

FINAL GROUNDWATER SAMPLING REPORT (March 2010 Sampling Event)

Site: Liberty Industrial Finishing Site, Site # 1-52-108

Brentwood, Suffolk County, NY Multi Site G Operation, Maintenance & Monitoring Work Assignment D004445-14.3

Submitted to:

New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233

Prepared for: New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233

Prepared by:

AECOM Technical Services Northeast, Inc. 300 Broadacres Drive, Bloomfield, New Jersey 07003

January 2011

AECOM Project No. 60135736.50

FINAL GROUNDWATER SAMPLING REPORT (March 2010 Sampling Event)

Site: 1-52-108	Author:
Liberty Industrial Finishing Site Brentwood, Suffolk County, NY	Title:
Submitted to: New York State Department of Environmental Conservation 625 Broadway,	Date:
Albany, New York 12233	Reviewer:
Prepared for: New York State Department of Environmental Conservation 625 Broadway, Albany, New York 12233	Title:
Prepared by: AECOM Technical Services Northeast, Inc. 300 Broadacres Drive, Bloomfield, New Jersey 07003	Date:
January 2011	
AECOM Project No. 60135736.50	

Table of Contents

1.0		1
2.0	SITE DESCRIPTION	1
3.0 3.1 3.2	FIELD ACTIVITIES Water Level Survey Groundwater Sampling	1 1 2
4.0 4.1	SAMPLING RESULTS	2
4.2	Round 4 (February 2010) Data Quality Review	4
5.0	SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES	4
5.1	Summary of Groundwater Sampling Data	4
5.2	Recommendations for Future Work	6

Figures

1	Site Location	Map
1	One Location	iviap

- 2 Site Plan
- 3 Groundwater Contour Map March 10, 2010
- 4 Summary of TAL Metals in Groundwater

Tables

- 1 Well Construction Data
- 2 Groundwater Elevations
- 3 Summary of TAL Metals in Groundwater

Appendices

- A Monitoring Well Sampling Forms
- B NYSDEC Monitoring Well Field Inspection Logs
- C Data Summary Package (Laboratory Summary and Forms 1)

1.0 INTRODUCTION

Past releases from the Liberty Industrial Finishing Site in Brentwood, New York (Site No. 1-52-108) resulted in the contamination of soil and groundwater at the Site and surrounding areas. AECOM Technical Services Northeast, Inc. (AECOM [formerly Earth Tech Northeast, Inc]) has been tasked with collecting three rounds of five-quarterly samples from selected monitoring wells as part of a long-term monitoring plan. AECOM is performing this work under the New York State Department of Environmental Conservation (NYSDEC) Superfund Standby Contract Work Assignment D004445-14.3. Four rounds of groundwater sampling have been conducted to date under this work assignment.

- The first round (Round 1) of sampling was conducted in June 2006.
- The second round (Round 2) of sampling was conducted in August 2007.
- The third round of sampling (Round 3) was conducted in November 2008.
- The fourth round (Round 4) of sampling conducted in March 2010.

This report focuses on the most recent (Round 4) sampling event at the site, but also includes the data from the earlier rounds.

2.0 SITE DESCRIPTION

The Liberty Industrial Finishing Superfund site is located at 550 Suffolk Avenue, Brentwood, Suffolk County, New York (see Figure 1). The Site is bounded to the north by Suffolk Avenue, by the Long Island Railroad to the south, undeveloped land to the east and a gasoline station the west on Suffolk Avenue. Eight monitoring wells are included in the long-term monitoring program at the Site.

3.0 FIELD ACTIVITIES

The monitoring well survey information could not be located at the start of this project. As a part of this long-term monitoring program, each of the eight wells included in the sampling program were re-surveyed by YEC, Inc., a licensed New York State surveyor on March 21, 2007. A summary of well construction data is presented on Table 1.

The fourth round of groundwater sampling at the Liberty Industrial Finishing Site occurred on March 9 and 10, 2010. Sampling was conducted in accordance with the Sampling and Analysis Plan (SAP) prepared by AECOM, dated June 2007. The SAP is comprised of the Field Sampling Plan (FSP), the Quality Assurance Project Plan (QAPP) and the Safe Work Plan (SWP). All field work was performed in Level D personal protection.

3.1 Water Level Survey

Prior to the start of sampling, water levels were measured in each well to provide a synoptic event. Water level measurements were recorded in the Field Notebook and on the Well Sampling Forms included in Appendix A. A summary of groundwater elevation measurements is provided in Table 2. Each location was photo-documented and a hand-held global positioning system (GPS) unit was used to record the coordinates. The groundwater elevation data are shown on Figure 3. As shown on the figure, the water

table elevations are very similar across the entire study area with less than 1.0 ft of change from the highest recorded elevation to the lowest. The total depth of each of the eight wells also varies significantly from 49.3 to 265 ft. It appears that groundwater is flowing to the southeast. This is consistent with previous investigations performed by other consultants, which also determined that the general direction of groundwater flow at the Site was to the southeast.

3.2 Groundwater Sampling

Eight monitoring wells were identified for long term monitoring at the Site. The selected wells included MW-5, MW-6, MW-12, MW-14, MW-18, MW-19, MW-20, and MW-21. Well locations are shown on Figure 2. NYSDEC Monitoring Well Field Inspection Forms were completed for each well and are included in Appendix B.

AECOM used a Grundfos Redi-Flo2 submersible electric pump with polyethylene tubing to purge each monitoring well prior to sampling. Monitoring wells were purged of at least three casing volumes of water prior to sampling. Measurements of pH, specific conductance, temperature, dissolved oxygen, oxygen reduction potential, and turbidity were recorded on the Well Sampling Forms periodically during purging. Well sampling forms are included in Appendix A. Once the minimum volume of water had been evacuated, a dedicated Teflon bailer was used to collect a groundwater sample. The sample was transferred into laboratory supplied containers and stored in an ice-filled cooler. The samples were then transported to Mitkem Laboratory via UPS for overnight delivery. Proper chain-of-custody procedures and requirements were maintained throughout the sampling event in accordance with the QAPP.

4.0 SAMPLING RESULTS

The samples from monitoring wells MW-5, MW-6, MW-12, MW-14, MW-18, MW-19, MW-20, and MW-21 were labeled with the L- prefix to denote they were collected from the Liberty site. Groundwater samples were analyzed for target analyte list (TAL) metals using USEPA Method 6010/7470. The analyses were performed by Mitkem Laboratory of Warwick, Rhode Island, a NYSDOH ELAP certified laboratory (ELAP certification number 11522). The Mitkem data summary packages are included in Appendix C. A table showing the full data set is also included in Appendix C. A summary of the detections is presented in Table 3. The exceedances are also shown on Figure 4. The data are discussed in Section 4.1, below.

In accordance with project plans, formal data validation was not performed. However, An AECOM chemist provided a limited review of the data packages. The review of the Round 4 data is presented in Section 4.2.

4.1 Metals Data

Nine metals were detected above the Class GA criterion in monitoring wells at the Site at least once during the four sampling events. These metals include antimony, cadmium, chromium, copper, iron, manganese, lead, sodium and thallium.

Antimony was detected in six of eight monitoring wells during the June 2006 sampling event; of these, two samples exceeded the Class GA criterion of 3 μ g/L (maximum concentration of 3.7 μ g/L in MW-5). During the August 2007 sampling event, antimony was detected in five of eight samples, of which all five exceeded the criterion (maximum concentration of 11.2 μ g/L in MW-12). During the November 2008 sampling event, antimony was detected in only one sample, MW-18, at a concentration of 9 μ g/L, which exceeded the criterion. In Round 4, antimony was detected in three samples (MW-12, MW-18, and MW-20), all of which exceeded the criterion (maximum concentration 13.9 μ g/L in MW-12).

During the June 2006 sampling event, cadmium was detected in six of eight samples but none of the concentrations exceeded the Class GA criterion of 5 μ g/L. During the August 2007 sampling event, cadmium was detected in all eight samples, three of which exceeded the criterion (maximum concentration of 12.6 μ g/L). During the November 2008 sampling event, cadmium was detected in six of eight samples, two of which (MW-12 and MW-14) exceeded the criterion (maximum concentration of 59.1 μ g/L). Cadmium was detected in four samples in March 2010, at concentrations ranging from 0.62 to 205 μ g/L. The detected concentrations at MW-12 (205 μ g/L) and MW-14 (26 μ g/L) exceed the Class GA criterion.

Chromium was detected in all eight samples during the June 2006 sampling event, one of which exceeded the Class GA criterion of 50 μ g/L (95.8 μ g/L at MW-14). During the August 2007 sampling event, chromium was again detected in all eight samples, one of which exceeded the criterion (248 μ g/L at MW-14). During the November 2008 sampling event, chromium was detected in six of eight samples, one of which exceeded the criterion (69.6 μ g/L at MW-14).

The detected concentrations of copper did not exceed the Class GA criterion of 200 μ g/L in any sample from the first three rounds of sampling. In the March 2010 sampling event, the concentration in MW-14 (377 μ g/L) exceeded the criterion.

Iron was detected in all eight samples during the June 2006 and August 2007 sampling events. Three samples exceeded the criterion of $300 \ \mu g/L$ during the June 2006 sampling event (maximum concentration of 1,710 $\mu g/L$ at MW-20). During the August 2007 sampling event, six samples exceeded the criterion (maximum concentration of 10,900 $\mu g/L$ at MW-12). During the November 2008 sampling event, iron was detected in six of eight samples, three of which exceeded the criterion (maximum concentration of 9,320 $\mu g/L$ at MW-14). Iron was detected in all eight samples in March 2010 and the concentrations exceeded the criterion in five samples: MW-12, MW-14, MW-18, MW-20 and MW-21. The highest concentration was noted in MW-12 (38,100 $\mu g/L$).

Manganese was detected in all eight samples during all four sampling events. There were no exceedances of the 300 μ g/L criterion during the June 2006 sampling event. There was one exceedance of the criterion during the August 2007 sampling event, 547 μ g/L at MW-18. There was one exceedance during the November 2008 sampling event, 627 μ g/L at MW-21. There was one slight exceedance in the March 2010 event, 312 μ g/L at MW-18.

Lead was detected in four of eight samples during the June 2006 sampling event but none exceeded the criterion of 25 μ g/L. Lead was detected in all eight August 2007 samples, one of which exceeded the criterion, 106 μ g/L at MW-12. Lead was detected in four of eight samples during the November 2008

sampling event, of which two exceeded the criterion (maximum concentration of 221 μ g/L at MW-14). Lead was detected in five of the eight samples in March 2010; the concentrations in MW-12 (553 μ g/L) and MW-14 (76.5 μ g/L) exceed the criterion.

Sodium was detected in all eight samples during all four sampling events. During the June 2006 sampling event, four samples exceeded the criterion of 20,000 μ g/L (maximum concentration of 31,900 μ g/L at MW-14). Four samples exceeded the criterion during the August 2007 sampling event (maximum concentration of 31,100 μ g/L at MW-20). During the November 2008 sampling event, four samples exceeded the criterion (maximum concentration of 561,000 μ g/L at MW-14). In the March 2010 sampling event, five sample concentrations exceeded the criterion, with a maximum of 39,600 μ g/L in MW-20.

Thallium was not detected in any of the eight samples collected during the June 2006 sampling event. Thallium was detected in two samples during the August 2007 sampling event, both of which exceeded the criterion of 0.5 μ g/L (maximum concentration of 3.4 μ g/L). Thallium was not detected in any of the eight samples collected during the November 2008 or in the March 2010 sampling event.

4.2 Round 4 (February 2010) Data Quality Review

In accordance with the project plans, data generated for this investigation were not subject to formal validation. However, AECOM's quality assurance officer (QAO) reviewed the data for reasonableness and the presence of any anomalies, including issues identified by the laboratory in the case narrative, and other items noted in review of shipping and handling documentation, inconsistencies with previous data, and review of the laboratory QA forms. The QAO also reviewed the field duplicate data.

One site-specific field duplicate pair (LMW-5/LMW-55) was collected from the Liberty site in Round 4. Precision for the field duplicate was good, with relative percent difference (RPD) ranging from 0.7 to 22 percent, with a median of less than 6 percent, for the 12 detected metals.

One laboratory duplicate was analyzed on a Liberty site sample; precision (RPDs) were within QC limits for all metals. One laboratory spike was analyzed on a Liberty site sample; recovery was acceptable for all metals except iron. The spike recovery was slightly low (73 percent; acceptable limits 75 to 125 percent); this is not considered to significantly affect data quality, especially since the sample concentration was three times higher than the spike added.

5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES

5.1 Summary of Groundwater Sampling Data

Based on a review of the data from the four sampling events, concentrations of antimony, cadmium, chromium, copper, iron, lead, manganese, sodium, selenium and thallium were detected at concentrations above their Class GA criteria.

Iron, manganese and sodium are naturally occurring metals in groundwater on Long Island. The exceedances of these metals found in MW-12, MW-14, MW-18, MW-20, and MW-21 most likely represent background conditions and are not related to previous site activities. The sodium concentration from Round 3 at MW-14 (561,000 μ g/L) appears to be anomalously high, as the other three sodium values ranged from 25,400 μ g/L to 31,900 μ g/L. The sodium concentrations in other wells sampled during the four sampling events ranged from 4,460 μ g/L to 39,600 μ g/L with the second highest sodium concentration noted at MW-20 during Round 4 (39,600 μ g/L).

Antimony was detected in all eight wells at least once during the four sampling events at concentrations ranging from 1.5 μ g/L to 13.9 μ g/L (Class GA criterion of 3 μ g/L). However, the exceedances have been sporadic and inconsistent between sampling rounds. The criterion was never exceeded more than twice in any of the eight monitoring wells. Monitoring wells in which the criterion was exceeded twice include MW-6, MW-12, MW-18 and MW-20. Antimony does not appear to be a concern at the Site.

Cadmium was detected in the majority of the samples collected during the four sampling events (26 out of 32 samples). However, there were only three exceedances in Round 2, two exceedances in Round 3, and two exceedances in Round 4. There does not appear to be any trends in cadmium concentrations with the exception of MW-12, which had exceedances in three of four rounds.

Chromium has been detected in the majority of samples (30 of 32 samples). However there were only five exceedances (Class GA criterion of 50 μ g/L) during the four sampling rounds, four of which were in MW-14 with concentrations ranging from 68.6 μ g/L to 248 μ g/L. An anomalously high concentration (251 μ g/L during Round 4) was noted at MW-12 which is adjacent to MW-14 but is screened approximately 50 ft higher in the aquifer; the other three chromium values ranged from 2.5 μ g/L to 8.9 μ g/L. MW-21 is located downgradient of MW-14 and is screened at a similar depth; however, chromium concentrations have been significantly below the criterion during all four sampling events. Chromium exceedances appear to be an isolated occurrence at MW-14.

Copper was detected in the majority of samples collected during the four sampling events (23 of 32 samples). However, only one sample at MW-12 during Round 4 exceeded the 200 μ g/L criterion at a concentration of 377 μ g/L. Copper does not appear to be a contaminant of concern at the site.

Lead was detected in 21 of 32 samples collected at the Site during the four sampling events. However, there have only been five exceedances of the 25 μ g/L criterion. Three of which have occurred at MW-12 with concentrations: 106 μ g/L during Round 2, 83.7 μ g/L during Round 3, and 553 μ g/L in Round 4. Lead concentrations also exceeded the criterion at MW-14 during the previous two sampling events (221 μ g/L and 76.5 μ g/L).

Selenium was detected in seven of 32 samples collected at the Site during the four sampling events. MW-12 was the only monitoring well where selenium was detected twice (Rounds 1 and 4) and the only monitoring well where the concentration, 13.4 μ g/L, exceeded the 10 μ g/L criterion. As this appears to be an isolated occurrence, selenium is not considered to be a contaminant of concern at the Site.

Thallium was only detected twice during the four sampling events. Both occurrences were above the criterion. There does not appear to be any trend in thallium concentrations at the Site.

5.2 Recommendations for Future Work

Exceedances of antimony are inconsistent among sampling events as noted in Section 4.1. No well has exceeded the Class GA criterion during all four sampling events. Due to the inconsistencies in concentrations between events, it does not appear that antimony is a concern at the Site. AECOM recommends continued sampling to verify the concentrations.

Cadmium was detected above the Class GA criterion of 5 μ g/L in three monitoring wells during the August 2007 sampling event, two wells during the November 2008 sampling event, and three wells during the March 2010 event. Only one well, MW-12, has had three exceedances during the four sampling events. AECOM recommends continued sampling to verify the concentrations.

Chromium exceeded the Class GA criterion of 50 μ g/L in one monitoring well, MW-14, during all four sampling events (68.6 μ g/L to 248 μ g/L). Chromium concentrations in the adjacent monitoring well MW-12 (screened approximately 50 ft higher in the aquifer) were below the Class GA criterion during the first three sampling events but was anomalously high during Round 4 (251 μ g/L). As the chromium concentrations appear to be an isolated occurrence at MW-14, AECOM recommends continued sampling to determine if the contamination is migrating downgradient (MW-21) or to the deeper portions of the aquifer (MW-20).

Lead exceeded the Class GA criterion of 25 μ g/L during the August 2007, November 2008, and March 2010 sampling events at monitoring well MW-12; however, the concentration from the June 2006 sampling event was significantly below the criterion. As this appears to be an isolated occurrence, AECOM recommends continued sampling to verify the concentrations.

Thallium was detected in two monitoring wells, MW-14 and MW-19 above the Class GA criterion of $0.5 \,\mu$ g/L during the August 2007 sampling event only. Thallium has not been detected in any sample in the two most recent sampling events (November 2008 and March 2010). AECOM recommends continued sampling to verify the concentrations.

AECOM recommends the collection of both filtered and unfiltered samples during the next sampling event. Filtered metals analysis will us to determine if the presence of antimony, cadmium, chromium, lead, selenium and thallium is in the dissolved phase or is a result of suspended sediment in the samples.

The next scheduled sampling event at the Liberty Site is May 2011.

FIGURES

AECOM							
MULTI SITE G - LIBERTY INDUSTRIAL SITE SITE NO. 1-52-077							
SITE	C FE	EATUR	RES				
NYSDEC 625 Broadway, Albany NY, 12233							
FILE NAME: liberty Fig 2.dwg	DRN	PROJECT NO. 95900	DATE 03/09/2009	FIGURE NO. 2			

LEGEND:

EXISTING MONITORING WELLS

(49.20) GROUNDWATER ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL

Prepared by :								
SUBMITTED BY : PK	MULTI S	SITE G - LIBERTY IN SITE NO. 1-52-0	DUSTRIAL SITE 77					
DRAWN BY : SC	GROUNDWATER CONTOUR MAP							
APPROVED BY :		TAKCH IV,	2010					
РК	DATE : JUNE 2010	SCALE : AS SHOWN	DRAWING NO. :					

LEGEND:

NOTE: All concentraitons are shown as micrograms per liter (ug/L) BOLD indicates the concentration exceeded the NYSDEC Class GA criterion

EXISTING MONITORING WELLS

MW-14

	MW-12								
Compound	Jun 06	Aug 07	Dec 08	Mar 10					
Antimony	1.8B	11.2B	ND	13.9B					
Cadmium	0.52B	5.6	25.5	205					
Chromium	nromium 2.5B		18.9B	251					
Copper	14.9B	85.3	63.5	377					
Iron	467	10,900	4,080	38,100N					
Lead	7.7B	106	83.7	553					
Selenium	2.6B	ND	ND	13.4B					
Sodium	11,700	13,400	27,100	33,600					

RECREATION

MW-14									
Compound	Jun 06	Aug 07	Dec 08	Mar 10					
Cadmium	4.9B	1.5B	59.1	26					
Chromium	95.8	248	69.6	68.6					
Iron	728	389	9,320	14,000N					
Lead	2.9B	3.4B	221	76.5					
Sodium	31,900	28,900	561,000	25,400					
Thallium	ND	3.4B	ND	ND					

	Prepared by :									
	SUBMITTED BY : MULTI SITE G - LIBERTY INDUSTRIAL SITE									
	PK DRAWN BY :	SITE NO. 1-52-077 SUMMARY OF TAL								
	SC	GR	METALS II OUNDWAT	N FER						
	APPROVED BY :	DATE :	SCALE	DRAWING NO						
)	PK	JUNE 2010	AS SHOWN	4						

TABLES

TABLE 1LIBERTY INDUSTRIAL FINISHING SITE (1-25-077)WELL CONSTRUCTION DATA

Well Number	Northing	Easting	Ground Elevation	Top of Riser Elevation	Top of Casing Elevation	Total Depth of Well
MW-5 MW-6 MW-12 MW-14 MW-18 MW-19 MW-20 MW-21	202,308.86 202,306.77 201,973.43 201,966.33 202,101.70 202,102.30 201,798.92 201,798.35	2,206,350.98 2,206,341.15 2,206,863.98 2,206,866.03 2,206,373.86 2,206,386.65 2,206,946.09 2,206,950.31	92.19 92.09	93.32 92.71 89.59 89.55 91.55 91.98 88.59 88.66	93.60 92.79 89.79 89.77 92.03 92.19 89.08 89.15	50.0 265.0 49.3 100.0 150.0 248.0 149.5 110.5

All elevations and depths in feet

Field survey performed by YEC, Inc., on March 23, 2007 Vertical datum: NAVD 88, for NGVD 29, add 1.13 feet

TABLE 2LIBERTY INDUSTRIAL FINISHING SITE (1-52-077)GROUNDWATER ELEVATIONS

Well #	Reference Elevation (ft, NGVD)	Total Depth of Well (ft)	Date	Depth To Water (ft)	Water Table Elevation (ft, NGVD)	Comments
MW-5	93.23	50.0	6/12/06 8/21/07 11/13/08 3/10/10	42.24 43.11 45.40 43.37	50.99 50.12 47.83 49.86	
MW-6	92.71	265.0	6/12/06 8/21/07 11/13/08 3/10/10	42.19 43.15 45.23 43.12	50.52 49.56 47.48 49.59	
MW-12	89.59	49.3	6/14/06 8/24/07 11/13/08 12/23/08 3/10/10	39.09 39.95 42.25 41.81 40.07	50.50 49.64 47.34 47.78 49.52	
MW-14	89.55	100.0	6/14/06 8/24/07 11/13/08 12/23/08 3/10/10	39.13 40.00 42.35 41.98 40.18	50.42 49.55 47.20 47.57 49.37	
MW-18	91.55	150.0	6/22/06 8/21/07 11/13/08 3/10/10	40.76 41.25 43.80 41.82	50.79 50.30 47.75 49.73	
MW-19	91.98	248.0	6/22/06 8/21/07 11/13/08 3/10/10	41.95 41.60 43.90 42.78	50.03 50.38 48.08 49.20	
MW-20	88.59	149.5	6/14/06 8/21/07 11/13/08 3/10/10	38.29 39.18 41.20 39.30	50.30 49.41 47.39 49.29	
MW-21	88.66	110.5	6/14/06 8/21/07 11/13/08 3/10/10	38.30 39.20 41.47 39.31	50.36 49.46 47.19 49.35	

All measurements were taken from the top of PVC casing

TABLE 3
LIBERTY INDUSTRIAL FINISHING SITE (1-52-108)
JUNE 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 SAMPLING EVENTS
SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-6	MW-6	MW-6	MW-6
Sample ID	Class GA	LMW-5	LMW-5	LMW-5	LMW-5	LMW-6	LMW-6	LMW-6	LMW-6
Laboratory ID	Ground	E0833-01A	F1192-04A	G2136-07A	J0429-01A	E0833-02A	F1192-09A	G2136-06A	J0429-03A
Sample Date	Water	6/12/06	8/23/07	11/14/08	3/8/10	6/12/06	8/24/07	11/14/08	3/8/10
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	238	157 B	ND	87.5 BE	ND	398	ND	50.2 BE
Antimony	3	3.7 B	ND	ND	ND	3.1 B	8.0 B	ND	ND
Arsenic	25	2.2 B	ND	ND	ND	ND	ND	ND	ND
Barium	1,000	49.3 B	50 B	45.7 B	49.4 B	24.9 B	29.6 B	15.7 B	11.3 B
Beryllium	3	ND	ND	ND	0.089 B	ND	ND	ND	0.062 B
Cadmium	5	0.13 B	0.51 B	ND	ND	ND	12.6	0.55 B	0.62 B
Calcium	NC	19,000	15,000	16,900	14,100	9,880	10,000	8,300	6,120
Chromium	50	18.2 B	42.2	7.3 B	29	0.79 B	28.7	ND	1.9 B
Cobalt	NC	0.67 B	1.4 B	ND	ND	0.31 B	2.2 B	ND	ND
Copper	200	23.8 B	10.9 B	ND	ND	15.6 B	31.3	ND	5.6 B
Iron	300	198 B	122 B	ND	107 BN	45.2 B	3,120	147 B	137 BN
Lead	25	1.3 B	3.4 B	ND	ND	ND	15.8	ND	ND
Magnesium	35,000	2,040 E	1,870	2040	1,830	2,980 E	2,630	2,590	1,970
Manganese	300	15.1 B	13.7 B	6.8 B	16.5 B	5.9 B	60.9	40.8 B	11.4 B
Mercury	0.7	ND	ND	ND	0.056 B	ND	ND	ND	ND
Nickel	100	3.3 B	1.1 B	ND	1.2 B	3.6 B	12.3 B	2.2 B	1.9 B
Potassium	NC	4,330	4,500	4,380	4,740	759 B	1,390	2,060	1,180
Selenium	10	ND	7.4 B	ND	ND	1.6 B	ND	ND	ND
Silver	50	ND	4 B	ND	ND	ND	ND	ND	ND
Sodium	20,000	4,460	7,800	7,570	6,570	10,100	9,950	11,600	7,660
Thallium	0.50	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	ND	0.59 B	ND	ND	ND	2 B	ND	ND
Zinc	2,000	29.1 B	18.4 B	13.7 B	15.2 B	24.8 B	118	21.9 B	25.4 B

Notes: All values in μ g/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

TABLE 3 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) JUNE 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 SAMPLING EVENTS SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-12	MW-12	MW-12	MW-12	MW-14	MW-14	MW-14	MW-14
Sample ID	Class GA	LMW-12	LMW-12	LMW-12	LMW-12	LMW-14	LMW-14	LMW-14	LMW-14
Laboratory ID	Ground	E0833-03A	F1192-05A	G2415-01	J0429-04A	E0833-04A	F1192-06A	G2415-02	J0429-05A
Sample Date	Water	6/14/06	8/24/07	12/23/08	3/9/10	6/14/06	8/24/07	12/23/08	3/9/10
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	445	9,070	2,260	33,600 E	780	314	7,090	4,830 E
Antimony	3	1.8 B	11.2 B	ND	13.9 B	1.5 B	ND	ND	ND
Arsenic	25	ND	3.3 B	ND	14.2 B	ND	ND	5.6 B	6 B
Barium	1,000	45.2 B	75.4 B	60.5 B	188 B	40.5 B	31.5 B	162 B	107 B
Beryllium	3	0.38 B	0.24 B	0.19 B	2.1 B	ND	ND	0.38 B	0.28 B
Cadmium	5	0.52 B	5.6	25.5	205	4.9 B	1.5 B	59.1	26
Calcium	NC	13,100	26,900	19,700	29,900	13,100	12,900	35,800	18,700
Chromium	50	2.5 B	37.5	18.9 B	251	95.8	248	69.6	68.6
Cobalt	NC	0.63 B	5.5 B	2.6 B	12.8 B	2 B	1.2 B	5.1 B	2.7 B
Copper	200	14.9 B	85.3	63.5	377	22.2 B	8.9 B	110	42.8
Iron	300	467	10,900	4,080	38,100 N	728	389	9,320	14,000 N
Lead	25	7.7 B	106	83.7	553	2.9 B	3.4 B	221	76.5
Magnesium	35,000	3,710 E	6,830	4,330	10,900	1,610 E	3,000	6,340	2,910
Manganese	300	77.3	96.9	82.7	253	35.3 B	21.2 B	231	186
Mercury	0.7	ND	ND	ND	0.54	ND	ND	ND	0.1 B
Nickel	100	3.4 B	12.4 B	14.9 B	57.1	7.5 B	4.4 B	53.2	18.3 B
Potassium	NC	2,280	2,700	2,540	3,810	3,320	4,140	7,090	1,670
Selenium	10	2.6 B	ND	ND	13.4 B	ND	6.7 B	ND	ND
Silver	50	ND	ND	7.6 B	ND	ND	3.2 B	4.3 B	ND
Sodium	20,000	11,700	13,400	27,100	33,600	31,900	28,900	561,000	25,400
Thallium	0.50	ND	ND	ND	ND	ND	3.4 B	ND	ND
Vanadium	NC	0.77 B	28.8 B	8.6 B	89.7	0.58 B	0.51 B	22.5 B	12.6 B
Zinc	2,000	26.1 B	246	220	1,280	40.1 B	27.5 B	520	279

Notes: All values in µg/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

TABLE 3 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) JUNE 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 SAMPLING EVENTS SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-18	MW-18	MW-18	MW-18	MW-19	MW-19	MW-19	MW-19
Sample ID	Class GA	LMW-18	LMW-18	LMW-18	LMW-18	LMW-19	LMW-19	LMW-19	LMW-19
Laboratory ID	Ground	E0868-14A	F1192-08A	G2136-02A	J0429-06A	E0868-15A	F1192-07A	G2136-01A	J0429-07A
Sample Date	Water	6/22/06	8/24/07	11/13/08	3/10/10	6/22/06	8/24/07	11/13/08	3/10/10
	Criteria	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q	conc. Q
Aluminum	NC	135 B	252	196 B	716 E	53.4 B	74.9 B	ND	69.9 BE
Antimony	3	ND	ND	9 B	5.2 B	ND	6.7 B	ND	ND
Arsenic	25	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1,000	74.8 B	92.5 B	86.4 B	103 B	14.2 B	21.5 B	20 B	18.7 B
Beryllium	3	ND	ND	ND	0.12 B	ND	ND U	ND	0.046 B
Cadmium	5	0.33 B	1.3 B	0.92 B	0.86 B	1.1 B	8	ND	2.7 B
Calcium	NC	12,800	15,500	13,500	18,900	9,900	13,000	9,700	11,500
Chromium	50	3.3 B	2.1 B	5.4 B	6.5 B	1 B	2 B	ND	1.8 B
Cobalt	NC	0.48 B	1.3 B	ND	1 B	ND	1.2 B	ND	ND
Copper	200	ND	8.1 B	11 B	9.8 B	ND	11.7 B	ND	ND
Iron	300	212	308	307	731 N	54.2 B	221	ND	234 N
Lead	25	ND	3 B	2.5 B	3.9 B	ND	4.1 B	ND	ND
Magnesium	35,000	5,440	5,430	4,960	4,460	3,180	4,600	3,970	4,350
Manganese	300	169	547	122	312	3.5 B	9.3 B	14.9 B	8 B
Mercury	0.7	ND	ND	ND	0.057 B	ND	ND	ND	ND
Nickel	100	1.4 B	3.1 B	3.2 B	6.5 B	ND	2.9 B	ND	0.96 B
Potassium	NC	10,800	7,290	10,200	13,500	816 B	949 B	947 B	1,070
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND
Silver	50	ND	4 B	1.6 B	ND	ND	3.3 B	1.1 B	ND
Sodium	20,000	30,000	26,700	29,600	30,000	10,200	14,400	13,400	14,900
Thallium	0.50	ND	ND	ND	ND	ND	2.9 B	ND	ND
Vanadium	NC	ND	0.66 B	ND	0.63 B	ND	ND	ND	ND
Zinc	2,000	25 B	34.8 B	86.7	57.8	42.8 B	48.1 B	30.5 B	47 B

Notes: All values in µg/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

TABLE 3 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) JUNE 2006, AUGUST 2007, NOVEMBER 2008 AND MARCH 2010 SAMPLING EVENTS SUMMARY OF TAL METALS IN GROUNDWATER

Sample Location	NYSDEC	MW-20	MW-20	MW-20	MW-20	MW-21	MW-21	MW-21	MW-21
Sample ID	Class GA	LMW-20	LMW-20	LMW-20	LMW-20	LMW-21	LMW-21	LMW-21	LMW-21
Laboratory ID	Ground	E0833-05A	F1192-03A	G2136-04A	J0429-08A	E0833-06A	F1192-01A	G2136-05A	J0429-09A
Sample Date	Water	6/14/06	8/22/07	11/13/08	3/9/10	6/14/06	8/22/07	11/14/08	3/9/10
	Criteria	conc. Q							
Aluminum	NC	223	299	81.6 B	404 E	ND	197 B	457	793 E
Antimony	3	1.7 B	9.5 B	ND	4.4 B	1.9 B	6.7 B	ND	ND
Arsenic	25	ND	ND	ND	ND	2.2 B	ND	ND	ND
Barium	1,000	38.9 B	57.8 B	48.8 B	35 B	79.3 B	60.9 B	58.2 B	119 B
Beryllium	3	ND	ND	ND	0.057 B	ND	ND	ND	0.16 B
Cadmium	5	1 B	0.45 B	0.74 B	ND	ND	1.5 B	4.8 B	1.1 B
Calcium	NC	13,200	20,600	4,420	9,050	7,520	5,190	11,900	12,600
Chromium	50	4.6 B	3.1 B	2.1 B	5.1 B	0.94 B	3 B	2.3 B	9 B
Cobalt	NC	0.92 B	2.5 B	ND	1.1 B	0.48 B	1.5 B	ND	1.5 B
Copper	200	13.6 B	8.7 B	ND	5.7 B	ND	13.7 B	6.6 B	8.2 B
Iron	300	1,710	624	164 B	1,370 N	31.4 B	503	198 B	1,840 N
Lead	25	1.5 B	3.7 B	ND	4.9 B	ND	4.5 B	2.6 B	8.2 B
Magnesium	35,000	6,050 E	9,820	3,400	4,400	5,440 E	3,320	2,960	8,380
Manganese	300	27.8 B	60.5	35 B	27.1 B	26.4 B	51.8	627	57.7
Mercury	0.7	ND	ND	ND	0.064 B	ND	ND	ND	0.058 B
Nickel	100	4.6 B	2.4 B	1.8 B	3.5 B	1.9 B	2.4 B	6.9 B	4.9 B
Potassium	NC	2,050	2,220	8,190	1,970	5,670	6,350	6,250	12,700
Selenium	10	1.1 B	ND	ND	ND	4.1 B	ND	ND	ND
Silver	50	ND	5.2 B	0.6 B	ND	ND	ND	ND	ND
Sodium	20,000	21,800	31,100	29,700	39,600	24,500	27,200	19,200	31,800
Thallium	0.50	ND							
Vanadium	NC	0.48 B	1.6 B	ND	1.2 B	ND	0.063 B	ND	2.1 B
Zinc	2,000	48.7 B	32.8 B	28.5 B	187	14.2 B	40.5 B	69.1	67.6

Notes: All values in µg/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

APPENDIX A

WELL SAMPLING FORMS

AECO	DM					WELL NO. MW- 5					
	0.4.40			PROJECT		PROJECT No.	SHEET SHEETS				
	SAMP	LING FOI	< IVI	D004445	-14.3, 1	viuiti Si	ie G		60135736.30	1 OF 1 DATE WELL COMPLETED	
Liberty	Indust	rial Finish	ing, Bre	entwood, I	NY 1-52	2-108			March 8, 2010	March 8, 2010	
New Y	ork Sta	te Depart	ment of	Environn	nental a	and Cor	nservat	ion	Staci Birnbaum & C	eleste Foster	
DRILLING	COMPANY	to Dopart		2	ioniai e		1001100		SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :	4.35	Gallons	V	WELL TD:	50	ft	PUMP INTAKE DEPTH: 48 ft		
	Depth	Durran		FIE	LD MEAS	SUREME	NTS				
Time	to Water	Purge	Temp	. Conduct. DO pH ORP Turbidity					REMARKS		
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	pri	0.11	(ntu)			
		<i>/</i> /						. ,			
12:05	43.34								Static water level		
12:07	43.35	0.54	15.19	0.365	10.58	5.71	197	7.9	pump on		
12:15	43.5	0.54	14.04	0.335	11.11	5.72	220	5.3			
12:24	43.5	0.54	13.73	0.299	11	5.63	228	8.9			
12:34	43.5	0.54	13.57	0.282	10.91	5.49	232	10.8			
12:35									total pumped 15 gal	turned off	
12:50							collected sample wi	th Teflon bailer			
12:53									collected sample		
Pump	Type:	Grundfos	Redi F	lo 2, sam	ple coll	ected v	vith a T	eflon baile	r		
	. –										
Analyti	cal Par	ameters:		TAL Meta	als						

AECO	DM								WELL NO. MW- 6			
	CAMD			PROJECT		PROJECT No.	SHEET		SHEETS			
	SAMP	LING FUI	K IVI	D004445	-14.3, N	viuiti Si	ie G		00135736.30 DATE WELL STARTED	DATE WELL	OF COMPLE	TED
Liberty	Indust	rial Finish	ing, Bre	entwood, I	NY 1-52	2-108			March 8, 2010	March 8	, 2010	1
New Y	ork Sta	te Depart	ment of	Environn	nental a	and Cor	nservat	ion	Staci Birnbaum & C	celeste Fo	ster	
DRILLING	COMPANY	•							SIGNATURE OF INSPECTOR			
	ONE WE	ELL VOLUME :	144	Gallons	v	VELL TD:	265	ft	I	150	ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water (ft)	Rate (mL/min)	Temp. (°C)	Conduct. (us/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	REN	IARKS		
	(,	(,,	()	(µ.e, e)	(()				
13:00	43.19								Static water level			
13:01	47.24	2.5	14.49	0.111	10.85	6.07	199	3.5	pump on			
13:27	46.4	2.5	14.93	0.137	11.69	5.91	208	13				
14:00	71.9	3	13.24	0.147	12.16	6.06	207	16.1				
15:00	68.88	2.5	15.27	0.102	11.65	6.05	191	17.5				
16:00	80.33	2.5	13.7	0.098	12.24	5.87	205	9.5	450 gal purged			
16:01									pump off			
16:05									collected sample			
				-								
				-								
									1			
Pump	Туре:	Grundfos	s Redi F	lo 2, sam	ple coll	ected v	vith a T	eflon baile	r			
Analyti	cal Par	ameters:		TAL Meta	als							

AECO	DM								WELL NO. MW-1	2	
	CAMD				44.0	A 14: C:			PROJECT No.	SHEET	SHEETS
	SAMP	LING FUI	K IVI	D004445	-14.3, 1	VIUITI SI	le G		00135736.30 DATE WELL STARTED	DATE WELL COMPLE	TED
	Indust	rial Finish	ing, Bre	entwood, l	NY 1-52	2-108			March 9, 2010	March 9, 2010)
New Y	ork Sta	te Depart	ment of	Environn	nental a	and Cor	nservat	ion	Staci Birnbaum &	Celeste Foster	
DRILLING	COMPANY								SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :	1.5	Gallons	v	WELL TD:	49.3	ft	PUMP INTAKE DEPT	n: 45 ft	
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS				
Time	Water (ft)	Rate (mL/min)	Temp. (°C)	Conduct. (µs/cm)	DO (mg/L)	рН	ORP	Turbidity (ntu)	RE	MARKS	
	. ,	, ,	. ,		,						
7:55	40.13								Static water level		
9:05	40.31	2.4	13.87	1.44	10.21	5.26	189	-5	pump on		
9:21	40.31	2.4	15.17	0.497	9.65	5.76	142	518			
9:28	40.31	2.4	14.63	0.284	9.61	5.88	142	160			
9:29									10 gal purged and	turned off	
9:32									sample collected		
	1	I						1	I		
Pump	Туре:	Grundfos	s Redi F	lo 2, sam	ple coll	ected v	vith a T	eflon baile	er		
Analyti	ical Par	ameters:		TAL Meta	als						

AECO	DM					WELL NO. MW- 14					
				PROJECT			PROJECT No.	SHEET S	HEETS		
WELL	SAMP	LING FOR	RW	D004445	-14.3, N	Vulti Si	te G		60135736.30		1
Liberty	Indust	rial Finish	ing, Bre	entwood, I	NY 1-52	2-108			March 9, 2010	March 9, 2010	-0
CLIENT Now V	ork Sta	to Donarti	ment of	Environn	nontal s	and Cor	neorvat	ion	NAME OF INSPECTOR	olosto Fostor	
	COMPANY	te Depart					1501 Val		SIGNATURE OF INSPECTOR		
	ONE WE	LL VOLUME :	9.74	Gallons	V	VELL TD:	100	ft	PUMP INTAKE DEPTH:	45 ft	
	Depth	_		FIE	LD MEAS	SUREME	NTS				
Timo	to Water	Purge	Tomp	Conduct	DO	nH		Turbidity	DEM		
Time	(ft)	(mL/min)	(°C)	(us/cm)	(ma/L)	рп	OKF	(ntu)	KEW	ARRS	
	(,	(,)	()	((()			
7:50	40.23								Static water level		
8:15	40.25	1gal/min	15.19	0.279	10.34	5.26	233	20.1	pump on		
8:26									10 gal purged		
8:28	40.3	1gal/min	7.6	0.424	11.29	5.75	211	13.46			
8:37	40.35	1gal/min	13.8	0.429	11.14	4.79	231	2.2	20 gal purged		
8:43	40.35	1gal/min	13.13	0.436	10.85	5.29	214	0			
5:50		1gal/min	13.18	0.433	10.4	5.31	211	0.10	35 gal purged		
8:51							turned pump off				
8:55									collected samples		
								1			
Pump	Туре:	Grundfos	Redi F	lo 2, sam	ple coll	ected w	vith a T	eflon baile	er		
	. –										
Analyti	cal Par	ameters:		TAL Meta	als						

AECO	DM								WELL NO. MW- 18	1		
	0440			PROJECT	440		PROJECT No.	SHEET SHEETS				
	SAMP	LING FOI	K M	D004445	-14.3, ľ	Viulti Si	te G		60135736.30	1 OF 1		
Liberty	Indust	rial Finish	ing, Bre	entwood, I	NY 1-52	2-108			March 10, 2010	March 10, 2010		
New Y	ork Sta	te Depart	ment of	Environn	nental a	and Cor	nservat	ion	Staci Birnbaum & C	eleste Foster		
DRILLING	COMPANY								SIGNATURE OF INSPECTOR			
	ONE WE	LL VOLUME :	17.63	Gallons	١	WELL TD:	150	ft	PUMP INTAKE DEPTH: 50 ft			
	Depth	Durgo		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	рΗ	ORP	Turbidity	REN	IARKS		
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	pri	O rta	(ntu)				
9:15	41.82								Static water level			
9:43	42.05	1.67	15.3	0.001	8.76	4.31	212	12.6	pump on			
9:57	42.09	1.67	15.3	0.001	8.76	4.31	212	12.6	purged 20 gal			
10:08	42.09	1.67	15.3	0.001	8.76	4.31	212	12.6	purged 40 gal			
10:19	42.09	1.67	15.3	0.001	8.76	4.31	212	12.6	purged 60 gal pump	o off		
10:30									collected sample			
									1			
Pump	Type	Grundfoo	Rodi C	lo 2 com	الم مام	acted w	vith a T	oflon baile	ar .			
unp	i ype.	Grandios		iu z, saili			viui a l	chori balle	•1			
Analyti	cal Par	ameters:		TAL Meta	als							

AECO	DM					WELL NO. MW- 19						
				PROJECT		PROJECT No.	SHEET SHEETS					
	SAMP	LING FOI	< M	D004445	-14.3, M	Viulti Si	te G		60135736.30	1 OF 1 DATE WELL COMPLETED		
Liberty	lndust	rial Finish	ing, Bre	entwood, l	NY 1-52	2-108			March 10, 2010	March 10, 2010		
		to Donort	an a set at						NAME OF INSPECTOR	- Volgoto Footor		
	COMPANY	te Depart	ment of	Environn	nental a	and Cor	iservat	ION	STACI BIMDAUM & C	eleste Foster		
	ONE WE	LL VOLUME :	144.6	Gallons	V	WELL TD:	265	ft	PUMP INTAKE DEPTH: 52 ft			
	Depth			FIE	LD MEAS	SUREME	INTS					
Time	to	Purge	Taman	Conduct	DO			Truels i ditta				
Time	(ft)	(mL/min)	(°C)	(us/cm)	(ma/L)	рп	ORP	(ntu)	KEW	ΙΑΚΝΟ		
	()	((-)	(1.0.011)	((,				
9:07	42.78								Static water level			
9:22	43.44	1.11	14.07	0.2	8.93	5.9	224	0	pump on			
9:31	43.39	2.5	15.3	0.001	8.76	4.31	212	12.6	10 gal purged			
9:39	43.6	5gal/min	15.3	0.001	8.76	4.31	212	12.6	20 gal purged			
9:45		5gal/min							30 gal purged			
9:54		5gal/min										
10:00	44.49	5gal/min	15.3	0.001	8.76	4.31	212	12.60	450			
10:22	44.53	5gal/min							450 gal purged			
11:07	HU		JKE						turned pump off			
11.47												
11.21												
D	T					a at c -l		aflan ball	_			
Pump	i ype:	Grunatos	Real F	יוט ∠, sam	hie coll	ected V	with a 1	enon balle	1			
Analyti	ical Par	ameters:		TAL Meta	als							

AECO	DM					WELL NO. MW- 20							
	CAMD					PROJECT No.	SHEET SHEETS						
	SAIVIP	LING FUI	K IVI	D004445	-14.3, 1	VIUITI SI	le G		DUT30730.30 DATE WELL STARTED	I OF I DATE WELL COMPLETED			
Liberty	Indust	rial Finish	ing, Bre	ntwood, I	NY 1-52	2-108			March 9, 2010	March 9, 2010			
CLIENT Now V	ork Sta	to Donart	ment of	Environn	nontal a	and Cor	neervati	ion	NAME OF INSPECTOR Staci Birnhaum & C	eleste Foster			
	COMPANY	le Depair					1501 Val		SIGNATURE OF INSPECTOR				
	ONE WE	LL VOLUME :	17.96	Gallons	v	VELL TD:	149.5	ft	PUMP INTAKE DEPTH: 45 ft				
	Depth	D		FIE	LD MEAS	SUREME	NTS						
Time	t0 Water	Purge	Temn	Conduct	DO	nH	ORP	Turbidity	REMARKS				
Time	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)	pri	OI	(ntu)		ANNO			
	,		. ,		,			,					
11:07	39.32								Static water level				
11:19	39.64	1.67	14.12	0.291	5.01	106	0		pump on				
11:26	39.62	1.67	12.8	0.297	5.56	104	0		10 gal purge				
11:34	39.61	1.67	12.74	0.3	5.53	124	9.5		20 gal purge				
11:39	39.8	1.67	12.69	0.309	5.41	131	0		30 gal purge				
11:46	39.81	1.67	12.4	0.298	5.61		40 gal purge						
11:50	39.86	1.67	12.77	0.297	5.45		50 gal purge						
11:52									purged 55 gal turne	d off			
11:54									collected sample				
									1				
Pump	Type:	Grundfos	Redi F	lo 2. sam	ple coll	ected v	vith a T	eflon baile	r				
P	7,7 3,			- <u>_</u> , sam	1.10 000								
Analyti	cal Par	ameters:		TAL Meta	als								
-													

AECO	DM								WELL NO. MW- 21	l		
				PROJECT		PROJECT No.	SHEET		SHEETS			
	SAMP	LING FO	KΜ	D004445	-14.3, ľ	Viulti Si	te G		60135736.30		OF	1
Liberty	Indust	rial Finish	ing, Bre	entwood, l	NY 1-52	2-108			March 9, 2010	March 9,	2010	
New Y	ork Sta	te Depart	ment of	- Environn	nental a	and Cor	nservat	ion	Staci Birnbaum & C	Celeste Fos	ster	
DRILLING	COMPANY								SIGNATURE OF INSPECTOR			
	ONE WE	ELL VOLUME :	11.6	Gallons	١	VELL TD:	110.5	ft	PUMP INTAKE DEPTH: 45 ft			
	Depth to	Purge		FIE	LD MEAS	SUREME	NTS					
Time	Water	Rate	Temp.	Conduct.	DO	рН	ORP	Turbidity	REMARKS			
	(ft)	(mL/min)	(°C)	(µs/cm)	(mg/L)			(ntu)				
10.20	20.2								Statia watar laval			
10.20	30.38	1 1 2	12.2	0 353	8 36	5 76	177	83				
10.20	39.30	1.12	13.5	0.333	8 27	5.70	187	9.1	10 gal purge			
10:51	39.37	1.12	13.26	0.347	8 25	5.29	175	0	20 gal purge			
10:58	39.54	1.12	13 13	0.347	8.51	4 71	204	0	35 gal purge			
11.00	00.04	1.12	10.10	0.047	0.01	<u> </u>	37 gal pumped					
11:04									collected sample			
11.01												
								1				
Pump	Туре:	Grundfos	s Redi F	lo 2, sam	ple coll	ected v	vith a T	eflon baile	er			
Analyti	cal Par	ameters:		TAL Meta	als							

APPENDIX B

NYSDEC MONITORING WELL FIELD INSPECTION LOGS

MONITORING WELL FIELD INSPECTION LOG

Liberty Industrial Finishing

SITE NAME:

SITE ID.: 1-52-108 INSPECTOR: CF/SB

DATE/TIME: 03/08/2010 1130

....

WEII ID.: LMW-5

	YE	-51	ON
WELL VISIBLE? (If not, provide directions below)	Х		
WELL COORDINATES? NYTM X 2,206,350.98 NYTM Y 202,308.86 See Rep	ort		
PDOP Reading from Trimble pathfinder: Satelites:			
GPS Method (circle) Trimble And/Or Magellan			
	YE	ES I	NO
WELL I.D. VISIBLE?		2	Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		2	Х
WELL I.D. AS IT AFPEARS ON FROTECTIVE CASING OR WELL.		.0	
SUDEACE SEAL DESENT?	V		NO
SURFACE SEAL COMPETENT? (If cracked beaved atc. describe below)	$\overline{\mathbf{x}}$	_	
PROTECTIVE CASING IN COOD CONDITION? (If damaged, describe below)	^		Y
Cap does not close properly. Lid is not flush with casing		4	^
HEADSPACE READING (nom) AND INSTRUMENT USED	0.0	ו ר	חו
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKLIP IN FEET (If applicable)	2 6	-T	
PROTECTIVE CASING MATERIAL TYPE	<u></u>	<u> </u>	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches).	8	,	
	↓F	s	NO
LOCK PRESENT?			X
LOCK FUNCTIONAL?			X
DID YOU REPLACE THE LOCK?			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If ves.describe below)			X
WELL MEASURING POINT VISIBLE?	Х		
		_	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	5	0	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	43	.34	
		4	
ATTACH ID MADKED (Kurall Die genfinnen) and IDENTIEV MADKED TVDE	GC		
	-		
	-		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESS	ARY		

Overgrown vegetation, accessible by truck mounted rig.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

located in a field surrounded by overgrown vegetation

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Capped Area on-site. Gas station to the east of the Site.

REMARKS:

Needs lock, protective casing lid needs to be fixed, should get a new well cap

SITE NAME: Liberty Industrial Finishing

SITE ID.: 1-52-108 INSPECTOR: CF/SB

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 03/08/2010 1130

WEII ID.: LMW-6

	YES	SNO
WELL VISIBLE? (If not, provide directions below)	Х	
WELL COORDINATES? NYTM X 2,206,341.15 NYTM Y 202,306.77 See I	Report	
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	YES	S NO
WELL I.D. VISIBLE?		Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		Х
WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	YES	S NO
SURFACE SEAL PRESENT?		Х
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		Х
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
	0.01	חום
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKLIP IN FEET (If applicable)	8"	שרו
PROTECTIVE CASING MATERIAL TYPE	SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8	
	YES	S NO
LOCK PRESENT?		Х
LOCK FUNCTIONAL?		Х
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)	Х	
WELL MEASURING POINT VISIBLE?	Х	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	265	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	43.2)
MEASURE WELL DIAMETER (Inches):	4	_
WELL CASING MATERIAL:	PVC)
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Ave	rage
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig natural obstructions overhead		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Overgrown vegetation, accessible by truck mounted rig.

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

located in a field surrounded by overgrown vegetation

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Capped Area on-site. Gas station to the east of the Site.

REMARKS:

Well cap is missing, needs a new one. Needs a lock.

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: 1-52-108 INSPECTOR: CF/SB

DATE/TIME: 03/09/2010 800

WEII ID.: LMW-12

	YES	SNO
WELL VISIBLE? (If not, provide directions below)	Х	
WELL COORDINATES? NYTM X 2,206,863.98 NYTM Y 201,973.43 See I	Report	
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan	-	
	YES	SNO
WELL I.D. VISIBLE?		Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	YES	S NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0	PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8	
	YES	S NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?		Х
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	X	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	49.3	30
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	40.1	13
MEASURE WELL DIAMETER (Inches):	2	
WELL CASING MATERIAL:	PVC	2
PHYSICAL CONDITION OF VISIBLE WELL CASING:	GO	OD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		_

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck mounted rig

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Located on the sidewalk along First Street on the corner of parking lot

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Recharge basin across First St

REMARKS:

New bolts needed

SITE NAME:
MONITORING WELL INSPECTION LOG SKETCH

Project: Liberty Industrial Finishing

SITE NAME: Liberty Industrial Finishing

SITE ID.: 1-52-108

INSPECTOR: CF/SB

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 03/09/2010 800

WEII ID.: LMW-14

	YES	NO
WELL VISIBLE? (If not, provide directions below)	Х	
WELL COORDINATES? NYTM X 2,206,866.03 NYTM Y 201,966.33 See F	₹eport	
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	YES	NO
WELL I.D. VISIBLE?		Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	00P	ID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8	
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?		Х
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	100	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	40.23	}
MEASURE WELL DIAMETER (Inches):	2	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	Crack	ked
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		
DESCRIPE ACCESS TO WELL: (Include accessibility to truck mounted rig, patural obstructions, everboad		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck mounted rig

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Located on the sidewalk along First Street on the corner of parking lot

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Recharge basin across First St

REMARKS:

PVC cracked and new bolts needed

MONITORING WELL INSPECTION LOG

MONITORING WELL FIELD INSPECTION LOG

Liberty Industrial Finishing

SITE NAME:

SITE ID.: 1-52-108 INSPECTOR: CF/SB

DATE/TIME: 03/10/2010 1000

WEII ID.: LMW-18

	YES	NO
WELL VISIBLE? (If not, provide directions below)	Х	
WELL COORDINATES? NYTM X 2,206,386.65 NYTM Y 202,102.30 See F	≀eport	
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	YES	NO
WELL I.D. VISIBLE?		Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		Х
WELLED AS IT APPEARS ON PROTECTIVE CASING OR WELL		
	YES	NO
SURFACE SEAL PRESENT?	X	
SURFACE SEAL COMPETENT? (If cracked beaved etc. describe below)	X	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	X	
	<u>~</u>	
HEADSPACE READING (ppm) AND INSTRUMENT USED	<u>0.0 F</u>	PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	<u>SS</u>	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8	
	YES	NO
	^	V
		∧ ∨
		^ V
WELL MEASURING DOINT VISIBLE?	v	^
	^	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	150	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	41.8	2
MEASURE WELL DIAMETER (Inches):	2	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	GOC	D
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESS,	ARY.	
Not accessible by truck mounted rig due to partly opening fence gate, trees and not enough turning radius for	r truck	
Accessed through second gate.		
······································		

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Located in the grassy area behind the water tower, within fence that surrounds the recharge basin.

Due to overgrown grass, wells were located with some difficultly.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Recharge Basin

REMARKS:

Location shown in workplan has MW-19 and MW-18 reversed. Corrected in sketch below.

Coordinates above corrected.

MONITORING WELL FIELD INSPECTION LOG

Liberty Industrial Finishing

SITE NAME:

SITE ID.: 1-52-108 INSPECTOR: CF/SB

DATE/TIME: 03/10/2010 1000

WEII ID.: LMW-19

	YES	NO
WELL VISIBLE? (If not, provide directions below)	Х	
WELL COORDINATES? NYTM X 2,206,373.86 NYTM Y 202,101.70 See R	eport	
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	YES	NO
WELL I.D. VISIBLE?		Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		Х
WELLED AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	VES	NO
SURFACE SEAL DRESENT?	Y	NO
SURFACE SEAL COMPETENT? (If cracked heaved atc. describe below)	X	
PROTECTIVE CASING IN COOD CONDITION? (If damaged, describe below)	×	
FROTECTIVE CASING IN GOOD CONDITION? (II dailiaged, describe below)	Λ	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0 F	PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	12	
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?		Х
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet)	265	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet)	42 78	3
MEASURE WELL DIAMETER (Inches)	2	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	GOC	D
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-	
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		
power lines, provimity to permanent structures, etc.): ADD SKETCH OF LOCATION ON BACK JE NECESSA	PV	
Not appagable by truck mounted rig due to partly opening fonce gate, trace and not ensuch turning radius for		
Two accessible by truck mounted ng due to partly opening tence gate, trees and not enough turning radius for	TUCK	
Accessed through second gate.		

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Located in the grassy area behind the water tower, within fence that surrounds the recharge basin.

Due to overgrown grass, wells were located with some difficultly.

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.):

Recharge Basin

REMARKS:

Location shown in workplan has MW-19 and MW-18 reversed. Corrected in sketch below.

Coordinates above corrected.

Project: Liberty Industrial Finishing

MONITORING WELL FIELD INSPECTION LOG

SITE ID.: 1-52-108 INSPECTOR: CF/SB

DATE/TIME: 03/09/2010 1020

WEII ID.: LMW-20

	YES	NO
WELL VISIBLE? (If not, provide directions below)	Х	
WELL COORDINATES? NYTM X 2,206,946.09 NYTM Y 201,798.92 See	Report	
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	YES	NO
WELL I.D. VISIBLE?		Х
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	YES	NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0 PI	F
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8	
	YES	NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?		Х
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	149.5	
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	39.32	
MEASURE WELL DIAMETER (Inches):	2	
WELL CASING MATERIAL:	PVC	
PHYSICAL CONDITION OF VISIBLE WELL CASING:	GOOE)
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig. natural obstructions, overhead		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck mounted rig in between trees

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Grassy area in right of way along 3rd Ave

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.): Recharge Basin

REMARKS:

New bolts needed

SITE NAME:

MONITORING WELL INSPECTION LOG

SITE NAME: Liberty Industrial Finishing

SITE ID.: 1-52-108 INSPECTOR: CF/SB

MONITORING WELL FIELD INSPECTION LOG

DATE/TIME: 03/09/2010 1020 WEII ID.: LMW-21

	YES	S NO
WELL VISIBLE? (If not, provide directions below)	Х	
WELL COORDINATES? NYTM X 2,206,950.31 NYTM Y 201,798.35 See	Report	
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
	YES	NO
WELL I.D. VISIBLE?	Х	
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	Х	
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	YES	S NO
SURFACE SEAL PRESENT?	Х	
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	Х	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	Х	
HEADSPACE READING (ppm) AND INSTRUMENT USED	0.0	PIF
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	NA	
PROTECTIVE CASING MATERIAL TYPE:	SS	
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	8	
	YES	S NO
LOCK PRESENT?	Х	
LOCK FUNCTIONAL?		Х
DID YOU REPLACE THE LOCK?		Х
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		Х
WELL MEASURING POINT VISIBLE?	Х	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet)	110	5
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet)	39.2	0
MEASURE WELL DIAMETER (Inches):	2	•
WELL CASING MATERIAL:	_ PVC	;
PHYSICAL CONDITION OF VISIBLE WELL CASING:	GO	DD
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	-	-
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	-	
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead		

DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Accessible by truck mounted rig in between trees

DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.

Grassy area in right of way along 3rd Ave

IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT

(e.g. Gas station, salt pile, etc.): Recharge Basin

REMARKS: New bolts needed

MONITORING WELL INSPECTION LOG

APPENDIX C

LABORATORY DATA SUMMARY PACKAGES (FORM 1s)

Report Date: 13-Apr-10 13:43

✓ Final Report
 □ Re-Issued Report
 □ Revised Report

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY *Laboratory Report*

> Work Order: J0429 Project : Multi Site G Liberty-Dzus Project #:

AECOM Technical Services, Inc. 300 Broadacres Drive Bloomfield, NJ 07003

Attn: Paul Kareth

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Received
J0429-01	LMW-5-20100308	Aqueous	08-Mar-10 12:50	12-Mar-10 09:21
J0429-02	LMW-55-20100308	Aqueous	08-Mar-10 12:53	12-Mar-10 09:21
J0429-03	LMW-6-20100308	Aqueous	08-Mar-10 16:05	12-Mar-10 09:21
J0429-04	LMW-12-20100309	Aqueous	09-Mar-10 09:32	12-Mar-10 09:21
J0429-05	LMW-14-20100309	Aqueous	09-Mar-10 08:55	12-Mar-10 09:21
J0429-06	LMW-18-20100310	Aqueous	10-Mar-10 10:30	12-Mar-10 09:21
J0429-07	LMW-19-20100310	Aqueous	10-Mar-10 11:51	12-Mar-10 09:21
J0429-08	LMW-20-20100309	Aqueous	09-Mar-10 11:54	12-Mar-10 09:21
J0429-09	LMW-21-20100309	Aqueous	09-Mar-10 11:04	12-Mar-10 09:21
J0429-10	DMW-2-20100310	Aqueous	10-Mar-10 15:06	12-Mar-10 09:21
J0429-11	DMW-3-20100310	Aqueous	10-Mar-10 14:44	12-Mar-10 09:21
J0429-12	DMW-9-20100310	Aqueous	10-Mar-10 14:04	12-Mar-10 09:21
 J0429-13	DMW-59-20100310	Aqueous	10-Mar-10 14:05	12-Mar-10 09:21
J0429-14	DMW-9B-20100310	Aqueous	10-Mar-10 14:10	12-Mar-10 09:21
J0429-15	DMW-13A-20100310	Aqueous	10-Mar-10 15:37	12-Mar-10 09:21
J0429-16	DMW-13B-20100310	Aqueous	10-Mar-10 15:41	12-Mar-10 09:21
J0429-17	DMW-15A-20100309	Aqueous	09-Mar-10 14:22	12-Mar-10 09:21
J0429-18	DMW-18-20100309	Aqueous	09-Mar-10 13:09	12-Mar-10 09:21
J0429-19	DMW-22A-20100309	Aqueous	09-Mar-10 15:01	12-Mar-10 09:21
J0429-20	DMW-22B-20100309	Aqueous	09-Mar-10 14:53	12-Mar-10 09:21
J0429-21	DMW-23-20100310	Aqueous	10-Mar-10 16:10	12-Mar-10 09:21
J0429-22	DMW-23B-20100310	Aqueous	10-Mar-10 16:11	12-Mar-10 09:21

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received.

All applicable NELAC or USEPA CLP requirments have been meet.

N/A

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense Connecticut Delaware Maine Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island Texas USDA USEPA - ISM USEPA - SOM

Authorized by:

Yihai Ding Laboratory Director

Technical Reviewer's Initials:

175 Metro Center Boulevard• Warwick, Rhode Island 02886-1755 • 401-732-3400• Fax 401-732-3499 www.mitkem.com

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : Monthly Monitoring

SDG : <u>H0429</u>

		-	Anal	ytical Requirements		
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other
#1	H0429-01	E624				
#2	H0429-02					SEE DATA
#3	H0429-03				E200.7	

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Monthly Monitoring

SDG : <u>H0429</u>

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
E624					
H0429-01A	AQ	3/19/2009	3/19/2009	NA	3/21/2009

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : Monthly Monitoring

SDG : <u>H0429</u>

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Low/Medium Level	Dil/Conc Factor
E624					
H0429-01A	AQ	E624	NA	LOW	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : Monthly Monitoring

SDG: <u>H0429</u>

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
E200.7				
H0429-03A	AQ	E200.7	3/19/2009	4/3/2009
H0429-03ADUP	AQ	E200.7	3/19/2009	4/3/2009
H0429-03AMS	AQ	E200.7	3/19/2009	4/3/2009

Analytical Data Package for AECOM Technical Services, Inc.

Client Project: Multi Site G Liberty – Dzus

SDG# SJ0429

Mitkem Work Order ID: J0429

April 13, 2010

Prepared For:

AECOM Technical Services, Inc. 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to AECOM Technical Services, Inc.'s Multi Site G Liberty – Dzus project. Under this deliverable, analysis results are presented for twenty-two aqueous samples that were received on March 12, 2010. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for crossreferencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Metals Analysis:

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike was performed on samples DMW-18-20100309 and LMW-14-20100309. Spike recoveries were within the QC limits with the exception of manganese for sample DMW-18-20100309 and iron for sample LMW-14-20100309. Iron is flagged with an "N" on data report forms. A post digest spike was performed and reported for iron. The spike recovery for manganese in sample DMW-18-20100309 could not be accurately determined, as the sample concentration was significantly greater than the spike concentration. When the sample concentration is more than four times the spike concentration, it tends to obscure the relatively smaller spike amount; control limits do not apply in this circumstance.

Duplicate: matrix spike was performed on samples DMW-18-20100309 and LMW-14-20100309. Replicate RPDs were within the QC limits with the exception of manganese

for sample DMW-18-20100309. Manganese is flagged with an "*" on the data report forms.

Sample analysis: samples DMW-18-20100309 and LMW-14-20100309. Percent differences were within the QC limits with the exception of nickel and potassium for sample DMW-18-20100309 and aluminum for sample LMW-14-20100309. These elements are qualified with an "E" on the data report forms. No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

lignes R then they

Agnes Huntley CLP Project Manager 04/13/10

WorkOrder: J0429

03/12/2010 13:55

Mitkem Laboratories

Report Level: ASP-B Special Program:

HC Due: 04/02/10

EDD: CLF

Fax Due: Fax Report:

Case: SDG:

PO: 95900-04

Comments: send invoice to Paul according to e-mail on 5/28/08

WO Name: Multi Site G Liberty-Dzus

Location: MULTI_SITE,

Client ID: EARTH_NJ Project: Multi Site G

ab Samp ID) Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test (Comments HF F	IT MS SEL	Storage
0429-01A	LMW-5-20100308	03/08/2010 12:50	03/12/2010	Aqueous	SW6010 W	/ TAL		>	M4
0429-01A	LMW-5-20100308	03/08/2010 12:50	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-02A	LMW-55-20100308	03/08/2010 12:53	03/12/2010	Aqueous	SW6010_W	/ TAL		7	M4
0429-02A	LMW-55-20100308	03/08/2010 12:53	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-03A	LMW-6-20100308	03/08/2010 16:05	03/12/2010	Aqueous	SW6010_W	/ TAL		\ \ \	M4
0429-03A	LMW-6-20100308	03/08/2010 16:05	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-04A	LMW-12-20100309	03/09/2010 09:32	03/12/2010	Aqueous	SW6010_W	/ TAL		7	M4
0429-04A	LMW-12-20100309	03/09/2010 09:32	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-05A	LMW-14-20100309	03/09/2010 08:55	03/12/2010	Aqueous	SW6010_W	/ TAL		7	M4
0429-05A	LMW-14-20100309	03/09/2010 08:55	03/12/2010	Aqueous	SW7470	/ TAL		7	M4
0429-06A	LMW-18-20100310	03/10/2010 10:30	03/12/2010	Aqueous	SW6010_W	/ TAL		~	M4
0429-06A	LMW-18-20100310	03/10/2010 10:30	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-07A	LMW-19-20100310	03/10/2010 11:51	03/12/2010	Aqueous	SW6010_W	/ TAL		\ \	M4
0429-07A	LMW-19-20100310	03/10/2010 11:51	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-08A	LMW-20-20100309	03/09/2010 11:54	03/12/2010	Aqueous	SW6010_W	/ TAL		7	M4
0429-08A	LMW-20-20100309	03/09/2010 11:54	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-09A	LMW-21-20100309	03/09/2010 11:04	03/12/2010	Aqueous	SW6010_W	/ TAL		7	M4
0429-09A	LMW-21-20100309	03/09/2010 11:04	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-10A •	DMW-2-20100310	03/10/2010 15:06	03/12/2010	Aqueous	SW6010_W	/ TAL		\ 	M4
0429-10A	DMW-2-20100310	03/10/2010 15:06	03/12/2010	Aqueous	SW7470	/ TAL			M4
0429-11A	DMW-3-20100310	03/10/2010 14:44	03/12/2010	Aqueous	SW6010_W	/ TAL		7	M4
HF = Fract	tion logged in but all tests h	ave been placed on l	plot				HT = Test logged in but has	t been placed	on hold

Lab Client Rep: Shirley S Ng

Page 01 of 03

5 9004

Report Level: ASP-B

HC Due: 04/02/10

Special Program:

EDD: CLF

Fax Due: Fax Report:

WorkOrder: J0429

Case: SDG:

03/12/2010 13:55

PO: 95900-04

Comments: send invoice to Paul according to e-mail on 5/28/08

WO Name: Multi Site G Liberty-Dzus

Location: MULTI_SITE,

Project: Multi Site G Client ID: EARTH_NJ

Lab Samp I	D Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0429-11A	DMW-3-20100310	03/10/2010 14:44	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-12A	DMW-9-20100310	03/10/2010 14:04	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
J0429-12A	DMW-9-20100310	03/10/2010 14:04	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-13A	DMW-59-20100310	03/10/2010 14:05	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
J0429-13A	DMW-59-20100310	03/10/2010 14:05	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-14A	DMW-9B-20100310	03/10/2010 14:10	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
J0429-14A	DMW-9B-20100310	03/10/2010 14:10	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-15A	DMW-13A-20100310	03/10/2010 15:37	03/12/2010	Aqueous	SW6010_W	/TAL	Υ M4
J0429-15A	DMW-13A-20100310	03/10/2010 15:37	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-16A	DMW-13B-20100310	03/10/2010 15:41	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
J0429-16A	DMW-13B-20100310	03/10/2010 15:41	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-17A	DMW-15A-20100309	03/09/2010 14:22	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
J0429-17A	DMW-15A-20100309	03/09/2010 14:22	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-18A	DMW-18-20100309	03/09/2010 13:09	03/12/2010	Aqueous	SW6010_W	/ TAL	Y Y M4
J0429-18A	DMW-18-20100309	03/09/2010 13:09	03/12/2010	Aqueous	SW7470	/ TAL	Y M4
J0429-19A	DMW-22A-20100309	03/09/2010 15:01	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
J0429-19A	DMW-22A-20100309	03/09/2010 15:01	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-20A	DMW-22B-20100309	03/09/2010 14:53	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
J0429-20A	DMW-22B-20100309	03/09/2010 14:53	03/12/2010	Aqueous	SW7470	/ TAL	M4
J0429-21A	DMW-23-20100310	03/10/2010 16:10	03/12/2010	Aqueous	SW6010_W	/ TAL	Y M4
🕼 J0429-21A	DMW-23-20100310	03/10/2010 16:10	03/12/2010	Aqueous	SW7470	/ TAL	M4
HF = Frac	ction logged in but all tests h	lave been placed on h	bloi			HT = Test logge	ed in but has been placed on hold

Lab Client Rep: Shirley S Ng

Page 02 of 03

WorkC	Order: J0429			03/12/	2010 13:55	Mitkem	Laboratories
Client I Projee WO Nan Locatio Comment	 D: EARTH_NJ ct: Multi Site G ne: Multi Site G Liberty- ni: MULT_SITE, ts: send invoice to Paul 6 	Dzus according to e-mail on	5/28/08	JZ	ase: JG: 20: 95900-04	HC Due: 04/02/10 Re Fax Due: Specia Fax Report:	port Level: ASP-B Il Program: EDD: CLF
Lab Samp ID) Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0429-22A J0429-22A	DMW-23B-20100310 DMW-23B-20100310	03/10/2010 16:11 03/10/2010 16:11	03/12/2010 03/12/2010	Aqueous Aqueous	SW6010_W SW7470	/ TAL / TAL	Y M4 M4
60 60 60 91 91 91 91 91 91 91 91 91 91 91 91 91	tion logged in but all test	s have been placed on	hold			HT = Test	logged in but has been placed on hold

Lab Client Rep: Shirley S Ng

Page 03 of 03

		1		EPA SAMPLE NO.
		INORGANIC ANALYSIS DATA SH	EET	LMW-12-20100309
Lab Name:	Mitkem Laboratories	Contract:	95900-04	-
Lab Code:	MITKEM Case No	.: SAS No.:	<u> </u>	SDG No.: SJ0429
Matrix (so	il/water): WATER	Lab Sample I	ID: <u>J0429</u> -	04
Level (low	/med): MED	Date Receive	ed: 03/12/	2010
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	33600		E	Р
7440-36-0	Antimony	13.9	В		Р
7440-38-2	Arsenic	14.2	В		Р
7440-39-3	Barium	188	В		Р
7440-41-7	Beryllium	2.1	В		Р
7440-43-9	Cadmium	205			Р
7440-70-2	Calcium	29900			P
7440-47-3	Chromium	251			Р
7440-48-4	Cobalt	12.8	В		Р
7440-50-8	Copper	377			Р
7439-89-6	Iron	38100		N	Р
7439-92-1	Lead	553			Р
7439-95-4	Magnesium	10900			P
7439-96-5	Manganese	253			P
7439-97-6	Mercury	0.54			CV
7440-02-0	Nickel	57.1			P
7440-09-7	Potassium	3810			P
7782-49-2	Selenium	13.4	В		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	33600			Р
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	89.7			Р
7440-66-6	Zinc	1280			P

Comments:

				1		EPA SAN	IPLE NO.
		I	NORGANIC A	NALYSIS DATA SHE	SET	LMW-14-201	00309
Lab Name:	Mitkem Labo	oratories		Contract:	95900-04		
Lab Code:	MITKEM	Case No.:		SAS No.:	<u>.</u>	SDG No.:	SJ0429
Matrix (so:	il/water):	WATER	·	Lab Sample I	D:	-05	
Level (low,	/med): MED			Date Receive	d: 03/12/	2010	
% Solids:	0.0						

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	4830		Е	Р
7440-36-0	Antimony	4.2	U		Р
7440-38-2	Arsenic	6.0	в		Р
7440-39-3	Barium	107	В		Р
7440-41-7	Beryllium	0.28	В		P
7440-43-9	Cadmium	26.0			Р
7440-70-2	Calcium	18700			P
7440-47-3	Chromium	68.6		· · · · ·	P
7440-48-4	Cobalt	2.7	В		P
7440-50-8	Copper	42.8	_		P
7439-89-6	Iron	14000		N	Р
7439-92-1	Lead	76.5			P
7439-95-4	Magnesium	2910	_		Ρ
7439-96-5	Manganese	186			Р
7439-97-6	Mercury	0.10	В		CV
7440-02-0	Nickel	18.3	В		Р
7440-09-7	Potassium	1670			Ρ
7782-49-2	Selenium	10.0	U		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	25400	_		Р
7440-28-0	Thallium	5.7	U	,	Р
7440-62-2	Vanadium	12.6	В		P
7440-66-6	Zinc	279			P

Comments:

SW846

ISM_002

		1		EPA SAM	IPLE NO.	
	INORGANIC	C ANALYSIS DATA SHEET		LMW-18-201	_00310	
Lab Name:	Mitkem Laboratories	Contract: 959	00-04			
Lab Code:	MITKEM Case No.:	SAS No.:		SDG No.:	SJ0429	,
Matrix (so	il/water): WATER	Lab Sample ID:	J0429-0	06		
Level (low	/med): MED	Date Received:	03/12/2	2010		
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C		Q	М
7429-90-5	Aluminum	716	ŀ	E		Р
7440-36-0	Antimony	5.2	В			P
7440-38-2	Arsenic	3.1	U			Р
7440-39-3	Barium	103	В			P
7440-41-7	Beryllium	0.12	В	1		P
7440-43-9	Cadmium	0.86	В	1		Р
7440-70-2	Calcium	18900				P
7440-47-3	Chromium	6.5	В			Р
7440-48-4	Cobalt	1.0	в			P
7440-50-8	Copper	9.8	В		-	Р
7439-89-6	Iron	731	1	N		P
7439-92-1	Lead	3.9	в			P
7439-95-4	Magnesium	4460				P
7439-96-5	Manganese	312			_	Р
7439-97-6	Mercury	0.057	В		_	CV
7440-02-0	Nickel	6.5	В			P
7440-09-7	Potassium	13500				P
7782-49-2	Selenium	10.0	υ			P
7440-22-4	Silver	2.4	U			Р
7440-23-5	Sodium	30000				Р
7440-28-0	Thallium	5.7	U			P
7440-62-2	Vanadium	0.63	В			Р
7440-66-6	Zinc	57.8				Р

Comments:

			1		EPA SAMPLE NO.
		INORGA	ANIC ANALYSIS DATA SHEET		LMW-19-20100310
Lab Name:	Mitkem La	poratories	Contract: 959	00-04	
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.: SJ0429
Matrix (so	il/water):	WATER	Lab Sample ID:	J0429-	07
Level (low	/med): MED		Date Received:	03/12/	2010
% Solids:	0.0				

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	69.9	В	Е	Р
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	3.1	U		Р
7440-39-3	Barium	18.7	В		P
7440-41-7	Beryllium	0.046	В		Р
7440-43-9	Cadmium	. 2.7	В		P
7440-70-2	Calcium	11500			Р
7440-47-3	Chromium	1.8	В		Р
7440-48-4	Cobalt	0.67	U		P
7440-50-8	Copper	4.7	U		Р
7439-89-6	Iron	234		N	P
7439-92-1	Lead	2.1	U		P
7439-95-4	Magnesium	4350			P
7439-96-5	Manganese	8.0	В		Р
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	0.96	В		P.
7440-09-7	Potassium	1070			Р
7782-49-2	Selenium	10.0	U		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	14900			Р
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	0.34	U		P
7440-66-6	Zinc	47.0	В		P

Comments:

ISM_002

.

		. 1		EPA SAMPLE NO.
	II	NORGANIC ANALYSIS DATA SHI	EET	LMW-20-20100309
Lab Name:	Mitkem Laboratories	Contract:	95900-04	
Lab Code:	MITKEM Case No.:	SAS No.:		SDG No.: SJ0429
Matrix (so	il/water): WATER	Lab Sample I	D: J0429-	-08
Level (low	/med): MED	Date Receive	ed: 03/12/	/2010
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	404		E	P
7440-36-0	Antimony	4.4	В		P
7440-38-2	Arsenic	3.1	U		Р
7440-39-3	Barium	35.0	В	1	Р
7440-41-7	Beryllium	0.057	В		Р
7440-43-9	Cadmium	0.50	U		Р
7440-70-2	Calcium	9050			Р
7440-47-3	Chromium	5.1	В		Р
7440-48-4	Cobalt	1.1	В		Р
7440-50-8	Copper	5.7	В		P
7439-89-6	Iron	1370		N	Р
7439-92-1	Lead	4.9	В		Р
7439-95-4	Magnesium	4400			Р
7439-96-5	Manganese	27.1	В		P
7439-97-6	Mercury	0.064	В		CV
7440-02-0	Nickel	3.5	В		Р
7440-09-7	Potassium	1970			P
7782-49-2	Selenium	10.0	U		P
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	39600			P
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	1.2	В		Р
7440-66-6	Zinc	187			Р

Comments:

ISM_002

				1		EPA SAMPLE NO.
		INC	ORGANIC ANA	LYSIS DATA SHE	ET	LMW-21-20100309
Lab Name:	Mitkem La	boratories		Contract:	95900-04	
Lab Code:	MITKEM	Case No.:		SAS No.:	-	SDG No.: SJ0429
Matrix (so	il/water):	WATER	• •	Lab Sample I	D: J0429-	-09
Level (low	/med): MED			Date Receive	d: 03/12/	/2010
% Solids:	0.0					

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	793		Е	Р
7440-36-0	Antimony	4.2	U	1	P
7440-38-2	Arsenic	3.1	U		P
7440-39-3	Barium	119	В		Р
7440-41-7	Beryllium	0.16	В		Р
7440-43-9	Cadmium	1.1	В		Р
7440-70-2	Calcium	12600			Р
7440-47-3	Chromium	9.0	В		Р
7440-48-4	Cobalt	1.5	В		P
7440-50-8	Copper	8.2	В		P
7439-89-6	Iron -	1840		N	P
7439-92-1	Lead	8.2	в		P
7439-95-4	Magnesium	8380			Р
7439-96-5	Manganese	57.7			P
7439-97-6	Mercury	0.058	В		CV
7440-02-0	Nickel	4.9	В		Р
7440-09-7	Potassium	12700			Р
7782-49-2	Selenium	10.0	U		Р
7440-22-4	Silver	2.4	U		Р
7440-23-5	Sodium	31800			Р
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	2.1	В		P
7440-66-6	Zinc	67.6			P

Comments:

			1		EPA SAMPLE NO.
		INORO	GANIC ANALYSIS DATA SH	EET	LMW-5-20100308
Lab Name:	Mitkem Lab	oratories	Contract:	95900-04	
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.: SJ0429
Matrix (soi	l/water):	WATER	Lab Sample 1	ID: J0429-	01
Level (low/r	med): MED		Date Receive	ed: 03/12/	2010
<pre>% Solids: 0</pre>	.0				

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	M
7429-90-5	Aluminum	87.5	В	E	P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	3.1	U		P
7440-39-3	Barium	49.4	В		Р
7440-41-7	Beryllium	0.089	В		Р
7440-43-9	Cadmium	0.50	U		P
7440-70-2	Calcium	14100			Р
7440-47-3	Chromium	29.0			P
7440-48-4	Cobalt	0.67	U		Р
7440-50-8	Copper	4.7	U		Р
7439-89-6	Iron	107	В	N	Р
7439-92-1	Lead	2.1	U		Р
7439-95-4	Magnesium	1830			Р
7439-96-5	Manganese	16.5	В		Р
7439-97-6	Mercury	0.056	В		CV
7440-02-0	Nickel	1.2	В		Р
7440-09-7	Potassium	4740			Р
7782-49-2	Selenium	10.0	U		Р
7440-22-4	Silver	2.4	ΰ		Р
7440-23-5	Sodium	6570			Р
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	0.34	U		Р
7440-66-6	Zinc	15.2	В		Р

Comments:

ISM_002

		1	EPA SAMPLE NO.
	INORGANIC A	NALYSIS DATA SHEET	LMW-55-20100308
Lab Name:	Mitkem Laboratories	Contract: 95900-04	
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: SJ0429
Matrix (so	il/water): WATER	Lab Sample ID: J042	9-02
Level (low,	/med): MED	Date Received: 03/1	2/2010
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	96.2	В	E	P
7440-36-0	Antimony	4.2	U	1	P
7440-38-2	Arsenic	3.1	υ		P
7440-39-3	Barium	49.9	В		Р
7440-41-7	Beryllium	0.094	В		P
7440-43-9	Cadmium	0.50	U		P
7440-70-2	Calcium	14000			P
7440-47-3	Chromium	27.7			Р
7440-48-4	Cobalt	0.67	U		P
7440-50-8	Copper	4.7	U		Р
7439-89-6	Iron	116	В	N	P
7439-92-1	Lead	2.1	Ū		P
7439-95-4	Magnesium	1790			Р
7439-96-5	Manganese	20.5	В		P
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	1.4	В		Р
7440-09-7	Potassium	4500			P
7782-49-2	Selenium	10.0	U		Р
7440-22-4	Silver	2.4	U		P
7440-23-5	Sodium	6240			Р
7440-28-0	Thallium	5.7	U		Р
7440-62-2	Vanadium	0.53	В		Р
7440-66-6	Zinc	16.3	В	-	Р

Comments:

ISM_002

			1		EPA SAMPLE NO.
		INORGANIC	ANALYSIS DATA SHE	ET	LMW-6-20100308
Lab Name:	Mitkem Laborat	ories	Contract:	95900-04	
Lab Code:	MITKEM Ca	se No.:	SAS No.:		SDG No.: SJŌ429
Matrix (so	il/water): WAT	ER	Lab Sample II): J0429-	-03
Level (low	/med): MED		Date Received	d: <u>03/12</u> ,	/2010
% Solids:	0.0				

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	50.2	В	E	P
7440-36-0	Antimony	4.2	U		P
7440-38-2	Arsenic	3.1	U		Р
7440-39-3	Barium	11.3	В		P
7440-41-7	Beryllium	0.062	В		P
7440-43-9	Cadmium	0.62	В		P
7440-70-2	Calcium	6120			Р
7440-47-3	Chromium	1.9	В		P
7440-48-4	Cobalt	0.67	U		P
7440-50-8	Copper	5.6	В		Р
7439-89-6	Iron	137	В	N	Р
7439-92-1	Lead	2.1	U		Р
7439-95-4	Magnesium	1970			Ρ
7439-96-5	Manganese	11.4	В		Р
7439-97-6	Mercury	0.056	U		CV
7440-02-0	Nickel	1.9	В		Р
7440-09-7	Potassium	1180			Ρ
7782-49-2	Selenium	10.0	U		Р
7440-22-4	Silver	2.4	U		Р
7440-23-5	Sodium	7660			Р
7440-28-0	Thallium	5.7	υ		P
7440-62-2	Vanadium	0.34	U		Р
7440-66-6	Zinc	25.4	В		Р

Comments:

BLANKS

Lab Name:	Mitkem Lab	oratories	Contract:	95900-04		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0429
Preparati	on Blank Mat	tkem Laboratories Contract: 95 TKEM Case No.: SAS No.: 3lank Matrix (soil/water): WATER 3lank Concentration Units (ug/L or mg/kg): UG/L FIMS1_100401A Initial		Method	Blank ID:	
Preparati	on Blank Cor	ncentration Units (ug/L or mg/kg): 1	UG/L	MB-502	74
			FIMS1_100401	A		
	I	nitial	· · · · · · · · · · · · · · · · · · ·			

	Calib	ratio	r	C	ont	inuing Cal	lib	ra	tion		Preparatio	n	
	Blank	(ug/L) [Blank (uç	g∕L)			Blank		
Analyte			С	1	С	2		С	3	С		С	М
Mercury		0.056	U	0.056	U	0.0)56	U	0.056	U	0.056	U	CV

BLANKS

Lab Name:	Mitkem Labor	ratories	Contract:	95900-04		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0429
Preparatio	on Blank Matr	ix (soil/water):	WATER		Method	Blank ID:
Preparatio	on Blank Conc	entration Units (ug/L or mg/kg): U FIMS1 100401	JG/L A	MB-502	76

	Initial		~~+	inuina Colib		tion		Dropprotio	~	
	Blank (ug/L)		ont.	Blank (ug/L))	CTOII		Blank	.1	
Analyte	C	1	C	2	С	3	С		С	М
Mercury		0.056	U	0.056	U	0.056	U	0.056	υ	CV

SW846

ISM_002

		U.S. EPA - CLP 3 BLANKS			
Lab Name: Mitke	em Laboratories	Contract:	95900-04		
Lab Code: MITK	Case No.:	SAS No.:		SDG No.:	SJ0429
Preparation Bla	UG/I.	Method Blank ID: MB-50094			
		OPTIMA3_10032	26A		
	Initial Calibration	Continuing Cali	bration	Prepar	ation

Blank (ug/L)

Analyte

Sodium

Potassium

C

59.0 U

29.0 U

1

С

59.0 U 29.0 U Blank (ug/L)

С

59.0 U

29.0 U

3

С

59.0 U

29.0 Ū

2

SW846

Blank

C M

Ρ

Ρ

59.000 U

29.000 U
					U.	S.E	PA - CLP								
							3								
						BL	ANKS								
Lab	Lab Name: Mitkem Laboratories						Contract: 95900-04								
Lak	Code:	MITKEM	Case	No.:		SA	S No.:			SD0	G No.:	SJ0	429		
Pre	eparatic	on Blan	k Matrix (soil	/water)	: <u>WA</u>	TER				_	Method	Blan	kΙ	D:	
Pre	eparatic	on Blan	k Concentratic	on Units	(ug/1	L or	mg/kg):	UG/L			MB-500	95			
						OPT	IMA3_1003	26A							
			Initial								· · · · · · · · · · · · · · · · · · ·				
			Calibration		C	ontir	nuing Cali	bratio	on		Prepar	atior	1		
			Blank (ug/L)			E	Blank (ug/	'L)			Bla	nk			
	Analyte	e l	C	1		С	2	C	3	C			С	М	

59.0 U

29.0 U

Potassium

Sodium

SW846

P

Ρ

59.000 U

29.000 U

3

BLANKS

Lab Name:	Mitkem Labora	tories	Contract:	95900-04				
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No	.:	SJ0429	
Preparatio	on Blank Matrix	x (soil/water):	WATER		Met	zhod 1	Blank ID:	
Preparatio	on Blank Concer	ntration Units (ug/L or mg/kg): [JG/L	MB-	-5009	5	

OPTIMA3_100329C

	Initial									
	Calibration	C	ont	inuing Calib	ora	ation		Preparation	L	
	Blank (ug/L)			Blank (ug/I	5)			Blank		
Analyte		C 1	1 C 2 C 3							М
Aluminum	-24.2	в 12.0	ט נ	12.0	U			45.406	в	Р
Antimony	5.8	3 10.8	3 B	6.9	В			18.592	в	P
Arsenic	6.0	3 3.7	7В	3.1	U			5.482	В	Ρ
Barium	2.9	J 2.9	ט ו	2.9	U			2.900	υ	Ρ
Beryllium	0.01	3 0.1	В	0.1	В			0.060 1	в	Р
Cadmium	0.5 0	0.5	U	0.5	U			0.500 1	υ	Ρ
Calcium	87.0 t	J -152.0	B	87.0	U			87.000 t	U	Р
Chromium	0.5 t	J 0.5	U	0.5	U			0.500 t	ט	Р
Cobalt	0.7 t	J 0.7	U	0.7	υ			0.670 t	U	Р
Copper	4.7 (J 4.7	U	4.7	U			4.700 0	υ	Р
Iron	47.0 t	J 47.0	U	47.0	U			137.317 H	в	Ρ
Lead	2.1 t	2.1	υ	-2.1	B.			2.100 t	U	Р
Magnesium	62.0 t	62.0	U	62.0	U			86.119 H	в	Р
Manganese	3.5 t	3.5	U	3.5	U			3.500 t	U	Р
Nickel	0.6 t	0.6	υ	0.6	U			0.640 0	U	Р
Selenium	15.2 E	3 13.5	В	11.7	В			28.346 E	в	Ρ
Silver	2.4 0	2.4	υ	2.4	U		Í	2.400 U	U	Р
Thallium	6.8 E	3 5.8	в	5.7	U			5.700 t	σ	Р
Vanadium	0.3 t	0.3	υ	0.3	U			0.340 U	σ	Ρ
Zinc	7.0 t	7.0	U	7.0	U			7.000 t	U	P '

SW846

3

BLANKS

Lab	Name:	Mitkem Labora	tories	Contract:	95900-04			
Lab	Code:	MITKEM	Case No.:	SAS No.:	·	SDG No.:	SJ0429	
Prep	paratio	on Blank Matrix	(soil/water): N	VATER	·	Method	Blank ID:	
,				/	- /-		94	

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L OPTIMA3_100402A MB-50094

	Initial											
	Calibratior	n	C	ont	inuing Calib	ora	ation		Preparatio	'n		
	Blank (ug/L)			Blank (ug/I	5)			Blank			
Analyte		С	1	C	2	С	3	С		C	М	
Aluminum	12.0	υ	12.0	υ	12.0	U	-13.8	В	12.000	U	P	
Antimony	10.2	В	6.6	В	5.7	В	9.6	в	11.258	В	P	
Arsenic	3.1	U	3.1	U	3.1	υ	3.1	. U	3.100	U	P	
Barium	2.9	Ū	2.9	U	2.9	U	2.9	U	2.900	U	P	
Beryllium	0.1	в	0.1	В	0.1	В	0.1	в	0.058	в	Р	
Cadmium	0.5	U	0.5	υ	0.5	U	0.5	υ	0.500	Ū	P	
Calcium	87.0	U	87.0	υ	87.0	υ	87.0	υ	87.000	U	Р	
Chromium	0.5	υ	0.5	U	0.5	U	0.5	U	0.500	υ	Р	
Cobalt	0.7	U	0.7	υ	0.7	U	0.7	U	0.670	U	Р	
Copper	4.7	U	4.7	U	4.7	U	4.7	υ	4.700	υ	P	
Iron	47.0	U	47.0	υ	47.0	U	47.0	υ	47.000	υ	Р	
Lead	2.1	U	2.1	U	2.1	U	2.1	U	2.100	U	Р	
Magnesium	62.0	U	62.0	υ	62.0	Ŭ	62.0	U	62.000	U	Р	
Manganese	3.5	U	3.5	υ	3.5	U	3.5	U	6.170	в	Р	
Nickel	0.6	υ	0.6	U	0.6	U	0.6	U	0.640	υ	P	
Selenium	11.0	в	14.7	в	10.0	U	10.0	U	10.000	U	Р	
Silver	2.4	U	2.4	υ	2.4	U	2.4	υ	2.400	υ	Р	
Thallium	5.7	U	. 5.7	υ	5.7	U.	5.7	U	5.700	U	Р	
Vanadium	0.3	U	0.3	U	0.3	U	0.3	U	0.340	υ	P	
Zinc	7.0	U	7.0	U	7.0	U	7.0	U	7.000	U	P	

3 BLANKS

 Lab Name: Mitkem Laboratories
 Contract:
 95900-04

 Lab Code: MITKEM
 Case No.:
 SAS No.:
 SDG No.:
 SJ0429

 Preparation Blank Matrix (soil/water):
 Method Blank ID:

Preparation Blank Concentration Units (ug/L or mg/kg):

OPTIMA3_100402A

	Initial									
	Calibration		Cont	inuing Cali	bra	tion		Preparatio	'n	
	Blank (ug/L))		Blank (ug/	'L)			Blank		
Analyte		C 1	1 C 2 C 3 C						C	M
Aluminum		12.	0 U							P
Antimony		8.	7 B			-				Р
Arsenic		-3.	8 B				1			Р
Barium		2.	9 U							Р
Beryllium		0.	1 B					· · · · · ·		Р
Cadmium		0.	5 U					<u> </u>		Р
Calcium		87.	0 U							P
Chromium		0.	5 U							Р
Cobalt		0.	7 U			i.				Р
Copper		4.	7 U	- · · · · · ·						Ρ
Iron		47.	0 U							Р
Lead		2.	1 U					-		Р
Magnesium		62.	U 0							Р
Manganese		3.	5 U						\square	Р
Nickel		0.	6 U							Р
Selenium		10.	0 U			· · · · · · · · · · · · · · · · · · ·				Р
Silver	_	2.	4 U			· · ·				Р
Thallium		5.	7 U							P
Vanadium		0.	4 B							Р
Zinc		7.0	υ							Р

		υ.	S. EPA - CLP 3 BLANKS			н
Lab Name: Mitke	em Laboratories		Contract:	95900-04		
Lab Code: MITK	CM Case N	Io.:	SAS No.:		SDG No.:	SJ0429
Preparation Bla	nk Matrix (soil	/water):			Method	Blank ID:
Preparation Bla	nk Concentration	n Units (ug/I	or mg/kg): OPTIMA3_10040)8A		
	Initial					
	Calibration	Co	ontinuing Cali	bration	Prepar	ation
	Blank (ug/L)		Blank (ug/	L)	Bla	nk

2

С

3

С

C M

Ρ

1

С

3.5 U

С

3.5 U

ISM_002

Analyte

Manganese

			U.S. E	PA - CLP			
				EPA SAMPLE NO.			
			SPIKE SAM	PLE RECOVERY		DMW-18-20100309S	
Lab Name:	Mitkem Lal	boratories		Contract:	95900-04		
Lab Code:	MITKEM	Case No.:		SAS No.:		SDG No.: SJ0429	
Matrix (so	il/water):	WATER		Level (low/	med): MED	x	
% Solids fo	or Sample:	0.0					

	Control							
	Limit	Spiked Sample	Sample		Spike			
Analyte	۶R	Result (SSR) C	Result (SR)	С	Added (SA)	۶R	Q	M
Aluminum	75-125	12000	2270		9100	107		P
Antimony	75-125	525	12.2	В	456	. 113		Р
Arsenic	75-125	493	5.9	В	456	107		Р
Barium	75-125	9900	283		9100	106		Р
Beryllium	75-125	234	0.31	В	227	103		Р
Cadmium	75-125	258	18.1		227	106		Р
Chromium	75-125	938	5.0	В	910	103		Р
Cobalt	75-125	2360	11.6	В	2270	103		Р
Copper	75-125	1290	112		1130	104		P.
Iron	75-125	9630	4620		4550	110		Р
Lead	75-125	498	19.0		455	105		Р
Manganese	H	12900	10100		2270	126		Р
Nickel	75-125	2390	48.0	В	2270	103		Р
Selenium	75-125	493	16.4	В	455	105		Р
Silver	75-125	1210	2.4	U	1130	107		Р
Thallium	75-125	547	64.5		455	106		Р
Vanadium	75-125	2360	5.0	В	2270	104		Р
Zinc	75-125	2710	366		2270	103		Р
Mercury	75-125	5.1	0.056	U	4.6	113		CV

Comments:

SW846

ISM_002

			U.S. E	PA - CLP				
			EPA SAM	IPLE NO.				
	SPIKE SAMPLE RECOVERY					LMW-14-20100309S		
Lab Name:	Mitkem Lab	oratories		Contract:	95900-04			
Lab Code:	MITKEM	Case No.:		SAS No.:		SDG No.:	SJ0429	
Matrix (soi	l/water):	WATER		Level (low/	med): MED			
% Solids fo	or Sample:	0.0						

	Control	-						Τ
1	Limit	Spiked Sample	Sample		Spike			
Analyte	%R	Result (SSR) C	Result (SR)	С	Added (SA)	۶R	Q	М
Aluminum	75-125	13500	4830		9100	96		Р
Antimony	75-125	490	4.2	U	456	108		P
Arsenic	75-125	466	6.0	В	456	101		Р
Barium	75-125	9600	107	В	9100	104		P
Beryllium	75-125	232	0.28	В	227	102		P
Cadmium	75-125	254	26.0		227	101		Р
Chromium	75-125	975	68.6		910	100		P
Cobalt	75-125	2350	2.7	В	2270	103		Р
Copper	75-125	1150	42.8		1130	98		Р
Iron	75-125	17300	14000		4550	73	N	P
Lead	75-125	537	76.5		455	101		Р
Manganese	75-125	2490	186		2270	102		Р
Nickel	75-125	2340	18.3	В	2270	102		Р
Selenium	75-125	454	10.0	U	455	100		Ρ
Silver	75-125	1190	2.4	U	1130	106		Р
Thallium	75-125	458	5.7	U	455	101		Р
Vanadium	75-125	2240	12.6	В	2270	98		Р
Zinc	75-125	2550	279		2270	100		P
Mercury	75-125	5.2	0.10	В	4.6	111		CV

Comments:

SW846

			EPA SAMPLE NO.				
		POST DI	GEST SPIKE SAMPLE RE	ECOVERY	LMW-14-20100309A		
Lab Name:	Mitkem Lab	poratories	Contract:	95900-04			
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.: SJ0429		
Matrix (soil/water): WATER			Level (low	/med): MED	·		

	Control					1	
	Limit	Spike Sample	Sample	Spike			
Analyte	%R	Result (SSR)	C Result (SR) C	Added (SA)	۶R	Q	м
Iron		17577.72	13957.85	4550.0	80		Р

Comments:

ISM_002

SW846

ccc

			U.S. E	PA - CLP			
	6					EPA SAM	IPLE NO.
			DUPL	ICATES		LMW-14-201	.00309D
Lab Name:	Mitkem Lab	oratories		Contract:	95900-04		
Lab Code:	MITKEM	Case No.:	-	SAS No.:		SDG No.:	SJ0429
Matrix (soil/water): WATER			Level (low/med): MED				
% Solids for Sample: 0.0			% Solids for Duplicate: 0.0				

	Control							
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Aluminum		4831.7750	T.	4245.3659		12.9		P
Antimony		4.2000	U	10.6144	В	200		Р
Arsenic		5.9940	В	3.1000	U	200		P
Barium		107.1707	В	104.1307	В	2.9		Р
Beryllium		0.2785	В	0.2700	В	3.1		P
Cadmium		26.0324		25.7312		1.2		Р
Calcium		18739.3472		18530.0543		1.1		P
Chromium	20.0	68.6420		63.9077		7.1		Р
Cobalt		2.7366	В	2.4060	В	12.9		Р
Copper	30.0	42.8077		41.6615		2.7	× 1	Р
Iron		13957.8462		12941.8666		7.6		Р
Lead		76.5177		75.8340		0.9		Р
Magnesium		2912.4613		2849.3361		2.2		Ρ
Manganese	50.0	186.2367		176.0542		5.6		Р
Nickel		18.3083	В	17.4091	В	5		Р
Potassium	1000.0	1673.7279		1701.9572		1.7		Р
Selenium		10.0000	U	10.0000	U			Р
Silver		2.4000	U	2.4000	U			Р
Sodium		25429.1668		26089.2835		2.6		P
Thallium		5.7000	U	5.7000	U			Р
Vanadium	· · ·	12.5526	В	11.6435	В	7.5		Р
Zinc		279.2676		269.9966		3.4		Р
Mercury		0.1029	В	0.0976	В	5.3		CV

	τ	J.S. EPA - CLP	
		6	EPA SAMPLE NO.
		DUPLICATES	DMW-18-20100309D
Lab Name:	Mitkem Laboratories	Contract: 95900-04	4
Lab Code:	MITKEM Case No.:	SAS No.:	SDG No.: SJ0429
Matrix (so	il/water): WATER	Level (low/med): ME	D
% Solids f	or Sample: 0.0	% Solids for Dupli	lcate: 0.0

					·		-r
Control							
Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
	2267.0667		2430.5960		7		P
-	12.1561	В	4.9774	В	83.8		Р
	5.9237	В	4.8235	В	20.5		Р
200.0	282.7648		285.5766		1		Р
	0.3143	В	0.3309	В	5.1		Р
5.0	18.1092		18.3180		1.1		Р
	27020.5953		26814.0485		0.8		P
	4.9936	В	5.6011	В	. 11.5		Р
	11.6155	В	14.2767	В	20.6		Р
30.0	112.2249		115.0672		2.5		P'
	4623.4031		5062.8745		9.1		Р
10.0	18.9785		20.5831		8.1		Р
	4130.0303		4137.6500		0.2		P
	10054.1508		13572.9556		29.8	*	Р
	47.9997	В	49.1195	В	2.3		Р
1000.0	4116.4614		4133.7440		0.4		Ρ
	16.4371	В	10.0000	U	200		Р
	2.4000	U	2.4000	U			Р
	10604.4188		10663.3567		0.6		Р
20.0	64.5127		79.1656		20.4		Р
-	4.9711	В	5.1828	В	4.2		Р
	365.8026		363.0624		0.8		Р
	0.0560	U	0.0560	U			CV
	Control Limit 200.0 5.0 30.0 10.0 10.0 20.0	Control Limit Sample (S) 2267.0667 12.1561 5.9237 200.0 282.7648 0.3143 5.0 18.1092 27020.5953 4.9936 11.6155 30.0 112.2249 4623.4031 10.0 18.9785 4130.0303 10054.1508 47.9997 1000.0 4116.4614 16.4371 2.4000 10604.4188 20.0 64.5127 4.9711 365.8026 0.0560	Control Sample (S) C Limit Sample (S) C 2267.0667 12.1561 B 12.1561 B 5.9237 B 200.0 282.7648 0.3143 B 200.0 18.1092 2 10.3143 B 30.0 18.1092 10.16155 B 30.0 112.2249 4623.4031 10.0112.2249 4623.4031 10.00 18.9785 4130.0303 10.00 18.9785 4130.0303 10054.1508 47.9997 B 1000.0 4116.4614 16.4371 10000.0 4116.4614 10604.4188 20.0 64.5127 4.9711 B 365.8026 0.0560 U	Control Limit Sample (S) C Duplicate (D) 2267.0667 2430.5960 12.1561 B 4.9774 5.9237 B 4.8235 200.0 282.7648 285.5766 0.3143 B 0.3309 5.0 18.1092 18.3180 27020.5953 26814.0485 4.9936 B 5.6011 11.6155 B 14.2767 30.0 112.2249 115.0672 4623.4031 5062.8745 10.0 18.9785 20.5831 4130.0303 4137.6500 10054.1508 13572.9556 47.9997 B 49.1195 1000.0 4116.4614 4133.7440 16.4371 B 10.0000 2.4000 U 2.4000 10604.4188 10663.3567 20.0 64.5127 79.1656 4.9711 B 5.1828 365.8026 363.0624 0.0560	Control Limit Sample (S) C Duplicate (D) C 2267.0667 2430.5960 12.1561 B 4.9774 B 12.1561 B 4.9774 B 3235 B 200.0 282.7648 285.5766 3309 B 5.0 18.1092 18.3180 3309 B 200.0 282.7648 285.5766 B 3309 B 5.0 18.1092 18.3180 3309 B S 200.0 18.1092 18.3180 3309 B S S 30.0 112.2249 115.0672 B 30.62.8745 S S 10.0 18.9785 20.5831 S S S S 10.0 18.9785 20.5831 S	Control Limit Sample (S) C Duplicate (D) C RPD 12.1561 B 4.9774 B 83.8 5.9237 B 4.8235 B 200.5 200.0 282.7648 285.5766 1 0.3143 B 0.3309 B 5.1 5.0 18.1092 18.3180 1.1 27020.5953 26814.0485 0.8 4.9936 B 5.6011 B 11.5 11.6155 B 14.2767 B 20.6 30.0 112.2249 115.0672 2.5 4623.4031 5062.8745 9.1 10.0 18.9785 20.5831 8.1 1.1 10.00 18.9785 20.5831 8.1 1.0 10054.1508 13572.9556 29.8 47.9997 49.1195 B 2.3 1000.0 4116.4614 4133.7440 0.4 0.4 1.6 4.3 10604.4188 10663.3567 0.6	Control Limit Sample (S) C Duplicate (D) C RPD Q 2267.0667 2430.5960 7 12.1561 B 4.9774 B 83.8 5.9237 B 4.8235 B 20.5 200.0 282.7648 285.5766 1 1 0.3143 B 0.3309 B 5.1 5.0 18.1092 18.3180 1.11 27020.5953 26814.0485 0.8 4.9936 B 5.6011 B 11.5 11.6155 B 14.2767 B 20.6 30.0 112.2249 115.0672 2.5 1 4623.4031 5062.8745 9.1 1 10.0 18.9785 20.5831 8.1 1 10.054.1508 13572.9556 29.8 * 47.9997 B 49.1195 B 2.3 1000.0 4116.4614 4133.7440 0.4 16.4371 B<

è

LABORATORY CONTROL SAMPLE

Lab Name:	Mitkem Labo	oratories	Contract:	95900-04	· · · · · · · · · · · · · · · · · · ·	
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0429
Solid LCS	Source:	· · · · · · · · · · · · · · · · · · ·			LCS(D) ID:	
Aqueous L(CS Source:				LCS-50094	

ł	Aqu	Aqueous (ug/L)			Solid (mg/Kg)					
Analyte	True	Found	۶R	True	Found	С	Limits	۶R		
Aluminum	9100.0	8982.97	98.7		<u> </u>					
Antimony	455.0	525.04	115.4							
Arsenic	455.0	464.64	102.1							
Barium	9100.0	9477.98	104.2							
Beryllium	227.0	232.65	102.5							
Cadmium	227.0	235.37	103.7							
Calcium	22700.0	22745.61	100.2							
Chromium	910.0	924.30	101.6							
Cobalt	2270.0	2358.80	103.9							
Copper	1130.0	1119.80	99.1							
Iron	4550.0	4732.25	104.0							
Lead	455.0	469.01	103.1							
Magnesium	22700.0	22801.38	100.4							
Manganese	2270.0	2353.52	103.7	· · · · · · · · · · · · · · · · · · ·						
Nickel	2270.0	2335.78	102.9	······································						
Potassium	22700.0	23025.97	101.4							
Selenium	455.0	459.06	100.9							
Silver	1130.0	1200.41	106.2							
Sodium	22700.0	23165.26	102.0	<u> </u>				•		
Thallium	455.0	474.28	104.2							
Vanadium	2270.0	2264.07	99.7					-		
Zinc	2270.0	2314.37	102.0	· · · · · · · · · · · · · · · · · · ·						

7

LABORATORY CONTROL SAMPLE

Lab Name:	Mitkem Labo	ratories	Contract:	95900-04			
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0429	
Solid LCS	Source:				LCS(D) ID:		
Aqueous LC	S Source:	· · · · · · · · · · · · · · · · · · ·			LCS-50095		

	Aqu	eous (ug/l	L)		Sol	id (mg	/Kg)	
Analyte	True	Found	۶R	True	Found	С	Limits	۶R
Aluminum	9100.0	8925.99	98.1					
Antimony	455.0	525.16	115.4					
Arsenic	455.0	473.80	104.1					
Barium	9100.0	9285.62	102.0					
Beryllium	227.0	222.98	98.2		-			
Cadmium	227.0	230.42	101.5					
Calcium	22700.0	22274.38	98.1					
Chromium	910.0	896.73	98.5					
Cobalt	2270.0	2299.29	101.3					×
Copper	1130.0	1123.27	99.4				-	
Iron	4550.0	4666.15	102.6					
Lead	455.0	461.71	101.5					
Magnesium	22700.0	22552.74	99.4					
Manganese	2270.0	2254.62	99.3					
Nickel	2270.0	2284.49	100.6					
Potassium	22700.0	22813.10	100.5					
Selenium	455.0	480.29	105.6					
Silver	1130.0	1186.01	105.0					
Sodium	22700.0	22910.64	100.9					
Thallium	455.0	476.73	104.8					
Vanadium	2270.0	2261.26	99.6					
Zinc	2270.0	2276.38	100.3					

LABORATORY CONTROL SAMPLE

Lab Name:	Mitkem Lab	oratories	Contract:	95900-04		
Lab Code:	MITKEM	Case No.:	SAS No.:		SDG No.:	SJ0429
Solid LCS	Source:	·			LCS(D) ID:	
Aqueous LO	S Source:				LCS-50274	

	Aque	eous (ug/L)	Solid (mg/Kg)					
Analyte	True	Found	۶R	True	Found	С	Limits	%R	
Mercury	4.6	4.90	106.5						

ISM_002

SW846

٦

LABORATORY CONTROL SAMPLE

SJ0429
D:
6
: I / 1

	Aqueous (ug/L)			Solid (mg/Kg)				
Analyte	True	Found	%R	True	Found	С	Limits	%R
Mercury	4.6	5.13	111.5					