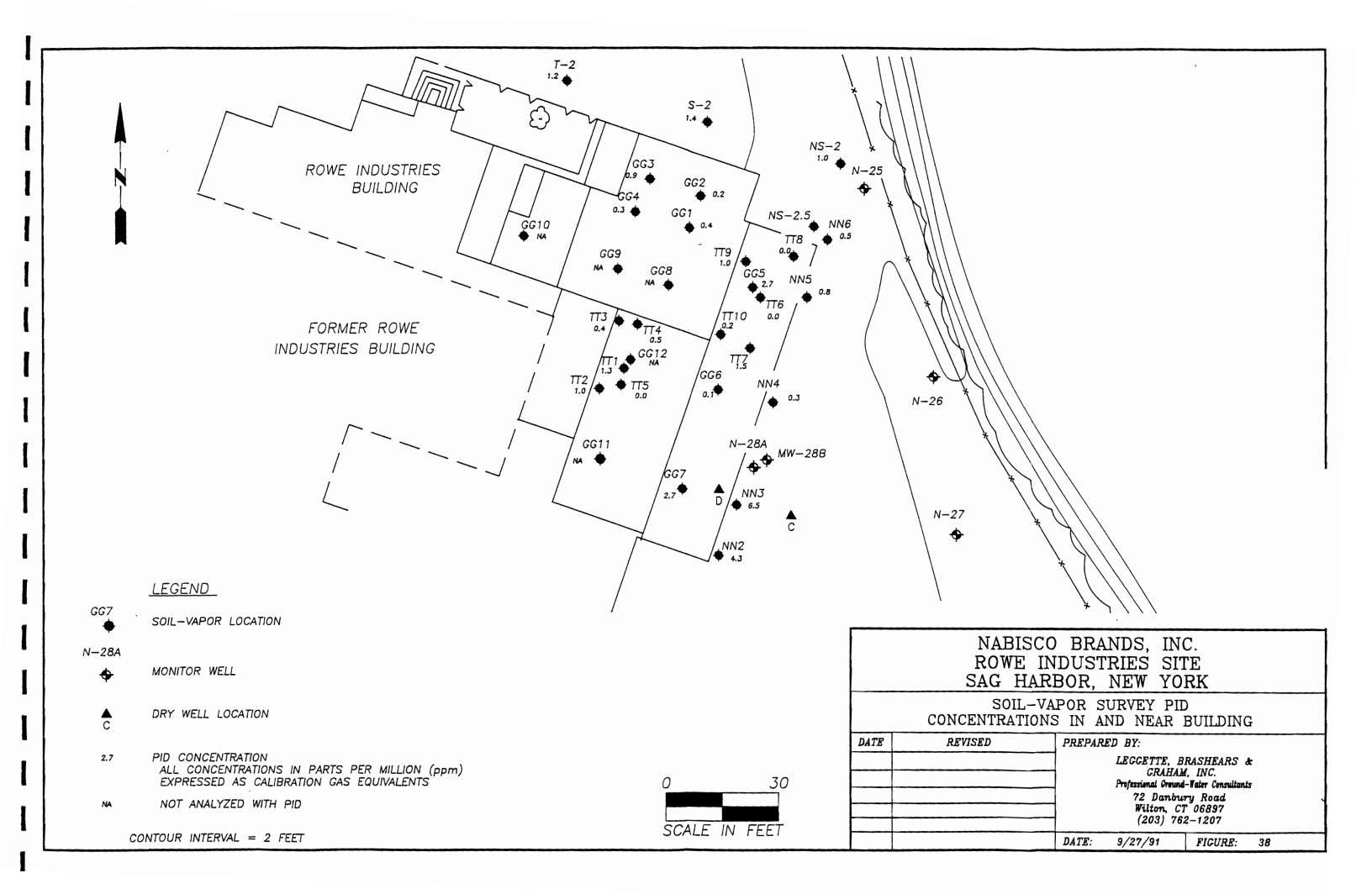


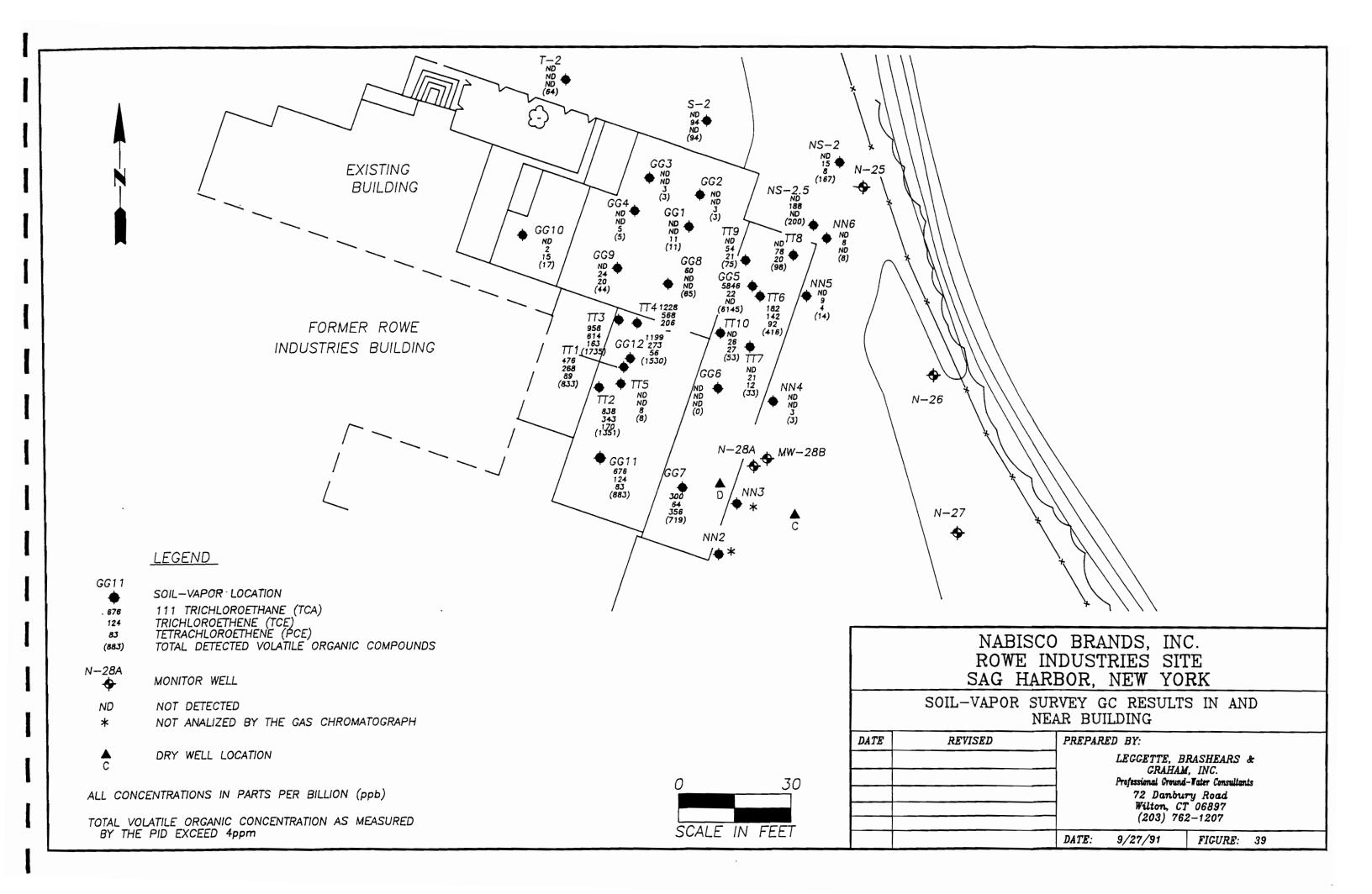


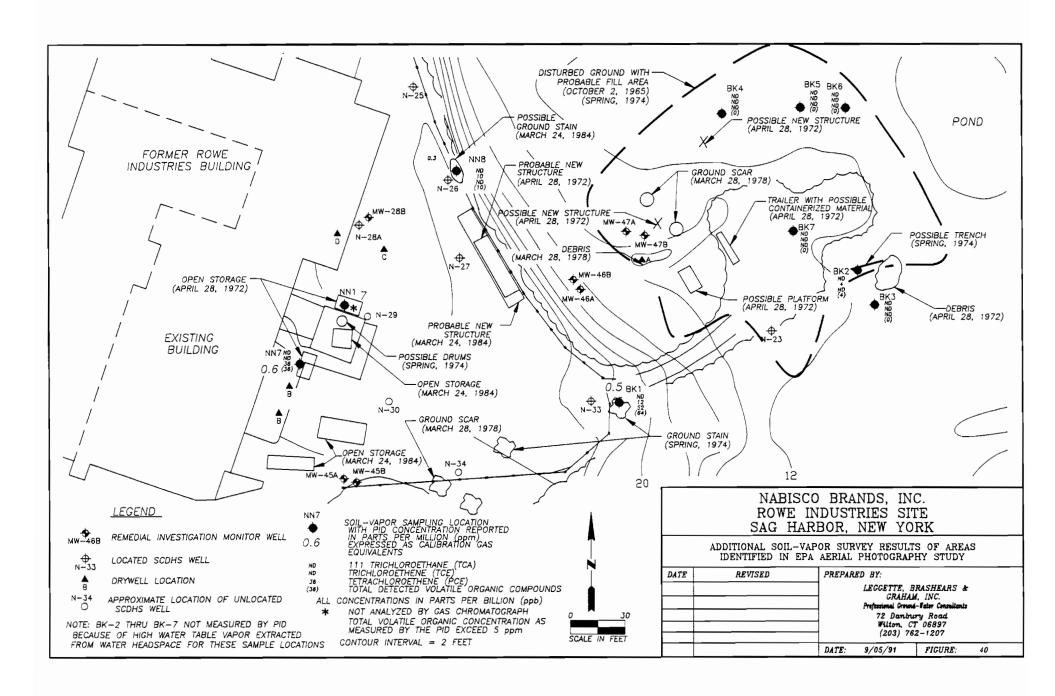


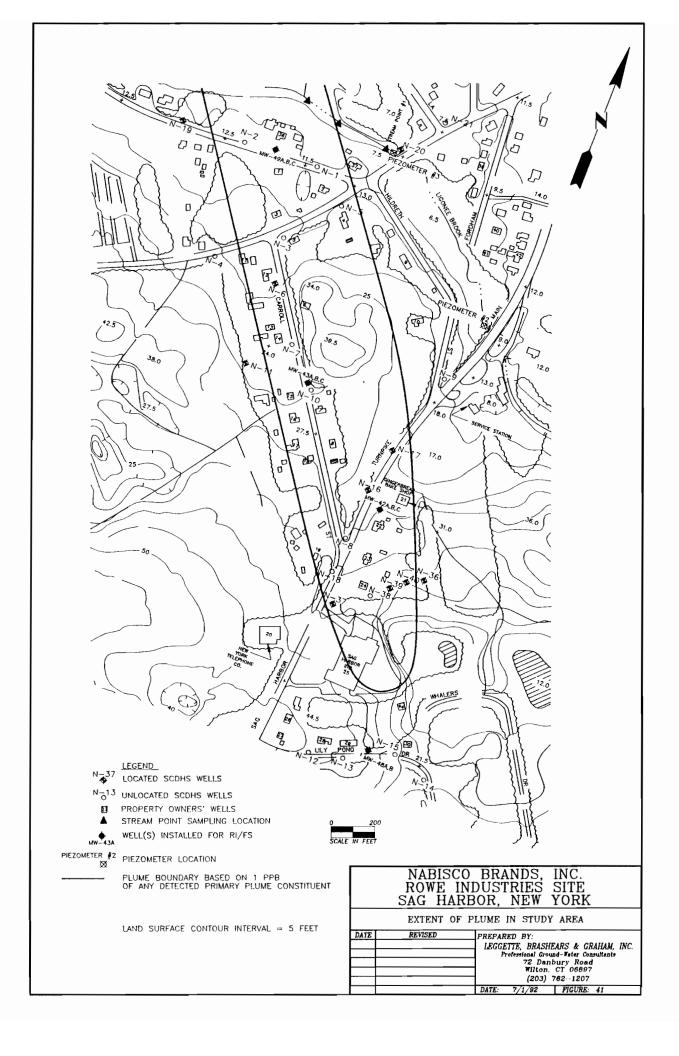

NABISCO BRANDS INC. ROWE INDUSTRIES SITE SAG HARBOR, NEW YORK

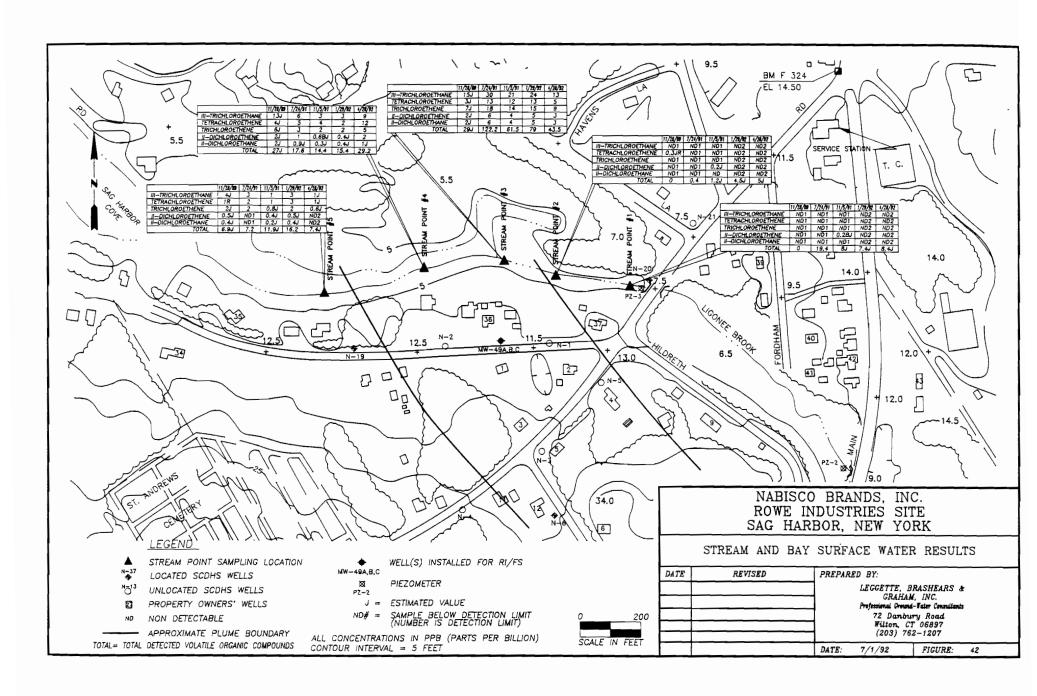

HYDROGRAPH FOR WELLS N-27 AND N-28

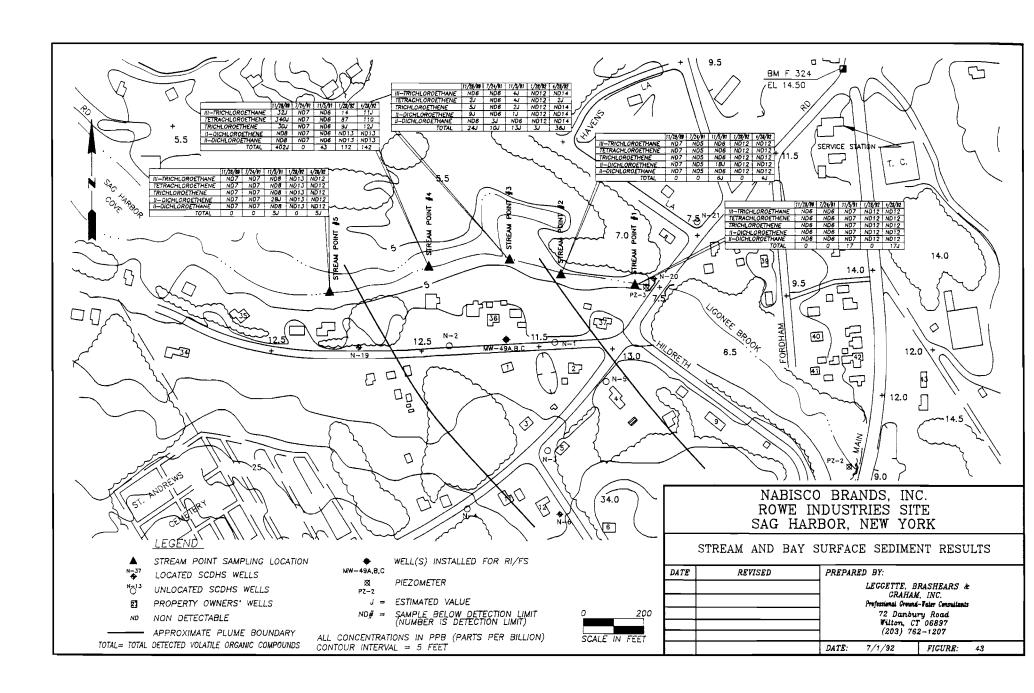


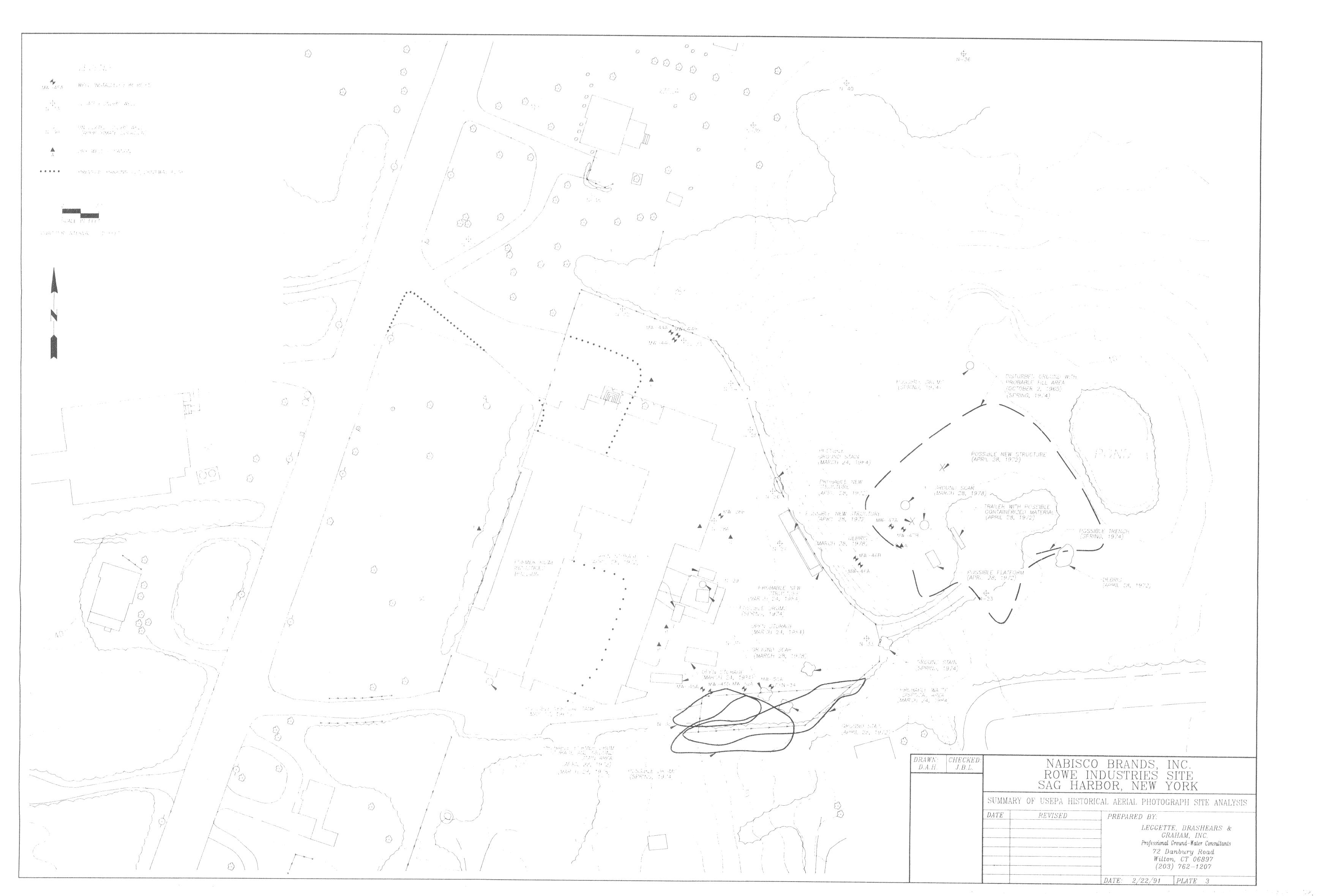












PLATES


LEGGETTE, BRASHEARS & GRAHAM, INC.

