

Environment

Prepared for:

Superfund Standby Program NYSDEC Albany, NY Prepared by:

AECOM Chestnut Ridge, NY 60277021 April 2014

# Periodic Review Report Review Period: October 30, 2009 through January 30, 2014 Liberty Industrial Finishing Site Site #1-52-108 Work Assignment No. D007626-17

Final



Environment

Prepared for:

Prepared by:

Superfund Standby Program NYSDEC Albany, NY AECOM Chestnut Ridge, NY 60277021 April 2014

# Periodic Review Report Review Period: October 30, 2009 through January 30, 2014 Liberty Industrial Finishing Site Site #1-52-108 Work Assignment No. D007626-17

## Final

## **Engineering Certification**

I, Scott A. Underhill, certify that I am currently a NYS registered professional engineer and that this Periodic Review Report for the Liberty Industrial Finishing Site (Site Number # 1-52-108) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

Respectfully submitted,



## Contents

| Eng | jineer ir   | ng Certification                                          | ii   |  |  |  |  |
|-----|-------------|-----------------------------------------------------------|------|--|--|--|--|
| 4.0 | la ta a d   |                                                           |      |  |  |  |  |
| 1.0 | וות סמעכתסח |                                                           |      |  |  |  |  |
|     | 1.1         | Site History and Remedial Program                         | 1-1  |  |  |  |  |
|     | 1.2         | Remedy Evaluation and Recommendations Summary             | 1-1  |  |  |  |  |
| 2.0 | Site O      | verview                                                   | 2-1  |  |  |  |  |
|     | 2.1         | Objectives of the Periodic Review                         | 2-1  |  |  |  |  |
|     | 2.2         | Remedial History                                          | 2-1  |  |  |  |  |
| 3.0 | Evalu       | ate Remedy Performance, Effectiveness, and Protectiveness | 3-1  |  |  |  |  |
|     | 3.1         | Operation and Maintenance Plan Compliance Report          | 3-1  |  |  |  |  |
|     |             | 3.1.1 O&M Plan Compliance                                 | 3-1  |  |  |  |  |
|     |             | 3.1.2 Evaluation of O&M Activities                        | 3-1  |  |  |  |  |
|     | 3.2         | Monitoring Plan Compliance Report                         | 3-2  |  |  |  |  |
|     |             | 3.2.1 Monitoring Plan Compliance Report                   | 3-3  |  |  |  |  |
|     |             | 3.2.2 Confirm that Performance Standards are Being Met    | 3-3  |  |  |  |  |
|     | 3.3         | IC/EC Certification Plan Report                           |      |  |  |  |  |
|     |             | 3.3.1 IC/EC Requirements and Compliance                   | 3-10 |  |  |  |  |
|     |             | 3.3.2 IC/EC Certification Forms                           | 3-11 |  |  |  |  |
| 4.0 | Evalu       | ate Costs                                                 | 4-1  |  |  |  |  |
| 5.0 | Concl       | usions and Recommendations                                | 5-1  |  |  |  |  |
|     | 5.1         | Conclusions                                               | 5-1  |  |  |  |  |
|     | 5.2         | Recommendations                                           | 5-2  |  |  |  |  |
| 6.0 | Refere      | ences                                                     | 6-1  |  |  |  |  |

### List of Tables

- Table 1 Monitoring Well Data
- Table 2 Groundwater Elevation Measurements
- Table 3 Groundwater Analytical Data
- Table 4 Comparison of Filtered versus Unfiltered Sample data for Metals in Groundwater
- Table 5 Soil Sample Results June 2013

### List of Figures

- Figure 1 Site Location Map
- Figure 1A Aerial Photograph
- Figure 2 Site Features
- Figure 3 Groundwater Elevations (Shallow Wells), November 4, 2013
- Figure 4 Groundwater Hydrograph
- Figure 5 Summary of TAL Metals in Groundwater
- Figure 6 Soil Sample Location Map June 2013
- Figure 7 Cadmium Concentrations in Shallow Monitoring Wells
- Figure 8 Cadmium Concentrations in Selected Monitoring Wells
- Figure 9 Chromium Concentrations in Shallow Monitoring Wells
- Figure 10 Chromium Concentrations in Selected Monitoring Wells

rev3.docx

## **List of Appendices**

Appendix A IC/EC Certification Forms NYSDEC

Appendix B NYSDEC Memorandum dated August 24, 2004: Proposed Site Reclassification, and **Draft Deed Restriction** 

Appendix C Well Sampling Forms

## **Executive Summary**

The Periodic Review Report (PRR) of the Liberty Industrial Finishing Site (the "Site") was prepared for the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation (DER) by AECOM Technical Services Northeast, Inc. (AECOM). The PRR was conducted in general conformance with NYSDEC guidance (DER-10). The purpose of the PRR is to evaluate the effectiveness of historical remedial actions at achieving the remedial goals specified for the Site in the Record of Decision (ROD) dated March 1999. The period of review for this report is October 30, 2009 through January 30, 2014.

The ROD specified the site related contaminants of concern (COCs) to include metals (cadmium, chromium, copper, nickel, and zinc) in all site media and semivolatile organic compounds (SVOCs) [phenol, benzo(k)anthracene, chrysene, and benzo(a)pyrene] in sediment/sludge from the stormwater dry wells. All of the remedial work specified in the ROD was completed in September 2001. The results of these remedial actions were reported in the Final Remediation Report dated July 2002. The remedial actions performed at the site have effectively achieved the goals of the ROD with respect to mitigation of potential impacts to human health and the environment from on-site soil and sediment. The remedial measures excavated and removed impacted soil and sediment to concentrations below applicable cleanup criteria or prevented the infiltration of precipitation through impacted media where excavation was deemed impractical. The six former underground storage tanks (USTs) were properly abandoned in place. Due to the close proximity of the Long Island Railroad tracks the USTs could not be removed. In April 2004, NYSDEC issued a declaration that the remedial measures were achieved with respect to soils and sediment. The Site was proposed to be reclassified from Class 2 to Class 4. However, the reclassification was never completed.

Long-term monitoring of the groundwater would be conducted to demonstrate natural attenuation of the residual dissolved phase COCs. The asphalt cap placed over the former USTs would be monitored periodically to verify its integrity.

The natural attenuation of Site related COCs would be evaluated by the periodic sampling and analysis of eight groundwater monitoring wells. Two of the wells (MW-5 and MW-6) are located on site, two of the wells (MW-18 and MW-19) are located in the Brentwood Water District well field, two wells (MW-12 and MW-14) are located immediately downgradient of the COC source area plume, and two wells (MW-21 and MW-20) are located near the leading edge of the dissolved COC plume. The direction of the contaminant plume was defined during the RI as emanating from the former UST area (MW-04) and moving south-southeast towards wells MW-12 and MW-14. The western extent of the plume was defined by shallow monitoring well MW-8, to the east by shallow monitoring well MW-13 and to the south by shallow monitoring well MW-12. The vertical extent of the plume was defined by deep monitoring wells MW-16 and MW-14. Well cluster MW-20/MW-21 was installed downgradient of the leading edge of the plume to act as sentinel wells.

The Final Sampling and Analysis Plan (Earth Tech, June 2007b) for the site includes: groundwater sample collection from eight monitoring wells on a five quarter basis; maintenance of the perimeter fencing and posted environmental warnings to restrict access; and, additional maintenance activities, as necessary, to maintain site conditions. In May 2011 the NYSDEC added five monitoring wells to the sampling program: MW-2, MW-3, MW-4 (shallow monitoring wells) located immediately downgradient of the former USTs), and MW-10 (shallow monitoring well) and MW-16 (deep well) located approximately 130 ft downgradient (southeast) of the former USTs.

Results from the groundwater monitoring indicate that COCs are still present in groundwater at the Site. Cadmium and chromium concentrations in MW-2, MW-3, MW-4, MW-10, MW-16, MW-12 and MW-14 continue to exceed the criterion. Data from the other six monitoring wells are below criteria, indicating a stable plume. Since water quality standards have not been demonstrated at all sampling locations continued monitoring is necessary.

The following recommendations are proposed for the Liberty Industrial Finishing Site:

- Continue monitoring of groundwater on a five quarter sampling basis. The next sampling event is scheduled for February 2015.
- Inspect the condition of the former building slab and asphalt cap on a five-quarter basis (will be performed in conjunction with the groundwater sampling events) and repair as necessary.
- In-situ treatment such as Regenesis Metals Remediation Compound (MRC) should be considered for the Site. MRC is a controlled release product that immobilizes dissolvedphase metals by stabilizing the metals onto soil.
- Surficial soil contamination areas documented by NYSDEC in June 2013 require treatment either through removal or capping. Further vertical delineation is necessary to determine the volume of contaminated soil.
- Finalize the Site Management Plan and record a deed restriction or environmental notice with Suffolk County once the SMP is completed.

## 1.0 Introduction

### 1.1 Site History and Remedial Program

The Liberty Industrial Finishing Site, Site Registry# 1-52-108, is located at 550 Suffolk Avenue, Brentwood (Town of Islip), Suffolk County, New York. A Site location map is included as Figure 1.

The Site is approximately 3.9 acres in total area of which 1.3 acres are historically undeveloped. The remainder of the site consists of previously developed areas with remnants of the former building (concrete floor slab), walkways, parking lots, and driveway areas. The Site is located in an area that is primarily residential and light commercial. The Site is zoned for non-residential commercial/industrial use. A current aerial photograph of the Site and surrounding area is included as Figure 1A.

The Site is bound to the north by Suffolk Avenue, to the east by commercial properties, to the south by the Long Island Rail Road (LIRR), and to the west by a gasoline retailer and a shopping plaza. The parcels immediately north of Suffolk Avenue are undeveloped. Immediately south of the LIRR are the Town of Islip Athletic fields and the water supply wells for the Brentwood Water District. The Brentwood municipal water supply wells are less than 500 feet south of the Site.

Liberty Industrial Finishing Products was a metal finishing facility engaged in finishing and plating of components used primarily in the aircraft industry. Metal finishing activities included passivation, phosphotization, electroplating, conversion coating, anodizing, painting, and non-destructive testing. Industrial operation of the facility spanned the period from 1978 through 1997. When active, the industrial operation at the Site included a 30,000-square foot factory building, six underground storage tanks (USTs) for plating process and wastewater, sanitary leaching pools, and stormwater drywells. The USTs were equipped with "emergency" overflow pipes that discharged to the on-site leaching pools.

### 1.2 Remedy Evaluation and Recommendations Summary

This Periodic Review Report is intended to evaluate the ongoing management of the selected remedial program for the Site as detailed in the March 1999 ROD (appendix B). A review of the March 1999 ROD found no mention of institutional controls for the Site. Further review of the NYSDEC project archives also found no mention of institutional controls for the Site. A NYSDEC Memorandum dated August 30, 2004, indicated that a deed restriction document was started by NYSDEC. However, the document was not signed. In addition, a handwritten note in the document indicated the process was terminated as there was no property owner or property title on which to impose a deed restriction (Appendix B). Implementation of investigation and maintenance activities is

required in order to verify that the remedy is performing properly and effectively, and is protective of human health and the environment.

In order to maintain compliance with the requirements presented in the ROD, a summary of recommended investigation and maintenance activities is provided below. Details with regard to these recommendations are also provided in Section 5.0 of this Report.

- Groundwater sample collection from thirteen monitoring wells (MW-2, MW-3, MW-4, MW-5, MW-6, MW-10, MW-12, MW-14, MW-16, MW-18, MW-19, MW-20, and MW-21) on a five quarter basis;
- Inspection of the asphalt cap placed over the former USTs to verify that the engineering control continues to be effective;
- Maintenance of the perimeter fencing and posted environmental warnings to restrict site access; and,
- Additional maintenance activities, as necessary, to maintain site conditions.

A Site Management Plan (SMP) is currently in review at NYSDEC. Once approved, the requirements of the SMP will be implemented.

## 2.0 Site Overview

AECOM has prepared this PRR for the Liberty Industrial Finishing Site, located in the Town of Brentwood, Suffolk County, New York. This PRR covers the period of October 30, 2009 through January 30, 2014. This work was performed for the New York State Department of Environmental Conservation (NYSDEC) under Work Assignments D004445-14.3 and D007626-17. The NYSDEC has assigned the Site ID No. 1-52-108 in the NYSDEC's registry of inactive hazardous waste sites. Liberty Industrial Finishing is a Class 2 site.

### 2.1 Objectives of the Periodic Review

The periodic review process is used for determining if a remedy continues to be properly managed as set forth in the guidance documents for the Site, and is protective of human health and the environment. The objectives of the periodic review for sites in the State Superfund Program are as follows:

- Determine if the remedy remains in place, is performing properly and effectively, and is
  protective of public health and the environment;
- Evaluate compliance with the decision document(s) and the SMP;
- Evaluate the condition of the remedy;
- Verify, if appropriate, that the intent of Institutional Controls (IC) continues to be met, and that Engineering Controls (EC) remain in place, are effective and protective of public health and the environment;
- Evaluate the implemented remedies' effectiveness towards moving the Site to closure; and,
- Evaluate costs.

### 2.2 Remedial History

Shortly after operations began at the Site, concerns for public health and the environment resulting from operational and waste handling practices at the Site were investigated by the Suffolk County Department of Health Services (SCDHS). In 1982, surface and subsurface discharges of waste water were addressed in an Order of Consent between Liberty and the SCDHS. Corrective actions were implemented to eliminate the discharge of industrial waste water to the environment and the order was reportedly satisfied.

An inspection conducted by NYSDEC in 1984 identified deficiencies in Site hygiene and waste handling practices. Samples were collected of the liquids in the sanitary leeching pool, the storm water dry well, and a soil sample was collected near the northeast corner of the building. These samples reportedly contained elevated concentrations of 1,1,1-trichloroethane, cadmium, chromium,

and lead. The sanitary system and the storm water dry well were subsequently pumped out and cleaned (July 1985).

A Phase II Site Investigation was performed in 1987. The results of the investigation reported concentrations of chromium in the onsite groundwater at concentrations exceeding the Class GA groundwater criterion (NYSDEC Technical and Operational Guidance Series). The Site was subsequently classified as a Class "2a" site on the Registry of Inactive Hazardous Waste Disposal Sites on December 12, 1987. Class "2a" was a temporary listing pending further investigation into the effects the site has on health and the environment.

A Phase II Supplemental Site Investigation was performed in 1991. Chromium was reported in the on-site groundwater at concentrations ranging from 2,300  $\mu$ g/l to 5,800  $\mu$ g/L. Additionally, sediment/soil in the leaching pool contained elevated concentrations of cyanide (11,500  $\mu$ g/L). An emergency remedial measure removed a total of 45 inches of sediment/soil from the bottom of the leaching pool (1992). As a result of the Phase II supplemental site investigation, the Site was reclassified as a Class "2" site on the Registry of Inactive Hazardous Waste Disposal Sites in February of 1994.

A Consent Order (March 1996) required that the facility conduct a Focused Remedial Investigation (FRI) to determine the extent of contamination within the six USTs and the emergency leaching pool. FRI activities were never implemented by Liberty Industrial Finishing due to financial constraints.

In 1997, Liberty Industrial Finishing removed waste materials from the on-site building. Wastes removed and disposed of include:

- cyanide plating waste;
- phosphates;
- copper strips;
- copper strip sludge;
- metal hydroxide sludge;
- cyanide salts;
- solutions containing chromium and cadmium;
- chromic acid;
- paint waste containing methyl ethyl ketone; and
- vapor degreaser waste containing trichloroethene.

Floors were swept and the material was drummed and disposed of as hazardous waste. Wood floors were removed from the factory building and stored onsite. Flooring was later disposed of by the USEPA as part of an Interim Remedial Action.

A Remedial Investigation (RI) was performed in 1997-1998 for NYSDEC by Dvirka and Bartilucci. Based on the RI, the NYSDEC conducted a supplemental Remedial Investigation/Feasibility Study (RI/FS) of the Site in 1997-1998. The results and conclusions of the supplemental RI/FS were documented in a report published in 1999. Elevated concentrations of regulated metals, specifically chromium, were reported in excess of the applicable cleanup criteria in surface and subsurface soils, drainage structures, and on-site and off-site groundwater.

A ROD for the Site was published by NYSDEC in March 1999. The ROD specified the site related contaminants of concern to include semivolatile organic compounds (phenol, benzo(k)anthracene, chrysene, and benzo(a)pyrene) in the sediment/sludge from the stormwater dry wells, and metals (cadmium, chromium, copper, nickel, and zinc) in all media.

The ROD specified the following remedial goals for the Site:

- Eliminate sources of contamination that exceed cleanup criteria: such as, surface soil, subsurface soil, and stormwater drywell or sanitary leaching pool sediments;
- Eliminate, to the extent practicable, ingestion of Groundwater affected by the Site that does not meet the NYSDEC Class GA Ambient Water Quality Criteria;
- Mitigate potential impacts to the environment from contaminated groundwater by natural attenuation; and,
- Eliminate the potential for direct human contact with contaminated soil onsite.

To achieve the goals of the ROD remedial measures were performed. These measures included:

- Clean-out of sediments in the stormwater and sanitary leaching galleries;
- Removal of on-site hazardous wastes;
- Delineation, excavation and disposal of on-site and off-site impacted soils;
- Cleaning and closure in place of USTs and associated piping;
- Placement of impermeable asphalt cap over USTs and associate piping;
- Demolition and removal of the building;
- Installation of perimeter security fence; and,
- Installation and periodic sampling of groundwater monitoring wells to assess groundwater quality.

The USEPA conducted an emergency removal action including the removal of waste materials stored in the on-site factory building and the in-place closure of six USTs. Each tank was cleaned and sandblasted, filled to one foot below top with clean soil, and the remaining space (including fill pipes) was plugged with concrete. The tanks were not removed due to the close proximity of the Long Island Rail Road; however, UST in-place closure was determined to be equally protective of human health and the environment. A non-porous asphalt cap was constructed over the UST area to mitigate infiltration of precipitation into the contaminant source area (Figure 2).

All of the removal and in-place closure measures specified in the ROD were completed in September 2001. The results of these remedial actions were reported in the Final Remediation Report (Dvirka and Bartilucci, July 2002). The remedial actions performed at the site have effectively achieved the goals of the ROD with respect to mitigation of potential impacts to human health and the environment from on-site soils and sediment. These measures excavated and removed impacted soil and sediments to concentrations below applicable cleanup criteria or prevented the infiltration of precipitation through impacted media where excavation was deemed impractical.

In April 2004, NYSDEC issued a declaration that the remedial measures were achieved with respect to soils and sediment. The Site was proposed to be reclassified from Class 2 to Class 4; however the reclassification was not completed (Appendix A). Long-term monitoring of the groundwater would be conducted to demonstrate natural attenuation of the residual dissolved phase COCs.

The natural attenuation of site related dissolved phase COCs would be evaluated by the periodic sampling and analysis of eight groundwater monitoring wells (Figure 2). Two of the wells (MW-5 and MW-6) are located on site, two of the wells (MW-18 and MW-19) are located in the Brentwood Water District well field, two wells (MW-12 and MW-14) are located immediately downgradient of the COC source area plume, and two wells (MW-21 and MW-20) are located near the leading edge of the dissolved COC plume. In 2011, NYSDEC added five monitoring wells to the long term sampling program: MW-2, MW-3 and MW-4, located along the southern property boundary and well cluster MW-10/MW-16 located approximately 130 ft south of the former USTs (Figure 2).

# 3.0 Evaluate Remedy Performance, Effectiveness, and Protectiveness

A SAP (Earth Tech, 2007b) and Project Management Plan (Earth Tech, 2007a) were developed under a previous work assignment (D004445-14). The SAP outlines the following activities on a fivequarter basis:

- Monitoring well inspection: Inspect the eight (five additional wells were added by NYSDEC in 2011) monitoring wells designated for groundwater sampling and complete the NYSDEC Monitoring Well Field Inspection Log for each. Obsolete and damaged wells need to be properly abandoned (no wells have been abandoned at the Site since completion of the remedial action in 2001).
- Groundwater monitoring: 13 wells are designated for periodic groundwater sampling and analysis of target analyte list (TAL) metals (Figure 2).

### 3.1 Operation and Maintenance Plan Compliance Report

The current operation and monitoring (O&M) program at the Site consists of groundwater monitoring well inspection and repair, and asphalt cap inspection and maintenance.

### 3.1.1 O&M Plan Compliance

The following summarizes operation and maintenance activities undertaken at the Site from October 2009 through January 2014:

|                                                           | Requi    | ired Freque      | Compliance Dates |                                                |
|-----------------------------------------------------------|----------|------------------|------------------|------------------------------------------------|
| Activity                                                  | Annually | Five-<br>Quarter | As needed        |                                                |
| Asphalt Cap Inspection                                    |          | х                |                  |                                                |
| Groundwater Monitoring Well<br>Inspection and Maintenance |          | х                |                  | 2006, 2007, 2008, 2010,<br>2011, 2012 and 2013 |

### 3.1.2 Evaluation of O&M Activities

Logs of monitoring well inspections have been submitted to NYSDEC as part of periodic groundwater sampling reports (Earth Tech, 2006, 2007, 2009 and AECOM, 2010, 2011, 2012 and 2013).

### 3.2 Monitoring Plan Compliance Report

The Final Project Management Plan (Earth Tech, February 2007a) and Final SAP (Earth Tech, 2007b) are referenced as the Site guidance documents. A SMP is currently in review and will be implemented at the Site upon final approval by NYSDEC, replacing the Project Management Plan and SAP.

This PRR assesses whether the site has been managed as set forth in these documents. To date, seven groundwater sampling events have been conducted at the Site. Analysis performed during each sampling event included TAL metal analysis for groundwater. Data reports were finalized in 2006, 2007, 2009, 2010, 2011 and 2012. The November 2013 sampling event report is currently being prepared.

The current monitoring program is as follows:

- Water levels measurements are collected from all Site monitoring wells on a five quarter basis;
- Groundwater sampling is conducted from 13 monitoring wells on a five-quarter basis and analyzed for TAL metals. During the 2011, 2012 and 2013 sampling events, both filtered and unfiltered metals samples were collected; however, this is not part of the long-term monitoring program. The 13 monitoring wells are MW-2, MW-3, MW-4, MW-5, MW-6, MW-10, MW-12, MW-14, MW-16, MW-18, MW-19, MW-20, and MW-21. Field measurements of temperature, pH, conductivity, oxidation reduction potential, dissolved oxygen and turbidity are recorded during each sampling event; and
- Preparation of sampling reports that summarize analytical results of each sampling round.

The first four rounds of groundwater sampling occurred in June 2006, August 2007, November 2008, and March 2010. Eight wells were sampled: MW-5, MW-6, MW-12, MW-14, MW-18, MW-19, MW-20 and MW-21. A summary of well construction data is presented in Table 1. Groundwater samples were analyzed for TAL metals. Prior to sampling, a synoptic round of water level measurements was collected from the eight selected monitoring wells. The locations of the wells are shown on Figure 2.

The fifth round of groundwater sampling occurred in May 2011. At the request of NYSDEC, six additional wells were added to the sampling program: MW-1, MW-2, MW-3, MW-4, MW-10 and MW-16, bringing the total number of wells sampled to 14. However, MW-1 was dry and could not be sampled. In an effort to better understand the metals data collected from monitoring well samples, Round 5 groundwater samples were filtered in the field using 0.45 micron filters and both total and dissolved samples were analyzed for TAL metals. All sampling was conducted in accordance with the June 2007 SAP.

The sixth and seventh round of groundwater sampling occurred in August 2012 and November 2013. Thirteen monitoring wells were included in the sampling program. As during Round 5,

groundwater samples were also filtered in the field using 0.45 micron filters and both total and dissolved samples were analyzed for TAL metals. All sampling was conducted in accordance with the June 2007 SAP. For these groundwater sampling rounds, NYSDEC requested that all groundwater samples be collected using low-flow techniques. Previous sampling was performed using the volumetric method. A peristaltic pump with dedicated poly tubing was used to purge each well prior to sampling. The flow rate was set to between 200 to 500 milliliters per minute (mL/min). Field measurements of pH, temperature, specific conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP) were collected at five-minute intervals until all parameters were stabilized.

### 3.2.1 Monitoring Plan Compliance Report

The following summarizes monitoring activities at the Site conducted to-date in accordance with the SAP. AECOM conducted sampling events at the Liberty Industrial Finishing Site in June 2006, August 2007, November 2008, March 2010, May 2011, August 2012 and November 2013:

| Activity               | Required Frequency (X) | Compliance Dates |
|------------------------|------------------------|------------------|
| Activity               | Five Quarter           |                  |
| Groundwater Monitoring | Х                      | 2006-2013        |
| Water Level Monitoring | Х                      | 2006-2013        |

### **Groundwater Level Measurement**

Groundwater level measurements from 2006 through 2013 in the 13 monitoring wells (8 in 2006 through 2010) are presented in Table 2. Comparison of the groundwater elevations in the monitoring wells shows that the general groundwater flow direction is towards the south-southwest. A groundwater contour map is presented in Figure 3 using data from the November 2013 sampling event. A groundwater hydrograph is shown in Figure 4.

### 3.2.2 Confirm that Performance Standards are Being Met

The sections below discuss the results of the groundwater sampling conducted in accordance with the guidance documents and provide a summary of the results.

### **Groundwater**

Thirteen monitoring wells are included in the long term monitoring plan: MW-2, MW-3, MW-4, MW-5, MW-6, MW-10, MW-12, MW-14, MW-16, MW-18, MW-19, MW-20, and MW-21 and are shown on Figure 2. Laboratory analytical results for the TAL metal analyses have been provided in the groundwater monitoring reports in for the seven sampling events that occurred in June 2006, August 2007, November 2008, March 2010, May 2011, August 2012 and November 2013. The summary of

groundwater results for these sampling events is presented in Table 3. A summary of groundwater results is presented in Figure 5.

Concentrations of ten metals have been detected above the Class GA criterion in monitoring wells at the Site at least once during the six sampling events. These metals include antimony, cadmium, chromium, copper, iron, lead, manganese, selenium, sodium and thallium.

#### Antimony - Class GA criterion of 3 µg/L

- June 2006 Detected in six of eight monitoring wells, two exceedances, maximum concentration of  $3.7 \ \mu$ g/L in MW-5.
- August 2007 Detected in five of eight monitoring wells, five exceedances, maximum concentration of 11.2 µg/L in MW-12.
- November 2009 Detected in one of eight monitoring wells, MW-18, which exceeded the criterion at 9  $\mu$ g/L.
- March 2010 Detected in three of eight monitoring wells, three exceedances, maximum concentration of 13.9 µg/L in MW-12.
- May 2011 Not detected in any of the 13 monitoring well samples (filtered or unfiltered samples).

August 2012 – Detected in one of 13 monitoring wells, one exceedance, 11.9 µg/L in MW-21D.

## November 2013 – Detected in one of 13 monitoring wells, no exceedances (filtered or unfiltered samples).

#### Cadmium – Class GA criterion of 5 µg/L

June 2006 – Detected in six of eight monitoring wells, no exceedances.

- August 2007 Detected in all eight monitoring wells, three exceedances, maximum concentration of 12.6 µg/L in MW-6.
- November 2008 Detected in six of eight monitoring wells, two exceedances, maximum concentration of 59.1 µg/L in MW-14.
- March 2010 Detected in four of eight monitoring wells, two exceedances, maximum concentration of  $205 \ \mu g/L$  in MW-12.
- May 2011 Detected in nine of 13 unfiltered samples, seven exceedances, maximum concentration of 54.8 µg/L in MW-12. Detected in nine of 13 filtered samples, four exceedances, maximum concentration of 19.8 in MW-4.
- August 2012 Detected in eight of 13 unfiltered samples, four exceedances, maximum concentration of 36.1 µg/L in MW-10. Detected in six of 13 filtered samples, three exceedances, maximum concentration of 34.9 µg/L in MW-10.
- November 2013 Detected in six of 13 unfiltered samples, three exceedances, maximum concentration of 49.0 μg/L in MW-10. Detected in five of 13 filtered samples, two exceedances, maximum concentration of 50.0 μg/L in MW-10.

L:\work\60277021\_Multi\_Site\_G\03 - Liberty Industrial Finishing\7.0 Deliverables\7.6 Reports\Final Reports\Final PRR - April 2014\Final Liberty PRR - April2014 rev3.docx

Chromium – Class GA criterion of 50 µg/L

June 2006 – Detected in all eight monitoring wells, one exceedance, 95.8 µg/L in MW-14.

August 2007 – Detected in all eight monitoring wells, one exceedance, 248 µg/L in MW-14.

- November 2008 Detected in six of eight monitoring wells, one exceedance, 69.6 µg/L in MW-14.
- March 2010 Detected in all eight monitoring wells, two exceedances, maximum concentration of 251 µg/L in MW-12.
- May 2011 Detected in all 13 unfiltered samples, six exceedances, maximum concentration of 176  $\mu$ g/L in MW-4. Detected in 11 of 13 filtered samples, two exceedances, maximum concentration of 142  $\mu$ g/L in MW-4.
- August 2012 Detected in all 13 unfiltered samples, maximum concentration of 152 μg/L in MW-10. Detected in ten of 13 filtered samples, maximum concentration of 155 μg/L in MW-10.

# November 2013 – Detected in five of 13 unfiltered samples, maximum concentration of 170 $\mu$ g/L in MW-14. Detected in three of 13 filtered samples, maximum concentration of 140 $\mu$ g/L in MW-10.

### Copper - Class GA criterion of 200 µg/L

June 2006 - Detected in five of eight monitoring wells, no exceedances.

- August 2007 Detected in all eight monitoring wells, no exceedances.
- November 2008 Detected in four of eight monitoring wells, no exceedances.
- March 2010 Detected in six of eight monitoring wells, one exceedance, 377 µg/L in MW-12.
- May 2011 Detected in nine of 13 unfiltered samples, no exceedances. Detected in three of 13 filtered samples, no exceedances.
- August 2012 Detected in nine of 13 unfiltered samples, no exceedances. Detected in three of 13 filtered samples, no exceedances.

#### November 2013 – Not detected in any of the 13 samples (unfiltered or filtered).

#### Iron – Class GA criterion of 300 µg/L

- June 2006 Detected in all eight monitoring wells, three exceedances, maximum concentration of 1,710 µg/L in MW-20.
- August 2007 Detected in all eight monitoring wells, six exceedances, maximum concentration of 10,900 µg/L in MW-12.
- November 2008 Detected in six of eight monitoring wells, three exceedances, maximum concentration of 9,320 µg/L in MW-14.
- March 2010 Detected in all eight monitoring wells, five exceedances, maximum concentration of 38,100 µg/L in MW-12.

- May 2011 Detected in 12 of 13 unfiltered samples, six exceedances, maximum concentration of 11,300 µg/L in MW-12. Detected in six of 13 filtered samples, two exceedances, maximum concentration of 1,620 in MW-12.
- August 2012 Detected in 12 of 13 unfiltered samples, nine exceedances, maximum concentration of 2,000 µg/L in MW-4. Detected in six of 13 filtered samples. Maximum concentration of 1,180 µg/L in MW-14.

# November 2013 – Detected in seven of 13 unfiltered samples, seven exceedances, maximum concentration of 6,000 µg/L in MW-14. Detected in one of 13 filtered samples, maximum concentration of 930 µg/L in MW-14.

### Lead - Class GA criterion of 25 µg/L

June 2006 – Detected in four of eight monitoring wells, no exceedances.

- August 2007 Detected in all eight monitoring wells, one exceedance, 106 µg/L in MW-12.
- November 2008 Detected in four of eight monitoring wells, two exceedances, 221 µg/L in MW-14.
- March 2010 Detected in five of eight monitoring wells, two exceedances, maximum concentration of 553  $\mu$ g/L in MW-12.
- May 2011 Detected in four of 13 unfiltered samples, two exceedances, maximum concentration of 230 µg/L in MW-12. Not detected in any of the 13 filtered samples.
- August 2012 Detected in two of 13 unfiltered samples, no exceedances. Detected in two of 13 filtered samples, no exceedances.

## November 2013 – Detected in three of 13 unfiltered samples, one exceedance, 53 µg/L in MW-14. Detected in one of 13 filtered samples, no exceedances.

### Manganese - Class GA criterion of 300 µg/L

June 2006 - Detected in all eight monitoring wells, no exceedances.

August 2007 – Detected in all eight monitoring wells, one exceedance, 547 µg/L in MW-18.

- November 2008 Detected in six of eight monitoring wells, one exceedance, 627 µg/L in MW-21.
- March 2010 Detected in all eight monitoring wells, one exceedance, 312 µg/L in MW-18.
- May 2011 Detected in ten of 13 unfiltered samples, two exceedances, maximum concentration of 597 µg/L in MW-16. Detected in six of 13 filtered samples, two exceedances, maximum concentration of 623 µg/L in MW-12.
- August 2012 Detected in ten of 13 unfiltered samples, one exceedance, 661 µg/L in MW-16. Detected in six of 13 filtered samples, two exceedances, maximum concentration of 632 µg/L in MW-16.
- November 2013 Detected in four of 13 unfiltered samples, two exceedances, maximum concentration of 1,200 µg/L in MW-18. Detected in three of 13 filtered samples, two exceedances, maximum concentration of 530 µg/L in MW-16.

Selenium – Class GA criterion of 10 µg/L

June 2006 – Detected in four of eight monitoring wells, no exceedances.

August 2007 - Detected in two of eight monitoring wells, no exceedances.

November 2008 – Not detected in any of the eight monitoring wells.

March 2010 – Detected in one of eight monitoring wells, one exceedance, 13.4 µg/K in MW-12.

May 2011 - Not detected in any of the 13 unfiltered or filtered samples.

August 2012 - Not detected in any of the 13 unfiltered or filtered samples.

### November 2013 – Not detected in any of the 13 unfiltered or filtered samples.

### Sodium – Class GA criterion of 20,000 µg/L

- June 2006 Detected in all eight monitoring wells, four exceedances, maximum concentration of 31,900 in MW-14.
- August 2007 Detected in all eight monitoring wells, four exceedances, maximum concentration of 31,100 μg/L in MW-20.
- November 2008 Detected in all eight monitoring wells, four exceedances, maximum concentration of  $561,000 \ \mu$ g/L in MW-14.
- March 2010 Detected in all eight monitoring wells, two exceedances, maximum concentration of 39,600 µg/L in MW-2.
- May 2011 Detected in all 13 unfiltered samples, six exceedances, maximum concentration of 38,400 µg/L in MW-20. Detected in all 13 filtered samples, six exceedances, maximum concentration of 40,300 µg/L in MW-20.
- August 2012 detected in all 13 unfiltered samples, four exceedances, maximum concentration of 30,800 in MW-3. Detected in all 13 filtered samples, four exceedances, maximum concentration of 31,000 in MW-3.
- November 2013 detected in all 13 unfiltered samples, four exceedances, maximum concentration of 38,000 in MW-3. Detected in all 13 filtered samples, four exceedances, maximum concentration of 35,000 in MW-3.

### Thallium – Class GA criterion of 0.50 µg/L

June 2006 – Not detected in any of the eight monitoring wells.

August 2007 – Detected in two of eight monitoring wells, two exceedances, maximum concentration of  $3.4 \mu g/L$  in MW-14.

November 2008 – Not detected in any of the eight monitoring wells.

March 2010 – Not detected in any of the eight monitoring wells.

May 2011 – Not detected in any of the 13 unfiltered or filtered samples.

August 2012 – Not detected in any of the 13 unfiltered or filtered samples.

### November 2013 – Not detected in any of the 13 unfiltered or filtered samples.

### Filtered versus Unfiltered Metals Groundwater Samples

Concentrations of total metals in groundwater samples at the Site tended to be highly variable between different sampling events, as did field measurements of turbidity at time of sample collection. Turbidity is correlated with the presence of suspended matter (e.g., entrained soil particles in the sample). Therefore in Round 5 (May 2011), Round 6 (August 2012) and Round 7 (November 2013) total metals (unfiltered) and dissolved metals (field filtered) groundwater samples were collected to evaluate the effect of turbidity on the metals concentrations.

The NYSDEC turbidity criterion is 50 nephelometric turbidity units (NTU) or less for well development and groundwater sampling (TAGM 4015; NYSDEC, 1988). At the Liberty Industrial Finishing Site, the turbidity was below 50 NTU at the time of sampling in all 13 samples during Round 7, ranging from 0 to 38.5 NTU (see the bottom row of Table 4). The turbidity was less than 20 NTU in ten samples and above 30 NTU in three samples. The total metals concentrations was expected to be higher in the more turbid samples with only small differences between the total metals and dissolved metals concentrations in samples with low turbidity. As all the Round 7 samples at the Site could be considered 'low turbidity' (i.e., all samples met the NYSDEC criterion of 50 NTU or less), it is somewhat difficult to evaluate differences among the samples although an apparent relationship between turbidity as measured in the field, and metals concentrations (e.g., aluminum) in the unfiltered samples.

Table 4 presents a comparison of the total metals and the dissolved metals data for the 13 filtered/ unfiltered sample pairs collected at the Liberty Site. The "percent dissolved" shown on the table is the ratio of the filtered sample concentration to the total (unfiltered) sample concentration.

Concentrations of metals primarily in the dissolved phase (sodium, potassium, and calcium) are not expected to be affected by filtering. Note also that depending on the redox conditions, magnesium may also be generally found in only the dissolved form. Hence the two samples (filtered and unfiltered) should essentially act as field duplicate samples for these parameters, and the concentrations in the filtered/unfiltered pairs would be expected to be very similar (e.g., the filtered/unfiltered ratio is close 100% +/- 10%). The filtered/unfiltered pairs for these four compounds were generally similar in the filtered and unfiltered samples indicating good reproducibility in the sampling/analytic process, with one exception. In the MW-5 pairings the concentration of sodium in the filtered sample was 120.9 percent than the unfiltered, although the calcium ratio was only 112.5 percent.

Most of the other metals are expected to be generally associated with solid particles. Therefore the concentration in the filtered samples would range from similar to the unfiltered samples (for those wells with very low turbidity) to significantly lower for those wells with high turbidity (as long as the concentration are sufficiently higher than the detection for an accurate comparison). This is the case for all well samples.

L:\work\60277021\_Multi\_Site\_G\03 - Liberty Industrial Finishing\7.0 Deliverables\7.6 Reports\Final Reports\Final PRR - April 2014\Final Liberty PRR - April2014 rev3.docx

### Surficial Soil Sampling – June 2013

In June 2013, NYSDEC personnel collected 25 soil samples from 14 locations around the Site. The locations are shown on Figure 6. At 11 locations, both surface (0 to 2 inches below ground surface) and subsurface (2 to 6 inches below ground surface) soil samples were collected. At two locations, only surface soil samples were collected and at one location, only a subsurface soil sample was collected. Samples were analyzed for TAL Metals. The results were compared to the NYSDEC restricted use categories as shown on Table 5.

Three locations were sampled from the wooded area west of the Site (SS-01, SS-02 and SS-03). Metals concentrations indicate that surficial lead exceeded the unrestricted use criterion but were below the restricted residential criterion. Subsurface samples from these three locations were all below the unrestricted use criteria.

Two locations (SS-06 and SS-07) were sampled in the wooded area east of the Site. All metals results for surface and subsurface soil samples were below the unrestricted use criteria.

Two sample locations (SS-04 and SS-05) were along the northern property boundary near Suffolk Avenue. In the two surficial soil samples, concentrations of lead and zinc exceeded the unrestricted residential use criterion but were below the restricted residential criterion. Surficial cadmium concentrations at SS-04 exceeded the residential criterion but were below the restricted residential criterion. The two subsurface samples were below the unrestricted criteria.

Five locations were sampled off the western side of the former concrete building slab (SS-08 through SS-12). At SS-08, the surficial chromium concentration was above unrestricted use criteria but below the residential criteria. The subsurface sample had an arsenic concentration above the unrestricted use criteria but below the residential use criteria. All other concentrations were in the unrestricted use criteria. At SS-09, only a subsurface soil sample was collected and all metals were below the unrestricted use criteria. Samples from SS-10, SS-11 and SS-12 had cadmium concentrations that grouped these samples into the commercial or industrial use criteria. The surficial soil sample at SS-11 exceeded the industrial criterion. Concentrations of chromium at three locations placed the samples in the restricted residential criteria. Concentrations of copper, nickel and zinc were below the residential use criteria.

Three samples were collected off the eastern side of the former building concrete slab (SS-13, SS-14 and SS-15). Metals concentrations for the surface and subsurface sample at SS-13 were all below the unrestricted sue criteria. The surficial soil cadmium concentration at SS-14 placed it in the industrial category and chromium in the residential category. Sampling location SS-15 was proposed but field conditions prevented NYSDEC personnel from collecting a sample.

### 3.3 IC/EC Certification Plan Report

The Institutional and Engineering Controls Certification Form generated by NYSDEC indicates that the following controls are applicable to the Site:

- Access to off-site monitoring wells on Brentwood Water District and Suffolk County property;
- Groundwater use restriction;
- Adherence to the Site Management Plan;
- Any future development of the Site must be hooked in to the public water supply; and
- Any future development must not disturb the slab which is serving as a cap cover system.

Engineering controls at the Site consist of:

- Engineered Asphalt Cap;
- Fencing/Access Control; and
- Signage and Notification.

### Comparison of DER-10, Unified Information System and Actual Site Conditions

| DER-10                                     | Unified Information System                                                                            | Actual Site Conditions                                                                 |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Closure of<br>underground<br>storage tanks | IRM completed in October<br>1990, removed approximately<br>1,960 cubic yards of<br>contaminated soils | Contaminated soil removed from area of former oil/water separator and former dry wells |
| Closure of dry<br>wells                    | Not mentioned                                                                                         | Area was paved over after the remediation work was completed                           |
| Containment /<br>Isolation                 | Not mentioned                                                                                         | Asphalt cap over the closed-in-place USTs                                              |

### 3.3.1 IC/EC Requirements and Compliance

Determination of compliance with the IC/EC at the Site is made based on the following criteria:

- The IC(s)/EC(s) applied at the site are in place and unchanged from the previous certification;
- Nothing has occurred that would impair the ability of such controls to protect the public health and the environment, or constitute a violation or failure to comply with any element of the SMP for such controls; and

L:\work\60277021\_Multi\_Site\_G\03 - Liberty Industrial Finishing\7.0 Deliverables\7.6 Reports\Final Reports\Final PRR - April 2014\Final Liberty PRR - April2014 rev3.docx

• Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of such controls (*future access cannot be guaranteed, but access for maintenance and inspections has not been an issue to date, and is not anticipated to become one*).

Currently, certification that the site ICs/ECs are in compliance with the requirements stated above, cannot be completed because of the following deficiencies:

- Deed restrictions have not been placed on the parcels of concern.
- The asphalt cap has not been properly inspected.
- The security fence surrounding the property is not secured and local teenagers have accessed the site and are using the former building concrete slab as a skateboard park.

Detailed descriptions of the deficiencies identified at the Site and the severity presented is included in Section 5.0, including a proposed schedule to utilize in bringing the Site into compliance with the EC Certification requirements.

### 3.3.2 IC/EC Certification Forms

See Appendix A.

## 4.0 Evaluate Costs

The timeframe for this PRR spanned two work assignments. The costs are summarized below.

### PRR costs from 10/30/09 through 1/30/14

| Cost incurred during the PRR | timeframe:  | \$126,000                |                               |  |  |
|------------------------------|-------------|--------------------------|-------------------------------|--|--|
| <u>Budget Breakdown</u>      | <u>Cost</u> | <u>Comments</u>          | <u>Average</u><br><u>Cost</u> |  |  |
| Field Work                   |             |                          |                               |  |  |
| Groundwater Sampling &       |             |                          |                               |  |  |
| OM&M                         | \$42,000    | Four sampling events     | \$10,500                      |  |  |
| Laboratory                   | \$10,500    | Four sampling events     | \$2,600                       |  |  |
| Reports                      |             |                          |                               |  |  |
| Groundwater Reports          | \$36,600    | Four reports             | \$9,100                       |  |  |
| SMP                          | \$10,400    | Draft                    |                               |  |  |
| PRR                          | \$19,600    | One completed, one draft |                               |  |  |
| MRC Work Plan                | \$6,900     | Draft                    |                               |  |  |

### Note:

Sampling in 2010 included 8 wells, increased in 2011 to include 13 wells

4-1

## 5.0 Conclusions and Recommendations

### 5.1 Conclusions

The ROD specified four remedial goals. Each of these remedial goals and results from the remedial efforts for the Site are discussed below.

 Elimination of constituents that exceed NYSDEC Commercial-use soil cleanup objectives (SCOs):

This goal has been effectively achieved through excavation and removal of impacted soil and sediments and permanent closure of the USTs. Residually impacted soils associated with the source areas have been isolated by capping with an impermeable barrier; though the June 2013 soil data indicates additional impacts above Commercial-use SCOs.

2. Elimination, to the extent practicable, of the migration of groundwater affected by the Site that does not meet the NYSDEC Class GA Ambient Water Quality Criteria (Class GA):

Groundwater at the Site is still impacted with COCs above the Class GA criteria. The plume will continue to migrate until the COCs are diluted and dispersed to a concentration below the Class GA criteria. The selected remedy of natural attenuation in conjunction with the appropriate monitoring is currently being implemented. The asphalt cap will be inspected and monitored periodically. The asphalt will be repaired as needed.

3. Mitigation of potential impacts to the environment from contaminated groundwater by natural attenuation.

This goal has not yet been achieved, as documented by the following:

- Several metals have been detected above their respective Class GA criterion including: antimony, copper, lead, selenium, and thallium. However, the exceedances are sporadic and do not appear related to the Site. However, two COCs, cadmium and chromium, have been consistently detected at concentrations exceeding applicable criteria in numerous monitoring wells during the previous seven long term monitoring sampling events (2006 through 2013).
- Cadmium has been detected in all 13 monitoring wells sampled during the long term monitoring (Figures 7 and 8). Concentrations have exceeded the Class GA criterion in nine of the 13 monitoring wells at least once during the seven long term monitoring events and has been above the criterion during every sampling event at MW-4 and MW-10 (Figure 7).
- Chromium has been detected in a majority of groundwater samples collected at the Site and has exceeded the criterion at least twice in six monitoring wells (Figures 9 and 10).

- The available data set is insufficient to evaluate trends and predict future sampling results other than to show exceedances of cadmium and chromium in several monitoring wells have been fairly consistent over the past few sampling rounds. The data indicate that the remedial actions performed to date have removed and/or isolated impacted soils that could act as a sustaining source, though the June 2013 data shows exceedances of cadmium and chromium in the surface soils. The potential exists for cadmium and chromium impacted soils to exist at depth at the site further investigation is required to determine the impacts to deeper soils. The cadmium and chromium groundwater plumes to not appear to be migrating south of the MW-12/MW-14 cluster.
- Based on the currently available data, additional monitoring, performed on a 5-quarter rotation, is required to increase the data set so that the effects of natural attenuation can be evaluated and achievement of this goal evaluated.
- 4. Elimination of the potential for direct human contact with contaminated soil onsite.
  - On-site soil sampling conducted in June 2013 by NYSDEC personnel indicates that two areas require remedial measures to prevent human contact with contaminated surficial soils (Figure 6).
  - A fence has been installed to prevent unauthorized entry onto the site. However, local teenagers have entered the Site and are using the former building concrete slab for a skate park.
  - Inspection and maintenance of the asphalt cap covering the residually impacted soils associated with the former USTs will be included in future long term monitoring.
- 5. Site Management Plan.
  - A Site Management Plan will be prepared for use during the continued long term monitoring at the Site.

### 5.2 Recommendations

The following recommendations are proposed for the Liberty Industrial Finishing Site:

- Continue monitoring of groundwater on a five quarter sampling basis. The next sampling event is scheduled for February 2015.
- Inspect the condition of the former building slab and asphalt cap on a five-quarter basis (will be performed in conjunction with the groundwater sampling events). Repair cracks and/or potential leak points as needed to prevent infiltration through residually impacted soil around former USTs. The next inspection is scheduled for February 2015.
- In-situ treatment of the metals: Regenesis Metals Remediation Compound (MRC) should be considered for the Site. MRC is a controlled release product that immobilizes dissolved-phase metals by stabilizing the metals onto soil. A pilot test should be completed to

evaluate the effectiveness of MRC. Immobilization of COCs would greatly reduce the monitoring time for the site as required by the current natural attenuation remedy.

- Evaluate treatment options of two surficial soil contamination areas documented by NYSDEC in June 2013. Option one is to extend the current asphalt cap over the two contaminated soil areas. Option two is excavation and off-site disposal of the contaminated soils. To install an asphalt cap over the two contaminated soil areas, approximately 6inches of soil would need to be removed to allow for the installation of an asphalt cap that would be flush with the current cap and concrete slab. If the contamination does not extend much beyond six inches, complete removal of the contamination would be preferable to capping. Further vertical delineation is necessary to determine the volume of contaminated soil in these two areas.
- Finalize the Site Management Plan. Upon completion of the Site Management Plan, record a deed restriction or environmental notice with Suffolk County.

## 6.0 References

AECOM Technical Services Northeast, Inc., 2009. Final Groundwater Sampling Report (November 2008 Sampling Event). August 2009.

AECOM Technical Services Northeast, Inc. 2011a. Final Groundwater Sampling report (March 2010 Sampling Event). January 2011.

AECOM Technical Services Northeast, Inc., 2011b. Periodic Performance Review. May 2011.

AECOM Technical Services Northeast, Inc., 2011c. Final Groundwater Sampling Report (May 2011 Sampling Event). October 2011.

AECOM Technical Services Northeast, Inc., 2013a. Final Groundwater Sampling Report (August 2012 Sampling Event). March 2013.

AECOM Technical Services Northeast, Inc., 2013b. Health and Safety Plan. June 2011.

AECOM Technical Services Northeast, Inc., 2014. Draft Groundwater Sampling Report (November 2013 Sampling Event). February 2014.

Dvirka and Bartilucci, 1999. Remedial Design and Construction Inspection Work Plan, September 28, 1999.

Dvirka and Bartilucci, 2002. Final Remediation Report. July 2002.

Earth Tech Northeast, Inc., 2005. Multi Site Group G Work Plan for Operation, Maintenance, and Monitoring. October 2005.

Earth Tech Northeast, Inc., 2006. Final Semiannual Sampling Report (June 2006 Sampling Event). October 2006.

Earth Tech Northeast, Inc. 2007a. Final Project Management Plan. January 2007.

Earth Tech Northeast, Inc. 2007b. Final Sampling and Analysis Plan. June 2007.

Earth Tech Northeast, Inc., 2008. Final Groundwater Sampling Report (August 2007 Sampling Event). June 2008.

NYSDEC, 1999. Record of Decision, Liberty Industrial Finishing Site, Town of Islip, Suffolk County, Site Number 1-52-108. March 1999.

NYSDEC, 2004. Memorandum to initiate the reclassification of the Liberty Industrial Finishing Site (Site No. 1-52-108) from Class 2 to Class 4 (never completed). August 30, 2004.

Tables

# TABLE 1LIBERTY INDUSTRIAL FINISHING SITE (1-25-108)WELL CONSTRUCTION DATA

|        |            |              |           | Top of    | Top of    | Total   |
|--------|------------|--------------|-----------|-----------|-----------|---------|
| Well   |            |              | Ground    | Riser     | Casing    | Depth   |
| Number | Northing   | Easting      | Elevation | Elevation | Elevation | of Well |
|        |            |              |           |           |           |         |
| MW-1   | 202,384.57 | 2,206,633.80 | 92.92     | 91.57     | 92.92     | 42.5    |
| MW-2   | 202,371.27 | 2,206,596.31 | 92.87     | 91.27     | 92.87     | 54.2    |
| MW-3   | 202,360.99 | 2,206,568.43 | 93.08     | 91.25     | 93.08     | 53.9    |
| MW-4   | 202,344.02 | 2,206,522.24 | 93.09     | 91.61     | 93.09     | 53.4    |
| MW-5   | 202,308.86 | 2,206,350.98 | 92.19     | 93.32     | 93.60     | 50.0    |
| MW-6   | 202,306.77 | 2,206,341.15 | 92.09     | 92.71     | 92.79     | 265.0   |
| MW-10  | 202,243.14 | 2,206,590.12 | 91.84     | 90.40     | 91.84     | 50.0    |
| MW-12  | 201,973.43 | 2,206,863.98 | 91.08     | 89.59     | 89.79     | 49.3    |
| MW-14  | 201,966.33 | 2,206,866.03 | 91.12     | 89.55     | 89.77     | 100.0   |
| MW-16  | 202,243.14 | 2,206,611.76 | 91.97     | 90.48     | 91.97     | 99.2    |
| MW-18  | 202,101.70 | 2,206,373.86 | 93.14     | 91.55     | 92.03     | 150.0   |
| MW-19  | 202,102.30 | 2,206,386.65 | 93.32     | 91.98     | 92.19     | 248.0   |
| MW-20  | 201,798.92 | 2,206,946.09 | 90.27     | 88.59     | 89.08     | 149.5   |
| MW-21  | 201,798.35 | 2,206,950.31 | 90.33     | 88.66     | 89.15     | 110.5   |
|        |            |              |           |           |           |         |

All elevations and depths in feet

Field survey performed by YEC, Inc., on March 23, 2007

(monitoring wells MW-1, 2, 3, 10 and 16 were not surveyed in 2007 as these wells were not included in the sampling at that time, these coordinates are estimated)

Horizontal datum: NAD 1927 State Plan

Vertical datum: NAVD 88, for NGVD 29, add 1.13 feet

### TABLE 2 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) GROUNDWATER ELEVATIONS

| Well #<br>(screen<br>interval) | Reference<br>Elevation<br>(ft, NGVD) | Total<br>Depth of<br>Well (ft) | Date                                                                                   | Depth<br>To Water<br>(ft)                                            | Water Table<br>Elevation<br>(ft, NGVD)                               | Comments                                                                                                    |
|--------------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| MW-1<br>(shallow)              | 91.57                                |                                | 5/24/11<br>8/21/12<br>11/5/13                                                          | dry<br>dry<br>dry                                                    | NA<br>NA<br>NA                                                       | No water was observed in the well<br>No water was observed in the well<br>No water was observed in the well |
| MW-2<br>(shallow)              | 91.27                                | 54.2                           | 5/24/11<br>8/21/12<br>11/5/13                                                          | 42.91<br>44.05<br>43.21                                              | 48.36<br>47.22<br>48.06                                              |                                                                                                             |
| MW-3<br>(shallow)              | 91.25                                | 53.9                           | 5/24/11<br>8/21/12<br>11/5/13                                                          | 42.90<br>44.00<br>45.21                                              | 48.35<br>47.25<br>46.04                                              |                                                                                                             |
| MW-4<br>(shallow)              | 91.61                                | 53.4                           | 5/24/11<br>8/21/12<br>11/5/13                                                          | 43.25<br>44.36<br>46.60                                              | 48.36<br>47.25<br>45.01                                              |                                                                                                             |
| MW-5<br>(shallow)              | 93.23                                | 50.0                           | 6/12/06<br>8/21/07<br>11/13/08<br>3/10/10<br>5/23/11<br>8/21/12<br>11/5/13             | 42.24<br>43.11<br>45.40<br>43.37<br>44.92<br>45.99<br>47.19          | 50.99<br>50.12<br>47.83<br>49.86<br>48.31<br>47.24<br>46.04          |                                                                                                             |
| MW-6<br>(Magothy)              | 92.71                                | 265.0                          | 6/12/06<br>8/21/07<br>11/13/08<br>3/10/10<br>5/23/11<br>8/21/12<br>11/5/13             | 42.19<br>43.15<br>45.23<br>43.12<br>44.76<br>45.70<br>45.95          | 50.52<br>49.56<br>47.48<br>49.59<br>47.95<br>47.01<br>46.76          |                                                                                                             |
| MW-10<br>(shallow)             | 90.40                                | 50.0                           | 5/24/11<br>8/21/12<br>11/5/13                                                          | 42.12<br>43.18<br>43.10                                              | 48.28<br>47.22<br>47.30                                              |                                                                                                             |
| MW-12<br>(shallow)             | 89.59                                | 49.3                           | 6/14/06<br>8/24/07<br>11/13/08<br>12/23/08<br>3/10/10<br>5/24/11<br>8/21/12<br>11/5/13 | 39.09<br>39.95<br>42.25<br>41.81<br>40.07<br>41.69<br>42.75<br>43.00 | 50.50<br>49.64<br>47.34<br>47.78<br>49.52<br>47.90<br>46.84<br>46.59 |                                                                                                             |

AECOM Technical Services Northeast, Inc.

### TABLE 2 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) GROUNDWATER ELEVATIONS

| Well #      | Reference  | Total     | · · · · · · | Depth    | Water Table | Comments |
|-------------|------------|-----------|-------------|----------|-------------|----------|
| (screen     | Elevation  | Depth of  | Date        | To Water | Elevation   |          |
| interval)   | (ft, NGVD) | Well (ft) | -           | (ft)     | (ft, NGVD)  |          |
|             |            |           |             |          |             |          |
| MW-14       | 89.55      | 100.0     | 6/14/06     | 39.13    | 50.42       |          |
| (deep)      |            | 1 '       | 8/24/07     | 40.00    | 49.55       |          |
|             |            | 1 '       | 11/13/08    | 42.35    | 47.20       |          |
| J           |            | 1 '       | 12/23/08    | 41.98    | 47.57       |          |
|             |            | 1 '       | 3/10/10     | 40.18    | 49.37       |          |
|             |            | 1 '       | 5/24/11     | 41.82    | 47.73       |          |
| J           |            | 1 '       | 8/21/12     | 42.86    | 46.69       |          |
|             |            |           | 11/5/13     | 43.02    | 46.53       |          |
|             |            |           |             | 1        | 1           |          |
| MW-16       | 90.48      | 99.2      | 5/24/11     | 42.03    | 48.45       |          |
| (deep)      |            | 1 '       | 8/21/12     | 43.41    | 47.07       |          |
|             |            |           | 11/5/13     | 44.63    | 45.85       |          |
|             |            |           |             |          |             |          |
| _ MW-18     | 91.55      | 150.0     | 6/22/06     | 40.76    | 50.79       |          |
| (very deep) | 1 /        | 1 '       | 8/21/07     | 41.25    | 50.30       |          |
|             | 1 /        | 1 '       | 11/13/08    | 43.80    | 47.75       |          |
|             |            | 1 '       | 3/10/10     | 41.82    | 49.73       |          |
|             |            | 1 '       | 5/24/11     | 43.41    | 48.14       |          |
|             | 1 /        | 1 '       | 8/21/12     | 44.47    | 47.08       |          |
|             |            |           | 11/5/13     | 45.69    | 45.86       |          |
| N/\\/_1Q    | 01.08      | 265.0     | 6/22/06     | 11.05    | 50.03       |          |
| (Magothy)   | 91.90      | 200.0     | 8/21/07     | 41.60    | 50.00       |          |
| (magoury)   |            | 1 '       | 11/13/08    | 41.00    | 18.08       |          |
|             |            | 1 '       | 3/10/10     | 43.30    | 40.00       |          |
|             | 1 /        | 1 '       | 5/24/11     | 42.70    | 43.20       |          |
|             |            | 1 '       | 8/21/12     | 45 51    | 46.47       |          |
|             |            | 1 '       | 11/5/13     | 44 52    | 47.46       |          |
|             |            |           | 11/3/13     | 44.52    |             |          |
| MW-20       | 88.59      | 149.5     | 6/14/06     | 38.29    | 50.30       |          |
| (very deep) |            | 1 '       | 8/21/07     | 39.18    | 49.41       |          |
|             |            | 1 '       | 11/13/08    | 41.20    | 47.39       |          |
|             |            | 1 '       | 3/10/10     | 39.30    | 49.29       |          |
|             |            | 1 '       | 5/24/11     | 40.95    | 47.64       |          |
|             |            | 1 '       | 8/21/12     | 41.99    | 46.60       |          |
|             |            | 1         | 11/5/13     | 43.24    | 45.35       |          |
|             | 1 1        | 1 '       | 1 !         | 1        |             |          |

### TABLE 2 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) GROUNDWATER ELEVATIONS

| Well #<br>(screen<br>interval) | Reference<br>Elevation<br>(ft, NGVD) | Total<br>Depth of<br>Well (ft) | Date                                                                       | Depth<br>To Water<br>(ft)                                   | Water Table<br>Elevation<br>(ft, NGVD)                      | Comments |
|--------------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------|
| MW-21<br>(deep)                | 88.66                                | 110.5                          | 6/14/06<br>8/21/07<br>11/13/08<br>3/10/10<br>5/24/11<br>8/21/12<br>11/5/13 | 38.30<br>39.20<br>41.47<br>39.31<br>40.94<br>41.97<br>43.20 | 50.36<br>49.46<br>47.19<br>49.35<br>47.72<br>46.69<br>45.46 |          |

All measurements were taken from the top of PVC casing

Well Screen Interval

Shallow - 50 ft bgs Deep - 100 ft bgs Very deep - 150 ft bgs Magothy - 250 ft bgs

### TABLE 3 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) JUNE 2006 THROUGH NOVEMBER 2013 SAMPLING EVENTS SUMMARY OF TAL METALS IN GROUNDWATER

| Sample Location     | NYSDEC   | MW-2       | MW-2     | MW-2       | MW-2     | MW-2        | MW-2        |
|---------------------|----------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-2      | LMW-2    | LMW-2      | LMW-2F   | LMW-2       | LMW-2F      |
| Laboratory ID       | Ground   | K0943-11   | K0943-12 | L1807-12   | L1808-12 | AC75576-029 | AC75576-030 |
| Sample Date         | Water    | 5/26/11    | 5/26/11  | 8/23/12    | 8/23/12  | 11/6/13     | 11/6/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | 118 B      | ND       | 602        | ND       | ND          | ND          |
| Antimony            | 3        | ND         | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND         | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 44.6 B     | 44.9 B   | 39.5 B     | 31.9 B   | ND          | ND          |
| Beryllium           | 3        | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 8.5        | 5.5      | 3.5 B      | 2.7 B    | ND          | ND          |
| Calcium             | NC       | 16,300     | 16,700   | 20,400     | 21,500   | 30,000      | 29,000      |
| Chromium            | 50       | 51.9       | 48.2     | 26.7       | 12.0 B   | 62.0        | 59.0        |
| Cobalt              | NC       | ND         | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | 24 B       | ND       | 14.4 B     | 4.2 B    | ND          | ND          |
| Iron                | 300      | 205        | ND       | 853        | ND       | ND          | ND          |
| Lead                | 25       | ND         | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 3,180      | 3,250    | 3,720      | 3,870    | ND          | ND          |
| Manganese           | 300      | ND         | ND       | 17.7 B     | ND       | ND          | ND          |
| Mercury             | 0.7      | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 5.5 B      | 2.7 B    | 4.6 B      | 3.3 B    | ND          | ND          |
| Potassium           | NC       | 2,720      | 2,610    | 1,710 E    | 1,660    | ND          | ND          |
| Selenium            | 10       | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 21,300     | 22,400   | 21,400     | 22,900   | 15,000      | 16,000      |
| Thallium            | 0.50     | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | ND         | ND       | 1.4 B      | ND       | ND          | ND          |
| Zinc                | 2,000    | 29.2 B     | 24.8 B   | 51.0       | 26.1 B   | ND          | ND          |

Notes:

All values in μg/L NC - No NYSDEC criterion E - Estimated value due to interference

N - Spike recovery outside control limits

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

### TABLE 3 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) JUNE 2006 THROUGH NOVEMBER 2013 SAMPLING EVENTS SUMMARY OF TAL METALS IN GROUNDWATER

| Sample Location     | NYSDEC   | MW-3       | MW-3     | MW-3       | MW-3     | MW-3        | MW-3        |
|---------------------|----------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-3      | LMW-3    | LMW-3      | LMW-3F   | LMW-3       | LMW-3F      |
| Laboratory ID       | Ground   | K0943-13   | K0943-14 | L1807-13   | L1808-13 | AC75576-001 | AC75576-002 |
| Sample Date         | Water    | 5/26/11    | 5/26/11  | 8/23/12    | 8/23/12  | 11/4/13     | 11/4/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | 346        | ND       | 360        | ND       | 470         | ND          |
| Antimony            | 3        | ND         | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND         | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 19.1 B     | 18.1 B   | 28.9 B     | 27.9 B   | ND          | ND          |
| Beryllium           | 3        | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 6.6        | 4.6 B    | 3.0 B      | 2.8 B    | 4.7         | 3.5         |
| Calcium             | NC       | 16,900     | 16,800   | 28,600     | 29,400   | 29,000      | 27,000      |
| Chromium            | 50       | 59.6       | 32.6     | 118        | 103      | 140         | 95.0        |
| Cobalt              | NC       | ND         | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | 45.5       | 11.7 B   | 14.2 B     | 6.5 B    | ND          | ND          |
| Iron                | 300      | 462        | ND       | 414        | 45.4 B   | 650         | ND          |
| Lead                | 25       | 14.1       | ND       | ND         | ND       | 8.5         | ND          |
| Magnesium           | 35,000   | 2710       | 2,760    | 5,100      | 5,180    | ND          | ND          |
| Manganese           | 300      | 11.8 B     | ND       | ND         | ND       | ND          | ND          |
| Mercury             | 0.7      | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 6.7 B      | 4.3 B    | 3.8 B      | 3.4 B    | ND          | ND          |
| Potassium           | NC       | 1,950      | 1,770    | 2,560 E    | 2,480    | ND          | ND          |
| Selenium            | 10       | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 12,400     | 13,200   | 30,800     | 31,000   | 38,000      | 35,000      |
| Thallium            | 0.50     | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | 1.4 B      | ND       | 1.1 B      | ND       | ND          | ND          |
| Zinc                | 2,000    | 54.9       | 40.4 B   | 19.6 B     | 19.3 B   | ND          | ND          |

Notes:

E - Estimated value due to interference

N - Spike recovery outside control limits

ND - Not Detected

NC - No NYSDEC criterion

B - Estimated value

All values in µg/L

BOLD/Italics - Exceeds criterion
| Sample Location     | NYSDEC   | EC MW-4 MW-4 |          | MW-4       | MW-4     | MW-4        | MW-4        |  |
|---------------------|----------|--------------|----------|------------|----------|-------------|-------------|--|
| Sample ID           | Class GA | LMW-4        | LMW-4    | LMW-4      | LMW-4F   | LMW-4       | LMW-4F      |  |
| Laboratory ID       | Ground   | K0943-15     | K0943-16 | L1807-14   | L1808-14 | AC75576-003 | AC75576-004 |  |
| Sample Date         | Water    | 5/26/11      | 5/26/11  | 8/23/12    | 8/23/12  | 11/4/13     | 11/4/13     |  |
| Filtered/Unfiltered | Criteria | Unfiltered   | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |  |
|                     |          | conc.        | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |  |
| Aluminum            | NC       | 2,560        | ND       | 1,980      | 1,130    | 310         | ND          |  |
| Antimony            | 3        | ND           | ND       | ND         | ND       | ND          | ND          |  |
| Arsenic             | 25       | 4.8 B        | ND       | 6.4 B      | ND       | ND          | ND          |  |
| Barium              | 1,000    | 27.1 B       | 13.2 B   | 22.8 B     | 21.6 B   | ND          | ND          |  |
| Beryllium           | 3        | ND           | ND       | ND         | ND       | ND          | ND          |  |
| Cadmium             | 5        | 54.2         | 19.8     | 28.2       | 27.3     | 26.0        | 21.0        |  |
| Calcium             | NC       | 14,200       | 12,300   | 18,700     | 19,600   | 33,000      | 30,000      |  |
| Chromium            | 50       | 176          | 142      | 74.9       | 58.7     | ND          | ND          |  |
| Cobalt              | NC       | 3.3 B        | 2.6 B    | 0.73 B     | ND       | ND          | ND          |  |
| Copper              | 200      | 137          | 43.5     | 69.7       | 58.9     | ND          | ND          |  |
| Iron                | 300      | 2,660        | 109 B    | 2,000      | 1,110    | 320         | ND          |  |
| Lead                | 25       | 43.2         | ND       | 15.5       | 9.8 B    | ND          | ND          |  |
| Magnesium           | 35,000   | 1,710        | 1,270    | 2,770      | 2,870    | ND          | ND          |  |
| Manganese           | 300      | 47.1 B       | 12.3 B   | 18.4 B     | 14.4 B   | ND          | ND          |  |
| Mercury             | 0.7      | 0.036 B      | ND       | ND         | ND       | ND          | ND          |  |
| Nickel              | 100      | 43.5 B       | 12.8 B   | 17.5 B     | 15.8 B   | ND          | ND          |  |
| Potassium           | NC       | 6,600        | 6,790    | 2,340 E    | 2,460    | ND          | ND          |  |
| Selenium            | 10       | ND           | ND       | ND         | ND       | ND          | ND          |  |
| Silver              | 50       | ND           | ND       | ND         | ND       | ND          | ND          |  |
| Sodium              | 20,000   | 26,100       | 29,100   | 13,400     | 14,400   | 21,000      | 21,000      |  |
| Thallium            | 0.50     | ND           | ND       | ND         | ND       | ND          | ND          |  |
| Vanadium            | NC       | 7.0 B        | 1.2 B    | 4.9 B      | 3.2 B    | ND          | ND          |  |
| Zinc                | 2,000    | 630          | 109      | 257        | 220      | 160         | 130         |  |

Notes:

All values in µg/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

E - Estimated value due to interference

N - Spike recovery outside control limits

| Sample Location     | NYSDEC   | MW-5         | MW-5       | MW-5       | MW-5       | MW-5       | MW-5     | MW-5       | MW-5     | MW-5        | MW-5        |
|---------------------|----------|--------------|------------|------------|------------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-5        | LMW-5      | LMW-5      | LMW-5      | LMW-5      | LMW-5    | LMW-5      | LMW-5F   | LMW-5       | LMW-5F      |
| Laboratory ID       | Ground   | E0833-01A    | F1192-04A  | G2136-07A  | J0429-01A  | K0919-02   | K0919-01 | L1807-01   | L1808-01 | AC75576-009 | AC75576-010 |
| Sample Date         | Water    | 6/12/06      | 8/23/07    | 11/14/08   | 3/8/10     | 5/23/11    | 5/23/11  | 8/20/12    | 8/20/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered   | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q      | conc. Q    | conc. Q    | conc. Q    | conc.      | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | 238          | 157 B      | ND         | 87.5 BE    | ND         | ND       | 245        | 157 B    | ND          | ND          |
| Antimony            | 3        | <b>3.7</b> B | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | 2.2 B        | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 49.3 B       | 50.0 B     | 45.7 B     | 49.4 B     | 9 B        | 8.3 B    | 56.9 B     | 60.4 B   | ND          | ND          |
| Beryllium           | 3        | ND           | ND         | ND         | 0.089 B    | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 0.13 B       | 0.51 B     | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Calcium             | NC       | 19,000       | 15,000     | 16,900     | 14,100     | 6,280      | 5400     | 17,800     | 18,600   | 16,000      | 18,000      |
| Chromium            | 50       | 18.2 B       | 42.2       | 7.3 B      | 29.0       | 1.8 B      | 0.88 B   | 1.7 B      | 1.5 B    | ND          | ND          |
| Cobalt              | NC       | 0.67 B       | 1.4 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | 23.8 B       | 10.9 B     | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Iron                | 300      | 198 B        | 122 B      | ND         | 107 BN     | 151 BN     | 54.3 BN  | 52.4 B     | ND       | ND          | ND          |
| Lead                | 25       | 1.3 B        | 3.4 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 2,040 E      | 1,870      | 2,040      | 1,830      | 2,370      | 2,140    | 3,210      | 3,390    | ND          | ND          |
| Manganese           | 300      | 15.1 B       | 13.7 B     | 6.8 B      | 16.5 B     | 10.4 B     | ND       | 68.2       | 67.4     | ND          | ND          |
| Mercury             | 0.7      | ND           | ND         | ND         | 0.056 B    | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 3.3 B        | 1.1 B      | ND         | 1.2 B      | 2.5 B      | 1.3 B    | 2.3 B      | 2.9 B    | ND          | ND          |
| Potassium           | NC       | 4,330        | 4,500      | 4,380      | 4,740      | 627 B      | 613 B    | 5,410 E    | 5,440    | ND          | ND          |
| Selenium            | 10       | ND           | 7.4 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND           | 4.0 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 4,460        | 7,800      | 7,570      | 6,570      | 8,000      | 7,420    | 18,100     | 19,000   | 9,100       | 11,000      |
| Thallium            | 0.50     | ND           | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | ND           | 0.59 B     | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Zinc                | 2,000    | 29.1 B       | 18.4 B     | 13.7 B     | 15.2 B     | 27.9 B     | 24.5 B   | 10.5 B     | 10.3 B   | ND          | ND          |

Notes:

All values in μg/L NC - No NYSDEC criterion

ND - Not Detected

E - Estimated value due to interference

N - Spike recovery outside control limits

B - Estimated value

BOLD/Italics - Exceeds criterion

| Sample Location     | NYSDEC   | MW-6         | MW-6       | MW-6       | MW-6       | MW-6       | MW-6     | MW-6       | MW-6     | MW-6        | MW-6        |
|---------------------|----------|--------------|------------|------------|------------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-6        | LMW-6      | LMW-6      | LMW-6      | LMW-6      | LMW-6    | LMW-6      | LMW-6F   | LMW-6       | LMW-6F      |
| Laboratory ID       | Ground   | E0833-02A    | F1192-09A  | G2136-06A  | J0429-03A  | K0919-04   | K0919-03 | L1807-03   | L1808-03 | AC75576-011 | AC75576-012 |
| Sample Date         | Water    | 6/12/06      | 8/24/07    | 11/14/08   | 3/8/10     | 5/23/11    | 5/23/11  | 8/20/12    | 8/20/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered   | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q      | conc. Q    | conc. Q    | conc. Q    | conc.      | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | ND           | 398        | ND         | 50.2 BE    | ND         | ND       | 488        | ND       | ND          | ND          |
| Antimony            | 3        | <b>3.1</b> B | 8.0 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND           | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 24.9 B       | 29.6 B     | 15.7 B     | 11.3 B     | 34.4 B     | 33.9 B   | 14.4 B     | 2.7 B    | ND          | ND          |
| Beryllium           | 3        | ND           | ND         | ND         | 0.062 B    | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | ND           | 12.6       | 0.55 B     | 0.62 B     | ND         | ND       | ND         | ND       | ND          | ND          |
| Calcium             | NC       | 9,880        | 10,000     | 8,300      | 6,120      | 19,500     | 20,000   | 7,700      | 7,750    | 5,800       | 6,100       |
| Chromium            | 50       | 0.79 B       | 28.7       | ND         | 1.9 B      | 15.7 B     | 14.7 B   | 2.1 B      | ND       | ND          | ND          |
| Cobalt              | NC       | 0.31 B       | 2.2 B      | ND         | ND         | ND         | ND       | 0.86 B     | ND       | ND          | ND          |
| Copper              | 200      | 15.6 B       | 31.3       | ND         | 5.6 B      | ND         | ND       | 4.0 B      | ND       | ND          | ND          |
| Iron                | 300      | 45.2 B       | 3,120      | 147 B      | 137 BN     | ND         | ND       | 338        | 39.8 B   | ND          | ND          |
| Lead                | 25       | ND           | 15.8       | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 2,980 E      | 2,630      | 2,590      | 1,970      | 2,190      | 2,240    | 3,180      | 3,180    | ND          | ND          |
| Manganese           | 300      | 5.9 B        | 60.9       | 40.8 B     | 11.4 B     | ND         | ND       | 21.8 B     | ND       | ND          | ND          |
| Mercury             | 0.7      | ND           | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 3.6 B        | 12.3 B     | 2.2 B      | 1.9 B      | ND         | ND       | 2.4 B      | 2.0 B    | ND          | ND          |
| Potassium           | NC       | 759 B        | 1,390      | 2,060      | 1,180      | 3,500      | 3,530    | 753 B      | 552 B    | ND          | ND          |
| Selenium            | 10       | 1.6 B        | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND           | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 10,100       | 9,950      | 11,600     | 7,660      | 7,760      | 7,890    | 10,000     | 10,300   | 7,600       | 7,700       |
| Thallium            | 0.50     | ND           | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | ND           | 2.0 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Zinc                | 2,000    | 24.8 B       | 118        | 21.9 B     | 25.4 B     | 16.6 B     | 18.8 B   | 12.4 B     | 7.9 B    | ND          | ND          |

Notes:

All values in µg/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

| Sample Location     | NYSDEC   | MW-10      | MW-10    | MW-10      | MW-10    | MW-10       | MW-10       |  |
|---------------------|----------|------------|----------|------------|----------|-------------|-------------|--|
| Sample ID           | Class GA | LMW-10     | LMW-10   | LMW-10     | LMW-10F  | LMW-10      | LMW-10F     |  |
| Laboratory ID       | Ground   | K0943-03   | K0943-04 | L1807-10   | L1808-10 | AC75576-005 | AC75576-006 |  |
| Sample Date         | Water    | 5/26/11    | 5/26/11  | 8/23/12    | 8/23/12  | 11/4/13     | 11/4/13     |  |
| Filtered/Unfiltered | Criteria | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |  |
|                     |          | conc. Q    | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |  |
| Aluminum            | NC       | 101 B      | ND       | 159 B      | ND       | 210         | ND          |  |
| Antimony            | 3        | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Arsenic             | 25       | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Barium              | 1,000    | 35.0 B     | 32.5 B   | 28.7 B     | 28.1 B   | ND          | ND          |  |
| Beryllium           | 3        | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Cadmium             | 5        | 10.3       | 11.3     | 36.1       | 34.9     | 49.0        | 50.0        |  |
| Calcium             | NC       | 18,700     | 18,700   | 25,900     | 26,000   | 28,000      | 28,000      |  |
| Chromium            | 50       | 72.7       | 89.3     | 152        | 155      | 140         | 140         |  |
| Cobalt              | NC       | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Copper              | 200      | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Iron                | 300      | 245        | ND       | 391        | ND       | 420         | ND          |  |
| Lead                | 25       | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Magnesium           | 35,000   | 3,700      | 3,590    | 3,640      | 3,650    | ND          | ND          |  |
| Manganese           | 300      | 16.8 B     | ND       | 18.9 B     | ND       | ND          | ND          |  |
| Mercury             | 0.7      | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Nickel              | 100      | 1.6 B      | 0.91 B   | 3.5 B      | 3.5 B    | ND          | ND          |  |
| Potassium           | NC       | 2,380      | 2,530    | 4,810 E    | 4,770    | ND          | ND          |  |
| Selenium            | 10       | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Silver              | 50       | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Sodium              | 20,000   | 17,100     | 19,300   | 14,800     | 14,900   | 9,200       | 9,300       |  |
| Thallium            | 0.50     | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Vanadium            | NC       | ND         | ND       | ND         | ND       | ND          | ND          |  |
| Zinc                | 2,000    | 27.1 B     | 21.7 B   | ND         | ND       | ND          | ND          |  |

Notes:

All values in μg/L NC - No NYSDEC criterion E - Estimated value due to interference

N - Spike recovery outside control limits

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

| Sample Location     | NYSDEC   | MW-16      | MW-16    | MW-16      | MW-16    | MW-16       | MW-16       |
|---------------------|----------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-16     | LMW-16   | LMW-16     | LMW-16F  | LMW-16      | LMW-16F     |
| Laboratory ID       | Ground   | K0943-09   | K0943-10 | L1807-11   | L1808-11 | AC75576-007 | AC75576-008 |
| Sample Date         | Water    | 5/26/11    | 5/26/11  | 8/23/12    | 8/23/12  | 11/4/13     | 11/4/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | 1,150      | 586      | 340        | 322      | 1,400       | 440         |
| Antimony            | 3        | ND         | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND         | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 299        | 351      | 339        | 339      | 230         | 240         |
| Beryllium           | 3        | 2.0 B      | 1.8 B    | 0.7 B      | 0.72 B   | 1.5         | 1.2         |
| Cadmium             | 5        | 5.3        | 4.9 B    | 4.2 B      | 4.3 B    | 4.4         | 3.9         |
| Calcium             | NC       | 9,240      | 9,890    | 12,100     | 11,700   | 9,800       | 10,000      |
| Chromium            | 50       | 11.7 B     | 8.9 B    | 2.8 B      | 2.3 B    | ND          | ND          |
| Cobalt              | NC       | ND         | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | 9.4 B      | 11.3 B   | 66.6       | 63.0     | ND          | ND          |
| Iron                | 300      | 115 B      | ND       | 49.9 B     | ND       | 1,800       | ND          |
| Lead                | 25       | ND         | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 2,350      | 2,570    | 3,740      | 3,680    | ND          | ND          |
| Manganese           | 300      | 597        | 623      | 661        | 632      | 570         | 530         |
| Mercury             | 0.7      | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 13.9 B     | 14.1 B   | 11.8 B     | 12.0 B   | ND          | ND          |
| Potassium           | NC       | 4,930      | 4,880    | 6,010 E    | 5,860    | 5,100       | ND          |
| Selenium            | 10       | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 14,700     | 14,500   | 13,900     | 13,500   | 11,000      | 11,000      |
| Thallium            | 0.50     | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | ND         | ND       | ND         | ND       | ND          | ND          |
| Zinc                | 2,000    | 67.5       | 69       | 34.2 B     | 33.2 B   | ND          | ND          |

Notes:

All values in μg/L NC - No NYSDEC criterion E - Estimated value due to interference

N - Spike recovery outside control limits

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

| Sample Location     | NYSDEC   | MW-12      | MW-12         | MW-12      | MW-12           | MW-12           | MW-12          | MW-12      | MW-12    | MW-12       | MW-12       |
|---------------------|----------|------------|---------------|------------|-----------------|-----------------|----------------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-12     | LMW-12        | LMW-12     | LMW-12          | LMW-12          | LMW-12         | LMW-12     | LMW-12F  | LMW-12      | LMW-12F     |
| Laboratory ID       | Ground   | E0833-03A  | F1192-05A     | G2415-01   | J0429-04A       | K0919-06        | K0919-05       | L1807-06   | L1808-06 | AC75576-023 | AC75576-024 |
| Sample Date         | Water    | 6/14/06    | 8/24/07       | 12/23/08   | 3/9/10          | 5/24/11         | 5/24/11        | 8/21/12    | 8/21/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Unfiltered    | Unfiltered | Unfiltered      | Unfiltered      | Filtered       | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q       | conc. Q    | conc. Q         | conc.           | conc. Q        | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | 445        | 9,070         | 2,260      | 33,600 E        | 12,000          | ND             | 1,560      | ND       | 810         | ND          |
| Antimony            | 3        | 1.8 B      | <b>11.2</b> B | ND         | 13.9 B          | ND              | ND             | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND         | 3.3 B         | ND         | 14.2 B          | 5.1 B           | ND             | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 45.2 B     | 75.4 B        | 60.5 B     | 188 B           | 88.9 B          | 28.1 B         | 44.6 B     | 48.2 B   | ND          | 51          |
| Beryllium           | 3        | 0.38 B     | 0.24 B        | 0.19 B     | 2.1 B           | 0.79 B          | ND             | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 0.52 B     | 5.6           | 25.5       | 205             | 54.8            | 4.5 B          | 4.4 B      | 9.3      | 2.9         | ND          |
| Calcium             | NC       | 13,100     | 26,900        | 19,700     | 29,900          | 23,300          | 18,700         | 10,900     | 28,900   | 40,000      | 44,000      |
| Chromium            | 50       | 2.5 B      | 37.5          | 18.9 B     | 251             | 72.8            | ND             | 103        | ND       | ND          | ND          |
| Cobalt              | NC       | 0.63 B     | 5.5 B         | 2.6 B      | 12.8 B          | 4.1 B           | ND             | ND         | ND       | ND          | ND          |
| Copper              | 200      | 14.9 B     | 85.3          | 63.5       | 377             | 147             | ND             | 10.6 B     | ND       | ND          | ND          |
| Iron                | 300      | 467        | 10,900        | 4,080      | <b>38,100</b> N | <i>11,300</i> N | <b>1,620</b> N | 1,740      | 39.0 B   | 740         | ND          |
| Lead                | 25       | 7.7 B      | 106           | 83.7       | 553             | 230             | ND             | 19.4       | ND       | 9.9         | ND          |
| Magnesium           | 35,000   | 3,710 E    | 6,830         | 4,330      | 10,900          | 5,760           | 3,310          | 2,540      | 5,600    | 6,400       | 7,200       |
| Manganese           | 300      | 77.3       | 96.9          | 82.7       | 253             | 77.6            | 37.3 B         | 211        | ND       | ND          | ND          |
| Mercury             | 0.7      | ND         | ND            | ND         | 0.54            | ND              | ND             | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 3.4 B      | 12.4 B        | 14.9 B     | 57.1            | 18.5 B          | 1.9 B          | 6.4 B      | 2.0 B    | ND          | ND          |
| Potassium           | NC       | 2,280      | 2,700         | 2,540      | 3,810           | 3,670           | 2,870          | 4,350 E    | 2,970    | ND          | ND          |
| Selenium            | 10       | 2.6 B      | ND            | ND         | 13.4 B          | ND              | ND             | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | ND            | 7.6 B      | ND              | ND              | ND             | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 11,700     | 13,400        | 27,100     | 33,600          | 8,250           | 7,660          | 15,400     | 16,200   | 12,000      | 14,000      |
| Thallium            | 0.50     | ND         | ND            | ND         | ND              | ND              | ND             | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | 0.77 B     | 28.8 B        | 8.6 B      | 89.7            | 33 B            | 1.5 B          | 3.9 B      | ND       | ND          | ND          |
| Zinc                | 2,000    | 26.1 B     | 246           | 220        | 1,280           | 488             | 52.1           | 32.5 B     | 55.9     | ND          | ND          |

Notes:

All values in µg/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

| Sample Location     | NYSDEC   | MW-14      | MW-14      | MW-14      | MW-14      | MW-14      | MW-14    | MW-14      | MW-14    | MW-14       | MW-14       |
|---------------------|----------|------------|------------|------------|------------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-14     | LMW-14     | LMW-14     | LMW-14     | LMW-14     | LMW-14   | LMW-14     | LMW-14F  | LMW-14      | LMW-14F     |
| Laboratory ID       | Ground   | E0833-04A  | F1192-06A  | G2415-02   | J0429-05A  | K0919-08   | K0919-07 | L1807-07   | L1808-07 | AC75576-021 | AC75576-022 |
| Sample Date         | Water    | 6/14/06    | 8/24/07    | 12/23/08   | 3/9/10     | 5/24/11    | 5/24/11  | 8/21/12    | 8/21/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q    | conc. Q    | conc. Q    | conc.      | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | 780        | 314        | 7,090      | 4,830 E    | 652        | ND       | 314        | 954      | 5,300       | ND          |
| Antimony            | 3        | 1.5 B      | ND         | ND         | ND         | ND         | ND       | ND         | ND       | 2.2         | ND          |
| Arsenic             | 25       | ND         | ND         | 5.6 B      | 6.0 B      | 5.6 B      | ND       | ND         | ND       | 3.2         | ND          |
| Barium              | 1,000    | 40.5 B     | 31.5 B     | 162 B      | 107 B      | 57.1 B     | 50.4 B   | 47.2 B     | 43.3 B   | 56.0        | ND          |
| Beryllium           | 3        | ND         | ND         | 0.38 B     | 0.28 B     | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 4.9 B      | 1.5 B      | 59.1       | 26         | 9.2        | 7.6      | 9.3        | 3.7 B    | 6.6         | 2.4         |
| Calcium             | NC       | 13,100     | 12,900     | 35,800     | 18,700     | 18,300     | 18,400   | 28,100     | 10,900   | 11,000      | 12,000      |
| Chromium            | 50       | 95.8       | 248        | 69.6       | 68.6       | 51.3       | 29.6     | 2.4 B      | 88.2     | 170         | ND          |
| Cobalt              | NC       | 2.0 B      | 1.2 B      | 5.1 B      | 2.7 B      | 0.72 B     | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | 22.2 B     | 8.9 B      | 110        | 42.8       | 13.6 B     | ND       | 5.0 B      | 7.2 B    | ND          | ND          |
| Iron                | 300      | 728        | 389        | 9,320      | 14,000 N   | 1,780 N    | 1,430 N  | 279        | 1,180    | 6,000       | 930         |
| Lead                | 25       | 2.9 B      | 3.4 B      | 221        | 76.5       | 18.8       | ND       | ND         | 13.2     | 53.0        | 3.7         |
| Magnesium           | 35,000   | 1,610 E    | 3,000      | 6,340      | 2,910      | 3,840      | 3,700    | 5,450      | 2,470    | ND          | ND          |
| Manganese           | 300      | 35.3 B     | 21.2 B     | 231        | 186        | 260        | 235      | ND         | 211      | 290         | 300         |
| Mercury             | 0.7      | ND         | ND         | ND         | 0.1 B      | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 7.5 B      | 4.4 B      | 53.2       | 18.3 B     | 11.8 B     | 8.7 B    | 1.1 B      | 6.1 B    | ND          | ND          |
| Potassium           | NC       | 3,320      | 4,140      | 7,090      | 1,670      | 4,430      | 4,570    | 2,990 E    | 4,170    | 5,000       | ND          |
| Selenium            | 10       | ND         | 6.7 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | 3.2 B      | 4.3 B      | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 31,900     | 28,900     | 561,000    | 25,400     | 20,400     | 20,300   | 15,400     | 15,400   | 10,000      | 12,000      |
| Thallium            | 0.50     | ND         | 3.4 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | 0.58 B     | 0.51 B     | 22.5 B     | 12.6 B     | 2.4 B      | ND       | 1.9 B      | 2.3 B    | ND          | ND          |
| Zinc                | 2,000    | 40.1 B     | 27.5 B     | 520        | 279        | 99.1       | 70.1     | 56.3       | 25.5 B   | 94.0        | ND          |

Notes:

All values in µg/L

NC - No NYSDEC criterion

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

AECOM Technical Services Northeast, Inc.

| Sample Location     | NYSDEC   | MW-18      | MW-18      | MW-18        | MW-18        | MW-18        | MW-18    | MW-18      | MW-18    | MW-18       | MW-18       |
|---------------------|----------|------------|------------|--------------|--------------|--------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-18     | LMW-18     | LMW-18       | LMW-18       | LMW-18       | LMW-18   | LMW-18     | LMW-18F  | LMW-18      | LMW-18F     |
| Laboratory ID       | Ground   | E0868-14A  | F1192-08A  | G2136-02A    | J0429-06A    | K0919-10     | K0919-09 | L1807-04   | L1808-04 | AC75576-013 | AC75576-014 |
| Sample Date         | Water    | 6/22/06    | 8/24/07    | 11/13/08     | 3/10/10      | 5/24/11      | 5/24/11  | 8/21/12    | 8/21/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Unfiltered | Unfiltered   | Unfiltered   | Unfiltered   | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q    | conc. Q      | conc. Q      | conc.        | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | 135 B      | 252        | 196 B        | 716 E        | 193 B        | ND       | ND         | 164 B    | ND          | ND          |
| Antimony            | 3        | ND         | ND         | <b>9.0</b> B | <b>5.2</b> B | ND           | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND         | ND         | ND           | ND           | ND           | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 74.8 B     | 92.5 B     | 86.4 B       | 103 B        | 101 B        | 104 B    | 61.3 B     | 64.8 B   | 62.0        | 61.0        |
| Beryllium           | 3        | ND         | ND         | ND           | 0.12 B       | ND           | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 0.33 B     | 1.3 B      | 0.92 B       | 0.86 B       | 3.0 B        | 2.9 B    | ND         | ND       | ND          | ND          |
| Calcium             | NC       | 12,800     | 15,500     | 13,500       | 18,900       | 21,100       | 21,900   | 15,800     | 15,700   | 19,000      | 20,000      |
| Chromium            | 50       | 3.3 B      | 2.1 B      | 5.4 B        | 6.5 B        | 3.1 B        | 2.3 B    | 1.9 B      | 3.1 B    | ND          | ND          |
| Cobalt              | NC       | 0.48 B     | 1.3 B      | ND           | 1.0 B        | ND           | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | ND         | 8.1 B      | 11.0 B       | 9.8 B        | 6.9 B        | ND       | ND         | ND       | ND          | ND          |
| Iron                | 300      | 212        | 308        | 307          | 731 N        | <b>327</b> N | ND       | ND         | 277      | ND          | ND          |
| Lead                | 25       | ND         | 3.0 B      | 2.5 B        | 3.9 B        | ND           | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 5,440      | 5,430      | 4,960        | 4,460        | 4,380        | 4,560    | 3,720      | 3,650    | ND          | ND          |
| Manganese           | 300      | 169        | 547        | 122          | 312          | 521          | 421      | 39.1 B     | 539      | 1,200       | ND          |
| Mercury             | 0.7      | ND         | ND         | ND           | 0.057 B      | ND           | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 1.4 B      | 3.1 B      | 3.2 B        | 6.5 B        | 3.4 B        | 2.4 B    | ND         | 1.5 B    | ND          | ND          |
| Potassium           | NC       | 10,800     | 7,290      | 10,200       | 13,500       | 11,500       | 12,500   | 9,220 E    | 8,720    | 8,200       | 7,800       |
| Selenium            | 10       | ND         | ND         | ND           | ND           | ND           | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | 4.0 B      | 1.6 B        | ND           | ND           | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 30,000     | 26,700     | 29,600       | 30,000       | 28,400       | 30,200   | 26,600     | 26,000   | 25,000      | 26,000      |
| Thallium            | 0.50     | ND         | ND         | ND           | ND           | ND           | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | ND         | 0.66 B     | ND           | 0.63 B       | ND           | ND       | ND         | ND       | ND          | ND          |
| Zinc                | 2,000    | 25.0 B     | 34.8 B     | 86.7         | 57.8         | 37.2 B       | 33.8 B   | 16.0 B     | 8.0 B    | ND          | ND          |

Notes:

All values in µg/L

NC - No NYSDEC criterion ND - Not Detected

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

AECOM Technical Services Northeast, Inc.

| Sample Location     | NYSDEC   | MW-19      | MW-19      | MW-19      | MW-19      | MW-19      | MW-19    | MW-19      | MW-19    | MW-19       | MW-19       |
|---------------------|----------|------------|------------|------------|------------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-19     | LMW-19     | LMW-19     | LMW-19     | LMW-19     | LMW-19   | LMW-19     | LMW-19F  | LMW-19      | LMW-19F     |
| Laboratory ID       | Ground   | E0868-15A  | F1192-07A  | G2136-01A  | J0429-07A  | K0919-12   | K0919-11 | L1807-05   | L1808-05 | AC75576-015 | AC75576-016 |
| Sample Date         | Water    | 6/22/06    | 8/24/07    | 11/13/08   | 3/10/10    | 5/24/11    | 5/24/11  | 8/21/12    | 8/21/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q    | conc. Q    | conc. Q    | conc.      | conc. Q  | conc. Q    | conc. Q  | conc.       | conc. Q     |
| Aluminum            | NC       | 53.4 B     | 74.9 B     | ND         | 69.9 BE    | ND         | ND       | ND         | ND       | ND          | ND          |
| Antimony            | 3        | ND         | 6.7 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 14.2 B     | 21.5 B     | 20.0 B     | 18.7 B     | 13.0 B     | 12.6 B   | 11.5 B     | 9.5 B    | ND          | ND          |
| Beryllium           | 3        | ND         | ND         | ND         | 0.046 B    | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 1.1 B      | 8.0        | ND         | 2.7 B      | ND         | 2.4 B    | ND         | ND       | ND          | ND          |
| Calcium             | NC       | 9,900      | 13,000     | 9,700      | 11,500     | 11,600     | 11,700   | 10,600     | 10,100   | 11,000      | 11,000      |
| Chromium            | 50       | 1 B        | 2.0 B      | ND         | 1.8 B      | 0.94 B     | ND       | 0.81 B     | ND       | ND          | ND          |
| Cobalt              | NC       | ND         | 1.2 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | ND         | 11.7 B     | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Iron                | 300      | 54.2 B     | 221        | ND         | 234 N      | 40.1 BN    | ND       | 32.8 B     | ND       | ND          | ND          |
| Lead                | 25       | ND         | 4.1 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 3,180      | 4,600      | 3,970      | 4,350      | 4,460      | 4,480    | 4,130      | 3,920    | ND          | ND          |
| Manganese           | 300      | 3.5 B      | 9.3 B      | 14.9 B     | 8.0 B      | ND         | ND       | ND         | ND       | ND          | ND          |
| Mercury             | 0.7      | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | ND         | 2.9 B      | ND         | 0.96 B     | ND         | ND       | ND         | ND       | ND          | ND          |
| Potassium           | NC       | 816 B      | 949 B      | 947 B      | 1,070      | 993 B      | 1,120    | 890 B      | 867 B    | ND          | ND          |
| Selenium            | 10       | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | 3.3 B      | 1.1 B      | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 10,200     | 14,400     | 13,400     | 14,900     | 14,600     | 14,600   | 14,500     | 13,700   | 14,000      | 14,000      |
| Thallium            | 0.50     | ND         | 2.9 B      | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Zinc                | 2,000    | 42.8 B     | 48.1 B     | 30.5 B     | 47.0 B     | 28.0 B     | 28.2 B   | ND         | ND       | ND          | ND          |

Notes:

All values in µg/L NC - No NYSDEC criterion E - Estimated value due to interference

N - Spike recovery outside control limits

ND - Not Detected B - Estimated value

**BOLD/Italics** - Exceeds criterion

| Sample Location     | NYSDEC   | MW-20      | MW-20      | MW-20      | MW-20      | MW-20      | MW-20    | MW-20      | MW-20    | MW-20       | MW-20       |
|---------------------|----------|------------|------------|------------|------------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-20     | LMW-20     | LMW-20     | LMW-20     | LMW-20     | LMW-20   | LMW-20     | LMW-20F  | LMW-20      | LMW-20F     |
| Laboratory ID       | Ground   | E0833-05A  | F1192-03A  | G2136-04A  | J0429-08A  | K0943-05   | K0943-06 | L1807-09   | L1808-09 | AC75576-025 | AC75576-026 |
| Sample Date         | Water    | 6/14/06    | 8/22/07    | 11/13/08   | 3/9/10     | 5/26/11    | 5/26/11  | 8/21/12    | 8/21/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q    | conc. Q    | conc. Q    | conc.      | conc. Q  | conc. Q    | conc. Q  | conc.       | conc. Q     |
| Aluminum            | NC       | 223        | 299        | 81.6 B     | 404 E      | 303        | ND       | 411        | ND       | ND          | ND          |
| Antimony            | 3        | 1.7 B      | 9.5 B      | ND         | 4.4 B      | ND         | ND       | ND         | ND       | ND          | ND          |
| Arsenic             | 25       | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 38.9 B     | 57.8 B     | 48.8 B     | 35.0 B     | 27.0 B     | 25.4 B   | 42.1 B     | 40 B     | ND          | ND          |
| Beryllium           | 3        | ND         | ND         | ND         | 0.057 B    | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | 1 B        | 0.45 B     | 0.74 B     | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Calcium             | NC       | 13,200     | 20,600     | 4,420      | 9,050      | 7,700      | 7,870    | 17,400     | 16,900   | 19,000      | 18,000      |
| Chromium            | 50       | 4.6 B      | 3.1 B      | 2.1 B      | 5.1 B      | 5.1 B      | 1.1 B    | 2.0 B      | 0.91 B   | ND          | ND          |
| Cobalt              | NC       | 0.92 B     | 2.5 B      | ND         | 1.1 B      | 1.2 B      | 0.93 B   | ND         | ND       | ND          | ND          |
| Copper              | 200      | 13.6 B     | 8.7 B      | ND         | 5.7 B      | 6.0 B      | ND       | ND         | ND       | ND          | ND          |
| Iron                | 300      | 1,710      | 624        | 164 B      | 1,370 N    | 879        | 71.7 B   | 398        | ND       | ND          | ND          |
| Lead                | 25       | 1.5 B      | 3.7 B      | ND         | 4.9 B      | ND         | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 6,050 E    | 9,820      | 3,400      | 4,400      | 3,790      | 3,870    | 8,990      | 8,870    | 9,000       | 9,200       |
| Manganese           | 300      | 27.8 B     | 60.5       | 35.0 B     | 27.1 B     | 17.5 B     | ND       | 23.2 B     | ND       | ND          | ND          |
| Mercury             | 0.7      | ND         | ND         | ND         | 0.064 B    | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 4.6 B      | 2.4 B      | 1.8 B      | 3.5 B      | 1.8 B      | ND       | ND         | 1.0 B    | ND          | ND          |
| Potassium           | NC       | 2,050      | 2,220      | 8,190      | 1,970      | 2,430      | 2,060    | 1,840 E    | 1,710    | ND          | ND          |
| Selenium            | 10       | 1.1 B      | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | 5.2 B      | 0.6 B      | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 21,800     | 31,100     | 29,700     | 39,600     | 38,400     | 40,300   | 21,700     | 21,400   | 21,000      | 22,000      |
| Thallium            | 0.50     | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | 0.48 B     | 1.6 B      | ND         | 1.2 B      | ND         | ND       | ND         | ND       | ND          | ND          |
| Zinc                | 2,000    | 48.7 B     | 32.8 B     | 28.5 B     | 187        | 52.5       | 29.7 B   | ND         | ND       | ND          | ND          |

Notes:

All values in µg/L

NC - No NYSDEC criterion ND - Not Detected

ND - NOL Delected

B - Estimated value

BOLD/Italics - Exceeds criterion

| Sample Location     | NYSDEC   | MW-21      | MW-21      | MW-21      | MW-21      | MW-21      | MW-21    | MW-21      | MW-21    | MW-21       | MW-21       |
|---------------------|----------|------------|------------|------------|------------|------------|----------|------------|----------|-------------|-------------|
| Sample ID           | Class GA | LMW-21     | LMW-21     | LMW-21     | LMW-21     | LMW-21     | LMW-21   | LMW-21     | LMW-21   | LMW-21      | LMW-21F     |
| Laboratory ID       | Ground   | E0833-06A  | F1192-01A  | G2136-05A  | J0429-09A  | K0943-07   | K0943-08 | L1807-08   | L1808-08 | AC75576-027 | AC75576-028 |
| Sample Date         | Water    | 6/14/06    | 8/22/07    | 11/14/08   | 3/9/10     | 5/26/11    | 5/26/11  | 8/21/12    | 8/21/12  | 11/5/13     | 11/5/13     |
| Filtered/Unfiltered | Criteria | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Unfiltered | Filtered | Unfiltered | Filtered | Unfiltered  | Filtered    |
|                     |          | conc. Q    | conc. Q    | conc. Q    | conc. Q    | conc.      | conc. Q  | conc. Q    | conc. Q  | conc. Q     | conc. Q     |
| Aluminum            | NC       | ND         | 197 B      | 457        | 793 E      | 319        | ND       | 746        | ND       | 410         | ND          |
| Antimony            | 3        | 1.9 B      | 6.7 B      | ND         | ND         | ND         | ND       | ND         | 11.9 B   | ND          | ND          |
| Arsenic             | 25       | 2.2 B      | ND         | ND         | ND         | 4.3 B      | ND       | ND         | ND       | ND          | ND          |
| Barium              | 1,000    | 79.3 B     | 60.9 B     | 58.2 B     | 119 B      | 78.8 B     | 76.2 B   | 92.6 B     | 85.9 B   | 67.0        | 67.0        |
| Beryllium           | 3        | ND         | ND         | ND         | 0.16 B     | ND         | ND       | ND         | ND       | ND          | ND          |
| Cadmium             | 5        | ND         | 1.5 B      | 4.8 B      | 1.1 B      | 1.2 B      | ND       | ND         | ND       | ND          | ND          |
| Calcium             | NC       | 7,520      | 5,190      | 11,900     | 12,600     | 17,000     | 16,900   | 14,300     | 14,200   | 14,000      | 14,000      |
| Chromium            | 50       | 0.94 B     | 3.0 B      | 2.3 B      | 9.0 B      | 6.2 B      | 3.3 B    | 13.2 B     | 10.6 B   | ND          | ND          |
| Cobalt              | NC       | 0.48 B     | 1.5 B      | ND         | 1.5 B      | ND         | ND       | ND         | ND       | ND          | ND          |
| Copper              | 200      | ND         | 13.7 B     | 6.6 B      | 8.2 B      | 8.5 B      | ND       | 3.9 B      | ND       | ND          | ND          |
| Iron                | 300      | 31.4 B     | 503        | 198 B      | 1,840 N    | 694        | 32 B     | 1,330      | ND       | 760         | ND          |
| Lead                | 25       | ND         | 4.5 B      | 2.6 B      | 8.2 B      | ND         | ND       | ND         | ND       | ND          | ND          |
| Magnesium           | 35,000   | 5,440 E    | 3,320      | 2,960      | 8,380      | 6,960      | 7,240    | 6,050      | 5,820    | 6,100       | 6,100       |
| Manganese           | 300      | 26.4 B     | 51.8       | 627        | 57.7       | 36.1 B     | 19.7 B   | 96.1       | 56.7     | 100         | 64.0        |
| Mercury             | 0.7      | ND         | ND         | ND         | 0.058 B    | ND         | ND       | ND         | ND       | ND          | ND          |
| Nickel              | 100      | 1.9 B      | 2.4 B      | 6.9 B      | 4.9 B      | 3.3 B      | 1.3 B    | 2.8 B      | 2.4 B    | ND          | ND          |
| Potassium           | NC       | 5,670      | 6,350      | 6,250      | 12,700     | 12,500     | 9,270    | 7,500 E    | 7,050    | 6,200       | 5,800       |
| Selenium            | 10       | 4.1 B      | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Silver              | 50       | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Sodium              | 20,000   | 24,500     | 27,200     | 19,200     | 31,800     | 24,300     | 21,700   | 19,700     | 19,400   | 17,000      | 18,000      |
| Thallium            | 0.50     | ND         | ND         | ND         | ND         | ND         | ND       | ND         | ND       | ND          | ND          |
| Vanadium            | NC       | ND         | 0.063 B    | ND         | 2.1 B      | 1.5 B      | ND       | 1.8 B      | ND       | ND          | ND          |
| Zinc                | 2,000    | 14.2 B     | 40.5 B     | 69.1       | 67.6       | 65.1       | 30.5 B   | 15.5 B     | 6.0 B    | ND          | ND          |

Notes:

All values in μg/L

NC - No NYSDEC criterion ND - Not Detected

ND - Not Detected

B - Estimated value

BOLD/Italics - Exceeds criterion

| TABLE 4                                      |  |
|----------------------------------------------|--|
| LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) |  |
| NOVEMBER 2013 SAMPLING EVENT                 |  |
|                                              |  |

| Sample Location     | NYSDEC   | MW-2        | MW-2        | MW-2      | MW-3        | MW-3        | MW-3      | MW-4        | MW-4        | MW-4      |
|---------------------|----------|-------------|-------------|-----------|-------------|-------------|-----------|-------------|-------------|-----------|
| Sample ID           | Class GA | LMW-2       | LMW-2F      | 1 '       | LMW-3       | LMW-3F      |           | LMW-4       | LMW-4F      |           |
| Laboratory ID       | Ground   | AC75576-029 | AC75576-030 | 1 '       | AC75576-001 | AC75576-002 |           | AC75576-003 | AC75576-004 |           |
| Sample Date         | Water    | 11/6/13     | 11/6/13     | 1 '       | 11/4/13     | 11/4/13     |           | 11/4/13     | 11/4/13     |           |
| Filtered/Unfiltered | Criteria | Unfiltered  | Filtered    | 1 '       | Unfiltered  | Filtered    |           | Unfiltered  | Filtered    |           |
|                     | l'       | conc. Q     | conc. Q     | Dissolved | conc. Q     | conc. Q     | Dissolved | conc. Q     | conc. Q     | Dissolved |
| Aluminum            | NC       | ND          | ND          | NC        | 470         | ND          | NC        | 310         | ND          | NC        |
| Antimony            | 3        | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Arsenic             | 25       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Barium              | 1,000    | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Beryllium           | 3        | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Cadmium             | 5        | ND          | ND          | NC        | 4.7         | 3.5         | 74.5%     | 26          | 21          | 80.8%     |
| Calcium             | NC       | 30,000      | 29,000      | 96.7%     | 29,000      | 27,000      | 93.1%     | 33,000      | 30,000      | 90.9%     |
| Chromium            | 50       | 62          | 59          | 95.2%     | 140         | 95          | 67.9%     | ND          | ND          | NC        |
| Cobalt              | NC       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Copper              | 200      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Iron                | 300      | ND          | ND          | NC        | 650         | ND          | NC        | 320         | ND          | NC        |
| Lead                | 25       | ND          | ND          | NC        | 8.5         | ND          | NC        | ND          | ND          | NC        |
| Magnesium           | 35,000   | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Manganese           | 300      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Mercury             | 0.7      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Nickel              | 100      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Potassium           | NC       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Selenium            | 10       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Silver              | 50       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Sodium              | 20,000   | 15,000      | 16,000      | 106.7%    | 38,000      | 35,000      | 92.1%     | 21,000      | 21,000      | 100.0%    |
| Thallium            | 0.50     | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Vanadium            | NC       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Zinc                | 2,000    | ND          | ND          | NC        | ND          | ND          | NC        | 160         | 130         | 81.3%     |
| Turbidity (NTU)     |          | 11.1        | -           | ·         | 31.7        |             |           | 9.7         |             |           |

Notes:

E - Estimated value due to interference B - Estimated value

ND - Not Detected

All values except turbidity are in micrograms per liter ( $\mu$ g/L)

% Dissolved = filtered conc. / unfiltered conc.

NC - No NYSDEC criterion or Not Calculable

BOLD/Italics - Exceeds criterion

| TABLE 4                                      |  |
|----------------------------------------------|--|
| LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) |  |
| NOVEMBER 2013 SAMPLING EVENT                 |  |

| Sample Location     | NYSDEC   | MW-5        | MW-5        | MW-5      | MW-6        | MW-6        | MW-6      | MW-10       | MW-10       | MW-10     |
|---------------------|----------|-------------|-------------|-----------|-------------|-------------|-----------|-------------|-------------|-----------|
| Sample ID           | Class GA | LMW-5       | LMW-5F      |           | LMW-6       | LMW-6F      |           | LMW-10      | LMW-10F     |           |
| Laboratory ID       | Ground   | AC75576-009 | AC75576-010 |           | AC75576-011 | AC75576-012 |           | AC75576-005 | AC75576-006 |           |
| Sample Date         | Water    | 11/5/13     | 11/5/13     |           | 11/5/13     | 11/5/13     |           | 11/4/13     | 11/4/13     |           |
| Filtered/Unfiltered | Criteria | Unfiltered  | Filtered    |           | Unfiltered  | Filtered    |           | Unfiltered  | Filtered    |           |
|                     |          | conc. Q     | conc. Q     | Dissolved | conc. Q     | conc. Q     | Dissolved | conc. Q     | conc. Q     | Dissolved |
| Aluminum            | NC       | ND          | ND          | NC        | ND          | ND          | NC        | 210         | ND          | NC        |
| Antimony            | 3        | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Arsenic             | 25       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Barium              | 1,000    | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Beryllium           | 3        | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Cadmium             | 5        | ND          | ND          | NC        | ND          | ND          | NC        | 49          | 50          | 102.0%    |
| Calcium             | NC       | 16,000      | 18000       | 112.5%    | 5,800       | 6,100       | 105.2%    | 28,000      | 28,000      | 100.0%    |
| Chromium            | 50       | ND          | ND          | NC        | ND          | ND          | NC        | 140         | 140         | 100.0%    |
| Cobalt              | NC       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Copper              | 200      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Iron                | 300      | ND          | ND          | NC        | ND          | ND          | NC        | 420         | ND          | NC        |
| Lead                | 25       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Magnesium           | 35,000   | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Manganese           | 300      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Mercury             | 0.7      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Nickel              | 100      | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Potassium           | NC       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Selenium            | 10       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Silver              | 50       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Sodium              | 20,000   | 9,100       | 11,000      | 120.9%    | 7,600       | 7,700       | 101.3%    | 9,200       | 9,300       | 101.1%    |
| Thallium            | 0.50     | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Vanadium            | NC       | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Zinc                | 2,000    | ND          | ND          | NC        | ND          | ND          | NC        | ND          | ND          | NC        |
| Turbidity (NTU)     |          | 15.3        |             |           | 17.3        |             |           | 11.9        |             |           |

Notes:

E - Estimated value due to interference B - Estimated value ND - Not Detected All values except turbidity are in micrograms per liter (µg/L)

% Dissolved = filtered conc. / unfiltered conc.

NC - No NYSDEC criterion or Not Calculable

BOLD/Italics - Exceeds criterion

| TABLE 4                                      |
|----------------------------------------------|
| LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) |
| NOVEMBER 2013 SAMPLING EVENT                 |

| Sample Location     | NYSDEC   | MW-12       | MW-12       | MW-12      | MW-14       | MW-14       | MW-14     | MW-16       | MW-16       | MW-16     |
|---------------------|----------|-------------|-------------|------------|-------------|-------------|-----------|-------------|-------------|-----------|
| Sample ID           | Class GA | LMW-12      | LMW-12F     | <u>ا</u> ا | LMW-14      | LMW-14F     |           | LMW-16      | LMW-16F     |           |
| Laboratory ID       | Ground   | AC75576-023 | AC75576-024 | 1 1        | AC75576-021 | AC75576-022 |           | AC75576-007 | AC75576-008 |           |
| Sample Date         | Water    | 11/5/13     | 11/5/13     | 1 1        | 11/5/13     | 11/5/13     |           | 11/4/13     | 11/4/13     |           |
| Filtered/Unfiltered | Criteria | Unfiltered  | Filtered    | 1 1        | Unfiltered  | Filtered    |           | Unfiltered  | Filtered    |           |
|                     |          | conc. Q     | conc. Q     | Dissolved  | conc. Q     | conc. Q     | Dissolved | conc. Q     | conc. Q     | Dissolved |
| Aluminum            | NC       | 810         | ND          | NC         | 5,300       | ND          | NC        | 1,400       | 440         | 31.4%     |
| Antimony            | 3        | ND          | ND          | NC         | 2.2         | ND          | NC        | ND          | ND          | NC        |
| Arsenic             | 25       | ND          | ND          | NC         | 3.2         | ND          | NC        | ND          | ND          | NC        |
| Barium              | 1,000    | ND          | 51          | NC         | 56          | ND          | NC        | 230         | 240         | 104.3%    |
| Beryllium           | 3        | ND          | ND          | NC         | ND          | ND          | NC        | 1.5         | 1.2         | 80.0%     |
| Cadmium             | 5        | 2.9         | ND          | NC         | 6.6         | 2.4         | 36.4%     | 4.4         | 3.9         | 88.6%     |
| Calcium             | NC       | 40,000      | 44,000      | 110.0%     | 11,000      | 12,000      | 109.1%    | 9,800       | 10,000      | 102.0%    |
| Chromium            | 50       | ND          | ND          | NC         | 170         | ND          | NC        | ND          | ND          | NC        |
| Cobalt              | NC       | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Copper              | 200      | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Iron                | 300      | 740         | ND          | NC         | 6,000       | 930         | 15.5%     | 1,800       | ND          | NC        |
| Lead                | 25       | 9.9         | ND          | NC         | 53          | 3.7         | 7.0%      | ND          | ND          | NC        |
| Magnesium           | 35,000   | 6,400       | 7,200       | 112.5%     | ND          | ND          | NC        | ND          | ND          | NC        |
| Manganese           | 300      | ND          | ND          | NC         | 290         | 300         | 103.4%    | 570         | 530         | 93.0%     |
| Mercury             | 0.7      | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Nickel              | 100      | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Potassium           | NC       | ND          | ND          | NC         | 5,000       | ND          | NC        | 5,100       | ND          | NC        |
| Selenium            | 10       | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Silver              | 50       | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Sodium              | 20,000   | 12,000      | 14,000      | 116.7%     | 10,000      | 12,000      | 120.0%    | 11,000      | 11,000      | 100.0%    |
| Thallium            | 0.50     | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Vanadium            | NC       | ND          | ND          | NC         | ND          | ND          | NC        | ND          | ND          | NC        |
| Zinc                | 2,000    | ND          | ND          | NC         | 94          | ND          | NC        | ND          | ND          | NC        |
| Turbidity (NTU)     |          | 33.7        |             |            | 16.9        |             |           | 38.5        |             |           |

Notes:

E - Estimated value due to interference B - Estimated value

ND - Not Detected

All values except turbidity are in micrograms per liter ( $\mu$ g/L)

% Dissolved = filtered conc. / unfiltered conc.

NC - No NYSDEC criterion or Not Calculable

BOLD/Italics - Exceeds criterion

| TABLE 4                                      |  |
|----------------------------------------------|--|
| LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) |  |
| NOVEMBER 2013 SAMPLING EVENT                 |  |

| Sample Location     | NYSDEC   | MW-18       | MW-18       | MW-18     | MW-19       | MW-19       | MW-19     |
|---------------------|----------|-------------|-------------|-----------|-------------|-------------|-----------|
| Sample ID           | Class GA | LMW-18      | LMW-18F     |           | LMW-19      | LMW-19F     |           |
| Laboratory ID       | Ground   | AC75576-013 | AC75576-014 |           | AC75576-015 | AC75576-016 |           |
| Sample Date         | Water    | 11/5/13     | 11/5/13     |           | 11/5/13     | 11/5/13     |           |
| Filtered/Unfiltered | Criteria | Unfiltered  | Filtered    |           | Unfiltered  | Filtered    |           |
|                     |          | conc. Q     | conc. Q     | Dissolved | conc. Q     | conc. Q     | Dissolved |
| Aluminum            | NC       | ND          | ND          | NC        | ND          | ND          | NC        |
| Antimony            | 3        | ND          | ND          | NC        | ND          | ND          | NC        |
| Arsenic             | 25       | ND          | ND          | NC        | ND          | ND          | NC        |
| Barium              | 1,000    | 62          | 61          | 98.4%     | ND          | ND          | NC        |
| Beryllium           | 3        | ND          | ND          | NC        | ND          | ND          | NC        |
| Cadmium             | 5        | ND          | ND          | NC        | ND          | ND          | NC        |
| Calcium             | NC       | 19,000      | 20,000      | 105.3%    | 11,000      | 11,000      | 100.0%    |
| Chromium            | 50       | ND          | ND          | NC        | ND          | ND          | NC        |
| Cobalt              | NC       | ND          | ND          | NC        | ND          | ND          | NC        |
| Copper              | 200      | ND          | ND          | NC        | ND          | ND          | NC        |
| Iron                | 300      | ND          | ND          | NC        | ND          | ND          | NC        |
| Lead                | 25       | ND          | ND          | NC        | ND          | ND          | NC        |
| Magnesium           | 35,000   | ND          | ND          | NC        | ND          | ND          | NC        |
| Manganese           | 300      | 1,200       | ND          | NC        | ND          | ND          | NC        |
| Mercury             | 0.7      | ND          | ND          | NC        | ND          | ND          | NC        |
| Nickel              | 100      | ND          | ND          | NC        | ND          | ND          | NC        |
| Potassium           | NC       | 8,200       | 7,800       | 95.1%     | ND          | ND          | NC        |
| Selenium            | 10       | ND          | ND          | NC        | ND          | ND          | NC        |
| Silver              | 50       | ND          | ND          | NC        | ND          | ND          | NC        |
| Sodium              | 20,000   | 25,000      | 26,000      | 104.0%    | 14,000      | 14,000      | 100.0%    |
| Thallium            | 0.50     | ND          | ND          | NC        | ND          | ND          | NC        |
| Vanadium            | NC       | ND          | ND          | NC        | ND          | ND          | NC        |
| Zinc                | 2,000    | ND          | ND          | NC        | ND          | ND          | NC        |
| Turbidity (NTU)     |          | 2.8         |             |           | 7.9         |             |           |

Notes:

E - Estimated value due to interference

B - Estimated value

ND - Not Detected

BOLD/Italics - Exceeds criterion

All values except turbidity are in micrograms per liter (µg/L) % Dissolved = filtered conc. / unfiltered conc. NC - No NYSDEC criterion or Not Calculable

# TABLE 4 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) NOVEMBER 2013 SAMPLING EVENT

# COMPARISON OF FILTERED AND UNFILTERED METALS DATA IN GROUNDWATER

| Sample Location     | NYSDEC   | MW-20       | MW-20       | MW-20     | MW-21       | MW-21       | MW-21     |
|---------------------|----------|-------------|-------------|-----------|-------------|-------------|-----------|
| Sample ID           | Class GA | LMW-20      | LMW-20F     |           | LMW-21      | LMW-21F     |           |
| Laboratory ID       | Ground   | AC75576-025 | AC75576-026 |           | AC75576-027 | AC75576-028 |           |
| Sample Date         | Water    | 11/5/13     | 11/5/13     |           | 11/5/13     | 11/5/13     |           |
| Filtered/Unfiltered | Criteria | Unfiltered  | Filtered    |           | Unfiltered  | Filtered    |           |
|                     |          | conc. Q     | conc. Q     | Dissolved | conc. Q     | conc. Q     | Dissolved |
| Aluminum            | NC       | ND          | ND          | NC        | 410         | ND          | NC        |
| Antimony            | 3        | ND          | ND          | NC        | ND          | ND          | NC        |
| Arsenic             | 25       | ND          | ND          | NC        | ND          | ND          | NC        |
| Barium              | 1,000    | ND          | ND          | NC        | 67          | 67          | 100.0%    |
| Beryllium           | 3        | ND          | ND          | NC        | ND          | ND          | NC        |
| Cadmium             | 5        | ND          | ND          | NC        | ND          | ND          | NC        |
| Calcium             | NC       | 19,000      | 18,000      | 94.7%     | 14,000      | 14,000      | 100.0%    |
| Chromium            | 50       | ND          | ND          | NC        | ND          | ND          | NC        |
| Cobalt              | NC       | ND          | ND          | NC        | ND          | ND          | NC        |
| Copper              | 200      | ND          | ND          | NC        | ND          | ND          | NC        |
| Iron                | 300      | ND          | ND          | NC        | 760         | ND          | NC        |
| Lead                | 25       | ND          | ND          | NC        | ND          | ND          | NC        |
| Magnesium           | 35,000   | 9,000       | 9,200       | 102.2%    | 6,100       | 6,100       | 100.0%    |
| Manganese           | 300      | ND          | ND          | NC        | 100         | 64          | 64.0%     |
| Mercury             | 0.7      | ND          | ND          | NC        | ND          | ND          | NC        |
| Nickel              | 100      | ND          | ND          | NC        | ND          | ND          | NC        |
| Potassium           | NC       | ND          | ND          | NC        | 6,200       | 5,800       | 93.5%     |
| Selenium            | 10       | ND          | ND          | NC        | ND          | ND          | NC        |
| Silver              | 50       | ND          | ND          | NC        | ND          | ND          | NC        |
| Sodium              | 20,000   | 21,000      | 22,000      | 104.8%    | 17,000      | 18,000      | 105.9%    |
| Thallium            | 0.50     | ND          | ND          | NC        | ND          | ND          | NC        |
| Vanadium            | NC       | ND          | ND          | NC        | ND          | ND          | NC        |
| Zinc                | 2,000    | ND          | ND          | NC        | ND          | ND          | NC        |
| Turbidity (NTU)     |          | 0.0         |             |           | 17.7        |             |           |

Notes:

E - Estimated value due to interference

B - Estimated value

ND - Not Detected

BOLD/Italics - Exceeds criterion

All values except turbidity are in micrograms per liter (μg/L) % Dissolved = filtered conc. / unfiltered conc. NC - No NYSDEC criterion or Not Calculable

NC - No NYSDEC criterion or I

|            | ROD           |              | Restricted Use Category |                           |            |            |  |  |
|------------|---------------|--------------|-------------------------|---------------------------|------------|------------|--|--|
|            | March<br>1991 | Unrestricted | Residential             | Restricted<br>Residential | Commercial | Industrial |  |  |
| Arsenic    | -             | 13           | 16                      | 16                        | 16         | 16         |  |  |
| Cadmium    | 10            | 2.5          | 2.5                     | 4.3                       | 9.3        | 60         |  |  |
| Chromium-6 | 50            | 1            | 22                      | 110                       | 400        | 800        |  |  |
| Chromium-3 | -             | 30           | 36                      | 180                       | 1500       | 6800       |  |  |
| Copper     | 25            | 50           | 270                     | 270                       | 270        | 10000      |  |  |
| Lead       | -             | 63           | 400                     | 400                       | 1000       | 3900       |  |  |
| Nickel     | 13            | 30           | 140                     | 310                       | 310        | 10000      |  |  |
| Zinc       | 47            | 109          | 2200                    | 10000                     | 10000      | 10000      |  |  |
| Cyanide    | NC            | 27           | 27                      | 27                        | 27         | 10000      |  |  |
| Mercury    | -             | 0.18         | 0.81                    | 0.81                      | 2.8        | 5.7        |  |  |

# TABLE 5 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) SOIL SAMPLE RESULTS - JUNE 2013

## **Off-Site Locations**

|          | SS-01 | HA-01  | SS-02 | HA-02 | SS-03 | HA-03 | SS-06 | HA-06 | SS-07 | HA-07 |
|----------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Arsenic  | 3.6   | 1.3    | 4.1   | 3.9   | 5.9   | 4.6   | 5.5   | 4.1   | 3.6   | 4.2   |
| Cadmium  | 0.36  | -      | 0.19  | 0.052 | 0.64  | 0.098 | 0.37  | 0.075 | 0.53  | 0.16  |
| Chromium | 12.6  | 3.9    | 11    | 12    | 20.7  | 19.7  | 10.7  | 12.6  | 8.3   | 12.9  |
| Copper   | 18.4  | 1.3    | 8.7   | 2.6   | 20    | 8.6   | 22.1  | 13.9  | 14.3  | 6     |
| Lead     | 102   | 2.9    | 66.2  | 7.4   | 81.5  | 12.6  | 35.9  | 9.1   | 35.5  | 19.5  |
| Nickel   | 6.6   | 1.9    | 4.9   | 6.1   | 8.1   | 10.9  | 5.5   | 5.3   | 5.5   | 6.4   |
| Zinc     | 60.9  | 6.2    | 20    | 18.2  | 43.1  | 31.1  | 47.2  | 18.4  | 48.6  | 24.5  |
| Mercury  | 0.16  | 0.0092 | 0.11  | 0.013 | 0.098 | 0.034 | 0.057 | 0.018 | 0.039 | 0.026 |

|          | Suffolk Avenue |       |       |       |  |  |  |  |  |  |
|----------|----------------|-------|-------|-------|--|--|--|--|--|--|
|          | SS-04          | HA-04 | SS-05 | HA-05 |  |  |  |  |  |  |
| Arsenic  | 8.8            | 3.3   | 5.3   | 2.9   |  |  |  |  |  |  |
| Cadmium  | 2.9            | 0.1   | 1.5   | 0.23  |  |  |  |  |  |  |
| Chromium | 26.1           | 11.9  | 23.8  | 9.5   |  |  |  |  |  |  |
| Copper   | 45.1           | 4     | 24.4  | 7.6   |  |  |  |  |  |  |
| Lead     | 290            | 14.7  | 126   | 36.1  |  |  |  |  |  |  |
| Nickel   | 18.9           | 5.2   | 7.8   | 3.9   |  |  |  |  |  |  |
| Zinc     | 228            | 18.2  | 143   | 31.5  |  |  |  |  |  |  |
| Mercury  | 0.15           | 0.015 | 0.11  | 0.027 |  |  |  |  |  |  |

SS - Surface soil HA - Hand auger (0 - 0.5 ft bgs)

|            | Dop Destricted Lies Catagory |              |                        |             |            |            |  |  |  |
|------------|------------------------------|--------------|------------------------|-------------|------------|------------|--|--|--|
|            | ROD                          |              | Nesincieu Ose Calegoly |             |            |            |  |  |  |
|            | March                        | Unrestricted | Residential            | Restricted  | Commercial | Industrial |  |  |  |
|            | 1991                         |              |                        | Residential | ••••••     |            |  |  |  |
| Arsenic    | -                            | 13           | 16                     | 16          | 16         | 16         |  |  |  |
| Cadmium    | 10                           | 2.5          | 2.5                    | 4.3         | 9.3        | 60         |  |  |  |
| Chromium-6 | 50                           | 1            | 22                     | 110         | 400        | 800        |  |  |  |
| Chromium-3 | -                            | 30           | 36                     | 180         | 1500       | 6800       |  |  |  |
| Copper     | 25                           | 50           | 270                    | 270         | 270        | 10000      |  |  |  |
| Lead       | -                            | 63           | 400                    | 400         | 1000       | 3900       |  |  |  |
| Nickel     | 13                           | 30           | 140                    | 310         | 310        | 10000      |  |  |  |
| Zinc       | 47                           | 109          | 2200                   | 10000       | 10000      | 10000      |  |  |  |
| Cyanide    | NC                           | 27           | 27                     | 27          | 27         | 10000      |  |  |  |
| Mercury    | -                            | 0.18         | 0.81                   | 0.81        | 2.8        | 5.7        |  |  |  |

# TABLE 5 LIBERTY INDUSTRIAL FINISHING SITE (1-52-108) SOIL SAMPLE RESULTS - JUNE 2013

## Western Side of the Former Building Slab

|          | SS-08 | HA-08 | SS-09 | HA-09 | SS-10 | HA-10 | SS-11 | HA-11 | SS-12 | HA-12 |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Arsenic  | 5.1   | 14.2  |       | 1.3   | 2.9   |       | 3.4   | 2.8   | -     | 3.5   |
| Cadmium  | 2.5   | 0.4   |       | 0.5   | 32.8  |       | 125   | 1.7   | 28.4  | 5     |
| Chromium | 31.8  | 19.2  |       | 5.7   | 67.9  |       | 83.9  | 11    | 164   | 45.5  |
| Copper   | 26.7  | 15.6  |       | 3.7   | 30.2  | -     | 65.6  | 5.5   | 32.7  | 9.2   |
| Lead     | 62.2  | 15.4  |       | 7.8   | 52.8  |       | 47.7  | 10.5  | 38    | 18.9  |
| Nickel   | 10.8  | 16.3  |       | 2.3   | 24    |       | 31.9  | 5.9   | 23.9  | 9.1   |
| Zinc     | 81.6  | 36.8  |       | 18    | 157   |       | 619   | 25.6  | 232   | 118   |
| Mercury  | 0.062 | 0.11  |       | 0.017 | 0.065 | -     | 0.037 | 0.018 | 0.025 | 0.026 |

# Eastern Side of the Former Building Slab

|          | SS-13 | HA-13 | SS-14 | HA-14 | SS-15 | HA-15 |
|----------|-------|-------|-------|-------|-------|-------|
| Arsenic  | 1.9   | 1.3   | 3     |       |       |       |
| Cadmium  | 1.3   | 0.063 | 20.2  |       |       |       |
| Chromium | 7.9   | 5.9   | 31.1  |       |       |       |
| Copper   | 3.9   | 2     | 37.1  |       |       |       |
| Lead     | 9.3   | 2.8   | 27    |       |       |       |
| Nickel   | 3.2   | 2.5   | 15.7  |       |       |       |
| Zinc     | 24.1  | 7.8   | 95.1  |       |       |       |
| Mercury  | 0.012 | -     | 0.033 |       |       |       |

SS - Surface soil HA - Hand auger (0 - 0.5 ft bgs)

**Figures** 













|        | NYSDEC   |
|--------|----------|
| pound  | Criteria |
| nony   | 3        |
| nium   | 5        |
| mium   | 50       |
| ber    | 200      |
|        | 300      |
| 1      | 25       |
| ganese | 300      |
| nium   | 10       |
| um     | 20,000   |
| ium    | 0.50     |

|   | UST Plating Waste Tank |
|---|------------------------|
| J | Well Utilized For      |
|   | Laws Tawa Manifasina   |

| //                                       | //       | $\sim$ |
|------------------------------------------|----------|--------|
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\angle$ | $\leq$ |
|                                          |          |        |

| g-12   | Nov-13 | Nov-13 |
|--------|--------|--------|
| F      | U      | F      |
| ND     | ND     | ND     |
| 9.3    | 2.9    | ND     |
| ND     | ND     | ND     |
| ND     | ND     | ND     |
| 39.0 B | 740    | ND     |
| ND     | 9.9    | ND     |
| ND     | ND     | ND     |
| ,200   | 12,000 | 14,000 |
|        |        |        |

| 2    | Aug-12 | Nov-13 | Nov-13 |
|------|--------|--------|--------|
| U    | F      | U      | F      |
| .3   | 3.7 B  | 6.6    | 2.4    |
| .4 B | 88.2   | 170    | ND     |
| 79   | 1,180  | 6,000  | 930    |
| ID   | 13.2   | 53.0   | 3.7    |
| 00   | 15,400 | 10,000 | 12,000 |
| ID   | ND     | ND     | ND     |

| 1 (D)  |        |        |        |        |
|--------|--------|--------|--------|--------|
| May-11 | Aug-12 | Aug-12 | Nov-13 | Nov-13 |
| F      | U      | F      | U      | F      |
| ND     | ND     | 11.9 B | ND     | ND     |
| 32.4 B | 1,330  | ND     | 760    | ND     |
| 19.7 B | 96.1   | 56.7   | 100    | 64.0   |
| 21,700 | 19,700 | 19,400 | 17,000 | 18,000 |

| )     |        |        |        |        |
|-------|--------|--------|--------|--------|
| -11   | Aug-12 | Aug-12 | Nov-13 | Nov-13 |
| F     | U      | F      | U      | F      |
| ND    | ND     | ND     | ND     | ND     |
| 1.7 B | 398    | ND     | ND     | ND     |
| 00    | 21,700 | 21,400 | 21,000 | 22,000 |











Appendix A

IC/EC Certification Forms NYSDEC



#### Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| Site No. 152108                                                                                                                                                                                                                                                                                                     | Site Details                                                                                                                                                                                                                                   | Box 1                                |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------|
| Site Name Liberty Industrial Finish                                                                                                                                                                                                                                                                                 | ing Products                                                                                                                                                                                                                                   |                                      |         |
| Site Address: 550 Suffolk Avenue<br>City/Town: Brentwood<br>County: Suffolk<br>Site Acreage: 3.9                                                                                                                                                                                                                    | Zip Code: 11717                                                                                                                                                                                                                                |                                      |         |
| Reporting Period: October 30, 2009 to                                                                                                                                                                                                                                                                               | o January 30, 2014                                                                                                                                                                                                                             |                                      |         |
|                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                | YES                                  | NO      |
| 1. Is the information above correct?                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                | X                                    |         |
| If NO, include handwritten above o                                                                                                                                                                                                                                                                                  | or on a separate sheet.                                                                                                                                                                                                                        |                                      |         |
| 2. Has some or all of the site propert tax map amendment during this R                                                                                                                                                                                                                                              | y been sold, subdivided, merged, or undergone a eporting Period?                                                                                                                                                                               |                                      | ×       |
| <ol> <li>Has there been any change of use<br/>(see 6NYCRR 375-1.11(d))?</li> </ol>                                                                                                                                                                                                                                  | e at the site during this Reporting Period                                                                                                                                                                                                     |                                      | X       |
| 4. Have any federal, state, and/or loc<br>for or at the property during this R                                                                                                                                                                                                                                      | cal permits (e.g., building, discharge) been issued eporting Period?                                                                                                                                                                           |                                      | X       |
| If you answered YES to question that documentation has been pre-                                                                                                                                                                                                                                                    | ns 2 thru 4, include documentation or evidence reviously submitted with this certification form.                                                                                                                                               |                                      |         |
| C to the site summarity and successing de-                                                                                                                                                                                                                                                                          | evelopment?                                                                                                                                                                                                                                    |                                      | X       |
| 5. Is the site currently undergoing de                                                                                                                                                                                                                                                                              | <b>F</b>                                                                                                                                                                                                                                       |                                      |         |
| 5. Is the site currently undergoing de                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | Box 2                                | · ·     |
| 5. Is the site currently undergoing de                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | Box 2<br>YES                         | NO      |
| <ol> <li>Is the site currently undergoing de</li> <li>Is the current site use consistent v<br/>Industrial</li> </ol>                                                                                                                                                                                                | vith the use(s) listed below?                                                                                                                                                                                                                  | Box 2<br>YES                         | NO<br>□ |
| <ol> <li>Is the site currently undergoing de</li> <li>Is the current site use consistent v<br/>Industrial</li> <li>Are all ICs/ECs in place and function</li> </ol>                                                                                                                                                 | vith the use(s) listed below?<br>ioning as designed?                                                                                                                                                                                           | Box 2<br>YES<br>Ø                    | NO<br>  |
| <ol> <li>Is the site currently undergoing de</li> <li>Is the current site use consistent v<br/>Industrial</li> <li>Are all ICs/ECs in place and funct</li> <li>IF THE ANSWER TO EITHE<br/>DO NOT COMPLETE T</li> </ol>                                                                                              | vith the use(s) listed below?<br>ioning as designed?<br>R QUESTION 6 OR 7 IS NO, sign and date below a<br>THE REST OF THIS FORM. Otherwise continue.                                                                                           | Box 2<br>YES                         | NO<br>  |
| <ol> <li>Is the site currently undergoing de</li> <li>Is the current site use consistent v<br/>Industrial</li> <li>Are all ICs/ECs in place and funct</li> <li>IF THE ANSWER TO EITHE<br/>DO NOT COMPLETE T</li> <li>A Corrective Measures Work Plan mu</li> </ol>                                                  | vith the use(s) listed below?<br>ioning as designed?<br>R QUESTION 6 OR 7 IS NO, sign and date below a<br>THE REST OF THIS FORM. Otherwise continue.                                                                                           | Box 2<br>YES<br>X<br>And<br>hese iss | NO<br>  |
| <ol> <li>Is the site currently undergoing de</li> <li>Is the current site use consistent v<br/>Industrial</li> <li>Are all ICs/ECs in place and funct</li> <li>IF THE ANSWER TO EITHE<br/>DO NOT COMPLETE T</li> <li>A Corrective Measures Work Plan mu</li> <li>Signature of Owner, Remedial Party or I</li> </ol> | vith the use(s) listed below?<br>ioning as designed?<br>R QUESTION 6 OR 7 IS NO, sign and date below a<br>THE REST OF THIS FORM. Otherwise continue.<br>Ist be submitted along with this form to address the<br>Designated Representative Date | Box 2<br>YES                         | NO<br>  |

| Description of Ins                                                                                                                                                                                                                                                                                                                | titutional Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Parcel                                                                                                                                                                                                                                                                                                                            | Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Institutional Control                                                                                                                   |
| 136000300008000                                                                                                                                                                                                                                                                                                                   | LEEMILTS PETROLEUM INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil Management Plan<br>Monitoring Plan                                                                                                 |
| Deed restriction is not ye<br>Groundwater use restrict<br>must be hooked in to the<br>cover system.                                                                                                                                                                                                                               | et in place (2013) Restrictions to be includ<br>tion and adherence to a Site Managemer<br>e public water supply and must not disturl                                                                                                                                                                                                                                                                                                                                                        | ded in the DR are: are a<br>nt plan. Any developement of the site<br>b the slab which is serving as a cap                               |
| 13600030009000                                                                                                                                                                                                                                                                                                                    | LIBERTY INDUSTRIAL PRODUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rs. II                                                                                                                                  |
| 5                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil Management Plan<br>Monitoring Plan                                                                                                 |
| ICs to be included for the<br>plan. Any developement<br>the slab which is serving<br>136000300010001                                                                                                                                                                                                                              | e site are a Groundwater use restriction a<br>of the site must be hooked in to the publ<br>as a cap cover system.<br>LIBERTY INDUSTRIAL PRODUCT                                                                                                                                                                                                                                                                                                                                             | and adherence to a Site Management<br>lic water supply and must not disturb                                                             |
|                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving                                                                                                                                                                                                                                                 | site are a Groundwater use restriction an<br>of the site must be hooked in to the publ<br>as a cap cover system.                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plan<br>Soil Management Plan<br>nd adherence to a Site Management<br>lic water supply and must not disturb                   |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving                                                                                                                                                                                                                                                 | site are a Groundwater use restriction ar<br>of the site must be hooked in to the publ<br>as a cap cover system.                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plan<br>Soil Management Plan<br>nd adherence to a Site Management<br>lic water supply and must not disturb<br>Box 4          |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving<br>Description of En                                                                                                                                                                                                                            | site are a Groundwater use restriction ar<br>of the site must be hooked in to the publ<br>as a cap cover system.                                                                                                                                                                                                                                                                                                                                                                            | Monitoring Plan<br>Soil Management Plan<br>nd adherence to a Site Management<br>ic water supply and must not disturb<br>Box 4           |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving<br>Description of Eng                                                                                                                                                                                                                           | site are a Groundwater use restriction ar<br>of the site must be hooked in to the publ<br>as a cap cover system.<br>gineering Controls                                                                                                                                                                                                                                                                                                                                                      | Monitoring Plan<br>Soil Management Plan<br>nd adherence to a Site Management<br>lic water supply and must not disturb<br><b>Box 4</b>   |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving<br>Description of Eng<br>Parcel<br>136000300008000                                                                                                                                                                                              | site are a Groundwater use restriction ar<br>of the site must be hooked in to the publ<br>as a cap cover system.<br>gineering Controls<br><u>Engineering Control</u>                                                                                                                                                                                                                                                                                                                        | Monitoring Plan<br>Soil Management Plan<br>nd adherence to a Site Management<br>lic water supply and must not disturb<br><b>Box 4</b>   |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving<br><b>Description of En</b><br><u>Parcel</u><br>136000300008000                                                                                                                                                                                 | site are a Groundwater use restriction ar<br>of the site must be hooked in to the publ<br>as a cap cover system.<br>gineering Controls<br>Engineering Control<br>Fencing/Access Contro<br>Cover System                                                                                                                                                                                                                                                                                      | Monitoring Plan<br>Soil Management Plan<br>nd adherence to a Site Management<br>ic water supply and must not disturb<br><b>Box 4</b>    |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving<br><b>Description of Eng</b><br><b>Parcel</b><br><b>136000300008000</b><br>EC for the site is Cap Co<br>repaired if necessary. Als<br><b>136000300009000</b>                                                                                    | site are a Groundwater use restriction ar<br>of the site must be hooked in to the public<br>as a cap cover system.<br>gineering Controls<br>Engineering Control<br>Fencing/Access Control<br>Cover System<br>over system-Cap must remain in place ar<br>so, Fencing/Access Control. Must ensure                                                                                                                                                                                             | Monitoring Plan<br>Soil Management Plan<br>ad adherence to a Site Management<br>lic water supply and must not disturb<br>Box 4          |
| ICs to be inplace for this<br>plan. Any developement<br>the slab which is serving<br>Description of Eng<br>Parcel<br>136000300008000<br>EC for the site is Cap Co<br>repaired if necessary. Als<br>136000300009000                                                                                                                | site are a Groundwater use restriction ar<br>of the site must be hooked in to the public<br>as a cap cover system.<br>gineering Controls<br>Engineering Control<br>Fencing/Access Control<br>Cover System<br>so, Fencing/Access Control. Must ensure<br>Cover System<br>Fencing/Access Control                                                                                                                                                                                              | Monitoring Plan<br>Soil Management Plan<br>and adherence to a Site Management<br>lic water supply and must not disturb<br>Box 4         |
| ICs to be inplace for this<br>plan. Any development<br>the slab which is serving<br><b>Description of Eng</b><br><b>Parcel</b><br><b>136000300008000</b><br>EC for the site is Cap Co<br>repaired if necessary. Als<br><b>13600030009000</b><br>EC for the site is Cap Co<br>repaired if necessary. Als<br><b>136000300010001</b> | site are a Groundwater use restriction ar<br>of the site must be hooked in to the public<br>as a cap cover system.<br>gineering Controls<br>Engineering Control<br>Fencing/Access Control<br>Cover System<br>over system-Cap must remain in place ar<br>so, Fencing/Access Control. Must ensure<br>Cover System<br>Fencing/Access Control<br>over system-Cap must remain in place ar<br>so, Fencing/Access Control                                                                          | Monitoring Plan<br>Soil Management Plan<br>and adherence to a Site Management<br>ic water supply and must not disturb<br>Box 4<br>Box 4 |
| ICs to be inplace for this<br>plan. Any development<br>the slab which is serving<br>Description of Eng<br>Parcel<br>136000300008000<br>EC for the site is Cap Co<br>repaired if necessary. Als<br>13600030009000<br>EC for the site is Cap Co<br>repaired if necessary. Als<br>136000300010001                                    | site are a Groundwater use restriction ar<br>of the site must be hooked in to the public<br>as a cap cover system.<br>gineering Controls<br>Engineering Control<br>Fencing/Access Control<br>Cover System<br>over system-Cap must remain in place ar<br>so, Fencing/Access Control. Must ensure<br>Cover System<br>Fencing/Access Control<br>over system-Cap must remain in place ar<br>so, Fencing/Access Control<br>over system-Cap must remain in place ar<br>so, Fencing/Access Control | Monitoring Plan<br>Soil Management Plan<br>and adherence to a Site Management<br>ic water supply and must not disturb<br>Box 4<br>Box 4 |

|   |                                                                                                                                                                                                                                                                        |                          | Box 5                 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|
|   | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                                                  |                          |                       |
|   | I certify by checking "YES" below that:                                                                                                                                                                                                                                |                          |                       |
|   | <ul> <li>a) the Periodic Review report and all attachments were prepared under the dire<br/>reviewed by, the party making the certification;</li> </ul>                                                                                                                | ection of,               | and                   |
|   | <ul> <li>b) to the best of my knowledge and belief, the work and conclusions described<br/>are in accordance with the requirements of the site remedial program, and gene<br/>engineering practices; and the information presented is accurate and compete.</li> </ul> | in this co<br>erally acc | ertification<br>epted |
|   |                                                                                                                                                                                                                                                                        | YES                      | NO                    |
|   |                                                                                                                                                                                                                                                                        | X                        |                       |
|   | If this site has an IC/EC Plan (or equivalent as required in the Decision Document), fo<br>or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the<br>following statements are true:                                                  | r each Ir<br>at all of t | nstitutional<br>he    |
|   | (a) the Institutional Control and/or Engineering Control(s) employed at this site the date that the Control was put in-place, or was last approved by the Departm                                                                                                      | is uncha<br>ent;         | nged sinc             |
|   | (b) nothing has occurred that would impair the ability of such Control, to protect the environment;                                                                                                                                                                    | t public h               | ealth and             |
|   | (c) access to the site will continue to be provided to the Department, to evaluat<br>including access to evaluate the continued maintenance of this Control;                                                                                                           | e the rer                | nedy,                 |
|   | (d) nothing has occurred that would constitute a violation or failure to comply w Management Plan for this Control; and                                                                                                                                                | ith the S                | ite                   |
|   | (e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the                                                                                                    | or the sit<br>he docu    | e, the<br>ment.       |
|   |                                                                                                                                                                                                                                                                        | YES                      | NO                    |
|   |                                                                                                                                                                                                                                                                        | ×                        |                       |
|   | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue                                                                                                                                                   |                          |                       |
| А | Corrective Measures Work Plan must be submitted along with this form to address                                                                                                                                                                                        | these is                 | sues.                 |
|   |                                                                                                                                                                                                                                                                        |                          |                       |

**IC CERTIFICATIONS** SITE NO. 152108 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the AECOM Technical Services Nontheast Inc. 100 Red Schedibnese Road at <u>Chestnat Ridge NY 10977</u> print business address Penal Law. 1 Paul Kareth print name am certifying as \_\_\_\_\_ Remedial Parts (Owner or Remedial Party) for the Site named in the Site Details Section of this forma <u>3/26/14</u> Date

Signature of Owner, Remedial Party, or Designated Representative **Rendering Certification** 

#### IC/EC CERTIFICATIONS

#### Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

at 40 BRITISH AMERICAN, LATHAM, NY 12140, print business address SCOTT A. UNDERHILL print name 1

am certifying as a Professional Engineer for the \_\_\_\_\_\_

(Owner or Remedial Party)

Box 7

Signature of Professional Engineer, for the Owner or

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

ICE -1-14 Date ESSIO
Appendix B

NYSDEC Memorandum dated August 24, 2004: Proposed Site Reclassification, and Draft Deed Restriction New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E, 12<sup>th</sup> Floor 625 Broadway, Albany, New York 12233-7013 Phone: (518) 402-9814 • FAX: (518) 402-9819 Website: www.dec.state.ny.us



#### MEMORANDUM

| TO:      | Kelly Lewandowski, Site Control Section                              |
|----------|----------------------------------------------------------------------|
|          | THRU: Robert Marino, Chief, Bureau of Technical Support              |
| FROM:    | Jeffrey Trad Remedial Section A                                      |
|          | THRU: Robert Knizek, Chief, Remedial Bureau E                        |
| SUBJECT: | Site No. 1-52-108, Liberty Industrial Finishing Site, Suffolk County |
| DATE:    | AUG 3 0 2004                                                         |
|          |                                                                      |

The NYSDEC has successfully completed the Remedial Action at the Liberty Industrial Finishing Site in accordance with the March 1999 ROD (attached) and approved design documents and is now in the O&M phase. This work included the following:

- Excavated the two areas containing contaminated soil;
- Applied a minimum of two feet of clean fill over residual metals contaminated soils;
- Installed an asphalt cap over the UST and pipe gallery area;
- Installation of groundwater monitoring wells;
- Excavation and offsite disposal of contaminated soil/sediment from two sanitary leaching polls, two storm water dry wells and two catch basins.

The attached "Final Remediation Report" describes the project in detail.

At this time, it is proposed to reclassify the site from a Class 2 - "Significant threat to the public health or environment - action required" to a Class 4 - "Site has been properly closed, requires continued management."

Supporting documentation is attached as justification for the proposed reclassification:

- 1. Site Investigation Information forms;
- 2. Registry of Inactive Hazardous Waste Site Information Sheets;
- 3. March 1999 Record of Decision;
- 4. Site Maps;
- 5. Final Remediation Report;
- 6. Draft Deed Restrictions;
- October 2001 NYSDEC Groundwater Monitoring Results and the 2003 NYSDEC Groundwater Monitoring Results.

If you have any questions, please call Jeff Trad at 2-9814.

#### Attachments

cc: w/o Att.: S. Ervolina

P. Scully - NYSDEC, Region 1 W. Parish - NYSDEC, Region 1 C. Vasudevan

JET/ts

bcc: R. Knizek J. Trad Dayfile F:\Liberty Industrial Finishing\reclass.lib.wpd 1.0 Site Investigation Forms



10/24/03

#### SITE INVESTIGATION INFORMATION

| 1. SITE NAME                                                                                                                                       |                                                                                                                                                  | 2. SITE NUMBER                                                                                                          | 3. TOWN/CITY/VILLAGE                                                                                                                                                                                                          | 4. COUNTY                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Liberty Industrial Finis                                                                                                                           | hing Products                                                                                                                                    | 152108                                                                                                                  | Brentwood                                                                                                                                                                                                                     | Suffolk                                                                                                                      |
| 5 REGION                                                                                                                                           | 6. PROGRAM TYPE                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                              |
| 1                                                                                                                                                  |                                                                                                                                                  | _                                                                                                                       | 22 F                                                                                                                                                                                                                          |                                                                                                                              |
| 1                                                                                                                                                  | BCP C ERP C S                                                                                                                                    |                                                                                                                         | If Superfund: Current 2 Proposed                                                                                                                                                                                              | 4 Modification X                                                                                                             |
| 7. LOCATION OF SITE (Attack                                                                                                                        | h U.S.G.S. Topographic Map                                                                                                                       | showing site location)                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                              |
| a. Quadrangle                                                                                                                                      | b. S                                                                                                                                             | ite Latitude 4° 46'40" S                                                                                                | ite Longitude 73° 15' 15"                                                                                                                                                                                                     |                                                                                                                              |
| c. Tax Map Number(s)                                                                                                                               | <b>d</b> .                                                                                                                                       | Site Street Address: 550 Sul                                                                                            | folk Avenue, Brentwood, NY 11717                                                                                                                                                                                              |                                                                                                                              |
| 8. BRIEFLY DESCRIBE THE                                                                                                                            | SITE (Attach site map showin                                                                                                                     | g disposal/sampling locatio                                                                                             | ns)                                                                                                                                                                                                                           |                                                                                                                              |
| Liberty Industrial Finishing P<br>Metal finishing activities inclu<br>the building in 2002 leaving t                                               | roducts was a metal finishing<br>uded passivation, phosphatiz<br>he slab and foundations intac                                                   | facility engaged in the finis<br>ation, electroplating, conver<br>t.                                                    | hing and plating of parts and components used pri<br>sion coating, anodizing, painting and non-destructi                                                                                                                      | marily in the aircraft industry.<br>ve testing. The Town demolished                                                          |
| a. Area3.9 acres                                                                                                                                   | b. Completed: () Env. Prope<br>() Spill Response                                                                                                 | erty Assessment (X ) Site Cl<br>( )Other                                                                                | haracterization()SI()ESI(x)IRM(x)RI(x)Co<br>                                                                                                                                                                                  | onstruction (x ) OM&M                                                                                                        |
| 9. CONTAMINANTS DISPOSE                                                                                                                            | ED (Hazardous Waste, Petrole                                                                                                                     | eum, Other. Includes EPA H                                                                                              | azardous Waste Numbers)                                                                                                                                                                                                       |                                                                                                                              |
| 1,1,1 - trichloroethane(TCA) -<br>An inspection in 1983 discov<br>directly into the ground occu<br>compounds.                                      | - F001, cadmium - D006, chroi<br>ered potential leaks in two of<br>irred in 1984. These wastewa                                                  | mium - D007, spent cyanide<br>the underground tanks con<br>ter discharges were contam                                   | plating bath solutions and sludges - F007, F008<br>taining cyanide and other compounds. Unauthorize<br>inated with manganese phosphate, zinc phosphate                                                                        | d discharges into cesspools and<br>chromic acid and other                                                                    |
| 10. ANALYTICAL DATA AVA                                                                                                                            | ILABLE                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                              |
| a. ( )Air (X )Groundwater<br>b. Contravention of Standa                                                                                            | r ()Surface Water (x)Sec<br>ards or Guidance Values                                                                                              | liment (x)Soil ()Waste                                                                                                  | ()Leachate ()EPTox ()TCLP                                                                                                                                                                                                     |                                                                                                                              |
| A Phase II was performed in                                                                                                                        | 1987 and groundwater excee                                                                                                                       | dences for chromium were I                                                                                              | ound. A supplemental Phase II was performed in 1                                                                                                                                                                              | 991. High levels of cyanide was                                                                                              |
| found in a leaching pool as v<br>contamination in the surface<br>approximately 150 feet from                                                       | vell as chromium exceedence<br>and subsurface soil, storm-v<br>the site in a SSE direction wit                                                   | is in groundwater. The DEC<br>vater drywell/leaching pool,<br>th chromium as the primary                                | completed a State-funded RI/FS at the site. The 19<br>sediment and groundwater. The contaminated grou<br>site-related contaminant.                                                                                            | 99 RI Report confirmed<br>indwater plume extends                                                                             |
| 11. CONCLUSION                                                                                                                                     |                                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                              |
| The USEPA completed an IR<br>underground storage tanks.<br>under an IRM. The DEC issu<br>contaminated soil; and the c<br>ROD was completed on Sept | M between August 1998 and .<br>The Town of Islip also excav<br>ied a ROD in March 1999 that<br>onstruction of an asphalt cap<br>tember 18, 2001. | January 1999 and removed v<br>ated contaminated surface s<br>called for the removal of co<br>above the on-site undergro | waste materials from the interior of the industrial bu<br>soil at the Town of Islip Athletic Field and the Brenty<br>ntaminated sediment from four drywells and one le<br>und storage tanks as the selected remedy. All of th | ilding and capped six<br>vood Water District property<br>aching pool; the excavation of<br>e remedial woork specified in the |
| a. Institutional Controls (IC)<br>c. Are these ICs in place and<br>been performed; the asphalt                                                     | Required? (X)Y ()N b. If y<br>d verified? ()Y ()N some<br>t cap has been inspected and                                                           | es, identify: Restrict use of<br>are/ No property owner exist<br>maintained.                                            | groundwater; long term groundwater monitoring; m<br>is to apply a deed restriction for use of groundwater                                                                                                                     | aintain asphalt cap<br>r. Longterm GW monitoring has                                                                         |
| 12. SITE IMPACT DATA                                                                                                                               |                                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                              |
| a. Nearest Surface Water: Di                                                                                                                       | stance 7500 ft.                                                                                                                                  | Direction: ESE                                                                                                          | Class: Orowac Creek - Class C                                                                                                                                                                                                 |                                                                                                                              |
| b. Groundwater: Depth 50 ft.                                                                                                                       |                                                                                                                                                  | Flow Direction: SSE                                                                                                     | (x)Sole Source ()Primary ()C                                                                                                                                                                                                  | Other High-Yield Aquifer                                                                                                     |
| c. Water Supply: Distance 10                                                                                                                       | 00 ft.                                                                                                                                           | Direction: South                                                                                                        | Active (X)Yes ()No                                                                                                                                                                                                            |                                                                                                                              |
| d. Nearest Building: Distanc                                                                                                                       | e 150 ft.                                                                                                                                        | Direction: WNW                                                                                                          | Use: Gas Station                                                                                                                                                                                                              |                                                                                                                              |
| e. Documented fish or wildli                                                                                                                       | fe mortality?                                                                                                                                    | ()Y (y)N                                                                                                                | h. Exposed hazardous waste?                                                                                                                                                                                                   |                                                                                                                              |
| f. Impact on special status fi                                                                                                                     | sh or wildlife resource?                                                                                                                         |                                                                                                                         | i Site Priority Ranking Sheet                                                                                                                                                                                                 |                                                                                                                              |
| and a special status in                                                                                                                            |                                                                                                                                                  |                                                                                                                         | Score                                                                                                                                                                                                                         | N/A                                                                                                                          |
| g. Controlled Site Access?                                                                                                                         |                                                                                                                                                  | (X)Y ()N                                                                                                                | j. EPA ID# NYD013563390                                                                                                                                                                                                       | HRSN/A<br>Score                                                                                                              |
| 13. SITE OWNER'S NAME                                                                                                                              |                                                                                                                                                  | 14. ADDRESS                                                                                                             |                                                                                                                                                                                                                               | 15. TELEPHONE NUMBER                                                                                                         |
| Liberty Industrial Finishing                                                                                                                       |                                                                                                                                                  | 550 Suffolk Avenue, B                                                                                                   | rentwood, NY 11717                                                                                                                                                                                                            | n/a                                                                                                                          |
| 16. PREPARER                                                                                                                                       |                                                                                                                                                  |                                                                                                                         | 17. APPROVED                                                                                                                                                                                                                  |                                                                                                                              |
| Jeffrey Trad, EEII                                                                                                                                 |                                                                                                                                                  |                                                                                                                         | Robert C. Knizek, Director, Remedial Bureau E                                                                                                                                                                                 |                                                                                                                              |
| Signature                                                                                                                                          | - Date                                                                                                                                           | , ,                                                                                                                     | Signature Date                                                                                                                                                                                                                |                                                                                                                              |
| Mustil                                                                                                                                             | digit &                                                                                                                                          | 30/01                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                              |
| Name, Title                                                                                                                                        | e, Organization                                                                                                                                  |                                                                                                                         | Name, Title, Organization                                                                                                                                                                                                     |                                                                                                                              |
| Construction of the second                                     | Received The second                                   |                                                                                                                         | I                                                                                                                                                                                                                             |                                                                                                                              |

### SITE INVESTIGATION INFORMATION

| 1. SITE NAME                                                                                                                                      | -                                                                                                                                                                   | 2. SITE NUMBER                                                                                                             | 3. TOWN/CITY/VILLAGE                                                                                                                                                                                                       | 4. COUNTY                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Liberty Industrial Finis                                                                                                                          | shing Products                                                                                                                                                      | 152108                                                                                                                     | Brentwood                                                                                                                                                                                                                  | Suffolk                                                                                                                        |
| 5. REGION                                                                                                                                         | 6. PROGRAM TYPE                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                |
| 1                                                                                                                                                 |                                                                                                                                                                     |                                                                                                                            | M If Superfund: Current 2 Breness                                                                                                                                                                                          | d 4 Modification V                                                                                                             |
|                                                                                                                                                   | BCP D ERP D ;                                                                                                                                                       | SPILL D SUPERFUND                                                                                                          | If Superfund: Current _2 Propose                                                                                                                                                                                           | d_4 Modification X                                                                                                             |
| 7. LOCATION OF SITE (Attac                                                                                                                        | h U.S.G.S. Topographic Map                                                                                                                                          | showing site location)                                                                                                     |                                                                                                                                                                                                                            |                                                                                                                                |
| a. Quadrangle                                                                                                                                     | b. 5                                                                                                                                                                | Site Latitude 4° 46'40" S                                                                                                  | ite Longitude 73" 15' 15"                                                                                                                                                                                                  |                                                                                                                                |
| c. Tax Map Number(s)                                                                                                                              | d.                                                                                                                                                                  | Site Street Address: 550 Suf                                                                                               | folk Avenue, Brentwood, NY 11717                                                                                                                                                                                           |                                                                                                                                |
| 8. BRIEFLY DESCRIBE THE                                                                                                                           | SITE (Attach site map showin                                                                                                                                        | g disposal/sampling location                                                                                               | ns)                                                                                                                                                                                                                        |                                                                                                                                |
| Liberty Industrial Finishing F<br>Metal finishing activities incl<br>the building in 2002 leaving                                                 | Products was a metal finishing<br>luded passivation, phosphatiz<br>the slab and foundations inta-                                                                   | g facility engaged in the finis<br>ation, electroplating, conver<br>ct.                                                    | hing and plating of parts and components used pr<br>sion coating, anodizing, painting and non-destruct                                                                                                                     | imarily in the aircraft industry.<br>ive testing. The Town demolished                                                          |
| a. Area3.9 acres                                                                                                                                  | b. Completed: () Env. Prop<br>() Spill Response                                                                                                                     | erty Assessment (X ) Site Cl<br>( )Other                                                                                   | naracterization()SI()ESI(x)IRM(x)RI(x)C<br>                                                                                                                                                                                | onstruction (x) OM&M                                                                                                           |
| 9. CONTAMINANTS DISPOS<br>1,1,1 - trichloroethane(TCA)                                                                                            | ED (Hazardous Waste, Petrol<br>- F001, cadmium - D006, chro                                                                                                         | eum, Other. Includes EPA H<br>mium - D007, spent cyanide                                                                   | azardous Waste Numbers)<br>plating bath solutions and sludges - F007, F008                                                                                                                                                 |                                                                                                                                |
| An inspection in 1983 disco<br>directly into the ground occ<br>compounds.                                                                         | vered potential leaks in two of<br>urred in 1984. These wastewa                                                                                                     | f the underground tanks con<br>ater discharges were contam                                                                 | taining cyanide and other compounds. Unauthorize<br>inated with manganese phosphate, zinc phosphate                                                                                                                        | ed discharges into cesspools and<br>, chromic acid and other                                                                   |
| 10. ANALYTICAL DATA AVA                                                                                                                           | NLABLE                                                                                                                                                              |                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                |
| a. ( )Air (X )Groundwate<br>b. Contravention of Stand                                                                                             | er ()Surface Water (x)Ser<br>lards or Guidance Values                                                                                                               | diment (x )Soil ( )Waste                                                                                                   | ()Leachate ()EPTox ()TCLP                                                                                                                                                                                                  |                                                                                                                                |
| A Phase II was performed in<br>found in a leaching pool as<br>contamination in the surface                                                        | 1987 and groundwater exceed<br>well as chromium exceedence<br>e and subsurface soil, storm-<br>the site in a SSE direction with<br>the site in a SSE direction with | dences for chromium were f<br>es in groundwater. The DEC<br>water drywell/leaching pool,<br>th chromium as the primary     | found. A supplemental Phase II was performed in<br>completed a State-funded RI/FS at the site. The 19<br>sediment and groundwater. The contaminated gro<br>site related contaminant                                        | 1991. High levels of cyanide was<br>199 RI Report confirmed<br>undwater plume extends                                          |
| approximately 150 leet nom                                                                                                                        |                                                                                                                                                                     | ar enronnan as me primary                                                                                                  | Site-related containingnt.                                                                                                                                                                                                 |                                                                                                                                |
| 11. CONCLUSION                                                                                                                                    |                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                |
| The USEPA completed an IF<br>underground storage tanks.<br>under an IRM. The DEC isso<br>contaminated soil; and the o<br>ROD was completed on Sep | RM between August 1998 and<br>. The Town of Islip also excavued a ROD in March 1999 that<br>construction of an asphalt cap<br>tember 18, 2001.                      | January 1999 and removed v<br>rated contaminated surface s<br>called for the removal of co<br>o above the on-site undergro | waste materials from the interior of the industrial b<br>soil at the Town of Islip Athletic Field and the Brent<br>ntaminated sediment from four drywells and one le<br>und storage tanks as the selected remedy. All of t | uilding and capped six<br>wood Water District property<br>aching pool; the excavation of<br>he remedial woork specified in the |
| a. Institutional Controls (IC)<br>c. Are these ICs in place an<br>been performed; the asphal                                                      | Required? (X )Y ( )N b. If y<br>Id verified? ( ) Y ( )N some<br>It cap has been inspected and                                                                       | yes, identify: Restrict use of a<br>are/ No property owner exist<br>maintained.                                            | groundwater; long term groundwater monitoring; r<br>Is to apply a deed restriction for use of groundwate                                                                                                                   | naintain asphalt cap<br>r. Longterm GW monitoring has                                                                          |
| 12. SITE IMPACT DATA                                                                                                                              |                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                |
| a. Nearest Surface Water: D                                                                                                                       | Distance 7500 ft.                                                                                                                                                   | Direction: ESE                                                                                                             | Class: Orowac Creek - Class C                                                                                                                                                                                              |                                                                                                                                |
| b. Groundwater: Depth 50 ft                                                                                                                       | L.                                                                                                                                                                  | Flow Direction: SSE                                                                                                        | (x)Sole Source ()Primary ()                                                                                                                                                                                                | Other High-Yield Aquifer                                                                                                       |
| c. Water Supply: Distance 1                                                                                                                       | 00 ft.                                                                                                                                                              | Direction: South                                                                                                           | Active (X)Yes ()No                                                                                                                                                                                                         |                                                                                                                                |
| d. Nearest Building: Distance                                                                                                                     | ce 150 ft.                                                                                                                                                          | Direction: WNW                                                                                                             | Use: Gas Station                                                                                                                                                                                                           |                                                                                                                                |
| e. Documented fish or wildl                                                                                                                       | ife mortality?                                                                                                                                                      | ()Y (x)N                                                                                                                   | h. Exposed hazardous waste?                                                                                                                                                                                                |                                                                                                                                |
| f. Impact on special status f                                                                                                                     | fish or wildlife resource?                                                                                                                                          | ()Y (x)N                                                                                                                   | i. Site Priority Ranking SheetImpact                                                                                                                                                                                       | N/A                                                                                                                            |
| g. Controlled Site Access?                                                                                                                        |                                                                                                                                                                     | (X)Y ()N                                                                                                                   | Score<br>j. EPA ID# NYD013563390                                                                                                                                                                                           | HRS N/A                                                                                                                        |
| 13. SITE OWNER'S NAME                                                                                                                             |                                                                                                                                                                     | 14. ADDRESS                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                |
| Liberty Industrial Finishing                                                                                                                      |                                                                                                                                                                     | 550 Suffolk Avenue B                                                                                                       | rentwood. NY 11717                                                                                                                                                                                                         | n/a                                                                                                                            |
| 16. PREPARER                                                                                                                                      |                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                |
| Jeffrey Trad, FFII                                                                                                                                |                                                                                                                                                                     |                                                                                                                            | Robert Marino, Director, Technical Support Ru                                                                                                                                                                              |                                                                                                                                |
| Signature                                                                                                                                         | Date / L                                                                                                                                                            | /                                                                                                                          | Signature Date                                                                                                                                                                                                             |                                                                                                                                |
| - Juffasj 5 In                                                                                                                                    | ed 3/30/19                                                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                            |                                                                                                                                |
| Name, Titl                                                                                                                                        | ie, Organization                                                                                                                                                    |                                                                                                                            | Name, Title, Organization                                                                                                                                                                                                  |                                                                                                                                |

10/24/03



# Deed Restriction Forthcoming

Now a <u>SSF Site</u>. No Property Owner to put IC/EC on the property title.

#### **DECLARATION of COVENANTS and RESTRICTIONS**

THIS COVENANT, made the \_\_\_\_\_ day of \_\_\_\_\_\_ 200x, by Liberty Industrial Finishing, Inc., a corporation organized and existing under the laws of the State of xxxxxxxx and having an office for the transaction of business at

WHEREAS, Liberty Industrial Finishing, Inc. is the owner of an inactive hazardous waste disposal Site which is listed in the Registry of Inactive Hazardous Waste Disposal Sites in New York State as Site Number 1-52-108, located at 550 Suffolk Avenue, Hamlet of Brentwood Town of Islip, NY 11551, consisting of approximately 3.9 acres, Tax Map Number xx-xx, Block Number xx-xx and Lot Number xx-xx as filed (Date), File No. Xxxx in the Office of the County Clerk at the County of Suffolk and more particularly described in Appendix A attached to this Covenant and made a part hereof, and hereinafter referred to as the "Property"; and

WHEREAS, the Property is the subject of a consent order issued by the New York State Department of Environmental Conservation to Liberty Industrial Finishing, Inc.; and

WHEREAS, the New York State Department of Environmental Conservation set forth a remedy to eliminate or mitigate all significant threats to the environment presented by hazardous waste disposal on the Site in a Record of Decision ("ROD") dated March 1999, and such ROD or the Work Plan for the implementation of the ROD required that the Property be subject to restrictive covenants.

NOW, THEREFORE, Liberty Industrial Finishing, Inc., for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions is as shown on a map attached to this declaration as Appendix "B" and made a part hereof, and consists of [insert metes and bounds description]

Second, unless prior written approval by the New York State Department of Environmental Conservation or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, no person shall engage in any activity that will, or that reasonably is anticipated to, prevent or interfere significantly with any proposed, ongoing or completed program at the Property or that will, or is reasonably foreseeable to, expose the public health or the environment to a significantly increased threat of harm or damage.

Third, the owner of the Property shall protect and maintain the asphalt cap covering the excavation area and the groundwater monitoring wells installed on the Property. Any damage to the asphalt cap or groundwater monitoring wells must immediately be brought to the attention of the Department. Any work, action or change of use altering or effecting the asphalt cap or groundwater monitoring wells must be brought to the attention of the Department. No work,

action or change of use altering or effecting the asphalt cap or groundwater monitoring wells may occur without obtaining prior written approval of the Department or Relevant Agency.

Fourth, the owner of the Property shall prohibit any excavation or disturbance of the excavation area as delineated in Appendix "B" by crosshatch, unless the owner of the Property first obtains permission to do so from the Relevant Agency.

Fifth, the owner of the Property shall prohibit the Property from ever being used for purposes other than for non-residential commercial/industrial uses, excluding day-care and health care facilities, without the express written waiver of such prohibition by the Relevant Agency.

Sixth, the owner of the Property shall prohibit the use of the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Relevant Agency.

Seventh, the owner of the Property shall continue in full force and effect any institutional and engineering controls the Department required Respondent to put into place and maintain unless the owner first obtains permission to discontinue such controls from the Relevant Agency.

Eight, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding upon all future owners of the Property and shall provide that the owner, and its successors and assigns, consents to the enforcement by the Relevant Agency of the prohibitions and restrictions recorded by this Declaration of Covenants and Restrictions, and hereby covenants not to contest the authority of the Department to seek enforcement.

Ninth, the owner of the Property may petition the Department to modify or terminate this Declaration of Covenants and Restrictions at such time as it can certify that reliance upon such covenants and restrictions is no longer required to meet the goals of the Remedial Program. Such certification shall be made by a Professional Engineer. The Department shall not unreasonably withhold its consent to such petition.

Tenth, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions.

Eleventh, the owner of the property must allow the Relevant Department, its Agent, employees or other representatives of the State to enter and inspect the Property and sample the groundwater monitoring wells on the Property at reasonable times in a reasonable manner.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

[acknowledgment]

IN WITNESS WHEREOF, the parties have signed this Agreement on the day and year indicated beneath their respective signatures. The signatory for the Department provides the following Agency Certification: "In addition to the acceptance of this contract, I also certify that original copies of this signature page will be attached to all other exact copies of this contract."

#### Acknowledgment

State of New York )

County of Nassau )

On this Fifteenth day of March, 2000, before me personally came , to me known, who being duly sworn, did depose and say that he is the Supervisor of the Town of , the political subdivision or agency thereof described in and which executed the within instrument; that he knows the seal of said political subdivison; that the seal affixed to said instrument is such seal; that it was so affixed by order, resolution or authority of the Town Board of said political subdivision and that he signed his name by that authority.

By: \_\_\_\_\_\_Notary Public

Date:

Appendix C

Well Sampling Forms



|          |                  |              |          | PROJECT    |                   |          |          |             | PROJECT No.   | SHEET              |    | SHEETS |
|----------|------------------|--------------|----------|------------|-------------------|----------|----------|-------------|---------------|--------------------|----|--------|
| WELL     | SAMPI            | LING FOI     | RM       | MULTI S    | ITE-G             |          |          |             | 87616 / 05    | 1                  | OF | 1      |
| LOCATION | Inductr          | ial Finich   | ing Bro  | ntwood 1   | V #1_5            | 2-108    |          | DATE WELL S | STARTED       | DATE WELL COMPLETE | D  |        |
| CLIENT   | muusu            | iai filisii  | пу, ые   | 1110000, 1 | NT #1-C           | 02-100   |          | NAME OF INS | PECTOR        | 0/12/00            |    |        |
| New Y    | ork Stat         | te Depart    | ment of  | Environn   | nental C          | Conser   | vation   | Kevin Se    | ise, Jason Kl | ein                |    |        |
| DRILLING | COMPANY          |              |          |            |                   |          |          | SIGNATURE C | OF INSPECTOR  |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
| ONE WELI | VOLUME :         |              | 3.13     |            | WELL TD:          |          | 61.42    |             | PUMP I        | NTAKE DEPTH:       |    |        |
|          | Depth            |              |          | FIE        | LD MEAS           | SUREME   | ENTS     |             |               |                    |    |        |
|          | to               | Purge        |          |            |                   |          |          |             |               |                    |    |        |
| Time     | Water            | Rate         | Temp.    | Conduct.   | DO<br>(mg/l)      | рН       | ORP      | Turbidity   |               | REMARKS            |    |        |
| 1215     | 42 24            | (1111/11111) | 14 25    | 0.386      | (IIIg/L)<br>10.22 | 6.63     | 243.8    | (110)       | Purae Volu    | ime 9.39           |    |        |
| 1210     | 42.06            |              | 14.74    | 0.109      | 9.95              | 6.17     | 179.6    | 1.3         | i argo voic   |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
| L        |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          | $\left  \right $ |              |          |            |                   | ļ        |          |             |               |                    |    |        |
| <u> </u> |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          |                  |              |          |            |                   |          |          |             |               |                    |    |        |
|          | !                |              |          |            |                   |          |          |             | •             |                    |    |        |
| Pump     | Type:            | Waterra      | Hydrolif | t pump w   | ith blac          | k poly t | tubing a | nd a foot   | valve         |                    |    |        |
|          | . –              |              |          |            |                   |          |          |             |               |                    |    |        |
| Analyti  | cal Para         | ameters:     |          | I AL Meta  | ais               |          |          |             |               |                    |    |        |



|          |           |             |          | PROJECT   |          |           |         |                    | PROJECT No.  | SHEET               | SHEETS |  |
|----------|-----------|-------------|----------|-----------|----------|-----------|---------|--------------------|--------------|---------------------|--------|--|
| WELL     | SAMPI     | ING FOI     | RM       | MULTI S   | ITE-G    |           |         |                    | 87616 / 05   | 1 оғ                | 1      |  |
|          |           |             |          |           |          |           |         | DATE WELL S        | TARTED       | DATE WELL COMPLETED |        |  |
| Liberty  | Industr   | ial Finish  | ing, Bre | ntwood, I | NY #1-5  | 2-108     |         | 6/12/06            | RECTOR       | 6/12/06             |        |  |
| Now V    | ork Stat  | o Donart    | ment of  | Environn  | nontal ( | Conser    | vation  | Kovin So           | ise Jason Kl | ain                 |        |  |
| DRILLING | COMPANY   | ie Depart   |          |           |          | 0011301   | valion  | SIGNATURE C        | F INSPECTOR  |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             | 4 70     |           |          |           |         |                    |              |                     |        |  |
| ONE WELL | VOLUME :  |             | 4.78     |           | WELL TD: | 71.50     |         | PUMP INTAKE DEPTH: |              |                     |        |  |
|          | Depth     |             |          | FIE       | LD MEAS  | UREME     | NTS     |                    |              |                     |        |  |
|          | to        | Purge       |          |           |          |           |         |                    |              |                     |        |  |
| Time     | Water     | Rate        | Temp.    | Conduct.  | DO       | рН        | ORP     | Turbidity          |              | REMARKS             |        |  |
|          | (ft)      | (ml/min)    | (C)      | (ms/cm)   | (mg/L)   |           |         | (ntu)              |              |                     |        |  |
| 12.2     | 42.19     |             | 14.74    | 0.226     | 9.08     | 6.18      | 226.2   | 1.1                | Purge Voum   | e 14.354            |        |  |
|          | 42.33     |             | 14.65    | 0.23      | 9.47     | 6.63      | 207.9   | 1.7                |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
|          |           |             |          |           |          |           |         |                    |              |                     |        |  |
| Dumo '   | Tunci     | Motorro     | Ludralif | +         | ith blac | اد ممانیا | ubina a | nd a fact          | volvo        |                     |        |  |
| rump     | i ype:    | waterra     | ryurolli | t pump w  | un piac  | k poly t  | ubing a |                    | valve        |                     |        |  |
| Apolyti  | ool Dor   | amotora     |          |           |          |           |         |                    |              |                     |        |  |
| raiyti   | our i ali | 2000101010. |          |           | 10       |           |         |                    |              |                     |        |  |



|                     |               |                                                                                                                                             |              | PROJECT             |               |          |          |                        | PROJECT No.            | SHEET                       | SHEETS |  |
|---------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|---------------|----------|----------|------------------------|------------------------|-----------------------------|--------|--|
| WELL                | SAMP          | LING FOI                                                                                                                                    | RM           | MULTI S             | ITE-G         |          |          | 87616/05 1 оғ 1        |                        |                             |        |  |
| LOCATION<br>Liberty | i<br>Industr  | rial Finish                                                                                                                                 | ing, Bre     | ntwood, I           | NY #1-5       | 52-108   |          | date well s<br>6/14/06 | TARTED                 | DATE WELL COMPLETED 6/14/06 |        |  |
| CLIENT              | orle Cto      | to Donort                                                                                                                                   | mont of      | Environn            | a a n t a l ( | 200000   | votion   | NAME OF INS            | PECTOR                 | oin                         |        |  |
| DRILLING            | COMPANY       | le Depart                                                                                                                                   | ment of      |                     | nentar C      | Jonsen   | valion   | SIGNATURE C            | F INSPECTOR            | em                          |        |  |
|                     | VOLUME :      | 1.68                                                                                                                                        |              |                     | WELL TD:      | 49.42    |          |                        | PUMP I                 | NTAKE DEPTH:                |        |  |
|                     | Depth<br>to   | Purge                                                                                                                                       |              | FIE                 | LD MEAS       | SUREME   | INTS     |                        |                        |                             |        |  |
| Time                | Water<br>(ft) | Rate<br>(ml/min)                                                                                                                            | Temp.<br>(C) | Conduct.<br>(ms/cm) | DO<br>(mg/L)  | рН       | ORP      | Turbidity<br>(ntu)     |                        | REMARKS                     |        |  |
|                     | 39.09         | 39.09         16.66         0.154         9.38         5.98         145           16.52         0.122         0.27         5.75         144 |              |                     |               |          |          | 13.33                  |                        |                             |        |  |
| 8:20                |               |                                                                                                                                             | 16.52        | 0.133               | 9.27          | 5.75     | 145.6    | 8.72                   | Purge Volume 5.05 gal. |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        | Wall box day           | atroved                     |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        | stroyed                     |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             | -      |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
|                     |               |                                                                                                                                             |              |                     |               |          |          |                        |                        |                             |        |  |
| Dume                |               | Motorro                                                                                                                                     | Ludralif     | + 0.1000            | ith bloc      | k poly   |          |                        |                        |                             |        |  |
| Pump                | i ype:        | vvalerra                                                                                                                                    | Hydrollf     | t pump W            | IIII DIAC     | к рогу т | s gniau. | inu a 100t             | valve                  |                             |        |  |
| Analyti             | cal Para      | ameters:                                                                                                                                    |              | TAL Meta            | als           |          |          |                        |                        |                             |        |  |



|                     |               |                  |              | PROJECT             |              |          |          |                        | PROJECT No.  | SHEET                       | SHEETS |  |
|---------------------|---------------|------------------|--------------|---------------------|--------------|----------|----------|------------------------|--------------|-----------------------------|--------|--|
| WELL                | SAMP          | LING FOI         | RM           | MULTI S             | ITE-G        |          |          | 87616 / 05 1 of 1      |              |                             |        |  |
| LOCATION<br>Liberty | i<br>Industi  | rial Finish      | ing, Bre     | entwood, I          | NY #1-5      | 52-108   |          | date well s<br>6/14/06 | STARTED      | date well completed 6/14/06 |        |  |
| CLIENT              | ork Sta       | to Dopart        | mont of      | Environn            | aontal (     | Concor   | votion   | NAME OF INS            | PECTOR       | oin                         |        |  |
| DRILLING            | COMPANY       | te Depart        |              | EINIOIII            | lientai C    | JUNSER   | Valion   | SIGNATURE C            | DF INSPECTOR | 311                         |        |  |
| ONE WELI            |               | 9.93             |              |                     | WELL TD:     | 100.00   | )        |                        | PUMP II      | NTAKE DEPTH:                |        |  |
|                     | Depth<br>to   | Purge            |              | FIE                 | LD MEAS      | SUREME   | INTS     |                        |              |                             |        |  |
| Time                | Water<br>(ft) | Rate<br>(ml/min) | Temp.<br>(C) | Conduct.<br>(ms/cm) | DO<br>(mg/L) | рН       | ORP      | Turbidity<br>(ntu)     |              | REMARKS                     |        |  |
|                     | 39.13         |                  | 13.76        | 0.264               | 8.05         | 6.09     | 177.7    | 149.6                  |              |                             |        |  |
| 8:50                |               |                  | 12.91        | 0.382               | 8.32         | 6.18     | 209.2    | 12.55                  | Purge Volum  | 1e 29.80 gal.               |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              | L        | <u> </u> |                        |              |                             |        |  |
|                     |               | ļ                |              |                     |              | <u> </u> | <u> </u> |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        | 1            |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        |              |                             |        |  |
|                     |               |                  |              |                     |              |          |          |                        | 1            |                             |        |  |
| Pump                | Туре:         | Waterra          | Hydrolif     | t pump w            | ith blac     | k poly t | ubing a  | ind a foot             | valve        |                             |        |  |
| Analyti             | ical Par      | ameters:         |              | TAL Meta            | als          |          |          |                        |              |                             |        |  |



|                     |              |             |                                              | PROJECT    |          |          |          |                        | PROJECT No.   | SHEET                       | SHEETS |  |
|---------------------|--------------|-------------|----------------------------------------------|------------|----------|----------|----------|------------------------|---------------|-----------------------------|--------|--|
| WELL                | SAMP         | LING FOI    | RM                                           | MULTI S    | ITE-G    |          |          | 87616 / 05 1 of        |               |                             |        |  |
| LOCATION<br>Liberty | i<br>Industi | rial Finish | ing, Bre                                     | entwood, I | NY #1-5  | 52-108   |          | DATE WELL S<br>6/22/06 | STARTED       | DATE WELL COMPLETED 6/22/06 |        |  |
| CLIENT              |              | _           | <u> </u>                                     | ,,         |          | _        |          | NAME OF INS            | PECTOR        |                             |        |  |
| New Y               | ork Sta      | te Depart   | ment of                                      | Environn   | nental ( | Conser   | vation   | Kevin Se               | ise, Jason Kl | ein                         |        |  |
| DRILLING            | COMPANY      |             |                                              |            |          |          |          | SIGNATURE              | OF INSPECTOR  |                             |        |  |
| ONE WELI            |              | 17.83       |                                              |            | WELL TD: |          |          |                        | PUMP I        | NTAKE DEPTH:                |        |  |
|                     | Depth        | Purgo       |                                              | FIE        | LD MEAS  | SUREME   | ENTS     |                        |               |                             |        |  |
| Time                | Water        | Rate        | Temp.                                        | Conduct.   | DO       | Hq       | ORP      | Turbidity              | -             | REMARKS                     |        |  |
| -                   | (ft)         | (ml/min)    | (C)                                          | (ms/cm)    | (mg/L)   |          |          | (ntu)                  |               |                             |        |  |
|                     | 40.76        |             | 11.59                                        | 0.196      | 9.21     | 6.31     | 212.5    | 3.84                   |               |                             |        |  |
| 12:40               |              |             | 12.63                                        | 0.239      | 8.57     | 5.32     | 234.1    | 3.12                   | Purge Volun   | ne 53.48 gal.               |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          | ļ        |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            | L        | L        | <b> </b> |                        |               |                             |        |  |
|                     |              |             |                                              |            | <u> </u> | <u> </u> | I        |                        |               |                             |        |  |
|                     |              |             |                                              |            | <u> </u> | <u> </u> |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          |          |                        |               |                             |        |  |
|                     |              |             |                                              |            |          |          | 1        |                        |               |                             |        |  |
|                     |              | <u> </u>    | <u>ı                                    </u> | 1          |          |          | 1        | 1                      | Į             |                             |        |  |
| Pump                | Type:        | Waterra     | Hydrolif                                     | t pump w   | ith blac | k poly t | tubing a | ind a foot             | valve         |                             |        |  |
|                     |              |             | -                                            |            |          |          | 0        |                        |               |                             |        |  |
| Analyti             | cal Par      | ameters:    |                                              | TAL Meta   | als      |          |          |                        |               |                             |        |  |



|          |          |            |            | PROJECT   |          |          |          |             | PROJECT No.   | SHEET               | SHEETS |
|----------|----------|------------|------------|-----------|----------|----------|----------|-------------|---------------|---------------------|--------|
| WELL     | SAMP     | LING FOR   | RM         | MULTI S   | ITE-G    |          |          |             | 87616 / 05    | 1 оғ                | 1      |
|          |          |            |            |           |          | 0 4 0 0  |          | DATE WELL S | TARTED        | DATE WELL COMPLETED |        |
| Liberty  | Industr  | ial Finish | ing, Bre   | ntwood, I | NY #1-5  | 2-108    |          | 6/22/06     | PECTOR        | 6/22/06             |        |
| Now V    | ork Sta  | to Donarti | mont of    | Environn  | nontal ( | oneon    | vation   | Kovin So    | ien laenn Klu | ain                 |        |
|          | COMPANY  | le Depart  |            |           | ientai ( | 5011561  | ValiOII  | SIGNATURE C | FINSPECTOR    |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
| ONE WELI | VOLUME : | 134.51     |            |           | WELL TD: |          |          |             | PUMP II       | NTAKE DEPTH:        |        |
|          | Denth    |            |            | FIE       |          |          | PTN      |             |               |                     |        |
|          | to       | Purge      |            | 1.12      |          |          |          |             |               |                     |        |
| Time     | Water    | Rate       | Temp.      | Conduct.  | DO       | pН       | ORP      | Turbidity   | 1             | REMARKS             |        |
|          | (ft)     | (ml/min)   | (C)        | (ms/cm)   | (mg/L)   |          |          | (ntu)       |               |                     |        |
|          | 41.95    |            | 11.6       | 0.086     | 8.72     | 7.63     | 122.4    | 3.96        |               |                     |        |
| 13:40    |          |            | 12.15      | 0.129     | 6.67     | 5.6      | 211.9    | 1.06        | Purge Volum   | ne 403.53 gal.      |        |
|          |          |            |            |           |          |          |          |             | Ŭ             |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     | -      |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          | ļ        |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          | L        |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          | <u> </u> |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          |          |             |               |                     |        |
|          |          |            |            |           |          |          | I        |             | !             |                     |        |
| Dump     | Type     | Watorra    | Hydrolif   | t numn w  | ith bloc | k noly t | ubina a  | nd a fact   | valvo         |                     |        |
| runp     | rype.    | vvalend    | i iyurulli | r punp w  | in plac  | r poly l | ubing a  | inu a 100l  | valve         |                     |        |
| Apolyt   | oal Par  | amotora    |            |           | ale      |          |          |             |               |                     |        |
| rnaiyli  | car i al |            |            |           | 10       |          |          |             |               |                     |        |



|          |             |             |                  | PROJECT    |                 |                 |          |                        | PROJECT No.   | SHEET                         |    | SHEETS |
|----------|-------------|-------------|------------------|------------|-----------------|-----------------|----------|------------------------|---------------|-------------------------------|----|--------|
| WELL     | SAMP        | LING FOI    | RM               | MULTI S    | ITE-G           |                 |          | DATE WELL              | 87616 / 05    | 1                             | OF | 1      |
| Liberty  | Industr     | rial Finish | in <u>g,</u> Bre | entwood, I | NY <u></u> #1-5 | 5 <u>2-1</u> 08 |          | date well s<br>6/14/06 | TARTED        | DATE WELL COMPLETE<br>6/14/06 | )  |        |
|          |             |             |                  | <b>F</b>   |                 |                 |          | NAME OF INSI           | PECTOR        |                               |    |        |
|          | Ork Sta     | te Depart   | ment of          | Environn   | nental          | Jonser          | vation   | KEVIN SE               | ISE, JASON KI | ein                           |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
| ONE WELI | VOLUME :    | 18.00       |                  |            | WELL TD:        | 148.6           |          | -                      | PUMP I        | NTAKE DEPTH:                  |    |        |
|          | Depth<br>to | Purge       |                  | FIE        | LD MEAS         | SUREME          | ENTS     |                        |               |                               |    |        |
| Time     | Water       | Rate        | Temp.            | Conduct.   | DO              | pН              | ORP      | Turbidity              | 1             | REMARKS                       |    |        |
|          | (ft)        | (ml/min)    | (C)              | (ms/cm)    | (mg/L)          |                 |          | (ntu)                  |               |                               |    |        |
|          | 38.29       |             | 12.83            | 0.2        | 8.09            | 5.64            | 229.8    | 13.33                  |               |                               |    |        |
| 12:10    |             |             | 12.9             | 0.204      | 7.41            | 5.64            | 230      | 8.72                   | Purge Volum   | ne 54.00 gal.                 |    | -      |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
| <b> </b> |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
| <u> </u> |             |             |                  |            | <u> </u>        | <u> </u>        |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          |             |             |                  |            |                 |                 |          |                        |               |                               |    |        |
|          | -           |             |                  |            |                 |                 |          |                        |               |                               |    |        |
| Pump     | l ype:      | Waterra     | Hydrolif         | t pump w   | ith blac        | k poly i        | tubing a | ind a foot             | valve         |                               |    |        |
| Apolyti  | cal Dar     | amotoro     |                  |            | ale             |                 |          |                        |               |                               |    |        |
| raiyli   | uai Fali    |             |                  |            | 213             |                 |          |                        |               |                               |    |        |



|          |             |              |               | PROJECT   |           |          |          |                         | PROJECT No.   | SHEET              |    | SHEETS |
|----------|-------------|--------------|---------------|-----------|-----------|----------|----------|-------------------------|---------------|--------------------|----|--------|
| WELL     | SAMP        | LING FOI     | RM            | MULTI S   | ITE-G     |          |          |                         | 87616 / 05    | 1                  | OF | 1      |
| LOCATION | Induct      | rial Einiah  | ing Pro       | ntwood I  | VV #1 6   | 0 100    |          | DATE WELL S             | TARTED        | DATE WELL COMPLETE | ED |        |
| CLIENT   | muusu       | iai fillisti | пу, ые        | ntwood, i | NT #1-C   | 02-100   |          | 0/ 14/00<br>NAME OF INS | PECTOR        | 0/14/00            |    |        |
| New Y    | ork Sta     | te Depart    | ment of       | Environn  | nental (  | Conser   | vation   | Kevin Se                | ise, Jason Kl | ein                |    |        |
| DRILLING | COMPANY     | · · ·        |               |           |           |          |          | SIGNATURE C             | OF INSPECTOR  |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
| ONE WELI | VOLUME      | : 18.00      |               |           | WELL TD:  | 148.6    |          |                         | PUMP I        | NTAKE DEPTH:       |    |        |
|          | Depth<br>to | Purge        |               | FIE       | LD MEAS   | SUREME   | ENTS     |                         |               |                    |    |        |
| Time     | Water       | Rate         | Temp.         | Conduct.  | DO        | рН       | ORP      | Turbidity               | 1             | REMARKS            |    |        |
|          | (ft)        | (ml/min)     | (C)           | (ms/cm)   | (mg/L)    |          |          | (ntu)                   |               |                    |    |        |
|          | 38.3        |              | 15.09         | 0.188     | 9.9       | 5.78     | 204.6    |                         |               |                    |    |        |
| 12:40    |             |              | 14.16         | 0.191     | 9.15      | 5.41     | 231.5    |                         | Purge Volun   | ne 35.35 gal.      |    |        |
|          |             |              |               |           |           |          |          |                         | Duplicate     |                    |    |        |
|          |             |              |               |           |           |          |          |                         | MS            |                    |    |        |
|          |             |              |               |           |           |          |          |                         | MSD           |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          | <u> </u> |                         |               |                    |    |        |
|          |             |              |               |           |           |          | <u> </u> |                         |               |                    |    |        |
| ———      |             | ļ            |               |           |           |          | I        |                         |               |                    |    |        |
|          |             |              |               |           |           |          | I        |                         |               |                    |    |        |
|          |             |              |               |           |           |          | I        |                         |               |                    |    |        |
|          |             |              |               |           |           |          | I        |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         |               |                    |    |        |
|          |             |              |               |           |           |          | <u> </u> |                         |               |                    |    |        |
|          |             |              |               |           |           |          |          |                         | ļ             |                    |    |        |
| Duran    |             | Motores      | ا المراجعة ال | +         | ith his - | لرممانيا | ubiee -  | nd a fast               | volvo         |                    |    |        |
| Fump     | i ype:      | vvalerra     | Hydrollf      | i pump w  | ULL DIAC  | к рогу і | lubing a | 1001 a 1001             | valve         |                    |    |        |
| Apoluti  | ool Bor     | omotoro      |               |           |           |          |          |                         |               |                    |    |        |
| rnaiyli  | uai F di    |              |               |           | 213       |          |          |                         |               |                    |    |        |



|          | CAMD                 |                  |              |                     |              |          |         |                    | PROJECT No.                 | SHEET                  | SHEETS |  |
|----------|----------------------|------------------|--------------|---------------------|--------------|----------|---------|--------------------|-----------------------------|------------------------|--------|--|
|          | SAMP                 | LING FOI         | RIVI         | MULTIS              | IIE-G        |          |         | DATE WELL S        | STARTED DATE WELL COMPLETED |                        |        |  |
| Liberty  | <sup>,</sup> Industi | rial Finish      | ing, Bre     | entwood, l          | NY #1-       | 52-108   |         | 8/23/07            |                             | 8/23/07                |        |  |
|          | ork Sto              | to Donort        | mont of      | Environn            | oontol (     | <b>`</b> | votion  | NAME OF INS        | PECTOR                      | hottorioo              |        |  |
| DRILLING | COMPANY              | le Depart        | ment of      | Environi            | lientar      | Jonser   | valion  | SIGNATURE C        | DF INSPECTOR                | nalleijee              |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
| ONE WELI | VOLUME :             |                  | 5 gal        |                     | WELL TD:     |          | 50 ft   |                    | PUMP                        | лтаке дертн: 45 ft     |        |  |
|          | Depth<br>to          | Purge            |              | FIE                 | LD MEAS      | SUREME   | INTS    |                    |                             |                        |        |  |
| Time     | Water<br>(ft)        | Rate<br>(ml/min) | Temp.<br>(C) | Conduct.<br>(ms/cm) | DO<br>(mq/L) | рН       | ORP     | Turbidity<br>(ntu) |                             | REMARKS                |        |  |
|          | 43.15                | , ,              | . ,          | , ,                 | ,            |          |         | , ,                | Static Water                | Level                  |        |  |
|          | 43.15                |                  | 14.75        | 0.136               | 10.65        | 6.17     | 259     | 4.8                |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    | Hand purgeo                 | d using foot valve and | d poly |  |
|          |                      |                  |              |                     |              |          |         |                    | tubing                      |                        |        |  |
|          |                      |                  |              |                     |              |          |         | _                  | Purged appr                 | oximately 16 gals.     |        |  |
| 16:00    |                      |                  |              |                     |              |          |         |                    | Collect samp                | ble LMW-5              |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         | -                  |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         | <b> </b>           |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         | <u> </u>           |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     | ļ            | L        |         |                    |                             |                        |        |  |
|          |                      |                  |              |                     |              |          |         | 1                  |                             |                        |        |  |
|          |                      |                  | •            |                     |              |          |         |                    |                             |                        |        |  |
| Pump     | Туре:                | Waterra          | Hydrolif     | t pump w            | ith blac     | k poly t | ubing a | and a foot         | valve                       |                        |        |  |
|          |                      |                  |              | <b></b>             |              |          |         |                    |                             |                        |        |  |
| Analyti  | ical Par             | ameters:         |              | TAL Meta            | als          |          |         |                    |                             |                        |        |  |



|                                       |              |             |              | PROJECT          |                 |                |         |             | PROJECT No.   | SHEET              |    | SHEETS |  |
|---------------------------------------|--------------|-------------|--------------|------------------|-----------------|----------------|---------|-------------|---------------|--------------------|----|--------|--|
| WELL                                  | SAMP         | LING FOR    | RM           | MULTI S          | ITE-G           |                |         | DATENELL    | 95900 - 50    | 1                  | OF | 1      |  |
|                                       | Inducti      | rial Finich | ina Bra      | antwood          | NY #1₋ <b>⊮</b> | 52-108         |         | 8/21/07     | TARTED        | 8/24/07            |    |        |  |
| CLIENT                                | muust        |             | ing, Die     | , involut, i     | NI #15          | 52-100         |         | NAME OF INS | PECTOR        | 0/24/01            |    |        |  |
| New Y                                 | ork Sta      | te Depart   | ment of      | <u>Environ</u> r | nental (        | <u>Conserv</u> | vation  | Mihir Cho   | okshi, Saby C | hatterjee          |    |        |  |
| DRILLING                              | COMPANY      |             |              |                  |                 |                |         | SIGNATURE C | F INSPECTOR   |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| ONE WELL                              | VOLUME :     |             | 142          |                  | WELL TD:        | 265 ft         | t       |             | PUMP II       | ntake depth: 92 ft |    |        |  |
|                                       | Depth<br>to  | Purge       |              | FIE              | LD MEAS         | SUREME         | INTS    |             |               |                    |    |        |  |
| Time                                  | Water        | Rate        | Temp.        | Conduct.         | DO              | рН             | ORP     | Turbidity   |               | REMARKS            |    |        |  |
|                                       | (ft)         | (ml/min)    | (C)          | (ms/cm)          | (mg/L)          |                |         | (ntu)       | Otationation  | I                  |    |        |  |
| 12.05                                 | 1E E         |             | 00 F         | 0.40             | 0 54            | E 07           | 240     | 150         | Static water  | ievei              |    |        |  |
| 13:25                                 | 45.5         |             | 23.5         | 0.13             | 0.51            | 5.87           | 313     | 158         | Pump on       |                    |    |        |  |
| 13:50                                 | 20.25        |             | 14.ŏ<br>12.4 | 0.142            | 0.4ŏ            | 0.00           | 309     | 4.4         |               |                    |    |        |  |
| 13.55                                 | 70 0         |             | 13.4         | 0.142            | 7.40            | 5.09           | 317     | 9           |               |                    |    |        |  |
| 14.05                                 | 19.0<br>79.1 |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 14:15     78.1       14:20     82.35  |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 14:20     82.35       14:30     84.70 |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 14:30 84.70<br>15:00 85.3             |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 15.00                                 | 85.5         |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 15:40                                 | 85.9         |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 16:00                                 | 88.7         |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 16:20                                 | 88.2         |             |              |                  |                 |                |         |             |               |                    |    |        |  |
| 16:20                                 | 89.8         |             | 13.4         | 0 148            | 75              | 5.82           | 318     | 6.80        | Purged appr   | ox 425 gallon      |    |        |  |
| 10.00                                 | 00.0         |             | 10.1         | 0.110            | 7.0             | 0.02           | 010     | 0.00        | r argoa appr  | ox 120 gallon      |    |        |  |
| 16:40                                 |              |             |              |                  |                 |                |         |             | Collect same  | ble LMW-6          |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |
|                                       | <b>-</b> .   | 14/-1       |              |                  |                 |                |         |             |               |                    |    |        |  |
| Pump                                  | i ype:       | vvaterra    | Hydroli      | t pump w         | ith blac        | к poly t       | ubing a | and a foot  | valve         |                    |    |        |  |
| Analysi                               |              | omotore     |              | TAL Mat          |                 |                |         |             |               |                    |    |        |  |
| Analyti                               | cal Par      | ameters:    |              | I AL ME          | ais             |                |         |             |               |                    |    |        |  |
|                                       |              |             |              |                  |                 |                |         |             |               |                    |    |        |  |



|          |                   |                  |              | PROJECT             |              |          |         |                    | PROJECT No.   | SHEET              | SHEETS  |
|----------|-------------------|------------------|--------------|---------------------|--------------|----------|---------|--------------------|---------------|--------------------|---------|
| WELL     | SAMP              | LING FOR         | RM           | MULTI S             | ITE-G        |          |         |                    | 95900 - 50    | 1 оғ               | 1       |
| LOCATION | l<br>Inducti      | ial Finiah       | ing Dra      | ntwood              |              | -0 100   |         | DATE WELL S        | STARTED       |                    |         |
| LIDEITY  | Industr           | nai Finish       | ing, вre     | entwood, I          | NY #1-5      | 52-108   |         | 8/24/U7            | PECTOR        | 8/24/07            |         |
| New Y    | ork Sta           | te Departi       | ment of      | Environn            | nental C     | Conserv  | vation  | Mihir Cho          | okshi, Saby C | hatterjee          |         |
| DRILLING | COMPANY           |                  |              |                     |              |          |         | SIGNATURE C        | DF INSPECTOR  | ,                  |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
| ONE WELI | VOLUME :          | 3.0              |              |                     | WELL TD:     | 49.3 ft  |         |                    | PUMP I        | NTAKE DEPTH: 45 ft |         |
|          | Depth<br>to       | Purge            |              | FIE                 | LD MEAS      | SUREME   | NTS     |                    |               |                    |         |
| Time     | Water<br>(ft)     | Rate<br>(ml/min) | Temp.<br>(C) | Conduct.<br>(ms/cm) | DO<br>(mg/L) | рН       | ORP     | Turbidity<br>(ntu) |               | REMARKS            |         |
|          | 39.95             | . ,              | . ,          | , ,                 | ( ) /        |          |         | . ,                | Static water  | level              |         |
| 8:20     | 39.95             |                  | 17.5         | 0.194               | 5.16         | 6.28     | 207     | -50                | Pump on       |                    |         |
| 8:30     |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    | Purged appr   | ox 10 gal volume   |         |
| 8:30     |                   |                  |              |                     |              |          |         |                    | Collect samp  | ble LMW-12         |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    | <u></u> |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
|          |                   |                  |              |                     |              |          |         |                    |               |                    |         |
| Pump     | Tvne <sup>.</sup> | Waterra I        | Hydrolif     | t numn w            | ith blac     | k polv t | ubina   | and a foot         | valve         |                    |         |
| . unp    | . , po.           | . ratoria i      | .,           | . Partip W          |              | . poly t | aonig ( |                    |               |                    |         |
| Analyti  | cal Par           | ameters:         |              | TAL Meta            | als          |          |         |                    |               |                    |         |



|          |               |             |                | PROJECT                                       |               |               |          |                        | PROJECT No.   | SHEET               |    | SHEETS |
|----------|---------------|-------------|----------------|-----------------------------------------------|---------------|---------------|----------|------------------------|---------------|---------------------|----|--------|
| WELL     | SAMP          | LING FO     | RM             | MULTI S                                       | ITE-G         |               |          | • · · · · · · · · · ·  | 95900 - 50    | 1                   | OF | 1      |
| LOCATION | i<br>/ Indust | rial Finish | vina Bre       | entwood                                       | NY #1-!       | 52-108        |          | DATE WELL S<br>8/24/07 | STARTED       | DATE WELL COMPLETED |    |        |
| CLIENT   | maaaa         |             | ing, bic       | <u>, , , , , , , , , , , , , , , , , , , </u> |               | <u>JZ 100</u> |          | NAME OF INS            | PECTOR        | 0/27/01             |    |        |
| New Y    | ork Sta       | ite Depart  | ment of        | <u>í Environr</u>                             | nental (      | Conser        | vation   | Mihir Che              | okshi, Saby C | hatterjee           |    |        |
| DRILLING | COMPANY       |             |                |                                               |               |               |          | SIGNATURE              | OF INSPECTOR  |                     |    |        |
| <u> </u> |               |             |                |                                               |               |               |          | <u> </u>               |               |                     |    |        |
| ONE WELL | - VOLUME :    | . 10        |                |                                               | WELL TD:      | 100 ft        | t        |                        | PUMP II       | NTAKE DEPTH: 48 ft  |    |        |
|          | Depth<br>to   | Purge       |                | FIEI                                          | LD MEAS       | SUREME        | INTS     |                        |               |                     |    |        |
| Time     | Water         | Rate        | Temp.          | Conduct.                                      | DO            | рН            | ORP      | Turbidity              | 1             | REMARKS             |    | l      |
|          | (ft)          | (ml/min)    | (C)            | (ms/cm)                                       | (mg/L)        |               | <u> </u> | (ntu)                  |               |                     |    |        |
|          |               | ļ'          | <u> '</u>      |                                               |               |               |          |                        | Static water  | level               |    |        |
| 8:45     | 40            | ļ'          | 16.7           | 0.231                                         | 5.93          | 6.32          | 261      | 28.4                   | Pump on       |                     |    |        |
| 8:50     | 40.2          | ļ'          | 13.2           | 0.234                                         | 8.46          | 6.35          | 272      | 9.6                    | Durradiona    | 04                  |    |        |
| 9:00     | 40.2          | ļ'          | <b> </b> '     | <b> </b> '                                    | <b>├───</b> ′ | ──            | ──       | <b></b>                | Purged appr   | ox 31 gai           |    |        |
| Q·10     | <b> </b> '    | <b> </b> '  | <b> </b> '     | <b> </b> '                                    | ┟────′        | ├───          | ┼───     | ╂────                  | Collect same  | ne   M\\/-14        |    |        |
| 3.10     |               | <u> </u> '  | <b>├</b> ───′  | <b>├</b> ────′                                | '             | ├───          | ┼───     | +                      |               |                     |    |        |
|          |               |             | ('             | <b>├</b> ────′                                | <b>├</b> ───┤ | ├───          |          | +                      |               |                     |    |        |
|          |               | ł           | ('             | 1                                             |               |               |          | 1                      |               |                     |    |        |
|          |               |             | ſ'             |                                               |               | F             |          | †                      |               |                     |    |        |
|          |               |             | <u> </u>       |                                               |               |               |          |                        |               |                     |    |        |
|          |               |             |                | '                                             |               |               |          |                        |               |                     |    |        |
|          |               | ļ'          | <b></b> '      | <u> </u>                                      | <u> </u>      |               | $\vdash$ |                        |               |                     |    |        |
|          | <b></b> '     | ļ'          | <b> </b> '     | <b></b> '                                     | <u> '</u>     |               |          | <b></b>                | <b></b>       |                     |    |        |
|          | <b></b> '     | ļ'          | <b> </b> '     | <b> </b> '                                    | <b>└───</b> ′ |               | —        | <b></b>                | <b>_</b>      |                     |    |        |
| ┢───     | <sup>1</sup>  | '           | <b> </b> '     | <b></b> '                                     | <b>├────′</b> | ───           | ──       | <b></b>                | <b></b>       |                     |    |        |
| <b> </b> | <sup>!</sup>  | <b> </b> '  | <b> </b> '     | <b> </b> '                                    | ───′          | ──            | ──       | <b></b>                |               |                     |    |        |
|          | <b> </b> '    | <b> </b> '  | <b>├</b> ────′ | <b> </b> '                                    | ┟────′        | ┣────         | ┼───     | +                      | <del> </del>  |                     |    |        |
| <b> </b> |               | <u> </u> '  | <b>├</b> ───′  | <b>├</b> ────′                                | '             | ├───          | ┼───     | +                      | +             |                     |    |        |
|          | <u> </u>      |             | ('             | <b>├</b> ────′                                | <sup> </sup>  | ├───          |          | +                      |               |                     |    |        |
| I        |               | ł           | ('             | <b>├</b> ───′                                 | <b>├</b> ───┤ | <u> </u>      |          | 1                      | 1             |                     |    |        |
|          |               |             |                | 1                                             | 1             |               |          | 1                      |               |                     |    |        |
|          | I             | l           | []             | l                                             | i'            | [             |          | 1                      |               |                     |    |        |
|          |               |             |                |                                               |               |               |          |                        |               |                     |    |        |
|          |               |             | <u> </u>       | <u> </u>                                      |               |               |          |                        |               |                     |    |        |
|          | <u> </u>      | ļ'          | <b></b> '      | <u> </u> '                                    | <u> </u>      | <u> </u>      | $\vdash$ | <u> </u>               | <u> </u>      |                     |    |        |
| <b> </b> | <b></b> '     | ļ'          | <b> </b> '     | <b></b> '                                     | <b>↓</b> '    |               |          | <b></b>                | <b></b>       |                     |    |        |
| Ⅰ        | '             | ļ'          | <b> </b> '     | <b> </b> '                                    | <b> '</b>     | ──            | ──       | ───                    | <b></b>       |                     |    |        |
| ┣────    | <sup>1</sup>  | '           | <b> </b> '     | <b></b> '                                     | <b>├────′</b> | ───           | ──       | <u> </u>               | <b></b>       |                     |    |        |
| ┢───     | '             | <b> </b> '  | <b> </b> '     | <b> </b> '                                    | ───′          | ──            | ──       | <b></b>                |               |                     |    |        |
| ┟────    | <u> </u> '    | <u> </u>    | L'             | <u> </u>                                      |               | L             | <u> </u> | <u> </u>               | <u> </u>      |                     |    |        |
| Pump     | Type.         | Waterra     | Hydroli        | ft nump w                                     | vith blac     | k nolv t      | tubina : | and a foot             | valve         |                     |    |        |
| I UIIP   | 1960.         | Mutoria .   | nyare          |                                               |               | к ро.у .      | .uoing . |                        | Valve         |                     |    |        |
| Analyt   | ical Par      | ameters:    |                | TAL Met                                       | als           |               |          |                        |               |                     |    |        |
|          |               |             |                |                                               |               |               |          |                        |               |                     |    |        |



| _         |                                                                          |            |          | PROJECT    |          |        |        |                        | PROJECT No.    | SHEET                       | SHEETS |  |  |
|-----------|--------------------------------------------------------------------------|------------|----------|------------|----------|--------|--------|------------------------|----------------|-----------------------------|--------|--|--|
| WELL      | SAMPI                                                                    | LING FOR   | RM       | MULTI S    | ITE-G    |        |        |                        | 95900 - 50     | 1 оғ                        | 1      |  |  |
| LIDEATION | Industr                                                                  | ial Finish | ing, Bre | entwood, I | NY #1-5  | 52-108 |        | date well s<br>8/24/07 | TARTED         | date well completed 8/24/07 |        |  |  |
|           | ork Stor                                                                 | to Donort  | mont of  | Environn   | oontol ( |        | otion  | NAME OF INS            | PECTOR         | hattariaa                   |        |  |  |
| DRILLING  | COMPANY                                                                  | le Depart  | ment of  | Environn   | ientai C | Jonsen | ation  |                        | DKSIII, SADY C | nallerjee                   |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
| ONE WELL  | . VOLUME :                                                               |            | 18 gal   |            | WELL TD: |        | 150 ft |                        | PUMPIN         | NTAKE DEPTH: 48 ft          |        |  |  |
|           | Depth<br>to                                                              | Purge      |          | FIEI       | D MEAS   | SUREME | NTS    |                        |                |                             |        |  |  |
| Time      | Water                                                                    | Rate       | Temp.    | Conduct.   | DO       | рН     | ORP    | Turbidity              |                | REMARKS                     |        |  |  |
|           | (ft)                                                                     | (ml/min)   | (C)      | (ms/cm)    | (mg/L)   |        |        | (ntu)                  |                |                             |        |  |  |
|           | 42.58                                                                    |            |          |            |          |        |        |                        | Static Water   | Level                       |        |  |  |
| 12:30     | 42.58                                                                    |            |          |            |          |        |        |                        | Pump on        |                             |        |  |  |
| 12:40     | 42.58                                                                    |            | 12.4     | 0.279      | 7.5      | 5.6    | 323    | 8.4                    |                |                             |        |  |  |
| 12:45     | 42.4                                                                     |            | 12.8     | 0.284      | 5.49     | 5.29   | 347    | 12.8                   |                |                             |        |  |  |
| 13:00     | 42.4                                                                     |            | 12.6     | 0.295      | 5.32     | 5.24   | 352    | 15.6                   | Purged appr    | oximately 60 gallons        |        |  |  |
| 13:05     |                                                                          |            |          |            |          |        |        |                        | Collect samp   | ole LMW-18                  |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
|           |                                                                          |            |          |            |          |        |        |                        |                |                             |        |  |  |
| Pump      | ump Type: Waterra Hydrolift nump with black poly tubing and a foot valve |            |          |            |          |        |        |                        |                |                             |        |  |  |
| · •p      |                                                                          |            | .,       | - P P - 11 |          |        |        |                        |                |                             |        |  |  |
| Analyti   | cal Para                                                                 | ameters:   |          | TAL Meta   | als      |        |        |                        |                |                             |        |  |  |



| <u> </u>            |               |                  |              | PROJECT             |              |          |         |                        | PROJECT No.   | SHEET                          | SHEETS |  |  |
|---------------------|---------------|------------------|--------------|---------------------|--------------|----------|---------|------------------------|---------------|--------------------------------|--------|--|--|
| WELL                | SAMP          | LING FOR         | RM           | MULTI S             | ITE-G        |          |         |                        | 95900 - 50    | 1 оғ                           | 1      |  |  |
| LOCATION<br>Libertv | Indust        | rial Finish      | ing, Bre     | entwood.            | NY #1-       | 52-108   |         | DATE WELL S<br>8/24/07 | TARTED        | DATE WELL COMPLETED<br>8/24/07 |        |  |  |
| CLIENT              |               | _                | <u>,</u>     |                     |              |          | _       | NAME OF INS            | PECTOR        |                                |        |  |  |
| New Y               | ork Sta       | te Depart        | ment of      | Environn            | nental (     | Conserv  | vation  | Mihir Cho              | okshi, Saby C | hatterjee                      |        |  |  |
| DRILLING            | COMPANY       |                  |              |                     |              |          |         | GIGINATURE             | JE INSPECIUK  |                                |        |  |  |
| ONE WEL             |               | 133 gal          |              |                     | WELL TD:     |          | 248 ft  | •                      | PUMP II       | NTAKE DEPTH: 48 ft             |        |  |  |
|                     | Depth         |                  |              | FIE                 |              | SUREME   | NTS     |                        |               |                                |        |  |  |
|                     | to            | Purge            | _            |                     |              |          |         | <b>1</b>               | 4             |                                |        |  |  |
| Time                | Water<br>(ft) | Rate<br>(ml/min) | Temp.<br>(C) | Conduct.<br>(ms/cm) | DO<br>(mq/L) | рН       | ORP     | Turbidity<br>(ntu)     |               | REMARKS                        |        |  |  |
| 9:15                | 42.75         | , ,              |              | . ,                 | ,            |          |         | . ,                    | Static Water  | level                          |        |  |  |
|                     | 44.8          |                  | 12.4         | 0.15                | 7.76         | 5.96     | 334     | 50.5                   | Pump started  | b                              |        |  |  |
|                     | 44.85         |                  | 12           | 0.152               | 6.16         | 5.74     | 294     | 7.2                    | Purged appr   | oximately 400 gallons          |        |  |  |
|                     | 44.9          |                  | 11.5         | 0.147               | 6.01         | 5.14     | 320     | 7.8                    |               |                                |        |  |  |
|                     | 44.95         |                  | 11.5         | 0.195               | 5.49         | 5.25     | 349     | 10.6                   |               |                                |        |  |  |
|                     | 44.2          |                  | 11.5         | 0.203               | 5.69         | 335      | 20.8    |                        |               |                                |        |  |  |
|                     | 44.65         |                  | 11.5         | 0.15                | 6.5          | 5.63     | 323     | 7.10                   |               |                                |        |  |  |
| 12:30               |               |                  |              |                     |              |          |         |                        | Collect samp  | ble LMW-19                     |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         | 1                      | 1             |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         | 1                      |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         | 1                      |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
|                     | -             |                  |              |                     |              |          |         |                        |               |                                |        |  |  |
| Pump                | Туре:         | Waterra          | Hydrolif     | t pump w            | ith blac     | k poly t | ubing a | and a foot             | valve         |                                |        |  |  |
|                     |               | Sample of        | collecte     | d using te          | flon ba      | iler     |         |                        |               |                                |        |  |  |
| Analyt              | ical Par      | ameters:         |              | TAL Meta            | als          |          |         |                        |               |                                |        |  |  |
| I                   |               |                  |              |                     |              |          |         |                        |               |                                |        |  |  |



| _        |                                                                          |                  |          | PROJECT   |               |         |        |             | PROJECT No.   | SHEET              |     | SHEETS |  |
|----------|--------------------------------------------------------------------------|------------------|----------|-----------|---------------|---------|--------|-------------|---------------|--------------------|-----|--------|--|
| WELL     | SAMP                                                                     | LING FOR         | RM       | MULTI S   | ITE-G         |         |        |             | 95900 - 50    | 1                  | OF  | 1      |  |
| LOCATION | Industr                                                                  | rial Finish      | ina Bre  | entwood   | NY #1-9       | 52-108  |        | 8/22/07     | TARTED        | 8/22/07            |     |        |  |
| CLIENT   | maaoa                                                                    |                  | ing, bre | , 1       |               | 52 100  |        | NAME OF INS | PECTOR        | 0,22,01            |     |        |  |
| New Y    | ork Sta                                                                  | te Depart        | ment of  | Environn  | nental (      | Conserv | vation | Mihir Cho   | okshi, Saby C | hatterjee          |     |        |  |
| DRILLING | COMPANY                                                                  |                  |          |           |               |         |        | SIGNATURE C | OF INSPECTOR  |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
| ONE WELL | VOLUME :                                                                 | 18.00            |          |           | WELL TD:      |         | 149.50 | D ft        | PUMP II       | NTAKE DEPTH: 45 ft |     |        |  |
|          | Depth                                                                    |                  |          | FIE       | D MEAS        | SUREME  | NTS    |             |               |                    |     |        |  |
|          | to                                                                       | Purge            | -        |           | 5.0           |         |        | <b>1 -</b>  | -             |                    |     |        |  |
| Time     | water<br>(ft)                                                            | Rate<br>(ml/min) | (C)      | (ms/cm)   | DO<br>(ma/l ) | рн      | ORP    | (ntu)       |               | REMARKS            |     |        |  |
|          | 39.15                                                                    | (,               | (0)      | (110/011) | (9, =)        |         |        | (intu)      | Static Water  | Level              |     |        |  |
| 17:35    | 39.15                                                                    |                  | 13.3     | 0.285     | 7.35          | 5.62    | 281    | 9.7         | Pump on       |                    |     |        |  |
| 17:40    | 40.02                                                                    |                  | 12.2     | 0.375     | 8.63          | 5.66    | 299    | 18.9        |               |                    |     |        |  |
| 17:45    | 40.01                                                                    |                  | 12.1     | 0.38      | 4.24          | 5.36    | 323    | 3.2         |               |                    |     |        |  |
| 17:55    | 40.02                                                                    |                  | 12.1     | 0.375     | 4.63          | 5.39    | 329    | 10.8        | Purged appr   | ox. 56 gal         |     |        |  |
| 18:10    |                                                                          |                  |          |           |               |         |        |             | Collect samp  | ble LMW-20         |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               | unlineta) MO and   |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             | LIVIV-120 (d  | uplicate), MS and  | MSD | )      |  |
|          |                                                                          |                  |          |           |               |         |        |             | samples coll  | ecleu              |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         | ļ      |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  |          |           |               |         | I      | 1           | <u> </u>      |                    |     |        |  |
| Pump     | ump Type: Waterra Hydrolift nump with black poly tubing and a foot valve |                  |          |           |               |         |        |             |               |                    |     |        |  |
|          |                                                                          |                  | .,       | - P       |               |         |        |             |               |                    |     |        |  |
| Analyti  | cal Par                                                                  | ameters:         |          | TAL Meta  | als           |         |        |             |               |                    |     |        |  |
| Í        |                                                                          |                  |          |           |               |         |        |             |               |                    |     |        |  |



|          |            |             |          | PROJECT    |          |          |         |             | PROJECT No.  | SHEET             | SHEETS |  |  |  |
|----------|------------|-------------|----------|------------|----------|----------|---------|-------------|--------------|-------------------|--------|--|--|--|
| WELL     | SAMP       | LING FOR    | RM       | MULTI S    | ITE-G    |          |         |             | 95900 - 50   | 1 оғ              | 1      |  |  |  |
| LOCATION |            |             |          |            |          |          |         | DATE WELL S | TARTED       |                   |        |  |  |  |
| LIDERTY  | Industi    | rial Finish | ing, Bre | entwood, l | NY #1-   | 52-108   |         | 8/22/07     | PECTOP       | 8/22/07           |        |  |  |  |
| New V    | ork Sta    | te Denarti  | ment of  | Environn   | nental ( | Conserv  | /ation  | Mihir Cha   | okshi Sahv C | hatteriee         |        |  |  |  |
| DRILLING | COMPANY    | to Dopun    |          |            |          | 2011001  |         | SIGNATURE   | DF INSPECTOR | ilationjoo        |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             | 44.0     | - 1        |          |          | 440.50  | N (1        |              | 45.0              |        |  |  |  |
| ONE WELL | VOLUME :   |             | 11.6 g   | ai         | WELL TD: |          | 110.50  | π           | PUMP IN      | NTAKE DEPTH: 45 T |        |  |  |  |
|          | Depth      |             |          | FIE        | LD MEAS  | SUREME   | NTS     |             |              |                   |        |  |  |  |
|          | to         | Purge       |          |            |          |          |         |             |              |                   |        |  |  |  |
| Time     | Water      | Rate        | Temp.    | Conduct.   | DO       | рН       | ORP     | Turbidity   |              | REMARKS           |        |  |  |  |
|          | (ft)       | (ml/min)    | (C)      | (ms/cm)    | (mg/L)   |          |         | (ntu)       |              |                   |        |  |  |  |
| 10.10    | 39.2       |             | 40.7     | 0.000      | 0.00     | 5.40     |         | <u> </u>    | Static Water | Level             |        |  |  |  |
| 16:40    | 39.2       |             | 13.7     | 0.209      | 8.69     | 5.48     | 262     | 0           | Pump on      |                   |        |  |  |  |
| 16:50    | 39.3       |             | 12.8     | 0.219      | 9.25     | 5.13     | 292     | 0           |              |                   |        |  |  |  |
| 17:00    | 39.35      |             | 12.9     | 0.216      | 9.65     | 5.22     | 289     | 0           | Purged appro | oximately 35 gals |        |  |  |  |
| 17:10    | ble LMW-21 |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |
| Pump     | Tvpe:      | Waterra I   | Hvdrolif | t pump w   | ith blac | k polv t | ubina a | ind a foot  | valve        |                   |        |  |  |  |
|          | 71         |             | ,        | 1          |          | 1.2.7    |         |             |              |                   |        |  |  |  |
| Analyti  | cal Par    | ameters:    |          | TAL Meta   | als      |          |         |             |              |                   |        |  |  |  |
|          |            |             |          |            |          |          |         |             |              |                   |        |  |  |  |

| UPELL SAMPLING FORM         Multi Site G         OPE WILL SAMPLING FORM         Multi Site G         OPE WILL SAMPLING PORM         Differ Will Conjuncted Differ                                                    |          |          | -           |          | PROJECT    |          | PROJECT No.       | SHEET          | SHEETS    |                        |            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------|----------|------------|----------|-------------------|----------------|-----------|------------------------|------------|--|--|
| Docknow         Date well, Sharten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WELL     | SAMPI    | ING FO      | RM       | Multi Site |          | 95900             | 1 оғ           | 1         |                        |            |  |  |
| Liberty Industrial Finishing, Brentwood, NY # 1-52-108         11/14/08         11/14/08         11/14/08         11/14/08           New York State Department of Environmental Protection         Software         Software         Software         Software           One well volume:         3.0 Gallons         well to         50 ft         purp wrake of Basectors         Software           Time         Water         Rate         Temp.         Fonduct.         Do         PH         ORP.         Purp wrake of Basectors           11:50         45.4         1         14.44         190         8.47         5.76         157         28         Purp on         Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCATION |          |             |          |            |          | DATE WELL STARTED | DATE WELL COMP | LETED     |                        |            |  |  |
| NAME OF NRSPECTOR           NAME OF NRSPECTOR           NAME OF NRSPECTOR           ONE WELL YOUWE: 3.0 Gallons         WELT D: 50 ft         PUMP HTAKE DEPTH: 48 ft           TIME VALUE         TIME VALUE OF NRSPECTOR           TIME VALUE OF Rate<br>(ft)         FIELD MEASUREMENTS           TIME VALUE OF NRSPECTOR           Static Water Level           11:50         A5.4         TIME VALUE OF NRSPECTOR           TIME VALUE OF PUTP Rate           A5.7         TIME VALUE OF NRSPECTOR           TIME VALUE OF N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Liberty  | Industr  | ial Finish  | ing, Bre | entwood, l | NY # 1-  | 52-108            |                |           | 11/14/08               | 11/14/08   |  |  |
| New York State Department of Environmental Protection         SC / MA           ONE WELL YOUME:         3.0 Gallons         WELL TD:         50 ft         PUMP WTAKE DEPTH:         48 ft           Image: State Department of Environmental Protection         Methods         Time         Water         Remain Conduct.         DO         PH         ORP         Turbidity         REMARKS           Image: State Department of Environmental Protection         Methods         Remain Conduct.         DO         PH         ORP         Turbidity         REMARKS           Image: State Department of Environmental Protection         Mater Interview         State Department of Environmental Protection         State Department of Environmental Protection           45.4         1         14.04         190         8.47         5.76         157         28         Pump on           11:55         45.45         1         13.52         177         7.66         5.73         181         O         Purged approximately 15 gals.           12:01         45.48         1         13.52         177         7.66         5.73         181         O         Purged approximately 15 gals.           12:10         45.48         1         13.52         177         7.66         181         181         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLIENT   |          |             | -        |            |          |                   |                |           | NAME OF INSPECTOR      | -          |  |  |
| DeskLive comPANY         SignATURE OF INSPECTOR           ONE WELL VOLUME:         3.0 Gallons         well To:         50 ft         PUMP INTAKE DEPTH:         48 ft           Time         Water         Purge         FEELD MEASUREMENTS         REMARKS         14 ft           45.4         I         I         Image: Conduct (mg/L)         DO         pH         ORP         Turbidity         REMARKS           11:50         45.4         I         14.44         190         8.47         5.76         157         28         Pump on         11155         45.45         1         14.08         181         7.27         5.75         161         8.6         11150         45.48         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:00         45.45         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:01         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | New Y    | ork Stat | te Depart   | ment of  | Environn   | nental F | Protecti          | on             |           | SC / MA                |            |  |  |
| Detect         S.0 Gallons         well To:         S0 ft         PUMP INTAKE DEPTH:         48 ft           Time         Operation         Purge         Tomp:         Conduct:         D0         PH         ORP         Turbidity         REMARKS           45.4         1         14.44         190         8.47         5.76         157         28         Purmp on         11150         45.4         1         14.44         190         8.47         5.76         157         28         Purmp on         11150         45.45         1         13.52         177         7.56         5.73         181         0         Purged approximately 15 gals.           11:50         45.48         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:00         45.48         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:10         I         I         III         IIII         IIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DRILLING | COMPANY  |             |          |            |          |                   |                |           | SIGNATURE OF INSPECTOR |            |  |  |
| ONE WELL VOLUME:     3.0 Gallons     WELL TO:     50 ft     PUMP INTAKE DEPTH     48 ft       Time     Very Purge<br>(ft)     Terms-<br>(ft)     Conduct     DO     PH     ORP     Turbidity     REMARKS       45.4     Terms-<br>(ft)     Conduct     DO     PH     ORP     Turbidity     REMARKS       11:50     45.4     1     14.44     190     8.47     5.76     157     28     Purge on       11:50     45.45     1     14.44     190     8.47     5.76     161     8.6       12:00     45.45     1     13.53     175     7.56     5.74     177     0       12:00     45.45     1     13.53     175     7.56     5.74     177     0       12:00     45.45     1     13.52     177     7.66     5.73     181     0     Purged approximately 15 gals.       12:10     L     L     L     L     L     L     L     L     L       12:10     L     L     L     L     L     L     L     L       14:10     L     L     L     L     L     L     L       12:10     L     L     L     L     L     L     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Depth         Purge<br>(f)         Purge<br>(grm)         FIELD MEASUREMUNTS         REMARKS           45.4         1         14.44         190         8.47         5.76         157         2.8         Purmp on           45.4         1         14.44         190         8.47         5.76         157         2.8         Purmp on           11:50         45.4         1         14.44         190         8.47         5.76         157         2.8         Purmp on           11:50         45.4         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:00         45.48         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 0.015    |             | 20       | Gallona    |          |                   | 50             | ft        |                        | ∕10 ft     |  |  |
| Depth to to to to the state of the       |          | ONE WE   | LL VOLUME : | 3.0      | GallUllS   | v        | WELL TD:          | 50             | IL        | PUMP INTAKE DEPTH:     | 40 II      |  |  |
| vo         Prove frame                |          | Depth    |             |          | FIE        | LD MEAS  | SUREME            | NTS            |           |                        |            |  |  |
| Time<br>(tt)         Water<br>(gpm)         Temp.<br>(°C)         Conduct.<br>(mg/L)         DO         PH         ORP         Turbidity<br>(mu/L)         REMARKS           45.4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | to       | Purge       |          |            |          |                   |                |           |                        |            |  |  |
| (n)         (gpm)         (°C)         (µs/cm)         (mg/L)         (mu)         (mu)           45.4         -         -         -         -         -         Static Water Level           11:50         45.4         1         14.44         190         8.47         5.76         157         28         Pump on           11:55         45.45         1         14.08         181         7.27         5.75         161         8.6           12:00         45.45         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:01         -         -         -         -         -         -         -         Collect sample LMW-5           12:10         -         -         -         -         -         -         Collect sample LMW-5           12:10         -         -         -         -         -         -         Collect sample LMW-5           12:10         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time     | Water    | Rate        | Temp.    | Conduct.   | DO       | рН                | ORP            | Turbidity | REM                    | ARKS       |  |  |
| 45.4         1         1         1         1         1         1         1         1         1         45.4         1         14.44         190         8.47         5.76         157         28         Pump on           11:50         45.45         1         14.08         181         7.27         5.75         161         8.6         1           12:00         45.45         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:05         45.48         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | (ft)     | (gpm)       | (°C)     | (µs/cm)    | (mg/L)   |                   |                | (ntu)     |                        |            |  |  |
| 45.4         v         v         v         v         Static Water Level           111:50         45.4         1         14.44         190         8.47         5.76         157         28         Pump on           11:50         45.45         1         14.08         181         7.27         5.75         161         8.6           12:00         45.45         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:00         45.4         1         13.52         177         7.66         5.73         181         0         Purged approximately 15 gals.           12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| 111:50       45.4       1       14.44       190       8.47       5.76       157       28       Pump on         111:55       45.45       1       14.08       181       7.27       5.75       161       8.6         12:00       45.48       1       13.53       177       7.66       5.74       177       0         12:05       45.48       1       13.52       177       7.66       5.73       181       0       Purged approximately 15 gals.         12:04       1       13.52       177       7.66       5.73       181       0       Purged approximately 15 gals.         12:10       1       1       1       1       1       1       1       1         12:10       1       1       1       1       1       1       1       1         12:10       1       1       1       1       1       1       1       1         12:10       1       1       1       1       1       1       1       1         12:10       1       1       1       1       1       1       1       1         12:10       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 45.4     |             |          |            |          |                   |                |           | Static Water Level     |            |  |  |
| 11:55       45.45       1       14.08       181       7.27       5.75       161       8.6         12:00       45.45       1       13.53       175       7.56       5.74       177       0         12:05       45.48       1       13.52       177       7.66       5.73       181       0       Purged approximately 15 gals.         12:10       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>11:50</td> <td>45.4</td> <td>1</td> <td>14.44</td> <td>190</td> <td>28</td> <td>Pump on</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11:50    | 45.4     | 1           | 14.44    | 190        | 28       | Pump on           |                |           |                        |            |  |  |
| 12:00       45.45       1       13.53       175       7.56       5.74       177       0         12:05       45.48       1       13.52       177       7.66       5.73       181       0       Purged approximately 15 gals.         12:10       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11:55    | 45.45    | 1           | 14.08    | 181        | 8.6      | i '               |                |           |                        |            |  |  |
| 12:05       45.48       1       13.52       177       7.66       5.73       181       0       Purged approximately 15 gals.         12:10       -       -       -       -       -       -       -       Collect sample LMW-5         12:10       -       -       -       -       -       -       -       -         12:10       -       -       -       -       -       -       -       -         12:10       -       -       -       -       -       -       -       -         12:10       -       -       -       -       -       -       -       -         12:10       -       -       -       -       -       -       -       -         12:10       -       -       -       -       -       -       -       -         14:10       -       -       -       -       -       -       -       -         14:10       -       -       -       -       -       -       -       -         14:10       -       -       -       -       -       -       -       -       - <td< td=""><td>12:00</td><td>45.45</td><td>1</td><td>13.53</td><td>175</td><td>7.56</td><td>5.74</td><td>177</td><td>0</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12:00    | 45.45    | 1           | 13.53    | 175        | 7.56     | 5.74              | 177            | 0         |                        |            |  |  |
| 12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10         12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10       12:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12:05    | 45.48    | 1           | 13.52    | 177        | 7.66     | 5.73              | 181            | 0         | Purged approximate     | ly 15 dals |  |  |
| 12:10       Image: Control of the state of                         |          | 10.10    | •           | 10.02    |            |          | 0.10              |                | Ŭ         |                        | .,         |  |  |
| Image: Constraint of the second se               | 12.10    |          |             |          |            |          |                   |                |           | Collect sample I M/M   | /-5        |  |  |
| Image:               | 12.10    |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image:               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image:               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Constraint of the second se               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Constraint of the second se               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image:               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image:               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image:               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image:               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Sector symposize of the symposize of               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system of the               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system       Image: Second system <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system       Image: Second system <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system       Image: Second system <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system       Image: Second system <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system     Image: Second system <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Structure of the sympetry of the sympetr               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system       Image: Second system <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |             |          |            |          |                   | -              |           |                        |            |  |  |
| Image: Constraint of the system of the sy               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second system of the               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second state of the second s               |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Second state of the se |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Constraint of the second se |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Image: Constraint of the system     Image: Constraint of the system     Image: Constraint of the system       Pump Type:     Grundfos pump with poly tubing       Analytical Parameters:     TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Pump Type:     Grundfos pump with poly tubing       Analytical Parameters:     TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Pump Type:     Grundfos pump with poly tubing       Analytical Parameters:     TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Pump Type: Grundfos pump with poly tubing<br>Analytical Parameters: TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
| Pump Type: Grundfos pump with poly tubing Analytical Parameters: TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | -        |             |          |            |          |                   |                |           |                        |            |  |  |
| Analytical Parameters: TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pump     | Туре:    | Grundfos    | pump     | with poly  | tubing   |                   |                |           |                        |            |  |  |
| Analytical Parameters: TAL Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |             |          |            |          |                   |                |           |                        |            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyti  | cal Para | ameters:    |          | TAL Meta   | als      |                   |                |           |                        |            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |          |             |          |            |          |                   |                |           |                        |            |  |  |

| ſ                                         |             |             |          | PROJECT    |              |                    |         |            | PROJECT No.         | SHEET SHEETS        |  |  |  |
|-------------------------------------------|-------------|-------------|----------|------------|--------------|--------------------|---------|------------|---------------------|---------------------|--|--|--|
| WELL                                      | SAMP        | LING FO     | RM       | Multi Site |              | 95900              | 1 оғ 1  |            |                     |                     |  |  |  |
| LOCATION                                  | 1           |             |          |            |              |                    |         |            | DATE WELL STARTED   | DATE WELL COMPLETED |  |  |  |
| Liberty                                   | Industr     | rial Finish | ing, Bre | entwood, I | NY # 1-      | 52-108             | i       |            | 11/14/08            | 11/14/08            |  |  |  |
|                                           | ork Sta     | to Donart   | mont of  | Environn   | nontal F     | Protocti           | <u></u> |            |                     |                     |  |  |  |
|                                           | COMPANY     | le Depair   | ment of  | Elivironi  | llelitari    | TUIECIN            | 011     |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           | ONE WE      | LL VOLUME : | 143.0    | Gallons    | v            | NELL TD:           | 265     | ft         | PUMP INTAKE DEPTH:  | 100 ft              |  |  |  |
|                                           | Depth       |             | 1        | FIE        | LD MEAS      | SUREME             | NTS     |            |                     |                     |  |  |  |
|                                           | to          | Purge       |          |            |              |                    |         |            |                     |                     |  |  |  |
| Time                                      | Water       | Rate        | Temp.    | Conduct.   | DO           | рН                 | ORP     | Turbidity  | REM                 | ARKS                |  |  |  |
|                                           | (ft)        | (gpm)       | (°C)     | (µs/cm)    | (mg/L)       | <b> </b>           |         | (ntu)      |                     |                     |  |  |  |
|                                           | 15.0        |             |          |            | ļ            |                    |         |            |                     |                     |  |  |  |
| 0.05                                      | 45.2        |             | 40.70    | 455        |              | Static water level |         |            |                     |                     |  |  |  |
| 8:35                                      | <b>FF 0</b> | <u> </u>    | 12.72    | 155        | Pump on      |                    |         |            |                     |                     |  |  |  |
| 8:40                                      | 55.3        | 2.5         | 13.1     |            |              |                    |         |            |                     |                     |  |  |  |
| 8:50 67.2 2.5 13.25 154 0.54 6.18 134 1.4 |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
| 9:00                                      | 72.9        | 2.5<br>2.5  | 10.00    | 154        | 0.39         | 0.13               | 135     | C.F        |                     |                     |  |  |  |
| 9.10                                      | 13.0        | 2.0         | 12.02    | 104        | 1.9          | 0.09               | 120     | 0.0        |                     |                     |  |  |  |
| 9.20                                      | 75.04       | 2.5         | 12.12    | 153        | 0.10         | 6.00               | 1/1     | 0.5        |                     |                     |  |  |  |
| 9.30                                      | 70.94       | 2.5         | 12.05    | 100        | 0.10         | 0.01               | 141     | 0.4        |                     |                     |  |  |  |
| 9.40                                      | 76.78       | 2.5         | 12.26    | 111        | 30           | 5.46               | 128     | 61         |                     |                     |  |  |  |
| 9.00                                      | 77.52       | 2.5         | 12.20    | 100        | ১.৩<br>5.32  | 5.40               | 07      | 0.4<br>6.1 |                     |                     |  |  |  |
| 10.00                                     | 11.5Z       | 2.5         | 12.22    | 96         | 0.02<br>6.26 | 5.90               | 91      | 0.4        |                     |                     |  |  |  |
| 10.20                                     | 11.4<br>82  | 3           | 12.15    | 00<br>80   | 5.96         | 5.96               | 93      | 4.0        |                     |                     |  |  |  |
| 10.30                                     | 02<br>84.1  | 3           | 12.20    | 84<br>84   | 0.90<br>7 02 | 5.90               | 107     | 0.4<br>0.7 |                     |                     |  |  |  |
| 10.40                                     | 84.8        | 3           | 12.10    | 81<br>81   | 7.02         | 5.95               | 113     | 2.1        |                     |                     |  |  |  |
| 11.00                                     | 85.4        | 3           | 12.10    | 78         | 7.68         | 5.95               | 121     | 17         |                     |                     |  |  |  |
| 11.00                                     | 85 48       | 3           | 12 15    | 76         | 7.00         | 5.95               | 126     | 1.5        |                     |                     |  |  |  |
| 11.15                                     | 85 85       | 3           | 12.09    | 75         | 78           | 5.95               | 128     | 1.0        | Purced approx 430 ( | rallon              |  |  |  |
| 111.10                                    | 00.00       |             | 12.00    | 10         | 1.0          | 0.00               | 120     |            |                     | Julien              |  |  |  |
| 11:20                                     |             |             |          |            | <b>├</b> ──┤ |                    |         |            | Collect sample LMW  | /-6                 |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
| Pump                                      | Туре:       | Grundfos    | s pump   | with poly  | tubing       |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |
| Analyti                                   | cal Par     | ameters:    |          | TAL Meta   | als          |                    |         |            |                     |                     |  |  |  |
|                                           |             |             |          |            |              |                    |         |            |                     |                     |  |  |  |

|          |                                          | -           |          | PROJECT     |              |                   |                     |           | PROJECT No.            | SHEET SHEETS |  |  |
|----------|------------------------------------------|-------------|----------|-------------|--------------|-------------------|---------------------|-----------|------------------------|--------------|--|--|
| WELL     | SAMPI                                    |             | RM       | Multi Site  |              | 95900             | 1 OF 1              |           |                        |              |  |  |
| LOCATION | 1                                        |             |          |             |              | DATE WELL STARTED | DATE WELL COMPLETED |           |                        |              |  |  |
| Liberty  | Industr                                  | ial Finish  | ing, Bre | entwood, l  | NY # 1-      | 52-108            |                     |           | 12/23/08               | 12/23/08     |  |  |
| CLIENT   |                                          |             | 0,       |             |              |                   |                     |           | NAME OF INSPECTOR      | 1            |  |  |
| New Y    | ork Stat                                 | te Depart   | ment of  | Environn    | nental F     | Protection        | on                  |           | SC / MA                |              |  |  |
| DRILLING | COMPANY                                  |             |          |             |              |                   |                     |           | SIGNATURE OF INSPECTOR |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          | ONE WE                                   | LL VOLUME : | 1.3      | Gallons     | ١            | WELL TD:          | 49.3                | ft        | PUMP INTAKE DEPTH:     | 47 ft        |  |  |
|          | Denth                                    |             |          | FIE         |              |                   | NTS                 |           |                        |              |  |  |
|          | to                                       | Purge       |          |             |              |                   |                     |           |                        |              |  |  |
| Time     | Water                                    | Rate        | Temp.    | Conduct.    | DO           | рH                | ORP                 | Turbidity | REM                    | ARKS         |  |  |
|          | (ft)                                     | (apm)       | (°C)     | (us/cm)     | (ma/L)       | <b>P</b>          | •                   | (ntu)     |                        |              |  |  |
|          | ()                                       | (31-1-7     | (-)      | ()          | ( <b>3</b> / |                   |                     | ()        |                        |              |  |  |
| 10.00    | 41 81                                    |             |          |             |              |                   |                     |           | Static water level     |              |  |  |
| 10.00    | 11 81                                    |             | 10.75    | 763         | 18           | 6 56              | -26                 | 300       |                        |              |  |  |
| 10.07    | 42.20                                    |             | 10.75    | 703         | 4.0          | 5.40              | -20                 | 200       | r unp on               |              |  |  |
| 10.10    | 42.39                                    |             | 12.40    | 700         | 4.30         | 0.49              | -29                 | 200       |                        |              |  |  |
| 10:15    | 42.39                                    |             | 12.75    | 284         | 7.68         | 6.1               | -17                 | 150       |                        |              |  |  |
| 10:20    | 42.34                                    |             | 15.18    | 227         | 7.09         | 5.98              | -1                  | 140       |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           | Purged approx 8 gal    | lons         |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
| 10:25    |                                          |             |          |             |              |                   |                     |           | Collect sample LMW     | /-12         |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |
| Pump     | ump Type: Grupdfos pump with poly tubing |             |          |             |              |                   |                     |           |                        |              |  |  |
| runp     | гуре.                                    | Grandios    | pump     | with poly   | abiliy       |                   |                     |           |                        |              |  |  |
| Analyt   | ool Do-                                  | amotora     |          |             |              |                   |                     |           |                        |              |  |  |
| Analyt   | cal Para                                 | ameters:    |          | I AL IVIETA | 215          |                   |                     |           |                        |              |  |  |
|          |                                          |             |          |             |              |                   |                     |           |                        |              |  |  |

|                                                                                                                                              |          |             |          | PROJECT       | -        |          | PROJECT No. | SHEET SHEETS |                                 |                                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|---------------|----------|----------|-------------|--------------|---------------------------------|---------------------------------------|--|--|--|
| WELL                                                                                                                                         | SAMPL    | ING FO      | RM       | Multi Site    | e G      |          | 95900       |              |                                 |                                       |  |  |  |
| Liberty                                                                                                                                      | Industr  | ial Finish  | ing, Bre | entwood, l    | NY # 1-  |          | 12/23/08    | 12/23/08     |                                 |                                       |  |  |  |
| CLIENT                                                                                                                                       |          |             |          |               |          |          |             |              | NAME OF INSPECTOR               |                                       |  |  |  |
|                                                                                                                                              | ork Stat | e Depart    | ment of  | Environn      | nental F | rotecti  | on          |              | SC / MA                         |                                       |  |  |  |
| DRILLING                                                                                                                                     |          |             |          |               |          |          |             |              | SIGNATORE OF INSPECTOR          |                                       |  |  |  |
|                                                                                                                                              | ONE WEI  | LL VOLUME : | 9.5      | Gallons       | ١        | WELL TD: | 100         | ft           | PUMP INTAKE DEPTH:              | 50 ft                                 |  |  |  |
|                                                                                                                                              | Depth    | Burgo       |          | FIE           | LD MEAS  | SUREME   | NTS         |              |                                 |                                       |  |  |  |
| Time                                                                                                                                         | Water    | Rate        | Temp.    | Conduct.      | DO       | рΗ       | ORP         | Turbidity    | REM                             | ARKS                                  |  |  |  |
|                                                                                                                                              | (ft)     | (gpm)       | (°C)     | (µs/cm)       | (mg/L)   | P        | •           | (ntu)        |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
| 11:00                                                                                                                                        | 41.98    |             |          |               |          |          |             |              | Static water level              |                                       |  |  |  |
| 11:15                                                                                                                                        | 42       |             | 12.8     | 3372          | 6.81     | 6.16     | 129         | 10.9         | Pump on                         |                                       |  |  |  |
| 11:20                                                                                                                                        | 42.17    | 0.55        | 14.68    | 3646          | 1.26     | 6.5      | 3           | 970          |                                 |                                       |  |  |  |
| 11:25                                                                                                                                        | 42.17    |             | 14.71    | 3637          | 2.55     | 6.64     | 6           | 840          |                                 |                                       |  |  |  |
| 11:30     42.17     13.74     2640     5.05     6.37     2.7     790       11:40     42.17     13.6     821     5.97     5.97     85     741 |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
| 11:40     42.17     13.6     821     5.97     5.97     85     741       11:50     42.17     13.36     692     5.84     5.84     117     800  |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
| 11:50                                                                                                                                        | 42.17    |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
| 12:00                                                                                                                                        | 42.17    |             | 13.58    | 296           |          |          |             |              |                                 |                                       |  |  |  |
| 12:10                                                                                                                                        | 42.17    |             | 13.32    | 526           |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | Purged approximately 30 gallons |                                       |  |  |  |
| 10.00                                                                                                                                        |          |             |          |               |          |          |             |              |                                 | · · · · · · · · · · · · · · · · · · · |  |  |  |
| 12:20                                                                                                                                        |          |             |          |               |          |          |             |              | Sample MW-14 colle              | ected at 12:20                        |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | Turkiditu towordo the           |                                       |  |  |  |
|                                                                                                                                              |          |             |          | -             |          |          |             |              |                                 | end seems                             |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | < 100 NTO                       |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | The turbidity meter s           | bows incorrect                        |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | reading                         |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | leading                         |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | Sample could not be             | collected in                          |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | November, since the             | well was under                        |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              | water                           |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          |               |          |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              | _        | •           |          |               |          |          |             |              |                                 |                                       |  |  |  |
| Pump                                                                                                                                         | Type:    | Grundfos    | pump     | with poly     | tubing   |          |             |              |                                 |                                       |  |  |  |
|                                                                                                                                              |          |             |          | <b>TAL 84</b> | -   -    |          |             |              |                                 |                                       |  |  |  |
| Analyti                                                                                                                                      | cal Para | ameters:    |          | I AL Meta     | ais      |          |             |              |                                 |                                       |  |  |  |

|                   |               |               |                | PROJECT        |                |                                              |                                               |            | PROJECT No.            | SHEET SHEETS        |  |  |
|-------------------|---------------|---------------|----------------|----------------|----------------|----------------------------------------------|-----------------------------------------------|------------|------------------------|---------------------|--|--|
| WELL              | SAMP          | LING FO       | RM             | Multi Site     |                | 95900                                        | 1 of 1                                        |            |                        |                     |  |  |
| LOCATION          |               | ·             |                |                |                |                                              |                                               |            | DATE WELL STARTED      | DATE WELL COMPLETED |  |  |
| Liberty           | Industr       | rial Finish   | ing, Bre       | entwood, I     | <u>NY # 1-</u> | 52-108                                       | <u>,                                     </u> |            | 11/13/08               | 11/13/08            |  |  |
|                   | ork Sta       | to Denart     | ment of        |                | nontal [       | Drotecti                                     | on                                            |            |                        |                     |  |  |
| DRILLING          | COMPANY       | le Depart     | Inent of       | Environin      | lentari        | 101601                                       | Un                                            |            | SIGNATURE OF INSPECTOR |                     |  |  |
|                   |               |               |                |                |                |                                              |                                               |            |                        |                     |  |  |
|                   |               |               | 17 1           | Collone        |                |                                              | 150                                           | 4          |                        | E0 #                |  |  |
|                   |               | LL VOLUME :   | 17.1           | Gallons        | v              | NELL ID:                                     | 150                                           | IL         | PUMP INTAKE DEPTH:     | 50 II               |  |  |
|                   | Depth         | i             |                | FIE            | LD MEA         | SUREME                                       | INTS                                          |            |                        |                     |  |  |
| Time              | to            | Purge         | Toman          | Conduct        |                |                                              |                                               | Turbidity  | - DEM                  |                     |  |  |
| Time              | Water<br>(ft) | Kâte<br>(cpm) | remp.          | Conduct.       |                | рн                                           | OKP                                           | Turbiality | KEW                    | ARKS                |  |  |
|                   |               | (gpin)        |                | (µə/ciii)      | (              | <b>├</b> ───┦                                | ├───                                          |            | 1                      |                     |  |  |
|                   | 43.8          | l             |                |                | <b>├</b> ───′  | <b>├</b> ───┦                                | <u> </u>                                      | <u> </u>   | Static Water Level     |                     |  |  |
| 12:40             | 43.8          | 2.5           | 12.65          | 244            | 5.93           | 5.58                                         | 199                                           | 0          | Pump on                |                     |  |  |
| 12:50             | 44.3          | - <u>-</u>    | 12.7           | 291            | 4.8            | 5.35                                         | 216                                           | 0          |                        |                     |  |  |
| 13:00             | 44.3          | [             | 12.74          | 300            | 4.3            | 5.3                                          | 232                                           | 0          |                        |                     |  |  |
|                   |               | [             |                |                |                |                                              |                                               |            | Purged approximate     | ly 55 gallons       |  |  |
| 13:10             | [ <b></b> ]   | [             |                |                |                |                                              |                                               |            | Collect sample LMW     | V-18                |  |  |
|                   | $\square$     | Í             |                | 1              |                |                                              |                                               |            | Duplicate MW-68 at     | 13:15               |  |  |
|                   |               | I             | []             | []             |                |                                              |                                               |            |                        |                     |  |  |
|                   |               |               |                |                |                |                                              |                                               |            |                        |                     |  |  |
|                   |               |               |                |                |                |                                              |                                               |            |                        |                     |  |  |
|                   |               |               |                | <u> </u>       |                |                                              |                                               |            |                        |                     |  |  |
|                   | Ē             |               |                | ['             | <u> </u>       | <u>[                                    </u> | $\square$                                     |            |                        |                     |  |  |
|                   |               | L             |                | <u> </u>       | <u> </u>       | <u> </u>                                     |                                               |            |                        |                     |  |  |
|                   |               | <b> </b>      | <u> </u>       | <u> </u>       | <u> '</u>      | <u> '</u>                                    | Ļ                                             | Ļ          |                        |                     |  |  |
|                   | $\square$     | <b> </b>      | <u> </u>       | <b> </b> '     | <b>↓</b> '     | <b>↓</b> '                                   | └───                                          | Ļ          |                        |                     |  |  |
|                   | <b>└───</b> │ | <b> </b>      | <b></b> '      | <b> </b> '     | <b> '</b>      | <b> </b> '                                   |                                               | <b></b>    |                        |                     |  |  |
|                   | <b>↓</b> ]    | <b> </b>      | <u> </u> '     | <b>└───</b> '  | <b> </b> '     | <b> </b> '                                   |                                               | <b></b>    | <b> </b>               |                     |  |  |
|                   | <b>⊢−−−</b> ] | <b> </b>      | <b></b> '      | <b> </b> '     | <b> </b> '     | <b> </b> '                                   | ──                                            | <b> </b>   | <b> </b>               |                     |  |  |
|                   | ┝───┦         | l             | <b> </b> '     | <b> </b> '     | <b>↓</b> '     | <b> '</b>                                    | ───                                           | ───        | <u> </u>               |                     |  |  |
|                   | ┢───┦         | l             | <b> </b> '     | <b>┟────</b> ′ | <b> '</b>      | <b> '</b>                                    | ───                                           | ┣────      |                        |                     |  |  |
|                   | ┢────┦        | <u> </u>      | <b> </b> '     | <b>├</b> ────┘ | <b> '</b>      | ┟────′                                       | ┣────                                         | <b> </b>   | <u> </u>               |                     |  |  |
|                   | ┢───┦         |               | <b>↓</b> ′     | <b>├</b> ────┘ | <b> '</b>      | ───′                                         | ┣───                                          | <b> </b>   | <u> </u>               |                     |  |  |
|                   | ┢───┦         | <u> </u>      |                | <u> </u> '     | <b> '</b>      | ┟────┘                                       | ──                                            | <b> </b>   | <u> </u>               |                     |  |  |
|                   | ┟───┦         | i             | <b> </b> '     | <u> </u>       | ┟────┘         | ┟────┘                                       | ╂────                                         | <b> </b>   | +                      |                     |  |  |
|                   |               | i             | <b>├────</b> ′ | <u>├</u> ────┤ | <b> '</b>      | <b> </b> '                                   | ├───                                          | <u> </u>   | 1                      |                     |  |  |
|                   |               | i             | <i>י</i>       | ┟────┦         | <b>├</b> ────′ | <b>├</b> ───┦                                | ├                                             | <u> </u>   | 1                      |                     |  |  |
|                   | <b>┌──</b> ┦  | i             | <b>├</b> ───┦  | <u>├</u> ───┦  | <b>├</b> ────′ | <b>├</b> ───┦                                | ├───                                          | <u> </u>   | <u>+</u>               |                     |  |  |
|                   | <b> </b>      | [             | <b>├</b> ───┦  | l              | <b>├</b> ───′  | <b>├</b> ───┦                                | <u> </u>                                      | <u> </u>   | +                      |                     |  |  |
|                   |               | [             |                | +              | <b>├</b> ───′  | <b>├</b> ───┤                                | <b> </b>                                      | <u> </u>   | 1                      |                     |  |  |
|                   | (             | [             | <b>├</b> ───┤  | +              |                | <b>├</b> ───┤                                | <b> </b>                                      | <u> </u>   | 1                      |                     |  |  |
|                   | $\square$     | [             |                | +              |                |                                              |                                               |            |                        |                     |  |  |
|                   | (             | [             |                |                |                |                                              |                                               |            | 1                      |                     |  |  |
|                   |               |               | 4              | . <u> </u>     | ·              | ·                                            |                                               | L          | 4                      |                     |  |  |
| Pump <sup>-</sup> | Type:         | Grundfo       | s pump         | with poly      | tubing         |                                              |                                               |            |                        |                     |  |  |
|                   |               |               |                |                |                |                                              |                                               |            |                        |                     |  |  |
| Analyti           | cal Par       | ameters:      |                | TAL Meta       | als            |                                              |                                               |            |                        |                     |  |  |
|                   |               |               |                |                |                |                                              |                                               |            |                        |                     |  |  |

| PROJECT<br>WELL SAMPLING FORM Multi Site G |                          |               |          |                        |                     |              |     |           | PROJECT №.<br>95900 | SHEET SHEETS   |  |
|--------------------------------------------|--------------------------|---------------|----------|------------------------|---------------------|--------------|-----|-----------|---------------------|----------------|--|
|                                            |                          |               |          | DATE WELL STARTED      | DATE WELL COMPLETED |              |     |           |                     |                |  |
|                                            | Industr                  | ial Finish    | ing, Bre | 11/13/08               | 11/13/08            |              |     |           |                     |                |  |
| New Y                                      | ork Stat                 | te Depart     | ment of  | Environn               | nental F            | Protectio    | on  |           | SC / MA             |                |  |
| DRILLING                                   | COMPANY                  |               |          | SIGNATURE OF INSPECTOR |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            | ONE WE                   | LL VOLUME :   | 133      | Gallons                | PUMP INTAKE DEPTH:  | 55 ft        |     |           |                     |                |  |
|                                            | Depth FIELD MEASUREMENTS |               |          |                        |                     |              |     |           |                     |                |  |
| Time                                       | Water                    | Rate<br>(gpm) | Temp.    | Conduct.               | DO                  | pН           | ORP | Turbidity | REMARKS             |                |  |
|                                            | (ft)                     |               | (°C)     | (µs/cm)                | (mg/L)              |              |     | (ntu)     |                     |                |  |
|                                            | 10.0                     |               |          |                        |                     |              |     |           |                     |                |  |
| 0.50                                       | 43.9                     | 2 5           | 15 5     | 157                    | 0.24                | 6.40         | 02  | 110       | Static Water level  |                |  |
| 9:50                                       | 43.9                     | 3.5           | 15.5     | 157                    | 8.34                | 6.42<br>5.70 | 92  | 119       | Pump started        | ly 400 gallons |  |
| 10.00                                      | 45.4                     | 3.5           | 12.83    | 14                     | 0.Z                 | 5.68         | 165 | 0         | r uigeu appioximate | ly 400 gallons |  |
| 10:10                                      | 46.2                     | 3.5           | 12.00    | 145                    | 4 47                | 5.67         | 175 | 0         |                     |                |  |
| 10:20                                      | 46.25                    | 3.5           | 12.74    | 144                    | 4 75                | 5.66         | 180 | 0         |                     |                |  |
| 10:40                                      | 46.25                    | 3.5           | 12.14    | 165                    | 5.08                | 5.64         | 193 | 0         |                     |                |  |
| 10:50                                      | 46.30                    | 3.5           | 11.97    | 187                    | 5.66                | 5.62         | 199 | 0         |                     |                |  |
| 11:00                                      | 46.25                    | 3.5           | 11.93    | 190                    | 5.89                | 5.62         | 205 | 0         |                     |                |  |
| 11:10                                      | 46.25                    | 3.5           | 11.92    | 189                    | 5.9                 | 5.62         | 209 | 0         |                     |                |  |
| 11:20                                      | 46.25                    | 3.5           | 11.88    | 191                    | 5.99                | 5.62         | 210 | 0         |                     |                |  |
| 11:30                                      | 46.25                    | 3.5           | 11.89    | 192                    | 5.69                | 5.62         | 213 | 0         |                     |                |  |
| 11:40                                      | 46.25                    | 3.5           | 11.86    | 192                    | 5.83                | 5.62         | 217 | 0         |                     |                |  |
| 11:50                                      | 46.25                    | 3.5           | 11.87    | 191                    | 5.85                | 5.62         | 219 | 0         |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
| 11:55                                      |                          |               |          |                        |                     |              |     |           | Collect sample LMW  | /-19 at 11:55  |  |
|                                            |                          |               |          |                        |                     |              |     |           | MS/MSD              |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
| Pump Type: Grundfos pump with poly tubing  |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |
| Analytical Parameters: TAL Metals          |                          |               |          |                        |                     |              |     |           |                     |                |  |
|                                            |                          |               |          |                        |                     |              |     |           |                     |                |  |

|                   |                                   | -           |          | PROJECT                |                   |                     |      |           | PROJECT No.         | SHEET SHEETS |  |
|-------------------|-----------------------------------|-------------|----------|------------------------|-------------------|---------------------|------|-----------|---------------------|--------------|--|
| WELL              | SAMPI                             |             | RM       | 95900                  | 1 OF 1            |                     |      |           |                     |              |  |
| LOCATION          |                                   |             |          |                        | DATE WELL STARTED | DATE WELL COMPLETED |      |           |                     |              |  |
| Liberty           | Industr                           | ial Finish  | ing, Bre |                        | 11/13/08          | 11/13/08            |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   | OFK Stat                          | te Depart   | ment of  | Environn               | nental F          | rotecti             | on   |           | SC / IVIA           |              |  |
| DRILLING          | COMPANY                           |             |          | SIGNATORE OF INSPECTOR |                   |                     |      |           |                     |              |  |
|                   | ONE WE                            | LL VOLUME : | 17.7     | PUMP INTAKE DEPTH:     | 48 ft             |                     |      |           |                     |              |  |
|                   | Depth<br>to                       | Purae       |          | FIE                    | LD MEAS           | SUREME              | INTS |           |                     |              |  |
| Time              | Water                             | Rate        | Temp.    | Conduct.               | DO                | рН                  | ORP  | Turbidity | REMARKS             |              |  |
|                   | (ft)                              | (gpm)       | (°C)     | (µs/cm)                | (mg/L)            |                     |      | (ntu)     |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   | 41.2                              |             |          |                        |                   |                     |      |           | Static Water Level  |              |  |
| 17:00             |                                   | 2.5         | 14.06    | 204                    | 10.39             | 5.94                | 135  | 0         | Pump on             |              |  |
| 17:10             |                                   | 2.5         | 13.15    | 203                    | 10.36             | 5.44                | 185  | 0         |                     |              |  |
| 17:20             |                                   | 2.5         | 13.41    | 203                    | 10.47             | 5.92                | 213  | 0         |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           | Purged approx. 55 g | al           |  |
| 17:30             |                                   |             |          |                        |                   | Collect sample LMW  | /-20 |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
|                   |                                   |             | -        |                        |                   |                     |      |           | -                   |              |  |
| Pump <sup>-</sup> | Туре:                             | Grundfos    | s pump   | with poly              | tubing            |                     |      |           |                     |              |  |
|                   |                                   |             |          |                        |                   |                     |      |           |                     |              |  |
| Analyti           | Analytical Parameters: TAL Metals |             |          |                        |                   |                     |      |           |                     |              |  |

|                                           |                                   |              |                | PROJECT                  | PROJECT No.        | SHEET SHEETS               |            |              |                    |                       |  |  |
|-------------------------------------------|-----------------------------------|--------------|----------------|--------------------------|--------------------|----------------------------|------------|--------------|--------------------|-----------------------|--|--|
|                                           |                                   |              | RM             | Multi Site               |                    | 95900<br>DATE WELL STARTED | 1 OF 1     |              |                    |                       |  |  |
| Liberty                                   | / Industr                         | rial Finish  | ing, Bre       | entwood, l               | NY # 1-            | -52-108                    | 5          |              | 11/14/08           | 11/14/08              |  |  |
| CLIENT                                    | (                                 | . Damant     |                |                          |                    |                            | -          |              |                    |                       |  |  |
|                                           | ORK Star                          | te Depart    | ment or        | Environn                 | nental F           | rotecti                    | on         |              | SC / MA            |                       |  |  |
| DIGLE                                     |                                   |              |                |                          |                    |                            |            |              |                    |                       |  |  |
|                                           | ONE WE                            | LL VOLUME :  | 11.2           | Gallons                  | PUMP INTAKE DEPTH: | 48 ft                      |            |              |                    |                       |  |  |
|                                           | Depth<br>to                       | Purge        |                | FIE                      | LD MEAS            | SUREME                     | NTS        |              |                    |                       |  |  |
| Time                                      | Water                             | Rate         | Temp.          | Conduct.                 | DO                 | рН                         | ORP        | Turbidity    | REM                | ARKS                  |  |  |
| <b> </b> '                                | (ft)                              | (gpm)        | (°C)           | (µs/cm)                  | (mg/L)             | '                          | '          | (ntu)        |                    |                       |  |  |
| 6:40                                      | 44 44                             | <b> </b> '   | <b> </b> '     | <b> </b> '               | <b> </b> '         | '                          | '          | ───          | Ctatia Water Loval |                       |  |  |
| 0.40<br>6:55                              | 41.44                             | 2            | 11.49          | 181                      | 9.13               | 6 24                       | 113        | 2            | Static Water Lever |                       |  |  |
| 7.05                                      | ┣───┦                             |              | 136            | 243                      | 8 43               | 5.4                        | 164        | <u> </u>     |                    |                       |  |  |
| 7:15                                      | ├                                 | i'           | 13.6           | 242                      | 9.3                | 5 39                       | 193        | 0            | Purged approximate | ly 35 dals            |  |  |
| /                                         | <b>├</b> ──┤                      | i'           | 10.0           | <u><u>L</u>¬<u>L</u></u> | 0.0                | 0.00                       | 100        |              |                    | ly oo galo            |  |  |
| 7:25                                      |                                   |              |                |                          |                    |                            |            |              | Collect sample LMW | Collect sample LMW-21 |  |  |
| <b> </b> '                                | $\vdash$                          | <b> </b> '   | <b>↓</b> '     | <b> </b> '               | <b>↓</b> '         | <b> </b> '                 | <b> </b> ' | <b> </b>     |                    |                       |  |  |
| <b> </b> '                                | $\vdash$                          | <b> </b> '   | <b> </b> '     | <b> </b> '               | <b>└───</b> ′      | <b> </b> '                 | <b> </b> ' | ───          | <b> </b>           |                       |  |  |
| <b> </b> '                                | ┝──┤                              | <b> </b> '   | <b>↓</b> ′     | <b> </b> '               | <b>↓</b> ′         | <b> </b> '                 | <b> </b> ' | ───          |                    |                       |  |  |
| <b> </b> '                                | ┣───┦                             | <b> </b> '   | <b> '</b>      | <b> </b> '               | <b>├───</b> ′      | <b> </b> '                 | <b> </b> ' | ───          | 1                  |                       |  |  |
| <b> </b> '                                | ──┤                               | <b> </b> '   | ───′           | <b> </b> '               | ───′               | <b> </b> '                 | <b> </b> ' | ───          |                    |                       |  |  |
| <b> </b> '                                | ──┤                               | <b> </b> '   | <b>├</b> ────′ | <b> </b> '               | ───′               | <b> </b> '                 | <b> </b> ' | ───          |                    |                       |  |  |
| '                                         | ──┤                               | <sup>!</sup> | ───            | <u> </u> '               | ───                | <b> </b> '                 | <b> </b> ' | ───          | <u> </u>           |                       |  |  |
| <b> </b> '                                | ┟───┦                             | l'           | ┟────┘         | <b> </b> '               | ┟────┘             | <b> </b> '                 | <b> </b> ' | <b> </b>     |                    |                       |  |  |
| <b> </b> '                                | <b>├</b> ──┤                      | l'           | ┟────┘         | <u> </u> '               | ┟────┘             | <b> </b> '                 | <b> </b> ' | <b> </b>     |                    |                       |  |  |
| <b> </b> '                                | <b>├</b> ──┤                      | i'           | ┟────′         | <b> </b> '               | ┟────′             | <b> </b> '                 | <b> </b> ' | <del> </del> |                    |                       |  |  |
| '                                         | ┼──┤                              | i'           | <b>├───</b> ′  | <u> </u>                 | <b>├───</b> ′      | <b>├</b> ───'              | <u> '</u>  | <del> </del> | 1                  |                       |  |  |
| <b> </b> '                                | <b>├</b> ──┤                      | i'           | <i>י</i>       | <u> </u>                 |                    | ┣────                      | '          | <u> </u>     |                    |                       |  |  |
| <b> </b> '                                | <b>├</b> ──┦                      | i'           | <b>├</b> ───┦  | <b> </b>                 | <b>├</b> ───┦      | ┣────                      | '          | <u> </u>     |                    |                       |  |  |
| ┢─────                                    |                                   |              | <b>├</b> ───┦  |                          | <b>├</b> ───┦      | <b>├</b> ────              | '          |              | ł                  |                       |  |  |
|                                           |                                   | · · · · · ·  |                |                          |                    | '                          |            |              |                    |                       |  |  |
|                                           |                                   | l            | <b>├</b> ───┤  |                          | <b>├</b> ───┤      | '                          |            | <u> </u>     |                    |                       |  |  |
|                                           |                                   | (            | +              |                          | +                  |                            |            | <u> </u>     |                    |                       |  |  |
|                                           |                                   | [            |                |                          |                    |                            |            |              |                    |                       |  |  |
|                                           |                                   | i            |                |                          |                    |                            |            |              | 1                  |                       |  |  |
|                                           |                                   | 1            |                |                          |                    |                            |            |              | 1                  |                       |  |  |
|                                           |                                   | []           |                |                          |                    |                            |            |              |                    |                       |  |  |
|                                           |                                   |              |                |                          |                    |                            |            |              |                    |                       |  |  |
|                                           |                                   |              |                |                          |                    |                            |            |              |                    |                       |  |  |
|                                           |                                   |              |                |                          |                    |                            |            |              |                    |                       |  |  |
|                                           |                                   |              |                |                          |                    |                            |            |              |                    |                       |  |  |
| <b></b> '                                 |                                   |              | !              | <u> </u>                 |                    | <u> </u>                   | <u> </u>   | <u> </u>     |                    |                       |  |  |
| Pump Type: Grupdfos pump with poly tubing |                                   |              |                |                          |                    |                            |            |              |                    |                       |  |  |
|                                           |                                   | •••••        | , <del>F</del> |                          |                    |                            |            |              |                    |                       |  |  |
| Analyti                                   | Analytical Parameters: TAL Metals |              |                |                          |                    |                            |            |              |                    |                       |  |  |
| AECO     | DM          |             |          |            |          |           |             |              | WELL NO. MW- 5         |                               |
|----------|-------------|-------------|----------|------------|----------|-----------|-------------|--------------|------------------------|-------------------------------|
|          | 0.4.40      |             |          | PROJECT    | 440      |           | PROJECT No. | SHEET SHEETS |                        |                               |
|          | SAMP        | LING FOI    | < IVI    | D004445    | -14.3, 1 | viuiti Si | ie G        |              | 60135736.30            | 1 OF 1<br>DATE WELL COMPLETED |
| Liberty  | Indust      | rial Finish | ing, Bre | entwood, I | NY 1-52  | 2-108     |             |              | March 8, 2010          | March 8, 2010                 |
| New Y    | ork Sta     | te Depart   | ment of  | Environn   | nental a | and Cor   | nservat     | ion          | Staci Birnbaum & C     | eleste Foster                 |
| DRILLING | COMPANY     | to Dopart   |          | 2          | ioniai e |           | 1001100     |              | SIGNATURE OF INSPECTOR |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          | ONE WE      | LL VOLUME : | 4.35     | Gallons    | V        | WELL TD:  | 50          | ft           | PUMP INTAKE DEPTH:     | 48 ft                         |
|          | Depth       | Durran      |          | FIE        | LD MEAS  | SUREME    | NTS         |              |                        |                               |
| Time     | to<br>Water | Purge       | Temp     | Conduct    | DO       | nН        | ORP         | Turbidity    | RFM                    | ARKS                          |
|          | (ft)        | (mL/min)    | (°C)     | (µs/cm)    | (mg/L)   | pri       | 0.11        | (ntu)        |                        |                               |
|          |             | /           |          |            |          |           |             | . ,          |                        |                               |
| 12:05    | 43.34       |             |          |            |          |           |             |              | Static water level     |                               |
| 12:07    | 43.35       | 0.54        | 15.19    | 0.365      | 10.58    | 5.71      | 197         | 7.9          | pump on                |                               |
| 12:15    | 43.5        | 0.54        | 14.04    | 0.335      | 11.11    | 5.72      | 5.3         |              |                        |                               |
| 12:24    | 43.5        | 0.54        | 13.73    | 0.299      | 11       | 8.9       |             |              |                        |                               |
| 12:34    | 43.5        | 0.54        | 13.57    | 0.282      | 10.91    | 5.49      | 232         | 10.8         |                        |                               |
| 12:35    |             |             |          |            |          |           |             |              | total pumped 15 gal    | turned off                    |
| 12:50    |             |             |          |            |          |           |             |              | collected sample wi    | th Teflon bailer              |
| 12:53    |             |             |          |            |          |           |             |              | collected sample       |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
|          |             |             |          |            |          |           |             |              |                        |                               |
| Pump     | Type:       | Grundfos    | Redi F   | lo 2, sam  | ple coll | ected v   | vith a T    | eflon baile  | r                      |                               |
|          | . –         |             |          |            |          |           |             |              |                        |                               |
| Analyti  | cal Par     | ameters:    |          | TAL Meta   | als      |           |             |              |                        |                               |

| AECO     | DM            |                  |               |                     |              |           |          |                    | WELL NO. MW- 6                   |            |              |        |
|----------|---------------|------------------|---------------|---------------------|--------------|-----------|----------|--------------------|----------------------------------|------------|--------------|--------|
|          | CAMD          |                  |               | PROJECT             | 44.0         | A 14: C:  |          |                    | PROJECT No.                      | SHEET      |              | SHEETS |
|          | SAMP          | LING FUI         | K IVI         | D004445             | -14.3, N     | viuiti Si | ie G     |                    | 00135736.30<br>DATE WELL STARTED | DATE WELL  | OF<br>COMPLE | TED    |
| Liberty  | Indust        | rial Finish      | ing, Bre      | entwood, I          | NY 1-52      | 2-108     |          |                    | March 8, 2010                    | March 8    | , 2010       | 1      |
| New Y    | ork Sta       | te Depart        | ment of       | Environn            | nental a     | and Cor   | nservat  | ion                | Staci Birnbaum & C               | celeste Fo | ster         |        |
| DRILLING | COMPANY       | •                |               |                     |              |           |          |                    | SIGNATURE OF INSPECTOR           |            |              |        |
|          | ONE WE        | ELL VOLUME :     | 144           | Gallons             | v            | VELL TD:  | 265      | ft                 | I                                | 150        | ft           |        |
|          | Depth<br>to   | Purge            |               | FIE                 | LD MEAS      | SUREME    | NTS      |                    |                                  |            |              |        |
| Time     | Water<br>(ft) | Rate<br>(mL/min) | Temp.<br>(°C) | Conduct.<br>(us/cm) | DO<br>(mg/L) | рН        | ORP      | Turbidity<br>(ntu) | REN                              | IARKS      |              |        |
|          | (,            | (,,              | ( )           | (µ.e, e)            | (            |           |          | ()                 |                                  |            |              |        |
| 13:00    | 43.19         |                  |               |                     |              |           |          |                    | Static water level               |            |              |        |
| 13:01    | 47.24         | 2.5              | 14.49         | 0.111               | 10.85        | 6.07      | 199      | 3.5                | pump on                          |            |              |        |
| 13:27    | 46.4          | 2.5              | 14.93         | 0.137               | 11.69        | 5.91      | 208      | 13                 |                                  |            |              |        |
| 14:00    | 71.9          | 3                | 13.24         | 0.147               | 12.16        | 6.06      | 207      | 16.1               |                                  |            |              |        |
| 15:00    | 68.88         | 2.5              | 15.27         | 0.102               | 11.65        | 6.05      | 191      | 17.5               |                                  |            |              |        |
| 16:00    | 80.33         | 2.5              | 13.7          | 0.098               | 12.24        | 5.87      | 205      | 9.5                | 450 gal purged                   |            |              |        |
| 16:01    |               |                  |               |                     |              | pump off  |          |                    |                                  |            |              |        |
| 16:05    |               |                  |               |                     |              |           |          |                    | collected sample                 |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               | -                   |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               | -                   |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    |                                  |            |              |        |
|          |               |                  |               |                     |              |           |          |                    | 1                                |            |              |        |
| Pump     | Туре:         | Grundfos         | s Redi F      | lo 2, sam           | ple coll     | ected v   | vith a T | eflon baile        | r                                |            |              |        |
| Analyti  | cal Par       | ameters:         |               | TAL Meta            | als          |           |          |                    |                                  |            |              |        |

| AECO     | DM            |                  |               |                     |              |           |                   |                    | WELL NO. MW-1                    | 2                |        |
|----------|---------------|------------------|---------------|---------------------|--------------|-----------|-------------------|--------------------|----------------------------------|------------------|--------|
|          | CAMD          |                  |               |                     | 44.0         | A 14: C:  |                   |                    | PROJECT No.                      | SHEET            | SHEETS |
|          | SAMP          | LING FUI         | K IVI         | D004445             | -14.3, 1     | VIUITI SI | le G              |                    | 00135736.30<br>DATE WELL STARTED | DATE WELL COMPLE | TED    |
|          | Indust        | rial Finish      | ing, Bre      | entwood, l          | NY 1-52      | 2-108     |                   |                    | March 9, 2010                    | March 9, 2010    | )      |
| New Y    | ork Sta       | te Depart        | ment of       | Environn            | nental a     | and Cor   | nservat           | ion                | Staci Birnbaum &                 | Celeste Foster   |        |
| DRILLING | COMPANY       |                  |               |                     |              |           |                   |                    | SIGNATURE OF INSPECTOR           |                  |        |
|          | ONE WE        | LL VOLUME :      | 1.5           | Gallons             | v            | WELL TD:  | 49.3              | ft                 | PUMP INTAKE DEPT                 | n: 45 ft         |        |
|          | Depth<br>to   | Purge            |               | FIE                 | LD MEAS      | SUREME    | NTS               |                    |                                  |                  |        |
| Time     | Water<br>(ft) | Rate<br>(mL/min) | Temp.<br>(°C) | Conduct.<br>(µs/cm) | DO<br>(mg/L) | рН        | ORP               | Turbidity<br>(ntu) | RE                               | MARKS            |        |
|          | . ,           | , ,              | . ,           |                     | ,            |           |                   |                    |                                  |                  |        |
| 7:55     | 40.13         |                  |               |                     |              |           |                   |                    | Static water level               |                  |        |
| 9:05     | 40.31         | 2.4              | 13.87         | 1.44                | 10.21        | 5.26      | 189               | -5                 | pump on                          |                  |        |
| 9:21     | 40.31         | 2.4              | 15.17         | 0.497               | 9.65         | 5.76      | 142               | 518                |                                  |                  |        |
| 9:28     | 40.31         | 2.4              | 14.63         | 0.284               | 9.61         | 5.88      | 142               | 160                |                                  |                  |        |
| 9:29     |               |                  |               |                     |              |           | 10 gal purged and | turned off         |                                  |                  |        |
| 9:32     |               |                  |               |                     |              |           |                   | sample collected   |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          |               |                  |               |                     |              |           |                   |                    |                                  |                  |        |
|          | 1             | I                |               |                     |              |           |                   | 1                  | I                                |                  |        |
| Pump     | Туре:         | Grundfos         | s Redi F      | lo 2, sam           | ple coll     | ected v   | vith a T          | eflon baile        | er                               |                  |        |
| Analyti  | ical Par      | ameters:         |               | TAL Meta            | als          |           |                   |                    |                                  |                  |        |

| AECO            | DM          |             |          |            |          |          |          |             | WELL NO. MW- 14        |               |       |
|-----------------|-------------|-------------|----------|------------|----------|----------|----------|-------------|------------------------|---------------|-------|
|                 |             |             |          | PROJECT    |          |          |          |             | PROJECT No.            | SHEET S       | HEETS |
| WELL            | SAMP        | LING FOR    | RW       | D004445    | -14.3, N | Vulti Si | te G     |             | 60135736.30            |               | 1     |
| Liberty         | Indust      | rial Finish | ing, Bre | entwood, I | NY 1-52  | 2-108    |          |             | March 9, 2010          | March 9, 2010 | -0    |
| CLIENT<br>Now V | ork Sta     | to Donarti  | ment of  | Environn   | nontal s | and Cor  | neorvat  | ion         | NAME OF INSPECTOR      | olosto Fostor |       |
|                 | COMPANY     | te Depart   |          |            |          |          | 1501 Val |             | SIGNATURE OF INSPECTOR |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 | ONE WE      | LL VOLUME : | 9.74     | Gallons    | v        | VELL TD: | 100      | ft          | PUMP INTAKE DEPTH:     | 45 ft         |       |
|                 | Depth       | _           |          | FIE        | LD MEAS  | SUREME   | NTS      |             |                        |               |       |
| Timo            | to<br>Water | Purge       | Tomp     | Conduct    | DO       | nH       |          | Turbidity   | DEM                    |               |       |
| Time            | (ft)        | (mL/min)    | (°C)     | (us/cm)    | (ma/L)   | рп       | OKF      | (ntu)       | KEW                    | ARRS          |       |
|                 | (,          | (,)         | ( )      | (          | (        |          |          | ()          |                        |               |       |
| 7:50            | 40.23       |             |          |            |          |          |          |             | Static water level     |               |       |
| 8:15            | 40.25       | 1gal/min    | 15.19    | 0.279      | 10.34    | 5.26     | 233      | 20.1        | pump on                |               |       |
| 8:26            |             |             |          |            |          |          |          |             | 10 gal purged          |               |       |
| 8:28            | 40.3        | 1gal/min    | 7.6      | 0.424      | 11.29    | 5.75     | 211      | 13.46       |                        |               |       |
| 8:37            | 40.35       | 1gal/min    | 13.8     | 0.429      | 11.14    | 4.79     | 231      | 2.2         | 20 gal purged          |               |       |
| 8:43            | 40.35       | 1gal/min    | 13.13    | 0.436      | 10.85    | 5.29     | 214      | 0           |                        |               |       |
| 5:50            |             | 1gal/min    | 13.18    | 0.433      | 10.4     | 5.31     | 211      | 0.10        | 35 gal purged          |               |       |
| 8:51            |             |             |          |            |          |          |          |             | turned pump off        |               |       |
| 8:55            |             |             |          |            |          |          |          |             | collected samples      |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          | 1           |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |
| Pump            | Туре:       | Grundfos    | Redi F   | lo 2, sam  | ple coll | ected w  | vith a T | eflon baile | er                     |               |       |
|                 | . –         |             |          |            |          |          |          |             |                        |               |       |
| Analyti         | cal Par     | ameters:    |          | TAL Meta   | als      |          |          |             |                        |               |       |
|                 |             |             |          |            |          |          |          |             |                        |               |       |

| AECO     | DM      |             |          |             |          |           |                    |                  | WELL NO. MW- 18        | 1              |
|----------|---------|-------------|----------|-------------|----------|-----------|--------------------|------------------|------------------------|----------------|
|          | 0440    |             |          | PROJECT     | 440      | A 16: 01  |                    |                  | PROJECT No.            | SHEET SHEETS   |
|          | SAMP    | LING FOI    | K M      | D004445     | -14.3, ľ | Viulti Si | te G               |                  | 60135736.30            | 1 OF 1         |
| Liberty  | Indust  | rial Finish | ing, Bre | entwood, I  | NY 1-52  | 2-108     |                    |                  | March 10, 2010         | March 10, 2010 |
| New Y    | ork Sta | te Depart   | ment of  | Environn    | nental a | and Cor   | nservat            | ion              | Staci Birnbaum & C     | eleste Foster  |
| DRILLING | COMPANY |             |          |             |          |           |                    |                  | SIGNATURE OF INSPECTOR |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          | ONE WE  | LL VOLUME : | 17.63    | Gallons     | ١        | WELL TD:  | 150                | ft               | PUMP INTAKE DEPTH:     | 50 ft          |
|          | Depth   | Durgo       |          | FIE         | LD MEAS  | SUREME    | NTS                |                  |                        |                |
| Time     | Water   | Rate        | Temp.    | Conduct.    | DO       | рΗ        | ORP                | Turbidity        | REN                    | IARKS          |
|          | (ft)    | (mL/min)    | (°C)     | (µs/cm)     | (mg/L)   | pri       | <b>O</b> rta       | (ntu)            |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
| 9:15     | 41.82   |             |          |             |          |           |                    |                  | Static water level     |                |
| 9:43     | 42.05   | 1.67        | 15.3     | 0.001       | 8.76     | 4.31      | 212                | 12.6             | pump on                |                |
| 9:57     | 42.09   | 1.67        | 15.3     | 0.001       | 8.76     | 4.31      | 212                | 12.6             | purged 20 gal          |                |
| 10:08    | 42.09   | 1.67        | 15.3     | 0.001       | 8.76     | 4.31      | 212                | 12.6             | purged 40 gal          |                |
| 10:19    | 42.09   | 1.67        | 15.3     | 0.001       | 8.76     | 12.6      | purged 60 gal pump | o off            |                        |                |
| 10:30    |         |             |          |             |          |           |                    | collected sample |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  | 1                      |                |
| Pump     | Type    | Grundfoo    | Rodi C   | lo 2 com    | الم مام  | acted w   | vith a T           | oflon baile      | ar .                   |                |
| unp      | i ype.  | Grandios    |          | iu z, saili |          | งงเฮน ท   | viui a l           | chori balle      | •1                     |                |
| Analyti  | cal Par | ameters:    |          | TAL Meta    | als      |           |                    |                  |                        |                |
|          |         |             |          |             |          |           |                    |                  |                        |                |

| AECO    | DM       |             |             |            |          |             |              |                | WELL NO. MW- 19    |                               |
|---------|----------|-------------|-------------|------------|----------|-------------|--------------|----------------|--------------------|-------------------------------|
|         |          |             |             | PROJECT    |          | PROJECT No. | SHEET SHEETS |                |                    |                               |
|         | SAMP     | LING FOI    | < M         | D004445    | -14.3, M | Viulti Si   | te G         |                | 60135736.30        | 1 OF 1<br>DATE WELL COMPLETED |
| Liberty | lndust   | rial Finish | ing, Bre    | entwood, l | NY 1-52  | 2-108       |              |                | March 10, 2010     | March 10, 2010                |
|         |          | to Donort   | an a set at |            |          |             |              |                | NAME OF INSPECTOR  | -<br>Volgoto Footor           |
|         | COMPANY  | te Depart   | ment of     | Environn   | nental a | and Cor     | iservat      | ION            | STACI BIMDAUM & C  | eleste Foster                 |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         | ONE WE   | LL VOLUME : | 144.6       | Gallons    | V        | WELL TD:    | 265          | ft             | PUMP INTAKE DEPTH: | 52 ft                         |
|         | Depth    |             |             | FIE        | LD MEAS  | SUREME      | INTS         |                |                    |                               |
| Time    | to       | Purge       | Taman       | Conduct    | DO       |             |              | Truels i ditta |                    |                               |
| Time    | (ft)     | (mL/min)    | (°C)        | (us/cm)    | (ma/L)   | рп          | ORP          | (ntu)          | KEW                | ΙΑΚΝΟ                         |
|         | ()       | (           | (-)         | (1.0.011)  | (        |             |              | (,             |                    |                               |
| 9:07    | 42.78    |             |             |            |          |             |              |                | Static water level |                               |
| 9:22    | 43.44    | 1.11        | 14.07       | 0.2        | 8.93     | 5.9         | 224          | 0              | pump on            |                               |
| 9:31    | 43.39    | 2.5         | 15.3        | 0.001      | 8.76     | 4.31        | 212          | 12.6           | 10 gal purged      |                               |
| 9:39    | 43.6     | 5gal/min    | 15.3        | 0.001      | 8.76     | 4.31        | 212          | 12.6           | 20 gal purged      |                               |
| 9:45    |          | 5gal/min    |             |            |          |             |              |                | 30 gal purged      |                               |
| 9:54    |          | 5gal/min    |             |            |          |             |              |                |                    |                               |
| 10:00   | 44.49    | 5gal/min    | 15.3        | 0.001      | 8.76     | 4.31        | 212          | 12.60          | 450                |                               |
| 10:22   | 44.53    | 5gal/min    |             |            |          |             |              |                | 450 gal purged     |                               |
| 11:07   | HU       |             | JNE         |            |          |             |              |                | turned pump off    |                               |
| 11.47   |          |             |             |            |          |             |              |                |                    |                               |
| 11.21   |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
|         |          |             |             |            |          |             |              |                |                    |                               |
| D       | T        |             |             |            |          | a at c -l   |              | aflan ball     | _                  |                               |
| Pump    | i ype:   | Grunatos    | Real F      | יוט ∠, sam | hie coll | ected V     | with a 1     | enon balle     | 1                  |                               |
| Analyti | ical Par | ameters:    |             | TAL Meta   | als      |             |              |                |                    |                               |

| AECO            | DM          |             |          |                  |          |           |                     |              | WELL NO. MW- 20                         |                               |
|-----------------|-------------|-------------|----------|------------------|----------|-----------|---------------------|--------------|-----------------------------------------|-------------------------------|
|                 | CAMD        |             | 204      |                  | 440 1    |           | PROJECT No.         | SHEET SHEETS |                                         |                               |
|                 | SAIVIP      | LING FUI    | K IVI    | D004445          | -14.3, 1 | VIUITI SI | le G                |              | DUT30730.30<br>DATE WELL STARTED        | I OF I<br>DATE WELL COMPLETED |
| Liberty         | Indust      | rial Finish | ing, Bre | ntwood, I        | NY 1-52  | 2-108     |                     |              | March 9, 2010                           | March 9, 2010                 |
| CLIENT<br>Now V | ork Sta     | to Donart   | ment of  | Environn         | nontal a | and Cor   | neorvati            | ion          | NAME OF INSPECTOR<br>Staci Birnhaum & C | eleste Foster                 |
|                 | COMPANY     | le Depair   |          |                  |          |           | 1501 Val            |              | SIGNATURE OF INSPECTOR                  |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 | ONE WE      | LL VOLUME : | 17.96    | Gallons          | v        | VELL TD:  | 149.5               | ft           | PUMP INTAKE DEPTH:                      | 45 ft                         |
|                 | Depth       | <b>D</b>    |          | FIE              | LD MEAS  | SUREME    | NTS                 |              |                                         |                               |
| Time            | t0<br>Water | Purge       | Temn     | Conduct          | DO       | nH        | ORP                 | Turbidity    | REM                                     | ARKS                          |
| Time            | (ft)        | (mL/min)    | (°C)     | (µs/cm)          | (mg/L)   | pri       | OI                  | (ntu)        |                                         | ANNO                          |
|                 | ,           |             | . ,      |                  | ,        |           |                     | ,            |                                         |                               |
| 11:07           | 39.32       |             |          |                  |          |           |                     |              | Static water level                      |                               |
| 11:19           | 39.64       | 1.67        | 14.12    | 0.291            | 5.01     | 106       | 0                   |              | pump on                                 |                               |
| 11:26           | 39.62       | 1.67        | 12.8     | 0.297            | 5.56     | 104       | 0                   |              | 10 gal purge                            |                               |
| 11:34           | 39.61       | 1.67        | 12.74    | 0.3              | 5.53     | 124       |                     | 20 gal purge |                                         |                               |
| 11:39           | 39.8        | 1.67        | 12.69    | 0.309            | 5.41     | 131       |                     | 30 gal purge |                                         |                               |
| 11:46           | 39.81       | 1.67        | 12.4     | 0.298            | 5.61     | 123       |                     | 40 gal purge |                                         |                               |
| 11:50           | 39.86       | 1.67        | 12.77    | 0.297            | 5.45     | 132       |                     | 50 gal purge |                                         |                               |
| 11:52           |             |             |          |                  |          |           | purged 55 gal turne | d off        |                                         |                               |
| 11:54           |             |             |          |                  |          |           | collected sample    |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              |                                         |                               |
|                 |             |             |          |                  |          |           |                     |              | 1                                       |                               |
| Pump            | Type:       | Grundfos    | Redi F   | lo 2. sam        | ple coll | ected v   | vith a T            | eflon baile  | r                                       |                               |
| P               | 7,7 5.      |             |          | - <u>_</u> , sam | 1.10 000 |           |                     |              |                                         |                               |
| Analyti         | cal Par     | ameters:    |          | TAL Meta         | als      |           |                     |              |                                         |                               |
| -               |             |             |          |                  |          |           |                     |              |                                         |                               |

| AECO     | DM          |              |          |               |          |               |          |             | WELL NO. MW- 21        | l           |      |        |
|----------|-------------|--------------|----------|---------------|----------|---------------|----------|-------------|------------------------|-------------|------|--------|
|          |             |              |          | PROJECT       |          |               |          |             | PROJECT No.            | SHEET       |      | SHEETS |
|          | SAMP        | LING FO      | KΜ       | D004445       | -14.3, ľ | Viulti Si     | te G     |             | 60135736.30            |             | OF   | 1      |
| Liberty  | Indust      | rial Finish  | ing, Bre | entwood, l    | NY 1-52  | 2-108         |          |             | March 9, 2010          | March 9,    | 2010 |        |
| New Y    | ork Sta     | te Depart    | ment of  | -<br>Environn | nental a | and Cor       | nservat  | ion         | Staci Birnbaum & C     | Celeste Fos | ster |        |
| DRILLING | COMPANY     |              |          |               |          |               |          |             | SIGNATURE OF INSPECTOR |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          | ONE WE      | ELL VOLUME : | 11.6     | Gallons       | ١        | VELL TD:      | 110.5    | ft          | PUMP INTAKE DEPTH      | : 45 1      | ít   |        |
|          | Depth<br>to | Purge        |          | FIE           | LD MEAS  | SUREME        | NTS      |             |                        |             |      |        |
| Time     | Water       | Rate         | Temp.    | Conduct.      | DO       | рН            | ORP      | Turbidity   | REI                    | MARKS       |      |        |
|          | (ft)        | (mL/min)     | (°C)     | (µs/cm)       | (mg/L)   |               |          | (ntu)       |                        |             |      |        |
| 10.20    | 20.2        |              |          |               |          |               |          |             | Statia watar laval     |             |      |        |
| 10.20    | 30.38       | 1 1 2        | 12.2     | 0 353         | 8 36     | 5 76          | 177      | 83          |                        |             |      |        |
| 10.20    | 39.30       | 1.12         | 13.5     | 0.333         | 8 27     | 5.70          | 187      | 9.1         | 10 gal purge           |             |      |        |
| 10:51    | 39.37       | 1.12         | 13.26    | 0.347         | 8 25     | 5.29          | 175      | 0           | 20 gal purge           |             |      |        |
| 10:58    | 39.54       | 1.12         | 13 13    | 0.347         | 8.51     | 4 71          | 204      | 0           | 35 gal purge           |             |      |        |
| 11.00    | 00.04       | 1.12         | 10.10    | 0.047         | <u> </u> | 37 gal pumped |          |             |                        |             |      |        |
| 11:04    |             |              |          |               |          |               |          |             | collected sample       |             |      |        |
| 11.01    |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          | 1           |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
|          |             |              |          |               |          |               |          |             |                        |             |      |        |
| Pump     | Туре:       | Grundfos     | s Redi F | lo 2, sam     | ple coll | ected v       | vith a T | eflon baile | er                     |             |      |        |
| Analyti  | cal Par     | ameters:     |          | TAL Meta      | als      |               |          |             |                        |             |      |        |

| A       | CO       | M          |          |             |          |             |                | WELL NO. MW- 2         |             |
|---------|----------|------------|----------|-------------|----------|-------------|----------------|------------------------|-------------|
| WELL    | SVWD     |            | PM       | PROJECT     | dustrial | Finishina ( | (1-52-108)     | PROJECT №.<br>60135736 | SHEET SHEET |
|         |          |            |          |             | uustnari | inisining ( | 1-52-100)      | DATE WELL STARTED      |             |
| Brentv  | /ood, S  | uffolk Cou | inty, NY |             |          |             |                | 5/26/2011              |             |
| NYSD    | EC       |            |          |             |          |             |                | Celeste Foster/Ste     | ve Wright   |
| ONE WEL |          | :          | 7.5      | gallons     | WELL TD: | 54.2        | ft             | PUMP INTAKE DEPTH      | 50 ft       |
|         | Depth    |            |          | FIELD MEAS  | SUREMEN  | TS          |                |                        |             |
| Time    | to       | Purge      | Tamm     | Conduct     | mLl      | Turkidity   |                | DEMADIZE               |             |
| Time    | (ft)     | (gal/min)  | (C)      | (ms/cm)     | рп       | (ntu)       |                | REMARNO                |             |
| 850     | 42.91    |            |          |             |          |             | static water   | r level                |             |
| 900     |          |            |          |             |          |             | pump on        |                        |             |
| 904     | 43.05    | 2          | 14.41    | 0.206       | 6.10     | 110         |                |                        |             |
| 908     | 43.05    | 2          | 13.66    | 0.239       | 5.90     | 40          |                |                        |             |
| 912     | 43.05    | 2          | 13.65    | 0.246       | 5.84     | 10          | 25 gallons     |                        |             |
| 915     |          |            |          |             |          |             | pump off, 3    | o gallons purged       |             |
| 920     |          |            |          |             |          |             | Samples co     |                        |             |
|         |          |            |          |             |          |             | field filtered | 11 MW-02F              |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |
| Pumn    | Type     | Grundfoe   | hand h   | ailed for s | amnles   |             |                |                        |             |
| , amp   | · ypc.   |            |          |             | ampico   |             |                |                        |             |
| Analyt  | ical Par | ameters:   |          | TAL meta    | als      |             |                |                        |             |
|         |          |            |          |             |          |             |                |                        |             |

| A                            | CO            | M                 |              |                       |          |                    |                | WELL NO. MW- 3                                      |           |                |
|------------------------------|---------------|-------------------|--------------|-----------------------|----------|--------------------|----------------|-----------------------------------------------------|-----------|----------------|
| WELL                         | SAMP          | LING FOR          | RM           | PROJECT<br>Liberty In | dustrial | Finishing          | (1-52-108)     | ргојест №.<br>60135736                              | SHEET     | SHEETS<br>OF 1 |
| LOCATION<br>Brentv<br>CLIENT | vood, S       | uffolk Cou        | inty, NY     |                       |          |                    |                | DATE WELL STARTED<br>5/26/2011<br>NAME OF INSPECTOR |           |                |
| NYSD                         | EC            |                   |              |                       |          |                    |                | Celeste Foster/Ste                                  | ve Wright |                |
| ONE WEL                      |               | :                 | 7.5          | gallons               | WELL TD: | 53.9               | ft             | PUMP INTAKE DEPTH                                   | 48 f      | t              |
|                              | Depth<br>to   | Purge             | l            | FIELD MEAS            | SUREMEN  | ITS                |                |                                                     |           |                |
| Time                         | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН       | Turbidity<br>(ntu) |                | REMARKS                                             |           |                |
| 940                          | 42.89         |                   |              |                       |          |                    | static water   | r level                                             |           |                |
| 945                          |               |                   |              |                       |          |                    | pump on        |                                                     |           |                |
| 948                          | 43.15         | 2                 | 14.47        | 0.228                 | 6.22     | 75                 |                |                                                     |           |                |
| 950                          | 43.15         | 2                 | 14.00        | 0.241                 | 5.92     | 15                 |                |                                                     |           |                |
| 955                          | 43.15         | 2                 | 13.93        | 0.244                 | 5.82     | 10                 |                |                                                     |           |                |
| 959                          |               |                   |              |                       |          |                    | pump off, 3    | 0 gallons purged                                    |           |                |
| 1005                         |               |                   |              |                       |          |                    | Samples co     | ollected:                                           |           |                |
|                              |               |                   |              |                       |          |                    | unfiltered L   | MW-03U                                              |           |                |
|                              |               |                   |              |                       |          |                    | field filtered | LMW-03F                                             |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |
|                              | 1             |                   |              | 1                     |          |                    |                |                                                     |           |                |
|                              | 1             |                   |              | 1                     |          |                    |                |                                                     |           |                |
| Pump                         | Туре:         | Grundfos          | /hand b      | ailed for s           | amples   |                    | -              |                                                     |           |                |
| Analyt                       | ical Par      | ameters:          |              | TAL meta              | als      |                    |                |                                                     |           |                |
|                              |               |                   |              |                       |          |                    |                |                                                     |           |                |

| A                            | CO            | M                 |              |                       |            |                    |                  | WELL NO. MW-4                                       |            |    |             |
|------------------------------|---------------|-------------------|--------------|-----------------------|------------|--------------------|------------------|-----------------------------------------------------|------------|----|-------------|
| WELL                         | SAMP          | LING FOR          | RM           | PROJECT<br>Liberty In | dustrial l | Finishing (        | (1-52-108)       | ргојест №.<br>60135736                              | SHEET<br>1 | OF | sheets<br>1 |
| LOCATION<br>Brentw<br>CLIENT | ı<br>vood, Sı | uffolk Cou        | inty, NY     |                       |            | -                  |                  | DATE WELL STARTED<br>5/26/2011<br>NAME OF INSPECTOR | •          |    |             |
| NYSD                         | EC            |                   |              |                       |            |                    |                  | Celeste Foster/Ste                                  | ve Wright  |    |             |
| ONE WELI                     |               | :                 | 7.5          | gallons               | WELL TD:   | 53.4               | ft               | PUMP INTAKE DEPTH                                   | : 48       | ft |             |
|                              | Depth<br>to   | Purge             | I            | FIELD MEAS            | SUREMEN    | ITS                |                  |                                                     |            |    |             |
| Time                         | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) |                  | REMARKS                                             | 5          |    |             |
| 1025                         | 42.23         |                   |              |                       |            |                    | static water     | r level                                             |            |    |             |
| 1030                         |               |                   |              |                       |            |                    | pump on          |                                                     |            |    |             |
| 1033                         | 43.80         | 3                 | 15.19        | 0.312                 | 6.55       | 125                |                  |                                                     |            |    |             |
| 1038                         | 43.80         | 3                 | 14.49        | 0.422                 | 6.32       | 26                 |                  |                                                     |            |    |             |
| 1044                         | 43.80         | 3                 | 14.45        | 0.430                 | 6.22       | 9.3                | a survey a ff of |                                                     |            |    |             |
| 1045                         |               |                   |              |                       |            |                    | pump off, 4      | O gallons purged                                    |            |    |             |
| 1050                         |               |                   |              |                       |            |                    | Samples Co       |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    | field filtered   | 11 MW-04F                                           |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              | ļ                     |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
|                              |               |                   |              |                       |            |                    |                  |                                                     |            |    |             |
| Pump                         | Туре:         | Grundfos          | /hand b      | ailed for s           | amples     |                    |                  |                                                     |            |    |             |
| Analyti                      | cal Par       | ameters:          |              | TAL meta              | als        |                    |                  |                                                     |            |    |             |

| A                  | CO            | M                 |              |                       |            |                    |                | WELL NO. MW-5                           |            |    |             |
|--------------------|---------------|-------------------|--------------|-----------------------|------------|--------------------|----------------|-----------------------------------------|------------|----|-------------|
| WELL               | SAMP          | LING FOF          | RM           | PROJECT<br>Liberty In | dustrial I | Finishing (        | (1-52-108)     | PROJECT №.<br>60135736                  | SHEET<br>1 | OF | sheets<br>1 |
| LOCATION<br>Brentw | ı<br>vood, Si | uffolk Cou        | inty, NY     | • •                   |            |                    |                | date well started 5/23/2011             |            |    |             |
| CLIENT<br>NYSD     | EC            |                   |              |                       |            |                    |                | NAME OF INSPECTOR<br>Celeste Foster/Ste | ve Wright  |    |             |
| ONE WELI           |               | :                 | 3.3          | gallons               | WELL TD:   | 50.0               | ft             | PUMP INTAKE DEPTH                       | 49         | ft |             |
|                    | Depth<br>to   | Purge             |              | FIELD MEAS            | SUREMEN    | TS                 |                |                                         |            |    |             |
| Time               | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) |                | REMARKS                                 |            |    |             |
| 1208               | 44.92         | ,                 |              |                       |            |                    | static water   | r level                                 |            |    |             |
| 1600               | 44.94         | 1                 | 14.53        | 0.431                 | 5.85       | 15                 | pump on        |                                         |            |    |             |
| 1615               | 44.93         | 1                 | 14.38        | 0.424                 | 5.67       | 12                 |                |                                         |            |    |             |
| 1620               | 44.95         | 1                 | 14.25        | 0.417                 | 5.62       | 10                 |                |                                         |            |    |             |
| 1625               | 44.95         | 1                 | 13.75        | 0.399                 | 5.50       | 10                 |                |                                         |            |    |             |
| 1700               |               |                   |              |                       |            |                    | pump off, 2    | 25 gallons purged                       |            |    |             |
| 1705               |               |                   |              |                       |            |                    | Samples co     | ollected:                               |            |    |             |
|                    |               |                   |              |                       |            |                    | unfiltered L   | MW-05U                                  |            |    |             |
|                    |               |                   |              |                       |            |                    | field filtered | LMW-05F                                 |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                         |            |    |             |
| Pump               | Туре:         | Grundfos          | /hand b      | ailed for sa          | amples     |                    |                |                                         |            |    |             |
| Analyti            | cal Par       | ameters:          |              | TAL meta              | als        |                    |                |                                         |            |    |             |

| A               | CO            | M                 |              |                     |           |                    |                | WELL NO. MW- 6                |           |          |
|-----------------|---------------|-------------------|--------------|---------------------|-----------|--------------------|----------------|-------------------------------|-----------|----------|
|                 | SAMD          |                   |              | PROJECT             | طبيملتنما | -                  | (1 50 100)     | PROJECT No.                   | SHEET SHE | EETS     |
|                 | SAIVIP        |                   | X IVI        | Liberty in          | uusinai   | rinishing (        | (1-52-106)     | DUTSD730<br>DATE WELL STARTED | I OF      | <u> </u> |
| Brentw          | ood, S        | uffolk Cou        | inty, NY     |                     |           |                    |                | 5/23/2011                     |           |          |
| OLIENT<br>NYSDI | EC            |                   |              |                     |           |                    |                | Celeste Foster/Stev           | ve Wright |          |
| ONE WELL        |               | :                 | 144          | gallons             | WELL TD:  | 265                | ft             | PUMP INTAKE DEPTH:            | 75 ft     |          |
|                 | Depth<br>to   | Purge             | I            | FIELD MEAS          | SUREMEN   | ITS                |                |                               |           |          |
| Time            | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm) | рН        | Turbidity<br>(ntu) |                | REMARKS                       |           |          |
| 1207            | 44.76         |                   |              |                     |           |                    | static water   | r level                       |           |          |
| 1230            |               | 5                 |              |                     |           |                    | pump on        |                               |           |          |
| 1312            |               | 5                 | 14.36        | 0.237               | 6.66      | 14.9               |                |                               |           |          |
| 1400            | 78.25         | 5                 | 12.94        | 0.158               | 6.11      | 11.2               |                |                               |           |          |
| 1442            | 74.20         | 5                 | 12.88        | 0.11                | 6.12      | 11.0               |                |                               |           |          |
| 1620            | 73.59         | 5                 | 12.59        | 0.096               | 5.74      | 11.0               |                |                               |           |          |
| 1645            |               |                   |              |                     |           |                    | pump off, ~    | -500 gallons purged           |           |          |
| 1650            |               |                   |              |                     |           |                    | Samples co     | MW 06LL and                   |           |          |
|                 |               |                   |              |                     |           |                    | field filtered |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
|                 |               |                   |              |                     |           |                    |                |                               |           |          |
| Pump            | Туре:         | Grundfos          | /hand b      | ailed for sa        | amples    |                    |                |                               |           |          |
| Analyti         | cal Par       | ameters:          |              | TAL meta            | als       |                    |                |                               |           |          |

| A                            | CO            | M                 |              |                       |            |                    |                | WELL NO. MW-10                 | )          |    |             |
|------------------------------|---------------|-------------------|--------------|-----------------------|------------|--------------------|----------------|--------------------------------|------------|----|-------------|
| WELL                         | SAMP          | LING FOR          | RM           | PROJECT<br>Liberty In | dustrial l | Finishing (        | (1-52-108)     | ргојест №.<br>60135736         | SHEET<br>1 | OF | sheets<br>1 |
| LOCATION<br>Brentw<br>CLIENT | ı<br>vood, Sı | uffolk Cou        | inty, NY     |                       |            |                    |                | DATE WELL STARTED<br>5/26/2011 |            |    |             |
| NYSD                         | EC            |                   |              |                       |            |                    |                | Celeste Foster/Ste             | ve Wright  |    |             |
| ONE WELI                     |               | :                 | 5            | gallons               | WELL TD:   | 50.0               | ft             | PUMP INTAKE DEPTH:             | 48         | ft |             |
|                              | Depth<br>to   | Purge             | I            | FIELD MEAS            | SUREMEN    | ITS                |                |                                |            |    |             |
| Time                         | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) |                | REMARKS                        |            |    |             |
| 1147                         | 42.10         |                   |              |                       |            |                    | static water   | r level                        |            |    |             |
| 1158                         |               |                   |              |                       |            |                    | pump on        |                                |            |    | -           |
| 1203                         | 42.20         | 2                 | 15.48        | 0.317                 | 6.86       | 150                |                |                                |            |    |             |
| 1205                         | 42.20         | 2                 | 14.06        | 0.320                 | 6.55       | 30                 |                |                                |            |    |             |
| 1210                         | 42.20         | ۷                 | 14.01        | 0.315                 | 0.12       | 10                 | nump off 2     | 25 gallons purged              |            |    |             |
| 1210                         |               |                   |              |                       |            |                    | Samples co     | ollected:                      |            |    |             |
|                              |               |                   |              |                       |            |                    | unfiltered L   | MW-10U                         |            |    |             |
|                              |               |                   |              |                       |            |                    | field filtered | LMW-10F                        |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                              |               |                   |              |                       |            |                    |                |                                |            |    |             |
| Pump                         | Type:         | Grundfos          | /hand b      | ailed for sa          | amples     |                    |                |                                |            |    |             |
| Analyti                      | cal Par       | ameters:          |              | TAL meta              | als        |                    |                |                                |            |    |             |

| A                  | CO            | M                 |              |                       |            |                    |                | WELL NO. MW- 1                 | 2          |    |             |
|--------------------|---------------|-------------------|--------------|-----------------------|------------|--------------------|----------------|--------------------------------|------------|----|-------------|
| WELL               | SAMP          | LING FOR          | RM           | PROJECT<br>Liberty In | dustrial I | Finishing (        | (1-52-108)     | ргојест №.<br>60135736         | SHEET<br>1 | OF | sheets<br>1 |
| LOCATION<br>Brentw | ı<br>vood, Sı | uffolk Cou        | inty, NY     |                       |            |                    |                | DATE WELL STARTED<br>5/24/2011 |            |    |             |
| NYSDI              | EC            |                   |              |                       |            |                    |                | Celeste Foster/Ste             | eve Wright | t  |             |
| ONE WELI           |               | :                 | 1.5          | gallons               | WELL TD:   | 49.3               | ft             | PUMP INTAKE DEPTH              | n: 45      | ft |             |
|                    | Depth<br>to   | Purge             |              | FIELD MEAS            | SUREMEN    | ITS                |                |                                |            |    |             |
| Time               | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) |                | REMARKS                        | 5          |    |             |
| 1430               | 41.69         |                   | . /          | , <i>,</i>            |            |                    | static water   | r level                        |            |    |             |
| 1505               | 42.10         |                   |              |                       |            |                    | pump on tu     | Irbid water                    |            |    |             |
| 1507               |               | 5                 |              |                       |            |                    | cleared qui    | ckly                           |            |    |             |
| 1512               | 42.13         | 5                 | 15.76        | 0.166                 | 5.59       | 55.3               | · ·            | <b>,</b>                       |            |    |             |
| 1517               | 42.12         | 1                 | 15.62        | 0.173                 | 5.5        | 45                 |                |                                |            |    |             |
| 1518               |               |                   |              |                       |            |                    | pump off, 1    | 5 gallons purged               |            |    |             |
| 1535               |               |                   |              |                       |            |                    | Samples co     | ollected:                      |            |    |             |
|                    |               |                   |              |                       |            |                    | unfiltered L   | MW-12U                         |            |    |             |
|                    |               |                   |              |                       |            |                    | LMW12U         | MS                             |            |    |             |
|                    |               |                   |              |                       |            |                    | LMW12U         | MSD                            |            |    |             |
|                    |               |                   |              |                       |            |                    | field filtered | LMW-12F                        |            |    |             |
|                    |               |                   |              |                       |            |                    | LMW-12F I      | MS                             |            |    |             |
|                    |               |                   |              |                       |            |                    | LMW-12F I      | MSD                            |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |    |             |
| Pump               | Туре:         | Grundfos          | /hand b      | ailed for sa          | amples     |                    |                |                                |            |    |             |
| Analyti            | cal Par       | ameters:          |              | TAL meta              | als        |                    |                |                                |            |    |             |

| A                  | CO            | M                 |              |                       |            |                    |                | WELL NO. MW- 1                 | 4          |            |             |
|--------------------|---------------|-------------------|--------------|-----------------------|------------|--------------------|----------------|--------------------------------|------------|------------|-------------|
| WELL               | SAMP          | LING FOR          | RM           | PROJECT<br>Liberty In | dustrial I | Finishing (        | (1-52-108)     | project №.<br>60135736         | SHEET<br>1 | OF         | sheets<br>1 |
| LOCATION<br>Brentw | ı<br>vood, Sı | uffolk Cou        | inty, NY     |                       |            |                    |                | DATE WELL STARTED<br>5/24/2011 |            |            |             |
| NYSD               | EC            |                   |              |                       |            |                    |                | Celeste Foster/Ste             | ve Wright  | . <u> </u> |             |
| ONE WELI           |               | :                 | 9.5          | gallons               | WELL TD:   | 100                | ft             | PUMP INTAKE DEPTH              | . 70       | ft         |             |
|                    | Depth<br>to   | Purge             | I            | FIELD MEAS            | SUREMEN    | ITS                |                |                                |            |            |             |
| Time               | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) |                | REMARKS                        |            |            |             |
| 1435               | 41.82         |                   |              |                       |            |                    | static water   | r level                        |            |            |             |
| 1455               |               |                   |              |                       |            |                    | pump on        |                                |            |            |             |
| 1500               | 41.97         | 5                 | 14.87        | 0.230                 | 5.70       | 173                |                |                                |            |            |             |
| 1510               | 41.99         | 5                 | 15.69        | 0.221                 | 5.62       | 30                 |                |                                |            |            |             |
| 1517               | 41.98         | 5                 | 14.02        | 0.228                 | 5.19       | 20                 |                |                                |            |            |             |
| 1520               |               |                   |              |                       |            |                    | pump off, 3    | 30 gallons purged              |            |            |             |
| 1610               |               |                   |              |                       |            |                    | Samples co     | ollected:                      |            |            |             |
|                    |               |                   |              |                       |            |                    | unfiltered L   | .MW-14U                        |            |            |             |
|                    |               |                   |              |                       |            |                    | field filtered | d LMW-14F                      |            |            |             |
| 1612               |               |                   |              |                       |            |                    | Blind duplic   | cates                          |            |            |             |
|                    |               |                   |              |                       |            |                    | unfiltered L   | .MW-64U                        |            |            |             |
|                    |               |                   |              |                       |            |                    | field filtered | d LMW-64F                      |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
|                    |               |                   |              |                       |            |                    |                |                                |            |            |             |
| Pump               | Туре:         | Grundfos          | /hand b      | ailed for sa          | amples     |                    |                |                                |            |            |             |
| Analyti            | cal Par       | ameters:          |              | TAL meta              | als        |                    |                |                                |            |            |             |

| A        | CO            | M                 |              |                     |          |                    |                | WELL NO. MW-16     | 5         |          |
|----------|---------------|-------------------|--------------|---------------------|----------|--------------------|----------------|--------------------|-----------|----------|
| WELL     | SVWD          |                   | ом           | PROJECT             | ductrial | Einishing (        | (1-52-108)     | PROJECT №.         | SHEET S   | HEETS    |
|          | JANIF         |                   |              | LIDerty III         | uusinari |                    | 1-52-106)      | DATE WELL STARTED  | I OF      | <u> </u> |
| Brentw   | ood, S        | uffolk Cou        | inty, NY     |                     |          |                    |                | 5/26/2011          |           |          |
| NYSDI    | EC            |                   |              |                     |          |                    |                | Celeste Foster/Ste | ve Wright |          |
| ONE WELL |               |                   | 9.3          | gallons             | WELL TD: | 99.2               | ft             | PUMP INTAKE DEPTH  | : 50 ft   |          |
|          | Depth         | Purge             | I            | FIELD MEAS          | SUREMEN  | ITS                |                |                    |           |          |
| Time     | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm) | рН       | Turbidity<br>(ntu) |                | REMARKS            | i         |          |
| 1145     | 42.29         |                   |              |                     |          |                    | static water   | r level            |           |          |
| 1202     |               |                   |              |                     |          |                    | pump on        |                    |           |          |
| 1204     | 43.51         | 2.5               |              |                     |          |                    | 5 gallons p    | urged              |           |          |
| 1206     | 43.51         | 2.5               | 14.22        | 0.207               | 5.50     | 22.2               |                |                    |           |          |
| 1210     | 43.51         | 2.5               | 13.94        | 0.229               | 5.37     | 0                  | "              |                    |           |          |
| 1215     | 43.51         | 2.5               | 13.94        | 0.228               | 5.37     | 0                  | pump off, 3    | o galions purged   |           |          |
| 1220     |               |                   |              |                     |          |                    | Samples co     |                    |           |          |
|          |               |                   |              |                     |          |                    | field filtered | 1000<br>11 MW-16F  |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
|          |               |                   |              |                     |          |                    |                |                    |           |          |
| Pump     | Туре:         | Grundfos          | /hand b      | ailed for sa        | amples   |                    |                |                    |           |          |
| Analyti  | cal Par       | ameters:          |              | TAL meta            | als      |                    |                |                    |           |          |

| A                            | CO                 | M                 |              |                                  |            |                    |                | WELL NO. MW- 1                                      | 8             |        |
|------------------------------|--------------------|-------------------|--------------|----------------------------------|------------|--------------------|----------------|-----------------------------------------------------|---------------|--------|
| WELL                         | SAMP               |                   | RM           | <sub>РROJECT</sub><br>Libertv In | dustrial I | Finishina          | (1-52-108)     | PROJECT №.<br>60135736                              | SHEET<br>1 OF | SHEETS |
| LOCATION<br>Brentw<br>CLIENT | 1<br>1<br>1000, Si | uffolk Cou        | inty, NY     |                                  |            |                    | (              | DATE WELL STARTED<br>5/24/2011<br>NAME OF INSPECTOR |               |        |
| NYSD                         | EC                 |                   |              |                                  |            |                    |                | Celeste Foster/Ste                                  | ve Wright     |        |
| ONE WELI                     | VOLUME :           | :                 | 17           | gallons                          | WELL TD:   | 150                | ft             | PUMP INTAKE DEPTH                                   | . 60 ft       |        |
|                              | Depth<br>to        | Purae             | l            | FIELD MEAS                       | SUREMEN    | ITS                |                |                                                     |               |        |
| Time                         | Water<br>(ft)      | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)              | рН         | Turbidity<br>(ntu) |                | REMARKS                                             | 1             |        |
| 917                          | 43.41              |                   |              |                                  |            |                    | static water   | r level                                             |               |        |
| 950                          |                    | 1                 |              |                                  |            |                    | pump on        |                                                     |               |        |
| 1015                         | 43.65              | 1                 | 13.79        | 0.256                            | 5.34       | 10                 |                |                                                     |               |        |
| 1040                         | 43.65              | 1                 | 13.73        | 0.358                            | 5.38       | 10                 |                |                                                     |               |        |
| 1110                         | 43.65              | 1                 | 13.49        | 0.361                            | 5.32       | 8.0                |                |                                                     |               |        |
| 1120                         |                    |                   |              |                                  |            |                    | pump off, 8    | 0 gallons purged                                    |               |        |
| 1145                         |                    |                   |              |                                  |            |                    | Samples co     | ollected:                                           |               |        |
|                              |                    |                   |              |                                  |            |                    | unfiltered L   | MW-18U and                                          |               |        |
|                              |                    |                   |              |                                  |            |                    | field filtered | LMW-18F                                             |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
|                              |                    |                   |              |                                  |            |                    |                |                                                     |               |        |
| Pump                         | Туре:              | Grundfos          | /hand b      | ailed for sa                     | amples     |                    |                |                                                     |               |        |
| Analyti                      | cal Par            | ameters:          |              | TAL meta                         | als        |                    |                |                                                     |               |        |

| A                  | CO            | M                 |              |                       |            |                    |                | WELL NO. MW- 1              | 9          |    |             |
|--------------------|---------------|-------------------|--------------|-----------------------|------------|--------------------|----------------|-----------------------------|------------|----|-------------|
| WELL               | SAMP          | LING FOR          | RM           | PROJECT<br>Liberty In | dustrial I | Finishing          | (1-52-108)     | project №.<br>60135736      | SHEET<br>1 | OF | sheets<br>1 |
| LOCATION<br>Brentw | ı<br>/ood, Sı | uffolk Cou        | inty, NY     |                       |            |                    |                | date well started 5/24/2011 |            |    |             |
| CLIENT<br>NYSD     | EC            |                   |              |                       |            |                    |                | Celeste Foster/Ste          | ve Wright  |    |             |
|                    |               | :                 | 144          | gallons               | WELL TD:   | 265                | ft             | PUMP INTAKE DEPTH:          | 60 ·       | ft |             |
|                    | Depth<br>to   | Purge             | F            | IELD MEAS             | SUREMEN    | ITS                |                |                             |            |    |             |
| Time               | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) | -              | REMARKS                     |            |    |             |
| 915                | 44.39         | (0.00 /           | (-)          | (                     |            |                    | static water   | r level                     |            |    |             |
| 934                | 45.15         | 5                 |              |                       |            |                    | pump on        |                             |            |    |             |
| 938                |               |                   |              |                       |            |                    | pump off g     | enerator turned off         |            |    |             |
| 948                | 43.65         | 2                 |              |                       |            |                    | pump on, 2     | and generator used.         |            |    |             |
| 1010               | 45.66         | 2                 | 13.98        | 0.192                 | 6.10       | 10                 | r - r - ,      | - <b>J</b>                  |            | ,  |             |
| 1055               | 45.67         | 2                 | 12.82        | 0.243                 | 5.58       | 8                  |                |                             |            |    |             |
| 1215               |               |                   |              |                       |            |                    | generator t    | urned off                   |            |    |             |
| 1220               |               | 5                 | -            |                       |            |                    | pump back      | on                          |            |    |             |
| 1350               | 45.65         | 5                 | 14.00        | 0.245                 | 5.61       | 8                  |                |                             |            |    |             |
| 1400               |               | -                 |              |                       |            | -                  | pump off. ~    | 440 gallons purged          |            |    |             |
| 1410               |               |                   |              |                       |            |                    | Samples co     | ollected:                   |            |    |             |
|                    |               |                   |              |                       |            |                    | unfiltered L   | MW-19U and                  |            |    |             |
|                    |               |                   |              |                       |            |                    | field filtered | HIMW-19F                    |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    | 1              |                             |            |    |             |
| Pump               | Туре:         | Grundfos          | /hand ba     | ailed for sa          | amples     |                    |                |                             |            |    |             |
| Analyti            | cal Par       | ameters:          |              | TAL meta              | als        |                    |                |                             |            |    |             |
|                    |               |                   |              |                       |            |                    |                |                             |            |    |             |

| A                            | CO               | M                 |              |                       |            |                    |                | WELL NO. MW-20                                      | )          |    |             |
|------------------------------|------------------|-------------------|--------------|-----------------------|------------|--------------------|----------------|-----------------------------------------------------|------------|----|-------------|
| WELL                         | SAMP             | LING FOF          | RM           | PROJECT<br>Liberty In | dustrial I | Finishing (        | (1-52-108)     | ргојест №.<br>60135736                              | SHEET<br>1 | OF | sheets<br>1 |
| LOCATION<br>Brentw<br>CLIENT | ı<br>vood, Sı    | uffolk Cou        | inty, NY     |                       |            |                    |                | DATE WELL STARTED<br>5/26/2011<br>NAME OF INSPECTOR |            |    |             |
| NYSD                         | EC               |                   |              |                       |            |                    |                | Celeste Foster/Ste                                  | ve Wright  |    |             |
| ONE WELI                     |                  |                   | 18           | gallons               | WELL TD:   | 150.0              | ft             | PUMP INTAKE DEPTH:                                  | 45         | ft |             |
|                              | Depth<br>to      | Purge             | I            | FIELD MEAS            | SUREMEN    | ITS                |                |                                                     |            |    |             |
| Time                         | Water<br>(ft)    | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) |                | REMARKS                                             |            |    |             |
| 1310                         | 40.95            |                   |              |                       |            |                    | static water   | r level                                             |            |    |             |
| 1332                         |                  |                   |              |                       |            |                    | pump on        |                                                     |            |    |             |
| 1335                         | 41.60            | 2.6               |              |                       |            |                    | 5 gallons p    | urged                                               |            |    |             |
| 1338                         | 41.60            | 2.6               | 13.79        | 0.287                 | 5.66       | 0                  |                |                                                     |            |    |             |
| 1344                         | 41.60            | 2.6               | 13.30        | 0.296                 | 5.43       | 0                  |                |                                                     |            |    |             |
| 1352                         | 41.60            | 2.6               | 12.95        | 0.299                 | 5.40       | 0                  | pump off, 6    | 60 gallons purged                                   |            |    |             |
| 1355                         | 41.60            | 2.6               |              |                       |            |                    | Samples co     | ollected:                                           |            |    |             |
| 1400                         |                  |                   |              |                       |            |                    | unfiltered L   | MW-20U                                              |            |    |             |
|                              |                  |                   |              |                       |            |                    | field filtered | LIVIVV-20F                                          |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    | -           |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
|                              |                  |                   |              |                       |            |                    |                |                                                     |            |    |             |
| Pump<br>Analyti              | Type:<br>cal Par | Grundfos          | /hand b      | ailed for sa          | amples     |                    |                |                                                     |            |    |             |
| ary ti                       |                  |                   |              | .,                    |            |                    |                |                                                     |            |    |             |

| A                            | CO            | M                 |              |                       |            |                    |                | WELL NO. MW-21                                      |            |               |   |
|------------------------------|---------------|-------------------|--------------|-----------------------|------------|--------------------|----------------|-----------------------------------------------------|------------|---------------|---|
| WELL                         | SAMP          | LING FOR          | RM           | PROJECT<br>Liberty In | dustrial I | Finishing (        | (1-52-108)     | ргојест №.<br>60135736                              | SHEET<br>1 | SHEET<br>OF 1 | S |
| LOCATION<br>Brentw<br>CLIENT | vood, S       | uffolk Cou        | inty, NY     |                       |            |                    |                | DATE WELL STARTED<br>5/26/2011<br>NAME OF INSPECTOR |            |               |   |
| NYSD                         | EC            |                   |              |                       |            |                    |                | Celeste Foster/Ste                                  | ve Wright  |               |   |
|                              |               | :                 | 11.3         | gallons               | WELL TD:   | 110.0              | ft             | PUMP INTAKE DEPTH:                                  | 50 f       | ft            |   |
|                              | Depth<br>to   | Purge             |              | FIELD MEAS            | SUREMEN    | TS                 |                |                                                     |            |               |   |
| Time                         | Water<br>(ft) | Rate<br>(gal/min) | Temp.<br>(C) | Conduct.<br>(ms/cm)   | рН         | Turbidity<br>(ntu) |                | REMARKS                                             |            |               |   |
| 1305                         | 40.92         |                   |              |                       |            |                    | static water   | r level                                             |            |               |   |
| 1330                         |               |                   |              |                       |            |                    | pump on        |                                                     |            |               |   |
| 1334                         | 41.11         | 2.5               | 14.49        | 0.299                 | 5.87       | 50                 |                |                                                     |            |               |   |
| 1338                         | 41.11         | 2.5               | 13.69        | 0.293                 | 5.43       | 10                 |                |                                                     |            |               |   |
| 1342                         | 41.11         | 2.5               | 13.72        | 0.294                 | 5.42       | 10                 |                |                                                     |            |               |   |
| 1344                         |               |                   |              |                       |            |                    | pump off, 3    | 35 gallons purged                                   |            |               |   |
| 1350                         |               |                   |              |                       |            |                    | Samples co     | ollected:                                           |            |               |   |
|                              |               |                   |              |                       |            |                    | unfiltered L   | MW-21U                                              |            |               |   |
|                              |               |                   |              |                       |            |                    | field filtered | a livivv-21F                                        |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   | -            |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
|                              |               |                   |              |                       |            |                    |                |                                                     |            |               |   |
| Pump                         | Type:         | Grundfos          | /hand b      | ailed for sa          | amples     |                    |                |                                                     |            |               |   |
| , anaryti                    |               |                   |              |                       |            |                    |                |                                                     |            |               |   |

|           |                | / * 1            |              |                     |                |            |          |                    | WELL NO.                | MW-2                |
|-----------|----------------|------------------|--------------|---------------------|----------------|------------|----------|--------------------|-------------------------|---------------------|
| WFII      | SAMP           |                  | RM           | PROJECT             |                | l Finish   | lina     |                    | PROJECT No.<br>60135736 | SHEET SHEETS        |
| LOCATION  | N N            |                  |              | LIDCITY             | luusina        |            | Ing      |                    | DATE WELL SAMPLED       |                     |
| Brentw    | <u>vood, N</u> | Y                |              |                     |                |            |          |                    | 8/23/2012               |                     |
| NYSD      | EC             |                  |              |                     |                |            |          |                    | Celeste Foster and      | d Rita Papagian     |
|           |                |                  |              | <br>                |                |            |          |                    |                         | (                   |
|           | ONE WE         | LL VOLUME :      | 6.7          | gallons             | V              | NELL TD:   | 54.3     | ft                 | PUMP INTAKE DEPTI       | н: 50 ft            |
|           | Depth<br>to    | Purge            |              | FIE                 | LD MEA:        | SUREME     | INTS     |                    |                         |                     |
| Time      | Water<br>(ft)  | Rate<br>(mL/min) | Temp.<br>(℃) | Conduct.<br>(µs/cm) | DO<br>(mg/L)   | рН         | ORP      | Turbidity<br>(ntu) | RE                      | MARKS               |
| 10:20     | 44.05          | <u> </u>         |              |                     |                |            | 1        |                    | Static water level      |                     |
| 10:30     |                |                  |              |                     |                |            |          |                    | pump on                 |                     |
| 10:40     | 44.00          | 300              | 14.61        | 0.246               | 14.34          | 6.04       | 237      | 12.6               |                         |                     |
| 10:50     | 44.00          | 300              | 15.01        | 0.257               | 14.36          | 6.08       | 237      | 9.9                |                         |                     |
| 11:00     | 44.00          | 300              | 15.03        | 0.257               | 14.48          | 6.07       | 236      | 8.8                |                         |                     |
| 11:10     | 44.00          | 300              | 14.94        | 0.256               | 14.52          | 6.06       | 238      | 5.2                |                         |                     |
| 11:15     | <b> '</b>      | ┣────            | <b> </b> '   | <b> </b>            | <b> </b> '     | <b> </b> ' | ───      | ───                | Unfiltered Sample       | LIMVV-2 Collected   |
| 11.20     | <b>├</b> ────′ | ┣────            | <b> </b> '   | ╂────               | <b>├</b> ───/  | <b> </b> ' | ╂────    | ╂────              |                         | VIVV-ZF COllected   |
|           | '              | <u> </u>         |              | <u> </u>            | <b>├</b> ───┦  | <b> </b> ' |          |                    | 1/4" (OD) poly and      | 1/4" (OD) poly      |
| . <u></u> | <u>├</u> ───′  | <b> </b>         | }            | <u> </u>            | <b>├</b> ───┦  | ┟────┘     | ╂────    | ╂────              | bonded tubing put       | back into the well. |
|           | <b>├</b> ───′  |                  |              |                     | <b>├</b> ──┦   |            | <u> </u> | <u> </u>           |                         |                     |
| . <u></u> |                |                  |              |                     | <b>!</b>       |            |          |                    | 1                       |                     |
|           |                | <u> </u>         |              | <u> </u>            | <u> </u>       |            | i        | t                  |                         |                     |
|           |                |                  |              |                     |                |            |          |                    |                         |                     |
| L         | <u> </u>       | L                | <u> </u>     |                     | ļ!             | <b> </b> ' |          |                    |                         |                     |
|           | <u> </u>       | <b></b>          | <b></b> '    | <b></b>             | <u> </u>       | <b> </b> ' | <u> </u> | Ļ                  |                         |                     |
|           | <b> </b> '     | <b> </b>         | <b></b> '    | ───                 | <b></b> '      | <b> </b> ' |          | <b></b>            |                         |                     |
|           | <b> </b> '     | <b> </b>         | <b> </b> '   | <b></b>             | <u> '</u>      | <b> </b> ' |          | <u> </u>           | <b>_</b>                |                     |
|           | <b>↓</b> ′     | ───              | <b> </b> '   | <b> </b>            | <b> </b> '     | <b> </b> ' | ───      | ───                | <u> </u>                |                     |
|           | <b> '</b>      | ┣────            | <b> </b> '   | <b> </b>            | <b> </b> '     | <b> </b> ' | ───      | ───                | <u> </u>                |                     |
|           | ┟────′         | <b> </b>         | <b> </b> '   | ┣────               | <b>├</b> ───┦  | <b> </b> ' | ┨─────   | ├───               | +                       |                     |
|           | '              | <u> </u>         |              | <u> </u>            | <b>├</b> ───┦  | <b> </b> ' |          | <del> </del>       | 1                       |                     |
|           | '              |                  |              | <u> </u>            | <b>├</b> ───┦  |            |          | <u> </u>           | 1                       |                     |
|           |                |                  | 1            | <u> </u>            |                |            | 1        | <u> </u>           | 1                       |                     |
|           |                |                  |              |                     | <del>ا ا</del> |            |          |                    | 1                       |                     |
| [         | l'             | 「 <u> </u>       | l            | 「 <u> </u>          | l!             | []         | l        | 1                  |                         |                     |
|           |                |                  |              |                     |                |            |          |                    |                         |                     |
|           | '              |                  |              |                     |                |            |          |                    |                         |                     |
|           | <b> </b> '     | <b></b>          | <b></b> '    | <b></b>             | <u> </u>       | <b> </b> ' | <u> </u> | Ļ                  |                         |                     |
|           | <b> </b> '     | <b> </b>         | <b> </b> '   | ───                 | <b></b> '      | <b> </b> ' |          | <b></b>            | <u> </u>                |                     |
|           | <b> </b> '     | <b> </b>         | <b> </b> '   | ───                 | <b> </b> '     | <b> </b> ' |          |                    | <b>_</b>                |                     |
|           | <u> </u>       |                  |              |                     | <u>ا</u> ا     | <u> </u>   |          |                    |                         |                     |
| Pump      | Туре:          | QED Bla          | dder Pu      | ımp                 |                |            |          |                    |                         |                     |
| Analyti   | ical Par       | ameters:         | TAL M        | etals (Tot          | al and F       | Field Fi   | ltered)  |                    |                         |                     |

|                   |             |                |               |                                  |               |               |                |           | WELL NO.                                | IVIVV-3          |
|-------------------|-------------|----------------|---------------|----------------------------------|---------------|---------------|----------------|-----------|-----------------------------------------|------------------|
| WELL              | SAMP        |                | RM            | <del>ркојест</del><br>Libertv Ir | ndustria      | l Finish      | ina            |           | PROJECT No.<br>60135736                 | SHEET SHEETS     |
| OCATION<br>Brentw | vood, N     | Y              |               |                                  |               |               |                |           | DATE WELL SAMPLED<br>8/23/2012          |                  |
| :lient<br>NYSDE   | EC          |                |               |                                  |               |               |                |           | NAME OF INSPECTOR<br>Celeste Foster and | I Rita Papagian  |
|                   | ONE WE      | LL VOLUME :    | 7.1           | gallons                          | 1             | WELL TD:      | 54.8           | ft        | PUMP INTAKE DEPTH                       | : 50 ft          |
|                   | Depth       |                |               | FIE                              | LD MEA        | SUREME        | NTS            |           |                                         |                  |
| Time              | to<br>Water | Purge<br>Rate  | Temp.         | Conduct.                         | DO            | рН            | ORP            | Turbidity | REI                                     | MARKS            |
| 10.00             | (ft)        | (mL/min)       | (°C)          | (µs/cm)                          | (mg/L)        | <b> </b> '    | <b>با</b>      | (ntu)     | Otation standard                        |                  |
| 10:30             | 44.00       | 075            | <b>↓</b> /    | <b> </b>                         | <b>↓</b> /    | <b>↓</b> ′    | il             | l         | Static water level                      |                  |
| 10:40             | 43.80       | 210            | 47.04         | 0.220                            | 44.02         | 0.21          | 400            | 24.0      | pump on                                 |                  |
| 10:55             | 43.00       | 210            | 17.31         | 0.320                            | 7.66          | 0.31          | 100            | 34.0      | <u> </u>                                |                  |
| 11:05             | 43.00       | 210            | 15.70         | 0.330                            | 7.00          | 0.20          | 1/1            | 125       | <u> </u>                                |                  |
| 11:15             | 43.60       | 275            | 18.84         | 0.330                            | 7.84          | 0.3∠<br>0.20  | 1/1            | 100       | <u> </u>                                |                  |
| 11:20             | 43.00       | 210            | 10.70         | 0.333                            | 7.01          | 6.30          | 168            | 53.Z      | <u> </u>                                |                  |
| 11:35             | 43.00       | 210            | 10.70         | 0.334                            | 7.09          | 0.30          | 104            | 41.0      | <u> </u>                                |                  |
| 11:40             | 43.00       | 215            | 10.19         | 0.334                            | 1.01          | 0.29          | 163            | 37.10     | Filtered Sample I N                     | MM 2E Collected  |
| 11.50             | Į           | <sup> </sup>   | <b>├</b> ───┦ |                                  | <b>└───</b> / | <b>└───</b> ′ | <b>⊢−−−−</b> ┦ | <b> </b>  |                                         | IVV-3F Collected |
| 11.55             | Į           | <sup> </sup>   | <b>├</b> ───┦ |                                  | ───           | <b>├───</b> ′ | ┢────┦         | <u> </u>  |                                         |                  |
| <b>──</b> ┤       | Į           | <sup> </sup>   | <b>├</b> ───┦ |                                  | ───┦          | <b>├───</b> ′ | ┢────┦         | <b> </b>  |                                         | 1/4" (OD) poly   |
| <b>──</b> ┤       | Į           | <sup> </sup>   | <b>├</b> ───┦ |                                  | ───┦          | <b>├───</b> ′ | ┢────┦         | <b> </b>  | 1/4 (OD) poly and                       | 1/4 (OD) poly    |
|                   | ·           | <u> </u>       | ┟───┦         | <u> </u>                         | ┨────┦        | <b>├</b> ───┦ | ┟───┦          | l         |                                         |                  |
| $\rightarrow$     | <b>/</b> /  | <sup> </sup>   | <b>├</b> ───┦ | <u> </u>                         | ┼───┦         | <b>├</b> ───┦ |                | i         |                                         |                  |
|                   | <b> </b>    | <sup> </sup>   | <b>!</b>      |                                  |               | <i> </i>      |                | l         | 1                                       |                  |
|                   | <b>/</b> /  | <sup> </sup>   | <b>├</b> ───┦ | <u> </u>                         | ┝───┦         | <b>├</b> ───┦ |                | i         |                                         |                  |
|                   | , <b></b> Į | <sup> </sup>   | <b>├</b> ───┦ | <u> </u>                         | <b>├</b> ───┦ | <b>!</b>      | <b>ا</b> ا     | i         | <u> </u>                                |                  |
|                   | <b>/</b> /  |                | P             |                                  | <b>├</b> ───┦ | <b>!</b>      |                | l         | 1                                       |                  |
|                   | , <b></b> Į | <sup> </sup>   | ┟───┦         | <u> </u>                         | ┨────┦        | <b>!</b>      | / <b>/</b>     | i         | <u> </u>                                |                  |
|                   | <b> </b>    | <sup> </sup>   | <b>!</b>      |                                  |               | <i> </i>      |                | l         | 1                                       |                  |
|                   | <b>//</b>   | <sup> </sup>   | <b>!</b>      | <u> </u>                         | <b>├</b> ───┦ | ┝───┦         | <b> </b>       | i         | <u> </u>                                |                  |
|                   | , <b></b> Į | <sup> </sup>   | <b>├</b> ───┦ | <u> </u>                         | <b>├</b> ───┦ | <b>!</b>      | <b>ا</b> ا     | i         | <u> </u>                                |                  |
|                   | ·           | <sup> </sup>   | ┟───┦         | i                                | ╂────┦        | <b>├</b> ───┦ | / <b>/</b>     | i         |                                         |                  |
|                   | ·           | <sup> </sup>   | ┟───┦         | i                                | ╂───┦         | ┟───┦         | / <b>/</b>     | i         | 1                                       |                  |
| +                 | ·           | <sup> </sup>   | ┟───┦         | i                                | ╂───┦         | ┟───┦         | / <b>/</b>     | i         | 1                                       |                  |
| +                 | ·           | <sup> </sup>   | ┟───┦         | i                                | ╂───┦         | ┟───┦         | / <b>/</b>     | i         | 1                                       |                  |
|                   | <b>//</b>   | l              | <b>!</b>      | <u> </u>                         | <b>├</b> ──┦  | <i> </i>      | ll             | i         | <u> </u>                                |                  |
| +                 | ·           | <sup> </sup>   | ┟───┦         | i                                | ┨────┦        | ┟───┦         | / <b>/</b>     | i         | 1                                       |                  |
| +                 | ·           | <sup> </sup>   | ┟───┦         | i                                | ╂────┦        | <b>├</b> ───┦ | / <b>/</b>     | i         |                                         |                  |
|                   | <b>f</b>    | ¦ <sup>!</sup> | ┟───┦         | i                                | <b> </b>      | <b>!</b>      | <b>!</b>       | /         | ł                                       |                  |
|                   | <b>f</b>    |                | <b>!</b>      |                                  |               | <b>!</b>      | <b>!</b>       | (         | ł                                       |                  |
|                   | <b>!</b>    |                | <b>!</b>      |                                  |               | <b>!</b>      | <sup>†</sup>   | (         | <u> </u>                                |                  |
|                   | <b>f</b>    |                | <b>!</b>      |                                  |               | <b>!</b>      | <b>!</b>       | (         | ł                                       |                  |
|                   |             | <u> </u>       |               | <u> </u>                         | <u> </u>      | ·             |                | L         |                                         |                  |
| Pump <sup>-</sup> | Гуре:       | QED Bla        | dder Pu       | ımp                              |               |               |                |           |                                         |                  |
|                   |             |                |               |                                  |               |               |                |           |                                         |                  |

|        |                                               |                |               |                       |                      |                                         |                |            | WEEL NO.               |                         |
|--------|-----------------------------------------------|----------------|---------------|-----------------------|----------------------|-----------------------------------------|----------------|------------|------------------------|-------------------------|
| WELL   | SAMP                                          |                | RM            | PROJECT<br>Liberty Ir | odustria             | l Finish                                | ina            |            | PROJECT №.<br>60135736 | SHEET SHEE              |
| OCATIO | N                                             |                |               | LIDERY                | luuotinai            | 1 11101.                                | lig            |            | DATE WELL SAMPLED      | i Qi .                  |
| 3rentv | vood, N                                       | Y              |               |                       |                      |                                         |                |            | 8/23/2012              |                         |
| NYSD   | EC                                            |                |               |                       |                      |                                         |                |            | Celeste Foster a       | and Rita Papagian       |
|        |                                               |                |               |                       |                      |                                         | - A A          | <i>(</i> 1 |                        | <u> </u>                |
|        | ONE WE                                        | LL VOLUME :    | 0.0           | gallons               | v                    | NELL TD:                                | 54.4           | ft         | PUMP INTAKE DE         | .PTH: 5U IT             |
|        | Depth                                         |                |               | FIE                   | LD MEAS              | SUREME                                  | NTS            |            |                        |                         |
| Timo   | to<br>Water                                   | Purge<br>Pate  | Temn          | Conduct               |                      | ъH                                      |                | Turbidity  | 4                      | DEMADKS                 |
| HING   | (ft)                                          | (mL/min)       | (°C)          | (us/cm)               | (mg/L)               | μn                                      | UNI            | (ntu)      |                        | KEWIARRO                |
| 11:45  | 44.36                                         |                |               | (r ,                  |                      |                                         |                |            | Static water leve      |                         |
| 12:00  |                                               |                | []            |                       |                      |                                         |                |            | pump on                |                         |
| 12:05  | 44.36                                         | 275            | 19.35         | 0.145                 | 8.240                | 6.41                                    | 211            | 81.5       |                        |                         |
| 12:15  | 44.36                                         | 275            | 18.07         | 0.120                 | 8.450                | 6.45                                    | 179            | 60.7       |                        |                         |
| 12:25  | 44.36                                         | 275            | 18.82         | 0.125                 | 8.040                | 6.42                                    | 170            | 44.1       |                        |                         |
| 12:35  | 44.36                                         | 275            | 18.06         | 0.137                 | 9.200                | 6.40                                    | 169            | 48.2       |                        |                         |
| 12:45  | 44.36                                         | 275            | 17.64         | 0.144                 | 9.930                | 6.42                                    | 179            | 41.5       |                        |                         |
| 12:55  | 44.36                                         | 275            | 18.04         | 0.150                 | 9.800                | 6.34                                    | 175            | 45.5       |                        |                         |
| 13:05  | 44.36                                         | 275            | 18.22         | 0.172                 | 9.730                | 6.30                                    | 178            | 44.5       |                        |                         |
| 13:15  | 44.36                                         | 275            | 18.39         | 0.178                 | 9.640                | 6.32                                    | 179            | 38.4       | <u> </u>               | ** · · · · · · · ·      |
| 13:25  | 44.36                                         | 275            | 18.33         | 0.181                 | 9.770                | 6.30                                    | 184            | 42.5       | Appears to be at       | fected by passing train |
| 13:35  | 44.36                                         | 275            | 18.30         | 0.182                 | 9.750                | 6.30                                    | 183            | 35.5       |                        |                         |
| 13:40  | <b> '</b>                                     | <b>├</b> ────' | <b>└───</b> ┦ | ┢────                 | <b>↓</b> !           | ┢────┘                                  | ┣────′         | ┢────      | Unfiltered Samp        | le LIVIVV-4 Collected   |
| 13:45  | ───′                                          | <b>├</b> ────┘ | <b>├</b> ───┦ |                       | <b>├</b> ───┦        | <sup> </sup>                            | '              | <b> </b>   | Filtered Sample        | LIVIVV-4F Collected     |
|        | '                                             |                | <b>!</b>      | <u> </u>              | <b>├</b> ──┦         | <b>┟────</b> ┘                          | '              | <u> </u>   | 1/4" (OD) poly a       | nd 1/4" (OD) poly       |
|        | <b>├</b> ───┦                                 | <u> </u>       |               |                       |                      | <b>├</b> ───┤                           | '              |            | bonded tubing p        | but back into the well. |
|        | <b>├</b> ───┤                                 | +              | <b>├</b> ──┤  |                       | <b>├</b> ── <i>१</i> | l – – – – – – – – – – – – – – – – – – – | <sup> </sup>   |            |                        |                         |
|        |                                               |                | <b></b> †     |                       |                      | ('                                      | '              | [          | 1                      |                         |
|        |                                               |                | <b></b> †     |                       |                      | l – – – – – – – – – – – – – – – – – – – |                | [          |                        |                         |
|        |                                               |                |               |                       |                      |                                         |                |            |                        |                         |
|        |                                               |                |               |                       |                      |                                         |                |            |                        |                         |
|        |                                               |                |               |                       |                      |                                         |                |            |                        |                         |
|        |                                               | <u> </u>       |               |                       |                      | $\Box$ '                                |                |            |                        |                         |
|        | !                                             | <u> </u>       | <u> </u>      | L                     |                      | <u> </u>                                | <u> </u>       |            |                        |                         |
|        | <u> </u> !                                    | <u> </u>       |               | <u> </u>              |                      | <u> </u>                                | <u> </u>       |            | ļ                      |                         |
|        | <u> </u>                                      | <u> </u>       |               | <b></b>               |                      | <u> </u>                                | <u> </u>       | L          | ļ                      |                         |
|        | <u>                                     </u>  | <b> </b> '     |               | <b> </b>              | Ļ!                   | <b> </b> '                              | <b>└──</b> ′   | L          |                        |                         |
|        | <b>↓</b> '                                    | <b> </b> '     |               | <b> </b>              | $\vdash$             | <b> </b> '                              | <b> </b> '     | <b> </b>   | <u> </u>               |                         |
|        | <u> '</u>                                     | <b>└───</b> '  | <b>↓</b> /    | <b> </b>              |                      | <b>└───</b> '                           | <b> </b> '     | <b> </b>   | <b></b>                |                         |
|        | <b>ٰ</b> ــــــــــــــــــــــــــــــــــــ | <b> </b> '     | <b>↓</b> ]    | <b> </b>              | $\square$            | <b> </b> '                              | <b> </b> '     | <b> </b>   | <b></b>                |                         |
|        | <b>├───</b> ′                                 | <b>┟────</b> ′ | <b>└───</b> ┦ | <b> </b>              | ───′                 | <b>└────</b> ′                          | ┝────'         | ┢────      | <b></b>                |                         |
|        | <b>└───</b> ′                                 | <b>└────</b> ′ | <b>└───</b> ┦ |                       | <b>↓</b>             | <b>└────</b> ′                          | <b>├</b> ────' | ┢────      | <u> </u>               |                         |
|        |                                               |                | LI            | L                     |                      | L                                       |                | L          | <u> </u>               |                         |
| חשוים  | Tung                                          |                | ddar Di       | mn                    |                      |                                         |                |            |                        |                         |
| Fump   | Type.                                         |                | JUELLA        | шþ                    |                      |                                         |                |            |                        |                         |
|        |                                               |                |               |                       |                      |                                         |                |            |                        |                         |

|         |               | 771              |              |                       |              |          |         |                    | WELL NO.                       | MW-5                   |
|---------|---------------|------------------|--------------|-----------------------|--------------|----------|---------|--------------------|--------------------------------|------------------------|
| WELL    | SAMP          |                  | RM           | PROJECT<br>Liberty Ir | ndustria     | I Finish | lina    |                    | PROJECT No.<br>60135736        | SHEET SHEET            |
| OCATION |               |                  |              | <b>L</b>              |              |          |         |                    | DATE WELL SAMPLED              |                        |
| Brentw  | /00d, N       | <u>Y</u>         |              |                       |              |          |         |                    | 8/20/2012<br>NAME OF INSPECTOR |                        |
| NYSD    | EC            |                  |              |                       |              |          |         |                    | Celeste Foster a               | and Rita Papagian      |
|         | ONE WE        | ELL VOLUME :     | 6.5          | gallons               | ,            | WELL TD: | 58.0    | ft                 | PUMP INTAKE DE                 | ртн: 53 ft             |
|         | Depth         | Durgo            |              | FIE                   | LD MEA       | SUREME   | INTS    |                    |                                |                        |
| Time    | Water<br>(ft) | Rate<br>(mL/min) | Temp.<br>(℃) | Conduct.<br>(µs/cm)   | DO<br>(mg/L) | рН       | ORP     | Turbidity<br>(ntu) | 1                              | REMARKS                |
| 9:00    | 47.97         | · · ·            |              |                       |              |          |         |                    | Static water leve              | )                      |
| 13:10   |               |                  |              |                       |              |          |         |                    | pump on                        |                        |
| 13:15   | 46.30         | 350              | 16.82        | 0.369                 | 11.77        | 5.53     | 274     | 0.0                |                                |                        |
| 13:30   | 46.40         | 275              | 14.54        | 0.263                 | 7.90         | 5.51     | 300     | 0.1                |                                |                        |
| 13:40   | 45.98         | 275              | 14.42        | 0.259                 | 7.90         | 5.49     | 300     | 0.0                |                                |                        |
| 13:50   | 45.99         | 275              | 14.30        | 0.254                 | 8.04         | 5.50     | 300     | 0.0                |                                |                        |
| 14:00   |               |                  |              |                       |              |          |         |                    | Unfiltered Samp                | le LMW-5 Collected     |
|         |               |                  |              |                       |              |          |         |                    | and MS/MSD co                  | llected                |
| 14:05   |               |                  |              |                       |              |          |         |                    | Duplicate Unfilte              | red Sample LMW-55      |
| 14:10   |               |                  |              |                       |              |          |         |                    | Filtered Sample                | LMW-5F Collected       |
| 14:15   |               |                  |              |                       |              |          |         |                    | Duplicate Filtere              | d Sample LMW-55F       |
|         |               |                  |              |                       |              |          |         |                    |                                |                        |
|         |               |                  |              |                       |              |          |         |                    |                                |                        |
|         |               |                  |              |                       |              |          |         |                    | 1/4" (OD) poly a               | nd 1/4" (OD) poly      |
|         | [             | <u> </u>         |              | [                     |              | ['       |         | <u> </u>           | bonded tubing p                | ut back into the well. |
|         |               |                  |              |                       |              |          |         |                    |                                |                        |
|         |               |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         | <u> </u>      |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         | <u> </u>      |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               | <u> </u>         |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               | <u> </u>         |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               | <u> </u>         |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               | <u> </u>         |              |                       |              | <u> </u> |         |                    |                                |                        |
|         | <u> </u>      |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         | <u> </u>      |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         | <u> </u>      |                  |              |                       |              | <u> </u> |         |                    |                                |                        |
|         | <u> </u>      | Ļ                |              | $\square$             | <u> </u>     | <u> </u> | Ļ       | Ļ                  |                                |                        |
|         |               | <u> </u>         |              |                       |              |          |         |                    |                                |                        |
|         | <u> </u>      | <u> </u>         |              |                       |              | <u> </u> |         |                    |                                |                        |
|         | <u> </u>      | <u> </u>         |              |                       |              | <u> </u> |         |                    |                                |                        |
|         |               |                  |              |                       |              |          |         |                    |                                |                        |
| Pump    | Tvpe:         | QED Bla          | dder Pi      | ump                   |              |          |         |                    |                                |                        |
|         | . 16 -        | ••               | ••••         | *···I-                |              |          |         |                    |                                |                        |
| Analyti | cal Par       | ameters:         | TAL M        | letals (Tof           | tal and l    | Field Fi | ltered) |                    |                                |                        |

|          |               | ///              |                |                       |               |          |              |                    | WELL NO.                          | MW-6                 |  |  |
|----------|---------------|------------------|----------------|-----------------------|---------------|----------|--------------|--------------------|-----------------------------------|----------------------|--|--|
| WELL     | SAMP          |                  | RM             | PROJECT<br>Liberty Ir | ndustria      | l Finish | ling         |                    | PROJECT No.<br>60135736           | SHEET SHEET          |  |  |
| Brenty   | i<br>vood, N  | Y                |                |                       |               |          |              |                    | DATE WELL SAMPLED<br>8/20/2012    |                      |  |  |
|          | EC            |                  |                |                       |               |          |              |                    | Celeste Foster an                 | d Rita Papagian      |  |  |
|          | ONE WE        | ELL VOLUME :     | 141.7          | gallons               | ١             | NELL TD: | 265.0        | ft                 | PUMP INTAKE DEPT                  | тн: 260 ft           |  |  |
|          | Depth         | Burge            |                | FIE                   | LD MEA        | SUREME   | ENTS         |                    |                                   |                      |  |  |
| Time     | Water<br>(ft) | Rate<br>(mL/min) | Temp.<br>(℃)   | Conduct.<br>(µs/cm)   | DO<br>(mg/L)  | рН       | ORP          | Turbidity<br>(ntu) | y REMARKS                         |                      |  |  |
| 9:00     | 47.93         |                  |                |                       |               |          |              |                    | Static water level                |                      |  |  |
| 9:05     |               |                  |                |                       |               |          |              |                    | pump on                           |                      |  |  |
| 10:00    |               |                  |                |                       |               |          |              |                    | Switch to higher c                | ompressor            |  |  |
| 10:30    |               |                  |                |                       |               |          |              |                    | Raised pressure                   |                      |  |  |
| 10:45    |               |                  |                |                       |               |          |              |                    | water at top but not rising.      |                      |  |  |
|          |               |                  |                |                       |               |          |              |                    | Raised pressure, no water         |                      |  |  |
|          |               |                  |                |                       |               |          |              |                    | called US Enviornmental, next tir |                      |  |  |
|          |               |                  |                |                       |               |          |              |                    | use the helium tar                | nk compressor        |  |  |
| 12:55    |               |                  |                |                       |               |          |              |                    | Pump back on, at                  | highest pressure     |  |  |
| 13:15    | 46.61         | 150              | 19.03          | 0.169                 | 11.84         | 5.77     | 125          | 57.7               | pump running at h                 | ighest capacity      |  |  |
| 13:30    | 46.58         | 150              | 18.15          | 0.138                 | 13.79         | 5.82     | 137          | 2.4                |                                   |                      |  |  |
| 13:40    | 45.50         | 150              | 17.98          | 0.132                 | 15.72         | 5.87     | 147          | 0.0                |                                   |                      |  |  |
| 13:50    | 45.65         | 150              | 17.87          | 0.130                 | 16.53         | 5.88     | 153          | 0.0                |                                   |                      |  |  |
| 14:00    | 45.70         | 150              | 17.81          | 0.129                 | 17.00         | 5.90     | 158          | 0.0                |                                   |                      |  |  |
| 14.20    |               | '                | <b> </b> '     | ───                   | <u> </u> '    | ┣───     | '            | <b> </b>           | Linfiltered Sample                | LMM/ 6 Collected     |  |  |
| 14.20    | <b> </b> '    | <b> </b> '       | ───            | ───                   | ───′          | ┣───     | <b> </b> '   | <b> </b>           |                                   |                      |  |  |
| 14.20    | <b> </b> '    | <u> </u> '       | ┨────┘         | ───                   | <i>'</i>      | ┝───     | <b> </b> '   | <b> </b>           | Filtereu Sampie L                 | VIVV-OF CUILECIEU    |  |  |
|          | <b> </b> '    | <u> </u> '       | ┨────┘         | ───                   | <i>'</i>      | ┝───     | <b> </b> '   | <b> </b>           |                                   |                      |  |  |
| <u> </u> | <b> </b> '    | <u> </u> '       | <b>↓</b> ′     | ───                   | <i>'</i>      | ┝───     | <u> </u>     | <b> </b>           | 1/4 (UD) puly and                 | 1/1/4° (UD) puly     |  |  |
| ┢────    | <b> </b> '    | <u> </u> '       | <b>↓</b> ′     | ───                   | <i>'</i>      | ┝───     | <u> </u>     | <b> </b>           | bonded tubing wo                  | ula not go back into |  |  |
| <b> </b> | <b> </b> '    | <b> </b> '       | <b>├</b> ────' | ───                   | '             | ├───     | <u> </u> '   | ╂────              | Well, discarded                   |                      |  |  |
|          | <b> </b> '    | <b> </b> '       | <b>├</b> ────' | <u> </u>              | <b></b> '     | ┢────    | <b> </b> '   | <u> </u>           | 1                                 |                      |  |  |
|          | ┝───┘         | '                | '              | ├───                  | <i>י</i>      | ┝───     |              | <u> </u>           | 1                                 |                      |  |  |
|          | ┣───┘         | <b> </b> '       | <b>├</b> ───┦  | ╂────                 |               |          |              | <u> </u>           | 1                                 |                      |  |  |
| <b></b>  | ┣────         | <u> </u>         | <b>├</b> ───┦  | <del> </del>          | <b>┼</b> ───┦ | i        | <sup>-</sup> | <u> </u>           | <u> </u>                          |                      |  |  |
| <b></b>  | ┣────         | <u> </u>         | <b>├</b> ───┦  | <del> </del>          | <b>┼</b> ───┦ | i        | <sup>-</sup> | <u> </u>           | <u> </u>                          |                      |  |  |
| <b></b>  | ┣────         | <u> </u>         | <u>├</u> /     | <del> </del>          | <b>┼</b> ───┦ | i        | <sup>-</sup> | <u> </u>           | <u> </u>                          |                      |  |  |
| <b></b>  | ┣────         | <u> </u>         | <u>├</u> /     | <del> </del>          | <b>┼</b> ───┦ | i        | <sup>-</sup> | <u> </u>           | <u> </u>                          |                      |  |  |
| l        | '             | <b> </b> '       | <b>├</b> ───┦  |                       | +             | <b> </b> |              | <u> </u>           | <u>+</u>                          |                      |  |  |
| l        |               | <u> </u>         | <b>├</b> ───!  |                       | +             |          |              | <u> </u>           | <u>+</u>                          |                      |  |  |
|          | <u> </u>      | <u> </u>         | <b>├</b> ───┤  |                       | +             | <u> </u> |              | <u> </u>           | +                                 |                      |  |  |
|          | <u> </u>      | <u> </u>         | <b>├</b> ───┤  |                       | +             | <u> </u> |              | <u> </u>           | +                                 |                      |  |  |
|          | <u> </u>      | <u> </u>         | <b>├</b> ───┤  |                       | +             | <u> </u> |              | <u> </u>           | +                                 |                      |  |  |
|          | <u> </u>      | <u> </u>         | <u> </u>       | <u> </u>              | <u> </u>      | <u> </u> | <u> </u>     | <u> </u>           |                                   |                      |  |  |
| Pump     | Type:         | QED Bla          | dder Pu        | ump, Higł             | n pressu      | ure corr | noresso      | r                  |                                   |                      |  |  |
|          |               |                  | -              |                       | •             |          | ľ            |                    |                                   |                      |  |  |
| Analyti  | ical Par      | ameters:         | TAL M          | etals (To             | tal and I     | Field Fi | ltered)      |                    |                                   |                      |  |  |
|          |               |                  |                |                       |               |          |              |                    |                                   |                      |  |  |

|        | evwd       |              | лM            | PROJECT    | ductria       | - Einich           | ina           |           | PROJECT No.                           | SHEET SHEE         |  |
|--------|------------|--------------|---------------|------------|---------------|--------------------|---------------|-----------|---------------------------------------|--------------------|--|
|        |            |              |               | Liberty in | dustria       | FILISII            | ing           |           | DATE WELL SAMPLED                     | I OF I             |  |
| 3rentv | vood, N    | Y            |               |            |               |                    |               |           | 8/23/2012                             |                    |  |
|        | FC         |              |               |            |               |                    |               |           | Celeste Foster at                     | nd Rita Panagian   |  |
| 1100   | <u>LU</u>  |              |               |            |               |                    |               |           |                                       | IU Mila i apagian  |  |
|        | ONE WE     | ELL VOLUME : | 4.4           | gallons    | v             | NELL TD:           | 50.0          | ft        | PUMP INTAKE DEP                       | тн: 46 ft          |  |
| _      | Depth      | Purge        |               | FIE        | LD MEAS       | SUREME             | NTS           | _         |                                       |                    |  |
| Time   | Water      | Rate         | Temp.         | Conduct.   | DO            | nH                 | ORP           | Turbidity | ty REMARKS                            |                    |  |
|        | (ft)       | (mL/min)     | (°C)          | (µs/cm)    | (mg/L)        |                    |               | (ntu)     |                                       |                    |  |
| 7:40   | 43.20      |              |               |            |               | ('                 |               |           | Static water level                    | <br>               |  |
| 7:50   |            |              |               | []         |               |                    |               |           | pump on                               |                    |  |
| 8:00   | 43.20      | 250          | 14.72         | 0.209      | 11.25         | 6.27               | 215           | 15.3      | <u> </u>                              |                    |  |
| 8:10   | 43.20      | 250          | 14.78         | 0.210      | 11.34         | 6.26               | 225           | 0.0       |                                       |                    |  |
| 8:20   | 43.20      | 250          | 14.85         | 0.219      | 11.39         | 6.28               | 234           | 0.0       |                                       |                    |  |
| 8:30   | 43.20      | 250          | 14.86         | 0.226      | 11.27         | 6.29               | 242           | 0.0       |                                       |                    |  |
| 8:40   | 43.20      | 250          | 14.83         | 0.232      | 11.22         | 6.30               | 247           | 0.0       |                                       |                    |  |
| 8:50   | 43.20      | 250          | 14.83         | 0.233      | 11.10         | 6.30               | 247           | 0.0       |                                       |                    |  |
| 9:00   | 43.20      | 250          | 14.90         | 0.236      | 11.06         | 6.30               | 251           | 0.0       |                                       |                    |  |
|        |            |              |               |            |               | $\Box$ '           |               |           |                                       |                    |  |
| 9:05   | <u> </u>   | [!           |               |            |               | <u> </u>           | <u> </u>      |           | Unfiltered Sample                     | e LMW-10 Collected |  |
| 9:10   | <u> </u>   | ['           |               |            |               | <u> </u>           | <u> </u>      |           | Filtered Sample I                     | _MW-10F Collected  |  |
|        | !          | <u> </u>     |               |            |               | <u> </u>           | <u> </u>      |           |                                       |                    |  |
|        | <u> </u>   | <u> </u>     |               | ļ'         |               | <u> </u>           | <u> </u>      |           | 1/4" (OD) poly and 1/4" (OD) poly     |                    |  |
|        | <u> </u>   | <u> </u>     |               | ļ'         | $\square$     | <b> </b> '         | <b> </b> '    |           | bonded tubing put back into the well. |                    |  |
|        | <u> </u> ' | <b> </b> '   |               | <b> </b> ' | $\square$     | <b> </b> '         | <b>└──</b> ′  |           |                                       |                    |  |
|        | <b></b> '  | <b>↓</b> '   |               | <b> </b> ' | <b>↓</b> !    | <b>└───</b> '      | <b>└──</b> ′  |           | <u> </u>                              |                    |  |
|        | <u> </u> ' | <b>↓</b> '   | <b>└──</b> ┤  | <b> </b> ' | <b>↓</b>      | └───'              | <b> </b> '    |           | <u> </u>                              |                    |  |
|        | <u> </u> ' | <u> </u> '   | <b>└───</b> ┦ | <b> </b> ' | <b>↓</b>      | <b>└───</b> '      | <b> </b> '    |           | <b>_</b>                              |                    |  |
|        | <u> </u>   | <b> </b> '   | <b>↓</b>      | <b> </b> ' | <b>↓</b>      | <b>└───</b> '      | <b> </b> '    |           | <b>_</b>                              |                    |  |
|        | <u> </u>   | <b> </b> '   | <b>↓</b>      | <b> </b> ' | <b>↓</b>      | <b>└───</b> '      | <b> </b> '    |           | <b>_</b>                              |                    |  |
|        | <u> </u>   | <b> </b> '   | <b>↓</b>      | <b> </b> ' | <b>↓</b>      | <b>└───</b> '      | <b> </b> '    |           | <b>_</b>                              |                    |  |
|        | <u> </u> ' | <u> </u> '   | <b> </b>      | <b> </b> ' | <b>↓</b>      | <b> '</b>          | <b> </b> '    |           | <b>_</b>                              |                    |  |
|        | <b></b> '  | <b> </b> '   | <b>├</b> ───┤ | <b> </b> ' | <b>↓</b>      | <b> '</b>          | ┟────′        |           | <u> </u>                              |                    |  |
|        | <b> '</b>  | <b> </b> '   | ┝───┦         | <b> </b> ' | <b>├───</b> ┦ | ┝────┘             | ┟────′        |           | +                                     |                    |  |
|        | <b> </b> ' | <b> </b> '   | ┝───┦         | <b> </b> ' | <b>↓</b>      | ┝───┘              | ┣────′        |           | <u> </u>                              |                    |  |
|        | <b> </b> ' | <b> </b> '   | <b>├</b> ───┦ | <b> </b> ' | <b> </b>      | <b>⊢−−−−</b> ′     | ┟────′        |           | <u> </u>                              |                    |  |
|        | <b> </b> ' | <b> </b> '   | <b>├</b> ───┦ | <b> </b> ' | <b> </b>      | <b>⊢−−−−</b> ′     | ┟────′        |           | <u> </u>                              |                    |  |
|        | <b> </b> ' | <b> </b> '   | <b>├</b> ───┦ | '          | <b>├</b> ───┦ | ┢────┘             | <b>├───</b> ′ |           | <u> </u>                              |                    |  |
|        | <b></b> ′  | <b> </b> '   | ┟───┦         | <b> </b> ' | <b>├</b> ───┦ | ┟────┘             | ┢────┘        |           | +                                     |                    |  |
|        | <b></b> '  | <b> </b> '   | ┢───┦         | <b> </b> ' | ┟───┦         | <b>├</b> ────┘     | ┢────┘        |           | +                                     |                    |  |
|        | <i>'</i>   | <u> </u>     | ┟───┦         | <b> </b> ' | ╂───┦         | ┟────┘             | ┢────┘        |           | +                                     |                    |  |
|        | <b></b>    | <b> </b> '   | ┟───┦         | i'         | ┣───┦         | <b>├</b> ─────     | ┢────┘        |           | +                                     |                    |  |
|        |            |              |               | I          |               | <u>نـــــــــا</u> | J             |           | <u> </u>                              |                    |  |
| Jumn   | Tune       |              | ddor Pi       | mn         |               |                    |               |           |                                       |                    |  |
| ump    | Type.      |              |               | шр         |               |                    |               |           |                                       |                    |  |
|        |            |              |               |            |               |                    |               |           |                                       |                    |  |

|         |               | / / 1        |          |            |              |              |          |           | WELL NO.          | MW-12                  |
|---------|---------------|--------------|----------|------------|--------------|--------------|----------|-----------|-------------------|------------------------|
|         | 2440          |              |          | PROJECT    | 1            | · Et alla la | • • • •  |           | PROJECT No.       | SHEET SHEET            |
|         | SAMP          |              | RM       | Liberty in | idustria     | I Finisn     | ing      |           | 60135736          | 1 OF 1                 |
| Brentw  | iood, N       | Y            |          |            |              |              |          |           | 8/21/2012         |                        |
| NYSD'   | EC            |              |          |            |              |              |          |           | Celeste Foster a  | and Rita Papagian      |
|         | ONE WE        | ELL VOLUME : | 1.07     | gallons    | ,            | WELL TD:     | 49.3     | ft        | PUMP INTAKE DE    | :ртн: 45 ft            |
|         | Depth         |              | <u> </u> | FIE        | LD MEA       | SUREME       | INTS     |           |                   |                        |
|         | to            | Purge        | L        |            |              | <del></del>  |          |           |                   |                        |
| Time    | Water<br>(ft) | Rate         | Temp.    | Conduct.   | DO<br>(mg/L) | рН           | ORP      | Turbidity |                   | REMARKS                |
| 13.15   | 42 75         | (1112/1111)  |          | (µs/ciii)  | (iiig/L)     |              | '        | (iiiu)    | Static water leve | اد                     |
| 13.30   | 42.76         | <u> </u>     | }        | i          | ╂────        | }            | ┠────    |           | numn on           | 71                     |
| 13:40   | 42.75         | 175          | 21.59    | 0.200      | 4,91         | 5,81         | 129      | 326.0     | vellow/brown co   | lor                    |
| 13:50   | 42.80         | 175          | 21.09    | 0.200      | 4.00         | 5.83         | 132      | 16.0      | clear             |                        |
| 14:00   | 42.80         | 175          | 20.03    | 0.212      | 4.20         | 5.82         | 140      | 0.0       | clear             |                        |
| 14.10   | 42.80         | 175          | 19.67    | 0.213      | 4.75         | 5.86         | 150      | 78.0      | clear             |                        |
| 14.20   | 42.80         | 175          | 19.49    | 0.261      | 4.99         | 5.83         | 162      | 72.0      | ologi             |                        |
| 14.30   | 42.80         | 175          | 18,94    | 0.270      | 5.04         | 5.85         | 172      | 44.3      | clear             |                        |
| 14:40   | 42.80         | 175          | 18.60    | 0.273      | 5.51         | 5.83         | 176      | 35.4      |                   |                        |
| 14:50   | 42.80         | 175          | 18.64    | 0.275      | 5.56         | 5.84         | 179      | 27.9      |                   |                        |
|         | 1             |              | -        | -          | -            | -            |          | 1         |                   |                        |
| 14:55   |               |              |          |            |              |              |          |           | Unfiltered Samp   | le LMW-12 Collected    |
| 15:00   |               |              |          |            |              |              |          |           | Filtered Sample   | LMW-12F Collected      |
|         |               |              | i        |            | 1            | 1            |          |           | + MS/MSD on F     | iltered Sample         |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           | 1/4" (OD) poly a  | nd 1/4" (OD) poly      |
| 1       |               |              |          | [          | 1            |              |          |           | bonded tubing p   | ut back into the well. |
| 1       |               |              |          | [          | 1            |              |          |           |                   |                        |
| 1       |               |              |          | ſ          | 1            |              |          |           |                   |                        |
|         |               |              |          | [          |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         | <u> </u>      |              |          | <u> </u>   |              |              |          |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |
|         | <u> </u>      |              |          |            |              |              | <u> </u> |           |                   |                        |
|         |               |              |          | <u> </u>   |              |              |          |           |                   |                        |
| -       | -             |              |          |            |              |              |          |           |                   |                        |
| Pump    | Type:         | QED BIa      | dder Pu  | ımp        |              |              |          |           |                   |                        |
| Analvti | ical Par      | ameters:     | TAL M    | etals (Tot | al and       | Field Fi     | ltered)  |           |                   |                        |
|         |               |              |          |            |              |              |          |           |                   |                        |

| Image: Application of the second state of t | SAMP<br>ood, N<br>EC<br>ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>42.86<br>43.20 | LING FOI<br>Y<br>LL VOLUME :<br>Purge<br>Rate | <b>RM</b><br>9.25 | PROJECT<br>Liberty In<br>gallons | ndustria | l Finishi | ing  |           | PROJECT No.<br>60135736<br>Date well sampled<br>8/21/2012 | SHEET SHEE<br>1 of 1  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|-------------------|----------------------------------|----------|-----------|------|-----------|-----------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| Fill     Fill       7     7       YSDE     7       YSDE     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7     7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OOD NE WE<br>ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>42.86<br>43.20            | Y<br>LL VOLUME :<br>Purge<br>Rate             | <b>RM</b><br>9.25 | gallons                          |          |           | ing  |           | 60135736<br>DATE WELL SAMPLED<br>8/21/2012                | 1 OF 1                |  |  |  |  |  |  |
| rentwc<br>IENT<br>YSDE<br>7:00 4<br>3:25 4<br>3:50 4<br>4:00 4<br>4:00 4<br>4:20 4<br>4:20 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ONE WE<br>ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>42.86<br>43.20               | Y<br>LL VOLUME :<br>Purge<br>Rate             | 9.25              | gallons                          |          |           |      |           | 8/21/2012                                                 |                       |  |  |  |  |  |  |
| Fime<br>3:25 4<br>3:40 4<br>3:50 4<br>4:00 4<br>4:20 4<br>4:20 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth<br>to<br>Water<br>(ft)<br>42.86<br>43.20                                   | LL VOLUME :<br>Purge<br>Rate                  | 9.25              | gallons                          |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
| Fime<br>3:00 4<br>3:25 4<br>3:40 4<br>3:50 4<br>4:00 4<br>4:00 4<br>4:20 4<br>4:20 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>42.86<br>43.20                         | LL VOLUME :<br>Purge<br>Rate                  | 9.25              | gallons                          |          |           |      |           | NAME OF INSPECTOR                                         | nd Rita Papagian      |  |  |  |  |  |  |
| Fime<br>2:00 4<br>3:25 4<br>3:50 4<br>4:00 4<br>4:00 4<br>4:10 4<br>4:20 4<br>4:30 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>42.86<br>43.20                         | LL VOLUME :<br>Purge<br>Rate                  | 9.25              | gallons                          | ١        |           |      |           |                                                           | ind Kild i upugidin   |  |  |  |  |  |  |
| Fime<br>3:00 4<br>3:25 4<br>3:40 4<br>3:50 4<br>4:00 4<br>4:00 4<br>4:20 4<br>4:20 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth<br>to<br>Water<br>(ft)<br>42.86<br>43.20                                   | Purge<br>Rate                                 |                   | CIC                              | -        | NELL TD:  | 99.6 | ft        | PUMP INTAKE DE                                            | ртн: 95 ft            |  |  |  |  |  |  |
| Fime       3:25       3:40       3:50       4:00       4:00       4:00       4:20       4:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to<br>Water<br>(ft)<br>42.86<br>43.20                                            | Purge<br>Rate                                 |                   | LIE                              | LD MEAS  | SUREME    | NTS  |           |                                                           |                       |  |  |  |  |  |  |
| 3:00   3:25   3:40   3:50   4:00   4:10   4:20   4:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ft)<br>42.86<br>43.20                                                           | (mal (main)                                   | Tomn              | Conduct                          | DO       | nH        | ORP  | Turbidity |                                                           | REMARKS               |  |  |  |  |  |  |
| 3:25 4   3:40 4   3:50 4   4:00 4   4:10 4   4:20 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.86<br>43.20                                                                   | (mL/min)                                      | (°C)              | (us/cm)                          | (mg/L)   | рп        | UKF  | (ntu)     |                                                           |                       |  |  |  |  |  |  |
| 3:25<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20<br>4:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.20                                                                            | (,,                                           | (0)               | (µ0/011)                         | (        |           |      | ()        | Static water leve                                         |                       |  |  |  |  |  |  |
| 3:40<br>3:50<br>4:00<br>4:10<br>4:20<br>4:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                                               | 28.88             | 0.182                            | 10.84    | 6.09      | 200  | 57.0      | pump on                                                   | •                     |  |  |  |  |  |  |
| 3:50<br>4:00<br>4:10<br>4:20<br>4:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.70                                                                            | 100                                           | 23.78             | 0.202                            | 8.78     | 5.66      | 153  | 53.0      | panip an                                                  |                       |  |  |  |  |  |  |
| 4:00<br>4:10<br>4:20<br>4:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43.80                                                                            | 100                                           | 22.41             | 0.183                            | 7.86     | 5.59      | 144  | 805.0     | Brown color                                               |                       |  |  |  |  |  |  |
| 4:10<br>4:20<br>4:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.80                                                                            | 250                                           | 17.03             | 0.176                            | 8.14     | 5.58      | 132  | 696.0     |                                                           |                       |  |  |  |  |  |  |
| 4:20 4:30 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.80                                                                            | 250                                           | 16.65             | 0.174                            | 8.38     | 5.54      | 128  | 545.0     |                                                           |                       |  |  |  |  |  |  |
| 4:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43 80                                                                            | 250                                           | 16.35             | 0 174                            | 7.97     | 5.54      | 121  | 516.0     |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43 80                                                                            | 250                                           | 16.37             | 0 175                            | 7 65     | 5.54      | 126  | 468.0     |                                                           |                       |  |  |  |  |  |  |
| 4:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.80                                                                            | 250                                           | 16.30             | 0.176                            | 7.65     | 5.50      | 128  | 75.0      | clear                                                     |                       |  |  |  |  |  |  |
| 4:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.80                                                                            | 250                                           | 16.27             | 0.178                            | 7.68     | 5.50      | 131  | 53.7      | 0.000                                                     |                       |  |  |  |  |  |  |
| 5:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.80                                                                            | 250                                           | 16.19             | 0.176                            | 7.67     | 5.49      | 130  | 52.9      |                                                           |                       |  |  |  |  |  |  |
| 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43 80                                                                            | 250                                           | 16.00             | 0 176                            | 7 69     | 5 45      | 135  | 43.2      |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00                                                                            | 200                                           | 10.00             | 0.110                            | 1.00     | 0.10      | 100  | 10.2      |                                                           |                       |  |  |  |  |  |  |
| 5:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                               |                   |                                  |          |           |      |           | Unfiltered Samp                                           | le I MW-14 Collected  |  |  |  |  |  |  |
| 5:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                               |                   |                                  |          |           |      |           | Filtered Sample                                           | I MW-14F Collected    |  |  |  |  |  |  |
| 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           | 1/4" (OD) poly a                                          | nd 1/4" (OD) poly     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           | bonded tubing p                                           | ut back into the well |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           | bended tabing p                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
| -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
| -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                  |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                               | 1                 | L                                | L        | L         |      | L         | 1                                                         |                       |  |  |  |  |  |  |
| umn T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evne:                                                                            | QED Bla                                       | dder Pu           | imn                              |          |           |      |           |                                                           |                       |  |  |  |  |  |  |
| and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                          |                                               |                   |                                  |          |           |      |           |                                                           |                       |  |  |  |  |  |  |

|               |                  |               |               |                       |                      | WELL NO.       | 10100-10   |             |                                   |                         |
|---------------|------------------|---------------|---------------|-----------------------|----------------------|----------------|------------|-------------|-----------------------------------|-------------------------|
| VFU           | SAMP             |               | RM            | PROJECT<br>Liberty Ir | dustria              | l Finish       | ina        |             | PROJECT №.<br>60135736            | SHEET SHEET             |
| OCATIO        | 1                |               |               | LIDCITY               | luustiiu             |                | ng         |             | DATE WELL SAMPLED                 |                         |
| <u>3rentv</u> | <u>/ood, N</u> ` | Y             |               |                       |                      |                |            |             | 8/23/2012                         |                         |
| VYSD          | EC               |               |               |                       |                      |                |            |             | Celeste Foster a                  | and Rita Papagian       |
|               |                  |               |               |                       |                      |                |            | ·.          |                                   | 05.0                    |
|               | ONE WE           | LL VOLUME :   | 9.62          | gallons               | v                    | NELL TD:       | 99.2       | ft          | PUMP INTAKE DEI                   | ртн: 95 ft              |
|               | Depth            |               |               | FIE                   | LD MEAS              | SUREME         | INTS       |             |                                   |                         |
| Timo          | to<br>Water      | Purge<br>Pate | Tomp          | Conduct               |                      | 54             |            | Turbidity   | 4,                                | DEMADKG                 |
| line          | (ft)             | (mL/min)      | (°C)          | (us/cm)               | (mg/L)               | рп             | UNF        | (ntu)       | '                                 | XEMARNO                 |
| 7:35          | 40.20            | · · · ·       |               | <u> </u>              |                      |                |            | `, <i>`</i> | Static water leve                 | į                       |
| 7:50          | 39.10            | []            |               | l                     |                      | []             |            | 「           | pump on                           |                         |
| 8:00          | 39.10            | 225           | 16.93         | 0.196                 | 9.12                 | 5.22           | 288        | 142.0       |                                   |                         |
| 8:10          | 39.10            | 225           | 15.84         | 0.204                 | 8.83                 | 5.31           | 292        | 59.0        |                                   |                         |
| 8:20          | 39.10            | 225           | 14.06         | 0.205                 | 8.96                 | 5.28           | 305        | 30.2        |                                   |                         |
| 8:30          | 39.10            | 225           | 13.97         | 0.204                 | 12.03                | 5.28           | 309        | 30.0        |                                   |                         |
| 8:40          | 39.10            | 225           | 13.93         | 0.206                 | 11.02                | 5.22           | 313        | 21.7        |                                   |                         |
| 8:50          | 39.10            | 225           | 13.98         | 0.202                 | 10.54                | 5.21           | 313        | 26.4        |                                   |                         |
| 9:00          | 39.10            | 225           | 13.90         | 0.202                 | 10.59                | 5.22           | 319        | 24.2        | Ļ                                 |                         |
| 9:10          | 39.10            | 225           | 13.95         | 0.201                 | 10.53                | 5.20           | 313        | 0.0         |                                   |                         |
| 0.15          | <b> '</b>        | <u> </u> !    | <b>↓</b> ′    |                       | <b>ا</b> ــــــــــا | <b> '</b>      | <b> </b> ' | <b> </b>    | Filtered Comple                   |                         |
| 9:15          | <b> '</b>        | <sup> </sup>  | <b>└───</b> ┦ | <b> </b>              | <b>↓</b> /           | <b>└────</b> ′ | <b> </b> ' | ┣────       | Filtered Sample                   | LMW-16F Collected       |
| 9.20          | <b> </b> /       | <u> </u>      | <b>├</b> ───┦ | i                     | <b>∤</b> ────┦       | ┟────┘         | <b> </b> ' | ł           |                                   | le Livivy- to Collected |
|               | ┟────┦           | <sup> </sup>  | <b>├</b> ───┦ | i                     | ┨────┦               | <b>┟────</b> ′ | <b> </b> ' | <u> </u>    | 1/4" (OD) poly at                 | nd 1/4" (OD) poly       |
|               | <b>├</b> ───┦    | <sup> </sup>  |               | i                     | <b>├</b> ───┦        | ┟────┦         | '          |             | 1/4" (OD) poly and 1/4" (OD) poly |                         |
|               | <b>├</b> ───┦    | ¦!            |               | l                     |                      | <b>├</b> ───┤  |            |             |                                   |                         |
|               | <b>├</b> ───┦    |               | <b>!</b>      | 1                     | <b>├</b> ──┦         | l'             | '          |             | +                                 |                         |
|               | +                |               | +             | [                     | <b>!</b>             |                |            |             | 1                                 |                         |
|               |                  |               |               | [                     |                      |                |            |             |                                   |                         |
|               |                  | 1             | <b>!</b>      | [                     |                      | ('             |            |             | 1                                 |                         |
|               |                  | 1             |               | ĺ                     |                      |                |            | 1           |                                   |                         |
|               |                  |               |               | í                     |                      |                |            |             |                                   |                         |
|               |                  |               |               |                       |                      |                |            |             |                                   |                         |
|               | <u> </u>         |               |               |                       |                      | $\Box$ '       |            |             |                                   |                         |
|               | [!               | <u> </u>      |               | Ē                     |                      | <u>['</u>      |            |             |                                   |                         |
|               | <u> </u>         | <u> </u>      |               | L                     |                      | <u> </u>       | <u> </u>   |             | ļ                                 |                         |
|               | <u> </u>         | <u> </u>      |               | <b> </b>              | <u> </u>             | <u> </u>       | <u> </u>   |             | Ļ                                 |                         |
|               | <u> </u>         | <u> </u>      |               | L                     | <u> </u>             | <b> </b> '     | <b></b> '  | <u> </u>    |                                   |                         |
|               | <b>↓</b> ′       | ļ'            |               | <b> </b>              | ļ!                   | <b>└───</b> '  | <b> </b> ' | <b> </b>    | <u> </u>                          |                         |
|               | <b> '</b>        | <b>└───</b> ' | <b>└──</b> ┘  | <b> </b>              | ļ/                   | └───'          | <b> </b> ' | <b> </b>    | <u> </u>                          |                         |
|               | └───′            | <u> </u> '    | <b>↓</b> /    | ļ                     | ļ/                   | <b> </b> '     | <b> </b> ' | <b> </b>    | <b></b>                           |                         |
|               | └───┘            | <u> </u> '    | <b>└───</b> ┘ | <b> </b>              | ļ/                   | <b> </b> '     | <b> </b> ' | <b> </b>    | <b></b>                           |                         |
|               | <u>لــــــا</u>  | <u> </u>      |               | L                     |                      | <u> </u>       |            | L           | L                                 |                         |
| ממוור         | Turnet           |               | ddar Di       |                       |                      |                |            |             |                                   |                         |
| ump           | Type.            |               |               | imp                   |                      |                |            |             |                                   |                         |
|               |                  |               |               |                       |                      |                |            |             |                                   |                         |

| PROJECT<br>Liberty Industrial Finishing     PROJECT<br>60135736     SHE<br>60135736       Depth<br>VSDEC     SVELL SAMPLED<br>8/21/2012     NAME OF INSPECTOR<br>Celeste Foster and Ritz       ONE WELL VOLUME:     16.97     gallons     well trb:     148.6 ft     PUMP INTAKE DEPTH:       ONE WELL VOLUME:     16.97     gallons     well trb:     148.6 ft     PUMP INTAKE DEPTH:       Time     Peth<br>(tt)     Purge<br>(mL/min)     Conduct.<br>(tt)     DO<br>(us/cm)     PH     ORP     Turbidity<br>(ntu)     REMARK       10:00     44.47     Image: Conduct.<br>(ml/min)     Conduct.<br>(mg/L)     DO     PH     ORP     Turbidity<br>(ntu)     REMARK       10:30     Image: Conduct.<br>(ml/min)     Conduct.<br>(mg/L)     Conduct.<br>(mg/L)     DO     pH     ORP     Turbidity<br>(ntu)     REMARK       11:58     Image: Conduct.<br>(ml/min)     Conduct.<br>(mg/L)     DO     PH     ORP     Turbidity<br>(ntu)     Static water level       11:55     Image: Conduct.<br>(tt)     Conduct.<br>(mg/L)     Conduct.<br>(mg/L)     Conduct.<br>(mg/L)     Conduct.<br>(mg/L)     Conduct.<br>(ntu)     Conduct.<br>(ntu)       11:50     Image: Conduct.<br>(tt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EF SH<br>1 oF 1<br>≩ Papagian |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Depth     Purge     FIELD MEASUREMENTS     Celeste Foster and Ritz       ONE WELL VOLUME :     16.97 gallons     well to:     148.6 ft     Pump INTAKE DEPTH:       Depth     Purge     Temp.     Conduct.     DO     PH     ORP     Turbidity     REMARK       10:00     44.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>a</u> Papagian             |
| B/21/2012       NAME OF INSPECTOR<br>Celeste Foster and Rita       NAME OF INSPECTOR<br>Celeste Foster and Rita       ONE WELL VOLUME : 16.97 gallons     WELL TD: 148.6 ft     PUMP INTAKE DEPTH:       Time to<br>Water<br>(ft)     FIELD MEASUREMENTS     REMARK<br>(mu/min)     Conduct.<br>(ps/cm)     DO<br>PH     ORP     Turbidity<br>(ntu)     REMARK<br>REMARK       10:00     44.47     Static water level       10:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a Papagian                    |
| Depth<br>to<br>(ft)     Purge<br>Rate<br>(ft)     FIELD MEASUREMENTS     Pump INTAKE DEPTH:       10:00     44.47     Image: Field Measurements<br>(ft)     Purge<br>(ft)     FIELD MEASUREMENTS     REMARK<br>(ntu)       10:00     44.47     Image: Field Measurements<br>(ft)     Static water level       10:30     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Static water level       10:38     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Static water level       10:30     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Static water level       10:30     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)       10:58     Image: Field Measurements<br>(ft)       11:05     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)     Image: Field Measurements<br>(ft)       11:45     44.43     200     21.43     0.284     7.06     5.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a Papagian                    |
| ONE WELL VOLUME:     16.97 gallons     WELL TD:     148.6 ft     PUMP INTAKE DEPTH:       Time     Purge<br>Rate<br>(ft)     FIELD MEASUREMENTS     Turbidity<br>(ntu)     REMARK       10:00     44.47        Static water level       10:30         pump on, no water, refit       10:30         back on, water pumping       10:58         back on, water pumping       11:05     44.43     200     21.79     0.295     10.93     5.82     234     0.0       11:15     44.43     200     21.41     0.285     7.03     5.63     250     0.0       11:25     44.43     200     21.41     0.285     7.03     5.72     247     0.0       11:50              11:55              11:55        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
| Depth to     Purge Rate (t)     FIELD MEASUREMENTS     Pump INTAKE DEPTH:       10:00     44.47     Field Measurements     Static water level     REMARK       10:30     Purge Rate (t)     Conduct. (us/cm)     DO     pH     ORP     Turbidity (ntu)     REMARK       10:30     Purge Rate 200     PURPINTAKE DEPTH:     Static water level     pump on, no water, refit       10:58     Purge                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| Depth to     Purge Rate (ft)     Temp. (ft)     Conduct. (µs/cm)     DO (µg/L)     pH     ORP     Turbidity (ntu)     REMARK       10:00     44.47         Static water level     Purge pump on, no water, refit       10:30           Purge pump on, no water, refit       10:30            pump on, no water, refit       10:58            back on, water pumping       11:05     44.43     200     21.79     0.295     10.93     5.82     234     0.0        11:15     44.43     200     21.41     0.285     7.03     5.72     247     0.0        11:35     44.43     200     21.41     0.284     7.06     5.72     248     0.0        11:45     44.43     200     21.43     0.284     7.06     5.72     248     0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 144 ft                        |
| to     Purge<br>(t)     Temp.<br>(mL/min)     Conduct.<br>( $\mu$ /min)     DO<br>( $\mu$ /min)     pH     ORP     Turbidity<br>(ntu)     REMARK       10:00     44.47         Static water level       10:30            Static water level       10:38             pump on, no water, refit       10:58            stronger compressor       11:05     44.43     200     21.79     0.295     10.93     5.82     234     0.0        11:15     44.43     200     21.04     0.288     6.64     5.70     249     0.0        11:25     44.43     200     21.41     0.285     7.03     5.72     247     0.0        11:45     44.43     200     21.43     0.284     7.06     5.72     248     0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
| Inite     Water     Rate     Terrip.     Conduct.     Do     pr     OKF     Infolding     Remark refine       10:00     44.47          Static water level       10:30           pump on, no water, refine       10:58          back on, water pumping       10:58           back on, water pumping       10:58           stronger compressor       11:05     44.43     200     21.79     0.295     10.93     5.82     234     0.0       11:15     44.43     200     21.41     0.288     6.64     5.70     249     0.0        11:15     44.43     200     21.43     0.284     7.06     5.72     248     0.0        11:45     44.43     200     21.43     0.284     7.06     5.72 <td>(6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (6                            |
| 10:00   44.47   10.7   10.7   10.7   10.7   10.7   Static water level     10:30   0   0   0   0   0   pump on, no water, refit     10:58   0   0   0   0   0   stronger compressor     11:05   44.43   200   21.79   0.295   10.93   5.82   234   0.0     11:15   44.43   200   21.79   0.295   10.93   5.63   250   0.0     11:15   44.43   200   21.04   0.288   6.64   5.70   249   0.0     11:25   44.43   200   21.41   0.285   7.03   5.72   247   0.0     11:35   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:55   0   0   0   0   0   0   0   0     11:55   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (5                            |
| 10:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| 10:58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t pump                        |
| Image: stronger compressor     stronger compressor       11:05     44.43     200     21.79     0.295     10.93     5.82     234     0.0       11:15     44.43     200     20.43     0.304     7.03     5.63     250     0.0       11:25     44.43     200     21.04     0.288     6.64     5.70     249     0.0       11:35     44.43     200     21.41     0.285     7.03     5.72     247     0.0       11:35     44.43     200     21.43     0.284     7.06     5.72     248     0.0       11:45     44.43     200     21.43     0.284     7.06     5.72     248     0.0       11:50     Image: stronger compressor     Image: stronger compressor     Image: stronger compressor     Image: stronger compressor       11:50     Image: stronger compressor     Image: stronger compressor     Image: stronger compressor     Image: stronger compressor       11:55     Image: stronger compressor     Image: stronger compressor     Image: stronger compressor     Image: stronger compres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g, compressor                 |
| Image: stronger compressor     11:05   44.43   200   21.79   0.295   10.93   5.82   234   0.0     11:15   44.43   200   20.43   0.304   7.03   5.63   250   0.0     11:25   44.43   200   21.04   0.288   6.64   5.70   249   0.0     11:35   44.43   200   21.41   0.285   7.03   5.72   247   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:50   Image: stronger compressor   Image: stronger compressor   Image: stronger compressor   Image: stronger compressor     11:50   Image: stronger compressor   Image: stronger compressor   Image: stronger compressor   Image: stronger compressor     11:55   Image: stronger compressor   Image: stronger compressor   Image: stronger compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kt time use the               |
| 11:05   44.43   200   21.79   0.295   10.93   5.82   234   0.0     11:15   44.43   200   20.43   0.304   7.03   5.63   250   0.0     11:25   44.43   200   21.04   0.288   6.64   5.70   249   0.0     11:35   44.43   200   21.41   0.285   7.03   5.72   247   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:50              11:55                11:55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |
| 11:15   44.43   200   20.43   0.304   7.03   5.63   250   0.0     11:25   44.43   200   21.04   0.288   6.64   5.70   249   0.0     11:35   44.43   200   21.41   0.285   7.03   5.72   247   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| 11:25   44.43   200   21.04   0.288   6.64   5.70   249   0.0     11:35   44.43   200   21.41   0.285   7.03   5.72   247   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:50   1   1   1   1   1   1   1   1     11:55   1   1   1   1   1   1   1   1     11:55   1   1   1   1   1   1   1   1     11:55   1   1   1   1   1   1   1   1     11:55   1   1   1   1   1   1   1   1   1     11:55   1   1   1   1   1   1   1   1   1   1     11:55   1   1   1   1   1   1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 11:35   44.43   200   21.41   0.285   7.03   5.72   247   0.0     11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:50   Image: Constraint of the strength of the strenge strength of the strength of the strengt o                                                                                                                                                                                                                                                                                                        |                               |
| 11:45   44.43   200   21.43   0.284   7.06   5.72   248   0.0     11:50   Image: Constraint of the state of the s                                                                                                                                                                  |                               |
| 11:50   Unfiltered Sample LMW     11:55   Filtered Sample LMW-1     11:55   1/4" (OD) poly and 1/4"     11:55   1     11:55   1     11:55   1/4" (OD) poly and 1/4"     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1     11:55   1 <tr< td=""><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
| 11:50 Unfiltered Sample LMW   11:55 Filtered Sample LMW-1   11:55 1/4" (OD) poly and 1/4"   1/4" (OD) poly and 1/4" bonded tubing would not well, discarded   1 1   1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| 11:55 Filtered Sample LMW-1   Image: State of the sta                                        | /-18 Collected                |
| Image: Constraint of the second se | 8F Collected                  |
| Image: Second |                               |
| Image: Second | (OD) poly                     |
| Well, discarded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ot go back into               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| Pump Type: QED Bladder Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| Analytical Parameters: TAL Metals (Total and Field Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |

| A                  |               |                  |              |                       |              |          |           |                    | WELL NO.                          | MW-19                    |  |
|--------------------|---------------|------------------|--------------|-----------------------|--------------|----------|-----------|--------------------|-----------------------------------|--------------------------|--|
| WELL               | SAMP          | LING FO          | RM           | PROJECT<br>Liberty Ir | ndustria     | l Finish | ing       |                    | project №.<br>60135736            | SHEET SHEETS             |  |
| LOCATION<br>Brentw | i<br>/ood, N  | Y                |              | y                     |              |          | 0         |                    | date well sampled<br>8/21/2012    |                          |  |
|                    | EC            |                  |              |                       |              |          |           |                    | Celeste Foster ar                 | nd Rita Papagian         |  |
|                    | ONE WE        | ELL VOLUME :     | 143.3        | gallons               | ١            | WELL TD: | 265.0     | ft                 | PUMP INTAKE DEP                   | тн: 260 ft               |  |
|                    | Depth         | Purgo            |              | FIE                   | LD MEAS      | SUREME   | NTS       |                    |                                   |                          |  |
| Time               | Water<br>(ft) | Rate<br>(mL/min) | Temp.<br>(℃) | Conduct.<br>(µs/cm)   | DO<br>(mg/L) | рН       | ORP       | Turbidity<br>(ntu) | REMARKS                           |                          |  |
| 9:45               | 45.51         |                  |              |                       |              |          |           | 1                  | Static water level                |                          |  |
| 10:05              |               |                  |              |                       |              |          |           |                    | pump on, no wate                  | er, pulled pump,         |  |
|                    |               |                  |              |                       |              |          |           |                    | checked air hose                  | s, problem with air line |  |
|                    |               |                  |              |                       |              |          |           |                    | pulled line, refit p              | ump, compressor          |  |
|                    |               |                  |              |                       |              |          |           |                    | running at capaci                 | ity, next time use       |  |
|                    |               |                  |              |                       |              |          |           |                    | helium compress                   | or.                      |  |
| 10:50              |               |                  |              |                       |              |          |           |                    | water!                            |                          |  |
| 11:15              | 45.50         | 250              | 23.33        | 0.347                 | 17.12        | 6.90     | 278       | 62.7               |                                   |                          |  |
| 11:25              | 45.50         | 250              | 25.66        | 0.340                 | 17.15        | 6.89     | 275       | 48.0               |                                   |                          |  |
| 11:35              | 45.50         | 250              | 24.40        | 0.188                 | 15.02        | 5.88     | 266       | 83.9               |                                   |                          |  |
| 11:45              | 45.50         | 250              | 25.50        | 0.181                 | 14.93        | 5.82     | 263       | 50.0               |                                   |                          |  |
| 11:55              | 45.50         | 250              | 23.99        | 0.176                 | 15.12        | 5.81     | 260       | 30.0               |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
| 12:00              |               |                  |              | L                     |              |          |           |                    | Unfiltered Sample                 | e LMW-19 Collected       |  |
| 12:05              |               |                  |              | L                     |              |          |           |                    | Filtered Sample LMW-19F Collected |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    | 1/4" (OD) poly an                 | id 1/4" (OD) poly        |  |
|                    |               |                  |              |                       |              |          |           |                    | bonded tubing wo                  | ould not go back into    |  |
|                    |               |                  |              |                       |              |          |           |                    | well, discarded                   |                          |  |
|                    |               |                  |              | L                     |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              | <b> </b>              |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              | <b> </b>              |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              | <b> </b>              |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              | <b> </b>              |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              | <b> </b>              |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              | <b> </b>              |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              | <b> </b>              |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
|                    |               |                  |              |                       |              |          |           |                    |                                   |                          |  |
| Pump               | Type:         | QED Bla          | dder Pu      | ımp, High             | ı pressu     | ire com  | presso    | r                  |                                   |                          |  |
| المحاب             |               | om otorer        |              | atala (T-1            | المحمام      |          | ltore -l' |                    |                                   |                          |  |
| Analyti            | cai raf       | ameters:         |              | ciais (101            | .ai anu i    | ieiu Fl  | nereu)    |                    |                                   |                          |  |

|                   |            | ///                                          |                      |            |           |            |            |           | WELL NO.           | MW-20               |
|-------------------|------------|----------------------------------------------|----------------------|------------|-----------|------------|------------|-----------|--------------------|---------------------|
|                   | SAMP       |                                              | DM                   | PROJECT    | oduetria  | I Finish   | ina        |           | PROJECT No.        | SHEET SHE           |
|                   | 37.01      |                                              |                      | LIDEITY    | luusina   |            | Iliy       |           | DATE WELL SAMPLED  |                     |
| <u>3rentw</u>     | ood, N     | Y                                            |                      |            |           |            |            |           | 8/21/2012          |                     |
| IEN I<br>VYSDI    | EC         |                                              |                      |            |           |            |            |           | Celeste Foster and | l Rita Papagian     |
|                   |            |                                              |                      |            |           |            |            | •.        |                    |                     |
|                   | ONE WE     | LL VOLUME :                                  | 17.12                | gallons    | ١         | NELL TD:   | 147.0      | ft        | PUMP INTAKE DEPTH  | ⊮ 142 ft            |
|                   | Depth      | Duran                                        |                      | FIE        | LD MEA    | SUREME     | INTS       |           |                    |                     |
| Time              | Water      | Rate                                         | Temp.                | Conduct.   | DO        | рΗ         | ORP        | Turbidity | RE                 | MARKS               |
|                   | (ft)       | (mL/min)                                     | (℃)                  | (µs/cm)    | (mg/L)    | P          | <b>.</b>   | (ntu)     |                    |                     |
| 16:15             | 41.99      | 400                                          |                      | , N ,      |           |            |            |           | Static water level |                     |
| 6:30              | 41.87      | 275                                          | 16.30                | 0.292      | 14.20     | 5.90       | 213        | 234.0     | pump on            |                     |
| 6:40              | 41.80      | 275                                          | 16.34                | 0.292      | 14.01     | 5.91       | 219        | 219.0     | · · ·              |                     |
| 6:50              | 41.80      | 275                                          | 15.29                | 0.281      | 12.07     | 5.78       | 253        | 131.0     |                    |                     |
| 17:00             | 41.80      | 275                                          | 14.97                | 0.279      | 9.97      | 5.78       | 260        | 52.1      |                    |                     |
| 17:10             | 41.80      | 275                                          | 15.10                | 0.277      | 9.90      | 5.72       | 267        | 9.3       |                    |                     |
| 17:20             | 41.80      | 275                                          | 15.00                | 0.277      | 9.93      | 5.75       | 269        | 5.3       |                    |                     |
|                   |            |                                              |                      |            |           |            |            |           |                    |                     |
| 17:25             | ا <u> </u> |                                              |                      |            |           |            |            |           | Unfiltered Sample  | LMW-20 Collected    |
| 7:30              | <br>       |                                              |                      |            |           |            |            |           | Filtered Sample LN | /W-20F Collected    |
|                   | '          | <u> </u>                                     | <u> </u>             |            |           |            |            |           |                    |                     |
|                   |            |                                              |                      |            |           |            |            |           | 1/4" (OD) poly and | 1/4" (OD) poly      |
|                   | ·'         | <u> </u>                                     |                      |            |           |            |            |           | bonded tubing put  | back into the well. |
|                   | <br>/      | ['                                           |                      |            |           |            |            |           |                    |                     |
|                   | <br>/      | <u> </u>                                     |                      |            |           |            |            |           |                    |                     |
|                   | !          | 「 <u> </u>                                   | <u> </u>             |            |           |            |            |           |                    |                     |
|                   |            |                                              |                      |            |           |            |            |           |                    |                     |
|                   | !          | 「 <u> </u>                                   |                      |            |           |            |            |           |                    |                     |
|                   |            |                                              |                      |            |           |            |            |           |                    |                     |
|                   | <br>L      |                                              |                      |            |           |            |            |           |                    |                     |
|                   | <br>L      |                                              |                      |            |           |            |            |           |                    |                     |
|                   | <br>/      |                                              |                      |            |           |            |            |           |                    |                     |
|                   | <br>L      |                                              |                      |            |           |            |            |           |                    |                     |
|                   | ı          |                                              |                      |            |           |            |            |           |                    |                     |
|                   | !          | ['                                           | ['                   | ſ          |           | ['         | ['         | <u> </u>  | <u> </u>           |                     |
|                   | !          | <u>[                                    </u> | <u> </u>             |            |           |            |            |           |                    |                     |
|                   |            | ['                                           | ['                   |            |           |            | ['         |           |                    |                     |
|                   | <u>ا</u>   | <u> </u>                                     | <u> </u>             | <u> </u>   |           |            |            |           |                    |                     |
|                   | !          | <u>[                                    </u> | <u>[          </u> ' |            |           |            | <u> </u>   |           |                    |                     |
|                   | <u> </u>   | <u> </u>                                     | <u> </u>             |            |           | <u> </u>   | '          |           |                    |                     |
|                   |            | [!                                           | <u>[</u> !           | [          | ['        |            | ['         | [         | <u> </u>           | _                   |
|                   | !          | [!                                           | <u>['</u>            | [          | '         | ['         | <u>['</u>  | [         | <u> </u>           |                     |
|                   |            | [!                                           | <u>[</u> '           | <u>[</u>   |           | <u>[</u> ' | <u>[</u> ' | <u>[</u>  |                    | _                   |
|                   | l!         |                                              | <u> </u>             |            |           | !          | <u> </u>   |           |                    |                     |
| Pump <sup>-</sup> | Туре:      | QED Bla                                      | dder Pı              | ımp, High  | ı pressı  | ire com    | presso     | r         |                    |                     |
| Analyti           | cal Par    | ameters:                                     | TAL M                | etals (Tot | tal and l | Field Fi   | ltered)    |           |                    |                     |

| A                  |               |                  |              |                                  |              |          |         |                    | WELL NO.                                | MW-21               |
|--------------------|---------------|------------------|--------------|----------------------------------|--------------|----------|---------|--------------------|-----------------------------------------|---------------------|
| WELL               | SAMP          | LING FO          | RM           | <sub>РROJECT</sub><br>Libertv Ir | dustria      | Finish   | ina     |                    | PROJECT №.<br>60135736                  | SHEET SHEETS        |
| LOCATION<br>Brentw | vood, N       | Y                |              |                                  |              |          |         |                    | DATE WELL SAMPLED<br>8/21/2012          |                     |
| CLIENT<br>NYSD     | EC            |                  |              |                                  |              |          |         |                    | NAME OF INSPECTOR<br>Celeste Foster and | Rita Papagian       |
|                    |               |                  | 11 10        | gallons                          | 1            |          | 110.6   | ft                 |                                         | 106 ft              |
|                    |               |                  | 11.15        | gailons                          |              |          |         | n                  | FOMP INTAKE DEFTH.                      | 100 11              |
|                    | Depth<br>to   | Purge            |              | FIE                              | LD MEA       | SUREME   | INIS    |                    |                                         |                     |
| Time               | Water<br>(ft) | Rate<br>(mL/min) | Temp.<br>(℃) | Conduct.<br>(µs/cm)              | DO<br>(mg/L) | рН       | ORP     | Turbidity<br>(ntu) | REMARKS                                 |                     |
| 16:30              | 41.95         | · · · ·          |              |                                  | ,            |          |         |                    | Static water level                      |                     |
| 16:37              |               |                  |              |                                  |              |          |         |                    | pump on                                 |                     |
| 16:45              | 41.95         | 225              | 16.68        | 0.280                            | 14.41        | 5.61     | 252     | 230.0              |                                         |                     |
| 16:55              | 41.95         | 225              | 15.97        | 0.263                            | 11.11        | 5.48     | 254     | 115.0              |                                         |                     |
| 17:05              | 41.95         | 225              | 15.94        | 0.264                            | 10.75        | 5.45     | 257     | 70.7               |                                         |                     |
| 17:15              | 41.95         | 225              | 15.97        | 0.265                            | 10.40        | 5.42     | 258     | 38.3               |                                         |                     |
| 17.20              |               |                  |              |                                  |              |          |         |                    | Linfiltorod Sompla I                    | MW 21 Collected     |
| 17.20              |               |                  |              |                                  |              |          |         |                    | Filtered Sample I M                     | W-21E Collected     |
| 17.20              |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    | 1/4" (OD) poly and                      | 1/4" (OD) poly      |
|                    |               |                  |              |                                  |              |          |         |                    | bonded tubing put k                     | back into the well. |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
|                    |               |                  |              |                                  |              |          |         |                    |                                         |                     |
| Pump               | Type:         | QED Bla          | dder Pu      | imp                              |              |          |         |                    |                                         |                     |
| Analyti            | ical Par      | ameters:         | I AL M       | etals (Tot                       | al and I     | -ield Fi | itered) |                    |                                         |                     |

| WELL              | SAMP                                         |                  | RM            | PROJECT<br>I ibertv Ir                  | ndustria                                     | l Finish                                     | ina  |                    | PROJECT №.<br>60135736                  | SHEET SHEETS        |
|-------------------|----------------------------------------------|------------------|---------------|-----------------------------------------|----------------------------------------------|----------------------------------------------|------|--------------------|-----------------------------------------|---------------------|
| ocation<br>Brentv | vood, N                                      | Y                |               | <b>Lio</b> 011j                         |                                              | 1                                            |      |                    | DATE WELL SAMPLED<br>11/6/2013          |                     |
| CLIENT<br>NYSD    | EC                                           |                  |               |                                         |                                              |                                              |      |                    | NAME OF INSPECTOR<br>Steve Wright and I | Rita Papagian       |
| _                 | ONE WE                                       | LL VOLUME :      | 7.2           | gallons                                 | -<br>\                                       | NELL TD:                                     | 54.2 | ft                 | PUMP INTAKE DEPTH                       | ₁: 52 ft            |
|                   | Depth                                        | Purde            |               | FIE                                     | LD MEAS                                      | SUREME                                       | INTS |                    | <u> </u>                                |                     |
| Time              | Water<br>(ft)                                | Rate<br>(mL/min) | Temp.<br>(°C) | Conduct.<br>(us/cm)                     | DO<br>(ma/L)                                 | рН                                           | ORP  | Turbidity<br>(ntu) | RE                                      | MARKS               |
| 7:45              | 43.21                                        | (,,              | (-)           | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (5,                                          | l                                            |      | ()                 | Static water level                      |                     |
| 7:50              | 43.21                                        | 250              | 12.56         | 0.288                                   | 12.88                                        | 6.55                                         | 181  | 64.3               | pump on                                 |                     |
| 8:00              | 43.22                                        | 250              | 11.14         | 0.273                                   | 25.72                                        | 6.46                                         | 222  | 39.5               |                                         |                     |
| 8:10              | 43.22                                        | 250              | 12.26         | 0.270                                   | 10.93                                        | 6.48                                         | 226  | 19.9               | 1                                       |                     |
| 8:20              | 43.22                                        | 250              | 13.15         | 0.270                                   | 8.42                                         | 6.46                                         | 237  | 13.8               | 1                                       |                     |
| 8:40              | 43.22                                        | 250              | 13.20         | 0.270                                   | 8.01                                         | 6.45                                         | 241  | 11.1               | 1                                       |                     |
| 8:45              |                                              |                  |               |                                         |                                              | l – – – – – – – – – – – – – – – – – – –      |      |                    | Unfiltered Sample                       | LMW-2 Collected     |
| 8:50              |                                              |                  |               |                                         |                                              | [ ]                                          |      |                    | Filtered Sample LN                      | MW-2F Collected     |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    | 1/4" (OD) poly and                      | 1/4" (OD) poly      |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    | bonded tubing put                       | back into the well. |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | [ <u> </u>                                   |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | [ <u> </u>                                   |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | [ <u> </u>                                   |      |                    |                                         |                     |
|                   |                                              |                  | <u> </u>      |                                         |                                              | ['                                           |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | <u> </u>                                     |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | ['                                           |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | ['                                           |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | <u>[                                    </u> |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | <u> </u>                                     |      |                    |                                         |                     |
|                   | <u> </u>                                     |                  |               |                                         |                                              | <u> </u>                                     |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | <u>[                                    </u> |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              | <u>[                                    </u> |      |                    |                                         |                     |
|                   | ['                                           | ['               | [!            | ['                                      | [!                                           | <u>['</u>                                    | ['   | ſ                  |                                         |                     |
|                   | ['                                           | ['               | [!            | ['                                      | [!                                           | <u>['</u>                                    | ['   | ſ                  |                                         |                     |
|                   | <u>[                                    </u> |                  | <u> </u>      |                                         | <u>[                                    </u> | <u> </u>                                     |      | <u> </u>           |                                         |                     |
|                   | <u>[                                    </u> |                  | <u> </u>      |                                         | <u>[                                    </u> | <u> </u>                                     |      | <u> </u>           |                                         |                     |
|                   | <u> </u>                                     |                  | <u> </u>      |                                         | <u> </u>                                     | <u> </u>                                     |      |                    |                                         |                     |
|                   | <u> </u> '                                   | <u> </u>         |               | <u> </u>                                |                                              | <u> </u>                                     |      | <u> </u>           |                                         |                     |
| Pump              | Type:                                        | QED Bla          | dder Pu       | ımp                                     |                                              |                                              |      |                    |                                         |                     |
|                   |                                              |                  |               |                                         |                                              |                                              |      |                    |                                         |                     |

|                           |               | //1              |               |                        |                     |               |              |                    | WELL NO.                                                                   | MW-3                    |  |
|---------------------------|---------------|------------------|---------------|------------------------|---------------------|---------------|--------------|--------------------|----------------------------------------------------------------------------|-------------------------|--|
| WELL                      | SAMP          |                  | RM            | PROJECT<br>I iherty Ir | ndustria            | -<br>I Finish | ina          |                    | PROJECT №.<br>60135736                                                     | SHEET SHEETS            |  |
| LOCATION<br>Brentv        | vood, N       | Y                | (17)          |                        |                     |               | <u></u>      |                    | DATE WELL SAMPLED<br>11/4/2013                                             |                         |  |
| <sup>CLIENT</sup><br>NYSD | EC            |                  |               |                        |                     |               |              |                    | NAME OF INSPECTOR<br>Steve Wright and                                      | d Rita Papagian         |  |
|                           | ONE WE        | ELL VOLUME :     | 5.7           | gallons                | ,                   | WELL TD:      | 54.0         | ft                 | PUMP INTAKE DEF                                                            | этн: 50 ft              |  |
|                           | Depth         | Purge            |               | FIE                    | LD MEA              | SUREME        | ENTS         |                    |                                                                            |                         |  |
| Time                      | Water<br>(ft) | Rate<br>(mL/min) | Temp.<br>(°C) | Conduct.               | DO<br>(mg/L)        | рН            | ORP          | Turbidity<br>(ntu) | -<br>-<br>-                                                                | REMARKS                 |  |
| 10:20                     | 45.21         | ,                | (-,           | (p.c.c,                | (···· <u>ə</u> . —, | <u> </u>      | <u> </u>     | (,                 | Static water leve                                                          |                         |  |
| 10:40                     | 44.92         | 250              | 13.21         | 0.376                  | 22.05               | 6.45          | 206          | 49.9               | pump on                                                                    |                         |  |
| 10:50                     | 44.92         | 250              | 13.26         | 0.377                  | 9.85                | 6.48          | 209          | 39.6               | †                                                                          |                         |  |
| 11:00                     | 44.92         | 250              | 13.18         | 0.376                  | 8.99                | 6.49          | 210          | 33.4               | 1                                                                          |                         |  |
| 11:10                     | 44.92         | 250              | 13.22         | 0.369                  | 10.00               | 6.50          | 217          | 31.7               |                                                                            |                         |  |
|                           |               |                  |               |                        |                     |               |              | T                  |                                                                            |                         |  |
|                           |               |                  |               |                        |                     |               |              |                    |                                                                            |                         |  |
|                           |               |                  |               |                        |                     |               |              |                    | <u> </u>                                                                   |                         |  |
| 11:20                     |               |                  |               |                        |                     |               |              |                    | Filtered Sample                                                            | LMW-3F Collected        |  |
| 11:25                     | <u> </u>      | <u> </u>         |               |                        |                     | <u> </u>      |              |                    | Unfiltered Sampl                                                           | e LMW-3 Collected       |  |
|                           | ļ'            | Ļ                | <u> </u>      | $\square$              | <b></b> '           | $\square$     | <u> </u>     | $\square$          |                                                                            | · · · · · · · · · · · · |  |
|                           | <b> </b> '    | Ļ                |               | Ļ                      | <b></b> '           | Ļ             | <b></b>      | Ļ                  | 1/4" (OD) poly and 1/4" (OD) poly<br>bonded tubing put back into the well. |                         |  |
|                           | <b></b> '     | <b> </b>         |               |                        | <b></b> '           |               | ──           | <b></b>            | bonded tubing put back into the well.                                      |                         |  |
|                           | <b> </b> '    | ───              | <b></b>       |                        | <b></b> '           |               | ──           | ───                | <b></b>                                                                    |                         |  |
|                           | <b> </b> '    | ───              | ───           | ───                    | <b> </b> '          | ───           | ───          | ───                | <b></b>                                                                    |                         |  |
|                           | <b> </b> '    | <b> </b>         | <u> </u>      | <u> </u>               | <b> </b> '          |               | ──           | <u> </u>           | <u> </u>                                                                   |                         |  |
|                           | <b> </b> '    | <u> </u>         |               |                        | '                   | ───           | ┣───         | ┝────              | <u> </u>                                                                   |                         |  |
|                           | <b> </b> '    | <b> </b>         | ──            | ───                    | <b> </b> '          | ──            | ──           | ───                |                                                                            |                         |  |
|                           | <b> </b> '    | ╂────            | ┨─────        | ╂────                  | <b></b> '           | ╂────         | ╂────        | ╂────              |                                                                            |                         |  |
|                           | <b> </b> '    | ╂────            | ┨─────        | ╂────                  | <b></b> '           | ╂────         | ╂────        | ╂────              |                                                                            |                         |  |
|                           | <b> </b> '    | ┣────            | ╂────         | ┼────                  | <b> </b> '          | ├───          | ╂────        | ───                | +                                                                          |                         |  |
|                           | <b>├</b> ───' | ├───             | ┼────         | ┼───                   | <b></b> '           | ├───          |              | ┼───               | +                                                                          |                         |  |
|                           | '             | <u> </u>         |               | ╂────                  | <b> </b> '          | <del> </del>  | ╂────        | ╂────              | +                                                                          |                         |  |
|                           | '             | <u> </u>         |               | ╂────                  | <u> </u>            |               | <u> </u>     | <del> </del>       | +                                                                          |                         |  |
|                           | '             |                  |               |                        | <u>├</u> ───        |               |              |                    | +                                                                          |                         |  |
|                           | '             | <u> </u>         |               | <u> </u>               | '                   | 1             | <u> </u>     | <u> </u>           | 1                                                                          |                         |  |
|                           |               |                  |               |                        |                     |               |              |                    | 1                                                                          |                         |  |
|                           |               |                  |               |                        |                     |               | <u> </u>     |                    | 1                                                                          |                         |  |
|                           |               |                  |               |                        |                     | 1             |              |                    | 1                                                                          |                         |  |
|                           |               |                  |               |                        |                     |               |              |                    | 1                                                                          |                         |  |
|                           |               |                  |               |                        |                     |               |              |                    | 1                                                                          |                         |  |
|                           | 1             |                  |               | 1                      |                     | 1             |              |                    | 1                                                                          |                         |  |
|                           |               |                  |               |                        |                     |               |              |                    |                                                                            |                         |  |
| Pump                      | Type:         | QED Bla          | dder Pu       | ump                    |                     |               | :14 o r o d) |                    |                                                                            |                         |  |
| Anaiyu                    | Cal Par       | ameters.         |               |                        | ai anu i            |               | ilerea)      |                    |                                                                            |                         |  |
| WELL          | SAMP             |                  | RM            | PROJECT<br>Liberty Ir                   | ndustria              | l Finish       | ina        |           | PROJECT №.<br>60135736 | SHEET SHEE            |  |  |  |  |  |
|---------------|------------------|------------------|---------------|-----------------------------------------|-----------------------|----------------|------------|-----------|------------------------|-----------------------|--|--|--|--|--|
| OCATION       |                  |                  |               | LIDCITY III                             |                       |                | ing        |           | DATE WELL SAMPLED      |                       |  |  |  |  |  |
| <u>3rentw</u> | /ood, N`         | Y                |               |                                         |                       |                |            |           | 11/4/2013              |                       |  |  |  |  |  |
| NYSDI         | EC               |                  |               |                                         |                       |                |            |           | Stephen Wright a       | nd Rita Papagian      |  |  |  |  |  |
|               |                  |                  |               |                                         |                       |                |            |           |                        |                       |  |  |  |  |  |
|               | ONE WE           | LL VOLUME :      | 5.1           | gallons                                 | v                     | NELL TD:       | 54.4       | ft        | PUMP INTAKE DEPT       | гн: 50 ft             |  |  |  |  |  |
|               | Depth            |                  |               | FIE                                     | LD MEAS               | SUREME         | NTS        |           |                        |                       |  |  |  |  |  |
| Time          | to<br>Watar      | Purge            | Tama          | Conduct                                 |                       | mLl            | OBB        | Turbidity |                        |                       |  |  |  |  |  |
| Time          | (ft)             | Rate<br>(mL/min) | (°C)          | (us/cm)                                 | (ma/L)                | рн             | ORP        | (ntu)     | R                      | EMARNS                |  |  |  |  |  |
| 10:20         | 46.6             | (,               | (-)           | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (                     | l              |            | ()        | Static water level     |                       |  |  |  |  |  |
| 10:30         | 46.6             | 250              | 11.99         | 0.115                                   | 8.180                 | 5.65           | 194        | 17.7      | pump on                |                       |  |  |  |  |  |
| 10:35         | 46.61            | 250              | 13.75         | 0.144                                   | 2.440                 | 6.14           | 181        | 11.6      | <u> </u>               |                       |  |  |  |  |  |
| 10:40         | 46.62            | 250              | 13.70         | 0.155                                   | 2.470                 | 6.20           | 275        | 10.7      |                        |                       |  |  |  |  |  |
| 10:50         | 46.64            | 250              | 13.69         | 0.182                                   | 2.810                 | 6.29           | 169        | 10.6      | <u> </u>               |                       |  |  |  |  |  |
| 11:00         | 46.66            | 250              | 13.68         | 0.211                                   | 6.630                 | 6.21           | 162        | 11.7      |                        |                       |  |  |  |  |  |
| 11:10         | 46.69            | 250              | 13.73         | 0.221                                   | 5.540                 | 6.30           | 158        | 12.2      |                        |                       |  |  |  |  |  |
| 11:20         | 46.71            | 250              | 13.68         | 0.231                                   | 6.110                 | 6.33           | 162        | 9.7       |                        |                       |  |  |  |  |  |
|               |                  | ['               |               |                                         |                       | $\Box$         |            |           |                        |                       |  |  |  |  |  |
| 11:25         |                  |                  |               |                                         |                       | $\Box$ '       |            |           | Unfiltered Sample      | LMW-4 Collected       |  |  |  |  |  |
| 11:30         |                  | <u> </u>         |               |                                         |                       | <u> </u>       |            |           | Filtered Sample L      | MW-4F Collected       |  |  |  |  |  |
|               |                  | <u> </u>         | <u> </u>      |                                         |                       | <u> </u>       | <b>[</b> ' |           |                        |                       |  |  |  |  |  |
|               | <u> </u>         | <u> </u> '       | <u> </u>      |                                         |                       | <u> </u>       | <u> </u>   |           |                        |                       |  |  |  |  |  |
|               | <u> </u>         | <u> </u> '       | <u> </u>      | <u> </u> '                              |                       | <u> </u>       | <b> </b> ' | <u> </u>  |                        |                       |  |  |  |  |  |
| !             | ļ!               | ļ'               | Ļ!            | <b> </b> '                              |                       | <b> </b> '     | <b> </b> ' | <b></b>   |                        |                       |  |  |  |  |  |
|               | ļ!               | ļ'               | Ļ!            | <b> </b> '                              |                       | <b> </b> '     | <b> </b> ' | <b></b>   | 1/4" (OD) poly and     | d 1/4" (OD) poly      |  |  |  |  |  |
| ]             | <b>ل</b> ــــــا | <b> </b> '       | ↓′            | <b> </b> '                              |                       | └───'          | <b> </b> ' | <b> </b>  | bonded tubing pu       | t back into the well. |  |  |  |  |  |
|               | <b>└───</b> ┘    | <b> </b> '       | ļ'            | <b> </b> '                              | ļ!                    | └───'          | <b> </b> ' | <b> </b>  |                        |                       |  |  |  |  |  |
|               | <b>ل</b> ــــــا | <b> </b> '       | ļ'            | <b> </b> '                              | ļ/                    | └────'         | <b> </b> ' | <b> </b>  |                        |                       |  |  |  |  |  |
|               | ļ!               | <b> </b> '       | ļ/            | <b> </b> '                              |                       | <b>└───</b> '  | <b> </b> ' | <b> </b>  | <b> </b>               |                       |  |  |  |  |  |
|               | ļ!               | <sup> </sup>     | <b> </b> '    | '                                       | $\square$             | <b> '</b>      | <b> </b> ' | <b> </b>  | <b> </b>               |                       |  |  |  |  |  |
|               | l                | <b> </b> '       | <b>↓</b> !    | <b> </b> '                              | <b>↓</b>              | <b> '</b>      | <b> </b> ' | <b> </b>  |                        |                       |  |  |  |  |  |
|               |                  | '                | ───┦          | <b> </b> '                              | ───┦                  | ┝────┘         | <b> </b> ' | ┣────     | 1                      |                       |  |  |  |  |  |
|               | <b>⊢−−−</b> ┦    | '                | <b> </b> !    | '                                       | <b>↓</b> /            | <b>⊢−−−−</b> ′ | <b> </b> ' | <b> </b>  | <u> </u>               |                       |  |  |  |  |  |
| l             | <b>⊢−−−</b> ┦    | '                | Į/            | '                                       | <b>↓</b>              | ┢────┘         | <b> </b> ' | <b> </b>  | 1                      |                       |  |  |  |  |  |
|               | <b>├</b> ───┦    | <sup> </sup>     | ┟───┦         | <sup> </sup>                            | ──                    | ┢────┘         | <b> </b> ' | <b> </b>  | <u> </u>               |                       |  |  |  |  |  |
| I             | <b>├</b> ───┦    | <u>├</u> ′       | <b>├</b> ───┦ | <b> </b> '                              | ──┦                   | ┟────┘         | <b> </b> ' | <b> </b>  | ł                      |                       |  |  |  |  |  |
| I             | <b>┟</b> ────┦   | ¦'               | ┨────┦        | ¦'                                      | ┟───┦                 | ┟────┘         | <b> </b> ' | <b> </b>  | +                      |                       |  |  |  |  |  |
|               | <b>├</b> ───┦    | <u> </u>         | ┟───┦         | ¦'                                      | ───┦                  | <b>├</b> ───── | <u> </u> ' | <b> </b>  | +                      |                       |  |  |  |  |  |
|               | <b> </b>         | '                | ┨────┦        | '                                       | ───┦                  | <b>┟────</b> ′ | <u> </u> ' | <u> </u>  | 1                      |                       |  |  |  |  |  |
| ——            | ┟───┦            | '                | ┟───┦         |                                         |                       | '              | '          | <u> </u>  | +                      |                       |  |  |  |  |  |
| ——            | ┟───┦            | <sup> </sup>     | ┟───┦         | '                                       | <b>├</b> ──┦          | '              | '          | <u> </u>  | 1                      |                       |  |  |  |  |  |
|               | ┟───┦            | '                | <b>├</b> ───┦ | i'                                      | <b>├</b> ──- <i> </i> | <b>┟────</b> ┦ | i'         | <u> </u>  | 1                      |                       |  |  |  |  |  |
|               | ·                | ·                | ·             | <u> </u>                                | L                     | ·              | L          | L         |                        |                       |  |  |  |  |  |
| Pump          | Tvpe:            | QED Bla          | dder Pu       | ımn                                     |                       |                |            |           |                        |                       |  |  |  |  |  |
| unp           | 1,120.           |                  | uuo           | 111P                                    |                       |                |            |           |                        |                       |  |  |  |  |  |
|               |                  |                  |               |                                         |                       |                |            |           |                        |                       |  |  |  |  |  |

|         |                   |             |                       |            |                      |            |           |              | WELL NO.                             | MW-5                   |
|---------|-------------------|-------------|-----------------------|------------|----------------------|------------|-----------|--------------|--------------------------------------|------------------------|
| WELL    | SAMD              |             | RM                    | PROJECT    | dustria              | l Finish   | ina       |              | PROJECT №.<br>60135736               | SHEET SHEET            |
|         | 1 SAME            |             |                       | LIDEITY    | luusinai             |            | IIIg      |              | DATE WELL SAMPLED                    |                        |
| Brentw  | /ood, N           | Y           |                       |            |                      |            |           |              | 11/5/2013                            |                        |
|         | EC                |             |                       |            |                      |            |           |              | Stephen Wright                       | and Rita Papagian      |
|         |                   |             |                       | - 11       |                      |            | 50.0      |              |                                      | FO 4                   |
|         | ONE WE            | LL VOLUME : | 7.1                   | gallons    | v                    | NELL TD:   | 58.0      | ft           | PUMP INTAKE DE                       | ртн: 56 II             |
|         | Depth             | _           |                       | FIE        | LD MEAS              | SUREME     | INTS      |              |                                      |                        |
| Time    | t0<br>Water       | Purge       | Temn                  | Conduct    |                      | nH         |           | Turbidity    | , ł                                  | DEMARKS                |
| Inne    | (ft)              | (mL/min)    | (°C)                  | (us/cm)    | (mg/L)               | hu         | UNI       | (ntu)        | .                                    | KEWARNO                |
| 7:15    | 47.19             | 250         |                       |            |                      |            |           | , <i>, ,</i> | Static water leve                    | )                      |
| 7:20    | 47.19             | 250         | 8.37                  | 0.252      | 13.90                | 6.11       | -7        | 59.3         | pump on                              |                        |
| 7:30    | 47.19             | 250         | 11.12                 | 0.236      | 15.15                | 6.26       | -71       | 53.9         |                                      |                        |
| 7:40    | 47.19             | 250         | 11.77                 | 0.229      | 13.83                | 6.25       | -81       | 45.6         |                                      |                        |
| 7:50    | 47.19             | 250         | 11.96                 | 0.222      | 15.10                | 6.22       | -80       | 34.2         |                                      |                        |
| 8:00    | 47.19             | 250         | 12.01                 | 0.215      | 14.66                | 6.19       | -76       | 19.8         |                                      |                        |
| 8:10    | 47.19             | 250         | 12.12                 | 0.209      | 13.88                | 6.18       | -72       | 15.5         |                                      |                        |
| 8:20    | 47.19             | 250         | 12.25                 | 0.205      | 13.01                | 6.13       | -68       | 15.3         |                                      |                        |
| 8:25    |                   |             | <u> </u>              | <b></b>    | <u> </u>             | <b> </b> ' | $\square$ |              | Unfiltered Samp                      | le LMW-5 Collected     |
| 8:30    | ا <b>ــــــ</b> ا |             | ļ'                    | <b> </b>   | ļ/                   | <b> </b> ' |           | <b> </b>     | Filtered Sample                      | LMW-5F Collected       |
|         |                   |             | <u> '</u>             | <b> </b>   | ļ/                   | <b> </b> ' | <b></b>   | <b></b>      |                                      |                        |
|         | <b> </b>          |             | ļ'                    | <b> </b>   | ļ/                   | <b> </b> ' | <b></b>   | <b></b>      |                                      |                        |
|         | <b> </b>          |             | <b>└───</b> ′         | <b> </b>   | ļ/                   | <b> </b> ' |           |              | 1/4" (OD) poly and $1/4$ " (OD) poly |                        |
|         | <b> </b>          |             | ───′                  | ┣────      | ───/                 | <b> </b> ' |           | <b> </b>     | 1/4" (OD) poly and 1/4" (OD) poly    |                        |
|         |                   |             | <b>└───</b> ′         | <b> </b>   | <b>├</b> ───┦        | <b> </b> ' | ──        |              | bonded tubing p                      | ut back into the well. |
|         | <b> </b>          |             | ┟────┦                | ┟────      | <b>∤</b> ───┦        | <b> </b> ' | ╂────     |              |                                      |                        |
|         | <b> </b>          |             | ┟────┦                | <b> </b>   | ┨────┦               | <b> </b> ' | ├───      |              |                                      |                        |
|         | <b> </b>          |             | ┣───┦                 | <u> </u>   | ┟───┦                | <b> </b> ' | ├───      |              |                                      |                        |
|         |                   |             | <b>├</b> ───┦         | i          | <b>├</b> ───┦        | '          | ├───      |              |                                      |                        |
|         |                   |             | <b>├</b> ───┦         | i          | ╂───┦                | '          | ├───      |              | 1                                    |                        |
|         |                   |             | <b>├</b> ───┦         |            |                      | '          |           |              | <u> </u>                             |                        |
|         |                   |             | <b>├──</b> ┦          |            | <b>├</b> ──┦         | '          | <u> </u>  |              |                                      |                        |
|         |                   |             | <b>├</b> ─── <i>१</i> |            | <b>├</b> ── <b>/</b> | '          | 1         |              |                                      |                        |
|         |                   |             | <b>├</b> ── <i>!</i>  |            | <b>!</b>             |            |           |              |                                      |                        |
|         |                   |             |                       |            |                      |            | 1         |              |                                      |                        |
|         |                   |             |                       |            |                      |            | 1         |              |                                      |                        |
|         |                   |             | <u>г</u>              | ſ          |                      |            | 1         |              |                                      |                        |
|         |                   |             |                       |            |                      |            |           |              |                                      |                        |
|         |                   |             |                       |            |                      |            |           |              |                                      |                        |
|         |                   |             |                       |            |                      |            |           |              |                                      |                        |
|         |                   |             |                       |            |                      |            |           |              |                                      |                        |
|         |                   |             | [!                    |            |                      |            |           |              |                                      |                        |
|         |                   |             |                       | <u> </u>   |                      |            |           |              |                                      |                        |
| _       | _                 | _           | _                     |            |                      |            |           |              |                                      |                        |
| oump    | Туре:             | QED Bla     | dder Pu               | ımp        |                      |            |           |              |                                      |                        |
|         |                   |             |                       |            |                      |            |           |              |                                      |                        |
| ۱nalyti | cal Par           | ameters:    | TAL M                 | etals (Tot | al and F             | Field Fi   | Itered)   |              |                                      |                        |

|                   |               | //1         |               |                       |              |          |         |                    | WELL NO.                                | MW-6               |  |
|-------------------|---------------|-------------|---------------|-----------------------|--------------|----------|---------|--------------------|-----------------------------------------|--------------------|--|
| WELL              | SAMP          |             | RM            | PROJECT<br>Liberty Ir | ndustria     | l Finish | ina     |                    | project №.<br>60135736                  | SHEET SHEET        |  |
| ocation<br>Brentw | vood, N       | Y           |               | <u></u>               |              |          |         |                    | date well sampled<br>11/5/2013          |                    |  |
| ilient<br>NYSDI   | EC            |             |               |                       |              |          |         |                    | NAME OF INSPECTOR<br>Celeste Foster and | Rita Papagian      |  |
|                   | ONE WE        | LL VOLUME : | 143.0         | gallons               | ,            | WELL TD: | 265.0   | ft                 | PUMP INTAKE DEPTH:                      | 260 ft             |  |
| l                 | Depth         | Burgo       |               | FIE                   | LD MEA       | SUREME   | INTS    |                    |                                         |                    |  |
| Time              | Water<br>(ft) | Rate        | Temp.<br>(°C) | Conduct.              | DO<br>(mg/L) | рН       | ORP     | Turbidity<br>(ntu) | REM                                     | IARKS              |  |
| 7:55              | 46.02         | (,          |               | (µ3/011)              | (            | <u> </u> |         |                    | Static water level                      |                    |  |
| 8:05              | 45.95         |             |               | []                    | ┝───┦        |          |         | <u> </u>           | nump on                                 |                    |  |
| 8:15              | 45.95         | 750         | 12,71         | 0.200                 | 17.07        | 6.06     | 219     | 14.9               | pump c                                  |                    |  |
| 8:25              | 45.95         | 750         | 12.71         | 0.128                 | 16.29        | 6.08     | 220     | 14.3               |                                         |                    |  |
| 8:35              | 45.95         | 750         | 12.76         | 0.127                 | 7.05         | 6.07     | 217     | 9.6                |                                         |                    |  |
| 8:45              | 45.95         | 750         | 12.60         | 0.126                 | 7.13         | 6.09     | 220     | 7.2                |                                         |                    |  |
| 8:55              | 45.95         | 750         | 12.69         | 0.121                 | 8.16         | 5.93     | 211     | 9.0                |                                         |                    |  |
| 9:05              | 45.95         | 750         | 12.67         | 0.130                 | 7.93         | 6.04     | 215     | 11.3               |                                         |                    |  |
| 9:10              | I             | 1           |               |                       |              |          |         |                    | Unfiltered Sample L                     | MW-6 Collected     |  |
| 9:15              | I             |             |               |                       | <b>!</b>     |          |         |                    | Filtered Sample LM                      | W-6F Collected     |  |
|                   | []            | 1           |               | ſ'                    |              |          | 1       |                    | · · ·                                   |                    |  |
|                   | []            |             |               | ſ'                    |              |          | 1       |                    | 1/4" (OD) poly and 2                    | 1/4" (OD) poly     |  |
| 1                 | []            | 1           |               | ſ'                    |              |          | 1       |                    | bonded tubing woul                      | d not go back into |  |
| 1                 | []            | lł          |               | ſ'                    |              |          | 1       |                    | well, discarded                         |                    |  |
| 1                 | []            | 1           |               | Í                     |              |          |         |                    |                                         |                    |  |
| 1                 |               | 1           |               | ĺ                     | <b>!</b>     |          |         |                    |                                         |                    |  |
|                   | (             |             |               | ĺ                     |              |          |         |                    |                                         |                    |  |
|                   | (             |             |               | ĺ                     |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | ĺ                     | [            |          |         |                    |                                         |                    |  |
|                   | []            |             |               | ĺ                     | [            |          |         |                    |                                         |                    |  |
|                   |               |             |               |                       |              |          |         |                    |                                         |                    |  |
|                   |               |             |               |                       |              |          |         |                    |                                         |                    |  |
|                   |               |             |               |                       |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | l                     |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | í <u> </u>            |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | l                     |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | l                     |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | í <u> </u>            |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | í <u> </u>            |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | i                     |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | l                     |              |          |         |                    |                                         |                    |  |
|                   |               |             |               |                       |              |          |         |                    |                                         |                    |  |
|                   |               |             |               |                       |              |          |         |                    |                                         |                    |  |
|                   |               |             |               | l                     |              |          |         |                    |                                         |                    |  |
| Pump´             | Туре:         | QED Bla     | dder Pu       | ımp, High             | pressu       | ire com  | presso  | r                  |                                         |                    |  |
| Analyti           | cal Par       | ameters:    | TAL M         | etals (Tot            | al and I     | Field Fi | Itered) |                    |                                         |                    |  |

|               |                                         | //1           |                |              |               |                                         |            |            | WELL NO.                | MW-10               |
|---------------|-----------------------------------------|---------------|----------------|--------------|---------------|-----------------------------------------|------------|------------|-------------------------|---------------------|
|               | SAMP                                    |               | RM             | PROJECT      | odustria      | I Finish                                | ina        |            | PROJECT No.<br>60135736 | SHEET SHEET         |
| OCATION       | 1                                       |               |                | LIDEITY      | uustiiai      |                                         | ng         |            | DATE WELL SAMPLED       |                     |
| <u>Brentw</u> | /ood, N                                 | Y             |                |              |               |                                         |            |            | 11/4/2013               |                     |
|               | EC                                      |               |                |              |               |                                         |            |            | Stephen Wright an       | d Rita Papagian     |
|               |                                         |               | 4 5            |              |               |                                         | 50.0       | <i>r</i> . |                         | 40.4                |
|               | ONE WE                                  | LL VOLUME :   | 4.5            | galions      | v             | NELL TD:                                | 50.0       | ft         | PUMP INTAKE DEPTH       | : 48 T              |
|               | Depth                                   |               |                | FIE          | LD MEAS       | SUREME                                  | NTS        |            |                         |                     |
| Time          | to<br>Water                             | Purge<br>Rate | Temp           | Conduct      |               | nH                                      | ORP        | Turbidity  | RFI                     | MARKS               |
| T III.        | (ft)                                    | (mL/min)      | (°C)           | (µs/cm)      | (mg/L)        | р.,                                     |            | (ntu)      |                         |                     |
| 13:30         | 43.10                                   |               |                |              |               |                                         |            |            | Static water level      |                     |
| 13:35         | 42.90                                   | 250           | ['             |              | []            | Ē'                                      |            |            | pump on                 |                     |
| 13:45         | 42.90                                   | 250           | 13.60          | 0.191        | 26.15         | 6.57                                    | 253        | 20.8       |                         |                     |
| 13:55         | 42.90                                   | 250           | 13.49          | 0.208        | 22.16         | 6.62                                    | 261        | 12.9       |                         |                     |
| 14:00         | 42.90                                   | 250           | 13.41          | 0.200        | 22.45         | 6.50                                    | 260        | 11.0       | 1                       |                     |
| 14.15         | 42.90                                   | 250           | 13.49          | 0.209        | 21.09         | 0.09                                    | 203        | 11.9       | Lufiltered Sample (     |                     |
| 14:25         | ┟────┦                                  |               | <b>├</b> ───┦  | <u> </u>     | ──┦           | ┟────┦                                  | '          |            | Filtered Sample LM      | /W-10F Collected    |
| 1             | l!                                      |               | <b>├</b> ───┤  |              |               | l!                                      |            |            |                         |                     |
|               | l                                       | 1             |                |              |               | l                                       |            |            |                         |                     |
|               |                                         |               |                |              |               |                                         |            |            | 1/4" (OD) poly and      | 1/4" (OD) poly      |
|               |                                         |               |                |              |               |                                         |            |            | bonded tubing put       | back into the well. |
|               | Ē'                                      | ['            | <u>['</u>      |              |               | Ē'                                      | <b>[</b> ' |            |                         |                     |
|               | <b> </b> '                              |               | <b> </b> '     | <b> </b>     | └───┘         | <b> </b> '                              | <b> </b> ' | <b> </b>   |                         |                     |
|               | ┢────┘                                  | <sup> </sup>  | <b> </b> '     | ───          | ───           | ┢────┘                                  | <b> </b> ' | ┣────      | 1                       |                     |
|               | <b>├</b> ────┘                          | <sup> </sup>  | ┟───┘          | <b> </b>     | ──┦           | <b>├</b> ────┘                          | <b> </b> ' | <b> </b>   |                         |                     |
|               | <b>┟────</b> ′                          |               | <b> </b> '     | <u> </u>     | <b>├</b> ───┦ | <b>┟────</b> ′                          | <b> </b> ' | <u> </u>   |                         |                     |
|               | <u>∤</u> !                              | i'            | <b>├</b> ───┦  | <b> </b>     | ├┦            | <u>∤</u> !                              | '          | i          |                         |                     |
|               | l                                       | 1             | <b>├</b> ───┤  |              |               | l                                       |            |            |                         |                     |
|               | l – – – – – – – – – – – – – – – – – – – | l l           |                |              |               | l – – – – – – – – – – – – – – – – – – – |            |            | 1                       |                     |
|               |                                         |               |                |              |               |                                         |            |            |                         |                     |
|               |                                         |               |                |              |               |                                         |            |            |                         |                     |
|               | <b> </b> '                              |               | <b>↓</b> '     | <b></b>      | $\square$     | <b> </b> '                              | <b> </b> ' | <b> </b>   |                         |                     |
|               | <u> </u> '                              | '             | <b>↓</b> '     | <b> </b>     | <b>ب</b> ا    | <u> </u> '                              | <b> </b> ' | <b> </b>   |                         |                     |
|               | <b>└────</b> ′                          | '             | <b> '</b>      | ───          | ───           | <b>└────</b> ′                          | <b> </b> ' | ┣────      | 1                       |                     |
|               | ┟────┘                                  | ¦'            | ┟────┘         | ┣────        | <b>├</b> ───┦ | ┟────┘                                  | <b> </b> ' | ł          |                         |                     |
|               | <b>┟────</b> ┦                          | <sup> </sup>  | <b>├</b> ────′ | <u> </u>     | ┝───┦         | <b>┟────</b> ┦                          | '          |            |                         |                     |
|               | <b>├</b> ───┤                           |               | <b>├</b> ───┦  |              |               | <b>├</b> ───┤                           |            |            |                         |                     |
|               |                                         | i             | <b>├</b> ───┤  |              |               |                                         |            |            |                         |                     |
|               |                                         |               |                |              |               |                                         |            | <u> </u>   | T                       |                     |
|               |                                         |               |                |              |               |                                         |            |            |                         |                     |
|               | <u> </u>                                |               | <u> </u>       | <u> </u>     | <u>[</u> ]    | <u> </u>                                |            |            |                         |                     |
|               |                                         |               |                |              |               |                                         |            |            |                         |                     |
| Pump          | Туре:                                   | QED Bla       | dder Pu        | ımp          |               |                                         |            |            |                         |                     |
| ^ ~ oluti     | and Dor                                 |               | <b>TAL N</b>   | tatala (Tot  | tal and I     | 다시서 티                                   | Harad)     |            |                         |                     |
| Allaiyu       | Carran                                  | diffeters.    |                | etais ( i or | al anu i      |                                         | lleieuj    |            |                         |                     |

|           | SAMP        |              |                      | PROJECT     |                 |                                              |          |           | IPRO JECT No                            | SHEET SHEET            |
|-----------|-------------|--------------|----------------------|-------------|-----------------|----------------------------------------------|----------|-----------|-----------------------------------------|------------------------|
|           | SAINF.      |              | ∩M ′                 | 1 thanty Ir | - du otrio      | - Cinich                                     |          |           | 00405706                                | 4 1                    |
|           | •           |              | K IVI                | Liberty in  | dusina          | I FILISII                                    | Ing      |           | DATE WELL SAMPLED                       | I OF I                 |
|           | /ood, N     | Y            |                      |             |                 |                                              |          |           | 11/5/2013                               |                        |
| · • • • 1 |             |              |                      |             |                 |                                              |          |           | NAME OF INSPECTOR                       | and Pita Panagian      |
| 100       | _0          |              |                      |             |                 |                                              |          |           |                                         | anu mia rapayian       |
|           | ONE WE      | ELL VOLUME : | 1.03                 | gallons     |                 | WELL TD:                                     | 49.29    | ft        | PUMP INTAKE DE                          | ртн: 47.2 ft           |
|           | Depth       | Diurge       |                      | FIE         | LD MEA          | SUREME                                       | INTS     |           |                                         |                        |
| Time      | to<br>Water | Purge        | Temn                 | Conduct     |                 | nH                                           | ORP      | Turbidity | - , , , , , , , , , , , , , , , , , , , | REMARKS                |
| Time      | (ft)        | (mL/min)     | (°C)                 | (us/cm)     | (ma/L)          | рп                                           | UKF      | (ntu)     |                                         |                        |
| 2:40      | 43.00       |              | ( - /                | ([          | (··· <b>ʒ</b> / |                                              |          | (,        | Static water leve                       |                        |
| 2:45      | 44.00       | 300          | 15.71                | 0.291       | 975             | 6.45                                         | 92       | 1000      | pump on                                 |                        |
| 2:55      | 44.00       | 300          | 16.00                | 0.395       | 9.45            | 6.52                                         | 91       | 1000      |                                         |                        |
| 3:05      | 44.00       | 300          | 16.11                | 0.351       | 8.92            | 6.76                                         | 117      | 808       |                                         |                        |
| 3:15      | 44.00       | 300          | 16.10                | 0.353       | 9.26            | 6.73                                         | 131      | 572       | 1                                       |                        |
| 3:25      | 44.00       | 300          | 15.58                | 0.362       | 9.15            | 6.62                                         | 165      | 139       |                                         |                        |
| 3:35      | 44.00       | 300          | 15.56                | 0.362       | 9.00            | 6.63                                         | 167      | 125       |                                         |                        |
| 3:45      | 44.00       | 300          | 15,52                | 0.365       | 8.93            | 6.60                                         | 175      | 91.4      |                                         |                        |
| 3:55      | 44.00       | 300          | 15.35                | 0.374       | 9.03            | 6.54                                         | 184      | 47.5      |                                         |                        |
| 4:05      | 44.00       | 300          | 15.30                | 0.378       | 9.09            | 6.52                                         | 189      | 33.7      |                                         |                        |
| 4:10      | -           |              |                      |             |                 |                                              |          | * -       | Unfiltered Samp                         | le LMW-12 Collected    |
| 4:15      | İ           | †            | <b>├</b> ── ┦        | '           | '               |                                              | 1        |           | Filtered Sample                         | LMW-12F Collected      |
|           |             | <u> </u>     | <b>├</b> ── '        |             | '               |                                              | <u> </u> |           | Unfiltered Duplic                       | ate LMW-512 Collected  |
|           |             | <u> </u>     | <b>├</b> ──┦         |             | '               | '                                            | <u> </u> |           | Filtered Duplicat                       | e LMW-512F Collected   |
|           |             | <u> </u>     | <b>├</b> ── <i>!</i> |             |                 |                                              | 1        | 1         |                                         |                        |
|           |             |              |                      |             |                 |                                              |          |           |                                         |                        |
|           |             | 1            | +                    |             |                 |                                              |          |           |                                         |                        |
|           |             | <u> </u>     | <b>├</b> ── <i>!</i> |             |                 |                                              | 1        | 1         |                                         |                        |
|           |             |              |                      |             |                 |                                              |          |           | 1/4" (OD) poly a                        | nd 1/4" (OD) poly      |
|           |             |              |                      |             |                 |                                              |          |           | bonded tubing p                         | ut back into the well. |
|           |             |              | <b>!</b>             |             |                 |                                              |          |           | <u> </u>                                |                        |
|           |             |              |                      |             |                 |                                              |          |           |                                         |                        |
|           |             |              |                      |             |                 |                                              | 1        |           |                                         |                        |
|           |             |              |                      |             |                 |                                              |          |           |                                         |                        |
|           |             |              | <b>!</b>             |             |                 |                                              |          |           |                                         |                        |
|           |             | 1            | +                    |             |                 |                                              |          |           |                                         |                        |
|           |             | 1            | +                    |             |                 |                                              |          |           |                                         |                        |
|           |             | 1            | +                    |             |                 |                                              |          |           |                                         |                        |
|           |             | 1            | +                    |             |                 |                                              |          |           |                                         |                        |
|           | İ           | †            | <b>├</b> ── ┦        | '           | '               |                                              | 1        |           |                                         |                        |
|           |             | †            | <b>├</b> ── ┦        |             | '               |                                              | 1        |           |                                         |                        |
|           |             | †            | <b>├</b> ── ┦        |             | '               |                                              | 1        |           |                                         |                        |
|           |             | <u> </u>     | <b>├</b> ── '        |             | '               |                                              |          |           |                                         |                        |
|           |             | <u> </u>     | <b>├</b> ──┦         |             | '               | '                                            |          |           |                                         |                        |
|           | 4           | 1            | <u> </u>             | <u> </u>    | <u> </u>        | <u>ı                                    </u> | <u>I</u> |           | <u> </u>                                |                        |
| ump       | Type:       | QED Bla      | dder Pi              | ımp         |                 |                                              |          |           |                                         |                        |
| ump       | . ,po.      |              |                      | ΠP          |                 |                                              |          |           |                                         |                        |

|                               | SAMD           |                |               | PROJECT                                 | ductrio                                      | - Einich       | ing            |           | PROJECT No.       | SHEET SHEET            |
|-------------------------------|----------------|----------------|---------------|-----------------------------------------|----------------------------------------------|----------------|----------------|-----------|-------------------|------------------------|
|                               | SAIVIE I       |                |               | Liberty in                              | laustria                                     | FILISI         | ing            |           | DATE WELL SAMPLED | I OF I                 |
| <b>Brentw</b>                 | /ood, N        | Y              |               |                                         |                                              |                |                |           | 11/5/2013         |                        |
|                               | FC             |                |               |                                         |                                              |                |                |           | NAME OF INSPECTOR | and Rita Panagian      |
| 11000                         |                |                |               |                                         |                                              |                |                |           | Jotephen Wight    | and mar apagian        |
|                               | ONE WE         | LL VOLUME :    | 9.21          | gallons                                 | V                                            | NELL TD:       | 99.5           | ft        | PUMP INTAKE DE    | :ртн: 95 ft            |
| 1                             | Depth          |                |               | FIE                                     | LD MEAS                                      | SUREME         | NTS            |           |                   |                        |
| Timo                          | to<br>Water    | Purge          | Tomp          | Conduct                                 |                                              |                |                | Turbidity | -                 | DEMADKS                |
| line                          | (ft)           | (mL/min)       | (°C)          | (us/cm)                                 | (mg/L)                                       | рп             | UKF            | (ntu)     |                   | KEMARNO                |
| 14:25                         | 43.02          | (,,            |               | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (5,                                          |                |                | ()        | Static water leve | <u></u>                |
| 14:35                         | 44.08          | 250            | 15.00         | 0.162                                   | 25.36                                        | 6.32           | 115            | 1000      | pump on           |                        |
| 14:45                         | 44.08          | 250            | 14.59         | 0.168                                   | 4.34                                         | 5.96           | 184            | 501       | Dark grey water   |                        |
| 14:55                         | 44.08          | 250            | 14.48         | 0.172                                   | 4.40                                         | 5.93           | 178            | 545       | few sheen blebs   | S                      |
| 15:05                         | 44.08          | 250            | 14.23         | 0.177                                   | 4.50                                         | 5.97           | 173            | 449       |                   |                        |
| 15:15                         | 44.08          | 250            | 14.91         | 0.178                                   | 5.65                                         | 5.92           | 174            | 451       |                   |                        |
| 15:25                         | 44.08          | 250            | 14.16         | 0.179                                   | 5.63                                         | 5.91           | 174            | 471       |                   |                        |
| 15:35                         | 44.08          | 250            | 14.03         | 0.183                                   | 5.89                                         | 5.89           | 175            | 460       |                   |                        |
| 15:55                         | 44.08          | 250            | 14.03         | 0.185                                   | 5.82                                         | 5.88           | 174            | 464       | grey water        |                        |
| 16:05                         | 44.08          | 250            | 14.04         | 0.187                                   | 5.81                                         | 5.70           | 177            | 469       | grey water        |                        |
| 16:10                         | L'             | <u> </u>       |               | <u> </u> '                              | <u>                                     </u> | <u> </u>       | <u> </u>       |           | Unfiltered Samp   | le LMW-14 Collected    |
| 16:15                         | L'             | <u> </u>       |               | <b></b> '                               | <u>                                     </u> | <u> </u>       | <u> </u>       |           | Filtered Sample   | LMW-14F Collected      |
| ]                             | L'             | <u> </u>       |               | <b> </b> '                              | <u> '</u>                                    | <u> </u>       | <u> </u>       |           |                   |                        |
| ]                             | <b>↓</b> '     | <b> </b> '     |               | <b> </b> '                              | <b> </b> '                                   | <b>└──</b> '   | <b>└──</b> '   |           |                   |                        |
| ]                             | ⊢'             | <b>└───</b> '  | <b>└──</b> ┘  | <b> </b> '                              | <b> '</b>                                    | <b>└──</b> ′   | <b>└──</b> ′   |           |                   |                        |
|                               | <b>└───</b> ′  | <b>└───</b> '  | <b>└──</b> ┘  | <b> </b> '                              | <b>└───</b> ′                                | <b>└───</b> '  | <b>└───</b> '  |           |                   |                        |
|                               | ┢────┘         | <b> </b> '     | <b>↓</b> /    | <b> </b> '                              | <b> '</b>                                    | <b> </b> '     | <b> </b> '     |           | 1/4" (UD) poly a  | nd 1/4" (OD) poly      |
|                               | ┢────┘         | <b>┟────</b> ′ | <b>└───</b> ′ | <b> </b> '                              | <b> '</b>                                    | <b>└───</b> ′  | <b>└───</b> ′  |           | bonded tubing p   | ut back into the well. |
|                               | i'             | <b>└────</b> ′ | <b>├</b> ───┦ | '                                       | <b>└───</b> ′                                | <b>└───</b> ′  | <b>└───</b> ′  |           | <u> </u>          |                        |
|                               | i'             | <u> </u>       | <b>├</b> ───┦ | <u> </u> '                              | ┟────┘                                       | ┟────┘         | ┟────┘         |           |                   |                        |
|                               | i'             | <u> </u>       | <b>├</b> ───┦ | ¦'                                      | ┟────┘                                       | ┟────┘         | ┟────┘         |           |                   |                        |
|                               | '              | <b>├</b> ────┤ | <b>├</b> ───┦ | '                                       | <b>├</b> ────′                               | <b>├</b> ────′ | <b>├</b> ────′ |           | 1                 |                        |
| ——                            | '              | <u>├</u> ────┤ | <b>!</b>      |                                         | <b>├</b> ───′                                | '              | '              |           |                   |                        |
| —                             |                | <u>├</u> ───┦  |               | '                                       | <b>├</b> ────┦                               |                |                |           |                   |                        |
| +                             | / <sup>/</sup> | l              |               | '                                       | {!                                           | !              | !              |           |                   |                        |
|                               | ( <b></b> '    |                | <b>!</b>      | <sup> </sup>                            | <b>├</b> ───┤                                |                |                |           |                   |                        |
|                               | ( <b></b>      |                | +             | ľ                                       | <b>├</b> ───                                 |                |                |           |                   |                        |
|                               | (              | +              | <b>!</b>      | '                                       | <b>├</b> ──┤                                 |                |                |           |                   |                        |
|                               | []             | +              | +             | ľ                                       | 1                                            |                |                |           | 1                 |                        |
|                               | []             | +              | +             | ľ                                       | 1                                            |                |                |           | 1                 |                        |
|                               |                | +              | <b> </b>      |                                         |                                              |                |                |           | ĺ                 |                        |
|                               |                | +              |               |                                         |                                              |                |                |           | ĺ                 |                        |
|                               | ['             |                | <b>!</b>      | l l                                     |                                              |                |                |           |                   |                        |
|                               |                |                | <u> </u>      |                                         |                                              |                |                | J         | •                 |                        |
| <sup>-</sup> ump <sup>-</sup> | Type:          | QED Bla        | dder Pu       | ump                                     |                                              |                |                |           |                   |                        |
|                               |                |                |               | •                                       |                                              |                |                |           |                   |                        |

| /ELL :<br>CATION<br>rentwi<br>IENT<br>YSDE                                                                     | SAMPI<br>ood, N<br>C<br>ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64<br>44.64 | LING FOF<br>Y<br>LL VOLUME :<br>Purge<br>Rate<br>(mL/min)<br>250<br>250<br>250<br>250 | 8.94<br>Temp.<br>(°C)<br>15.71<br>13.32 | gallons<br>FIE<br>Conduct.<br>(µs/cm)          | LD MEAS<br>(mg/L)       | VELL TD:<br>SUREME       | 99.5<br>99.5 | ft        | PROJECT NO.<br>60135736<br>DATE WELL SAMPLED<br>11/4/2013<br>NAME OF INSPECTOR<br>Stephen Wright and<br>PUMP INTAKE DEPTH: | sнеет sнее<br><u>1 оғ 1</u><br>I Rita Papagian<br>98 ft |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------|--------------------------|--------------|-----------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| Fime<br>3:25<br>3:30<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                   | ood, N <sup>1</sup><br>C<br>ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64      | Y<br>Purge<br>Rate<br>(mL/min)<br>250<br>250                                          | 8.94<br>Temp.<br>(°C)<br>15.71<br>13.32 | gallons<br>FIE<br>Conduct.<br>(µs/cm)          | LD MEAS<br>DO<br>(mg/L) | VELL TD:<br>SUREME       | 99.5<br>NTS  | ft        | DATE WELL SAMPLED<br>11/4/2013<br>NAME OF INSPECTOR<br>Stephen Wright and<br>PUMP INTAKE DEPTH:                            | I Rita Papagian<br>98 ft                                |  |
| rentwi<br>IENT<br>YSDE<br>3:25<br>3:30<br>3:40<br>3:50<br>4:00<br>4:00<br>4:20                                 | ood, N<br>C<br>ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64          | Y<br>LL VOLUME :<br>Purge<br>Rate<br>(mL/min)<br>250<br>250<br>250                    | 8.94<br>Temp.<br>(°C)<br>15.71<br>13.32 | gallons<br>FIE<br>Conduct.<br>(µs/cm)<br>0.153 | LD MEAS<br>DO<br>(mg/L) | VELL TD:<br>SUREME<br>pH | 99.5<br>INTS | ft        | 11/4/2013<br>NAME OF INSPECTOR<br>Stephen Wright and<br>PUMP INTAKE DEPTH:                                                 | l Rita Papagian<br>98 ft                                |  |
| Fime<br>3:25<br>3:30<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                   | C<br>ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64<br>44.64                    | LL VOLUME :<br>Purge<br>Rate<br>(mL/min)<br>250<br>250<br>250                         | 8.94<br>Temp.<br>(°C)<br>15.71<br>13.32 | gallons<br>FIE<br>Conduct.<br>(µs/cm)          | LD MEAS<br>DO<br>(mg/L) | VELL TD:<br>SUREME<br>pH | 99.5<br>NTS  | ft        | Stephen Wright and                                                                                                         | l Rita Papagian<br>98 ft                                |  |
| Fime<br>3:25<br>3:30<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                   | ONE WE<br>Depth<br>to<br>Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64                                  | Purge<br>Rate<br>(mL/min)<br>250<br>250                                               | 8.94<br>Temp.<br>(°C)<br>15.71<br>13.32 | gallons<br>FIE<br>Conduct.<br>(µs/cm)          | LD MEAS<br>DO<br>(mg/L) | VELL TD:<br>SUREME<br>pH | 99.5<br>NTS  | ft        | PUMP INTAKE DEPTH:                                                                                                         | 98 ft                                                   |  |
| Fime<br>3:25<br>3:30<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                   | Depth<br>to<br>Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64                                            | Purge<br>Rate<br>(mL/min)<br>250<br>250<br>250                                        | Temp.<br>(°C)<br>15.71<br>13.32         | FIE<br>Conduct.<br>(μs/cm)                     | LD MEAS<br>DO<br>(mg/L) | SUREME<br>pH             | NTS          | -         |                                                                                                                            |                                                         |  |
| Sizes           3:25           3:30           3:40           3:50           4:00           4:10           4:20 | to<br>Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64                                                     | Purge<br>Rate<br>(mL/min)<br>250<br>250<br>250                                        | Temp.<br>(°C)<br>15.71<br>13.32         | Conduct.<br>(µs/cm)                            | DO<br>(mg/L)            | рН                       |              |           |                                                                                                                            |                                                         |  |
| Time           3:25           3:30           3:40           3:50           4:00           4:10           4:20  | Water<br>(ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64                                                           | Rate<br>(mL/min)<br>250<br>250<br>250                                                 | Temp.<br>(°C)<br>15.71<br>13.32         | Conduct.<br>(µs/cm)<br>0.153                   | DO<br>(mg/L)            | рН                       |              |           | 1                                                                                                                          |                                                         |  |
| 3:25<br>3:30<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                           | (ft)<br>44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64                                                                    | (mL/min)<br>250<br>250<br>250                                                         | (° <b>C)</b><br>15.71<br>13.32          | (µs/cm)<br>0.153                               | (mg/L)                  |                          | UKP          | Turbidity | REM                                                                                                                        | ARKS                                                    |  |
| 3:25<br>3:30<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                           | 44.63<br>44.63<br>44.63<br>44.63<br>44.64<br>44.64                                                                            | 250<br>250<br>250                                                                     | 15.71<br>13.32                          | 0.153                                          |                         |                          |              | (ntu)     |                                                                                                                            |                                                         |  |
| 3:30<br>3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                                   | 44.63<br>44.63<br>44.63<br>44.64<br>44.64                                                                                     | 250<br>250<br>250                                                                     | 15.71<br>13.32                          | 0.153                                          |                         |                          |              |           | Static water level                                                                                                         |                                                         |  |
| 3:40<br>3:50<br>4:00<br>4:10<br>4:20                                                                           | 44.63<br>44.63<br>44.64<br>44.64                                                                                              | 250<br>250                                                                            | 13.32                                   | 000                                            | 11.34                   | 5.95                     | 208          | 266       | pump on                                                                                                                    |                                                         |  |
| 3:50<br>4:00<br>4:10<br>4:20                                                                                   | 44.63<br>44.64<br>44.64                                                                                                       | 250                                                                                   |                                         | 0.166                                          | 10.54                   | 4.98                     | 345          | 242       |                                                                                                                            |                                                         |  |
| 4:00<br>4:10<br>4:20                                                                                           | 44.64<br>44.64                                                                                                                |                                                                                       | 13.12                                   | 0.167                                          | 10.33                   | 4.98                     | 371          | 113       |                                                                                                                            |                                                         |  |
| 4:10<br>4:20                                                                                                   | 44.64                                                                                                                         | 250                                                                                   | 13.02                                   | 0.168                                          | 14.02                   | 4.98                     | 379          | 80.0      |                                                                                                                            |                                                         |  |
| 4:20                                                                                                           | 1 A C A                                                                                                                       | 250                                                                                   | 13.02                                   | 0.169                                          | 10.21                   | 5.00                     | 384          | 51.2      |                                                                                                                            |                                                         |  |
|                                                                                                                | 44.04                                                                                                                         | 250                                                                                   | 13.02                                   | 0.170                                          | 9.98                    | 5.01                     | 387          | 38.5      | Filtered Sample LM                                                                                                         | W-16F Collected                                         |  |
| 4:30                                                                                                           |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           | Unfiltered Sample L                                                                                                        | MW-16 Collected                                         |  |
| 4:35                                                                                                           |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           | 1/4" (OD) poly and 2                                                                                                       | 1/4" (OD) poly                                          |  |
| $\rightarrow$                                                                                                  |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           | bonded tubing put b                                                                                                        | ack into the well.                                      |  |
| $\rightarrow$                                                                                                  |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| $\rightarrow$                                                                                                  |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| $\rightarrow$                                                                                                  |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| $\rightarrow$                                                                                                  |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| —                                                                                                              |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| —                                                                                                              |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| —                                                                                                              |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| $\rightarrow$                                                                                                  |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| —                                                                                                              |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| $\longrightarrow$                                                                                              |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| $\rightarrow$                                                                                                  |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                |                                                                                                                               |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
|                                                                                                                | Г. <i>и</i> с. <del>с. :</del>                                                                                                |                                                                                       |                                         |                                                |                         |                          |              |           |                                                                                                                            |                                                         |  |
| ump I                                                                                                          | i ype:                                                                                                                        | QED BIa                                                                               | uaer Pu                                 | шр                                             |                         |                          |              |           |                                                                                                                            |                                                         |  |
| aab ('                                                                                                         |                                                                                                                               |                                                                                       | <b>TAL M</b>                            | atala /T · ·                                   |                         |                          | tors IV      |           |                                                                                                                            |                                                         |  |

|                |                | ///        |               |            |          |             |            |           | WELL NO.                | MW-18            |
|----------------|----------------|------------|---------------|------------|----------|-------------|------------|-----------|-------------------------|------------------|
| WELL           | SAMP           |            | RM            | PROJECT    | odustria | I Finish    | ina        |           | PROJECT No.<br>60135736 | SHEET SHEET      |
| OCATION        | 1              |            |               |            | luoina   |             | ing        |           | DATE WELL SAMPLED       |                  |
| Brentw         | <u>/ood, N</u> | Y          |               |            |          |             |            |           | 11/5/2013               |                  |
| NY <u>SD</u> I | EC             |            |               |            |          |             |            |           | Stephen Wright a        | nd Rita Papagian |
|                |                |            | 16.68         | aollone    | · · · ·  |             | 1/8 0      | 4         |                         |                  |
|                | ONE WE         |            | 10.00         | gailons    |          | NELL TD:    | 140.0      | IT        |                         | 'H: 90 п         |
|                | Depth          | Durgo      |               | FIE        | LD MEA   | SUREME      | INTS       |           |                         |                  |
| Time           | Water          | Rate       | Temp.         | Conduct.   | DO       | Ha          | ORP        | Turbidity | RI                      | EMARKS           |
|                | (ft)           | (mL/min)   | (°C)          | (µs/cm)    | (mg/L)   | <b>P</b> ** |            | (ntu)     |                         |                  |
| 10:35          | 45.69          |            |               |            |          |             |            |           | Static water level      |                  |
| 10:40          | 45.69          | 250        | 13.71         | 0.310      | 9.81     | 5.97        | 55         | 7.8       | pump on                 |                  |
| 10:50          | 45.69          | 250        | 13.89         | 0.307      | 8.69     | 5.78        | 84         | 4.2       |                         |                  |
| 11:00          | 45.70          | 250        | 13.96         | 0.306      | 8.52     | 5.82        | 111        | 3.6       |                         |                  |
| 11:10          | 45.70          | 250        | 14.02         | 0.306      | 8.66     | 5.81        | 133        | 3.2       |                         |                  |
| 11:20          | 45.70          | 250        | 13.99         | 0.307      | 8,46     | 5.84        | 140        | 2.9       |                         |                  |
| 11:30          | 45.70          | 250        | 13.97         | 0.307      | 8.40     | 5.86        | 145        | 2.8       |                         |                  |
| 11:30          | <u> </u>       | <b></b> '  | <u> </u>      |            |          |             | <u> </u>   | <u> </u>  | Unfiltered Sample       | LMW-18 Collected |
| 11:35          | <b> </b> '     | <b></b> '  | <u> </u>      | <b></b> '  | <u> </u> | <u> </u>    | <u> </u>   | <u> </u>  | Filtered Sample L       | MW-18F Collected |
|                | <b> </b> '     | <b></b> '  | <b></b> '     | <b></b> '  | Ļ        | <u> </u>    | <u> </u>   | Ļ         |                         |                  |
|                | <b> </b> '     | <b></b> '  | <b></b> '     | <b></b> '  | Ļ        | <u> </u>    | <u> </u>   | Ļ         |                         |                  |
|                | <b> </b> '     | <b> </b> ' | '             | <b></b> '  | <u> </u> | <u> </u>    | <u> </u>   | Ļ         |                         |                  |
|                | <b> </b> '     | <b></b> '  | <b></b> '     | <b></b> '  | Ļ        | <u> </u>    | <u> </u>   | Ļ         |                         |                  |
|                | <b>↓</b> '     | <b> </b> ' | <b> </b> '    | ļ'         |          | <b> </b> '  | <b> </b> ' |           |                         | · ···· · · · · · |
|                | └───'          | <b> </b> ' | <b></b> '     | ļ'         |          | <b> </b> '  | <b> </b> ' |           | 1/4" (OD) poly and      | d 1/4" (OD) poly |
|                | └───'          | <b> </b> ' | <b></b> '     | <b> </b> ' |          | <b> </b> '  | <b> </b> ' | ───       | bonded tubing put       | t back in well.  |
|                | └───'          | <b> </b> ' | <b></b> '     | <b> </b> ' |          | <b> </b> '  | <b> </b> ' | ───       |                         |                  |
|                | └───'          | <b> </b> ' | <b> </b> '    | ļ'         |          | <b></b> '   | <b> </b> ' | ───       | ļ                       |                  |
|                | └───'          | <b> </b> ' | <b> </b> '    | ļ'         |          | <b></b> '   | <b> </b> ' | ───       | <u> </u>                |                  |
|                | └────'         | <b> </b> ' | <b> </b> '    | ļ'         |          | ļ'          | <b> </b> ' | ───       | <u> </u>                |                  |
|                | └────'         | <b> </b> ' | <b> </b> '    | ļ'         |          | ļ'          | <b> </b> ' | ───       | <u> </u>                |                  |
| !              | └────'         | <b> </b> ' | <b> </b> '    | ļ'         |          | ļ'          | <b> </b> ' | ───       | <u> </u>                |                  |
|                | <b>↓</b> '     | <b> </b> ' | <b></b> '     | ļ'         |          | ļ           | <b> </b> ' | <u> </u>  | <b>_</b>                |                  |
|                | <b>↓</b> '     | <b> </b> ' | <b></b> '     | ļ'         |          | ļ'          | <b> </b> ' | <b></b>   | <b>_</b>                |                  |
|                | <b>└───</b> '  | <b> </b> ' | <b></b> '     | <b></b> '  |          | <b> </b> '  | <b> </b> ' |           | <b> </b>                |                  |
|                | <b>└───</b> '  | <b> </b> ' | <b></b> '     | <b></b> '  |          | <b> </b> '  | <b> </b> ' |           | <b> </b>                |                  |
|                | <b> </b> '     | <b> </b> ' | <b></b> '     | ļ'         |          | <b> </b> '  | <b> </b> ' |           | <b> </b>                |                  |
|                | <b>└───</b> '  | <b> </b> ' | <b></b> '     | <b></b> '  |          | ļ'          | <b> </b> ' | <b> </b>  | <b> </b>                |                  |
|                | <b>└───</b> '  | <b> </b> ' | <b></b> '     | <b></b> '  |          | <b> </b> '  | <b> </b> ' |           | <b> </b>                |                  |
| !              | <b> '</b>      | <b> </b> ' | <b></b> '     | <b> </b> ' | ──       | <b> </b> '  | <b> </b> ' | <b> </b>  | <b> </b>                |                  |
|                | <b> </b> '     | <b> </b> ' | <b></b> '     | ļ'         |          | <b> </b> '  | <b> </b> ' |           | <b> </b>                |                  |
|                | <b> </b> '     | <b> </b> ' | <b></b> '     | ļ'         |          | <b> </b> '  | <b> </b> ' | ───       | <b> </b>                |                  |
|                | <b> '</b>      | <b> </b> ' | <b> </b> '    | <b> </b> ' | ───      | <b> </b> '  | <b> </b> ' | ───       | <u> </u>                |                  |
|                |                | <u> </u>   | <u> </u>      | <u> </u>   |          |             |            | <u> </u>  |                         |                  |
| <b>D</b>       | <b>T</b>       |            | J-Jan Di      |            |          |             |            |           |                         |                  |
| Pump           | Type.          | QED Dia    | daer Pu       | ımp        |          |             |            |           |                         |                  |
| م<br>ماريد ^   | - al Dar       | toro       | <b>T</b> AL N | -tela (Tel | اممد احا | 드 이상 드:     | ltered)    |           |                         |                  |
| Anaiyu         | Carran         | ameters.   |               | etais (100 |          | Fleiu Fi    | ilereu)    |           |                         |                  |

| WELL<br>OCATION<br>Brentv<br>LIENT<br>VYSD | <b>SAMP</b><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | LING FO                                      | RM                                           | PROJECT    |               |           |           |           | PROJECT No.          | SHEET SHEET        |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------|---------------|-----------|-----------|-----------|----------------------|--------------------|
| OCATION<br>Brentv<br>LIENT<br>VYSD         | <u>/ood, N</u><br>EC                                                                                       | V                                            |                                              |            | idustria      | I Finish  | ina       |           | 60135736             |                    |
|                                            | <u>vood, N</u><br>EC                                                                                       | v                                            |                                              |            | luusina       |           | ing       |           | DATE WELL SAMPLED    |                    |
| NYSD                                       | EC                                                                                                         | <u>I</u>                                     |                                              |            |               |           |           |           | 11/5/2013            |                    |
| Time                                       |                                                                                                            |                                              |                                              |            |               |           |           |           | Stephen Wright and   | I Rita Papagian    |
| Time                                       |                                                                                                            |                                              | 1111                                         | aallone    |               |           | 265.0     | 4         |                      | 255 ft             |
| Time                                       | ONE WE                                                                                                     |                                              | 144.4                                        | gailons    | ،<br>         | NELL ID:  | 200.0     | IL        | PUMP IN LAKE DEPTH:  | 200 ft             |
| <b>T</b> :                                 | Depth                                                                                                      | Durgo                                        |                                              | FIE        | LD MEAS       | SUREME    | INTS      |           |                      |                    |
| ime                                        | Water                                                                                                      | Rate                                         | Temp.                                        | Conduct.   | DO            | Ha        | ORP       | Turbidity | REM                  | IARKS              |
|                                            | (ft)                                                                                                       | (mL/min)                                     | (°C)                                         | (µs/cm)    | (mg/L)        |           |           | (ntu)     |                      |                    |
| 10:40                                      | 43.90                                                                                                      |                                              | <u> </u>                                     |            |               | Ē         | Ē         |           | Static water level   |                    |
| 10:45                                      | 44.52                                                                                                      | 750                                          | 13.10                                        | 0.192      | 10.71         | 6.15      | 243       | 11.0      | pump on              |                    |
| 10:55                                      | 44.52                                                                                                      | 750                                          | 13.41                                        | 0.190      | 3.33          | 5.99      | 244       | 9.4       | <u> </u>             |                    |
| 11:05                                      | 44.52                                                                                                      | 750                                          | 13.51                                        | 0.189      | 2.53          | 5.99      | 242       | 8.2       | <b> </b>             |                    |
| 11:15                                      | 44.52                                                                                                      | 750                                          | 13.50                                        | 0.189      | 2.55          | 5.94      | 241       | 8.9       |                      | -                  |
| 11:25                                      | 44.52                                                                                                      | 750                                          | 13.47                                        | 0.100      | 3.01          | 5.91      | 250       | 7.1       | <u> </u>             |                    |
| 11.30                                      | 44.52                                                                                                      | 100                                          | 12.93                                        | 0.165      | 2.49          | 5.90      | 200       | 1.9       | Lunfiltered Sample I | MM/-19 Collected   |
| 11.40                                      | ┟────┘                                                                                                     | <b> </b> '                                   | <b>├</b> ───┦                                | ╂────      | <b> </b> '    | ───       | ───       | ╂────     | Filtered Sample I M  | MV-19 Collected    |
| 11.40                                      | <b>├</b> ────′                                                                                             | <b> </b> '                                   | ┟────┦                                       | ┣────      | <b> </b> '    | ┣────     | ┣────     | ┣────     |                      |                    |
|                                            | <b> </b> '                                                                                                 | <b> </b> '                                   | <b>├───</b> ┦                                | ┢────      | '             | ├───      | ├───      | <u> </u>  | +                    |                    |
|                                            | <b>├</b> ───┦                                                                                              | '                                            | ┟───┦                                        | <u> </u>   | <b>├</b> ───′ | ├───      | ├───      | <u> </u>  | 1                    |                    |
|                                            | ┢───┦                                                                                                      |                                              | ┟───┦                                        | <u> </u>   | ├────         | ├───      | ├───      | <u> </u>  | <u>+</u>             |                    |
|                                            |                                                                                                            |                                              | <b>├</b> ── <b>/</b>                         | <u> </u>   | 1             | <u> </u>  | <u> </u>  |           | 1                    |                    |
|                                            |                                                                                                            |                                              |                                              |            |               |           |           |           | 1                    |                    |
|                                            |                                                                                                            |                                              |                                              |            |               |           |           |           | <u> </u>             |                    |
|                                            |                                                                                                            |                                              |                                              |            |               |           |           |           | 1/4" (OD) poly and 1 | I/4" (OD) poly     |
|                                            |                                                                                                            |                                              |                                              |            |               |           |           |           | bonded tubing would  | d not go back into |
|                                            |                                                                                                            |                                              |                                              |            |               |           |           |           | well, discarded      |                    |
|                                            | <u> </u>                                                                                                   |                                              | <u>[                                    </u> | $\square$  | <b></b> '     | $\square$ | $\square$ |           |                      |                    |
|                                            | <u> '</u>                                                                                                  | <b></b> '                                    | <u> </u>                                     | <u> </u>   | <u> </u>      | <u> </u>  | <u> </u>  | <u> </u>  |                      |                    |
|                                            | <b>↓</b> '                                                                                                 | <b> </b> '                                   | <b>↓</b> ′                                   | Ļ          | <b> </b> '    |           |           | <b> </b>  |                      |                    |
|                                            | <b>└───</b> ′                                                                                              | <b> </b> '                                   | ļ'                                           | <b> </b>   | <b> </b> '    |           |           | <b> </b>  | <u> </u>             |                    |
|                                            | <b> '</b>                                                                                                  | <b> </b> '                                   | <b>↓</b> ′                                   |            | <b> </b> '    |           |           | <b> </b>  | <b> </b>             |                    |
|                                            | ┟────┘                                                                                                     | <b> </b> '                                   | ───′                                         | ───        | <b> </b> '    | ──        | ──        | ───       |                      |                    |
|                                            | ───┘                                                                                                       | <b> </b> '                                   | <b> </b> !                                   | ───        | <b> </b> '    | ┣───      | ┣───      | <b> </b>  | <u> </u>             |                    |
|                                            | ┟────┘                                                                                                     | <b> </b> '                                   | ┟───┦                                        | <b> </b>   | <b> </b> '    | ──        | ──        | <b> </b>  | <u> </u>             |                    |
|                                            | ┟────┘                                                                                                     | <b> </b> '                                   | <b>∤</b> ───┦                                | ╂────      | <b> </b> '    | ╂────     | ╂────     | <b> </b>  | +                    |                    |
|                                            | <b>├</b> ────'                                                                                             | '                                            | ┨────┦                                       | ├───       | '             | ├───      | ├───      | <u> </u>  | +                    |                    |
|                                            | <b>├</b> ───┦                                                                                              | '                                            | ┟───┦                                        | <u> </u>   | <b> </b> '    | ├───      | ├───      | <u> </u>  | 1                    |                    |
|                                            | ┢────┦                                                                                                     |                                              | ┟───┦                                        | <u> </u>   | ├────         | ├───      | ├───      | <u> </u>  | <u>+</u>             |                    |
|                                            |                                                                                                            |                                              | <b>├</b> ──┦                                 |            | '             |           |           |           | +                    |                    |
|                                            |                                                                                                            |                                              | <b>├</b> ──┦                                 | <u> </u>   |               | <b> </b>  | <b> </b>  |           | 1                    |                    |
|                                            | ·                                                                                                          | <u>.                                    </u> | <u> </u>                                     | <u> </u>   |               | L         | L         |           |                      |                    |
| Pump                                       | Type:                                                                                                      | QED Bla                                      | dder Pu                                      | ump, High  | ı pressı      | ire com   | presso    | r,        |                      |                    |
|                                            |                                                                                                            |                                              |                                              | -          | •             |           |           |           |                      |                    |
| Analyti                                    | cal Par                                                                                                    | ameters:                                     | TAL M                                        | etals (Tot | al and l      | Field Fi  | ltered)   |           |                      |                    |

| Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product         Product <t< th=""><th></th><th></th><th>//1</th><th></th><th></th><th></th><th></th><th></th><th></th><th>WELL NO.</th><th>MW-20</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             | //1          |          |                       |            |           |          |           | WELL NO.                                                                   | MW-20              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|----------|-----------------------|------------|-----------|----------|-----------|----------------------------------------------------------------------------|--------------------|
| Determine         Date well same of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                       | WELL    | SAMP        |              | RM       | PROJECT<br>Liberty Ir | odustria   | l Finish  | lina     |           | PROJECT No.<br>60135736                                                    | SHEET SHE          |
| Brentwood, NY         111/5/2013           NAME OF INSPECTOR         Stephen Wright and Rita Papagi           ONE WELL VOLUME:         10.88 gallons         well to:         110.0 ft         Pump INTAKE DEPTH:         108 ft           Time         Water         Rate         Temp.         Conduct.         DO         pH         ORP         Turbidity         REMARKS           13:55         43:24         250         15.27         0.289         12.54         5.89         198         3.4         pump on           14:10         43:24         250         15.27         0.289         18.64         5.86         215         0.1           14:20         43:24         250         14.68         0.291         8.80         5.88         222         0.0           14:40         43:24         250         14.72         0.291         8.80         5.86         235         0.0           15:00         14.77         0.291         8.81         5.86         237         0.0           15:00         14.75         0.291         8.81         5.86         237         0.0         Unfiltered Sample LMW-20 Colit           15:00         14.75         0.291         8.81         5.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OCATION | 1           |              |          |                       |            | 11 11101. | ing      |           | DATE WELL SAMPLED                                                          |                    |
| New YSDEC           Time water building and the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple of the purple                                                                | Brentw  | /ood, N     | <u>Y</u>     |          |                       |            |           |          |           | 11/5/2013                                                                  |                    |
| DNE WELL VOLUME:         10.88 gallons         WELTO:         110.0 ft         PUMP WTAKE DEPTH:         108 ft           Time         Water         Rate         Temp.         Conduct.         D0         pH         OR         Turbidity         REMARKS           13:55         43.24            Static water level         14:10         15.27         0.289         12.54         5.89         198         3.4         pump on         14:10         43.24         250         15.27         0.289         8.64         5.86         215         0.1         14:10         43.24         250         15.06         0.289         8.64         5.86         225         0.0         14:44         43.24         250         14.68         0.291         8.85         5.86         223         0.0         14:50         43.24         250         14.72         0.291         8.85         5.86         235         0.0         15:00         14:32         43.24         250         14.75         0.291         8.85         5.86         235         0.0         114:50         14:47         (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NYSDI   | EC          |              |          |                       |            |           |          |           | Stephen Wright a                                                           | and Rita Papagian  |
| Depth to         Purge (R)         Temp. (c)         Conduct. (ws/cm) (mg/L)         PH         ORP         Turbidity (ntu)         REMARKS           13:55         43:24         250         15:27         0.289         12:54         5.89         198         3.4         purp on           14:10         43:24         250         15:27         0.289         9.95         5.87         207         1.5           14:20         43:24         250         15:21         0.289         9.86         5.86         215         0.1         1.41:30         43:24         250         14:80         0.291         8.80         5.86         235         0.0         1.4:80         43:24         250         14.78         0.291         8.85         5.86         235         0.0         1.4:50         43:24         250         14.75         0.291         8.85         5.86         235         0.0         1.5:00         1.4:75         0.291         8.81         5.86         235         0.0         1.5:00         1.4:75         0.291         8.81         5.86         235         0.0         1.6:0         1.4''' (OD) poly and 1/4''' (OD) poly and 1/4''' (OD) pol         1.4'''' (OD) pol y and 1/4'''' (OD) pol y and 1/4'''' (OD) pol y and 1/4''' (OD) pol y and 1/4'''' (OD) pol y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _       | ONE WE      | ELL VOLUME : | 10.88    | gallons               |            | WELL TD:  | 110.0    | ft        | PUMP INTAKE DEP                                                            | тн: 108 ft         |
| to<br>(ft)         Purge<br>(ft)         Tamp.<br>(ft)         Conduct.<br>(gs/cm)         DO<br>(mg/L)         PH         ORP         Turbidity         REMARKS           13:55         43.24         -         -         -         Static water level           14:10         43.24         250         15.27         0.289         12.54         5.89         198         3.4         pump on           14:10         43.24         250         15.21         0.289         8.64         5.86         215         0.1           14:30         43.24         250         14.85         0.291         8.80         5.88         221         0.0           14:40         43.24         250         14.75         0.291         8.81         5.88         235         0.0           14:50         43.24         250         14.75         0.291         8.81         5.86         237         0.0           15:00         43.24         250         14.75         0.291         8.81         5.86         237         0.0           15:00         -         -         -         -         -         -         -         -           15:00         -         -         -         - </td <td></td> <td>Depth</td> <td>_</td> <td></td> <td>FIE</td> <td>LD MEA</td> <td>SUREME</td> <td>INTS</td> <td></td> <td><u> </u></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Depth       | _            |          | FIE                   | LD MEA     | SUREME    | INTS     |           | <u> </u>                                                                   |                    |
| Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite       Inite <thinite< th=""> <thinite< th=""> <thin< td=""><td>Timo</td><td>to<br/>Water</td><td>Purge</td><td>Tomp</td><td>Conduct</td><td></td><td>nH</td><td></td><td>Turbidity</td><td></td><td>EMARKS</td></thin<></thinite<></thinite<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Timo    | to<br>Water | Purge        | Tomp     | Conduct               |            | nH        |          | Turbidity |                                                                            | EMARKS             |
| 13:55       43:24       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time    | (ft)        | (mL/min)     | (°C)     | (us/cm)               | (ma/L)     | рп        | UKF      | (ntu)     | ĸ                                                                          | EWARKS             |
| 14:00       43.24       250       15.27       0.289       12.54       5.89       198       3.4       pump on         14:10       43.24       250       15.06       0.289       8.64       5.86       215       0.1         14:20       43.24       250       14.85       0.291       8.80       5.86       215       0.1         14:30       43.24       250       14.68       0.291       8.80       5.86       235       0.0         14:40       43.24       250       14.75       0.291       8.81       5.86       235       0.0         14:50       43.24       250       14.75       0.291       8.81       5.86       235       0.0         15:00       43.24       250       14.75       0.291       8.81       5.86       235       0.0         15:00       14.75       0.291       8.81       5.86       237       0.0       1         15:00       14.75       0.291       8.81       5.86       237       0.0       1         15:00       14.75       0.291       8.81       5.86       237       0.0       1         15:00       14.75       0.291       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13:55   | 43.24       |              |          | /                     | <u>, ,</u> |           |          |           | Static water level                                                         |                    |
| 14:10       43.24       250       15.21       0.289       9.95       5.87       207       1.5         14:20       43.24       250       15.06       0.289       8.64       5.86       215       0.1         14:30       43.24       250       14.85       0.291       8.80       5.88       222       0.0         14:40       43.24       250       14.68       0.291       8.80       5.88       235       0.0         14:50       43.24       250       14.75       0.291       8.85       5.86       235       0.0         15:00       14.75       0.291       8.81       5.86       237       0.0       10         15:00       14.75       0.291       8.81       5.86       237       0.0       10         15:00       14.75       0.291       8.81       5.86       237       0.0       10         15:00       14.72       0.291       8.81       5.86       237       0.0       10         15:00       14.72       0.291       8.81       5.86       237       0.0       14" (OD) poly and 1/4" (OD) pol         15:00       14.72       14.72       14.72       14.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14:00   | 43.24       | 250          | 15.27    | 0.289                 | 12.54      | 5.89      | 198      | 3.4       | pump on                                                                    |                    |
| 14:20       43.24       250       15.06       0.289       8.64       5.86       215       0.1         14:30       43.24       250       14.68       0.291       8.80       5.88       222       0.0         14:40       43.24       250       14.68       0.291       8.80       5.88       222       0.0         14:40       43.24       250       14.75       0.291       8.85       5.86       235       0.0         15:00       43.24       250       14.75       0.291       8.81       5.86       235       0.0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       14.75       0.291       8.81       5.86       237       0.0       1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (OD) poly and 1/4" (DD) poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14:10   | 43.24       | 250          | 15.21    | 0.289                 | 9.95       | 5.87      | 207      | 1.5       | ľ.                                                                         |                    |
| 14:30       43.24       250       14.85       0.291       8.80       5.88       222       0.0         14:40       43.24       250       14.72       0.291       8.85       5.89       231       0.0         14:50       43.24       250       14.72       0.291       8.85       5.86       235       0.0         15:00       43.24       250       14.75       0.291       8.85       5.86       237       0.0         15:00       43.24       250       14.75       0.291       8.81       5.86       237       0.0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       14.75       0.291       8.81       5.86       237       0.0       0         15:00       1/4"(OD) poly and 1/4" (OD) poly and 1/4" (DD) poly and 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14:20   | 43.24       | 250          | 15.06    | 0.289                 | 8.64       | 5.86      | 215      | 0.1       |                                                                            |                    |
| 14:40       43.24       250       14.68       0.291       9.53       5.89       231       0.0         14:50       43.24       250       14.75       0.291       8.85       5.86       235       0.0         15:00       43.24       250       14.75       0.291       8.85       5.86       235       0.0         15:00       43.24       250       14.75       0.291       8.81       5.86       237       0.0         15:00       14.75       0.291       8.81       5.86       237       0.0       1         15:00       14.75       0.291       8.81       5.86       237       0.0       1         15:05       14.75       14.75       0.291       8.81       5.86       237       0.0         15:05       14.75       14.75       14.77       14.77       14.77       14.77       0.91         15:05       14.75       14.77       14.77       14.77       14.77       0.91       14.77       0.91       14.77       0.91       14.77       0.91       14.77       0.91       14.77       0.91       14.77       0.91       14.77       0.91       14.77       0.91       14.77 <td< td=""><td>14:30</td><td>43.24</td><td>250</td><td>14.85</td><td>0.291</td><td>8.80</td><td>5.88</td><td>222</td><td>0.0</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14:30   | 43.24       | 250          | 14.85    | 0.291                 | 8.80       | 5.88      | 222      | 0.0       |                                                                            |                    |
| 14:50       43.24       250       14.72       0.291       8.85       5.86       235       0.0         15:00       43.24       250       14.75       0.291       8.81       5.86       237       0.0         15:00       -       -       -       -       -       -       Unfiltered Sample LMW-20 Colle         15:00       -       -       -       -       -       -       -       -         15:00       -       -       -       -       -       -       -       -         15:00       -       -       -       -       -       -       -       -         15:00       -       -       -       -       -       -       -       -         15:00       -       -       -       -       -       -       -       -         15:00       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td>14:40</td><td>43.24</td><td>250</td><td>14.68</td><td>0.291</td><td>9.53</td><td>5.89</td><td>231</td><td>0.0</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14:40   | 43.24       | 250          | 14.68    | 0.291                 | 9.53       | 5.89      | 231      | 0.0       |                                                                            |                    |
| 15:00       43.24       250       14.75       0.291       8.81       5.86       237       0.0         15:00       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s                                                                                                                                | 14:50   | 43.24       | 250          | 14.72    | 0.291                 | 8.85       | 5.86      | 235      | 0.0       |                                                                            |                    |
| 15:00       Unfiltered Sample LMW-20 Colle         15:05       Filtered Sample LMW-20 Colle         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I       I         I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15:00   | 43.24       | 250          | 14.75    | 0.291                 | 8.81       | 5.86      | 237      | 0.0       |                                                                            |                    |
| 15:05       Image: Constraint of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state                               | 15:00   |             |              |          |                       |            |           |          |           | Unfiltered Sample                                                          | e LMW-20 Collected |
| Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                     | 15:05   |             |              |          |                       |            |           |          |           | Filtered Sample L                                                          | MW-20F Collected   |
| Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                     |         |             |              |          |                       |            |           |          |           |                                                                            |                    |
| Image: Control of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat                     |         |             |              |          |                       |            |           |          |           | 1/4" (OD) poly an                                                          | d 1/4" (OD) poly   |
| Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:                     |         |             |              |          |                       |            |           |          |           | 1/4" (OD) poly and 1/4" (OD) poly<br>bonded tubing put back into the well. |                    |
| Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:                     |         |             |              |          |                       |            |           |          |           |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <u> </u>    |              |          |                       |            |           |          |           |                                                                            |                    |
| Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:                     |         | <u> </u>    |              |          |                       |            |           |          |           |                                                                            |                    |
| Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:                     |         | <b></b> '   |              |          |                       |            |           |          |           |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b></b> '   |              |          |                       |            |           |          |           |                                                                            |                    |
| Image: Sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector                     |         | <b></b> '   |              |          |                       |            |           |          |           |                                                                            |                    |
| Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second                     |         | <b></b> '   |              |          |                       |            |           |          |           |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b></b> '   |              | <u> </u> |                       |            |           | <u> </u> | <u> </u>  |                                                                            |                    |
| Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |         | <b></b> '   |              | <u> </u> |                       |            |           | <u> </u> | <u> </u>  |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b> </b> '  | Ļ            | <u> </u> | $\square$             | <u> </u>   | Ļ         | <u> </u> | ļ         |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b> </b> '  | Ļ            | <u> </u> | $\square$             | <u> </u>   | Ļ         | <u> </u> | ļ         |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b></b> '   |              |          |                       |            |           |          |           |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b> </b> '  | Ļ            | <u> </u> | $\square$             | <u> </u>   | Ļ         | <u> </u> | ļ         |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b></b> '   |              | <u> </u> |                       |            |           | <u> </u> | <u> </u>  |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b></b> '   |              | <u> </u> |                       | <u> </u>   |           | <u> </u> | <u> </u>  |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b></b> '   |              | <u> </u> |                       | <u> </u>   |           | <u> </u> | <u> </u>  |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b> </b> '  | Ļ            | <u> </u> | $\square$             | <u> </u>   | Ļ         | <u> </u> | ļ         |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b> </b> '  | Ļ            | <u> </u> | $\square$             | <u> </u>   | Ļ         | <u> </u> | ļ         |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b> </b> '  | Ļ            | <u> </u> | $\square$             | <u> </u>   | Ļ         | <u> </u> | ļ         |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <b> </b> '  | <b> </b>     | ļ'       | <b> </b>              |            | └───      | ļ'       | ļ         |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | <u> </u>    |              |          |                       | <u> </u>   | <u> </u>  |          |           |                                                                            |                    |
| Pump Type: QED Bladder Pump, High pressure compressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | _           |              |          |                       |            |           |          |           |                                                                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump    | Туре:       | QED Bla      | dder Pu  | ump, High             | i pressi   | ire com   | presso   | r         |                                                                            |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |             |              |          |                       |            |           |          |           |                                                                            |                    |
| Analytical Parameters: TAL Metals (Total and Field Filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analyti | cal Par     | ameters:     | I AL M   | etals (1 ot           | al and I   | Field Fi  | Itered)  |           |                                                                            |                    |

|                    |               |             |         |            |              |          |         |           | WELL NO.                                                                   | MW-21           |  |
|--------------------|---------------|-------------|---------|------------|--------------|----------|---------|-----------|----------------------------------------------------------------------------|-----------------|--|
| WELL               | SAMP          | LING FOI    | RM      | Liberty In | dustria      | l Finish | ing     |           | 60135736                                                                   | SHEET SHEETS    |  |
| LOCATION<br>Brentw | ı<br>/ood, N  | Y           |         |            |              |          |         |           | DATE WELL SAMPLED<br>11/5/2013                                             |                 |  |
| NYSDI              | EC            |             |         |            |              |          |         |           | Stephen Wright and                                                         | l Rita Papagian |  |
|                    | ONE WE        | LL VOLUME : | 16.92   | gallons    | ١            | WELL TD: | 147.0   | ft        | PUMP INTAKE DEPTH:                                                         | 144 ft          |  |
|                    | Depth         | Durgo       |         | FIE        | LD MEA       | SUREME   | NTS     |           |                                                                            |                 |  |
| Time               | Water<br>(ft) | Rate        | Temp.   | Conduct.   | DO<br>(mg/l) | рН       | ORP     | Turbidity | REN                                                                        | IARKS           |  |
| 12:40              | 43.20         | (//)        | ( 0)    | (µ3/011)   | (iiig/L)     |          |         | (inta)    | Static water level                                                         |                 |  |
| 12:45              | 43.20         | 200         | 17.63   | 0.001      | 14.11        | 5.41     | 136     | 188       | pump on                                                                    |                 |  |
| 12:55              | 43.21         | 200         | 15.52   | 0.257      | 9.20         | 5.96     | 176     | 222       |                                                                            |                 |  |
| 13:05              | 43.21         | 200         | 15.40   | 0.251      | 9.02         | 5.88     | 192     | 71.2      |                                                                            |                 |  |
| 13:15              | 43.21         | 200         | 15.72   | 0.249      | 8.92         | 5.88     | 198     | 48.5      |                                                                            |                 |  |
| 13:25              | 43.21         | 200         | 15.88   | 0.244      | 10.55        | 5.86     | 201     | 25.9      |                                                                            |                 |  |
| 13:35              | 43.21         | 200         | 16.11   | 0.241      | 9.02         | 5.86     | 207     | 18.7      |                                                                            |                 |  |
| 13:45              | 43.21         | 200         | 16.15   | 0.239      | 9.31         | 5.86     | 211     | 17.7      |                                                                            |                 |  |
| 13:45              |               |             |         |            |              |          |         |           | Unfiltered Sample L                                                        | MW-21 Collected |  |
| 13:50              |               |             |         |            |              |          |         |           | Filtered Sample LM                                                         | W-21F Collected |  |
|                    |               |             |         |            |              |          |         |           | 1/4" (OD) poly and (                                                       | 1/4" (OD) poly  |  |
|                    |               |             |         |            |              |          |         |           | 1/4" (OD) poly and 1/4" (OD) poly<br>bonded tubing put back into the well. |                 |  |
|                    |               |             |         |            |              |          |         |           | bonded tubing put back into the well.                                      |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
|                    |               |             |         |            |              |          |         |           |                                                                            |                 |  |
| Pump               | Type:         | QED Bla     | dder Pu | Imp        |              |          |         |           |                                                                            |                 |  |
| Analyti            | cal Par       | ameters:    | TAL M   | etals (Tot | al and I     | Field Fi | ltered) |           |                                                                            |                 |  |