-DRAFT-

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Prepared For:

Kraft Foods Group, Inc.

July 2012

Prepared By:

LBG ENGINEERING SERVICES, P.C. Environmental and Civil Engineers 4 Research Drive, Suite 301 Shelton, CT 06484

TABLE OF CONTENTS

				<u>Page</u>								
EXE	CUTIVE	E SUM	IMARY	i								
FSP8	&ТТ			i								
FP&	T SYSTI	Ε M		iv								
I.	INTR	ODUC	CTION	1								
II.	FULL SCALE PUMP AND TREAT SYSTEM											
	A. Operation and Maintenance (O&M) Activities											
	В.	_	er-Quality Data									
	C.		overy Well Performance									
	D.		i-Annual Groundwater Sampling									
		1.	Regional Aquifer – FSP&T	7								
		2.	Local Perched Groundwater – FDSA									
	E.	Air-	Quality Data	9								
	F.	Hyd	rogeological Summary	11								
		1.	Water-Level Data	11								
		2.	Capture Zone Evaluation									
		3.	Flora and Fauna Monitoring									
	G.	Grou	andwater Plume									
		1.	PCE Plume									
		2.	TCA Plume	15								
III.	FOCUSED PUMP AND TREAT SYSTEM AND FDSA WATER QUALITY											
	A.	Ope	ration and Maintenance (O&M) Activities	18								
IV.	HAZA	ARDO	OUS WASTE	18								
V.	PROPOSED CHANGES TO THE OPERATION OF THE FSP&T											
	AND FP&T SYSTEMS											
		A.	FSP&T System	19								
		B.	FP&T System	20								
VI.	CONO	CLUSI	IONS AND RECOMMENDATIONS	20								
	A.		&T System									
	В.		T System									

LIST OF TABLES (at the end of report)

<u>Table</u>	
1	Effluent Water Quality Results for the Full Scale Pump and Treat System (FSP&T)
2	Average Field Parameter Values for Water Samples from Recovery Wells for 2011
3	Recovery Well Construction Details
4	2010 and 2011 Volume Pumped and Average Flow Rate of Groundwater from Recovery Wells
5	RW-6 Average Drawdown and Pumping Data for 2011
6	2010 and 2011 Recovery Well Water Quality Results- FSP&T System
7	Monitor Well Construction Details
8	Current and Historic Concentrations of PCE Detected in Groundwater from Monitor and Recovery Wells
9	Current and Historic Concentrations of TCE Detected in Groundwater from Monitor and Recovery Wells
10	Current and Historic Concentrations of TCA Detected in Groundwater from Monitor and Recovery Wells
11	Summary of Vapor-Phase Carbon Unit Operating Data
12	Carbon Unit System Air Quality Results
13	Summary of Groundwater Elevation Measurements for Monitor and Recovery Wells in 2011, in feet mean sea level
14	FSP&T Influent PCE Concentration and Cumulative VOCs Recovered
15	Recovery Well FRW-1 VOC Concentrations, micrograms per liter
16	Recovery Well FRW-2 VOC Concentrations, micrograms per liter
17	Recovery Well FRW-3 VOC Concentrations, micrograms per liter
18	Recovery Well FRW-4 VOC Concentrations, micrograms per liter
19	Summary of Geochemical Parameters for Focused Recovery Wells (FRWs)

LIST OF GRAPHS (at the end of report)

<u>Graph</u>	
1	FSP&T Annual Average PCE, TCE and TCA Concentrations in Samples from Recovery Wells
2	FSP&T Monthly PCE Concentrations in Groundwater Samples from Select Recovery Wells
3	FSP&T Monthly TCA Concentrations in Groundwater Samples from Select Recovery Wells
4	FSP&T Total VOC Effluent Vapor Concentrations and Emissions for 2011
5	Cumulative VOC Recovery by Groundwater System vs. Time
6	FP&T Recovery Well VOC Concentrations for FRW-1
7	FP&T Recovery Well VOC Concentrations for FRW-1 for 2011
8	FP&T Recovery Well VOC Concentrations for FRW-2
9	FP&T Recovery Well VOC Concentrations for FRW-2 for 2011
10	FP&T Recovery Well VOC Concentrations for FRW-3
11	FP&T Recovery Well VOC Concentrations for FRW-3 for 2011
12	FP&T Recovery Well VOC Concentrations for FRW-4
13	FP&T Recovery Well VOC Concentrations for FRW-4 for 2011
	LIST OF FIGURES
	(at the end of report)
<u>Figure</u>	
1	Site Map
2	Former Drum Storage Area Site Map
3	March 8, 2011 Groundwater Elevation Contour Map, Conditions Without FSP&T and FP&T Systems Operating
4	March 31, 2011 Groundwater Elevation Contour Map and Capture Zone, Conditions with FSP&T and FP&T Systems Operating
5	September 22, 2011 Groundwater Elevation Contour Map, Conditions Without FSP&T and FP&T Systems Operating
6	September 12, 2011 Groundwater Elevation Contour Map and Capture Zone, Conditions with FSP&T System Operating
7	March 2011 PCE Plume Map
8	September 2011 PCE Plume Map
9	March 2011 TCA Plume Map
10	September 2011 TCA Plume Map
11	Pre-Remediation, October 2007 and September 2011 PCE Plume Maps

LIST OF APPENDICES (at end of report)

Appendix

A	Recovery Well Rehabilitation -2011
В	March and September 2011 Groundwater Laboratory Results
C	Piezometer Hydrographs
D	USGS Monitor Well Daily Groundwater Elevation Data for 2011
E	Flora and Fauna Quarterly Reports
F	2011 Hazardous Waste Manifests

-DRAFT-

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

EXECUTIVE SUMMARY

On behalf of Kraft Foods Group, Inc. (Kraft Foods), LBG Engineering Services, P.C. (LBGES) has prepared the 2011 Annual Summary Report for the Former Rowe Industries Superfund Site (Site) located at 1668 Sag Harbor Turnpike in Sag Harbor, New York. The full-scale pump and treat (FSP&T) and focus pump and treat (FP&T) systems operated at the Site during 2011. The FSP&T system focuses on cleanup of volatile organic compounds (VOCs), the contaminants of concern (COCs), in the groundwater of the Upper Glacial Aquifer in the area located hydraulically downgradient from the former drum storage area (FDSA). The discharge of the FP&T system was routed to the Equalization (EQ) tank of the FSP&T system and the focus recovery wells (FRWs) resumed operation on September 22, 2008 to remediate the COCs in the perched groundwater in the FDSA.

The following conclusions and recommendations are based on the performance of the FSP&T and FP&T systems during 2011.

FSP&T

- 1. The recommended SPDES discharge quality criteria for VOCs were not exceeded in any discharge samples in 2011.
- 2. During 2011, the concentrations of PCE, TCE and TCA in the downgradient plume of impacted groundwater in the Upper Glacial Aquifer were below ARARs in samples from all recovery wells and monitor wells tested, with the exception of the concentration of TCA in the groundwater sample from MW-43A of 5.3 μg/l and MW-53 of 7.3 μg/l in September.

- 3. The concentrations of PCE, TCE and TCA continue to slowly decrease with time in the downgradient plume. The highest concentrations of PCE, TCE and TCA in the downgradient plume remain along Carroll Street in the vicinity of MW-53, RW-6 and RW-7. The continued improvement in water quality will allow for the operation of RW-3, 5, 8 and 9 to be discontinued; groundwater samples will continue to be collected from these wells in 2012.
- 4. Concentrations of PCE, TCE and TCA were below the ARARs (5 μg/l) and below the laboratory reporting limits of 1 μg/l in the groundwater samples from RW-1 from the start of FSP&T system operation in December 2002 to July 2005, at which time operation of the well was discontinued. The quality of the groundwater samples collected from RW-1 in March and September 2011 continue to meet the ARARs; the concentrations of PCE, TCE and TCA being below laboratory reporting limits. Therefore, this recovery well will be left off. Semi-annual collection of samples from this well is scheduled for 2012.
- 5. Groundwater elevation contour maps, from which the capture zones of the recovery wells are defined, provide evidence that the plume is being captured by the recovery wells.
- 6. Surface and groundwater levels at Crooked Pond, Lily Pond and Ligonee Brook were not impacted by the operation of the FSP&T System. Water levels at these locations were measured in March and September 2011. Groundwater levels in the piezometers at these locations will continue to be measured during semi-annual groundwater monitoring events.
- 7. The maximum allowable vapor emissions from this system of 0.022 lbs/hr were not exceeded in 2011. Vapor emissions, averaging 0.00088 lbs/hr, remain well below the maximum allowable vapor emissions limit. LBGES will continue to analyze vapor samples on a monthly basis.

- 8. Airflow through the air-stripper tower in 2011 ranged from approximately 900 scfm to 2,889 scfm and was adequate to treat the water by stripping the COCs from the influent water. During the month of June the average air flow increased from 1,307 to 2,754 scfm following repairs to the vapor-phase carbon units.
- 9. Recovery well rehabilitation to improve well performance was completed in April and May 2011 for recovery wells RW-2, 4, 6, 8 and 9. The well rehabilitation efforts continue to be effective in the wells where high iron concentrations in the groundwater result in biofouling that is the primary cause of reduced yield (RW-2, 4, 8 and 9). This finding was based on an increase in specific capacity, an increase in the pumping rate, or a reduction in the percent motor speed for a given flow setting after rehabilitation of the wells. For additional information regarding the 2011 well rehabilitation work and results, refer to Appendix A.
- 10. All operating recovery wells will be evaluated in 2012 to determine what level of well rehabilitation is needed at that time. Well rehabilitation with the use of UnicidTM is currently projected for RW-2, 4, 8 and 9; mechanical rehabilitation will be completed on RW-3, 5, 6 and 7. Wells approved for shut down (RW-3, 5, 8 and 9) will be rehabilitated prior to shut down.
- 11. Following well rehabilitation activities, biofouling and iron bacteria encrustation was removed from the sump of the air-stripper tower in May 2011 and taken from the property for disposal as hazardous waste. The accumulation of biofouling and iron bacteria encrustation in the components of the remediation system is caused by normal system operation. No significant accumulation of biofouling or iron bacteria encrustation was observed on the packing material in the air-striper tower during 2011. The pattern of biofouling and iron bacteria encrustation accumulation in the treatment system suggests that the iron bacteria in the treated water continue to pass through the packing of the tower. In 2012, the air-stripper tower packing material and the tower sump will be inspected periodically for biofouling and iron bacteria encrustation, and backwashed and/or cleaned as needed.

- 12. Biofouling and iron bacteria encrustation was removed from the equalization tank, bag filter housings and transfer tank in May 2011. The biofouling and iron bacteria encrustation from these tanks were removed and disposed of as hazardous waste following well rehabilitation activities. The accumulation of biofouling and iron bacteria encrustation at these locations is caused by normal system operation.
- 13. A total of 222.7 lbs of VOCs was recovered by the FSP&T and FP&T systems between startup in December 2002 and December 2011. The recovered mass of VOCs exceeds the initial general estimate for total dissolved-phase VOCs (183 lbs) provided by the original groundwater model. This difference suggests that some of the COC mass that was recovered (and continues to be recovered) is being desorbed from the soil to the groundwater. Continuation of the exponentially decreasing rate of VOC recovery (based on COC desorption rates) is anticipated with ongoing operation of the FSP&T system.
- 14. During 2011, the FSP&T system operated an average of 72.4% of the time. The FSP&T system was down for extended periods during the month of May for scheduled maintenance.

FP&T SYSTEM

1. The FP&T system was shut down in April 2010 because of very low flow from the wells and then was left off for a short down period to assess the rebound of contaminant concentrations in the FDSA. The FP&T was scheduled to be restarted in July 2010; however, due to problems with the FSP&T User Interface Computer (UIC), the FP&T system could not be restarted until January 20, 2011. The FP&T system operated for the remainder of 2011. Active groundwater remediation of the FDSA is projected to continue with the discharge being routed to the FSP&T system for 2012, and will continue to operate as long as the FSP&T system is operating. In the event contaminated water migrates from the perched conditions of the FDSA to

- the Upper Glacial Aquifer, it will be captured by the onsite recovery wells of the FSP&T system.
- 2. Concentrations of PCE, TCE, 1,2-DCE and vinyl chloride (VC) in the groundwater samples from the FP&T recovery wells fluctuated throughout the year. The highest PCE concentration in the FDSA was detected in groundwater samples from FRW-1 during the first two weeks of January 2011, prior to the restart of the FP&T system.
- 3. Concentrations of TCE were below the ARAR (5 μg/l) and VC was below the New York State Department of Environmental Conservation (NYDEC) ambient water quality standard (1 μg/l) in groundwater samples from all FDSA recovery wells during 2011.
- 4. Recovery well maintenance to improve well performance was completed in May and December 2011 for recovery wells FRW-1 through FRW-4. The maintenance event consisted of evacuating accumulated sediment from the recovery well sumps, and cleaning and inspecting the pumps. All recovery wells will be routinely evaluated in 2012 and maintenance will be scheduled as needed.
- 5. Following recovery well maintenance activity, sediment was evacuated from the equalization tank. The below-grade piping connecting the FP&T and FSP&T systems was cleaned twice during 2011. Flow from the FP&T system to the FSP&T system will be monitored during 2012 and maintenance will be scheduled as needed.

-DRAFT-

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

I. INTRODUCTION

On behalf of Kraft Foods Group, Inc. (Kraft Foods), LBG Engineering Services, P.C. (LBGES) has prepared the 2011 Annual Summary Report for the former Rowe Industries Superfund Site (Site) located at 1668 Sag Harbor Turnpike in Sag Harbor, Suffolk County, New York. The purpose of this report is to present a performance summary of the Full Scale Pump and Treat (FSP&T) system (Section II) and a summary of activities that occurred during operation of the Focused Pump and Treat (FP&T) system (Section III). A summary of the waste generated for the Site is included in Section IV. The conclusions and recommendations for future actions at the Site are included in Section V. Site maps are provided as figures 1 and 2.

II. FULL SCALE PUMP AND TREAT SYSTEM

This section of the report provides a summary of the performance of the FSP&T system with respect to operation and maintenance (O&M) activities, water-quality data, air quality data and hydrogeological data.

A total of 140,171,991 gallons of groundwater was treated through the FSP&T and FP&T systems from January 1, 2011 to December 31, 2011. A total of 1.6 pounds of volatile organic compounds (VOCs) was recovered by the FSP&T and FP&T systems from December 27, 2010 to December 27, 2011.

A. Operation and Maintenance (O&M) Activities

The system operated for 72.4% of the time during 2011, which equates to a total of 264 days out of a possible 365 days.

A summary of the major O&M activities for the year is presented below:

• replacement of damaged or malfunctioning flow meter parts and flow meter transmitters as needed at RW-4, RW-7, RW-9, onsite and offsite combined flow meter;

- replacement of the malfunctioning heater near the transfer tank in the FSP&T system by technicians from Absolute Control (January 2011);
- removal of vegetation from the primary and secondary recharge basins and rototilling of the primary basin by Renner Landscaping (January and October 2011);
- replacement of the air duct between the air-stripper blower and the tower by technicians from Matz Rightway (January 2011);
- completion of a performance assessment of the carbon unit vessels, identification of water trapped in the carbon vessels and associated piping, installation of drain ports, and drainage of the water by technicians from Alpine Environmental (March 2011);
- replacement of the FSP&T system autodialer battery (May 2011);
- visual inspection of the air-stripper tower packing material for algae growth and iron bacteria deposition (May 2010);
- completion of carbon vessel maintenance and installation of new activated carbon in the carbon vessels by technicians from Alpine Environmental (June 2011);
- repair of a hairline crack on the neck of the equalization tank manway by technicians from Burt Process (July 2011);
- replacement of the damaged bearings and driveshaft in the FSP&T system booster blower, balancing of the dynamic fan, replacement and alignment of the booster blower belts, and testing of all other bearings and the blower motor performance by technicians from ACFM Dynamics (August 2011);
- testing of the potable water backflow preventer by a GF Schiavioni representative (August 2011);
- redevelopment of MW-43A, MW-98-05A and MW-98-05B to remove accumulated sediment from the bottom of the well screen and insure good connectivity with groundwater by technicians from Alpine Environmental (September 2011);
- replacement of the malfunctioning pH sensor in the FSP&T effluent transfer tank (September 2011);
- replacement of the malfunctioning variable frequency drive for the RW-7 pump by Rockwell (November 2011);
- extension of the MW-46 well cluster riser piping as part of ongoing construction work in the Sag Harbor Industries parking lot by Renner Landscaping (December 2011);

- replacement of the malfunctioning pump and/or motor in RW-2, RW-4, RW-7 and RW-8 by technicians from Alpine Environmental;
- resetting of the flow meter totalizers for RW-2, RW-3, RW-4, RW-5, RW-6, RW-7, RW-8, RW-9, EQ TP101 and effluent flow meters when necessary;
- inspection and replacement of the booster blower (BB) and air stripper blower (ASB) belts when necessary;
- completion of well rehabilitation activities for recovery wells RW-2, 4, 6, 8 and RW-9 in April and May 2011 by technicians from Alpine Environmental and summarizing of the recovery well rehabilitation activities and results in a report entitled "Recovery Well Rehabilitation -2011", attached in Appendix A;
- removal of the biofouling and iron bacteria encrustation from the equalization (EQ) tank, air-stripper tower sump and transfer tank (May 2011);
- completion of five maintenance events to remove biofouling and iron bacteria encrustation that included cleaning vault piping and flow meters at the recovery wells, below-grade piping, check valves and building piping by technicians from Alpine Environmental. The heaviest biofouling and iron bacteria encrustation continues to occur in recovery wells RW-2, 4, 8 and 9 (February, March, May, September and December 2011);
- performance of routine O&M activities including lubricating pumps and motors, FSP&T system sampling, recovery well sampling, vapor sampling, and troubleshooting/resetting alarms; and
- clean out and inspection of the trench drain in front of the FSP&T system building and the storm drain catch basin behind the FSP&T system building by technicians from Alpine Environmental (May 2011).

B. Water-Quality Data

The analytical results of all weekly effluent water-quality sampling events for the FSP&T system in 2011 have been below the recommended state pollutant discharge elimination system (SPDES) Equivalent Effluent Criteria and are summarized in Table 1. The New York State Department of Environmental Conservation (NYSDEC) renewed the SPDES Equivalent Effluent Criteria for the Site on October 1, 2011. The duration of the SPDES permit is five years and will be renewed in 2016. The minimum pH value in the SPDES permit is 5.0 to reflect the natural pH conditions in the groundwater at the Site.

C. Recovery Well Performance

Table 2 presents average groundwater quality parameters measured in the field at the recovery wells during 2011. The table includes pH, temperature, turbidity, dissolved oxygen (DO), conductivity, and oxidation reduction potential (ORP). A calibrated Horiba U-22 water quality meter was used for all the measurements in 2011. The pH of the groundwater measured at operating FSP&T recovery wells ranged from 5.76 (RW-6) to 6.55 (RW-3). The DO and ORP values in the groundwater at the recovery wells indicate that aerobic conditions are present.

Table 3 presents a summary of the construction details of the recovery wells RW-1 through RW-9 and FRW-1 through FRW-4. The table summarizes the top of casing elevations, well diameters, total depth, screen and casing setting and the material used in the well construction. Table 4 presents a summary of recovery well operation for 2010 and 2011. The table includes the total volume of water pumped and the average flow rate from each recovery well. The total volume of water value represents groundwater recovered from both the FSP&T and FP&T system recovery wells.

The slight decrease in the volume of water pumped from the recovery wells RW-4 and RW-7 between the years 2010 and 2011 is attributed to a decrease in the average pumping rates . The volume of water pumped from RW-7 in 2011was further decreased ys everal extended periods of down time due to mechanical problems with the well pump and variable frequency drive. The total volume of water pumped from all other recovery wells increased slightly due to increased time of operation when compared to 2010. The average flow rate from RW-3 was also slightly higher in 2011 than in 2010.

The pumping rate has been set at 15 gpm for RW-6 since June 2005 to prevent excessive groundwater drawdown that could de-water the pump. As previously discussed in monthly status reports, the increase in groundwater drawdown in RW-6 is believed to be caused by a combination of factors, including finer soils in the immediate vicinity of RW-6 and microbial growth that is resistant to well rehabilitation efforts.

Based on a review of the hourly operational data for RW-6 in 2011, a summary of which is presented in Table 5, the groundwater drawdown has varied between 25.39 ft (feet) (post-redevelopment) and 51.07 ft (pre-redevelopment) at an average pumping rate of 15 gpm. Groundwater drawdown in RW-6 increased steadily in 2011; reflecting the normal pattern of declining well efficiency that has been documented for this well. Drawdown in RW-6 will

continue to be monitored monthly through 2012 and this well will be scheduled for redevelopment in 2012. The 2006 groundwater model has indicated that the plume can be captured without RW-6 operating. However, it is more efficient and cost effective to capture the plume where it is present at the highest concentrations, than to allow it to migrate downgradient before capture. Therefore, the operation of RW-6 will continue as long as aquifer conditions allow and the remaining portion of the plume around the well is effectively being recovered.

Table 6 presents a summary of the groundwater quality results from monthly sampling of the operating recovery wells in the FSP&T system for 2010 and 2011 and the groundwater quality results from RW-1 for 2004 through 2011. The 2010 and 2011 time periods are presented to assist with evaluating trends and for easy reference to highlight a few key points discussed below.

Graph 1 illustrates annual average tetrachloroethylene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (TCA) concentrations in the groundwater at RW-2 through RW-7 for 2011. VOCs were not detected in groundwater samples collected from RW-8 in 2011. PCE, TCE and TCA were not detected in groundwater samples collected from RW-1, RW-8 or RW-9 in 2011. However, during the month of November, low concentrations of chloroform (0.16 μg/l (micrograms per liter)) and chloroethane (0.16 μg/l (micrograms per liter)) were detected in RW-9. Low concentrations of chloroethane were also detected in groundwater samples from RW-9 during December 2010. Historically low concentrations of chloroethane have been detected in the recovery wells with decreasing frequency in recent times. During both 2011 sampling events, low concentrations of chloroform (0.6 μg/l and 0.8 μg/l) were detected in RW-1, however, the concentrations were below the York Analytical laboratory quantifiable limit of 1 μg/l and are reported as an estimated concentration by the laboratory. The concentrations are also well below the ARAR of 7 μg/l for chloroform. TCE was detected in groundwater samples collected from RW-2, RW-3, RW-4, RW-6 and RW-7, but below the ARAR of 5 μg/l. TCE was not detected in groundwater samples from RW-1, 5, 8 and 9.

Graph 2 illustrates monthly PCE concentrations in groundwater from recovery wells RW-2, RW-4, RW-6 and RW-7; this graph excludes RW-1, RW-3, RW-5, RW-8 and RW-9 because PCE was either not detected in groundwater samples from these recovery wells in 2011 or present at very low, estimated concentrations. The PCE concentrations in the groundwater at RW-2, RW-4, RW-6 and RW-7 were below the ARAR of 5 μg/l in 2011. PCE was detected in

groundwater from recovery wells RW-3 and RW-5, however, the concentrations were below the York Analytical laboratory quantifiable limit of $0.5 \,\mu\text{g/l}$ and are reported as an estimated concentration by the laboratory. These concentrations were not detected prior to September of 2011 because the previous laboratory used for the water quality analyses used a quantifiable laboratory limit of $1 \,\mu\text{g/l}$. 2011 is the first year that PCE concentrations in groundwater samples collected from the downgradient recovery wells (RW-2 through RW-9) were below the chemical specific ARAR of $5 \,\mu\text{g/l}$ for the entire year.

Graph 3 illustrates the monthly TCA concentrations in groundwater for recovery wells RW-2, 3, 4, 5, 6 and 7. RW-1, RW-8 and RW-9 are excluded from this graph because TCA was not detected in groundwater samples from these wells during 2011. TCA concentrations in all of the downgradient recovery wells were below the ARAR of 5 μ g/l in 2011. TCA concentrations in the groundwater at RW-4 and RW-6 ranged from less than 0.5 μ g/l to 4.2 μ g/l with a modest increasing trend starting in September 2011, likely related to the change in the laboratory completing the analysis.

PCE, TCA and TCE concentrations have been at or below the ARAR of 5 $\mu g/l$ in groundwater samples collected from:

- RW-2 for 34 consecutive months (2 year and 10 months);
- RW-3 for 54 consecutive months (4 years and 6 months);
- RW-4 for 16 consecutive months (1 year and 4 months);
- RW-5 for 61 consecutive months (5 years and 1 month);
- RW-6 for 13 consecutive months (1 year and 1 month);
- RW-7 for 18 consecutive months (1 year and 6 months);
- RW-8 for 78 consecutive months (6 years and 6 months); and
- RW-9 for 78 consecutive months (6 years and 6 months).

D. Semi-Annual Groundwater Sampling

Semi-annual groundwater samples were collected and analyzed from recovery wells and select monitor wells in March and September 2011. Tables 3 and 7 present a summary of the construction details and dates of construction of the recovery and monitor wells, respectively. The PCE, TCE and TCA concentrations are summarized in tables 8, 9 and 10, respectively. The

laboratory reports for the March and September 2011 sampling events are presented in Appendix B.

VOC concentrations were not detected in the groundwater samples from monitor wells MW-B1, MW-B2, MW-B3 and MW-B4 near the recharge basin in September 2011. In addition, weekly effluent system water samples contained no detected VOC concentrations above the SPDES discharge criteria in 2011. The above information suggests that the FSP&T system is adequately removing the contaminants of concern (COCs) from the groundwater before it is discharged, and that the discharge of treated groundwater to the recharge basins has not impacted the quality of the underlying groundwater.

Monitor well MW-43A located along Carroll Street between RW-5 and RW-6 was dry during the March semi-annual sampling event. The monitor well was redeveloped prior to the September semi-annual sampling event to remove fines that had settled in the bottom of the well. Also during the September sampling event, monitor well N-37, located on the property of Mrs. Fabiano, went dry during the sampling efforts and did not recharge. Therefore, a sample was not collected from monitor well N-37. The MW-98-05A and B monitor well cluster on the property of Mr. and Mrs. Hagerman was redeveloped prior to the September semi-annual sampling event in order to insure good connectivity with the aquifer. No other problems were encountered during either the March or September sampling events.

The groundwater samples from the monitor wells and RW-1 were collected using the low-flow procedure and the recovery wells (with the exception of RW-1) were sampled via a sampling port. Once the samples were collected in labeled 40 ml (milliliter) vials, and preserved with hydrochloric acid (HCl), the vials were closed and placed in bubble wrap bags in a cooler with ice. The groundwater samples were then transported to a certified laboratory under standard chain of custody procedures.

1. Regional Aquifer – FSP&T

PCE concentrations in groundwater (Table 9) continue to decrease in the downgradient plume since the start of the FSP&T system in December 2002. PCE concentrations in the groundwater samples from all of the monitor and recovery wells located in the downgradient plume were below the ARAR of 5 µg/l during both the March and September semi-annual sampling events. During March 2011, PCE was detected in the groundwater sample from

MW-43B at 1 μ g/l. During September, PCE was detected in groundwater samples from MW-43B, MW-47A and MW-54 at 4.5 μ g/l, 0.77 μ g/l and 0.80 μ g/l, respectively. PCE was not detected in groundwater samples from the remaining monitor wells tested in 2011.

TCE was not detected in the groundwater samples from any of the monitor or recovery wells located in the downgradient plume during the March 2011 semi-annual sampling event. TCE concentrations were detected above the laboratory detection limit but below the ARAR in the groundwater samples from MW-47A and RW-3 (both located on the SHI property), at $1.7 \,\mu\text{g/l}$ and $0.93 \,\mu\text{g/l}$, respectively, during the September 2011 sampling event. TCE was not detected at any other regional monitoring locations during the March and September 2011 sampling events.

TCA concentrations in the groundwater were detected at RW-6 at 0.93 μg/l during the March semi-annual sampling event. This concentration is below the quantifiable laboratory detection limit of 1 μg/l and is, therefore, considered an estimate by the laboratory. During the September semi-annual sampling event, TCA concentrations were detected in the groundwater samples from MW-43A and MW-43B at 5.3 and 1.1 μg/l, respectively; and at MW-53 and MW-54 at 7.3 μg/l and 2.7 μg/l, respectively. TCA was also detected at RW-4, 5 and 6 at 2.7 μg/l, 1.1 μg/l and 2.7 μg/l, respectively. All of these detections, with the exception of RW-4 are located along Carroll Street. RW-4 is located near the intersection of Carroll Street and Sag Harbor Turnpike. The TCA concentrations at two of the monitor wells (MW-43A and MW-53) were above the ARAR of 5 μg/l. TCA was not detected at any other regional monitoring locations during the March and September 2011 sampling events.

2. Local Perched Groundwater - FDSA

During March and September 2011, PCE was detected above the ARAR of 5 μ g/l in the groundwater sample from MW-98-05A at 37 μ g/l and 190 μ g/l, respectively. During March 2011, PCE was also detected at concentrations above the ARAR in groundwater samples from FRW-1, 2 and 3 (68, 39 and 19 μ g/l, respectively) and at a concentration below the ARAR at FRW-4 (4.5 μ g/l). PCE was also detected at a concentration of 1.5 μ g/l in the groundwater sample from MW-98-01A and at an estimated concentration of 0.99 μ g/l in the groundwater sample from MW-98-04. One of the daughter products of PCE, 1,2-dichloroethene (1,2-DCE), was also detected in the groundwater sample from MW-98-05A at 4.8 μ g/l. During September

2011, PCE was detected above the laboratory detection limit but below the ARAR in the groundwater sample from MW-98-01A (4.9 μ g/l) and PCE was detected at concentrations above the ARAR at all four recovery wells FRW-1, 2, 3 and 4 (37, 24, 16, and 22 μ g/l, respectively). Based on groundwater monitoring conducted in the downgradient plume and on the site groundwater in the FDSA continues to have the highest PCE concentrations in the entire plume.

For the March 2011 sampling events, the TCE concentrations in the FP&T recovery well FRW-3 and monitor well MW-98-05A in the FDSA was 2.6 μ g/l and 3.1 μ g/l, respectively. These concentrations were below the ARAR of 5 μ g/l. During the September 2011 sampling event, the TCE concentrations in the FP&T recovery wells FRW-2 through FRW-4 and monitor well MW-98-05A remained below the ARAR and ranged from below 1 μ g/l to 3.8 μ g/l. Based on groundwater monitoring conducted in the downgradient plume and on the site groundwater in the FDSA had the highest TCE concentrations in the entire plume.

During March 2011, TCA was detected in the groundwater sample from FRW-1 at a laboratory estimated value of 0.58 μ g/l, which is below the laboratory quantifiable detection limit of 1 μ g/l. TCA was not detected above the laboratory detection limit of 1 μ g/l in any of the groundwater samples collected from wells in the FDSA. The FDSA water quality is further discussed in Section III.

E. Air-Quality Data

Vapor-phase carbon is used to remove VOCs from the effluent air from the air stripper. Table 11 presents a summary of the vapor-phase carbon operating data for 2011. Flow measurements and air samples for analytical analysis of VOCs were obtained monthly during 2011. The annual average airflow through the tower and the carbon units was 2,113 standard cubic feet per minute (scfm).

An increase in volumetric air flow from 1,307 to 2,754 occurred between May and June and was the result of maintenance and repairs to the vapor-phase carbon vessels. The maintenance activities included the following:

- removing and transporting spent carbon to a regeneration facility;
- replacing the corroded grates that support the carbon inside both vessels;
- disassembling and cleaning the vapor-phase carbon manifold system; and
- re-bedding the vessels with regenerated carbon.

Additional maintenance activities during 2011 included:

- replacing the air duct between the air-stripper blower and the tower;
- completing a performance assessment of the carbon unit vessels; and
- installing drain ports and draining the water from the carbon vessels; and
- replacing the damaged bearings and driveshaft in the FSP&T system booster blower; performing dynamic fan balancing; replacing and aligning the booster blower belts; and testing all other bearings and the blower motor performance.

The packing material in the air-stripper tower was visually inspected during the annual maintenance event (May 24 through June 6, 2011). During the inspection of the air-stripper tower packing material, algae was not observed growing out of the iron bacteria which covered the air-stripper distribution trough as previously observed in 2010. The iron bacteria were manually cleaned out of the trough. The air-stripper tower packing material near the top of the tower appeared to be in good condition with only minimal signs of iron bacteria deposition.

The monthly VOC vapor emission rates ranged between 0.00020 lbs/hr (October 2011) to 0.00611 lbs/hr (December 2011). These vapor emission rates are well below the allowable VOC emission rate of 0.022 lbs/hr. The VOC emission rates for January to November 2011 were fairly constant with small to moderate month-to-month variability through the year. VOC emission rates in December were anomalously higher than historical concentrations of several aromatic VOCs (toluene, benzene and xylenes) typically associated with gasoline. The reason for the higher concentrations of these VOCs in the air samples is not known at this time. VOC concentrations decreased in January 2012 and decreased again to historical values by February 2012. The activated carbon was replaced in June 2011, VOC vapor emissions are expected to increase slightly as the adsorption capacity of the carbon is used up. The air quality and air flow will continue to be monitored monthly in 2012.

Graph 4 illustrates effluent VOC vapor concentrations (mg/m³) and VOC vapor emissions (lbs/hr) for 2011. The total VOC vapor emissions from the effluent stack from January 1, 2011 to December 31, 2011 were 6.28 pounds.

Table 12 presents a summary of air quality concentrations for the FSP&T system. Based on the influent and effluent vapor data, the vapor-phase portion of the remediation system is functioning properly. The effectiveness of the vapor-phase carbon is more evident on some of

the VOCs (PCE and TCE) compared to others (TCA, 1,1-dichloroethane (DCA), 1,1-dichloroethene (1,1-DCE) and cis-1,2-dichloroethene (cis-DCE)). In early 2011, there was evidence of breakthrough of TCA, DCA, 1,1-DCE and cis-DCE in several of the samples collected at the mid and post-carbon sample locations. However, following the carbon vessel maintenance activities in May, TCA, DCA, 1,1-DCE and cis-DCE were no longer detected in effluent air samples. Low concentrations of PCE were detected during the months of September and October 2011, likely due to lower reporting limits used by the new laboratory. However, the concentrations at the post-carbon location are well below the stack emissions concentrations that would exceed the Ambient Guideline Concentrations (AgC) at the property boundary based on the model and associated calculations completed during the design of the FSP&T system. An increase in the total VOC concentrations has been apparent since September 2011, due in part because of the lower reporting limits of the laboratory doing the analysis, and due to a change in the air sample collection method (switched from Tedlar bags to SUMMA canisters). York Analytical reports approximately twice the number of constituents as Test America, thus accounting for the overall increase in the Total VOC concentrations detected in the vapor samples. The air samples collected in December 2011 also contained higher concentrations of aromatic VOCs associated with gasoline from an unknown source.

F. Hydrogeological Summary

The following section provides a summary of water-level data and capture zone information collected in 2011.

1. Water-Level Data

Comprehensive rounds of groundwater levels were measured in March and September 2011 for all recovery and monitor wells. During each event, the water levels were measured when the system was off (static groundwater elevation) and when it was operating. Monthly groundwater levels were also collected for the recovery wells. These measurements were used to define groundwater flow patterns, which were interpreted to evaluate the effectiveness of the FSP&T system recovery wells at capturing the VOC plume. Table 13 presents a summary of the groundwater elevations at the recovery wells and at select monitor well locations that were used to update the capture zone figures discussed in the next section.

Water-level monitoring was conducted using the piezometers in Lily Pond, and five locations in Ligonee Brook during March and September 2011 to assess the potential for impacts by the FSP&T system on water levels in these surface-water bodies. The Crooked Pond piezometer was missing during the 2010 monitoring events. Because historical data has shown that the FSP&T system has not impacted the water levels in these surface-water bodies, this piezometer will not be replaced at this time. The remaining piezometers will continue to be monitored on a semi-annual basis. Accompanying pond and creek hydrograph data are included as Appendix C.

Groundwater levels and pond water levels are measured at the piezometers to determine the difference between the potentiometric heads in the underlying aquifer and the pond surface levels. Based on an independent review of 2001 thru 2007 water-level data by Inter-Science Research Associates, Inc. (IRA) in the report titled "Recommendations for Continued Salinity, Groundwater Elevation and Surface Water Elevation Monitoring," which was included in Appendix D of the 2007 annual summary report, the operation of the FSP&T system does not have a measurable impact on the water levels in the nearby Sag Harbor Cove, Ligonee Brook and noted ponds. Groundwater levels and pond water levels measured during 2011 are consistent with historic trends indicating that the conclusions reached in 2007 are still applicable.

Supplemental background groundwater elevation data are presented to provide information about groundwater elevations for the region and were obtained from the United States Geological Survey (USGS) monitor well (identified as USGS well number 405756072173502 S 8833.2) located near Crooked Pond from January 1, 2011 to December 31, 2011, which are presented in Appendix D. Water-level data are both downloaded from the USGS website and periodically measured as part of the monitoring program. The N.G.V.D. 1929 is used as the reference datum for reporting groundwater elevations. This USGS monitor well is close enough to the site to be able to reflect local patterns in groundwater elevation fluctuations but not close enough to be influenced by the operation of the FSP&T system. This USGS well is located approximately one mile hydraulically upgradient of the Site. Water elevations measured at the USGS well indicate fluctuations of one foot during the course of the year. The highest water elevations occurred in March, and the lowest water elevations occurred in October

2. Capture Zone Evaluation

An analysis of the capture zone was completed for the Site by preparing groundwater elevation contour maps using March and September 2011 data. Figures 3 and 4 show the March 2011 groundwater flow conditions when the FSP&T and FP&T systems were not operating (static conditions) and during pumping conditions, respectively. Figures 5 and 6 show the September 2011 groundwater flow conditions when the FSP&T and FP&T systems were not operating and when the FSP&T system was operating, respectively. Figures 3 and 5illustrate that the groundwater flow direction is to the north and northwest during static conditions. Figures 4 and 6 show the influence on the groundwater flow patterns when the FSP&T recovery wells are operating. Capture zone lines for each recovery well are shown as dashed red lines on figures 4 and 6. In order to evaluate the capture zones, the PCE plume maps for March and September 2011 are shown on figures 7 and 8, respectively. Similarly the TCA plume maps for March and September 2011 are shown on figures 9 and 10, respectively. Both sets of plume maps are discussed in the "Groundwater Plume" section of the report.

Based on comparison of the capture zones shown on figures 4 and 6 with the plumes shown on figures 7, 8, 9 and 10, the contaminant plume is being effectively captured by the FSP&T remediation system. PCE or TCA were not detected in the groundwater samples collected from the MW-49 well cluster during either the March or September sampling events. The MW-49 well cluster is outside of the capture zone, however, the decrease in PCE concentrations over time at this location suggests that, along with natural attenuation, the operation of RW-9 may have an indirect impact on groundwater quality in this area.

3. Flora and Fauna Monitoring

IRA conducts quarterly (winter, spring, summer and fall) flora and fauna inspections of the wetlands near Ligonee Brook and Sag Harbor Cove. The quarterly reports provided by IRA have been included in Appendix E. IRA records and analyzes long term trends to determine if the operation of the groundwater remediation system has made any measurable alteration in the flora and fauna present in the Ligonee Brook and Ligonee Creek estuary. Based on IRA's conclusions in the fall 2011 quarterly report included in Appendix E, the operation of the FSP&T system has had no measurable effects on flora and fauna in the area during 2011 and previous

years. Therefore; based on the experience record to date, the flora and fauna monitoring will be discontinued in 2012.

G. Groundwater Plume

In addition to measuring water levels, water samples were collected from select monitor wells and recovery wells for laboratory analyses in March and September 2011. The groundwater quality data were used to prepare updated PCE and TCA plume maps. Figures 7 and 8 present the PCE plume maps for March and September 2011, respectively. Figures 9 and 10 present the TCA plume map for March and September 2011, respectively. Table 14 and Graph 5 show total VOCs recovered by the FSP&T system and influent PCE concentrations from November 26, 2002 to December 27, 2011.

1. PCE Plume

Figures 7 and 8 present the approximate size of the March and September 2011 PCE plumes. The concentrations in the samples collected to delineate the downgradient PCE plume in March and September 2011 decreased slightly when compared to the concentrations in samples collected to delineate the PCE plume in March and September 2010. As a result, the approximate size of the 2011 plume decreased slightly compared to the PCE plume in 2010. In general, the PCE concentrations near RW-6 and RW-7, the area of historically highest concentrations in the downgradient plume, have decreased slightly during 2011 and were below the ARAR of 5 μg/l during both sampling events.

The FDSA PCE plume map shows that the approximate lateral extent of the PCE plume remained similar to what has been historically observed while the FP&T system is operating. During 2011, the area of higher concentrations within the plume at the FDSA decreased slightly when compared to the plume in 2010. The peak PCE concentration in the groundwater in the FDSA was 68 µg/l in March 2011 and 190 µg/l in September 2011.

Figure 11 presents the pre-remediation, October 2007 and the September 2011 downgradient PCE plume maps. PCE concentrations in the groundwater continued to decrease between October 2007 and September 2011. The comparison of the October 2007 and September 2011 plume maps indicates that the FSP&T system continues to be effective at remediating the VOCs in the plume. During 2011, the overall horizontal extent of the plume

remained approximately the same size as in 2010, however, the concentrations within the plume continued to decrease. As the highest concentrations of contaminants are now lower than the historically detected concentrations, and are either approaching or below the ARARs in the downgradient aquifer, the rate at which PCE is recovered and the rate at which concentrations decrease in the groundwater will slow. Past experience with the pump-and-treat methods of groundwater remediation has shown that there would initially be a rapid decline in the contaminant concentrations in groundwater but eventually the rate of decline will slow. As concentrations decrease, natural fluctuations in groundwater quality become more apparent and can influence how the plume is depicted on maps.

2. TCA Plume

Figures 9 and 10 present the approximate extent of the TCA plume during March and September 2011, respectively. The concentrations in the groundwater samples collected from the monitor and recovery wells to delineate the downgradient TCA plume decreased slightly when compared to the 2010 groundwater quality. The highest concentrations detected for each sampling event, 7.3 μg/l and 2.0 μg/l, in March and September 2011, respectively, were in the groundwater samples collected from MW-53, located along Carroll Street. TCA was detected in FRW-1 at 0.58 μg/l during the March sampling event and TCA was not detected in groundwater samples collected during September of 2011 from the FDSA. Low concentrations (below ARARs) were detected in several monthly samples collected from FRW-1, FRW-3 and FRW-4 at various times during the year.

Small changes in the TCA plume size are attributable to small fluctuations in the groundwater quality at lower concentrations small fluctuations are amplified and influence to a greater degree how the plume is depicted on a map. The rate at which TCA is recovered and the rate at which concentrations in the groundwater decrease will diminish.

III. FOCUSED PUMP AND TREAT SYSTEM AND FDSA WATER OUALITY

In September 2008, subsurface piping was installed to connect the discharge of the FP&T system to the EQ tank of the FSP&T system. Following that work, the FP&T system was restarted and operated until April 2010. FRW-3 was turned off on April 8, 2010 and FRW-1, 2 and 4 were turned off on April 13, 2010 because of very low flow from the wells. The wells were scheduled to be restarted in July 2010 following a short down period to assess the rebound

of the COC concentrations. However, due to the UIC problems of the FSP&T system and subsequent necessary maintenance activities, the FP&T recovery wells remained off until January 20, 2011. The FP&T recovery wells operated from January 20 to December 31, 2011. Monthly sampling of the FRWs continued in order to assess the trends in water quality and a summary of these trends is provided below.

Table 15, 16, 17, 18 and Graphs 6 through 13 summarize the VOC concentrations in groundwater samples collected from the FRWs on a monthly basis for 2010 and 2011. The data for 2010 is included as a comparison. The FRWs were restarted on January 20, 2011 following approximately nine months of not operating. Groundwater samples were collected immediately after the system restart, three and a half hours, and five days following the restart of the FRWs, in order to compare VOC concentrations.

The highest PCE concentration (110 μ g/l) in the FDSA during 2011 was observed in the groundwater sample collected from FRW-1 in January 2011, approximately two weeks prior to the restart of the well. The PCE concentration initially decreased quickly within the first three hours of operation then gradually increased during the remainder of the first quarter. PCE concentrations in samples collected from FRW-1 for February through December 2011 ranged between 13 µg/l (May) and 74 µg/l (December). The highest TCE concentration observed in FRW-1 was 7.2 µg/l during the month of June. TCE concentrations during the rest of the year were below the ARAR of 5 μg/l or not detected and ranged from <1 μg/l to 2.9 μg/l. The highest concentration of 1,2-DCE in the FDSA during 2011 was observed in FRW-1 at a concentration of 60 µg/l immediately following the restart of the well in January. The 1,2-DCE quickly decreased (within three hours of restart) and varied between <1 µg/l and 12 µg/l the rest of the year. TCA concentrations were below the ARAR of 5 μg/l or not detected and ranged from <1 μg/l to 1.4 μg/l. VC was only detected during December 2011 at an estimated value (0.34 μg/l) below the laboratory quantifiable limit. Graph 6 summarizes the historical trend of the COCs from 2007 through 2011, while graph 7 summarizes the 2011 COC concentrations for FRW-1. These graphs indicate that the long term COC concentration trend is decreasing, however, the short-term (2011) trend appears to show no change.

PCE concentrations in groundwater samples collected from FRW-2 during 2011 ranged from 2.3 (January) to 46 μ g/l (December); concentrations varied during the year, with no specific increasing or decreasing trend. TCE was below the ARAR of 5 μ g/l the entire year. 1,2-DCE

was below the ARAR from January through July; and ranged from 1.4 to 16 μ g/l between August and December of 2011. TCA and VC were not detected above the laboratory detection limit during 2011. Graphs 8 and 9 summarize the long term and short term COC concentrations, respectively.

The groundwater samples collected from FRW-3 had the second highest PCE concentrations in the FDSA; concentrations ranged from not detected (January) to 85 μ g/l (May). TCE concentrations in the groundwater were below the ARAR of 5 μ g/l with the exception of the month of June (12 μ g/l). 1,2-DCE concentrations ranged from 1.8 (January) to 47 μ g/l (June) with no defined increasing or decreasing trend. All other VOCs were below the ARAR of 5 μ g/l. Graphs 10 and 11 summarize the long term and short term COC concentrations, respectively.

PCE concentrations in groundwater samples collected from FRW-4 ranged from not detected (January) to 39 μg/l (December). TCE was not detected above the laboratory detection limits between January and August, and was detected at low concentrations, at an estimated value of 0.99 μg/l to 1.8 μg/l between September and December. 1,2-DCE was not detected above the laboratory detection limits between January and May, and ranged from an estimated value of 0.7 μg/l to 6 μg/l between June and December. TCA was not detected above the laboratory detection limits between January and October, and was only detected at estimated values (below 0.5 μg/l) during the months of November and December. VC was not detected above laboratory detection limits during 2011. Unlike the other three recovery wells in the FDSA, COC concentrations in the groundwater samples from FRW-4 indicated an increasing trend. The increasing trend is most likely attributed to the larger pumping rate for this well, which results in a larger capture zone that allows COCs to be recovered from greater distances than the other FDSA recovery wells. Graphs 12 and 13 summarize the long term and short term COC concentrations, respectively.

Table 19 presents groundwater quality parameters measured in the field at the FP&T recovery wells during 2011. The table includes pH, temperature, turbidity, DO, conductivity, and ORP. A calibrated Horiba U-22 water quality meter was used for all the measurements in 2011. The pH of the groundwater measured at the FDSA recovery wells ranged from 5.69 to 7.01, which is typical for groundwater in the northeastern United States. The ORP values fluctuated significantly from month-to-month in each well which suggested periods of aerobic

and anaerobic conditions occurred in the aquifer in 2011. The concentration of DO in the water measured from the FP&T system sample ports suggests aerobic conditions in the aquifer, however, DO concentrations measured in water samples directly from the FRWs are typically lower than that measured at the sample port. The reason for the higher DO concentrations observed from the sample ports of the FRWs is most likely caused by aeration of the water during pumping, as previously documented in the first quarter 2008 report for the FP&T system (dated on April 22, 2008).

In March and September 2011, toluene was detected in the groundwater at monitor well MW98-05B at a concentrations of 9.9 μ g/l and 17 μ g/l, respectively. The ARAR for toluene in the groundwater is 5 μ g/l. Toluene has been detected routinely in the groundwater from this well for the past three years at concentrations ranging from 9.9 to 440 μ g/l. This monitor well is screened below the clay lens that separates the perched water at the FDSA from the regional groundwater system, so the operation of the FP&T system (i.e. FRWs are screened at or above the clay lens) most likely does not have a significant impact on the water quality observed at this well. Groundwater below the clay lens of the FDSA is captured by recovery wells of the FSP&T system.

A. Operation and Maintenance (O&M) Activities

A summary of the major O&M activities for 2011 is presented below:

- cleaned accumulated iron bacteria from the FP&T system equipment;
- evacuated iron bacteria from the FP&T system holding tank (May 2011);
- removed encrustation from the below-grade piping between FRW-1, 2 and 3 and the FP&T trailer and the FP&T and FSP&T systems;
- conducted routine O&M activities that included replacing bag filters, sampling recovery wells, inspecting and cleaning flow meters, and troubleshooting/resetting alarms;
- cleaned iron bacteria from the flow meter paddle wheels as needed; and
- redeveloped the FP&T recovery wells (FRW-1, 2, 3 and 4).

IV. HAZARDOUS WASTE

Hazardous waste generated at the Site in 2011 includes the following items, along with their associated weights or volumes.

- Used bag filters and excess sediment 8,950 pounds
- Used carbon from carbon units approximately 20,000 pounds
- Wastewater generated by cleaning pipes 7,144 gallons

All hazardous waste was shipped offsite to licensed disposal facilities using standard hazardous waste manifest procedures. Hazardous Waste Manifests for waste generated in 2011 are included as Appendix H.

V. PROPOSED CHANGES TO THE OPERATION OF THE FSP&T AND FP&T SYSTEMS

A. FSP&T System

In the 2010 annual report, LBGES recommended discontinuing the operation of RW-3, RW-5, RW-8 and RW-9 based on the improving water quality and the results of the capture zones developed from groundwater levels measured during March 2010. LBGES received EPA authorization for discontinuing the operation of these wells on May 1, 2012 and submitted a formal Limited Recovery Well Shut-Down Plan (Plan) dated May 29. The Plan included a revised groundwater monitoring schedule to obtain data from which to assess the capture of the plume and to detect any rebound of plume concentrations. The plan also included:

- continuation of monthly groundwater quality monitoring at the recovery wells and an increase in the frequency of monitoring at select monitor wells;
- depth-to-water measurements for capture zone evaluation with the new pumping scenario; and
- if concentrations of the COCs in any of the shutdown recovery wells rebound above the ARARs for two consecutive monitoring events, then those recovery wells would be reactivated.

With the reduced number of operating recovery wells, the total combined flow into the FSP&T treatment system was correspondingly reduced. The reduced flow will require modifications to the FSP&T which may include the following:

- 1. modifications to the piping to eliminate water hammer which, based on operational experience will be caused by the more frequent cycling of the transfer pumps with the reduced flow; or
- 2. recycling a portion of the flow from transfer pumps TP-1A and 1B back to the equalization tank to prevent the transfer pumps from cycling.

B. FP&T System

Based on the improving water quality of the downgradient plume in the regional aquifer, LBGES foresees the possibility of discontinuing the operation of the remaining downgradient recovery wells in the next few years and operating only the FRWs in the FDSA until the water quality in the FDSA achieves the ARARs established for the Site. As such, LBGES recommends evaluating the feasibility of alternative remedial technologies for the FDSA and/or modifications to the FP&T system.

VI. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on the performance of the FSP&T system and FP&T system in 2011.

A. FSP&T System

- 1. The recommended SPDES discharge quality criteria for VOCs were not exceeded in any discharge samples in 2011.
- 2. During 2011, the concentrations of PCE, TCE and TCA in the downgradient plume of impacted groundwater in the Upper Glacial Aquifer were below ARAR in samples from all recovery wells and monitor wells tested, with the exception of the concentration of TCA in the groundwater sample from MW-43A of 5.3 μg/l and MW-53 of 7.3 μg/l in September.

- 3. The concentrations of PCE, TCE and TCA continue to slowly decrease with time in the downgradient plume. The highest concentrations of PCE, TCE and TCA in the downgradient plume remain along Carroll Street in the vicinity of MW-53, RW-6 and RW-7. The continued improvement in water quality will allow for the operation of RW-3, 5, 8 and 9 to be discontinued; groundwater samples will continue to be collected from these wells in 2012.
- 4. Concentrations of PCE, TCE and TCA were below the ARARs (5 μg/l) and below the laboratory reporting limits of 1 μg/l in the groundwater samples from RW-1 from the start of FSP&T system operation in December 2002 to July 2005, at which time operation of the well was discontinued. The quality of the groundwater samples collected from RW-1 in March and September 2011 continues to meet the ARARs; the concentrations of PCE, TCE and TCA being below laboratory reporting limits. Therefore, this recovery well will be left off. Semi-annual collection of samples from this well is scheduled for 2012.
- 5. Groundwater elevation contour maps, from which the capture zones of the recovery wells are defined, provide evidence that the plume is being captured by the recovery wells.
- 6. Surface and groundwater levels at Crooked Pond, Lily Pond and Ligonee Brook were not impacted by the operation of the FSP&T System. Water levels at these locations were measured in March and September 2011. Groundwater levels in the piezometers at these locations will continue to be measured during semi-annual groundwater monitoring events.
- 7. The maximum allowable vapor emissions from this system of 0.022 lbs/hr were not exceeded in 2011. Vapor emissions, averaging 0.00088 lbs/hr, remain well below the maximum allowable vapor emissions limit. LBGES will continue to analyze vapor samples on a monthly basis.

- 8. Airflow through the air-stripper tower in 2011 ranged from approximately 900 scfm to 2,889 scfm and was adequate to treat the water by stripping the COCs from the influent water. During the month of June the average air flow increased from 1,307 to 2,754 scfm following repairs to the vapor-phase carbon units.
- 9. Recovery well rehabilitation to improve well performance was completed in April and May 2011 for recovery wells RW-2, 4, 6, 8 and 9. The well rehabilitation efforts continue to be effective in the wells where high iron concentrations in the groundwater result in biofouling that is the primary cause of reduced yield (RW-2, 4, 8 and 9). This finding was based on an increase in specific capacity, an increase in the pumping rate, or a reduction in the percent motor speed for a given flow setting after rehabilitation of the wells. For additional information regarding the 2011 well rehabilitation work and results, refer to Appendix A.
- 10. All operating recovery wells will be evaluated in 2012 to determine what level of well rehabilitation is needed at that time. Well rehabilitation with the use of UnicidTM is currently projected for RW-2, 4, 8 and 9; mechanical rehabilitation will be completed on RW-3, 5, 6 and 7 if needed. Wells approved for shut down (RW-3, 5, 8 and 9) will be rehabilitated prior to shut down.
- 11. Following well rehabilitation activities, biofouling and iron bacteria encrustation was removed from the sump of the air-stripper tower in May 2011 and taken from the property for disposal as hazardous waste. The accumulation of biofouling and iron bacteria encrustation in the components of the remediation system is caused by normal system operation. No significant accumulation of biofouling or iron bacteria encrustation was observed on the packing material in the air-stripper tower during 2011. The pattern of biofouling and iron bacteria encrustation accumulation in the treatment system suggests that the iron bacteria in the treated water continue to pass through the packing of the tower. In 2012, the air-stripper tower packing material and the tower sump will be inspected periodically for biofouling and iron bacteria encrustation, and backwashed and/or cleaned as needed.

- 12. Biofouling and iron bacteria encrustation was removed from the equalization tank, bag filter housing and transfer tank in May 2011. The biofouling and iron bacteria encrustation from these tanks were removed and disposed of as hazardous waste following well rehabilitation activities. The accumulation of biofouling and iron bacteria encrustation at these locations is caused by normal system operation.
- 13. A total of 222.7 lbs of VOCs has been recovered by the FSP&T and FP&T system since startup in December 2002. The recovered mass of VOCs exceeds the initial general estimate for total dissolved-phase VOCs (183 lbs) provided by the original groundwater model. This difference suggests that some of the COC mass that was recovered (and continues to be recovered) is being desorbed from the soil to the groundwater. Continuation of the exponentially decreasing rate of VOC recovery (based on COC desorption rates) is anticipated with ongoing operation of the FSP&T system.
- 14. During 2011, the FSP&T system operated an average of 72.4% of the time. The FSP&T system was down for extended periods during the month of May for scheduled maintenance.

B. FP&T System

1. The FP&T system was shut down in April 2010 because of very low flow from the wells and then was left off for a short down period to assess the rebound of contaminant concentrations in the FDSA. The FP&T was to have been restarted in July 2010, however, due to problems with the FSP&T UIC, the FP&T system could not be restarted until January 20, 2011. The FP&T system operated for the remainder of 2011. Active groundwater remediation of the FDSA is projected to continue with the existing FSP&T system for 2012. In the event contaminated water migrates from the perched conditions of the FDSA to the Upper Glacial Aquifer, it will be captured by the onsite recovery wells of the FSP&T system.

-24-

2. Concentrations of PCE, TCE, 1,2-DCE and vinyl chloride (VC) in the groundwater

samples from the FP&T recovery wells varied throughout the year. The highest PCE

concentration in the FDSA was detected in groundwater samples from FRW-1 during

the first two weeks of January 2011, prior to the restart of the FP&T system.

3. Concentrations of TCE were below the ARAR (5 µg/l) and VC was below the New

York State Department of Environmental Conservation (NYDEC) ambient water

quality standard (1 µg/l) in groundwater samples from all FDSA recovery wells

during 2011.

4. Recovery well maintenance to improve well performance was completed in May and

December 2011 for recovery wells FRW-1 through FRW-4. The maintenance event

consisted of evacuating accumulated sediment from the recovery well sumps, and

cleaning and inspecting the pumps. All recovery wells will be routinely evaluated in

2012 and maintenance will be scheduled as needed.

5. Following recovery well maintenance activity, sediment was evacuated from the

equalization tank. The below-grade piping connecting the FP&T and FSP&T systems

was cleaned twice during 2011. Flow from the FP&T system to the FSP&T system

will be monitored during 2012 and maintenance will be scheduled as needed.

nv

July 20, 2012

H:\Nabsag\2012\2011 Annual Report\2011 Annual Summary Rpt.docx

TABLES

TABLE 1

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Effluent Water Quality Results for the Full Scale Pump and Treat System (FSP&T)

								cis-	trans-				Methylene					Dissolved
Date		TDS	PCE	1.1.1-TCA	TCE	1.1-DCA	1.1-DCE	1.2-DCE	1.2-DCE	Xvlene	Toluene	Ethylbenzene	Chloride	Freon 113	Naphthalene	Chloroform	Total Iron	Iron
Sampled 2/	pH 1/	(mg/l)	(ug/l)	, , -	(ug/I)	(ug/l)	(ug/l)	(ug/l)	(mg/l)	(mg/l)								
SPDES Limits	5.0 to 8.5	(IIIg/I)	(ug/1) 5	(ug/l) 5	(ug/1) 5	(ug/i)	(ug/1) 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(ug/1) 10	(ug/1)								
					_							•		NID 41.0			4.45	0.120
4-Jan-11 20-Jan-11	5.3	84	ND<1.0	ND<1.0	ND<1.0	4.45	0.130											
20-Jan-11 25-Jan-11	5.4	180	ND<1.0	ND<1.0	ND<1.0	1.93 1.85	0.050											
		108	ND<1.0	ND<1.0	ND<1.0		0.065											
1-Feb-11	5.3	115	ND<1.0	ND<1.0	ND<1.0	7.18	0.110											
8-Feb-11	5.3 5.6	122	ND<1.0	ND<1.0	ND<1.0	2.31	0.068											
17-Feb-11 23-Feb-11	5.6	111	ND<1.0 ND<1.0	ND<1.0 ND<1.0	ND<1.0 ND<1.0	2.65	0.068											
2-Mar-11 10-Mar-11	5.3 5.2	97	ND<1.0 ND<1.0	ND<1.0 ND<1.0	ND<1.0 ND<1.0	21.80 5.70	0.161											
		103			ND<1.0 ND<1.0			ND<1.0 ND<1.0		ND<1.0 ND<1.0					ND<1.0 ND<1.0		2.66	0.149
15-Mar-11	5.3		ND<1.0	ND<1.0		ND<1.0	ND<1.0		ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0		
22-Mar-11 29-Mar-11	5.3 5.3	98	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0 ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.96 4.23	0.099
		107	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		0.070
5-Apr-11	5.3	86	ND<1.0	ND<1.0	ND<1.0	1.34	0.111											
12-Apr-11	5.3	112	ND<1.0	ND<1.0	ND<1.0	5.53	0.104											
19-Apr-11 26-Apr-11	5.2	113	ND<1.0	ND<1.0	ND<1.0	2.43	0.092											
	5.3	93	ND<1.0	ND<1.0	ND<1.0	5.74	0.168											
3-May-11	5.3	110	ND<1.0	ND<1.0	ND<1.0	0.77	0.162											
11-May-11	5.2	105	ND<1.0	ND<1.0	ND<1.0	0.54	0.096											
17-May-11	5.3	127	ND<1.0	ND<1.0	ND<1.0	0.99	0.087											
23-May-11	5.4	92	ND<1.0	ND<1.0	ND<1.0	0.50	0.129											
6-Jun-11	6.0	125	ND<1.0	ND<1.0	ND<1.0	0.16	0.208											
14-Jun-11	5.4	82	ND<1.0	ND<1.0	ND<1.0	2.23	0.233											
21-Jun-11	5.4	102	ND<1.0	ND<1.0	ND<1.0	1.70	0.229											
27-Jun-11	5.3	110	ND<1.0	ND<1.0	ND<1.0	2.50	0.093											
6-Jul-11	5.4	114	ND<1.0	ND<1.0	ND<1.0	3.98	0.142											
12-Jul-11	5.1	115	ND<1.0	ND<1.0	ND<1.0	1.85	0.099											
19-Jul-11	5.3	71	ND<1.0	ND<1.0	ND<1.0	4.16	0.070											
25-Jul-11	5.3	58	ND<1.0	ND<1.0	ND<1.0	24.6	0.127											
1-Aug-11	5.3	109	ND<1.0	ND<1.0	ND<1.0	4.07	0.056											
18-Aug-11	5.4	105	ND<1.0	ND<1.0	ND<1.0	6.97	0.135											
23-Aug-11	5.4	120	ND<1.0	ND<1.0	ND<1.0	1.82	0.136											
30-Aug-11	5.4	95	ND<1.0	ND<1.0	ND<1.0	3.66	0.113											

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Effluent Water Quality Results for the Full Scale Pump and Treat System (FSP&T)

								cis-	trans-				Methylene					Dissolved
Date		TDS	PCE	1,1,1-TCA	TCE	1,1-DCA	1,1-DCE	1,2-DCE	1,2-DCE	Xylene	Toluene	Ethylbenzene	Chloride	Freon 113	Naphthalene	Chloroform	Total Iron	Iron
Sampled 2/	pH 1/	(mg/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(mg/l)	(mg/l)
SPDES Limits	5.0 to 8.5		5	5	5	5	5	5	5	5	5	5	5		10	7		
7-Sep-11 4/	5.4	145	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15.0	ND<5.0	ND<5.0	ND<10.0	ND<5.0	ND<10.0	ND<5.0	1.90	0.030
16-Sep-11	5.4	80	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	1.0 J	ND<5.0	ND<5.0	ND<10.0	ND<5.0	1.8 J	ND<5.0	4.41	0.033
22-Sep-11	5.4	70	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15.0	ND<5.0	ND<5.0	ND<10.0	ND<5.0	ND<10.0	ND<5.0	1.59	0.146
28-Sep-11	5.3	65	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15.0	ND<5.0	ND<5.0	ND<10.0	ND<5.0	ND<10.0	ND<5.0	1.40	0.029
6-Oct-11	5.3	165	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15.0	ND<5.0	ND<5.0	4.4 J	ND<5.0	2.1 J	ND<5.0	5.69	0.029
11-Oct-11	5.4	125	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<15.0	ND<5.0	ND<5.0	4.2 J,B	ND<5.0	ND<10.0	ND<5.0	4.43	0.135
18-Oct-11	3/	195	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	ND<0.5	0.51 J,B	ND<0.5	ND<2	ND<0.5	6.93	0.354
25-Oct-11	5.3	145	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	ND<0.5	0.60 J,B	ND<0.5	ND<2	ND<0.5	1.14	0.092
1-Nov-11	5.3	175	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.5	ND<5.0	ND<5.0	0.81 J,B	ND<5.0	ND<2	ND<5.0	1.42	0.097
8-Nov-11	5.3	185	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.5	ND<5.0	ND<5.0	0.66 J,B	ND<5.0	ND<2	ND<5.0	2.17	0.054
15-Nov-11	5.3	180	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.5	ND<5.0	ND<5.0	0.75 J,B	ND<5.0	ND<2	ND<5.0	2.2	0.196
21-Nov-11	5.3	95	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.5	ND<5.0	ND<5.0	0.54 J,B	ND<5.0	0.22 J,B	ND<5.0	1.1	0.099
29-Nov-11	5.3	80	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.5	ND<5.0	ND<5.0	0.77 J,B	ND<5.0	ND<2	ND<5.0	3.4	0.208
6-Dec-11	5.4	150	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	ND<0.5	0.56 J,B	ND<0.5	ND<2	ND<0.5	6.66	0.118
13-Dec-11	5.3	100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	ND<0.5	0.35 J,B	ND<0.5	1.1 J,B	ND<0.5	2.17	0.034
20-Dec-11	5.3	88	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	ND<0.5	0.19 J,B	ND<0.5	ND<2	ND<0.5	3.78	0.039
27-Dec-11	5.3	135	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.5	ND<0.5	ND<0.5	0.30 J,B	ND<0.5	0.29 J,B	ND<0.5	2.27	0.035

SPDES: State Pollutant Discharge Elimination System

mg/l: Milligrams per liter

ug/l: Micrograms per liter

----: Not established

NM: Not Measured TDS: Total dissolved solids

PCE: Tetrachloroethylene

1,1,1-TCA: 1,1,1-Trichloroethane

TCE: Trichloroethene

1,1-DCA: 1,1-Dichlorothane 1,1-DCE: 1,1-Dichloroethene

cis-1,2-DCE: cis-1,2-Dichloroethene

J: Analyte detected below quantitation limits

B: Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Notes:

- 1. Based on the SPDES criteria from an NYSDEC letter dated on May 11, 2006, the new allowable pH range for the Rowe Site is between 5.0 and 8.5. The pH was measured with a new calibrated electronic pH meter. Influent pH values from recovery wells typically range between 5 and 6.
- 2. "Effluent" samples were collected from sample port labeled NP2-10 unless otherwise noted.
- 3. The pH was not measured at this time.
- 4. As of October 2011, the water samples are analyzed by York Analytical Laboratories, Inc. The laboratory typically uses a reporting limit (RL) for water of 5 ug/l for VOC (indicated in table as ND<5.0). York reports detections below 5 ug/l as an estimated value; these values are below the RL but greater than or equal to the method detection limit (MDL). A value reported below the RL but above the MDL is considered an estimated value and flagged with a "J". The calibration curve was adjusted to a reporting limit of 1 ug/l during October.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Average Field Parameter Values for Water Samples from Recovery Wells for 2011

FSP&T Recovery Well	pН	Temperature (degrees C)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Conductivity (mS/cm)	Oxidation-Reduction Potential (ORP) (mV)
RW-2	6.36	14.5	107.9	6.8	0.24	210
RW-3	6.55	13.9	34.0	6.2	0.18	186
RW-4	6.13	13.5	42.4	7.5	0.25	223
RW-5	6.10	13.1	8.2	9.0	0.23	247
RW-6	5.76	13.2	20.1	7.9	0.24	263
RW-7	5.94	12.9	16.6	7.2	0.17	258
RW-8	6.14	13.3	55.5	7.3	0.15	179
RW-9	5.96	13.2	47.2	7.6	0.16	234

NOTES: 1) Parameters reported for operating wells in the FSP&T system.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Recovery Well Construction Details

Well	Location	Top of Casing Elevation (ft msl)	Well Diameter (in)	Total Well Depth (ft btoc)	Screen Setting (ft btoc)	Screen Type and Size	Pump Setting ^{1/} (ft btoc)	Casing Setting (ft bg)	Casing Material	Gravel Size and Setting (ft bg)	Surface Completion	Date Constructed
						Focus Recovery Wells						
FRW-1	Former drum storage area.	31.5	4	32	20-30	40-slot, PVC	27	0-20	PVC	No. 1: 18-30	Flush mount, steel collar	10/24/2000
FRW-2	Former drum storage area.	30	4	30	18-28	40-slot, PVC	25	0-18	PVC	No.1: 16-28	Flush mount, steel collar	10/25/2000
FRW-3	Former drum storage area.	30	4	30.5	18.5-28.5	20-slot, PVC	25.5	0-18.5	PVC	No.1: 16.5-28.5	Flush mount, steel collar	10/25/2000
FRW-4	Former drum storage area.	29	4	32	20-30	40-slot, PVC	27	0-20	PVC	No. 1: 20-30	Flush mount, steel collar	10/24/2000
						Full Scale Pump and Treat Recovery	Wells					
RW-1	Onsite in front of Sag Harbor	33.81	8	64	37-50	45-slot, stainless steel wire wrapped screen.	57	2-32	Low carbon steel	No. 1: 32-45	In 5' x 5' well yault.	April 12, 2000
Kw-1	Industries main building.	33.61	0	04	60-61	80-slot, stainless steel wire wrapped screen.	37	32-37	Stainless steel	No. 3: 45-64	iii 3 x 3 weii vauit.	April 12, 2000
RW-2	Northwest corner of the FSP&T remediation building.	25.75	8	60	30-60	20-slot, stainless steel.	52	2-30	Stainless steel	No. 1: 0-60	In 5' x 5' well vault	May 6, 1996
RW-3	In back of (northeast side)	13.04	8	40	13-27	30-slot, stainless steel wire wrapped screen.	32	2-8	Low carbon steel	No. 0: 8-22	In 4' x 4' well vault.	April 17, 2000
KW-5	FSP&T remediation building.	13.04	0	40	27-37	80-slot, stainless steel wire wrapped screen.	32	8-13	Stainless steel	No. 3: 22-40	iii 4 x 4 well vault.	April 17, 2000
RW-4	Sag Harbor Turnpike.	19.01	8	51	27-48	50-slot, stainless steel wire wrapped screen.	32	2-22 22-27	Low carbon steel Stainless Steel	No. 1 (60%) and No.2 (40%) mix	In 5' x 5' well vault.	May 23, 2000
					24-36	80-slot, stainless steel wire wrapped screen.		2-19	Low carbon steel	No. 3: 19-50		
RW-5	Carroll St.	25.33	8	67	50-64	50-slot, stainless steel wire wrapped screen.	48	19-24 and 36-50	Stainless Steel	No. 1 (70%) and No.2 (30%) mix: 50- 67	In 5' x 5' well vault.	May 11, 2000
RW-6	Carroll St.	21.69	8	80	30-80	20-slot, stainless steel.	69	2-30	Stainless Steel	No. 1: 0-80	In 4' x 4' well vault	May 16, 1996
RW-7	Carroll St.	18.35	6	106	14-103	75-slot, stainless steel wire wrapped screen.	92	2-9 9-14	Low carbon steel Stainless Steel	No. 2 (50%) and No. 3 (50%) mix: 9-106	In 5' x 5' well vault.	July 24, 2000
						50-slot, stainless steel wire wrapped	0.5	2-10	Low carbon steel	No. 1 (50%) and No.		
RW-8	Brick Kiln Rd.	11.25	8	103	15-100	screen.	85	10-15	Stainless Steel	2 (50%) mix: 10-103	In 5' x 5' well vault.	June 6, 2000
RW-9	Noyac Road	7.6	8	75	13-55	75-slot, stainless steel wire wrapped screen.	66	2-8	Low carbon steel	No. 2 (50%) and No. 3 (50%) mix: 13-55	In 5' x 5' well vault.	May 1, 2000
					55-72	60-slot, stainless steel wire wrapped screen.		8-13	Stainless Steel	No. 2: 55-75		

Notes:

1/ Pump setting indicates approximate depth of pump intake.

FSP&T Full Scale Pump and Treat

(ft msl) Feet above mean sea level.

(in) Inches

(ft btoc) Feet below top of casing.

(ft bg) Feet below grade.

TABLE 4

2010 and 2011 Volume Pumped and Average Flow Rate of Groundwater from FSP&T Recovery Wells

Recovery Well	Volume Po	umped (gal)	Average Flov	v Rate (gpm)
	2010	2011	2010	2011
RW-2	9,341,583	10,181,134	27	27
RW-3	8,800,181	11,026,548	28	30
RW-4	12,283,659	11,652,699	40	36
RW-5	15,908,614	18,573,479	50	50
RW-6	4,688,040	5,457,834	15	15
RW-7	24,157,307	17,917,160	78	70
RW-8	16,053,980	16,515,556	50	50
RW-9	24,825,100	25,937,980	80	76
Total	116,058,464	117,262,390		

NOTES: 1) RW-1 did not operate in 2010 and 2011.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

RW-6 Average Drawdown and Pumping Data for 2011

Date	Average Monthly Pumping Rate for RW-6 (gpm)	Average Monthly Drawdown (ft) 1/
Jan-11	15	43.76
Feb-11	15	48.07
Mar-11	15	46.00
Apr-11	15	50.15
May 1-11 (pre- redevelopment)	15	51.07
May 12-31 (post- redevelopment)	15	25.39
Jun-11	15	28.14
Jul-11	15	31.93
Aug-11	15	33.13
Sep-11	15	34.83
Oct-11	15	35.85
Nov-11	15	36.86
Dec-11	15	37.70

Notes: 1. Drawdown numbers are computed and downloaded every hour to the user interface computer based on pressure transducer readings and the most recent static depth-to-water measurement for the well.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

							Total	Dissolved	1,1-Dichloro-	1,1-Dichloro-	Methylene	Bromoform	Dibromochl-	Naphth-			Ethyl-	Chloro	
Recovery	Date	PCE	TCE	TCA	Chloroform	MTBE	Iron	Iron	ethane	ethene	Chloride		oromethane	alene	m,p-Xylene	o-Xylene	benzene	ethane	Acetone
Well	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		,	(3)	,	(3)	(3. /	() ,	,	(3 ,	(3)	(3)	(3)	(*3* /	,	(3 ,	(, ,	,	,	(5.)
	ARAR's	5	5	5	7	NE	300	300	5	5	5	NE	NE	NE	5	5	NE	NE	NE
	15-Sep-04	ND<1	ND<1	ND<1	2.8	ND<1	0.0865	ND<0.02	ND<1	ND<1	ND<1	2.5	ND<1	8.0	ND<2	ND<1	ND<1	ND<1	ND<1
	7-Oct-04	ND<1	ND<1	ND<1	ND<1	2.2	0.0332	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	3-Nov-04	ND<1	ND<1	ND<1	1.9	2.0	0.0133	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Dec-04	ND<1	ND<1	ND<1	9.8	ND<1	0.0475	0.0229	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	13-Jan-05	ND<1	ND<1	ND<1	1.5	2.1	0.0703	0.0326	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	8-Feb-05	ND<1	ND<1	ND<1	4.6	ND<1	ND<0.02	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Mar-05	ND<1	ND<1	ND<1	2.5	ND<1	0.0285	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	19-Apr-05	ND<1	ND<1	ND<1	1.5	ND<1	0.0357	0.0217	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	2-May-05	ND<1	ND<1	ND<1	ND<1	ND<1	ND<0.02	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Jun-05	ND<1	ND<1	ND<1	4.0	ND<1	ND<0.02	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	14-Jul-05	ND<1	ND<1	ND<1	2.1	ND<1	0.0289	ND<0.02	ND<1	ND<1	8.4*	ND<1	ND<1	13.0	3.3	1.3	1.0	1.0	6.9*
RW-1	7-Mar-06	ND<1	ND<1	ND<1	5.2	ND<1	0.1650	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	19-Sep-06	ND<1	ND<1	ND<1	1.7	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	7-Mar-07	ND<1	ND<1	ND<1	ND<1	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	3-Oct-07	ND<1	ND<1	ND<1	ND<1	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	13-Mar-08	ND<1	ND<1	ND<1	ND<1	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	17-Sep-08	ND<1	ND<1	ND<1	1.1	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	19-Mar-09	ND<1	ND<1	ND<1	ND<1	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	16-Sep-09	ND<1	ND<1	ND<1	1.0	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	17-Mar-10	ND<1	ND<1	ND<1	0.6 J	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Sep-10	ND<1	ND<1	ND<1	ND<1	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	9-Mar-11	ND<1	ND<1	ND<1	0.6 J	ND<1	-	-	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Sep-11	ND<5	ND<5	ND<5	0.8 J	ND<5	-	-	ND<5	ND<1	7.1 B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	3.8 B
1	12-Jan-10	2.2	ND<1	ND<1	ND<1	ND<1	3.72	0.567	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-10	0.83 J	ND<1	1.2	ND<1	ND<1	10.00	0.025	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Mar-10	1.0	ND<1	1.7	ND<1	ND<1	2.56	0.515	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	08-Apr-10	ND<1	ND<1	ND<1	ND<1	ND<1	5.43	0.036	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	25-May-10	ND<1	ND<1	ND<1	ND<1	ND<1	0.06	0.052	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10	1.9	ND<1	ND<1	ND<1	ND<1	6.76	0.036	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	20-Jul-10	ND<1	ND<1	ND<1	ND<1	ND<1	9.60	0.047	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	Aug-10 1/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	16-Sep-10	ND<1	ND<1	ND<1	ND<1	ND<1	1.50	0.893	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	13-Oct-10	ND<1	ND<1	ND<1	ND<1	ND<1	1.31	0.039	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Nov-10	2.7	ND<1	ND<1	ND<1	ND<1	1.68	0.073	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-2	14-Dec-10	0.44 J	ND<1	0.77 J	ND<1	ND<1	2.86	0.050	0.32 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	11-Jan-11	ND<1	ND<1	ND<1	ND<1	ND<1	10.30	0.012	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-11	0.55 J	ND<1	ND<1	ND<1	ND<1	2.69	0.160	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Mar-11	0.91 J	ND<1	ND<1	ND<1	ND<1	2.85	0.019	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
L	12-Apr-11	0.57 J	ND<1	ND<1	ND<1	ND<1	3.82	0.010	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
I L	23-May-11	ND<1	ND<1	ND<1	ND<1	ND<1	3.72	0.199	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
L	21-Jun-11	0.85 J	ND<1	ND<1	ND<1	ND<1	1.83	0.033	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
L	12-Jul-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.71	0.013	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
L	23-Aug-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.20	0.021	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
L	15-Sep-11	0.96 J	ND<5	ND<5	ND<5	ND<5	-	-	ND<5	ND<1	3.9 B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	4.5 B
L	18-Oct-11	0.97	0.18 J	0.74	0.17 J	ND<0.5	-	-	0.25 J	ND<0.5	0.96 J,B	ND<0.5	ND<0.5	0.24 J,B	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
L	8-Nov-11	1.6	0.20 J	0.12 J	0.22 J	ND<0.5	-	-	ND<0.5	ND<0.5	0.95 J,B	ND<0.5	ND<0.5	0.13 J,B	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	20-Dec-11	1.0	0.25 J	0.49 J	0.16 J	ND<0.5	-	-	0.11 J	ND<0.5	0.44 J,B	ND<0.5	ND<0.5	0.41 J,B	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Recovery Well	Date Sampled	PCE (ug/L)	TCE (ug/L)	TCA (ug/L)	Chloroform (ug/L)	MTBE (ug/L)	Total Iron (mg/L)	Dissolved Iron (mg/L)	1,1-Dichloro- ethane (ug/L)	1,1-Dichloro- ethene (ug/L)	Methylene Chloride (ug/L)	Bromoform (ug/L)	Dibromochl- oromethane (ug/L)	Naphth- alene (ug/L)	m,p-Xylene (ug/L)	o-Xylene (ug/L)	Ethyl- benzene (ug/L)	Chloro ethane (ug/L)	Acetone (ug/L)
-	ARAR's	5	5	5	7	NE	300	300	5	5	5	NE	NE	NE	5	5	NE	NE	NE
	12-Jan-10	ND<1	1.3	ND<1	ND<1	ND<1	2.34	1.820	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-10	ND<1	1.7	ND<1	ND<1	ND<1	2.34	0.247	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
 	16-Mar-10	ND<1	1.4	ND<1	ND<1	ND<1	2.18	0.087	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	08-Apr-10	ND<1	ND<1	ND<1	ND<1	ND<1	2.61	0.170	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	25-May-10	ND<1	ND<1	ND<1	ND<1	ND<1	3.39	0.538	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10	ND<1	1.5	ND<1	ND<1	ND<1	2.30	0.757	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	20-Jul-10	ND<1	ND<1	ND<1	ND<1	ND<1	3.48	0.497	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	Aug-10 1/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	16-Sep-10	ND<1	ND<1	0.63 J	ND<1	ND<1	2.04	0.948	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	13-Oct-10	ND<1	ND<1	0.84 J	ND<1	ND<1	2.86	0.896	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Nov-10	ND<1	ND<1	ND<1	ND<1	ND<1	1.95	0.369	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-3	14-Dec-10	ND<1	0.36 J	ND<1	ND<1	ND<1	2.07	1.76	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1744-2	11-Jan-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.65	0.599	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.43	0.501	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Mar-11	ND<1	ND<1	ND<1	ND<1	ND<1	3.09	0.732	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Apr-11	ND<1	ND<1	ND<1	ND<1	ND<1	5.20	0.571	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-May-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.13	1.250	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	21-Jun-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.11	0.824	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Jul-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.29	0.611	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-Aug-11	ND<1	ND<1	ND<1	ND<1	ND<1	3.25	0.423	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Sep-11	ND<5	0.93 J	ND<5	ND<5	ND<5	-	-	ND<5	ND<1	7.0 J,B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	4.3 B
	18-Oct-11	0.16 J	0.59 0.81	0.19 J 0.22 J	ND<0.5 ND<0.5	ND<0.5 ND<0.5	-	-	ND<0.5 ND<0.5	ND<0.5 ND<0.5	0.70 J,B 0.66 J,B	ND<0.5	ND<0.5	0.11 J,B ND<2	ND<1 ND<1	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<2 ND<2
	8-Nov-11 20-Dec-11	0.16 J 0.17 J	0.87	0.22 J	ND<0.5	ND<0.5	-	-	ND<0.5	ND<0.5	0.66 J,B	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
+	12-Jan-10	4.9	0.88 J	1.5	ND<0.5	ND<0.5	4.32	3.12	ND<0.5	ND<0.5	0.55 J,B ND<1	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
H	17-Jan-10 17-Feb-10	2.4	0.88 J ND<1	6.0	ND<1	ND<1	4.32	2.01	ND<1	ND<1	5.0	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
H	16-Mar-10	2.4	ND<1	4.2	ND<1	ND<1	4.69	2.77	0.63 J	ND<1	0.0 ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	08-Apr-10	ND<1	ND<1	4.2 ND<1	ND<1	ND<1	5.70	0.07	0.63 J ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	25-May-10	1.7	ND<1	ND<1	ND<1	ND<1	3.72	0.07	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10		ND<1	2.5	ND<1	ND<1	4.93	1.70	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	20-Jul-10	3.3 ND<1	ND<1	5.6	ND<1	ND<1	5.80	0.04	0.66 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
H	Aug-10 1/	NS	NS	NS	NS NS	NS	NS	NS	0.66 J NS	NS NS	NS	NS	NS NS	NS	NS NS	NS	NS	NS	NS
 	16-Sep-10	ND<1	ND<1	1.9	ND<1	ND<1	8.96	1.92	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	13-Oct-10	1.7	ND<1	ND<1	ND<1	ND<1	5.07	2.00	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1	16-Nov-10	2.9	ND<1	3.5	ND<1	ND<1	6.53	0.27	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
DW 4	14-Dec-10	0.55 J	ND<1	1.2	ND<1	ND<1	4.69	1.64	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-4	11-Jan-11	0.50 J	ND<1	ND<1	ND<1	ND<1	4.09	0.01	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-11	0.61 J	ND<1	0.76 J	ND<1	ND<1	7.46	ND<0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	10-Mar-11	0.82 J	ND<1	ND<1	ND<1	ND<1	4.14	1.78	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Apr-11	0.61 J	ND<1	0.74 J	ND<1	ND<1	4.98	1.05	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-May-11	ND<1	ND<1	1.2	ND<1	ND<1	4.81	0.33	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	21-Jun-11	1.0	ND<1	ND<1	ND<1	ND<1	5.12	2.95	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Jul-11	ND<1	ND<1	ND<1	ND<1	ND<1	6.53	0.07	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-Aug-11	ND<1	ND<1	0.92 J	ND<1	ND<1	4.90	0.79	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Sep-11	1.1 J	ND<5	2.7 J	ND<5	ND<5	-	-	1.4 J	ND<5	3.9 B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	ND<5
	18-Oct-11	1.1	0.14 J	3.9	0.15 J	ND<0.5	-	-	1.8	0.17 J	0.47 J,B	ND<0.5	ND<0.5	0.17 J	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	8-Nov-11	1.5	0.22 J	1.8	0.15 J	ND<0.5	-	-	0.61	ND<0.5	0.66 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
<u> </u>	20-Dec-11	1.2	0.14 J	4.2	0.16 J	ND<0.5	-	-	1.6	0.18 J	0.47 J,B	ND<0.5	ND<0.5	0.16 J,B	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

_							Total	Dissolved	1,1-Dichloro-	1,1-Dichloro-	Methylene	Bromoform	Dibromochl-	Naphth-			Ethyl-	Chloro	
Recovery	Date	PCE	TCE	TCA	Chloroform	MTBE	Iron	Iron	ethane	ethene	Chloride	((1.)	oromethane	alene	m,p-Xylene	o-Xylene	benzene	ethane	Acetone
Well	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	ARAR's	5	5	5	7	NE	300	300	5	5	5	NE	NE	NE	5	5	NE	NE	NE
	12-Jan-10	ND<1	ND<1	ND<1	ND<1	ND<1	0.036	0.0131	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-10	ND<1	ND<1	2.7	ND<1	ND<1	0.095	0.0092	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Mar-10	ND<1	ND<1	2.6	0.66 J	ND<1	0.053	0.0230	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	08-Apr-10	ND<1	ND<1	ND<1	ND<1	ND<1	0.087	0.0092	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	25-May-10	ND<1	ND<1	ND<1	ND<1	ND<1	5.390	0.0052	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10	ND<1	ND<1	ND<1	2.3	ND<1	0.481	0.0300	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	20-Jul-10	ND<1	ND<1	1.0	ND<1	ND<1	0.062	0.0177	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	Aug-10 1/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	16-Sep-10	ND<1	ND<1	ND<1	2.3	ND<1	0.030	0.0114	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	13-Oct-10	ND<1	ND<1	ND<1	ND<1	ND<1	0.035	0.0093	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Nov-10	ND<1	ND<1	ND<1	ND<1	ND<1	1.78	0.0188	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-5	14-Dec-10	ND<1	ND<1	0.7 J	ND<1	ND<1	0.034	0.0080	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	11-Jan-11	ND<1	ND<1	ND<1	ND<1	ND<1	0.047	0.0070	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-11	ND<1	ND<1	1.3	ND<1	ND<1	0.260	0.0150	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	10-Mar-11	ND<1 ND<1	ND<1	ND<1 1.2	ND<1 ND<1	ND<1 ND<1	0.041	0.0100 0.0240	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<2 ND<2	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1
	12-Apr-11 23-May-11	ND<1	ND<1	0.8 J	ND<1	ND<1	0.041	0.0240	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	21-Jun-11	ND<1	ND<1	0.6 J ND<1	ND<1	ND<1	0.236	0.0200	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Jul-11	ND<1	ND<1	0.6 J	ND<1	ND<1	0.031	0.0200	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-Aug-11	ND<1	ND<1	0.6 J	ND<1	ND<1	0.027	0.0009	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Sep-11	ND<5	ND<5	1.1 J	ND<5	ND<5	0.074	-	ND<5	ND<1	4.8 J,B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	3.4 J,B
	18-Oct-11	0.12 J	ND<0.5	1.4	0.50	ND<0.5	-	-	0.51	ND<0.5	0.45 J,B	ND<0.5	ND<0.5	0.14 J,B	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<2
	8-Nov-11	ND<0.5	ND<0.5	ND<0.5	0.76	ND<0.5	-	_	ND<0.5	ND<0.5	0.86 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	20-Dec-11	0.15 J	ND<0.5	0.97	0.54	ND<0.5	-	-	0.73	ND<0.5	0.57 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	12-Jan-10	12.0	ND<1	5.3	ND<1	ND<1	0.1010	0.0518	1.3	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-10	7.6	ND<1	4.4	ND<1	ND<1	0.0780	0.0209	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Mar-10	7.0	ND<1	4.2	ND<1	ND<1	0.0550	0.0241	0.91 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	08-Apr-10	6.9	ND<1	2.9	ND<1	ND<1	0.0855	0.0546	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	25-May-10	6.4	ND<1	6.2	ND<1	ND<1	0.2080	0.0582	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10	6.3	ND<1	7.0	ND<1	ND<1	0.1640	0.0221	1.5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	20-Jul-10	3.4	ND<1	4.5	ND<1	ND<1	0.2890	0.0162	1.1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	Aug-10 1/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	16-Sep-10	4.3	ND<1	2.8	1.8	ND<1	0.0512	0.023	0.36 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	13-Oct-10	4.3	ND<1	4.2	ND<1	ND<1	0.1040	0.037	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Nov-10	5.3	ND<1	3.0	ND<1	ND<1	0.0218	0.016	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-6	14-Dec-10	1.7	ND<1	0.8 J	ND<1	ND<1	0.1080	0.008	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	11-Jan-11	2.6	ND<1	ND<1	ND<1	ND<1	0.3650	0.015	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-11	1.6	ND<1	0.7 J	ND<1	ND<1	0.7000	0.008	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	10-Mar-11	1.9	ND<1	0.9 J	ND<1	ND<1	0.1000	0.011	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Apr-11	1.4	ND<1	0.7 J	ND<1	ND<1	0.3200	0.012	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-May-11	1.2	ND<1	0.9 J	ND<1	ND<1	0.0460	0.005	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	21-Jun-11	1.7	ND<1	0.8 J	ND<1	ND<1	0.0450	0.037	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Jul-11	1.0	ND<1	0.8 J	ND<1	ND<1	0.0440	0.010	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-Aug-11	1.3	ND<1	1.2	ND<1	ND<1	0.2340	0.017	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Sep-11	3.6 J	ND<5	2.7 J	ND<5	ND<5	-	-	1.0 J	ND<1	4.5 J,B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	3.5 J,B
	18-Oct-11 8-Nov-11	3.5 4.2	0.13 J 0.13 J	2.8 3.4	0.26 J 0.35 J	0.27 J 0.35 J	-	-	0.87 1.1	0.19 J 0.11 J	0.37 J,B 0.83 J,B	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<2 ND<2	ND<1 ND<1	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<0.5 ND<0.5	ND<2 ND<2
	20-Dec-11	4.2	0.13 J	2.4	0.33 J	0.35 J 0.23 J	-	-	0.83	0.11 J 0.17 J	0.83 J,B 0.49 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	20-DGC-11	4.0	U. 13 J	2.4	0.33 3	0.23 3		_	0.00	U.17 J	U.43 J,D	1ND<0.3	INDCU.S	NUSZ	NUCI	ניסאסוניו	14DC0.5	ניסאסוניי	INDSZ

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Recovery	Date	PCE	TCE	TCA	Chloroform	MTBE	Total Iron	Dissolved Iron	1,1-Dichloro- ethane	1,1-Dichloro- ethene	Methylene Chloride	Bromoform	Dibromochl- oromethane	Naphth- alene	m,p-Xylene	o-Xylene	Ethyl- benzene	Chloro ethane	Acetone
Well	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	ARAR's	5	5	5	7	NE	300	300	5	5	5	NE	NE	NE	5	5	NE	NE	NE
İ	12-Jan-10	9.1	ND<1	1.30	ND<1	ND<1	0.067	0.0414	0.88 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-10	4.7	ND<1	ND<1	ND<1	ND<1	0.209	0.1180	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Mar-10	3.6	ND<1	0.77 J	ND<1	ND<1	0.260	0.1410	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	08-Apr-10	5.0	ND<1	ND<1	ND<1	ND<1	0.118	0.0679	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	25-May-10	8.0	ND<1	0.73 J	ND<1	ND<1	0.070	0.0304	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10	6.9	ND<1	3.2	ND<1	ND<1	0.115	0.0284	2.2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
∥	20-Jul-10	1.2	ND<1	1.0	ND<1	ND<1	0.309	0.0694	0.44 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	Aug-10 1/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	16-Sep-10	ND<1	ND<1	0.67 J	ND<1	ND<1	0.163	0.0343	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
∥	13-Oct-10	4.6	ND<1	2.4	ND<1	ND<1	0.480	0.1430	0.89 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
∥	16-Nov-10	3.8	ND<1	ND<1	ND<1	ND<1	0.239	0.1490	ND<1 ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-7	14-Dec-10 11-Jan-11	0.9 J 1.8	ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	0.802 0.198	0.2070 0.0280	ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<2 ND<2	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1
∥ ⊦	17-Feb-11	0.9 J	ND<1	ND<1	ND<1	ND<1	0.752	0.0280	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
∥ ⊢	10-Mar-11	1.8	ND<1	ND<1	ND<1	ND<1	2.34	0.0120	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
⊨	12-Apr-11	1.4	ND<1	ND<1	ND<1	ND<1	0.43	0.1180	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-May-11	0.5 J	ND<1	ND<1	ND<1	ND<1	0.37	0.1600	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	21-Jun-11	1.7	ND<1	ND<1	ND<1	ND<1	1.30	0.0610	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Jul-11	0.5 J	ND<1	ND<1	ND<1	ND<1	0.27	0.1430	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-Aug-11	0.8 J	ND<1	ND<1	ND<1	ND<1	0.64	0.1320	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	9/15/2011 3/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	18-Oct-11	4.5	0.18 J	0.53	ND<0.5	0.15 J	1		0.40 J	ND<0.5	0.36 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
L	8-Nov-11	4.4	0.15 J	0.60	ND<0.5	0.25 J			0.59	ND<0.5	0.82 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	20-Dec-11	2.2	0.11 J	0.43 J	0.11 J	0.13 J			0.28 J	ND<0.5	0.50 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
∥	12-Jan-10	ND<1	ND<1	ND<1	ND<1	ND<1	6.87	3.92	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
∥	17-Feb-10	ND<1	ND<1	ND<1	ND<1 ND<1	ND<1 ND<1	6.46	1.46 2.36	ND<1 ND<1	ND<1 ND<1	ND<1	ND<1 ND<1	ND<1 ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
∥ ⊦	16-Mar-10 08-Apr-10	ND<1 ND<1	ND<1	ND<1 ND<1	ND<1	ND<1	8.15 9.18	0.20	ND<1	ND<1	ND<1 ND<1	ND<1	ND<1	ND<1 ND<1	ND<2 ND<2	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1	ND<1 ND<1
⊢	25-May-10	ND<1	ND<1	ND<1	ND<1	ND<1	4.94	0.20	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10	ND<1	ND<1	ND<1	ND<1	ND<1	9.84	2.42	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	20-Jul-10	ND<1	ND<1	ND<1	ND<1	ND<1	9.69	0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	Aug-10 1/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	16-Sep-10	ND<1	ND<1	ND<1	ND<1	ND<1	7.88	0.06	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	13-Oct-10	ND<1	ND<1	ND<1	ND<1	ND<1	10.8	0.13	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Nov-10	ND<1	ND<1	ND<1	ND<1	ND<1	8.29	0.42	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	14-Dec-10	ND<1	ND<1	ND<1	ND<1	ND<1	6.96	1.83	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-8	11-Jan-11	ND<1	ND<1	ND<1	ND<1	ND<1	22.4	0.06	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-11	ND<1	ND<1	ND<1	ND<1	ND<1	11.2	0.02	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	10-Mar-11	ND<1	ND<1	ND<1	ND<1	ND<1	4.34	0.23	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Apr-11	ND<1	ND<1	ND<1	ND<1	ND<1	7.23	1.24	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-May-11	ND<1	ND<1	ND<1	ND<1	ND<1	1.58	0.57	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	21-Jun-11	ND<1	ND<1	ND<1	ND<1	ND<1	5.48	2.52	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Jul-11	ND<1	ND<1	ND<1	ND<1	ND<1	11.6	0.05	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-Aug-11	ND<1	ND<1	ND<1	ND<1	ND<1	9.81	0.05	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Sep-11	ND<5	ND<5	ND<5	ND<5	ND<5	-	-	ND<5	ND<1	4.4 J,B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	ND<5
	18-Oct-11	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	ND<0.5	ND<0.5	0.40 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	8-Nov-11	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	_	ND<0.5	ND<0.5	0.80 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	20-Dec-11	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	ND<0.5	ND<0.5	0.52 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE **1668 SAG HARBOR TURNPIKE** SAG HARBOR, NEW YORK

2010 and 2011 Recovery Well Water Quality Results - FSP&T System

							Total	Dissolved	1,1-Dichloro-	1,1-Dichloro-	Methylene	Bromoform	Dibromochl-	Naphth-			Ethyl-	Chloro	
Recovery	Date	PCE	TCE	TCA	Chloroform	MTBE	Iron	Iron	ethane	ethene	Chloride		oromethane	alene	m,p-Xylene	o-Xylene	benzene	ethane	Acetone
Well	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	·		, . ,		, , ,			,	, , ,	, , ,		,	, , ,	, . ,	, , ,			,	i
-	ARAR's	5	5	5	7	NE	300	300	5	5	5	NE	NE	NE	5	5	NE	NE	NE
	12-Jan-10	ND<1	ND<1	ND<1	ND<1	ND<1	0.71	0.06	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-10	ND<1	ND<1	ND<1	ND<1	ND<1	4.42	0.19	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Mar-10	ND<1	ND<1	ND<1	ND<1	ND<1	2.64	1.84	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	08-Apr-10	ND<1	ND<1	ND<1	ND<1	ND<1	1.70	0.18	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	25-May-10	ND<1	ND<1	ND<1	ND<1	ND<1	0.44	0.03	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Jun-10	ND<1	ND<1	ND<1	ND<1	ND<1	0.93	0.07	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	20-Jul-10	ND<1	ND<1	ND<1	ND<1	ND<1	18.00	0.06	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	Aug-10 1/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	16-Sep-10	ND<1	ND<1	ND<1	ND<1	ND<1	1.91	0.694	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	13-Oct-10	ND<1	ND<1	ND<1	ND<1	ND<1	53.30	0.027	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	16-Nov-10	ND<1	ND<1	ND<1	ND<1	ND<1	3.18	0.723	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
RW-9	14-Dec-10 2/	ND<1	ND<1	ND<1	ND<1	ND<1	3.36	1.130	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
1200-9	11-Jan-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.79	0.143	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	17-Feb-11	ND<1	ND<1	ND<1	ND<1	ND<1	2.55	0.034	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	10-Mar-11	ND<1	ND<1	ND<1	ND<1	ND<1	0.65	0.048	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Apr-11	ND<1	ND<1	ND<1	ND<1	ND<1	5.26	0.991	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-May-11	ND<1	ND<1	ND<1	ND<1	ND<1	3.53	0.389	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	21-Jun-11	ND<1	ND<1	ND<1	ND<1	ND<1	0.50	0.054	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	12-Jul-11	ND<1	ND<1	ND<1	ND<1	ND<1	5.06	0.030	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	23-Aug-11	ND<1	ND<1	ND<1	ND<1	ND<1	5.34	0.060	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<2	ND<1	ND<1	ND<1	ND<1
	15-Sep-11	ND<5	ND<5	ND<5	ND<5	ND<5	-	-	ND<5	ND<1	4.6 J,B	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	3.4 J,B
	18-Oct-11	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	ND<0.5	ND<0.5	0.42 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2
	8-Nov-11	ND<0.5	ND<0.5	ND<0.5	0.16 J	ND<0.5	-	-	ND<0.5	ND<0.5	0.82 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	0.16 J	ND<2
	20-Dec-11	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	ND<0.5	ND<0.5	0.51 J,B	ND<0.5	ND<0.5	ND<2	ND<1	ND<0.5	ND<0.5	ND<0.5	ND<2

ND: Not detected <#: Less than method detection limit

PCE: Tetrachloroethylene

TCE: Trichloroethylene

TCA: 1,1,1-Trichloroethane

MTBE: Methyl-tertiary-butyl-ether

NS: Not sampled

ug/L: Micrograms per liter -: Not analyzed

J: Analyte detected below quantitation limits, value shown is a laboratory estimate.

B: Analyte was found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

ARAR's are chemical specific aquifer restoration goals for ground water at the Former Rowe Industries Superfund Site.

NE indicates that the ARAR goal was not established for this compound by the EPA. Bold values indicate an exceedence of the ARAR standard established for the site.

^{1/} The FSP&T Recovery system was not operational during most of the month, due to a leaking pipe, thus the recovery wells were not sampled during August 2010.

^{2/} Chloromethane, a constituent not previously detected, was detected in the groundwater sample collected from RW-9 at a concentration of 1.8 ug/l.

^{3/} RW-7 was not sampled because the RW-7 pump was not operable at the time of the sampling event.

Monitor Well Construction Details

		Top of Casing	Well	Installed Total		Date		-[Date	
Wall	Location	Elevation			Management TD		Cancon Cotting	Samoon Type and Size	Cosing Material	Surface Completion		Comment
Well	Location	Elevation	Diameter	Depth	Measured TD	Measured	Screen Setting	Screen Type and Size	Casing Material	Surface Completion	Constructed	Comment
		(ft msl)	(in)	(ft btoc)	(ft btoc)		(ft bg)					
MW-B1	Discharge Basin	35	2	52.0	52.0	9/14/2010	45-55	PVC	SCH40 PVC	stick-up		
MW-B2	Discharge Basin	37.66	2	53.0	52.9	9/22/2011	45-55	PVC	SCH40 PVC	stick-up		
MW-B3	Discharge Basin	31.62	2	52.0	52.7	9/22/2011	45-55	PVC	SCH40 PVC	stick-up		
MW-B4	Discharge Basin	30.74	2.	52.0	52.3	9/22/2011	45-55	PVC	SCH40 PVC	stick-up		
MW-28A	Onsite in back of main building	25.88	2	40.0	40.3	9/22/2011	30-40	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/8/2004	
MW-28B	Onsite in back of main building	25.85	2	50.0	50.7	9/22/2011	40-50	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/7/2004	
MW-42A	Bay Burger, SW section of parking lot (former Gingerbread House)	22.95	2	27.0			12-27	20-Slot, flush joint stainless-steel wire-wrapped	Flush joint stainless steel	flush mount curb box, asphalt to edge of curb box.	10/5/1989	Damaged during repaving of parking lot.
MW-42B	Bay Burger, SW section of parking lot (former Gingerbread House)	23.2	2	66.0	65.7	9/22/2011	56-66	20-Slot, flush joint stainless-steel wire-wrapped	Flush joint stainless steel	flush mount curb box, asphalt to edge of curb box.	10/6/1989	
	Bay Burger, SW section of parking lot							20-Slot, flush joint stainless-steel		flush mount curb box, asphalt to edge of		
MW-42C	(former Gingerbread House)	23.14	2	98.0			88-98	wire-wrapped	Flush joint stainless steel	curb box.	10/9/1989	Damaged during repaving of parking lot.
N 4337 42 A	Carroll St. near RW-6, in right of way at	22.01	2	20.0	20.7	0/22/2011	14.20	20-Slot, flush joint stainless-steel	El el ising equiples equal	flush mount curb box, asphalt to edge of	10/12/1000	
MW-43A	edge of road (blacktop).	22.81	2	29.0	28.7	9/22/2011	14-29	wire-wrapped	Flush joint stainless steel	curb box.	10/13/1989	
MW-43B	Carroll St. near RW-6, in right of way at edge of road (blacktop).	22.97	2	74.0	74.4	9/22/2011	64-74	20-Slot, flush joint stainless-steel wire-wrapped	Flush joint stainless steel	flush mount curb box, asphalt to edge of curb box.	10/16/1989	
	Carroll St. near RW-6, in right of way at		+					20-Slot, flush joint stainless-steel		flush mount curb box, asphalt to edge of		
MW-43C	edge of road (blacktop).	23.06	2	107.0	107.4	9/22/2011	97-107	wire-wrapped	Flush joint stainless steel	curb box.	10/17/1989	
MW-44A	Onsite near RW-2	29.33	2	36.2	34.5	9/22/2011	16.2-36.2	20-Slot PVC	SCH40 PVC	flush mount, curb box	6/14/1991	
MW-44B	Onsite near RW-2	29.39	2.	49.3	49.5	9/22/2011	39.2-49.2	20-Slot PVC	SCH40 PVC	flush mount, curb box	6/14/1991	
			2					20-Slot PVC 20-Slot PVC		•		
MW-44C	Onsite near RW-2	29.64	2	71.3	72.0	9/22/2011	61.3-71.3		SCH40 PVC	flush mount, curb box	6/14/1991	
MW-45A	FDSA, Onsite near fence	27.9		28.8	28.8	9/22/2011	13.9-28.9	20-Slot PVC	SCH40 PVC	flush mount, curb box	6/10/1991	
MW-45B	FDSA, Onsite near fence	27.67	2	50.6	51.1	9/22/2011	40.5-50.5	20-Slot PVC	SCH40 PVC	flush mount, curb box	6/7/1991	
MW-46A	Onsite in woods	15.84	2	15.1	14.8	9/22/2011	5-15	20-Slot PVC	SCH40 PVC	steel stick-up		
MW-46B	Onsite in woods	16.4	2	40.0	45.5	9/22/2011	30-40	20-Slot PVC	SCH40 PVC	steel stick-up		
MW-47A	Onsite in woods	14.98	2	8.7	14.9	9/22/2011	0-10	20-Slot PVC	SCH40 PVC	steel stick-up	6/19/1991	
MW-47B	Onsite in woods	15.1	2	45.0	42.0	9/22/2011	35-45	20-Slot PVC	SCH40 PVC	steel stick-up	6/19/1991	
MW-48A	Lily Pond Road Background	31.26	2	35.0	34.7	9/22/2011	20-35	Steel	STEEL	flush mount, curb box with concrete collar	6/21/1991	
MW 40D	Lila Dand Dand Dani and all					0/22/2011						
MW-48B	Lily Pond Road Background	32.13	2	70.0	47.5	9/22/2011	60-70	Steel	STEEL	flush mount, curb box with concrete collar	6/25/1991	
MW-49A	Noyac Road near RW-9	11.75	2	23.0	22.7	9/22/2011	8-23	PVC	SCH40 PVC	flush mount, curb box with concrete collar	6/26/1991	
MW-49B	Name Park man PW 0					0/22/2011						
MW-49B	Noyac Road near RW-9	11.75	2	68.7	69.5	9/22/2011	58-68	PVC	SCH40 PVC	flush mount, curb box with concrete collar	6/30/1991	
MW-49C	Noyac Road near RW-9	11.06	2	00.1	100.0	9/22/2011	00.100	DVC	CCITAO DAC	Clark and the state of the second state of the	7/5/1001	
-		11.86	2	99.1	100.0		90-100	PVC	SCH40 PVC	flush mount, curb box with concrete collar	7/5/1991	
MW-50A	Morris Cove Road	7.71	2	30.0	29.0	9/22/2011	15-30	Steel	STEEL	flush mount, curb box with concrete collar	7/9/1991	
MW-50B	Morris Cove Road	7.58	2	60.0	59.5	9/22/2011	50-60	Steel	STEEL	flush mount, curb box with concrete collar	7/10/1991	
MW-50C	Morris Cove Road	7.33	2	78.0	78.0	9/14/2010	67-77	Steel	STEEL	flush mount, curb box with concrete collar	7/15/1991	
					70.0							
MW-51A	FDSA, Onsite near fence	26.21	2	27.0			17-27	20-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	10/22/1991	Inaccessible, under concrete barrier.
MW-52A	FDSA, Onsite near fence, between concrete barrier and fence.	26.81	2	29.0	20.2	9/22/2011	19-29	20-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	10/23/1991	

Monitor Well Construction Details

Well	Location	Top of Casing Elevation	Well Diameter	Installed Total Depth	Measured TD	Date Measured	Screen Setting	Screen Type and Size	Casing Material	Surface Completion	Date Constructed	Comment
MW-53	Carroll St. between RW-6 & 5, in grass.	24.19	2	50.0	50.4	9/22/2011	40-50	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/20/1996	
MW-54	Carroll St. between RW-6 & 5, in grass.	25.85	2	50.0	49.7	9/22/2011	40-50	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/21/1996	
MW-55	Hildreth Street near corner of Brick Kiln Road.	10.99	2	65.0	65.1	9/22/2011	55-65	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/8/2004	
MW-56A	Brick Kiln Road between Carroll and Hildreth	13.35	2	25.0	24.7	9/22/2011	15-25	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/15/2004	
MW-56B	Brick Kiln Road between Carroll and Hildreth	13.39	2	65.0	65.0	9/22/2011	55-65	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/15/2004	
MW-56C	Brick Kiln Road between Carroll and Hildreth	13.44	2	100.0	100.4	9/22/2011	90-100	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/14/2004	
MW-57A	Brick Kiln Road south of Carroll Street	20.72	2	19.0	19.3	9/14/2010	9-19	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/19/2004	
MW-57B	Brick Kiln Road south of Carroll Street	20.63	2	35.0	35.4	9/14/2010	25-35	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/19/2004	
MW-57C	Brick Kiln Road south of Carroll Street	18.63	2	100.0	99.9	9/14/2010	90-100	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	8/10/2004	
MW-98-01A	FDSA, Hagerman's property	30.49	2	27.0	27.4	9/22/2011	17-27	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/8/1998	
MW-98-01B	FDSA, Hagerman's property	29.49	2	45.0			35-45	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	4/14/1998	Abandoned
MW-98-02A	FDSA, Hagerman's property		2	27.0			17-27	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/8/1998	Abandoned
MW-98-02B	FDSA, Hagerman's property		2	45.0			35-45	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	4/15/1998	Abandoned
MW-98-03	FDSA, Christensen property	33.25	2	30.0			20-30	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/8/1998	Abandoned, access agreement not renewed.
MW-98-04	FDSA, Onsite on pavement	29.31	2	26.5	25.4	9/22/2011	16.5-26.5	20-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	5/11/1998	
MW-98-05A	FDSA, Hagerman's property	29.7	2	28.0	24.9	9/22/2011	18-28	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/7/1998	
MW-98-05B	FDSA, Hagerman's property	30.01	2	45.0	27.4	9/22/2011	35-45	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/11/1998	
MW-98-06A	FDSA, Christensen property	34.41	2	29.0			19-29	20-Slot PVC	SCH40 PVC	flush mount curb box, below grade concrete collar, grass to edge of curb box	5/15/1998	Abandoned, access agreement not renewed.
N-1A	Near RW-9, between sign and tree	11.87	2	12.0	12.4	9/22/2011	10-12	16-Slot, Johnson, steel	STEEL	flush mount curb box with concrete collar	3/7/1984	SCDHS
N-1B	Near RW-9, between RW-9 and tree	10.02	2	65.0	65.4	9/22/2011	55-65	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/12/2004	
N-2A	Past MW-49 cluster, in grass between edge of Rd and sidewalk	12.5	2	22.0	21.5	9/22/2011	20-22	16-Slot, Johnson, steel	STEEL	flush mount curb box with concrete collar	3/7/1984	SCDHS

Monitor Well Construction Details

		Top of Casing	Well	Installed Total		Date					Date	
Well	Location	Elevation	Diameter	Depth	Measured TD	Measured	Screen Setting	Screen Type and Size	Casing Material	Surface Completion	Constructed	Comment
N-2B	Past MW-49 cluster, in grass between edge of Rd and sidewalk	12.06	2	65.0	65.0	9/22/2011	55-65	10-Slot PVC	SCH40 PVC	flush mount curb box with concrete collar	7/13/2004	
N-3	Brick Kiln Road, near Carroll Street	17	2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		3/12/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-4	Brick Kiln Road, near current MW-57 cluster.		2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		3/12/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-5	Brick Kiln Road, NE of current MW-56 cluster.	13.5	2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		3/20/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-6	Carroll Street	17.36	2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		3/20/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-7	Carroll Street	24.5	2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		3/21/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-8	Corner of Carroll Street and Sag Harbor Turnpike.	25	2	32.0			30-32	16-Slot, Johnson, Steel	STEEL		3/22/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-9	Northern corner of intersection of Hildreth & SH Turnpike, immediately next to stop sign.	14.9	2	20.0	20.0	9/22/2011	20-22	16-Slot, Johnson, Steel	STEEL	flush mount curb box with concrete collar	1984	
N-10	Carroll Street	23.5	2	40.0			38-40	16-Slot, Johnson, Steel	STEEL		4/23/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-11	Carroll Street	23.1	2	21.0			19-21	16-Slot, Johnson, Steel	STEEL		4/25/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-12	Lily Pond Road	43	2	43.0			41-43	16-Slot, Johnson, Steel	STEEL		5/9/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-13	Lily Pond Road		2	43.0			41-43	16-Slot, Johnson, Steel	STEEL		5/7/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-14	Lily Pond Road	24	2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		5/10/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-15	Lily Pond Road	26.1	2	22.0			20-23	16-Slot, Johnson, Steel	STEEL		5/15/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-16	Along SH Turnpike, near RW-4, at edge of woods	19.92	2	22.6	21.3	9/22/2011	21-23	16-Slot, Johnson, Steel	STEEL	flush mount curb box with concrete collar	5/16/1984	
N-17	Along SH Turnpike, in middle of grassy shoulder between edge of SH Turnpike and edge of woods	17.71	2	23.0	23.0	9/22/2011	21-23	16-Slot, Johnson, Steel	STEEL	flush mount curb box with concrete collar	5/21/1984	
N-18	Sag Harbor Turnpike, south of Carroll Street	32	2	33.5			31.5-33.5	16-Slot, Johnson, Steel	STEEL		5/22/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-19	Noyac Road	10.65	2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		5/23/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-20	Kiln Brick Road	5.00	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		0/4/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-21	Columbia Street	7.25	2	22.0			20-22	16-Slot, Johnson, Steel	STEEL		6/4/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-22	Sag Harbor Turnpike		2	120.0			118-120	16-Slot, Johnson, Steel	STEEL			SCDHS, Well pulled out 9-26-84.
N-22-B	Sag Harbor Turnpike		2				15-17	16-Slot, Johnson, Steel	STEEL		10/8/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-23	Sag Harbor Turnpike	12.89	2	10.0			8-10	16-Slot, Johnson, Steel	STEEL		8/1/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-24	Sag Harbor Industries	27.24	2	38.0			36-38	16-Slot, Johnson, Steel	STEEL		8/8/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-25	Sag Harbor Industries	25.44	2	24.0			22-24	16-Slot, Johnson, Steel	STEEL		8/8/1984	SCDHS, Destroyed/unlocated/no longer have access to well.

Monitor Well Construction Details

		Top of Casing	Well	Installed Total	al	Date					Date	
Well	Location	Elevation	Diameter	Depth	Measured TD	Measured	Screen Setting	Screen Type and Size	Casing Material	Surface Completion	Constructed	Comment
N-26	Sag Harbor Industries	25.18	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		8/13/1984	have access to well.
N-27	Sag Harbor Industries	24.9	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		8/15/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-28	Sag Harbor Industries	26.76	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		8/20/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-29	Sag Harbor Industries		2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		8/20/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-30	Sag Harbor Industries		2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		8/22/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-31	Sag Harbor Industries	28.91	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		8/23/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-32	in SHI parking lot	32.12	2	33.0	30.0	9/22/2011	31-33	16-Slot, Johnson, Steel	STEEL	flush mount, cement collar, curb box	9/10/1984	
N-33	in SHI parking lot	22.43	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		9/10/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-34	in SHI parking lot		2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		9/12/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-35	Sag Harbor Turnpike		2	32.0			30-32	16-Slot, Johnson, Steel	STEEL		9/24/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-36	Sag Harbor Turnpike	26.27	2	33.0			31-33	16-Slot, Johnson, Steel	STEEL		9/25/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-37	Fabiano front yard, in grass left of driveway	31.41	2	25.0	26.3	9/14/2010	23-25	16-Slot, Johnson, Steel	STEEL	flush mount, cement collar, curb box	8/30/1984	
N-38	Fabiano side yard near shrubbery	31.49	2	30.2	30.5	9/22/2011	28-30	16-Slot, Johnson, Steel	STEEL	flush mount, cement collar, curb box	9/6/1984	
N-39	Fabiano back yard near edge of woods	26.95	2	33.0	32.4	9/22/2011	31-33	16-Slot, Johnson, Steel	STEEL	flush mount, cement collar, curb box	9/20/1984	
N-40	Sag Harbor Turnpike	25.11	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		9/24/1984	SCDHS, Destroyed/unlocated/no longer have access to well.
N-41	Lily Pond Rd.	13.5	2	23.0			21-23	16-Slot, Johnson, Steel	STEEL		10/11/1984	SCDHS, Destroyed/unlocated/no longer have access to well.

SCDHS Suffolk County Department of Health Services

ft msl Feet mean sea level

in Inches

ft btoc Feet below top of casing

ft bg Feet below grade

N-41 Destroyed, unlocated, inaccessible or abandoned monitor well.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Current and Historic Conentrations of PCE Detected in Groundwater from Monitor and Recovery Wells, ug/l

															Sampl	le Dates													
Monitor or Recovery Wells	Jun-00	Jul-00	7/02 DUP	7/02 DBS **	9/02***	Mar-03	Sep-03	Mar-04	Jul-04	Sep-04	Jan-05	Mar-05	May-05	Jun-05	_	Sep-05	Dec-05	Mar-06	6 Sep-06	Mar-07	Oct-07	Mar-08	Sep-08	Mar-09	Sep-09	Mar-10	Sep-10	Mar-11	Sep-11
MW-B1							ND	ND		ND		ND				ND		ND	ND		ND		ND		ND		ND		ND
MW-B2							ND																						ND
MW-B3							ND	ND																					ND
MW-B4							ND	ND																					ND
FRW-1					300	85	110	36		18		210	150	32	24	11	670	110	310	41	380	600	6.5	120	15	160	180	68	37
FRW-2					0.7	24	51	28		150	130	200	380	420	190	10	450	450	2.5	5.7	ND	27	72	24	20	33	150	39	24
FRW-3					94	98	150	230		67		1500	480	720	110	63	1,000	920	480	120	1.9	62	16	270	110	190	110	19	16
FRW-4												12	12	10	4.2	2.5	36	34	4.8	ND	4.5	2.3	18	17	5.3	5.3	ND	4.5	22
RW-1	< 1				ND	ND	ND	ND		ND		ND						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
RW-2	230				120	26	7.9	4.9		12		20				16		6.5	2.8	ND	1.4		3.4	4.0	1.8	1.0	ND	0.91 J	0.96 J
RW-3	80				30	2.4	2.8	1.2		2.7		3				1		1.1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
RW-4	4,200				590	150	210	170		120						45		22	9	7.3	9.4	6.5	3.8	3.3	4.5	2.1	ND	0.82 J	1.1 J
RW-5	< 1				ND	19	15	14		24		14				8		2.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
RW-6	69				140	130	140	110		130		120				100		65	46	29	14	19	13	10	11	7.0	4.3	1.9	3.6 J
RW-7					350	160	120	100		59		42				39		38	36	23	25	11	5.4	5.5	9.5	3.6	ND	1.8	
RW-8	88				100	70	30	22				9				2.9		1.3	ND		ND								
RW-9	3				11	23	25	ND		3.7		ND				1.2		1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-28A																													
MW-28B	0.23J																												
MW-28A (New)									1.3	13		8.9				ND		2.7	ND	ND	ND	ND	21	ND	ND	ND	ND	ND	ND
MW-28B (New)									1.2			ND				ND		ND	ND	ND		ND							
MW-42A																		ND											
MW-42B																		ND	ND	ND	ND		ND						
MW-42C																		ND	ND	ND									
MW-43A							ND					ND							ND	ND						ND			ND
MW-43B		65		56		180	110	200		ND		ND				ND		7.6	1.5	ND	ND	ND	ND	ND	ND	12	2.7	1.0	4.5 J
MW-43C		7		6.3		ND	ND	ND				52				ND		20	ND	27	ND								
MW-44A		1		ND		8.7		ND				1.2				ND		ND	ND	ND	ND	ND	ND	ND	1.1	0.66 J	ND	ND	ND
MW-44B		220		190		ND		ND		1.5						ND		ND	ND	ND	5.0	ND	ND	ND	ND	3.1	ND	ND	ND
MW-44C		ND		ND						ND	<u> </u>			<u> </u>		ND		ND	ND	<u> </u>	ND		ND		ND		ND		ND
MW-45A	2.2					ND		ND		1.0	32.0	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3	ND	ND	ND
MW-45B	1J					ND	34	ND		ND				<u> </u>		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-46A		ND		ND		14		ND		ND		ND		<u> </u>		ND		ND	ND	<u> </u>	ND								
MW-46B	4.0	ND		ND		ND				ND		ND		ļ		ND		ND	ND	2	0.01				ND	2.5	ND	>	ND
MW-47A	19	ND		ND				3.3		21		16		ļ		1.7		2.5	ND	ND	0.81	3.5		ND	0.81	3.2	ND	ND	0.77 J
MW-47B	0.4	ND		ND		3.75	3.77	3.75		ND		ND				ND		ND	ND		ND		ND		ND		ND		ND
MW-48A	0.4	ND		ND		ND	ND	ND		ND		3.77				ND		ND	3.77		3.75		3.77		3.77		ND		ND
MW-48B	0.4	ND		ND		3.75	3.77	ND		ND		ND				ND		ND	ND	3.75	ND	3.770	ND	210.75	ND	3.75	ND	3.770	ND
MW-49A	0.84	4		ND		ND	ND	ND		29		ND				25		2.2	ND	ND	0.1	ND	ND	NS/Dry	ND	ND	ND	ND	ND
MW-49B	250	270		300		230	150	15		ND		53				35		26	7.6	6.8	2.1	3	4.6	3.6	2.3	1.4	ND	ND	ND
MW-49C	47	33		34		7.3		87		42		6.0				0.9		2.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Current and Historic Conentrations of PCE Detected in Groundwater from Monitor and Recovery Wells, ug/l

															Samp	le Dates													
Monitor or Recovery Wells	Jun-00	Jul-00	7/02 DUP	7/02 DBS **	9/02***	Mar-03	Sep-03	Mar-04	Jul-04	Sep-04	Jan-05	Mar-05	May-05	Jun-05			Dec-05	Mar-06	Sep-06	Mar-07	Oct-07	Mar-08	Sep-08	Mar-09	Sep-09	Mar-10	Sep-10	Mar-11	Sep-11
MW-50A	0.4	ND		ND		ND	ND	ND		ND						ND		ND									ND		ND
MW-50B	0.4	ND		ND		ND	ND	ND		ND						ND		ND			ND		ND		ND		ND		ND
MW-50C	0.4	ND		ND		ND	ND	ND		ND						ND		ND									ND		ND
MW-52A										ND		ND				ND					ND		ND		ND		ND	ND	ND
MW-53																					3.2	3.0	ND	ND	ND	0.71 J	0.4 J	ND	ND
MW-54																					2.0	4.6	1.2	1.2	1.5	5.1	0.32 J	ND	0.80 J
MW-55									ND							ND		ND	ND						ND		ND		ND
MW-56A									ND			1.2				ND		ND	ND		ND								
MW-56B									ND	ND		ND				ND		ND	ND										
MW-56C									ND			ND				ND		ND		ND		ND							
MW-57A									ND			ND						ND	ND						ND		ND		
MW-57B									ND			ND				ND		ND	ND										
MW-57C										ND		ND						ND	ND										
MW-98-01A	58						ND	ND		4.4	9.4									ND	11	9.5	38	1.5	1.1	4.7	ND	1.5	4.9
MW-98-01B	< 0.4						ND																						
MW-98-02A	1.3																												
MW-98-02B	< 0.4																												
MW-98-03	2.2	ND		ND		ND	ND																						
MW-98-04	110	ND		ND		ND	23			ND		28	4.9	1.7	ND	ND	45	7.0	ND	ND	ND	18	20	ND	7.6	0.68 J	ND	0.99 J	ND
MW-98-05A	130	110		80		670	600	260		79	760											1.4	190	200	9.2	65	ND	37	190
MW-98-05B		1		ND		ND	ND	ND												66	78	66		ND	ND	ND	ND	ND	ND
MW-98-06A	1.3						ND																						
MW-98-06B	0.28J						ND																					<u> </u>	
MW-98-07							ND																						
MW-98-08	< 0.4																												
MW-0718		120		ND																									
N-1A								ND										ND							ND		ND		ND
N-1B									ND			ND				ND		ND	ND		ND								
N-2A								ND										ND							ND		ND		ND
N-2B									ND			ND				ND		ND	ND		ND								
N-6																													
N-9							ND	ND				ND															ND		ND
N-11																													
N-16							ND	ND				ND				ND		ND	ND										
N-17							ND	ND				ND				ND		ND	ND		ND								
N-32										ND														ND	ND	ND	ND	ND	ND
N-37									ND			ND				ND		ND		ND									
N-38									ND	1.8		1.8				ND		ND	ND										
N-39							0.7	16		3.2		6.0				6.8		ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND
N-40																												1	

^{*} Effluent sample from focus pump and treat

^{**} DBS – Sample collected using diffusive bag sample method

^{***} Collected after 4 hours of pumping during execution of Initial Testing Plan

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Current and Historic Conentrations of TCE Detected in Groundwater from Monitor Wells and Recovery Wells, ug/l

Monitor or Recovery Wells	Jun-00	Jul-00	Jul-02	7/02 DUP	7/02DBS **	9/02**	Mar-03	Sep-03	Mar-04	Jul-04	Sep-04	Jan-05	Mar-05	May-06	Jun-06	Aug-06	Sep-05	Dec-05	Mar-06	Sep-06	Mar-07	Oct-07	Mar-08	Sep-08	Mar-09	Sep-09	Mar-10	Sep-10	Mar-11	Sep-11
MW-B1								ND	ND		ND		ND				ND		ND	ND		ND								
MW-B2								ND																						ND
MW-B3								ND	ND																					ND
MW-B4								ND	ND																					ND
FRW-1						ND	ND	ND	ND		ND		1.6	ND	7.8	110	ND	2.4	ND	1.2	3.1	ND	ND							
FRW-2						ND	ND	ND	ND		14	7.4	15	6.2	12	12	ND	23	13	ND	ND	ND	10	19	ND	ND	1.7	18	ND	1.4 J
FRW-3						ND	ND	ND	ND		1.9		31	8.2	28	13	1.7	77	41	4.5	16	20	23	6.6	10	12	3.2	12	2.6	1.5 J
FRW-4													ND	ND	ND	ND	ND	ND	2.4	ND	ND	ND	0.99J	ND	ND	ND	ND	4.5	ND	0.99 J
RW-1						ND	ND	ND	ND		ND		ND						ND											
RW-2	5.1					1.4	1.8	ND	ND		ND		1.1				1.8		3.5	ND	ND	ND		ND						
RW-3						ND	3.6	5.8	5.0		21		13				3.6		3.4		ND	ND	2.2	ND	2.5	ND	1.4	0.63 J	ND	0.93 J
RW-4						9.5	3.6	5.7	5.8		3.7						ND		ND	ND	ND	1.1	0.57J	ND						
RW-5						ND	ND	ND	ND		ND		ND				ND		ND											
RW-6	ND					1.1	1	2.2	2.7		3.3		2.3				1.6		1.2	ND										
RW-7						5.2	2.3	2.3	3.0		2.2		1.5				ND		ND	ND	ND	0.73	ND							
RW-8						6.6	2.9	1.7	2.7				9				ND		ND	ND		ND								
RW-9						3	2.2	1.2	2.2		1.0		1.4				ND		ND											
MW-28A																														
MW-28B	ND																													
MW-28A (New)										ND	ND		ND				ND		3.2	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND
MW-28B (New)										ND			ND				ND		ND	ND	ND		ND							
MW-42A																			ND											
MW-42B																			ND	ND	ND	ND		ND						
MW-42C																			ND	ND	ND									
MW-43A								ND					ND							ND	ND						ND			ND
MW-43B			ND	ND	ND		1.8	1/ND	ND		ND		ND				ND		ND	2.8	ND	ND	ND							
MW-43C			ND	ND	ND		ND	ND	ND				ND				ND		ND											
MW-44A			ND	ND	ND		ND		ND				ND				ND		ND											
MW-44B			ND	ND	ND		ND		ND		ND						ND		ND											
MW-44C			ND	ND	ND						ND						ND		ND	ND	ND	ND		ND		ND		ND		ND
MW-45A	ND						ND		ND		ND																			
MW-45B	ND						ND	ND	ND		ND						ND		ND											
MW-46A			ND	ND	ND		5.6		ND		ND		ND				ND		ND	ND		0.59	ND							
MW-46B			ND	ND	ND		ND		ND		ND		ND				ND		ND	ND						ND		ND		ND
MW-47A	30								16		3.9		ND				ND		ND	ND		0.97	14		ND	ND	2.8	ND	ND	1.7 J
MW-47B	ND		ND	ND	ND						ND		ND				ND		ND	ND				ND		ND		ND		ND
MW-48A	ND		ND	ND	ND		ND	ND	ND		ND						ND		ND									ND		ND
MW-48B	ND		ND	ND	ND						ND		ND				ND		ND	ND		ND								
MW-49A	ND		ND	ND	ND		ND	ND	ND		ND		ND				ND		ND	ND	ND		ND	ND		ND	ND	ND	ND	ND
MW-49B	17		16	ND	16		6.4	3/ND	ND		ND		ND				ND		ND											
MW-49C	ND		ND	ND	ND		ND		ND		ND		ND				ND		ND											

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Current and Historic Conentrations of TCE Detected in Groundwater from Monitor Wells and Recovery Wells, ug/l

Market																														
Monitor or Recovery Wells	Jun-00	Jul-00	Jul-02	7/02 DUP	7/02DBS **	9/02**	Mar-03	Sep-03	Mar-04	Jul-04	Sep-04	Jan-05	Mar-05	May-06	Jun-06	Aug-06	Sep-05	Dec-05	Mar-06	Sep-06	Mar-07	Oct-07	Mar-08	Sep-08	Mar-09	Sep-09	Mar-10	Sep-10	Mar-11	Sep-11
MW-50A	ND		ND	ND	ND		ND	ND	ND		ND						ND		ND									ND		ND
MW-50B	ND		ND	ND	ND		ND	ND	ND		ND						ND		ND			ND								
MW-50C	ND		ND	ND	ND		ND	ND	ND		ND						ND		ND									ND		ND
MW-52A											ND		ND				ND					ND		ND		ND		ND	ND	ND
MW-53																						ND								
MW-54																						ND	ND	ND	ND	ND	2.6	ND	ND	ND
MW-55										ND							ND		ND	ND						ND		ND		ND
MW-56A										ND			ND						ND	ND		ND								
MW-56B										ND	ND		ND				ND		ND											
MW-56C										ND			ND				ND		ND		ND		ND							
MW-57A										ND			ND						ND	ND						ND		ND		
MW-57B										ND			ND				ND		ND	ND										
MW-57C											ND		ND						ND	ND		<u> </u>								
MW-98-01A		ND						ND	ND		ND	ND									ND									
MW-98-01B		ND						ND																						
MW-98-02A		ND																												<u> </u>
MW-98-02B		ND																												<u> </u>
MW-98-03		ND	ND	ND	ND		ND	ND																						
MW-98-04	ND		ND	ND	ND		ND	ND			ND		ND																	
MW-98-05A		5	ND	ND	ND		8.3	ND	1.6		ND												ND	11	1.8	1.1	6.2	ND	3.1	3.8 J
MW-98-05B			ND	ND	ND		ND	ND	ND		ND										15	26	9.5		ND	ND	ND	ND	ND	ND
MW-98-06A		ND						ND																						
MW-98-06B		ND						ND																						
MW-98-07								ND																						
MW-98-08		ND																												
MW-0718	ND		ND	ND	ND																									
N-1A									ND										ND							ND		ND		ND
N-1B										ND			ND				ND		ND	ND		ND								
N-2A									ND										ND							ND		ND		ND
N-2B										ND			ND				ND		ND	ND		ND								
N-6				-																										
N-9								ND	ND				ND															ND		ND
N-11																														
N-16								ND	ND				ND				ND		ND											
N-17								ND	ND				ND				ND		ND	ND		ND								
N-32											ND														ND	ND	ND	ND	ND	ND
N-37										ND			ND				ND		ND		ND									
N-38										ND	ND		ND				ND		ND											
N-39								95	12		1.2		1.2				ND		ND											

^{*}Effluent sample from focus pump and treat

**DBS – Samples collected using diffusive bag sample method

*** Collected after 4 hours of pumping during execution of Initial Testing Plan

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Current and Historic Conentrations of TCA Detected in Groundwater from Monitor Wells and Recovery Wells, ug/l

A.															S	ample D	ates													
Monitor or Recovery Well	Jun-00	Jul-00	Jul-02	7/02 DUP	7/02 DBS**	9/02***	Mar-03	Sep-03	Mar-04	Jul-04	Sep-04	Jan-05	Mar-05	May-05	Jun-05	Aug-05	Sep-05	Dec-05	Mar-06	Sep-06	Mar-07	Oct-07	Mar-08	Sep-08	Mar-09	Sep-09	Mar-10	Sep-10	Mar-11	Sep-11
MW-B1								ND	ND		ND		ND				ND		ND	ND		ND								
MW-B2								ND																						ND
MW-B3								ND	ND																					ND
MW-B4								ND	ND																					ND
FRW-1						ND	ND	ND	2.8		ND		3.2	ND	ND	ND	ND	6.3	ND	11	ND	14	13	ND	ND	ND	4.6	5.7	0.58 J	ND
FRW-2						ND	ND	ND	ND		1.0	23	5.6	ND	ND	1.2	ND	1.1	ND	ND	ND	ND	ND	ND						
FRW-3						ND	ND	ND	ND		2.6		61	28	54	5.1	ND	28	44	ND	18	ND	1.3	ND	ND	ND	ND	1.8	ND	ND
FRW-4													ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
RW-1						ND	ND	ND	ND		ND		ND						ND											
RW-2	ND					ND	ND	ND	ND		ND		ND				ND		ND	200	31	1.2		2.4	1.9	ND	1.7	ND	ND	ND
RW-3						ND	1.1	2.9	2.3		8.7		5.0				1.2		ND		ND	ND	0.8 J	ND	1.3	ND	ND	ND	ND	ND
RW-4						1.6	ND	1.1	4.5		18						6		7	7.5	2.1	10	3	6	ND	ND	4.2	1.9	ND	2.7 J
RW-5						ND	ND	ND	ND		6.5		4.3				3.8		3	ND	ND	ND	ND	2.6	2.0	ND	2.6	ND	ND	1.1 J
RW-6	ND					ND	ND	ND	ND		2.2		6.6				12		17	27	8.4	11	6.1	6.5	6.5	4.1	4.2	2.8	0.93 J	2.7 J
RW-7						ND	ND	ND	ND		ND		1.7				3.4		4.1	7.5	2.7	2.8	1.1	ND	ND	ND	0.77 J	0.67 J	ND	
RW-8						ND	2.7	3.6	4.3				4.2				4.2		2.8	3		2	1.2	ND						
RW-9						3.5	2.8	3.5	12		6		5.9				2		ND											
MW-28A																														
MW-28B	ND																													
MW-28A(New)										ND	ND		ND				ND		ND											
MW-28B(New)										ND			ND				ND		ND	ND	ND		ND							
MW-42A																			ND											
MW-42B																			ND	ND	ND	ND		ND						
MW-42C																			ND	ND	ND									
MW-43A								ND					ND							ND	ND						ND			5.3
MW-43B			ND		ND		ND	ND	ND		ND		ND				ND		ND	3.8	0.69 J	ND	1.1 J							
MW-43C			ND		ND		ND	ND	ND				ND				ND		4.1	ND										
MW-44A			ND		ND		ND		ND				ND				ND		ND	5.1	4.8	1.9	41	ND						
MW-44B			ND		ND		ND		ND		ND						ND		ND											
MW-44C			ND		ND						ND						ND		ND	ND	ND	ND		ND		ND		ND		ND
MW-45A	ND						ND		ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-45B	ND						ND	ND	ND		ND						ND		ND											
MW-46A			ND		ND		ND		ND		ND		ND				ND		ND	ND		ND								
MW-46B			ND		ND		ND				ND		ND				ND		ND	ND						ND		ND		ND
MW-47A	5.8		ND		ND				7.5		ND		ND				ND		ND	ND	ND	ND	6.7		ND	ND	ND	ND	ND	ND
MW-47B	ND		ND		ND						ND		ND				ND		ND	ND				ND		ND		ND		ND
MW-48A	ND		ND		ND		ND		ND		ND						ND		ND									ND		ND
MW-48B	ND		ND		ND						ND		ND				ND		ND	ND		ND								
MW-49A	ND		ND		ND		ND	ND	ND		ND		ND				ND		ND	ND	ND		ND	ND		ND	ND	ND	ND	ND
MW-49B	6.2		7		7.6		2.9	2.8/ND	ND		ND		ND				ND		ND											
MW-49C	ND		ND		ND		ND		ND		ND		ND				ND		ND											

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Current and Historic Conentrations of TCA Detected in Groundwater from Monitor Wells and Recovery Wells, ug/l

3.5															Sa	ample D	ates													
Monitor or Recovery Well	Jun-00	Jul-00	Jul-02	7/02 DUP	7/02 DBS**	9/02***	Mar-03	Sep-03	Mar-04	Jul-04	Sep-04	Jan-05	Mar-05	May-05	Jun-05	Aug-05	Sep-05	Dec-05	Mar-06	Sep-06	Mar-07	Oct-07	Mar-08	Sep-08	Mar-09	Sep-09	Mar-10	Sep-10	Mar-11	Sep-11
MW-50A	ND		ND		ND		ND	ND	ND		ND						ND		ND									ND		ND
MW-50B	ND		ND		ND		ND	ND	ND		ND						ND		ND			ND								
MW-50C	ND		ND		ND		ND	ND	ND		ND						ND		ND									ND		ND
MW-51A																														
MW-52A											ND		ND				ND					ND		ND		ND		ND	ND	ND
MW-53																						15	16	24	20	5.8	18	9.9	2.0	7.3
MW-54																						ND	ND	5.1	2.4	3.4	4.1	4.0	0.77 J	2.7 J
MW-55										ND							ND		ND	ND						ND		ND		ND
MW-56A										ND			ND				ND		ND	ND		ND								
MW-56B										10	18		1.5				ND		2.1	ND										
MW-56C										2.2			1.7				ND		ND		ND		ND							
MW-57A										ND			ND						ND	ND						ND		ND		
MW-57B										ND			ND				ND		ND	ND										
MW-57C											ND		ND						ND	ND										
MW-98-01A		14/4.9						ND	ND		ND	ND									ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND
MW-98-01B		ND						ND																						
MW-98-02A		ND																												
MW-98-02B		ND																												
MW-98-03		ND	ND		ND		ND	ND																						
MW-98-04	ND		ND		ND		ND	ND			ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-98-05A		36	ND		ND		ND	ND	ND		1.8	39											ND	ND	ND	ND	3.4	ND	ND	ND
MW-98-05A-MS			ND	ND	ND																									
MW-98-05B			ND		ND		ND	ND	ND												6.6	ND	4.4		ND	ND	ND	ND	ND	ND
MW-98-06A		ND						ND																						
MW-98-06B		ND						ND																						
MW-98-07								ND																						
MW-98-08		ND																												
MW-0718			ND		ND																									
N-1A									ND										ND							ND		ND		ND
N-1B										1.1			ND				ND		ND	ND		ND								
N-2A									ND										ND							ND		ND		ND
N-2B										ND			ND				ND		ND	ND		ND								
N-6																														
N-9								ND	ND																			ND		ND
N-16								ND	3.6				5.3				7.1		1.1	7	ND	ND	2.8	ND	ND	ND	2.8	4.1	ND	ND
N-17								ND	ND				ND				ND		ND	ND		ND								
N-32											ND														ND	ND	ND	ND	ND	ND
N-37													ND				ND		ND		ND									
N-38											ND		ND				ND		ND											
N-39								ND	4.6		ND		ND				ND		ND											

^{**}DBS – Sample collected using diffusive bag sample method
*** Collected after 4 hours of pumping during execution of Initial Testing Plan

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Summary of Vapor-Phase Carbon Unit Operating Data

Date	Operating Time 1/ (hours)	Average Air Flow Rate (scfm)	Post-Carbon VOC Vapor Conc. (mg/m ³)	VOC Emissions (lb/hr)	VOC Emissions ^{1/} (lb)
1/20/2011	398	1,288	0.103	0.00050	0.198
2/1/2011	642	900	0.094	0.00032	0.204
3/4/2011	368	1,263	0.131	0.00062	0.228
4/5/2011	718	1,307	0.109	0.00053	0.381
5/3/2011	534	1,307	0.103	0.00050	0.269
6/6/2011	284	2,754	0.024	0.00025	0.070
7/6/2011	710	2,889	0.022	0.00024	0.169
8/30/2011	286	2,891	0.020	0.00022	0.063
9/28/2011	587	2,810	0.032	0.00034	0.197
10/25/2011	612	2,605	0.020	0.00020	0.121
11/21/2011	551	2,695	0.071	0.00072	0.398
12/27/2011	652	2,650	0.615	0.00611	3.981
Avg.	529	2,113	0.112	0.00088	0.523
Total					6.28

^{1/} For the month during which air sample was collected.

Note: Carbon vessel maintenance and carbon replacement was completed in June 2011.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Carbon Unit System Air Quality Results

Precarbon									Parame	eters (mg	/m3)						TOTAL
Sample Name	Date	Time	PCE	TCE	TCA	DCE	DCA	cis-DCE	trans-DCE	Toluene	m&p-Xylenes	o-Xylene	CF	MC	EB	Freon 113	VOCs
AQ12011:1110NP4-1	1/20/2011	11:10	0.0560	0.0052	0.0140	0.0011	0.0058	0.0077	ND	ND	ND	ND	0.0079	NA	ND	ND	0.10
AQ2111:1210NP4-1	2/1/2011	12:10	0.0770	0.0052	0.0330	0.0016	0.0074	0.0042	ND	ND	ND	ND	0.0050	NA	ND	ND	0.14
AQ3211:1405NP4-1	3/2/2011	14:05	0.3500	0.0110	0.0250	0.0010	0.0059	0.0072	ND	0.0240	0.0440	0.0200	0.0082	0.0027	0.0100	ND	0.52
AQ4511:1330NP4-1	4/5/2011	13:30	0.0830	0.0073	0.0380	0.0016	0.0097	0.0059	ND	0.0031	ND	ND	0.0077	0.0030	ND	ND	0.16
AQ5311:1120NP4-1	5/3/2011	11:20	0.0290	0.0042	0.0300	0.0032	0.0075	ND	ND	0.0130	0.0034	0.0015	0.0046	0.0081	0.0018	ND	0.12
AQ060611:1400NP4-1	6/6/2011	14:00	0.0490	0.0039	0.0094	0.0006	0.0047	0.0028	ND	0.0025	ND	ND	0.0054	NA	ND	ND	0.09
AQ7611:1420NP4-1	7/6/2011	14:20	0.0660	0.0061	0.0170	0.0009	0.0064	0.0095	ND	0.0059	ND	ND	0.0049	NA	ND	ND	0.13
AQ83011:1200NP4-1	8/30/2011	12:00	0.0160	0.0020	0.0049	ND	0.0020	ND	ND	0.0140	0.0027	ND	0.0026	NA	ND	ND	0.05
AQ92811:1120NP4-1	9/28/2011	11:20	0.0170	0.0036	0.0160	ND	0.0069	ND	ND	0.0017	0.0028	0.0013	0.0037	0.0490	0.0011	0.0054	0.23
AQ101811:1300NP4-1	10/18/2011	13:00	0.0370	0.0031	0.0170	ND	0.0081	ND	ND	0.0010	0.0009	0.0004	0.0034	NA	0.0003	ND	0.14
AQ112111:1100NP4-1	11/21/2011	11:00	0.0190	0.0035	0.0160	ND	0.0075	ND	ND	0.0016	0.0022	ND	0.0036	NA	ND	ND	0.09
AQ122711:11:30NP4-1	12/27/2011	11:30	0.0480	0.0038	0.0170	ND	0.0081	0.0032	ND	0.0740	0.0190	0.0062	0.0031	NA	0.0120	ND	0.26

Midcarbon									Parame	eters (mg	/m3)						TOTAL
Sample Name	Date	Time	PCE	TCE	TCA	DCE	DCA	cis-DCE	trans-DCE	Toluene	m&p-Xylenes	o-Xylene	CF	MC	EB	Freon 113	VOCs
AQ12011:1115NP4-2	1/20/2011	11:15	0.0027	ND	0.0490	0.0013	0.0082	0.0025	ND	ND	ND	ND	0.0074	NA	ND	ND	0.07
AQ211111:1215NP4-2	2/1/2011	12:15	0.0061	0.0018	0.0500	0.0014	0.0096	0.0028	ND	0.0091	0.0039	ND	0.0089	0.0071	0.0022	ND	0.11
AQ3211:1410NP4-2	3/2/2011	14:10	0.0049	0.0016	0.0440	0.0017	0.0066	0.0023	ND	ND	ND	ND	0.0073	0.0018	ND	ND	0.08
AQ4511:1335NP4-2	4/5/2011	13:35	0.0055	0.0017	0.0390	0.0014	0.0081	0.0029	ND	0.0180	ND	ND	0.0071	0.0170	ND	ND	0.11
AQ5311:1125NP4-2	5/3/2011	11:25	0.0099	0.0019	0.0550	0.0044	0.0140	0.0043	ND	ND	ND	ND	0.0110	0.0023	ND	ND	0.11
AQ060611:1405NP4-2	6/6/2011	14:05	0.1900	0.0310	0.0330	ND	0.0012	0.0017	ND	0.0048	ND	ND	0.0020	NA	ND	ND	0.28
AQ7611:1425NP4-2	7/6/2011	14:25	0.1400	0.0160	0.0130	ND	ND	ND	ND	0.0056	ND	ND	ND	NA	ND	ND	0.19
AQ83011:1205NP4-2	8/30/2011	12:05	0.1100	0.0130	0.0110	ND	0.0009	ND	ND	0.0079	ND	ND	ND	NA	ND	ND	0.15
AQ92811:1125NP4-2	9/28/2011	11:25	1.3000	0.0270	0.0086	ND	0.0040	ND	ND	0.0041	0.0024	0.0009	ND	0.0230	0.0012	0.0058	1.45
AQ101811:1305NP4-2	10/18/2011	13:05	0.1100	0.0140	0.0110	ND	0.0054	ND	ND	0.0016	0.0016	0.0007	0.0015	NA	0.0006	0.0036	0.31
AQ112111:1105NP4-2	11/21/2011	11:05	0.0830	0.0042	0.0058	ND	0.0080	ND	ND	0.0017	0.0020	0.0094	0.0031	NA	ND	ND	0.19
AQ122711:1135NP4-2	12/27/2011	11:35	0.2400	0.0058	0.0140	ND	0.0095	ND	ND	0.0480	0.0036	ND	ND	NA	0.0048	ND	0.38

Postcarbon									Parame	eters (mg	/m3)						TOTAL
Sample Name	Date	Time	PCE	TCE	TCA	DCE	DCA	cis-DCE	trans-DCE	Toluene	m&p-Xylenes	o-Xylene	CF	MC	EB	Freon 113	VOCs
AQ12011:1120NP4-3	1/20/2011	11:20	ND	ND	0.0760	0.0020	0.0130	0.0035	ND	ND	ND	ND	0.0088	NA	ND	ND	0.10
AQ2111:1220NP4-4	2/1/2011	12:20	ND	ND	0.0630	0.0019	0.0110	0.0035	ND	ND	ND	ND	0.0088	0.0060	ND	ND	0.09
AQ3211:1415NP4-3	3/2/2011	14:15	ND	ND	0.0890	0.0023	0.0130	0.0051	ND	0.0014	ND	ND	0.0120	0.0021	ND	ND	0.13
AQ4511:1340NP4-3	4/5/2011	13:40	ND	ND	0.0600	0.0021	0.0110	0.0052	ND	0.0055	ND	ND	0.0110	0.0038	ND	ND	0.11
AQ5311:1130NP4-3	5/3/2011	11:30	ND	ND	0.0620	0.0049	0.0099	0.0060	ND	0.0025	ND	ND	0.0090	0.0031	ND	ND	0.10
AQ060611:1410NP4-3	6/6/2011	14:10	ND	ND	ND	ND	ND	ND	ND	0.0062	0.0035	0.0013	ND	NA	ND	ND	0.02
AQ7611:1430NP4-3	7/6/2011	14:30	ND	ND	ND	ND	ND	ND	ND	0.0049	0.0034	ND	ND	NA	ND	ND	0.02
AQ83011:1210NP4-3	8/30/2011	12:10	ND	ND	ND	ND	ND	ND	ND	0.0040	ND	ND	ND	NA	ND	ND	0.02
AQ92811:1130NP4-3	9/28/2011	11:30	0.0023	ND	ND	ND	ND	ND	ND	0.0019	0.0013	ND	ND	0.0058	0.0012	ND	0.05
AQ101811:1310NP4-3	10/18/2011	13:10	0.0083	ND	ND	ND	ND	ND	ND	0.0069	ND	ND	ND	NA	ND	ND	0.29
AQ112111:1110NP4-3	11/21/2011	11:10	ND	ND	ND	ND	ND	ND	ND	ND	0.0016	0.0009	ND	ND	ND	ND	0.07
AQ122711:1140NP4-3	12/27/2011	11:40	ND	ND	ND	ND	ND	ND	ND	0.2800	0.0680	0.0210	ND	NA	0.0440	ND	0.62

PCE: Tetrachloroethane DCE: 1,1-Dichloroetene CF: Chloroform
TCE: Trichloroethene DCA: 1,1-Dichloroethane MC: Methylene Chloride
TCA: 1,1,1-Trichloroethane cis-DCE: cis-1,2-Dichloroethene EB: Ethilbenzene

Note: NA - Not Applicable. Method blank contamination. The associated method blank contains the target analyte at a reportable level.

NS - Not Sampled ND - Not Detected

The air quality results summarized above are for the compounds listed in the FSP&T groundwater discharge permit. Low concentrations of additional compounds are accounted for in the Total VOCs column, however, are not listed.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Summary of Groundwater Elevation Measuremnts for Monitor and Recovery Wells in 2011, in Feet Mean Sea Level

Well	January-11	February-11	March-11 Static	March-11 Pumping	April-11	May-11	June-11	July-11	August-11	September-11 Pumping	September-11 Static Conditions	October-11	November-11	December-11
MW-28A	-	-	8.66	8.19	-	-	-	-	-	6.57	7.64	-	-	-
MW-28B	-	-	8.69	8.22	ı	-	1	-	-	7.6	7.69	ı	-	-
MW-42B	-	-	8.23	7.91	Ī	_	1	-	_	7.5	7.53	ı	-	-
MW-43A	-	-	Dry	Dry	-	-	-	-	_	Dry	12.62	-	-	-
MW-43B	-	-	4.97	-	-	-	-	-	_	4.51	4.54	-	-	-
MW-43C	-	-	5.02	-	ı	-	1	-	-	4.56	4.59	ı	-	-
MW-44A	-	-	8.23	-	ı	-	1	-	-	6.83	7.25	ı	-	-
MW-44B	-	-	8.16	7.49	Ī	_	1	-	_	6.87	7.21	ı	-	-
MW-44C	-	-	8.26	7.71	-	-	-	-	_	7.11	7.30	-	-	-
MW-45A	-	-	9.09	8.66	ı	-	-	-	-	8.1	8.11	i	-	-
MW-45B	-	-	9.04	8.43	ı	-	1	-	-	8.05	7.99	ı	-	-
MW-46A	-	-	8.78	8.37	ı	-	1	-	-	7.74	7.74	ı	-	-
MW-46B	-	-	8.71	8.33	Ī	_	1	-	_	7.7	7.68	ı	-	-
MW-47A	-	-	8.56	8.17	-	-	-	-	_	7.58	7.57	-	-	-
MW-47B	-	-	8.50	8.14	-	-	-	-	-	7.5	7.51	-	-	-
MW-48A	-	-	9.56	9.19	ı	-	1	-	-	-	8.41	ı	-	-
MW-48B	-	-	9.57	9.28	ı	-	1	-	-	8.56	8.44	ı	-	-
MW-49A	-	-	3.31	3.13	Ī	_	1	-	_	3.4	3.36	ı	-	-
MW-49B	-	-	3.27	3.11	-	-	-	-	_	3.37	3.35	-	-	-
MW-49C	-	-	3.28	3.12	-	-	-	-	-	3.42	3.34	-	-	-
MW-50A	-	-	1.76	1.91	ı	-	1	-	-	2.38	2.09	ı	-	-
MW-50B	-	-	1.76	1.93	ı	-	1	-	-	2.38	2.09	ı	-	-
MW-50C	-	-	1.78	1.98	-	-	-	-	-	2.41	2.14	-	-	-
MW-52A	-	-	9.55	9.16	ı	-	-	-	-	8.53	8.52	i	-	-
MW-53	-	-	5.37	4.86	-	-	-	-	_	4.77	4.84	-	-	-
MW-54	-	-	5.59	5.05	-	-	-	-	-	4.87	5.03	-	-	-
MW-55	-	-	3.99	3.72	ı	-	1	-	-	3.87	3.75	ı	-	-
MW-56A	-	-	3.82	3.5	Ī	_	1	-	_	3.58	3.62	ı	-	-
MW-56B	-	-	3.88	3.49	ı	-	-	-	-	3.68	3.68	i	-	-
MW-56C	-	-	3.60	3.49	-	-	-	-	-	3.75	3.76	-	-	-
MW-57A	-	-	4.11	3.42	-	-	-	-	-	-	-	-	-	-
MW-57B	-	-	3.96	3.6	-	-	-	-	-	-	-	-	-	-
MW-57C	-	-	4.05	3.72	-	-	-	-	-	-	-	-	-	-
MW-98-01A	-	-	9.21	8.5	-	-	-	-	-	7.99	8.16	-	-	-
MW-98-04	-	-	9.08	8.68	ı	-	-	-	-	8.06	9.08	ī	-	-
MW-98-05A	-	-	8.94	8.18	-	-	-	-	-	7.9	7.95	-	-	-
MW-98-05B	-	-	9.50	8.24	-	-	-	-	_	7.91	8.47	-	-	_

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Summary of Groundwater Elevation Measuremnts for Monitor and Recovery Wells in 2011, in Feet Mean Sea Level

Well	January-11	February-11	March-11 Static	March-11 Pumping	April-11	May-11	June-11	July-11	August-11	September-11 Pumping	September-11 Static Conditions	October-11	November-11	December-11
RW-1 ^{1/}	-	-	8.23	7.8	=	=	-	-	-	7.19	7.38	-	-	-
RW-2	3.87	4.07	8.13	4.02	4.39	NM	4.36	3.99	3.23	3.42	7.14	NM	3.33	3.36
RW-3	6.68	6.34	8.21	6.42	6.90	NM	6.33	6.26	5.56	5.85	7.35	NM	5.76	6.03
RW-4	2.56	3.20	6.31	3.55	3.44	NM	3.00	2.79	2.23	2.4	5.70	NM	2.3	1.87
RW-5	3.48	3.36	5.98	3.42	4.09	NM	3.98	3.40	2.86	3.12	5.36	NM	3.57	3.21
RW-6	-21.17	-33.94	4.93	-34.03	-29.02	NM	-12.54	-18.29	-22.28	-22.01	4.45	NM	-21.07	-22.43
RW-7	3.48	3.47	4.38	3.48	3.94	NM	3.91	3.65	3.30	-	4.10	NM	3.97	3.26
RW-8	3.11	2.93	3.75	3.00	4.99	NM	3.29	3.16	2.81	3.16	3.54	NM	3.11	2.94
RW-9	2.54	2.55	3.11	2.39	2.66	NM	2.62	2.66	2.18	2.71	3.08	NM	2.58	2.29
MW-B1	-	-	7.28	10.02	-	-	-	-	-	8.5	5.97	-	-	-
MW-B2	-	=	7.41	9.78	-	-	=	-	=	8.67	6.66	=	=	=
MW-B3	-	=	7.10	8.29	-	-	=	-	=	7.87	6.40	=	=	=
MW-B4	-	=	7.11	7.54	-	-	=	-	=	7.14	6.40	=	-	-
N-1A	-	=	5.36	4.78	-	-	=	-	=	5.27	5.25	=	-	-
N-1B	-	=	3.25	3.17	-	-	=	-	=	3.17	3.30	=	-	-
N-2A	-	-	4.05	-	-	-	-	-	-	4.21	4.09	-	-	-
N-2B	-	=	3.17	3.05	-	-	-	-	-	3.27	3.19	<u>-</u>	-	-
N-9	-	=	5.47	5.20	-	-	=	-	=	5.15	4.92	=	-	-
N-16	-	-	6.06	5.47	=	-	-	-	-	5.13	5.35	=	-	-
N-17	-	-	6.10	5.55	=	-	-	-	-	5.41	5.43	=	-	-
N-32	-	-	8.16	7.52	-	-	-	-	-	6.87	-	-	-	-
N-37	-	-	7.93	7.56	-	-	-	-	-	8.09	7.10	-	-	-
N-38	-	-	7.92	7.49	-	-	-	-	-	6.88	7.04	-	-	-
N-39	-	-	12.91	7.53	-	-	ı	-	-	6.93	7.01	-	-	-

Notes: 1. Unless otherwise stated groundwater elevations were measured during pumping conditions.

2. NM - Not Measured

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FSP&T Influent PCE Concentrations and Cumulative VOCs Recovered

	Influent	Cumulative Total		Influent	Cumulative Total		Influent	Cumulative Total		Influent	Cumulative		Influent	Cumulative		Influent	Cumulative Total		Influent	Cumulative		Influent	Cumulative		Influent	Cumulative		Influent	Cumulative Total
Date	PCE Conc.	VOC's	Date	PCE Conc.	VOC's	Date	PCE Conc.	VOC's	Date	PCE Conc.	Total VOC's Recovered	Date	PCE Conc.	Total VOC's Recovered	Date	PCE Conc.	VOC's	Date	PCE Conc.	Total VOC's Recovered	Date	PCE Conc.	Total VOC's Recovered	Date	PCE Conc.	Total VOC's Recovered	Date	PCE Conc.	VOC's
	(ug/l)	Recovered		(ug/l)	Recovered		(ug/l)	Recovered		(ug/l)	(lbs)		(ug/l)	(lbs)		(ug/l)	Recovered		(ug/l)	(lbs)		(ug/l)	(lbs)		(ug/l)	(lbs)		(ug/l)	Recovered
11/26/02	110	6	9/10/03	52	75.8	5/3/04	47	123.0	12/21/04	23	151.5	8/9/05	13	169.6	5/11/06	12	183.8	1/10/2007	5.2	198.4	8/29/2007	3.6	205.4	4/29/2008	2.5	210.2	12/17/2008	22	213.8
12/19/02	58	9.6	9/18/03	51	77.5	5/10/04	47	124.7	12/27/04	34	151.6	8/17/05	17	170	5/17/06	23	183.9	1/18/2007	6.7	198.4	9/6/2007	1.8	205.6	5/6/2008	3.1	210.4	12/23/2008	0	213.8
1/2/03	64	11.6	9/23/03	52	78.6	5/18/04	46	126.1	1/4/05	26	152.2	8/24/05	8.3	170.3	5/24/06	28	184.0	1/23/2007	4.7	198.9	9/12/2007	5.3	205.7	5/15/2008	2.4	210.5	12/30/2008	5	214.0
1/8/03	58	13.5	10/1/03	66	80.5	5/27/04	43	127.4	1/13/05	27	153.4	8/31/05	12	170.6	5/30/06	18	184.3	2/1/2007	9.3	199.5	9/18/2007	6.8	205.7	5/20/2008	4.1	210.6	1/6/2009	4.0	214.3
1/9/03	63	13.9	10/8/03	54	81.1	6/2/04	37	128.6	1/20/05	27	153.7	9/8/05	8.8	170.8	6/7/06	16	184.7	2/8/2007	14	199.7	9/26/2007	5.5	205.8	5/27/2008	3.1	210.7	1/13/2009	4.5	214.3
1/15/03	57	16.0	10/17/03	48	82.2	6/8/04	30	131.0	1/26/05	17	154.1	9/15/05	20	171.5	6/14/06	22	185.0	2/15/2007	10	200.1	10/3/2007	7.6	206.0	6/5/2008	2.5	210.8	1/20/2009	5.7	214.5
1/23/03	53	18.4	10/22/03	45	83.4	6/14/04	23	131.7	2/2/05	21	155.5	10/6/05	12	172.2	6/21/06	20	185.8	2/22/2007	12	200.1	10/8/2007	5.2	206.1	6/10/2008	2.7	210.8	1/27/2009	7.8	214.7
2/1/03	71	22.0	10/30/03	54	85.3	6/25/04	38	133.6	2/8/05	23	156.2	10/12/05	12	172.4	6/28/06	0	185.8	2/28/2007	10	200.4	10/19/2007	3.3	206.3	6/17/2008	4.8	210.9	2/3/2009	5.6	214.8
2/6/03	74	23.9	11/7/03	69	87.9	6/30/04	55	134.2	2/16/05	22	157.2	11/16/05	22	173.1	7/7/06	28	186.0	3/7/2007	7.8	200.7	11/7/2007	6.7	206.5	6/25/2008	3	211.0	3/9/2009	6.1	215.0
2/20/03	83	26.7	11/11/03	74	89.4	7/7/04	24	134.7	2/24/05	23	158.2	11/21/05	10	173.4	7/13/06	20	186.4	3/14/2007	9.6	200.8	11/15/2007	5.8	206.6	7/1/2008	1.5	211.1	3/17/2009	7.7	215.2
3/6/03	80	29.7	11/18/03	37	89.9	7/14/04	40	136.0	3/2/05	28	159.2	11/28/05	14	173.8	7/20/06	5.4	186.9	3/22/2007	8	201.2	11/19/2007	3.7	206.6	7/8/2008	4.8	211.1	3/31/2009	9.5	215.2
3/12/03	80	32.1	11/25/03	63	91.6	7/21/04	43	136.7	3/10/05	31	160.1	12/8/05	29	174	7/31/06	12	187.0	3/28/2007	7.2	201.6	11/28/2007	6.7	206.9	7/18/2008	5.2	211.3	4/6/2009	4.0	215.3
3/21/03	59	34.9	12/10/03	54	93.1	7/28/04	47	137.0	3/17/05	32	161.1	12/12/05	30	174.2	8/8/06	13	187.6	4/3/2007	9.8	201.6	12/5/2007	3.8	207.1	7/24/2008	3.8	211.4	4/14/2009	1.9	215.4
3/28/03	45	36.5	12/17/03	76	94.0	8/4/04	41	138.2	3/24/05	22	161.8	12/21/05	21	175.4	8/16/06	18	187.9	4/10/2007	5.9	202.0	12/12/2007	5.1	207.4	7/30/2008	3.1	211.4	4/21/2009	4.2	215.5
4/3/03	55	38.2	12/23/03	59	95.8	8/12/04	84	140.3	3/30/05	29	162.4	12/27/05	17	175.8	8/24/06	13	188.0	4/18/2007	7.9	202.2	12/20/2007	3.6	207.5	8/5/2008	2.1	211.5	4/28/2009	2.5	215.6
4/23/03	59	44.4	12/30/03	79	98.0	8/17/04	37	141.2	4/7/05	14	162.7	1/4/06	20	176.9	8/28/06	9.5	188.7	4/26/2007	8.4	202.4	12/27/2007	3.8	207.7	8/12/2008	2.5	211.5	5/5/2009	3.3	215.7
5/3/03	69	47.4	1/9/04	69	99.1	8/23/04	44	142.1	4/13/05	32	163	1/12/06	10	177.4	9/5/06	0	188.7	5/1/2007	0	202.4	1/3/2008	5.7	207.7	8/19/2008	2.4	211.7	5/12/2009	6.1	215.9
5/6/03	59	48.4	1/14/04	61	100.8	9/2/04	33	143.0	4/19/05	14	163.4	1/19/06	18	177.7	9/12/06	13	189.2	5/10/2007	5.8	202.8	1/9/2008	5.6	207.9	8/26/2008	1.5	211.8	5/19/2009	10.8	216.0
5/13/03	110	52.1	1/23/04	65	102.5	9/8/04	34	143.2	4/27/05	27	163.7	1/25/06		178.2	9/19/06	9.4	190.5	5/15/2007	5.9	203.1	1/16/2008	4.1	208.1	9/4/2008	4	211.8	6/5/2009	7.2	216.1
5/30/03	71 29	55.0 56.0	1/29/04 2/5/04	35 54	103.4	9/14/04	53 28	144.1	5/2/05	20	164.4	2/1/06	23	178.8 179.6	9/27/06	9.5	190.7 191.9	5/23/2007		203.3	1/24/2008	5.6 6.7	208.4	9/9/2008	2.2	211.9	6/10/2009	2.6	216.2
6/5/03	50	56.9	2/11/04	61	108.7	10/1/04	35	145.4	5/16/05	32 14	165.1 165.8	2/14/06	16 16	180.2	10/4/06	6	192.7	6/7/2007	6.1	203.3	2/5/2008	5.7	208.8	9/16/2008	3.8	212.1	6/23/2009	3.0	216.3
6/19/03	50	58.6	2/11/04	30	109.3	10/7/04	27	145.9	5/26/05	14	166.1	2/22/06	16	180.3	10/18/06	12	193.1	6/13/2007	6.4	203.7	2/13/2008	3.9	208.9	9/29/2008	2.7	212.1	6/30/2009	2.6	216.4
6/23/03	54	59.4	2/25/04	50	111.0	10/13/04	27	146.4	6/2/05	7.7	166.1	2/28/06	17	180.6	10/26/06	7.5	193.8	6/20/2007	5.6	204.0	2/20/2008	4.6	209.0	10/8/2008	5.8	212.4	7/7/2009	5.2	216.4
6/30/03		60.7						147.1										6/25/2007			2/27/2008			10/16/2008			7/14/2009		
7/11/03		62.4	3/8/04	46		10/27/04		147.2	6/15/05		166.2	3/14/06	14		11/8/06		195.1	7/5/2007		204.1	3/4/2008	3.4	209.3	10/23/2008		212.8	7/21/2009		
7/14/03			3/18/04			11/3/04		147.7	6/24/05			3/22/06	16		11/15/06			7/13/2007		204.2	3/11/2008	5.3		10/30/2008		212.9	7/28/2009		216.8
7/23/03			3/22/04	32	115.2	11/9/04		148.4	6/30/05		167.1	3/29/06	12		11/29/06			7/18/2007		204.4	3/21/2008	3.6	209.7	11/6/2008		213.0	8/4/2009	1.8	216.8
7/30/03	75	68.0	3/30/04	28		11/16/04		148.7	7/7/05	27	167.8	4/6/06	13		12/7/06		196.2	7/25/2007		204.6	3/27/2008	3.2	209.8	11/11/2008	3	213.0	8/12/2009		216.9
8/7/03	49	69.1	4/9/04	4.7	116.9	11/23/04	26	149.1	7/14/05	12	168.2	4/12/06	18	182.7	12/13/06	12	197.0	7/31/2007	3.6	204.7	4/1/2008	2.7	209.9	11/19/2008	7.9	213.2	8/19/2009	3.2	217.0
8/20/03	58	70.8	4/14/04	38	117.9	12/2/04	21	149.8	7/19/05	14	168.8	4/19/06	17	182.8	12/20/06	6.1	197.6	8/8/2007	3.6	204.8	4/8/2008	2.8	210.0	11/25/2008	2.8	213.3	8/25/2009	5.0	217.1
8/26/03	53	72.7	4/21/04	55	119.8	12/7/04	24	150.2	7/29/05	10	169.2	4/25/06	17	183.3	12/27/06	2.9	197.7	8/16/2007	4.3	205.1	4/17/2008	3.5	210.2	12/2/2008	2.6	213.4	9/1/2009	2.9	217.2
9/2/03	51	73.9	4/28/04	51	121.6	12/14/04	48	150.9	8/2/05	10	169.5	5/3/06	14	183.6	1/3/2007	0	197.9	8/23/2007	4.1	205.2	4/22/2008	3	210.2	12/9/2008	2.8	213.5	9/8/2009	2.6	217.3

Note: The influent sample is the combined water from recovery wells operating at time of sample collection.

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FSP&T Influent PCE Concentrations and Cumulative VOCs Recovered

Date	Influent PCE Conc. (ug/l)	Cumulative Total VOC's Recovered (lbs)	Date	Influent PCE Conc. (ug/l)	Total VOC's Recovered	Date	Influent PCE Conc. (ug/l)	Cumulative Total VOC's Recovered (lbs)	Date	Influent PCE Conc. (ug/l)	Cumulative Total VOC's Recovered (lbs)
9/16/2009	3.3	217.3	5/11/2010	5.2	220.1	1/25/2011	0.3	221.1	9/28/2011	1.0	221.8
9/22/2009	2.7	217.4	5/17/2010	2.0	220.1	2/1/2011	0.3	221.1	10/6/2011	0.0	221.8
9/29/2009	3.6	217.4	5/25/2010	0.0	220.1	2/8/2011	0.6	221.1	10/11/2011	0.0	221.8
10/6/2009	3.1	217.5	6/2/2010	0.0	220.1	2/17/2011	2.1	221.2	10/18/2011	0.8	221.8
10/13/2009	3.1	217.6	6/14/2010	2.8	220.1	2/23/2011	2.5	221.2	10/25/2011	1.1	221.9
10/20/2009	3.0	217.7	6/22/2010	1.4	220.3	3/2/2011	0.9	221.3	11/1/2011	1.7	222.0
10/27/2009	5.1	217.8	6/29/2010	2.3	220.4	3/10/2011	1.6	221.3	11/8/2011	0.7	222.0
11/3/2009	3.7	218.0	7/7/2010	2.4	220.5	3/15/2011	1.6	221.3	11/15/2011	1.4	222.1
11/10/2009	2.8	218.0	7/13/2010	2.5	220.7	3/22/2011	2.2	221.3	11/24/2011	1.3	222.2
11/17/2009	4.8	218.1	7/20/2010	0.0	220.8	3/29/2011	0.0	221.3	11/28/2011	1.8	222.3
11/24/2009	2.9	218.2	7/29/2010	3.4	220.8	4/5/2011	2.3	221.4	12/6/2011	1.5	222.4
12/3/2009	4.6	218.2	8/3/2010	0.0	220.8	4/12/2011	1.3	221.4	12/13/2011	2.6	222.5
12/8/2009	1.6	218.2	8/10/2010	0.0	220.8	4/19/2011	0.0	221.4	12/20/2011	0.8	222.6
12/15/2009	7.3	218.5	8/31/2010	0.0	220.8	4/26/2011	1.2	221.5	12/27/2011	1.2	222.7
12/22/2009	4.6	218.6	9/7/2010	0.0	220.8	5/3/2011	0.0	221.5			
1/7/2010	3.1	218.6	9/16/2010	0.0	220.8	5/11/2011	1.1	221.5			
1/13/2010	3.0	218.7	9/22/2010	0.0	220.8	5/17/2011	0.7	221.5			
1/19/2010	3.5	218.8	9/27/2010	0.0	220.8	5/23/2011	1.6	221.6			
1/27/2010	3.8	219.0	10/4/2010	2.5	220.8	6/6/2011	1.1	221.6			
2/3/2010	0.0	219.0	10/13/2010	0.0	220.8	6/14/2011	0.6	221.6			
2/9/2010	2.2	219.0	10/20/2010	0.4	220.8	6/21/2011	0.8	221.6			
2/17/2010	1.9	219.1	10/28/2010	2.3	220.9	6/27/2011	0.5	221.6			
2/23/2010	5.2	219.2	11/4/2010	1.4	220.9	7/6/2011	0.6	221.6			
3/2/2010	5.1	219.4	11/11/2010	0.0	220.9	7/12/2011	0.5	221.6			
3/9/2010	2.2	219.5	11/16/2010	2.5	221.0	7/19/2011	0.8	221.7			
3/17/2010	2.3	219.6	11/22/2010	2.0	221.0	7/25/2011	0.6	221.7			
3/23/2010	6.0	219.8	12/1/2010	1.7	221.0	8/1/2011	0.5	221.7			
3/30/2010	2.1	219.8	12/7/2010	0.0	221.0	8/18/2011	0.0	221.7			
4/8/2010	0.5	219.8	12/14/2010	0.4	221.0	8/23/2011	0.0	221.7			
4/13/2010	0.8	219.9	12/21/2010	0.0	221.1	8/30/2011	0.0	221.7			
4/20/2010	3.3	219.9	12/29/2010	0.5	221.1	9/7/2011	0.0	221.7			
4/27/2010	0.9	219.9	1/4/2011	1.4	221.1	9/16/2011	1.9	221.7			
5/4/2010	3.7	220.0	1/20/2011	0.4	221.1	9/22/2011	0.0	221.8			

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Recovery Well FRW-1 VOC Concentrations, micrograms per liter

				FRV	V-1			
Date ARARs	PCE 5	TCE 5	12DCE 5	TCA 5	VC 1 17	Napthalene NE	MC 5	Acetone NE
27-Jan-10	180	1.1	0.63 J	1.40	ND<1	ND<1	ND<1	ND<1
17-Feb-10	16	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
16-Mar-10	160	1.2	8.3	4.60	ND<1	ND<1	ND<1	ND<1
8-Apr-10	110	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
		The	FRWs w	ere shut d	own on April	13, 2010		
18-May-10	170	40	290	ND<1	ND<1	ND<1	ND<1	ND<1
17-Jun-10	32	ND<1	7.8	ND<1	ND<1	ND<1	ND<1	ND<1
13-Jul-10	22	2.2	3.1	ND<1	ND<1	ND<1	ND<1	ND<1
31-Aug-10	170	ND<1	42	7.1	ND<1	ND<1	ND<1	ND<1
17-Sep-10	180	3.1	79	5.7	ND<1	ND<1	ND<1	ND<1
13-Oct-10	190	5.4	15	6.0	ND<1	ND<1	ND<1	ND<1
11-Nov-10	48	2.9	6.2	ND<1	ND<1	ND<1	ND<1	ND<1
7-Dec-10	7.6	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
4-Jan-11	110	2.7	4.7	2.6	ND<1	ND<1	ND<1	ND<1
		The	FRWs we	ere restarte	ed on January	/ 20, 2011		
20-Jan11 (10:00 AM)	5.5	2.9	60	ND<1	ND<1	ND<1	ND<1	ND<1
20-Jan11 (1:30 PM)	0.8 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
25-Jan-11	6.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
17-Feb-11	46	ND<1	ND<1	0.55 J	ND<1	ND<1	ND<1	ND<1
10-Mar-11	68	ND<1	ND<1	0.58 J	ND<1	ND<1	ND<1	ND<1
26-Apr-11	22	ND<1	1.8	ND<1	ND<1	ND<1	ND<1	ND<1
11-May-11	13	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
6-Jun-11	46	7.2	9.9	ND<1	ND<1	ND<1	ND<1	ND<1
12-Jul-11	18	0.6	1.2	ND<1	ND<1	ND<1	ND<1	ND<1
18-Aug-11	22	1.2	5.4	ND<1	ND<1	ND<1	ND<1	ND<1
15-Sep-11	37	ND<5	ND<5	ND<5	ND<5	ND<10	4.4 J,B	4.0 J,B
11-Oct-11	16	ND<5	ND<5	ND<5	ND<5	ND<10	5.0 J,B	
8-Nov-11	38	0.41 J	0.18 J	0.26 J	ND<0.5	ND<2	0.87 J,B	ND<2
20-Dec-11	74	2.4	12	1.4	0.34 J	0.28 J,B	0.36 J,B	ND<2

ARARs - Applicable Relevant and Appropriate Requirements for aquifer restoration established for the Site.

- 1. NYSDEC ambient water quality standards for these compounds are presented because site-specific ARARs for these compounds were not established.
- J: Analyte detected below quantitation limits, value shown is a laboratory estimate.
- B: Method blank contamination, the associated method blank contains the target analyte at a reportable level.

PCE: Tetrachloroethylene VC: Vinyl Chloride TCE: Trichloroethene MC: Methylene chloride

12DCE: cis-1,2-Dichloroethene TCA: 1,1,1-Trichloroethane

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Recovery Well FRW-2 VOC Concentrations, micrograms per liter

						FRW-Z	1					
Date ARARs	PCE 5	TCE 5	12DCE 5	TCA 5	Toluene 5	VC 1 17	Napthalene NE	Chloroform 7	EB 5	Benzene 	MC 5	Acetone NE
27-Jan-10	8.5	1.5	3.9	5.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
17-Feb-10	8.4	ND<1	1.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
16-Mar-10	33	1.7	14	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
8-Apr-10	46	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
					The FRWs w	ere shut dow	n on April 13, 2	010				
18-May-10 2/	19	1.3	3.8	ND<1	ND<1	ND<1	ND<1	890	ND<1	ND<1	ND<1	ND<1
17-Jun-10	87	3.2	14	ND<1	0.54 J	ND<1	ND<1	51	ND<1	ND<1	ND<1	ND<1
13-Jul-10	38	6.7	8.4	ND<1	ND<1	ND<1	ND<1	4.4	ND<1	ND<1	ND<1	ND<1
31-Aug-10	100	9.2	12	ND<1	ND<1	ND<1	ND<1	10	ND<1	ND<1	ND<1	ND<1

ND<1

ND<1

ND<1

ND<1

9.8

1.8

ND<1

0.39 J

ND<1

ND<1

ND<1

ND<1

ND<1

ND<1

11-Nov-10	2.2	ND<1	4.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
7-Dec-10	5.0	ND<1	3.1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
4-Jan-11	35	2.2	4.6	ND<1	ND<1	ND<1	ND<1	0.3 J	ND<1	ND<1	ND<1	ND<1
					The FRWs we	ere restarted o	on January 20, 2	2011				
20-Jan-11	17	1.7	2.6	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
(10:02 AM)	17	1.7	2.0	ND<1	IND<	ND<1	IND< I	IND<	IND<	ND<	ND<1	ND<1
20-Jan-11	2.3	ND<1	0.5 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
(1:32 PM)	2.3	ND<1	0.5 3	ND<1	IND<	ND<1	IND< I	IND<	IND<	ND<	ND<1	ND<1
25-Jan-11	7.1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
17-Feb-11	18	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
10-Mar-11	39	ND<1	2.9	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
26-Apr-11	8.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
11-May-11	7.1	1.0	9.9	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
6-Jun-11	26	0.8 J	1.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
12-Jul-11	6.8	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
18-Aug-11	7.5	1.4	7.8	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
15-Sep-11	24	1.4 J	1.4 J	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	4.0 J,B	3.9 J,B
11-Oct-11	32	2.5 J	6.7	ND<5	ND<5	ND<5	ND<10	ND<5	ND<5	ND<5	4.0 J,B	
8-Nov-11	27	2.7	16	ND<0.5	0.33 J	ND<0.5	ND<2	ND<0.5	ND<0.5	0.11 J	0.77 J,B	ND<2
20-Dec-11	46	0.77	1.4	ND<0.5	ND<0.5	ND<0.5	0.20 J,B	ND<0.5	ND<0.5	ND<0.5	0.35 J,B	ND<2

ARARs - Applicable Relevant and Appropriate Requirements for aquifer restoration established for the Site.

- 1. NYSDEC ambient water quality standards for these compounds are presented because site-specific ARARs for these compounds were not established.
- 2. During the May 2010 sampling event 2-Butanone (33 ug/l), bromodichloromethane (7.7 ug/l), carbon tetrachloride (1.4 ug/l) and chloroform (890 ug/l) were also detected in the groundwater sample from FRW-2. With the exception of 2-Butanone these detections are believed to have been caused by residual chlorine solution in the below grade pipes from
- J : Analyte detected below quantitation limits, value shown is a laboratory estimate.

16-Sep-10

13-Oct-10

150

110

18.0

7.7

34

35

ND<1

ND<1

ND<1

ND<1

B: Method blank contamination, the associated method blank contains the target analyte at a reportable level.

PCE: Tetrachloroethylene
TCE: Trichloroethene
12DCE: cis-1,2-Dichloroethene
TCA: 1,1,1-Trichloroethane

VC: Vinyl chloride
EB: Ethylbenzene
MC: Methylene chloride

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Recovery Well FRW-3 VOC Concentrations, micrograms per liter

							FRW-3						
Date	PCE	TCE	12DCE	TCA	IPB	NPB	11DCA	VC	SBB	Chloroform	СМ	MC	Acetone
ARARs	5	5	5	5	5 ^{1/}	5 ^{1/}	5	1 1/	5 ^{1/}	7	5	5	NE
27-Jan-10	400	9.2	100	16	4.4	2.8	0.9 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
17-Feb-10	55	2.3	14	ND<1	3.4	2.5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
16-Mar-10	190	3.2	19	ND<1	1.5	0.83 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
8-Apr-10	240	ND<1	38	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
					The F	RWs we	re shut dow	n on April 13	, 2010				
18-May-10 ^{2/}	180	1.9	9.8	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	580	4.4	ND<1	ND<1
17-June-10 3/	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
13-Jul-10	10	ND<1	47	1.4	6.7	2.1	ND<1	ND<1	1.1	21	ND<1	ND<1	ND<1
31-Aug-10	78	13	190	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	13	ND<1	ND<1	ND<1
16-Sep-10	110	12	62	1.8	ND<1	ND<1	ND<1	ND<1	ND<1	4.4	ND<1	ND<1	ND<1
13-Oct-10	9.8	ND<1	22	ND<1	5.8	2.9	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
11-Nov-10	ND<1	ND<1	11	ND<1	1.2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
7-Dec-10	1.9	ND<1	4.7	ND<1	1.2	0.53 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
4-Jan-11	13	0.8 J	5.6	ND<1	0.9 J	0.38 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
					The F	RWs were	e restarted o	on January 20	0, 2011				
20-Jan-11 (10:04 AM)	7.6	ND<1	5.2	ND<1	0.8 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
20-Jan-11 (1:34 PM)	ND<1	ND<1	1.8	ND<1	0.8 J	0.4 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
25-Jan-11	ND<1	1.3	2.6	ND<1	0.6 J	0.4 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
17-Feb-11	26	1.4	5.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
10-Mar-11	19	2.6	17	ND<1	0.6 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
26-Apr-11	60	2.8	11	ND<1	0.7 J	0.56 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
11-May-11	85	3.5	13	ND<1	0.7 J	0.52 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
6-Jun-11	80	12	47	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
12-Jul-11	26	ND<1	1.2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
18-Aug-11	11	1.8	7.3	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
15-Sep-11	16	1.5 J	2.4 J	ND<5	3.6 J	3.0 J	ND<5	ND<5	ND<5	ND<5	ND<5	4.5 J,B	4.4 J,B
11-Oct-11	28	2.5	15	2.5 J	1.6 J	1.0 J	ND<5	ND<5	ND<5	ND<5	ND<5	4.6 J,B	
8-Nov-11	36	0.78	3.0	0.22 J	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	0.75 J,B	ND<2
20-Dec-11	68	4.3	9.7	0.74	ND<0.5	ND<0.5	0.21 J	0.28 J	ND<0.5	ND<0.5	ND<0.5	0.43 J,B	ND<2

ARARs - Applicable Relevant and Appropriate Requirements for aquifer restoration established for the Site.

- 1. NYSDEC ambient water quality standards for these compounds are presented because site-specific ARARs for these compounds
- 2. During the May 2010 sampling event 2-Butanone (19 ug/l), bromodichloromethane (15 ug/l), carbon tetrachloride (1.0ug/l) and chloroform (580 ug/l) were also detected in the groundwater sample from FRW-2. With the exception of 2-Butanone these detections are believed to have been caused by residual chlorine solution in the below grade pipes from the below grade pipe cleanout.
- 3. FRW-3 was not sampled during June 2010 because the pump was inoperable. The groundwater will be sampled during July
- J: Analyte detected below quantitation limits, value shown is a laboratory estimate.
- B: Method blank contamination, the associated method blank contains the target analyte at a reportable level.

PCE: Tetrachloroethylene
TCE: Trichloroethene
1PB: Isopropylbenzene
NPB: n-Propylbenzene
CM: Chloromethane
12DCE: cis-1,2-Dichloroethene
TCA: 1,1,1-Trichloroethane
VC: Vinyl chloride

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Recovery Well FRW-4 VOC Concentrations, micrograms per liter

					FRV	V-4				
Date	PCE	TCE	12DCE	TCA	IPB	NPB	vc	Napthalene	MC	Acetone
ARARs	5	5	5	5	5 ¹⁷	5 ^{1/}	1 17	NE	5	NE
27-Jan-10	24	ND<1	1.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
17-Feb-10	43	0.81 J	4.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
16-Mar-10	5.3	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
8-Apr-10	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
			The	FRWs we	re shut d	own on A	April 13, 2010			
18-May-10	1.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
15-Jun-10	0.81 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
13-Jul-10	1.9	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
31-Aug-10	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
16-Sep-10	ND<1	4.5	0.52 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
13-Oct-10	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
11-Nov-10	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
7-Dec-10	0.58 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
4-Jan-11	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
			The	FRWs wer	e restarte	ed on Jar	nuary 20, 2011			
20-Jan-11 (10:06 AM)	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
20-Jan-11 (1:36 PM)	1.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
25-Jan-11	1.3	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
17-Feb-11	2.3	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
10-Mar-11	4.5	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
26-Apr-11	1.7	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
11-May-11	3.4	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
6-Jun-11	2.8	ND<1	0.7 J	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
12-Jul-11	2.2	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
18-Aug-11	2.8	ND<1	1.0	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
15-Sep-11	22	0.99 J	3.1 J	ND<5	ND<5	ND<5	ND<5	ND<10	4.8 J,B	4.5 J,B
11-Oct-11	13	2.0 J	1.6 J	ND<5	ND<5	ND<5	ND<5	ND<10	4.3 J,B	
8-Nov-11	30	1.8	6.0	0.19 J	0.19 J	0.13 J	ND<0.5	ND<2	0.77 J,B	ND<2
20-Dec-11	39	1.7	2.4	0.44 J	ND<0.5	ND<0.5	ND<0.5	0.21 J,B	0.47 J,B	ND<2

ARARs - Applicable Relevant and Appropriate Requirements for aquifer restoration established for the Site.

- 1. NYSDEC ambient water quality standards for these compounds are presented because site-specific ARARs for these compounds were not established.
- J : Analyte detected below quantitation limits, value shown is a laboratory estimate.
- B: Method blank contamination, the associated method blank contains the target analyte at a reportable level.

PCE: Tetrachloroethylene
TCE: Trichloroethene

12DCE: cis-1,2-Dichloroethene
TCA: 1,1,1-Trichloroethane

IPB: Isopropylbenzene
NPB: n-Propylbenzene
VC: Vinyl Chloride
MC: Methylene chloride

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

Summary of the Geochemical Parameters for the Focused Recovery Wells (FRWs)

FRW-1	pН	Temperature (degrees C)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Conductivity (mS/cm)	Oxidation- Reduction Potenti (ORP) (mV)
Jan	Frozen, no j	parameters				
Feb	6.51	13.33	44.3	8.57	0.12	392
Mar	6.11	12.22	17.0	8.08	0.15	34
Apr	6.07	12.61	18.4	7.64	0.14	16
May	7.01	13.70	3.7	9.20	0.17	66
Jun	5.83	17.40		9.28	0.17	423
Jul	6.39	17.30	34.7	10.90	0.18	61
Aug	6.55	17.94	49.7	11.21	0.19	74
Sep	5.94	16.50	29.9	11.17	0.21	32
Oct Nov	5.00	15.50		Not Measured	0.15	274
Dec	5.82 5.74	15.59 14.37	39.0	8.67 9.02	0.15 0.15	374 379
Average	6.20	15.10	29.6	9.02	0.16	185
median	6.09	13.10	29.0	7.31	0.10	103
median	0.07					Oxidation-
FRW-2	pН	Temperature (degrees C)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Conductivity (mS/cm)	Reduction Potent (ORP) (mV)
Jan	Frozen, no	parameters				
Feb	6.38	13.0	108.0	5.71	0.14	393
Mar	6.09	13.6	63.7	7.16	0.17	10
Apr	6.12	12.9	21.2	7.02	0.17	8
May	6.84	16.5		7.90	0.17	65
Jun	5.73	16.8		8.01	0.19	426
Jul	6.98	16.5	17.2	9.78	0.19	15
Aug	6.79	16.99	22.5	9.94	0.20	11
Sep	5.81	17.2	53.6	9.47	0.24	-13
Oct				Not Measured		
Nov	5.77	16.2		7.68	0.19	370
Dec	5.79	14.8	14.0	8.44	0.16	399
Average	6.23	15.4	42.9	8.11	0.18	168
median	6.11					
FRW-3	pН	Temperature (degrees C)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Conductivity (mS/cm)	Oxidation- Reduction Potent (ORP) (mV)
Jan	Frozen, no j	parameters				
Feb	6.35	13.3	43.5	6.60	0.14	388
Mar	6.26	13.2	12.0	7.22	0.17	-25
Apr	6.46	12.8	16.6	7.09	0.17	-9
May	6.42	14.2	121.0	9.12	0.19	86
Jun	5.75	15.8		7.42	0.21	420
Jul	6.96	15.1	38.2	10.24	0.19	13
Aug	6.91	15.54	64.8	10.73	0.20	21
Sep	5.82	15.7	29.5	10.04	0.27	-34
Oct			1	Not Measured		1
Nov	5.78	15.5		8.10	0.16	365
Dec	5.69	15.0	3.0	8.68	0.15	388
Average median	6.24	14.6	41.1	8.52	0.19	161
FRW-4	рН	Temperature (degrees C)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Conductivity (mS/cm)	Oxidation- Reduction Poten
Jan	Frozen, no	parameters				(ORP) (mV)
Feb	6.40	13.7	43.6	5.00	0.14	381
Mar	6.32	13.3	8.3	6.07	0.15	-19
Apr	6.41	13.0	3.9	6.46	0.15	-5
May	6.59	13.8	7.8	9.07	0.18	67
Jun	5.87	14.9		5.97	0.16	416
Jul	6.92	14.8	5.7	9.23	0.19	15
Aug	6.81	15.41	10.7	10.24	0.20	12
Sep	5.76	15.0	28.1	7.02	0.22	-4
				Not Measured		
Oct	5.73	14.9		3.81	0.16	350
		14.4	6.0	5.62	0.16	347
Oct	5.74	14.4			0.45	4.50
Oct Nov	5.74 6.26	14.3	14.3	6.85	0.17	156
Oct Nov Dec	5.74			6.85	0.17	156
Oct Nov Dec Average	5.74 6.26 6.36	14.3	14.3			
Oct Nov Dec Average	5.74 6.26			3.81 11.17	0.17 0.12 0.27	-34.00 426.00

GRAPHS

GRAPH 1

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FSP&T Annual Average PCE, TCE, and TCA Concentrations in Samples from Recovery Wells

GRAPH 2

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FSP&T Monthly PCE Concentrations in Groundwater Samples from Select Recovery Wells

GRAPH 3

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FSP&T Monthly TCA Concentrations in Groundwater Samples from Select Recovery Wells

GRAPH 4

FSP&T Total VOC Effluent Vapor Concentrations and Emissions for 2011

GRAPH 5

2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

GRAPH 6 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-1

GRAPH 7 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-1 for 2011

GRAPH 8 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-2

GRAPH 9 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-2 for 2011

GRAPH 10 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-3

GRAPH 11 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-3 for 2011

GRAPH 12 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-4

GRAPH 13 2011 ANNUAL SUMMARY REPORT FORMER ROWE INDUSTRIES SUPERFUND SITE 1668 SAG HARBOR TURNPIKE SAG HARBOR, NEW YORK

FP&T Recovery Well VOC Concentrations for FRW-4 for 2011

FIGURES

OCTOBER 2007 PCE PLUME MAP

SEPTEMBER 2011 PCE PLUME MAP

GROUNDWATER REMEDIAL ACTION FORMER ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

PRE-REMEDIATION AND OCTOBER 2007 AND SEPTEMBER 2011 PCE PLUME MAPS

DATE	REVISI	ED	PREPARED BY	LBG	ENGINEERIN	G SERVI	CES, P.C.
				Profe	ssional Environmer	ntal and Civil	Engineers
				4 Research Drive Suite 301			
					Shelton, Conne	cticut 06484	
					(203) 929	9-8555	
DRAWN:	RAC	CHECKED:	TS	DATE:	06/26/12	FIGURE:	11

APPENDIX A

Recovery Well Rehabilitation -2011

DRAFT

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

INTRODUCTION

The results of the recovery well rehabilitation program completed in 2011 at the Rowe Industries Superfund Site in Sag Harbor, New York are presented and discussed below. Recovery wells RW-2, 4, 6, 8 and 9 were rehabilitated between April 18, 2011 and May 20, 2011 by Alpine Environmental, LLC (Alpine). All well rehabilitation work was completed under the supervision of Leggette, Brashears & Graham, Inc. (LBG). The rehabilitation was completed in accordance with the approved scope of work outlined in the "Scope of Work for 2011 Well Rehabilitation, Rowe Industries Superfund Site, Sag Harbor, New York." (LBG, April 2011).

The purpose of the rehabilitation program is to address the biofouling and iron bacteria encrustation problems documented in the report titled "Recovery Well Performance Evaluation, and Rehabilitation Plan, Rowe Industries Superfund Site, Sag Harbor, New York" (LBG, April 2004) and improve the yield of each of the noted recovery wells. An inspection and service (if needed) of the installed pumps was also completed. Five of the nine recovery wells (RW- 2, 4, 6, 8 and 9) were rehabilitated using the procedure(s) outlined below. The operation of RW-1 was discontinued on July 13, 2005 because the Contaminants of Concern (COCs) were not detected during monitoring conducted for a three-year period prior to the shutdown. These COCs have not been detected since the shutdown and, therefore, operation (and any associated rehabilitation) has not been necessary for RW-1. Iron precipitate does not inhibit the yield of RW-3, RW-5 and RW-7. Therefore, based on previous well rehabilitation results, these recovery wells are on a bi-annual rehabilitation schedule and they were not rehabilitated in 2011.

The effectiveness of the rehabilitation effort was evaluated by comparing the change in specific capacities as measured before and after treatment. Specific capacity (SC) is the yield of the well in gallons per minute (gpm) per foot of drawdown of the water level in the well. An increase in a well's specific capacity would indicate that the water transmitting capability of the well screen, gravel pack and surrounding formation had been restored to some extent.

For RW-6, the rehabilitation procedure consisted of mechanical brushing of the screen and casing with the use of a cable tool rig, removing sediment from the well sump, and then surging and pumping; evacuating at least 10 volumes of water during the process. The rehabilitation procedure for RW-2, 4, 8 and 9 consisted of mechanical brushing of the well screens with the use of a cable tool rig, removing sediment from the well sumps and chemical treatment (in combination with physical surging) using UnicidTM Granular Acid and Catalyst.

In order to evaluate the effectiveness of treatment process, brief 20-minute pumping tests were conducted before and after rehabilitation efforts in order to determine the specific capacities from which to evaluate the effectiveness of the treatment process. Table 1 shows the volume of rehabilitation chemicals used and wastewater generated for each recovery well during the rehabilitation process. The quantity of chemicals necessary for rehabilitation of each well was calculated based on the volume of standing groundwater in each well. The SC data collected from the pumping tests are presented in tables 2 through 6 and figures 1 through 5.

A brief discussion of rehabilitation efforts at each recovery well is presented below.

Rehabilitation Procedures with the use of UnicidTM

Recovery wells RW-2, 4, 8 and 9 were rehabilitated using UnicidTM Granular Acid (Acid) and Catalyst, and mechanical processes of brushing the well screens and surging the wells with two sets of double surge blocks. The purpose of brushing was to remove encrustation from the screen. UnicidTM Granular Acid was used to remove the encrusted scaling that protects the bio-fouling bacteria. Catalyst was used to loosen the encrustation in the well and the surrounding aquifer. The surging action disperses the acid and Catalyst in the surrounding aquifer.

These recovery wells were rehabilitated using the following procedures. The existing pumps were offset prior to the down-hole video inspection. Following the down-hole video inspection the pumps were removed, dismantled, the iron encrustation was cleaned from the pump, and the pump and riser pipes were soaked in a thirty percent solution of UnicidTM Granular Acid/Catalyst immersion bath for approximately 24 hours. After the acid bath, the pump and riser pipes were brushed and rinsed with potable water. After rising, the pump was inspected and reassembled after any necessary repairs or replacements were completed.

The initial 20-minute pumping tests, conducted with a test pump, were followed by 60 minutes of physical screen cleaning with a 2-foot long, snug-fitting nylon brush. The physical

screen-cleaning phase included removing biological materials and other encrustation from the wells. The well sumps were then cleaned with a vacuum truck. By removing as much of the material as possible from the wells by mechanical means, smaller quantities of chemicals were subsequently required to rehabilitate the wells. The debris generated during physical cleaning was removed from the wells before the introduction of any chemicals.

The physical cleaning was followed by the initial introduction of UnicidTM Granular Acid and Catalyst. These products were introduced to reduce the pH to below 2; a pH unfavorable for Iron Related Bacteria (IRB), Sulfate Reducing Bacteria (SRB) and Heterotrophic Aerobic Bacteria (HAB). These bacteria were determined to exist in the wells during a previous study and were discussed in the Recovery Well Performance Evaluation (LBG, 2004). The acid and Catalyst were introduced at the top of the water column then surged into the formation with the use of two sets of double surge blocks set 10 feet apart. The pH was monitored every one to two hours over the one to three day surging period. If the pH increased, a predetermined amount of acid was introduced to adjust the pH to 2 or lower. The volume of acid added and the number of pH adjustments are summarized in table 1. Discontinuation of acid treatment was determined by color, turbidity or the ability of groundwater to maintain a low pH. Following surging activities during the period of acid treatment, the recovery wells were pumped to remove the chemicals that were introduced to the wells and solids sediments that were pulled into the wells due to the surging action, and until the pH increased to levels approaching background (typically a pH of approximately 5 to 6).

Following acid treatment, post-rehabilitation aquifer pumping tests and down-hole video logs were completed to evaluate the effectiveness of the rehabilitation efforts. The serviced pumps or replacement pumps were then reinstalled and the recovery wells were placed back into operation. All water generated during the rehabilitation process was stored in a ten thousand gallon temporary holding tank, where the pH of the water was neutralized. After the water was neutralized, it was transferred from the holding tank to the full-scale pump and treat (FSP&T) system where the water was treated and discharged to the recharge basins. The sediment and sludge that settled to the bottom of the temporary holding tank was transported off site by Alpine and disposed of as hazardous waste at a state-licensed facility. Photocopies of the hazardous waste manifests are included in Appendix I.

Mechanical Redevelopment Procedures

Recovery well RW-6 was rehabilitated using mechanical redevelopment only; without the use of rehabilitation chemicals. The well screen was brushed to remove any encrustation, followed by simultaneously surging with a double surge block and brushing tool, followed by pumping in order to remove fine particles.

Recovery well RW-6 was rehabilitated using the following procedure. The existing pump was offset prior to the down-hole video inspection. The risers and pump were removed, dismantled, cleaned and the pump parts and riser pipes were soaked in a thirty percent solution of UnicidTM Granular Acid/Catalyst immersion bath for approximately 24 hours. After the acid bath, the pump and riser pipes were brushed and rinsed with potable water. After rinsing, the pump was inspected and reassembled after any necessary repairs were completed. A 20 minute pumping test then was conducted with the use of a temporary test pump to determine the pre-rehabilitation SC.

The 20-minute pumping test was followed by a total of ten hours of physical screen cleaning by simultaneously brushing/surging with a two-foot long, snug-fitting nylon brush and one to two sets of double surge blocks. The duration of the screen cleaning was based upon the severity of encrustation on the well screen determined by the pre-redevelopment down-hole video inspection. The well sump was then cleaned with a vacuum truck and approximately 5 volumes of water were pumped from the well; until the turbidity of the groundwater was restored to conditions prior to treatment.

Following redevelopment, a post-redevelopment pumping test and down-hole video log were completed to evaluate the effectiveness of the redevelopment efforts. The contractor then transported the waste groundwater to the site using a vacuum truck; from which it was subsequently pumped to a temporary holding tank (frac tank). Although no chemicals were used, the pH of the water in the holding tank was monitored to insure that it was between 5.0 and 8.5 before transferring the water to the FSP&T system. Following rehabilitation, the service pump was reinstalled and the well was placed back into operation.

Recovery Well No. 2

Rehabilitation of RW-2 was conducted from April 26, 2011 through May 2, 2011. The pre-rehabilitation video log showed significant clusters of large biomass floating in the groundwater and, as a result, the screen was not visible during the pre-rehabilitation video log. As in the past, the suspended biomass appeared fluffy rather than scaly and was orange in color. Based on the pre-rehabilitation video logs, groundwater turbidity in the screen zone in 2011 was comparable to historical pre-rehabilitation observations.

Upon removal of the riser pipe and pump, a thin coating of iron bacteria was visible on the interior and exterior of the riser pipe. An iron bacteria film and encrustation started at around 17 feet below the top of casing. The amount of film and encrustation gradually increased with depth; the casing near the pump being completely encrusted in thick iron bacteria with a thin gray to clear film coating. The pump intake screen was significantly encrusted with iron bacteria. The degree of iron bacteria encrustation was comparable to the iron bacteria encrustation observed in 2010.

During the rehabilitation of RW-2, a total of 80 lbs of UnicidTM Granular Acid and five gallons of Catalyst were used. The rehabilitation process included one pH adjustment. During surging, a light sulfur odor was emitted from the recovery well. No foaming was observed during rehabilitation of RW-2. The detected odors indicated that the well rehabilitation chemicals were mineralizing the iron encrustation. A groundwater sample was collected in a clear glass jar to observe the color and turbidity. At the start of rehabilitation, the water was observed to be turbid, and have a cloudy yellow color that gradually changed to a pale yellow and green color/tint with little turbidity, and then to a clear yellow tint as rehabilitation progressed. The yellow color/tint of the groundwater suggests the presence of iron while the green color/tint of the groundwater suggests the presence of sulfates. The groundwater had a high suspended solids concentration after surging was completed. Significant quantities of sediment were removed from the recovery well before and after surging. Approximately 15,400 gallons of water were removed from RW-2 as part of the well rehabilitation activities.

During the post-rehabilitation video log, the groundwater was clearer than that observed for pre-treatment conditions and the well screen looked clean. The pre-rehabilitation SC was 8.8 gpm/ft (at 27 gpm) and the post-rehabilitation SC was 9.7 gpm/ft (at 27 gpm); an increase of

0.9 gpm/ft. These values are greater than the SC of 4.8 gpm/ft (at 41 gpm) for RW-2 when it was first constructed, however, a direct comparison of SC at well construction and current operating conditions should be evaluated with caution because the SC was calculated at different pumping rates. The 27 gpm pumping rate was chosen for this evaluation in order to generate comparable data to previous well rehabilitation activities and the downloaded monthly data for SC monitoring. Historical pre- and post-rehabilitation SCs are summarized on table 2 and figure 1.

The increase in SC for 2011 was less than the increases observed during previous recovery well rehabilitation efforts, however, the pre-rehabilitation SC value was greater than the SC value when the well was constructed. The SC values in 2011 suggest that some of the transmitting capability of the well screen, gravel pack and surrounding formation have been restored. Although the yield of the well was not at a critical point that required rehabilitation, the routine O&M to remove iron encrustation is a prudent action to prevent the deterioration of well performance.

Recovery Well No. 4

Rehabilitation of RW-4 was conducted from April 18, 2011 through April 22, 2011. The pre-rehabilitation video log showed significant amounts of suspended biomass. The well screen was covered with iron encrustation such that the screen and ribs were barely visible. The turbidity and suspended biomass increased with depth.

After removing the riser pipe and pump, an iron coating was visible on the interior of the riser pipe and the thickness of the iron coating increased with depth. A slight iron coating was observed on the exterior of the riser pipe. The pump was coated with iron and the pump intake had some iron encrustation and sediment buildup.

During the rehabilitation of RW-4, a total of 80 lbs of UnicidTM Granular Acid and five gallons of Catalyst were used. The process included two pH adjustments. The groundwater was very turbid and was brown in color with a green tint after the initial dose of acid. The odors and green tint dissipated overtime while surging. No foaming was observed during the rehabilitation of RW-4. The green color/tint of the groundwater suggested the presence of sulfate. Approximately 23,500 gallons of water were generated during the rehabilitation of RW-4.

Observations from the post-rehabilitation video log revealed very low turbidity compared to the pre-rehabilitation video, and no encrustation on the screen or risers. The well screen and joints looked clean as if new. The pre-rehabilitation SC was 12.4 gpm/ft (at 41 gpm) and the post-rehabilitation SC was 19.1 gpm/ft (at 41 gpm); an increase of 6.7 gpm/ft. The 2011 post-rehabilitation SC is close to the SC of this well (21.7 gpm/ft at 40 gpm) when it was first constructed. Historical pre- and post-rehabilitation SCs are summarized on table 3 and figure 2. The SC was restored to near the SC measured at construction of the well. These values suggest that the transmitting capability of the well screen, gravel pack and surrounding formation has been successfully restored, however, the iron encrustation will have to be addressed annually when the well is operating.

Recovery Well No. 6

Rehabilitation of RW-6 was conducted from May 11 through May 12, 2011. The pre-rehabilitation video log showed very light to no iron encrustation on the well screen. Slime bacteria was observed on the well screen from approximately 40 to 60 feet below the top of the casing (ft btoc). Gray slime bacteria have been observed in this well during prior rehabilitation efforts, with the exception of 2008. The amount of slime bacteria observed during 2011 was similar to the amount observed during the 2010 rehabilitation efforts.

Very light iron coating or staining was present on the riser pipes. The gray slime bacteria encountered during previous well rehabilitation efforts was observed on the flow meter, the riser pipe, and the pump intake and pump impellers.

The screen was simultaneously surged and brushed for approximately ten hours, followed by the evacuation of 5 well volumes of groundwater. Initially, the water was observed to be slightly silty, but then cleared up quickly. Observations from the post-rehabilitation video log revealed low turbidity and no gray or brown deposits on the well screen.

The pre-rehabilitation SC was 0.8 gpm/ft (at 15 gpm) and the post-rehabilitation SC was 0.8 gpm/ft (at 14 gpm). The current SC value (0.8 gpm/ft at 14 gpm) is lower than the SC of 6.9 gpm/ft (at 38 gpm) for RW-6 when it was first constructed. As previously stated in the Recovery Well Performance Evaluation (LBG, 2004), after a recovery well has lost 30 to 40 percent of its SC, it is difficult to restore a well to its optimum performance level even after rehabilitation.

The SC of RW-6 in 2004 was already 86% lower than the original value and original well performance is not expected to be obtained. The rehabilitation activities in 2011 were focused on preventing further deterioration of well performance rather than restoring the SC to original values. Historic, pre- and post-rehabilitation SCs are summarized on table 4 and figure 3.

Following well rehabilitation, the average monthly groundwater drawdown decreased by approximately 25.68 feet. This decrease is one of the largest measured improvement in groundwater drawdown since the inception of well rehabilitation activities, however, the average drawdown prior to rehabilitation was not as great as historically measured. Historical drawdowns are summarized on table 7. When RW-6 resumed normal operation, the flow remained set to 15 gpm in order to maintain an acceptable groundwater drawdown. LBG will continue to monitor the groundwater drawdown in RW-6 and the potential for shutting down RW-6.

Recovery Well No. 8

Rehabilitation of RW-8 was completed from May 2, 2009 through May 9, 2009. The pre-rehabilitation video log showed a thin layer of iron encrustation that increased in thickness with depth. Upon removal of the riser pipe and pump, substantial iron encrustation was observed inside the riser pipe with thickness also increasing with depth. These observations were comparable to the conditions observed during the previous rehabilitation activities at this recovery well.

During the rehabilitation of RW-8, 190 lbs of UnicidTM Granular Acid and 10 gallons of catalyst were used. The process included three pH adjustments. Foaming and hydrogen sulfide odor were observed with the initial acid addition. A slight hydrogen sulfide odor and no foaming were observed with each acid adjustment. Initially, the groundwater was an orange-brown color and very turbid, however, as rehabilitation efforts progressed, the turbidity cleared and the color faded to a pale yellow and then became clear. A hydrogen sulfide odor (rotten eggs odor) may suggest the presence of sulfate reducing bacteria. The orange color/tint of the groundwater suggests the presence of iron; brown is indicative of calcium and iron. Approximately 38,000 gallons of water were generated during the rehabilitation of RW-8.

Observations from the post-rehabilitation video log revealed no turbidity and the well screen and joints were clearly visible and free of iron deposits, however, some staining remained.

The pre-rehabilitation SC was 150.8 gpm/ft (at 51 gpm) and the post-rehabilitation SC was 155.4 gpm/ft (at 50 gpm); an increase of 4.6 gpm/ft. The post-rehabilitation value is near the original SC of 121.9 gpm/ft (at 77 gpm), however, a direct comparison of SC during well construction and current operating conditions should be evaluated with caution because each SC was calculated at different pumping rates. A pumping rate of 55 gpm was planned for the 2011 pumping tests in order to produce data comparable to information from the current operating rate of the recovery well and previous well rehabilitation evaluation pumping tests. However, 55 gpm could not be obtained during the pre-rehabilitation pumping test due to a malfunctioning test pump, flow meter and the deteriorated condition of the well screen. The post-rehabilitation pumping test was conducted at a similar pumping rate to the pre-rehabilitation pumping test in order to produce directly comparable data to assess the effectiveness of the rehabilitation efforts. The iron encrustation in RW-8 will have to be addressed annually when the well is opertating. Historic, pre- and post-rehabilitation SCs are summarized on table 5 and figure 4.

Recovery Well No. 9

The rehabilitation of RW-9 was completed from May 13, 2011 through May 20, 2011. The pre-rehabilitation video log showed large clusters of biomass/iron suspended in the groundwater. The well screen and joints were significantly encrusted and barely visible. Encrustation and turbidity increased with depth and was comparable to observations in previous years.

Upon removal of the riser pipe and pump, iron encrustation was observed on the riser pipe. The concentration of iron bacteria encrustation was observed to increase with depth, which is similar to previous years. The pump intake area was completely covered by iron encrustation. Visual inspection of the internal section of the riser pipe showed some iron encrustation.

During the rehabilitation of RW-9, 155 lbs of UnicidTM Granular Acid and 10 gallons of Catalyst were used. The rehabilitation process included three pH adjustments. Slight sulfur odor was observed, which dissipated with time and surging. The groundwater was slightly turbid and a gray tint was observed that most likely was due to suspended fines in the groundwater. Approximately 33,250 gallons of water were generated during the rehabilitation of RW-9.

Observations from the post-rehabilitation video log revealed low turbidity. The well screen and joints looked clean, however, a trace amount of spotty staining was left on the well screen. The SC of the recovery well increased from 169.6 gpm/ft (at 71 gpm) to 242.6 gpm/ft (at 70 gpm) an increase of 73.0 gpm/ft. This value is greater than the original SC of 174.9 gpm/ft (at 75 gpm) for RW-9. These values indicate that the transmitting capability of the well screen, gravel pack and surrounding formation has been restored. The iron encrustation in this well will have to be addressed annually when the well is operating. Historic, pre- and post-rehabilitation SCs are summarized on table 6 and figure 5.

Recovery Well Nos. 3, 5 and 7

Recovery well rehabilitation was not scheduled for RW-3, RW-5 and RW-7 in 2011 because iron encrustation and loss of well capacity has not been a significant problem for these wells. As such, physical cleaning and inspection of these wells is on a bi-annual schedule. The performance of these recovery wells will be monitored through the remainder of 2011 to determine if well rehabilitation should be scheduled for 2012.

Summary and Conclusions

- 1. As shown by the improvement in SC and by visual inspections with the use of down-hole video equipment, the rehabilitation process was effective for RW-2, RW-4, RW-8 and RW-9. This information indicates that the UnicidTM Granular Acid treatment continues to be effective at wells where high iron concentrations in the groundwater (RW-2, RW-4, RW-8 and RW-9) are present.
- Acid treatment will continue to be used during the rehabilitation process for RW-2, RW-4, RW-8, and RW-9 in 2012 to maintain effectiveness in these areas of high iron concentration in the groundwater.
- Based on SC and well performance tracking, RW-3, RW-5, RW-6 and RW-7 are scheduled for mechanical redevelopment without the use of rehabilitation chemicals in 2012.

- 4. Well performance for RW-2, 3, 4, 5, 6, 7, 8 and 9 will be monitored throughout the remainder of 2011 and early 2012, and any modifications to the recommended rehabilitation techniques described in this report shall be made as needed.
- 5. In order to keep the recovery wells operating more efficiently, the pumps should be removed, inspected, cleaned and serviced as necessary.
- 6. The pumping water level and the SC of each recovery well should continue to be monitored on a monthly basis to track the efficiency of the well and determine when rehabilitation needs to be conducted.

 $H:\ \ Nabsag\ \ 2012\ \ \ Annual\ \ Report\ \ A-Pehab\ \ Completion\ \ Report\ \ 2011.doc$

TABLES

TABLE 1

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

Recovery Well Rehabilitation Treatment Volumes and Wastewater Generated Per Recovery Well - 2011

Recovery Well	Amount of Unicid [™] Granular Acid for Initial Dose (lbs)	Volume of Catalyst (gallons)	Amount of Unicid [™] Granular Acid for each pH Adjustment (if needed) (lbs)	Number of pH Adjustments	Total Amount of Unicid [™] Granular Acid Used (lbs)	Approximate Volume of Water Generated (gallons)
RW-2	50	5	15	1	65	15,366
RW-3	NA	NA	NA	NA	NA	NA
RW-4	50	5	15	2	80	23,546
RW-5	NA	NA	NA	NA	NA	NA
RW-6	NA	NA	NA	NA	NA	877
RW-7	NA	NA	NA	NA	NA	3,230
RW-8	100	10	30	3	190	38,000
RW-9	80	10	25	3	155	33,250

NA Not applicable.

TABLE 2

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

Pre and Post Recovery Well Rehabilitation Specific Capacities for RW-2

	Specific Capacity	Pumping	
Date	(gpm/ft)	Rate (gpm)	Notes
5/14/1996	4.8	41	Status following installation
5/18/2004	3.0	30	Pre-rehabilitation
5/20/2004	6.2	30	Post-rehabilitation
6/3/2005	5.5	27	Pre-rehabilitation
6/8/2005	7.3	29	Post-rehabilitation
5/30/2006	9.7	26	Pre-rehabilitation
6/1/2006	13.7	27	Post-rehabilitation
5/21/2007	7.4	27	Pre-rehabilitation
5/24/2007	13.8	28	Post-rehabilitation
6/24/2008	1.3	27	Pre-rehabilitation
6/26/2008	19.2	27	Post-rehabilitation
5/4/2009	7.9	28	Pre-rehabilitation
5/7/2009	9.4	27	Post-rehabilitation
5/4/2010	6.5	28	Pre-rehabilitation
5/6/2010	9.7	28	Post-rehabilitation
4/26/2011	8.8	27	Pre-rehabilitation
4/29/2011	9.7	27	Post-rehabilitation

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

	Specific	ъ.	
Date	Capacity (gpm/ft)	Pumping Rate (gpm)	Notes
6/1/2000	21.7	40	Status following installation
6/21/2004	9.6	45	Pre-rehabilitation
6/24/2004	20.3	42	Post-rehabilitation
6/16/2005	13.0	30	Pre-rehabilitation
6/29/2005	22.1	30	Post-rehabilitation
6/6/2006	10.0	38	Pre-rehabilitation
6/9/2006	25.3	44	Post-rehabilitation
6/5/2007	23.4	40	Pre-rehabilitation
6/11/2007	37.7	40	Post-rehabilitation
6/5/2008	16.4	42	Pre-rehabilitation
6/11/2008	21.5	41	Post-rehabilitation
4/27/2009	15.1	41	Pre-rehabilitation
4/30/2009	21.2	41	Post-rehabilitation
4/12/2010	13.2	41	Pre-rehabilitation
4/15/2010	19.6	41	Post-rehabilitation
4/18/2011	12.4	41	Pre-rehabilitation
4/21/2011	19.1	41	Post-rehabilitation

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

	Specific Capacity	Pumping	
Date	(gpm/ft)	Rate (gpm)	Notes
6/12/1996	6.9	38	Status following installation
6/22/2004	0.9	41	Pre-rehabilitation
6/24/2004	1.0	40	Post-rehabilitation
5/24/2005	0.8	40	Pre-rehabilitation
5/26/2005	0.8	30	Post-rehabilitation
7/10/2006	1.3	40	Pre-rehabilitation
7/12/2006	0.7	26	Post-rehabilitation
5/28/2008	0.4	15	Pre-rehabilitation
6/9/2008	1.2	15	Post-rehabilitation
4/20/2010	0.6	15	Pre-rehabilitation
4/22/2010	1.7	15	Post-rehabilitation
5/11/2011	8.0	15	Pre-rehabilitation
5/12/2011	0.8	14	Post-rehabilitation

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

Date	Specific Capacity (gpm/ft)	Pumping Rate (gpm)	Notes
6/7/2000	121.9	77	Status following installation
6/2/2004	76.0	68	Pre-rehabilitation
6/10/2004	132.0	73	Post-rehabilitation
3/22/2005	98.2	55	Pre-rehabilitation
3/30/2005	175.0	56	Post-rehabilitation
6/13/2006	111.9	66	Pre-rehabilitation
6/15/2006	148.9	67	Post-rehabilitation
5/29/2007	41.4	55	Pre-rehabilitation
6/5/2007	114.6	55	Post-rehabilitation
7/7/2008	129.2	55	Pre-rehabilitation
7/10/2008	112.9	55	Post-rehabilitation
5/11/2009	71.4	44	Pre-rehabilitation
5/15/2009	121.0	43	Post-rehabilitation
5/10/2010	130.9	51	Pre-rehabilitation
5/14/2010	143.5	52	Post-rehabilitation
5/2/2011	150.8	51	Pre-rehabilitation
5/6/2011	155.4	50	Post-rehabilitation

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

Date	Specific Capacity (gpm/ft)	Pumping Rate (gpm)	Notes
6/7/2000	174.9	75	Status following installation
5/27/2004	166.4	42	Pre-rehabilitation
6/3/2004	177.4	80	Post-rehabilitation
5/26/2005	151.5	50	Pre-rehabilitation
6/2/2005	192.6	53	Post-rehabilitation
6/20/2006	191.0	71	Pre-rehabilitation
6/22/2006	231.0	72	Post-rehabilitation
6/14/2007	194.4	70	Pre-rehabilitation
6/22/2007	189.2	70	Post-rehabilitation
6/16/2008	206.9	70	Pre-rehabilitation
6/19/2008	280.9	70	Post-rehabilitation
5/18/2009	111.0	70	Pre-rehabilitation
5/21/2009	176.0	77	Post-rehabilitation
4/26/2010	154.3	68	Pre-rehabilitation
4/30/2010	216.5	71	Post-rehabilitation
5/13/2011	169.6	71	Pre-rehabilitation
5/19/2011	242.6	70	Post-rehabilitation

FIGURES

FIGURE 1

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-2 Rehabilitation Results

FIGURE 2

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-4 Rehabilitation Results

FIGURE 3

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-6 Rehabilitation Results

FIGURE 4

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-8 Rehabilitation Results

FIGURE 5

RECOVERY WELL REHABILITATION - 2011 GROUNDWATER REMEDIAL ACTION ROWE INDUSTRIES SUPERFUND SITE SAG HARBOR, NEW YORK

RW-9 Rehabilitation Results

APPENDIX I Hazardous Waste Manifest

5053

se print or type. (Form designed for use on elite (12-pitch) typewriter.) 1. Generator ID Number 2. Page 1 of 3.	Emarganay Dagaga	a Dhana	I 4 Manifoct		n Approved. O	MB No. 2050
OTHI OTHI TIPE-INDOO	Emergency Respons 50-346-11		4. Manifest	Tracking N	9328	JJK
	erator's Site Address		han mailing addre	99)	0020	0011
5. Generator's Name and Mailing Address Former Rowe Industries Ger		V		0.	a banka	Tab
			gehampto		y narboi	The
4 Research Dr. Ste. 301, Shelton, CT 06424	Sag	Harbo	r, NY 13	1903		
Generator's Phone: 203-922-8555						
6. Transporter 1 Company Name			U.S. EPA ID I	Number		
Earth Technology II, LLC			C T F	0.0	0 5 0 1	2 8
7. Transporter 2 Company Name			U.S. EPA ID N			
			1			
B. Designated Facility Name and Site Address			U.S. EPA ID I	Viimber		
Bridgeport United Recycling			O.O. ELITTID I	varriboi		
50 Cross Street, Bridgeport, CT 06110						
203-334-1666			. C T D	0.0	2 5 0 3	0 0 7
acility's Phone:			6 1 0	0.0	2 5 9 3	8 8 7
9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,	10. Conta	iners	11. Total	12. Unit	V- 100	70H 020 127H
HM and Packing Group (if any))	No.	Туре	Quantity	Wt./Vol.	13. Wa	ste Codes
1.		1,7,6-2		_		3
x RQ, Hazardous Waste, Liquid, N.O.S.		-	41 -	1	FOOL	3039
(Tetrachloroethylene), 9, NA3082, PGIII	1.0	11	2603	6	i	
(Total deliter decony teller, 3, and ook, Takk						
2,					1	
		-1				
		1.	2.5			
3.	6	+		-	-	
9. –			h			
No. of the second secon				-		
<u> </u>				" E		
4.						
	-					
	-	1 .				1
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are f marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledg I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generate.	international and na ment of Consent.	tional governi	mental regulations			
Senerator's/Offeror's Printed/Typed Name Signatu		un damin' 3			Month	Day
Patrick Welsh LAGAyout For Nahisco Ita	24 .01	Α	1 Fr /	1.1.00	[-	Lan L
	100	· Mily and	1 2000	V 05 1-	25	21
6. International Shipments Import to U.S. Export from U.S.	Port of er	ntry/exit:		700		. 8
ransporter signature (for exports only):	Date leav	ing U.S.:	7.2			
7. Transporter Acknowledgment of Receipt of Materials	8					
ansporter 1 Printed/Typed Name Signatur	re	i	T		Month	Day \
R. L. L. L. L. L. L. L. R. L.	irbord	27	Bohnes	-	5	1271
ransporter 2 Printed/Typed Name Signatu	0	10	Jan PINCE		Month	Day
Signatu	×.				WORL	Jay I I
	i v					
B. Discrepancy	10		The second second			
Ba. Discrepancy Indication Space	Residue		David David	iostic -	12	Eul De . e
Quantity		tore all	Partial Rej	ection	0 0 00	Full Rejection
water phase of uncoming load (26036) appear. 208		warok	L-100-000	EU D4	" John	07,00
the Allement Feetle for Consider	Manifest Reference	e Number:	# ILO EDAIDA	dombar		_
Bb. Alternate Facility (or Generator)	1	0	U.S. EPA ID N	anunei.		
			_			
acility's Phone:						
8c. Signature of Alternate Facility (or Generator)			•		Month	Day
and the second of the second o						1 1
No. 1 Annual West Down and Dow	d manually and the					
9. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, an	recycling systems)		To	3		
1/13 5 2.			4.			
MIDO			1 4			
D. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest	except as noted in Ite	m 18a				
rinted/Typed Name Signatu	And the second of the second o	en 1887			Month	Day '
STEPHEN DUBNUSKAS	9-1	. A	1	1.		1051
	1100000	W1. [.]	. Mars. ca.l	188.1	-05	A 7

APPENDIX B

March and September 2011 Groundwater Laboratory Reports (On CD in attached pocket)

NYSDOH NJDEP CTDOH PADEP 11418 NY050 PH-0205 68-00573

Wednesday, March 16, 2011

Tunde Sandor Leggette Brashears & Graham Inc. 4 Research Drive Suite 301 Shelton, CT 06484

TEL: (203) 929-8555 FAX (203) 926-9140

RE: Sag Harbor, NY

Dear Tunde Sandor:

Order No.: 1103134

American Analytical Laboratories, LLC. received 24 sample(s) on 3/10/2011 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The results reported herein relate only to the items tested or to the samples as received by the laboratory. This report may not be reproduced, except in full, without the approval of American Analytical Laboratories, LLC and is not considered complete without a cover page and chain of custody documentation. The limits (LOQ) provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report or the data is qualified. This package has been reviewed by American Analytical Laboratories' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal. This report consists of 2 pages.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Lori Beyer
Lab Director

Date: 16-Mar-11

CLIENT: Leggette Brashears & Graham Inc.

Project: Sag Harbor, NY

Lab Order: 1103134

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Date Collected	Date Received
1103134-01A	MW-28A	3/9/2011 2:15:00 PM	3/10/2011
1103134-02A	MW-28B	3/9/2011 2:10:00 PM	3/10/2011
1103134-03A	MW-42B	3/10/2011 9:12:00 AM	3/10/2011
1103134-04A	MW-43B	3/9/2011 4:20:00 PM	3/10/2011
1103134-05A	MW-43C	3/9/2011 4:20:00 PM	3/10/2011
1103134-06A	MW-44A	3/8/2011 2:30:00 PM	3/10/2011
1103134-07A	MW-44B	3/8/2011 2:55:00 PM	3/10/2011
1103134-08A	MW-45A	3/9/2011 1:10:00 PM	3/10/2011
1103134-09A	MW-45B	3/9/2011 1:20:00 PM	3/10/2011
1103134-10A	MW-46A	3/9/2011 3:30:00 PM	3/10/2011
1103134-11A	MW-47A	3/9/2011 3:30:00 PM	3/10/2011
1103134-12A	MW-49A	3/10/2011 8:35:00 AM	3/10/2011
1103134-13A	MW-49B	3/10/2011 8:05:00 AM	3/10/2011
1103134-14A	MW-49C	3/10/2011 8:10:00 AM	3/10/2011
1103134-15A	MW-52A	3/9/2011 2:50:00 PM	3/10/2011
1103134-16A	MW-53	3/9/2011 4:55:00 PM	3/10/2011
1103134-17A	MW-54	3/9/2011 4:55:00 PM	3/10/2011
1103134-18A	MW-56B	3/10/2011 8:42:00 AM	3/10/2011
1103134-19A	MW-98-01A	3/9/2011 12:45:00 PM	3/10/2011
1103134-20A	MW-98-04	3/9/2011 12:40:00 PM	3/10/2011
1103134-21A	MW-98-05A	3/9/2011 12:02:00 PM	3/10/2011
1103134-22A	MW-98-05B	3/9/2011 12:05:00 PM	3/10/2011
1103134-23A	MW-98-05B MS	3/9/2011 12:05:00 PM	3/10/2011
1103134-24A	MW-98-05B MSD	3/9/2011 12:05:00 PM	3/10/2011

56 TOLEDO STREET • FARMINGDALE, NEW YORK 11735 (631) 454-6100 • FAX (631) 454-8027

www.american-analytical.com

11418 PH-0205 NY050 68-573 NYSDOH SDEP BOBB

PADEP

	Ī		S		N THEODY	CHAIN OF CUSTODY / REQUEST FOR ANALYSIS DOCUMENT		
CLIENT NAME/ADDRESS LB6, Im. 4 Roseovch Drive, Suit 30; < Include CT 00,0084	ESS ONE	1 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		CONTACT	Komuws-Sander	SAMPLE CORRECT SAMPLER NAME (PRINT)	SAMPLE(S) SEALED CORRECT CONTAINER(S)	
PROJECT LOCATION: Sag Harbon	37		2	etrecijanisti presipatorimenti (akrojoj)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TEMPERATURE (° C)	0 500
LABORATORY ID#	MATRIX	NO. OF	.	CS	SAMPLE # - LOCATION	White State of the		The state of the s
LAB USE ONLY	2	CONTAINERS	DATE	Add Silver Silve				
11031341-01A	3	7	70.00	14/5	1 W- 284	X	The state of the s	en e
460	*****	7	S. N.	1410	280-280 280-280			
48		~	1 1 N	9	NW-42B			
\$		R	W 20 2	1620	007-32 22			
\$		R	3/2/2	620	35h-WM			
\$		Ø	3/8/2	1430	スピーチョン			
400		M	3/8/11	HSSH	MW-448		:	
		B	3/4/1:	3.0	X87-3X			
400	******	ス	N S	320	えることの名			
40		a	3/3/	530	40x-014			
\$ 7		Ŋ	3/4/5	5130	女にす - 公文			
8	>	K	2/10/11	835	スピーチダム			-
COMMENTS / INSTRUCTIONS	UCTIONS			<u>*</u>		Samples must be on ICE	Me on ICE Coll	4
						(> e _o C))
MATRIX S=SOIL; W=WATER; SL=SLUDGE; A=AIR; M=MISCELLANEOUS	W=WATE	R; SL=SLUI	DGE; A=AIF	?; M=MISC		REQUIRED	E-MAIL ADDRESS FOR RESULTS:	
TYPE G=GRAB	G=GRAB; C=COMPOSITE	POSITE				STANDARD STAT CD BY / / TS (7-10 business flavs)	TSandor@lbgctocom	Š
RELINQUISHED BY (SIGNATURE)	(SIGNATL		ATE /	PRINTED NAME	VAME	RECEIVED BY LAB (SIGNATURE)	// PRINTED NAME	
1	The Property of the Party of th	OF.		S. F. S.	Parmed Welsh	offund The	100 C	
RELINQUISHED BY (SIGNATURE)	(SIGNATI	1,1	245 41	PRINTED NAM	NAME	SIGNATURE) DATE	PRINTED NAME	
	3		WHE OF	FICE / CA	NARY-LAB / PINK-S.	WHITE-OFFICE / CANARY-LAB / PINK-SAMPLE CUSTODIAN / GOLDENROD-CLIENT		

MANTICAN MANTICAN FILABORATOR

56 TOLEDO STREET • FARMINGDALE, NEW YORK 11735 (631) 454-6100 • FAX (631) 454-8027

www.american-analytical.com

11418 PH-0205 NY050 68-573 NYSDOH CTDOH NJDEP PADEP

3	CHAIN OF CUSTODY			/ REQUEST FOR ANALYSIS DOCUMENT			
CLIENT NAME/ADDRESS		CONTACT	10	SAMPLER (SIGNATURE)		SAMPLE(S) SEALED	YES/NO
4 Resorth Onive, 50148 301 SWELTON, CT 06484	ONING, 501 # 30		Tonde Kombyes-Sandar	SAMPLER NAME (PRINT)	Gorrelf Armbrisher	CORRECT CONTAINER(S) TEMPERATURE (° C)	YES/NO Sec
PROJECT LOCATION:	Sag Harbor, NY	2		OBLINOSIES (NANA			
LABORATORY ID# MATRIX/ LAB USE ONLY TYPE	NO. OF CONTAINERS D	SAMPLING DATE TIME	SAMPLE # - LOCATION	0300			
1103134-13A W	M	3/10/11 805	M 82 - 49 B	×			
1 45)- V	N	3/10/11 8:10	プロー・サージで				
E X	2 3/9/E	1450	マスターのスタ			-	
\$9	20	19/11/1655	78-53				
W - 124	, k	3/4/1 1655	78-84 -		And the second s	·	
\$ 0	2 3/10/fi	7.6 1.75	MW-568				
48-	a shi	24S	MW-98-01A				
\$\$P\	Je/8	7 7 20	70-00-32				
400-	\(\text{X}\)	3/9/11 1202	A80-86-WW				
1 180/	~ ~	19/11 1205	MW-98-05B				-
158° /	3/6	11 1205	MW-98-05B MS		de management de la companya de la c		
→	3/8	9/11/1205	MW-98-05B MSD	\ \frac{1}{2}		Addinable annahm of the own for the own and the own of	
COMMENTS / INSTRUCTIONS		_		SES	Samples must be on ICE		
					(>% C)	<u></u>	6 37
MATRIX S=SOIL; W=WATER; SL=SLUDGE; A=AIR; M=MISCELLANEOUS	R; SL=SLUDGE;	A=AIR; M=MIS		REQUIRED	E-MAIL ADDRESS FOR RESULTS:	S FOR RESULTS:	
TYPE G=GRAB; C=COMPOSITE	POSITE		STANI (7-10 bu	STANDARD STAT BY / (7-10 business days)	1 - Tsandor	Tsandor @ lag or com	
RELINQUISHED BY (SIGNATURE)				RECEIVED BY LAB (SIGNATURE)		PRINTED NAME	
Jar W	## S		Parisk Wedson	Ofun			
RELINQUISHED BY (SIGNATURE)	JRE) PATE OF	S /	PRINTED NAME RECE	RECENED BY LAB (SIGNATURE)	DATE PRI	PRINTED NAME	
	1	7	1 000 /		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		

WHITE-OFFICE / CANARY-LAB / PINK-SAMPLE CUSTODIAN / GOLDENROD-CLIENT

Sample Receipt Checklist

Client Name LBG CT	3		*	Date and Tim	e Receive	3/10/2011 4:19:17 PM
Work Order Numbe 1103134	RcptNo: 1			Received by	CD	
COC_ID: CoolerID Checklist completed by Signature	3/10/10 Date	.	10, 200	Reviewed by	Ha /	S 3/11/1/
Matrix:	Carrier name	AAL				
Shipping container/cooler in good condition?		Yes	~	No	Not Presen	
Custody seals intact on shippping container/cod	oler?	Yes		No	Not Presen	V
Custody seals intact on sample bottles?		Yes		No :	Not Presen	∀ :
Chain of custody present?		Yes	V	No .		
Chain of custody signed when relinquished and	received?	Yes	V	No		
Chain of custody agrees with sample labels?		Yes	V	No 🔛		
Samples in proper container/bottle?		Yes	V	No		
Sample containers intact?		Yes	V	No 🔛		
Sufficient sample volume for indicated test?		Yes	V	No		
All samples received within holding time?		Yes	V	No		
Container/Temp Blank temperature in complian	ice?	Yes	V	No ·		
Water - VOA vials have zero headspace?	No VOA vials subn	nitted		Yes 🗸	No	
Water - pH acceptable upon receipt?		Yes	V	No	N/A	
	Adjusted?		C	Checked b		
Any No and/or NA (not applicable) response m	ust be detailed in the c	omme	nts secti	on be		
Client contacted	Date contacted:			Pers	on contacted	
Contacted by:	Regarding:					·
Comments:						
Corrective Action						

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-01A

Date: 16-Mar-11

Client Sample ID: MW-28A

Collection Date: 3/9/2011 2:15:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LUQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,1,2-Trichloro-1,2,2-trifluoroetha	n _' U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,1-Dichloroethene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,2,3-Tríchloropropane	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		µg/L	1	3/14/2011 4:29:00 PM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
1,3-dichloropropane	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
2,2-Dichloropropane	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
2-Butanone	U	1.2	2.5	С	µg/L	1	3/14/2011 4:29:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 4:29:00 PM
2-Chlorotoluene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
2-Hexanone	U	1.2	2.5		µg/L	1	3/14/2011 4:29:00 PM
4-Chlorotoluene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 4:29:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 4:29:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-01A

Date: 16-Mar-11

Client Sample ID: MW-28A

Collection Date: 3/9/2011 2:15:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW82	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Bromomethane	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
m,p-Xylene	U	1	2.0		µg/L	1	3/14/2011 4:29:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 4:29:00 PM
Methylene chloride	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
Naphthalene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		µg/L	1	3/14/2011 4:29:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:29:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-28A

Collection Date: 3/9/2011 2:15:00 PM

Matrix: LIQUID

Project: Lab ID: Sag Harbor, NY 1103134-01A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	µg/L	1	3/14/2011 4:29:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 4:29:00 PM
Surr: 4-Bromofluorobenzene	104	0	60-130	%REC	1	3/14/2011 4:29:00 PM
Surr: Dibromofluoromethane	101	0	63-127	%REC	1	3/14/2011 4:29:00 PM
Surr: Toluene-d8	95.0	0	61-128	%REC	1	3/14/2011 4:29:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded H
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-28B

Lab Order: 1103134 **Collection Date:** 3/9/2011 2:10:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-02A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 4:52:00 PM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
1,2-Dichloroethane	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 4:52:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 4:52:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
2-Hexanone	U	1.2	2.5		µg/L	1	3/14/2011 4:52:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 4:52:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 4:52:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

ńelac

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 16-Mar-11

- LOD Limit of Detection
 - P \rightarrow >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

1103134 Lab Order:

Project: Sag Harbor, NY Lab ID:

1103134-02A

Client Sample ID: MW-28B

Collection Date: 3/9/2011 2:10:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyze
VOC			SW82	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Chloromethane	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
m,p-Xylene	U	1	2.0		µg/L	1	3/14/2011 4:52:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 4:52:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Naphthalene	U	0.5	1.0		µg/L	1	3/14/2011 4:52:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:52:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded Η
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-28B

Collection Date: 3/9/2011 2:10:00 PM

Matrix: LIQUID

Date: 16-Mar-11

Project: Lab ID: Sag Harbor, NY 1103134-02A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed				
voc		SW8260B								
Vinyl acetate	U	0.5	1.0	µg/L	1	3/14/2011 4:52:00 PM				
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 4:52:00 PM				
Surr: 4-Bromofluorobenzene	110	0	60-130	%REC	1	3/14/2011 4:52:00 PM				
Surr: Dibromofluoromethane	102	0	63-127	%REC	1	3/14/2011 4:52:00 PM				
Surr: Toluene-d8	91.2	0	61-128	%REC	1	3/14/2011 4:52:00 PM				

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Н Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-42B

Lab Order: 1103134 **Collection Date:** 3/10/2011 9:12:00 AM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-03A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW82	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,1-Dichloropropene	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 5:16:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,2-Dichloropropane	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 5:16:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 5:16:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 5:16:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 5:16:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 5:16:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Bromobenzene	Ū	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 16-Mar-11

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Client Sample ID: MW-42B Lab Order: 1103134 Collection Date: 3/10/2011 9:12:00 AM

Sag Harbor, NY Matrix: LIQUID Project:

Lab ID: 1103134-03A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
Bromoform	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Chloroethane	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Chloromethane	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
Hexachlorobutadiene	U	0.5	1.0		µg/L	1	3/14/2011 5:16:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 5:16:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 5:16:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Toluene	υ	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:16:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- Analyte detected in the associated Method Blank В
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded H

Date: 16-Mar-11

- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-42B

Collection Date: 3/10/2011 9:12:00 AM

Project:

Sag Harbor, NY

Matrix: LIQUID

Lab ID:

1103134-03A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 5:16:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 5:16:00 PM
Surr: 4-Bromofluorobenzene	106	0	60-130	%REC	1	3/14/2011 5:16:00 PM
Surr: Dibromofluoromethane	101	0	63-127	%REC	1	3/14/2011 5:16:00 PM
Surr: Toluene-d8	96.3	0	61-128	%REC	1	3/14/2011 5:16:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded Н
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-43B

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-04A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	· U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 5:39:00 PM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,2-Dichloroethane	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
1,3-dichloropropane	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 5:39:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 5:39:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 5:39:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
4-Isopropyltoluene	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 5:39:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 5:39:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 16-Mar-11

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-04A

Date: 16-Mar-11

Client Sample ID: MW-43B

Collection Date: 3/9/2011 4:20:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC		NOTE DATA LA CALCASTIVA CONTRACTOR	SW82	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Bromomethane	U	0.5	1.0		µg/L	1	3/14/2011 5:39:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 5:39:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 5:39:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Tetrachloroethene	1.0	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 5:39:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

nelac

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Client Sample ID: MW-43B

Lab Order:

1103134

Collection Date: 3/9/2011 4:20:00 PM

Project:

Sag Harbor, NY

Matrix: LIQUID

Lab ID: 1103134-04A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	µg/L	1	3/14/2011 5:39:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 5:39:00 PM
Surr: 4-Bromofluorobenzene	101	0	60-130	%REC	1	3/14/2011 5:39:00 PM
Surr: Dibromofluoromethane	97.5	0	63-127	%REC	1	3/14/2011 5:39:00 PM
Surr: Toluene-d8	94.6	0	61-128	%REC	1	3/14/2011 5:39:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-05A

Date: 16-Mar-11

Client Sample ID: MW-43C

Collection Date: 3/9/2011 4:20:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 6:02:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 6:02:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 6:02:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 6:02:00 PM
4-Chlorotoluene	U	0.5	1.0		µg/L	1	3/14/2011 6:02:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 6:02:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 6:02:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
- >40% diff for detected conc between the two GC columns
- Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Collection Date: 3/9/2011 4:20:00 PM

Client Sample ID: MW-43C

Project:

Sag Harbor, NY

Matrix: LIQUID

Lab ID:

1103134-05A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 6:02:00 PM
Methyl tert-butyl ether	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
trans-1,2-Dichloroethene	Ū	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
trans-1,3-Dichloropropene	Ū	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Trichloroethene	Ū	0.5	1.0		μg/L	1	3/14/2011 6:02:00 PM
Trichlorofluoromethane	Ū	0.5	1.0		µg/L	1	3/14/2011 6:02:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-05A

Date: 16-Mar-11

Client Sample ID: MW-43C

Collection Date: 3/9/2011 4:20:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result 1	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 6:02:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 6:02:00 PM
Surr: 4-Bromofluorobenzene	104	0	60-130	%REC	1	3/14/2011 6:02:00 PM
Surr: Dibromofluoromethane	99.2	0	63-127	%REC	1	3/14/2011 6:02:00 PM
Surr: Toluene-d8	93.9	0	61-128	%REC	1	3/14/2011 6:02:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

105151

Project:

Sag Harbor, NY

Lab ID:

1103134-06A

Client Sample ID: MW-44A

Collection Date: 3/8/2011 2:30:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8		Analyst: LA		
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	ı U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,1-Dichloroethene	U	0.5	1.0		µg/L	1	3/14/2011 9:34:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 9:34:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 9:34:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 9:34:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 9:34:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 9:34:00 PM
4-Chlorotoluene	U	0.5	1.0		µg/L	1	3/14/2011 9:34:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 9:34:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 9:34:00 PM
Benzene	U	0.5	1.0		µg/L	1	3/14/2011 9:34:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-44A

Lab Order: 1103134 **Collection Date:** 3/8/2011 2:30:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-06A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Bromoform	U	0.5	1.0	С	μg/L	1	3/14/2011 9:34:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Chloroethane	U	0.5	1.0		µg/L	1	3/14/2011 9:34:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Chloromethane	U	0.5	1.0		µg/L	1	3/14/2011 9:34:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 9:34:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 9:34:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:34:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 16-Mar-11

- LOD Limit of Detection

 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-44A

Lab Order: 1103134 **Collection Date:** 3/8/2011 2:30:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-06A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 9:34:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 9:34:00 PM
Surr: 4-Bromofluorobenzene	96.1	0	60-130	%REC	1	3/14/2011 9:34:00 PM
Surr: Dibromofluoromethane	95.2	0	63-127	%REC	1	3/14/2011 9:34:00 PM
Surr: Toluene-d8	92.4	0	61-128	%REC	1	3/14/2011 9:34:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 16-Mar-11

- LOD Limit of Detection
 - P \rightarrow >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-07A

Date: 16-Mar-11

Client Sample ID: MW-44B

Collection Date: 3/8/2011 2:55:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW82	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 9:58:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 9:58:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 9:58:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 9:58:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 9:58:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 9:58:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-44B

Collection Date: 3/8/2011 2:55:00 PM

Date: 16-Mar-11

Matrix: LIQUID

Project: Lab ID: Sag Harbor, NY 1103134-07A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Bromoform	U	0.5	1.0	С	μg/L	1	3/14/2011 9:58:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Chloroform	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Hexachlorobutadiene	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
Isopropylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 9:58:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 9:58:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Naphthalene	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
n-Propylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Styrene	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
tert-Butylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		µg/L	1	3/14/2011 9:58:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 9:58:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-44B

Collection Date: 3/8/2011 2:55:00 PM

Matrix: LIQUID

Project: Lab ID: Sag Harbor, NY 1103134-07A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Qu	al Units	DF	Date/Time Analyzed
VOC		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 9:58:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 9:58:00 PM
Surr: 4-Bromofluorobenzene	105	0	60-130	%REC	1	3/14/2011 9:58:00 PM
Surr: Dibromofluoromethane	98.2	0	63-127	%REC	1	3/14/2011 9:58:00 PM
Surr: Toluene-d8	91.2	0	61-128	%REC	1	3/14/2011 9:58:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-08A

Date: 16-Mar-11

Client Sample ID: MW-45A

Collection Date: 3/9/2011 1:10:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC		,	SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/14/2011 10:21:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 10:21:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 10:21:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 10:21:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 10:21:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 10:21:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 10:21:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-08A

Date: 16-Mar-11

Client Sample ID: MW-45A

Collection Date: 3/9/2011 1:10:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Bromoform	U	0.5	1.0	С	µg/L	1	3/14/2011 10:21:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Chloroethane	U	0.5	1.0		µg/L	1	3/14/2011 10:21:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Dibromochloromethane	U	0.5	1.0		µg/L	1	3/14/2011 10:21:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 10:21:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 10:21:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		µg/L	1	3/14/2011 10:21:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:21:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
- S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-45A

Lab Order: 1103134 Collection Date: 3/9/2011 1:10:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-08A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 10:21:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 10:21:00 PM
Surr: 4-Bromofluorobenzene	103	0	60-130	%REC	1	3/14/2011 10:21:00 PM
Surr: Dibromofluoromethane	106	0	63-127	%REC	1	3/14/2011 10:21:00 PM
Surr: Toluene-d8	94.5	0	61-128	%REC	1	3/14/2011 10:21:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers: Analyte detected in the associated Method Blank

> Value above quantitation range J Analyte detected below quantitation limits

LOQ Limit of Quantitation

Ε

Spike Recovery outside accepted recovery limits

Calibration %RSD/%D exceeded for non-CCC analytes

Η Holding times for preparation or analysis exceeded

Date: 16-Mar-11

LOD Limit of Detection

>40% diff for detected conc between the two GC columns P

Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-09A

Date: 16-Mar-11

Client Sample ID: MW-45B

Collection Date: 3/9/2011 1:20:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 10:45:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,2-Dichloroethane	U	0.5	1.0		µg/L	1	3/14/2011 10:45:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 10:45:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 10:45:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 10:45:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 10:45:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 10:45:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-45B

Lab Order: 1103134 **Collection Date:** 3/9/2011 1:20:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-09A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Bromoform	U	0.5	1.0	С	µg/L	1	3/14/2011 10:45:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Carbon tetrachloride	U	0.5	1.0		µg/L	1	3/14/2011 10:45:00 PM
Chlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 10:45:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 10:45:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 10:45:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 10:45:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 10:45:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
- S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
- P >40% diff for detected conc between the two GC columns
- U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-45B

Collection Date: 3/9/2011 1:20:00 PM

Date: 16-Mar-11

Matrix: LIQUID

Project: Lab ID:

Sag Harbor, NY 1103134-09A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 10:45:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 10:45:00 PM
Surr: 4-Bromofluorobenzene	105	0	60-130	%REC	1	3/14/2011 10:45:00 PM
Surr: Dibromofluoromethane	99.1	0	63-127	%REC	1	3/14/2011 10:45:00 PM
Surr: Toluene-d8	95.2	0	61-128	%REC	1	3/14/2011 10:45:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Value above quantitation range E
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Η Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-46A

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-10A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 11:08:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 11:08:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 11:08:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 11:08:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
4-isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 11:08:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 11:08:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-46A

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-10A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed	
voc			SW8	260B			Analyst: LA	
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Bromoform	U	0.5	1.0	С	μg/L	1	3/14/2011 11:08:00 PM	
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Hexachlorobutadiene	U	0.5	1.0		µg/L	1	3/14/2011 11:08:00 PM	
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 11:08:00 PM	
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 11:08:00 PM	
Methylene chloride	U	0.5	1.0		µg/L	1	3/14/2011 11:08:00 PM	
Naphthalene	U	0.5	1.0		µg/L	1	3/14/2011 11:08:00 PM	
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:08:00 PM	

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
- S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P \rightarrow >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

1103134

Project: Lab ID: Sag Harbor, NY 1103134-10A Client Sample ID: MW-46A

Collection Date: 3/9/2011 3:30:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 11:08:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 11:08:00 PM
Surr: 4-Bromofluorobenzene	106	0	60-130	%REC	1	3/14/2011 11:08:00 PM
Surr: Dibromofluoromethane	105	0	63-127	%REC	1	3/14/2011 11:08:00 PM
Surr: Toluene-d8	92.5	0	61-128	%REC	1	3/14/2011 11:08:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

E Value above quantitation range

J Analyte detected below quantitation limits

LOQ Limit of Quantitation

S Spike Recovery outside accepted recovery limits

C Calibration %RSD/%D exceeded for non-CCC analytes

H Holding times for preparation or analysis exceeded

LOD Limit of Detection

P \rightarrow >40% diff for detected conc between the two GC columns

U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-47A

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-11A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/14/2011 11:32:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 11:32:00 PM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/14/2011 11:32:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 11:32:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 11:32:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
2-Hexanone	U	1.2	2.5		µg/L	1	3/14/2011 11:32:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 11:32:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 11:32:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
- S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-47A

Lab Order: 1103134 **Collection Date:** 3/9/2011 3:30:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-11A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Bromoform	U	0.5	1.0	С	μg/L	1	3/14/2011 11:32:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Chloromethane	U	0.5	1.0		µg/L	1	3/14/2011 11:32:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		µg/L	1	3/14/2011 11:32:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Dichlorodifluoromethane	U	0.5	1.0		µg/L	1	3/14/2011 11:32:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 11:32:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 11:32:00 PM
Methylene chloride	U	0.5	1.0		µg/L	1	3/14/2011 11:32:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:32:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project:

Lab ID:

Sag Harbor, NY 1103134-11A **Date:** 16-Mar-11

Client Sample ID: MW-47A

Collection Date: 3/9/2011 3:30:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826)B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 11:32:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 11:32:00 PM
Surr: 4-Bromofluorobenzene	104	0	60-130	%REC	1	3/14/2011 11:32:00 PM
Surr: Dibromofluoromethane	99.6	0	63-127	%REC	1	3/14/2011 11:32:00 PM
Surr: Toluene-d8	94.1	0	61-128	%REC	1	3/14/2011 11:32:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-12A

Date: 16-Mar-11

Client Sample ID: MW-49A

Collection Date: 3/10/2011 8:35:00 AM

Matrix: LIQUID

Certificate of Results

VOC SW8260B Analyst: LA 1,1,1,2-Tetrachloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1,1-Trichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1,2-Trichloro-1,2,2-trifloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1,2-Trichloro-1,2,2-trifloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,3-Trichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L	Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed	
1,1,1,2-Tetrachloroethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,1,1,2-Tetrachloroethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,1,2-Trichloro-1,2,2-trifluoroethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,1,2-Trichloroethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloropropene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2,3-Trichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-schlane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	VOC			SW8	260B			Analyst: LA	
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	•	
1,1,2-Trichloro-1,2,2-trifluoroethan	1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,1,2-Trichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,3-Trichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Lichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U<	1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/14/2011 11:55:00 PM	
1,1-Dichloroethane U 0.5 1,0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloroethene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,1-Dichloropropene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,3-Trichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trimethylbenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Trimethylbenzene	1,1,2-Trichloro-1,2,2-trifluoroethan	ı U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,1-Dichloroethene	1,1,2-Trichloroethane	U	0.5	1.0		µg/L	1	3/14/2011 11:55:00 PM	
1,1-Dichloropropene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,3-Trichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,3-Trichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloroptopane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-S-Trimethylbenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM	1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,2,3-Trichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,3-Trichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibrlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-S-Trimethylbenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Bichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM	1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,2,3-Trichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trimethylbenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dibrlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Frimethylbenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,2,4-Trichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2,4-Trimethylbenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-thane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Frimethylbenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,2,4-Trimethylbenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromo-3-chloropropane U 1 2.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromoethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropthane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropthane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloroptopane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,4-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM <	1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,2-Dibromo-3-chloropropane U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromoethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM <	1,2,4-Trichlorobenzene	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
1,2-Dibromo-3-chloropropane U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dibromoethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM <	1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	
1,2-Dibromoethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-5-Trimethylbenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2-Butanone U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2-Chloroethyl vinyl ether U 1 2.0 µg/L 1 3/14/2011 11:55:00 PM 2-Hexan	1,2-Dibromo-3-chloropropane	U	1	2.0			1	3/14/2011 11:55:00 PM	
1,2-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloroethane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-5-Trimethylbenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,-Butanone U 1.2 2.5 C µg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM	1,2-Dibromoethane	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
1,2-Dichloroethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3,5-Trimethylbenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,-Butanone U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoly vinyl ether U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	1,2-Dichlorobenzene	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
1,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3,5-Trimethylbenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,-Dichloropropane U 0.5 1.0 µg/L 1 3/14/2011 11:55:00 PM 2,-Dichloropropane U 1.2 2.5 C µg/L 1 3/14/2011 11:55:00 PM 2,-Dichloropropane U 1.2 2.5 C µg/L 1 3/14/2011 11:55:00 PM 2,-Chloropropane U 1.2 2.5 µg/L 1 3/14/2011 11:55:00 PM	1,2-Dichloroethane	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
1,3,5-Trimethylbenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,-Dichloropropane U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2,-Dichloropropane U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2,-Butanone U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Sopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	1,2-Dichloropropane	U	0.5	1.0			1		
1,3-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,3-dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Butanone U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene	1,3,5-Trimethylbenzene	U	0.5	1.0			1		
1,3-dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Butanone U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotethyl vinyl ether U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene	1,3-Dichlorobenzene	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
1,4-Dichlorobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Butanone U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2-Chloroethyl vinyl ether U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U<	1,3-dichloropropane	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
2,2-Dichloropropane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Butanone U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2-Chloroethyl vinyl ether U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	1,4-Dichlorobenzene	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
2-Butanone U 1.2 2.5 C μg/L 1 3/14/2011 11:55:00 PM 2-Chloroethyl vinyl ether U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	2,2-Dichloropropane	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
2-Chloroethyl vinyl ether U 1 2.0 μg/L 1 3/14/2011 11:55:00 PM 2-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	2-Butanone	U	1.2	2.5	С		1	3/14/2011 11:55:00 PM	
2-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 2-Hexanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	2-Chloroethyl vinyl ether	U	1	2.0			1	3/14/2011 11:55:00 PM	
2-Hexanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM 4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM		U	0.5	1.0			1	3/14/2011 11:55:00 PM	
4-Chlorotoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	2-Hexanone	U	1.2	2.5			1	3/14/2011 11:55:00 PM	
4-Isopropyltoluene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM 4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	4-Chlorotoluene	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
4-Methyl-2-pentanone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	4-Isopropyltoluene	U	0.5	1.0			1		
Acetone U 1.2 2.5 μg/L 1 3/14/2011 11:55:00 PM Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM		U	1.2	2.5			1	3/14/2011 11:55:00 PM	
Benzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM		U	1.2				1	3/14/2011 11:55:00 PM	
Bromobenzene U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	Benzene	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
· ·	Bromobenzene	U	0.5	1.0			1	3/14/2011 11:55:00 PM	
Bromochloromethane U 0.5 1.0 μg/L 1 3/14/2011 11:55:00 PM	Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM	

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
- P >40% diff for detected conc between the two GC columns
- U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-49A

Lab Order: 1103134 **Collection Date:** 3/10/2011 8:35:00 AM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-12A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8:	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Bromoform	U	0.5	1.0	С	μg/L	1	3/14/2011 11:55:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 11:55:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Isopropylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 11:55:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 11:55:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 11:55:00 PM
Methylene chloride	U	0.5	1.0		µg/L	1	3/14/2011 11:55:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Toluene	U	0.5	1.0		µg/L	1	3/14/2011 11:55:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 11:55:00 PM
Trichlorofluoromethane	υ	0.5	1.0		µg/L	1	3/14/2011 11:55:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
- P >40% diff for detected conc between the two GC columns
- U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project:

Sag Harbor, NY

Lab ID: 1103134-12A

Date: 16-Mar-11

Client Sample ID: MW-49A

Collection Date: 3/10/2011 8:35:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 11:55:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 11:55:00 PM
Surr: 4-Bromofluorobenzene	99.6	0	60-130	%REC	1	3/14/2011 11:55:00 PM
Surr: Dibromofluoromethane	102	0	63-127	%REC	1	3/14/2011 11:55:00 PM
Surr: Toluene-d8	95.0	0	61-128	%REC	1	3/14/2011 11:55:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

LOQ Limit of Quantitation

S Spike Recovery outside accepted recovery limits

Calibration %RSD/%D exceeded for non-CCC analytes

H Holding times for preparation or analysis exceeded

LOD Limit of Detection

J Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-49B

Lab Order: 1103134 **Collection Date:** 3/10/2011 8:05:00 AM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-13A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	u U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,1-Dichloropropene	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 12:18:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,2-Dichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 12:18:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 12:18:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 12:18:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 12:18:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 12:18:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
- P >40% diff for detected conc between the two GC columns
- U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-49B

Lab Order: 1103134 **Collection Date:** 3/10/2011 8:05:00 AM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-13A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Bromoform	U	0.5	1.0	С	µg/L	1	3/15/2011 12:18:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Chloroform	U	0.5	1.0		µg/L	1	3/15/2011 12:18:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 12:18:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 12:18:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:18:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P \rightarrow >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-49B

Collection Date: 3/10/2011 8:05:00 AM

Matrix: LIQUID

Project: Lab ID: Sag Harbor, NY 1103134-13A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 12:18:00 AM
Vinyl chloride	U	0.5	1.0	µg/L	1	3/15/2011 12:18:00 AM
Surr: 4-Bromofluorobenzene	103	0	60-130	%REC	1	3/15/2011 12:18:00 AM
Surr: Dibromofluoromethane	99.3	0	63-127	%REC	1	3/15/2011 12:18:00 AM
Surr: Toluene-d8	96.9	0	61-128	%REC	1	3/15/2011 12:18:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits

- Η Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-49C

Collection Date: 3/10/2011 8:10:00 AM

Matrix: LIQUID

Date: 16-Mar-11

Project: Lab ID: Sag Harbor, NY 1103134-14A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
1,2,3-Trichloropropane	· U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 12:42:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
1,2-Dichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
1,2-Dichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
2-Butanone	U	1.2	2.5	С	µg/L	1	3/15/2011 12:42:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 12:42:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
2-Hexanone	U	1.2	2.5		µg/L	1	3/15/2011 12:42:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 12:42:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 12:42:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P $\,$ >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-14A

Date: 16-Mar-11

Client Sample ID: MW-49C

Collection Date: 3/10/2011 8:10:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Bromoform	U	0.5	1.0	С	μg/L	1	3/15/2011 12:42:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Isopropylbenzene	Ų	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
m,p-Xylene	U	1	2.0		µg/L	1	3/15/2011 12:42:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	µg/L	1	3/15/2011 12:42:00 AM
Methylene chloride	U	0.5	1.0		µg/L	1	3/15/2011 12:42:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:42:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-14A

Client Sample ID: MW-49C

Collection Date: 3/10/2011 8:10:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 12:42:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 12:42:00 AM
Surr: 4-Bromofluorobenzene	102	0	60-130	%REC	1	3/15/2011 12:42:00 AM
Surr: Dibromofluoromethane	104	0	63-127	%REC	1	3/15/2011 12:42:00 AM
Surr: Toluene-d8	93.5	0	61-128	%REC	1	3/15/2011 12:42:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

B Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-15A

Date: 16-Mar-11

Client Sample ID: MW-52A

Collection Date: 3/9/2011 2:50:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 1:05:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 1:05:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 1:05:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 1:05:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 1:05:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 1:05:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-52A

Lab Order: 1103134 **Collection Date:** 3/9/2011 2:50:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-15A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Bromoform	U	0.5	1.0	С	μg/L	1	3/15/2011 1:05:00 AM
Bromomethane	U	0.5	1.0		µg/L	1	3/15/2011 1:05:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 1:05:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 1:05:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:05:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-15A

Client Sample ID: MW-52A

Collection Date: 3/9/2011 2:50:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC		Analyst: LA				
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 1:05:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 1:05:00 AM
Surr: 4-Bromofluorobenzene	109	0	60-130	%REC	1	3/15/2011 1:05:00 AM
Surr: Dibromofluoromethane	100	0	63-127	%REC	1	3/15/2011 1:05:00 AM
Surr: Toluene-d8	96.5	0	61-128	%REC	1	3/15/2011 1:05:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-53

Lab Order: 1103134 **Collection Date:** 3/9/2011 4:55:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-16A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,1,1-Trichloroethane	2.0	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		µg/L	1	3/15/2011 1:29:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,1-Dichloroethane	0.98	0.5	1.0	J	µg/L	1	3/15/2011 1:29:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 1:29:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:29:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 1:29:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 1:29:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 1:29:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 1:29:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 1:29:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-16A

Date: 16-Mar-11

Client Sample ID: MW-53

Collection Date: 3/9/2011 4:55:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Bromoform	U	0.5	1.0	С	μg/L	1	3/15/2011 1:29:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Chloroethane	U	0.5	1.0		µg/L	1	3/15/2011 1:29:00 AM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Dibromochloromethane	U	0.5	1.0		µg/L	1	3/15/2011 1:29:00 AM
Dibromomethane	U	0.5	1.0		µg/L	1	3/15/2011 1:29:00 AM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Isopropylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:29:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 1:29:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 1:29:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:29:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

helac

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-53

Collection Date: 3/9/2011 4:55:00 PM

Matrix: LIQUID

Date: 16-Mar-11

Project: Lab ID:

Sag Harbor, NY 1103134-16A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed				
VOC		SW8260B								
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 1:29:00 AM				
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 1:29:00 AM				
Surr: 4-Bromofluorobenzene	110	0	60-130	%REC	1	3/15/2011 1:29:00 AM				
Surr: Dibromofluoromethane	109	0	63-127	%REC	1	3/15/2011 1:29:00 AM				
Surr: Toluene-d8	96.2	0	61-128	%REC	1	3/15/2011 1:29:00 AM				

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Analyte detected in the associated Method Blank В

E Value above quantitation range

Qualifiers:

J Analyte detected below quantitation limits

LOQ Limit of Quantitation

Spike Recovery outside accepted recovery limits

- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded H
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-17A

Date: 16-Mar-11

Client Sample ID: MW-54

Collection Date: 3/9/2011 4:55:00 PM

Matrix: LIQUID

Certificate of Results

VOC 1,1,1,2-Tetrachloroethane	U 0.77 U	0.5 0.5		260B			
	0.77		4.0				Analyst: LA
4 4 4 Triableventhous		0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,1,1-Trichloroethane	U	0.5	1.0	J	μg/L	1	3/15/2011 1:52:00 AM
1,1,2,2-Tetrachloroethane		0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		µg/L	1	3/15/2011 1:52:00 AM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,2-Dichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 1:52:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 1:52:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 1:52:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 1:52:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 1:52:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P = >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-54

Collection Date: 3/9/2011 4:55:00 PM

Project: Lab ID:

Sag Harbor, NY 1103134-17A

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Bromoform	U	0.5	1.0	С	μg/L	1	3/15/2011 1:52:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Carbon tetrachloride	U	0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Isopropylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 1:52:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 1:52:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Styrene	U	0.5	1.0		µg/L	1	3/15/2011 1:52:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:52:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Η Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-54

Collection Date: 3/9/2011 4:55:00 PM

Matrix: LIQUID

Project: Lab ID: Sag Harbor, NY 1103134-17A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc				Analyst: LA		
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 1:52:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 1:52:00 AM
Surr: 4-Bromofluorobenzene	110	0	60-130	%REC	1	3/15/2011 1:52:00 AM
Surr: Dibromofluoromethane	101	0	63-127	%REC	1	3/15/2011 1:52:00 AM
Surr: Toluene-d8	95.3	0	61-128	%REC	1	3/15/2011 1:52:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Η Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-56B

Lab Order: 1103134 **Collection Date:** 3/10/2011 8:42:00 AM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-18A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 2:16:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,2-Dichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 2:16:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 2:16:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 2:16:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		µg/L	1	3/15/2011 2:16:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 2:16:00 AM
4-Chlorotoluene	U	0.5	1.0		µg/L	1	3/15/2011 2:16:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 2:16:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 2:16:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-18A

Date: 16-Mar-11

Client Sample ID: MW-56B

Collection Date: 3/10/2011 8:42:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Bromoform	U	0.5	1.0	С	μg/L	1	3/15/2011 2:16:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 2:16:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 2:16:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 2:16:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
trans-1,2-Dichloroethene	Ū	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
trans-1,3-Dichloropropene	Ū	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Trichloroethene	Ū	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM
Trichlorofluoromethane	Ú	0.5	1.0		μg/L	1	3/15/2011 2:16:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P = >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-56B

Collection Date: 3/10/2011 8:42:00 AM

Matrix: LIQUID

Project: Lab ID:

Sag Harbor, NY 1103134-18A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed			
voc		SW8260B							
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 2:16:00 AM			
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 2:16:00 AM			
Surr: 4-Bromofluorobenzene	106	0	60-130	%REC	1	3/15/2011 2:16:00 AM			
Surr: Dibromofluoromethane	100	0	63-127	%REC	1	3/15/2011 2:16:00 AM			
Surr: Toluene-d8	92.5	0	61-128	%REC	1	3/15/2011 2:16:00 AM			

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded H
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-19A

Client Sample ID: MW-98-01A

Collection Date: 3/9/2011 12:45:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	ı U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 2:39:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 2:39:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 2:39:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 2:39:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 2:39:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 2:39:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 2:39:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P = >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Project:

Sag Harbor, NY

Lab ID:

1103134-19A

Date: 16-Mar-11

Client Sample ID: MW-98-01A

Collection Date: 3/9/2011 12:45:00 PM

Matrix: LIQUID

Certificate of Results

Bromodichloromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Bromoform U 0.5 1.0 C μg/L 1 3/15/2011 2:39:00 AM Bromomethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Carbon disulfide U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chlorobenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Cis-1,3-Dichloroptopene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 μ	Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
Bromoform	voc			SW8	260B			Analyst: LA
Bromomethane	Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Carbon disulfide U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Carbon tetrachloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chlorobenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Chloromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 μg/L	Bromoform	U	0.5	1.0	С	μg/L	1	3/15/2011 2:39:00 AM
Carbon tetrachloride U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chlorobenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloroethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Cis-1,2-Dichloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromoethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromoethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromoethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0	Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Chlorobenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,2-Dichloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Sopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Mexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methylbene chloride U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Nethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Tetrachlor	Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Chloroethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloroform U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,2-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L <td>Carbon tetrachloride</td> <td>U</td> <td>0.5</td> <td>1.0</td> <td></td> <td>μg/L</td> <td>1</td> <td>3/15/2011 2:39:00 AM</td>	Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Chloroform U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Chloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,2-Dichlorosthene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromoethloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dichlorodifluoromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5	Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Chloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,2-Dichloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dichlorodifluoromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 <td>Chloroethane</td> <td>U</td> <td>0.5</td> <td>1.0</td> <td></td> <td>μg/L</td> <td>1</td> <td>3/15/2011 2:39:00 AM</td>	Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
cis-1,2-Dichloroethene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0	Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dichlorodifluoromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5	Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
cis-1,3-Dichloropropene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromochloromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5	cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM
Dibromochloromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Dibromomethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Dichlorodifluoromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Methylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μ	cis-1,3-Dichloropropene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Dibromomethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Dichlorodifluoromethane U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Broylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 <t< td=""><td>Dibromochloromethane</td><td>U</td><td>0.5</td><td>1.0</td><td></td><td></td><td>1</td><td>3/15/2011 2:39:00 AM</td></t<>	Dibromochloromethane	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Dichlorodifluoromethane U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Ethylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM M. Amphylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Mathylene chloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0	Dibromomethane	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Ethylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Hexachlorobutadiene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 C µg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Butylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM o-Xylene U 0.5 1.0 µg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0	Dichlorodifluoromethane	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Hexachlorobutadiene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Isopropylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM m,p-Xylene U 1 2.0 μg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 C μg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM o-Xylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 <td< td=""><td>Ethylbenzene</td><td>U</td><td>0.5</td><td>1.0</td><td></td><td></td><td>1</td><td>3/15/2011 2:39:00 AM</td></td<>	Ethylbenzene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Sopropylbenzene	Hexachlorobutadiene	U	0.5	1.0			1	
m,p-Xylene U 1 2.0 μg/L 1 3/15/2011 2:39:00 AM Methyl tert-butyl ether U 0.5 1.0 C μg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0	Isopropylbenzene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Methyl tert-butyl ether U 0.5 1.0 C μg/L 1 3/15/2011 2:39:00 AM Methylene chloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM o-Xylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Troblenoethene U 0.5 1.0	m,p-Xylene	U	1	2.0			1	3/15/2011 2:39:00 AM
Methylene chloride U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Naphthalene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM o-Xylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 <td< td=""><td>Methyl tert-butyl ether</td><td>U</td><td>0.5</td><td>1.0</td><td>С</td><td></td><td>1</td><td>3/15/2011 2:39:00 AM</td></td<>	Methyl tert-butyl ether	U	0.5	1.0	С		1	3/15/2011 2:39:00 AM
Naphthalene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM o-Xylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L <t< td=""><td>Methylene chloride</td><td>U</td><td>0.5</td><td>1.0</td><td></td><td></td><td>1</td><td>3/15/2011 2:39:00 AM</td></t<>	Methylene chloride	U	0.5	1.0			1	3/15/2011 2:39:00 AM
n-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM o-Xylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	Naphthalene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
n-Propylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM o-Xylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	=	U		1.0			1	3/15/2011 2:39:00 AM
o-Xylene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	n-Propylbenzene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
sec-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	o-Xylene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Styrene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	sec-Butylbenzene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
tert-Butylbenzene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	Styrene	U	0.5	1.0			1	3/15/2011 2:39:00 AM
Tetrachloroethene 1.5 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	•	U		1.0			1	
Toluene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM			0.5	1.0		· -	1	
trans-1,2-Dichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	Toluene							
trans-1,3-Dichloropropene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM	trans-1,2-Dichloroethene						-	
Trichloroethene U 0.5 1.0 μg/L 1 3/15/2011 2:39:00 AM				-				
- 10		=					-	
	Trichlorofluoromethane	Ü	0.5	1.0		μg/L	1	3/15/2011 2:39:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-19A

Client Sample ID: MW-98-01A

Collection Date: 3/9/2011 12:45:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 2:39:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 2:39:00 AM
Surr: 4-Bromofluorobenzene	106	0	60-130	%REC	1	3/15/2011 2:39:00 AM
Surr: Dibromofluoromethane	98.7	0	63-127	%REC	1	3/15/2011 2:39:00 AM
Surr: Toluene-d8	92.8	0	61-128	%REC	1	3/15/2011 2:39:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Client Sample ID: MW-98-04

Project:

Collection Date: 3/9/2011 12:40:00 PM

Lab ID:

Sag Harbor, NY 1103134-20A

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,1-Dichloropropene	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 10:23:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 10:23:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 10:23:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 10:23:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 10:23:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 10:23:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Η Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-98-04

Lab Order: 1103134 **Collection Date:** 3/9/2011 12:40:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-20A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Bromoform	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Chloroform	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Dichlorodifluoromethane	U	0.5	1.0	С	µg/L	1	3/15/2011 10:23:00 AM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 10:23:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 10:23:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Naphthalene	U	0.5	1.0		µg/L	1	3/15/2011 10:23:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Tetrachloroethene	0.99	0.5	1.0	J	μg/L	1	3/15/2011 10:23:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:23:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-98-04

Lab Order: 1103134 **Collection Date:** 3/9/2011 12:40:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-20A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 10:23:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 10:23:00 AM
Surr: 4-Bromofluorobenzene	106	0	60-130	%REC	1	3/15/2011 10:23:00 AM
Surr: Dibromofluoromethane	94.5	0	63-127	%REC	1	3/15/2011 10:23:00 AM
Surr: Toluene-d8	91.5	0	61-128	%REC	1	3/15/2011 10:23:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

Analyte detected in the associated Method Blank

- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-98-05A

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-21A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/15/2011 10:47:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	· U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,1,2-Trichloroethane	υ	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,1-Dichloroethene	U	0.5	1.0		µg/L	1	3/15/2011 10:47:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 10:47:00 AM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/15/2011 10:47:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 10:47:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 10:47:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 10:47:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 10:47:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 10:47:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P \rightarrow >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-98-05A

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-21A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Bromoform	U	0.5	1.0		µg/L	1	3/15/2011 10:47:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
cis-1,2-Dichloroethene	4.8	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Dibromomethane	U	0.5	1.0		µg/L	1	3/15/2011 10:47:00 AM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 10:47:00 AM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 10:47:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 10:47:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Tetrachloroethene	37	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Trichloroethene	3.1	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 10:47:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-21A

Date: 16-Mar-11

Client Sample ID: MW-98-05A

Collection Date: 3/9/2011 12:02:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 10:47:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 10:47:00 AM
Surr: 4-Bromofluorobenzene	104	0	60-130	%REC	1	3/15/2011 10:47:00 AM
Surr: Dibromofluoromethane	93.0	0	63-127	%REC	1	3/15/2011 10:47:00 AM
Surr: Toluene-d8	95.1	0	61-128	%REC	1	3/15/2011 10:47:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-98-05B

Lab Order: 1103134 **Collection Date:** 3/9/2011 12:05:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-22A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,1-Dichloroethene	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
1,1-Dichloropropene	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		µg/L	1	3/15/2011 11:10:00 AM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,2-Dichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
1,2-Dichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
2-Butanone	U	1.2	2.5	С	µg/L	1	3/15/2011 11:10:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		µg/L	1	3/15/2011 11:10:00 AM
2-Chlorotoluene	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 11:10:00 AM
4-Chlorotoluene	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
4-Isopropyltoluene	U	0.5	1.0		µg/L	1	3/15/2011 11:10:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 11:10:00 AM
Acetone	U	1.2	2.5		µg/L	1	3/15/2011 11:10:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-22A

Date: 16-Mar-11

Client Sample ID: MW-98-05B

Collection Date: 3/9/2011 12:05:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Bromoform	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 11:10:00 AM
Ethylbenzene	U	0.5	1.0		μg/L	1 ~	3/15/2011 11:10:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 11:10:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 11:10:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Toluene	9.9	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 11:10:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-22A

Client Sample ID: MW-98-05B

Collection Date: 3/9/2011 12:05:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 11:10:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 11:10:00 AM
Surr: 4-Bromofluorobenzene	101	0	60-130	%REC	1	3/15/2011 11:10:00 AM
Surr: Dibromofluoromethane	100	0	63-127	%REC	1	3/15/2011 11:10:00 AM
Surr: Toluene-d8	91.9	0	61-128	%REC	1	3/15/2011 11:10:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded H
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-23A

Date: 16-Mar-11

Client Sample ID: MW-98-05B MS

Collection Date: 3/9/2011 12:05:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
1,1,1-Trichloroethane	34	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,1,2,2-Tetrachloroethane	36	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,1,2-Trichloroethane	34	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,1-Dichloroethane	34	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,1-Dichloroethene	36	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 11:34:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2-Dichlorobenzene	33	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2-Dichloroethane	31	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,2-Dichloropropane	35	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
1,3-Dichlorobenzene	32	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
1,4-Dichlorobenzene	32	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 11:34:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 11:34:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 11:34:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 11:34:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 11:34:00 AM
Benzene	32	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: MW-98-05B MS

Lab Order: 1103134 **Collection Date:** 3/9/2011 12:05:00 PM

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103134-23A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	35	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Bromoform	38	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Bromomethane	27	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
Carbon tetrachloride	31	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
Chlorobenzene	35	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Chloroethane	38	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Chloroform	34	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Chloromethane	35	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Dibromochloromethane	33	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Dibromomethane	U	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 11:34:00 AM
Ethylbenzene	35	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
m,p-Xylene	U	1	2.0		µg/L	1	3/15/2011 11:34:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 11:34:00 AM
Methylene chloride	U	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Tetrachloroethene	36	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
Toluene	49	0.5	1.0		µg/L	1	3/15/2011 11:34:00 AM
trans-1,2-Dichloroethene	33	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
trans-1,3-Dichloropropene	33	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Trichloroethene	37	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM
Trichlorofluoromethane	37	0.5	1.0		μg/L	1	3/15/2011 11:34:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette B

Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-23A

Date: 16-Mar-11

Client Sample ID: MW-98-05B MS

Collection Date: 3/9/2011 12:05:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 11:34:00 AM
Vinyl chloride	37	0.5	1.0	μg/L	1	3/15/2011 11:34:00 AM
Surr: 4-Bromofluorobenzene	105	0	60-130	%REC	1	3/15/2011 11:34:00 AM
Surr: Dibromofluoromethane	99.0	0	63-127	%REC	1	3/15/2011 11:34:00 AM
Surr: Toluene-d8	97.9	0	61-128	%REC	1	3/15/2011 11:34:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103134

Project: Sag Harbor, NY

Lab ID: 1103134-24A

Date: 16-Mar-11

Client Sample ID: MW-98-05B MSD

Collection Date: 3/9/2011 12:05:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW82	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,1,1-Trichloroethane	34	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,1,2,2-Tetrachloroethane	36	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	ı U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,1,2-Trichloroethane	34	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,1-Dichloroethane	37	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
1,1-Dichloroethene	38	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 11:57:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,2-Dichlorobenzene	35	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,2-Dichloroethane	33	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
1,2-Dichloropropane	36	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
1,3-Dichlorobenzene	36	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
1,3-dichloropropane	U	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
1,4-Dichlorobenzene	34	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 11:57:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		µg/L	1	3/15/2011 11:57:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
2-Hexanone	U	1.2	2.5		µg/L	1	3/15/2011 11:57:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 11:57:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 11:57:00 AM
Benzene	34	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-24A

Date: 16-Mar-11

Client Sample ID: MW-98-05B MSD

Collection Date: 3/9/2011 12:05:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	34	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Bromoform	39	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Bromomethane	30	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Carbon tetrachloride	33	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Chlorobenzene	36	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Chloroethane	41	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Chloroform	37	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Chloromethane	36	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Dibromochloromethane	34	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 11:57:00 AM
Ethylbenzene	36	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 11:57:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 11:57:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Tetrachloroethene	37	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Toluene	50	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
trans-1,2-Dichloroethene	34	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM
trans-1,3-Dichloropropene	34	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Trichloroethene	39	0.5	1.0		μg/L	1	3/15/2011 11:57:00 AM
Trichlorofluoromethane	40	0.5	1.0		µg/L	1	3/15/2011 11:57:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103134

Sag Harbor, NY

Project: Lab ID:

1103134-24A

Date: 16-Mar-11

Client Sample ID: MW-98-05B MSD

Collection Date: 3/9/2011 12:05:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 11:57:00 AM
Vinyl chloride	40	0.5	1.0	μg/L	1	3/15/2011 11:57:00 AM
Surr: 4-Bromofluorobenzene	104	0	60-130	%REC	1	3/15/2011 11:57:00 AM
Surr: Dibromofluoromethane	98.5	0	63-127	%REC	1	3/15/2011 11:57:00 AM
Surr: Toluene-d8	94.8	0	61-128	%REC	1	3/15/2011 11:57:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Leggette Brashears & Graham Inc. 1103134 CLIENT:

Work Order:

Sag Harbor, NY

Project:

TestCode: 8260MTBE113_W

ANALYTICAL QC SUMMARY REPORT

Date: 16-Mar-11

Sample ID: V624LCS-031411LW Sa	SampType: LCS	TestCode	TestCode: 8260MTBE11	E11 Units: µg/L		Prep Date:	3/14/2011	RunNo: 56711	
Client ID: LCSW	Batch ID: R56711	TestN	TestNo: SW8260B			Analysis Date:	3/14/2011	SeqNo: 797090	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit Qual	<u>a</u>
1,1,1-Trichloroethane	37	1.0	50.00	0	73.4	43	148		
1,1,2,2-Tetrachloroethane	45	1.0	50.00	0	9.06	32	148		
1,1,2-Trichloroethane	39	1.0	50.00	0	78.7	42	136		
1,1-Dichloroethane	40	1.0	50.00	0	80.0	40	150		
1,1-Dichloroethene	4	1.0	50.00	0	82.6	30	154		
1,2-Dichlorobenzene	39	1.0	50.00	0	78.0	40	129		
1,2-Dichloroethane	39	1.0	50.00	0	77.6	36	141		
1,2-Dichloropropane	38	1.0	50.00	0	76.9	44	138		
1,3-Dichlorobenzene	38	1.0	50.00	0	76.7	40	133		
1,4-Dichlorobenzene	38	1.0	50.00	0	76.2	40	135		
2-Chloroethyl vinyl ether	40	2.0	50.00	0	79.8	21	139		
Benzene	36	1.0	50.00	0	72.9	45	144		
Bromodichloromethane	39	1.0	50.00	0	78.5	35	136		
Bromoform	44	1.0	50.00	0	87.2	28	138		
Bromomethane	31	1.0	50.00	0	62.4	26	148		
Carbon tetrachloride	37	1.0	50.00	0	73.7	45	141		
Chlorobenzene	39	1.0	20.00	0	77.2	41	142		
Chloroethane	46	1.0	50.00	0	93.0	36	143		
Chloroform	39	1.0	50.00	0	79.0	42	137		
Chloromethane	39	1.0	50.00	0	78.9	35	151		
Dibromochloromethane	38	1.0	50.00	0	76.5	21	134		
Ethylbenzene	38	1.0	50.00	0	76.8	45	146		
Tetrachloroethene	38	1.0	50.00	0	76.8	45	136		
Toluene	38	1.0	50.00	0	75.0	43	134		
trans-1,2-Dichloroethene	39	1.0	50.00	0	7.77	42	135		
trans-1,3-Dichloropropene	38	1.0	50.00	0	76.3	37	133		
Trichloroethene	40	1.0	50.00	0	80.2	43	140		
Trichlorofluoromethane	42	1.0	50.00	0	84.9	20	148		
Vinyl chloride	43	1.0	20.00	0	86.3	35	142		
Surr: 4-Bromofluorobenzene	52		50.00		104	09	130		
Oualifiers: B Analyte detected in	Analyte detected in the associated Method Blank	lank	C Calibr	Calibration %RSD/%D exceeded for non-CCC analytes	eded for no	1-CCC analytes	E Value above quantitation range	titation range	
Н	Holding times for preparation or analysis exceeded	pepea	J Analyt	Analyte detected below quantitation limits	ıtitation lim	its	LOD Limit of Detection		

LOQ Limit of Quantitation

RPD outside accepted recovery limits

P >40% diff for detected conc between the two GC column R

Leggette Brashears & Graham Inc. 1103134 CLIENT:

Work Order:

Sag Harbor, NY Project:

TestCode: 8260MTBE113_W

Sample ID: V6241 Cc. 0314141 W	SampTupe: 106	Toctodo	Took ode, escontaged this.	December 1			
	5					Nullivo. 30/11	
Client ID: LCSW	Batch ID: R56711	TestNo	TestNo: SW8260B	Analysis Date:	e: 3/14/2011	SeqNo: 797090	
Analyte	Result	PaL	SPK value SPK Ref Val	al %REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Surr: Dibromofluoromethane Surr: Toluene-d8	53 48		50.00 50.00	105 63 95.3 61	127 128		
Sample ID: VBLK-031411LW	SampType: MBLK	TestCode	TestCode: 8260MTBE11 Units: µg/L	µg/L Prep Date:	9: 3/14/2011	RunNo: 56711	
Client ID: PBW	Batch ID: R56711	TestNo	TestNo: SW8260B	Analysis Date:	3/14/2011	SeqNo: 797091	
Analyte	Result	Pal	SPK value SPK Ref Val	al %REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1,2-Tetrachloroethane	n	1.0		annes de la companya			
1,1,1-Trichloroethane	D	1.0					
1,1,2,2-Tetrachloroethane	⊃	1.0					
1,1,2-Trichloro-1,2,2-trifluoroethane	n ea	1.0					
1,1,2-Trichloroethane	ח	1.0					
1,1-Dichloroethane	ח	1.0					
1,1-Dichloroethene	D	1.0					
1,1-Dichloropropene	D	1.0					
1,2,3-Trichlorobenzene	D	1.0					
1,2,3-Trichloropropane	D	1.0					
1,2,4-Trichlorobenzene	D	1.0					
1,2,4-Trimethylbenzene	D	1.0					
1,2-Dibromo-3-chloropropane	D	2.0					
1,2-Dibromoethane	n	1.0					
1,2-Dichlorobenzene	D	1.0					
1,2-Dichloroethane	Π	1.0					
1,2-Dichloropropane	n	1.0					
1,3,5-Trimethylbenzene	n	1.0					
1,3-Dichlorobenzene	n	1.0					
1,3-dichloropropane	n	1.0					
1,4-Dichlorobenzene	n	1.0					
2,2-Dichloropropane	n	1.0					
2-Butanone	n	2.5					ပ
2-Chloroethyl vinyl ether	Π	2.0					
Qualifiers: B Analyte detected Holding times	Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded	3lank ceeded	C Calibration %RSD/9	Calibration %RSD/%D exceeded for non-CCC analytes Analyte detected below quantitation limits	s E Value above quantitation range	ifation range	
\sim	titation			>40% diff for detected conc between the two GC column	R	RPD outside accepted recovery limits	

TestCode: 8260MTBE113_W

Leggette Brashears & Graham Inc. 1103134 Work Order: CLIENT:

Sag Harbor, NY Project:

Sample ID: VBLKd3141LW Samplype MBIK TestOcke 2880MTER11 Units: rgg/L Prep Date: 31/42011 Runks: 58714 Runks								
Batch ID: Result Result PQL SPK value SPK Reft Val	Sample ID: VBLK-031411LW	SampType: MBLK	TestCoc	de: 8260MTBE1	1 Units: µg/L	3/14/2011	RunNo: 56711	
Pod. SPK value SPK Ref Val %REC LowLimit Hightlinit RPD Ref Val %REC LowLimit Hightlinit RPD Ref Val %RPD RPD RPD		Batch ID: R56711	Test	No: SW8260B		3/14/2011	SeqNo: 797091	
,	Analyte	Result	PQL		SPK Ref Val	LowLimit HighLimit		Qual
; ; ; ; ; ; ; ; ; ; ; ; ;	2-Chlorotoluene	n	1.0				Companyation in America de Companya principal principal de Companya de Company	-
1	2-Hexanone	⊃	2.5					
10	4-Chlorotoluene	Π	1.0					
2.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	4-Isopropyltoluene	D	1.0					
	4-Methyl-2-pentanone	D	2.5					
	Acetone	n	2.5					
	Benzene	J	1.0					
	Bromobenzene)	1.0					
1. 10	Bromochloromethane	D	1.0					
	Bromodichloromethane	D	1.0					
	Bromoform	n	1.0					
10	Bromomethane	n	1.0					
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Carbon disulfide	n	1.0					
	Carbon tetrachloride	n	1.0					
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Chlorobenzene	n	1.0					
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Chloroethane	n	1.0					
U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	Chloroform	Π	1.0					
U 1.0	Chloromethane	n	1.0					
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	cis-1,2-Dichloroethene	n	1.0					
tethane U 1.0 methane U 1.0 diene U 1.0 se U 2.0 ether U 1.0 ide U 1.0 U 1.0 U 1.0 U 1.0 U 1.0	cis-1,3-Dichloropropene	n	1.0					
ee U 1.0 methane U 1.0 diene U 1.0 se U 2.0 ether U 1.0 ide U 1.0 U 1.0 U 1.0 U 1.0	Dibromochloromethane	n	1.0					
methane U 1.0 diene U 1.0 he U 2.0 ether U 1.0 ide U 1.0 U 1.0 U 1.0 U 1.0	Dibromomethane	n	1.0					
diene U 1.0 N 1.0 ether U 2.0 ether U 1.0 ide U 1.0 U 1.0 U 1.0	Dichlorodifluoromethane	n	1.0					
diene U 1.0 be U 2.0 cther U 1.0 ide U 1.0 U 1.0 U 1.0	Ethylbenzene	n	1.0					
tether U 1.0 ether U 2.0 ou 1.0 ide U 1.0 U 1.0	Hexachlorobutadiene	n	1.0					
ther U 2.0 U 1.0 ide U 1.0 U 1.0 U 1.0	Isopropylbenzene)	1.0					
ether U 1.0 ide U 1.0 U 1.0 U 1.0	m,p-Xylene	n	2.0					
ide U	Methyl tert-butyl ether	n	1.0					ပ
၁ ၁	Methylene chloride	n	1.0					
D	Naphthalene	n	1.0					
	n-Butylbenzene	¬	1.0					

RPD outside accepted recovery limits

Analyte detected below quantitation limits LOD Limit of Detection >40% diff for detected conc between the two GC column R RPD outside accept

Calibration %RSD/%D exceeded for non-CCC analytes

D - d

Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank

B Analyte detected in the a
H Holding times for prepai

Qualifiers:

E Value above quantitation range

TestCode: 8260MTBE113_W

CLIENT: Leggette Brashears & Graham Inc.
Work Order: 1103134

Project: Sag Harbor, NY

Sample ID: VBI K-0314111 W	SamuTvne: MRI K	TestCode	TestCode: 8260MTRE11	I Inits: 110/I		Pren Date	3/14/2011	RunNo. 56711	
	Carry Jye. Morr	200160		Tage .		ich Date.	11/2/11	100 .00 I	
Client ID: PBW	Batch ID: R56711	TestNo	TestNo: SW8260B		1	Analysis Date:	3/14/2011	SeqNo: 797091	
Analyte	Result	Pal	SPK value SPK	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	t Qual
n-Propylbenzene	ח	1.0		PROPERTY OF THE PROPERTY OF TH				erente de la companya de la company	Address of the second s
o-Xylene	D	1.0							
sec-Butylbenzene	>	1.0							
Styrene	D	1.0							
tert-Butylbenzene)	1.0							
Tetrachloroethene	⊃	1.0							
Toluene	J	1.0							
trans-1,2-Dichloroethene	⊃	1.0							
trans-1,3-Dichloropropene	⊃	1.0							
Trichloroethene	ם	1.0							
Trichlorofluoromethane	כ	1.0							
Vinyl acetate	Π	1.0							
Vinyl chloride	ח	1.0							
Surr: 4-Bromofluorobenzene	20		50.00		101	9	130		
Surr: Dibromofluoromethane	51		20.00		102	63	127		
Surr: Toluene-d8	47		50.00		94.1	61	128		
Sample ID: V624LCS-031411aL	SampType: LCS	TestCode	TestCode: 8260MTBE11	Units: µg/L		Prep Date:	3/14/2011	RunNo: 56711	
Client ID: LCSW	Batch ID: R56711A	TestNo	TestNo: SW8260B		1	Analysis Date:	3/14/2011	SeqNo: 797100	
Analyte	Result	PaL	SPK value SPK	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLimit	t Qual
1,1,1-Trichloroethane	44	1.0	50.00	0	88.5	43	148		
1,1,2,2-Tetrachloroethane	48	1.0	90.09	0	92.6	32	148		
1,1,2-Trichloroethane	42	1.0	90.09	0	83.7	42	136		
1,1-Dichloroethane	44	1.0	50.00	0	87.8	40	150		
1,1-Dichloroethene	43	1.0	50.00	0	86.4	30	154		
1,2-Dichlorobenzene	42	1.0	50.00	0	84.0	40	129		
1,2-Dichloroethane	43	1.0	50.00	0	87.0	36	141		
1,2-Dichloropropane	42	1.0	50.00	0	84.0	44	138		
1,3-Dichlorobenzene	43	1.0	50.00	0	85.2	40	133		
1,4-Dichlorobenzene	41	1.0	20.00	0	81.8	40	135		
Qualifiers: B Analyte detec	Analyte detected in the associated Method Blank	ık	C Calibration %	Calibration %RSD/%D exceeded for non-CCC analytes	eded for non	-CCC analytes	E Value above quantitation range	ntitation range	
H Holding times	Holding times for preparation or analysis exceeded	ded	J Analyte detec	Analyte detected below quantitation limits	titation limit	sı	LOD Limit of Detection	u	
LOQ Limit of Quantitation	ntitation		P >40% diff for	r detected conc	between the	>40% diff for detected conc between the two GC column	R RPD outside acce	RPD outside accepted recovery limits	

TestCode: 8260MTBE113_W

1103134	77.4
Work Order:	

Leggette Brashears & Graham Inc.

CLIENT:

Sample ID: V624LCS-031411aL	SampType: LCS	TestCoc	TestCode: 8260MTBE11	1 Units: µg/L		Prep Date:	3/14/2011	RunNo: 56711	
Client ID: LCSW	Batch ID: R56711A	Testh	TestNo: SW8260B			Analysis Date:	3/14/2011	SeqNo: 797100	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
2-Chloroethyl vinyl ether	40	2.0	50.00	0	79.2	21	139	ALLA ALLA MARTINE PROPERTY AND THE PROPE	
Benzene	41	1.0	50.00	0	81.7	45	144		
Bromodichloromethane	42	1.0	50.00	0	83.2	35	136		
Bromoform	53	1.0	50.00	0	105	28	138		O
Bromomethane	33	1.0	50.00	0	66.2	26	148		
Carbon tetrachloride	42	1.0	50.00	0	84.5	45	141		
Chlorobenzene	44	1.0	50.00	0	88.3	41	142		
Chloroethane	20	1.0	50.00	0	101	36	143		
Chloroform	44	1.0	50.00	0	88.6	42	137		
Chloromethane	43	1.0	50.00	0	86.4	35	151		
Dibromochloromethane	40	1.0	50.00	0	80.8	21	134		
Ethylbenzene	43	1.0	50.00	0	86.8	45	146		
Tetrachloroethene	44	1.0	50.00	0	88.4	45	136		
Toluene	41	1.0	50.00	0	81.5	43	134		
trans-1,2-Dichloroethene	42	1.0	90.09	0	83.1	42	135		
trans-1,3-Dichloropropene	40	0.1	20.00	0	80.1	37	133		
Trichloroethene	43	1.0	50.00	0	86.3	43	140		
Trichlorofluoromethane	20	1.0	50.00	0	99.4	50	148		
Vinyl chloride	20	1.0	50.00	0	99.2	35	142		
Surr: 4-Bromofluorobenzene	69		50.00		118	09	130		
Surr: Dibromofluoromethane	52		50.00		103	63	127		
Surr: Toluene-d8	48		50.00		97.0	61	128		
Sample ID: VBLK-031411aLW	SampType: MBLK	TestCoc	TestCode: 8260MTBE11	1 Units: µg/L		Prep Date:	3/14/2011	RunNo: 56711	
Client ID: PBW	Batch ID: R56711A	Testh	40: SW8260B			Analysis Date:	3/14/2011	SeqNo: 797101	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1,2-Tetrachloroethane	O	1.0	de la companya de la						
1,1,1-Trichloroethane	D	1.0							
1,1,2,2-Tetrachloroethane	n	1.0							
1,1,2-Trichloro-1,2,2-trifluoroethane	ne U	1.0							
Qualifiers: B Analyte detection H Holding times	Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded	lank eeded	C Calibrati J Analyte	Calibration %RSD/%D exceeded for non-CCC analytes Analyte detected below quantitation limits	eded for noi	n-CCC analytes	E Value above quantitation range LOD Limit of Detection	titation range	
LOQ Limit of Quantitation	ntitation		P >40% di	>40% diff for detected conc between the two GC column	between the	two GC column	R RPD outside acce	RPD outside accepted recovery limits	

TestCode: 8260MTBE113_W

CLIENT: Leggette Brashears & Graham Inc.
Work Order: 1103134

Project: Sag Harbor, NY

PQL SPK value SPK Ref Val %REC LowLimit High High High High High High High High	Sample ID: VBLK-031411aLW	SampType: MBLK	TestCode: 8260MTBE11	260MTBE11 Units: µg/L	/L Prep Date:	3/14/2011	RunNo: 56711		
POL SPK Net Value SPK Ret Val %REC LowLinnt HighLinnt LighLinnt LighLingt		Batch ID: R56711A	TestNo: S			3/14/2011	SeqNo: 797101	- Quant	
100 1.0	Analyte	Result			LowLimit		%RPD RF	RPDLimit Qual	lai
cethane U 1.0 cethane U 1.0 contentane U 1.0 toropropare U 1.0 toropropare U 1.0 continue U 1.0 continue U 1.0 continue U 1.0 continue U 1.0 contrane U 1.0 contrane U 1.0 proporate U 1.0 contrane U 1.0 <td>1,1,2-Trichloroethane</td> <td>n</td> <td>1.0</td> <td></td> <td>A SON OFFICE AND A SON OFFI</td> <td>ANNY REGISTRALINA MAI TATONI MININGANO, MANANTANI MININGANO, MANANTANI MININGANO, MANANTANI MININGANO, MANANTANI</td> <td></td> <td></td> <td></td>	1,1,2-Trichloroethane	n	1.0		A SON OFFICE AND A SON OFFI	ANNY REGISTRALINA MAI TATONI MININGANO, MANANTANI MININGANO, MANANTANI MININGANO, MANANTANI MININGANO, MANANTANI			
oethere U 1.0 </td <td>1,1-Dichloroethane</td> <td>n</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,1-Dichloroethane	n	1.0						
Optopene U 1.0 Optoberizene U 1.0 Inoperatione U 1.0 Sthylberizene U 1.0 Oberizene U 1.0 Optopane U 1.0 Shylberizene U 1.0 Optopane U 1.0 Springane U 1.0 Springane U 1.0 Springane U 1.0 Potenzene U 1.0 Springane U 1.0 Springane U 1.0 Potenzene U 1.0 Springane U 1.0 Springane U 1.0 Springane U 1.0 Secondane U	1,1-Dichloroethene	n	1.0						
10 10 10 10 10 10 10 10	1,1-Dichloropropene	n	1.0						
1.0 1.0	1,2,3-Trichlorobenzene	D	1.0						
1.0 1.0	1,2,3-Trichloropropane	D	1.0						
sthylbenzene U 1.0 oodhanelene U 1.0 oothanelene U 1.0 obenzene U 1.0 optropane U 1.0 sthylbenzene U 1.0 opropane U 1.0 optropane U 1.0 by vinyl ether U 1.0 optropane U 1.0 e U 1.0 optropane U 1.0 e U 1.0 contenthane U 1.0 e U 1.0 connecthane U 1.0 connecthane U 1.0 connecteded U 1.0 ene U 1.0 connectities for preparation or analysis cocceeded J <th< td=""><td>1,2,4-Trichlorobenzene</td><td>⊃</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	1,2,4-Trichlorobenzene	⊃	1.0						
to-3-chloropropane U 2.0 coethane U 1.0 obenzene U 1.0 opropane U 1.0 popropane U 2.5 pyl vinyl ether U 2.5 pyl vinyl ether U 1.0 pentranone U 1.0 ton 1.0 1.0	1,2,4-Trimethylbenzene	n	1.0						
1.0 1.0	1,2-Dibromo-3-chloropropane	Π	2.0						
obenzene U 1.0 ostphane U 1.0 optropane U 2.5 optropane U 2.0 why vinyl ether U 2.0 uene U 1.0 e U 2.5 uene U 1.0 pontianone U 1.0 cene	1,2-Dibromoethane	n	1.0						
oethane U 1.0 opropane U 1.0 oberzene U 1.0 opropane U 1.0 opropane U 1.0 opropane U 1.0 opropane U 2.5 nyl vinyl ether U 2.5 nyl vinyl ether U 2.0 e U 2.5 uene U 1.0 e U 2.5 beniam U 2.5 comethane U 2.5 uene U 1.0 comethane U 1.0 comethane U 1.0 comethane U 1.0 lor 1.0 1.0 comethane U 1.0 <	1,2-Dichlorobenzene	n	1.0						
optropane U 1.0 sthylbenzene U 1.0 optropane U 1.0 optropane U 1.0 optropane U 1.0 s U 2.5 nyl vinyl ether U 2.5 uene U 2.5 e U 2.5 uene U 2.5 pentanone U 1.0 pentanone U 2.5 pontanone U 2.5 uene U 1.0 pontanone U 1.0 tolure U 1.0 cane U 1.0 tolure U 1.0 tolure <td>1,2-Dichloroethane</td> <td>Π</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichloroethane	Π	1.0						
stry/benzene U 1.0 obenzene U 1.0 opropane U 1.0 obenzene U 1.0 opropane U 1.0 opropane U 2.5 nyl vinyl ether U 2.0 nyl vinyl ether U 2.0 nyl vinyl ether U 2.5 nyl vinyl ether U 2.5 e U 2.5 e U 2.5 pentanone U 2.5 pontantanone U 1.0 comethane U 1.0 loromethane	1,2-Dichloropropane	Π	1.0						
obenzene U 1.0 opropane U 1.0 obenzene U 1.0 opropane U 1.0 e U 2.5 nyl vinyl ether U 2.6 invene U 1.0 e U 1.0 e U 1.0 e U 2.5 uone U 2.5 pontanone U 2.5 pontanone U 2.5 uone U 2.5 pontanone U 1.0 cone U 1.0 <td>1,3,5-Trimethylbenzene</td> <td>n</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,3,5-Trimethylbenzene	n	1.0						
opropane U 1.0 obenzene U 1.0 opropane U 1.0 a U 2.5 hyl vinyl ether U 1.0 uene U 1.0 e U 1.0 e U 1.0 e U 1.0 e U 1.0 toluene U 1.0 pentanone U 1.0 cene U 1.0 comethane U 1.0 lor 1.0 1.0 connecthane U 1.0 lor 1.0	1,3-Díchlorobenzene	⊃	1.0						
obenzene U 1.0 opropane U 1.0 e U 2.5 hyl vinyl ether U 2.0 uene U 2.5 uene U 2.5 uene U 1.0 pentanone U 1.0 pentanone U 2.5 comethane U 2.5 loromethane U 1.0 loromethane U	1,3-dichloropropane	n	1.0						
e U 1.0	1,4-Dichlorobenzene)	1.0						
Pach	2,2-Dichloropropane	n	1.0						
byl vinyl ether U 2.0 Residue	2-Butanone	⊃	2.5					0	ပ
uuene U 1.0 e U 2.5 uuene U 1.0 tfoluene U 1.0 pentanone U 2.5 conethane U 1.0 romethane U 1.0 loromethane	2-Chloroethyl vinyl ether	n	2.0						
e U 2.5 Process	2-Chlorotoluene	D	1.0						
Licenee U 1.0 Fitchluene U 1.0 -pentlanone U 2.5 Lomethane U 1.0 Ioromethane U 1.0 Iorom	2-Hexanone	D	2.5						
ttoluene U 1.0 -pentlanone U 2.5 -pentlanone U 2.5 -comethane U 1.0 -comethane	4-Chlorotoluene	D	1.0						
Peentanone U 2.5 Compete and the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E P 40 1.0	4-IsopropyItoluene	J	1.0						
2.5 cene romethane U 1.0	4-Methyl-2-pentanone)	2.5						
Lorenthane U 1.0 Incomethane Incomethane Incomethane Incomethane <td>Acetone</td> <td>n</td> <td>2.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Acetone	n	2.5						
1.0 1.0	Benzene	n	1.0						
romethane U 1.0 loromethane U	Bromobenzene)	1.0						
loromethane U 1.0 U 1.0 1.0 B Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded LOQ Limit of Quantitation D 1.0 C Calibration %RSD/%D exceeded for non-CCC analytes E D Analyte detected below quantitation limits LOD LOQ Limit of Quantitation P >40% diff for detected conc between the two GC column R	Bromochloromethane)	1.0						
B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits LOD Long Limit of Quantitation P >40% diff for detected cone between the two GC column R	Bromodichloromethane	D	1.0						
B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits LOD Limit of Quantitation P >40% diff for detected cone between the two GC column R	Bromoform	D	1.0					U	O
Limit of Quantitation P >40% diff for detected conc between the two GC column R	В	ed in the associated Method Bla	- T	Calibration %RSD/%D Analyte detected below	exceeded for non-CCC analytes		itation range		
		itation		>40% diff for detected of	conc between the two GC column		ted recovery limits		

Leggette Brashears & Graham Inc. 1103134 CLIENT:

Work Order:

Sag Harbor, NY Project:

TestCode: 8260MTBE113_W

ANALYTICAL QC SUMMARY REPORT

	1	-	11	Ш			
Sample ID: VBLR-031411aLW	Samplype: MBLA	lestCode: 8260MIBE11	260MIBETT UNITS: µg/L	Prep Date: 3/14	3/14/2011	KunNo: 56711	
Client ID: PBW	Batch ID: R56711A	TestNo: SW8260B	W8260B	Analysis Date: 3/14	3/14/2011	SeqNo: 797101	
Analyte	Result	PQL SP	SPK value SPK Ref Val	%REC LowLimit HighLimit	nit RPD Ref Val	%RPD RPDLimit	Qual
Bromomethane	n	1.0					
Carbon disulfide	n	1.0					
Carbon tetrachloride	n	1.0					
Chlorobenzene	J	1.0					
Chloroethane	J	1.0					
Chloroform	D	1.0					
Chloromethane	D	1.0					
cis-1,2-Dichloroethene	⊃	1.0					
cis-1,3-Dichloropropene	D	1.0					
Dibromochloromethane	⊃	1.0					
Dibromomethane	⊃	1.0					
Dichlorodifluoromethane	n	1.0					
Ethylbenzene	n	1.0					
Hexachlorobutadiene	D	1.0					
Isopropylbenzene	n	1.0					
m,p-Xylene	⊃	2.0					
Methyl tert-butyl ether	J	1.0					ပ
Methylene chloride	>	1.0					
Naphthalene	⊃	1.0					
n-Butylbenzene	⊃	1.0					
n-Propylbenzene	n	1.0					
o-Xylene)	1.0					
sec-Butylbenzene	⊃	1.0					
Styrene	D	1.0					
tert-Butylbenzene	n	1.0					
Tetrachloroethene	つ	1.0					
Toluene	D	1.0					
trans-1,2-Dichloroethene	n	1.0					
trans-1,3-Dichloropropene	⊃	1.0					
Trichloroethene	n	1.0					
Trichlorofluoromethane	⊃	1.0			,		
Qualifiers: B Analyte detect	Analyte detected in the associated Method Blank	ınk	Calibration %RSD/%D exceeded for non-CCC analytes	eded for non-CCC analytes E	Value above quantitation range	ation range	
	Holding times for preparation or analysis exceeded		Analyte detected below quantitation limits	<u> </u>		7	
LOQ Limit of Quantitation	ıtıtatıon	2-	>40% diff for detected conc between the two GC column	between the two GC column K	KPD outside accepted recovery limits	ed recovery limits	

TestCode: 8260MTBE113_W

CLENT:	Leggette Brashears & Graham Inc.
Work Order:	1103134
Project:	Sag Harbor, NY

6 O		

							Ш	open in the first of the first	
Sample ID: VBLK-031411aLW	SampType: MBLK	TestCod	TestCode: 8260MTBE11	11 Units: µg/L		Prep Date:	3/14/2011	RunNo: 56711	
Client ID: PBW	Batch ID: R56711A	TestN	TestNo: SW8260B			Analysis Date:	3/14/2011	SeqNo: 797101	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Vinyl acetate	ר	1.0	ikki di celesanik katik erresporteren eraken tulik dalah					Activity and the special speci	
Vinyl chloride	¬	1.0							
Surr: 4-Bromofluorobenzene	49		50.00		7.76	09	130		
Surr: Dibromofluoromethane	20		50.00		2.66	63	127		
Surr: Toluene-d8	47		50.00		94.1	61	128		
Sample ID: V624LCS-031511LW	/ SampType: LCS	TestCod	TestCode: 8260MTBE11	11 Units: µg/L		Prep Date:	3/15/2011	RunNo: 56711	
Client ID: LCSW	Batch ID: R56711B	TestN	TestNo: SW8260B			Analysis Date:	3/15/2011	SeqNo: 797116	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	40	1.0	50.00	0	79.3	43	148		
1,1,2,2-Tetrachloroethane	41	1.0	50.00	0	81.7	32	148		
1,1,2-Trichloroethane	40	1.0	20.00	0	79.4	42	136		
1,1-Dichloroethane	39	1.0	20.00	0	78.0	40	150		
1,1-Dichloroethene	41	1.0	50.00	0	81.9	30	154		
1,2-Dichlorobenzene	38	1.0	50.00	0	76.3	40	129		
1,2-Dichloroethane	39	1.0	20.00	0	77.4	36	141		
1,2-Dichloropropane	40	1.0	20.00	0	80.1	44	138		
1,3-Dichlorobenzene	36	1.0	50.00	0	78.8	40	133		
1,4-Dichlorobenzene	39	1.0	50.00	0	78.5	40	135		
2-Chloroethyl vinyl ether	36	2.0	50.00	0	71.1	21	139		
Benzene	36	1.0	20.00	0	73.0	45	144		
Bromodichloromethane	40	1.0	50.00	0	79.9	35	136		
Bromoform	46	1.0	20.00	0	91.8	28	138		
Bromomethane	33	1.0	50.00	0	9.99	26	148		
Carbon tetrachloride	47	1.0	50.00	0	93.7	45	141		
Chlorobenzene	41	1.0	20.00	0	81.2	41	142		
Chloroethane	48	1.0	20.00	0	96.2	36	143		
Chloroform	41	1.0	50.00	0	81.5	42	137		
Chloromethane	40	1.0	50.00	0	80.9	35	151		
Dibromochloromethane	39	1.0	50.00	0	78.6	21	134		
Qualifiers: B Analyte detect	Analyte detected in the associated Method Blank	lank	C Calibra	Calibration %RSD/%D exceeded for non-CCC analytes	eded for nor	1-CCC analytes	E Value above quantitation range	titation range	
H Holding times	Holding times for preparation or analysis exceeded	eeded	J Analyte	Analyte detected below quantitation limits	ititation limi	ts	LOD Limit of Detection		
LOO Limit of Quantitation	ntitation			>40% diff for detected conc between the two GC column	between the	two GC colum	×	RPD outside accepted recovery limits	
						1	:		

TestCode: 8260MTBE113_W

X	
Sag Harbor, NY	
Project:	

Leggette Brashears & Graham Inc.

1103134

CLIENT: Work Order:

Sample ID: V624LCS-031511LW	V SampType: LCS	TestCoc	TestCode: 8260MTBE11	11 Units: µg/L		Prep Date:	3/15/2011		RunNo: 56711	
Client ID: LCSW	Batch ID: R56711B	Test	TestNo: SW8260B			Analysis Date:	3/15/2011		SeqNo: 797116	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD I	RPD Ref Val	%RPD RP	RPDLimit Qual
Ethylbenzene	40	1.0	50.00	0	80.5	45	146		Andrews Andrews (Andrews Constitution of the Andrews Const	
Tetrachloroethene	43	1.0	50.00	0	86.2	45	136			
Toluene	39	1.0	50.00	0	78.8	43	134			
trans-1,2-Dichloroethene	40	1.0	50.00	0	79.0	42	135			
trans-1,3-Dichloropropene	37	1.0	20.00	0	74.2	37	133			
Trichloroethene	43	1.0	20.00	0	85.1	43	140			
Trichlorofluoromethane	46	1.0	90.00	0	91.4	50	148			
Vinyl chloride	46	1.0	50.00	0	92.6	35	142			
Surr: 4-Bromofluorobenzene	09		50.00		120	09	130			
Surr: Dibromofluoromethane	20		50.00		2.66	63	127			
Surr. Toluene-d8	49		50.00		97.6	61	128			
Sample ID: VBLK-031511LW	SampType: MBLK	TestCoc	TestCode: 8260MTBE11	11 Units: µg/L	ves usudisprovuospilitarpolitarpolitaros es	Prep Date:	3/15/2011		RunNo: 56711	
Client ID: PBW	Batch ID: R56711B	Test	TestNo: SW8260B			Analysis Date:	3/15/2011		SeqNo: 797117	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD F	RPD Ref Val	%RPD RPC	RPDLimit Qual
1,1,1,2-Tetrachioroethane	n	1.0								
1,1,1-Trichloroethane	n	1.0								
1,1,2,2-Tetrachloroethane	n	1.0								
1,1,2-Trichloro-1,2,2-trifluoroethane	nne U	1.0								
1,1,2-Trichloroethane)	1.0								
1,1-Dichloroethane	J	1.0								
1,1-Dichloroethene	D	1.0								
1,1-Dichloropropene	n	1.0								
1,2,3-Trichlorobenzene	n	1.0								
1,2,3-Trichloropropane)	1.0								
1,2,4-Trichlorobenzene	n	1.0								
1,2,4-Trimethylbenzene	J	1.0								
1,2-Dibromo-3-chloropropane)	2.0								
1,2-Dibromoethane	n	1.0								
1,2-Dichlorobenzene	J	1.0								
Qualifiers: B Analyte detec	Analyte detected in the associated Method Blank	ank	C Calibra	Calibration %RSD/%D exceeded for non-CCC analytes	eded for nor	-CCC analytes	E Value ab	Value above quanti	Value above quantitation range	ANT A SANTANTAN (ANTANTAN ANTANTAN AN ANTANTANTAN ANTANTANTAN ANTANTANTAN ANTANTANTAN ANTANTANTAN ANTANTANTAN ANTANTANTAN ANTANTANTANTAN ANTANTANTANTAN ANTANTANTANTANTANTANTANTANTANTANTANTANTA
	a for preparation of analysis exentitation	nonon		Analyte detected below quantifation minus >40% diff for detected cone between the two GC column	titation illin between the	ts two GC column	2 ~	side accent	RPD outside accented recovery limits	
	intensit			III to annaman for III	***************************************		1	danan ang	ou located among	

TestCode: 8260MTBE113_W

Sag Harbor, NY
roject: Sz

1103134

Work Order: CLIENT:

Leggette Brashears & Graham Inc.

Sample ID: VBLK-031511LW	SampType: MBLK	TestCode: 8260MTBE11 Units: µg/L	Prep Date: 3/15/2011	RunNo: 56711
Client ID: PBW	Batch ID: R56711B	TestNo: SW8260B	Analysis Date: 3/15/2011	SeqNo: 797117
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,2-Dichloroethane	n	1.0		
1,2-Dichloropropane	Π	1.0		
1,3,5-Trimethylbenzene	Π	1.0		
1,3-Dichlorobenzene	D	1.0		
1,3-dichloropropane	J	1.0		
1,4-Dichlorobenzene	ח	1.0		
2,2-Dichloropropane	n	1.0		
2-Butanone	n	2.5		O
2-Chloroethyl vinyl ether	D	2.0		
2-Chlorotoluene	n	1.0		
2-Hexanone	D	2.5		
4-Chlorotoluene	D	1.0		
4-Isopropyitoluene)	1.0		
4-Methyl-2-pentanone	ח	2.5		
Acetone	D	2.5		
Benzene	n	1.0		
Bromobenzene	ס	1.0		
Bromochloromethane	D	1.0		
Bromodichloromethane	D	1.0		
Bromoform	n	1.0		
Bromomethane	n	1.0		
Carbon disulfide	n	1.0		
Carbon tetrachloride	n	1.0		
Chlorobenzene	n	1.0		
Chloroethane	Π	1.0		
Chloroform	n	1.0		
Chloromethane	n	1.0		
cis-1,2-Dichloroethene	n	1.0		
cis-1,3-Dichloropropene	n	1.0		
Dibromochloromethane	n	1.0		
Dibromomethane	n	1.0		

RPD outside accepted recovery limits

Analyte detected below quantitation limits

LOD Limit of Detection

>40% diff for detected cone between the two GC column R RPD outside accept

Calibration %RSD/%D exceeded for non-CCC analytes

O - a

B Analyte detected in the associated Method Blank
H Holding times for preparation or analysis exceeded
LOQ Limit of Quantitation

Qualifiers:

E Value above quantitation range

Leggette Brashears & Graham Inc. 1103134 CLIENT:

Work Order:

Sag Harbor, NY Project:

TestCode: 8260MTBE113_W

терия по поставляющий поставляющий поставляющий поставляющий поставляющий поставляющий поставляющий поставляющи			***************************************			
Sample ID: VBLK-031511LW	SampType: MBLK	TestCode: 8260MTBE11 Units: µg/L		Prep Date: 3/15/2011	RunNo: 56711	
Client ID: PBW	Batch ID: R56711B	TestNo: SW8260B	*	Analysis Date: 3/15/2011	SeqNo: 797117	
Analyte	Result	PQL SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Dichlorodifluoromethane	n	1.0				O
Ethylbenzene	Π	1.0				
Hexachlorobutadiene	∩	1.0				
Isopropylbenzene	n	1.0				
m,p-Xylene	_	2.0				
Methyl tert-butyl ether	n	1.0				O
Methylene chloride	J	1.0				
Naphthalene	n	1.0				
n-Butylbenzene	n	1.0				
n-Propylbenzene	n	1.0				
o-Xylene	n	1.0				
sec-Butylbenzene	n	1.0				
Styrene	n	1.0				
tert-Butylbenzene	\cap	1.0				
Tetrachloroethene	n	1.0				
Toluene	\supset	1.0				
trans-1,2-Dichloroethene	J	1.0				
trans-1,3-Dichloropropene	_	1.0				
Trichloroethene	¬	1.0				
Trichlorofluoromethane)	1.0				
Vinyl acetate	_	1.0				
Vinyl chloride)	1,0				
Surr: 4-Bromofluorobenzene	52	50.00	105	60 130		
Surr: Dibromofluoromethane	49	50.00	98.7	63 127		
Surr: Toluene-d8	47	50.00	93.3			

	B Analyte detected in the associated Method Blank	C	Calibration %RSD/%D exceeded for non-CCC analytes	Ш	Value above quantitation range
	H Holding times for preparation or analysis exceeded	ſ	Analyte detected below quantitation limits	COD	LOD Limit of Detection
77	OO Limit of Ouantitation	ط	>40% diff for detected cone between the two GC column		R RPD outside accepted recovery limits

Leggette Brashears & Graham Inc. 1103134 CLIENT: Work Order:

Sag Harbor, NY

Project:

BatchID: 31555

ANALYTICAL QC SUMMARY REPORT

Se MS Barch ID: 51565 ToestNo: 5NA/2660 SNK Ref Value SNK Ref Value Analysis Date: 3145/2011 RPD Ref Value nane 10 50.00 0 68.9 43 148 nane 34 1.0 50.00 0 68.9 43 148 nane 36 1.0 50.00 0 68.9 43 148 nane 34 1.0 50.00 0 68.9 43 148 nrithorocethane 0 1.0 50.00 0 68.9 42 156 nrithorocethane 0 1.0 50.00 0 68.9 42 156 nrithorocethane 0 1.0 50.00 0 67.0 42 156 nrithorocethane 0 1.0 50.00 0 67.0 42 156 nrithorocethane 0 1.0 0 0 0 156 156 nrithorocethane 0 1.0 <td< th=""><th>NS NS</th><th></th><th></th><th></th><th></th><th></th><th></th><th>24/4-70</th><th></th><th></th><th></th><th></th></td<>	NS NS							24/4-70				
Part	Tetrachloroethane	יא ווי. יא מוני	Toot	In CM/9260B	CMEDSOA		Analysis Data:			SecNo. 707	74.04	
Page	Analyte 1,1,1,2-Tetrachloroethane 1,1,1,1-Trichloroethane	Sh ID: 31555	lesil	40: SW826UB	SAVOUSUA		Allalysis Date.		.	Sedivo. 13.	7	
nonethane U 10 10 6000 0 689 43 148 24 110 6000 0 730 32 148 25 110 6000 0 730 32 148 26 110 6000 0 730 32 148 27 110 6000 0 683 42 128 148 28 10 6000 0 671 4 30 159 159 29 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	Result	PQL		SPK Ref Val	%REC			RPD Ref Val	%RPD		Qual
34 1,0 50,00 0 66.9 43 148 overleane 1 50,00 0 73,0 22 148 step 1,0 50,00 0 66.3 42 136 34 1,0 50,00 0 66.3 42 136 1 1,0 50,00 0 67.0 36 156 0 1,0 0 774 30 156 156 0 1,0 0 0 774 30 156 156 0 1,0 0 0 0 774 30 156 <th< td=""><td>1,1,1-Trichloroethane</td><td>n</td><td>1.0</td><td>0</td><td>0</td><td>0</td><td>35</td><td>135</td><td></td><td></td><td></td><td></td></th<>	1,1,1-Trichloroethane	n	1.0	0	0	0	35	135				
name 36 10 5000 0 730 32 148 filthorroethrane 34 10 5000 0 663 22 120 34 10 5000 0 663 42 156 94 10 5000 0 663 42 156 95 156 e		34	1.0	50.00	0	68.9	43	148				
once-1,2-2-triflucroethane U 1,0 0,0 0 2,2 120 once-thane solutions 34 1,0 50,00 0 68,3 42 120 oncharine solutions 34 1,0 50,00 0 67,0 40 150 outchmen 36 1,0 50,00 0 774 30 154 outchmen U 1,0 0 0 0 35 156 outchmen U 1,0 0 0 35 156 35 outchmen U 1,0 0 0 0 35 136 outchmen U 1,0 0 0 0 35 136 outchmen U 1,0 0 0 0 35 136 outchmen U 1,0 0 0 0 0 35 135 outchmen U 1,0 0 0 0 0<	1,1,2,2-Tetrachloroethane	36	1.0	50.00	0	73.0	32	148				
occlame 34 1,0 50,00 0 66,3 42 156 occlame 34 1,0 50,00 0 714 30 156 occlame 34 1,0 50,00 0 714 30 156 portpoene 0 1,0 0 0 74 30 156 portpoene 0 1,0 0 0 35 156 156 condentane 0 1,0 0 0 35 155 156 ditry/benzene 0 1,0 0 0 0 35 156 doctrame 0 1,0 0 0 0 35 156 doctrame 0 1,0 0 0 0 0 156 156 doctrame 0 0 0 0 0 0 156 156 doctrame 0 1,0 0 0 0 <th< td=""><td>1,1,2-Trichloro-1,2,2-trifluoroethane</td><td>ס</td><td>1.0</td><td>0</td><td>0</td><td>0</td><td>22</td><td>120</td><td></td><td></td><td></td><td></td></th<>	1,1,2-Trichloro-1,2,2-trifluoroethane	ס	1.0	0	0	0	22	120				
bethane 34 10 50.00 6 7.0 40 150 both properies 36 10 50.00 0 71.4 30 154 propoperies 10 10 50.00 0 71.4 30 154 propoperies U 10 10 0 0 35 135 orobenzene U 10 10 0 0 35 135 dkrybenzene U 10 10 0 0 35 135 dbenzene U 10 10 0 0 35 135 obenzene 33 10 50.00 0 65.1 41 135 obenzene 31 10 50.00 0 65.1 41 135 14 obenzene 10 10 50.00 0 65.1 41 135 14 obenzene 10 10 50.00 0 62.2<	1,1,2-Trichloroethane	34	1.0	50.00	0	68.3	42	136				
oethored 36 10 50.00 0 714 30 164 onoberszene U 1.0 0 0 35 135 oroberszene U 1.0 0 0 35 135 oropropare U 1.0 0 0 35 135 oderszene U 1.0 0 0 35 135 od-schlorzopeane U 1.0 0 0 35 135 oderszene U 1.0 0 0 35 135 oderszene U 1.0 0 0 35 135 oderszene U 1.0 0 0 65.1 4 136 operszene U 1.0 50.00 0 65.1 4 138 operszene U 1.0 50.00 0 62.9 14 138 operszene U 1.0 50.00 0	1,1-Dichloroethane	34	1.0	50.00	0	67.0	40	150				
oppopered U 1,0 0 0 35 135 oroberozene U 1,0 0 0 35 135 oroberozene U 1,0 0 0 0 35 135 oroberozene U 1,0 0 0 0 35 135 orbitylperozene U 1,0 0 0 0 35 135 oberozene U 1,0 0 0 0 35 135 oberozene 33 1,0 50.00 0 65.1 40 129 oberozene 35 1,0 50.00 0 65.1 40 135 oberozene 35 1,0 50.00 0 62.9 36 135 opropane 35 1,0 50.00 0 62.9 36 135 opropane 35 1,0 50.00 0 64.4 40 135	1,1-Dichloroethene	36	1.0	50.00	0	71.4	30	154				
ordbenzene U 1,0 0 0 35 135 ordbenzene U 1,0 1 0 0 0 35 135 ordbenzene U 1,0 1 0 0 0 35 135 ordbenzene U 1,0 1 0 0 0 35 135 od-schardene U 1,0 0 0 0 0 35 135 oderbane 31 1,0 50.00 0 66.29 36 141 openzane 31 1,0 50.00 0 66.29 36 141 openzane 32 1,0 50.00 0 66.44 40 133 propare 32 1,0 50.00 0 64.4 40 135 proporane 1 1 50.00 0 64.2 40 135 proporane 1 1 0	1,1-Dichloropropene	ם	1.0	0	0	0	35	135				
oroptopane U 1.0 0 0 35 135 135 order possible problems or solution in the parameter of the properties of the properties of the properties of the problems of the properties of the problems of the problems or solutions or properties or properties of the problems or problems or properties of the problems or properties or problems or problems or problems or properties or problems or problems or problems or properties or problems or properties or problems or problems or properties or problems o	1,2,3-Trichlorobenzene	⊃	1.0	0	0	0	35	135				
thy/benzene U 1.0 0 0 35 135 135 sthy/benzene U 1.0 0 0 35 135 135 oethane U 1.0 0 0 0 35 135 135 oethane 1.0 50.00 0 65.1 40 129 35 141 oethane 31 1.0 50.00 0 62.9 36 141 optopane 31 1.0 50.00 0 62.9 36 141 optopane 32 1.0 50.00 0 62.9 36 143 optopane 1 0 0 0 0 35 135 optopane 1 0 0 0 64.4 4 4 138 optopane 1 0 0 0 0 0 135 135 optopane 1 0 0	1,2,3-Trichloropropane	ח	1.0	0	0	0	35	135				
thybbenzene U 1.0 0 0 35 135 o-3-chloropropane U 2.0 0 0 35 135 o-4-chloropropane U 2.0 0 0 35 135 o-benzene 33 1.0 50.00 0 65.1 40 129 ochbane 31 1.0 50.00 0 62.9 36 141 opropane 35 1.0 50.00 0 64.4 40 138 sthyberzene 32 1.0 50.00 0 64.4 40 136 opropane U 1.0 50.00 0 64.4 40 135 opropane U 1.0 50.00 0 64.2 40 135 opropane U 1.0 50.00 0 64.2 40 135 opropane U 1.0 50.00 0 0 135 135 <t< td=""><td>1,2,4-Trichlorobenzene</td><td>n</td><td>1.0</td><td>0</td><td>0</td><td>0</td><td>35</td><td>135</td><td></td><td></td><td></td><td></td></t<>	1,2,4-Trichlorobenzene	n	1.0	0	0	0	35	135				
o-3-chloropropane U 2.0 0 0 35 135 oethrane U 1.0 0 0 0 35 135 obernace 33 1.0 50.00 0 62.9 36 142 obernace 35 1.0 50.00 0 62.9 36 142 opropane 3 1.0 50.00 0 62.9 36 143 obernace 3 1.0 50.00 0 64.4 40 133 obernace 3 1.0 50.00 0 64.4 40 133 obernace 3 1.0 50.00 0 64.4 40 133 obernace 3 1.0 50.00 0 64.4 40 135 obernace 3 1.0 50.00 0 64.4 40 135 obernace 0 0 6.2 0 6.4 40	1,2,4-Trimethylbenzene	D	1.0	0	0	0	35	135				
oethane U 1.0 0 65.1 45.5 135 135 135 135 135 135 135 135 135 135 135 141 </td <td>1,2-Dibromo-3-chloropropane</td> <td>D</td> <td>2.0</td> <td>0</td> <td>0</td> <td>0</td> <td>35</td> <td>135</td> <td></td> <td></td> <td></td> <td></td>	1,2-Dibromo-3-chloropropane	D	2.0	0	0	0	35	135				
obenzene 33 1.0 50.00 0 65.1 40 129 optropane 31 1.0 50.00 0 62.9 36 141 optropane 35 1.0 50.00 0 70.6 44 138 doberzene 32 1.0 50.00 0 64.4 40 135 oberzene 32 1.0 50.00 0 64.4 40 135 oberzene 32 1.0 50.00 0 64.2 40 135 oberzene 1.0 1.0 0 64.2 40 135 36 opropane 1.0 1.0 0 0 0 35 135 opropane 1.0 1.0 0 0 0 35 135 user 1.0 1.0 0 0 0 35 135 e 1.0 1.0 0 0 0 35	1,2-Dibromoethane	D	1.0	0	0	0	35	135				
oethane 31 1.0 50.00 6 .9 36 141 optropane 35 1.0 50.00 0 70.6 44 138 sthylbenzene 1 1.0 60.00 0 70.6 44 138 obenzene 32 1.0 50.00 0 64.4 40 133 opropane 0 1.0 0 0 64.2 40 135 opropane 0 1.0 0 0 64.2 40 135 opropane 0 1.0 0 0 0 135 135 opropane 0 0 0 0 0 35 135 uene 0 0 0 0 0 0 35 135 uene 0 0 0 0 0 0 35 135 uene 0 0 0 0 0 0 35	1,2-Dichlorobenzene	33	1.0	50.00	0	65.1	40	129				
optropane 35 1.0 50.00 0 70.6 44 138 sthylbenzene U 1.0 50.00 0 64.4 40 138 obenzene U 1.0 50.00 0 64.4 40 133 obenzene U 1.0 50.00 0 64.2 40 135 obenzene U 1.0 50.00 0 64.2 40 135 opropane U 2.0 0 0 64.2 40 135 vyl vinyl ether U 2.0 0 0 0 35 135 uene U 2.0 0 0 2.1 139 135 uene U 1.0 0 0 0 35 135 uene U 2.5 0 0 0 35 135 uene U 1.0 0 0 0 35 135	1,2-Dichloroethane	31	1.0	50.00	0	62.9	36	141				
thylibenzene U 1.0 0 0 35 135 obenzene 32 1.0 50.00 0 64.4 40 133 opropane U 1.0 50.00 0 64.2 40 135 opropane U 1.0 0 64.2 40 135 opropane U 1.0 0 64.2 40 135 opropane U 2.5 0 0 64.2 40 135 opropane U 2.5 0 0 64.2 40 135 opentanone U 2.5 0 0 0 2.1 13 unene U 1.0 0 0 0 35 135 unene U 1.0 0 0 0 35 135 pontano U 1.0 0 0 0 35 135 pontano 0 <	1,2-Dichloropropane	35	1.0	50.00	0	9.07	44	138				
obenzene 32 1.0 50.00 6 4.4 40 133 oppropane U 1.0 0 64.4 40 135 obenzene 32 1.0 50.00 0 64.2 40 135 opropane U 1.0 0 0 64.2 40 135 sylvinyl ether U 2.5 0 0 0 21 135 ylvinyl ether U 2.0 0 0 21 135 uene U 1.0 0 0 21 135 telulune U 1.0 0 0 35 135 pentanone U 1.0 0 0 35 135 pentanone U 2.5 0 0 35 135 pentanone U 2.5 0 0 35 135 pentanone U 2.5 0 0 0 35 </td <td>1,3,5-Trimethylbenzene</td> <td>ם</td> <td>1.0</td> <td>0</td> <td>0</td> <td>0</td> <td>35</td> <td>135</td> <td></td> <td></td> <td></td> <td></td>	1,3,5-Trimethylbenzene	ם	1.0	0	0	0	35	135				
operopane U 1.0 0 0 0 35 135 operopane 32 1.0 50.00 0 64.2 40 135 opropane U 1.0 0 0 0 35 135 vyl vinyl ether U 2.5 0 0 0 21 139 uene U 1.0 0 0 0 21 139 uene U 2.5 0 0 0 35 135 uene U 1.0 0 0 0 35 135 e U 1.0 0 0 35 135 pentanone U 1.0 0 0 35 135 pentanone U 2.5 0 0 35 135 pentanone U 2.5 0 0 35 135 pentanone U 2.5 0 <th< td=""><td>1,3-Dichlorobenzene</td><td>32</td><td>1.0</td><td>20.00</td><td>0</td><td>64.4</td><td>40</td><td>133</td><td></td><td></td><td></td><td></td></th<>	1,3-Dichlorobenzene	32	1.0	20.00	0	64.4	40	133				
obenzaene 32 1.0 50.00 0 64.2 40 135 opropane U 1.0 0 0 0 35 135 y/v in/y lather U 2.5 0 0 0 21 135 uene U 1.0 0 0 21 139 35 135 uene U 2.5 0 0 0 35 135 35 135 uene U 1.0 0 0 35 135 35 135 uene U 1.0 0 0 35 135 35 135 pentanone U 1.0 0 0 35 135 35 135 pentanone U 2.5 0 0 0 35 135 pentanone U 2.5 0 0 0 35 135 Indiging times for preparation or analysis exceeded	1,3-dichloropropane	D	1.0	0	0	0	35	135				
opropane U 1.0 0 0 35 135 a) Vinity ether U 2.5 0 0 0 21 135 up uene U 1.0 0 0 0 21 139 e U 1.0 0 0 0 35 135 up uene U 1.0 0 0 0 35 135 toluene U 1.0 0 0 0 35 135 pentanone U 1.0 0 0 0 35 135 pentanone U 2.5 0 0 0 35 135 pentanone U 2.5 0 0 35 135 B Analyte detected in the associated Method Blank C Calibration %RSDI%D exceeded for non-CCC analytes E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits	1,4-Dichlorobenzene	32	1.0	20.00	0	64.2	40	135				
1	2,2-Dichloropropane	D	1.0	0	0	0	35	135				
vyl vinyl ether U 2.0 0 0 21 139 uene U 1.0 0 0 35 135 e U 2.5 0 0 0 35 135 luene U 1.0 0 0 0 35 135 pentanone U 2.5 0 0 0 35 135 u 2.5 0 0 0 35 135 b Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E H Holding times for preparation or analysis exceeded J Analyte detected below quartitation limits LOD I DO 1 imit of Onamitation P 240% diff for detected cone between the two GC column R D	2-Butanone	n	2.5	0	0	0	35	135				ပ
uene U 1.0 0 0 35 135 e U 2.5 0 0 0 35 135 uene U 1.0 0 0 0 35 135 pentanone U 2.5 0 0 0 35 135 pentanone U 2.5 0 0 35 135 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E H Holding times for preparation or analysis exceeded J Analyte detected below quartitation limits LOD H Holding times for preparation or analysis exceeded J Analyte detected below quartitation limits LOD	2-Chloroethyl vinyl ether	n	2.0	0	0	0	21	139				
135 135	2-Chlorotoluene	n	1.0	0	0	0	35	135				
uene U 1.0 0 0 35 135 stoluene U 1.0 0 0 0 35 135 -pentanone U 2.5 0 0 0 35 135 U 2.5 0 0 0 35 135 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E H Holding times for preparation or analysis exceeded J Analyte detected below quartitation limits LOD I DO I imit of Onantitation P >40% diff for detected cone between the two GC column R	2-Hexanone	n	2.5	0	0	0	35	135				
135 135	4-Chlorotoluene	⊃	1.0	0	0	0	35	135				
135 135 136 135	4-Isopropyltoluene	n	1.0	0	0	0	35	135				
D 2.5 0 0 0 0 35 135 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Holding times for preparation or analysis exceeded J Analyte detected below quartitation limits LOD I imit of Onamitation	4-Methyl-2-pentanone)	2.5	0	0	0	35	135				
B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Holding times for preparation or analysis exceeded J Analyte detected below quartitation LOD 1 imit of Onantitation R	Acetone	D	2.5	0	0	0	35	135				Part and College Colle
Holding times for preparation or analysis exceeded J Analyte detected below quartitation limits LOD 1 imit of Onantitation P >40% diff for detected cone between the two GC column R	В	e associated Method B	lank		ion %RSD/%D exce	eded for no	n-CCC analytes	Ш	alue above quan	titation range		
1 imit of Ouantitation P >40% diff for detected conc between the two GC column R	H	naration or analysis exc	pepec	J Analyte	detected below qua	rtitation lim	its		imit of Detection			
	TOO Limit of Onantitation	•		P >40% di	iff for detected conc	between the	e two GC colum	×	PD outside accep	ted recovery li	mits	

BatchID: 31555

Leggette Brashears & Graham Inc. 1103134 CLIENT:

Work Order:

Sag Harbor, NY Project:

					11			11	
Sample ID: 1103134-23A	3134-23A	SampType: MS	TestCode	le: 8260MTBE11	Units: µg/L		Prep Date:	3/14/2011	RunNo: 56711
Client ID: MW	MW-98-05B MS	Batch ID: 31555	TestNo	o: SW8260B	SW5030A		Analysis Date:	3/15/2011	SeqNo: 797121
Analyte		Result	POL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Benzene		32	1.0	50.00	0	64.0	45	144	
Bromobenzene		¬	1.0	0	0	0	35	135	
Bromochloromethane	thane	n	1.0	0	0	0	35	135	
Bromodichloromethane	nethane	35	1.0	50.00	0	69.4	35	136	
Bromoform		38	1.0	50.00	0	9.9/	28	138	
Bromomethane		27	1.0	50.00	0	54.5	56	148	
Carbon disulfide	<i>a</i> t	n	1.0	0	0	0	35	135	
Carbon tetrachloride	oride	31	1.0	50.00	0	62.4	45	141	
Chlorobenzene		35	1.0	90.00	0	2.69	41	142	
Chloroethane		38	1.0	20.00	0	76.4	36	143	
Chloroform		34	1.0	50.00	0	67.5	42	137	
Chloromethane		35	1.0	50.00	0	70.9	35	151	
cis-1,2-Dichloroethene	ethene	⊃	1.0	0	0	0	35	135	
cis-1,3-Dichloropropene	propene	ח	1.0	0	0	0	42	130	
Dibromochloromethane	nethane	33	1.0	50.00	0	9.59	21	134	
Dibromomethane	ē	n	1.0	0	0	0	35	135	
Dichlorodifluoromethane	methane	D	1.0	0	0	0	35	135	O
Ethylbenzene		35	1.0	50.00	0	9.02	45	146	
Hexachlorobutadiene	diene	D	1.0	0	0	0	35	135	
Isopropylbenzene	ne	D	1.0	0	0	0	35	135	
m,p-Xylene)	2.0	0	0	0	35	135	
Methyl tert-butyl ether	l ether	D	1.0	0	0	0	35	135	U
Methylene chloride	ride	D	1.0	0	0	0	30	148	
Naphthalene		Π	1.0	0	0	0	35	135	
n-Butylbenzene		n	1.0	0	0	0	35	135	
n-Propylbenzene	9	n	1.0	0	0	0	35	135	
o-Xylene		D	1.0	0	0	0	35	135	
sec-Butylbenzene	ne	n	1.0	0	0	0	35	135	
Styrene		ח	1.0	0	0	0	35	135	
tert-Butylbenzene	Je	D	1.0	0	0	0	35	135	
Tetrachloroethene	ine	36	1.0	50.00	0	71.9	45	136	
Onalifiers:	B Analyte dete	Analyte detected in the associated Method Blank	lank	C Calibratio	Calibration %RSD/%D exceeded for non-CCC analytes	eded for nor	-CCC analytes	E Value above quantitation range	titation range
, ,		Holding times for preparation or analysis exceeded	pepee	•	Analyte detected below quartitation limits	rtitation limi	ts		
	_	antitation		P >40% dif	>40% diff for detected conc between the two GC column	between the	two GC colum	X	RPD outside accepted recovery limits
-		alutatora							,

BatchID: 31555

Project: Sag Harbor, NY

CLIENT: Work Order:

Leggette Brashears & Graham Inc. 1103134

Result POL SPK value SPK Ref Val S	Sample ID: 4402424 224	Camp Type: MC	Tector	TeetCode: 8260MTBE44	1 Inite 110/I		Pren Dafe	3/14/2011		RunNo: 56711	11	
New Age de Billo III Seculo	Saliple ID. 103154-25A	Salipiype. Inc	001691	C. OCOMINET			- John Cale.		_	9	.	
Accordance Acc		Batch ID: 31555	Test	Io: SW8260B	SW5030A		Analysis Date:			SedNo: 797	121	
1	Analyte	Result	POL		SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
1	Toluene	49	1.0	50.00	9.880	78.7	43	134				
10 50.00 0 66.0 37 133 27 10 50.00 0 74.4 43 140 28 1.0 50.00 0 74.4 55 145 29 1.0 50.00 0 74.1 35 142 29 1.0 50.00 0 74.1 35 142 29 1.0 50.00 0 74.1 35 142 29 1.0 1.0 50.00 0 74.1 35 142 29 1.0 1.0 50.00 0 74.1 35 142 29 1.0 1.0 1.0 1.0 30 1.27 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 1.0 1.0 30 1.0 1.0 30 1.0 1.0 1.0 30 1.0 1.0 30 1.0 1.0	trans-1,2-Dichloroethene	33	1.0	50.00	0	66.4	42	135				
10 50.00 74.0 43 140 148 140 148 140 148 140 148 140 148 140 148 140 148 140 148 140 148 140	trans-1,3-Dichloropropene	33	1.0	50.00	0	0.99	37	133				
1	Trichloroethene	37	1.0	90.00	0	74.0	43	140				
10 10 10 10 10 10 10 10	Trichlorofluoromethane	37	1.0	50.00	0	74.3	90	148				
SampType: MSD 1.0 50.00 0 74.1 35 142 130 130 142	Vinyl acetate	n	1.0	0	0	0	35	135				
Part	Vinyl chloride	37	1.0	50.00	0	74.1	35	142				
Panel 50 50.00 50.00 59.0 63 127 128	Surr: 4-Bromofluorobenzene	52		50.00		105	09	130				
SampType: MSD TestCode: 8260MTBE-1 Units: µg/L Prep Date: 3141/2011 Runko: 56711 R	Surr: Dibromofluoromethane	20		50.00		99.0	63	127				
SampType: MSD TestCode: 8260MTBET1 Units: µg/L Analysis Date: 314/2011 S14/2011 RunNo: 56711 RSD Batch ID: 31556 TestRock SWE260B SW5030A Analysis Date: 314/2011 S14/2011 RoqNo: 797122 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD Norethane U 1,0 SOO 0 0 35 135 0 0 0 Norethane U 1,0 SOO 0 728 32 148 36.49 0.192 20 Norethane U 1,0 SOO 0 72.8 32 148 36.49 0.192 20 Norethane U 1,0 SOO 0 72.8 32 148 36.49 0.192 20 Norethane U 1,0 SOO 0 0 0 0 0 0 0 0 0 Norethane U 1,	Surr: Toluene-d8	49		50.00		6.76	61	128				
Part	Sample ID: 1103134-24A	SampType: MSD	TestCo	de: 8260MTBE1	ll		Prep Date:	1		RunNo: 567	7-	
Tetrachlorocethane by Poll SPK Ped Value SPK Ref Val %RRG LowLimit HghLimit RPD Ref Val MRPD Ref Val BLIMIT RPD Ref Val MRPD RPD Ref Val BLIMIT RPD Ref Val WRPD RPD RPD RPD RPD RPD RPD RPD RPD RPD	Client ID: MW-98-05B MSD	Batch ID: 31555	Test	No: SW8260B	SW5030A		Analysis Date:			SeqNo: 797	122	
non-thane 1 1 0 0 68.9 45 148 0	Analyte	Result	PQL		SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual
roethane 1.0 50.00 0 68.9 43 148 34.46 0.0290 roethane 1.0 50.00 0 72.8 32 148 36.49 0.0192 roethane 0 1.0 0 0 0 22 120 0 0 0 34 1.0 50.00 0 67.9 42 126 36.15 0.017 0 35 1.0 50.00 0 74.2 40 156 34.15 0.017 0 1.0 50.00 0 74.2 40 156 35.70 10.1	1.1.1.2-Tetrachloroethane		1.0	0	0	0	35	135	0	0	20	
10 10 10 10 10 10 10 10	1.1.Trichloroethane	34	1.0	50.00	0	68.9	43	148	34.46	0.0290	20	
rono-12,2-trifluoroethane U 1.0 6.00 0 67.9 42 120 0 0 orroethane 34 1.0 50.00 0 67.9 42 136 34.15 0.617 oethane 37 1.0 50.00 0 74.2 40 150 33.50 10.1 oethane 38 1.0 50.00 0 76.5 30 154 35.70 6.84 opropene U 1.0 0 0 76.5 30 154 35.70 6.84 opropene U 1.0 0 0 76.5 30 154 35.70 6.84 orrobenzene U 1.0 0 0 0 35 135 0 0 ox-3-chloropropane U 1.0 0 0 0 35 135 0 0 ox-3-chloropropane U 1.0 0 0 0 0 0	1.1.2.2-Tetrachloroethane	36	1.0	50.00	0	72.8	32	148	36.49	0.192	20	
octularie 34 1,0 50.00 0 67.9 42 136 34.15 0.617 octularie 37 1,0 50.00 0 74.2 40 150 33.50 10.1 octulerie 38 1,0 50.00 0 76.5 30 154 35.70 6.84 octuloropene 0 1,0 1,0 0 0 35 135 0 0 orocopropene 0 1,0 0 0 35 135 0 0 0 orocopenzene 0 1,0 0 0 0 35 135 0	1.1.2-Trichloro-1,2,2-trifluoroethan		1.0	0	0	0	22	120	0	0	20	
oethane 37 1.0 50.00 0 74.2 40 150 33.50 10.1 oethere 38 1.0 50.00 0 76.5 30 154 35.70 6.84 opropene 0 1.0 0 0 0 35 135 0 0 orobenzene U 1.0 0 0 0 35 135 0 0 orobenzene U 1.0 0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 0 35 135 0 0 o-4-	1,1,2-Trichloroethane		1.0	50.00	0	67.9	42	136	34.15	0.617	20	
oethere 38 1,0 50.00 0 76.5 30 154 35.70 6.84 opropene U 1,0 0 0 0 35 135 0 0 forobenzene U 1,0 0 0 0 35 135 0 0 ethylbenzene U 1,0 0 0 0 35 135 0 0 ethylbenzene U 1,0 0 0 0 35 135 0 0 exthylbenzene U 1,0 0 0 0 35 135 0 0 exthylbenzene U 1,0 0 0 0 35 135 0 0 ochtane U 1,0 0 0 0 35 135 0 0 ochtane 35 1,0 50.00 0 69.5 40 129 32.55 6.7	1,1-Dichloroethane	37	1.0	50.00	0	74.2	40	150	33.50	10.1	20	
opropene U 1.0 0 0 35 135 0 0 probenzene U 1.0 0 0 0 35 135 0 0 propopare U 1.0 0 0 0 35 135 0 0 probenzene U 1.0 0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 0 35 135 0 0 o-4-drang U 1.0 0 0 0 35 135 0 0 obenzene 35 1.0 50.00 0 66.4 36 141 31.45 5.47 B Ana	1,1-Dichloroethene	38	1.0	50.00	0	76.5	30	154	35.70	6.84	20	
Oropoparize U 1.0 0 0 35 135 0 0 Oropoparie U 1.0 0 0 0 35 135 0 0 Atrylbenzene U 1.0 0 0 0 35 135 0 0 o-3-chloropropane U 1.0 2.0 0 0 35 135 0 0 o-3-chloropropane U 1.0 2.0 0 0 35 135 0 0 o-4-chloropropane U 1.0 0 0 35 135 0 0 o-4-chloropropane U 1.0 0 0 35 135 0 0 o-4-chloropropane U 1.0 50.00 0 66.4 36 141 31.45 5.47 a holding times for preparation or analysis exceeded 1 Analyte detected below quantitation limits 1 Analyte detected below quantitation limits 1	1,1-Dichloropropene	n	1.0	0	0	0	35	135	0	0	20	
Ioroptopane U 1.0 0 0 0 35 135 0 0 Iorobenzene U 1.0 0 0 0 35 135 0 0 octhane U 1.0 0 0 0 35 135 0 0 octhane U 1.0 0 0 0 35 135 0 0 obenzene 35 1.0 50.00 0 66.4 36 129 32.55 6.57 oethane 33 1.0 50.00 0 66.4 36 141 31.45 5.47 B Analyte detected in the associated Method Blank C Calibration //RSD/%D exceeded for non-CCC analytes E Value above quantitation range B Analyte detected below quantitation limits LOD Limit of Detection Long Limit of Detection Detection	1,2,3-Trichlorobenzene	D	1.0	0	0	0	35	135	0	0	20	
orobenzene U 1.0 0 0 35 135 0 0 ethylbenzene U 1.0 0 0 0 35 135 0 0 oc-3-chloropropane U 2.0 0 0 0 35 135 0 0 octhane U 1.0 50.00 0 66.4 40 129 32.55 6.57 octhane 33 1.0 50.00 0 66.4 36 141 31.45 5.47 b cothane 33 1.0 50.00 66.4 36 141 31.45 5.47 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Value above quantitation range B Analyte detected below quartitation limits LOD Limit of Detection H Holding times for preparation or analysis exceeded A Analyte detected below quartitation limits LOD Limit of Detection	1,2,3-Trichloropropane	n	1.0	0	0	0	35	135	0	0	20	
sthylbenzene U 1.0 0 0 35 135 0 0 o-3-chloropropane U 2.0 0 0 35 135 0 0 o-3-chloropropane U 1.0 0 0 0 35 135 0 0 obenzene 35 1.0 50.00 0 66.4 40 129 32.55 6.57 oethane 33 1.0 50.00 0 66.4 36 141 31.45 5.47 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Value above quantitation range B Analyte detected below quartitation limits LOD Limit of Detection H Holding times for preparation or analysis exceeded January detected below quartitation limits LOD Limit of Detection	1,2,4-Trichlorobenzene	n	1.0	0	0	0	35	135	0	0	20	
co-3-chloropropane U 2.0 0 0 35 135 0 0 oethane U 1.0 0 0 0 35 135 0 0 obenzene 35 1.0 50.00 0 69.5 40 129 32.55 6.57 oethane 33 1.0 50.00 0 66.4 36 141 31.45 5.47 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Value above quantitation range H Holding times for preparation or analysis exceeded Janalyte detected below quantitation limits LOD Limit of Detection H 100 Limit of Detection P 240% diff for detected cone between the two GC column R RPD outside accepted recovery limits	1.2.4-Trimethylbenzene	n	1.0	0	0	0	35	135	0	0	20	
oethane U 1.0 0 0 35 135 0 0 obenzene 35 1.0 50.00 0 69.5 40 129 32.55 6.57 oethane 33 1.0 50.00 0 66.4 36 141 31.45 5.47 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Value above quantitation range H Holding times for preparation or analysis exceeded Janalyte detected below quantitation limits LOD Limit of Detection I Analyte detected cone between the two GC column R RPD outside accepted recovery limits	1.2-Dibromo-3-chloropropane	n	2.0	0	0	0	35	135	0	0	20	
obenzene 35 1.0 50.00 0 69.5 40 129 32.55 6.57 6.57 octhane 33 1.45 50.00 0 66.4 36 141 31.45 5.47 B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits LOD Limit of Detection P > 40% diff for detected cone between the two GC column R RDD outside accepted recovery limits	1 2-Dibromoethane)	1.0	0	0	0	35	135	0	0	20	
oethane B Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits LOD Limit of Duantitation P > 40% diff for detected cone between the two GC column R RPD outside accepted recovery limits	1.2-Dichlorobenzene	35	1.0	50.00	0	69.5	40	129	32.55	6.57	20	
B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Holding times for preparation or analysis exceeded J Analyte detected below quartitation LOD 1 imit of Onantitation R	1,2-Dichloroethane	33	1.0	90.00	0	66.4	36	141	31.45	5.47	20	
H. Holding times for preparation or analysis exceeded J. Analyte detected below quartitation limits LOD 1.00 Limit of Onantitation R. P. >40% diff for detected cone between the two GC column R.	В	ted in the associated Method	31ank	C Calibrat	ion %RSD/%D exc	eeded for no	n-CCC analytes	В	llue above quant	itation range		
1 imit of Onantitation P >40% diff for detected cone between the two GC column R	H	s for preparation or analysis ex	popeas	J Analyte	detected below qua	utitation limi	its	COD	mit of Detection			
		titation		P >40% d	iff for detected con-	c between the	two GC colum	×	D outside accep	ted recovery lin	nits	

BatchID: 31555

1103134	Sag Harbor, NY
Work Order:	Project:

Leggette Brashears & Graham Inc.

CLIENT:

				11			11	7.7	141		
Sample ID: 1103134-24A	samp i ype: MSD	estroc	lestCode: 826UMIBE11	11 Onits: pg/L		Prep Date.			Kullino. 50/11	-	
Client ID: NW-98-05B MSD	Batch ID: 31555	Test	TestNo: SW8260B	SW5030A		Analysis Date:	3/15/2011	dense dense	SeqNo: 797122	122	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloropropane	36	1.0	50.00	0	72.3	44	138	35.29	2.46	20	
1,3,5-Trimethylbenzene	D	1.0	0	0	0	35	135	0	0	20	
1,3-Dichlorobenzene	36	1.0	50.00	0	71.7	40	133	32.18	10.8	20	
1,3-dichloropropane	ס	1.0	0	0	0	35	135	0	0	20	
1,4-Dichlorobenzene	34	1.0	50.00	0	68.7	40	135	32.08	68.9	20	
2,2-Dichloropropane	ח	1.0	0	0	0	35	135	0	0	20	
2-Butanone	ח	2.5	0	0	0	35	135	0	0	20	O
2-Chloroethyl vinyl ether	D	2.0	0	0	0	21	139	0	0	20	
2-Chlorotoluene	D	1.0	0	0	0	35	135	0	0	20	
2-Hexanone	n	2.5	0	0	0	35	135	0	0	20	
4-Chlorotoluene	ח	1.0	0	0	0	35	135	0	0	20	
4-Isopropyltoluene	n	1.0	0	0	0	35	135	0	0	20	
4-Methyl-2-pentanone	D	2.5	0	0	0	35	135	0	0	20	
Acetone	ח	2.5	0	0	0	35	135	0	0	20	
Benzene	34	1.0	50.00	0	67.3	45	144	32.02	4.90	20	
Bromobenzene	D	1.0	0	0	0	35	135	0	0	20	
Bromochloromethane	n	1.0	0	0	0	35	135	0	0	20	
Bromodichloromethane	34	1.0	50.00	0	68.6	35	136	34.71	1.16	20	
Bromoform	39	1.0	50.00	0	78.3	28	138	38.31	2.22	20	
Bromomethane	30	1.0	50.00	0	60.4	26	148	27.23	10.3	20	
Carbon disulfide	n	1.0	0	0	0	35	135	0	0	20	
Carbon tetrachloride	33	1.0	50.00	0	66.3	45	141	31.22	5.94	20	
Chlorobenzene	36	1.0	50.00	0	72.5	41	142	34.85	3.97	20	
Chloroethane	41	1.0	50.00	0	82.7	36	143	38.19	7.95	20	
Chloroform	37	1.0	50.00	0	73.7	42	137	33.75	8.75	20	
Chloromethane	36	1.0	50.00	0	72.3	35	151	35.47	1.84	20	
cis-1,2-Dichloroethene	D	1.0	0	0	0	35	135	0	0	20	
cis-1,3-Dichloropropene	⊃	1.0	0	0	0	42	130	0	0	20	
Dibromochloromethane	34	1.0	50.00	0	68.7	21	134	32.78	4.62	20	
Dibromomethane	n	1.0	0	0	0	35	135	0	0	20	
Dichlorodifluoromethane	n	1.0	0	0	0	35	135	0	0	20	O
Onelifiers: B Analyte dete	Analyte detected in the associated Method Blank	lank	C. Calibra	Calibration %RSD/%D exceeded for non-CCC analytes	eeded for no	n-CCC analytes	田	Value above quantitation range	titation range	Arrivativity of the desired from the second	
) I	Holding times for preparation or analysis exceeded	ceeded		Analyte detected below quartitation limits	utitation lim	its	TOD	Limit of Detection			
_	antitation		P >40%	>40% diff for detected conc between the two GC column	between the	two GC colun	×	RPD outside accepted recovery limits	pted recovery lin	nits	
	di li li di li										

Leggette Brashears & Graham Inc. CLIENT:

1103134 Work Order:

Sag Harbor, NY

Project:

ANALYTICAL QC SUMMARY REPORT

	うつつべる	
	A CARLERA .	

Sample ID: 1103134-24A	SampType: MSD	TestCoc	TestCode: 8260MTBE11	1 Units: µg/L		Prep Date:	3/14/2011	11	RunNo: 56711	11	
Client ID: NWW-98-05B MSD	Batch ID: 31555	Testh	TestNo: SW8260B	SW5030A		Analysis Date:	3/15/2011	dem dem	SeqNo: 797122	122	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	36	1.0	50.00	0	72.5	45	146	35.32	2.60	20	
Hexachlorobutadiene	D	1.0	0	0	0	35	135	0	0	20	
Isopropylbenzene	D	1.0	0	0	0	35	135	0	0	20	
m,p-Xylene	n	2.0	0	0	0	35	135	0	0	20	
Methyl tert-butyl ether	D	1.0	0	0	0	35	135	0	0	20	ပ
Methylene chloride	n	1.0	0	0	0	30	148	0	0	20	
Naphthalene	n	1.0	0	0	0	35	135	0	0	20	
n-Butylbenzene	D	1.0	0	0	0	35	135	0	0	20	
n-Propylbenzene	⊃	1.0	0	0	0	35	135	0	0	20	
o-Xylene	⊃	1.0	0	0	0	35	135	0	0	20	
sec-Butylbenzene	D	1.0	0	0	0	35	135	0	0	20	
Styrene	D	1.0	0	0	0	35	135	0	0	20	
tert-Butylbenzene	n	1.0	0	0	0	35	135	0	0	20	
Tetrachloroethene	37	1.0	50.00	0	74.7	45	136	35.95	3.82	20	
Toluene	50	1.0	20.00	9.880	79.5	43	134	49.22	0.809	20	
trans-1,2-Dichloroethene	34	1.0	90.00	0	68.2	42	135	33.22	2.61	20	
trans-1,3-Dichloropropene	34	1.0	90.00	0	67.3	37	133	33.02	1.92	20	
Trichloroethene	39	1.0	50.00	0	78.5	43	140	36.98	5.98	20	
Trichlorofluoromethane	40	1.0	50.00	0	79.4	20	148	37.14	69.9	20	
Vinyl acetate	D	1.0	0	0	0	35	135	0	0	20	
Vinyl chloride	40	1.0	50.00	0	79.4	35	142	37.05	6.91	20	
Surr: 4-Bromofluorobenzene	52		90.00		104	09	130		0	0	
Surr: Dibromofluoromethane	49		50.00		98.5	63	127		0	0	
Surr: Toluene-d8	47		20.00		94.8	61	128		0	0	

E Value above quantitation range

Calibration %RSD/%D exceeded for non-CCC analytes $^{\circ}$ Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank B Analyte detected in the a
H Holding times for prepar
LOQ Limit of Quantitation Qualifiers:

Wednesday, March 16, 2011

Tunde Sandor Leggette Brashears & Graham Inc. 4 Research Drive Suite 301 Shelton, CT 06484

TEL: (203) 929-8555 FAX (203) 926-9140

RE: Sag Harbor, NY

Dear Tunde Sandor:

Order No.: 1103135

American Analytical Laboratories, LLC. received 3 sample(s) on 3/10/2011 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The results reported herein relate only to the items tested or to the samples as received by the laboratory. This report may not be reproduced, except in full, without the approval of American Analytical Laboratories, LLC and is not considered complete without a cover page and chain of custody documentation. The limits (LOQ) provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely.

Lori Beyer Lab Director

Date: 16-Mar-11

CLIENT:

Leggette Brashears & Graham Inc.

Project:

Sag Harbor, NY

Lab Order:

1103135

Work Order Sample Summary

Lab Sample ID	Client Sample ID	Date Collected	Date Received
1103135-01A	N-37	3/9/2011 11:00:00 AM	3/10/2011
1103135-02A	N-38	3/9/2011 9:20:00 AM	3/10/2011
1103135-03A	N-39	3/9/2011 11:05:00 AM	3/10/2011

AMERICAN NAIVIICAL ELABORATORIES

56 TOLEDO STREET • FARMINGDALE, NEW YORK 11735 (631) 454-6100 • FAX (631) 454-8027

www.american-analytical.com

11418 PH-0205 NY050 68-573 NYSDOH CTDOH NJDEP PADEP

	j	CHAIN OF CUSTODY	3 U		-		FOR ANALYSIS DOCUMENT					
CLIENT NAME/ADDRESS	383			CONTACT			SAMPLER (SIGNATURE)	(ATURE)			SAMPLE(S) SEALED	(YES) NO
4 Research Distra, Soite 301 Shelten, Or Oculbil		される		Š	Kom UVS-San dos	\$	SAMPLER NAMESPRINT) Party Chels	CVolsh /	Servet		CORRECT CONTAINER(S) (Amblostotemperature (° C)	(VES) NO
PROJECT LOCATION: Sag Harbor, NY	SS	Taba Taba	3				OBUNDANA OBUNDANA					
LABORATORY ID# LAB USE ONLY	MATRIX	NO. OF CONTAINERS	SAMPLING DATE TIM	3 I	SAMPLE # - LOCATION	LOCATION						
N03135701A	3	M	3/1/11	00	2 3	e de la companya de l	7					And the state of t
1/C0	this is the second	677		920	N-38		x					
487	>	- X	À	<u>5</u>	N-39		X					
										4.4		
		Company of the control of the contro	Andreas appropriate specific states and specific		Popundá in septembri de la dela dela dela dela dela dela del							
				:.	- 1 - 1							
				1								
								- X				
									And the second s			
					remanion pyrotopoliticalina orașul de bulgopoja nove (Ausobo							
COMMENTS / INSTRUCTIONS	SNOTON							S E C	Samples must be on ICE (<6° C)	De on	齿	
MATRIX S=SOIL; W=WATER; SL=S TYPE G=GRAB; C=COMPOSITE	W=WATE	S=SOIL; W=WATER; SL=SLUDGE; A=AIR; M=MISCELL G=GRAB; C=COMPOSITE	JGE; A=All	R, M=MISC	ELLANEOUS	TURNA STAND/ (7-10 busi	TURNAROUND DEQUIRED STANDARD C STAT C (7-10 business days)) BY /	E-M	AIL ADDRE	E-MAIL ADDRESS FOR RESULTS:	
RELINQUISHED BY (SIGNATURE)	(SIGNATT		DATE Welli	PRINTED NAME	NAME L MWW	RECEI	RECEIVED BY LAB (SIGNATURE) $ \bigcirc \qquad \bigcirc \qquad \bigcirc$	SNATURE)	AME O	<u> </u>	PRINTED NAME	
RELINQUISHED BY (SIGNATURE)	(SIGNATI		が影響	PRINTED NAME	NAME	RECEIVAGO	汉郡	ALCANATURE) AB (SIGNATURE) N	PAEO 10/2/m	# = K	PRINTED NAME	D J D
			WHITE-OF	WHITE-OFFICE / CANA	NARY-LAB / P	INK-SAMPL	RY-LAB / PINK-SAMPLE CUSTODIAN / GOLDENROD-CLIENT	/ GOLDEN	30D-CLIEN			7

Sample Receipt Checklist

Client Name LBG CT				Date and Ti	me Receive	3/10/2011 4:29:45 PM
Work Order Numbe 1103135	RcptNo: 1			Received b	y CD	
COC_ID: CoolerID Checklist completed by Signature	S/O/II			Reviewed b	y Ha	B 3/11/1
Matrix:	Carrier name	<u>AAL</u>				
Shipping container/cooler in good condition?		Yes	V	No []	Not Preser	n [1]
Custody seals intact on shippping container/cod	oler?	Yes		No	Not Preser	
Custody seals intact on sample bottles?		Yes		No 🗌	Not Preser	
Chain of custody present?		Yes	V	No		
Chain of custody signed when relinquished and	received?	Yes	4	No		
Chain of custody agrees with sample labels?		Yes	Y	No		
Samples in proper container/bottle?		Yes	V	No .		
Sample containers intact?		Yes	V	No : .		
Sufficient sample volume for indicated test?		Yes	V	No .		
All samples received within holding time?		Yes	V	No		
Container/Temp Blank temperature in complian	ce?	Yes	V	No 🗔		
Water - VOA vials have zero headspace?	No VOA vials subn	nitted		Yes 🔻	No L	· ·
Water - pH acceptable upon receipt?		Yes	~	No	N/A	
	Adjusted?		Ch	ecked b		
Any No and/or NA (not applicable) response mo	ust be detailed in the c	omme	ents sectio	n be		
Client contacted	Date contacted:			Pei	son contacted	1
Contacted by:	Regarding:					
Comments:						
Corrective Action						

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103135

Project:

Sag Harbor, NY

Lab ID:

1103135-01A

Date: 16-Mar-11

Client Sample ID: N-37

Collection Date: 3/9/2011 11:00:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	· U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 3:18:00 PM
1,2-Dibromoethane	U	0.5	1.0		µg/L	1	3/14/2011 3:18:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 3:18:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 3:18:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 3:18:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 3:18:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 3:18:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

1103135 Lab Order:

Project: Sag Harbor, NY Lab ID: 1103135-01A

Client Sample ID: N-37 Collection Date: 3/9/2011 11:00:00 AM

Matrix: LIQUID

Date: 16-Mar-11

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B		The second secon	Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 3:18:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 3:18:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Styrene	U	0.5	1.0		µg/L	1	3/14/2011 3:18:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:18:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Η Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103135

Client Sample ID: N-37

Collection Date: 3/9/2011 11:00:00 AM

Matrix: LIQUID

Date: 16-Mar-11

Project: Lab ID: Sag Harbor, NY 1103135-01A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 3:18:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 3:18:00 PM
Surr: 4-Bromofluorobenzene	101	0	60-130	%REC	1	3/14/2011 3:18:00 PM
Surr: Dibromofluoromethane	97.5	0	63-127	%REC	1	3/14/2011 3:18:00 PM
Surr: Toluene-d8	92.2	0	61-128	%REC	1	3/14/2011 3:18:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Sag Harbor, NY

Leggette Drashears & Graham m

Lab Order:

1103135

Client Sample ID: N-38

Collection Date: 3/9/2011 9:20:00 AM

Matrix: LIQUID

Date: 16-Mar-11

Project: Lab ID:

1103135-02A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/14/2011 3:42:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 3:42:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 3:42:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 3:42:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 3:42:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 3:42:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/14/2011 3:42:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 3:42:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 3:42:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P \rightarrow >40% diff for detected conc between the two GC columns
 - J Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order:

1103135

Client Sample ID: N-38

Collection Date: 3/9/2011 9:20:00 AM

Date: 16-Mar-11

Matrix: LIQUID

Project: Lab ID:

Sag Harbor, NY 1103135-02A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Dichlorodifluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 3:42:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/14/2011 3:42:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 3:42:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
- Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded Н
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order: 1103135

Project:

Sag Harbor, NY

Lab ID:

1103135-02A

Date: 16-Mar-11

Client Sample ID: N-38

Collection Date: 3/9/2011 9:20:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 3:42:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 3:42:00 PM
Surr: 4-Bromofluorobenzene	102	0	60-130	%REC	1	3/14/2011 3:42:00 PM
Surr: Dibromofluoromethane	101	0	63-127	%REC	1	3/14/2011 3:42:00 PM
Surr: Toluene-d8	93.5	0	61-128	%REC	1	3/14/2011 3:42:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

LOQ Limit of Quantitation

- S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

LOD Limit of Detection

- P >40% diff for detected conc between the two GC columns
- U Indicates the compound was analyzed but not detected.

Date: 16-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103135

Client Sample ID: N-39

Sag Harbor, NY

Collection Date: 3/9/2011 11:05:00 AM

Matrix: LIQUID

Project: Lab ID:

1103135-03A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/14/2011 4:05:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/14/2011 4:05:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/14/2011 4:05:00 PM
2-Chlorotoluene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
2-Hexanone	U	1.2	2.5		µg/L	1	3/14/2011 4:05:00 PM
4-Chiorotoluene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/14/2011 4:05:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/14/2011 4:05:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Value above quantitation range Ε
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns P
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103135

Sag Harbor, NY

Project: Lab ID:

1103135-03A

Date: 16-Mar-11

Client Sample ID: N-39

Collection Date: 3/9/2011 11:05:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Carbon tetrachloride	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Chlorobenzene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Chloroethane	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Chloroform	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Chloromethane	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Dibromochloromethane	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Dibromomethane	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Dichlorodifluoromethane	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Hexachlorobutadiene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/14/2011 4:05:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	µg/L	1	3/14/2011 4:05:00 PM
Methylene chloride	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
Naphthalene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
n-Propylbenzene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Styrene	U	0.5	1.0		µg/L	1	3/14/2011 4:05:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/14/2011 4:05:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103135

Project: Sag Harbor, NY

Lab ID: 1103135-03A

Date: 16-Mar-11

Client Sample ID: N-39

Collection Date: 3/9/2011 11:05:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/14/2011 4:05:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/14/2011 4:05:00 PM
Surr: 4-Bromofluorobenzene	103	0	60-130	%REC	1	3/14/2011 4:05:00 PM
Surr: Dibromofluoromethane	98.4	0	63-127	%REC	1	3/14/2011 4:05:00 PM
Surr: Toluene-d8	94.0	0	61-128	%REC	1	3/14/2011 4:05:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

LOQ Limit of Quantitation

S Spike Recovery outside accepted recovery limits

C Calibration %RSD/%D exceeded for non-CCC analytes

H Holding times for preparation or analysis exceeded

LOD Limit of Detection

P >40% diff for detected conc between the two GC columns

J Indicates the compound was analyzed but not detected.

CLIENT: Leggette Brashears & Graham Inc.

Work Order: 1103135

Project: Sag Harbor, NY

ANALYTICAL QC SUMMARY REPORT
TestCode: 8260MTBE113_W

Date: 16-Mar-11

Qual **RPDLimit** SeqNo: 797079 RunNo: 56709 %RPD Value above quantitation range RPD Ref Val 3/14/2011 Analysis Date: 3/14/2011 HighLimit 48 143 148 50 54 41 33 139 144 136 38 41 142 137 151 34 146 36 34 35 33 40 142 130 ш Prep Date: Calibration %RSD/%D exceeded for non-CCC analytes LowLimit 30 35 28 45 36 35 40 44 40 4 45 26 4 42 45 43 42 37 43 %REC 9.06 80.0 82.6 78.0 77.6 6.9 76.7 76.2 79.8 72.9 78.5 87.2 62.4 73.7 77.2 93.0 79.0 78.9 76.5 76.8 8.9/ 75.0 76.3 77.7 80.2 84.9 86.3 78.7 104 estCode: 8260MTBE11 Units: µg/l SPK Ref Val TestNo: SW8260B SPK value 50.00 Ö PQL 0. 0. 0. 0. 1.0 1.0 1.0 0. 0. 0. 0. Analyte detected in the associated Method Blank Batch ID: R56709 Result 42 43 Sample ID: V624LCS-031411LW SampType: LCS Surr: 4-Bromofluorobenzene trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane trans-1,2-Dichloroethene 2-Chloroethyl vinyl ether Bromodichloromethane Dibromochloromethane Trichlorofluoromethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloropropane Carbon tetrachloride 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene Client ID: LCSW Tetrachloroethene B Bromomethane Chlorobenzene Chloromethane Trichloroethene Ethylbenzene Chloroethane Vinyl chloride Bromoform Chloroform Qualifiers: Benzene Analyte

RPD outside accepted recovery limits

2

>40% diff for detected conc between the two GC column

Analyte detected below quantitation limits

~ d

Holding times for preparation or analysis exceeded

LOQ Limit of Quantitation

I

LOD Limit of Detection

TestCode: 8260MTBE113_W

CLIENT: Leggette Brashears & Graham Inc.
Work Order: 1103135

Project: Sag Harbor, NY

Sample ID: V624LCS-031411LW	SamoTvoe: LCS	TestCode: 8260MTBF11 Units: IId/I	Pren Date: 3/14/2011	BunNo: 56700
Client ID: LCSW	Batch ID: R56709	TestNo: SW8260B	Analysis Date: 3/14/2011	SeqNo: 797079
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Surr: Dibromofluoromethane Surr: Toluene-d8	53 48	50.00 50.00	105 63 127 95.3 61 128	
Sample ID: VBLK-031411LW	SampType: MBLK	TestCode: 8260MTBE11 Units: µg/L	Prep Date: 3/14/2011	RunNo: 56709
Client ID: PBW	Batch ID: R56709	TestNo: SW8260B	Analysis Date: 3/14/2011	SeqNo: 797080
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
1,1,1,2-Tetrachloroethane	>	1.0		
1,1,1-Trichloroethane	ח	1.0		
1,1,2,2-Tetrachloroethane	n	1.0		
1,1,2-Trichloro-1,2,2-trifluoroethane	n n	1.0		
1,1,2-Trichloroethane	n	1.0		
1,1-Dichloroethane	D	1.0		
1,1-Dichloroethene	⊃	1.0		
1,1-Dichloropropene)	1.0		
1,2,3-Trichlorobenzene	⊃	1.0		
1,2,3-Trichloropropane)	1.0		
1,2,4-Trichlorobenzene	n	1.0		
1,2,4-Trimethylbenzene	n	1.0		
1,2-Dibromo-3-chloropropane	D	2.0		
1,2-Dibromoethane	⊃	1.0		
1,2-Dichlorobenzene	⊃	1.0		
1,2-Dichloroethane	ב	1.0		
1,2-Dichloropropane	⊃	1.0		
1,3,5-Trimethylbenzene	n	1.0		
1,3-Dichlorobenzene)	1.0		
1,3-dichloropropane)	1.0		
1,4-Dichlorobenzene)	1.0		
2,2-Dichloropropane)	1.0		
2-Butanone)	2.5		O
2-Chloroethyl vinyl ether	D	2.0		
Qualifiers: B Analyte detecte	Analyte detected in the associated Method Blank	၁	Calibration %RSD/%D exceeded for non-CCC analytes E Value above quantitation range	tation range

R RPD outside accepted recovery limits

LOD Limit of Detection

Analyte detected below quantitation limits >40% diff for detected cone between the two GC column

- d

H Holding times for preparation or analysis exceeded LOQ Limit of Quantitation

TestCode: 8260MTBE113_W

Leggette Brashears & Graham Inc. 1103135 Work Order: CLIENT:

Sag Harbor, NY

Project:

Sample ID: VBLK-031411LW	SampType: MBLK	TestCo	TestCode: 8260MTBE11	Units: µg/L	Prep Date: 3/14/2011	RunNo: 56709
Client ID: PBW	Batch ID: R56709	Test	TestNo: SW8260B		3/14/2011	SeqNo: 797080
Analyte	Result	Pal	SPK value SP	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
2-Chlorotoluene	<u> </u>	1.0				
2-Hexanone	n	2.5				
4-Chlorotoluene	n	1.0				
4-Isopropyltoluene	n	1.0				
4-Methyl-2-pentanone	⊃	2.5				
Acetone	J	2.5				
Benzene	J	1.0				
Bromobenzene	n	1.0				
Bromochloromethane	n	1.0				
Bromodichloromethane	Π	1.0				
Bromoform	n	1.0				
Bromomethane	J	1.0				
Carbon disulfide	J	1.0				
Carbon tetrachloride	D	1.0				
Chlorobenzene	n	1.0				
Chloroethane	Π	1.0				
Chloroform	⊃	1.0				
Chloromethane	Π	1.0				
cis-1,2-Dichloroethene	n	1.0				
cis-1,3-Dichloropropene)	1.0				
Dibromochloromethane)	1.0				
Dibromomethane	D	1.0				
Dichlorodifluoromethane)	1.0				
Ethylbenzene	n	1.0				
Hexachlorobutadiene	n	1.0				
Isopropylbenzene	n	1.0				
m,p-Xylene	n	2.0				
Methyl tert-butyl ether	n	1.0				O
Methylene chloride	n	1.0				
Naphthalene)	1.0				
n-Butylbenzene	⊃	1.0				

RPD outside accepted recovery limits

>40% diff for detected conc between the two GC column R

Value above quantitation range

ш

Calibration %RSD/%D exceeded for non-CCC analytes

Analyte detected below quantitation limits

O - d

Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank

B Analyte detected in the a
H Holding times for prepar
LOQ Limit of Quantitation

Qualifiers:

LOD Limit of Detection

TestCode: 8260MTBE113_W

Leggette Brashears & Graham Inc. 1103135

CLIENT:
Work Order:

	THE RESERVE THE PROPERTY OF TH		***************************************		***************************************	***************************************
Sample ID: VBLK-031411LW	SampType: MBLK	TestCode: 8260MTBE11 Units: µg/L		Prep Date: 3/14/2011	RunNo: 56709	
Client ID: PBW	Batch ID: R56709	TestNo: SW8260B	Ar	Analysis Date: 3/14/2011	SeqNo: 797080	
Analyte	Result	PQL SPK value SPK Ref Val	%REC L	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
n-Propylbenzene	n	1.0				
o-Xylene	\supset	1.0				
sec-Butylbenzene	D	1.0				
Styrene	\cap	1.0				
tert-Butylbenzene	⊃	1.0				
Tetrachloroethene	D	1.0				
Toluene	D	1.0				
trans-1,2-Dichloroethene	n	1.0				
trans-1,3-Dichloropropene)	1.0				
Trichloroethene	⊃	1.0				
Trichlorofluoromethane	D	1.0				
Vinyl acetate	n	1.0				
Vinyl chloride	D	1.0				
Surr: 4-Bromofluorobenzene	20	50.00	101	60 130		
Surr: Dibromofluoromethane	51	50.00	102			
Surr: Toluene-d8	47	50.00	94.1			

	on %RSD/%D exceeded for non-CCC analytes E Value above quantitation range	uantitation limits LOD Limit of Detection	diff for detected cone between the two GC column R RPD outside accepted recovery limits
) to communications and extended discourse in many or my management enterings and extended the contract of extended the contract of the contra	Calibration %RSD/%D ex	Analyte detected below quant	>40% diff for detected co
***************************************	C		Д.
	Analyte detected in the associated Method Blank	Holding times for preparation or analysis exceeded	Limit of Quantitation
THE STATE OF THE S	В	Η	T00
	Qualifiers:		

Thursday, March 17, 2011

Tunde Sandor Leggette Brashears & Graham Inc. 4 Research Drive Suite 301 Shelton, CT 06484

TEL: (203) 929-8555 FAX (203) 926-9140

RE: Sag Harbor, NY

Dear Tunde Sandor:

Order No.: 1103136

American Analytical Laboratories, LLC. received 5 sample(s) on 3/10/2011 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The results reported herein relate only to the items tested or to the samples as received by the laboratory. This report may not be reproduced, except in full, without the approval of American Analytical Laboratories, LLC and is not considered complete without a cover page and chain of custody documentation. The limits (LOQ) provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be compared.

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report or the data is qualified. This package has been reviewed by American Analytical Laboratories' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal. This report consists of 27 pages.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

Sincerely,

Lori Beyer

Lab Director

Date: 17-Mar-11

CLIENT: Leggette Brashears & Graham Inc.

Project: Sag Harbor, NY

Lab Order: 1103136

Work Order Sample Summary

	 a most Cologno and Deministration of Colors and Color		
Lab Sample ID	Client Sample ID	Date Collected	Date Received
1103136-01A	N-16	3/10/2011 9:15:00 AM	3/10/2011
1103136-02A	N-32	3/9/2011 9:00:00 AM	3/10/2011
1103136-03A	RW-1	3/9/2011 9:35:00 AM	3/10/2011
1103136-04A	TB-PW	3/8/2011 2:00:00 PM	3/10/2011
1103136-05A	TB-GA	3/8/2011 2:00:00 PM	3/10/2011

AMERICAN EANALYTICAL ELABORATOR

56 TOLEDO STREET • FARMINGDALE, NEW YORK 11735 (631) 454-6100 • FAX (631) 454-8027

www.american-analytical.com

11418 PH-0205 NY050 NYSDOH NEDEP PADEP

68-573

| CHAIN OF CLIENT NAME/ADDRESS LEGATOR DAVE, SUITE 301 Shalton, CT OGYBY PROJECT LOCATION: Sag Makhor, NY IABUSE ONLY TYPE CONTAINERS DATE -03A W 3 3/9/ | HAMININ SAGES | SALL SONTAINERS | SAMPLING DATE TIM 3/8/11 14 3/8/11 14 3/8/11 14 | CONTACT: CONTACT: TIME TIME TIME TIME TIME TIME TIME TIME | CHAIN OF CUSTODY / REQUEST FOR ANALYSIS DOCUMENT SAMPLES S 3 | SAMPLER (SIGNATURE) SAMPLER NAME (PRINT) POLYANT (LEGA SAMPLER NAME (PRINT) SAMPLER NAME (PRINT) SAMPLER SIGNATURE) | SAMPLER (SIGNATURE) SAMPLER (SIGNATURE) SAMPLER NAME (PRINT) SAMPLER NAME (PRINT) SAMPLER NAME (PRINT) SAMPLER NAME (PRINT) SAMPLER SIGNATURE) SAMPLER SIGNATURE SIGNATURE) SAMPLER SIGNATURE SIG | | SIS DOCUN | 3 | SAMPLE(S) SEALED CORRECT CONTAINER(S) TEMPERATURE (° C) | | ES/ NO
S-2L
S-2L |
|--|--|--|---|---|--|--|--|--|---------------------------|--|--|--|-----------|------------------------|
| COMMENTS / INSTRUCTIONS MATRIX S=SOIL; W=WATER; SL=SLUDGE; A=AIR; M=MISCELI TYPE G=GRAB; C=COMPOSITE RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) RELINQUISHED BY (SIGNATURE) WHITE-OFFICE / CANA WHITE-OFFICE / CANA | S/INSTRUCTIONS S=SOIL, W=WATER; SL=S G=GRAB; C=COMPOSITE SHED BY (SIGNATURE) SHED BY (SIGNATURE) | STE TO THE STEEL S | UDGE; A=AIF | PRINTED NAME PRINTED NAME PRINTED NAME PRINTED NAME | DOGE; A=AIR; M=MISCELLANEOUS TURNAROUND REQUIRED STANDARD W STAND | TURNAROUND STANDARD (7-10 business days) RECEIVED BY RECEIVED BY RECEIVED BY | Sam TURNAROUND REQUIRED STANDARD K (7-10 business 49/s) RECEIVED BY LAB (SIGNATURE) RECEIVED BY LAB (SIGNATURE) AMPLE CUSTODIAN / GOLDE | STATE SIGNAT LAB (SIGNAT LAB (| Sample BY / LURE) CLIDENE | Samples must be on ICE (<6° C) E-MAIL ADDRESS FO TURE) DATE PRINTE PRINTE TIME (%) St be o C) C) MAIL ADDI MA | ust be on ICE S° C) E-MAIL ADDRESS FOR RESULTS: T-Sander@lbgct.com E-MAI | WE CF. 66 | |

Sample Receipt Checklist

Client Name LBG CT		-	Date and Tim	ne Receive	3/10/2011 4:31:58 PM
Work Order Numbe 1103136	RcptNo: 1		Received by	CD	
COC_ID: CoolerID Checklist completed by Signature	S/W	la	Reviewed by	Han p	B 3/11/11
Matrix:	Carrier name	AAL			,
Shipping container/cooler in good condition?		Yes 🗸	No :	Not Presen	· · · · · · · · · · · · · · · · · · ·
Custody seals intact on shippping container/coo	oler?	Yes	No :	Not Presen	₩.
Custody seals intact on sample bottles?		Yes 🗀	No	Not Presen	×
Chain of custody present?		Yes 🔽	No L		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗔		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗸	No		
All samples received within holding time?		Yes 🗹	No :		
Container/Temp Blank temperature in complian	ce?	Yes 🗹	No		
Water - VOA vials have zero headspace?	No VOA vials subm	nitted	Yes 🗸	No	.!
Water - pH acceptable upon receipt?		Yes 🗹	No	N/A	
	Adjusted?	Ch	ecked b		
Any No and/or NA (not applicable) response mu	ust be detailed in the c	omments section	n be		
Client contacted	Date contacted:		Pers	on contacted	I
Contacted by:	Regarding:				
Comments:					
Corrective Action					

Date: 17-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103136

Client Sample ID: N-16

Collection Date: 3/10/2011 9:15:00 AM

Matrix: LIQUID

Project: Lab ID: Sag Harbor, NY 1103136-01A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC	and the second s		SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		µg/L	1	3/15/2011 12:21:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		µg/L	1	3/15/2011 12:21:00 PM
1,1-Dichloroethane	0.59	0.5	1.0	J	μg/L	1	3/15/2011 12:21:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 12:21:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:21:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 12:21:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 12:21:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 12:21:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 12:21:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 12:21:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Н Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103136

Project: Sag Harbor, NY

Lab ID: 1103136-01A

Date: 17-Mar-11

Client Sample ID: N-16

Collection Date: 3/10/2011 9:15:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
Voc			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/15/2011 12:21:00 PM
Carbon tetrachloride	U	0.5	1.0		µg/L	1	3/15/2011 12:21:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 12:21:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 12:21:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 12:21:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Tetrachloroethene	U	0.5	1.0		µg/L	1	3/15/2011 12:21:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		µg/L	1	3/15/2011 12:21:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:21:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers: B Analyte detected in the associated Method Blank

Analyte detected below quantitation limits

E Value above quantitation range

LOQ Limit of Quantitation

J

S Spike Recovery outside accepted recovery limits

- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103136

Project: Sag Harbor, NY

Lab ID: 1103136-01A

Date: 17-Mar-11

Client Sample ID: N-16

Collection Date: 3/10/2011 9:15:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 12:21:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 12:21:00 PM
Surr: 4-Bromofluorobenzene	106	0	60-130	%REC	1	3/15/2011 12:21:00 PM
Surr: Dibromofluoromethane	96.0	0	63-127	%REC	1	3/15/2011 12:21:00 PM
Surr: Toluene-d8	92.8	0	61-128	%REC	1	3/15/2011 12:21:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P \rightarrow >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: N-32

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103136-02A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 12:45:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 12:45:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 12:45:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 12:45:00 PM
4-Chlorotoluene	Ü	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 12:45:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 12:45:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Bromochloromethane	U	0.5	1.0		µg/L	1	3/15/2011 12:45:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 17-Mar-11

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103136

Project: Sag Harbor, NY

Lab ID: 1103136-02A

Date: 17-Mar-11

Client Sample ID: N-32

Collection Date: 3/9/2011 9:00:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qua	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/15/2011 12:45:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 12:45:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 12:45:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 12:45:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
n-Butylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 12:45:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Styrene	U	0.5	1.0		µg/L	1	3/15/2011 12:45:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Toluene	Ü	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM
Trichloroethene	U	0.5	1.0		µg/L	1	3/15/2011 12:45:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 12:45:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 17-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

1103136

Client Sample ID: N-32

Lab Order:

Collection Date: 3/9/2011 9:00:00 AM

Project: Lab ID: Sag Harbor, NY 1103136-02A

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 12:45:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 12:45:00 PM
Surr: 4-Bromofluorobenzene	106	0	60-130	%REC	1	3/15/2011 12:45:00 PM
Surr: Dibromofluoromethane	103	0	63-127	%REC	1	3/15/2011 12:45:00 PM
Surr: Toluene-d8	90.6	0	61-128	%REC	1	3/15/2011 12:45:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

Analyte detected in the associated Method Blank

- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded Η
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns P
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103136

Project: Sag Harbor, NY

Lab ID: 1103136-03A

Date: 17-Mar-11

Client Sample ID: RW-1

Collection Date: 3/9/2011 9:35:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW82	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,1,2-Trichloro-1,2,2-trifluoroethan	u U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/16/2011 11:12:00 AM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/16/2011 11:12:00 AM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/16/2011 11:12:00 AM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
2-Hexanone	U	1.2	2.5		μg/L	1	3/16/2011 11:12:00 AM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/16/2011 11:12:00 AM
Acetone	U	1.2	2.5		μg/L	1	3/16/2011 11:12:00 AM
Benzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Bromobenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Bromochloromethane	U	0.5	1.0		µg/L	1	3/16/2011 11:12:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103136

Project: Sag Harbor, NY

Lab ID: 1103136-03A

Date: 17-Mar-11

Client Sample ID: RW-1

Collection Date: 3/9/2011 9:35:00 AM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Bromoform	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Bromomethane	U	0.5	1.0	С	μg/L	1	3/16/2011 11:12:00 AM
Carbon disulfide	U	0.5	1.0		µg/L	1	3/16/2011 11:12:00 AM
Carbon tetrachloride	U	0.5	1.0		µg/L	1	3/16/2011 11:12:00 AM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Chloroethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Chloroform	0.60	0.5	1.0	j	μg/L	1	3/16/2011 11:12:00 AM
Chloromethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Dibromomethane	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/16/2011 11:12:00 AM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/16/2011 11:12:00 AM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
m,p-Xylene	U	1	2.0		μg/L	1	3/16/2011 11:12:00 AM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/16/2011 11:12:00 AM
Methylene chloride	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Naphthalene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
o-Xylene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Styrene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Toluene	Ū	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
trans-1,3-Dichloropropene	Ū	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Trichloroethene	Ū	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM
Trichlorofluoromethane	Ū	0.5	1.0		μg/L	1	3/16/2011 11:12:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

Date: 17-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103136

Client Sample ID: RW-1

Collection Date: 3/9/2011 9:35:00 AM

Matrix: LIQUID

Project: Lab ID:

Sag Harbor, NY 1103136-03A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
voc			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/16/2011 11:12:00 AM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/16/2011 11:12:00 AM
Surr: 4-Bromofluorobenzene	112	0	60-130	%REC	1	3/16/2011 11:12:00 AM
Surr: Dibromofluoromethane	100	0	63-127	%REC	1	3/16/2011 11:12:00 AM
Surr: Toluene-d8	91.3	0	61-128	%REC	1	3/16/2011 11:12:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded Η
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

Date: 17-Mar-11

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Client Sample ID: TB-PW

Lab Order:

1103136

Collection Date: 3/8/2011 2:00:00 PM

Project:

Sag Harbor, NY

Matrix: LIQUID

Lab ID:

1103136-04A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
voc			SW82	60B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,1-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 1:32:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 1:32:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 1:32:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
2-Hexanone	U	1.2	2.5		µg/L	1	3/15/2011 1:32:00 PM
4-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 1:32:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 1:32:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Bromobenzene	υ	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: TB-PW

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103136-04A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Chloroform	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
Chloromethane	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Dibromomethane	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 1:32:00 PM
Ethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Isopropylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
m,p-Xylene	U	1	2.0		µg/L	1	3/15/2011 1:32:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 1:32:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
tert-Butylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:32:00 PM
Trichlorofluoromethane	U	0.5	1.0		µg/L	1	3/15/2011 1:32:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
- S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 17-Mar-11

- LOD Limit of Detection
 - P >40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103136

Client Sample ID: TB-PW

Collection Date: 3/8/2011 2:00:00 PM

Matrix: LIQUID

Date: 17-Mar-11

Project: Lab ID: Sag Harbor, NY 1103136-04A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	DB		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 1:32:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 1:32:00 PM
Surr: 4-Bromofluorobenzene	95.5	0	60-130	%REC	1	3/15/2011 1:32:00 PM
Surr: Dibromofluoromethane	98.8	0	63-127	%REC	1	3/15/2011 1:32:00 PM
Surr: Toluene-d8	97.2	0	61-128	%REC	1	3/15/2011 1:32:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Η Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc.

Lab Order: 1103136

Project: Sag Harbor, NY

Lab ID: 1103136-05A

Date: 17-Mar-11

Client Sample ID: TB-GA

Collection Date: 3/8/2011 2:00:00 PM

Matrix: LIQUID

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/15/2011 1:55:00 PM
1,1,1-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,1,2,2-Tetrachloroethane	U	0.5	1.0		µg/L	1	3/15/2011 1:55:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethan	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,1,2-Trichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,1-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,1-Dichloroethene	U	0.5	1.0		µg/L	1	3/15/2011 1:55:00 PM
1,1-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2,3-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2,3-Trichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2,4-Trichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2,4-Trimethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2-Dibromo-3-chloropropane	U	1	2.0		μg/L	1	3/15/2011 1:55:00 PM
1,2-Dibromoethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2-Dichloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,3,5-Trimethylbenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:55:00 PM
1,3-Dichlorobenzene	U	0.5	1.0		µg/L	1	3/15/2011 1:55:00 PM
1,3-dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
1,4-Dichlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
2,2-Dichloropropane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
2-Butanone	U	1.2	2.5	С	μg/L	1	3/15/2011 1:55:00 PM
2-Chloroethyl vinyl ether	U	1	2.0		μg/L	1	3/15/2011 1:55:00 PM
2-Chlorotoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
2-Hexanone	U	1.2	2.5		μg/L	1	3/15/2011 1:55:00 PM
4-Chlorotoluene	U	0.5	1.0		µg/L	1	3/15/2011 1:55:00 PM
4-Isopropyltoluene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
4-Methyl-2-pentanone	U	1.2	2.5		μg/L	1	3/15/2011 1:55:00 PM
Acetone	U	1.2	2.5		μg/L	1	3/15/2011 1:55:00 PM
Benzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Bromobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Bromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

enel d

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded
- LOD Limit of Detection
 - P > 40% diff for detected conc between the two GC columns
 - U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT: Leggette Brashears & Graham Inc. Client Sample ID: TB-GA

Project: Sag Harbor, NY Matrix: LIQUID

Lab ID: 1103136-05A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOC			SW8	260B			Analyst: LA
Bromodichloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Bromoform	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Bromomethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Carbon disulfide	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Carbon tetrachloride	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Chlorobenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Chloroethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Chloroform	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Chloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
cis-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
cis-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Dibromochloromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Dibromomethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Dichlorodifluoromethane	U	0.5	1.0	С	μg/L	1	3/15/2011 1:55:00 PM
Ethylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Hexachlorobutadiene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Isopropylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
m,p-Xylene	U	1	2.0		μg/L	1	3/15/2011 1:55:00 PM
Methyl tert-butyl ether	U	0.5	1.0	С	μg/L	1	3/15/2011 1:55:00 PM
Methylene chloride	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Naphthalene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
n-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
n-Propylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
o-Xylene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
sec-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Styrene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
tert-Butylbenzene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Tetrachloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Toluene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
trans-1,2-Dichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
trans-1,3-Dichloropropene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Trichloroethene	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM
Trichlorofluoromethane	U	0.5	1.0		μg/L	1	3/15/2011 1:55:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - S Spike Recovery outside accepted recovery limits
- C Calibration %RSD/%D exceeded for non-CCC analytes
- H Holding times for preparation or analysis exceeded

Date: 17-Mar-11

- LOD Limit of Detection
- P >40% diff for detected conc between the two GC columns
- U Indicates the compound was analyzed but not detected.

ELAP ID: 11418

CLIENT:

Leggette Brashears & Graham Inc.

Lab Order:

1103136

Client Sample ID: TB-GA

Collection Date: 3/8/2011 2:00:00 PM

Matrix: LIQUID

Date: 17-Mar-11

Project:

Sag Harbor, NY

Lab ID:

1103136-05A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Q	ual Units	DF	Date/Time Analyzed
VOC			SW826	0B		Analyst: LA
Vinyl acetate	U	0.5	1.0	μg/L	1	3/15/2011 1:55:00 PM
Vinyl chloride	U	0.5	1.0	μg/L	1	3/15/2011 1:55:00 PM
Surr: 4-Bromofluorobenzene	102	0	60-130	%REC	1	3/15/2011 1:55:00 PM
Surr: Dibromofluoromethane	99.6	0	63-127	%REC	1	3/15/2011 1:55:00 PM
Surr: Toluene-d8	95.1	0	61-128	%REC	1	3/15/2011 1:55:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- LOQ Limit of Quantitation
 - Spike Recovery outside accepted recovery limits
- Calibration %RSD/%D exceeded for non-CCC analytes
- Holding times for preparation or analysis exceeded Η
- LOD Limit of Detection
 - >40% diff for detected conc between the two GC columns
 - Indicates the compound was analyzed but not detected.

Leggette Brashears & Graham Inc. CLENT:

1103136 Work Order: Sag Harbor, NY Project:

TestCode: 8260MTBE113_W

ANALYTICAL QC SUMMARY REPORT

Date: 17-Mar-11

Sample ID: V62-	Sample ID: V624LCS-031511LW	SampType: LCS	TestCoc	TestCode: 8260MTBE11	E11 Units: µg/L		Prep Date:	3/15/2011	RunNo: 56726	
Client ID: LCSW	W	Batch ID: R56726	Test	TestNo: SW8260B			Analysis Date:	3/15/2011	SeqNo: 797246	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	hane	40	1.0	50.00	0	79.3	43	148		
1,1,2,2-Tetrachloroethane	roethane	41	1.0	50.00	0	81.7	32	148		
1,1,2-Trichloroethane	hane	40	1.0	50.00	0	79.4	42	136		
1,1-Dichloroethane	ne	39	1.0	50.00	0	78.0	40	150		
1,1-Dichloroethene	ne	41	1.0	50.00	0	81.9	30	154		
1,2-Dichlorobenzene	zene	38	1.0	50.00	0	76.3	40	129		
1,2-Dichloroethane	ne	39	1.0	50.00	0	77.4	36	141		
1,2-Dichloropropane	ane	40	1.0	50.00	0	80.1	44	138		
1,3-Dichlorobenzene	ene	39	1.0	50.00	0	78.8	40	133		
1,4-Dichlorobenzene	ene	39	1.0	50.00	0	78.5	40	135		
2-Chloroethyl vinyl ether	ıyl ether	36	2.0	50.00		71.1	21	139		
Benzene		36	1.0	50.00	0	73.0	45	144		
Bromodichloromethane	ethane	40	1.0	50.00	0	79.9	35	136		
Bromoform		46	1.0	50.00	0	91.8	28	138		
Bromomethane		33	1.0	50.00	0	9.99	26	148		
Carbon tetrachloride	ride	47	1.0	50.00	0	93.7	45	141		
Chlorobenzene		41	1.0	50.00	0	81.2	41	142		
Chloroethane		48	1.0	50.00	0	96.2	36	143		
Chloroform		41	1.0	50.00	0	81.5	42	137		
Chloromethane		40	1.0	50.00	0	80.9	35	151		
Dibromochloromethane	ethane	39	1.0	50.00	0	78.6	21	134		
Ethylbenzene		40	1.0	50.00	0	80.5	45	146		
Tetrachloroethene	9	43	1.0	50.00	0	86.2	45	136		
Toluene		39	1.0	50.00	0	78.8	43	134		
trans-1,2-Dichloroethene	oethene.	40	1.0	50.00	. 0	79.0	42	135		
trans-1,3-Dichloropropene	opropene.	37	1.0	50.00	0	74.2	37	133		
Trichloroethene		43	1.0	50.00	0	85.1	43	140		
Trichlorofluoromethane	ethane	46	1.0	20.00	0	91.4	20	148		
Vinyl chloride		46	1.0	50.00	0	97.6	35	142		
Surr: 4-Bromc	Surr: 4-Bromofluorobenzene	09		20.00		120	09	130		
Qualifiers:	B Analyte detecte	Analyte detected in the associated Method Blank	ank	C Calibra	Calibration %RSD/%D exceeded for non-CCC analytes	eded for no	n-CCC analytes	E Value above quantitation range	titation range	
ĭ	H Holding times	Holding times for preparation or analysis exceeded	pepeo	J Analyt	Analyte detected below quantitation limits	titation lim	its	LOD Limit of Detection	_	
בר	LOQ Limit of Quantitation	itation		P >40%	>40% diff for detected conc between the two GC column	between the	two GC column	×	RPD outside accepted recovery limits	

Leggette Brashears & Graham Inc. 1103136

CLIENT: Work Order:

Sag Harbor, NY

Project:

TestCode: 8260MTBE113_W

Sample ID: V624LCS-031511LW	/ SampType: LCS	TestCode:	TestCode: 8260MTBE11 Units: µg/L	Prep Date: 3/	3/15/2011	RunNo: 56726	
Client ID: LCSW	Batch ID: R56726	TestNo:	Vo: SW8260B	Analysis Date: 3/	3/15/2011	SeqNo: 797246	
Analyte	Result	S TOG	SPK value SPK Ref Val	%REC LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
Surr: Dibromofluoromethane Surr: Toluene-d8	50 49		50.00 50.00	99.7 63 97.6 61	127 128		
Sample ID: VBLK-031511LW	SampType: MBLK	TestCode:	TestCode: 8260MTBE11 Units: µg/L	Prep Date: 3/	3/15/2011	RunNo: 56726	
Client ID: PBW	Batch ID: R56726	TestNo:	TestNo: SW8260B	Analysis Date: 3/	3/15/2011	SeqNo: 797247	
Analyte	Result	PQL S	SPK value SPK Ref Val	%REC LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1,2-Tetrachloroethane	n	1.0					
1,1,1-Trichloroethane	n	1.0					
1,1,2,2-Tetrachloroethane	n	1.0					
1,1,2-Trichloro-1,2,2-trifluoroethane	ne U	1.0					
1,1,2-Trichloroethane	D	1.0					
1,1-Dichloroethane	D	1.0					
1,1-Dichloroethene	n	1.0					
1,1-Dichloropropene	n	1.0					
1,2,3-Trichlorobenzene	⊃	1.0					
1,2,3-Trichloropropane	D	1.0					
1,2,4-Trichlorobenzene	⊃	1.0					
1,2,4-Trimethylbenzene	n	1.0					
1,2-Dibromo-3-chloropropane	⊃	2.0					
1,2-Dibromoethane	⊃	1.0					
1,2-Dichlorobenzene	D	1.0					
1,2-Dichloroethane	n	1.0					
1,2-Dichloropropane	⊃	1.0					
1,3,5-Trimethylbenzene	⊃	1.0					
1,3-Dichlorobenzene	D	1.0					
1,3-dichloropropane	⊃	1.0					
1,4-Dichlorobenzene	⊃	1.0					
2,2-Dichloropropane	D	1.0					
2-Butanone	Π	2.5					ပ
2-Chloroethyl vinyl ether	D	2.0					
	Analyte detected in the associated Method Blank	3lank	C Calibration %RSD/%D exceeded for non-CCC analytes			itation range	
	Holding times for preparation or analysis exceeded	pepeas			Ω	:	
LOQ Limit of Quantitation	ntitation		P >40% diff for detected conc between the two GC column		R RPD outside accep	RPD outside accepted recovery limits	

TestCode: 8260MTBE113_W

Leggette Brashears & Graham Inc. 1103136 Work Order: CLIENT: Project:

Sag Harbor, NY

Sample ID: VBLK-031511LW	SampType: MBLK	estCode: 8%	TestCode: 8260MTBE11 Units: µg/L	Prep Date: 3/15/2011	hor	RunNo: 56726	
Client ID: PBW	Batch ID: R56726	TestNo: SW8260B	N8260B	Analysis Date: 3/15/2011	6	SeqNo: 797247	
Analyte	Result	PQL SP	SPK value SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
2-Chlorotoluene	n	1.0					
2-Hexanone	D	2.5					
4-Chlorotoluene	⊃	1.0					
4-Isopropyltoluene	⊃	1.0					
4-Methyl-2-pentanone	D	2.5					
Acetone	J	2.5					
Benzene	כ	1.0					
Bromobenzene	ח	1.0					
Bromochloromethane	ס	1.0					
Bromodichloromethane)	1.0					
Bromoform	⊃	1.0					
Bromomethane)	1.0					
Carbon disulfide	D	1.0					
Carbon tetrachloride	D	1.0					
Chlorobenzene)	1.0					
Chloroethane)	1.0					
Chloroform	D	1.0					
Chloromethane	D	1.0					
cis-1,2-Dichloroethene	D	1.0					
cis-1,3-Dichloropropene	D	1.0					
Dibromochloromethane	D	1.0					
Dibromomethane	ר	1.0					
Dichlorodifluoromethane	D	1.0					ပ
Ethylbenzene	D	1.0					
Hexachlorobutadiene	⊃	1.0					
Isopropylbenzene	⊃	1.0					
m,p-Xylene	⊃	2.0					
Methyl tert-butyl ether	⊃	1.0					ပ
Methylene chloride	Þ	1.0					
Naphthalene	٦	1.0					
n-Butylbenzene	⊃	1.0					
	Analyte detected in the associated Method Blank		Calibration %RSD/%D exceeded for non-CCC analytes	ш	Value above quantitation range	ation range	
H Holding times for pre LOO Limit of Ouantitation	Holding times for preparation or analysis exceeded Limit of Ouantitation	- A	Analyte detected below quantitation limits >40% diff for detected conc between the tv	LOD vo GC column R	Limit of Detection RPD outside accented recovery limits	d recovery limits	
				;		÷	

Leggette Brashears & Graham Inc. 1103136

Sag Harbor, NY

CLIENT: Work Order:

Project:

TestCode: 8260MTBE113_W

Sample ID: VBLK-031511LW	SampType: MBLK	TestCode: 8260MTBE11 Units: µg/L		Prep Date: 3/15/2011	/2011	RunNo: 56726	
Client ID: PBW	Batch ID: R56726	TestNo: SW8260B	4	Analysis Date: 3/15/2011	/2011	SeqNo: 797247	
Analyte	Result	PQL SPK value SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	nit RPD Ref Val	%RPD RPDLimit	Qual
n-Propylbenzene	ר	1.0				and the state of t	
o-Xylene	D	1.0					
sec-Butylbenzene	n	1.0					
Styrene)	1.0					
tert-Butylbenzene	n	1.0					
Tetrachloroethene	D	1.0					
Toluene	D	1.0					
trans-1,2-Dichloroethene	D	1.0					
trans-1,3-Dichloropropene	n	1.0					
Trichloroethene)	1.0					
Trichlorofluoromethane	D	1.0					
Vinyl acetate	D	1.0					
Vinyl chloride)	1.0					
Surr: 4-Bromofluorobenzene	52	50.00	105	60 13	130		
Surr: Dibromofluoromethane	49	50.00	98.7	63 127	7:		
Surr: Toluene-d8	47	50.00	93.3	61 128	8.		
	en de de la companya br>La companya de la co						

Sample ID: V624LCS-031	Sample ID: V624LCS-031611LW SampType: LCS	TestCoc	de: 8260MTBE	TestCode: 8260MTBE11 Units: µg/L		Prep Date:	3/16/2011	RunNo: 56726	
Client ID: LCSW	Batch ID: R56726A	Test	TestNo: SW8260B			Analysis Date:	3/16/2011	SeqNo: 797274	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	monioniqualismis proprieta por proprieta proprieta por proprieta por proprieta proprieta por proprieta	1.0	50.00	0	82.6	43	148		***************************************
1,1,2,2-Tetrachloroethane	42	1.0	50.00	0	84.2	32	148		
1,1,2-Trichloroethane	42	1.0	50.00	0	85.0	42	136		
1,1-Dichloroethane	43	1.0	50.00	0	85.8	40	150		
1,1-Dichloroethene	44	1.0	50.00	0	87.4	30	154		
1,2-Dichlorobenzene	42	1.0	50.00	0	83.4	40	129		
1,2-Dichloroethane	44	1.0	50.00	0	87.2	36	141		
1,2-Dichloropropane	42	1.0	50.00	. 0	83.4	44	138		
1,3-Dichlorobenzene	42	1.0	50.00	0	83.7	40	133		
1,4-Dichlorobenzene	42	1.0	20.00	0	84.9	40	135		
Qualifiers: B Analy	Analyte detected in the associated Method Blank	Slank	C Calibra	Calibration %RSD/%D exceeded for non-CCC analytes	eded for non	-CCC analytes	E Value above quantitation range	ıtitation range	en e de desendade como e e de militar a material de m
H Holdi	Holding times for preparation or analysis exceeded	pepee	J Analyte	Analyte detected below quantitation limits	titation limi	S1	LOD Limit of Detection	-	

LOQ Limit of Quantitation

P >40% diff for detected conc between the two GC column R RPD outside accepted recovery limits

TestCode: 8260MTBE113_W

CLIENT:	Leggette Brashears & Graham Inc.
Project:	Sag Harbor, NY

Sample ID: V6241 CS-0316111 W	/ SamuType: I CS	TestCo	TestCode: 8260MTBE14	:14		Dren Date:	3/46/2044		Pundo 66796	
Client ID: LCSW	Batch ID: R56726A	Test	TestNo: SW8260B			Analysis Date:			SeqNo: 797274	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	RPD Ref Val	%RPD RPDLimit	Qual
2-Chloroethyl vinyl ether	39	2.0	50.00	0	78.9	21	139			
Benzene	42	1.0	50.00	0	83.0	45	144			
Bromodichloromethane	42	1.0	50.00	0	84.7	35	136			
Bromoform	53	1.0	50.00	0	107	28	138			
Bromomethane	34	1.0	50.00	0	68.8	56	148			ပ
Carbon tetrachloride	46	1.0	50.00	0	91.1	45	141			
Chlorobenzene	42	1.0	90.00	0	84.5	41	142			
Chloroethane	52	1.0	50.00	0	104	36	143			
Chloroform	45	1.0	50.00	0	90.1	42	137			
Chloromethane	45	1.0	50.00	0	89.7	35	151			
Dibromochloromethane	42	1.0	90.00	0	83.6	21	134			
Ethylbenzene	42	1.0	50.00	0	83.4	45	146			
Tetrachloroethene	45	1.0	90.00	0	89.9	45	136			
Toluene	41	1.0	50.00	0	81.8	43	134			
trans-1,2-Dichloroethene	44	1.0	90.00	0	88.1	42	135			
trans-1,3-Dichloropropene	41	1.0	50.00	0	81.5	37	133			
Trichloroethene	45	1.0	50.00	0	6.06	43	140			
Trichlorofluoromethane	47	1.0	50.00	0	94.7	90	148			
Vinyl chloride	50	1.0	50.00		101	35	142			
Surr: 4-Bromofluorobenzene	52		50.00		104	9	130			
Surr: Dibromofluoromethane	53		50.00		106	63	127			
Surr: Toluene-d8	47		20.00		93.7	61	128			
Sample ID: VBLK-031611LW	SampType: MBLK	TestCo	TestCode: 8260MTBE11	11 Units: µg/L		Prep Date:	3/16/2011		RunNo: 56726	
Client ID: PBW	Batch ID: R56726A	Test	TestNo: SW8260B			Analysis Date:	3/16/2011		SeqNo: 797275	

Sample ID: VBLK-031611LW	K-031611LW	SampType: MBLK	TestCod	e: 8260MTBE	TestCode: 8260MTBE11 Units: µg/L	<u></u>	Prep Date: 3/16/2011	3/16/2011		RunNo: 56726	
Client ID: PBW		Batch ID: R56726A	TestN	TestNo: SW8260B		Ana	Analysis Date: 3/16/2011	3/16/2011		SeqNo: 797275	
Analyte		Result	PQL	SPK value	SPK value SPK Ref Val	%REC Lo	wLimit High	%REC LowLimit HighLimit RPD Ref Val	ef Val	%RPD RPDLimit	nit Qual
1,1,1,2-Tetrachloroethane	roethane	<u> </u>	1.0								
1,1,1-Trichloroethane	nane	n	1.0								
1,1,2,2-Tetrachloroethane	roethane	D	1.0								
1,1,2-Trichloro-1,2,2-trifluoroethane	2,2-trifluoroethaı	ne U	1.0								
Qualifiers: B	3 Analyte detec	B Analyte detected in the associated Method Blank	Slank	C Calibr	Calibration %RSD/%D exceeded for non-CCC analytes	ded for non-CC	C analytes	E Value above quantitation range	ove quantit	ation range	CONTROL TO CAMPINE THE TREE STOCKS OF THE ST
H		Holding times for preparation or analysis exceeded	papaaa	J Analyt	Analyte detected below quantitation limits	itation limits		LOD Limit of Detection	Detection		

P >40% diff for detected cone between the two GC column R RPD outside accepted recovery limits

LOQ Limit of Quantitation

TestCode: 8260MTBE113_W

Leggette Brashears & Graham Inc. 1103136 Work Order: CLIENT:

Sag Harbor, NY Project:

Sample ID: VBLK-031611LW	SampType: MBLK	TestCo	ode: 8260MTBE	TestCode: 8260MTBE11 Units: ua/L		Prep Date:		3/16/2011	RunNo: 56726	3726	
Client ID: PBW	Batch ID: R56726A	Test	TestNo: SW8260B	2		Analysis Date:		3/16/2011	SeqNo: 797275	97275	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighL	LowLimit HighLimit RPD Ref Val	I %RPD	RPDLimit	Qual
1,1,2-Trichloroethane	<u> </u>	1.0		rekole saalumigan kira Oyara errakaran karakaran karakaran karakaran karakaran karakaran karakaran karakaran k				AND THE PROPERTY OF THE PROPER			
1,1-Dichloroethane	D	1.0									
1,1-Dichloroethene	J	1.0									
1,1-Dichloropropene	D	1.0									
1,2,3-Trichlorobenzene	D	1.0									
1,2,3-Trichloropropane	Π	1.0									
1,2,4-Trichlorobenzene	Π	1.0									
1,2,4-Trimethylbenzene	O	1.0									
1,2-Dibromo-3-chloropropane	\supset	2.0									
1,2-Dibromoethane	n	1.0									
1,2-Dichlorobenzene	n	1.0									
1,2-Dichloroethane	כ	1.0									
1,2-Dichloropropane	n	1.0									
1,3,5-Trimethylbenzene	ר	1.0									
1,3-Dichlorobenzene	כ	1.0									
1,3-dichloropropane	D	1.0									
1,4-Dichlorobenzene	D	1.0									
2,2-Dichloropropane	D	1.0									
2-Butanone	n	2.5									O
2-Chloroethyl vinyl ether	⊃	2.0									
2-Chlorotoluene	D	1.0									
2-Hexanone	D	2.5									
4-Chlorotoluene	n	1.0									
4-Isopropyltoluene	n	1.0									
4-Methyl-2-pentanone	n	2.5									
Acetone	D	2.5									
Benzene	n	1.0									
Bromobenzene	D	1.0									
Bromochloromethane	⊃	1.0									
Bromodichloromethane	D	1.0									
Bromoform)	1.0									

RPD outside accepted recovery limits

>40% diff for detected conc between the two GC column R

Calibration %RSD/%D exceeded for non-CCC analytes

Analyte detected below quantitation limits

O - a

Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank

B Analyte detected in the a
H Holding times for prepar
LOQ Limit of Quantitation

Qualifiers:

E Value above quantitation range

LOD Limit of Detection

TestCode: 8260MTBE113_W

Leggette Brashears & Graham Inc. 1103136 Work Order: CLIENT:

Project:

Sag Harbor, NY

Client ID: DBW	!	1	Jo: SW8260B								
	Batch ID: R56726A	TestNo:			`	Analysis Date:	ate: 3/16/2011	2011	SeqNo: 797275	7275	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLim	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Bromomethane	<u> </u>	1.0			Vandanta del caracterista del caracterista del caracterista del caracterista del caracterista del caracterista		reference de la companya de la comp	denis imperiorization designation designat	والمعارفة ومعدد والمعارفة	A.M.J. PRACESTONIA PROFESSIONE CONTRACTOR STATES OF THE ST	O
Carbon disulfide)	1.0									
Carbon tetrachloride	D	1.0									
Chlorobenzene	J	1.0									
Chloroethane	⊃	1.0									
Chloroform	⊃	1.0									
Chloromethane	n	1.0									
cis-1,2-Dichloroethene	כ	1.0									
cis-1,3-Dichloropropene	n	1.0									
Dibromochloromethane	n	1.0									
Dibromomethane	n	1.0									
Dichlorodifluoromethane	n	1.0									ပ
Ethylbenzene)	1.0									
Hexachlorobutadiene	n	1.0									
Isopropylbenzene)	1.0									
m,p-Xylene)	2.0									
Methyl tert-butyl ether	>	1.0									ပ
Methylene chloride	n	1.0									
Naphthalene	n	1.0									
n-Butylbenzene	n	1.0									
n-Propylbenzene	⊃	1.0									
o-Xylene	⊃	1.0									
sec-Butylbenzene)	1.0									
Styrene	n	1.0									
tert-Butylbenzene	D	1.0									
Tetrachloroethene	n	1.0									
Toluene)	1.0									
trans-1,2-Dichloroethene	J	1.0									
trans-1,3-Dichloropropene)	1.0									
Trichloroethene	n	1.0									
Trichlorofluoromethane	D	1.0									

>40% diff for detected conc between the two GC column R RPD outside accepted recovery limits

Value above quantitation range

Щ

Calibration %RSD/%D exceeded for non-CCC analytes

Analyte detected below quantitation limits

C C

Holding times for preparation or analysis exceeded Analyte detected in the associated Method Blank

B Analyte detected in the a
H Holding times for prepar
LOQ Limit of Quantitation

Qualifiers:

LOD Limit of Detection

TestCode: 8260MTBE113_W

CLIENT: Leggette Brashears & Graham Inc.
Work Order: 1103136
Project: Sag Harbor, NY

Sample ID: VBLK-031611LW	SampType: MBLK	TestCoc	TestCode: 8260MTBE11 Units: µg/L	Units: µg/L		Prep Dat	Prep Date: 3/16/2011		RunNo: 56726		
Client ID: PBW	Batch ID: R56726A	Test∿	TestNo: SW8260B	.	*	Analysis Dat	Analysis Date: 3/16/2011		SeqNo: 797275		
Analyte	Result	Pal	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD RPDLimit Qual	DLimit	Qual
Vinyl acetate	n	1.0		Andrew property and the second se	THE PROPERTY OF THE PROPERTY O		«Минеский» («Менеский» «Менеский» («Менеский» «Менеский» «Менеский» «Менеский» «Менеский» «Менеский» «Менеский	***************************************			
Vinyl chloride	Π	1.0									
Surr: 4-Bromofluorobenzene	99		50.00		112	09	130				
Surr: Dibromofluoromethane	51		50.00		103	63	127				
Surr: Toluene-d8	48		50.00		95.1	61	128				

Qualifiers: B Analyte detected in the associated Method Blank C Calibration %RSD/%D exceeded for non-CCC analytes E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits LOQ Limit of Quantitation P >40% diff for detected conc between the two GC column R RPD outside accepted recovery limits

Technical Report

prepared for:

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Report Date: 09/20/2011

Client Project ID: Rowe Industries
York Project (SDG) No.: 1110543

CT License No. PH-0723

New Jersey License No. CT-005

New York License No. 10854

PA License No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 31

Report Date: 09/20/2011 Client Project ID: Rowe Industries York Project (SDG) No.: 11I0543

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 15, 2011 and listed below. The project was identified as your project: **Rowe Industries**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
1110543-01	MW-53	Water	09/12/2011	09/15/2011
1110543-02	MW-54	Water	09/12/2011	09/15/2011
1110543-03	MW-43B	Water	09/12/2011	09/15/2011
1110543-04	MW-43C	Water	09/12/2011	09/15/2011
1110543-05	MW-56A	Water	09/12/2011	09/15/2011
1110543-06	MW-56B	Water	09/12/2011	09/15/2011
1110543-07	MW-56C	Water	09/12/2011	09/15/2011
1110543-08	MW-55	Water	09/12/2011	09/15/2011
1110543-09	TB1	Water	09/10/2011	09/15/2011
1110543-10	FB-JC-9/12/2011	Water	09/12/2011	09/15/2011

General Notes for York Project (SDG) No.: 1110543

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Date: 09/20/2011

Robert Q. Bradley

bur & Jedley

Executive Vice President / Laboratory Director

YORK

Client Sample ID: MW-53 York Sample ID: 1110543-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0543Rowe IndustriesWaterSeptember 12, 2011 10:57 am09/15/2011

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
71-55-6	1,1,1-Trichloroethane	7.3		ug/L	0.95	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-34-3	1,1-Dichloroethane	2.5	J	ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
67-64-1	Acetone	4.6	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
. ***	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS

Client Sample ID: MW-53 York Sample ID: 1110543-01

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 10:57 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-09-2	Methylene chloride	6.0	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
91-20-3	Naphthalene	1.4	J	ug/L	0.50	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/19/2011 20:32	09/19/2011 20:32	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	108 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.5 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: MW-54 York Sample ID: 1110543-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110543Rowe IndustriesWaterSeptember 12, 2011 11:50 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
71-55-6	1,1,1-Trichloroethane	2.7	J	ug/L	0.95	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
67-64-1	Acetone	4.1	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS

Client Sample ID: MW-54 York Sample ID: 1110543-02

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 11:50 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-09-2	Methylene chloride	6.5	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
127-18-4	Tetrachloroethylene	0.80	J	ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/19/2011 21:08	09/19/2011 21:08	SS
/	Surrogate Recoveries	Result			eptance R						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.0 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: MW-43B York Sample ID: 1110543-03

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 1:05 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
71-55-6	1,1,1-Trichloroethane	1.1	J	ug/L	0.95	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
67-64-1	Acetone	3.9	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS

Client Sample ID: MW-43B York Sample ID: 1110543-03

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 1:05 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-09-2	Methylene chloride	5.9	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
127-18-4	Tetrachloroethylene	4.5	J	ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/19/2011 21:44	09/19/2011 21:44	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	97.9 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: MW-43C York Sample ID: 1110543-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110543Rowe IndustriesWaterSeptember 12, 2011 1:35 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
67-64-1	Acetone	3.9	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS

Client Sample ID: MW-43C York Sample ID: 1110543-04

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 1:35 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-09-2	Methylene chloride	6.3	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/19/2011 22:19	09/19/2011 22:19	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	101 %			86.7-112						

Client Sample ID: MW-56A York Sample ID: 1110543-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110543Rowe IndustriesWaterSeptember 12, 2011 2:19 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilu	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
67-64-1	Acetone	3.9	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS

Client Sample ID: MW-56A York Sample ID: 1110543-05

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 2:19 pm

Volatile Organics 8260 List

	ganics, 8260 List			<u>1</u>	_og-in	Notes:		Sample No			
CAS No.	oy Method: EPA 5030B Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-09-2	Methylene chloride	5.5	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/19/2011 22:55	09/19/2011 22:55	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %		75.7-121							
460-00-4	Surrogate: p-Bromofluorobenzene	98.3 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

STRATFORD, CT 06615 120 RESEARCH DRIVE (203) 325-1371

Client Sample ID: MW-56B York Sample ID: 1110543-06

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 2:42 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
07-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
7-64-1	Acetone	6.3	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
08-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS

Client Sample ID: MW-56B York Sample ID: 1110543-06

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 2:42 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-09-2	Methylene chloride	5.8	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/19/2011 23:30	09/19/2011 23:30	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	100 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	104 %			86.7-112						

Client Sample ID: MW-56C York Sample ID: 1110543-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0543Rowe IndustriesWaterSeptember 12, 2011 3:29 pm09/15/2011

	anics, 8260 List				<u>I</u>	_og-in		Sample No			
Sample Prepared by	y Method: EPA 5030B Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
67-64-1	Acetone	4.0	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS

Client Sample ID: MW-56C York Sample ID: 1110543-07

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 3:29 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-09-2	Methylene chloride	6.0	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/20/2011 00:06	09/20/2011 00:06	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.3 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: MW-55 York Sample ID: 1110543-08

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 4:15 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
08-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
7-64-1	Acetone	3.4	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
1-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
		ND				5.0		EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	

Client Sample ID: MW-55 York Sample ID: 1110543-08

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 4:15 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-09-2	Methylene chloride	4.5	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/20/2011 00:42	09/20/2011 00:42	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	102 %			86.7-112						

Client Sample ID: TB1 York Sample ID: 1110543-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 11I0543 Rowe Industries Water September 10, 2011 3:00 pm 09/15/2011

	Anics, 8260 List Method: EPA 5030B				<u>I</u>	Log-in 1		Sample Notes:			
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
67-64-1	Acetone	3.5	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

1.2

1.0

5.0

5.0

ug/L

ug/L

ND

ND

Bromomethane

Carbon tetrachloride

74-83-9

56-23-5

FAX (203) 35<u>7-0166</u>

09/20/2011 01:18

09/20/2011 01:18

EPA SW846-8260B

EPA SW846-8260B

SS

SS

09/20/2011 01:18

09/20/2011 01:18

Client Sample ID: TB1 York Sample ID: 1110543-09

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 10, 2011 3:00 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-09-2	Methylene chloride	4.7	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/20/2011 01:18	09/20/2011 01:18	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

<u>Client Sample ID:</u> FB-JC-9/12/2011 <u>York Sample ID:</u> 11I0543-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110543Rowe IndustriesWaterSeptember 12, 2011 11:05 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
67-64-1	Acetone	4.3	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS

Client Sample ID: FB-JC-9/12/2011 York Sample ID: 1110543-10

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0543 Rowe Industries Water September 12, 2011 11:05 am

Volatile Organics, 8260 List

Log-in Notes: Sample Prepared by Method: EPA 5030B

Sample Notes:

Chlorobenzene Chloroethane	ND									Analyst
Chloroethane			ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
romochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
lorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
xachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
sopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
ert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
ethylene chloride	6.0	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
a-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
o- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
ec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
ert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
trachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
richloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
hlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/20/2011 01:53	09/20/2011 01:53	SS
rrogate Recoveries	Result		Acc	eptance R	ange					
,2-Dichloroethane-d4	106 %			75.7-121						
o-Bromofluorobenzene	97.9 %			71.3-131						
V X rr !,2	inyl Chloride ylenes, Total ogate Recoveries 2-Dichloroethane-d4	inyl Chloride ND ylenes, Total ND ogate Recoveries Result 2-Dichloroethane-d4 106 % Bromofluorobenzene 97.9 %	inyl Chloride ND ylenes, Total ND ogate Recoveries Result 2-Dichloroethane-d4 106 % Bromofluorobenzene 97.9 %	inyl Chloride ND ug/L ylenes, Total ND ug/L ogate Recoveries Result Acc 2-Dichloroethane-d4 106 % Bromofluorobenzene 97.9 %	inyl Chloride ND ug/L 0.97 ylenes, Total ND ug/L 1.0 ogate Recoveries Result Acceptance Result 2-Dichloroethane-d4 106 % 75.7-121 Bromofluorobenzene 97.9 % 71.3-131	inyl Chloride ND ug/L 0.97 5.0 ylenes, Total ND ug/L 1.0 15 ogate Recoveries Result Acceptance Range 2-Dichloroethane-d4 106 % 75.7-121 Bromofluorobenzene 97.9 % 71.3-131	inyl Chloride ND ug/L 0.97 5.0 1 ylenes, Total ND ug/L 1.0 15 1 ogate Recoveries Result Acceptance Range 2-Dichloroethane-d4 106 % 75.7-121 Bromofluorobenzene 97.9 % 71.3-131	inyl Chloride ND ug/L 0.97 5.0 1 EPA SW846-8260B ylenes, Total ND ug/L 1.0 15 1 EPA SW846-8260B ogate Recoveries Result Acceptance Range 2-Dichloroethane-d4 106 % 75.7-121 Bromofluorobenzene 97.9 % 71.3-131	inyl Chloride ND ug/L 0.97 5.0 1 EPA SW846-8260B 09/20/2011 01:53 ylenes, Total ND ug/L 1.0 15 1 EPA SW846-8260B 09/20/2011 01:53 ogate Recoveries Result Acceptance Range 2-Dichloroethane-d4 106 % 75.7-121 Bromofluorobenzene 97.9 % 71.3-131	inyl Chloride ND ug/L 0.97 5.0 1 EPA SW846-8260B 09/20/2011 01:53 09/20/2011 01:53 vylenes, Total ND ug/L 1.0 15 1 EPA SW846-8260B 09/20/2011 01:53 09/20/2011 01:53 ogate Recoveries Result Acceptance Range 2-Dichloroethane-d4 106 % 75.7-121 Bromofluorobenzene 97.9 % 71.3-131

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 23 of 31

Analytical Batch Summary

Batch ID: BI10656	Preparation Method:	EPA 5030B	Prepared By: AY
YORK Sample ID	Client Sample ID	Preparation Date	
11I0543-01	MW-53	09/19/11	
11I0543-02	MW-54	09/19/11	
11I0543-03	MW-43B	09/19/11	
11I0543-04	MW-43C	09/19/11	
11I0543-05	MW-56A	09/19/11	
11I0543-06	MW-56B	09/19/11	
11I0543-07	MW-56C	09/20/11	
11I0543-08	MW-55	09/20/11	
11I0543-09	TB1	09/20/11	
11I0543-10	FB-JC-9/12/2011	09/20/11	
BI10656-BLK1	Blank	09/19/11	
BI10656-BS1	LCS	09/19/11	
BI10656-BSD1	LCS Dup	09/19/11	

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

ank (BI10656-BLK1)				Prepared & Analyzed: 09/19/2011
,1,2-Tetrachloroethane	ND	5.0	ug/L	
,1-Trichloroethane	ND ND	5.0	ug/L "	
,2,2-Tetrachloroethane	ND ND	5.0	"	
2-Trichloro-1,2,2-trifluoroethane (Freon	ND	5.0	"	
)	ND	5.0		
2-Trichloroethane	ND	5.0	"	
-Dichloroethane	ND	5.0	"	
-Dichloroethylene	ND	5.0	"	
-Dichloropropylene	ND	5.0	"	
,3-Trichlorobenzene	ND	10	"	
3-Trichloropropane	ND	5.0	"	
4-Trichlorobenzene	ND	10	"	
,4-Trimethylbenzene	ND	5.0	"	
Dibromo-3-chloropropane	ND	10	"	
Dibromoethane	ND	5.0	"	
Dichlorobenzene	ND	5.0	"	
Dichloroethane	ND	5.0	"	
Dichloropropane	ND	5.0	"	
5-Trimethylbenzene	ND	5.0	"	
Dichlorobenzene	ND ND	5.0	"	
Dichloropropane	ND	5.0	"	
Dichlorobenzene	ND	5.0	"	
ichloropropane	ND	5.0	"	
tanone	ND ND	10	"	
orotoluene	ND	5.0	"	
kanone	ND ND	5.0	"	
protoluene	ND	5.0	"	
one	7.2	10	"	
ene	ND	5.0	"	
obenzene	ND	5.0	"	
ochloromethane	ND ND	5.0	"	
odichloromethane	ND ND	5.0	"	
oform	ND ND	5.0	"	
nomethane	ND ND	5.0	"	
nometnane on tetrachloride	ND ND	5.0	"	
on tetrachioride robenzene	ND ND	5.0	"	
roethane	ND ND	5.0	"	
roetnane roform	ND ND	5.0	"	
ronethane	ND ND	5.0	"	
	ND ND	5.0	"	
,2-Dichloroethylene	ND ND	5.0	"	
,3-Dichloropropylene omochloromethane	ND ND	5.0	"	
omocnioromethane omomethane	ND ND		"	
omometnane lorodifluoromethane	ND ND	5.0	"	
	ND ND	5.0	"	
l Benzene	ND ND	5.0	"	
achlorobutadiene	ND ND	5.0	"	
ropylbenzene	ND ND	5.0	"	
nyl tert-butyl ether (MTBE) nylene chloride		5.0	"	
-	6.3	10	"	
thalene	ND ND	10	"	
tylbenzene	ND	5.0	"	
opylbenzene ylene	ND	5.0	"	
ene n- Xylenes	ND ND	5.0 10	"	

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10656 - EPA 5030B					
Blank (BI10656-BLK1)				Prepared	& Analyzed: 09/19/2011
p-Isopropyltoluene	ND	5.0 ug/L			
sec-Butylbenzene	ND	5.0 "			
Styrene	ND	5.0 "			
tert-Butylbenzene	ND	5.0 "			
Tetrachloroethylene	ND	5.0 "			
Toluene	ND	5.0 "			
trans-1,2-Dichloroethylene	ND	5.0 "			
trans-1,3-Dichloropropylene	ND	5.0 "			
Trichloroethylene	ND	5.0 "			
Trichlorofluoromethane	ND	5.0 "			
Vinyl Chloride	ND	5.0 "			
Xylenes, Total	ND	15 "			
Surrogate: 1,2-Dichloroethane-d4	52.2	"	50.0	104	75.7-121
Surrogate: p-Bromofluorobenzene	50.3	"	50.0	101	71.3-131
Surrogate: Toluene-d8	51.3	"	50.0	101	86.7-112
Sarrogue. 10tuene-40	51.5		50.0		
LCS (BI10656-BS1)					& Analyzed: 09/19/2011
1,1,1,2-Tetrachloroethane	53	ug/L	50.0	107	82.3-130
1,1,1-Trichloroethane	49	"	50.0	98.5	75.6-137
1,1,2,2-Tetrachloroethane	49	"	50.0	98.2	71.3-131
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	47	"	50.0	94.2	71.1-129
113)					
1,1,2-Trichloroethane	49	"	50.0	98.1	74.5-129
1,1-Dichloroethane	49	"	50.0	97.3	79.6-132
1,1-Dichloroethylene	53	"	50.0	105	80.2-146
1,1-Dichloropropylene	50	"	50.0	99.4	75-136
1,2,3-Trichlorobenzene	48	"	50.0	95.5	66.1-136
1,2,3-Trichloropropane	48	"	50.0	96.6	63-131
1,2,4-Trichlorobenzene	48	"	50.0	95.8	70.6-136
1,2,4-Trimethylbenzene	58	"	50.0	116	75.3-135
1,2-Dibromo-3-chloropropane	45	"	50.0	90.1	58.9-140
1,2-Dibromoethane	53	"	50.0	105	79-130
1,2-Dichlorobenzene	50	"	50.0	99.9	76.1-122
1,2-Dichloroethane	48	"	50.0	96.2	74.6-132
1,2-Dichloropropane	53	"	50.0	106	76.9-129
1,3,5-Trimethylbenzene	56	"	50.0	112	70.6-127
1,3-Dichlorobenzene	52	"	50.0	105	77-124
1,3-Dichloropropane	51	"	50.0	102	75.8-126
1,4-Dichlorobenzene	52	"	50.0	104	76.6-125
2,2-Dichloropropane	48	"	50.0	96.4	69-133
2-Butanone	36	"	50.0	72.4	70-130
2-Chlorotoluene	51	"	50.0	102	66.3-119
2-Hexanone	42	"	50.0	83.6	70-130
4-Chlorotoluene	55	"	50.0	111	69.2-127
Acetone	30	"	50.0	60.4	70-130 Low Bias
Benzene	49	"	50.0	97.4	76.2-129
Bromobenzene	54	"	50.0	109	71.3-123
Bromochloromethane	47	"	50.0	93.7	70.8-137
Bromodichloromethane	54	"	50.0	108	79.7-134
Bromoform	52	"	50.0	105	70.5-141
Bromomethane	44	"	50.0	88.3	43.9-147
Carbon tetrachloride	50	"	50.0	99.6	78.1-138
Chlorobenzene	53	"	50.0	106	80.4-125
Chloroethane	41	"	50.0	82.8	55.8-140

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BI10656-BS1)				Prepare	ed & Analyzed: 09/19/2011
Chloroform	49	ug/L	50.0	97.5	76.6-133
Chloromethane	37	"	50.0	74.2	48.8-115
eis-1,2-Dichloroethylene	46	"	50.0	92.1	75.1-128
eis-1,3-Dichloropropylene	51	"	50.0	101	74.5-128
Dibromochloromethane	51	"	50.0	103	79.8-134
Dibromomethane	53	"	50.0	106	79-130
Dichlorodifluoromethane	33	"	50.0	66.8	47.1-101
Ethyl Benzene	56	"	50.0	113	80.8-128
Hexachlorobutadiene	49	"	50.0	98.6	64.8-128
sopropylbenzene	61	"	50.0	121	75.5-135
Methyl tert-butyl ether (MTBE)	47	"	50.0	93.3	65.1-140
Methylene chloride	42	"	50.0	84.6	61.3-120
Naphthalene	49	"	50.0	98.2	62.3-148
n-Butylbenzene	52	"	50.0	104	67.2-123
n-Propylbenzene	57	"	50.0	114	70.5-127
o-Xylene	52	"	50.0	105	75.9-122
o- & m- Xylenes	110	"	100	110	77.7-127
p-Isopropyltoluene	57	"	50.0	113	75.6-129
sec-Butylbenzene	57	"	50.0	113	71.5-125
Styrene	51	"	50.0	102	77.8-123
ert-Butylbenzene	61	"	50.0	122	75.9-151
Γetrachloroethylene	59	"	50.0	118	63.6-167
Toluene	54	"	50.0	108	77-123
rans-1,2-Dichloroethylene	50	"	50.0	99.6	76.3-139
rans-1,3-Dichloropropylene	52	"	50.0	105	72.5-137
Γrichloroethylene	53	"	50.0	106	77.9-130
Trichlorofluoromethane	40	"	50.0	79.0	57.4-133
Vinyl Chloride	38	"	50.0	76.8	54.9-124
Surrogate: 1,2-Dichloroethane-d4	49.7	"	50.0	99.4	75.7-121
Surrogate: p-Bromofluorobenzene	51.4	"	50.0	103	71.3-131
Surrogate: Toluene-d8	52.4	"	50.0	105	86.7-112

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10656 - EPA 5030B											
LCS Dup (BI10656-BSD1)						Prepared	d & Analyzed	1: 09/19/2011			
1,1,1,2-Tetrachloroethane	55		ug/L	50.0		110	82.3-130		2.72	21.1	-
1,1,1-Trichloroethane	51		"	50.0		102	75.6-137		3.14	19.7	
1,1,2,2-Tetrachloroethane	49		"	50.0		98.3	71.3-131		0.0407	20.8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50		"	50.0		99.0	71.1-129		5.01	21.7	
1,1,2-Trichloroethane	52		"	50.0		105	74.5-129		6.43	20.3	
1,1-Dichloroethane	51		"	50.0		103	79.6-132		5.65	20.6	
1,1-Dichloroethylene	54		"	50.0		108	80.2-146		3.09	20	
1,1-Dichloropropylene	51		"	50.0		103	75-136		3.44	19.3	
1,2,3-Trichlorobenzene	49		"	50.0		98.5	66.1-136		3.09	21.6	
1,2,3-Trichloropropane	50		"	50.0		100	63-131		3.90	23.9	
1,2,4-Trichlorobenzene	50		"	50.0		99.7	70.6-136		4.03	21.7	
1,2,4-Trimethylbenzene	58		"	50.0		117	75.3-135		0.137	18.8	
1,2-Dibromo-3-chloropropane	59		"	50.0		119	58.9-140		27.5	27.7	
1,2-Dibromoethane	55		"	50.0		109	79-130		3.51	23	
1,2-Dichlorobenzene	50		"	50.0		100	76.1-122		0.400	19.8	
1,2-Dichloroethane	50		"	50.0		100	74.6-132		3.93	20.2	
1,2-Dichloropropane	55		"	50.0		110	76.9-129		3.40	20.7	
1,3,5-Trimethylbenzene	56		"	50.0		111	70.6-127		0.537	18.9	
1,3-Dichlorobenzene	53		"	50.0		105	77-124		0.742	19.2	
1,3-Dichloropropane	54		"	50.0		108	75.8-126		5.13	22.1	
1,4-Dichlorobenzene	52		"	50.0		105	76.6-125		0.268	18.6	
2,2-Dichloropropane	50		"	50.0		99.0	69-133		2.70	19.8	
2-Butanone	38		"	50.0		75.5	70-130		4.14	30	
2-Chlorotoluene	51		"	50.0		103	66.3-119		0.507	21.6	
2-Hexanone	44		"	50.0		87.8	70-130		4.92	30	
4-Chlorotoluene	56		"	50.0		112	69.2-127		0.988	19	
Acetone	31		"	50.0		62.8	70-130	Low Bias	3.96	30	
Benzene	51		"	50.0		101	76.2-129		3.71	19	
Bromobenzene	55		"	50.0		110	71.3-123		0.749	20.3	
Bromochloromethane	48		"	50.0		96.7	70.8-137		3.17	23.9	
Bromodichloromethane	56		"	50.0		112	79.7-134		3.59	21	
Bromoform	54		"	50.0		107	70.5-141		2.09	21.8	
Bromomethane	46		"	50.0		91.9	43.9-147		4.06	28.4	
Carbon tetrachloride	51		"	50.0		103	78.1-138		3.03	20.1	

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

100

108

86.4

101

77.3

97.0

104

107

109

68.7

117

99.5

122

99.4

87.9

101

104

114

107

112

80.4-125

55.8-140

76.6-133

48.8-115

75.1-128

74.5-128

79.8-134

79-130

47.1-101

80.8-128

64.8-128

75.5-135

65.1-140

61.3-120

62.3-148

67.2-123

70.5-127

75.9-122

77.7-127

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

54

43

51

39

48

52

53

54

34

58

50

61

50

44

50

52

57

54

110

Chlorobenzene

Chloromethane

cis-1,2-Dichloroethylene

Dibromochloromethane

Dichlorodifluoromethane

Methyl tert-butyl ether (MTBE)

Hexachlorobutadiene

Isopropylbenzene

Methylene chloride

Naphthalene

o-Xylene

n-Butylbenzene

n-Propylbenzene

p- & m- Xylenes

Dibromomethane

Ethyl Benzene

cis-1,3-Dichloropropylene

Chloroethane

Chloroform

1.48

4.28

3.61

4.12

5.23

2.90

3.71

2.33

2.81

3.17

0.929

0.363

6.25

3.87

2.81

0.386

0.0874

2.25

1.78

19.9

23.3

20.3

24.5

20.5

19.9

21.3

22.4

23.9

19.2

20.6

20

23.6

20.4

27.1

19.1

23.4

19.3

18.6

York Analytical Laboratories, Inc.

		Reporting		Spike	Spike Source*			%REC			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10656 - EPA 5030B											
LCS Dup (BI10656-BSD1)						Prepare	d & Analyzed	: 09/19/2011	l		
p-Isopropyltoluene	56		ug/L	50.0		113	75.6-129		0.230	19.1	
sec-Butylbenzene	57		"	50.0		113	71.5-125		0.141	18.9	
Styrene	52		"	50.0		105	77.8-123		2.45	20.9	
tert-Butylbenzene	61		"	50.0		122	75.9-151		0.295	20.9	
Tetrachloroethylene	60		"	50.0		119	63.6-167		1.21	27.7	
Toluene	55		"	50.0		111	77-123		2.80	18.7	
trans-1,2-Dichloroethylene	52		"	50.0		104	76.3-139		4.74	19.5	
trans-1,3-Dichloropropylene	54		"	50.0		108	72.5-137		2.45	19.3	
Trichloroethylene	55		"	50.0		111	77.9-130		3.80	20.5	
Trichlorofluoromethane	42		"	50.0		84.5	57.4-133		6.72	21.4	
Vinyl Chloride	39		"	50.0		78.6	54.9-124		2.39	22.3	
Surrogate: 1,2-Dichloroethane-d4	50.0		"	50.0		100	75.7-121				
Surrogate: p-Bromofluorobenzene	50.8		"	50.0		102	71.3-131				
Surrogate: Toluene-d8	52.8		"	50.0		106	86.7-112				

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

RPD

Notes and Definitions

J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

Corrective Action:

Non-Dir.

120 RESEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract. NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

York Project No. 11 I o 543

o

	origie	little tillids you to	and a summary of the	's apparation common the	r		\vdash	1	Johnsteller
YOUR Information	Report To:		Invoice To:	YOUR Project ID		Inrn-Around IIme		or iyber	Report Type/Deliver Dies
Company: LRG	Company: SAME	Company:	SAME	A ROUTE		RUSH - Same Day	Sum 	Summary Report	X
4 Page of Dive	Address:	Address:		Transfiles	55	RUSH - Next Day		CT RCP Package	vummary
184	7			Purchase Order No.	er No.	RUSH - Two Day	ŽŽ	NY ASP A Package) 5.
29-9555	Phone No.	Phone No.				RUSH - Three Day	Ž	NY ASP B Package	× es
-	Attention	Attention:	Arention: Mark Goldberg			RUSH - Four Day	Electronic Control	Electronic Deliverables: FDD (Specify Type)	# G
Contact Person: Under John John John John John John John John			and the Manager	Samples from: CT	Z AN	Standard(5-7 Days)			(2)
E-Mail Address: 1 Sandore Lb Ct. CE-Mail Address:	E-Mail Address:	E-Mail Ad	X	Samples nom: C1		F. H. I. Common Wiscoll Bosonston		2 Domonotors	-
The second secon	II Tueformantion metter	ho commisto	Volatiles Se	ni-Vols, Pest/PCB/Hert	2	FULLISTS COMMING		S rarameters	Special
			8260 full TICs	8082PCB		Pri.Poll. Corrosivity	_	Cotor	Instructions
Samples will NOT be logged in and the turn-around time	d in and the turn-	around time	624 Site Spec.	st 8081Pest		TCL Organics Reactivity	Naturale 1 K.N.	Phenots	Field Filtered
clock will not begin until any questions by York are resolved.	y questions by York	are resolved.	STARS list Nassau Co. BTFX Suffolk Co.	BN Unity 8151Herb TAL Acids Only CT RCP (CT15 list	CI EIFH st NY 310-13	Full TCLP Flash Point	•	Cyarude-A	
		Matrix Codes	Ketones	App. IX	15			BODS	
	S	soil	Oxygenates	Site Spec.		Part 360-Routine Heterotrophs	-	CBODS	
Just from		Other - specify(oil, etc.)	TCLP list	CT RCP list SPLP or TCLP Total	Air TOI5	Part 360 Baseine 10X	Phosphate Tot Phos	870078	
Samples Carected/Authorized By (Signature)		ww - wastewater GW - groundwater	C1 RCF list 524.2 1C	15	4	No Documentarios No Documentarios Part 350 Expensed Acquattic Tox.		SSI	
James (assurel);			Halog.only	Chlordane	Air TICs	NYCOEPSeure TOC		Total Solids	
Name (printed)	— Ali	Air-SV - soil vapor	App.IX list SPLP or TCLP ITCLP BNA 8021B list SPLP or TCLP	TCLP BNA 608 Pest LIST Below SPLPGTCLP 608 PCB	ow Methane Helium	TAGM Silica	pri MBAS	TPH-1664	
Sample Identification	Date Sampled Sa	Sample Matrix	Choose Analyse	Choose Analyses Needed from the Menu Above and Enter Below	Menu Abo	ve and Enter B	elow	Cont Descri	Container Description(s)
/ 63			11/12 0962	ナー		İ		3x 101	★
MW- 73	11101 W/1000	3-		27					
MV-54	3211/								
MV-433	1385								
MV-43C	1335								
M.J. 56A	611/1								
ML- 583	64.								
MV-56C	1529								
MV- 934 55	50 - 7								
781	11/01/6		-						
u	541 1100/e1/6	7	\					}	
Comments	4	Preservation	4°C Frozen	HCI X MeOH	HNO, Other	H,SO, Nac	NaOH		Temnerature
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Check those Applicable	The Man			1.16.11	3/-6	1150	9-/ [-// 1/20 no Receipt
			Samples Relinguished By	1 Bv Date/Time	Samples	Samples Received By	Date/T	, su	
£ 24			Administration of the continuous			Sac 9/1	5/11/5	16.50	4.4°C
			Samples Relinguished By	1 By Date/Time	Samples	Samples Received in LAB by	Date/Time	me	

Technical Report

prepared for:

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Report Date: 09/21/2011

Client Project ID: Rowe Industries York Project (SDG) No.: 1110545

CT License No. PH-0723

New Jersey License No. CT-005

New York License No. 10854

PA License No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 23

Report Date: 09/21/2011 Client Project ID: Rowe Industries

York Project (SDG) No.: 11I0545

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 15, 2011 and listed below. The project was identified as your project: **Rowe Industries**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
1110545-01	MW-42B	Water	09/14/2011	09/15/2011
1110545-02	MW-B1	Water	09/14/2011	09/15/2011
1110545-03	MW-B3	Water	09/14/2011	09/15/2011
1110545-04	FB-GA91411	Water	09/14/2011	09/15/2011
1110545-05	MW-B2	Water	09/14/2011	09/15/2011
1110545-06	MW-B4	Water	09/14/2011	09/15/2011

General Notes for York Project (SDG) No.: 1110545

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Date: 09/21/2011

Robert Q. Bradley

bur & Jedley

Executive Vice President / Laboratory Director

YORK

Client Sample ID: MW-42B York Sample ID: 1110545-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0545Rowe IndustriesWaterSeptember 14, 20118:30 am09/15/2011

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
67-64-1	Acetone	5.8	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS

Client Sample ID: MW-42B York Sample ID: 1110545-01

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0545 Rowe Industries Water September 14, 2011 8:30 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-09-2	Methylene chloride	8.2	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
91-20-3	Naphthalene	0.88	J	ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 03:52	09/21/2011 03:52	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.9 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: MW-B1 York Sample ID: 1110545-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110545Rowe IndustriesWaterSeptember 14, 20119:20 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
<u> </u>	

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilu	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
67-64-1	Acetone	4.7	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS

Client Sample ID: MW-B1 York Sample ID: 1110545-02

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0545 Rowe Industries Water September 14, 2011 9:20 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-09-2	Methylene chloride	4.8	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 04:28	09/21/2011 04:28	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.5 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	105 %			86.7-112						

Client Sample ID: MW-B3 York Sample ID: 1110545-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110545Rowe IndustriesWaterSeptember 14, 2011 10:05 am09/15/2011

	Volatile Organics, 8260 List Sample Prepared by Method: EPA 5030B				<u>I</u>	Log-in		Sample Notes:				
CAS No.	Parameter Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
67-64-1	Acetone	5.0	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS	

Client Sample ID: MW-B3 York Sample ID: 1110545-03

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0545 Rowe Industries Water September 14, 2011 10:05 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
75-09-2	Methylene chloride	4.8	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 05:03	09/21/2011 05:03	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.0 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	104 %			86.7-112						

Client Sample ID: FB-GA91411 York Sample ID: 1110545-04

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0545 Rowe Industries Water September 14, 2011 10:00 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
67-64-1	Acetone	5.3	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS

Client Sample ID: FB-GA91411 York Sample ID: 1110545-04

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0545 Rowe Industries Water September 14, 2011 10:00 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-09-2	Methylene chloride	4.9	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 05:39	09/21/2011 05:39	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.8 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	104 %			86.7-112						

Client Sample ID: MW-B2 York Sample ID: 1110545-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110545Rowe IndustriesWaterSeptember 14, 2011 10:40 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
67-64-1	Acetone	4.0	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS

Client Sample ID: MW-B2 York Sample ID: 1110545-05

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0545 Rowe Industries Water September 14, 2011 10:40 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-09-2	Methylene chloride	4.4	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 06:15	09/21/2011 06:15	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.1 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: MW-B4 York Sample ID: 1110545-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110545Rowe IndustriesWaterSeptember 14, 2011 11:10 am09/15/2011

	anics, 8260 List				<u>I</u>	.og-in]		Sample Notes:			
Sample Prepared by	v Method: EPA 5030B Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
67-64-1	Acetone	4.9	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS

Client Sample ID: MW-B4 York Sample ID: 1110545-06

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0545 Rowe Industries Water September 14, 2011 11:10 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-09-2	Methylene chloride	5.4	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 06:51	09/21/2011 06:51	SS
	Surrogate Recoveries	Result			eptance R						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.8 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Analytical Batch Summary

Batch ID: BI10715	Preparation Method:	EPA 5030B	Prepared By:	AY
YORK Sample ID	Client Sample ID	Preparation Date		
11I0545-01	MW-42B	09/21/11		
1110545-02	MW-B1	09/21/11		
1110545-03	MW-B3	09/21/11		
1110545-04	FB-GA91411	09/21/11		
1110545-05	MW-B2	09/21/11		
1110545-06	MW-B4	09/21/11		
BI10715-BLK1	Blank	09/20/11		
BI10715-BS1	LCS	09/20/11		
BI10715-BSD1	LCS Dup	09/20/11		

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10715 - EPA 5030B				
Blank (BI10715-BLK1)				Prepared & Analyzed: 09/20/2011
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	m .	
1,1-Dichloroethane	ND	5.0	m .	
1,1-Dichloroethylene	ND	5.0	"	
1,1-Dichloropropylene	ND	5.0	m .	
1,2,3-Trichlorobenzene	ND	10	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	10	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	10	"	
1,2-Dibromoethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
2-Butanone	ND	10	"	
2-Chlorotoluene	ND	5.0	"	
2-Hexanone	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Acetone	4.8	10	"	
Benzene	ND	5.0	"	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0		
Chloromethane	ND	5.0	"	
cis-1,2-Dichloroethylene	ND	5.0	"	
cis-1,3-Dichloropropylene	ND	5.0	"	
Dibromochloromethane Dibromomethane	ND ND	5.0	"	
	ND ND	5.0	"	
Dichlorodifluoromethane		5.0	"	
Ethyl Benzene Hexachlorobutadiene	ND ND	5.0 5.0	"	
	ND ND	5.0	"	
Isopropylbenzene Methyl tert-butyl ether (MTBE)	ND ND	5.0	"	
Methylene chloride	5.0	10	"	
Naphthalene	5.0 ND	10	"	
n-Butylbenzene	ND ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
o-Xylene	ND	5.0	"	
p- & m- Xylenes	ND	10	"	
p- & III- Ayleties	MD	10		

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10715 - EPA 5030B					
Blank (BI10715-BLK1)				Prepared	d & Analyzed: 09/20/2011
-Isopropyltoluene	ND	5.0 ug/L			
ec-Butylbenzene	ND	5.0 "			
tyrene	ND	5.0 "			
ert-Butylbenzene	ND	5.0 "			
etrachloroethylene	ND	5.0 "			
oluene	ND	5.0 "			
ans-1,2-Dichloroethylene	ND	5.0 "			
ans-1,3-Dichloropropylene	ND	5.0 "			
richloroethylene	ND	5.0 "			
richlorofluoromethane	ND	5.0 "			
inyl Chloride	ND	5.0 "			
ylenes, Total	ND	15 "			
urrogate: 1,2-Dichloroethane-d4	50.9	"	50.0	102	75.7-121
urrogate: p-Bromofluorobenzene	48.7	"	50.0	97.5	71.3-131
urogate: p-Bromojtuorobenzene urrogate: Toluene-d8	51.7	"	50.0	103	86.7-112
_	31./		50.0		
CS (BI10715-BS1)					d & Analyzed: 09/20/2011
1,1,2-Tetrachloroethane	57	ug/L	50.0	114	82.3-130
1,1-Trichloroethane	51	"	50.0	101	75.6-137
1,2,2-Tetrachloroethane	56	"	50.0	113	71.3-131
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	52	"	50.0	103	71.1-129
1,2-Trichloroethane	56	"	50.0	112	74.5-129
I-Dichloroethane	51	"	50.0	102	79.6-132
I-Dichloroethylene	53	"	50.0	105	80.2-146
1-Dichloropropylene	51	"	50.0	102	75-136
2,3-Trichlorobenzene	51	"	50.0	103	66.1-136
2,3-Trichloropropane	58	"	50.0	115	63-131
2,4-Trichlorobenzene	49	"	50.0	97.1	70.6-136
2,4-Trimethylbenzene	58	"	50.0	115	75.3-135
2-Dibromo-3-chloropropane	50	"	50.0	99.2	58.9-140
2-Dibromoethane	59	"	50.0	118	79-130
2-Dichlorobenzene	53	"	50.0	106	76.1-122
2-Dichloroethane	50	"	50.0	101	74.6-132
2-Dichloropropane	54	"	50.0	107	76.9-129
3,5-Trimethylbenzene	55	"	50.0	109	70.6-127
3-Dichlorobenzene	53	"	50.0	107	77-124
3-Dichloropropane	56	"	50.0	112	75.8-126
4-Dichlorobenzene	54	"	50.0	108	76.6-125
2-Dichloropropane	48	"	50.0	96.6	69-133
Butanone	42	"	50.0	84.2	70-130
Chlorotoluene	51	"	50.0	102	66.3-119
Hexanone	50	"	50.0	99.9	70-130
Chlorotoluene	54	"	50.0	109	69.2-127
eetone	32	"	50.0	64.2	70-130 Low Bias
enzene	52	"	50.0	105	76.2-129
romobenzene	56	"	50.0	112	71.3-123
romochloromethane	49	"	50.0	97.6	70.8-137
romodichloromethane	55	"	50.0	110	79.7-134
romoform	59	"	50.0	118	70.5-141
romomethane	44	"	50.0	88.1	43.9-147
arbon tetrachloride	52	"	50.0	104	78.1-138
hlorobenzene	55	"	50.0	110	80.4-125
	.).)		JUJU	110	07.7-14.7

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

CS (BI10715-BS1)				Prepare	d & Analyzed: 09/20/2011
hloroform	51	ug/L	50.0	103	76.6-133
hloromethane	35	"	50.0	70.7	48.8-115
s-1,2-Dichloroethylene	51	"	50.0	102	75.1-128
s-1,3-Dichloropropylene	51	"	50.0	102	74.5-128
ibromochloromethane	57	"	50.0	114	79.8-134
bromomethane	56	"	50.0	112	79-130
chlorodifluoromethane	32	"	50.0	64.0	47.1-101
yl Benzene	58	"	50.0	116	80.8-128
achlorobutadiene	48	"	50.0	96.9	64.8-128
ropylbenzene	60	"	50.0	120	75.5-135
hyl tert-butyl ether (MTBE)	54	"	50.0	108	65.1-140
hylene chloride	42	"	50.0	84.1	61.3-120
thalene	58	"	50.0	116	62.3-148
ylbenzene	49	"	50.0	97.6	67.2-123
pylbenzene	56	"	50.0	112	70.5-127
ene	54	"	50.0	108	75.9-122
n- Xylenes	110	"	100	112	77.7-127
propyltoluene	56	"	50.0	112	75.6-129
utylbenzene	56	"	50.0	112	71.5-125
ne	53	"	50.0	107	77.8-123
Butylbenzene	61	"	50.0	122	75.9-151
achloroethylene	66	"	50.0	132	63.6-167
ene	55	"	50.0	110	77-123
s-1,2-Dichloroethylene	51	"	50.0	102	76.3-139
-1,3-Dichloropropylene	54	"	50.0	108	72.5-137
aloroethylene	53	"	50.0	107	77.9-130
llorofluoromethane	44	"	50.0	87.6	57.4-133
d Chloride	37	"	50.0	74.9	54.9-124
gate: 1,2-Dichloroethane-d4	50.5	"	50.0	101	75.7-121
ogate: p-Bromofluorobenzene	49.7	"	50.0	99.4	71.3-131
ate: Toluene-d8	51.6	"	50.0	103	86.7-112

York Analytical Laboratories, Inc.

		TOTK Allary								n	
		Reporting		Spike	Source*	WREG	%REC	El	DDD	RPD	El
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10715 - EPA 5030B											
LCS Dup (BI10715-BSD1)						Prepare	d & Analyzed	d: 09/20/2011			
1,1,1,2-Tetrachloroethane	56		ug/L	50.0		111	82.3-130		2.72	21.1	
1,1,1-Trichloroethane	51		"	50.0		102	75.6-137		0.453	19.7	
1,1,2,2-Tetrachloroethane	53		"	50.0		106	71.3-131		6.49	20.8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	50		"	50.0		101	71.1-129		2.66	21.7	
113)											
1,1,2-Trichloroethane	53		"	50.0		106	74.5-129		4.88	20.3	
1,1-Dichloroethane	51		"	50.0		101	79.6-132		0.883	20.6	
1,1-Dichloroethylene	53		"	50.0		106	80.2-146		0.587	20	
1,1-Dichloropropylene	50		"	50.0		101	75-136		0.889	19.3	
1,2,3-Trichlorobenzene	53		"	50.0		106	66.1-136		3.03	21.6	
1,2,3-Trichloropropane	57		"	50.0		114	63-131		1.48	23.9	
1,2,4-Trichlorobenzene	51		"	50.0		101	70.6-136		4.31	21.7	
1,2,4-Trimethylbenzene	57		"	50.0		115	75.3-135		0.661	18.8	
1,2-Dibromo-3-chloropropane	52		"	50.0		103	58.9-140		4.11	27.7	
1,2-Dibromoethane	58		"	50.0		115	79-130		2.37	23	
1,2-Dichlorobenzene	53		"	50.0		106	76.1-122		0.170	19.8	
1,2-Dichloroethane	50		"	50.0		99.0	74.6-132		2.00	20.2	
1,2-Dichloropropane	53		"	50.0		106	76.9-129		1.28	20.7	
1,3,5-Trimethylbenzene	54		"	50.0		108	70.6-127		0.937	18.9	
1,3-Dichlorobenzene	53		"	50.0		107	77-124		0.300	19.2	
1,3-Dichloropropane	55		"	50.0		111	75.8-126		0.774	22.1	
1,4-Dichlorobenzene	54		"	50.0		107	76.6-125		0.372	18.6	
2,2-Dichloropropane	47		"	50.0		94.7	69-133		2.05	19.8	
2-Butanone	42		"	50.0		83.1	70-130		1.36	30	
2-Chlorotoluene	50		"	50.0		99.7	66.3-119		1.81	21.6	
2-Hexanone	49		"	50.0		98.3	70-130		1.57	30	
4-Chlorotoluene	54		"	50.0		109	69.2-127		0.147	19	
Acetone	32		"	50.0		63.2	70-130	Low Bias	1.60	30	
Benzene	52		"	50.0		103	76.2-129		1.88	19	
Bromobenzene	54		"	50.0		109	71.3-123		2.52	20.3	
Bromochloromethane	49		"	50.0		97.5	70.8-137		0.144	23.9	
Bromodichloromethane	54		"	50.0		108	79.7-134		1.68	21	
Bromoform	57		"	50.0		115	70.5-141		2.87	21.8	
Bromomethane	42		"	50.0		84.5	43.9-147		4.20	28.4	
Carbon tetrachloride	50		"	50.0		101	78.1-138		3.19	20.1	
Chlorobenzene	54		"	50.0		108	80.4-125		2.11	19.9	
Chloroethane	42		"	50.0		84.5	55.8-140		0.448	23.3	
Chloroform	51		"	50.0		101	76.6-133		1.39	20.3	
Chloromethane	35		"	50.0		70.6	48.8-115		0.255	24.5	
cis-1,2-Dichloroethylene	50		"	50.0		101	75.1-128		0.514	20.5	
cis-1,3-Dichloropropylene	50		"	50.0		101	74.5-128		1.67	19.9	
Dibromochloromethane	56		"	50.0		111	79.8-134		2.04	21.3	
Dibromomethane	55		"	50.0		111	79-130		1.42	22.4	
Dichlorodifluoromethane	32		"	50.0		64.5	47.1-101		0.810	23.9	
Ethyl Benzene	57		"	50.0		114	80.8-128		1.72	19.2	
Hexachlorobutadiene	51		"	50.0		102	64.8-128		4.77	20.6	
Isopropylbenzene	59		"	50.0		117	75.5-135		2.80	20	
Methyl tert-butyl ether (MTBE)	54		"	50.0		108	65.1-140		0.00	23.6	
Methylene chloride	42		"	50.0		83.8	61.3-120		0.381	20.4	
Naphthalene	60		"	50.0		119	62.3-148		3.20	27.1	
n-Butylbenzene	50		"	50.0		99.4	67.2-123		1.81	19.1	
D 11									0.000	22.4	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

50.0

50.0

100

111

106

111

70.5-127

75.9-122 77.7-127

56

53

110

n-Propylbenzene

p- & m- Xylenes

o-Xylene

23.4

19.3

18.6

0.806

1.23

0.655

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10715 - EPA 5030B											
LCS Dup (BI10715-BSD1)						Prepare	d & Analyzed	: 09/20/2011			
p-Isopropyltoluene	56		ug/L	50.0		111	75.6-129		0.467	19.1	
sec-Butylbenzene	55		"	50.0		110	71.5-125		1.68	18.9	
Styrene	53		"	50.0		106	77.8-123		1.17	20.9	
tert-Butylbenzene	60		"	50.0		119	75.9-151		1.91	20.9	
Tetrachloroethylene	66		"	50.0		133	63.6-167		1.03	27.7	
Toluene	54		"	50.0		109	77-123		1.22	18.7	
trans-1,2-Dichloroethylene	51		"	50.0		102	76.3-139		0.176	19.5	
trans-1,3-Dichloropropylene	53		"	50.0		105	72.5-137		2.42	19.3	
Trichloroethylene	53		"	50.0		106	77.9-130		0.619	20.5	
Trichlorofluoromethane	43		"	50.0		85.8	57.4-133		2.05	21.4	
Vinyl Chloride	36		"	50.0		72.2	54.9-124		3.73	22.3	
Surrogate: 1,2-Dichloroethane-d4	50.6		"	50.0		101	75.7-121				
Surrogate: p-Bromofluorobenzene	49.9		"	50.0		99.8	71.3-131				
Surrogate: Toluene-d8	51.8		"	50.0		104	86.7-112				

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

RPD

Notes and Definitions

J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

Corrective Action:

ANALYTICAL LABORATORIES, INC.
120 RESEARCH DR. STRATFORD, CT 06615
(203) 325-1371 FAX (203) 357-0166

Field Chai

NOTE: York's Std. Tem This document serves as your writte signature binds you to York's

ms & Conditions are listed on the back side of this document. Tork Project No. // I o 545 Tork Project No. // I o 545 York Project No. // I o 545 York Project No. // I o 545	in-of-Custody Record	Page of
		ork Project No. 1170545

YOUR Information	Report To:	:0	Invoice To:	YOUR Project ID	Turn-Around Time	Report Type/Deliverbles	rbles
	Company: Som	16 Company:	Same	Rowe	RUSH - Same Day	Summary Report	×
4 Reports Nive	Address:	Address:		Industries	RUSH - Next Day	CT RCP Package	
	1			Purchase Order No.	RUSH - Two Day RUSH - Three Day	NY ASP A Package NY ASP B Package	
	Phone No.	Phone No.	Mark Colobera		RUSH - Four Day	Electronic Deliverables:	
Contact Person: 1 UNO CONTACT AND CONTACT	Attention	E Mail 4		Samples from: CT NY NJ	Standard(5-7 Days)	Excel X	
E-Mail Address: Cock Cock Cock Mail Address:	Mail Address:	C-Mail	Volatiles Semi	Semi-Vols PearPCBHert Metals Misc. Org.	Full Lists	Common Miscellaneous Parameters Special	cial
Print Clearly and Legibly, 44 Information must be compiled.	marionimista j	st hosomplete	8260 full TICs	RCRA8	Corrosivity Nitrate	Color	ctions
Samples will NOI be logged in und ine turn around time	an and lag tar	<i>11-0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0</i>	624 Site Spec. STARS list Nassau Co.	BN Only 8151 Herb TAL CT ETPH	TAL MedON Ignitability	Cyanide-T	ored
clock will not begin until any questions in Tork archiesolvea	tot to suousenb	n arearesolved	BTEX Suffolk Co.	ly CTRCP CT15 list	Full TCLP Flash Point		<u> </u>
		Matrix Codes S - soil	MTBE Ketones PAH list TCL list Oxygenates TAGM list	st Site Spec. NJDEP list	Full App. LX Part 360-Routine	z,	
Joseph Market College	On (Cignothino)	Other - specify(oil, etc.) WW - wastewater	TAGM list TCLP list	CT RCP list SPLP of TCLP Total Air TO15	5 Part 360 Basetine TOX Phosphate RS Part 360 Basetine TOX Tot. Phos.	hate BOD28 Loss COD	
Samples Collected/Authorized by (Signature)	oy (oigilatule)	GW - groundwater	Arom, only 502.2	st TCLP Herb SPLPaTCLP	Part 360 comme Aquatic Tox.	rease Tease	
Carrett Acmbuste	25 66	DW - drinking water; Air-A - ambient air Air-SV - soil vapor	Halog.only NIDEP list App.IX list SPLPGTCLP	App. IX Chlordane tata. Air TICs TCLP BNA 608 Pest LIST Below Methane SER BOATTY B. GARB BOTTY B. LIST Below Methane List Below Methane		Total Solids TDS TPH-1644	
Sample Identification	Date Sampled	Sample Matrix	Choose Analyses	om the Me	bove and Enter Below		
SICH-WIM	9-14-11/63	<u>چ</u>	326	Fall List		2x 10cm	
(A). 1-RI			-			•	
TW-RY	528						
FB-GA9141	8						
MW B	350						
HM-B4	0111						
	·					,	
Pa		>				3	
Somments		Preservation	4°C Frozen ZnAc	HCI MeOH HNO	H,SO, NaOH	Temperature	rature
23 of		CIRCLE COSC OF PRINCESON	V	,	1-6 Med >1	9-15-11 8m on Receipt	ceipt
23	• •		Samples Relinquished By	3y Date/Time Sample	Received By 7.5	Date/Time 4.4°C	ر ئر
]	4		Samples Relinquished By		AB by	-	

Technical Report

prepared for:

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Report Date: 09/21/2011

Client Project ID: Rowe Industries York Project (SDG) No.: 1110546

CT License No. PH-0723

New Jersey License No. CT-005

New York License No. 10854

PA License No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 14

Report Date: 09/21/2011 Client Project ID: Rowe Industries York Project (SDG) No.: 11I0546

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 15, 2011 and listed below. The project was identified as your project: **Rowe Industries**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
1110546-01	N-38	Water	09/13/2011	09/15/2011
1110546-02	N-39	Water	09/13/2011	09/15/2011

General Notes for York Project (SDG) No.: 1110546

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Robert Q. Bradley

fourt & Jeadley

Executive Vice President / Laboratory Director

YORK

09/21/2011

Date:

Client Sample ID: N-38 York Sample ID: 1110546-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0546Rowe IndustriesWaterSeptember 13, 2011 10:35 am09/15/2011

Volatile Organics, 8260 List
Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
67-64-1	Acetone	5.8	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 3 of 14

Client Sample ID: N-38 York Sample ID: 1110546-01

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0546 Rowe Industries Water September 13, 2011 10:35 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-09-2	Methylene chloride	4.6	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 07:27	09/21/2011 07:27	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.2 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: N-39 York Sample ID: 1110546-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110546Rowe IndustriesWaterSeptember 13, 2011 11:15 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
67-64-1	Acetone	3.6	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS

Client Sample ID: N-39 York Sample ID: 1110546-02

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0546 Rowe Industries Water September 13, 2011 11:15 am

Volatile Organics, 8260 List

Log-in Notes: Sample Prepared by Method: EPA 5030B

Sam	1 .	TAT -	4

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-09-2	Methylene chloride	4.6	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/21/2011 08:03	09/21/2011 08:03	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.2 %			71.3-131						
17060-07-0 460-00-4 2037-26-5	-										

Analytical Batch Summary

Batch ID: BI10715	Preparation Method:	EPA 5030B	Prepared By:	AY
YORK Sample ID	Client Sample ID	Preparation Date		
11I0546-01	N-38	09/21/11		
11I0546-02	N-39	09/21/11		
BI10715-BLK1	Blank	09/20/11		
BI10715-BS1	LCS	09/20/11		
BI10715-BSD1	LCS Dup	09/20/11		

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BI10715-BLK1)				Prepared & Analyzed: 09/20/2011
,1,1,2-Tetrachloroethane	ND	5.0	na/I	110pared & 1 mary 20d. 07/20/2011
,1,1-Trichloroethane	ND ND	5.0	ug/L	
,1,2,2-Tetrachloroethane	ND	5.0	"	
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	5.0	"	
3)	ND	5.0		
2-Trichloroethane	ND	5.0	"	
-Dichloroethane	ND	5.0	"	
-Dichloroethylene	ND	5.0	"	
-Dichloropropylene	ND	5.0	"	
,3-Trichlorobenzene	ND	10	"	
,3-Trichloropropane	ND	5.0	"	
34-Trichlorobenzene	ND	10	"	
,4-Trimethylbenzene	ND	5.0	"	
-Dibromo-3-chloropropane	ND	10	"	
-Dibromoethane	ND	5.0	"	
-Dichlorobenzene	ND ND	5.0	"	
Dichloroethane	ND	5.0	"	
Dichloropropane	ND	5.0	"	
,5-Trimethylbenzene	ND ND	5.0	"	
Dichlorobenzene	ND ND	5.0	"	
Dichloropropane	ND ND	5.0	"	
Dichlorobenzene	ND	5.0	"	
Dichloropropane	ND ND	5.0	"	
tanone	ND ND	10	"	
orotoluene	ND ND	5.0	"	
xanone	ND ND	5.0	"	
orotoluene	ND	5.0	"	
one	4.8	10	"	
ene	ND	5.0	"	
nobenzene	ND ND	5.0	"	
nochloromethane	ND ND	5.0	"	
nodichloromethane	ND ND	5.0	"	
nodicinoromethane noform	ND ND	5.0	"	
nonorm	ND ND	5.0	"	
nometnane oon tetrachloride	ND ND	5.0	"	
orobenzene	ND ND	5.0		
proethane	ND ND	5.0	"	
proform	ND ND	5.0		
oromethane	ND ND	5.0	"	
1,2-Dichloroethylene	ND ND	5.0	"	
,3-Dichloropropylene	ND ND	5.0	"	
romochloromethane	ND ND	5.0	"	
omomethane	ND	5.0	"	
llorodifluoromethane	ND	5.0	"	
l Benzene	ND	5.0	"	
achlorobutadiene	ND	5.0	"	
ropylbenzene	ND	5.0	"	
nyl tert-butyl ether (MTBE)	ND	5.0	"	
ylene chloride	5.0	10		
nthalene	ND	10	"	
ıtylbenzene	ND	5.0	"	
ropylbenzene	ND	5.0	"	
lene	ND	5.0	"	
m- Xylenes	ND	10	"	

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10715 - EPA 5030B											
Blank (BI10715-BLK1)						Prepared	d & Analyzed	1: 09/20/2011	1		
p-Isopropyltoluene	ND	5.0	ug/L								

Polymorphotene	Blank (BI10715-BLK1)				Prepare	d & Analyzed: 09/20/2011
No.	p-Isopropyltoluene	ND	5.0 ug/	L		
SerBenythecate ND	sec-Butylbenzene	ND	5.0 "			
Transmisser No	Styrene	ND	5.0 "			
Totaline No	tert-Butylbenzene	ND	5.0 "			
No.	Tetrachloroethylene	ND	5.0 "			
No. No.	Toluene	ND	5.0 "			
Trichlumethylene	trans-1,2-Dichloroethylene	ND	5.0 "			
Title Incomponentame ND 5.0 " Nyll Charled ND 5.0 " Sylenes, Total ND 15 " Wing Charled ND 15 " Surrogate, 1-2-Incidence thane-del 19.7 " 30.0 97.5 71.3-12 Surrogate, 1-2-Incidence thane-del 19.7 " 30.0 97.5 71.3-12 Incidence thane-del 19.7 " 19.0 50.0 10.8 85.7 1.2-12-11 I.L. 2-Tertachrochema 57 " 19.1 Sool 11.4 75.6-137 1.4-11-11-11 1.1-11-11-11 1.1-11-11-11 1.1-11-11-11 1.1-11-11-11 1.1-11-11-11-11 1.1-11-11-11-11-11 1.1-11-11-11-11 1.1-11-11-11-11-11 1.1-11-11-11-11-11-11-11-11-11-11-11-11-	trans-1,3-Dichloropropylene	ND	5.0 "			
Name	Trichloroethylene	ND	5.0 "			
Note Note	Trichlorofluoromethane	ND	5.0 "			
Surrogate: 1.2-Dickhorochane-44 50.9 * 50.0 102 73.7-121 Surrogate: Dichomofhorochanece 48.7 * 50.0 97.3 71.3-131 Surrogate: Dichomofhorochanece 51.7 * 50.0 114 82.3-130 LCS (B110715-RS1) * * 50.0 114 82.3-130 1,1,1-2.Terlanchorochane 56 * 50.0 113 71.3-131 1,1,2-2.Terlanchorochane (From 52 * 50.0 113 71.3-131 1,1,2-2.Terlanchorochane (From 52 * 50.0 102 79.6-132 1,1,1-2.Terlahorochane (From 52 * 50.0 102 79.6-132 1,1-Dichlorochane 56 * 50.0 102 79.6-132 1,1-Dichlorochane 51 * 50.0 102 79.6-132 1,1-Dichlorochane 51 * 50.0 102 79.6-132 1,1-Dichlorochane 51 * 50.0 102 79.6-132<	Vinyl Chloride	ND	5.0 "			
Survague Phomoshiomhometer 48.7 " 50.0 97.5 73.513	Xylenes, Total	ND	15 "			
Normalize Sulfort Su	Surrogate: 1,2-Dichloroethane-d4	50.9	"	50.0	102	75.7-121
No. 100	Surrogate: p-Bromofluorobenzene	48.7	"	50.0	97.5	71.3-131
1,1,1-7 etrachlorochane	Surrogate: Toluene-d8	51.7	"	50.0	103	86.7-112
1,1,1-7 etrachlorochane	_				Dronoro	d & Anglyzadi 00/20/2011
1,1 1,1 1,1 1,2 1,1 1,2 1,1 1,2 1,1 1,2 1,1 1,2 1,1 1,2 1,1			-			
13 13 14 15						
1,1 1,1		52	"	50.0	103	71.1-129
		57		50.0	112	74.5.120
1,1-Dichlorodrylene						
1,1-Dichloropropulene						
1,2,3-Trichlorobrezee	- · · · · · · · · · · · · · · · · · · ·					
1,2,3-Trichloropropane 58 " 500 97.1 70.6-136 1,2,4-Trinchlorobenzene 49 " 500 97.1 70.6-136 1,2,4-Trinethylbenzene 58 " 500 97.2 75.3-135 1,2-Dibromod-schloropropane 50 " 500 115 79-130 1,2-Dibromodethane 59 " 500 118 79-130 1,2-Dichlorobenzene 50 " 500 106 76.1-122 1,2-Dichlorobenzene 50 " 500 107 76.9-122 1,2-Dichloroperopane 54 " 500 107 76.9-122 1,3-Dichloroperopane 53 " 500 107 77.2-12 1,3-Dichloroperopane 56 " 500 107 77.2-12 1,4-Dichloroperopane 56 " 500 109 76.6-12 1,4-Dichloroperopane 48 " 500 82 76.913 2,2-Dichloroperopane 48 " 500 82 76.913 2,-Dichloroperopane 49 " 500 82 76.913 4,-Dichloroperopane<						
1,2,4-Trichlorobenzene 49 50.0 97.1 70.6-136 1,2,4-Trimethylbenzene 58 50.0 115 75.3-135 1,2-Dibromo-3-chloropropane 50 50.0 99.2 58.9-14 1,2-Dibromethane 59 50.0 118 79-130 1,2-Dichlorobenzene 53 50.0 106 76.1-122 1,2-Dichloroptopane 54 50.0 107 76-9-129 1,3-Dichloroptopane 54 50.0 107 76-9-129 1,3-Dichlorobenzene 53 60.0 107 76-9-129 1,3-Dichlorobenzene 53 60.0 107 77-124 1,3-Dichlorobenzene 53 70.0 107 77-124 1,4-Dichlorobenzene 54 50.0 107 77-124 1,4-Dichlorobenzene 54 50.0 96.6 69-133 2-Butanone 54 50.0 96.6 69-133 2-Butanone 51 50.0 102 66.3-19 2-Hexanone						
1,2,4-Trimethylbenzene 58 " 500 115 75.3-135 1,2-Dibromo-3-chloroproprane 50 " 500 99.2 88.9-140 1,2-Dibromo-schloroproprane 50 " 500 118 79-130 1,2-Dichlorobenzene 53 " 500 106 76.1-122 1,2-Dichloropropane 54 " 500 107 76.9-129 1,3-S-Trimethylbenzene 55 " 500 107 76.9-129 1,3-Dichloropropane 54 " 500 107 77.124 1,3-Dichloropropane 56 " 500 107 77.124 1,4-Dichloropropane 54 " 500 108 76.9-125 1,4-Dichloropropane 54 " 500 108 76.9-125 1,4-Dichloropropane 48 " 500 108 76.9-125 2-Butanone 50 " 500 96.6 69-313 2-Hexanone 50 " 500 99 70-130 4-Chlorotoluene 54 " 500 99 70-130						
1,2-Dibromoethane	- · · ·					
1,2-Dichlorobenzene 53 " 50.0 106 76.1-12 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2						
1,2-Dichloroethane 50 " 50.0 101 74.6-132 1.2-Dichloropropane 54 " 50.0 107 76.9-129 1.2-Dichloropropane 55 " 50.0 109 70.6-127 7.2-L 1.3-Dichlorobenzene 55 " 50.0 109 70.6-127 7.2-L 1.3-Dichlorobenzene 56 " 50.0 112 75.8-126 7.2-L 7.2-						
1,2-Dichloropropane 54 " 50.0 107 76.9-129 1,3,5-Trimethylbenzene 55 " 50.0 109 70.6-127 1,3-Dichlorobenzene 53 " 50.0 107 77.124 1,3-Dichloropropane 56 " 50.0 112 75.924 1,4-Dichloropropane 54 " 50.0 108 76.6-125 2,2-Dichloropropane 48 " 50.0 96.6 69-133 2-Butanone 42 " 50.0 84.2 70-130 2-Hexanone 51 " 50.0 99.9 70-130 2-Hexanone 50 " 50.0 102 66.3-119 4-Chlorotoluene 54 " 50.0 109 69.2-127 4-Chlorotoluene 52 " 50.0 109 69.2-127 Benzene 52 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 110						
1,3,5-Trimethylbenzene						
1,3-Dichlorobenzene 53 " 50.0 107 77-124 1,3-Dichloropropane 56 " 50.0 108 76.6-125 1,4-Dichloropropane 54 " 50.0 108 76.6-125 2,2-Dichloropropane 48 " 50.0 84.2 70-130 2-Butanone 42 " 50.0 84.2 70-130 2-Chlorotluene 51 " 50.0 99.9 70-130 2-Hexanone 50 " 50.0 99.9 70-130 4-Chlorotluene 51 " 50.0 109 69.2-127 4-Chlorotluene 54 " 50.0 109 69.2-127 4-Chlorotluene 52 " 50.0 105 76.2-129 Bromobenzene 56 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 97.6 70.8-137 Bromochloromethane 59 " 50.0 110 79.7-134 Bromochloromethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 105 70.0 105 70.0-138 Chlorobenzene 55 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 105 105 105 105						
1,3-Dichloropropane 56						
1,4-Dichlorophopane						
1,4-10-link of the lates 1,4-10-link of the						
2-Butanone 42 " 50.0 84.2 70-130 2-Chlorotoluene 51 " 50.0 102 66.3-119 2-Hexanone 50 " 50.0 99.9 70-130 4-Chlorotoluene 54 " 50.0 109 69.2-127 Acetone 32 " 50.0 64.2 70-130 Low Bias Benzene 52 " 50.0 105 76.2-129 Bromoehloromethane 49 " 50.0 97.6 70.8-137 Bromodichloromethane 55 " 50.0 110 79.7-134 Bromoform 59 " 50.0 18 70.5-141 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 104 78.1-138						
2-Chlorotoluene 51 " 50.0 102 66.3-119 2-Hexanone 50 " 50.0 99.9 70-130 4-Chlorotoluene 54 " 50.0 109 69.2-127 Acetone 32 " 50.0 64.2 70-130 Low Bias Benzene 52 " 50.0 105 76.2-129 Bromobenzene 56 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 112 71.3-123 Bromodichloromethane 55 " 50.0 110 79.7-134 Bromoform 59 " 50.0 111 79.7-134 Bromomethane 44 " 50.0 118 70.5-141 Bromomethane 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 104 78.1-138						
2-Hexanone 50 " 50.0 99.9 70-130 4-Chlorotoluene 54 " 50.0 109 69.2-127 Acetone 32 " 50.0 64.2 70-130 Low Bias Benzene 52 " 50.0 105 76.2-129 Bromobenzene 56 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 97.6 70.8-137 Bromoform 55 " 50.0 110 79.7-134 Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
4-Chlorotoluene 54 " 50.0 109 69.2-127 Acetone 32 " 50.0 64.2 70-130 Low Bias Benzene 52 " 50.0 105 76.2-129 Bromobenzene 56 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 97.6 70.8-137 Bromoform 55 " 50.0 110 79.7-134 Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
4-Cetone 32 " 50.0 64.2 70-130 Low Bias Benzene 52 " 50.0 105 76.2-129 Bromobenzene 56 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 97.6 70.8-137 Bromoform 55 " 50.0 110 79.7-134 Bromomethane 44 " 50.0 118 70.5-141 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Benzene 52 " 50.0 105 76.2-129 Bromobenzene 56 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 97.6 70.8-137 Bromodichloromethane 55 " 50.0 110 79.7-134 Bromoform 59 " 50.0 118 70.5-141 Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Bromobenzene 56 " 50.0 112 71.3-123 Bromochloromethane 49 " 50.0 97.6 70.8-137 Bromodichloromethane 55 " 50.0 110 79.7-134 Bromoform 59 " 50.0 118 70.5-141 Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Bromochloromethane 49 " 50.0 97.6 70.8-137 Bromodichloromethane 55 " 50.0 110 79.7-134 Bromoform 59 " 50.0 118 70.5-141 Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Bromodichloromethane 45 50.0 97.0 70.8-137 Bromoform 55 " 50.0 110 79.7-134 Bromomethane 59 " 50.0 118 70.5-141 Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Bromoform 59 " 50.0 118 70.5-141 Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Bromomethane 44 " 50.0 88.1 43.9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Broinchietiane 44 50.0 86.1 43,9-147 Carbon tetrachloride 52 " 50.0 104 78.1-138 Chlorobenzene 55 " 50.0 110 80.4-125						
Chlorobenzene 55 " 50.0 110 80.4-125						
Chloroethane 42 " 50.0 84.9 55.8-140						
	Chloroethane	42	"	50.0	84.9	55.8-140

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BI10715-BS1)				Prepare	ed & Analyzed: 09/20/2011
Chloroform	51	ug/L	50.0	103	76.6-133
Chloromethane	35	"	50.0	70.7	48.8-115
cis-1,2-Dichloroethylene	51	"	50.0	102	75.1-128
cis-1,3-Dichloropropylene	51	"	50.0	102	74.5-128
Dibromochloromethane	57	"	50.0	114	79.8-134
Dibromomethane	56	"	50.0	112	79-130
Dichlorodifluoromethane	32	"	50.0	64.0	47.1-101
Ethyl Benzene	58	"	50.0	116	80.8-128
Hexachlorobutadiene	48	"	50.0	96.9	64.8-128
Isopropylbenzene	60	"	50.0	120	75.5-135
Methyl tert-butyl ether (MTBE)	54	"	50.0	108	65.1-140
Methylene chloride	42	"	50.0	84.1	61.3-120
Naphthalene	58	"	50.0	116	62.3-148
n-Butylbenzene	49	"	50.0	97.6	67.2-123
n-Propylbenzene	56	"	50.0	112	70.5-127
o-Xylene	54	"	50.0	108	75.9-122
p- & m- Xylenes	110	"	100	112	77.7-127
p-Isopropyltoluene	56	"	50.0	112	75.6-129
sec-Butylbenzene	56	"	50.0	112	71.5-125
Styrene	53	"	50.0	107	77.8-123
tert-Butylbenzene	61	"	50.0	122	75.9-151
Tetrachloroethylene	66	"	50.0	132	63.6-167
Toluene	55	"	50.0	110	77-123
trans-1,2-Dichloroethylene	51	"	50.0	102	76.3-139
trans-1,3-Dichloropropylene	54	"	50.0	108	72.5-137
Trichloroethylene	53	"	50.0	107	77.9-130
Trichlorofluoromethane	44	"	50.0	87.6	57.4-133
Vinyl Chloride	37	"	50.0	74.9	54.9-124
Surrogate: 1,2-Dichloroethane-d4	50.5	"	50.0	101	75.7-121
Surrogate: p-Bromofluorobenzene	49.7	"	50.0	99.4	71.3-131
Surrogate: Toluene-d8	51.6	"	50.0	103	86.7-112

York Analytical Laboratories, Inc.

	_	OFK Allaly								RPD	
A 1.	D 1	Reporting	TT '	Spike	Source*	0/DEC	%REC	Elec	DDD		Elec
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10715 - EPA 5030B											
LCS Dup (BI10715-BSD1)						Prepare	d & Analyze	d: 09/20/2011			
1,1,1,2-Tetrachloroethane	56		ug/L	50.0		111	82.3-130		2.72	21.1	
1,1,1-Trichloroethane	51		"	50.0		102	75.6-137		0.453	19.7	
1,1,2,2-Tetrachloroethane	53		"	50.0		106	71.3-131		6.49	20.8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	50		"	50.0		101	71.1-129		2.66	21.7	
113)											
1,1,2-Trichloroethane	53		"	50.0		106	74.5-129		4.88	20.3	
1,1-Dichloroethane	51		"	50.0		101	79.6-132		0.883	20.6	
1,1-Dichloroethylene	53		"	50.0		106	80.2-146		0.587	20	
1,1-Dichloropropylene	50		"	50.0		101	75-136		0.889	19.3	
1,2,3-Trichlorobenzene	53		"	50.0		106	66.1-136		3.03	21.6	
1,2,3-Trichloropropane	57		"	50.0		114	63-131		1.48	23.9	
1,2,4-Trichlorobenzene	51		"	50.0		101	70.6-136		4.31	21.7	
1,2,4-Trimethylbenzene	57		"	50.0		115	75.3-135		0.661	18.8	
1,2-Dibromo-3-chloropropane	52		"	50.0		103	58.9-140		4.11	27.7	
1,2-Dibromoethane	58		"	50.0		115	79-130		2.37	23	
1,2-Dichlorobenzene	53		"	50.0		106	76.1-122		0.170	19.8	
1,2-Dichloroethane	50		"	50.0		99.0	74.6-132		2.00	20.2	
1,2-Dichloropropane	53		"	50.0		106	76.9-129		1.28	20.7	
1,3,5-Trimethylbenzene	54		"	50.0		108	70.6-127		0.937	18.9	
1,3-Dichlorobenzene	53		"	50.0		107	77-124		0.300	19.2	
1,3-Dichloropropane	55		"	50.0		111	75.8-126		0.774	22.1	
1,4-Dichlorobenzene	54		"	50.0		107	76.6-125		0.372	18.6	
2,2-Dichloropropane	47		"	50.0		94.7	69-133		2.05	19.8	
2-Butanone	42		"	50.0		83.1	70-130		1.36	30	
2-Chlorotoluene	50		"	50.0		99.7	66.3-119		1.81	21.6	
2-Hexanone	49		"	50.0		98.3	70-130		1.57	30	
4-Chlorotoluene	54		"	50.0		109	69.2-127		0.147	19	
Acetone	32		"	50.0		63.2	70-130	Low Bias	1.60	30	
Benzene	52		"	50.0		103	76.2-129		1.88	19	
Bromobenzene	54		"	50.0		109	71.3-123		2.52	20.3	
Bromochloromethane	49		"	50.0		97.5	70.8-137		0.144	23.9	
Bromodichloromethane	54		"	50.0		108	79.7-134		1.68	21	
Bromoform	57		"	50.0		115	70.5-141		2.87	21.8	
Bromomethane	42		"	50.0		84.5	43.9-147		4.20	28.4	
Carbon tetrachloride	50		"	50.0		101	78.1-138		3.19	20.1	
Chlorobenzene	54		"	50.0		108	80.4-125		2.11	19.9	
Chloroethane	42		"	50.0		84.5	55.8-140		0.448	23.3	
Chloroform	51		"	50.0		101	76.6-133		1.39	20.3	
Chloromethane	35		"	50.0		70.6	48.8-115		0.255	24.5	
cis-1,2-Dichloroethylene	50		"	50.0		101	75.1-128		0.514	20.5	
cis-1,3-Dichloropropylene	50		"	50.0		101	74.5-128		1.67	19.9	
Dibromochloromethane	56		"	50.0		111	79.8-134		2.04	21.3	
Dibromomethane	55		"	50.0		111	79-130		1.42	22.4	
Dichlorodifluoromethane	32		"	50.0		64.5	47.1-101		0.810	23.9	
Ethyl Benzene	57		"	50.0		114	80.8-128		1.72	19.2	
Hexachlorobutadiene	51		"	50.0		102	64.8-128		4.77	20.6	
Isopropylbenzene	59		"	50.0		117	75.5-135		2.80	20	
Methyl tert-butyl ether (MTBE)	54		"	50.0		108	65.1-140		0.00	23.6	
Methylene chloride	42		"	50.0		83.8	61.3-120		0.381	20.4	
Naphthalene	60		"	50.0		119	62.3-148		3.20	27.1	
n-Butylbenzene	50		"	50.0		99.4	67.2-123		1.81	19.1	
- DII	E (50.0			70 5 127		0.806	22.4	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

50.0

50.0

100

56

53

110

n-Propylbenzene

p- & m- Xylenes

o-Xylene

23.4

19.3

18.6

0.806

1.23

0.655

70.5-127

75.9-122 77.7-127

111

106

111

York Analytical Laboratories, Inc.

Analyte	Reporting			Spike	Source*		%REC			RPD		
	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	
Batch BI10715 - EPA 5030B												
LCS Dup (BI10715-BSD1)						Prepare	d & Analyzed	09/20/2011				
p-Isopropyltoluene	56		ug/L	50.0		111	75.6-129		0.467	19.1		
sec-Butylbenzene	55		"	50.0		110	71.5-125		1.68	18.9		
Styrene	53		"	50.0		106	77.8-123		1.17	20.9		
tert-Butylbenzene	60		"	50.0		119	75.9-151		1.91	20.9		
Tetrachloroethylene	66		"	50.0		133	63.6-167		1.03	27.7		
Toluene	54		"	50.0		109	77-123		1.22	18.7		
trans-1,2-Dichloroethylene	51		"	50.0		102	76.3-139		0.176	19.5		
trans-1,3-Dichloropropylene	53		"	50.0		105	72.5-137		2.42	19.3		
Trichloroethylene	53		"	50.0		106	77.9-130		0.619	20.5		
Trichlorofluoromethane	43		"	50.0		85.8	57.4-133		2.05	21.4		
Vinyl Chloride	36		"	50.0		72.2	54.9-124		3.73	22.3		
Surrogate: 1,2-Dichloroethane-d4	50.6		"	50.0		101	75.7-121					
Surrogate: p-Bromofluorobenzene	49.9		"	50.0		99.8	71.3-131					
Surrogate: Toluene-d8	51.8		"	50.0		104	86.7-112					

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

RPD

Notes and Definitions

J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

Corrective Action:

120 RESMARCH DR. STRATFORD, CT 06615

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your

York Project No. // I v S 46

ō

	Report Type/Deliverbles	Summary Report Summary V. OA Summary	1 [NY ASP A Package	NY ASP B Package	Electronic Deliverables: FDD (Snecify Tyme)	el X	us Parameters Criecial	۲	Cyanide-T Field Filtered		CBODS	BOD28 COD		Total Solids TDS	Container	Description(s)	2x voc	->						Temperatur	1 Yan on Receip	الحا	
	Turn-Around Time			RUSH - Two Day NY	RUSH - Three Day NY.	RUSH - Four Day Elect	Standard(5-7 Days) X Excel	rg. Full Lists Common Miscellaneous Parameters	Pri.Poll.	TCL Organics Reactivity Nutrite TAL MexCN (guitability TKN	Full TCLP Flesh Point	4 Full App. LX Sieve Anal. Antimoria-v.A Part 360-Routine Heterotrophs Chiloride	Part 360-Baseline TOX Phosphate S Part 360-Especie BTU/Ib. Tot. Phos.	Aquatic Tox.	Psewer TOC Csewer Asbestos	Acres and Enter Dolom	ove and Enter Delow			the state of the s					H,SO NaOH	1-8-19-11	ed By Date/Ti	ころうと
ted a	YOUR Project ID	Rowe Imstrie		Purchase Order No.			Samples from: CT NYX NJ	Semi-Vols PearCBHert Metals Misc. Org.	8082PCB RCRA8	S list 8081Pest PP13 list TPH DRO	ly CT RCP CT15 list	ist App. IX TAGM list 1PH 1664 I list Site Spec. NJDEP list Air TO14A	list	st TCLP Herb STP or TCLP	Chlordane Indiv. Metaks 608 Pest LIST Below	STATE OF PARTY AND AND AND AND AND AND AND AND AND AND	Choose Analyses Needed from the Menu Above and Enter Delow	Golf Gre)			RCI MeOH HNO		Date/Time	<u> </u>
our written authorization to York to to York's Std. Terms & Conditions	Invoice To:	Company:	Address:		Phone No.	Attention: Mark Goldos	C. Samples from: CT	dress	8260 full TICs	STARS list Nassau Co. BN Only	BTEX Suffolk Co.	S MTBE Ketones PAH list TCL list Oxygenates TAGM list	TAGM list TCLP list CT RCP list 524.2	Pr Arom. only 502.2	ater, Halog.only NIDEP list App.IX list SPIPOTUP	805	×	8260	-						4°C Frozen	7	Samples Relinquished By	
	Report To:	Company: Serve Com	Address: Add		Phone No.	,		Aail Address:	Information must be compil	in and the turn-around to	uestions by York are resolv	Matrix Codes	Other -	GW.	Air-A - ambient air	†	Date Sampled Sample Matri	9-13-1/10ss GM) (III) /		>				Preservation	DIGGER THREE CONTRACTOR		
(203) 325-1371 Fax (203) 357-0166	YOUR Information		جہزار ج	18490 D 08	2- 929 -9555		Contact Person: LONG 300G	E-Mail Address: 1 Service Lbg CT. Commit Address:	Print Clearly and Legibly. All Information must be complete.	Samples will NOT be logged in and the turn-around time	clock will not begin until any questions by York are resolved.		Complete Constitution (Signature)	Samples Conscious and Indian	Courett Acabroste		Sample Identification D	N~38	N-39						Comments	14 (

Technical Report

prepared for:

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Report Date: 09/22/2011

Client Project ID: Rowe Industries
York Project (SDG) No.: 1110552

CT License No. PH-0723

New Jersey License No. CT-005

New York License No. 10854

PA License No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 45

Report Date: 09/22/2011 Client Project ID: Rowe Industries York Project (SDG) No.: 11I0552

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484 Attention: Tunde Sandor

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 15, 2011 and listed below. The project was identified as your project: **Rowe Industries**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
1110552-01	N-2B	Water	09/13/2011	09/15/2011
1110552-02	N-2A	Water	09/13/2011	09/15/2011
1110552-03	N-1A	Water	09/13/2011	09/15/2011
1110552-04	N-1B	Water	09/13/2011	09/15/2011
1110552-05	MW-49A	Water	09/13/2011	09/15/2011
1110552-06	MW-49B	Water	09/13/2011	09/15/2011
1110552-07	MW-49C	Water	09/13/2011	09/15/2011
1110552-08	MW-50A	Water	09/13/2011	09/15/2011
1110552-09	MW-50B	Water	09/13/2011	09/15/2011
1110552-10	MW-50C	Water	09/13/2011	09/15/2011
1110552-11	MW-48A	Water	09/14/2011	09/15/2011
1110552-12	MW-48B	Water	09/14/2011	09/15/2011
1110552-13	N-9	Water	09/14/2011	09/15/2011
1110552-14	N-17	Water	09/14/2011	09/15/2011
1110552-15	N-16	Water	09/14/2011	09/15/2011

General Notes for York Project (SDG) No.: 1110552

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Date: 09/22/2011

Robert Q. Bradley

bur & Jedley

Executive Vice President / Laboratory Director

YORK

Client Sample ID: N-2B York Sample ID: 1110552-01

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 11I0552 Rowe Industries September 13, 2011 1:35 pm 09/15/2011 Water

Volatile Organics, 8260 List Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
67-64-1	Acetone	4.1	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 4 of 45

Client Sample ID: N-2B York Sample ID: 1110552-01

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 1:35 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

108-90-7 75-00-3 67-66-3 74-87-3 156-59-2 10061-01-5 124-48-1 74-95-3	Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Dibromochloromethane Dibromomethane	ND ND 0.91 ND ND ND	J	ug/L ug/L ug/L ug/L	0.35 0.76 0.36 0.89	5.0 5.0 5.0	1	EPA SW846-8260B EPA SW846-8260B	09/22/2011 00:44 09/22/2011 00:44	09/22/2011 00:44 09/22/2011 00:44	SS SS
67-66-3 74-87-3 156-59-2 10061-01-5 124-48-1	Chloroform Chloromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Dibromochloromethane	0.91 ND ND ND	J	ug/L	0.36		1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
74-87-3 156-59-2 10061-01-5 124-48-1	Chloromethane cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Dibromochloromethane	ND ND ND	J	ug/L		5.0					55
156-59-2 10061-01-5 124-48-1	cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene Dibromochloromethane	ND ND			0.89		1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
10061-01-5 124-48-1	cis-1,3-Dichloropropylene Dibromochloromethane	ND				5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
124-48-1	Dibromochloromethane			ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
				ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
74-95-3	Dibromomethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
		ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	0.87	J	ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-09-2	Methylene chloride	6.4	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 00:44	09/22/2011 00:44	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0 S	Surrogate: 1,2-Dichloroethane-d4	100 %			75.7-121						
460-00-4 S	Surrogate: p-Bromofluorobenzene	97.6 %			71.3-131						

Client Sample ID: N-2A York Sample ID: 1110552-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 13, 2011 1:02 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u>	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
67-64-1	Acetone	5.3	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS

Client Sample ID: N-2A York Sample ID: 1110552-02

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 1:02 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-09-2	Methylene chloride	6.9	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 01:19	09/22/2011 01:19	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.0 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: N-1A York Sample ID: 1110552-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0552Rowe IndustriesWaterSeptember 13, 20118:06 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u>	<u>Sample Notes:</u>

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilu	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
67-64-1	Acetone	3.8	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS

Client Sample ID: N-1A York Sample ID: 1110552-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 13, 20118:06 am09/15/2011

Volatile Org			<u>I</u>	Log-in	Notes:		Sample No				
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-09-2	Methylene chloride	6.2	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 01:55	09/22/2011 01:55	SS
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
17060-07-0 460-00-4 2037-26-5	Surrogate: 1,2-Dichloroethane-d4 Surrogate: p-Bromofluorobenzene Surrogate: Toluene-d8	104 % 98.8 % 103 %			75.7-121 71.3-131 86.7-112						
	oguie. Iomene ao	105 /0			00.7 112						

Client Sample ID: N-1B York Sample ID: 1110552-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 13, 20118:44 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
67-64-1	Acetone	3.4	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS

Client Sample ID: N-1B York Sample ID: 1110552-04

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 8:44 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-09-2	Methylene chloride	6.2	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 02:31	09/22/2011 02:31	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.6 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	104 %			86.7-112						

Client Sample ID: MW-49A York Sample ID: 1110552-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 13, 2011 9:30 am09/15/2011

	anics, 8260 List y Method: EPA 5030B				<u>I</u>	Log-in	Notes:		Sample No	otes:	
CAS No.	Parameter Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
67-64-1	Acetone	3.5	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS

Client Sample ID: MW-49A York Sample ID: 1110552-05

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 9:30 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-09-2	Methylene chloride	5.3	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 03:07	09/22/2011 03:07	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.5 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	105 %			86.7-112						

Client Sample ID: MW-49B York Sample ID: 1110552-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 13, 2011 9:54 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
	<u></u>

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilu	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
67-64-1	Acetone	4.0	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS

Client Sample ID: MW-49B York Sample ID: 1110552-06

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 9:54 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-09-2	Methylene chloride	5.5	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 03:43	09/22/2011 03:43	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	97.7 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	105 %			86.7-112						

Client Sample ID: MW-49C York Sample ID: 1110552-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0552Rowe IndustriesWaterSeptember 13, 2011 10:30 am09/15/2011

	anics, 8260 List y Method: EPA 5030B]	Log-in	Notes:		Sample No	otes:	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
67-64-1	Acetone	3.2	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

1.2

1.0

5.0

5.0

ug/L

ug/L

ND

ND

Bromomethane

Carbon tetrachloride

74-83-9

56-23-5

09/22/2011 04:19

09/22/2011 04:19

SS

SS

09/22/2011 04:19

09/22/2011 04:19

EPA SW846-8260B

EPA SW846-8260B

Client Sample ID: MW-49C York Sample ID: 1110552-07

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 10:30 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-09-2	Methylene chloride	5.7	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 04:19	09/22/2011 04:19	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.3 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	104 %			86.7-112						

Client Sample ID: MW-50A York Sample ID: 1110552-08

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 11:25 am

	anics, 8260 List Method: EPA 5030B				<u>I</u>	log-in	Notes:		Sample No	otes:	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
67-64-1	Acetone	3.6	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

Client Sample ID: MW-50A York Sample ID: 1110552-08

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 11:25 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-09-2	Methylene chloride	4.9	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 04:54	09/22/2011 04:54	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.0 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	102 %			86.7-112	·					

Client Sample ID: MW-50B York Sample ID: 1110552-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 13, 2011 11:50 am09/15/2011

	anics, 8260 List y Method: EPA 5030B				<u>I</u>	Log-in 1	Notes:		Sample No	otes:	
CAS No.	Parameter Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
67-64-1	Acetone	3.9	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS

Client Sample ID: MW-50B York Sample ID: 1110552-09

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 11:50 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-09-2	Methylene chloride	5.9	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 05:30	09/22/2011 05:30	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.6 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	104 %			86.7-112						

Client Sample ID: MW-50C York Sample ID: 11I0552-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 13, 2011 12:25 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Date/Time	L	<u>.og-in Not</u>	es:		Sample No	ites:
RL Dilution Reference Method Prepared	r	DI 1	Dilution	Deference Method		Date An

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
67-64-1	Acetone	3.1	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS

Client Sample ID: MW-50C York Sample ID: 1110552-10

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 13, 2011 12:25 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-09-2	Methylene chloride	6.8	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 06:06	09/22/2011 06:06	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.4 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Client Sample ID: MW-48A York Sample ID: 1110552-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 14, 20118:39 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u>	<u>Sample Notes:</u>

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
67-64-1	Acetone	3.7	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS

Client Sample ID: MW-48A York Sample ID: 1110552-11

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 14, 2011 8:39 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-09-2	Methylene chloride	5.3	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 06:42	09/22/2011 06:42	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	97.7 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	102 %			86.7-112						

Client Sample ID: MW-48B York Sample ID: 1110552-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 14, 20119:03 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
67-64-1	Acetone	3.1	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS

Client Sample ID: MW-48B York Sample ID: 1110552-12

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 14, 2011 9:03 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-09-2	Methylene chloride	5.3	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 07:18	09/22/2011 07:18	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.1 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	104 %			86.7-112						

Client Sample ID: N-9 York Sample ID: 1110552-13

York Project (SDG) No. Client Project ID Date Received Matrix Collection Date/Time 11I0552 Rowe Industries Water September 14, 2011 10:11 am 09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA

CAS No.

630-20-6

71-55-6

79-34-5

76-13-1

79-00-5 75-34-3

75-35-4

563-58-6

87-61-6 96-18-4

120-82-1

95-63-6

96-12-8

106-93-4

95-50-1

107-06-2 78-87-5

108-67-8

541-73-1

142-28-9

106-46-7

594-20-7

78-93-3 95-49-8 591-78-6 106-43-4

67-64-1

71-43-2

108-86-1

74-97-5

75-27-4

75-25-2

74-83-9

56-23-5

anics, 8260 List v Method: EPA 5030B				<u>I</u>	og-in	Notes:		Sample No	otes:	
Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

3.9

ND

ND

ND

ND

ND

ND

ND

Acetone

Benzene

Bromobenzene

Bromochloromethane

Bromodichloromethane

Bromoform

Bromomethane

Carbon tetrachloride

J, B

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

3.1

0.48

0.61

1.3

0.62

0.58

1.2

1.0

10

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1

1

1

1

EPA SW846-8260B

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

09/22/2011 07:54

SS

SS

SS

SS

SS

SS

SS

SS

Client Sample ID: N-9 York Sample ID: 1110552-13

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 14, 2011 10:11 am

Volatile Organics, 8260 List

Log-in Notes: Sample Prepared by Method: EPA 5030B

Sam	ple	No	tes:
-----	-----	----	------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
75-09-2	Methylene chloride	5.1	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 07:54	09/22/2011 07:54	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	99.6 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	105 %			86.7-112						

Client Sample ID: N-17 York Sample ID: 1110552-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 14, 2011 11:00 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
67-64-1	Acetone	3.6	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS

Client Sample ID: N-17 York Sample ID: 1110552-14

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 14, 2011 11:00 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-09-2	Methylene chloride	4.9	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 08:29	09/22/2011 08:29	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	98.3 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	98.5 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	105 %			86.7-112						

Client Sample ID: N-16 York Sample ID: 11I0552-15

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110552Rowe IndustriesWaterSeptember 14, 2011 11:48 am09/15/2011

Volatile Organics, 8260 List

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
57-64-1	Acetone	4.7	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS

Client Sample ID: N-16 York Sample ID: 1110552-15

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0552 Rowe Industries Water September 14, 2011 11:48 am

Volatile Organics, 8260 List

Log-in Notes: Sample Notes: Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-09-2		5.4	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
91-20-3	Methylene chloride Naphthalene	ND	э, Б	ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
104-51-8	•	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
	n-Butylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
103-65-1	n-Propylbenzene	ND			0.50	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
95-47-6	o-Xylene			ug/L		10	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55				09/22/2011 09:05	09/22/2011 09:05	
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B			SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 09:05	09/22/2011 09:05	SS
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			75.7-121	-					
460-00-4	Surrogate: p-Bromofluorobenzene	98.3 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	103 %			86.7-112						

Analytical Batch Summary

Batch ID: BI10769	Preparation Method:	EPA 5030B	Prepared By: AY
YORK Sample ID	Client Sample ID	Preparation Date	
11I0552-01	N-2B	09/22/11	
11I0552-02	N-2A	09/22/11	
11I0552-03	N-1A	09/22/11	
11I0552-04	N-1B	09/22/11	
11I0552-05	MW-49A	09/22/11	
1110552-06	MW-49B	09/22/11	
11I0552-07	MW-49C	09/22/11	
11I0552-08	MW-50A	09/22/11	
11I0552-09	MW-50B	09/22/11	
11I0552-10	MW-50C	09/22/11	
11I0552-11	MW-48A	09/22/11	
11I0552-12	MW-48B	09/22/11	
11I0552-13	N-9	09/22/11	
11I0552-14	N-17	09/22/11	
11I0552-15	N-16	09/22/11	
BI10769-BLK1	Blank	09/22/11	
BI10769-BS1	LCS	09/21/11	
BI10769-BSD1	LCS Dup	09/21/11	
BI10769-MS1	Matrix Spike	09/22/11	
BI10769-MSD1	Matrix Spike Dup	09/22/11	

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10769 - EPA 5030B				
Blank (BI10769-BLK1)				Prepared & Analyzed: 09/22/2011
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,1-Dichloroethylene	ND	5.0	"	
1,1-Dichloropropylene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	10	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	10	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	10	"	
1,2-Dibromoethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
2-Butanone	ND	10	"	
2-Chlorotoluene	ND	5.0	"	
2-Hexanone	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Acetone	4.6	10	"	
Benzene	ND	5.0	"	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0		
Chloromethane	ND	5.0		
cis-1,2-Dichloroethylene	ND	5.0	"	
cis-1,3-Dichloropropylene	ND	5.0		
Dibromochloromethane	ND	5.0		
Dibromomethane	ND	5.0		
Dichlorodifluoromethane	ND	5.0	"	
Ethyl Benzene	ND ND	5.0	"	
Hexachlorobutadiene	ND ND	5.0 5.0	"	
Isopropylbenzene Methyl tert butyl ether (MTRE)	ND ND		"	
Methylene obleride		5.0		
Methylene chloride	4.2 ND	10 10	"	
Naphthalene n-Butylbenzene	ND ND	5.0	"	
n-Butytoenzene n-Propylbenzene	ND ND	5.0	"	
o-Xylene	ND ND	5.0	"	
p- & m- Xylenes	ND ND	10	"	
p- & m- Aylenes	ND	10		

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
•											

Batch BI10769 - EPA 5030B					
Blank (BI10769-BLK1)				Prepared & Analyz	ed: 09/22/2011
-Isopropyltoluene	ND	5.0 ug/L			
ec-Butylbenzene	ND	5.0 "			
tyrene	ND	5.0 "			
ert-Butylbenzene	ND	5.0 "			
etrachloroethylene	ND	5.0 "			
Coluene	ND	5.0 "			
rans-1,2-Dichloroethylene	ND	5.0 "			
rans-1,3-Dichloropropylene	ND	5.0 "			
richloroethylene	ND	5.0 "			
richlorofluoromethane	ND	5.0 "			
Tinyl Chloride	ND	5.0 "			
Cylenes, Total	ND ND	15 "			
		"	50.0	101 75 7 121	
urrogate: 1,2-Dichloroethane-d4	50.4	,,	50.0	101 75.7-121	
urrogate: p-Bromofluorobenzene	48.6		50.0	97.1 71.3-131	
urrogate: Toluene-d8	51.4	"	50.0	103 86.7-112	
CS (BI10769-BS1)				Prepared & Analyz	ed: 09/21/2011
1,1,2-Tetrachloroethane	56	ug/L	50.0	112 82.3-130	
1,1-Trichloroethane	53	"	50.0	105 75.6-137	
1,2,2-Tetrachloroethane	53	"	50.0	105 71.3-131	
1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	53	"	50.0	106 71.1-129	
1,2-Trichloroethane	55	"	50.0	110 74.5-129	
1-Dichloroethane	53	"	50.0	106 79.6-132	
1-Dichloroethylene	55	"	50.0	111 80.2-146	
I-Dichloropropylene	53	m.	50.0	106 75-136	
2,3-Trichlorobenzene	56	"	50.0	113 66.1-136	
2,3-Trichloropropane	56	"	50.0	113 63-131	
2,4-Trichlorobenzene	56	"	50.0	112 70.6-136	
2,4-Trimethylbenzene	60	"	50.0	121 75.3-135	
2-Dibromo-3-chloropropane	48	"	50.0	96.8 58.9-140	
2-Dibromoethane	59	"	50.0	118 79-130	
2-Dichlorobenzene	54	"	50.0	108 76.1-122	
2-Dichloroethane	51	"	50.0	101 74.6-132	
2-Dichloropropane	56	"	50.0	113 76.9-129	
3,5-Trimethylbenzene	57	"	50.0	113 70.9-129	
3-Dichlorobenzene	56	"	50.0	114 /0.6-12/	
		"			
3-Dichloropropane	56	"	50.0	113 75.8-126	
4-Dichlorobenzene	56	"	50.0	113 76.6-125	
2-Dichloropropane	49	"	50.0	97.4 69-133	
Butanone	42	"	50.0	83.3 70-130	
Chlorotoluene	53		50.0	106 66.3-119	
Hexanone	47	"	50.0	94.7 70-130	
Chlorotoluene	57	"	50.0	114 69.2-127	
cetone	34	"	50.0	67.4 70-130	Low Bias
enzene	53	"	50.0	107 76.2-129	
romobenzene	56	"	50.0	112 71.3-123	
romochloromethane	48	II .	50.0	96.7 70.8-137	
romodichloromethane	57	"	50.0	114 79.7-134	
romoform	57	"	50.0	113 70.5-141	
romomethane	39	"	50.0	77.2 43.9-147	
arbon tetrachloride	54	"	50.0	107 78.1-138	
hlorobenzene	56	"	50.0	112 80.4-125	
hloroethane	44	"	50.0	87.3 55.8-140	

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BI10769-BS1)				Prepare	ed & Analyzed: 09/21/2011
Chloroform	51	ug/L	50.0	102	76.6-133
Chloromethane	36	"	50.0	72.5	48.8-115
cis-1,2-Dichloroethylene	51	"	50.0	103	75.1-128
cis-1,3-Dichloropropylene	53	"	50.0	106	74.5-128
Dibromochloromethane	56	"	50.0	112	79.8-134
Dibromomethane	56	"	50.0	113	79-130
Dichlorodifluoromethane	32	"	50.0	63.6	47.1-101
Ethyl Benzene	60	"	50.0	121	80.8-128
Hexachlorobutadiene	53	"	50.0	107	64.8-128
Isopropylbenzene	62	"	50.0	124	75.5-135
Methyl tert-butyl ether (MTBE)	54	"	50.0	109	65.1-140
Methylene chloride	45	"	50.0	90.9	61.3-120
Naphthalene	61	"	50.0	121	62.3-148
n-Butylbenzene	54	"	50.0	108	67.2-123
n-Propylbenzene	59	"	50.0	119	70.5-127
o-Xylene	55	"	50.0	109	75.9-122
p- & m- Xylenes	120	"	100	116	77.7-127
p-Isopropyltoluene	59	"	50.0	117	75.6-129
sec-Butylbenzene	58	"	50.0	116	71.5-125
Styrene	54	"	50.0	109	77.8-123
tert-Butylbenzene	64	"	50.0	128	75.9-151
Tetrachloroethylene	64	"	50.0	128	63.6-167
Toluene	56	"	50.0	113	77-123
trans-1,2-Dichloroethylene	53	"	50.0	105	76.3-139
trans-1,3-Dichloropropylene	54	"	50.0	108	72.5-137
Trichloroethylene	55	"	50.0	110	77.9-130
Trichlorofluoromethane	47	"	50.0	94.5	57.4-133
Vinyl Chloride	39	"	50.0	78.9	54.9-124
Surrogate: 1,2-Dichloroethane-d4	49.8	"	50.0	99.6	75.7-121
Surrogate: p-Bromofluorobenzene	50.7	"	50.0	101	71.3-131
Surrogate: Toluene-d8	52.1	"	50.0	104	86.7-112

York Analytical Laboratories, Inc.

		OI K Allaly									
		Reporting		Spike	Source*		%REC	-		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10769 - EPA 5030B											
LCS Dup (BI10769-BSD1)						Prepare	d & Analyze	d: 09/21/2011			
1,1,1,2-Tetrachloroethane	57		ug/L	50.0		114	82.3-130		1.64	21.1	
1,1,1-Trichloroethane	52		"	50.0		103	75.6-137		1.76	19.7	
1,1,2,2-Tetrachloroethane	54		"	50.0		108	71.3-131		3.07	20.8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	52		"	50.0		104	71.1-129		2.21	21.7	
113)											
1,1,2-Trichloroethane	55		"	50.0		109	74.5-129		0.838	20.3	
1,1-Dichloroethane	52		"	50.0		103	79.6-132		2.61	20.6	
1,1-Dichloroethylene	54		"	50.0		108	80.2-146		2.26	20	
1,1-Dichloropropylene	52		"	50.0		103	75-136		2.37	19.3	
1,2,3-Trichlorobenzene	52		"	50.0		105	66.1-136		6.99	21.6	
1,2,3-Trichloropropane	56		"	50.0		112	63-131		0.497	23.9	
1,2,4-Trichlorobenzene	49		"	50.0		98.1	70.6-136		13.0	21.7	
1,2,4-Trimethylbenzene	57		"	50.0		115	75.3-135		5.42	18.8	
1,2-Dibromo-3-chloropropane	62		"	50.0		124	58.9-140		24.6	27.7	
1,2-Dibromoethane	60		"	50.0		119	79-130		1.01	23	
1,2-Dichlorobenzene	52		"	50.0		105	76.1-122		2.98	19.8	
1,2-Dichloroethane	51		"	50.0		103	74.6-132		1.78	20.2	
1,2-Dichloropropane	56		"	50.0		111	76.9-129		1.05	20.7	
1,3,5-Trimethylbenzene	54		"	50.0		109	70.6-127		4.93	18.9	
1,3-Dichlorobenzene	53		"	50.0		105	77-124		6.92	19.2	
1,3-Dichloropropane	57		"	50.0		113	75.8-126		0.691	22.1	
1,4-Dichlorobenzene	52		"	50.0		104	76.6-125		8.07	18.6	
2,2-Dichloropropane	47		"	50.0		94.8	69-133		2.71	19.8	
2-Butanone	41		"	50.0		82.2	70-130		1.40	30	
2-Chlorotoluene	51		"	50.0		101	66.3-119		4.39	21.6	
2-Hexanone	50		"	50.0		99.1	70-130		4.62	30	
4-Chlorotoluene	54		"	50.0		108	69.2-127		5.58	19	
Acetone	34		"	50.0		68.7	70-130	Low Bias	1.91	30	
Benzene	52		"	50.0		105	76.2-129		1.91	19	
Bromobenzene	55		"	50.0		110	71.3-123		1.94	20.3	
Bromochloromethane	48		"	50.0		96.2	70.8-137		0.539	23.9	
Bromodichloromethane	57		"	50.0		114	79.7-134		0.456	21	
Bromoform	57		"	50.0		115	70.5-141		1.33	21.8	
Bromomethane	38		"	50.0		75.4	43.9-147		2.44	28.4	
Carbon tetrachloride	52		"	50.0		105	78.1-138		2.12	20.1	
Chlorobenzene	56		"	50.0		111	80.4-125		1.13	19.9	
Chloroethane	43		"	50.0		85.6	55.8-140		1.97	23.3	
Chloroform	50		"	50.0		100	76.6-133		2.09	20.3	
Chloromethane	36		"	50.0		72.0	48.8-115		0.692	24.5	
cis-1,2-Dichloroethylene	50		"	50.0		100	75.1-128		2.32	20.5	
cis-1,3-Dichloropropylene	52		"	50.0		104	74.5-128		2.02	19.9	
Dibromochloromethane	57		"	50.0		114	79.8-134		1.22	21.3	
Dibromomethane	56		"	50.0		113	79-130		0.355	22.4	
Dichlorodifluoromethane	31		"	50.0		62.2	47.1-101		2.32	23.9	
Ethyl Benzene	59		"	50.0		118	80.8-128		2.25	19.2	
Hexachlorobutadiene	52		"	50.0		104	64.8-128		2.62	20.6	
Isopropylbenzene	60		"	50.0		120	75.5-135		3.70	20	
Methyl tert-butyl ether (MTBE)	54		"	50.0		107	65.1-140		1.52	23.6	
Methylene chloride	48		"	50.0		95.3	61.3-120		4.77	20.4	
Naphthalene	60		"	50.0		120	62.3-148		1.10	27.1	
n-Butylbenzene	49		"	50.0		98.1	67.2-123		9.22	19.1	
D 11											

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

50.0

50.0

100

113

108

113

70.5-127

75.9-122 77.7-127

57

54

110

n-Propylbenzene

p- & m- Xylenes

o-Xylene

23.4

19.3

18.6

4.75

0.993

2.92

York Analytical Laboratories, Inc.

									DDD	
	- T	Reporting	Spike	Source*		%REC	FI	DDD	RPD	El
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10769 - EPA 5030B										
LCS Dup (BI10769-BSD1)					Prepare	d & Analyzed	1: 09/21/2011			
p-Isopropyltoluene	55	ug/L	50.0		110	75.6-129		5.91	19.1	
sec-Butylbenzene	56	"	50.0		112	71.5-125		3.57	18.9	
Styrene	53	"	50.0		106	77.8-123		2.89	20.9	
tert-Butylbenzene	62	"	50.0		124	75.9-151		3.82	20.9	
Tetrachloroethylene	64	II .	50.0		128	63.6-167		0.266	27.7	
Toluene	56	II .	50.0		111	77-123		1.75	18.7	
trans-1,2-Dichloroethylene	51	ii .	50.0		103	76.3-139		2.33	19.5	
trans-1,3-Dichloropropylene	54	"	50.0		108	72.5-137		0.426	19.3	
Trichloroethylene	55	"	50.0		110	77.9-130		0.473	20.5	
Trichlorofluoromethane	45	"	50.0		90.6	57.4-133		4.21	21.4	
Vinyl Chloride	39	"	50.0		77.5	54.9-124		1.74	22.3	
Surrogate: 1,2-Dichloroethane-d4	51.1	ii .	50.0		102	75.7-121				
Surrogate: p-Bromofluorobenzene	50.2	"	50.0		100	71.3-131				
Surrogate: Toluene-d8	52.4	ii .	50.0		105	86.7-112				
Matrix Spike (BI10769-MS1)		or MS/MSD): 11I0552-06				d & Analyzed	1: 09/22/2011			
1,1,1,2-Tetrachloroethane	56	ug/L	50.0	ND	111	82-138				
1,1,1-Trichloroethane	53	ug/L	50.0	ND	105	85.7-133				
1,1,2,2-Tetrachloroethane	53	"	50.0	ND	106	78.6-136				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	54	"	50.0	ND	107	74.8-131				
113)	34		30.0	ND	107	74.0-131				
1,1,2-Trichloroethane	52	ıı .	50.0	ND	105	82.5-129				
1,1-Dichloroethane	53	"	50.0	ND	107	81.4-137				
1,1-Dichloroethylene	56	"	50.0	ND	113	90-138				
1,1-Dichloropropylene	53	"	50.0	ND	107	91.7-131				
1,2,3-Trichlorobenzene	49	"	50.0	ND	97.8	75.9-130				
1,2,3-Trichloropropane	54	"	50.0	ND	108	77.1-140				
1,2,4-Trichlorobenzene	49	II .	50.0	ND	97.4	69.8-135				
1,2,4-Trimethylbenzene	58	"	50.0	ND	117	79.4-131				
1,2-Dibromo-3-chloropropane	57	"	50.0	ND	114	66.6-143				
1,2-Dibromoethane	57	"	50.0	ND	113	79.8-136				
1,2-Dichlorobenzene	52	"	50.0	ND	103	79.9-130				
1,2-Dichloroethane	50	"	50.0	ND	101	85-133				
1,2-Dichloropropane	56	"	50.0	ND	111	81.1-132				
1,3,5-Trimethylbenzene	55	"	50.0	ND	111	76.1-121				
1,3-Dichlorobenzene	53	"	50.0	ND	106	79.1-124				
1,3-Dichloropropane	55	"	50.0	ND	111	83.3-130				
1,4-Dichlorobenzene	52	"	50.0	ND	105	79.4-128				
2,2-Dichloropropane	46	"	50.0	ND	91.3	54.2-126				
2-Butanone	40	"	50.0	ND	79.6	70-130				
2-Chlorotoluene	51	"	50.0	ND	102	60.2-144				
2-Hexanone	45	"	50.0	ND	89.5	70-130				
4-Chlorotoluene	55	"	50.0	ND	110	79.8-128				
Acetone	29	"	50.0	4.0	50.5	70-130	Low Bias			
Benzene	54	"	50.0	ND	108	74.1-134				
Bromobenzene	55	"	50.0	ND	110	76.6-125				
Bromochloromethane	49	"	50.0	ND	97.4	85-133				
Bromodichloromethane	55	"	50.0	ND	110	80.8-143				
Bromoform	54	"	50.0	ND	107	65.8-164				
Bromomethane	40	"	50.0	ND	80.6	68.7-112				
Carbon tetrachloride	54	"	50.0	ND	107	85.7-138				
Chlorobenzene	55	"	50.0	ND	110	79.9-129				
Chloroethane	44	"	50.0	ND	88.7	74.7-127				
Chloroform	52	"	50.0	ND	103	50.6-145				

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

latrix Spike (BI10769-MS1)	*Source(Sample used for MS/	MSD): 11I0552-06			Prepare	ed & Analyzed: 09/22/2011
hloromethane	38	ug/L	50.0	ND	75.5	64-111
s-1,2-Dichloroethylene	52	"	50.0	ND	104	75.5-129
s-1,3-Dichloropropylene	50	"	50.0	ND	99.8	74.3-128
ibromochloromethane	55	"	50.0	ND	109	76.8-150
ibromomethane	54	"	50.0	ND	108	83.3-140
ichlorodifluoromethane	33	"	50.0	ND	66.2	51-100
thyl Benzene	59	"	50.0	ND	118	82.9-127
exachlorobutadiene	49	"	50.0	ND	98.3	73-128
opropylbenzene	61	"	50.0	ND	121	78.7-131
lethyl tert-butyl ether (MTBE)	54	"	50.0	ND	107	81.2-134
ethylene chloride	43	"	50.0	5.5	75.3	57.8-103
phthalene	51	"	50.0	ND	101	80.1-122
Butylbenzene	51	"	50.0	ND	101	72.4-120
ropylbenzene	58	"	50.0	ND	115	74-130
ylene	54	"	50.0	ND	107	78.8-122
m- Xylenes	110	"	100	ND	111	82.5-123
sopropyltoluene	56	"	50.0	ND	113	64.9-132
Butylbenzene	56	"	50.0	ND	113	25.4-151
rene	52	"	50.0	ND	104	74.1-134
Butylbenzene	64	"	50.0	ND	127	79.5-171
rachloroethylene	56	"	50.0	ND	112	72.5-130
luene	55	"	50.0	ND	110	77.8-121
ns-1,2-Dichloroethylene	53	"	50.0	ND	106	83.8-140
ns-1,3-Dichloropropylene	50	"	50.0	ND	101	74.9-136
chloroethylene	55	"	50.0	ND	111	84.4-125
hlorofluoromethane	46	"	50.0	ND	91.7	78.7-127
yl Chloride	39	"	50.0	ND	78.2	72.1-116
ogate: 1,2-Dichloroethane-d4	50.5	"	50.0		101	75.7-121
ogate: p-Bromofluorobenzene	50.0	"	50.0		100	71.3-131
gate: Toluene-d8	52.3	"	50.0		105	86.7-112

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10769 - EPA 5030B									
Matrix Spike Dup (BI10769-MSD1)	*Source(Sample used for MS/MS	SD): 11I0552-06			Prepare	ed & Analyze	d: 09/22/2011		
1,1,1,2-Tetrachloroethane	57	ug/L	50.0	ND	114	82-138		2.63	21.3
1,1,1-Trichloroethane	54	"	50.0	ND	108	85.7-133		2.51	22.6
1,1,2,2-Tetrachloroethane	54	"	50.0	ND	108	78.6-136		1.80	23.1
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	55	"	50.0	ND	111	74.8-131		3.06	25.6
1,1,2-Trichloroethane	54	"	50.0	ND	109	82.5-129		3.80	19.3
1,1-Dichloroethane	54	"	50.0	ND	108	81.4-137		1.51	20.7
1,1-Dichloroethylene	58	"	50.0	ND	116	90-138		2.61	22.9
1,1-Dichloropropylene	55	"	50.0	ND	109	91.7-131		2.19	24.9
1,2,3-Trichlorobenzene	48	"	50.0	ND	96.1	75.9-130		1.82	21.4
1,2,3-Trichloropropane	58	"	50.0	ND	116	77.1-140		7.18	28
1,2,4-Trichlorobenzene	45	"	50.0	ND	89.2	69.8-135		8.75	22.5
1,2,4-Trimethylbenzene	59	"	50.0	ND	118	79.4-131		1.18	33.9
1,2-Dibromo-3-chloropropane	50	"	50.0	ND	100	66.6-143		12.8	23.3
1,2-Dibromoethane	58	"	50.0	ND	117	79.8-136		2.87	19.1
1,2-Dichlorobenzene	52	"	50.0	ND	105	79.9-130		1.37	23.2
1,2-Dichloroethane	51	"	50.0	ND	102	85-133		1.49	19.1
1,2-Dichloropropane	57	"	50.0	ND	114	81.1-132		2.03	19.9
1,3,5-Trimethylbenzene	56	"	50.0	ND	112	76.1-121		1.02	31.2
1,3-Dichlorobenzene	52	"	50.0	ND	104	79.1-124		2.29	22.6
1,3-Dichloropropane	56	"	50.0	ND	113	83.3-130		1.86	20.9
1,4-Dichlorobenzene	52	"	50.0	ND	104	79.4-128		1.11	21
2,2-Dichloropropane	48	"	50.0	ND	95.2	54.2-126		4.10	24.5
2-Butanone	41	"	50.0	ND	82.2	70-130		3.19	30
2-Chlorotoluene	51	"	50.0	ND	103	60.2-144		0.684	30.8
2-Hexanone	45	"	50.0	ND	90.5	70-130		1.18	30
4-Chlorotoluene	55	"	50.0	ND	109	79.8-128		0.858	23.2
Acetone	31	"	50.0	4.0	54.3	70-130	Low Bias	7.25	30
Benzene	55	"	50.0	ND	110	74.1-134		1.96	20.8
Bromobenzene	56	"	50.0	ND	111	76.6-125		1.76	23
Bromochloromethane	50	"	50.0	ND	101	85-133		3.37	18.4
Bromodichloromethane	57	"	50.0	ND	113	80.8-143		2.43	18.1
Bromoform	55		50.0	ND	111	65.8-164		3.14	27.3
Bromomethane	40		50.0	ND	80.4	68.7-112		0.298	22.8
Carbon tetrachloride	55		50.0	ND	109	85.7-138		2.27	25.1 21
Chlorobenzene	56		50.0	ND	112	79.9-129		2.04	
Chloroethane	46 53		50.0	ND	92.9	74.7-127		4.60 2.64	23.7 21.7
Chloromothomo		,,	50.0	ND ND	106	50.6-145		0.0265	21.7
Chloromethane	38	"	50.0	ND	75.5	64-111 75.5-129		2.34	20.2
cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene	53 51	"	50.0 50.0	ND ND	106			1.29	19.8
Dibromochloromethane	57	"	50.0	ND ND	101	74.3-128 76.8-150		3.54	20.8
Dibromomethane	54	"	50.0	ND ND	113 109	83.3-140		0.666	20.4
Dichlorodifluoromethane	34	"	50.0	ND	67.5	51-100		2.00	27.6
Ethyl Benzene	60	"	50.0	ND	119	82.9-127		1.26	21.4
Hexachlorobutadiene	51	"	50.0	ND	102	73-128		4.09	26
Isopropylbenzene	63	"	50.0	ND ND	125	78.7-131		2.94	26.7
Methyl tert-butyl ether (MTBE)	55	"	50.0	ND ND	111	81.2-134		3.27	21.2
		"							
-		"							
•		"							
-		"							
		"							
		"							
Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p- & m- Xylenes	46 55 49 58 54	" " "	50.0 50.0 50.0 50.0 50.0 100	5.5 ND ND ND ND ND	82.0 111 98.2 116 109 113	57.8-103 80.1-122 72.4-120 74-130 78.8-122 82.5-123		8.47 8.86 2.81 0.917 1.41 1.96	21.2 26.1 30.8 31 21 22.5

York Analytical Laboratories, Inc.

	Reporting		Spike	Source*		%REC			RPD	
Analyte Res	ılt Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10769 - EPA 5030B								
Matrix Spike Dup (BI10769-MSD1)	*Source(Sample used for MS/M	ISD): 11I0552-06			Prepare	ed & Analyzed: 09/22	2/2011	
p-Isopropyltoluene	57	ug/L	50.0	ND	113	64.9-132	0.265	25.2
sec-Butylbenzene	58	"	50.0	ND	117	25.4-151	3.45	25.2
Styrene	53	"	50.0	ND	106	74.1-134	1.97	20
tert-Butylbenzene	67	"	50.0	ND	134	79.5-171	5.36	24.8
Tetrachloroethylene	56	"	50.0	ND	113	72.5-130	0.765	22.7
Toluene	55	"	50.0	ND	111	77.8-121	0.633	21.5
trans-1,2-Dichloroethylene	54	"	50.0	ND	107	83.8-140	1.37	20.1
trans-1,3-Dichloropropylene	51	"	50.0	ND	102	74.9-136	0.770	22.5
Trichloroethylene	56	"	50.0	ND	112	84.4-125	0.719	20.7
Trichlorofluoromethane	48	"	50.0	ND	97.0	78.7-127	5.62	24.7
Vinyl Chloride	41	"	50.0	ND	81.7	72.1-116	4.35	24.9
Surrogate: 1,2-Dichloroethane-d4	50.0	"	50.0		100	75.7-121		
Surrogate: p-Bromofluorobenzene	49.6	"	50.0		99.2	71.3-131		

50.0

103

86.7-112

51.4

Surrogate: Toluene-d8

Notes and Definitions

J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

Corrective Action:

120 RESEARCH DR. STRATFORD, CT 06615 YORK

(203) 325-1371 FAX (203) 357-0166

Field Chain-of-Custody Record

જ ð

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your signature binds your Arrives Std. Terms & Conditions unless superseded by written contract.

	"	ature omus you to	TOLK'S SIG. TELLIS & COMMISSION	anices and capeacan of miners commen	# T	Ocaca Timo/Online
YOUR Information	Report To:		Invoice 10:	TOUR Project ID	lurn-Around 11me	2
Company: 1 BK ToC	Company: SAME	Company	Company: SAME	Come tradistries	RUSH - Same Day	Summary Report
Sule 301	Address:	Address			RUSH - Next Day	CT RCP Package
Syc160, CT 06/184				Purchase Order No.	RUSH - Two Day	NY ASP A Package
Phone No. 203-939-8555	Phone No.	Phone No.			RUSH - Three Day	NY ASP B Package
Contact Person: TONDE CODE	Attention:	Attention	Attention: McTK CANTES	€0,	RUSH - Four Day	Electronic Deliverables: EDD (Specify Type)
8	F.Mail Address	E-Mail Ac	E-Mail Address M Gold De Gelber Sample	Samples from: CT NY K NJ	Standard(5-7 Days) 📉	Excel K
E-MAIN FOURES. 1 See 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	THE PERSON NAMED IN COLUMN TO PERSON NAMED I		Volatiles	Pest/PCB/Hert Metals	rg. Full Lists Common Miscellaneous Parameters	aneous Parameters Special
TIME Cours and Legioly, All Information must be complete.		est de compreme	8260 full TICs	8082PCB RCRA8	Pri.Poll. Comosivity	Color
Samoles will NOT be logged in and the lurn-around ame	d in and the fur	n-around un e	624 Site Spec. STARS list Nassau Co.	STARS list 8081Pest PP13 list IPH DRO BN Only 8151Herb TAL CT ETPH	1 C.L. Organics Rescuvity Nitrite 1 TAL MetCN Ignitability TKN	Cyanide-T
check will not begin until any questions by fork are resolved.	y questions by Yo	rk are resolvea.	BTEX Suffolk Co.	ly CT RCP	Full TCLP Flash Point	Tot. Nárogen Cyanide-A Lab to Filter
		Matrix Codes	MTBE Ketones PAH TCL list Oxygenates TAG	PAH list App. IX TAGM list TPH 1664 TAGM list Site Spec. NJDEP list Air TO14A	Full App. IX Sieve Anal. Part 360-Rouine Heterotrophs	Anmonie N BOD5 Chloride CBOD5
Mary my		er - s	TAGM list TCLP list	list SPLP or TCLP Total	Part360-Baseine TOX	e)
Samples Pollected/Authorized By (Signature)	By (Signature)	WW - vastewater GW - groundwater	CT RCP list 524.2 TCL Arom. only 502.2 NJD	TCL list TCLP Pest Dissolved Air STARS NJDEP list TCLP Herb SPLPGTCLP Air VPH	S Part 360 Expended BTU/1b. No Documentum Part 360 Expensed Aquatic Tox.	Tot. Phos. COD Oil&Grease TSS
James (458	assend/i		Halog.only NJDEP list App.IX list SPLPGTCLP	Chlordane Indiv.Metak 608 Pest LIST Below	NYCDEPscure NYCDECscure	i. Total Solids TDS
Name (printed)		Air-SV soil vapor		SPLP or TCLP 608 PCB Helium	TAGM Silica MBAS	TPH-16
Sample Identification	Date Sampled	Sample Matrix	Choose Analyses	Choose Analyses Needed from the Menu Above and Enter Below	ove and Enter Below	Container Description(s)
1.28	9/13/2011)178	200	457 1107 09CB	45)		2x vac
AC-U	(%))/ c	-			
N-1A	908/				•	
N-1B	hh\$					
494-VM	83					
MW-493	hSb	la.				
764-NW	080	- Pal-Mellin				à
MV-504	118	-				
MV-50B	<u>8</u>					
	\$ (C)	•	•			>
၂၀		Preservation Check those Applicable	4°C Frozen S	HCI K MeOH HNO,	H,SO, NaOH	Temperature
			286-PM	05E945-119A	12 Bully 9-1	12-11 50
of 4			Samples Relinquished By	By Date/Time Samples	Received By	Pate/Time
15			Samples Relinduished By	Date/Time	Samples Repaired in LAB by Da	
			ייייי בייייים ייייים וווסטו			

YORK

20 RESEARCH DR. STRATFORD, CT 06615

FAX (203) 357-0166

(203) 325-1371

Field Chain-of-Custody Record

This document serves as your written authorization to York to proceed with the analyses requested and your NOTE; York's Std. Terms & Conditions are listed on the back side of this document

York Project No. // IoSSL

₽

ignature binds you to York's Std. Terms & Conditions unless superseded by written contract.

Field Filtered Instructions **Temperature** Report Type/Deliverbles 9-5-1/ 1/24 on Receipt Special Description(s) Summary W/ QA Summary Summary Report NY ASP B Package EDD (Specify Type) NY ASP A Package Electronic Deliverables: CT RCP Package Common Miscellaneous Parameters Total Solids Cyanide-T Cyanide-A CBODS **BOD28** BODS 8 9 / (5 / // Excel A-monne-N Tot Nitrogen Oil&Grease Phosphate Tot, Phos. Chloride Turn-Around Time Choose Analyses Needed from the Menu Above and Enter Below Standard(5-7 Days) X NaOH Heterotrophs Aquatic Tox. Corrosivity gritability -lash Point TCL Organics Reactivity Committed Denoised in I A to ha Asbestos RUSH - Three Day RUSH - Same Day RUSH - Four Day RUSH - Next Day Samplés Received By Part 360 Squared Part 360 Squared NYCOEP Sower 7 Misc. Org. Full Lists Part 360-Rouine Part 360-Beerine Full App. IX NYSDECsere Full TCLP Pri. Poll. NY 310-13 Air T014A TPH DRO **Air STARS** CT ETPH TPH 1664 Air T015 TCLP Herb SPLP or TCLP Air VPH Air TICs E-Mail Address: 1996 berge/ Samples from: CT NY NI Rowe Industries YOUR Project ID Purchase Order No. Semi-Vols, PerPCBMert Metals NJDEP list Inday Metals FAGM list Dissolved JST Below CT15 list PP13 list 9/15/11 16cc Date/Time HCI X MeOH Date/Time SPLPOTCLP TCLP Pest Chlordane Site Spec. 8151Herb CT RCP TCLP BNA 608 Pest Арр. ІХ 8081Pest CT RCP list NIDEP list STARS list Acids Only TAGM list PAH list App. IX BN Only CL list Water Collect Charles Sample Relinquished By Attention: Mark Colobera App.IX list SPLP at TCLP Nassau Co. Suffolk Co. NJDEP list TCLP list Site Spec. Oxygenates Ketones かがめ Invoice To: 524.2 Arom. only 502.2 CT RCP list STARS list Halog.only TAGM list 乙區 MTBE BTEX Company: DW - drinking water Phone No. Other - specify(oil, etc.) Check those Applicable Sample Matrix GW - groundwater Matrix Codes WW- wastewater Air-A - ambient air Air-SV - soil vapor NOZAR 833 Report To: 8 万000 ā Date Sampled 1100/41/6 Mack 116 Samples Collected/Authorized By (Signature) Print Cleanly and Legilly. All Institute B-Mail Address: T Sondone Lbg Ct. Commil Address: Samples will NOT be lagged in m Contact Person: Tunde Sandar Attention: Phone No. (assonel Name (printed) Phone No. 203- 929 -955 Shellen, G 06484 YOUR Information Sample Identification MV-49B-MSD MW-49B MS Address: 4 Resertch LBG. MU-48A MW-488 Jet - MA Comments 71-N 91-N MA 9-N Page 45 of 45

Technical Report

prepared for:

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Report Date: 09/26/2011

Client Project ID: Rowe Industries York Project (SDG) No.: 1110553

CT License No. PH-0723

120 RESEARCH DRIVE

New Jersey License No. CT-005

New York License No. 10854

PA License No. 68-04440

STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 55

Report Date: 09/26/2011 Client Project ID: Rowe Industries York Project (SDG) No.: 11I0553

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484 Attention: Tunde Sandor

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 15, 2011 and listed below. The project was identified as your project: **Rowe Industries**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
1110553-01	MW-44A	Water	09/13/2011	09/15/2011
1110553-02	MW-44B	Water	09/13/2011	09/15/2011
1110553-03	MW-44C	Water	09/13/2011	09/15/2011
1110553-04	N-32	Water	09/13/2011	09/15/2011
1110553-05	MW-28A	Water	09/13/2011	09/15/2011
1110553-06	MW-28B	Water	09/13/2011	09/15/2011
1110553-07	MW-98-04	Water	09/13/2011	09/15/2011
1110553-08	MW-45A	Water	09/13/2011	09/15/2011
1110553-09	MW-45B	Water	09/13/2011	09/15/2011
1110553-10	MW-52A	Water	09/13/2011	09/15/2011
1110553-11	MW-98-01A	Water	09/13/2011	09/15/2011
1110553-12	MW-47A	Water	09/13/2011	09/15/2011
1110553-13	MW-47B	Water	09/13/2011	09/15/2011
1110553-14	MW-46A	Water	09/13/2011	09/15/2011
1110553-15	MW-46B	Water	09/13/2011	09/15/2011
1110553-16	FB-GA91311	Water	09/13/2011	09/15/2011
1110553-17	TB2	Water	09/10/2011	09/15/2011
1110553-18	TB3	Water	09/10/2011	09/15/2011

General Notes for York Project (SDG) No.: 1110553

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Date: 09/26/2011

Robert Q. Bradley

bur & Jedley

Executive Vice President / Laboratory Director

YORK

Client Sample ID: MW-44A York Sample ID: 1110553-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 7:55 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS

Client Sample ID: MW-44A York Sample ID: 1110553-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 7:55 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

ım			

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
91-20-3	Naphthalene	0.51	J, B	ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 12:27	09/22/2011 12:27	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	96.2 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	106 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	108 %			86.7-112						

Client Sample ID: MW-44B York Sample ID: 1110553-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 8:15 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 13:10	09/22/2011 13:10	SS

Client Sample ID: MW-44B York Sample ID: 1110553-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 20118:15 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

108-90-7 Chlorobenzene ND ug/L 0.35 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
75-00-3 Chloroethane ND ug/L 0.76 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
67-66-3 Chloroform 0.43 J ug/L 0.36 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
74-87-3 Chloromethane ND ug/L 0.89 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
156-59-2 cis-1,2-Dichloroethylene ND ug/L 0.96 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
10061-01-5 cis-1,3-Dichloropropylene ND ug/L 0.35 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
124-48-1 Dibromochloromethane ND ug/L 0.67 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
74-95-3 Dibromomethane ND ug/L 1.3 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
75-71-8 Dichlorodifluoromethane ND ug/L 0.83 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
100-41-4 Ethyl Benzene ND ug/L 0.35 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
87-68-3 Hexachlorobutadiene ND ug/L 0.43 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
98-82-8 Isopropylbenzene ND ug/L 0.39 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
1634-04-4 Methyl tert-butyl ether (MTBE) ND ug/L 0.38 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
75-09-2 Methylene chloride ND ug/L 1.1 10 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
91-20-3 Naphthalene ND ug/L 0.50 10 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
104-51-8 n-Butylbenzene ND ug/L 0.32 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
103-65-1 n-Propylbenzene ND ug/L 0.58 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
95-47-6 o-Xylene ND ug/L 0.50 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
1330-20-7P/M p- & m- Xylenes ND ug/L 0.55 10 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
99-87-6 p-Isopropyltoluene ND ug/L 0.25 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
135-98-8 sec-Butylbenzene ND ug/L 0.52 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
100-42-5 Styrene ND ug/L 0.43 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
98-06-6 tert-Butylbenzene ND ug/L 0.46 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
127-18-4 Tetrachloroethylene ND ug/L 0.52 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
108-88-3 Toluene ND ug/L 0.23 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
156-60-5 trans-1,2-Dichloroethylene ND ug/L 0.65 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
10061-02-6 trans-1,3-Dichloropropylene ND ug/L 0.68 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
79-01-6 Trichloroethylene ND ug/L 0.57 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
75-69-4 Trichlorofluoromethane ND ug/L 0.91 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
75-01-4 Vinyl Chloride ND ug/L 0.97 5.0 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
1330-20-7 Xylenes, Total ND ug/L 1.0 15 1 EPA SW846-8260B 09/22/2011 13:10 09/22/2011 13:10	SS
Surrogate Recoveries Result Acceptance Range	
17060-07-0 Surrogate: 1,2-Dichloroethane-d4 96.4 % 75.7-121	
460-00-4 Surrogate: p-Bromofluorobenzene 105 % 71.3-131	
2037-26-5 Surrogate: Toluene-d8 108 % 86.7-112	

Client Sample ID: MW-44C York Sample ID: 1110553-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 20118:39 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS

Client Sample ID: MW-44C York Sample ID: 1110553-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 20118:39 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 13:52	09/22/2011 13:52	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121	_					
460-00-4	Surrogate: p-Bromofluorobenzene	112 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	108 %			86.7-112						

Client Sample ID: N-32 York Sample ID: 1110553-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 9:30 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS

Client Sample ID: N-32 York Sample ID: 1110553-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 9:30 am09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 14:34	09/22/2011 14:34	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	100 %			75.7-121	_					
460-00-4	Surrogate: p-Bromofluorobenzene	107 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	108 %			86.7-112						

Client Sample ID: MW-28A York Sample ID: 1110553-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 12:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilu	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS

Client Sample ID: MW-28A York Sample ID: 1110553-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 12:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 15:17	09/22/2011 15:17	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	111 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	108 %			86.7-112						

Client Sample ID: MW-28B York Sample ID: 1110553-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 12:25 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS

Client Sample ID: MW-28B York Sample ID: 1110553-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 12:25 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 15:59	09/22/2011 15:59	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	103 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	107 %			86.7-112						

<u>Client Sample ID:</u> <u>MW-98-04</u> <u>York Sample ID:</u> 11I0553-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 1:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
		ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS

<u>Client Sample ID:</u> <u>MW-98-04</u> <u>York Sample ID:</u> 11I0553-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 1:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 16:42	09/22/2011 16:42	SS
	Surrogate Recoveries	Result		Acc	eptance Ra	inge					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	105 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	109 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	106 %			86.7-112						

Client Sample ID: MW-45A York Sample ID: 1110553-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 1:30 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS

Client Sample ID: MW-45A York Sample ID: 1110553-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 1:30 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 17:24	09/22/2011 17:24	SS
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	103 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	110 %			86.7-112						

Client Sample ID: MW-45B York Sample ID: 1110553-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 3:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS

Client Sample ID: MW-45B York Sample ID: 1110553-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 3:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 12:48	09/22/2011 12:48	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	95.6 %			75.7-121	-					
460-00-4	Surrogate: p-Bromofluorobenzene	111 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	109 %			86.7-112						

Client Sample ID: MW-52A York Sample ID: 1110553-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 2:50 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS

Client Sample ID: MW-52A York Sample ID: 1110553-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 2:50 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 13:31	09/22/2011 13:31	SS
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	95.1 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	108 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	108 %			86.7-112						

Client Sample ID: MW-98-01A York Sample ID: 1110553-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 3:20 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS

Client Sample ID: MW-98-01A York Sample ID: 1110553-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 3:20 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
127-18-4	Tetrachloroethylene	4.9	J	ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 14:13	09/22/2011 14:13	SS
	Surrogate Recoveries	Result		Acc	eptance Ra	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	106 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	109 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	109 %			86.7-112						

Client Sample ID: MW-47A York Sample ID: 1110553-12

Date Received York Project (SDG) No. Client Project ID Matrix Collection Date/Time 09/15/2011 11I0553 Rowe Industries Water September 13, 2011 4:35 pm

Volatile Organics, 8260 List

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: MW-47A York Sample ID: 1110553-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 4:35 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
127-18-4	Tetrachloroethylene	0.77	J	ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
79-01-6	Trichloroethylene	1.7	J	ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 14:56	09/22/2011 14:56	SS
	Surrogate Recoveries	Result			eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	98.4 %			75.7-121	U					
460-00-4	Surrogate: p-Bromofluorobenzene	108 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	110 %			86.7-112						

Client Sample ID: MW-47B York Sample ID: 1110553-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 5:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS

Client Sample ID: MW-47B York Sample ID: 1110553-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 5:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutior	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 15:38	09/22/2011 15:38	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	95.5 %			75.7-121	-					
460-00-4	Surrogate: p-Bromofluorobenzene	105 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	108 %			86.7-112						

Client Sample ID: MW-46A York Sample ID: 1110553-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 5:45 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS

Client Sample ID: MW-46A York Sample ID: 1110553-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 5:45 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 16:21	09/22/2011 16:21	SS
1330 20 7	Surrogate Recoveries	Result			eptance R						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %		1100	75.7-121	_					
460-00-4	Surrogate: p-Bromofluorobenzene	104 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	109 %			86.7-112						

Client Sample ID: MW-46B York Sample ID: 1110553-15

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 6:30 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS

Client Sample ID: MW-46B York Sample ID: 1110553-15

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 6:30 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 17:03	09/22/2011 17:03	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	96.5 %			75.7-121	_					
460-00-4	Surrogate: p-Bromofluorobenzene	111 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	108 %			86.7-112						

Client Sample ID: York Sample ID: 1110553-16

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0553Rowe IndustriesWaterSeptember 13, 2011 12:05 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilu	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS

Client Sample ID: York Sample ID: 1110553-16

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 13, 2011 12:05 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 17:45	09/22/2011 17:45	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	103 %			75.7-121	_					
460-00-4	Surrogate: p-Bromofluorobenzene	106 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	109 %			86.7-112						

Client Sample ID: York Sample ID: 1110553-17

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 10, 2011 3:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS

Client Sample ID: York Sample ID: 1110553-17

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 10, 2011 3:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
91-20-3	Naphthalene	0.58	J, B	ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 18:28	09/22/2011 18:28	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	108 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	110 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	106 %			86.7-112						

Client Sample ID: TB3 York Sample ID: 1110553-18

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 10, 2011 3:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
67-64-1	Acetone	ND		ug/L	3.1	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS

Client Sample ID: TB3 York Sample ID: 1110553-18

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110553Rowe IndustriesWaterSeptember 10, 2011 3:00 pm09/15/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
91-20-3	Naphthalene	0.72	J, B	ug/L	0.50	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/22/2011 19:10	09/22/2011 19:10	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			75.7-121						
460-00-4	Surrogate: p-Bromofluorobenzene	108 %			71.3-131						
2037-26-5	Surrogate: Toluene-d8	107 %			86.7-112						

Analytical Batch Summary

Batch ID: BI10790	Preparation Method:	EPA 5030B	Prepared By:	AY
YORK Sample ID	Client Sample ID	Preparation Date		
1110553-01	MW-44A	09/22/11		
1110553-02	MW-44B	09/22/11		
11I0553-03	MW-44C	09/22/11		
11I0553-04	N-32	09/22/11		
11I0553-05	MW-28A	09/22/11		
11I0553-06	MW-28B	09/22/11		
11I0553-07	MW-98-04	09/22/11		
1110553-08	MW-45A	09/22/11		
BI10790-BLK1	Blank	09/22/11		
BI10790-BS1	LCS	09/22/11		
BI10790-BSD1	LCS Dup	09/22/11		
BI10790-MS1	Matrix Spike	09/22/11		
BI10790-MSD1	Matrix Spike Dup	09/22/11		
				437
Batch ID: BI10791	Preparation Method:	EPA 5030B	Prepared By:	AY
	Preparation Method: Client Sample ID	EPA 5030B Preparation Date	Prepared By:	АҮ
YORK Sample ID	-		Prepared By:	AY
YORK Sample ID 11I0553-09	Client Sample ID MW-45B	Preparation Date	Prepared By:	AY
YORK Sample ID 11I0553-09 11I0553-10	Client Sample ID MW-45B MW-52A	Preparation Date 09/22/11	Prepared By:	AY
YORK Sample ID 11I0553-09 11I0553-10 11I0553-11	Client Sample ID MW-45B MW-52A MW-98-01A	Preparation Date 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A	Preparation Date 09/22/11 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12 1110553-13	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A MW-47B	Preparation Date 09/22/11 09/22/11 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12 1110553-13 1110553-14	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A MW-47B MW-46A	Preparation Date 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12 1110553-13 1110553-14 1110553-15	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A MW-47B MW-46A MW-46B	Preparation Date 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12 1110553-13 1110553-14 1110553-15 1110553-16	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A MW-47B MW-46A	Preparation Date 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12 1110553-13 1110553-14 1110553-15 1110553-16 1110553-17	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A MW-47B MW-46B FB-GA91311 TB2	Preparation Date 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12 1110553-13 1110553-14 1110553-15 1110553-16 1110553-17 1110553-18	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A MW-47B MW-46B FB-GA91311 TB2 TB3	Preparation Date 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11	Prepared By:	AY
YORK Sample ID 1110553-09 1110553-10 1110553-11 1110553-12 1110553-13 1110553-14 1110553-15 1110553-16 1110553-16 1110553-17 1110553-18 BI10791-BLK1 BI10791-BS1	Client Sample ID MW-45B MW-52A MW-98-01A MW-47A MW-47B MW-46B FB-GA91311 TB2	Preparation Date 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11 09/22/11	Prepared By:	AY

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10790 - EPA 5030B				
Blank (BI10790-BLK1)				Prepared & Analyzed: 09/22/2011
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	
1,1,1-Trichloroethane	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,1-Dichloroethylene	ND	5.0	"	
1,1-Dichloropropylene	ND	5.0	"	
1,2,3-Trichlorobenzene	0.77	10	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,2,4-Trichlorobenzene	0.59	10	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	10	"	
1,2-Dibromoethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
2-Butanone	ND	10	"	
2-Chlorotoluene	ND	5.0	"	
2-Hexanone	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
Acetone	22	10	"	
Benzene	ND	5.0	"	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0		
Chloromethane	ND	5.0	"	
cis-1,2-Dichloroethylene	ND	5.0	"	
cis-1,3-Dichloropropylene	ND	5.0	"	
Dibromochloromethane Dibromomethane	ND ND	5.0	"	
	ND ND	5.0	"	
Dichlorodifluoromethane Ethyl Benzene		5.0	"	
Hexachlorobutadiene	ND ND	5.0 5.0	"	
Isopropylbenzene	ND ND	5.0	"	
Methyl tert-butyl ether (MTBE)	ND ND	5.0	"	
Methylene chloride	3.8	5.0 10	"	
Naphthalene	2.2	10	"	
n-Butylbenzene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
o-Xylene	ND	5.0	"	
p- & m- Xylenes	ND	10	"	

York Analytical Laboratories, Inc.

Spike

Source*

%REC

Reporting

	D 1:	Reporting	** **	Spike	Source*	A/DEG	%REC	E1	DDD	T ::4	F1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10790 - EPA 5030B											
Blank (BI10790-BLK1)						Prepare	d & Analyzed	: 09/22/2011			
p-Isopropyltoluene	ND	5.0	ug/L								
sec-Butylbenzene	ND	5.0	"								
Styrene	ND	5.0	"								
tert-Butylbenzene	ND	5.0	"								
Tetrachloroethylene	ND	5.0	"								
Toluene	ND	5.0	"								
trans-1,2-Dichloroethylene	ND	5.0	"								
trans-1,3-Dichloropropylene	ND	5.0	"								
Trichloroethylene	ND	5.0	"								
Trichlorofluoromethane	ND	5.0	"								
Vinyl Chloride	ND	5.0	"								
Xylenes, Total	ND	15	"								
Surrogate: 1,2-Dichloroethane-d4	9.63		"	10.0		96.3	75.7-121				
Surrogate: p-Bromofluorobenzene	11.2		"	10.0		112	71.3-131				
Surrogate: Toluene-d8	10.9		"	10.0		109	86.7-112				
LCS (BI10790-BS1)						Prepare	d & Analyzed	: 09/22/2011			
1,1,1,2-Tetrachloroethane	11		ug/L	10.0		108	82.3-130				
1,1,1-Trichloroethane	9.5		ug/L	10.0		95.3	75.6-137				
1,1,2,2-Tetrachloroethane	9.3		"	10.0		108	71.3-131				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.4		,,	10.0		93.9	71.1-129				
113)	9.4			10.0		93.9	/1.1-129				
1,1,2-Trichloroethane	10		"	10.0		104	74.5-129				
1,1-Dichloroethane	9.5		"	10.0		95.1	79.6-132				
1,1-Dichloroethylene	9.7		"	10.0		97.0	80.2-146				
1,1-Dichloropropylene	9.8		"	10.0		97.8	75-136				
1,2,3-Trichlorobenzene	9.7		"	10.0		97.3	66.1-136				
1,2,3-Trichloropropane	10		"	10.0		103	63-131				
1,2,4-Trichlorobenzene	9.6		"	10.0		96.0	70.6-136				
1,2,4-Trimethylbenzene	11		"	10.0		112	75.3-135				
1,2-Dibromo-3-chloropropane	11		"	10.0		110	58.9-140				
1,2-Dibromoethane	11		"	10.0		114	79-130				
1,2-Dichlorobenzene	10		"	10.0		101	76.1-122				
1,2-Dichloroethane	9.1		"	10.0		91.1	74.6-132				
1,2-Dichloropropane	12		"	10.0		118	76.9-129				
1,3,5-Trimethylbenzene	11		"	10.0		105	70.6-127				
1,3-Dichlorobenzene	10		"	10.0		105	77-124				
1,3-Dichloropropane	11		"	10.0		115	75.8-126				
1,4-Dichlorobenzene	10		"	10.0		104	76.6-125				
2,2-Dichloropropane	9.7		"	10.0		97.1	69-133				
2-Butanone	10		"	10.0		102	70-130				
2-Chlorotoluene	10		"	10.0		100	66.3-119				
2-Hexanone	11		"	10.0		113	70-130				
4-Chlorotoluene	11		"	10.0		108	69.2-127				
Acetone	7.2		"	10.0		71.7	70-130				
Benzene	9.1		"	10.0		90.8	76.2-129				
Bromobenzene	11		"	10.0		114	71.3-123				
Bromochloromethane	9.4		"	10.0		93.7	70.8-137				
Bromodichloromethane	11		"	10.0		114	79.7-134				
Bromoform	11		"	10.0		107	70.5-141				
Bromomethane	9.0		"	10.0		90.0	43.9-147				
Carbon tetrachloride	10		"	10.0		101	78.1-138				
Chlorobenzene	11		"	10.0		106	80.4-125				
Chloroethane	9.3		"	10.0		93.1	55.8-140				

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

RPD

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BI10790-BS1)				Prepare	ed & Analyzed: 09/22/2011
Chloroform	9.0	ug/L	10.0	90.1	76.6-133
Chloromethane	8.6	"	10.0	85.5	48.8-115
eis-1,2-Dichloroethylene	8.7	"	10.0	87.1	75.1-128
eis-1,3-Dichloropropylene	11	"	10.0	112	74.5-128
Dibromochloromethane	11	"	10.0	107	79.8-134
Dibromomethane	11	"	10.0	110	79-130
Dichlorodifluoromethane	6.4	"	10.0	63.9	47.1-101
Ethyl Benzene	11	"	10.0	108	80.8-128
Hexachlorobutadiene	9.6	"	10.0	95.7	64.8-128
sopropylbenzene	12	"	10.0	116	75.5-135
Methyl tert-butyl ether (MTBE)	11	"	10.0	105	65.1-140
Methylene chloride	6.4	"	10.0	64.0	61.3-120
Naphthalene	9.6	"	10.0	96.5	62.3-148
n-Butylbenzene	10	"	10.0	103	67.2-123
n-Propylbenzene	11	"	10.0	108	70.5-127
o-Xylene	10	"	10.0	104	75.9-122
o- & m- Xylenes	21	"	20.0	106	77.7-127
p-Isopropyltoluene	11	"	10.0	110	75.6-129
sec-Butylbenzene	11	"	10.0	108	71.5-125
Styrene	10	"	10.0	104	77.8-123
ert-Butylbenzene	13	"	10.0	126	75.9-151
Tetrachloroethylene	11	"	10.0	111	63.6-167
Toluene	11	"	10.0	106	77-123
rans-1,2-Dichloroethylene	9.7	"	10.0	97.1	76.3-139
rans-1,3-Dichloropropylene	11	"	10.0	112	72.5-137
Trichloroethylene	11	"	10.0	106	77.9-130
Trichlorofluoromethane	8.9	"	10.0	88.8	57.4-133
Vinyl Chloride	8.8	"	10.0	88.2	54.9-124
Surrogate: 1,2-Dichloroethane-d4	10.0	"	10.0	100	75.7-121
Surrogate: p-Bromofluorobenzene	10.2	"	10.0	102	71.3-131
Surrogate: Toluene-d8	10.7	"	10.0	107	86.7-112

York Analytical Laboratories, Inc.

		OIK Allaly									
		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10790 - EPA 5030B											
LCS Dup (BI10790-BSD1)						Prepare	d & Analyzed	d: 09/22/2011			
1,1,1,2-Tetrachloroethane	11		ug/L	10.0		107	82.3-130		1.21	21.1	
1,1,1-Trichloroethane	9.2		"	10.0		91.6	75.6-137		3.96	19.7	
1,1,2,2-Tetrachloroethane	11		"	10.0		112	71.3-131		3.09	20.8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.0		"	10.0		89.8	71.1-129		4.46	21.7	
1,1,2-Trichloroethane	10		"	10.0		101	74.5-129		3.12	20.3	
1,1-Dichloroethane	9.2		"	10.0		92.0	79.6-132		3.31	20.6	
1,1-Dichloroethylene	9.5		"	10.0		95.3	80.2-146		1.77	20	
1,1-Dichloropropylene	9.8		"	10.0		97.6	75-136		0.205	19.3	
1,2,3-Trichlorobenzene	9.3		"	10.0		93.1	66.1-136		4.41	21.6	
1,2,3-Trichloropropane	10		"	10.0		100	63-131		2.47	23.9	
1,2,4-Trichlorobenzene	9.7		"	10.0		97.0	70.6-136		1.04	21.7	
1,2,4-Trimethylbenzene	12		"	10.0		117	75.3-135		4.38	18.8	
1,2-Dibromo-3-chloropropane	9.8		"	10.0		97.6	58.9-140		12.4	27.7	
1,2-Dibromoethane	11		"	10.0			79-130		1.42	23	
			"			112			2.53	19.8	
1,2-Dichlorobenzene	10		"	10.0		104	76.1-122				
1,2-Dichloroethane	9.2		"	10.0		92.5	74.6-132		1.53	20.2	
1,2-Dichloropropane	11			10.0		113	76.9-129		4.93	20.7	
1,3,5-Trimethylbenzene	11		"	10.0		111	70.6-127		5.09	18.9	
1,3-Dichlorobenzene	11		"	10.0		110	77-124		4.75	19.2	
1,3-Dichloropropane	11		"	10.0		115	75.8-126		0.0872	22.1	
1,4-Dichlorobenzene	11		"	10.0		109	76.6-125		4.99	18.6	
2,2-Dichloropropane	9.3		"	10.0		93.3	69-133		3.99	19.8	
2-Butanone	9.2		"	10.0		91.9	70-130		10.1	30	
2-Chlorotoluene	10		"	10.0		105	66.3-119		4.20	21.6	
2-Hexanone	9.8		"	10.0		98.1	70-130		14.1	30	
4-Chlorotoluene	11		"	10.0		113	69.2-127		4.07	19	
Acetone	6.9		"	10.0		69.4	70-130	Low Bias	3.26	30	
Benzene	8.9		"	10.0		89.2	76.2-129		1.78	19	
Bromobenzene	11		"	10.0		114	71.3-123		0.527	20.3	
Bromochloromethane	8.7		"	10.0		86.7	70.8-137		7.76	23.9	
Bromodichloromethane	11		"	10.0		110	79.7-134		3.66	21	
Bromoform	10		"	10.0		104	70.5-141		2.84	21.8	
Bromomethane	8.9		"	10.0		89.2	43.9-147		0.893	28.4	
Carbon tetrachloride	9.6		"	10.0		96.5	78.1-138		4.85	20.1	
Chlorobenzene	11		"	10.0		105	80.4-125		1.04	19.9	
Chloroethane	8.5		"	10.0		85.4	55.8-140		8.63	23.3	
Chloroform	8.9		"	10.0			76.6-133		1.12	20.3	
			"			89.1	48.8-115		5.16	24.5	
Chloromethane	8.1		"	10.0		81.2				20.5	
cis-1,2-Dichloroethylene	8.7		"	10.0		87.2	75.1-128		0.115		
cis-1,3-Dichloropropylene	11		"	10.0		109	74.5-128		3.08	19.9	
Dibromochloromethane	11		"	10.0		106	79.8-134		1.03	21.3	
Dibromomethane	11			10.0		111	79-130		0.452	22.4	
Dichlorodifluoromethane	6.2		"	10.0		61.8	47.1-101		3.34	23.9	
Ethyl Benzene	11		"	10.0		108	80.8-128		0.0925	19.2	
Hexachlorobutadiene	9.6		"	10.0		96.3	64.8-128		0.625	20.6	
Isopropylbenzene	12		"	10.0		122	75.5-135		4.87	20	
Mathril tart histril other (MTDE)	10			10.0		102	65 1 140		2.01	23.6	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

10.0

10.0

10.0

10.0

10.0

10.0

20.0

103

63.2

101

105

112

104

106

65.1-140

61.3-120

62.3-148

67.2-123

70.5-127

75.9-122

77.7-127

10

6.3

10

10

11

10

21

Methyl tert-butyl ether (MTBE)

Methylene chloride

Naphthalene

o-Xylene

n-Butylbenzene

n-Propylbenzene

p- & m- Xylenes

23.6

20.4

27.1

19.1

23.4

19.3

18.6

2.01

1.26

4.85

1.73

3.82

0.962

0.566

York Analytical Laboratories, Inc.

									RPD	
Analyte	Result	Reporting Limit Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
,	resure		20101	- count	, ,,,,,,,,					3
Batch BI10790 - EPA 5030B					Pranara	d & Analyza	d: 09/22/2011			
LCS Dup (BI10790-BSD1)		77	10.0				1. 09/22/2011	2.47	10.1	
p-Isopropyltoluene	11	ug/L	10.0		114	75.6-129		3.47 3.27	19.1 18.9	
sec-Butylbenzene	11 11	"	10.0		112	71.5-125		1.24	20.9	
Styrene tert-Butylbenzene	13	"	10.0 10.0		106 128	77.8-123 75.9-151		2.28	20.9	
Tetrachloroethylene	11	"	10.0		113	63.6-167		1.34	27.7	
Toluene	11	"	10.0		106	77-123		0.00	18.7	
trans-1,2-Dichloroethylene	9.5	"	10.0		94.7	76.3-139		2.50	19.5	
trans-1,3-Dichloropropylene	11	"	10.0		109	72.5-137		2.80	19.3	
Trichloroethylene	11	"	10.0		106	77.9-130		0.660	20.5	
Trichlorofluoromethane	8.5	"	10.0		85.4	57.4-133		3.90	21.4	
Vinyl Chloride	8.2	"	10.0		81.7	54.9-124		7.65	22.3	
Surrogate: 1,2-Dichloroethane-d4	9.87	"	10.0		98.7	75.7-121				
Surrogate: p-Bromofluorobenzene	10.7	"	10.0		107	71.3-131				
Surrogate: Toluene-d8	10.7	"	10.0		107	86.7-112				
_							d: 09/22/2011			
Matrix Spike (BI10790-MS1) 1,1,1,2-Tetrachloroethane	*Source(Sample used for 9.3	ug/L	10.0	ND	93.3	82-138	1. 09/22/2011			
1,1,1-Trichloroethane	8.3	ug E	10.0	ND	82.7	85.7-133	Low Bias			
1,1,2,2-Tetrachloroethane	9.3	"	10.0	ND	93.1	78.6-136				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.1	"	10.0	ND	81.4	74.8-131				
113) 1,1,2-Trichloroethane	9.2	"	10.0	ND	91.7	82.5-129				
1,1-Dichloroethane	8.2	"	10.0	ND ND	81.8	81.4-137				
1,1-Dichloroethylene	8.4	"	10.0	ND ND	84.1	90-138	Low Bias			
1,1-Dichloropropylene	8.5	"	10.0	ND ND	85.4	91.7-131	Low Bias			
1,2,3-Trichlorobenzene	8.3	"	10.0	ND	82.7	75.9-130	Low Blus			
1,2,3-Trichloropropane	9.3	"	10.0	ND	92.8	77.1-140				
1,2,4-Trichlorobenzene	8.7	"	10.0	ND	86.9	69.8-135				
1,2,4-Trimethylbenzene	9.4	"	10.0	ND	93.8	79.4-131				
1,2-Dibromo-3-chloropropane	8.4	"	10.0	ND	83.8	66.6-143				
1,2-Dibromoethane	10	"	10.0	ND	100	79.8-136				
1,2-Dichlorobenzene	9.1	"	10.0	ND	91.4	79.9-130				
1,2-Dichloroethane	8.8	"	10.0	ND	88.4	85-133				
1,2-Dichloropropane	9.9	"	10.0	ND	99.4	81.1-132				
1,3,5-Trimethylbenzene	8.7	"	10.0	ND	86.7	76.1-121				
1,3-Dichlorobenzene	8.8	"	10.0	ND	88.4	79.1-124				
1,3-Dichloropropane	9.8	"	10.0	ND	97.9	83.3-130				
1,4-Dichlorobenzene	9.0	"	10.0	ND	90.2	79.4-128				
2,2-Dichloropropane	7.3	"	10.0	ND	72.6	54.2-126				
2-Butanone	7.8	"	10.0	ND	77.6	70-130				
2-Chlorotoluene	8.2	"	10.0	ND	81.8	60.2-144				
2-Hexanone	9.7	"	10.0	ND	96.8	70-130				
4-Chlorotoluene	9.1	"	10.0	ND	90.8	79.8-128				
Acetone	6.7	"	10.0	ND	66.9	70-130	Low Bias			
Benzene	7.9	"	10.0	ND	78.8	74.1-134				
Bromobenzene	9.6	"	10.0	ND	96.2	76.6-125				
Bromochloromethane	8.8	"	10.0	ND	87.8	85-133				
Bromodichloromethane	9.7	"	10.0	ND	96.6	80.8-143				
Bromoform	9.4	"	10.0	ND	93.6	65.8-164				
Bromomethane	7.6	"	10.0	ND	75.8	68.7-112	I D'			
Carbon tetrachloride	8.4	"	10.0	ND	84.4	85.7-138	Low Bias			
Chlorobenzene	9.2	"	10.0	ND	92.0	79.9-129	I D'			
Chloroethane	7.4		10.0	ND	73.6	74.7-127	Low Bias			
Chloroform	8.0	"	10.0	ND	79.7	50.6-145				

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 357-0166 (203) 325-1371

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Iatrix Spike (BI10790-MS1)	*Source(Sample used for MS/	MSD): 11I0553-07			Prepare	ed & Analyze	d: 09/22/2011
hloromethane	6.9	ug/L	10.0	ND	68.8	64-111	
s-1,2-Dichloroethylene	7.8	"	10.0	ND	77.9	75.5-129	
s-1,3-Dichloropropylene	9.2	"	10.0	ND	92.4	74.3-128	
ibromochloromethane	9.2	"	10.0	ND	92.2	76.8-150	
ibromomethane	9.9	"	10.0	ND	98.6	83.3-140	
richlorodifluoromethane	5.2	"	10.0	ND	52.2	51-100	
thyl Benzene	9.3	"	10.0	ND	92.6	82.9-127	
exachlorobutadiene	8.6	"	10.0	ND	86.1	73-128	
opropylbenzene	9.4	"	10.0	ND	94.0	78.7-131	
ethyl tert-butyl ether (MTBE)	9.4	"	10.0	ND	93.5	81.2-134	
ethylene chloride	5.3	"	10.0	0.59	46.7	57.8-103	Low Bias
phthalene	7.8	"	10.0	ND	78.0	80.1-122	Low Bias
utylbenzene	8.6	"	10.0	ND	86.1	72.4-120	
ropylbenzene	8.9	"	10.0	ND	88.7	74-130	
ylene	9.2	"	10.0	ND	91.6	78.8-122	
t m- Xylenes	18	"	20.0	ND	90.9	82.5-123	
sopropyltoluene	9.0	"	10.0	ND	90.4	64.9-132	
-Butylbenzene	8.9	"	10.0	ND	89.1	25.4-151	
rene	9.1	"	10.0	ND	91.4	74.1-134	
t-Butylbenzene	10	"	10.0	ND	104	79.5-171	
rachloroethylene	9.5	"	10.0	0.14	93.2	72.5-130	
luene	9.1	"	10.0	ND	90.6	77.8-121	
ns-1,2-Dichloroethylene	8.2	"	10.0	ND	81.8	83.8-140	Low Bias
ns-1,3-Dichloropropylene	9.5	"	10.0	ND	95.0	74.9-136	
chloroethylene	8.9	"	10.0	ND	89.0	84.4-125	
chlorofluoromethane	7.5	"	10.0	ND	74.6	78.7-127	Low Bias
yl Chloride	7.0	"	10.0	ND	69.5	72.1-116	Low Bias
ogate: 1,2-Dichloroethane-d4	10.3	"	10.0		103	75.7-121	
rogate: p-Bromofluorobenzene	9.95	"	10.0		99.5	71.3-131	
ogate: Toluene-d8	10.6	"	10.0		106	86.7-112	

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Aatrix Spike Dup (BI10790-MSD1)	*Source(Sample used for MS/MS)	D): 11I0553-07			Prepare	ed & Analyze	d: 09/22/2011		
,1,1,2-Tetrachloroethane	9.1	ug/L	10.0	ND	91.3	82-138		2.17	21.3
1,1-Trichloroethane	7.6	"	10.0	ND	75.5	85.7-133	Low Bias	9.10	22.6
1,2,2-Tetrachloroethane	9.5	"	10.0	ND	95.1	78.6-136		2.13	23.1
1,2-Trichloro-1,2,2-trifluoroethane (Freon	7.4	"	10.0	ND	74.0	74.8-131	Low Bias	9.52	25.6
3)									
1,2-Trichloroethane	9.6	"	10.0	ND	95.8	82.5-129		4.37	19.3
-Dichloroethane	7.7	"	10.0	ND	77.2	81.4-137	Low Bias	5.79	20.7
I-Dichloroethylene	7.7	"	10.0	ND	77.3	90-138	Low Bias	8.43	22.9
1-Dichloropropylene	7.8	"	10.0	ND	78.4	91.7-131	Low Bias	8.55	24.9
2,3-Trichlorobenzene	9.0	"	10.0	ND	90.1	75.9-130		8.56	21.4
2,3-Trichloropropane	10	"	10.0	ND	105	77.1-140		12.2	28
2,4-Trichlorobenzene	9.2	"	10.0	ND	92.2	69.8-135		5.92	22.5
2,4-Trimethylbenzene	9.3	"	10.0	ND	93.1	79.4-131		0.749	33.9
2-Dibromo-3-chloropropane	9.3	"	10.0	ND	93.3	66.6-143		10.7	23.3
-Dibromoethane	11	"	10.0	ND	107	79.8-136		6.17	19.1
-Dichlorobenzene	9.2	"	10.0	ND	92.4	79.9-130		1.09	23.2
-Dichloroethane	9.4	"	10.0	ND	94.1	85-133		6.25	19.1
2-Dichloropropane	10	"	10.0	ND	101	81.1-132		1.60	19.9
3,5-Trimethylbenzene	8.6	"	10.0	ND	85.5	76.1-121		1.39	31.2
3-Dichlorobenzene	9.0	"	10.0	ND	90.0	79.1-124		1.79	22.6
3-Dichloropropane	10	"	10.0	ND	104	83.3-130		6.33	20.9
l-Dichlorobenzene	9.0	"	10.0	ND	90.2	79.4-128		0.00	21
-Dichloropropane	6.6	"	10.0	ND	66.3	54.2-126		9.07	24.5
Butanone	7.9	"	10.0	ND	78.7	70-130		1.41	30
Chlorotoluene	8.3	"	10.0	ND	83.3	60.2-144		1.82	30.8
Hexanone	9.2	"	10.0	ND	92.5	70-130		4.54	30
Chlorotoluene	8.8	"	10.0	ND	87.9	79.8-128		3.25	23.2
etone	5.4	"	10.0	ND	54.0	70-130	Low Bias	21.3	30
nzene	7.6	"	10.0	ND	75.6	74.1-134	Lon Dias	4.15	20.8
omobenzene	9.5	,,	10.0	ND	95.0	76.6-125		1.26	23
omochloromethane	8.2	,,	10.0	ND ND	81.7	85-133	Low Bias	7.20	18.4
omodichloromethane	9.4	,,	10.0	ND ND	93.9	80.8-143	LOW Dias	2.83	18.1
omoform	9.4 9.7	,,	10.0	ND ND	93.9 97.2	65.8-164		3.77	27.3
omomethane		,,	10.0			68.7-112		2.54	22.8
	7.4	"		ND	73.9		Low Bias	8.78	25.1
rbon tetrachloride	7.7	"	10.0	ND	77.3	85.7-138	LOW DIAS	0.654	21
llorobenzene	9.1	"	10.0	ND	91.4	79.9-129	I Di		23.7
lloroethane	7.2	,,	10.0	ND	72.3	74.7-127	Low Bias	1.78 1.64	21.7
loroform	7.8		10.0	ND	78.4	50.6-145			21.7
loromethane	6.6	"	10.0	ND	66.5	64-111	I Di	3.40	
-1,2-Dichloroethylene	7.3		10.0	ND	73.1	75.5-129	Low Bias	6.36	20.2
-1,3-Dichloropropylene	9.3	"	10.0	ND	93.1	74.3-128		0.755	19.8
bromochloromethane	9.2	"	10.0	ND	92.3	76.8-150		0.108	20.8
bromomethane	10	"	10.0	ND	103	83.3-140	I D.	4.56	20.4
chlorodifluoromethane	4.8	"	10.0	ND	47.8	51-100	Low Bias	8.80	27.6
nyl Benzene	8.7	"	10.0	ND	87.0	82.9-127		6.24	21.4
xachlorobutadiene	8.0	"	10.0	ND	79.5	73-128		7.97	26
propylbenzene	9.2	"	10.0	ND	92.1	78.7-131		2.04	26.7
thyl tert-butyl ether (MTBE)	9.7	"	10.0	ND	96.7	81.2-134		3.36	21.2
thylene chloride	5.2	"	10.0	0.59	46.5	57.8-103	Low Bias	0.429	21.2
phthalene	8.9	"	10.0	ND	88.7	80.1-122		12.8	26.1
Butylbenzene	8.2	"	10.0	ND	81.5	72.4-120		5.49	30.8
Propylbenzene	8.4	"	10.0	ND	83.8	74-130		5.68	31
Xylene	8.7	"	10.0	ND	87.1	78.8-122		5.04	21
& m- Xylenes	17	"	20.0	ND	87.3	82.5-123		4.04	22.5

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10790 - EPA 5030B											
Matrix Spike Dup (BI10790-MSD1)	*Source(Sample used for	or MS/MSD): 1	110553-07			Prepare	d & Analyze	d: 09/22/2011			
p-Isopropyltoluene	8.6		ug/L	10.0	ND	86.4	64.9-132		4.52	25.2	
sec-Butylbenzene	8.5		"	10.0	ND	85.3	25.4-151		4.36	25.2	
Styrene	9.2		"	10.0	ND	91.9	74.1-134		0.546	20	
tert-Butylbenzene	10		"	10.0	ND	100	79.5-171		3.71	24.8	
Tetrachloroethylene	8.6		"	10.0	0.14	84.3	72.5-130		10.0	22.7	
Toluene	8.6		"	10.0	ND	86.5	77.8-121		4.63	21.5	
trans-1,2-Dichloroethylene	7.6		"	10.0	ND	75.5	83.8-140	Low Bias	8.01	20.1	
trans-1,3-Dichloropropylene	9.5		"	10.0	ND	94.9	74.9-136		0.105	22.5	
Trichloroethylene	8.5		"	10.0	ND	84.6	84.4-125		5.07	20.7	
Trichlorofluoromethane	7.0		"	10.0	ND	69.8	78.7-127	Low Bias	6.65	24.7	
Vinyl Chloride	6.5		"	10.0	ND	64.7	72.1-116	Low Bias	7.15	24.9	
Surrogate: 1,2-Dichloroethane-d4	10.2		"	10.0		102	75.7-121				
Surrogate: p-Bromofluorobenzene	10.2		"	10.0		102	71.3-131				
Surrogate: Toluene-d8	10.8		"	10.0		108	86.7-112				
_	10.0			10.0		100	00.7 112				
Batch BI10791 - EPA 5030B											
Blank (BI10791-BLK1)						Prepare	d & Analyze	d: 09/22/2011			
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L								
1,1,1-Trichloroethane	ND	5.0	"								
1,1,2,2-Tetrachloroethane	ND	5.0	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"								
1,1,2-Trichloroethane	ND	5.0	"								
1,1-Dichloroethane	ND	5.0	"								
1,1-Dichloroethylene	ND	5.0	"								
1,1-Dichloropropylene	ND	5.0	"								
1,2,3-Trichlorobenzene	ND	10	"								
1,2,3-Trichloropropane	ND	5.0	"								
1,2,4-Trichlorobenzene	ND	10	"								
1,2,4-Trimethylbenzene	ND	5.0	"								
1,2-Dibromo-3-chloropropane	ND	10	"								
1,2-Dibromoethane	ND	5.0	"								
1,2-Dichlorobenzene	ND	5.0	"								
1,2-Dichloroethane	ND	5.0	"								
1,2-Dichloropropane	ND	5.0	"								
1,3,5-Trimethylbenzene	ND	5.0	"								
1,3-Dichlorobenzene	ND	5.0	"								
1,3-Dichloropropane	ND	5.0	"								
1,4-Dichlorobenzene	ND	5.0	"								
2,2-Dichloropropane	ND	5.0	"								
2-Butanone	ND	10	"								
2-Chlorotoluene	ND	5.0	"								
2-Hexanone	ND	5.0	"								
4-Chlorotoluene	ND	5.0	"								
Acetone	20	10	"								
Benzene	ND	5.0	"								
Bromobenzene	ND	5.0	"								
Bromochloromethane	ND	5.0	"								
Bromodichloromethane	ND	5.0	"								
Bromoform	ND	5.0	"								
Bromomethane	ND	5.0	"								
	ND	3.0									
Carbon tetrachloride	ND ND	5.0	"								

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BI10791-BLK1)					Prepare	ed & Analyzed: 09/22/2011
Chloroethane	ND	5.0	ug/L			
Chloroform	ND	5.0	"			
Chloromethane	ND	5.0	"			
cis-1,2-Dichloroethylene	ND	5.0	"			
cis-1,3-Dichloropropylene	ND	5.0	"			
Dibromochloromethane	ND	5.0	"			
Dibromomethane	ND	5.0	"			
Dichlorodifluoromethane	ND	5.0	"			
Ethyl Benzene	ND	5.0	"			
Hexachlorobutadiene	ND	5.0	"			
Isopropylbenzene	ND	5.0	"			
Methyl tert-butyl ether (MTBE)	ND	5.0	"			
Methylene chloride	3.6	10	"			
Naphthalene	0.53	10	"			
n-Butylbenzene	ND	5.0	"			
n-Propylbenzene	ND	5.0	"			
-Xylene	ND	5.0	"			
o- & m- Xylenes	ND	10	"			
p-Isopropyltoluene	ND	5.0	"			
ec-Butylbenzene	ND	5.0	"			
Styrene	ND	5.0	"			
ert-Butylbenzene	ND	5.0	"			
Tetrachloroethylene	ND	5.0	"			
Toluene	ND	5.0	"			
rans-1,2-Dichloroethylene	ND	5.0	"			
rans-1,3-Dichloropropylene	ND	5.0	"			
Trichloroethylene	ND	5.0	"			
Trichlorofluoromethane	ND	5.0	"			
Vinyl Chloride	ND	5.0	"			
Xylenes, Total	ND	15	"			
Surrogate: 1,2-Dichloroethane-d4	9.78		"	10.0	97.8	75.7-121
Surrogate: p-Bromofluorobenzene	10.9		"	10.0	109	71.3-131
Surrogate: Toluene-d8	10.7		"	10.0	107	86.7-112

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI10791 - EPA 5030B					
CS (BI10791-BS1)				Prepare	d & Analyzed: 09/22/2011
,1,1,2-Tetrachloroethane	11	ug/L	10.0	111	82.3-130
1,1-Trichloroethane	9.7	"	10.0	97.0	75.6-137
1,2,2-Tetrachloroethane	11	"	10.0	107	71.3-131
1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.3	"	10.0	92.6	71.1-129
3)					
1,2-Trichloroethane	11	"	10.0	107	74.5-129
1-Dichloroethane	9.1	"	10.0	91.0	79.6-132
1-Dichloroethylene	9.9	"	10.0	98.7	80.2-146
1-Dichloropropylene	10	"	10.0	104	75-136
2,3-Trichlorobenzene	10	"	10.0	101	66.1-136
2,3-Trichloropropane	11	"	10.0	109	63-131
2,4-Trichlorobenzene	12	"	10.0	118	70.6-136
2,4-Trimethylbenzene	12	"	10.0	121	75.3-135
2-Dibromo-3-chloropropane	12	"	10.0	118	58.9-140
2-Dibromoethane	11	"	10.0	108	79-130
2-Dichlorobenzene	11	"	10.0	107	76.1-122
2-Dichloroethane	9.2	"	10.0	92.5	74.6-132
2-Dichloropropane	12	"	10.0	118	76.9-129
3,5-Trimethylbenzene	11	"	10.0	110	70.6-127
3-Dichlorobenzene	11	"	10.0	113	77-124
3-Dichloropropane	11	"	10.0	112	75.8-126
1-Dichlorobenzene	11	"	10.0	108	76.6-125
2-Dichloropropane	9.8	"	10.0	97.6	69-133
Butanone	8.3	"	10.0	82.9	70-130
Chlorotoluene	11	"	10.0	107	66.3-119
Hexanone	9.2	"	10.0	92.0	70-130
Chlorotoluene	11	"	10.0	112	69.2-127
etone	7.3	"	10.0	72.9	70-130
enzene	9.1	"	10.0	91.3	76.2-129
omobenzene	12	"	10.0	116	71.3-123
omochloromethane	8.9	"	10.0	89.4	70.8-137
romodichloromethane	11	"	10.0	110	79.7-134
romoform	12	"	10.0	119	70.5-141
romomethane	8.8	"	10.0	87.8	43.9-147
urbon tetrachloride	9.8	"	10.0	97.6	78.1-138
nlorobenzene	9.8	"	10.0	109	80.4-125
nloroethane	8.7	"	10.0	86.8	55.8-140
noroemane nloroform	9.2	"	10.0	86.8 91.7	76.6-133
noronorm	8.0	"	10.0		76.6-133 48.8-115
-1,2-Dichloroethylene	8.0 9.0	"	10.0	80.5 89.8	48.8-113 75.1-128
· ·		"			
-1,3-Dichloropropylene	11		10.0	107	74.5-128
bromochloromethane bromomethane	11	"	10.0	111	79.8-134
	12		10.0	116	79-130 47.1.101
chlorodifluoromethane	6.2	"	10.0	62.2	47.1-101
nyl Benzene	11	"	10.0	113	80.8-128
exachlorobutadiene	11		10.0	106	64.8-128
propylbenzene	13	"	10.0	128	75.5-135
ethyl tert-butyl ether (MTBE)	7.7	"	10.0	76.6	65.1-140
ethylene chloride	6.1	"	10.0	61.4	61.3-120
phthalene	9.7	"	10.0	97.2	62.3-148
Butylbenzene	12	"	10.0	121	67.2-123
Propylbenzene	12	"	10.0	117	70.5-127
Xylene	11	"	10.0	106	75.9-122
& m- Xylenes	22	"	20.0	112	77.7-127

York Analytical Laboratories, Inc.

Spike

Source*

Reporting

		Reporting	Spike	Source*		%REC			KrD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10791 - EPA 5030B										
LCS (BI10791-BS1)					Prepare	d & Analyzed	d: 09/22/2011			
p-Isopropyltoluene	12	ug/L	10.0		120	75.6-129				
sec-Butylbenzene	11	"	10.0		114	71.5-125				
Styrene	11	"	10.0		106	77.8-123				
tert-Butylbenzene	13	II .	10.0		135	75.9-151				
Tetrachloroethylene	12	"	10.0		119	63.6-167				
Toluene	11	"	10.0		111	77-123				
trans-1,2-Dichloroethylene	10	"	10.0		102	76.3-139				
trans-1,3-Dichloropropylene	11	"	10.0		109	72.5-137				
Trichloroethylene	11	"	10.0		111	77.9-130				
Trichlorofluoromethane	8.6	"	10.0		86.4	57.4-133				
Vinyl Chloride	8.6	"	10.0		86.2	54.9-124				
Surrogate: 1,2-Dichloroethane-d4	9.06	"	10.0		90.6	75.7-121				
Surrogate: p-Bromofluorobenzene	10.6	"	10.0		106	71.3-131				
Surrogate: Toluene-d8	10.8	"	10.0		108	86.7-112				
Surroguie. Totuene-uo	10.0		10.0		100	00.7-112				
LCS Dup (BI10791-BSD1)					Prepare	d & Analyzed	d: 09/22/2011			
1,1,1,2-Tetrachloroethane	10	ug/L	10.0		104	82.3-130		6.04	21.1	
1,1,1-Trichloroethane	9.1	"	10.0		90.7	75.6-137		6.71	19.7	
1,1,2,2-Tetrachloroethane	10	"	10.0		105	71.3-131		2.55	20.8	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	8.8	"	10.0		88.1	71.1-129		4.98	21.7	
1,1,2-Trichloroethane	10	n .	10.0		103	74.5-129		3.81	20.3	
1,1-Dichloroethane	9.0	II .	10.0		89.9	79.6-132		1.22	20.6	
1,1-Dichloroethylene	9.3	"	10.0		92.9	80.2-146		6.05	20	
1,1-Dichloropropylene	9.8	m m	10.0		97.6	75-136		6.25	19.3	
1,2,3-Trichlorobenzene	9.7	"	10.0		97.0	66.1-136		4.14	21.6	
1,2,3-Trichloropropane	10	"	10.0		105	63-131		4.12	23.9	
1,2,4-Trichlorobenzene	11	"	10.0		113	70.6-136		3.90	21.7	
1,2,4-Trimethylbenzene	11	"	10.0		114	75.3-135		5.86	18.8	
1,2-Dibromo-3-chloropropane	11	"	10.0		110	58.9-140		7.19	27.7	
1,2-Dibromoethane	11	"	10.0		107	79-130		0.929	23	
1,2-Dichlorobenzene	10	"	10.0		102	76.1-122		5.26	19.8	
1,2-Dichloroethane	8.7	"	10.0		87.3	74.6-132		5.78	20.2	
1,2-Dichloropropane	11	"	10.0		113	76.9-129		4.76	20.7	
1,3,5-Trimethylbenzene	10	"	10.0		103	70.6-127		6.49	18.9	
1,3-Dichlorobenzene	11	"	10.0		105	77-124		7.07	19.2	
1,3-Dichloropropane	11	"	10.0		108	75.8-126		3.65	22.1	
1,4-Dichlorobenzene	10	m m	10.0		102	76.6-125		5.92	18.6	
2,2-Dichloropropane	9.1	"	10.0		91.1	69-133		6.89	19.8	
2-Butanone	7.5	"	10.0		75.4	70-130		9.48	30	
2-Chlorotoluene	10	"	10.0		99.9	66.3-119		7.14	21.6	
2-Hexanone	9.9	"	10.0		99.0	70-130		7.33	30	
4-Chlorotoluene	11	"	10.0		106	69.2-127		5.97	19	
Acetone	6.8	"	10.0		68.2	70-130	Low Bias	6.66	30	
Benzene	8.8	"	10.0		87.6	76.2-129		4.14	19	
Bromobenzene	11	"	10.0		105	71.3-123		9.33	20.3	
Bromochloromethane	8.4	"	10.0		84.0	70.8-137		6.23	23.9	
Bromodichloromethane	11	"	10.0		107	79.7-134		3.41	21	
Bromoform	11	"	10.0		114	70.5-141		4.81	21.8	
Bromomethane	8.3	"	10.0		82.8	43.9-147		5.86	28.4	
Carbon tetrachloride	9.3	"	10.0		92.8	78.1-138		5.04	20.1	
Chlorobenzene	10	"	10.0		104	80.4-125		4.41	19.9	
		"	10.0		81.5	55.8-140		6.30	23.3	
Chloroethane	8.2									

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

RPD

%REC

York Analytical Laboratories, Inc.

Spike

Source*

%REC

Reporting

		Reporting		Spike	Source		/0KEC				
Analyte	Result	Limit U	Jnits	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI10791 - EPA 5030B											
LCS Dup (BI10791-BSD1)						Prepared	d & Analyzed	d: 09/22/2011			
Chloromethane	7.9	υ	ug/L	10.0		78.7	48.8-115		2.26	24.5	
cis-1,2-Dichloroethylene	8.5		"	10.0		85.3	75.1-128		5.14	20.5	
cis-1,3-Dichloropropylene	10		"	10.0		104	74.5-128		2.93	19.9	
Dibromochloromethane	11		"	10.0		106	79.8-134		3.78	21.3	
Dibromomethane	11		"	10.0		111	79-130		4.50	22.4	
Dichlorodifluoromethane	6.2		"	10.0		61.5	47.1-101		1.13	23.9	
Ethyl Benzene	11		"	10.0		108	80.8-128		3.98	19.2	
Hexachlorobutadiene	9.9		"	10.0		99.4	64.8-128		6.05	20.6	
Isopropylbenzene	12		"	10.0		118	75.5-135		8.63	20	
Methyl tert-butyl ether (MTBE)	8.1		"	10.0		81.3	65.1-140		5.95	23.6	
Methylene chloride	6.0		"	10.0		59.6	61.3-120	Low Bias	2.98	20.4	
Naphthalene	9.7		"	10.0		97.4	62.3-148		0.206	27.1	
n-Butylbenzene	11		"	10.0		110	67.2-123		9.67	19.1	
n-Propylbenzene	11		"	10.0		106	70.5-127		9.23	23.4	
o-Xylene	10		"	10.0		101	75.9-122		4.64	19.3	
p- & m- Xylenes	21		"	20.0		106	77.7-127		5.53	18.6	
p-Isopropyltoluene	11		"	10.0		111	75.6-129		8.40	19.1	
sec-Butylbenzene	10		"	10.0		104	71.5-125		9.13	18.9	
Styrene	10		"	10.0		101	77.8-123		4.16	20.9	
tert-Butylbenzene	12		"	10.0		120	75.9-151		11.9	20.9	
Tetrachloroethylene	11		"	10.0		112	63.6-167		5.79	27.7	
Toluene	11		"	10.0		105	77-123		5.82	18.7	
trans-1,2-Dichloroethylene	9.4		"	10.0		94.1	76.3-139		8.35	19.5	
trans-1,3-Dichloropropylene	10		"	10.0		103	72.5-137		5.20	19.3	
Trichloroethylene	11		"	10.0		107	77.9-130		4.40	20.5	
Trichlorofluoromethane	8.0		"	10.0		79.9	57.4-133		7.82	21.4	

10.0

80.9

54.9-124

 Surrogate: 1,2-Dichloroethane-d4
 9.41
 "
 10.0
 94.1
 75.7-121

 Surrogate: p-Bromofluorobenzene
 10.5
 "
 10.0
 105
 71.3-131

 Surrogate: Toluene-d8
 10.6
 "
 10.0
 106
 86.7-112

8.1

Vinyl Chloride

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

RPD

22.3

6.34

Notes and Definitions

J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

Corrective Action:

Non-Dir.

YORK

Field Chain-of-Custody Record

ਠ

Field Filtered Report Type/Deliverbles Temperature York Project No. / I I O 553 9-19-11 Yach on Receipt Special Summary w/ QA Summary Description(s) Summary Report EDD (Specify Type) 1 Ģ NY ASP B Package NY ASP A Package Ç Electronic Deliverables: くシ CT RCP Package Metak Misc. Org. Full Lists Common Miscellaneous Parameters Cyanide-T Total Solids CBODS **BOD28** Excel Ammonia-N Phosphate **Oil&Grease** for Nitrogen Tot. Phos. Chloride Turn-Around Time Choose Analyses Needed from the Menu Above and Enter Below Standard(5-7 Days) NaOH Aquatic Tox. lash Point TCL Organics Reactivity gnitability RUSH - Same Day RUSH - Three Day RUSH - Next Day RUSH - Four Day RUSH - Two Day Part 360 Beschire NYSDECswa Part 360-Rouine TALMERON Full App. IX Full TCLP This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions unless superseded by written contract. TPH DRO NY 310-13 Air TO14A CT ETPH TPH 1664 Air STARS Air TO15 Air TICs SPLP or TCLP Air VPH Methane NOTE: York's Std. Terms & Conditions are listed on the back side of this document YOUR Project ID Purchase Order No. NJDEP list TAGM list Dissolved JST Below PP13 list CT15 list Rowe CT RCP list SPLP or TCLP Total Ascorbic Acid MeOH TCLP Herb TCLP Pest Site Spec. 8081Pest 8151Herb Chlordane App.IX list SPLP of TCLP BNA 608 Pest CTRCP App. IX STARS list Acids Only FAGM list AJDEP list BN Only App. IX AH list Attention: March Goldbe. Nassau Co. Suffolk Co. NJDEP list Oxygenates TCLP list Same Ketones Frozen Invoice To: 524.2 Arom. only 502.2 CT RCP list STARS list Halog.only TAGM list 75.版 MTBE Company: Phone No. DW - drinking water; Other - specify(oil, etc.) Sample Matrix Check those Applicable clock will not begin until any questions by Tork are resolved GW - groundwater Matrix Codes WW - wastewater Air-A - ambient air Air-SV - soil vapor Preservation Print Clearly and Legibly. All Information must 277 Report To: 9-13-11/239 Samples will NOT be logged in and the tim 1224 <u>8</u> 28 11300 Res 38 Date Sampled 4-13:11 9-13-11 Samples Collected/Authorized By (Signature) Greet prombnoster E-Mail Address: 1 Sondore Lbg Ct. Cog. Mail Address Phone No. Contact Person: Tonde Sooder Attention: 20 RESEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166 MW-98-04/19 MW-98-04MS Name (printed) Phone No. 203- 929 -8555 Shellen of 06484 YOUR Information MW-415A MW-98-01 Sample Identification MW-28 B MW-28A M-44 イントコンタ 12-44B Address: 4 Reserch. Company: BG omments Page 54 of 55

ج ا ور

Samples Repaired in LAB by

Date/Time

Samples Relinquished By

Received By

Samples

Date/Time

Samples Relinquished By

Instructions Report Type/Deliverbles **Femperature** 3-15-1 KM on Receipt York Project No. 112 0 553 Special Field Filtered Description(s) Summary W/ QA Summary Summary Report ಕ NY ASP B Package EDD (Specify Type) NY ASP A Package CT RCP Package Semi-Vols Pearecement Metals Misc. Org. Pull Lists Common Miscellaneous Parameters Cyanide T Cyanide-A Total Solids CBODS **BOD28** Excel Ammonte Phosphate Tot. Phos. Oil&Gress Chloride Turn-Around Time Choose Analyses Needed from the Menu Above and Enter Below Standard(5-7 Days) NaOH Heterotrophs Tash Point sieve Anal TCL Organics Reactivity RUSH - Three Day RUSH - Same Day RUSH - Four Day RUSH - Next Day RUSH - Two Day Samples Received By Part 360-Routine NYCOEPsens NYSDECsome Pull App. IX TAL MOUCH Full TCLP This document serves as your written authorization to York to proceed with the analyses requested and your Field Chain-of-Custody Record TPH DRO NY 310-13 Air TO14A TPH 1664 **Air STARS** Air TO15 ignature binds you to York's Std. Terms & Conditions unless superseded by written contract Air TICS Rowe Industries E-Mail Address: May be begel bamples from: CT NY NI NOTE: York's Std. Terms & Conditions are listed on the back side of this document. Other Purchase Order No. YOUR Project ID STPOTOP TAGM list NJDEP list Dissolved CT15 list JST Below PP13 list TRCP list SPLP or TCLP Total 9/15/4 lay Date/Time Ascorbic Acid MeOH TCLP Pest TCLP Herb Chlordane 8151Herb Site Spec. 8081Pest App. IX SPLP of TCLP BNA 608 Pest CT RCP 8270 or 625 STARS list Acids Only **VIDEP list** rAGM list CCL list App. IX **BN Only** AH list Samples Relinquished By B Attention: Mark Goldberg NJDEP list Nassau Co. Suffolk Co. TCLP list Site Spec. SOME Frozen Ketones Invoice To: Arom, only 502.2 CT RCP list App.IX list STARS list Halog.only TAGM list 70, list MTBE GW - groundwater
DW - drinking water Phone No. Other - specify(oil, etc.) Check those Applicable Sample Matrix WW - wastewater Matrix Codes Air-A - ambient air Preservation Air-SV - soil vapor ک ق ろがなり 286 Report To: 1635 500 1708 1833 Date Sampled (A) 11/01/6 PACINETE Armonius Ger les collected Authorized By (Signature) E-Mail Address: 1 Sondor 6 Lbg Ch. C. Mail Address Contact Person: Tunche Sooder Attention: Address: 20 RESEARCH DR. STRATFORD, CT 06615 FAX (203) 357-0166 MW-478 clock will not begin until the FB-649131 MW-47A 710-85-01A MW-46B MW- 45B MW-46A MW-53A Phone No. 203- 929-9555 Shellen, of 06484 YOUR Information Samples will NOT best Sample Identification TBZ 183 Address: 4 Reserred LBG (203) 325-1371 Comments

Technical Report

prepared for:

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Report Date: 09/28/2011

Client Project ID: Rowe Industries
York Project (SDG) No.: 1110647

CT License No. PH-0723

New Jersey License No. CT-005

New York License No. 10854

PA License No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 12

Report Date: 09/28/2011 Client Project ID: Rowe Industries York Project (SDG) No.: 11I0647

Leggette Brashears & Graham Shelton Office

4 Research Drive, Suite 301 Shelton CT, 06484

Attention: Tunde Sandor

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 20, 2011 and listed below. The project was identified as your project: **Rowe Industries**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
1110647-01	MW43A	Water	09/15/2011	09/20/2011
1110647-02	MW98-05A	Water	09/15/2011	09/20/2011
1110647-03	MW98-05B	Water	09/15/2011	09/20/2011
1110647-04	RW-1	Water	09/15/2011	09/20/2011
			0	***************************************

General Notes for York Project (SDG) No.: 1110647

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Robert Q. Bradley

fourt & Jeadley

Executive Vice President / Laboratory Director

YORK

09/28/2011

Date:

Client Sample ID: MW43A York Sample ID: 1110647-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110647Rowe IndustriesWaterSeptember 15, 2011 1:16 pm09/20/2011

Log-in Notes:

Volatile Organics, 8260 List

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
71-55-6	1,1,1-Trichloroethane	5.3		ug/L	0.95	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-34-3	1,1-Dichloroethane	1.4	J	ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
7-64-1	Acetone	3.2	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Sample Notes:

Client Sample ID: MW43A York Sample ID: 1110647-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110647Rowe IndustriesWaterSeptember 15, 2011 1:16 pm09/20/2011

Volatile Organics, 8260 List						Lo	g-in Note	<u>es:</u>	Sample Notes:		
Sample Prepare	ed by Method: EPA 5030B Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-09-2	Methylene chloride	4.0	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/27/2011 05:21	09/27/2011 05:21	SS
								EDA CW04/ 92/0D	00/27/2011 05 21	00/27/2011 05 21	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) <u>357-0166</u>

1.0

15

ug/L

ND

1330-20-7

Xylenes, Total

EPA SW846-8260B

09/27/2011 05:21 09/27/2011 05:21

Client Sample ID: MW98-05A York Sample ID: 1110647-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received11I0647Rowe IndustriesWaterSeptember 15, 2011 9:56 am09/20/2011

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
5-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
63-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
7-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
6-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
05-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
06-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
5-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
07-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
8-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
08-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
41-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
42-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
06-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
94-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
8-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
5-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
91-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
06-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
7-64-1	Acetone	3.2	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
1-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
08-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
4-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
5-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
5-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
4-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
6-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS

Client Sample ID: MW98-05A York Sample ID: 1110647-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110647Rowe IndustriesWaterSeptember 15, 2011 9:56 am09/20/2011

Volatile Organics, 8260 List

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
75-09-2	Methylene chloride	ND		ug/L	1.1	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
108-88-3	Toluene	17		ug/L	0.23	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/27/2011 21:09	09/27/2011 21:09	SS

Client Sample ID: MW98-05B York Sample ID: 1110647-03

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 09/20/2011 11I0647 Rowe Industries Water September 15, 2011 10:31 am

Log-in Notes:

Sample Notes:

Volatile Organics, 8260 List

Sample Prepared	d by Method: EPA 5030B								Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Prepared	Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
67-64-1	Acetone	6.1	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Client Sample ID: MW98-05B York Sample ID: 1110647-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110647Rowe IndustriesWaterSeptember 15, 2011 10:31 am09/20/2011

Volatile Organics, 8260 List

Chlorobenzene

Chloroethane

Parameter

Sample Prepared by Method: EPA 5030B

CAS No.

108-90-7 75-00-3

Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
1.0	J	ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS

Sample Notes:

Log-in Notes:

67-66-3	Chloroform	ND		ug/L	0.36	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
156-59-2	cis-1,2-Dichloroethylene	1.0	J	ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-09-2	Methylene chloride	5.3	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
127-18-4	Tetrachloroethylene	190		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
79-01-6	Trichloroethylene	3.8	J	ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/27/2011 06:42	09/27/2011 06:42	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Client Sample ID: York Sample ID: 1110647-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received1110647Rowe IndustriesWaterSeptember 15, 2011 12:32 pm09/20/2011

Volatile Organics, 8260 List						Lo	g-in Note	Sample Notes:			
Sample Prepare CAS No.	d by Method: EPA 5030B Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.54	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.95	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.60	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.37	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	1.1	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.48	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.53	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	1.3	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.59	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.22	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.37	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.47	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
142-28-9	1,3-Dichloropropane	ND		ug/L	0.69	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
594-20-7	2,2-Dichloropropane	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
78-93-3	2-Butanone	ND		ug/L	2.6	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
95-49-8	2-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
591-78-6	2-Hexanone	ND		ug/L	0.87	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
106-43-4	4-Chlorotoluene	ND		ug/L	0.49	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
67-64-1	Acetone	3.8	J, B	ug/L	3.1	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
71-43-2	Benzene	ND		ug/L	0.48	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
108-86-1	Bromobenzene	ND		ug/L	0.61	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
74-97-5	Bromochloromethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.62	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-25-2	Bromoform	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
74-83-9	Bromomethane	ND		ug/L	1.2	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
56-23-5	Carbon tetrachloride	ND		ug/L	1.0	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) <u>357-0166</u>

Client Sample ID: RW-1 York Sample ID: 1110647-04

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 09/20/2011 11I0647 Rowe Industries Water September 15, 2011 12:32 pm

Volatile Organics, 8260 List

Log-in Notes: Sample Prepared by Method: EPA 5030B

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-00-3	Chloroethane	ND		ug/L	0.76	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
67-66-3	Chloroform	0.84	J	ug/L	0.36	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
74-87-3	Chloromethane	ND		ug/L	0.89	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.96	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.67	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
74-95-3	Dibromomethane	ND		ug/L	1.3	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.83	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.35	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
87-68-3	Hexachlorobutadiene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.39	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.38	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-09-2	Methylene chloride	7.1	J, B	ug/L	1.1	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
91-20-3	Naphthalene	ND		ug/L	0.50	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
104-51-8	n-Butylbenzene	ND		ug/L	0.32	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
103-65-1	n-Propylbenzene	ND		ug/L	0.58	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
95-47-6	o-Xylene	ND		ug/L	0.50	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
1330-20-7P/M	p- & m- Xylenes	ND		ug/L	0.55	10	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
99-87-6	p-Isopropyltoluene	ND		ug/L	0.25	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
135-98-8	sec-Butylbenzene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
100-42-5	Styrene	ND		ug/L	0.43	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
98-06-6	tert-Butylbenzene	ND		ug/L	0.46	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.52	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
108-88-3	Toluene	ND		ug/L	0.23	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.65	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.68	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
79-01-6	Trichloroethylene	ND		ug/L	0.57	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.91	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.97	5.0	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS
1330-20-7	Xylenes, Total	ND		ug/L	1.0	15	1	EPA SW846-8260B	09/27/2011 07:23	09/27/2011 07:23	SS

FAX (203) 357-0166 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Notes and Definitions

J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL); therefore, the result is an estimated concentration.
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
MDL	METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

Corrective Action:

20 RESEARCH DR. STRATFORD, CT 06615

FAX (203) 357-0166

(203) 325-1371

Field Chain-of-Custody Record

NOTE: York's Sld. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your

signature binds you to York's Std. Terms & Conditions unless superseded by written contract.

York Project No. 11 I o 647

₽

Page_

emperature Field Filtered nstructions Description(s) on Receipt Ç Report Type/Deliverables X, Excel 2 Hr v x, pdf x, pdf x, pdf Special ω Date/Time QA/QC Summary Cyanida Total Solids Cyanide T CT RCP Pkg CBODS BOD28 BODS 8 Miscellaneous Parameters ASP A Pkg ASP B Pkg ğ Choose Analyses Needed from the Menu Above and Enter Below Date/Time Summary FROZEN 2201 100 Ammonies CA Narogen Phosphate Oil&Greek Excel Tot. Phos. EDD Chloride Turn-Around Time Heterotrophs 6 Aquetic Tox. Samples Received in LAB by Compavity lash Point Sicve Arred. gnisbility Ashestos × Reactivity ž Samples Received By PAC SOL Standard (5-7 days) Pal 300 from Part 360-Rouine Part 360 Engelere NYMBCs RUSH Next Day RUSH Same Day Two Day RUSH Three Day RUSH Four Day Misc. Org. Full Lists TCL Ognis Full App. IX Full TCLP TAL MACK Pri.Poll. TAGM OTHER Air TO14A NY 310-13 TPH 418.1 Air STARS TPH DRO CT ETPH Air TO15 TPH GRO Hg. Pb. As. Col Air VPH Ct, NI, Be, Fe, Air TICs Inch. Octob Se, 71, Sh, Cu. SPLP OTCLP ST.P OTCLP Purchase Order no. VOC 8260 full fist (EPA SW846-8260B) VOC 8260 full list (EPA SW840-8260B) VOC 8260 full list (EPA SW846-8260B) Samples from:CT_NY_NJ_ VOC 8260 full list (EPA SW846-8260B) VOC 8260 full list (EPA SW846-8260B) VOC 8260 full list (EPA SW846-8260B) VOC 8260 full list (EPA SW846-8260B) 34 Client Project ID Metak Dissolved Rowe Industries Date/Time Date/Time Otal Otal 7-97-6 NABSAG Semi-Vols, PearRCB/Root TCLP Herb TCLP Pest Chlordane Site Spec. 8082PCB 8151Herb 8081Pest App. LX 608 Pest CTRCP SPLPorTCLP Leids Only Samples Relinquished By Samples Relinquished By App. IX BN Only CT RCP rcL list TARS TAGM ي ا 185 F(1XA) HN03 SPLPaTOL Nassau Co. Suffolk Co. Oxygenates rceP list Site Spec. Ketones 502.2 524.2 Mark Goldberg Invoice To: Cool 4°C CT RCP App.IX STARS TAGM MTBE 10.E Halog. Anom. BIEX Same Other - specify(oil. etc.) drinking water Sample Matrix those applicable SAME GW - groundwater WW - wastewater Matrix Codes Company Air-A · ambient air Address: Preservation \$ ⇟ \$ Fax No. 8 80 8 3 8 Name: E-mail DW -**Tunde Sandor** Same 956 Report to: 1316 Date Sampled 1031 Samples Colleged/Authorized By (Signature) SAME 9/15/11 Company: Address: Fax No. E-mail: Name (printed) Suite 301, Shelton CT, 06484 STEPHEN HUMT Tsandor@lbqct.com Client Information Sample Identification 4 Research Drive, MW98-0.5A 550-86 MW ontact Person Tunde Sandor 203-929-8555 203-926-9140 MM43A Pw-1 Print Clearl Comments -mail Addr.: hone no.: company AX No.: ddress:

APPENDIX C

Piezometer Hydrographs

Hydrograph of Lily Pond Piezometer

Hydrograph of Ligonee Brook Turnpike Piezometer

Hydrograph of Ligonee Brook Piezometer No. 1

Hydrograph of Ligonee Brook Piezometer No. 2

Hydrograph of Ligonee Brook Piezometer No. 3

Hydrograph of Ligonee Brook Brick Kiln Road Piezometer

APPENDIX D

USGS Monitor Well Daily Groundwater Elevations for 2011

USGS 405756072173502 S 8833. 2

Provisional data subject to revision.

DESCRIPTION:

Latitude 40°57'56", Longitude 72°17'35" NAD27

Suffolk County, New York, Hydrologic Unit 02030202 at west side of Toppings Path, east side of Crooked Pond, Bridgehampton.

Well depth: 20.0 feet Hole depth: 20.0 feet

Land surface altitude: 20.0 feet above sea level NGVD29.

Well completed in "Northern Atlantic Coastal Plain aquifer system" (S100NATLCP) national

aquifer.

Well completed in "Glacial Aquifer, Upper" (112GLCLU) local aquifer

PERIOD OF RECORD.--May 2003 to current year.

GAGE.--Digital water-level recorder with satellite telemeter.

REMARKS.--Replaced well S8833.1 in May 2003 near same location.

Derived from NY Annual Water-Data Report 2007

http://nwis.waterdata.usgs.gov/nwis/nwismap/?site_no=405756072173502&agency_cd=USGS

LBG ENGINEERING SERVICES, P.C.

 $K:\label{loss} Kraft Foods \ Global, Inc\ROWE \ Industries\Ground \ Water\O\&M\FSP\&T\Annual \ Reports\2011 \ Annual \ Report\2011 \ Annual \ Report for \ Client \ Review\Appendix \ D \ USGS \ Monitor \ Well \ Groundwater \ Elevation \ Data for \ 2011\USGS \ 405756072173502 \ S \ 8833 \ - \ 2011.doc$

	Daily Mean Elevation above NGVD 1929, feet											
DATE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
DATE	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011
1	15.87 ^P	15.66 ^P	15.89 ^P	15.92 ^P	15.85 ^P	15.80 ^P	15.70 ^P	15.28 ^P	14.96 ^P	14.75 ^P	14.75 ^P	14.86 ^P
2	15.89 ^P	15.72 ^P	15.89 ^P	15.90 P	15.84 ^P	15.79 ^P	15.68 ^P	15.26 ^P	14.94 ^P	14.74 ^P	14.72 ^P	14.85 ^P
3	15.88 ^P	15.71 ^P	15.88 ^P	15.88 ^P	15.84 ^P	15.76 ^P	15.66 P	15.24 ^P	14.93 ^P	14.73 ^P	14.71 ^P	14.85 ^P
4	15.87 ^P	15.70 ^P	15.88 ^P	15.88 ^P	15.84 ^P	15.74 ^P	15.64 ^P	15.22 ^P	14.91 ^P	14.72 ^P	14.69 P	14.85 ^P
5	15.85 ^P	15.70 ^P	15.89 ^P	15.88 ^P	15.84 ^P	15.73 ^P	15.63 ^P	15.20 ^P	14.90 ^P	14.71 ^P	14.66 P	14.85 ^P
6	15.84 ^P	15.72 ^P	15.90 ^P	15.85 ^P	15.82 ^P	15.72 ^P	15.61 ^P	15.19 ^P	14.91 ^P	14.70 ^P	14.64 ^P	14.85 ^P
7	15.83 ^P	15.72 ^P	15.92 ^P	15.84 ^P	15.81 ^P	15.70 ^P	15.59 ^P	15.23 ^P	14.93 ^P	14.68 ^P	14.63 ^P	14.89 ^P
8	15.81 ^P	15.74 ^P	15.91 ^P	15.83 ^P	15.81 ^P	15.69 ^P	15.59 ^P	15.20 ^P	15.09 ^P	14.67 ^P	14.62 ^P	14.95 ^P
9	15.79 ^P	15.72 ^P	15.90 ^P	15.83 ^P	15.79 ^P	15.68 ^P	15.71 ^P	15.18 ^P	15.12 ^P	14.66 P	14.61 ^P	14.96 ^P
10	15.77 ^P	15.70 ^P	15.91 ^P	15.82 ^P	15.78 ^P	15.68 ^P	15.65 ^P	15.17 ^P	15.07 ^P	14.65 ^P	14.64 ^P	14.97 ^P
11	15.76 ^P	15.68 ^P	15.93 ^P	15.82 ^P	15.76 ^P	15.67 ^P	15.61 ^P	15.14 ^P	15.03 ^P	14.63 ^P	14.65 P	14.97 ^P
12	15.78 ^P	15.67 ^P	15.94 ^P	15.81 ^P	15.74 ^P	15.73 ^P	15.59 ^P	15.12 ^P	14.99 ^P	14.62 ^P	14.62 ^P	14.97 ^P
13	15.75 ^P	15.65 ^P	15.94 ^P	15.83 ^P	15.74 ^P	15.71 ^P	15.56 ^P	15.11 ^P	14.97 ^P	14.63 ^P	14.61 ^P	14.97 ^P
14	15.74 ^P	15.67 ^P	15.92 ^P	15.83 ^P	15.72 ^P	15.72 ^P	15.54 ^P	15.16 ^P	14.95 ^P	14.62 P	14.61 P	14.98 ^P
15	15.74 ^P	15.64 ^P	15.92 ^P	15.80 ^P	15.73 ^P	15.72 ^P	15.52 ^P	15.17 ^P	14.92 ^P	14.61 P	14.60 P	14.98 ^P
16	15.73 ^P	15.64 ^P	15.94 ^P	15.80 ^P	15.74 ^P	15.68 ^P	15.50 P	15.15 ^P	14.89 ^P	14.60 P	14.62 P	14.98 P

				Daily	Mean Eleva	ition above	NGVD 1929	, feet				
DATE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
DATE	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011
17	15.71 ^P	15.64 ^P	15.94 ^P	15.93 ^P	15.81 ^P	15.71 ^P	15.48 ^P	15.12 ^P	14.88 ^P	14.58 ^P	14.64 ^P	14.98 ^P
18	15.77 ^P	15.66 ^P	15.94 ^P	15.92 ^P	15.92 ^P	15.75 ^P	15.48 ^P	15.09 P	14.86 ^P	14.57 P	14.63 ^P	14.98 ^P
19	15.83 ^P	15.67 ^P	15.92 ^P	15.90 ^P	15.93 ^P	15.73 ^P	15.46 ^P	15.08 ^P	14.85 ^P	14.62 P	14.62 ^P	14.98 ^P
20	15.81 P	15.64 ^P	15.90 P	15.89 ^P	15.93 ^P	15.69 P	15.45 P	15.07 P	14.83 ^P	14.72 ^P	14.62 P	14.99 P
21	15.80 ^P	15.64 ^P	15.92 ^P	15.87 ^P	15.91 ^P	15.67 ^P	15.43 ^P	15.06 ^P	14.82 ^P	14.70 P	14.61 ^P	14.99 ^P
22	15.76 P	15.63 ^P	15.93 ^P	15.85 ^P	15.89 ^P	15.67 ^P	15.41 ^P	15.05 P	14.81 ^P	14.66 P	14.60 P	15.00 P
23	15.73 ^P	15.62 ^P	15.92 P	15.89 ^P	15.88 ^P	15.74 ^P	15.40 P	15.03 P	14.81 ^P	14.63 ^P	14.77 ^P	15.05 P
24	15.70 P	15.61 ^P	15.93 ^P	15.91 ^P	15.89 ^P	15.86 ^P	15.39 P	15.01 P	14.82 ^P	14.61 P	14.81 P	15.06 P
25	15.70 ^P	15.76 ^P	15.92 ^P	15.91 ^P	15.87 ^P	15.86 ^P	15.37 ^P	14.99 ^P	14.80 ^P	14.59 P	14.81 ^P	15.06 ^P
26	15.70 P	15.87 ^P	15.90 P	15.90 ^P	15.86 ^P	15.84 ^P	15.37 ^P	14.98 ^P	14.78 ^P	14.58 P	14.80 P	15.07 ^P
27	15.72 ^P	15.88 ^P	15.90 ^P	15.89 ^P	15.85 ^P	15.80 ^P	15.37 ^P	14.97 ^P	14.78 ^P	14.59 P	14.79 ^P	15.07 ^P
28	15.71 ^P	15.89 ^P	15.89 ^P	15.89 ^P	15.83 ^P	15.78 ^P	15.34 ^P	15.09 ^P	14.77 ^P	14.59 P	14.78 ^P	15.08 ^P
29	15.69 P		15.87 ^P	15.89 ^P	15.82 ^P	15.76 ^P	15.32 ^P	15.04 ^P	14.79 ^P	14.63 ^P	14.79 ^P	15.08 ^P
30	15.68 ^P		15.86 ^P	15.87 ^P	15.82 ^P	15.72 ^P	15.31 ^P	15.00 P	14.76 ^P	14.76 ^P	14.86 ^P	15.08 ^P
31	15.67 ^P		15.87 ^P		15.81 ^P		15.30 ^P	14.97 ^P		14.76 ^P		15.08 ^P
COUNT	31	28	31	30	31	30	31	31	30	31	30	31
MAX	15.89	15.89	15.94	15.93	15.93	15.86	15.71	15.28	15.12	14.76	14.86	15.08
MIN	15.67	15.61	15.86	15.8	15.72	15.67	15.3	14.97	14.76	14.57	14.6	14.85

P Provisional data subject to revision.

APPENDIX E

Flora and Fauna Quarterly Reports

ENVIRONMENTAL PLANNING & DEVELOPMENT CONSULTANTS

RICHARD ERIK WARREN, AICP President

July 26, 2011

Mark M. Goldberg, P.E., Senior Environmental Engineer Leggette, Brashears & Graham, Inc. 4 Research Drive, Suite 301 Shelton, Connecticut 06484

Re: Rowe Industries Site

Dear Mr. Goldberg:

Enclosed please find the Winter 2011 quarterly report. It is noted that the remediation operations at the former Rowe Industries Superfund Site do not appear to have adversely impacted the flora or fauna in the designated monitoring areas.

Should you have any questions regarding this cover letter or the enclosed report in general, please do not hesitate to contact this office. Thank you.

Very truly yours,

James L. Walker Principal Planner

JLW: jlw enclosures

E:\LigoneeCreek\GoldbergLETTER03312011.wpd

INTER-SCIENCE RESEARCH ASSOCIATES, INC.

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

March 10, 2011

The following form contains the results of the Winter 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. Each transect will be recorded in terms of species found and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

March 20, 2011

1

Weather:

46 Degrees Fahrenheit, Overcast, Cloudy, Warm Front Approaching.

Comments:

Fairly representative depth of water and width of brook at this time.

Results:

The location of the freshwater wetlands transect is shown as 1-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Brook. It extends 139 linear feet north and 51 linear feet south of the centerline of the brook. The brook is flowing, approximately 8 inches deep and 8 feet wide at this time.

The results of the vegetative transect are, as follows:

S	ĺ	a	r	1

Common Name

Scientific Name

Landward Limit of Freshwater Wetlands

Swamp Maple American Holly Spicebush Acer rubrum Ilex opaca

Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Lindera benzoin

American Holly Ilex opaca Swamp Maple Acer rubrum American Holly Ilex opaca Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin

Spicebush Lindera benzoin Wild Grape Vitis sp. Sedge Carex lurida Sedge Carex crinita Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Sphagnum Moss

South Side

Sphagnum Moss

Sedge Carex lurida Sedge Carex crinita Spicebush Lindera benzoin

Sphagnum sp.

Sphagnum sp.

Wild Grape Vitis sp.

Spicebush Lindera benzoin Spicebush Lindera benzoin Swamp Maple Acer rubrum Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin

American Holly Ilex opaca American Holly Ilex opaca American Holly Ilex opaca American Holly Ilex opaca American Holly Ilex opaca American Holly Ilex opaca American Holly Ilex opaca American Holly Ilex opaca Swamp Maple Acer rubrum

Greenbrier Smilax rotundifolia Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica

American Holly Ilex opaca Lindera benzoin Spicebush Spicebush Lindera benzoin Spicebush Lindera benzoin Northern Bayberry Myrica pensylvanica Myrica pensylvanica Northern Bayberry Smilax rotundifolia Greenbrier Myrica pensylvanica Northern Bayberry Fagus grandifolia American Beech Myrica pensylvanica Northern Bayberry Smilax rotundifolia Greenbrier

Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia

Greenbrier Smilax rotundifolia
American Beech Fagus grandifolia
Greenbrier Smilax rotundifolia
American Beech Fagus grandifolia
American Beech Fagus grandifolia
American Beech Fagus grandifolia
Fagus grandifolia

American Beech Fagus grandifolia
American Beech Fagus grandifolia
Greenbrier Smilax rotundifolia

Red Oak Quercus borealis

NOTES: In the upland portions of the woods adjacent to the south side of Ligonee Creek, Spotted Wintergreen (Chimaphila maculata), Pignut Hickory (Carya glabra), White Oak (Quercus alba), Mockernut Hickory (Carya tomentosa), Red Oak (Quercus borealis), Scarlet Oak (Quercus coccinea), Black Oak (Quercus velutina), Swamp Maple (Acer rubrum), Flowering Dogwood (Cornus florida), American Holly (Ilex opaca), Northern Bayberry (Myrica pensylvanica), Sweet Pepperbush (Clethra alnifolia), Greenbrier (Smilax rotundifolia), Dewberry (Rubus hispidus), Eastern Red Cedar (Juniperus virginiana), Wild Grape (Vitis sp.), Poison Ivy (Toxicodendron radicans), Tupelo (Nyssa sylvatica), Highbush Blueberry (Vaccinium corymbosum), Lowbush Blueberry (Vaccinium angustifolium), Arrowwood (Viburnum recognitum), White Pine (Pinus strobus), Sassafras (Sassafras albidum), Fire Sedge (Carex pensylvanica), Sensitive Fern (Onoclea sensibilis), Cinnamon Fern (Osmunda cinnamomea) and Goldenrod (Solidago sp.) are found. Towards the edge of the road, Norway Maple (Acer platanoides), Black Locust (Lonicera pseudo-acacia), Black Cherry (Prunus serotina), Black Willow (Salix nigra), Sweet Cherry (Prunus avium), Japanese Honeysuckle (Lonicera japonica), Virginia Creeper (Parthenocissus quinquefolia), Oriental Bittersweet (Celastrus orbiculatus), Day-lily (Hemerocallis fulva), Wild Grape (Vitis sp.), Scrub Oak (Quercus ilicifolia), Tartarian Honeysuckle (Lonicera tatarica), Quaking Aspen (Populus tremuloides), Multiflora Rose (Rosa

multiflora), Tree-of-heaven (Ailanthus altissima), Common Catalpa (Catalpa bignoniodes), Japanese Barberry (Berberis thunbergii), Winged Sumac (Rhus copallina), Calico Aster (Aster lateriflorus), New England Aster (Aster novae-angliae), Wild Lettuce (Lactuca canadensis), Dandelion (Taraxacum officinale), Plantain (Plantago sp.), Lilac (Syringa sp.), Sour Dock (Rumex crispus), Wild Carrot (Daucus carota), Ragweed (Ambrosia artemisiifolia), Deadly Nightshade (Solanum dulcamara), Mullein (Verbascum thapsus), Evening Primrose (Oenothera biennis), Alder (Alnus sp.), Red Top (Argrostis alba), Goldenrod (Solidago sp.), Spotted-touch-me-not (Impatiens capensis), Buckthorn (Rhamnus frangula) and Winged Euonymus (Euonymus sp.) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation although the wetlands are drier than normal and some of the herbaceous vegetation is correspondingly absent.

In the upland portions of the woods adjacent to the north side of Ligonee Creek, Greenbrier (Smilax rotundifolia), Poison Ivy (Toxicodendron radicans), American Beech (Fagus grandifolia), Wild Grape (Vitis sp.), Arrowwood (Viburnum recognitum), Swamp Maple (Acer rubrum), Black Walnut (Juglans nigra), Virginia Creeper (Parthenocissus quinquefolia), Black Cherry (Prunus serotina), American Holly (Ilex opaca), Spicebush (Lindera benzoin), Japanese Barberry (Berberis thunbergii), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Sassafras (Sassafras albidum), Japanese Honeysuckle (Lonicera japonica), Dewberry (Rubus hispidus), Goldenrod (Solidago sp.), Sycamore Maple (Acer pseudo-platanus), Oriental Bittersweet (Celastrus orbiculatus), Scrub Oak (Quercus ilicifolia), Wild Carrot (Daucus carota), Elderberry (Sambucus canadensis), Evening Primrose (Oenothera biennis), Day Lily (Hemerocallis fulva), Multiflora Rose (Rosa multiflora), Tupelo (Nyssa sylvatica), Catalpa (Catalpa bignonioides), White Oak (Quercus alba), Red Oak (Quercus borealis), Sweet Cherry (Prunus avium), Mulberry (Morus sp.), Calico Aster (Aster lateriflorus), Common Smartweed (Polygonum hydropiper), Ragweed (Ambrosia artemisiifolia), Sour Dock (Rumex crispus), Tartarian Honeysuckle (Lonicera tatarica), Touch-me-not (Impatiens capensis), Field Garlic (Allium vineale), Common Mullein (Verbascum thapsus), White Boneset (Eupatorium album), Flat-topped Goldenrod (Euthamia sp.), Privet (Ligustrum vulgare), Poison Ivy (Toxicodendron radicans), Star-flower (Trietalis borealis), Gall-of-the-earth (Prenanthes trifoliata) and Tree-of -heaven (Ailanthus altissima) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation although the expanse of Sedges, Carex lurida and Carex crinita, was expanded and other vegetation such as Sphagnum was absent due to short term changes in the groundwater table elevation.

H:\Forms\form1.wpd

INTER-SCIENCE RESEARCH ASSOCIATES, INC.

FIELD INSPECTION REPORT FORM

TO: FROM:

Leggette Brashears & Graham, Inc. James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

March 17, 2011

The following form contains the results of the Winter 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. A fourth area is analyzed for estuarine organisms. Each transect will be recorded in terms of species present and relative density so that trends for each transect can be ascertained. The following are field date taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

March 17, 2011

2

Weather:

Clear, High Pressure, Northwest Wind.

Comments:

Outgoing Tide, High Marsh Intact, Low Marsh - Heavy Ice Damage.

Results:

The location of the tidal wetlands transect is shown as 2-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove. It extends 40 feet in width and includes classic Intertidal Marsh and High Marsh tidal wetlands as defined by New York State Department of Environmental Conservation. The wetlands habitat is bordered by a narrow margin of intact upland vegetation and residential development. There are residential docks in the area.

The results of the vegetative transect are, as follows:

Start

Common Name

Scientific Name

Seaward Limit of Tidal Wetlands

IM

Red & Brown Algae (Various)

Hollow Green Weeds

Enteromorpha sp.

Rockweeds

Fucus sp.

Sea Lettuce

Smooth Cordgrass

Ribbed Mussels

Ulva lactuca

Spartina alterniflora

Modiolus demissus

HM

Salt Hay Grass

Seaside Lavender

Glassworts Marsh Elder

Seaside Goldenrod

Sea Blite Marsh Orach Spike Grass Goosefoot

Bushy Knotweed

Fireweed

Annual Saltmarsh Aster Seaside Plantain

Groundsel Bush Saltwort

Seaside Gerardia Switchgrass Spartina patens

Limonium carolinium

Salicornia sp. Iva frutescens

Solidago sempervirens

Suaeda linearis Atriplex patula Distichlis spicata Chenopodium rubrum

Polygonum ramosissimum

Erechtites hieracifolia

Aster subulatus Plantago maritima Baccharis halimifolia

Salsola kali

Agalinus maritima Panicum virgatum

Beach Grass (Ammophila breviligulata), Beach Pea (Lathyrus japonicus), Bindweed (Convolvulus sepium), Common Ragweed (Ambrosia artemisiifolia), Wild Carrot (Daucus carota), Spotted Touchme-not (Impatiens capensis), Wild Pepper Grass (Lepidium virginicum), Rugosa Rose (Rosa rugosa), Bush Clover (Lespedeza sp.), Nightshade (Solanum dulcamara), Common Smartweed (Polygonum hydropiper), Switchgrass (Panicum virgatum) and Sour Dock (Rumex crispus) area found in the fringe vegetation between the HM and upland found adjacent to this wetlands. Adjacent upland vegetation includes Russian-olive (Elaeagnus angustifolia), Tree-of-heaven (Ailanthus altissima), Common Nightshade (Solanum nigrum), Black Willow (Salix niger), Oriental Bittersweet (Celastrus orbiculatus), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Wild Asparagus (Asparagus officinalis), Virginia Creeper (Parthenocissus quinquefolia), Beach Plum (Prunus maritima), Northern Bayberry (Myrica pensylvanica), Quaking Aspen (Populus tremuloides) and Multiflora Rose (Rosa multiflora).

NOTES: The Intertidal Marsh was measured as 10 foot wide in this area. The High Marsh covers an additional 20 feet. The upland fringe is another 10 feet. The tidal wetlands are high quality and contain representative vegetation. The wetlands have not changed since the last quarterly monitoring. The wetlands are bordered by single family residential development. Many docks and related improvements exist in the area. The wetlands are largely intact despite the presence of low density

residential development and related waterfront improvements. Fiddler Crabs were present in the Intertidal Marsh.

H:\Forms\form2.wpd

INTER-SCIENCE RESEARCH ASSOCIATES, INC.

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc. James L. Walker, Principal Planner

FROM: SUBJECT:

Rowe Industries Superfund Project Site

DATE:

March 18, 2011

The following form contains the results of the Winter 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. Each transect will be recorded in terms of species found and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

March 18, 2011

3

Weather:

Southwest Wind, Low Pressure System, Partly Cloudy.

Comments:

Low tide.

Results:

The location of the tidal wetlands transect is shown as 3-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove in the area where freshwater influence is still apparent. Seaward of this location, in the estuary, salinity is generally above 20 parts per thousand and the presence of Common Reed (Phragmites communis) is minimal. Landward of this location, in the estuary, salinity is generally below 20 parts per thousand which allows Common Reed to dominate. The specific goal of monitoring the location of the Common Reed in this transect is to make sure the salinity changes to the estuary, as a result of the Superfund remediation, are not significant enough to cause the boundary between intact tidal wetlands and those dominated by Common Reed to shift in position.

[It is noted that the existing dock with large (minimum 8 inch butt) pilings has been replaced with a new dock.]

The transect is located between a new dock and a large Black Locust (Robina pseudo-acacia) tree. The distance is 178 linear feet and runs in a northerly direction. The results of this vegetative transect are, as follows:

Start	Common Name	Scientific Name	Residential Dock
IM	Smooth Cordgrass Ribbed Mussels Hollow Green Weeds	Spartina alterniflora Modiolus demissus Enteromorpha sp.	8' 8' 8'
HM	Marsh Elder Common Reed Salt Hay Grass Smooth Cordgrass	Iva frutescens Phragmites communis Spartina patens Spartina alterniflora	12' 12' 12' 12'
HM	Common Reed Smooth Cordgrass	Phragmites communis Spartina alterniflora	15' 15'
IM	Smooth Cordgrass Common Reed	Spartina alterniflora Phragmites communis	22' 22'
HM	Common Reed Marsh Elder	Phragmites communis Iva frutescens	44-82' 44'-82'
НМ	Smooth Cordgrass Salt Hay Grass Marsh Elder Salt Hay Grass Groundsel Bush Wrack Line	Spartina alterniflora Spartina patens Iva frutescens Spartina patens Spartina patens Baccharis halimifolia	152' 152' 154' 154' 154'
НМ	Salt Hay Grass Marsh Elder Groundsel Bush Multiflora Rose	Spartina patens Iva frutescens Baccharis halimifolia Rosa multiflora	155' 162' 162' 162' 168'

After 176 linear feet, the wetlands end and upland vegetation including traditional evergreen (Blue Spruce) trees, Black Locust, Oriental Bittersweet and Poison Ivy exist. These are used as the northerly end of the transect. The relative position of the Common Reed may be monitored by using the landscaping as the landward limit of the tidal wetlands associated with this estuary.

NOTES: The Intertidal Marsh is generally dominated by Smooth Cordgrass. Both the normal and short form are present with the tall form present close to the water and the low form present in the more landward portions of the IM. The HM is dominated by Salt Hay Grass and is intact on the northern portion of this transect. On the southern section of the transect, Common Reed dominates in an impacted section of HM where the salinity must average below 20 PPT. This area will be monitored closely to watch trends over the seasons. The IM had other species present including Glasswort (Salicornia sp). and Salt Hay Grass. These species were limited to sections of the bog which had floated onto the IM and remained there in an artificially elevated position. This is not an unusual

occurrence which is evident throughout the estuary. The more seaward shrubs were Marsh Elder whereas the more landward limit of the saltmarsh was dominated by Groundsel Bush.

H:\Forms\form3.wpd

INTER-SCIENCE RESEARCH ASSOCIATES, INC.

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

March 18, 2011

The following form contains the results of the Winter 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects were performed for each of three transects which are inspected four times annually. A fourth area was analyzed for estuarine organisms. Results for each transect were recorded in terms of species present and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

March 18, 2011

4

Weather:

Southwest Wind, Low Pressure System, Partly Cloudy.

Comments:

Low tide.

Results:

The location of the fauna sampling station is shown as 4-Approximate Location Proposed for Benthic Analysis on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The sampling station is located in the area of Ligonee Creek where the transition to Sag Harbor Cove begins. In this manner, it samples the creek environment while also providing information on the cove environment. Long term trends can be analyzed by reviewing the seasonal results to determine if there is any significant impact on the fauna located in these sections of the estuary.

The approximate location proposed for the benthic analysis is in the portion of Ligonee Creek where it begins to open up into Sag Harbor Cove. It is north of Vegetative Monitoring Transect 3 and south of Vegetative Monitoring Transect 2. The results of the benthic monitoring and related work are, as follows:

Common Name

Scientific Name

Number

Soft Clam

Mya arenaria

1

Mud Snail	Nassarius obsoletus	24
Ribbed Mussel	Modiolus demissus	3
Blunt Razor Clam	Tagelus plebeius	1

Representative shellfish in the open section of Ligonee Creek include a healthy population of Hard Clams (Mercenaria mercenaria) including seed, littlenecks, cherrystones and chowders, Blunt Razor Clams (Tagelus plebeius), False Angel Wings (Petricola pholadiformis), Mud Dog Whelk (Nassarius obsoletus), Common Awning Clam (Solemya velum), Soft Shell Clams (Mya arenaria), Channeled Whelk (Busycon canaliculatum) and Common Oyster (Crassostrea virginica).

NOTE: The long term trends examined in this sampling will be conducted to ensure that the species found in the estuary are representative of the creek and not influenced by the remediation at the Rowe Industries Superfund Site.

Qualitative sampling was completed for the presence of finfish in the estuary. The following species were present:

peeres	were present.	
	Common Name	Scientific Name

Mummichog	Fundulus heteroclitus	
Striped Killifish	Fundulus diaphanus	
Tidewater Silverside	Menidia berylina	
Sand Shrimp	Crangon septemspinos	

Sand Shrimp Crangon septemspinosa Mud Snail Nassarius obsoletus

No other fish were observed. Sand shrimp and killifish are generally dominant in this section of the estuary although their location at any given tidal stage is variable. The presence of the invertebrate species is noted as appropriate

In addition to the species found in the sample area, informal sampling was done in various other locations. Hard Clams (Mercenaria mercenaria) were found. Informal sampling yielded a representative number of seed clams, littlenecks, cherrystones and chowders. This ratio of sizes indicates good reproduction and good growth. This type of data is expected at the midpoint of Ligonee Creek into Sag Harbor Cove. Also present in the informal qualitative sampling were the following species:

x into Sag Harbor Cove. A	also present in the informal qualitative sampling were the following
Common Name	Scientific Name
Mud Dog Whelk	Nassarius obsoletus
T 1 A 1 XXI'	Detries le ple de diformaio

False Angel Wing Petricola pholadiformis
Ribbed Mussel Modiolus demissus
Hard Clam Mercenaria mercenaria
Blunt Razor Clam Tagelus plebeius

Common Awning Clam Trumpet Worm Solemya velum Pectinaria gouldii

Muskrats were also observed in this section of the estuary.

The benthic invertebrate analysis was done in a random manner using a modified Surber Sampler, Where present, finfish or organisms other than benthic invertebrates were reported for the overall analysis of the estuary. The long term trends were analyzed to determine if the changes in hydrology, caused by the Ground-water Remedial Activity for the Rowe Industries Superfund Site, have made any measurable alteration in the flora and fauna present in the Ligonee Brook and Ligonee Creek estuary.

H:\Forms\form4.wpd

ENVIRONMENTAL PLANNING & DEVELOPMENT CONSULTANTS

RICHARD ERIK WARREN, AICP President

July 19, 2011

Mark M. Goldberg, P.E., Senior Environmental Engineer Leggette, Brashears & Graham, Inc. 4 Research Drive, Suite 301 Shelton, Connecticut 06484

Re: Rowe Industries Site

Dear Mr. Goldberg:

Enclosed please find the Spring 2011 quarterly report. It is noted that the remediation operations at the former Rowe Industries Superfund Site do not appear to have adversely impacted the flora or fauna in the designated monitoring areas.

Should you have any questions regarding this cover letter or the enclosed report in general, please do not hesitate to contact this office. Thank you.

Very truly yours,

James L. Walker Principal Planner

JLW: jlw enclosures

E:\LigoneeCreek\GoldbergLETTER07192011.wpd

INTER-SCIENCE RESEARCH ASSOCIATES, INC.

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

June 9, 2011

The following form contains the results of the Spring 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. Each transect will be recorded in terms of species found and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

June 9, 2011

1

Weather:

Sunny.

Comments:

Southwest wind, 84 Degrees.

Results:

The location of the freshwater wetlands transect is shown as 1-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Brook. It extends 139 linear feet north and 51 linear feet south of the centerline of the brook. The brook is flowing at this time, approximately 4-5 inches deep and approximately 4-5 feet wide at this time.

The results of the vegetative transect are, as follows:

n		- 12
•	ta	rt

Common Name

Scientific Name

Landward Limit of Freshwater Wetlands

Swamp Maple American Holly Acer rubrum Ilex opaca

Spicebush Spicebush

Lindera benzoin Lindera benzoin Lindera benzoin

Lindera benzoin Spicebush Greenbrier Smilax rotundifolia Spicebush Lindera benzoin Spicebush Lindera benzoin Swamp Maple Acer rubrum Swamp Maple Acer rubrum American Holly Ilex opaca Swamp Maple Acer rubrum Swamp Maple Acer rubrum

Poison Ivy Toxicodendron radicans

Swamp Maple Acer rubrum
Spicebush Lindera benzoin
Greenbrier Smilax rotundifolia
Cinnamon Fern Osmunda cinnamomea

Spicebush Lindera benzoin
Dewberry Rubus hispidus
Swamp Maple Acer rubrum
Spicebush Lindera benzoin
Spicebush Lindera benzoin

Cinnamon Fern Osmunda cinnamomea

Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Lindera benzoin Spicebush Sedge Carex lurida Sedge Carex crinita Sensitive Fern Onoclea sensibilis Sensitive Fern Onoclea sensibilis

Virginia Creeper Parthenocissus quinquefolia

Swamp Rose Rosa palustris

Cinnamon Fern Osmunda cinnamomea

Sedge Carex lurida
Sedge Carex lurida
Sedge Carex crinita
Sedge Carex crinita
Sedge Carex crinita
Sedge Carex crinita
Panic Grass Panicum sp.

Sphagnum Moss

Sphagnum sp.

South Side

Sphagnum Moss Sphagnum sp.

Cinnamon Fern Osmunda cinnamomea
Duck Potato Sagittaria latifolia
Multiflora Rose Rosa multiflora
Spicebush Lindera benzoin

Virginia Creeper Parthenocissus quinquefolia

Sedge Carex lurida
Sedge Carex crinita
Dewberry Rubus hispidus
Spicebush Lindera benzoin
Spicebush Lindera benzoin
American Holly Ilex opaca

Dewberry Rubus hispidus
Spicebush Lindera benzoin
Dewberry Rubus hispidus
Spicebush Lindera benzoin
American Holly Ilex opaca

American Holly Ilex opaca

American Holly Ilex opaca

Spicebush Lindera benzoin Greenbrier Smilax rotundifolia

American Holly Ilex opaca

Spicebush Lindera benzoin
Spicebush Lindera benzoin
Swamp Maple Acer rubrum
American Beech Fagus grandifolia

Poison Ivy Toxicodendron radicans

Lindera benzoin Spicebush Lindera benzoin Spicebush Greenbrier Smilax rotundifolia Greenbrier Smilax rotundifolia Greenbrier Smilax rotundifolia Lindera benzoin Spicebush Spicebush Lindera benzoin Spicebush Lindera benzoin Lindera benzoin Spicebush Spicebush Lindera benzoin Spicebush Lindera benzoin Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica

Myrica pensylvanica

Northern Bayberry

Northern Bayberry Myrica pensylvanica Northern Bay berry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Greenbrier Smilax rotundifolia Dewberry Rubus hispidus Prunus serotina Black Cherry Greenbrier Smilax rotundifolia Arrowwood Viburnum recognitum

Virginia Creeper Parthenocissus quinquefolia

Spicebush Lindera benzoin
Spicebush Lindera benzoin
Northern Bayberry Myrica pensylvanica
Northern Bayberry Myrica pensylvanica
Northern Bayberry Myrica pensylvanica
Northern Bayberry Myrica pensylvanica

American Holly Ilex opaca Red Oak Quercus rubra Spicebush Lindera benzoin Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Smilax rotundifolia Greenbrier Greenbrier Smilax rotundifolia

Virginia Creeper Parthenocissus quinquefolia

Prunus serotina

Black Cherry Prunus serotina
Greenbrier Smilax rotundifolia
Spicebush Lindera benzoin
Greenbrier Smilax rotundifolia

Black Cherry

Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia
Greenbrier Smilax rotundifolia

Virginia Creeper Parthenocissus quinquefolia

Prunus serotina Black Cherry Scrub Oak Quercus ilicifolia Spicebush Lindera benzoin American Beech Fagus grandifolia Black Cherry Prunus serotina Black Cherry Prunus serotina Black Cherry Prunus serotina Greenbrier Smilax rotundifolia Red Oak Ouercus borealis Black Cherry Prunus serotina Mockernut Hickory Carya tomentosa

NOTES: In the upland portions of the woods adjacent to the south side of Ligonee Creek, Indian Pipes (Monotropa uniflora), Spotted Wintergreen (Chimaphila maculata), Pignut Hickory (Carya glabra), White Oak (Quercus alba), Mockernut Hickory (Carya tomentosa), Red Oak (Quercus borealis), Scarlet Oak (Quercus coccinea), Black Oak (Quercus velutina), Swamp Maple (Acer rubrum), Flowering Dogwood (Cornus florida), Sweet Pepperbush (Clethra alnifolia), Dewberry (Rubus hispidus), Eastern Red Cedar (Juniperus virginiana), American Holly (Ilex opaca), American Beech (Fagus grandifolia), Wild Grape (Vitis sp.), Poison Ivy (Toxicodendron radicans), Greenbrier (Smilax rotundifolia), Tupelo (Nyssa sylvatica), Highbush Blueberry (Vaccinium corymbosum), Lowbush Blueberry (Vaccinium angustifolium), Arrowwood (Viburnum recognitum), White Pine (Pinus strobus), Sassafras (Sassafras albidum), Fire Sedge (Carex pensylvanica), Cinnamon Fern (Osmunda cinnamomea), Sensitive Fern (Onoclea sensibilis) and Goldenrod (Solidago sp.) are found. Towards the edge of the road, Norway Maple (Acer platanoides), Black Locust (Lonicera pseudo-acacia), Black Cherry (Prunus serotina), Black Willow (Salix nigra), Sweet Cherry (Prunus avium), Japanese Honeysuckle (Lonicera japonica), Virginia Creeper (Parthenocissus quinquefolia), Oriental Bittersweet (Celastrus orbiculatus), Day-lily (Hemerocallis fulva), Wild Grape (Vitis sp.), Scrub Oak (Quercus ilicifolia), Tartarian Honeysuckle (Lonicera tatarica), Quaking Aspen (Populus tremuloides), Multiflora Rose (Rosa multiflora), Tree-of-heaven (Ailanthus altissima), Common Catalpa (Catalpa bignoniodes), Japanese Barberry (Berberis thunbergii), Winged Sumac (Rhus copallina), Calico Aster (Aster lateriflorus), New England Aster (Aster novae-angliae), Wild Lettuce (Lactuca canadensis), Dandelion (Taraxacum officinale), Plantain (Plantago sp.), Black Locust (Robinia pseudoacacia), Lilac (Syringa sp.), Sour Dock (Rumex crispus), Wild Carrot (Daucus carota), Ragweed (Ambrosia artemisiifolia), Deadly Nightshade (Solanum dulcamara), Mullein (Verbascum thapsus), Evening Primrose (Oenothera biennis), Alder (Alnus sp.), Red Top (Agrostis alba), Spotted-touch-me-not (Impatiens capensis), Buckthorn (Rhamnus frangula), Garlic Mustard (Alliaria petiolata) and Winged Euonymus (Euonymus

sp.) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation.

In the upland portions of the woods adjacent to the north side of Ligonee Creek, Spice Bush (Lindera benzoin), Greenbrier (Smilax rotundifolia), Poison Ivy (Toxicodendron radicans), American Beech (Fagus grandifolia), Wild Grape (Vitis sp.), Arrowwood (Viburnum recognitum), Swamp Maple (Acer rubrum), Black Walnut (Juglans nigra), Virginia Creeper (Parthenocissus quinquefolia), Black Cherry (Prunus serotina), American Holly (Ilex opaca), Japanese Barberry (Berberis thunbergii), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Sassafras (Sassafras albidum), Japanese Honeysuckle (Lonicera japonica), Goldenrod (Solidago sp.), Sycamore Maple (Acer pseudo-platanus), Oriental Bittersweet (Celastrus orbiculatus), Scrub Oak (Quercus ilicifolia), Wild Carrot (Daucus carota), Elderberry (Sambucus canadensis), Evening Primrose (Oenothera biennis), Day Lily (Hemerocallis fulva), Multiflora Rose (Rosa multiflora), Tupelo (Nyssa sylvatica), Catalpa (Catalpa bignonioides), White Oak (Quercus alba), Red Oak (Quercus borealis), Sweet Cherry (Prunus avium), Mulberry (Morus sp.), Calico Aster (Aster lateriflorus), Common Smartweed (Polygonum hydropiper), Ragweed (Ambrosia artemisiifolia), Sour Dock (Rumex crispus), Tartarian Honeysuckle (Lonicera tatarica), Touch-me-not (Impatiens capensis), Field Garlic (Allium vineale), Common Mullein (Verbascum thapsus), White Boneset (Eupatorium album), Flat-topped Goldenrod (Euthamia sp.), Privet (Ligustrum vulgare), Star-flower (Trietalis borealis), Gall-of-the-earth (Prenanthes trifoliata), Sensitive Fern (Onoclea sensibilis), Cinnamon Fern (Osmunda cinnamomea), Dewberry (Rubus hispidus) and Tree-of -heaven (Ailanthus altissima) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation.

H:\Forms\form5.wpd

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

June 9, 2011

The following form contains the results of the Spring 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. A fourth area is analyzed for estuarine organisms. Each transect will be recorded in terms of species present and relative density so that trends for each transect can be ascertained. The following are field date taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

June 9, 2011

2

Weather:

84 Degrees F, Southwest Wind, Sunny.

Comments:

Mid Tide

Results:

The location of the tidal wetlands transect is shown as 2-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove. It extends 40 feet in width and includes classic Intertidal Marsh and High Marsh tidal wetlands as defined by New York State Department of Environmental Conservation. The wetlands habitat is bordered by a narrow margin of intact upland vegetation and residential development. There are residential docks in the area.

The results of the vegetative transect are, as follows:

Start

Common Name

Scientific Name

Seaward Limit of Tidal Wetlands

IM

Rockweeds

Fucus sp.

Smooth Cordgrass

Spartina alterniflora

Ribbed Mussels

Modiolus demissus

Sea Lettuce

Hollow Green Weeds

Red and Brown Algae

Ulva lactuca

Enteromorpha sp.

Barnacles

Balanus balanoides

HM

Salt Hay Grass

Seaside Lavender

Glassworts Marsh Elder

Marsh Orach

Seaside Goldenrod

Spike Grass Annual Saltmarsh Aster Seaside Plantain Groundsel Bush Switchgrass Sea Blite

Spartina patens

Limonium carolinium

Salicornia sp. Iva frutescens

Solidago sempervirens

Distichlis spicata Aster subulatus Plantago maritima Baccharis halimifolia Panicum virgatum

Suaeda linearis Atriplex patula

Beach Grass (Ammophila breviligulata), Beach Pea (Lathyrus japonicus), Bindweed (Convolvulus sepium), Common Ragweed (Ambrosia artemisiifolia), Wild Carrot (Daucus carota), Spotted Touchme-not (Impatiens capensis), Wild Pepper Grass (Lepidium virginicum), Rugosa Rose (Rosa rugosa), Bush Clover (Lespedeza sp.), Nightshade (Solanum dulcamara), Common Smartweed (Polygonum hydropiper), Switchgrass (Panicum virgatum) and Sour Dock (Rumex crispus) area found in the fringe vegetation between the HM and upland found adjacent to this wetlands. Adjacent upland vegetation includes Russian-olive (Elaeagnus angustifolia), Tree-of-heaven (Ailanthus altissima), Common Nightshade (Solanum nigrum), Black Willow (Salix niger), Oriental Bittersweet (Celastrus orbiculatus), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Wild Asparagus (Asparagus officinalis), Virginia Creeper (Parthenocissus quinquefolia), Beach Plum (Prunus maritima), Northern Bayberry (Myrica pensylvanica), Quaking Aspen (Populus tremuloides) and Multiflora Rose (Rosa multiflora).

NOTES: The Intertidal Marsh was measured as 10 foot wide in this area. The High Marsh covers an additional 20 feet. The upland fringe is another 10 feet. The tidal wetlands are high quality and contain representative vegetation. The wetlands have not changed since the last quarterly monitoring. The wetlands are bordered by single family residential development. Many docks and related improvements exist in the area. The wetlands are largely intact despite the presence of low density residential development and related waterfront improvements.

H:\Forms\form6.wpd

FIELD INSPECTION REPORT FORM

TO: Leggette Brashears & Graham, Inc.

FROM: James L. Walker, Principal Planner SUBJECT: Rowe Industries Superfund Project Site

DATE: June 15, 2011

The following form contains the results of the Spring 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. Each transect will be recorded in terms of species found and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data Station Number Rowe Industries Superfund Project

Date: June 15, 2011

Weather: 76 Degrees F, Sunny, High Pressure System.

Comments: High Tide.

Results:

The location of the tidal wetlands transect is shown as 3-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove in the area where freshwater influence is still apparent. Seaward of this location, in the estuary, salinity is generally above 20 parts per thousand and the presence of Common Reed (Phragmites communis) is minimal. Landward of this location, in the estuary, salinity is generally below 20 parts per thousand which allows Common Reed to dominate. The specific goal of monitoring the location of the Common Reed in this transect is to make sure the salinity changes to the estuary, as a result of the Superfund remediation, are not significant enough to cause the boundary between intact tidal wetlands and those dominated by Common Reed to shift in position.

[It is noted that the existing dock with large (minimum 8 inch butt) pilings has been replaced with a new dock.]

The transect is located between a new dock and a large Black Locust (Robina pseudo-acacia) tree. The distance is 178 linear feet and runs in a northerly direction. The results of this vegetative transect are, as follows:

Start	Common Name	Scientific Name	Residential Dock
IM	Smooth Cordgrass	Spartina alterniflora	8'
$\mathbf{H}\mathbf{M}$	Marsh Elder	Iva frutescens	12'
	Common Reed	Phragmites communis	12'
	Salt Hay Grass	Spartina patens	12'
	Smooth Cordgrass	Spartina alterniflora	12'
$\mathbf{H}\mathbf{M}$	Common Reed	Phragmites communis	15'
	Smooth Cordgrass	Spartina alterniflora	15'
\mathbf{IM}	Smooth Cordgrass	Spartina alterniflora	24'
	Common Reed	Phragmites communis	24'
HM	Common Reed	Phragmites communis	45-83"
	Common Glasswort	Salicornia europaea	45'-83'
	Marsh Elder	Iva frutescens	45'-83'
$\mathbf{H}\mathbf{M}$	Wrack Line		130'
	Smooth Cordgrass	Spartina alterniflora	150'
	Salt Hay Grass	Spartina patens	150'
	Marsh Elder	Iva frutescens	150'
	Salt Hay Grass	Spartina patens	156'
	Groundsel Bush	Baccharis halimifolia	156'
HM	Salt Hay Grass	Spartina patens	165'
	Marsh Elder	Iva frutescens	165'
	Groundsel Bush	Baccharis halimifolia	165'

After 178 linear feet, the wetlands end and upland vegetation including traditional evergreen (Blue Spruce) trees, Black Locust, Oriental Bittersweet and Poison Ivy exist. These are used as the northerly end of the transect. The relative position of the Common Reed may be monitored by using the landscaping as the landward limit of the tidal wetlands associated with this estuary.

NOTES: The Intertidal Marsh is generally dominated by Smooth Cordgrass. Both the normal and short form are present with the tall form present close to the water and the low form present in the more landward portions of the IM. The HM is dominated by Salt Hay Grass and is intact on the northern portion of this transect. On the southern section of the transect, Common Reed dominates in an impacted section of HM where the salinity must average below 20 PPT. This area will be monitored closely to watch trends over the seasons. The IM had other species present including Glasswort (Salicornia sp). and Salt Hay Grass. These species were limited to sections of the bog which had floated onto the IM and remained there in an artificially elevated position. This is not an unusual

occurrence which is evident throughout the estuary. The more seaward shrubs were Marsh Elder whereas the more landward limit of the saltmarsh was dominated by Groundsel Bush.

H:\Forms\form7.wpd

FIELD INSPECTION REPORT FORM

TO: Leggette Brashears & Graham, Inc. FROM: James L. Walker, Principal Planner

SUBJECT: Rowe Industries Superfund Project Site

DATE: June 15, 2011

The following form contains the results of the Spring 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects were performed for each of three transects which are inspected four times annually. A fourth area was analyzed for estuarine organisms. Results for each transect were recorded in terms of species present and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data Station Number Rowe Industries Superfund Project

Date: June 15, 2011 4

Weather: Sunny, High Pressure, 76 Degrees F.

Comments: High Tide.

Results:

The location of the fauna sampling station is shown as 4-Approximate Location Proposed for Benthic Analysis on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The sampling station is located in the area of Ligonee Creek where the transition to Sag Harbor Cove begins. In this manner, it samples the creek environment while also providing information on the cove environment. Long term trends can be analyzed by reviewing the seasonal results to determine if there is any significant impact on the fauna located in these sections of the estuary.

The approximate location proposed for the benthic analysis is in the portion of Ligonee Creek where it begins to open up into Sag Harbor Cove. It is north of Vegetative Monitoring Transect 3 and south of Vegetative Monitoring Transect 2. The results of the benthic monitoring and related work are, as follows:

Common Name Scientific Name Number

Soft Clam Mya arenaria 1

Trumpet Worm	Pectinaria gouldii	1
Common Oyster	Crassostrea virginica	1
Mud Snail	Nassarius obsoletus	3
Ribbed Mussels	Modiolus demissus	6

Representative shellfish in the open section of Ligonee Creek include a healthy population of Hard Clams (Mercenaria mercenaria) including seed, littlenecks, cherrystones and chowders, Common Razor Clams (Ensis directus), Blunt Razor Clams (Tagelus plebeius), False Angel Wings (Petricola pholadiformis), Mud Snail (Nassarius obsoletus), Common Awning Clam (Solemya velum), Soft Shell Clams (Mya arenaria), Channeled Whelk (Busycon canaliculatum) and Common Oyster (Crassostrea virginica).

NOTE: The long term trends examined in this sampling will be conducted to ensure that the species found in the estuary are representative of the creek and not influenced by the remediation at the Rowe Industries Superfund Site.

Qualitative sampling was completed for the presence of finfish in the estuary. The following species were present:

Common Name	Scientific Name
-------------	-----------------

Mummichog	Fundulus heteroclitus
Striped Killifish	Fundulus majalis
Atlantic Silverside	Menidia menidia
Tidewater Silverside	Menidia berylina

Sand Shrimp Crangon septemspinosa Mud Snail Nassarius obsoletus

No other fish were observed. Sand shrimp and killifish are generally dominant in this section of the estuary although their location at any given tidal stage is variable. The presence of the invertebrate species is noted as appropriate

In addition to the species found in the sample area, informal sampling was done in various other locations. Hard Clams (Mercenaria mercenaria) were found. Informal sampling yielded a representative number of seed clams, littlenecks, cherrystones and chowders. This ratio of sizes indicates good reproduction and good growth. This type of data is expected at the midpoint of Ligonee Creek into Sag Harbor Cove. Also present in the informal qualitative sampling were the following species:

Common Name Scientific Name

Mud Snail Nassarius obsoletus
False Angel Wing Petricola pholadiformis

Ribbed Mussel Hard Clam

Trumpet Worm

Modiolus demissus Mercenaria mercenaria

Common Razor Clam Blunt Razor Clam Common Awning Clam Ensis directis
Tagelus plebeius
Solemya velum
Pectinaria gouldii

Muskrats were also observed in this section of the estuary.

The benthic invertebrate analysis was done in a random manner using a modified Surber Sampler, Where present, finfish or organisms other than benthic invertebrates were reported for the overall analysis of the estuary. The long term trends were analyzed to determine if the changes in hydrology, caused by the Ground-water Remedial Activity for the Rowe Industries Superfund Site, have made any measurable alteration in the flora and fauna present in the Ligonee Brook and Ligonee Creek estuary.

H:\Forms\form8.wpd

ENVIRONMENTAL PLANNING & DEVELOPMENT CONSULTANTS

RICHARD ERIK WARREN, AICP President

September 15, 2011

Mark M. Goldberg, P.E., Senior Environmental Engineer Leggette, Brashears & Graham, Inc. 4 Research Drive, Suite 301 Shelton, Connecticut 06484

Re: Rowe Industries Site

Dear Mr. Goldberg:

Enclosed please find the Summer 2011 quarterly report. It is noted that the remediation operations at the former Rowe Industries Superfund Site do not appear to have adversely impacted the flora or fauna in the designated monitoring areas.

Should you have any questions regarding this cover letter or the enclosed report in general, please do not hesitate to contact this office. Thank you.

Very truly yours,

James L. Walker Principal Planner

JLW: jlw enclosures

E:\LigoneeCreek\GoldbergLETTER09152011.wpd

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

August 23, 2011

The following form contains the results of the Summer 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. Each transect will be recorded in terms of species found and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

August 23, 2011

1

Weather:

71 Degrees Fahrenheit, Sunny, High Pressure System.

Comments:

Reduce water flow in Ligonee Brook.

Results:

The location of the freshwater wetlands transect is shown as 1-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Brook. It extends 139 linear feet north and 51 linear feet south of the centerline of the brook. The brook is flowing, approximately 2-3 inches deep and less than 4 feet wide at this time.

The results of the vegetative transect are, as follows:

Start	Common Name	Scientific Name	Landward Limit of Freshwater Wetlands
	Swamp Maple	Acer rubrum	
	Spice Bush	Lindera benzoin	
	Spice Bush	Lindera benzoin	
	Spice Bush	Lindera benzoin	
	Spice Bush	Lindera benzoin	
	Spice Bush	Lindera benzoin	

American Holly

Spicebush

Ilex opaca Lindera benzoin

Virginia Creeper

Parthenocissus quinquefolia

Spicebush Greenbrier

Spicebush

Lindera benzoin
Smilax rotundifolia
Lindera benzoin
Lindera benzoin

Spicebush Spicebush

Lindera benzoin Ilex opaca

American Holly Spicebush

Lindera benzoin Lindera benzoin

Spicebush American Holly

Ilex opaca Ilex opaca

American Holly Spicebush

Lindera benzoin

American Holly
American Holly
American Holly

Ilex opaca
Ilex opaca
Ilex opaca
Ilex opaca

American Holly Spicebush

Lindera benzoin

American Holly
American Holly

Ilex opaca
Ilex opaca

Poison Ivy

Toxicodendron radicans

American Holly

Ilex opaca

Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Spiceb

Spicebush Sedge Lindera benzoin Carex lurida

Sedge

Carex crinita

Greenbrier Multiflora Rose Smilax rotundifolia Rosa multiflora

Sphagnum Moss

Sphagnum sp.

South Side

Sphagnum Moss

Sphagnum sp. Rosa multiflora

Multiflora Rose Sedge

Carex lurida Carex crinita

Sedge Panic Grass Spicebush

Panicum sp. Lindera benzoin

Wild Grape

Vitis sp.

Virginia Creeper Parthenocissus quinquefolia

Spicebush Lindera benzoin
Spicebush Lindera benzoin
American Elm Ulmus americana
Dewberry Rubus hispidus

American Holly Ilex opaca
American Holly Ilex opaca

Spicebush Lindera benzoin

Spicebush Lindera benzoin

American Holly
American Holly
Ilex opaca
Ilex opaca
Ilex opaca
Ilex opaca
Ilex opaca
Ilex opaca
Ilex opaca

Poison Ivy Toxicodendron radicans

Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Spicebush
Lindera benzoin
Spicebush
Lindera benzoin
Lindera benzoin
Spicebush
Lindera benzoin

Poison Ivy Toxicodendron radicans

American Beech Fagus grandifolia

Poison Ivy Toxicodendron radicans

Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Smilax rotundifolia Greenbrier Viburnum recognitum Arrowwood Viburnum recognitum Arrowwood Viburnum recognitum Arrowwood Viburnum recognitum Arrowwood

Spicebush Lindera benzoin Swamp Maple Acer rubrum

Greenbrier Smilax rotundifolia
Spicebush Lindera benzoin
Dewberry Rubus hispidus
Ilex opaca
Lindera benzoin
Lindera benzoin

Spicebush Lindera benzoin
Spicebush Lindera benzoin

Virginia Creeper Parthenocissus quinquefolia

Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Northern Bayberry Myrica pensylvanica Smilax rotundifolia Greenbrier Lindera benzoin Spicebush Prunus serotina Black Cherry Spicebush Lindera benzoin Greenbrier Smilax rotundifolia Greenbrier Smilax rotundifolia

Virginia Creeper Parthenocissus quinquefolia

Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Prunus serotina Black Cherry Lindera benzoin Spicebush Rubus hispidus Dewberry Smilax rotundifolia Greenbrier Smilax rotundifolia Greenbrier Smilax rotundifolia Greenbrier Smilax rotundifolia Greenbrier Lindera benzoin Spicebush Lindera benzoin Spicebush

Virginia Creeper Parthenocissus quinquefolia

Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Fagus grandifolia American Beech Smilax rotundifolia Greenbrier Smilax rotundifolia Greenbrier Black Cherry Prunus serotina Black Cherry Prunus serotina Black Cherry Prunus serotina Ouercus borealis Red Oak

Mockernut Hickory Carya tomentosa

NOTES: In the upland portions of the woods adjacent to the south side of Ligonee Creek, Spotted Wintergreen (Chimaphila maculata), Pignut Hickory (Carya glabra), White Oak (Quercus alba), Mockernut Hickory (Carya tomentosa), Red Oak (Quercus borealis), Scarlet Oak (Quercus coccinea), Black Oak (Quercus velutina), Swamp Maple (Acer rubrum), Flowering Dogwood (Cornus

florida), American Holly (Ilex opaca), Northern Bayberry (Myrica pensylvanica), Sweet Pepperbush (Clethra alnifolia), Greenbrier (Smilax rotundifolia), Dewberry (Rubus hispidus), Eastern Red Cedar (Juniperus virginiana), Wild Grape (Vitis sp.), Poison Ivy (Toxicodendron radicans), Tupelo (Nyssa sylvatica), Highbush Blueberry (Vaccinium corymbosum), Lowbush Blueberry (Vaccinium angustifolium), Arrowwood (Viburnum recognitum), White Pine (Pinus strobus), Sassafras (Sassafras albidum), Fire Sedge (Carex pensylvanica), Sensitive Fern (Onoclea sensibilis), Cinnamon Fern (Osmunda cinnamomea) and Goldenrod (Solidago sp.) are found. Towards the edge of the road, Norway Maple (Acer platanoides), Black Locust (Lonicera pseudo-acacia), Black Cherry (Prunus serotina), Black Willow (Salix nigra), Sweet Cherry (Prunus avium), Japanese Honeysuckle (Lonicera japonica), Virginia Creeper (Parthenocissus quinquefolia), Oriental Bittersweet (Celastrus orbiculatus), Day-lily (Hemerocallis fulva), Wild Grape (Vitis sp.), Scrub Oak (Quercus ilicifolia), Tartarian Honeysuckle (Lonicera tatarica), Quaking Aspen (Populus tremuloides), Multiflora Rose (Rosa multiflora), Tree-of-heaven (Ailanthus altissima), Common Catalpa (Catalpa bignoniodes), Japanese Barberry (Berberis thunbergii), Winged Sumac (Rhus copallina), Calico Aster (Aster lateriflorus), New England Aster (Aster novae-angliae), Wild Lettuce (Lactuca canadensis), Dandelion (Taraxacum officinale), Plantain (Plantago sp.), Lilac (Syringa sp.), Sour Dock (Rumex crispus), Wild Carrot (Daucus carota), Ragweed (Ambrosia artemisiifolia), Deadly Nightshade (Solanum dulcamara), Mullein (Verbascum thapsus), Evening Primrose (Oenothera biennis), Alder (Alnus sp.), Red Top (Argrostis alba), Goldenrod (Solidago sp.), Spotted-touch-me-not (Impatiens capensis), Buckthorn (Rhamnus frangula) and Winged Euonymus (Euonymus sp.) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation although the wetlands are drier than normal and some of the herbaceous vegetation is correspondingly absent.

In the upland portions of the woods adjacent to the north side of Ligonee Creek, Greenbrier (Smilax rotundifolia), Poison Ivy (Toxicodendron radicans), American Beech (Fagus grandifolia), Wild Grape (Vitis sp.), Arrowwood (Viburnum recognitum), Swamp Maple (Acer rubrum), Black Walnut (Juglans nigra), Virginia Creeper (Parthenocissus quinquefolia), Black Cherry (Prunus serotina), American Holly (Ilex opaca), Spicebush (Lindera benzoin), Japanese Barberry (Berberis thunbergii), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Sassafras (Sassafras albidum), Japanese Honeysuckle (Lonicera japonica), Dewberry (Rubus hispidus), Goldenrod (Solidago sp.), Sycamore Maple (Acer pseudo-platanus), Oriental Bittersweet (Celastrus orbiculatus), Scrub Oak (Quercus ilicifolia), Wild Carrot (Daucus carota), Elderberry (Sambucus canadensis), Evening Primrose (Oenothera biennis), Day Lily (Hemerocallis fulva), Multiflora Rose (Rosa multiflora), Tupelo (Nyssa sylvatica), Catalpa (Catalpa bignonioides), White Oak (Quercus alba), Red Oak (Quercus borealis), Sweet Cherry (Prunus avium), Mulberry (Morus sp.), Calico Aster (Aster lateriflorus), Common Smartweed (Polygonum hydropiper), Ragweed (Ambrosia artemisiifolia), Sour Dock (Rumex crispus), Tartarian Honeysuckle (Lonicera tatarica), Touch-me-not (Impatiens capensis), Field Garlic (Allium vineale), Common Mullein (Verbascum thapsus), White Boneset (Eupatorium album), Flat-topped Goldenrod (Euthamia sp.), Privet (Ligustrum vulgare), Poison Ivy (Toxicodendron radicans), Star-flower (Trietalis borealis), Gall-of-the-earth (Prenanthes trifoliata) and Tree-of -heaven (Ailanthus altissima) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation.

H:\Forms\form1.wpd

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

August 23, 2011

The following form contains the results of the Summer 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. A fourth area is analyzed for estuarine organisms. Each transect will be recorded in terms of species present and relative density so that trends for each transect can be ascertained. The following are field date taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

August 23, 2011

Weather:

71 Degrees Fahrenheit, Sunny, High Pressure.

Comments:

Shoreline recovering since Spring 2011 monitoring.

Results:

The location of the tidal wetlands transect is shown as 2-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove. It extends 40 feet in width and includes classic Intertidal Marsh and High Marsh tidal wetlands as defined by New York State Department of Environmental Conservation. The wetlands habitat is bordered by a narrow margin of intact upland vegetation and residential development. There are residential docks in the area.

The results of the vegetative transect are, as follows:

Start

Common Name

Scientific Name

Seaward Limit of

Tidal Wetlands

IM

Red & Brown Algae (Various)

Hollow Green Weeds

Enteromorpha sp.

Rockweeds

Fucus sp.

Sea Lettuce

Sea Lettuce
Smooth Cordgrass

Ribbed Mussels

Ulva lactuca

Spartina alterniflora

Modiolus demissus

HM

Salt Hay Grass

Seaside Lavender

Glassworts Marsh Elder

Seaside Goldenrod

Sea Blite Marsh Orach Spike Grass Goosefoot

Bushy Knotweed

Fireweed

Annual Saltmarsh Aster Seaside Plantain Groundsel Bush

Saltwort

Seaside Gerardia Switchgrass Spartina patens

Limonium carolinium

Salicornia sp.

Iva frutescens

Solidago sempervirens

Suaeda linearis Atriplex patula Distichlis spicata Chenopodium rubrum

Polygonum ramosissimum

Erechtites hieracifolia

Aster subulatus Plantago maritima Baccharis halimifolia

Salsola kali

Agalinus maritima Panicum virgatum

Beach Grass (Ammophila breviligulata), Beach Pea (Lathyrus japonicus), Bindweed (Convolvulus sepium), Common Ragweed (Ambrosia artemisiifolia), Wild Carrot (Daucus carota), Spotted Touchme-not (Impatiens capensis), Wild Pepper Grass (Lepidium virginicum), Rugosa Rose (Rosa rugosa), Bush Clover (Lespedeza sp.), Nightshade (Solanum dulcamara), Common Smartweed (Polygonum hydropiper), Switchgrass (Panicum virgatum) and Sour Dock (Rumex crispus) area found in the fringe vegetation between the HM and upland found adjacent to this wetlands. Adjacent upland vegetation includes Russian-olive (Elaeagnus angustifolia), Tree-of-heaven (Ailanthus altissima), Common Nightshade (Solanum nigrum), Black Willow (Salix niger), Oriental Bittersweet (Celastrus orbiculatus), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Wild Asparagus (Asparagus officinalis), Virginia Creeper (Parthenocissus quinquefolia), Beach Plum (Prunus maritima), Northern Bayberry (Myrica pensylvanica), Quaking Aspen (Populus tremuloides) and Multiflora Rose (Rosa multiflora).

NOTES: The Intertidal Marsh was measured as 10 foot wide in this area. The High Marsh covers an additional 20 feet. The upland fringe is another 10 feet. The tidal wetlands are high quality and contain representative vegetation. The wetlands are recovering since the last quarterly monitoring where the Intertidal Marsh had eroded to a modest extent. The wetlands are bordered by single family residential development. Many docks and related improvements exist in the area. The wetlands are largely intact despite the presence of low density residential development and related waterfront improvements. Fiddler Crabs were present in the Intertidal Marsh.

H:\Forms\form2.wpd

FIELD INSPECTION REPORT FORM

TO: Leggette Brashears & Graham, Inc. FROM: James L. Walker, Principal Planner

SUBJECT: Rowe Industries Superfund Project Site **DATE:** September 1, 2011

The following form contains the results of the Summer 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects are to be performed for each of three transects to be inspected four times annually. Each transect will be recorded in terms of species found and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data Station Number Rowe Industries Superfund Project

Date: September 1, 2011 3

Weather: Sunny, High Pressure System, 78 Degrees Fahrenheit.

Comments: High tide.

Results:

The location of the tidal wetlands transect is shown as 3-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove in the area where freshwater influence is still apparent. Seaward of this location, in the estuary, salinity is generally above 20 parts per thousand and the presence of Common Reed (Phragmites communis) is minimal. Landward of this location, in the estuary, salinity is generally below 20 parts per thousand which allows Common Reed to dominate. The specific goal of monitoring the location of the Common Reed in this transect is to make sure the salinity changes to the estuary, as a result of the Superfund remediation, are not significant enough to cause the boundary between intact tidal wetlands and those dominated by Common Reed to shift in position.

[It is noted that the existing dock with large (minimum 8 inch butt) pilings has been replaced with a new dock.]

The transect is located between a new dock and a large Black Locust (Robina pseudo-acacia) tree. The distance is 178 linear feet and runs in a northerly direction. The results of this vegetative transect are, as follows:

Start	Common Name	Scientific Name	Residential Dock
IM	Smooth Cordgrass Ribbed Mussels Hollow Green Weeds	Spartina alterniflora Modiolus demissus	7' 7' 7'
HM	Marsh Elder Common Reed Salt Hay Grass Smooth Cordgrass	Enteromorpha sp. Iva frutescens Phragmites communis Spartina patens Spartina alterniflora	11' 11' 11' 11'
HM	Common Reed Smooth Cordgrass	Phragmites communis Spartina alterniflora	14' 14'
IM	Smooth Cordgrass Common Reed	Spartina alterniflora Phragmites communis	21' 21'
HM	Common Reed Marsh Elder	Phragmites communis Iva frutescens	43-81' 43'-81'
HM	Smooth Cordgrass Salt Hay Grass Marsh Elder Salt Hay Grass Groundsel Bush Wrack Line	Spartina alterniflora Spartina patens Iva frutescens Spartina patens Baccharis halimifolia	152' 152' 154' 154' 154' 160'
HM	Salt Hay Grass Marsh Elder Groundsel Bush Multiflora Rose	Spartina patens Iva frutescens Baccharis halimifolia Rosa multiflora	162' 162' 162' 168'

After 176 linear feet, the wetlands end and upland vegetation including traditional evergreen (Blue Spruce) trees, Black Locust, Oriental Bittersweet and Poison Ivy exist. These are used as the northerly end of the transect. The relative position of the Common Reed may be monitored by using the landscaping as the landward limit of the tidal wetlands associated with this estuary.

NOTES: The Intertidal Marsh is generally dominated by Smooth Cordgrass. Both the normal and short form are present with the tall form present close to the water and the low form present in the more landward portions of the IM. The HM is dominated by Salt Hay Grass and is intact on the northern portion of this transect. On the southern section of the transect, Common Reed dominates in an impacted section of HM where the salinity must average below 20 PPT. This area will be monitored closely to watch trends over the seasons. The IM had other species present including Glasswort (Salicornia sp). and Salt Hay Grass. These species were limited to sections of the bog which had floated onto the IM and remained there in an artificially elevated position. This is not an unusual

occurrence which is evident throughout the estuary. The more seaward shrubs were Marsh Elder whereas the more landward limit of the saltmarsh was dominated by Groundsel Bush.

H:\Forms\form3.wpd

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

September 1, 2011

The following form contains the results of the Summer 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects were performed for each of three transects which are inspected four times annually. A fourth area was analyzed for estuarine organisms. Results for each transect were recorded in terms of species present and relative density so that trends for each transect can be ascertained. The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

September 1 4

Weather:

Sunny, High Pressure, 78 Degrees Fahrenheit.

Comments:

High tide.

Results:

The location of the fauna sampling station is shown as 4-Approximate Location Proposed for Benthic Analysis on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The sampling station is located in the area of Ligonee Creek where the transition to Sag Harbor Cove begins. In this manner, it samples the creek environment while also providing information on the cove environment. Long term trends can be analyzed by reviewing the seasonal results to determine if there is any significant impact on the fauna located in these sections of the estuary.

The approximate location proposed for the benthic analysis is in the portion of Ligonee Creek where it begins to open up into Sag Harbor Cove. It is north of Vegetative Monitoring Transect 3 and south of Vegetative Monitoring Transect 2. The results of the benthic monitoring and related work are, as follows:

Common Name

Scientific Name

Number

Soft Clam

Mya arenaria

2

Mud Snail	Nassarius obsoletus	12
Ribbed Mussel	Modiolus demissus	6
Slipper Shell	Crepidula fornicata	6

Representative shellfish in the open section of Ligonee Creek include a healthy population of Hard Clams (Mercenaria mercenaria) including seed, littlenecks, cherrystones and chowders, Blunt Razor Clams (Tagelus plebeius), False Angel Wings (Petricola pholadiformis), Mud Dog Whelk (Nassarius obsoletus), Common Awning Clam (Solemya velum), Soft Shell Clams (Mya arenaria), Channeled Whelk (Busycon canaliculatum) and Common Oyster (Crassostrea virginica).

NOTE: The long term trends examined in this sampling will be conducted to ensure that the species found in the estuary are representative of the creek and not influenced by the remediation at the Rowe Industries Superfund Site.

Qualitative sampling was completed for the presence of finfish in the estuary. The following species were present:

Common Name	Scientific Name	
Mummichog	Fundulus heteroclitus	
Striped Killifish	Fundulus diaphanus	
Tidewater Silverside	Menidia berylina	
Atlantic Silverside	Menidia menidia	
Sand Shrimp	Crangon septemspinosa	
Mud Snail	Nassarius obsoletus	
Bluefish	Pomatomus saltatrix	

No other fish were observed. Sand shrimp and killifish are generally dominant in this section of the estuary although their location at any given tidal stage is variable. The presence of the invertebrate species is noted as appropriate

In addition to the species found in the sample area, informal sampling was done in various other locations. Hard Clams (Mercenaria mercenaria) were found. Informal sampling yielded a representative number of seed clams, littlenecks, cherrystones and chowders. This ratio of sizes indicates good reproduction and good growth. This type of data is expected at the midpoint of Ligonee Creek into Sag Harbor Cove. Also present in the informal qualitative sampling were the following species:

Common Name	Scientific Name	
Mud Dog Whelk	Nassarius obsoletus	
False Angel Wing	Petricola pholadiformis	
Ribbed Mussel	Modiolus demissus	

Ribbed Mussel

Hard Clam Blunt Razor Clam Mercenaria mercenaria Tagelus plebeius

Common Awning Clam
Trumpet Worm

Solemya velum Pectinaria gouldii

Muskrats were also observed in this section of the estuary.

The benthic invertebrate analysis was done in a random manner using a modified Surber Sampler, Where present, finfish or organisms other than benthic invertebrates were reported for the overall analysis of the estuary. The long term trends were analyzed to determine if the changes in hydrology, caused by the Ground-water Remedial Activity for the Rowe Industries Superfund Site, have made any measurable alteration in the flora and fauna present in the Ligonee Brook and Ligonee Creek estuary.

H:\Forms\form4.wpd

ENVIRONMENTAL PLANNING & DEVELOPMENT CONSULTANTS

RICHARD ERIK WARREN, AICP President

December 14, 2011

Mark M. Goldberg, P.E., Senior Environmental Engineer Leggette, Brashears & Graham, Inc. 4 Research Drive, Suite 301 Shelton, Connecticut 06484

Re: Rowe Industries Site

Dear Mr. Goldberg:

Enclosed please find the Fall 2011 quarterly report. This is the final quarterly report for this project per our telephone conversations in this regard. The remediation operations at the former Rowe Industries Superfund Site did not appear to have any measurable impact on the flora and fauna of the Ligonee Creek and Ligonee Brook ecosystems based upon the results reports for each of the four (4) designated monitoring areas.

Should you have any questions regarding this cover letter or the enclosed report in general, please do not hesitate to contact this office. Thank you.

Very truly yours,

James L. Walker Principal Planner

JLW: jlw enclosures

E:\LigoneeCreek\GoldbergLETTER12142011.wpd

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

December 14, 2011

The following form contains the results of the Fall 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects were performed for each of three transects inspected four times annually. Each transect was recorded in terms of species found and relative density so that trends for each transect could be ascertained. It is specifically noted that this is the final Field Inspection Report Form for this project as the remediation has been successful and no measurable changes in the ecology of Ligonee Creek and Ligonee Brook have been found.

The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

December 8, 2011

Weather:

40 Degrees Fahrenheit, Sunny, Clear, High Pressure System.

Comments:

Warm November and mild late fall weather to date.

Results:

The location of the freshwater wetlands transect is shown as 1-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Brook. It extends 139 linear feet north and 51 linear feet south of the centerline of the brook. The brook is flowing, approximately 4 inches deep and 4 feet wide at this time.

The results of the vegetative transect are, as follows:

Start

Common Name

Scientific Name

Landward Limit of Freshwater Wetlands

Swamp Maple

Acer rubrum

Spice Bush

Lindera benzoin

Spice Bush Lindera benzoin
Spice Bush Lindera benzoin
Spice Bush Lindera benzoin
Spice Bush Lindera benzoin
American Holly Ilex opaca

Spicebush Lindera benzoin

Virginia Creeper Parthenocissus quinquefolia

Spicebush
Greenbrier
Spicebush
Spicebush
Spicebush
Spicebush
Lindera benzoin
Spicebush
Lindera benzoin
Spicebush
Lindera benzoin
Lindera benzoin
Ilex opaca

Spicebush Lindera benzoin
Spicebush Lindera benzoin

American Holly Ilex opaca
American Holly Ilex opaca
Spicebush Lindera benzoin

American Holly

American Holly

Ilex opaca

Lindera benzoin

American Holly Ilex opaca
American Holly Ilex opaca

Poison Ivy Toxicodendron radicans

American Holly Ilex opaca

Lindera benzoin Spicebush Spicebush Lindera benzoin Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush Greenbrier Smilax rotundifolia Lindera benzoin Spicebush Carex lurida Sedge Sedge Carex crinita

Greenbrier Smilax rotundifolia Multiflora Rose Rosa multiflora Sphagnum Moss Sphagnum sp.

South Side

Sphagnum Moss Multiflora Rose Sphagnum sp. Rosa multiflora Sedge Carex lurida
Sedge Carex crinita
Panic Grass Panicum sp.
Spicebush Lindera benzoin

Wild Grape Vitis sp.

Virginia Creeper Parthenocissus quinquefolia

Spicebush Lindera benzoin
Spicebush Lindera benzoin
American Elm Ulmus americana
Dewberry Rubus hispidus

American Holly Ilex opaca
American Holly Ilex opaca
Spicebush Lindera benzoin

Spicebush Lindera benzoin
American Holly Ilex opaca
American Holly Ilex opaca
American Holly Ilex opaca

American Holly

Poison Ivy Toxicodendron radicans

Ilex opaca

Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin
Spicebush Lindera benzoin

Poison Ivy Toxicodendron radicans

American Beech Fagus grandifolia

Poison Ivy Toxicodendron radicans

Lindera benzoin Spicebush Lindera benzoin Spicebush Spicebush Lindera benzoin Lindera benzoin Spicebush Lindera benzoin Spicebush Greenbrier Smilax rotundifolia Viburnum recognitum Arrowwood Viburnum recognitum Arrowwood Arrowwood Viburnum recognitum Arrowwood Viburnum recognitum

Spicebush Lindera benzoin Swamp Maple Acer rubrum

Greenbrier Smilax rotundifolia

Spicebush Lindera benzoin Dewberry Rubus hispidus American Holly Ilex opaca Lindera benzoin

Spicebush Lindera benzoin Spicebush

Virginia Creeper Parthenocissus quinquefolia

Northern Bayberry Myrica pensylvanica Myrica pensylvanica Northern Bayberry Northern Bayberry Myrica pensylvanica Smilax rotundifolia Greenbrier Spicebush Lindera benzoin Prunus serotina Black Cherry Lindera benzoin Spicebush Smilax rotundifolia Greenbrier Greenbrier Smilax rotundifolia

Parthenocissus quinquefolia Virginia Creeper

Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Northern Bayberry Myrica pensylvanica Black Cherry Prunus serotina Spicebush Lindera benzoin Rubus hispidus Dewberry Greenbrier Smilax rotundifolia

Greenbrier Smilax rotundifolia Smilax rotundifolia Greenbrier Smilax rotundifolia Greenbrier Lindera benzoin Spicebush Lindera benzoin Spicebush

Parthenocissus quinquefolia Virginia Creeper

Lindera benzoin Spicebush Lindera benzoin Spicebush Lindera benzoin Spicebush American Beech Fagus grandifolia Greenbrier Smilax rotundifolia Smilax rotundifolia Greenbrier Black Cherry Prunus serotina Prunus serotina Black Cherry Prunus serotina Black Cherry Red Oak Ouercus borealis Mockernut Hickory Carya tomentosa

NOTES: In the upland portions of the woods adjacent to the south side of Ligonee Creek, Spotted Wintergreen (Chimaphila maculata), Pignut Hickory (Carya glabra), White Oak (Quercus alba), Mockernut Hickory (Carya tomentosa), Red Oak (Quercus borealis), Scarlet Oak (Quercus coccinea), Black Oak (Quercus velutina), Swamp Maple (Acer rubrum), Flowering Dogwood (Cornus florida), American Holly (Ilex opaca), Northern Bayberry (Myrica pensylvanica), Sweet Pepperbush (Clethra alnifolia), Greenbrier (Smilax rotundifolia), Dewberry (Rubus hispidus), Eastern Red Cedar (Juniperus virginiana), Wild Grape (Vitis sp.), Poison Ivy (Toxicodendron radicans), Tupelo (Nyssa sylvatica), Highbush Blueberry (Vaccinium corymbosum), Lowbush Blueberry (Vaccinium angustifolium), Arrowwood (Viburnum recognitum), White Pine (Pinus strobus), Sassafras (Sassafras albidum), Fire Sedge (Carex pensylvanica), Sensitive Fern (Onoclea sensibilis), Cinnamon Fern (Osmunda cinnamomea) and Goldenrod (Solidago sp.) are found. Towards the edge of the road, Norway Maple (Acer platanoides), Black Locust (Lonicera pseudo-acacia), Black Cherry (Prunus serotina), Black Willow (Salix nigra), Sweet Cherry (Prunus avium), Japanese Honeysuckle (Lonicera japonica), Virginia Creeper (Parthenocissus quinquefolia), Oriental Bittersweet (Celastrus orbiculatus), Day-lily (Hemerocallis fulva), Wild Grape (Vitis sp.), Scrub Oak (Quercus ilicifolia), Tartarian Honeysuckle (Lonicera tatarica), Quaking Aspen (Populus tremuloides), Multiflora Rose (Rosa multiflora), Tree-of-heaven (Ailanthus altissima), Common Catalpa (Catalpa bignoniodes), Japanese Barberry (Berberis thunbergii), Winged Sumac (Rhus copallina), Calico Aster (Aster lateriflorus), New England Aster (Aster novae-angliae), Wild Lettuce (Lactuca canadensis), Dandelion (Taraxacum officinale), Plantain (Plantago sp.), Lilac (Syringa sp.), Sour Dock (Rumex crispus), Wild Carrot (Daucus carota), Ragweed (Ambrosia artemisiifolia), Deadly Nightshade (Solanum dulcamara), Mullein (Verbascum thapsus), Evening Primrose (Oenothera biennis), Alder (Alnus sp.), Red Top (Argrostis alba), Goldenrod (Solidago sp.), Spotted-touch-me-not (Impatiens capensis), Buckthorn (Rhamnus frangula) and Winged Euonymus (Euonymus sp.) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation although the wetlands are drier than normal and some of the herbaceous vegetation is correspondingly absent.

In the upland portions of the woods adjacent to the north side of Ligonee Creek, Greenbrier (Smilax rotundifolia), Poison Ivy (Toxicodendron radicans), American Beech (Fagus grandifolia), Wild Grape (Vitis sp.), Arrowwood (Viburnum recognitum), Swamp Maple (Acer rubrum), Black Walnut (Juglans nigra), Virginia Creeper (Parthenocissus quinquefolia), Black Cherry (Prunus serotina), American Holly (Ilex opaca), Spicebush (Lindera benzoin), Japanese Barberry (Berberis thunbergii), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Sassafras (Sassafras albidum), Japanese Honeysuckle (Lonicera japonica), Dewberry (Rubus hispidus), Goldenrod (Solidago sp.), Sycamore Maple (Acer pseudo-platanus), Oriental Bittersweet (Celastrus orbiculatus), Scrub Oak (Quercus ilicifolia), Wild Carrot (Daucus carota), Elderberry (Sambucus canadensis), Evening Primrose (Oenothera biennis), Day Lily (Hemerocallis fulva), Multiflora Rose (Rosa multiflora), Tupelo (Nyssa sylvatica), Catalpa (Catalpa bignonioides), White Oak (Quercus alba), Red Oak (Quercus borealis), Sweet Cherry (Prunus avium), Mulberry (Morus sp.), Calico Aster (Aster lateriflorus), Common Smartweed (Polygonum hydropiper), Ragweed (Ambrosia artemisiifolia), Sour Dock (Rumex crispus), Tartarian Honeysuckle (Lonicera tatarica), Touch-me-not (Impatiens capensis), Field Garlic (Allium vineale), Common Mullein (Verbascum thapsus), White Boneset (Eupatorium album), Flat-topped Goldenrod (Euthamia sp.), Privet (Ligustrum vulgare), Poison Ivy (Toxicodendron

radicans), Star-flower (Trietalis borealis), Gall-of-the-earth (Prenanthes trifoliata) and Tree-of -heaven (Ailanthus altissima) are found. No apparent changes are found in the freshwater wetlands or the adjacent wooded areas and roadside vegetation.

H:\Forms\form1.wpd

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

December 14, 2011

The following form contains the results of the Fall 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects were performed for each of three transects inspected four times annually. A fourth area was analyzed for estuarine organisms. Each transect was recorded in terms of species present and relative density so that trends for each transect could be ascertained. It is specifically noted that this is the final Field Inspection Report Form for this project as the remediation has been successful and no measurable changes in the ecology of Ligonee Creek and Ligonee Brook have been found.

The following are field date taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

December 6, 2011

Weather:

60 Degrees Fahrenheit, Southwest Wind, Rain, Low Pressure System.

Comments:

Midtide.

Results:

The location of the tidal wetlands transect is shown as 2-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove. It extends 40 feet in width and includes classic Intertidal Marsh and High Marsh tidal wetlands as defined by New York State Department of Environmental Conservation. The wetlands habitat is bordered by a narrow margin of intact upland vegetation and residential development. There are residential docks in the area.

The results of the vegetative transect are, as follows:

Start

Common Name

Scientific Name

Seaward Limit of Tidal Wetlands

IM

Red & Brown Algae (Various)

Hollow Green Weeds

Enteromorpha sp.

Rockweeds

Fucus sp.

Sea Lettuce

Ulva lactuca

Smooth Cordgrass Ribbed Mussels

Spartina alterniflora Modiolus demissus

HM

Salt Hay Grass

Spartina patens

Seaside Lavender

Limonium carolinium

Glassworts

Salicornia sp.

Marsh Elder

Iva frutescens

Seaside Goldenrod

Solidago sempervirens

Sea Blite

Suaeda linearis

Marsh Orach

Atriplex patula

Spike Grass

Distichlis spicata

Chenopodium rubrum

Goosefoot

Polygonum ramosissimum

Bushy Knotweed Fireweed

Erechtites hieracifolia

Annual Saltmarsh Aster

Aster subulatus

Seaside Plantain

Plantago maritima

Groundsel Bush

Baccharis halimifolia

Saltwort

Salsola kali

Seaside Gerardia

Agalinus maritima

Switchgrass

Panicum virgatum

Beach Grass (Ammophila breviligulata), Beach Pea (Lathyrus japonicus), Bindweed (Convolvulus sepium), Common Ragweed (Ambrosia artemisiifolia), Wild Carrot (Daucus carota), Spotted Touchme-not (Impatiens capensis), Wild Pepper Grass (Lepidium virginicum), Rugosa Rose (Rosa rugosa), Bush Clover (Lespedeza sp.), Nightshade (Solanum dulcamara), Common Smartweed (Polygonum hydropiper), Switchgrass (Panicum virgatum) and Sour Dock (Rumex crispus) area found in the fringe vegetation between the HM and upland found adjacent to this wetlands. Adjacent upland vegetation includes Russian-olive (Elaeagnus angustifolia), Tree-of-heaven (Ailanthus altissima), Common Nightshade (Solanum nigrum), Black Willow (Salix niger), Oriental Bittersweet (Celastrus orbiculatus), Norway Maple (Acer platanoides), Eastern Red Cedar (Juniperus virginiana), Wild Asparagus (Asparagus officinalis), Virginia Creeper (Parthenocissus quinquefolia), Beach Plum (Prunus maritima), Northern Bayberry (Myrica pensylvanica), Quaking Aspen (Populus tremuloides) and Multiflora Rose (Rosa multiflora).

NOTES: The Intertidal Marsh was measured as 10 foot wide in this area. The High Marsh covers an additional 20 feet. The upland fringe is another 10 feet. The tidal wetlands are high quality and contain representative vegetation. The wetlands are recovering since the last two quarterly monitoring cycles where the Intertidal Marsh had eroded to a modest extent. The wetlands are bordered by single family residential development. Many docks and related improvements exist in the area. The wetlands are largely intact despite the presence of low density residential development and related waterfront improvements. Fiddler Crabs were present in the Intertidal Marsh.

H:\Forms\form2.wpd

INTER-SCIENCE RESEARCH ASSOCIATES, INC.

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

December 14, 2011

The following form contains the results of the Fall 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects were performed for each of three transects inspected four times annually. Each transect was recorded in terms of species found and relative density so that trends for each transect could be ascertained. It is specifically noted that this if the final Field Inspection Report Form for this project as the remediation has been successful and no measurable changes in the ecology of Ligonee Creek and Ligonee Brook have been found.

The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

December 8, 2011

Weather:

40 Degrees Fahrenheit, Sunny, Clear, High Pressure System.

Comments:

Warm November and mild late fall weather to date.

Results:

The location of the tidal wetlands transect is shown as 3-Vegetative Monitoring Transect on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The transect is centered on Ligonee Creek/Sag Harbor Cove in the area where freshwater influence is still apparent. Seaward of this location, in the estuary, salinity is generally above 20 parts per thousand and the presence of Common Reed (Phragmites communis) is minimal. Landward of this location, in the estuary, salinity is generally below 20 parts per thousand which allows Common Reed to dominate. The specific goal of monitoring the location of the Common Reed in this transect is to make sure the salinity changes to the estuary, as a result of the Superfund remediation, are not significant enough to cause the boundary between intact tidal wetlands and those dominated by Common Reed to shift in position.

[It is noted that the existing dock with large (minimum 8 inch butt) pilings has been replaced with a new dock.]

The transect is located between a new dock and a large Black Locust (Robina pseudo-acacia) tree. The distance is 176 linear feet and runs in a northerly direction. The results of this vegetative transect are, as follows:

Start	Common Name	Scientific Name	Residential Dock
IM	Smooth Cordgrass Ribbed Mussels	Spartina alterniflora Modiolus demissus	7' 7'
	Hollow Green Weeds	Enteromorpha sp.	7'
HM	Marsh Elder	Iva frutescens	11'
	Common Reed	Phragmites communis	11'
	Salt Hay Grass	Spartina patens	11'
	Smooth Cordgrass	Spartina alterniflora	11'
$\mathbf{H}\mathbf{M}$	Common Reed	Phragmites communis	14'
	Smooth Cordgrass	Spartina alterniflora	14'
IM	Smooth Cordgrass	Spartina alterniflora	21'
	Common Reed	Phragmites communis	21'
$\mathbf{H}\mathbf{M}$	Common Reed	Phragmites communis	43-81'
	Marsh Elder	Iva frutescens	43'-81'
$\mathbf{H}\mathbf{M}$	Smooth Cordgrass	Spartina alterniflora	152'
	Salt Hay Grass	Spartina patens	152'
	Marsh Elder	Iva frutescens	154'
	Salt Hay Grass	Spartina patens	154'
	Groundsel Bush	Baccharis halimifolia	154'
	Wrack Line		156'
$\mathbf{H}\mathbf{M}$	Salt Hay Grass	Spartina patens	162'
	Marsh Elder	Iva frutescens	162'
	Groundsel Bush	Baccharis halimifolia	162'
	Multiflora Rose	Rosa multiflora	168'

After 176 linear feet, the wetlands end and upland vegetation including traditional evergreen trees (Blue Spruce), Black Locust, Oriental Bittersweet and Poison Ivy exist. These are used as the northerly end of the transect. The relative position of the Common Reed may be monitored by using the landscaping as the landward limit of the tidal wetlands associated with this estuary.

NOTES: The Intertidal Marsh is generally dominated by Smooth Cordgrass. Both the normal and short form are present with the tall form present close to the water and the low form present in the more landward portions of the IM. The HM is dominated by Salt Hay Grass and is intact on the northern portion of this transect. On the southern section of the transect, Common Reed dominates in an impacted section of HM where the salinity must average below 20 PPT. This area was monitored closely to watch trends over the seasons. The IM had other species present including Glasswort (Salicornia sp). and Salt Hay Grass. These species were limited to sections of the bog which had floated onto the IM and remained there in an artificially elevated position. This is not an unusual

occurrence which is evident throughout the estuary. The more seaward shrubs were Marsh Elder whereas the more landward limit of the saltmarsh was dominated by Groundsel Bush.

H:\Forms\form3.wpd

INTER-SCIENCE RESEARCH ASSOCIATES, INC.

FIELD INSPECTION REPORT FORM

TO:

Leggette Brashears & Graham, Inc.

FROM:

James L. Walker, Principal Planner

SUBJECT:

Rowe Industries Superfund Project Site

DATE:

December 14, 2011

The following form contains the results of the Fall 2011 quarterly monitoring for the Rowe Industries Superfund project site. In particular, vegetative transects were performed for each of three transects which are inspected four times annually. A fourth area was analyzed for estuarine organisms. Results for each transect were recorded in terms of species present and relative density so that trends for each transect could be ascertained. It is specifically noted that this is the Final Inspection Report Form for this project as the remediation has been successful and no measurable changes in the ecology of Ligonee Creek and Ligonee Brook have been found.

The following are field data taken for the project:

Field Data

Station Number

Rowe Industries Superfund Project

Date:

December 6, 2011 4

Weather:

60 Degrees Fahrenheit, Southwest Wind, Rain, Low Pressure System.

Comments:

Midtide.

Results:

The location of the fauna sampling station is shown as 4-Approximate Location Proposed for Benthic Analysis on the Mapped Wetlands and Surface Water Monitoring Location and Steady State Drawdown Contours figure provided by LBG Engineering Services, P.C. dated 1/9/2001. The sampling station is located in the area of Ligonee Creek where the transition to Sag Harbor Cove begins. In this manner, it samples the creek environment while also providing information on the cove environment. Long term trends were analyzed by reviewing the seasonal results to determine if there were any significant impact on the fauna located in these sections of the estuary.

The approximate location proposed for the benthic analysis is in the portion of Ligonee Creek where it begins to open up into Sag Harbor Cove. It is north of Vegetative Monitoring Transect 3 and

south of Vegetative Monitoring Transect 2. The results of the benthic monitoring and related work are, as follows:

Common Name	Scientific Name	Number
Hard Clam	Mercenaria mercenaria	1
Soft Clam	Mya arenaria	1
Mud Snail	Nassarius obsoletus	3
Ribbed Mussel	Modiolus demissus	3
Bay Scallop	Aequipecten irradians	4

Representative shellfish in the open section of Ligonee Creek include a healthy population of Hard Clams (Mercenaria mercenaria) including seed, littlenecks, cherrystones and chowders, Blunt Razor Clams (Tagelus plebeius), False Angel Wings (Petricola pholadiformis), Mud Dog Whelk (Nassarius obsoletus), Common Awning Clam (Solemya velum), Soft Shell Clams (Mya arenaria), Channeled Whelk (Busycon canaliculatum) and Common Oyster (Crassostrea virginica). A significant appearance of bug bay scallops (1 year old juveniles) is apparent with a smaller appearance of adult bay scallops (2 year old) also observed.

NOTE: The long term trends examined in this sampling were conducted to ensure that the species found in the estuary are representative of the creek and not influenced by the remediation at the Rowe Industries Superfund Site.

Qualitative sampling was completed for the presence of finfish in the estuary. The following species were present:

Common Name	Scientific Name
Mummichog	Fundulus heteroclitus
Striped Killifish	Fundulus diaphanus
Tidewater Silverside	Menidia berylina
Atlantic Silverside	Menidia menidia
Sand Shrimp	Crangon septemspinosa
Mud Snail	Nassarius obsoletus
Sheepshead Minnow	Cyprinodon variegatus

No other fish were observed. Sand shrimp and killifish are generally dominant in this section of the estuary although their location at any given tidal stage is variable. The presence of the invertebrate species is noted as appropriate

In addition to the species found in the sample area, informal sampling was done in various other locations. Hard Clams (Mercenaria mercenaria) were found. Informal sampling yielded a representative number of seed clams, littlenecks, cherrystones and chowders. This ratio of sizes

indicates good reproduction and good growth. This type of data is expected at the midpoint of Ligonee Creek into Sag Harbor Cove. Also present in the informal qualitative sampling were the following species:

Common Name

Scientific Name

Mud Dog Whelk

Nassarius obsoletus

False Angel Wing

Petricola pholadiformis

Ribbed Mussel

Modiolus demissus

Hard Clam

Mercenaria mercenaria

Blunt Razor Clam

Tagelus plebeius

Common Awning Clam

Solemya velum

Trumpet Worm

Pectinaria gouldii

Bay Scallop

Aequipecten irradians

Muskrats were also observed in this section of the estuary. A healthy set of bug bay scallops was observed with a smaller number of adults bay scallops.

The benthic invertebrate analysis was done in a random manner using a modified Surber Sampler, Where present, finfish or organisms other than benthic invertebrates were reported for the overall analysis of the estuary. The long term trends were analyzed to determine if the changes in hydrology, caused by the Ground-water Remedial Activity for the Rowe Industries Superfund Site, have made any measurable alteration in the flora and fauna present in the Ligonee Brook and Ligonee Creek estuary.

H:\Forms\form4.wpd

APPENDIX F

2011 Hazardous Waste Manifests

3935201-11

							OMB No. 20
NIFORM HAZARDOUS WASTE MANIFEST N Y R 0 0 0 5 4 4 1 1	2. Page 1 of	3. Emergency Respon		4. Manifest		umber 916	3 JJ
Generator's Name and Mailing Address Former Rowe Industri	29	Generator's Site Addres	s (if different tha	an mailing addres	ss)		V
c/o LBG Engineering 4 Research 203-925-85351 Shelton, CT 064				ampton/ NY 1196		arbor	Tpk
Transporter 1 Company Name				U.S. EPA ID N	lumber		- 1
Earth Technology II, LLC				ICTR	0 0	0 5 0	6 4 2
Transporter 2 Company Name				U.S. EPA ID N			
Designated Facility Name and Site Address				U.S. EPA ID N	lumber		
Northland Environmental, Inc.				0.0. 2171101	tumbo.		
275 Allens Ave. Providence, RI 02905			5*				
acility's Phone: 401-781-6340		0		RID	0 4.	0 0 9	8 3 5
a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Numb	er,	10. Cont		11. Total	12. Unit	13.	Waste Codes
1.	3	No.	Туре	Quantity	Wt./Vol.		
x RQ, Hazardous Waste Solid, N.O.S., NA3077, PGIII (tetrachloroethlene)	9,	11	DM	1050	P	F001	
2.							
		- 10					
3.							
- 1		-	1				
			_				
4.		- -			1		
l control of the cont							
1. VDI1 3D95894 Per Park		Tr. 1 ==	7-//	Job	#1015		
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attar	this consignment according to appli ched EPA Acknow	are fully and accurately of icable international and na vledgment of Consent.	ational governm	by the proper sh ental regulations.	ipping name	e, and are clas	
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attal I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a	this consignment according to appli ched EPA Acknow large quantity gen	are fully and accurately of icable international and na vledgment of Consent.	ational governm	by the proper sh ental regulations.	ipping name	e, and are clas	am the Primary
6. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the attar I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a enerator's/Offeror's Printed/Typed Name	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of icable international and na idedgment of Consent. nerator) or (b) (if I am a sr	ational governm	by the proper sh ental regulations.	ipping name	e, and are clas ipment and I Mor	am the Primary
6. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attactive I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name 6. International Shipments Import to U.S.	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and no vieldgment of Consent. nerator) or (b) (if I am a sripnature	ational governm nall quantity ger entry/exit:	by the proper sh ental regulations.	ipping name	e, and are clas ipment and I Mor	am the Primary
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attactive I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name Solution of the international Shipments Import to U.S. Transporter signature (for exports only):	this consignment according to appli ched EPA Acknow large quantity gen	are fully and accurately of cable international and no vieldgment of Consent. nerator) or (b) (if I am a sripnature	ational governm	by the proper sh ental regulations.	ipping name	e, and are clas ipment and I Mor	am the Primary
6. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attactive I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name 6. International Shipments Import to U.S.	this consignment according to appli ched EPA Acknow large quantity gen	are fully and accurately of cable international and no vieldgment of Consent. nerator) or (b) (if I am a sripnature	ational governm nall quantity ger entry/exit:	by the proper sh ental regulations.	ipping name	e, and are clas ipment and I Mor	am the Primary
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attact I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name Import to U.S. ransporter signature (for exports only):	this consignment according to appli ched EPA Acknow large quantity gen	are fully and accurately of cable international and navledgment of Consent. terator) or (b) (if I am a srignature U.S. Port of o	ational governm nall quantity ger entry/exit:	by the proper sh ental regulations.	ipping name	e, and are clas ipment and I Mor	am the Primary
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attact I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name Import to U.S. ransporter signature (for exports only):	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and navledgment of Consent. terator) or (b) (if I am a srignature U.S. Port of o	ational governm nall quantity ger entry/exit:	by the proper sh ental regulations.	ipping name	e, and are clas ipment and I Mor	am the Primary nth Day /
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attact I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name Import to U.S. ransporter signature (for exports only): Transporter Acknowledgment of Receipt of Materials ansporter 1 Printed/Typed Name	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and natification of Consent. Interactor) or (b) (if I am a signature) U.S. Port of of Date learning and the cable in the cabl	ational governm nall quantity ger entry/exit:	by the proper sh ental regulations.	ipping name	e, and are clasipment and I Mor	am the Primary nth Day /
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the attal I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a enerator's/Offeror's Printed/Typed Name 5. International Shipments Import to U.S. ransporter signature (for exports only): 7. Transporter Acknowledgment of Receipt of Materials ansporter 1 Printed/Typed Name 8. Discrepancy Indication Space	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and natification of Consent. Interactor) or (b) (if I am a signature) U.S. Port of of Date learning and the cable of the cabl	ational governm nall quantity ger entry/exit:	by the proper sh ental regulations. erator) is true.	ipping name If export sh	e, and are clasipment and I Mor	am the Primary nth Day nth Day nth Day
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the atta: I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name S. International Shipments Import to U.S. transporter signature (for exports only): T. Transporter Acknowledgment of Receipt of Materials ansporter 1 Printed/Typed Name S. Discrepancy	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and natived gment of Consent. nerator) or (b) (if I am a signature U.S. Port of or Date learn produce and the produce greature) Residue	entry/exit:	by the proper sh ental regulations.	ipping name If export sh	e, and are clasipment and I Mor	am the Primary nth Day /
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the attal I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a enerator's/Offeror's Printed/Typed Name 5. International Shipments Import to U.S. ransporter signature (for exports only): 7. Transporter Acknowledgment of Receipt of Materials ansporter 1 Printed/Typed Name 8. Discrepancy Indication Space	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and natifedgment of Consent. nerator) or (b) (if I am a signature) U.S. Port of o Date learnature	entry/exit:	by the proper sh ental regulations. erator) is true.	ipping name If export sh	e, and are clasipment and I Mor	am the Primary nth Day nth Day nth Day
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the atta. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name 5. International Shipments	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and natived gment of Consent. nerator) or (b) (if I am a signature U.S. Port of or Date learn produce and the produce greature) Residue	entry/exit:	by the proper shental regulations. Herator) is true.	ipping name If export sh	e, and are clasipment and I Mor	am the Primary nth Day nth Day nth Day
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport Exporter, I certify that the contents of this consignment conform to the terms of the attact I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name Import to U.S. ransporter signature (for exports only): Transporter Acknowledgment of Receipt of Materials ansporter 1 Printed/Typed Name S. Discrepancy Sa. Discrepancy Indication Space Quantity Type Obs. Alternate Facility (or Generator)	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and natived gment of Consent. nerator) or (b) (if I am a signature U.S. Port of or Date learn produce and the produce greature) Residue	entry/exit:	by the proper shental regulations. Herator) is true.	ipping name If export sh	e, and are classipment and I	am the Primary nth Day nth Day nth Day
6. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the attar I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a enerator's/Offeror's Printed/Typed Name 6. International Shipments	this consignment according to appliched EPA Acknow large quantity gen Sig Export from Sig	are fully and accurately of cable international and natifedgment of Consent. Interactory or (b) (if I am a signature) U.S. Port of or Date lead interactory or particles and particles are possible. Port of the Date lead interactory or particles are particles and particles are particles and particles are particles are particles and particles are particles are particles are particles and particles are parti	entry/exit: ving U.S.:	by the proper shental regulations. Herator) is true.	ipping name If export sh	e, and are classipment and I	am the Primary nth Day nth Day Full Reject
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the atta. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a enerator's/Offeror's Printed/Typed Name S. International Shipments	this consignment according to appliched EPA Acknow large quantity gen Sig Export from Sig	are fully and accurately of cable international and natifedgment of Consent. Interactory or (b) (if I am a signature) U.S. Port of or Date lead interactory or particles and particles are possible. Port of the Date lead interactory or particles are particles and particles are particles and particles are particles are particles and particles are particles are particles are particles and particles are parti	entry/exit: ving U.S.:	by the proper shental regulations. Herator) is true.	ipping name If export sh	e, and are classipment and I	am the Primary nth Day nth Day Full Reject
6. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the attar I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a enerator's/Offeror's Printed/Typed Name 6. International Shipments	this consignment according to appli ched EPA Acknow large quantity gen Sig	are fully and accurately of cable international and natived gment of Consent. nerator) or (b) (if I am a signature U.S. Port of or Date learn produce and the produce greature) Residue	entry/exit:	by the proper shental regulations. Herator) is true.	ipping name If export sh	e, and are classipment and I	am the Primary nth Day nth Day Full Reject
GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of marked and labeled/placarded, and are in all respects in proper condition for transport: Exporter, I certify that the contents of this consignment conform to the terms of the attar I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a generator's/Offeror's Printed/Typed Name Transporter signature (for exports only): Transporter Acknowledgment of Receipt of Materials ansporter 1 Printed/Typed Name B. Discrepancy Ba. Discrepancy Indication Space Quantity Type Consider the printed of the contents of the contents of the attar and the contents of the attar and the contents of the attar and the contents of the attar and the contents of the attar and the contents of the attar and the contents of the attar and the contents of the attar and the contents of the attar and the contents of the co	this consignment according to appliched EPA Acknow large quantity gen Sig Sig Sig	are fully and accurately of cable international and natifedgment of Consent. Interactory or (b) (if I am a signature) U.S. Port of or Date lead interactory or particles and particles are possible. Port of the Date lead interactory or particles are particles and particles are particles and particles are particles are particles and particles are particles are particles are particles and particles are parti	entry/exit: ving U.S.:	by the proper shental regulations. Partial Rej. U.S. EPA ID N	ipping name If export sh	e, and are classipment and I	am the Primary nth Day nth Day Full Reject

Plea	se pri	int or type. (Form designed for use on elite (12-pitch) typewriter.)					Form	Approved.	OMB No.	2050-0039
1		FORM HAZARDOUS ASTE MANIFEST	1 of 3. Emerge 86.0	ency Response -346-01		4. Manifest	-	mber 928	6 J ,	JK
П		nerator's Name and Mailing Address Former Rowe Industries	Generator'			an mailing addres		W .7	41 5	
		/o LBG Engineering				gehampt		rnpike	1	
ΙÏ	4	Research Dr. Ste. 301, Shelton, CT 06484		Sag	Harbo	r, New	rork			
Ш		erator's Phone: 203-929-8555								
Ш		ansporter 1 Company Name			1.2	U.S. EPA ID N		14.2		
Ш	A	lpine Envi eo nmental Services, LLC				CTR	0 0	0 5 1	0.38	8
Ш	7. Tra	ansporter 2 Company Name		E 1		U.S. EPA ID N	umber	-		\
Ш						1 -				
	8. De	signated Facility Name and Site Address		+(==		U.S. EPA ID N	lumber	3.		
Ш		Bridgeport United Recycling								
Ш		50 Cross Street, Bridgeport, CT 06110								
Ш	Facilit	ty's Phone: (203) 334-1666				CTD	0 0 2	5 9 3	8 8	7
Ш	9a.	9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,		10. Contair	ners	11. Total	12. Unit	T		
Ш	НМ	and Packing Group (if any))		No.	Туре	Quantity	Wt./Vol.	13.	Waste Code	:S
		1 po Harandous Masta Liquid N.O.S.		5.5				F001	0030	
2	×	RQ, Hazardous Waste Liquid, N.O.S.			TT	1295	7.0	LOOT	5039	
Z		(Tetrachloroethylene) 9, NA3082, PGIII	- · · · · · · · · · · · · · · · · · · ·	00 F	10. 1	1217	0			
GENERATOR		2.	1	-						
2		* 1			= =		= 1	-		
П			5 197							
Ш		3.								
Ш		- :	1.							
Ш					- 1					
		4.			1					
Ш					41.0			i		
П	-							- X - 1		
	14 S	pecial Handling Instructions and Additional Information								
	j	GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consigning marked and labeled/placarded, and are in all respects in proper condition for transport according to a Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Act I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity	applicable intern knowledgment o	ational and nati Consent.	ional governm	ental regulations.				
Ш		rator's/Offeror's Printed/Typed Name	Signature	/ (II.) WITH W	quantity 30	ionatory to the or		Mor	nth Day	Year
	54	trobes that as aged for National Clause		-				T -	31/	01/7
Ľ		ternational Shipments		76				-	#11	7 77
TRANSPORTER INT'L	la.	Import to U.S. Export fr	om U.S.	Port of en Date leavi						
04	_	ransporter Acknowledgment of Receipt of Materials		Date leave	g 0.0					
		porter 1 Printed/Typed Name	Signature		/			Mor	nth Day	Year
Š	1	7 harrier 1 3 %	166	×	in at			- 1	01/7	71-12
S	Trans	sporter 2 Printed/Typed Name	Signature	Y				Mo	nth Day	Year
Z			1					I	1	1
F	18 Di	iscrepancy								
П		Disarrangey Indication Space		i .					_	-
Ш	100. 1	Quantity Type	<u> </u>	Residue		Partial Reje	ection	10	Full Rej	ection
П										
>	18h /	Alternate Facility (or Generator)	Man	ifest Reference	Number:	U.S. EPA ID N	umber			
늘	100.7	such take I admity for Generatory				0.0. EI A ID II	umber			1/5
ACI		*				()				-
D.F.		ty's Phone:						[st	onth D	, V
1	100. 8	Signature of Alternate Facility (or Generator)						IVIC	onth Day	/ Year
NE.		X-	TO SECRETARIO - TO SECOND		-			=		
ESIGNATED FACILITY	19. H	azardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, dis		ling systems)	a ¹					_
ıщ	1.	1/62	3.			4.				
11		1/35		200	<u> </u>					
	20. D	esignated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the		as noted in Iten	n 18a					
	Printe	ed/Typed Name	Signature	17	1	11		Mo	nth Day	Year
+		New DINCRO	1	L. VIOX	01	· All	201	1	X 12	

Plea	se prir	nt or type. (Form designed for use on elite (12-pitch) typewriter.)					Form	Approved. OMB No. 2050-0039
1		ORM HAZARDOUS 1. Generator ID Number 2. Page 1 ct 1		ency Response		4. Manifest		9290 JJK
	5. Ger	nerator's Name and Mailing Address Former Rowe Industries	Generator'	s Site Address	(if different th	an mailing addres	ss)	
	0	/o LBG Engineering		1668 6	inidae	hamnton	San H	arbor Tpk
П						NY 1196		arnor ipk
Ш	Gener	Research 3r959e85381 Shelton, CT 06484		say no	groor,	WI TIM	13	
Ш		nsporter 1 Company Name	- 100			U.S. EPA ID I		
		lpine Environmental Services, LL6				CTF	0 0	0510388
Ш	7. Trar	sporter 2 Company Name			-	U.S. EPA ID N	lumber	
Ш								
Ш		ignated Facility Name and Site Address				U.S. EPA ID N	lumber	
Ш		ridgeport United Recycling						
Ш	5	O Cross St. Bridgeport, CT 06610						
	Facility	y's Phone: 203-334-1666				CTD	0 0 2	5 9 3 8 8 7
Ш	9a.	9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,		10. Contai	ners	11. Total	12. Unit	13. Waste Codes
	HM	and Packing Group (if any))		No.	Туре	Quantity	Wt./Vol.	15. Waste Codes
04		RQ, Hazardous WAste Liquid, N.O.S.						F001 D039
2	Х	(Tetrachloroethylene) 9, NA3082, PGIII		100	TT	703	6	1001 0000
8		the order to octally relief of intooce, relief		001				
GENERATOR		2.						
9		A Service of the serv				<i>)</i> .		
П								
		3						
		_						
Ш			- 1					
		4.						
		ecial Handling Instructions and Additional Information						
	n E	SENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment narked and labeled/placarded, and are in all respects in proper condition for transport according to approximate the contents of this consignment conform to the terms of the attached EPA Acknot certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity of the contents of the co	plicable intern owledgment o	ational and nat f Consent.	ional governm	ental regulations	THE CONTRACTOR OF THE PARTY OF	Control of the second of the s
			Signature	A.	in quartary go	ioratory io a do.		Month Day Year
U	-51	FERHEN HNAT AS ALENT END MARINAL CLUBE						13101//
Ť	-/-	ernational Shinments		7	4 F M			13131.0
TRANSPORTER INT'I	Trans	Import to U.S. Export from porter signature (for exports only):	n U.S.	Port of en Date leavi				
œ		ansporter Acknowledgment of Receipt of Materials	7	/				
RTE	Transp	orter 1 Printed/Typed Name	Signature	-/	~~~			Month Day Year
PO		12016 1 706	de	45	00			3121//
NS	Transp	porter 2 Printed/Typed Name S	Signature					Month Day Year
TR/								
1	18. Dis	screpancy						
	18a. D	iscrepancy Indication Space		Desidue		Partial Rej		E-M Deleation
		Quantity Type		Residue		L Paniai Rej	ection	Full Rejection
П			Man	ifest Reference	Number:			
≥	18b. A	Iternate Facility (or Generator)				U.S. EPA ID N	lumber	
3								
FA	Facility	y's Phone:				İ		
日	18c. S	ignature of Altemate Facility (or Generator)						Month Day Year
NA								44
SIGNATED FACILITY	19. Ha	zardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, dispo	sal, and recyc	ling systems)				TO SERVICE
	1.	2. 3				4.		34495
i i	1	H(2)						
	20. De	esignated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the ma	anifest except	as noted in Iter	n 18a 🎢	7 8		State A State
	Printed	d/Typed Name	Signature	-		1 12-	9-	Month Day Year
ш		AN a a - 1 DEED CAPS - 1		1 1 7 7		f 3500		2 II AT 1811 II

leas	e print or type. (Form designed for use on elite (12-pitch) typewriter.)							OMB No. 20)50-003
1	UNIFORM HAZARDOUS 1. Generator ID Number 2. Pa WASTE MANIFEST N Y R 0 = 0 0 0 5 4 4 1 1	2007	ergency Response		4. Manifest		932	5 JJ	K
15	5. Generator's Name and Mailing Address Former Rowe Industries	Genera	tor's Site Address	(if different that	in mailing addres	is)			-
4	c/o LBG Engineering				ehampto	The second second	Harbo	r Tpk.	
T	4 Research Dr. Ste. 301, Shelton, CT 06424	4	Sag	Harbor	, NY 11	963			
Ш	Generator's Phone: 203-922-8555	I							
ΙĒ	3. Transporter 1 Company Name				U.S. EPA ID N	lumber			
П	Alpine Environmental Services, LLC				I C T R	0.0	0 5 1	0.3.8	8
П	7. Transporter 2 Company Name				U.S. EPA ID N				
Ш					1				
117	3. Designated Facility Name and Site Address			-	U.S. EPA ID N	lumber			
П	Bridgeport United Recycling				- P		1960 m		
П	50 Cross Street, Bridgeport, CT 06110								
П	Facility's Phone: 253-334-1666				CTD	0 0	2 5 9	3 8 8	7
H	9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,		10. Contair	ners I	11. Total	12. Unit			
Ш	HM and Packing Group (if any))		No.	Туре	Quantity	Wt./Vol.	13. \	Waste Codes	
1,1	1			1,775			Foot	2000	
GENERATOR	X RQ, Hazardous Waste Liquid, N.O.S.					a)	F001	D039	
₹	(Tetrachloroethylene), 9, NA3082, PGII	Ι -	001	DM	55	6			
필	2.		00.	107	100				
뜅	RQ, Hazardous Waste Solids, N.O.S.			_		- 24	F001		
H	(Tetrachloroethylene) 9, NA3077, PGII	Ι -	003.	om	1000	P			
╁╊	3.		000.	E.J.I.	1000	. ž		-	_
Н			10.00						
П									
lŀ	4.								
П							- 15	8	
Н			1.0		5.5				
H	I4. Special Handling Instructions and Additional Information		1						- 1
	5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignarked and labeled/placarded, and are in all respects in proper condition for transport according Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quarter).	to applicable into Acknowledgmen	ernational and nation	onal governme	ental regulations.				
10	Generator's/Offeror's Printed/Typed Name	Signature					Mon	th Day	Year
\downarrow	Asaran Ar Nahisra = (B6) Panula Rajoret	1	M				10	603	11
٦ '	6. International Shipments Import to U.S. Expo	ort from U.S.	Port of ent	nulovit:					
Z.	Transporter signature (for exports only):	or non o.o.	Date leavir						
¥ '	7. Transporter Acknowledgment of Receipt of Materials	·**					70: _ 7		
2	ransporter 1 Printed/Typed Name	Signature					Mont	h Day	Year
	Charle Isia	1 the	Dog				f -	617.1	11
IKANSPOKIEK	ransporter 2 Printed/Typed Name	Signature					Mon	th Day	Year
3									
4 1	8. Discrepancy			- 7-	3 A.				.5
	8a. Discrepancy Indication Space		Destates		Death Date	iones.	- 1.5	T	roser
П	Quantity Type	1	Residue		Partial Reje	ection	L	Full Rejecti	ion
П		R.	lanifest Reference	Number					
≥lī	8b. Alternate Facility (or Generator)				U.S. EPA ID N	umber			
JESIGNALED FACILITY									
Ž,	Facility's Phone:								
	8c. Signature of Alternate Facility (or Generator)						Mor	nth Day	Year
4			-					.] .[
5	9. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment,	disposal, and re	cycling systems)				-		
		3.	, 9 - 9 - 10 - 110 /		4.				-
	1EXE-1141 HILL	5-			450			Ca	
ı fa	0. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the	Ine manifest ever	ent as noted in Item	18a –					
	or Designated Facility Owner of Operator. Certification of receipt of nazardous materials covered by the Printed/Typed Name	Signature	pr as notou in item	100			Mon	th Day	Year
	C DOMAN NIAMILL	1/ 1//	1019001	71 h	dia.	-	1/	6/01	17
DV D	Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	- 11	MALLE	45/1	E all	()		UUX	1
IMI	orm or ou-zz (nev. 3-03) Frevious editions are obsolete.			DE	SIGNATE	D FACI	LITY TO	GENER	ATOF

47231211

Plea	se print or type. (Form designed for use on elite (12-pitch) typewriter.)					Forn	n Approved. OMI	B No. 2050-0039		
\uparrow	UNIFORM HAZARDOUS 1. Generator ID Number	2. Page 1 of 3	3. Emergency Response	Phone	4. Manifest		umber 9326	JJK		
П	5. Generator's Name and Mailing Address Former Rowe Industri c/o LBG Engineering 4 Research Dr. Ste. 302, Shelton, CT 0	62		Brid		on/Sa	g Harbor			
	Generator's Phone: 203-922-8555 6. Transporter 1 Company Name		e ii e		U.S. EPA ID Number CTR 000506428					
	7. Transporter 2 Company Name			· ·	U.S. EPA ID N		3004	_ "		
	8. Designated Facility Name and Site Address Northland Environmental, LLC 275 Allens Ave. Providence, RI 02905				U.S. EPA ID N	lumber				
	Facility's Phone: 401-781-6340	e e	Y=		RID	0 4	0 0 9 8	3 5 2		
	9a. HM 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))		10. Contain No.	ers Type	11. Total Quantity	12. Unit Wt./Vol.	13. Waste	e Codes		
ATOR -	RQ, Hazardous waste, solid, N.O.S., NA3077, PGIII (tetrachloroethylene)	9,	014	nn	1400	P	F001			
GENERATOR	2.			IJI' I						
	3.							1 -		
			e ² **		= 2		*	4.		
	4.			14 h				-		
	14. Special Handling Instructions and Additional Information					l				
	1.VDI1 3D95894	4	Low	Jo	b #1015					
	15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this marked and labeled/placarded, and are in all respects in proper condition for transport acc Exporter, I certify that the contents of this consignment conform to the terms of the attached.	cording to applica	ble international and natio							
	I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large Generator's/Offeror's Printed/Typed Name	Signa	The contract of the second contract of the se	I quantity ger	nerator) is true.		Month	Day Year		
MT'L ←	16. International Shipments Import to U.S.	Export from U.S	S. Port of ent	ry/exit:			Olo	03 11		
_	Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials	N	Date leavir	ng U.S.:						
TRANSPORTER	Transporter 1 Printed/Typed Name	Signa	lure Re	cles	eff		Month 6	Day Year 3 1		
TRAN	Transporter 2 Printed/Typed Name	Signa	ature				Month	Day Year		
1	18. Discrepancy Indication Space Quantity Type		Residue		Partial Rej	oction		ull Rejection		
	Type Quantity	2	Manifest Reference	Number:	L Falual Rej	ectori		un Rejection		
CILITY	18b. Alternate Facility (or Generator)	= ''		uni biwa 744	U.S. EPA ID N	lumber	<u> </u>			
JESIGNATED FACILITY	Facility's Phone: 18c. Signature of Alternate Facility (or Generator)		, II.	χ.			Month	Day Year		
GNA	19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste trea	atment disposal	and recycling evetome)							
ES	Hazardous waste Report Management Metriod Codes (i.e., codes for nazardous waste treat 2.	3.	and recycling systems)		4.					
1	20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials cover			18a	7					
	Printed/Typed Name	Signa	ature	2			Month	Day Year		

se print or type. (Form designed for use on elite (12-pitch) typewriter.) 1. Generator ID Number 2. Page 1 of 3.	Emarganay Dagaga	a Dhana	I 4 Manifoct		n Approved. O	MB No. 2050
OTHI OTHI TIPE-INDOO	Emergency Respons 50-346-11		4. Manifest	Tracking N	9328	JJK
	erator's Site Address		han mailing addre	99)	0020	0011
5. Generator's Name and Mailing Address Former Rowe Industries Ger		V		0.0	a banka	Tab
			gehampto		y narboi	The
4 Research Dr. Ste. 301, Shelton, CT 06424	Sag	Harbo	r, NY 13	1903		
Generator's Phone: 203-922-8555						
6. Transporter 1 Company Name			U.S. EPA ID I	Number		
Earth Technology II, LLC			C T F	0.0	0 5 0 1	2 8
7. Transporter 2 Company Name			U.S. EPA ID N			
			1			
B. Designated Facility Name and Site Address			U.S. EPA ID I	Viimber		
Bridgeport United Recycling			O.O. ELITTID I	varriboi		
50 Cross Street, Bridgeport, CT 06110						
203-334-1666			. C T D	0.0	2 5 0 3	0 0 7
acility's Phone:			6 1 0	0.0	2 5 9 3	8 8 7
9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,	10. Conta	iners	11. Total	12. Unit	V- 1	70H 020 127H
HM and Packing Group (if any))	No.	Туре	Quantity	Wt./Vol.	13. Wa	ste Codes
1.		1,7,5-2		_		3
x RQ, Hazardous Waste, Liquid, N.O.S.		-	41 -	1	FOOL	3039
(Tetrachloroethylene), 9, NA3082, PGIII	1.0	11	2603	6	i	
(Total deliter decony teller, 3, and ook, Takk						
2,					1	
		-1				
		1.	2.5			
3.	6	+		-	-	
9. —			h			
No. of the second secon				-		
<u> </u>				" E		
4.						
	-					
	-	1 .				1
5. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are f marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledg I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generate.	international and na ment of Consent.	tional governi	mental regulations			
Senerator's/Offeror's Printed/Typed Name Signatu		un damini 3			Month	Day
Patrick Welsh LAGAyout For Nabisco I to	24 .01	Α	1 For 1	1.1.00	[-	Lan L
	100	· Mily and	1 2000	V 05 1-	25	21
6. International Shipments Import to U.S. Export from U.S.	Port of er	ntry/exit:		700		. 8
ransporter signature (for exports only):	Date leav	ing U.S.:	7.2			
7. Transporter Acknowledgment of Receipt of Materials	8					
ansporter 1 Printed/Typed Name Signatur	re	i	T		Month	Day \
R. L. L. A. L. L. L. R.	irbord	27	Bohnes		5	1271
ransporter 2 Printed/Typed Name Signatu	0	11	She eller		Month	Day
Signatu	×.				WORL	Jay I I
	i v					
B. Discrepancy	10		The second second			
Ba. Discrepancy Indication Space	Residue		David David	iostic-	12	Eul De . e
Quantity		tore all	Partial Rej	ection	0 0 00	Full Rejection
water phase of uncoming load (26036) appear. 208		warok	MADO GULA	EU D4	" John	07,00
the Allement Feetley for Consider	Manifest Reference	e Number:	# ILO EDAIDA	dombar		_
Bb. Alternate Facility (or Generator)	1	0	U.S. EPA ID N	anunei.		
	/		_			
acility's Phone:						
8c. Signature of Alternate Facility (or Generator)			•		Month	Day
and the second of the second o						1 1
No. 1 Annual West Down and Annual Ann	d manually and the					
9. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, an	recycling systems)		To	3		
1/13 5 2.			4.			
MIDO			1 4			
D. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest	except as noted in Ite	m 18a				
rinted/Typed Name Signatu	And the second of the second o	en 1887			Month	Day '
STEPHEN DUBNUSKAS	9-1	. A	1	1.		1051
	1100000	W1. [.]	. Mars. ca.l	188.1	-05	A 7

7313-// Please print or type. (Form designed for use on elite (12-pitch) typewriter.) Form Approved. OMB No. 2050-0039 UNIFORM HAZARDOUS 1. Generator ID Number 4. Manifest Tracking Number 2. Page 1 of 3. Emergency Response Phone MR 0 0 0 0 5 4 4 1 1 203-346-8822 1161 0011 WASTE MANIFEST 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address) Former Rowe Industries c/o LBG Engineering-1668 Bridgehampton/Sag Harbor Tpk A Research GroStessSSI Shelton, CT 06484 Sag Harbor, NY 11963 6. Transporter 1 Company Name U.S. EPA ID Number Earth Technology II, LLC CTR000506428 7. Transporter 2 Company Name 8. Designated Facility Name and Site Address U.S. EPA ID Number Northland Environmental, Inc. 275 Allens Ave. Providence, RI 02905 Facility's Phone: 401-781-6340 RID040098352 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) HM Wt /Vol. Quantity Type RQ, Hazardous Waste Solid, N.O.S., 9, NA3077, PGIII (tetrachloroethlene) GENERATOR 001 BM 00 14. Special Handling Instructions and Additional Information VDII 3D95894 Job #1015 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Day Year Generator's/Offeror's Printed/Typed Name 16. International Shipments Export from U.S. Port of entry/exit: Date leaving U.S.: Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Year Transporter 2 Printed/Typed Name Year 18. Discrepancy 18a. Discrepancy Indication Space Full Rejection ____ Type Partial Rejection Quantity Residue Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: DESIGNATED 18c. Signature of Alternate Facility (or Generator) Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Signature

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

DESIGNATED FACILITY TO GENERATOR

K# 8661

Please print or type. (Form designed for use on elite (12-pitch) typewriter.)					Form	Approved.	OMB No. 2	2050-0039
WASTE MANIFEST 1. Generator ID Number N Y R 0 0 0 0 5 4 4 1 1	2. Page 1 of	3. Emergency Response 860 – 346 – 110		4. Manifest		933	8 J.	JK
5. Generator's Name and Mailing Address Former Rowe Industrie	25	Generator's Site Address				-	X	
c/o LBG Engineering				nampton/		arbor	Tpk	
4 Research grastess 301 Shelton, CT 0648	34	Sag Hai	rbor,	NY 1196	3			
Generator's Phone: 6. Transporter 1 Company Name		1		U.S. EPA ID N	lumber	E S	10	<u> </u>
Earth Techhology II, LLC				LC T R		0 5 0	6 4 2	8
7. Transporter 2 Company Name				U.S. EPA ID N		3		
Control of the Contro				Tool Control of the C				
8. Designated Facility Name and Site Address		- li	-	U.S. EPA ID N	lumber			
Calgon Carbon Corl. Big Sandy Plant	Service Total and the Commission							
Route 23, P.O. Box 664, Catlettsburg,	(Y 4112	9		17 N D	0.0	F 0. 0	0 0 0	20
Facility's Phone: 606-739-8681				KYD	0 0	5 0 0	9 9 2	3
9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number,		10. Contair	ers	11. Total	12. Unit	13.	Waste Codes	
HM and Packing Group (if any))		No.	Туре	Quantity	Wt./Vol.			111
8 x RQ, Hazardous Waste, Solid, N.O.S.,	9,	1 '		EST		D039	F001	
X RQ, Hazardous Waste, Solid, N.O.S., NA3077, PGIII, (D039)		001	(1)	16000	C			
<u>2</u> 2.	<u> </u>	001	C1.1	10,000				
					- 1			4.
1		10 F 10 F 10 F		P (8 2)	- 1	= 4-		
3.								-
		4			1			
		*						
4.		-		· .				
					2			
			1 =1					
15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of thi marked and labeled/placarded, and are in all respects in proper condition for transport ac Exporter, I certify that the contents of this consignment conform to the terms of the attach I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a lar	cording to appli ed EPA Acknow ge quantity gen	cable international and national eledgment of Consent. erator) or (b) (if I am a sma	onal governn	nental regulations.		ipment and I	am the Prima	ary
Generator's/Offeror's Printed/Typed Name LDG as agent for Mab	ir = Sig	nature	7			Mor	1th Day 7 5	Year
					1 9	40	1	181
Transporter signature (for exports only):	Export from U	J.S. Port of ent Date leavi					21 1	
		3 14.	9					
Transporter 2 Printed/Typed Name Transporter 2 Printed/Typed Name	Sig	nature	1		5	Mor	ith Day	Year
ROB KADCLIFFE	6	Ket Olice	Sch	16	-	- 6	17 5	11/
Transporter 2 Printed/Typed Name	Sig	nature	1			Mor	nth Day	Year
K								
18. Discrepancy							1-12	
18a. Discrepancy Indication Space Quantity Type		Residue		Partial Rej	ection		Full Reje	ection
Ⅱ								
18b. Alternate Facility (or Generator)	3	Manifest Reference	Number:	U.S. EPA ID N	lumber			
5								
18b. Alternate Facility (or Generator) Facility's Phone:								
18c. Signature of Alternate Facility (or Generator)						Mo	nth Day	Year
NAT THE PROPERTY OF THE PROPER								
18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste tree 1. 2.	atment, disposa	l, and recycling systems)						_ 1
1. H039	3.	* - 2 - 2		4.	74			
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials cover	red by the mani	ifest except as noted in Item	18a	1		1		
Printed/Typed Name	Sig	inature	L	1.11	/	Mo	nth Day	Year

CAN# 4168-1 Please print or type. (Form designed for use on elite (12-pitch) typewriter.) Form Approved. OMB No. 2050-0039 UNIFORM HAZARDOUS 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number NYR000054411 850-346-1161 **WASTE MANIFEST** 5. Generator's Name and Mailing Address Former, Rowe Industries Generator's Site Address (if different than mailing address) c/o LBG Engineering 1668 Bridgehampton/Sag Harbor Tpk 4 Research <u>9r925e85351</u> Shelton, CT 06484 Sag Harbor, NY 11963 6. Transporter 1 Company Name U.S. EPA ID Number Earth Technology II, LLC CTR000506428 7. Transporter 2 Company Name 8. Designated Facility Name and Site Address U.S. EPA ID Number Calgon Carbon Corp. Big Sandy Plant Route 23, P.O. Box 664, Catlettsburg, KY 41129 606-739-8681 KYD005009923 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 12. Unit 9a. 13. Waste Codes and Packing Group (if any)) НМ Quantity Wt /Vol. Type EST RQ, Hazardous Waste, Solid, N.O.S., 9, F001 GENERATOR NA3077, PGIII, (DO@9) 4000 001 14. Special Handling Instructions and Additional Information Job #1015 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name 436 as egent for What Co Year Paul Jobman International Shipments Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S.: 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Year KADE! Transporter 2 Printed/Typed Name 18. Discrepancy 18a. Discrepancy Indication Space Туре Residue Partial Rejection Quantity Full Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number 18c. Signature of Alternate Facility (or Generator) Year Month Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems)

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

Printed/Typed Name

20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a

DESIGNATED FACILITY TO GENERATOR

Month

rlea	ase print or type. (Form designed for use on elite (12-pitch) typewriter.)						n Approved, OMB No	o. 2050-0039
\uparrow	WASTE MANIFEST N Y R O O O O 5 4 4 1 1 1		orgency Response		4. Manifest	25 AN ARREST		IJK
Ц	5. Generator's Name and Mailing Address Former Rowe Industries c/o LBG Engineering	Genera	tor's Site Address	(if different th	an mailing addres	s)	larbor Tilk	
1	4 Research Dr. Ste. 801, Shelton, CT 06424		Sag Ha			==0	200 2021 01100	
П	Generator's Phone: 203-922-8555							
П	6. Transporter 1 Company Name				U.S. EPA ID N			8 8
П	Alpine Environmental Services, LLC				CTR		5 1 0 XXX	1900091
	7. Transporter 2 Company Name				U.S. EPA ID N	lumber		_
	8. Designated Facility Name and Site Address		- i		U.S. EPA ID N	lumber		
П	Bridgeport United Recycling 50 Cross Street, Bridgeport, CT 06110							
П	Facility's Phone: 203-334-1666				ICTI	0.0	2 5 9 3 8	ρ. 7
Н	OLIO DOTE AND ALLE DE COLLET NO DE LOS IDAIS	20	40.000401		U I L		2 3 3 3 0	0 /
	9a. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))		10. Contain	Type	11. Total Quantity	12. Unit Wt./Vol.	13. Waste Co	des
	y 1 RQ, Hazardous Waste, Liquid N.O.S.						F001 D03	9
GENERATOR	(Tetrachloroethylene) 9, NA3082, PGIII		001	TT	1578	6		
ER	2.							+
GE	2.		-					
1							0.00	
	3.							1
	-,							
			6.1					1
Ш	4.							
П								4
				-				
- 1	14. Special Handling Instructions and Additional Information							
a l	1. 2647DLS			Jo	b \$1015			
Ш	7/							
	15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignr	ment are fully	and accurately de	scribed above	hy the proper sh	inning name	and are classified na	rkaned
П	marked and labeled/placarded, and are in all respects in proper condition for transport according to	applicable int	ernational and nati					
	Exporter, I certify that the contents of this consignment conform to the terms of the attached EPAAc I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity			ıll quantity ger	nerator) is true.			
Ш	Generator's/Offeror's Printed/Typed Name	Signature	A				Month D	ay Year
\downarrow	Stephen Hack as agent for Nabisco (cloton)		A				1911	6 11
E	16 International Chipments	rom U.S.	Port of en	trv/exit				
INT	Transporter signature (for exports only):	10111 0.01	Date leavi	Same with the State of				-
品	17. Transporter Acknowledgment of Receipt of Materials							
OR	Transporter 1 Printed/Typed Name	Signature		0			Month Da	ay Year
SP	Charlie Louse	(4	cu 7	8 10c			19 /	6 11
TRANSPORTER	Transporter 2 Printed/Typed Name	Signature					Month D	ay Year
_	18 Discrepancy			,		11		
1	18. Discrepancy 18a. Discrepancy Indication Space Ougstite Turns							
	Quantity Type	-	Residue		Partial Rej	ection	L Full R	ejection
		I.	lanifest Reference	Number				
≧	18b. Alternate Facility (or Generator)				U.S. EPA ID N	lumber		
등					141			
FA	Facility's Phone:							
田	18c. Signature of Alternate Facility (or Generator)						Month D	ay Year
SIGNATED FACILITY						*		
SIG		Y-	cycling systems)		т.			
1	1. 4135 2	3.	~.		4.			
	00 D 1 1 1 5 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0		-t	140-				
	20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the Printed/Typed Name	manifest exce Signature	ept as noted in Iter	n 18a			Month D	ay Year
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		ML	7	A VIII	Cit)	(4 (1
₹ .		1	TO STANK I		THE WALL	1 V	d 1 1 1	164 11

59139.11

Ple	ase print or type. (Form designed for use	on elite (12-pitch) typewriter.)						Form	Approved. O	MR No. 21	050-0039
1	UNIFORM HAZARDOUS 1. Generator WASTE MANIFEST	ID Number R 0 0 0 0 5 4 4	2. Page 1		orgency Response			Tracking Nu	mber 9381	- 20 2	alkie.
Н	F. Consented Manager and Matter Add	Former Rowe Indu	and the state of				han mailing addre	reactor tentals in the	0001	- 00	1/
	c/o LBG Engineerin 4 Research Dr. Ste Generator's Phone: 203-929-	g . 301 Shelton, G			1668	Bridg	ehamptor	1/Sag	Harbor	Tpk.	
Н	6. Transporter 1 Company Name		7, 18				U.S. EPA ID	Number			
П	Alpine Environment	al Services, LLC) = - 1 i				I-C-T F	0.0	5 0 6	3.8	8
	7. Transporter 2 Company Name			# Ty		- 5	U.S. EPA ID				Ÿ.
П	Designated Facility Name and Site Address						ILC EDAID	NI E			
	Northland Environm 275 Allens Ave. Pr	ental, Inc.	ins				U.S. EPA ID	Number			
П	Facility's Phone: 401-781-6		, ,				IRTI	0.4	0 9 8	2 5	2
П	0.0000000000000000000000000000000000000		ID N		40.0.11		Τ'	1	J U 3 0	3.3	£.
	9a. 9b. U.S. DOT Description (including P HM and Packing Group (if any))	roper Snipping Name, Hazard Class,	ID Number,		10. Contai No.	Type	11. Total Quantity	12. Unit Wt./Vol.	13. Was	ste Codes	
GENERATOR -	" PGIII (tetrach)	aste, Solid, N.O oroethlene)	.S., 9, NA	3077	12	p~	4,800	P	F001		
- GEN	2.										
3	3.							× -			
	4.		= 7			4					
Ш	A. T. T. T. T. T. T. T. T. T. T. T. T. T.			- 1			8.3 1.3				land.
	VDI1 3D95894 15. GENERATOR'S/OFFEROR'S CERTIFIC marked and labeled/placarded, and are in	n all respects in proper condition for tr	ansport according to ap	plicable inter	rnational and nation	scribed above	e by the proper sh	lipping name.	and are classifie ment and I am (ed, package	ed,
Ш	Exporter, I certify that the contents of this I certify that the waste minimization state	consignment conform to the terms of ment identified in 40 CER 262 27(a) (i	the attached EPA Ackno	owledgment enerator) or	of Consent.	Il quantity go	narator) is true				2
	Generator's/Offeror's Printed/Typed Name	ment dentaled in 40 of 11 202.27 (a) (i		Signature	(D) (II I alli a silia	ii quantity ge	nierator) is true.	- 3	Month	Day	Year
	Shall 16 1	LAIL KALA	A 1	<						16 1	4 8
Ť	16. International Shipments	BUL LA FRINCE LO -		10.0	7						
Z	Transporter signature (for exports only):	ort to U.S.	Export from	n U.S.	Port of ent Date leavi			1 9VT 1		y 1	
œ	17. Transporter Acknowledgment of Receipt of I	Materials			241010411	ig c.c	-		-		
E	Transporter 1 Printed/Typed Name	7	S	ignature /		1 71	1//	/	Month	Day	Year
2	Richard Bo	brend		1		150	1 1		112	1 (2)	11
TRANSPORTER INT'L	Transporter 2 Printed/Typed Name	Y. T	S	Signature		f-1942		<u> </u>	Month	Day	Year
<u> </u>	18. Discrepancy										
	18a Discrepancy Indication Space	Quantity]Туре	Ma	Residue	Number:	Partial Rej	ection		Full Rejecti	ion
≱	18b. Alternate Facility (or Generator)						U.S. EPA ID N	lumber			
S											
FA	Facility's Phone:	n n	·								
DESIGNATED FACILITY	18c. Signature of Alternate Facility (or Generate	or)			:	2	^	A =	Month	Day	Year
5	19. Hazardous Waste Report Management Me	thod Codes (i.e. codes for hazardous	waste treatment disno	sal, and reco	(cling systems)					ш	
DES	1. HICH	2.	3.		a systemay	12	4.				
	20. Designated Facility Owner or Operator: Cel	rtification of receipt of hazardous mate	orials covered by the ma	nifest avoor	t as noted in Item	18a		-	6		
	Printed/Typed Name	ranoation of receipt of nazardous mate		innest excep Signature	r as noted in item	Toa			Month	Day	Year
*	Dave	2 Dun) 1		12	X			1/3	107	1/

1100	Ise print of type. (Form designed for use on enter (12-pitch) typewriter.)	100 4.4105		Div	I A Management			UIVID ING. Z	.050-0038	
1	UNIFORM HAZARDOUS 1. Generator ID Number	2. Page 1 of 3. En	2. Page 1 of 3. Emergency Response Phone			4. Manifest Tracking Number				
Ш	WASTE MANIFEST N Y R O O O O 5 4 4 1	1 1 8	50-345-1	161	001179382 JJK					
П	5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address)									
	c/o Roberngineering That howe industries									
4 Research Dr. Ste. 301, Shelton, CT 06424										
Ш	203-992-8556	1								
Ш	Generator's Phone:									
Ш	6. Transporter 1 Company Name					U.S. EPA ID Number				
Ш	Earth Technology II, LLC				CTR000506428					
П	7. Transporter 2 Company Name	-	U.S. EPA ID Number							
Ш					1 -					
Ш	8. Designated Facility Name and Site Address					U.S. EPA ID Number				
Ш	Bridgeport United Recycling				1					
İΙ	50 Cross St. Bridgeport, CT 06110									
Ш	50 Cross St. Bridgeport, Ci Udito				1070000000000					
Facility's Phone: 203-334-1665 C T D 0 0 2 !								3 8 8	1	
Н	9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers				11. Total 12. Unit 12. Wests Codes					
Ш	HM and Packing Group (if any))		No. Type			Wt./Vol.	13. Waste Codes			
L	1. In Unequality Names (April 4)	0.0	1				FOOT	5000		
Q R	, Hazardous Waste, Liquid, W		1	7	910	9	F001	D039		
M	(Tetrachloroethylene), 9, NA30	82, PGIII	1 '	l .	1.0	-/				
GENERATOR	2.			-						
氲	2			1 4.	in .	1 1	1			
٦			1			1 1		$\overline{}$		
Ш			1					- [
	3.									
Ш			-	-						
Ш										
	4.		†			† †	1	- 1		
Ш						ll	1			
	T = = = = = = = = = = = = = = = = = = =				_	1 1				
11	14. Special Handling Instructions and Additional Information		Į.			لــــا				
1. 2647DLS Job #1015										
Ш	TO STATE OF									
Ш	15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged									
Н	marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent.									
I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name Month										
								th Day	Year	
Stepher Hout as agent to Nebisio (c/ole)								1.51	177	
L.	16 International Shipments		79	W INC. W				- -/	1.7	
Export from U.S. Port of entry/exit:										
=	Transporter signature (for exports only): Date leaving U.S.:									
世	17. Transporter Acknowledgment of Receipt of Materials									
8	Transporter 1 Printed/Typed Name Signature Month Day								Year	
Transporter signature (for exports only): Transporter 1 Printed/Typed Name Transporter 2 Printed/Typed Name Export from U.S. Export from U.S. Port of entry/exit: Date leaving U.S.: Export from U.S. Port of entry/exit: Date leaving U.S.: Transporter 1 Printed/Typed Name Signature Month Day Transporter 2 Printed/Typed Name							- 61	11		
Z	Transporter 2 Printed/Typed Name	Signature					Mon	th Day	Year	
E										
1	18. Discrepancy									
Ш	18a. Discrepancy Indication Space	Tuno	Posiduo		Partial Pai	oction		Full Poin	otion	
Ш	Type Residue Partial Rejection Full Rejection								Cuon	
Ш	Manifest Reference Number:									
≥	18b. Alternate Facility (or Generator)				U.S. EPA ID N	lumber				
三										
L. Foolitida Dhana										
	Facility's Phone: 18c. Signature of Alternate Facility (or Generator) Month Day								Year	
F	month bay								1	
ESIGNATED FACILITY										
S	19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems)									
1. 1/135 2.										
	1117)				_41					
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a										
	Printed/Typed Name	Signature	1 ,		15		Moi	oth Day	Year	
1	Solex Durgos		X Cle	7	· Lell	41.6		Y 90Y		