PROJECT STATUS MEMORANDUM

NO. 03-04

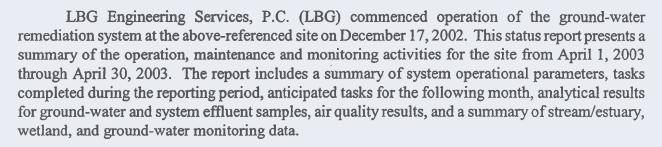
TO:

Pamela Tames, USEPA

FROM:

Laura R. Zima,

Alfred N. Kovalik, P.E.


DATE:

June 5, 2003

PROJECT: Rowe Industries Superfund Site

Ground-Water Recovery and Treatment System

April 2003 Status Report Sag Harbor, New York

SUMMARY OF SYSTEM OPERATION

(April 1, 2003 through April 30, 2003)

Reporting Period:

30 days

Total Flow During Period:

18,182,420 gallons

System Average Flow:

420 gallons per minute (gpm) while operating

Mass of VOCs Recovered:

8.0 pounds

Cumulative VOCs Recovered:

44.4 pounds

Hours of Operation:

661 hours during reporting period (92 percent)

(based on number of hours registering flow from RW-1)

Alarm Conditions:

See Table 1: Maintenance Log

Discharge Criteria:

Effluent water and air quality criteria met

SCHEDULE

Completed Tasks

During the April 2003 reporting period, LBG completed the following tasks:

- monitored system operations by completing routine inspections;
- completed ground-water recovery and treatment system troubleshooting and maintenance;
- collected ground-water samples from recovery wells (4/23/03);
- measured ground-water fluid levels;
- monitored select parameters in streams, estuary, wetlands, and ground water;
- completed air sampling events for carbon units;
- · prepared monthly project status report; and
- completed project management administrative duties.

Upcoming Tasks

During the next reporting period, LBG anticipates completing the following tasks:

- monitor system operations by completing routine inspections;
- complete ground-water recovery and treatment system maintenance;
- collect ground-water samples from recovery wells;
- measure fluid levels and evaluate drawdown in aquifer;
- conduct monitoring of streams, estuary, wetlands, and ground water;
- complete air sampling events for carbon units;
- calculate contaminant recovery totals for the system;
- coordinate changes to system programming;
- prepare monthly project status report;
- · complete project management administrative duties;
- run computer model with modified well flow to determine capture zone;
- trouble-shoot to increase life span of filter bags;
- update static ground-water elevations for accurate drawdown calculations; and,
- replace transducer in RW-9.

GROUND-WATER RECOVERY SYSTEM STATUS SUMMARY

The following table summarizes select recovery well parameters for the reporting period. Additional well operation information is included on the weekly operation reports, which are attached as Appendix I. A graph depicting the individual well flowrates over time is attached as Figure 1. RW-4 flow is not accurate due to the sensor power source malfunction. The flow in some of the recovery wells decreased due to accumulation of sludge in the piping. Figure 2 shows individual well pressures over time. Recovery well RW-6 average flow is reduced due to backpressure in the combined recovered water pipeline. The average flow for other wells is less than associated design values because flow adjustments were made in order to extend bag filter life. A computer model will be re-run with lower well flows to evaluate the long term effect of the lower flows on remediation of the aquifer, including capture zones and remediation time.

Based on analytical results for samples collected from the influent to the air stripper and water flow totalizer readings, approximately 8.0 pounds of volatile organic compounds (VOCs) were recovered by the system in March. The cumulative recovery of VOCs by the system since the start of operation is 36.5 pounds. The VOC recovery calculation for March is attached as Appendix II and is based on four sampling events. Laboratory analytical reports are attached as Appendix III.

Well	Volume Pumped (gal)	Average Flow (gpm)	Design Flow (gpm)	Total VOC Concentration (ug/L)	VOC Recovery (lbs)
RW-1	1,137,106	35.0	35	9.8	0.093
RW-2	1,104,525	25.7	45	15.3	0.14
RW-3	1,137,008	30.0	30	2.3	0.022
RW-4*	1,983,000	50	50	113.1	1.87
RW-5	2,274,326	55.0	55	12.0	0.23
RW-6	1,137,191	34.9	50	80.0	0.76
RW-7	2,270,584	69.7	80	101.8	1.93
RW-8	2,272,320	62.3	90	44.8	0.85
RW-9	2,520,370	88.2	100	18.0	0.38

^{*}Estimated volume and flow due to sensor power supply malfunction.

During the reporting period, troubleshooting and maintenance activities were conducted on five of the recovery wells (see Table 1). Reoccurring fault conditions included low flow and overload fault conditions. Troubleshooting activities that were conducted to correct the fault conditions included adjusting well flowrates and alarm set points and cleaning flowmeters and the basket strainer.

GROUND-WATER TREATMENT SYSTEM STATUS SUMMARY

System Operation

The two major components of the ground-water treatment system are the three bag filter banks and the packed-tower air stripper.

The filter banks, with eight bag filters per bank, are located downstream of the equalization tank and upstream from the air stripper. The bag filter banks operate in parallel. The average flow from the equalization tank transfer pumps into the filter bank system was 479 gpm during the reporting period. The inlet, outlet and differential pressures for each filter bank are recorded on an hourly basis. Figure 3 illustrates the differential pressure readings over time across each of the three banks. As indicated on this figure and as shown in the operations log, high differential pressure warnings were recorded and filter bag changeouts were conducted on almost a daily basis. Additional troubleshooting activities will be conducted during the next reporting period to increase the lifespan of the filter bags and minimize system maintenance requirements.

The average air flowrate through the air stripper during the reporting period was 2,475 scfm (standard cubic feet per minute). A graph of the air stripper air flow and air pressure over time is attached as Figure 4. The graph indicates no reduced performance of the air stripper by fouling of the air stripper packing. The air flow and pressure readings have remained stable. Therefore, the

acid backwash system was not utilized during the reporting period. The water discharge from the air stripper was sampled weekly. As shown on the attached Table 2, the treated ground water met the water-quality requirements set forth in the SPDES criteria. Figure 5 illustrates that the daily system effluent flowrate in gallons per day (gpd) was below the SPDES limit of 1,023,000 gpd.

AIR TREATMENT AND EMISSIONS MONITORING

Air sampling was conducted during the reporting period to ensure that VOC emissions do not exceed limits and to monitor the granular activated carbon units for breakthrough. The air stripper off-gas is treated by two carbon units, which are currently being operated in series. During system start-up, photoionization detector (PID) readings and air samples for laboratory analysis were collected from the effluent from the stripper, carbon unit 1 and carbon unit 2 on a weekly basis. Table 3 summarizes the air quality results for the initial system testing phase and all sampling done during the system operation. As shown in the table, the PCE laden air from the air stripper was effectively treated by the carbon units; therefore, no carbon changeout activities were conducted during the reporting period. According to the calculation in Appendix IV, the air emission rate from the carbon units (based on the April 9th analytical data) was 0.00076 pounds per hour. Trichloroethene was not detected and chloroform was below limits in the effluent vapor stream from the carbon unit system; therefore, the allowable concentrations of these compounds corresponding to the Ambient Guideline Concentration (AgC) at the property line were not exceeded.

GROUND-WATER SAMPLING

Ground-water samples were collected from the nine recovery wells on April 23, 2003. The samples were collected to estimate VOC mass recovery rates from each well. Table 4 summarizes the VOC analytical data for all ground-water samples collected during the operation of the system. The highest tetrachloroethene concentration for the most recent sampling round was 110 micrograms per liter in RW-4. Ground-water quality trends will be analyzed throughout the duration of the remedial action.

STREAM/ESTUARY SALINITY MONITORING

Salinity and temperature levels were measured at predetermined locations perpendicular to the flow of water in the Ligonee Creek. The selected locations are considered representative of the section of Sag Harbor Cove downgradient of the VOC plume being captured and potentially affected by the operation of the recovery wells. The salinity and temperature profiles are monitored at the surface and various depths. Measurements were made at each location during, or close to, average daily high and low tide. Temperature and salinity graphs for the various monitoring points are attached as Appendix V. Based on historical data measured, the operation of the system has not had an influence on the salinity or temperature at the selected locations. During April 2003, the salinity and temperature data were collected when the ground-water remediation system was not operating. Salinity and temperature data collected during the next monthly monitoring event and throughout the duration of the ground-water remedial action will be evaluated against the historical monitoring data.

WATER-LEVEL MONITORING

Water-level monitoring is conducted in the Crooked, Whaler's Road, Lily and Round Ponds and the Ligonee Brook to assess the impacts of the ground-water recovery system on water levels. Ground-water levels and pond water levels are measured in the piezometers and staff gages to determine the difference between the potentiometric heads in the underlying aquifer and the pond water levels. The ground-water elevation data were collected on April 15, 2003. The water-level measurements are shown on the hydrographs attached as Appendix VI. Water-level data collected during the next monthly monitoring event and throughout the duration of the ground-water remedial action will be evaluated against the baseline data.

Monitor well static water-level measurements were collected on February 27, 2003 and are summarized in Table 5. The collection of water level data from the monitor wells coincide with the collection Greenbelt Pond water-level measurements. The drawdown was calculated for April using this data and is shown in Table 5. Recovery well drawdown data for the nine recovery wells are approximated using data log files collected by the computer. The recovery well drawdown presented in Table 5 is an average of the calculated drawdown while the system was operating. In should be noted that drawdown measured in monitor wells MW-49A, B and C is influenced by tidal fluctuations in the nearby cove. Negative or very low drawdown is believed to be the results of the collection of drawdown measurements during high tide conditions. Also presented in Table 5 is the simulated drawdown according to the numerical ground-water flow model. Based on the comparison of the measured drawdown in the monitor wells and the anticipated drawdown generated by the model, the ground-water recovery system is capturing the plume.

Figures 6 through 14 show calculated drawdown for each of the nine recovery wells for the month of April. The calculated drawdown in the recovery wells has remained stable throughout the period of operation. The decreasing trend and negative numbers observed in the figures is a result of seasonal fluctuation of the water table. The static ground-water elevation, which is used to calculate the drawdown, has not been updated since February 27, resulting in the negative drawdown values when the system is not operating. The static ground-water elevations will be updated during the next extended maintenance shutdown period.

Paul Jobmann, LBGES, P.C. cc: Terry Gerrish, CH2M Hill Mark Lucas, CH2M Hill Phil McAndrew, Kraft Foods, N.A. Jeff Trad, NYSDEC Chief-Operation Maintenance and Support Section (figure 4, table 2 and Appendix III) Robert Schneck, RWE, R-1, NYSDEC David Gilmartin, Jr., Esq., Town of Southampton

LRZ:ng Attachments H:\NABIS\2003\monthly reports\April 2003\Status0304Apr.doc

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

MAINTENANCE LOG

Date	Time	System Changes/Modifications	Personnel
4/1/03	3:43 AM	Filter bank 3 high pressure warning.	PJ
	3:57 AM	Filter bank 2 high pressure warning.	PJ
	6:00 AM	Filter bank 1 high pressure warning.	PJ
	6:10 AM	Changed multi-bag filter socks on bank 2.	PJ
	6:13 AM	Filter bank 3 high pressure alarm. System shut down.	PJ
	6:29 AM	Restarted system.	PJ
	6:43 AM	Filter bank 3 high pressure warning. (forgot to open bank 2 effluent)	PJ
	9:09 AM	Changed multi-bag filter socks on bank 1.	PJ
	9:10 AM	Closed vavles for filter bank 3. Trying different banks of filters running to try to extend life of bags.	PJ
4/2/03	12:47 AM	Filter bank 2 high pressure warning.	PH
	2:50 AM	Filter bank 1 high pressure warning.	PH
	3:37 AM	EQ tank high level alarm.	PH
	3:38 AM	Filter bank 1 high pressure alarm.	PH
	9:10 AM	Filter bank 2 high pressure warning.	PH
	9:10 AM	Filter bank 2 high pressure alarm.	PH
	9:56 AM	Changed multi-bag filter socks (100 µm) on banks 1 and 2. Removed one filter each from lasti housing. Restarted system.	РН
4/3/03	9:15 AM	Changed multi-bag filter socks (100 mm) on bank 2, 7 of 8 housings.	LZ
	9:23 AM	Filter bank 1 high pressure warning.	LZ
	9:32 AM	Filter bank 1 high pressure alarm. System shut down.	LZ
	9:41 AM	Changed multi-bag filter socks (100 mm) on bank 1, 7 of 8 housings.	LZ
	10:02 AM	Restarted system.	LZ
4/4/03	9:00 AM	Changed multi-bag filter socks (100 µm) on bank 1, all housings, and bank 2, 7 of 8 housings.	РН
4/5/03	10:12 AM	Filter bank 2 high pressure warning.	ASH
	11:30 AM	Changed multi-bag filter socks (100 µm) on bank 1, all housings, and 5 bags in bank 2, left same bags in 2 housings and 1 without bag.	ASH
4/6/03	5:44 AM	Filter bank 2 high pressure warning.	ASH
	7:32 AM	Filter bank 1 high pressure warning.	ASH
	10:40 AM	Filter bank 2 high pressure alarm. System shut down.	ASH
	11:45 AM	Changed multi-bag filter socks (100 µm) on 7 housings, 3 in bank 1, and 4 in bank 2. Restarted system.	ASH

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

MAINTENANCE LOG

Date	Time	System Changes/Modifications	Personnel
4/7/03		Changed multi-bag filter socks (200 µm) on bank 1, all housings,	TF
		and bank 2, 7 of 8 housings.	
4/8/03	9:00 AM	Shifted influent and effluent pumps to TP1A and TP2A.	TF
		Turned on heaters due to outside temperature.	TF
		Changed multi-bag filter socks (200 µm) on bank 1, all housings, and bank 2, 7 of 8 housings.	TF
4/9/03	6:54 AM	Filter bank 2 high pressure warning.	LZ
	8:50 AM	Changed multi-bag filter socks (200 µm) on bank 1, all housings, and bank 2, 7 of 8 housings.	LZ
	8:56 AM	Filter bank 1 high pressure warning.	LZ
	8:56 AM	Filter bank 1 high pressure alarm. System shut down.	LZ
-	9:15 AM	Restarted system.	LZ
-	9:19 AM	RW-9 low flow alarm.	LZ
4/10/03	5:16 AM	Filter bank 2 high pressure warning.	TF
4/10/03	8:44 AM	Filter bank 1 high pressure warning.	TF
	0.4474W	Changed multi-bag filter socks (200 µm) on bank 1, all housings, and bank 2, 7 of 8 housings.	TF
4/11/03		Changed multi-bag filter socks (200 µm) on bank 1, all housings, and bank 2, 7 of 8 housings. Removed filters from bank 3, didn't replace, left open screens in all housings.	РН
4/12/03	8:28 AM	Changed multi-bag filter socks (200 µm) on bank 1, all housings, and bank 2, 7 of 8 housings.	TF
4/13/03		System shut down upon arrival. Unable to operate computer. Restarted computer, then restarted system.	TF
4/14/03	5:22 AM	Filter bank 2 high pressure warning.	PJ
	9:12 AM	Filter bank 1 high pressure warning.	PJ
	11:38 AM	EQ tank high, high level alarm.	PJ
	11:38 AM	Filter bank 1 high pressure alarm.	PJ
	11:39 AM	Filter bank 2 high pressure alarm. System shut down.	PJ
	5:55 PM	Changed multi-bag filter socks (200 µm) on bank 2, 7 of 8 housings.	PJ
		Used old bags that ran less than 4 hours on Sunday in order to get	
		through until tomorrow. Restarted system.	
4/15/03	8:31 AM	Filter bank 2 high pressure warning.	PJ
	8:42 AM	Filter bank 1 high pressure warning.	PJ
	11:33 AM	Filter bank 2 high pressure alarm. System shut down.	PJ_
		Changed multi-bag filter socks (200 µm) on bank 1, all housings,	PJ
		and bank 2, 7 of 8 housings.	

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

MAINTENANCE LOG

Date	Time	System Changes/Modifications	Personnel
4/15/03	9:31 PM	Filter bank 1 high pressure warning.	PH
	11:06 PM	Filter bank 2 high pressure warning.	PH
4/16/03	1:18 AM	Filter bank 2 high pressure alarm.	PH
	1:19 AM	Filter bank 1 high pressure alarm, system shut down.	PH
	10:40 AM	Changed multi-bag filter socks (200 µm) on all banks. Closed bank	PH
		1 and opened banks 2 and 3. Restarted system.	
4/17/03	1	Changed multi-bag filter socks (200 µm) on banks 2 and 3.	PH
	7:20 PM	Opened bank 1.	PH
4/18/03	7:30 AM	Changed multi-bag filter socks (200 µm) on all banks.	PH
	11:30 AM	Opened bank 3.	PH
4/19/03	6:02 AM	Filter bank 3 high pressure warning.	ASH
	8:14 AM	Filter bank 1 high pressure warning.	ASH
	8:17 AM	Filter bank 2 high pressure warning.	ASH
	10:57 AM	Changed multi-bag filter socks (200 µm) on bank 1, 7 of 8 housings,	ASH
		and bank 2, 7 of 8 housings.	
	11:25 AM	Filter bank 1 high pressure alarm.	ASH
	11:25 AM	Filter bank 3 high pressure alarm. System shut down.	ASH
		Changed lead pump on level from 65" to 70" for TP1A&B.	ASH
4/20/03	11:03 AM	Changed multi-bag filter socks (200 µm) on bank 1, 7 of 8 housings,	ASH
		and bank 2, 7 of 8 housings. Tightened leaking pressure gauge on	
		filter 1, second housing.	
	11:20 AM	Filter bank 2 high pressure warning.	ASH
	11:40 AM	Filter bank 3 high pressure warning.	ASH
4/21/03	10:59 AM	Changed multi-bag filter socks (200 µm) on bank 2, 7 of 8 housings,	PJ
		and bank 3, 7 of 8 housings.	
4/22/03	3:15 AM	Changed multi-bag filter socks (200 µm) on bank 1, 7 of 8 housings,	TF
		and bank 2, 7 of 8 housings.	
4/23/03	10:01 AM	Changed multi-bag filter socks (200 µm) on bank 2, 7 of 8 housings,	LZ
		and bank 3, 7 of 8 housings.	
4/24/03		Changed multi-bag filter socks (200 µm) on bank 1, 7 of 8 housings,	PJ
		and bank 3, 7 of 8 housings. Bank 2, housing 8 is closed with gate	
		valves therefore only 2 housings without bags.	
		varies districted only 2 housings without bugs.	
		Greased TP1A/B, TP2A/B, and booster blower.	PJ
4/25/03		Changed multi-bag filter socks (200 µm) on bank 2, 7 of 8 housings,	PH
		and bank 3, 7 of 8 housings.	
	10:30 AM	Isolated filter housing 7 of bank 1.	PH

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

MAINTENANCE LOG

Date	Time	System Changes/Modifications	Personnel
4/25/03	11:12 PM	Filter bank 2 high pressure warning.	TF
4/26/03	12:14 AM	Filter bank 3 high pressure warning.	TF
	1:04 AM	Filter bank 1 high pressure warning.	TF
	4:50 AM	Filter bank 2 high pressure alarm. System shut down.	TF
		Changed multi-bag filter socks (100 µm) on bank 1, 7 of 8 housings, and bank 2, 7 of 8 housings. Unisolated 8th housing on both banks. Bank 3 not in use.	TF
4/27/03		Changed multi-bag filter socks (100 µm) on bank 1, 7 of 8 housings, and bank 2, 7 of 8 housings.	TF
	10:58 AM	RW-2 low flow alarm. Set RW-2 low flow alarm set point to 40% (was 20%).	PJ
	11:06 AM	Restarted RW-2.	PJ
4/28/03	12:29 PM	RW-2 low flow alarm.	PJ
	12:39 PM	Change target flow rate set point from 30 gpm to 20 gpm. Restarted RW-2.	РJ
		Changed multi-bag filter socks (100 µm) on bank 2, 7 of 8 housings.	PH
		Cleaned RW-2 flowmeter. Reset RW-2 flow to 30 gpm and reset low flow to 25%. Low flow alarm at 25% and 20%, reset back to 30%.	PH
4/29/03	9:19 AM	System communication/PLC failure.	LZ
	9:55 AM	Changed multi-bag filter socks (100 µm) on bank 2, 7 of 8 housings, and bank 3, 7 of 8 housings. Closed bank 1. Restarted system.	LZ

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

DISCHARGE WATER QUALITY RESULTS

											Ethyl-	Methylene		Naph-				Dissolved
Date		TDS	PCE	1,1,1-TCA	TCE	1,1-DCA	1,1-DCE	1,2-DCE	Xylene	Toluene	benzene	Chloride	Freon 113	thalene	Chloroform	MTBE	Total Iron	Iron
Sampled	pH ² /	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)
SPDES Limits	6.5 to 8.5		1	5	5	5	5	5	5	5	5	5		10	7			
3-Apr-03	NM	120	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	0.227	0.334
23-Apr-03	NM	85	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<2.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	0.119	0.125

SPDES: State Polluntant Discharge Elimination System

mg/L: Milligrams per liter ug/L: Micrograms per liter ----: Not established NM: Not Measured

TDS: Total dissolved solids PCE: Tetrachloroethylene

1,1-DCA: 1,1-Dichlorothane 1,1-DCE: 1,1-Dichloroethene 1,2-DCE: 1,2-Dichloroethene MTBE: Methyl tert-butyl ether

TCE: Trichloroethene

Notes:

1. TDS & Freon 113 added to paramter analysis with February 2003 Samples.

2. pH measured in field using litmus paper.

3. "Discharge" samples were collected from sample port labeled NP2-10.

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

CARBON UNIT SYSTEM AIR QUALITY RESULTS

Precarbon								Para	ameters (mg/m3)				
Sample Name	Date	Time	PCE	TCE	Toluene	Benzene	Chloroform	m&p-Xylenes	Methylene Chloride	o-Xylene	Chloromethane	Carbon Disulfide	Styrene
Precarbon (ITPP A)	10/8/02	11:05	6.6	0.18	0.06	0.02	ND	ND	ND	ND	ND	ND	ND
Precarbon (ITPP B)	10/9/02	12:31	5.6	0.18	0.04	0.06	ND	ND	ND	ND	ND	ND	ND
Precarbon 112002	11/20/02	21:45	2.8	0.09	0.03	0.04	ND	ND	0.01	ND	0.54	ND	ND
Precarbon 112602	11/26/02	20:10	6.8	0.18	0.06	ND	ND	ND	ND	ND	0.88	ND	ND
AQ1219022120NP4-1	12/19/02	21:20	2.9	0.12	0.02	0.03	0.01	ND	ND	ND	ND	ND	ND
AQ0109031120NP4-1	1/9/03	11:20	2.3	0.07	0.06	ND	ND	ND	ND	ND	ND	ND	ND
AQ0220030932NP4-1	2/20/03	9:32	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AQ0312031131NP4-1	3/12/03	11:31	1.3	0.04	0.02	0.009	ND	ND	ND	ND	0.09	ND	ND
AQ0409030942NP4-1	4/9/03	9:42	0.72	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Midcarbon			Parameters (mg/m3)										
Sample Name	Date	Time	PCE	TCE	Toluene	Benzene	Chloroform	m&p-Xylenes	Methylene Chloride	o-Xylene	Chloromethane	Carbon Disulfide	Styrene
Midcarbon (ITPP A)	10/8/02	11:07	0.004	ND	0.05	0.009	ND	0.008	ND	ND	ND	ND	ND
Midcarbon (ITPP B)	11/9/02	12:30	0.002		0.038	0.003	ND	0.005	ND	ND	ND	ND	0.002
Midcarbon 112002	11/20/02	21:50	ND	ND	0.22	0.06	ND	0.07	0.19	ND	0.77	ND	ND
Midcarbon 112602	11/26/02	21:12	0.005	ND	0.015	0.004	ND	0.003	0.017	ND	0.07	ND	ND
AQ1219022120NP4-2	12/19/02	21:20	0.04	ND	0.027	0.004	ND	0.006	0.03	ND	ND	ND	ND
AQ0109031122NP4-2	1/9/03	11:22	0.006	ND	0.044	ND	ND	0.004	0.013	ND	ND	ND	ND
AQ0220030932NP4-2	2/20/03	9:32	0.008	ND	ND	ND	0.011	ND	ND	ND	ND	ND	ND
AQ0312031131NP4-2	3/12/03	11:31	0.01	0.003	0.03	0.005	0.012	0.006	ND	0.002	ND	0.002	0.002
AQ0409030943NP4-2	4/9/03	9:43	0.006	0.003	0.008	0.001	0.011	0.004	0.081	ND	ND	0.019	ND

Postcarbon			Parameters (mg/m3)										
Sample Name	Date	Time	PCE	TCE	Toluene	Benzene	Chloroform	m&p-Xylenes	Methylene Chloride	o-Xylene	Chloromethane	Carbon Disulfide	Styrene
Postcarbon (ITPP A)	10/8/02	11:09	0.002	ND	0.048	0.003	ND	0.005	0.049	ND	ND	0.016	ND
Postcarbon (ITPP B)	10/9/02	12:27	0.002	ND	0.04	0.006	ND	0.004	0.002	0.004	ND	0.021	0.002
Postcarbon 112002	11/20/02	21:51					_	Sample	lost due to lab error				
Postcarbon 112602	11/26/02	20:13	ND	ND	0.012	0.004	ND	0.002	0.017	ND	0.087	ND	ND
AQ1219022120NP4-3	12/19/02	21:20	ND	ND	0.045	0.006	0.001	0.006	0.022	0.002	ND	ND	ND
AQ0109031124NP4-3	1/9/03	11:24	0.001	ND	0.06	ND	ND	0.004	0.018	ND	ND	ND	ND
AQ0220030932NP4-3	2/20/03	9:32	ND	ND	0.015	ND	ND	ND	ND	ND	ND	ND	ND
AQ0312031132NP4-3	3/12/03	11:32	ND	ND	0.01	0.002	0.006	0.002	ND	ND	ND	0.003	ND
AQ0409030944NP4-3	4/9/03	9:44	ND	ND	0.005	ND	0.009	0.002	0.023	ND	ND	0.019	ND

TABLE 4

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RECOVERY WELL WATER QUALITY RESULTS

					Vinyl	T	_	Total	Dissolved	leensenid	1,1-Dichloro-	cis-1,2-Dichloro-	Mathedara
Recovery	Date	PCE	TCE	TCA	•	Chia-sta-	MEDE	l		Isopropyl-	l '	1 ' I	Methylene
Well	Sampled	(ug/L)			Acetate	Chloroform	MTBE	Iron	Iron	benzene	ethane	ethene	Chloride
Aveir	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
RW-1	5-Sep-02	ND<1	ND<1	ND<1	27	1.9	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-1	5-Sep-02	ND<1	ND<1	ND<1	ND<1	2.6	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-1	8-Oct-02	ND<1	ND<1	ND<1	ND<1	2.2	-		_	ND<1	ND<1	ND<1	ND<1
RW-1	9-Oct-02	ND<1	ND<1	ND<1	ND<1	2.8	-	_	-	ND<1	ND<1	ND<1	ND<1
RW-1	26-No v- 02	-	-	-	-	-	-	0.032	ND<0.02	-	-	-	-
RW-1	3-Jan-03	ND<1	ND<1	ND<1	ND<1	2.4	16	-	-	ND<1	ND<1	ND<1	ND<1
RW-1	23-Jan-03	ND<1	ND<1	ND<1	ND<1	2.0	9.8	-	-	ND<1	ND<1	ND<1	ND<1
RW-1	21-Mar-03	ND<1	ND<1	ND<1	ND<1	1.4	4.3	0.566	ND<0.02	ND<1	ND<1	ND<1	10
RW-1	23-Apr-03	ND<1	ND<1	ND<1	ND<1	1.2	8.6	0.053	ND<0.02	ND<1	ND<1	ND<1	ND<1
RW-2	5-Sep-02	190	2.9	ND<1	ND<1	ND<1	21	-	_	ND<1	ND<1	ND<1	ND<1
RW-2	5-Sep-02	120	1.4	ND<1	ND<1	ND<1	18		-	ND<1	ND<1	ND<1	ND<1
RW-2	8-Oct-02	140	2	ND<1	ND<1	ND<1	-	_	-	ND<1	ND<1	ND<1	ND<1
RW-2	9-Oct-02	110	1.9	ND<1	ND<1	ND<1	-	-	-	ND<1	ND<1	ND<1	6.6
RW-2	26-Nov-02	-	-	-	-	-	-	50.9	0.188	-	-	-	•
RW-2	3-Jan-03	38	1.3	ND<1	ND<1	ND<1	7.5	-	-	ND<1	ND<1	ND<1	ND<1
RW-2	23-Jan-03	31	ND<1	ND<1	ND<1	ND<1	6.7	-	-	ND<1	ND<1	ND<1	ND<1
RW-2	21-Mar-03	26	1.8	ND<1	ND<1	ND<1	ND<1	11.4	0.059	ND<1	ND<1	ND<1	ND<1
RW-2	23-Apr-03	14	1.3	ND<1	ND<1	ND<1	ND<1	6.31	0.212	ND<1	ND<1	ND<1	ND<1
RW-3	5-Sep-02	23	1.6	ND<1	ND<1	ND<1		_		ND<1	ND<1	ND<1	ND<1
RW-3	5-Sep-02	30	ND<1	ND<1	ND<1	ND<1			-	ND<1	ND<1	ND<1	ND<1
RW-3	8-Oct-02	18	ND<1	ND<1	ND<1	ND<1	-	_		ND<1	ND<1	ND<1	ND<1
RW-3	9-Oct-02	19	ND<1	ND<1	ND<1	ND<1	-			ND<1	ND<1	ND<1	ND<1
RW-3	26-Nov-02	-	-	-	-	-	-	2.23	2.34	_	1 .		- 115-11
RW-3	3-Jan-03	2.8	8.5	4.8	ND<1	ND<1	ND<1	•	-	ND<1	ND<1	ND<1	ND<1
RW-3	23-Jan-03	2.7	5.8	2.4	ND<1	ND<1	1.8	•	-	ND<1	ND<1	ND<1	ND<1
RW-3	21-Mar-03	2.4	3.6	1.1	ND<1	ND<1	ND<1	1.84	0.013	ND<1	ND<1	ND<1	ND<1
RW-3	23-Apr-03	1.1	1.2	ND<1	ND<1	ND<1	ND<1	1.81	0.395	ND<1	ND<1	ND<1	ND<1
RW-4	23-Sep-02	550	8.5	ND<1	ND<1	ND<1				ND<1	ND<1	ND<1	ND<1
RW-4	23-Sep-02	590	9.5	1.6	ND<1	ND<1		·	-	ND<1	ND<1	ND<1	ND<1
RW-4	8-Oct-02	670	11	ND<1	ND<1	ND<1		-	_	ND<1	ND<1	ND<1	ND<1
RW-4	9-Oct-02	450	9.6	ND<1	ND<1	ND<1	•		-	ND<1	ND<1	ND<1	ND<1
RW-4	26-Nov-02	-	•	•	-	-	•	11	2.41	-	-	-	
RW-4	3-Jan-03	190	3.8	7.1	ND<1	ND<1	ND<1	•	-	ND<1	ND<1	ND<1	ND<1
RW-4	23-Jan-03	130	6.5	0.7	ND<1	ND<1	4.3	•	-	ND<1	ND<1	ND<1	ND<1
RW-4	21-Mar-03	150	3.6	ND<1	ND<1	ND<1	ND<1	1.36	0.041	ND<1	ND<1	ND<1	ND<1

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RECOVERY WELL WATER QUALITY RESULTS

					Vinyl			Total	Dissolved	Isopropyl-	1,1-Dichloro-	cis-1,2-Dichloro-	Methylene
Recovery	Date	PCE	TCE	TCA	Acetate	Chloroform	MTBE	Iron	Iron	benzene	ethane	ethene	Chloride
Well	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
RW-4	23-Apr-03	110	3.1	ND<1	ND<1	ND<1	ND<1	3.18	0.136	ND<1	ND<1	ND<1	ND<1
RW-5	12-Sep-02	ND<1	ND<1	ND<1	ND<1	ND<1				ND<1	ND<1	ND<1	ND<1
RW-5	12-Sep-02	ND<1	ND<1	ND<1	ND<1	ND<1	-	-		ND<1	ND<1	ND<1	ND<1
RW-5	8-Oct-02	ND<1	ND<1	ND<1	ND<1	ND<1	-	-		ND<1	ND<1	ND<1	ND<1
RW-5	9-Oct-02	ND<1	ND<1	ND<1	ND<1	ND<1	-		-	ND<1	ND<1	ND<1	ND<1
RW-5	26-Nov-02	-	-	-	-	-	-	ND<0.02	ND<0.02	-	-	-	-
RW-5	3-Jan-03	5.5	ND<1	ND<1	ND<1	1.9	1.5	•	-	ND<1	ND<1	ND<1	ND<1
RW-5	23-Jan-03	5.8	ND<1	ND<1	ND<1	1.1	3.5	-	•	ND<1	ND<1	ND<1	ND<1
RW-5	21-Mar-03	19	ND<1	ND<1	ND<1	ND<1	ND<1	0.489	0.013	ND<1	ND<1	ND<1	ND<1
RW-5	23-Apr-03	12	ND<1	ND<1	ND<1	ND<1	ND<1	0.068	ND<0.02	ND<1	ND<1	ND<1	ND<1
RW-6	12-Sep-02	69	ND<1	ND<1	ND<1	ND<1	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-6	12-Sep-02	140	1.1	ND<1	ND<1	ND<1	•	-	-	ND<1	ND<1	ND<1	ND<1
RW-6	8-Oct-02	120	1.7	ND<1	ND<1	ND<1	•	-	-	ND<1	ND<1	ND<1	ND<1
RW-6	9-Oct-02	130	ND<1	ND<1	ND<1	ND<1	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-6	26-Nov-02	-	-	-	-	-	-	0.37	ND<0.02	-	-	-	-
RW-6	3-Jan-03	110	1.1	ND<1	ND<1	ND<1	ND<1	-	-	ND<1	ND<1	ND<1	ND<1
RW-6	23-Jan-03	· 97	1.6	ND<1	ND<1	0.6	ND<1	-	-	ND<1	ND<1	ND<1	ND<1
RW-6	21-Mar-03	130	1.0	ND<1	ND<1	ND<1	ND<1	3.05	ND<0.02	ND<1	ND<1	ND<1	ND<1
RW-6	23-Apr-03	79	1.0	ND<1	ND<1	ND<1	ND<1	0.028	ND<0.02	ND<1	ND<1	ND<1	ND<1
RW-7	12-Sep-02	270	4.1	ND<1	ND<1	ND<1	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-7	12-Sep-02	350	5,2	ND<1	ND<1	ND<1	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-7	8-Oct-02	360	4.7	ND<1	ND<1	ND<1	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-7	9-Oct-02	370	4.9	ND<1	ND<1	ND<1	-	-	-	ND<1	ND<1	ND<1	ND<1
RW-7	26-Nov-02	•	-	-	-	-	•	0.075	ND<0.02	-	-	-	-
RW-7	3-Jan-03	160	2.5	1.3	ND<1	ND<1	ND<1		-	ND<1	ND<1	ND<1	ND<1
RW-7	23-Jan-03	120	2.3	1.1	ND<1	0.5	1.4	-	-	ND<1	ND<1	ND<1	ND<1
RW-7	21-Mar-03	160	2.3	ND<1	ND<1	ND<1	ND<1	0.405	ND<0.02	ND<1	ND<1	ND<1	ND<1
RW-7	23-Apr-03	100	1.8	ND<1	ND<1	ND<1	ND<1	0.016	ND<0.02	ND<1	ND<1	ND<1	ND<1
RW-8	23-Sep-02	130	7.1	ND<1	ND<1	ND<1	•	-	-	1.1	ND<1	ND<1	ND<1
RW-8	23-Sep-02	100	6.6	ND<1	ND<1	ND<1	•		-	1.4	ND<1	ND<1	ND<1
RW-8	8-Oct-02	100	7.5	ND<1	ND<1	ND<1	•	-	-	ND<1	ND<1	ND<1	ND<1
RW-8	9-Oct-02	94	6.6	ND<1	ND<1	ND<1		-		ND<1	ND<1	ND<1	ND<1
RW-8	26-Nov-02		•	-	-	-	-	12.1	1.43	-	-	-	-
RW-8	3-Jan-03	59	4.3	4	ND<1	ND<1	ND<1	•		ND<1	2.4	ND<1	ND<1

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RECOVERY WELL WATER QUALITY RESULTS

					Vinyl			Total	Dissolved	Isopropyl-	1,1-Dichloro-	cis-1,2-Dichloro-	Methylene
Recovery	Date	PCE	TCE	TCA	Acetate	Chloroform	MTBE	Iron	Iron	benzene	ethane	ethene	Chloride
Well	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
RW-8	23-Jan-03	58	4.2	3.2	ND<1	ND<1	ND<1	•	-	ND<1	1.8	0.6	ND<1
RW-8	21-Mar-03	70	2.9	2.7	ND<1	ND<1	ND<1	0.544	0.141	ND<1	1.4	ND<1	ND<1
RW-8	23-Apr-03	41	2	1.8	ND<1	ND<1	ND<1	11.8	0.352	ND<1	ND<1	ND<1	ND<1
RW-9	23-Sep-02	12	2.9	ND<1	ND<1	ND<1		-	-	ND<1	ND<1	ND<1	ND<1
RW-9	23-Sep-02	11	3	3.5	ND<1	ND<1	-	-	~	ND<1	5.3	ND<1	ND<1
RW-9	8-Oct-02	9.2	2.5	3.5	ND<1	ND<1	•		-	ND<1	6	1.1	ND<1
RW-9	9-Oct-02	16	3.4	6.6	ND<1	ND<1	-	•	-	ND<1	5.2	ND<1	ND<1
RW-9	26-Nov-02	-	-	-	-	-	-	2.99	1.72	-	-	-	-
RW-9	3-Jan-03	17	2.5	6.9	ND<1	ND<1	ND<1	-	-	ND<1	3.1	ND<1	ND<1
RW-9	23-Jan-03	23	2.8	4.3	ND<1	ND<1	ND<1	-	-	ND<1	2.5	0.6	ND<1
RW-9	21-Mar-03	23	2.2	2.8	ND<1	ND<1	ND<1	11.0	0.013	ND<1	1.7	ND<1	ND<1
RW-9	23-Apr-03	15	1.2	1.8	ND<1	ND<1	ND<1	3.55	1.97	ND<1	ND<1	ND<1	ND<1

ND: Not detected

<#: Less than method detection limit

ug/L: Micrograms per liter -: Not analyzed

PCE: Tetrachloroethylene

TCE: Trichloroethene

TCA: 1,1,1-Trichloroethane

1,1-DCA: 1,1-Dichlorothane

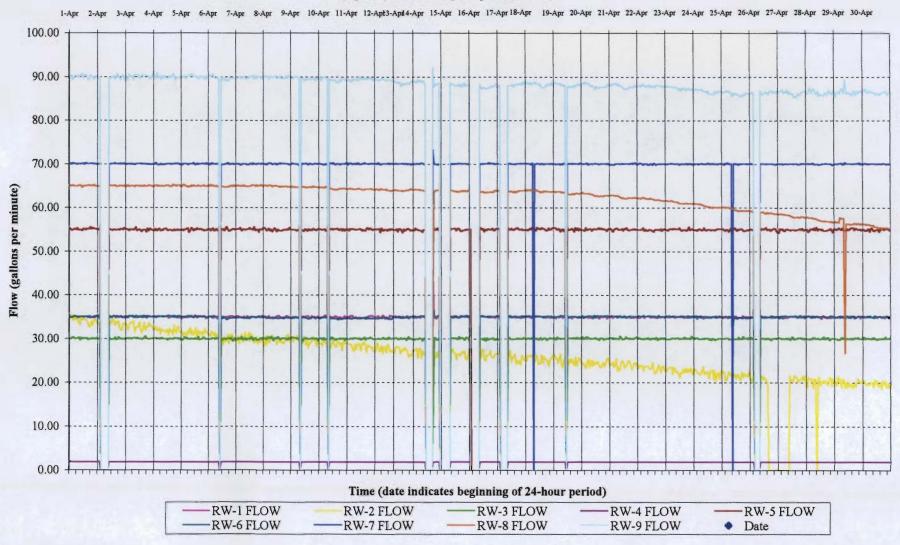
1,1-DCE: 1,1-Dichloroethene

1,2-DCE: 1,2-Dichloroethene MTBE: Methyl Tertiary Butyl Ether

TABLE 5 GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

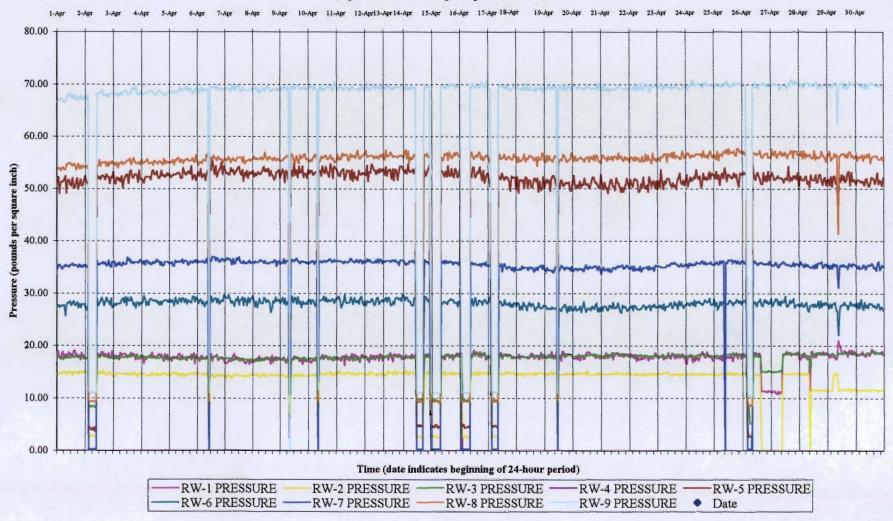
STATIC WATER-LEVELS AND DRAWDOWN FOR MONITOR AND RECOVERY WELLS

Well	Static Depth to Water (feet)	Drawdown (feet) 4/15/03*	Simulated Drawdown (feet)***
	water (reet)	4/13/03	(leet)
MW-43A	18.42	-1.40	0.51
MW-43B	18.35	-	0.52
MW-43C	17.98	-	0.35
MW-45A	19.41	-2.08	0.02
MW-46A	7.61	-1.73	0.01
MW-46B	8.10	-1.94	0.01
MW-48A	22.25	-	0
MW-48B	23.05	-	0
MW-49A	8.51	-0.52	0.71
MW-49B	8.71	-0.72	0.68
MW-49C	8.58	-0.48	0.56
MW-50A	5.93	-	0.16
MW-50B	5.51	-	0.16
MW-50C	5.79	-	0.16
RW-1	27.90	-0.48	1.28
RW-2	19.80	4.81	1.95
RW-3	7.02	-0.58	0.98
RW-4**	14.47	-	1.57
RW-5	20.97	-0.49	1.51
RW-6	18.38	17.28	0.96
RW-7	27.00	-1.10	1.05
RW-8	7.50	1.57	1.18
RW-9**	5.50	-	1.34
MW B1	17.71	-3.54	-0.84


^{*}Drawdown for recovery wells approximated using data-logged drawdown.

^{**} Sensor malfunction.

^{***}Drawdown based on model simulation.


GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RECOVERY WELL FLOW DATA

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RECOVERY WELL PRESSURE DATA

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

FILTER BANK DIFFERENTIAL PRESSURE

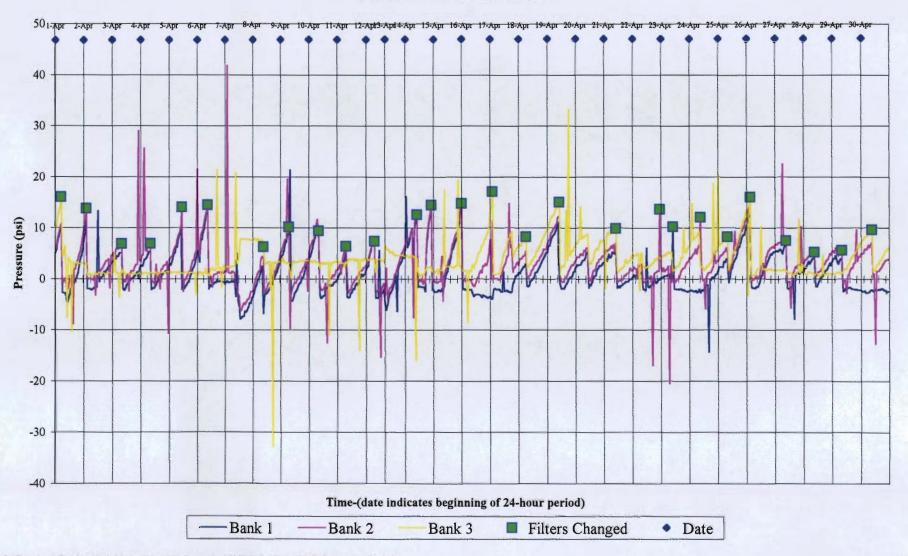
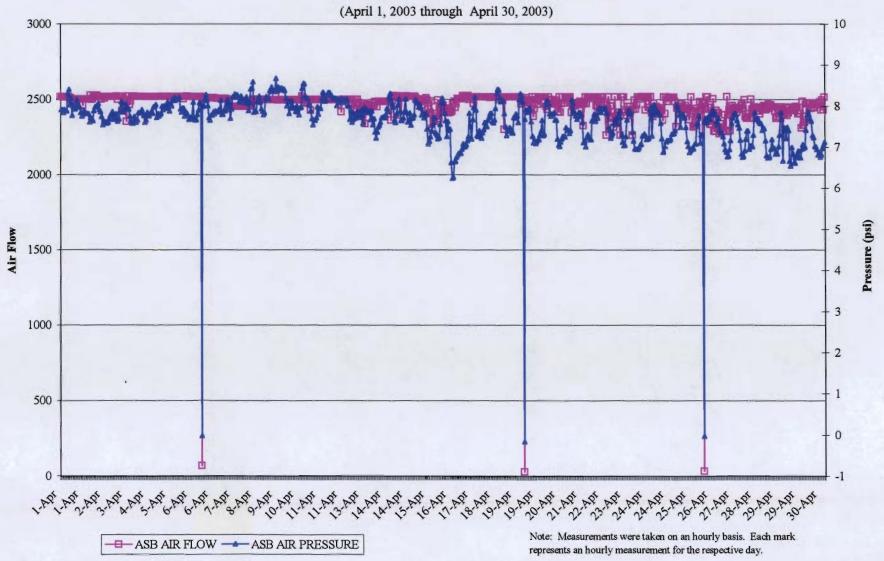
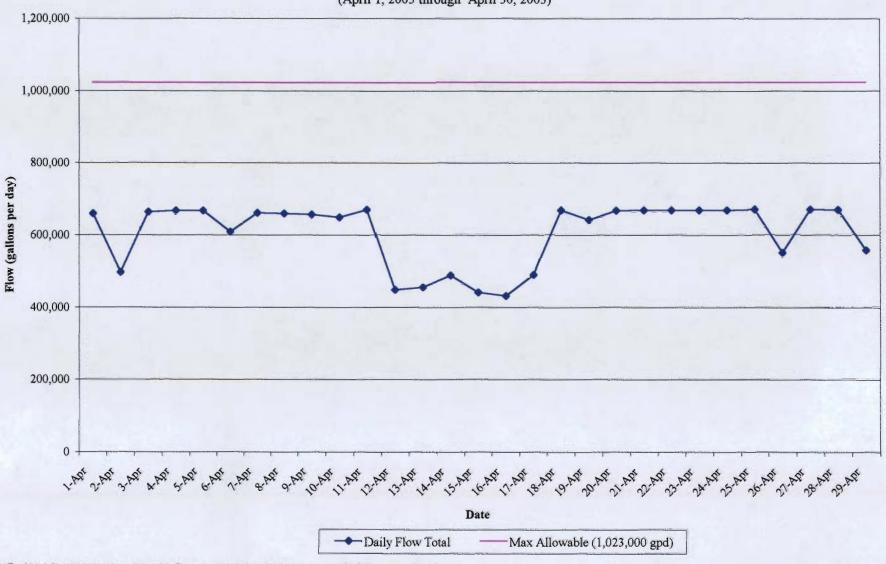



FIGURE 4

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

AIR STRIPPER BLOWER: FLOW AND PRESSURE



S:\Tech\Jobfiles\M-N\Nabisom\Monthly Reports GWRS\April2003\Air Stripper Log SummaryApr.xls ASB Press and Flow, 6/2/03 Page 1 of 1

LBG ENGINEERING SERVICES, P.C.

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

EFFLUENT FLOW DATA

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-1 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

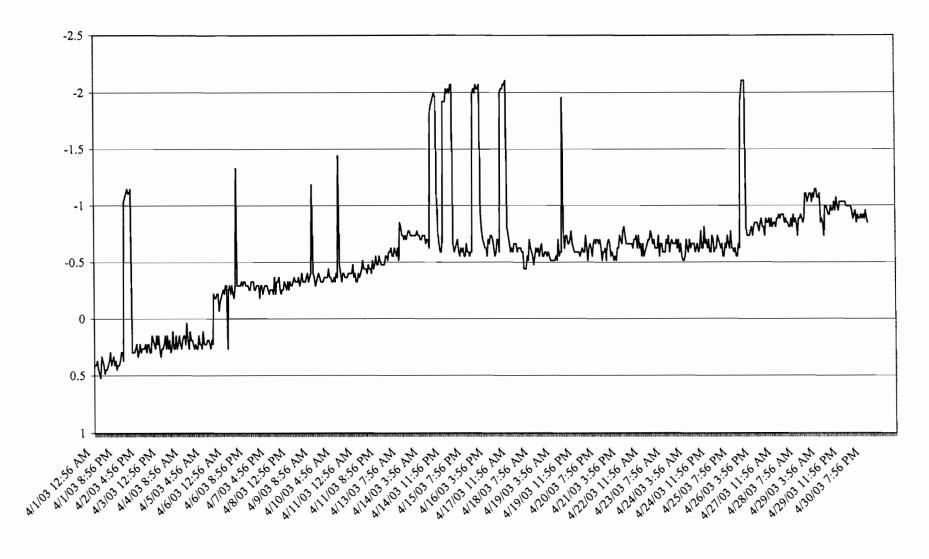


FIGURE 7
GROUND-WATER REMEDIAL ACTION
ROWE INDUSTRIES SUPERFUND SITE
SAG HARBOR, NEW YORK

RW-2 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

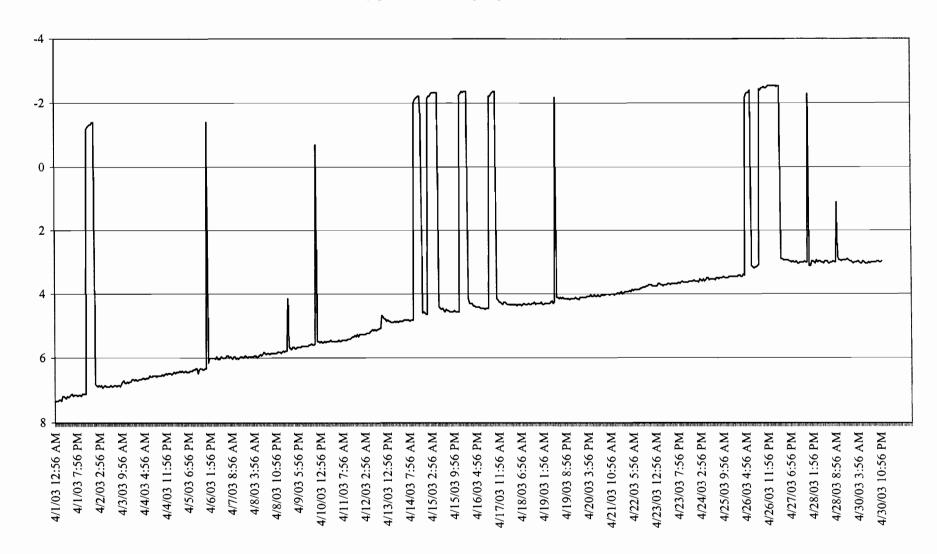
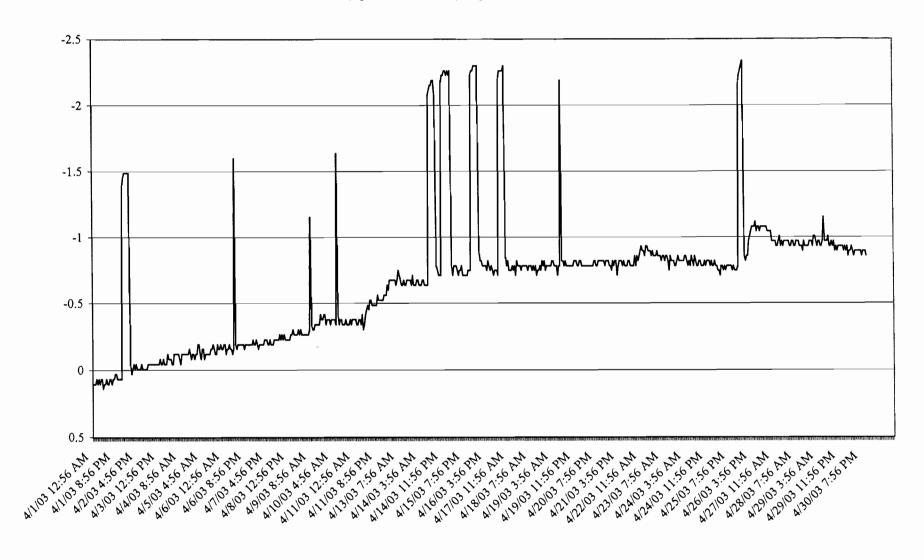



FIGURE 8

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-3 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-4 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

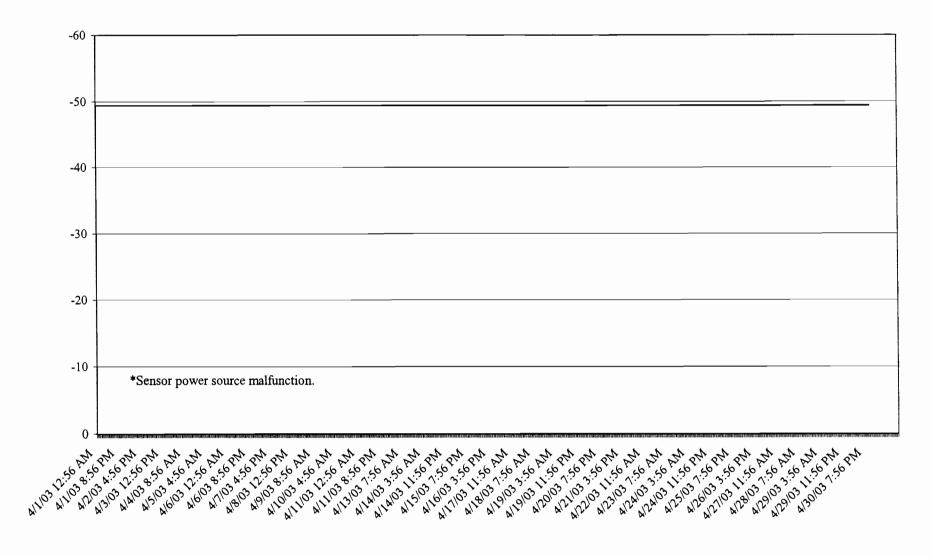
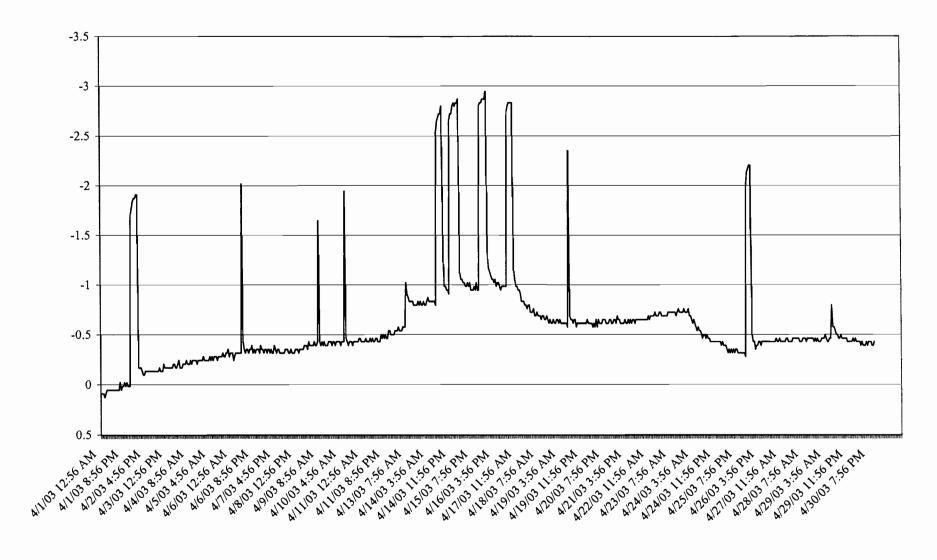



FIGURE 10 GROUN-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-5 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-6 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

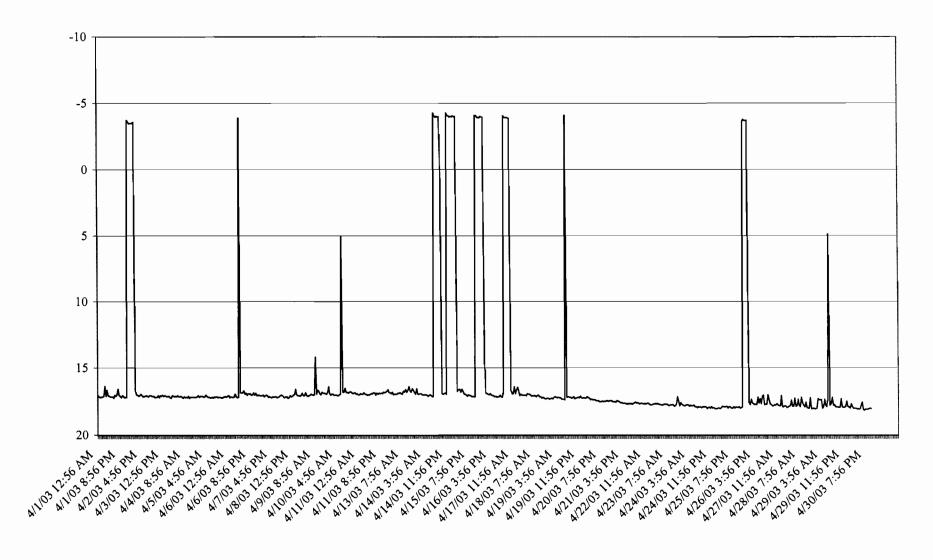


FIGURE 12

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-7 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

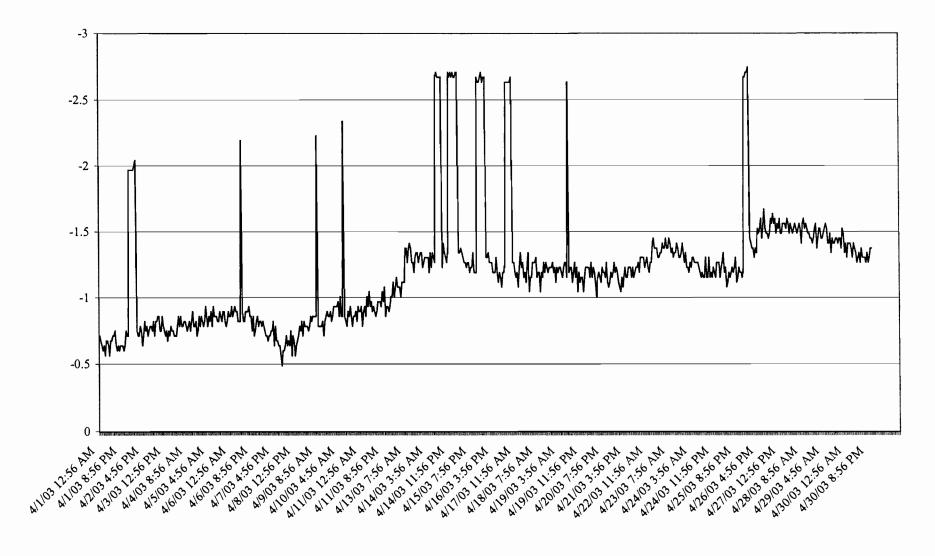
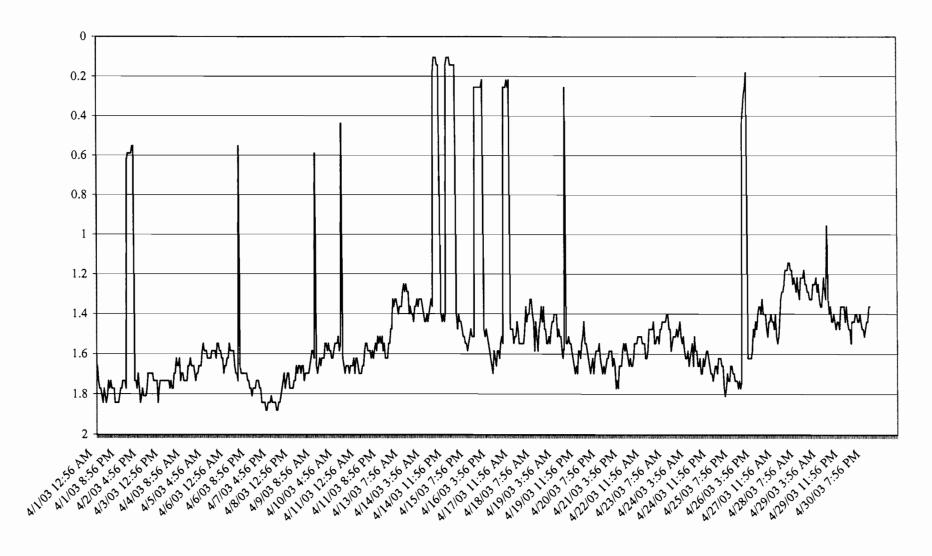
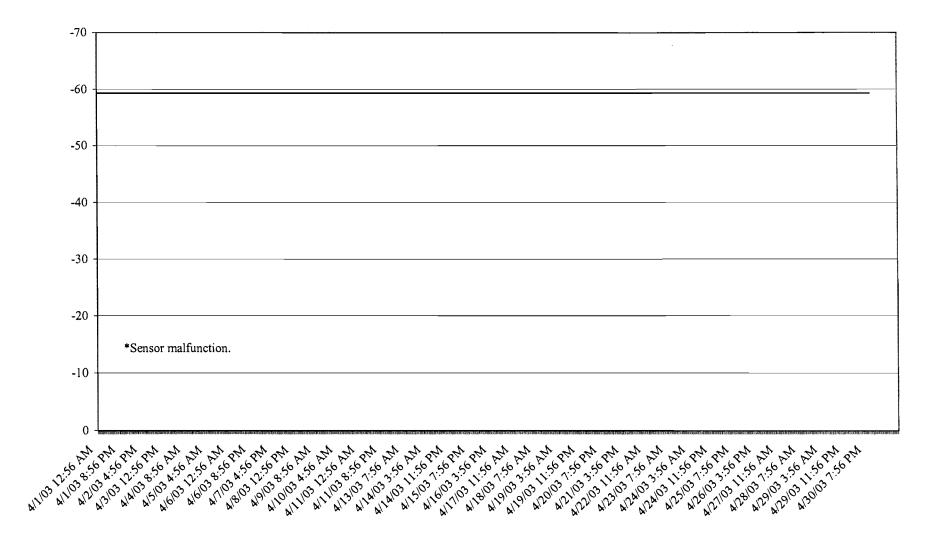



FIGURE 13


GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-8 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-9 GROUND-WATER DRAWDOWN (April 1, 2003 through April 30, 2003)

APPENDIX I
WEEKLY OPERATIONS REPORTS

WEEKLY OPERATIONS REPORT

 Report Period:
 3/31/03 - 4/7/03

 Report Generated Sunday - Date:
 4/7/03 6:56 AM

							P47.50	1.11.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		Mark Company of the C
	A STATE OF THE STA	34 名前即	Reco	very Wells.	AND THE RESERVE	AND MADE	weg in the	上海市 机物质		a POSLANDA
Process Value	Units	RW1	RW2	RW3	RW4 ^{2/}	RW5	RW6	RW7	RW8	RW9
Well Status	Dilution/ Conc.	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Flow	gpm	34.77	29.59	29.76	1.92	54.91	34.71	70.00	64.94	89.99
Motor Speed	rpm	1566.00	1682.00	1479.00	1305.00	1624.00	1740.00	1508.00	1740.00	1740.00
Percent Speed	%	89.96	96.63	84.97	74.97	93.30	99.96	86.63	99.96	99.9(
Motor Current	amps	1.60	2.80	1.50	2.40	2.80	2.70	6.00	6.40	9.50
Discharge Pressure	psi	17.40	13.79	17.23	0.00	53.29	28.45	35.42	55.53	69.70
Static Groundwater Elev.	ft - MSL	59.88	43.84	18.30	34.01	45.14	38.77	32.48	18.79	12.20
Groundwater Drawdown ¹⁷	t t	-2.03	4.48	-1.94	-48.76	0.01	18.63	-1.46	1.87	-59.4 [,]

	Transf	er Pumps	6.00 K 18 K	And the second	A 11.14	
Process Value	Units	TP 1A	- TP 1B	TP 2A	TP2B	
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto	
Pump Status	on/off	Off	On	Off	On	
Run Time	hours	1025	1207	1154	968	
Motor Speed	rpm	0.00	1421.00	0.00	1131.00	
Percent Speed	nt Speed	0.00	81.63	0.00	64.97	
Motor Current	amps	0.00	17.10	0.00	16.00	
Flow	gpm	476.9)4	439.33		
Discharge Pressure	psi					
Equalization Tank Level	inches	48.2	4			
Transfer Tank Level	inches				.01 ·	
Transfer Tank pH	和中國主義的。 1			6.3	34	
Transfer Tank Conductivity	uS			-357	6.06	

		Multi Bag F	liters.	A SHOW	
	Process Value	Units	Filter 1	Filter 2	Filter 3
	Inlet Pressure	psi	16.98	17.66	5.82
į	Outlet Pressure	psi	17.41	16.15	3.35
'n	Differential Pressure	psi	-0.43	1.50	2.47

	Stripper Blower		Sec & Trans
Process Value	Units.	AS Blower	Booster B.
Blower Control Mode	Hand/Off/Auto	Auto	Auto
Air Flow	scfm	2507.32	3509.42
Discharge Pressure	in WC	7.80	24.36
Motor Current	amps	8.41	23.81
Valve EBV-1 Position	% open	Open	
Valve EBV-2 Position	% open	Open	·

A Recharge Basi	ns si	STATE STATE	(A. 241)
Process Value	Units	Primary >	Secondary
Basin Flow	gpm	367.66	0.00
Basin Level ^{3/}	inches	37.01	0.71
Static Groundwater Elev.	ft-MSL		
Groundwater Mounding ^{⁴/}	ft	21.	01

Notes

- 1/ Calculations for groundwater drawdown is incorrect. Drawdown calculated from incorrect reference point.
- 2/ RW-4 flow incorrect due to sensor power supply malfunction.
 - 3/ Basin level offset not included in basin level reading. Sensor is measuring from bottom of stilling well to water level.
 - 4/ Value is the transducer measurement of the water column above the sensor. Groundwater mounding is approximately 3.30 ft based on previous measurements.

WEEKLY OPERATIONS REPORT

Report Period: Report Generated Sunday - Date: 4/7/03 - 4/14/03 4/14/03 6:56 AM

			Reco	very Wells		14.1	以	W	BUT THE EAST	1000
Process Value	Units	RW1	RW2	RW3	RW4 ^{2/}	RW5	RW6	RW7	RW8	RW9
Well Status	Dilution/ Conc.	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Flow	gpm	34.82	27.85	30.08	1.92	54.80	35.15	70.00	63.96	88.7
Motor Speed	rpm	1566.00	1740.00	1479.00	1305.00	1624.00	1740.00	1508.00	1740.00	1740.0
Percent Speed	%	89.96	99.96	84.97	74.97	93.30	99.96	86.63	99.96	99.9
Motor Current	amps	1.60	2.80	1.50	2.40	2.90	2.80	6.00	6.20	9.5
Discharge Pressure	psi	17.87	14.83	17.48	0.00	53.13	28.13	36.07	56.01	69.6
Static Groundwater Elev.	ft - MSL	59.88	43.84	18.30	34.01	45.14	38.77	32.48	18.79	12.2
Groundwater Drawdown ¹⁷	n a	-2.47	3.26	-2.38	-48.76	-0.51	18.63	-1.98	1.53	-59.4

The state of the s	Transf	er Pumps		建筑是一类区	44.54
Process Value	Units	TP 1A	TP 18	TP 2A	+ TP2B
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto
Pump Status	on/off	On	On	On	Off
Run Time	hours	1151	1295	1279	994
Motor Speed	rpm	1595.00	1595.00	1131.00	0.00
Percent Speed	%	91.63	91.63	64.97	0.00
Motor Current	amps	14.20	14.40	15.00	0.00
Flow	gpm	467.0	1	405	.02
Discharge Pressure	psi				
Equalization Tank Level	inches	58.14			
Transfer Tank Level	inches			40.	23
Transfer Tank pH				6.1	19
Transfer Tank Conductivity	uS.			-683	2.88

i ka		Multi - Bag F	liters .		
	Process Value	Units	Filter 1	Filter 2	Filter 3
١	Inlet Pressure	psi	27.10	26.54	0.72
. 1	Outlet Pressure	psi	17.03	16.54	-3.83
	Differential Pressure	psi	10.07	10.00	4.55

	Air Stripper Blowers	The market to	de Zalati
Process Value	東海 Units	AS, Blower	Booster B.
Blower Control Mode	Hand/Off/Auto	Auto	Auto
Air Flow	scfm	2487.25	3481.12
Discharge Pressure	* In WC	7.87	24.31
Motor Current	amps	8.28	23.57
Valve EBV-1 Position	% open	Open	
Valve EBV-2 Position	% open	Open	

	Recharge Bas	insen Wat 454		
A. Iba	Process Value	Units	Primary **	Secondary
	Basin Flow	gpm	299.60	0.00
ı	Basin Level ^{3/}	inches	36.64	-0.59
N.	Static Groundwater Elev.	ft-MSL		
	Groundwater Mounding4/	ft	21.	10

Notes:

- 1/ Calculations for groundwater drawdown is incorrect. Drawdown calculated from incorrect reference point.
- 2/ RW-4 flow incorrect due to sensor power supply malfunction.
 - 3/ Basin level offset not included in basin level reading. Sensor is measuring from bottom of stilling well to water level.
 - 4/ Value is the transducer measurement of the water column above the sensor. Groundwater mounding is approximately 3.39 ft based on previous measurements.

WEEKLY OPERATIONS REPORT

 Report Period:
 4/14/03 - 4/21/03

 Report Generated Sunday - Date:
 4/21/03 6:56 AM

			Reco	very Wells	and the second		Special Property	12.00000 5.00	A Section	See Maria
Process Value	Units	RW1	RW2	RW3	RW4 ^{2l}	RW5	RW6	RW7	RW8	RW9
Well Status	Dilution/ Conc.	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Flow	gpm	35.15	25.45	30.03	1.92	55.30	34.93	70.00	62.76	88.5
Motor Speed	rpm 🐇 .	1566.00	1711.00	1479.00	1305.00	1595.00	1711.00	1479.00	1740.00	1740.0
Percent Speed	%	89.96	98.29	84.97	74.97	91.63	98.29	84.97	99.96	99.9
Motor Current	amps	1.60	2.70	1.50	2.40	2.70	2.60	5.80	6.10	9.4
Discharge Pressure	psi	18.27	14.36	17.63	0.00	49.12	26.85	34.14	56.17	69.3
Static Groundwater Elev.	ft - MSL	59.88	43.84	18.30	34.01	45.14	38.77	32.48	18.79	12.2
Groundwater Drawdown ¹⁷	n i n	-2.39	2.48	-2.49	-48.76	-0.28	19.07	-1.83	1.76	-59.4

	Transf	er Pumps	化学研究 书	治治 (1)	
Process Value	Units	TP 1A	TP.1B	TP 2A	TP2B
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto
Pump Status	on/off	On	Off	On	Off
Run Time	hours	1288	1311	1417	994
Motor Speed	rpm	1479.00	0.00	1131.00	0.00
Percent Speed	%	84.97	0.00	64.97	0.00
Motor Current	amps	17.40	0.00	15.10	0.00
Flow	gpm	492.0	61	418	.57
Discharge Pressure	psi				
Equalization Tank Level	inches	54.2	0		
Transfer Tank Level	inches			40.	23
Transfer Tank pH	字 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6.3	35
Transfer Tank Conductivity	uS.			-204	5.75

	Mark the Committee of t	Multi - Bag F	ilters	and the second	Market St.
	Process Value	Units	Filter 1	Filter 2	Filter 3
	Inlet Pressure	psi /	21.61	22.30	23.93
w 3	Outlet Pressure	psi	16.83	16.34	15.06
	Differential Pressure	psi	4.77	5.96	8.87

	Air Stripper Blowers		100
Process Value	Units ** W	AS Blower	Booster B.
Blower Control Mode	Hand/Off/Auto	Auto	Auto
Air Flow	scfm	2517.04	3522.89
Discharge Pressure	in WC	7.41	24.63
Motor Current	amps	7.97	22.96
Valve EBV-1 Position	% open	Open	
Valve EBV-2 Position	% open	Open	

Recharge Basi	ns de la	全国	
Process Value:	Units	Primary	Secondary
Basin Flow	gpm	355.02	0.00
Basin Level ^{3/}	inches	37.01	-0.22
Static Groundwater Elev.	ft-MSL		
Groundwater Mounding⁴/	. ft	21.	

Notes:

- 1/ Calculations for groundwater drawdown is incorrect. Drawdown calculated from incorrect reference point.
- 2/ RW-4 flow incorrect due to sensor power supply malfunction.
 - 3/ Basin level offset not included in basin level reading. Sensor is measuring from bottom of stilling well to water level.
 - 4/ Value is the transducer measurement of the water column above the sensor. Groundwater mounding is approximately 3.39 ft based on previous measurements.

WEEKLY OPERATIONS REPORT

 Report Period:
 4/21/03 - 4/28/03

 Report Generated Sunday - Date:
 4/28/03 6:56 AM

						O A CONTROL OF THE PARTY OF THE				The second secon
	Salar Krama	66次是用的42	Reco	very Wells	A Maria					7 2" P'AL
Process Value	Units	RW1	RW2	RW3	RW4 ^{2J}	RW5	RW6	RW7	RW8	RW9
Well Status	Dilution/ Conc.	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution	Dilution
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto	Auto
Flow	gpm	35.20	18.80	30.25	1.92	54.91	35.04	70.17	57.53	87.22
Motor Speed	rpm	1566.00	1740.00	1479.00	1305.00	1595.00	1711.00	1479.00	1740.00	1740.00
Percent Speed	%	89.96	99.96	84.97	74.97	91.63	98.29	84.97	99.96	99.96
Motor Current	amps	1.60	2.60	1.50	2.40	2.80	2.80	5.80	6.10	9.40
Discharge Pressure	psi	17.71	14.75	18.04	0.00	52.33	28.21	35.10	56.66	70.11
Static Groundwater Elev.	ft-MSL	59.88	43.84	18.30	34.01	45.14	38.77	32.48	18.79	12.20
Groundwater Drawdown ¹⁷	ft	-2.62	1.41	-2.64	-48.76	-0.10	19.33	-2.20	1.31	-59.4 [,]

36 - 1987 - 1988	Transf	or Dumine	and the last	STATE OF STATE OF	6 4 % ·
Process Value	Units	TP 1A	TP 1B	TP 2A	TP2B
Pump Control Mode	Hand/Off/Auto	Auto	Auto	Auto	Auto
Pump Status	on/off	Off	On	On	Off
Run Time	hours	1406	1377	1580	994
Motor Speed	rpm	0.00	1479.00	1131.00	0.0
Percent Speed	%	0.00	84.97	64.97	0.0
Motor Current	amps	0.00	17.40	15.10	0.0
Flow	gpm	484.2	21	421	.59
Discharge Pressure	psi				
Equalization Tank Level	inches	54.1	8		
Transfer Tank Level	inches			40.	.01
Transfer Tank pH	YALESSTER			6.3	32
Transfer Tank Conductivity	uS			-210	8.53

100 m		Multi - Bag F	ilters	Sal to No.	
2002	Process Value	Units	Filter 1	Filter 2	Filter 3
Ţ	nlet Pressure	psi	_ 20.97	21.24	3.52
	Outlet Pressure	psi	17.32	16.61	2.37
1	Differential Pressure	psi	3.65	4.63	1.15

	Air	Stripper Blowers		
1	Process Value	un Units	AS Blower	Booster B.
,	Blower Control Mode	Hand/Off/Auto	Auto	Auto
	Air Flow	scfm	2418.74	3478.85
	Discharge Pressure	in WC	7.30	24.45
	Motor Current	amps	8.09	23.16
A.	Valve EBV-1 Position	% open	Open	
1	Valve EBV-2 Position	% open	Open	

Recharge Basi	ns	and the same	10 Sec. 1303
Process Value	Units ·	Primary	Secondary
Basin Flow	gpm	347.98	0.00
Basin Level ^{3/}	inches	37.19	0.47
Static Groundwater Elev.	ft-MSL		
Groundwater Mounding ⁴	the state of	21.	76

Notes:

- 1/ Calculations for groundwater drawdown is incorrect. Drawdown calculated from incorrect reference point.
- 2/ RW-4 flow incorrect due to sensor power supply malfunction.
 - 3/ Basin level offset not included in basin level reading. Sensor is measuring from bottom of stilling well to water level.
 - 4/ Value is the transducer measurement of the water column above the sensor. Groundwater mounding is approximately 4.05 ft based on previous measurements.

APPENDIX II CALCULATIONS OF VOC RECOVERY BY GROUND-WATER SYSTEM

LBG Engineering Services, P.C.

APPENDIX II

GROUND-WATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

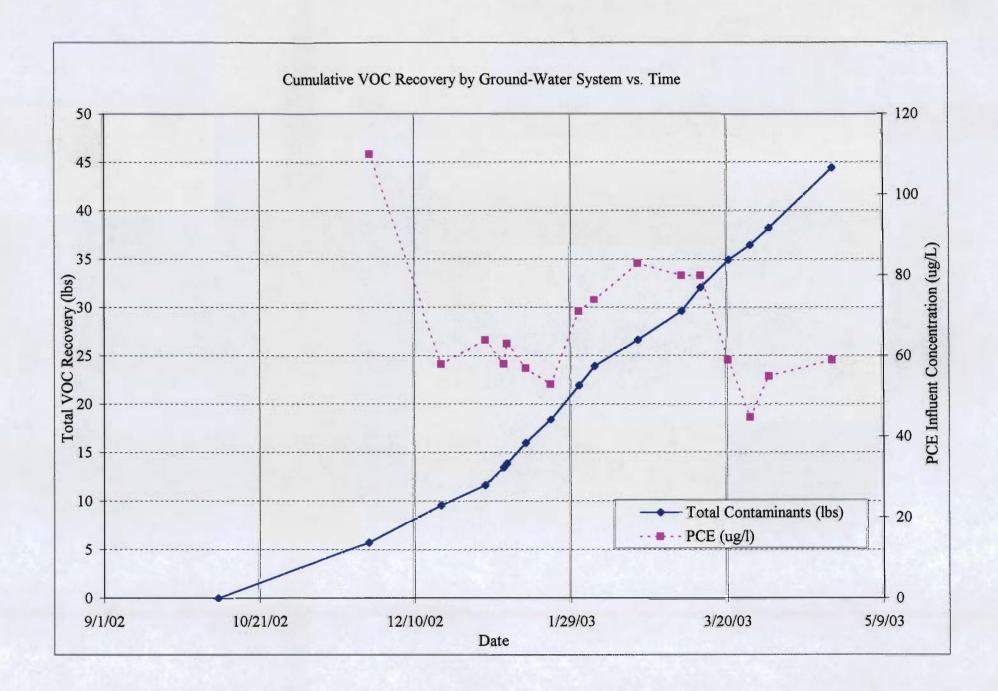
CALCULATION OF VOC RECOVERY BY THE GROUND-WATER RECOVERY SYSTEM

Calculated by: Laura R. Zima Checked by: Alfred N. Kovalik

STATEMENT OF PROBLEM:

Calculate the quantity of VOCs recovered from the ground-water recovery system. VOC concentrations are from samples collected from system influent. Concentrations reported as below the method detection limit are shown as 0.

PROBLEM CONSTRAINTS:


Date	PCE (ug/l)	TCE (ug/l)	TCA (ug/l)	cis-1,2- dichloroethene (ug/l)	Isopropyl benzene (ug/l)	Chloroform (ug/l)	Toluene (ug/l)
11/26/02 - 3/28/03	955	34.1	27.9	1.1	0	1.5	0
4/3/03	55	1.9	1.4	0	0	0	0
4/23/03	59	1.6	1.3	0	0	0	0

CALCULATION:

Recovery (lbs) = Concentration (ug/l) x Volume Pumped (gal) x 1 lb/453,590,000 ug x 3.785 l/gal

Date	Volume Pumped (gal)	PCE (lbs)	TCE (lbs)	TCA (lbs)	cis-I,2- dichloroethene (lbs)	Isopropyl benzene (lbs)	Chloroform (lbs)	Toluene (lbs)	Total Contaminants (lbs)	Cumulative VOC's (lbs)
11/26/02 - 3/28/03	59,735,310	34.2	1.2	1.0	0.05	0	0.04	0	36.5	34.9
4/3/03 4/23/03	3,600,090 11,970,440	1.7 5.9	0.1 0.2	0 0.1	0	0 0	0 0	0	1.8 6.2	38.2 44.4
Totals:	75,305,840	41.8	1.4	1.1	0.05	0	0.04	0	44.4	

Note: Equalization tank totalizer meter reading recorded on 11/26/02 includes groundwater pumped during the Initial Testing Program.

APPENDIX III

JANUARY 2003 LABORATORY ANALYTICAL REPORTS

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-6

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-01A

Matrix: LIQUID

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS MTB	E & FREON1	SW8	260B			Analyst: LDS
1,1,1,2-Tetrachioroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,1,1-Trichloroethane	1.4	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,1-Dichloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,1-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,1-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2-Dibromoethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2-Dichloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,2-Dichloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,3-dichloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
2,2-Dichloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
2-Butanone	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
2-Chlorotoluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
2-Hexanone	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
4-Chlorotoluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
4-Isopropyltoluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
4-Methyl-2-pentanone	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Acetone	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Benzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Bromobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Bromochloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Bromodichloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Bromoform	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Bromomethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Carbon disulfide	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Carbon tetrachloride	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Chlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Chloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-6

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

Matrix: LIQUID 0304057-01A

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS	MTBE & FREON1	SW8	260B			Analyst: LDS
Chloroform	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Chloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Dibromochloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Dibromomethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Dichlorodifluoromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Ethylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Hexachlorobutadiene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Isopropylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
m,p-Xylene	< 2.0	2.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Methyl tert-butyl ether	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Methylene chloride	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Naphthalene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
n-Butylbenzene	< 1.0	1.0	н	μg/L	1	4/18/2003 11:48:00 AM
n-Propylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
o-Xylene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
sec-Butylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Styrene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
tert-Butylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Tetrachloroethene	55	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Toluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Trichloroethene	1.9	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Trichlorofluoromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Vinyl acetate	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM
Vinyl chloride	< 1.0	1.0	Н	μg/L	1	4/18/2003 11:48:00 AM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-6

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-01B

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
TOTAL IRON		E200.7			Analyst: JP
Iron	1.79	0.0200	mg/L	1	4/22/2003 12:44:33 PM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-6

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-01C

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
DISSOLVED IRON Iron	0.0375	E200.7 0.0200	mg/L	1	Analyst: JP 4/22/2003 12:24:03 PM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-7

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-02A

Matrix: LIQUID

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS MTB	E & FREON1	SW8	260B			Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,1,1-Trichloroethane	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,1,2-Trichloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,1-Dichloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,1-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,1-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2,3-Trichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2,3-Trichloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2,4-Trichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2,4-Trimethylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2-Dibromoethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2-Dichlorobenzene	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
1,2-Dichloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,2-Dichloropropane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,3,5-Trimethylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,3-Dichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
1,3-dichloropropane	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
1,4-Dichlorobenzene	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
2,2-Dichloropropane	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
2-Butanone	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
2-Chloroethyl vinyl ether	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
2-Chlorotoluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
2-Hexanone	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
4-Chlorotoluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
4-Isopropyltoluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
4-Methyl-2-pentanone	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
Acetone	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Benzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Bromobenzene	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
Bromochloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Bromodichloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Bromoform	< 1.0	1.0	Н	µg/L	1	4/18/2003 12:26:00 PM
Bromomethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Carbon disulfide	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Carbon tetrachloride	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Chlorobenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Chloroethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304057

Project:

Rowe Industries

Lab ID:

0304057-02A

C 1 ID 11/0

Client Sample ID: WQ04030309:00NP2-7

Tag Number:

Collection Date: 4/3/2003

Matrix: LIQUID

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS	MTBE & FREON1	SW8	260B			Analyst: LDS
Chloroform	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Chloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
cis-1,2-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
cis-1,3-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Dibromochloromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Dibromomethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Dichlorodifluoromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Ethylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Hexachlorobutadiene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Isopropylbenzene	< 1.0	1.0	Н	μ g/L	1	4/18/2003 12:26:00 PM
m,p-Xylene	< 2.0	2.0	Н	μ g/L	1	4/18/2003 12:26:00 PM
Methyl tert-butyl ether	0.6	1.0	JH	μg/L	1	4/18/2003 12:26:00 PM
Methylene chloride	0.6	1.0	JH	μg/L	1	4/18/2003 12:26:00 PM
Naphthalene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
n-Butylbenzene	< 1.0	1.0	Н	μ g/L	1	4/18/2003 12:26:00 PM
n-Propylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
o-Xylene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
sec-Butylbenzene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Styrene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
tert-Butylbenzene	< 1.0	1.0	н	μg/L	1	4/18/2003 12:26:00 PM
Tetrachloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Toluene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
trans-1,2-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
trans-1,3-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Trichloroethene	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Trichlorofluoromethane	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Vinyl acetate	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM
Vinyl chloride	< 1.0	1.0	Н	μg/L	1	4/18/2003 12:26:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-7

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-02B

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TOTAL IRON	2.01	E200.7 0.0200	mg/L	1	Analyst: JP 4/22/2003 12:46:47 PM

* - Value exceeds Maximum Contaminant Level

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-7

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-02C

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
DISSOLVED IRON Iron	0.161	E200.7 0.0200	mg/L	1	Analyst: JP 4/22/2003 12:26:30 PM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304057

Project:

Rowe Industries

Lab ID:

0304057-03A

Client Sample ID: WQ04030309:00NP2-10

Tag Number:

Collection Date: 4/3/2003

Matrix: LIQUID

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
/OLATILES SW-846 8260 PLUS MTB	E & FREON1	SW8	260B			Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,1-Dichloroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,1-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,1-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2-Dibromoethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2-Dichloroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,2-Dichloropropane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,3-dichloropropane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
2,2-Dichloropropane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
2-Butanone	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
2-Chlorotoluene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
2-Hexanone	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
4-Chlorotoluene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
4-Isopropyltoluene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
4-Methyl-2-pentanone	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Acetone	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Benzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Bromobenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Bromochloromethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Bromodichloromethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Bromoform	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Bromomethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Carbon disulfide	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Carbon tetrachloride	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Chlorobenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Chloroethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304057

Project:

Rowe Industries

Lab ID:

0304057-03A

Client Sample ID: WQ04030309:00NP2-10

Tag Number:

Collection Date: 4/3/2003

Matrix: LIQUID

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS	MTBE & FREON1	SW8	260B			Analyst: LDS
Chloroform	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Chloromethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Dibromochloromethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Dibromomethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Dichlorodifluoromethane	< 1.0	1.0	Н	μ g/L	1	4/19/2003 7:54:00 AM
Ethylbenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Hexachlorobutadiene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Isopropylbenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
m,p-Xylene	< 2.0	2.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Methyl tert-butyl ether	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Methylene chloride	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Naphthalene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
n-Butylbenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
n-Propylbenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
o-Xylene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
sec-Butylbenzene	< 1.0	1.0	Н	μg/Ľ	1	4/19/2003 7:54:00 AM
Styrene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
tert-Butylbenzene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Tetrachloroethene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Toluene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Trichloroethene	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Trichlorofluoromethane	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Vinyl acetate	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM
Vinyl chloride	< 1.0	1.0	Н	μg/L	1	4/19/2003 7:54:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-10

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-03B

Matrix: LIQUID

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
TOTAL IRON Iron	0.227	E200.7 0.0200	mg/L	1	Analyst: JP 4/22/2003 12:49:12 PM

* - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-10

Lab Order:

0304057

Tag Number:

Project:

Rowe Industries

Collection Date: 4/3/2003

Lab ID:

0304057-03C

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
DISSOLVED IRON Iron	0.334	E200.7 0.0200	mg/L	1	Analyst: JP 4/22/2003 12:28:40 PM

R - RPD outside accepted recovery limits

Date: 25-Apr-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ04030309:00NP2-10

Lab Order:

0304057

Tag Number:

Project: Lab ID: Rowe Industries

0304057-03D

Collection Date: 4/3/2003

Analyses	Result	Limit Qual Units	DF	Date Analyzed
TOTAL DISSOLVED SOLIDS		E160.1		Analyst: BK
Total Dissolved Solids (Residue, Filterable)	120	0 H mg/L	1	4/21/2003

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304094

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-01A

Client Sample ID: WQ042303:1130NP2-6

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS MTB	E & FREON1	SW8260	 B		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,1,1-Trichloroethane	1.3	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1.3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
2-Butanone	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
2-Hexanone	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
4-Methyl-2-pentanone	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Acetone	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

al Laboratories, Inc.

Date: 01-May-03

CLIENT: Lab Order: Legette Brashears & Graham Inc.

0304094

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-01A

Client Sample ID: WQ042303:1130NP2-6

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed	
VOLATILES SW-846 8260 PLUS MTBE & FREON1		SW8260)B		Analyst: LDS	
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
m,p-Xylene	< 2.0	2.0	μ g/L	1	4/26/2003 2:06:00 AM	
Methyl tert-butyl ether	1.7	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Tetrachloroethene	59	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Trichloroethene	1.6	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 2:06:00 AM	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304094

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-01B

Client Sample ID: WQ042303:1130NP2-6

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TOTAL IRON	0.0650	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003 11:07:48 AM

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ042303:1130NP2-6

Lab Order:

0304094

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304094-01C

Analyses	Result	Limit ()ual	Units	DF	Date Analyzed
DISSOLVED IRON Iron	0.0070	E200 0.0200	. 7 J	mg/L	1	Analyst: KK 4/28/2003 11:00:30 AM

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304094

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-02A

Client Sample ID: WQ042303:1135NP2-7

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS MTB	E & FREON1	SW8260B			Analyst: LD:
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
2-Butanone	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
2-Hexanone	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
4-Methyl-2-pentanone	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Acetone	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304094

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-02A

Client Sample ID: WQ042303:1135NP2-7

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS MTBE & FREON1		SW826	 0В		Analyst: LDS
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 2:46:00 AM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
n-Propylbenzene	< 1.0	1.0	μ g/L	1	4/26/2003 2:46:00 AM
o-Xylene	< 1.0	1.0	μg/ L	1	4/26/2003 2:46:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Tetrachloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Trichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 2:46:00 AM
Vinyl chloride	< 1.0	1.0	μg/ L	1	4/26/2003 2:46:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304094

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-02B

Client Sample ID: WQ042303:1135NP2-7

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Qua	al Units	DF	Date Analyzed
TOTAL IRON Iron	3.72	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003 11:04:08 AM

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304094

Rowe Industries Sag Harbor, N.Y.

Project: Lab ID:

0304094-02C

Client Sample ID: WQ042303:1135NP2-7

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
DISSOLVED IRON Iron	0.202	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003 10:10:24 AM

* - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ040203:1140NP2-10

Lab Order:

0304094

Tag Number: Collection Date: 4/23/2003

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-03A

Matrix: LIQUID

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS MTB	E & FREON1	SW8	260B			Analyst: LD
1,1,1,2-Tetrachloroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,1,1-Trichloroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,1,2-Trichloroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,1-Dichloroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,1-Dichloroethene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,1-Dichloropropene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,2,3-Trichloropropane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,2-Dibromoethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1.2-Dichlorobenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1.2-Dichloroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,2-Dichloropropane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 A
1,3-Dichlorobenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 Al
1,3-dichloropropane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 Af
1,4-Dichlorobenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 A
2,2-Dichloropropane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
2-Butanone	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
2-Chlorotoluene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
2-Hexanone	< 1.0	1.0		μg/L	· 1	4/26/2003 3:25:00 Af
4-Chlorotoluene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
4-Isopropyitoluene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
4-Methyl-2-pentanone	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Acetone	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Benzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Bromobenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Bromochloromethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Bromodichloromethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Bromoform	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Bromomethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Carbon disulfide	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Carbon tetrachloride	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Chlorobenzene	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AM
Chloroethane	< 1.0	1.0		μg/L	1	4/26/2003 3:25:00 AN

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT: Legette Brashears & Graham Inc.

Lab Order: 0304094

Project: Rowe Industries Sag Harbor, N.Y.

Lab ID: 0304094-03A

Date: 01-May-03

Client Sample ID: WQ040203:1140NP2-10

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
VOLATILES SW-846 8260 PLUS MTBE & FREON1		SW8260B			Analyst: LDS
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 3:25:00 AM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Tetrachloroethene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Trichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 3:25:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ040203:1140NP2-10

Lab Order:

0304094

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304094-03B

Matrix: LIQUID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TOTAL IRON Iron	0.119	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003 11:21:40 AM

* - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304094

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304094-03C

Client Sample ID: WQ040203:1140NP2-10

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
DISSOLVED IRON	0.125	E200.7	mg/L	1	Analyst: KK 4/28/2003 11:15:02 AM

* - Value exceeds Maximum Contaminant Level

- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 01-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: WQ040203:1140NP2-10

Lab Order:

0304094

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304094-03D

Analyses	Result	Limit Qual Units	DF	Date Analyzed
TOTAL DISSOLVED SOLIDS		E160.1		Analyst: BK
Total Dissolved Solids (Residue, Filterable)	85	0 mg/L	1	4/28/2003

R - RPD outside accepted recovery limits

CLIENT: Legette Brashears & Graham Inc.

Legette Brashears & Graham me

Lab Order:

0304095

Project: Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-01A

Date: 02-May-03

Client Sample ID: GWQ042303:1145NP1-1-1

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit	Qual Uni	ts DF	Date Analyzed
VOLATILES SW-846 METHOD 802	1 PLUS MTBE	SW8	021B		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	. 1	4/26/2003 6:40:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L		4/26/2003 6:40:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L		4/26/2003 6:40:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L		4/26/2003 6:40:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L		4/26/2003 6:40:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Chloroform	1.2	1.0	μg/L	1	4/26/2003 6:40:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:

Legette Brashears & Graham Inc.

Rowe Industries Sag Harbor, N.Y.

Tag Number:

Lab Order:

0304095

Collection Date: 4/23/2003

Project: Lab ID:

0304095-01A

Matrix: LIQUID

Date: 02-May-03

Client Sample ID: GWQ042303:1145NP1-1-1

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 80	21 PLUS MTBE	SW8021B			Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 6:40:00 AM
Methyl tert-butyl ether	8.6	1.0	μg/L	1	4/26/2003 6:40:00 AM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Tetrachloroethene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Trichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Vinyt acetate	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 6:40:00 AM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-01B

Client Sample ID: GWQ042303:1145NP1-1-1

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
TOTAL IRON	_	E200.7	_		Analyst: KK
Iron	0.0530	0.0200	mg/L	1	4/28/2003
HARDNESS		M2340 B			Analyst: KK
Hardness, Calcium/Magnesium (As CaCO3)	40.7	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7			Analyst: KK
Manganese	0.208	0.0200	mg/L	1	4/28/2003 11:25:33 AM

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-01C

Client Sample ID: GWQ042303:1145NP1-1-1

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
DISSOLVED IRON	z 0 0000	E200.7			Analyst: KK
Iron	< 0.0200	0.0200	mg/L	1	4/28/2003
MANGANESE, DISSOLVED		E200.7			Analyst: KK
Manganese	0.201	0.0200	mg/L	1	4/28/2003 10:17:09 AM
SPECIFIC CONDUCTANCE		E120.1			Analyst: KK
Specific Conductance	196	0	µmhos/cm	1	5/1/2003
TOTAL DISSOLVED SOLIDS		E160.1			Analyst: BK
Total Dissolved Solids (Residue, Filterable)	110	0	mg/L	1	4/28/2003
TURBIDITY		E180.1			Analyst: KK
Turbidity	< 1.00	1.00	NTU	1	4/25/2003

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-02A

Client Sample ID: GWQ042303:1150NP1-1-2

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 802	1 PLUS MTBE	SW8021	В		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	µg/L	1	4/26/2003 8:34:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
4-Isopropyltoluene	< 1.0	1.0	µg/L	1	4/26/2003 8:34:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Bromodichloromethane	< 1.0	1.0	µg/L	1	4/26/2003 8:34:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-02A

Client Sample ID: GWQ042303:1150NP1-1-2

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit C	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 80	21 PLUS MTBE	SW8021B		_	Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 8:34:00 AM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Methylene chloride	< 1.0	1.0	µg/L	1	4/26/2003 8:34:00 AM
Naphthalene	< 1.0	1.0	μg/ L	1	4/26/2003 8:34:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
o-Xylene	< 1.0	1.0	μg/ L	1	4/26/2003 8:34:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Tetrachloroethene	14	1.0	μg/L	1	4/26/2003 8:34:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Trichloroethene	1.3	1.0	μg/L	1	4/26/2003 8:34:00 AM
Trichlorofluoromethane	< 1.0	1.0	µg/L	1	4/26/2003 8:34:00 AM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 8:34:00 AM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-02B

Client Sample ID: GWQ042303:1150NP1-1-2

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TOTAL IRON		E200.7	,		Analyst: KK
Iron	6.31	0.0200	mg/L	1	4/28/2003
HARDNESS		M2340		Analyst: KK	
Hardness, Calcium/Magnesium (As CaCO3)	45.9	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7	•		Analyst: KK
Manganese	1.79	0.0200	mg/L	1	4/28/2003 11:29:47 AN

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-02C

Client Sample ID: GWQ042303:1150NP1-1-2

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
DISSOLVED IRON Iron	0.212	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003
MANGANESE, DISSOLVED Manganese	1.68	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003 10:20:44 AM
SPECIFIC CONDUCTANCE Specific Conductance	198	E120.1 0	µmhos/cm	1	Analyst: KK 5/1/2003
TOTAL DISSOLVED SOLIDS Total Dissolved Solids (Residue, Filterable)	88	E160.1 0	mg/L	1	Analyst: BK 4/28/2003
TURBIDITY Turbidity	< 1.00	E180.1 , 1.00	NTU	1	Analyst: KK 4/25/2003

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-03A

Client Sample ID: GWQ042303:1155NP1-1-3

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Qı	ıal Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021	PLUS MTBE	SW8021	В		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μ g/L	1	4/26/2003 9:11:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μ g/L	1	4/26/2003 9:11:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μ g/L	1	4/26/2003 9:11:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-03A

Client Sample ID: GWQ042303:1155NP1-1-3

Tag Number:

Collection Date: 4/23/2003

Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW8021B		Analyst: LDS
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 2.0	2.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1.1	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
1.2	1.0	µg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	µg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
< 1.0	1.0	μg/L	1	4/26/2003 9:11:00 AM
	21 PLUS MTBE < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	21 PLUS MTBE < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	PLUS MTBE SW8021B	21 PLUS MTBE <1.0 1.0 1.0 µg/L 1 <1.0 1.0 µg/L 1 <1.0 1.0 µg/L 1 <1.0 1.0 µg/L 1 <1.0 1.0 µg/L 1 <2.0 2.0 µg/L 1 <1.0 1.0 µg/L 1 1 1.1 1.0 µg/L 1 1 1.0 µg/L 1 1 1 1 1 1 1 1 1 1 1 1 1

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

E - Value above quantitation range

C. Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: GWQ042303:1155NP1-1-3

Lab Order:

0304095

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304095-03B

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TOTAL IRON		E200.7			Analyst: KK
Iron	1.81	0.0200	mg/L	1	4/28/2003
HARDNESS		M2340 I		Analyst: KK	
Hardness, Calcium/Magnesium (As CaCO3)	37.7	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7			Analyst: KK
Manganese	0.167	0.0200	mg/L	1	4/28/2003 11:39:25 AM

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT: Lab Order: Legette Brashears & Graham Inc.

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-03C

Client Sample ID: GWQ042303:1155NP1-1-3

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
DISSOLVED IRON		E200.7			Analyst: KK
Iron	0.395	0.0200	mg/L	1	4/28/2003
MANGANESE, DISSOLVED		E200.7			Analyst: KK
Manganese	0.154	0.0200	mg/L	1	4/28/2003 10:23:55 AM
SPECIFIC CONDUCTANCE		E120.1			Analyst: KK
Specific Conductance	152	0	µmhos/cm	1	5/1/2003
TOTAL DISSOLVED SOLIDS		E160.1			Analyst: BK
Total Dissolved Solids (Residue, Filterable)	65	0	mg/L	1	4/28/2003
TURBIDITY		E180.1			Analyst: KK
Turbidity	< 1.00	1.00	NTU	1	4/25/2003

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-04A

Client Sample ID: GWQ042303:1200NP1-1-4

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW80	21B		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,1-Dichloroethene	< 1.0	1.0	μ g/L	1	4/26/2003 9:48:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μ g/L	1	4/26/2003 9:48:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μ g/L	1	4/26/2003 9:48:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μ g/L	1	4/26/2003 9:48:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μ g/L	1	4/26/2003 9:48:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,2-Dibromoethane	< 1.0	1.0	μ g/L	1	4/26/2003 9:48:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μ g/L	1	4/26/2003 9:48:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-04A

Client Sample ID: GWQ042303:1200NP1-1-4

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW802	SW8021B		Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 9:48:00 AM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Methylene chloride	< 1.0	1.0	μg/L	. 1	4/26/2003 9:48:00 AM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Tetrachloroethene	110	1.0	μg/L	1	4/26/2003 9:48:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Trichloroethene	3.1	1.0	μg/L	1	4/26/2003 9:48:00 AM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 9:48:00 AM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

0304095

Lab Order: Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-04B

Client Sample ID: GWQ042303:1200NP1-1-4

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TOTAL IRON	E200.7				Analyst: KK
Iron	3.18	0.0200	mg/L	1	4/28/2003
HARDNESS		M2340		Analyst: KK	
Hardness, Calcium/Magnesium (As CaCO3)	41.2	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7	•		Analyst: KK
Manganese	1.51	0.0200	mg/L	1	4/28/2003 11:44:06 AM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: GWQ042303:1200NP1-1-4

Lab Order:

0304095

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304095-04C

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
DISSOLVED IRON		E200.7	_	_	Analyst: KK
Iron	0.136	0.0200	mg/L	1	4/28/2003
MANGANESE, DISSOLVED		E200.7			Analyst: KK
Manganese	1.45	0.0200	mg/L	1	4/28/2003 10:28:40 AM
SPECIFIC CONDUCTANCE		E120.1			Analyst: KK
Specific Conductance	246	0	µmhos/cm	1	5/1/2003
TOTAL DISSOLVED SOLIDS		E160.1			Analyst: BK
Total Dissolved Solids (Residue, Filterable)	100	0	mg/L	1	4/28/2003
TURBIDITY		E180.1			Analyst: KK
Turbidity	< 1.00	1.00	NTU	1	4/25/2003

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-05A

Client Sample ID: GWQ042303:1205NP1-1-5

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW80)21B		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	µg/L	1	4/26/2003 10:24:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	µg/L	1	4/26/2003 10:24:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: GWQ042303:1205NP1-1-5

Lab Order:

0304095

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304095-05A

Matrix: LIQUID

Analyses	Result	Limit Q	ıal Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW802	SW8021B		Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 10:24:00 AM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Tetrachloroethene	12	1.0	μg/L	1	4/26/2003 10:24:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Trichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 10:24:00 AM

* - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: GWQ042303:1205NP1-1-5

Lab Order:

0304095

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304095-05B

Analyses	Result	Limit Qual Units	DF	Date Analyzed
TOTAL IRON		E200.7		Analyst: KK
Iron	0.0680	0.0200 mg/L	1	4/28/2003
HARDNESS		M2340 B		Analyst: KK
Hardness, Calcium/Magnesium (As CaCO3)	31.8	10.0 mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7		Analyst: KK
Manganese	0.011	0.0200 J mg/L	1	4/28/2003 11:48:10 AM

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: GWQ042303:1205NP1-1-5

Lab Order:

0304095

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304095-05C

Matrix: LIQUID

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
DISSOLVED IRON	E200.7				Analyst: KK
Iron	< 0.0200	0.0200	mg/L	1	4/28/2003
MANGANESE, DISSOLVED		E200.7			Analyst: KK
Manganese	0.012	0.0200 J	mg/L	1	4/28/2003 10:31:48 AM
SPECIFIC CONDUCTANCE		E120.1			Analyst: KK
Specific Conductance	222	0	µmhos/cm	1	5/1/2003
TOTAL DISSOLVED SOLIDS		E160.1			Analyst: BK
Total Dissolved Solids (Residue, Filterable)	120	0	mg/L	1	4/28/2003
TURBIDITY		E180.1			Analyst: KK
Turbidity	< 1.00	1.00	NTU	1	4/25/2003

* - Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-06A

Client Sample ID: GWQ042303:1210NP1-1-6

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW802	IB		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1.2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Bromodichloromethane	< 1.0	1.0	µg/L	1	4/26/2003 11:01:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Carbon tetrachloride	< 1.0	1.0	µg/L	1	4/26/2003 11:01:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Chloroform	< 1.0	1.0	µg/L	1	4/26/2003 11:01:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	µg/L	1	4/26/2003 11:01:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Dibromochloromethane	< 1.0	1.0	µg/L	1	4/26/2003 11:01:00 AM
DID OTHOURS OFFICE INTE	. ,		F# -		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-06A

Client Sample ID: GWQ042303:1210NP1-1-6

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW80	21B		Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 11:01:00 AM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/ L	1	4/26/2003 11:01:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Tetrachloroethene	79	1.0	μg/L	1	4/26/2003 11:01:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Trichloroethene	1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 11:01:00 AM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT: Lab Order: Legette Brashears & Graham Inc.

0

0304095

Project: Rowe

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-06B

Client Sample ID: GWQ042303:1210NP1-1-6

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TOTAL IRON	E200.7				Analyst: KK
Iron	0.0280	0.0200	mg/L	1	4/28/2003
HARDNESS		M2340 E		Analyst: KK	
Hardness, Calcium/Magnesium (As CaCO3)	44.4	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7			Analyst: KK
Manganese	0.380	0.0200	mg/L	1	4/28/2003 11:51:26 AM

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Client Sample ID: GWQ042303:1210NP1-1-6

Lab Order:

0304095

Tag Number:

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304095-06C

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
DISSOLVED IRON		E200.7			Analyst: KK
Iron	< 0.0200	0.0200	mg/L	1	4/28/2003
MANGANESE, DISSOLVED		E200.7			Analyst: KK
Manganese	0.353	0.0200	mg/L	1	4/28/2003 10:41:12 AM
SPECIFIC CONDUCTANCE		E120.1			Analyst: KK
Specific Conductance	279	0	µmhos/cm	1	5/1/2003
TOTAL DISSOLVED SOLIDS		E160.1			Analyst: BK
Total Dissolved Solids (Residue, Filterable)	140	0	mg/L	1	4/28/2003
TURBIDITY		E180.1			Analyst: KK
Turbidity	< 1.00	1.00	NTU	1	4/25/2003

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-07A

Client Sample ID: GWQ042303:1215NP1-1-7

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Qu	ıal Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW8021	В		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,1,1-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,3-Dichlorobenzene	< 1.0	1.0	μ g/L	1	4/26/2003 11:38:00 AM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Benzene	< 1.0	1.0	μg/L	1 '	4/26/2003 11:38:00 AM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-07A

Client Sample ID: GWQ042303:1215NP1-1-7

Tag Number:

Tag Muniber.

Collection Date: 4/23/2003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW8021B			Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/ L	1	4/26/2003 11:38:00 AM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 11:38:00 AM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Naphthalene	< 1.0	1.0	μg/ L	1	4/26/2003 11:38:00 AM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
tert-Butylbenzene	< 1.0	1.0	μ g/ L	1	4/26/2003 11:38:00 AM
Tetrachloroethene	100	1.0	μg/L	1	4/26/2003 11:38:00 AM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Trichloroethene	1.8	1.0	μg/ L	1	4/26/2003 11:38:00 AM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 11:38:00 AM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Rowe Industries Sag Harbor, N.Y.

Client Sample ID: GWQ042303:1215NP1-1-7

Lab Order:

0304095

Tag Number:

Project:

Collection Date: 4/23/2003

Lab ID:

0304095-07B

Analyses	Result	Limit Qua	d Units	DF	Date Analyzed
TOTAL IRON		E200.7			Analyst: KK
Iron	0.016	0.0200 J	mg/L	1	4/28/2003
HARDNESS		M2340 B		Analyst: KK	
Hardness, Calcium/Magnesium (As CaCO3)	37.3	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7			Analyst: KK
Manganese	0.120	0.0200	mg/L	1	4/28/2003 11:54:14 AM

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-07C

Client Sample ID: GWQ042303:1215NP1-1-7

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
DISSOLVED IRON		Analyst: KK			
Iron	< 0.0200	0.0200	mg/L	1	4/28/2003
MANGANESE, DISSOLVED		E200.7			Analyst: KK
Manganese	0.113	0.0200	mg/L	1	4/28/2003 10:44:18 AM
SPECIFIC CONDUCTANCE		E120.1			Analyst: KK
Specific Conductance	215	0	µmhos/cm	1	5/1/2003
TOTAL DISSOLVED SOLIDS		E160.1			Analyst: BK
Total Dissolved Solids (Residue, Filterable)	110	0	mg/L	1	4/28/2003
TURBIDITY		E180.1			Analyst: KK
Turbidity	< 1.00	1.00	NTU	1	4/25/2003

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-08A

Client Sample ID: GWQ042303:1220NP1-1-8

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW8021	В		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,1,1-Trichloroethane	1.8	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	· 1	4/26/2003 12:15:00 PM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-08A

Date: 02-May-03

Client Sample ID: GWQ042303:1220NP1-1-8

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8021 PLUS MTBE		SW8021B			Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 12:15:00 PM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Tetrachloroethene	41	1.0	μg/L	1	4/26/2003 12:15:00 PM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Trichloroethene	2.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 12:15:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-08B

Date: 02-May-03

Client Sample ID: GWQ042303:1220NP1-1-8

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
TOTAL IRON		E200.7			Analyst: KK
Iron	11.8	0.0200	mg/L	1	4/28/2003
HARDNESS		M2340 B		Analyst: KK	
Hardness, Calcium/Magnesium (As CaCO3)	22.5	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7			Analyst: KK
Manganese	0.487	0.0200	mg/L	1	4/28/2003 11:57:11 AM

R - RPD outside accepted recovery limits

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-08C

Date: 02-May-03

Client Sample ID: GWQ042303:1220NP1-1-8

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
DISSOLVED IRON		E200.7			Analyst: KK
Iron	0.352	0.0200	mg/L	1	4/28/2003
MANGANESE, DISSOLVED		E200.7			Analyst: KK
Manganese	0.440	0.0200	mg/L	1	4/28/2003 10:46:55 AM
SPECIFIC CONDUCTANCE		E120.1			Analyst: KK
Specific Conductance	128	0	µmhos/cm	1	5/1/2003
TOTAL DISSOLVED SOLIDS		E160.1			Analyst: BK
Total Dissolved Solids (Residue, Filterable)	76	0	mg/L	1	4/28/2003
TURBIDITY		E180.1			Analyst: KK
Turbidity	< 1.00	1.00	NTU	1	4/25/2003

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-09A

Client Sample ID: GWQ042303:1225NP1-1-9

Tag Number:

Collection Date: 4/23/2003

Matrix: LIQUID

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 802	1 PLUS MTBE	SW802	1B		Analyst: LDS
1,1,1,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,1,1-Trichloroethane	1.8	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,1,2-Trichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,1-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,1-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,1-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2,3-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2,3-Trichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2,4-Trichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2,4-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2-Dibromo-3-chloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2-Dibromoethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2-Dichloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,3,5-Trimethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,3-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,3-dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
1,4-Dichlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
2,2-Dichloropropane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
2-Chloroethyl vinyl ether	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
2-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
4-Chlorotoluene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
4-Isopropyltoluene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Benzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Bromobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Bromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Bromodichloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Bromoform	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Bromomethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Carbon disulfide	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Carbon tetrachloride	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Chlorobenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Chloroethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Chloroform	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Chloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
cis-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
cis-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Dibromochloromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

Lab Order:

0304095

Project:

Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-09A

Client Sample ID: GWQ042303:1225NP1-1-9

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILES SW-846 METHOD 8	021 PLUS MTBE	SW8021B			Analyst: LDS
Dibromomethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Dichlorodifluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Ethylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Hexachlorobutadiene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Isopropylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
m,p-Xylene	< 2.0	2.0	μg/L	1	4/26/2003 12:52:00 PM
Methyl tert-butyl ether	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Methylene chloride	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Naphthalene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
n-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
n-Propylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
o-Xylene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
sec-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Styrene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
tert-Butylbenzene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Tetrachloroethene	15	1.0	μg/L	1	4/26/2003 12:52:00 PM
Toluene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
trans-1,2-Dichloroethene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
trans-1,3-Dichloropropene	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Trichloroethene	1.2	1.0	μg/L	1	4/26/2003 12:52:00 PM
Trichlorofluoromethane	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Vinyl acetate	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM
Vinyl chloride	< 1.0	1.0	μg/L	1	4/26/2003 12:52:00 PM

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: Legette Brashears & Graham Inc.

Lab Order:

0304095

Project: Rowe Industries Sag Harbor, N.Y.

Lab ID:

0304095-09B

Date: 02-May-03

Client Sample ID: GWQ042303:1225NP1-1-9

Tag Number:

Collection Date: 4/23/2003

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TOTAL IRON		E200.7	7		Analyst: KK
Iron	3.55	0.0200	mg/L	1	4/28/2003
HARDNESS	M2340 B				Analyst: KK
Hardness, Calcium/Magnesium (As CaCO3)	26.7	10.0	mg/L	1	5/1/2003
MANGANESE, TOTAL		E200.7	,		Analyst: KK
Manganese	0.932	0.0200	mg/L	1	4/28/2003 12:01:13 PM

R - RPD outside accepted recovery limits

Date: 02-May-03

CLIENT:

Legette Brashears & Graham Inc.

.

Client Sample ID: GWQ042303:1225NP1-1-9
Tag Number:

Lab Order:

0304095

Tag Number.

Project:

Rowe Industries Sag Harbor, N.Y.

Collection Date: 4/23/2003

Lab ID:

0304095-09C

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
DISSOLVED IRON Iron	1.97	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003
MANGANESE, DISSOLVED Manganese	0.901	E200.7 0.0200	mg/L	1	Analyst: KK 4/28/2003 10:50:53 AM
SPECIFIC CONDUCTANCE Specific Conductance	148	E120.1 0	µmhos/cm	1	Analyst: KK 5/1/2003
TOTAL DISSOLVED SOLIDS Total Dissolved Solids (Residue, Filterable)	75	E160.1 0	mg/L	1	Analyst: BK 4/28/2003
TURBIDITY Turbidity	< 1.00	E180.1 1.00	N TU	1	Analyst: KK 4/25/2003

R - RPD outside accepted recovery limits

		For	m 1		
STL Connecticut			Client Sample ID	AQ04090309:42NP4-1	
Method: T01/T02			Lab Sample ID	203410-1	
Sample Volume (L)	0.100		Date Sampled	4/9/2003	
Temp (C)	25		Date Analyzed	4/21/2003	
Compound		nL/L	1'.C - DI	***	
Chloromethane		(ppbv/v) Qua		mg/M3 Qualifier	R
Vinyl Chloride		96.8 U	96.8	0.200 U	0.20
Bromomethane		78.3 U	78.3	0.200 U	0.20
Chloroethane		51.5 U	51.5	0.200 U	0.20
1,1-Dichloroethene		75.8 U	75.8	0.200 U	0.20
Carbon Disulfide		25.2 U	25.2	0.100 U	0.10
Methylene Chloride		32.1 U	32.1	0.100 U	0.10
rans-1,2-Dichloroethene		28.8 U	28.8	0.100 U	0.10
1,1-Dichloroethane		25.5 U	25.5	0.100 U	0.10
cis-1,2-Dichloroethene		24.7 U	24.7	0.100 U	0.100
Chloroform		25.5 U	25.5	0.100 U	0.100
I,1,1-Trichloroethane		20.5 U	20.5	0.100 U	0.100
Carbon Tetrachloride		18.4 U	18.4	0.100 U	0.100
		15.9 U	15.9	0.100 U	0.100
Benzene		31.3 U	31.3	0.100 U	0.100
,2-Dichloroethane		24.7 U	24.7	0.100 U	0.100
richloroethene		18.7 U	18.7	0.100 U	0.100
,2-Dichloropropane		21.6 U	21.6	0.100 U	0.100
Bromodichloromethane		14.9 U	14.9	0.100 U	0.100
is-1,3-Dichloropropene		22.0 U	22.0	0.100 U	0.100
oluene		26.6 U	26.6	0.100 U	0.100
rans-1,3-Dichloropropene		22.0 U	22.0	0.100 U	0.100
,1,2-Trichloroethane		18.4 U	18.4	0.100 U	0.100
etrachloroethene		106.1	14.7	0.720	0.100
Dibromochloromethane		11.8 U	11.8	0.100 U	0.100
Chlorobenzene		21.6 U	21.6	0.100 U	0.100
thylbenzene		23.1 U	23.1	0.100 U	0.100
n&p-Xylenes		23.1 U	23.1	0.100 U	0.100
-Xylene		23.1 U	23.1	0.100 U	0.100
tyrene		23.5 U	23.5	0.100 U	0.100
romoform		9.7 U	9.7	0.100 U	0.100
,1,2,2-Tetrachloroethane		14.6 U	14.6	0.100 U	0.100

		Fori	n 1		
STL Connecticut			Client Sample ID	AQ04090309:43NP4-2	
Method: T01/T02			Lab Sample ID	203410-2	
Sample Volume (L)	1.000		Date Sampled	4/9/2003	
Temp (C)	25		Date Analyzed	4/21/2003	
Commenced		nL/L	re ni		
Compound		(ppbv/v) Qua		mg/M3 Qualifier	RI
Chloromethane		9.7 U	9.7	0.020 U	0.020
Vinyl Chloride		7.8 U	7.8	0.020 U	0.020
Bromomethane		1.5 JB	5.1	0.006 JB	0.020
Chloroethane		7.6 U	7.6	0.020 U	0.020
1,1-Dichloroethene		2.5	2.5	0.010	0.010
Carbon Disulfide		6.1	3.2	0.019	0.010
Methylene Chloride		23.3	2.9	0.081	0.010
trans-1,2-Dichloroethene		2.5 U	2.5	0.010 U	0.010
1,1-Dichloroethane		4.0	2.5	0.016	0.010
cis-1,2-Dichloroethene		1.5 J	2.5	0.006 J	0.010
Chloroform		2.3	2.1	0.011	0.010
1,1,1-Trichloroethane		9.0	1.8	0.049	0.010
Carbon Tetrachloride		1.6 U	1.6	0.010 U	0.010
Benzene		0.3 J	3.1	0.001 J	0.010
1,2-Dichloroethane		2.5 U	2.5	0.010 U	0.010
Trichloroethene		0.6 J	1.9	0.003 J	0.010
1,2-Dichloropropane		2.2 U	2.2	0.010 U	0.010
Bromodichloromethane		1.5 U	1.5	0.010 U	0.010
cis-1,3-Dichloropropene		2.2 U	2.2	0.010 U	0.010
Toluene		2.1 J	2.7	0.008 J	0.010
rans-1,3-Dichloropropene		2.2 U	2.2	0.010 U	0.010
1,1,2-Trichloroethane		1.8 U	1.8	0.010 U	0.010
Tetrachloroethene		0.9 J	1.5	0.006 J	0.010
Dibromochloromethane		1.2 U	1.2	0.010 U	0.010
Chlorobenzene		2.2 U	2.2	0.010 U	0.010
thylbenzene		2.3 U	2.3	0.010 U	0.010
n&p-Xylenes	_	0.9 J	2.3	0.004 J	0.010
o-Xylene		2.3 U	2.3	0.010 U	0.010
Styrene		2.4 U	2.4	0.010 U	0.010
Bromoform		1.0 U	1.0	0.010 U	0.010
,1,2,2-Tetrachloroethane		1.5 U	1.5	0.010 U	0.010

		Fori	m 1		
STL Connecticut			Client Sample ID	AQ04090309:44NP4-3	
Method: T01/T02			Lab Sample ID	203410-3	
Sample Volume (L)	1.000		Date Sampled	4/9/2003	
Temp (C)	25	nL/L	Date Analyzed	4/21/2003	
Compound		(ppbv/v) Qua	lifier RL	mg/M3 Qualifier	RL
Chloromethane		9.7 U	9.7	0.020 U	0.020
Vinyl Chloride		7.8 U	7.8	0.020 U	0.020
Bromomethane		4.4 JB	5.1	0.017 JB	0.020
Chloroethane		7.6 U	7.6	0.020 U	0.020
1,1-Dichloroethene		2.5	2.5	0.010	0.010
Carbon Disulfide		6.1	3.2	0.019	0.010
Methylene Chloride	_	6.6	2.9	0.023	0.010
trans-1,2-Dichloroethene		2.5 U	2.5	0.010 U	0.010
1,1-Dichloroethane		4.2	2.5	0.017	0.010
cis-1,2-Dichloroethene		2.5 U	2.5	0.010 U	0.010
Chloroform		1.8 J	2.1	0.009 J	0.010
1,1,1-Trichloroethane		3.7	1.8	0.020	0.010
Carbon Tetrachloride		1.6 U	1.6	0.010 U	0.010
Benzene		3.1 U	3.1	0.010 U	0.010
1,2-Dichloroethane		2.5 U	2.5	0.010 U	0.010
Trichloroethene		1.9 U	1.9	0.010 U	0.010
1,2-Dichloropropane		2.2 U	2.2	0.010 U	0.010
Bromodichloromethane		1.5 U	1.5	0.010 U	0.010
cis-1,3-Dichloropropene		2.2 U	2.2	0.010 U	0.010
Toluene		1.3 J	2.7	0.005 J	0.010
trans-1,3-Dichloropropene		2.2 U	2.2	0.010 U	0.010
1,1,2-Trichloroethane		1.8 U	1.8	0.010 U	0.010
Tetrachloroethene		1.5 U	1.5	0.010 U	0.010
Dibromochloromethane		1.2 U	1.2	0.010 U	0.010
Chlorobenzene		2.2 U	2.2	0.010 U	0.010
Ethylbenzene		2.3 U	2.3	0.010 U	0.010
m&p-Xylenes		0.5 J	2.3	0.002 J	0.010
o-Xylene		2.3 U	2.3	0.010 U	0.010
Styrene		2.4 U	2.4	0.010 U	0.010
Bromoform		1.0 U	1.0	0.010 U	0.010
1,1,2,2-Tetrachloroethane		1.5 U	1.5	0.010 U	0.010

APPENDIX IV
CALCULATION OF VOC EMISSIONS FROM CARBON UNITS

Signed:	Checked:	
9		

APPENDIX IV

GROUND-WATER REMEDIAL ACTION **ROWE INDUSTRIES SUPERFUND SITE** SAG HARBOR, NEW YORK

CALCULATION OF VOLATILE ORGANIC COMPOUNDS DISCHARGED FROM **VAPOR-PHASE CARBON UNITS**

Calculated by: Laura R. Zima Checked by: Alfred N. Kovalik

STATEMENT OF PROBLEM:

Calculate the quantity of VOCs discharged from the vapor-phase carbon units based on vapor concentrations and flow rates.

PROBLEM CONSTRAINTS:

Emission Limits:

Total VOCs = 0.022 lb/hr

(Acceptable stack discharge concentrations for meeting AgC concentrations at property boundary are included in table below. Allowable concentrations calculated in Appendix IV of the December report.)

Date	PCE (mg/m³)	TCE (mg/m³)	Toluene (mg/m³)	Benzene (mg/m³)	Chloroform (mg/m ³)	m&p- Xylenes (mg/m³)
Allowable Conc.	0.0068	0.041	NE	NE	2.1	NE
12/19/02	0	0	0.045	0.006	0.001	0.006
1/9/03	0.001	0	0.060	00	0	0.004
2/20/03	0	0	0.015	0	0	0
3/12/03	0	0	0.010	0.002	0.006	0.002
4/9/03	0	<u> </u>	0.005	0.000	0.009	0.002

Date	Methylene Chloride (mg/m³)	o-Xylene (mg/m³)	Chloro- methane (mg/m³)	Carbon Disulfide (mg/m³)	Styrene (mg/m³)	Total VOCs (mg/m³)
Allowable Conc.	NE	NE	NE	NE	NE	NA
12/19/03	0.022	0	0	0	0	0.082
1/9/03	0.018	0	0	0	0	0.083
2/20/03	0_	0	0	0	0	0.015
3/12/03	0	0	0	0.003	0	0.023
4/9/03	0.023	0	0	0.019	0	0.058

NE : Not Established for Site

: Not Collected

0 : Less than the laboratory method detection limit.

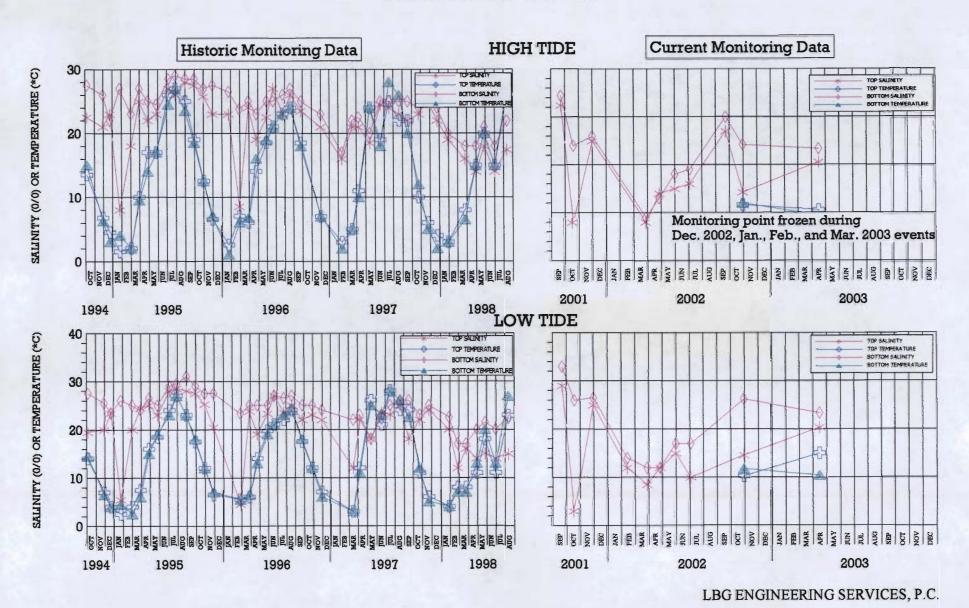
NA : Not Applicable

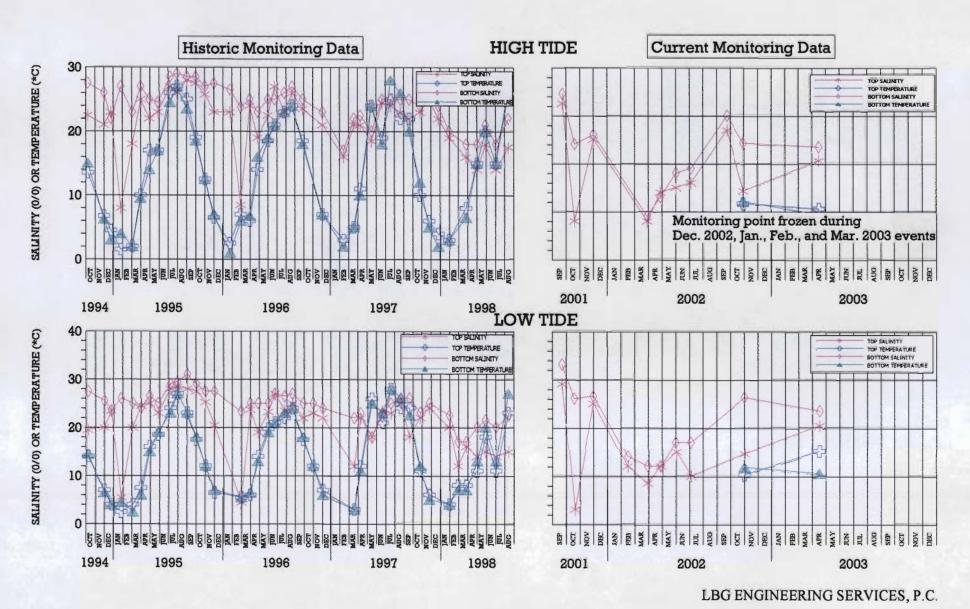
Signed:	Checked:	

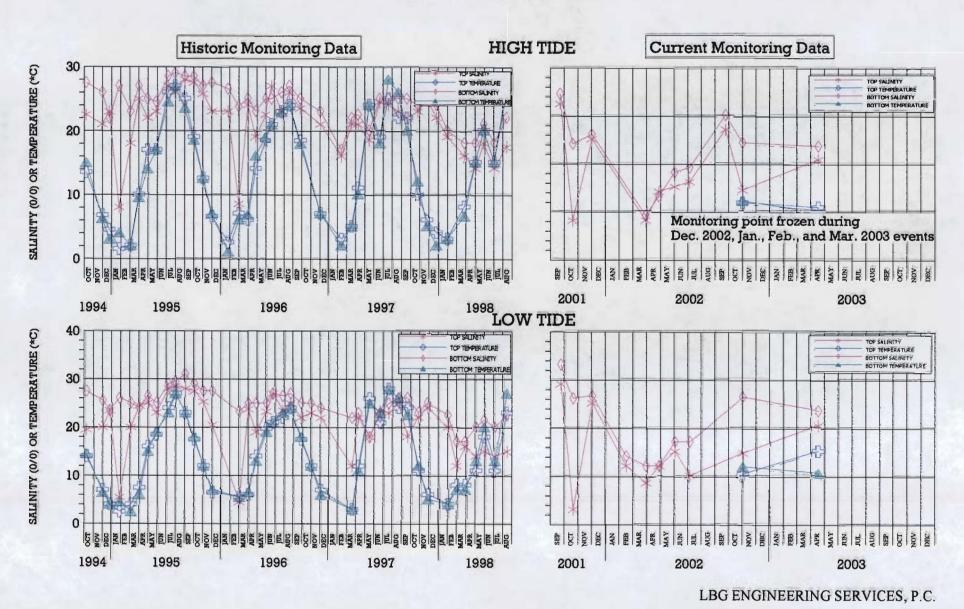
CALCULATION:

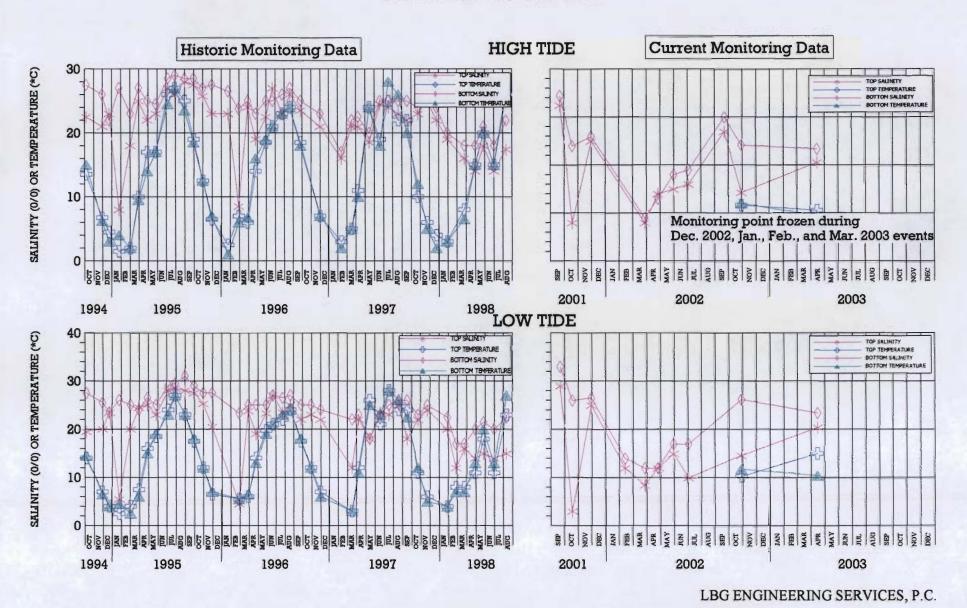
VOC Emissions(lb/hr)
$$C Q = \frac{60 \text{ min}}{hr} = \frac{1 m^3}{35.31 \text{ ft}^3} = \frac{1 \text{ lb}}{453,600 \text{ mg}}$$

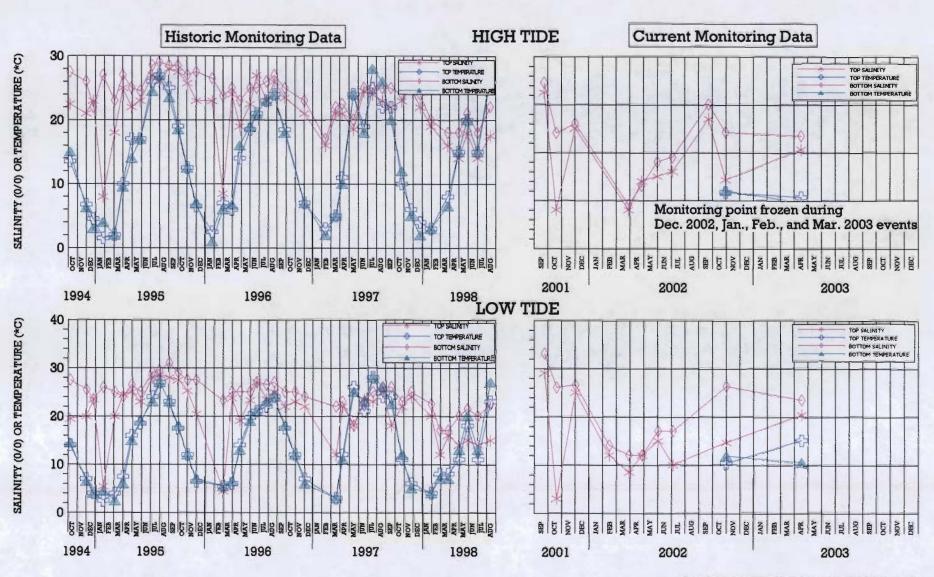
where, Q is the air flowrate in standard cubic feet per minute (scfm) and C is the VOC concentration in mg/m³

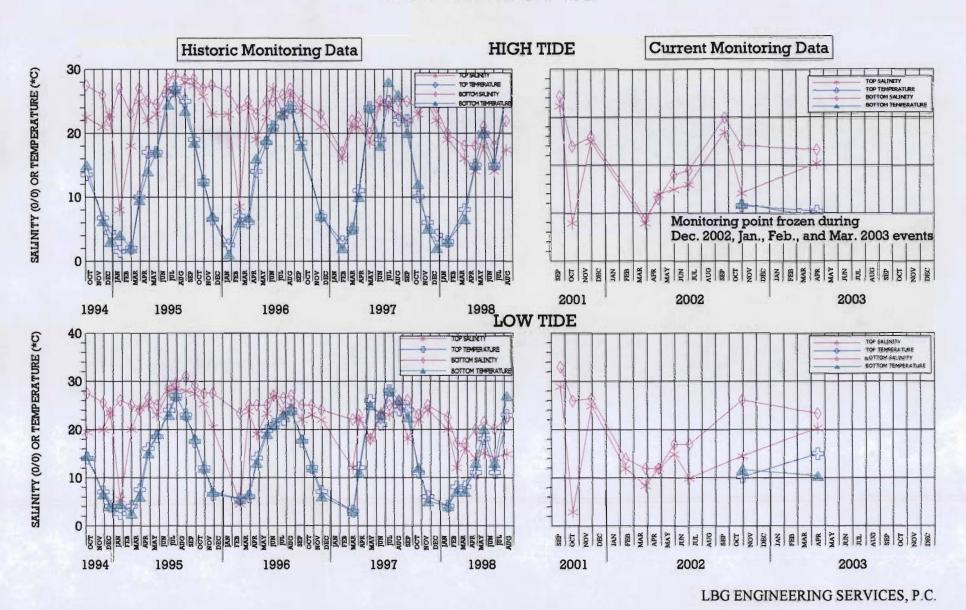

Date	Operating Time (hours)	Vapor Flow Rate (scfm)*	VOC Vapor Conc. (mg/m³)	VOC Emissions (lb/hr)	VOC Emissions (lb)
12/17/02					
12/19/02	48	3,359	0.082	0.0010	0.050
1/9/03	504	3,532	0.083	0.0011	0.553
2/20/03	1,008	3,415	0.015	0.00019	0.193
3/12/03	480	3,447	0.023	0.00030	0.143
4/9/03	672	3,490	0.058	0.00076	0.510
				Total	1.449

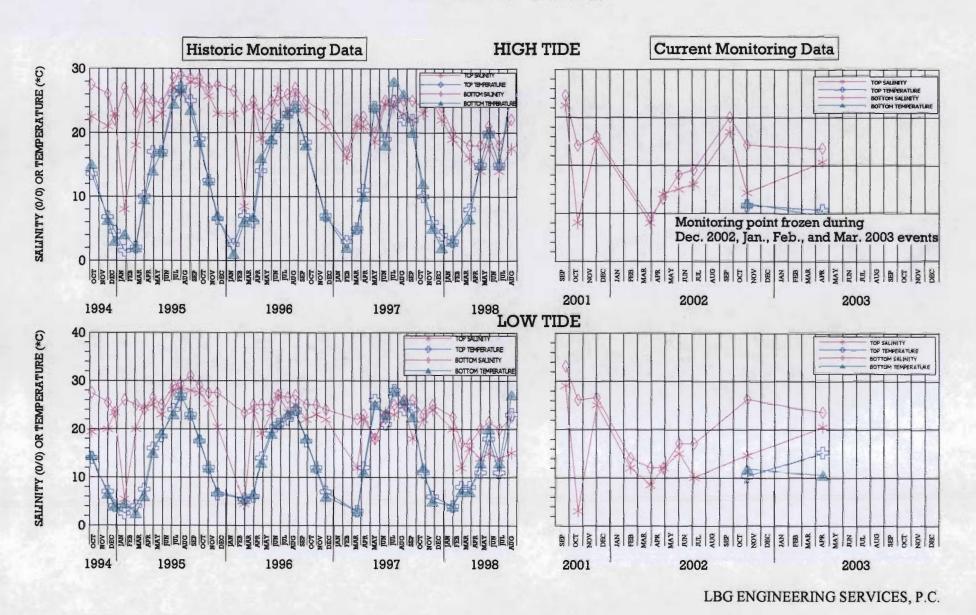

^{* :} Average vapor flow rate used.

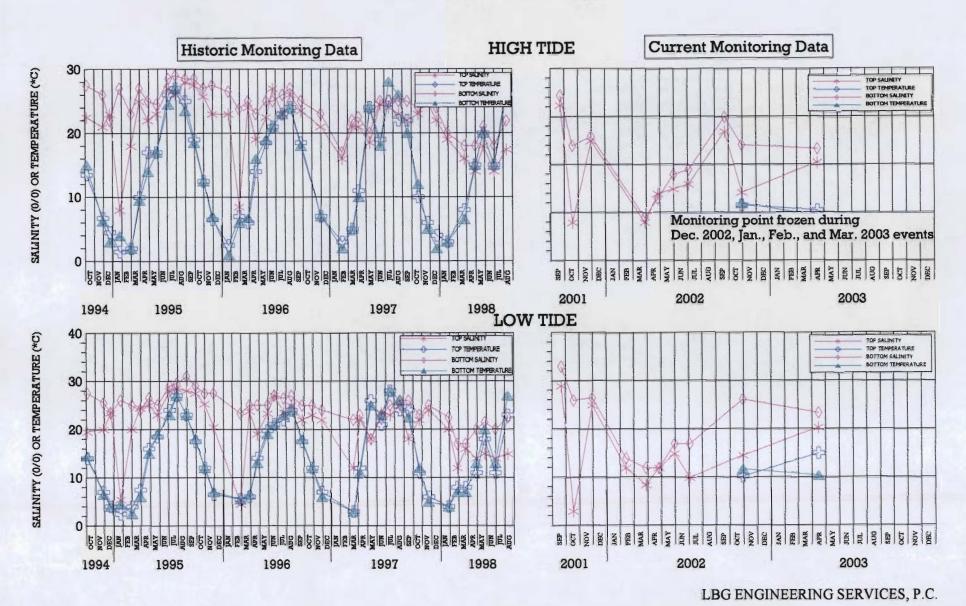

CONCLUSIONS:

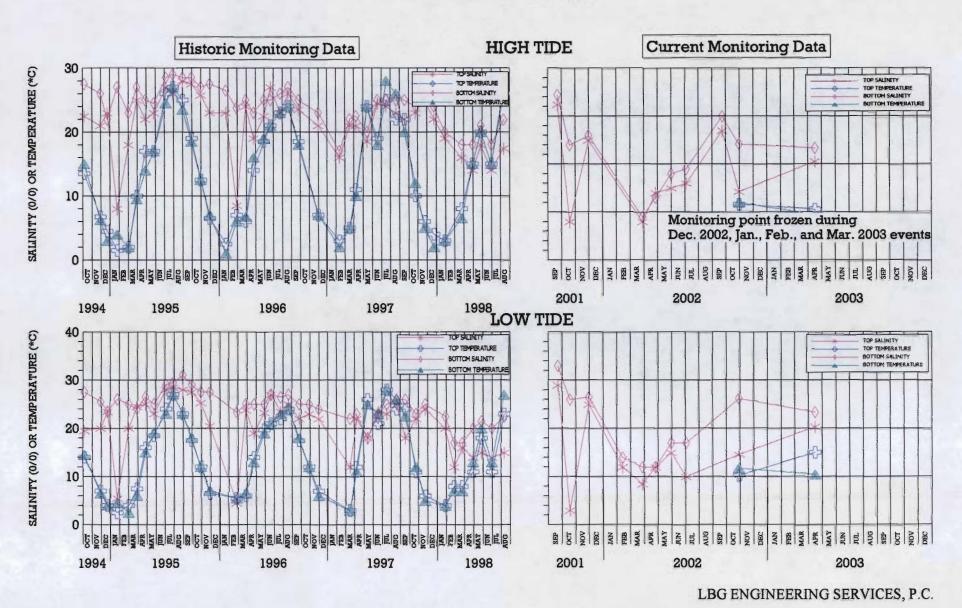

Emissions from the carbon units were below the VOC emission limit of 0.022 lbs/hr. Concentrations of PCE,TCE and chloroform at the stack were also below the allowable emission rates of those compounds corresponding to the AgC at the property line.

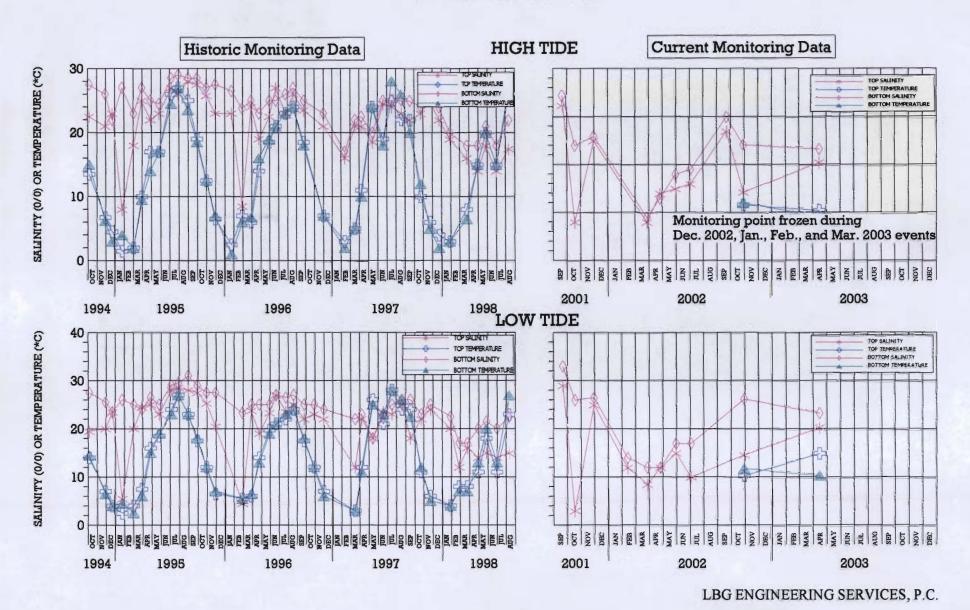

APPENDIX V
TEMPERATURE AND SALINITY GRAPHS

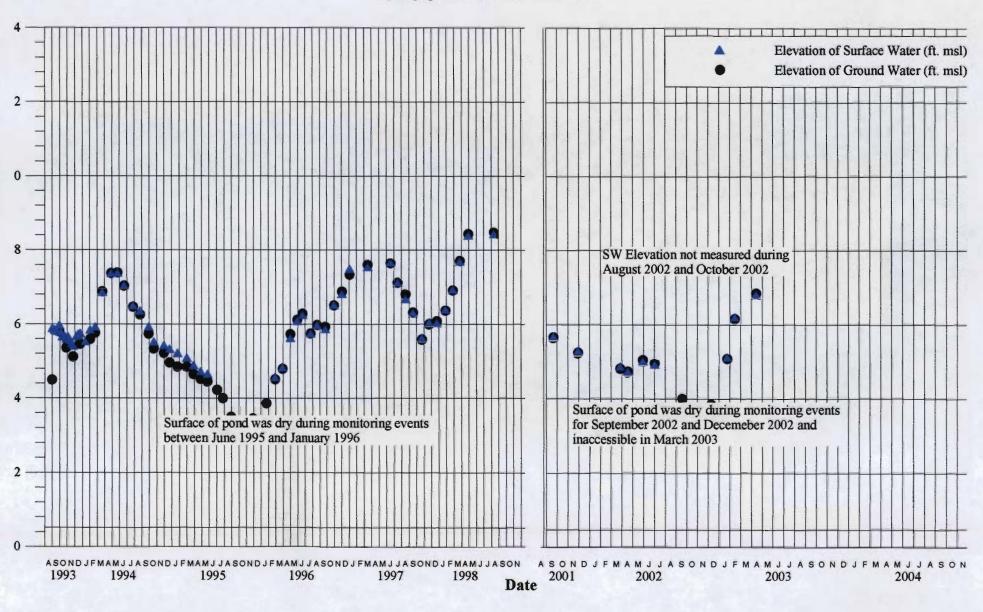


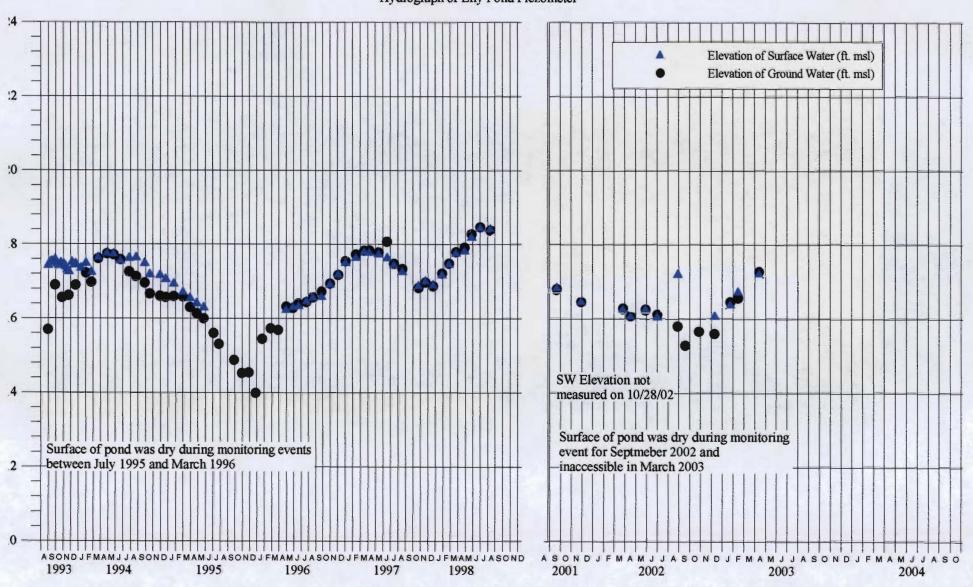




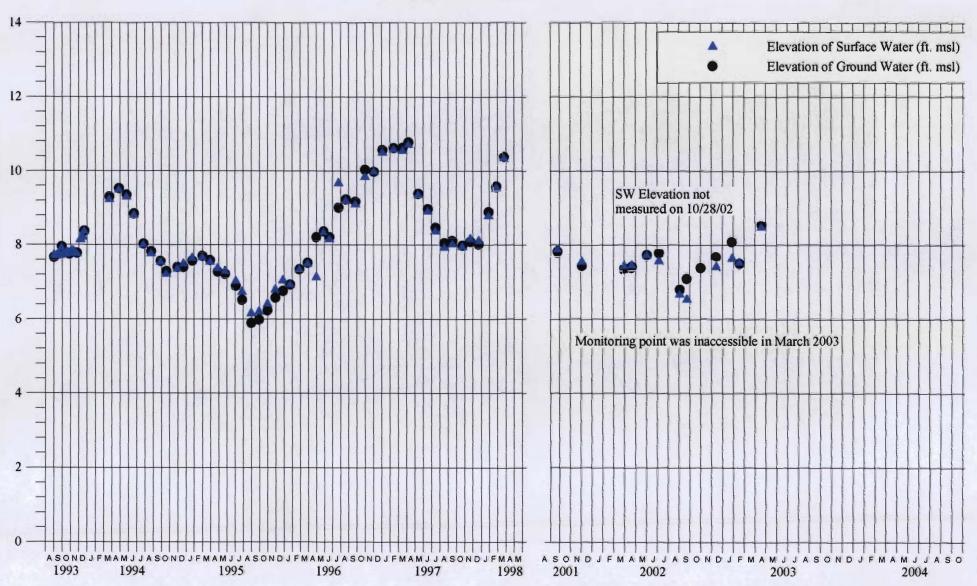


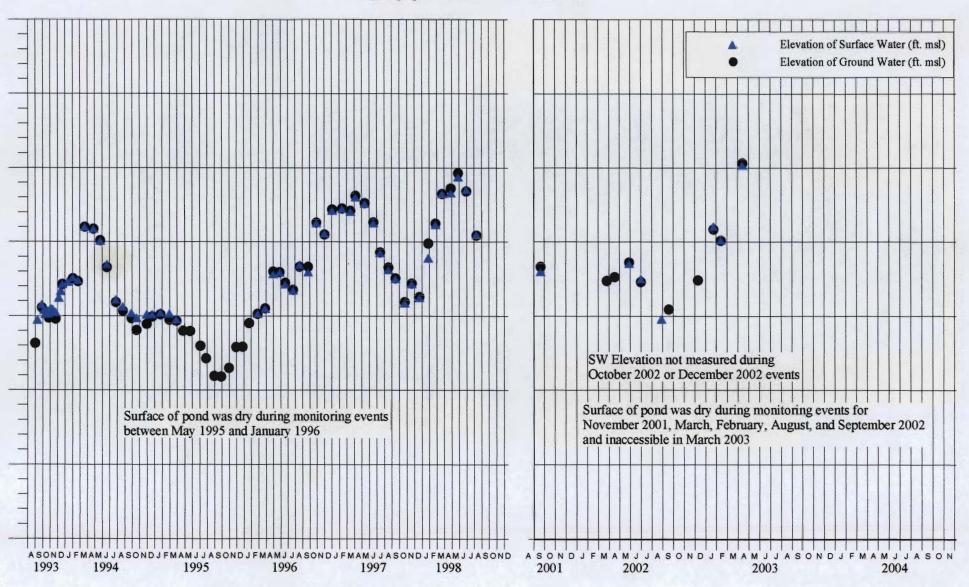






APPENDIX VI POND AND BROOK HYDROGRAPHS


Hydrograph of Crooked Pond Piezometer


Hydrograph of Lily Pond Piezometer

Hydrograph of Round Pond Piezometer

Hydrograph of Whaler's Pond Piezometer

