

June 4, 2024

CORPORATE HEADQUARTERS
640 Johnson Avenue
Suite 101
Bohemia, NY 11716
631-737-6200
Fax 631-737-2410

Ms. Jasmine Stefansky Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7013

Re:

Groundwater Monitoring Report – Re-revised Liberty Industrial Finishing Site, NYSDEC #152108 500-550 Suffolk Avenue, Brentwood, NY FPM File #1389g-22-03

Dear Jasmine:

FPM Group, Ltd. (FPM) has prepared this report on behalf of 550 Liberty Plaza, LLC to document the August 28, 2023 groundwater monitoring activities at the above-referenced Site conducted in accordance with recent correspondence from the New York State Department of Environmental Conservation (NYSDEC). The original report dated November 22, 2023 was first revised based on NYSDEC comments received on March 12, 2024, and was revised again based on NYSDEC comments received on May 23, 2024. The locations of the recently-installed onsite wells used for long-term groundwater monitoring are denoted in red on the attached Figure 1. The groundwater monitoring procedures and results are documented below. Procedures were in general accordance with the recently-updated Site Management Plan (SMP), which is pending NYSDEC approval, and associated documents, and all monitoring work was performed by FPM environmental professionals (EPs).

Wells MW-2A, MW-3A, MW-4A MW-7A and MW-17A were installed in April 2023 as replacements for wells MW-02, MW-03, MW-04, MW-07 and MW-17, respectively. The former wells had been damaged during Site redevelopment. The replacement wells were installed in close proximity to and with the same screened intervals as the wells they replaced, as documented in our June 26, 2023 well installation report.

Groundwater Monitoring Procedures

FPM EPs conducted groundwater monitoring on August 28, 2023 in coordination with the NYSDEC's contractor that conducts offsite groundwater monitoring. Each well was observed to be intact and secured, with no indications of damage or tampering. The depth to the static water level and depth of each well were measured to the nearest 0.01 foot with a decontaminated interface probe and the measurements were recorded on well sampling forms, copies of which are included in Attachment A. The potential presence of non-aqueous-phase liquid (NAPL) was also assessed and no NAPL was identified. The minimum volume of groundwater to be purged was calculated and purging was conducted using a decontaminated stainless steel submersible pump with dedicated HDPE tubing. Purging was conducted until the turbidity level was well below 25 NTU as the NYSDEC had directed that the samples not be filtered.

Following the removal of each well volume, field parameters, including pH, turbidity, specific conductivity, and temperature, were monitored and recorded. When all stability parameters varied by less than 10 percent between the removal of successive well volumes, and the turbidity was well below 25 NTU, the

well was sampled. Well purging water was examined and no visible indications suggestive of potential contamination were noted. The purged groundwater was discharged to the ground surface adjacent to the well from which the water was derived and allowed to infiltrate, in accordance with the SMP.

Samples for per- and polyfluoroalkyl substances (PFAS) were obtained before any other sampling was performed. PFAS samples were obtained using only dedicated disposable HDPE tubing. The retrieved samples were decanted into laboratory-supplied sample containers that were sealed, labeled, managed, transported, and tracked as described below.

Following the completion of PFAS sampling, and after those samples were properly secured, the wells were each sampled first for 1,4-dioxane, followed by sampling for Target Analyte List (TAL) metals. Samples for all analyses were obtained directly from the pump using the HDPE tubing. These samples were also obtained, containerized, labeled and managed under chain of custody procedures and in accordance with laboratory recommendations, as described below.

Each sample was collected into laboratory-provided containers, which were labeled as to the sample name, date and time of sampling, sampler initials, and analyses to be performed. The filled sample containers were placed into a cooler with ice and a chain of custody form was completed to document the sequence of sample custody. Samples to be tested for PFAS were managed in a separate cooler from the other samples. At the end of the sampling event, the filled coolers were transported to FPM's office for pickup by a laboratory courier.

Quality assurance/quality control (QA/QC) samples were also collected in accordance with the SMP. QA/QC samples included one blind duplicate sample, one matrix spike/matrix spike duplicate (MS/MSD) sample, and one equipment blank sample.

The groundwater and QA/QC samples were managed under chain of custody and transmitted to Eurofins Edison, NJ lab, which is New York State Department of Health ELAP-certified for the analyses that were performed. The samples were tested for TAL metals, including mercury, 1,4-dioxane, and PFAS, as required in the updated SMP. The lab data were provided to FPM in Category B deliverables, together with information needed for upload to the NYSDEC's data management system.

FPM reviewed the laboratory data packages and compared the groundwater sample results to the NYSDEC's Class GA Ambient Water Quality Standards (Standards). FPM also prepared Data Usability Summary Reports (DUSRs) to evaluate data quality, as required in the SMP. As documented in the DUSRs (Attachment B), no significant issues were identified with data quality and the data can be relied on for their intended purpose. The sample information is in the process of being uploaded to the NYSDEC's EIMS.

Groundwater Monitoring Results

Groundwater Flow Direction

The depth to groundwater and previously-surveyed top of casing elevations were integrated to calculate the water table elevations or, in the case of MW-17A, the potentiometric surface elevation. These data are listed on Table 1 and shown graphically on Figure 2. The groundwater flow direction for the water table aquifer is to the south-southeast, consistent with prior groundwater flow direction determinations. The horizontal hydraulic gradient is calculated as 0.00017, which is also consistent with prior gradients.

A comparison of the water levels for paired wells MW-7A and MW-17A shows that the vertical direction of groundwater flow is downward from the water table toward deeper portions of the aquifer. The vertical hydraulic gradient is calculated as -0.00013, which is also generally consistent with prior measurements.

Groundwater Quality

The sample results for metals and 1,4-dioxane from this monitoring event are presented on Table 2 and are compared to the NYSDEC Standards. The results for the metals of interest for this Site (cadmium, chromium, copper, nickel, and zinc) are noted in red type on this table and exceedances of the NYSDEC Standards are noted by gray shading. Data from prior monitoring events extending back to 2011 are also shown on Table 2 for comparison purposes (note: prior data for MW-7 and MW-17 are available for 2018 and 2019 only). The data from the August 2023 monitoring event are shown on Figure 3, together with the data provided by EA for the offsite monitoring wells.

The following observations were noted for metals:

- For MW-2A/MW-2, no Site-related metals were detected above the Standards in 2023, 2019, 2018 or 2015. Iron was detected above its Standard in 2023 but not in filtered samples collected in prior years. These results indicate that the well MW-2A/MW-2 location is not in the present footprint of the Site-related groundwater plume.
- For MW-3A/MW-3 no Site-related metals were detected above Standards in 2023. Sodium (not Site-related) was detected above its Standard in 2023. In 2019 chromium (Site-related), iron, and sodium were detected above their Standards. Cadmium and/or chromium were detected above NYSDEC Standards in filtered samples collected in 2017 and prior years. These results indicate that the well MW-3A/MW-3 location was previously in the Site-related groundwater plume, but MW-3A is not presently located in the plume.
- For MW-4A/MW-4, cadmium (Site-related), chromium (Site-related), and sodium (not Site-related) were detected in 2023 above the Standards. Cadmium and/or chromium were detected above Standards in well MW-4 in 2019 and prior years. These results indicate that the well MW-4A/MW-4 location is in the Site-related groundwater plume; the levels of Site-related metals have remained relatively constant between 2011 and 2023.
- For MW-7A/MW-7, sodium (not Site-related) was the only metal detected in 2023 above the Standards. Iron and sodium were detected above Standards in former well MW-7 in 2019 and no exceedances were detected in 2018. These results indicate that the well MW-7A/MW-7 location, which is on the north side of the Site upgradient of historical Site operations, is not within the Site-related groundwater plume. The results from MW-7/MW-7A are indicative of the quality of shallow groundwater migrating onto the Site.
- For MW-17A/MW-17, beryllium, iron, manganese, and sodium (not Site-related metals) were the only metals detected in 2023 above the Standards. Cadmium (Site-related), manganese, and sodium were detected above Standards in the filtered sample from former well MW-17 in 2019; cadmium was not detected above its Standard in the filtered sample from MW-17 in 2018. The well MW-17A/MW-17 location is on the north edge of the Site and upgradient of historical Site operations and the Site-related groundwater plume. The MW-17/MW-17A results are indicative of the quality of deeper groundwater migrating onto the Site.

The following observations were noted for 1,4-dioxane:

• None of the groundwater samples contained detectable concentrations of 1,4-dioxane.

The sample results for PFAS are presented on Table 3 and are compared to current (April 2023) NYSDEC Guidance. PFAS detections are noted in bold type and exceedances of the current NYSDEC Guidance values are highlighted in yellow. The following observations were noted for PFAS compounds:

- PFOS and PFOA were detected in both upgradient wells, including the water table well MW-7A and the deeper well MW-17A, at levels above NYSDEC Guidance. PFOS concentrations ranged from 4.54 to 9.07 nanograms per liter (ng/l) and PFOA concentrations ranged from 10.7 to 17.7 ng/l in these wells.
- PFOS and PFOA were detected in all the downgradient wells (MW-2A through MW-4A), with nearly all the detections exceeding NYSDEC Guidance. PFOS concentrations ranged from 30.4 ng/l in MW-2A to 392 ng/l in MW-4A and are higher in these wells than in the upgradient wells. PFOA concentrations in these wells are comparable to but slightly lower than the concentrations in the upgradient wells, with 10.6 ng/l detected in MW-2A and 10.5 ng/l detected in MW-4A.
- Other PFAS compounds, including PFBA, PFBS, PFHpA, PFHxS, PFHxA, and PFPeA, were
 detected in nearly all the wells, with comparable concentrations detected in both the upgradient
 and downgradient wells.

Collectively, these results demonstrate that PFAS compounds are present in onsite groundwater both upgradient and downgradient of the historic operations area and are present in both shallow and deeper groundwater. PFOS and PFOA were detected in both upgradient wells, including the water table well MW-7A and the deeper well MW-17A, at levels above NYSDEC Guidance. The concentrations of PFOS and PFOA exceed NYSDEC Guidance in both the upgradient and downgradient wells, although the concentrations of PFOS are higher in the downgradient wells than in the upgradient wells. The PFOS concentrations are highest at MW-4A, which also exhibited the highest concentrations of Site-related metals.

Discussion

1,4-dioxane was not detected in any of the upgradient or downgradient wells at this Site and does not appear to present a concern at this Site. Continued monitoring for 1,4-dioxane is not anticipated to provide any useful information to assess Site-related groundwater impacts.

For MW-2 the following observations and conclusions are noted:

• The historic results (2013 and prior) show occasional detections of cadmium just above its NYSDEC Standard of 5 ug/l and/or chromium just above its NYSDEC Standard of 50 ug/l. None of the historic detections of copper, nickel or zinc exceeded Standards. There have been no detections of Site-related metals in this well from 2015 to present. Based on these observations, continued monitoring at the MW-2/MW-2A location is not anticipated to provide any further useful information to assess Site-related groundwater impacts.

For MW-3 the following observations and conclusions were noted:

There have been no exceedances of the NYSDEC Standards for copper, nickel, or zinc in this
well from 2011 to the present. Cadmium was detected in 2016 and 2017 in filtered samples at
levels just above the NYSDEC Standard, but was below the Standard in prior filtered samples.
Although chromium was detected above its Standard in filtered samples during several sampling

events between 2012 and 2015, only one detection above Standards (56 ug/l in 2019) has been reported for filtered samples since 2015. Based on these observations, Site-related cadmium and chromium impacts formerly detected in this well had decreased to below or just above Standards by 2018/2019 and the current data show no exceedances for these metals. Continued monitoring at the MW-3/MW-3A location is anticipated to provide only limited information to define the eastern lateral extent of groundwater impacts from Site-related metals.

For MW-4 the following observations and conclusions were noted:

• There have been no exceedances of the NYSDEC Standards for copper, nickel or zinc from 2011 to the present. Cadmium was detected in filtered samples during the 2011 to 2019 sampling events at levels above the NYSDEC Standard (11 to 83 ug/l); the 2023 result (90.6 ug/l) is similar. Chromium was detected in 2023 and in some of the historic sampling events in filtered samples at levels somewhat above its Standard. There does not appear to be any discernable trend in the chromium levels, which have ranged from non-detect to 142 ug/l in filtered samples. Based on these observations, Site-related cadmium and chromium impacts remain present in this well at levels above Standards and have not changed appreciably since 2011. Monitoring of this well should be continued to assess groundwater impacts from Site-related metals.

For MW-7A the following observations and conclusions were noted:

 Site-related metals have not been detected above Standards in this well, which is on the north side of the Site upgradient of historical Site operations and not within the Site-related groundwater plume. The results from this well are indicative of the quality of shallow groundwater migrating onto the Site.

For MW-17A the following observations and conclusions were noted:

• No Site-related metals were detected above the Standards in 2023. Cadmium was detected above its Standard in 2019 in the filtered sample from former well MW-17 but was not detected above its Standard in the filtered sample in 2018. The MW-17A/MW-17 well location is on the north side of the Site and upgradient of historical Site operations. Based on its location, well MW-17/MW-17A is not within the Site-related groundwater plume and the results are indicative of the quality of deeper groundwater migrating onto the Site.

Conclusions and Recommendations

Site-related metals impacts remain present at the MW-4/MW-4A location and, to a lesser extent, at the MW-3/MW-3A location. PFOS and PFOA are present in the onsite groundwater at levels above current NYSDEC Guidance in both upgradient and downgradient groundwater. The concentrations of PFOS, PFOA, and other PFAS compounds are similar at both the upgradient and downgradient wells, except for PFOS at MW-3A and MW-4A where somewhat higher concentrations were noted. 1,4-dioxane was not detected in any of the onsite monitoring wells.

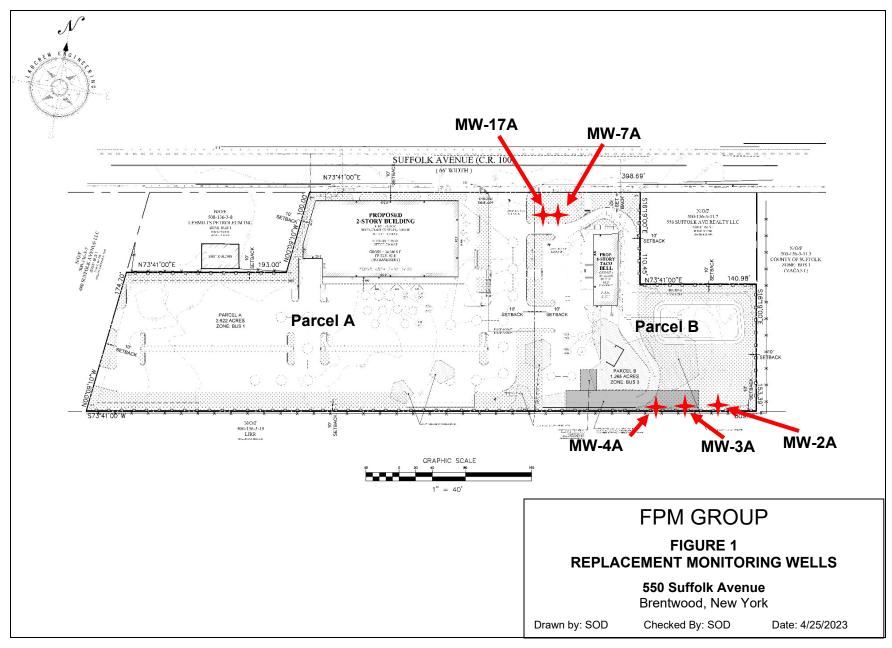
We note that the remaining source area has been capped since 2001 (over 20 years). The cap was recently removed for redevelopment, additional source soil was removed and disposed, and the cap was re-established during construction. These activities do not appear to have resulted in any significant changes to groundwater conditions.

Based on the foregoing, we recommend the following:

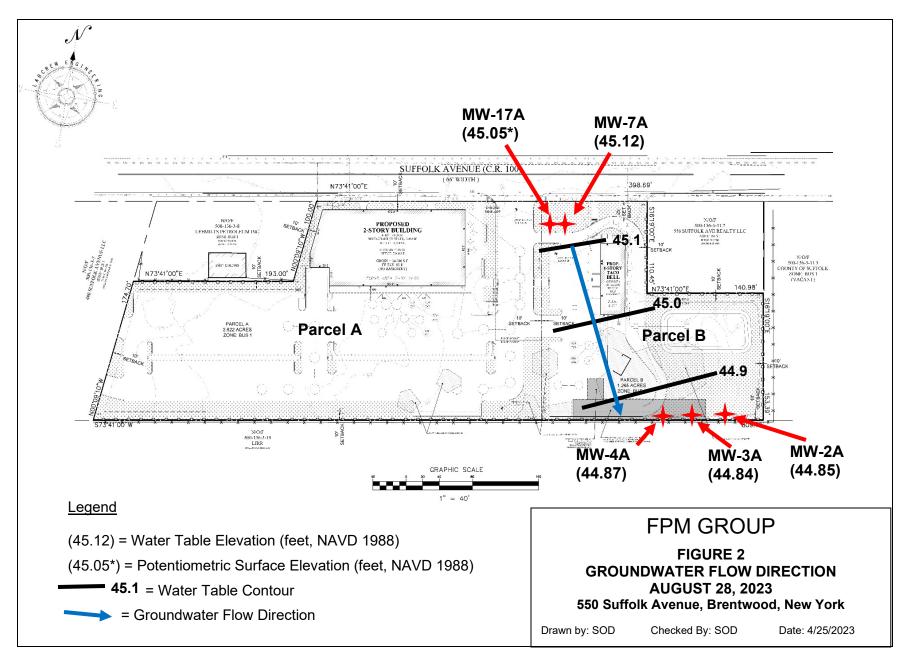
- Monitoring for 1,4-dioxane should be discontinued for this Site as this constituent was not detected in any of the onsite monitoring wells. Continued sampling for this constituent is not anticipated to provide any useful information and will require resources that could otherwise be conserved.
- Monitoring at well MW-2A should be discontinued. Site-related metals impacts formerly detected at low levels at this location have not been present above applicable regulatory criteria from 2015 to the present. The most recent exceedances of the NYSDEC Standards noted for Site-related metals in this well were for chromium in 2013 and cadmium in 2011. PFAS detections are comparable to, or just slightly higher than, the levels observed in the upgradient wells. Continued monitoring at MW-2A location is not anticipated to provide any further useful information to assess Site-related groundwater impacts and will require resources that could otherwise be conserved. As a contingency, monitoring at well MW-2A should be restarted if Site-related metals are detected in nearby well MW-3A above Standards.
- One additional round of monitoring should be performed at the deeper upgradient well MW-17A
 to confirm the 2023 results. If the results continue to show no exceedances of the NYSDEC
 Standards for Site-related metals, then monitoring should be discontinued. The data obtained
 from the shallow well in this area provides sufficient information to assess upgradient groundwater
 quality in the zone of interest. Providing the 2023 results are confirmed, continued monitoring at
 MW-17A location is not anticipated to provide any further useful information to assess the quality
 of groundwater that is migrating onto the Site and will require resources that could otherwise be
 conserved.
- Monitoring for Site-related metals and for PFAS should be continued at the shallow upgradient
 well (MW-7A) and the shallow downgradient wells MW-3A and MW-4A. Site-related impacts
 remain present in these downgradient wells and the monitoring data are anticipated to provide
 useful information to assess the nature and extent of the remaining onsite impacts, evaluate
 changes in Site-related groundwater conditions over time, and provide water quality information
 upgradient of the offsite plume.

If you have any questions, please contact me at (631) 737-6200, ext. 528.

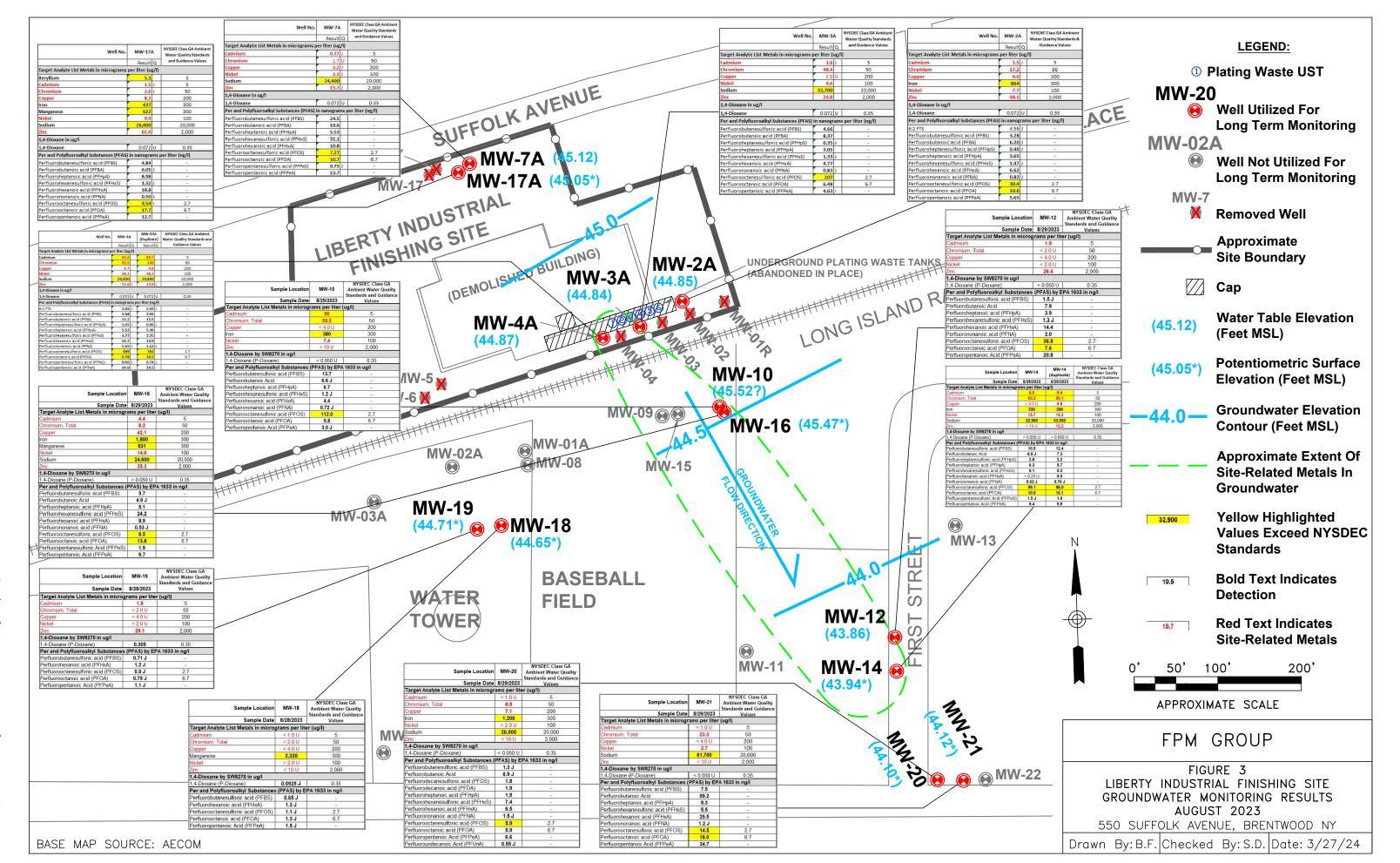
Very truly yours,


Stephanie O. Davis, PG Senior Project Manager

Vice President


Cc: Aaron Daniels and Cristina Mendez, 550 Liberty Plaza, LLC

Attachments SOD/sod



H:\EAST HAMPTON AIRPORT\RI_FS\FIGURE 3 240603.dwg, 6/4/2024 10:27:07 AM, AutoCAD PDF (High Quality Print).F

Table 1
Well Construction and Depth to Water Data
Liberty Industrial Finishing Site, #152108
500-550 Suffolk Avenue, Brentwood, NY

Well No.	Latitude	Longitude	Top of Manhole Elevation	Top of Casing Elevation	Total Well Depth (feet below TOC)	Well Screen Interval (feet below TOC)	Well Diameter (inches)	Screen Slot Size (inches)	Initial Depth to Water (feet below TOC) April 2023	Depth to Water (feet below TOC) August 28, 2023	Water Table Elevation* (feet) August 28, 2023
MW-2A	40° 46' 43.44" N	73° 15' 13.15" W	92.53	92.26	55.12	35 to 55	2	0.02	46.88	47.41	44.85
MW-3A	40° 46' 43.33" N	73° 15' 13.46" W	92.62	92.29	55.20	35 to 55	2	0.02	46.93	47.45	44.84
MW-4A	40° 46' 43.24" N	73° 15' 13.73" W	92.31	91.98	54.51	35 to 55	2	0.02	46.59	47.11	44.87
MW-7A	40° 46' 44.95" N	73° 15' 16.27" W	93.21	92.93	54.87	35 to 55	2	0.02	47.36	47.81	45.12
MW-17A	40° 46' 44.91" N	73° 15' 16.42" W	93.26	93.01	99.21	90 to 100	2	0.02	52.45	47.96	45.05

Notes:

TOC = Top of casing

Elevations based on NAVD 1988

^{*} MW-17A is not a water table well and the water table elevation noted is actually a potentiometric surface elevation.

Table 2
Groundwater Chemical Analytical Results - MW-2/MW-2A
Liberty Industrial Finishing Site
May 2011 Through August 2023 Sampling Events

Sample Location								M\	N-2							MW-2A
Wel Depth (feet)	NYSDEC Class GA Ambient Water Quality							54	1.2							55
Sampling Date:	Standards (1)	5/26,	/2011	8/23,	/2012	11/16	6/2013	3/18	/2015	9/13/	/2017	11/14	/2018	12/9,	/2019	8/28/2023
Sample Type:	Standards	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered
Target Analyte L	ist Metals by USEPA	A Method 601	l0 in ug/L													
Aluminum	NS	118 B	ND	602	ND	ND	ND	1,200	ND	ND	ND	ND	ND	ND	ND	37.8 J
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.48 U
Arsenic	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 U
Barium	1000	44.6 B	44.9 B	39.8 B	31.9 B	ND	ND	34.6 U								
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12 U
Cadmium	5	ND	5.5	3.5 B	2.7 B	ND	ND	ND	ND	2.9	3.2	ND	ND	ND	ND	1.5 J
Calcium	NS	16,300	16,700	20,400	21,500	30,000	29,000	16,000	15,000	32,000	34,000	22,000	21,000	23,000	25,000	31,900
Chromium	50	51.9	48.2	26.7	12.0 B	62.0	59.0	ND	ND	ND	ND	ND	ND	ND	ND	17.2
Cobalt	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.0 J
Copper	200	ND	ND	14.4 B	4.2 B	ND	ND	4.9								
Iron	300	205	ND	853	ND	ND	ND	1,700	ND	ND	ND	ND	ND	ND	ND	864
Lead	25	ND	ND	ND	ND	ND	ND	10.0	ND	ND	ND	ND	ND	ND	ND	0.42 U
Magnesium	35000	3,180	3,250	3,720	3,870	ND	ND	ND	ND	5,500	5,800	ND	ND	ND	ND	4,210
Manganese	300	ND	ND	17.7 B	ND	ND	ND	26.4								
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.091 U
Nickel	100	ND	2.7 B	4.6 B	3.3 B	ND	ND	7.7								
Potassium	NS	2,720	2,610	1,710 E	1,660	ND	ND	2,600								
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.43 U
Sliver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 U
Sodium	20000	21,300	22,400	21,400	22,900	15,000	16,000	9,600	9,700	25,000	26,000	14,000	14,000	9,400	10,000	19,900
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19 U
Vanadium	NS	ND	ND	1.4 B	ND	ND	ND	1.0 U								
Zinc	2000	ND	24.8	51.0	26.1 B	ND	ND	48.1								
1,4-Dioxane by N	Method 8270E SIM	ID in ug/l											•			
1,4-Dioxane	0.35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.072 U

Notes:

(1) 6NYCRR Part 703.5 GA Groundwater Quality Standards (GQS) and Guidance Values (GV) 6/1998

NS - No Standard

ND - Not Detected

B- Estimated Value

Groundwater Contaminant of Concern

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

BOLD values exceed NYSDEC Standards.

BOLD shaded values are Site-related metals that exceed NYSDEC Standards.

Table 2 (Continued)

Groundwater Chemical Analytical Results - MW-3/MW-3A

Liberty Industrial Finishing Site

May 2011 Through August 2023 Sampling Events

Sample Location									M	N-3								MW-3A
Well Depth (feet)	NYSDEC Class GA								5:	3.9								55
Sampling Date:	Ambient Water Quality Standards (1)	5/26,	/2011	8/23/	/2012	11/14	/2013	3/18/	/2015	5/11,	/2016	9/13/	/2017	11/14	1/2018	12/9,	/2019	8/28/2023
Sample Type:		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered
Target Analyte List N	detals by USEPA Me	thod 6010 in	ug/L															
Aluminum	NS	346	ND	360	ND	470	ND	1,400	ND	330	ND	240	ND	730	ND	ND	ND	11.7 U
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.48 U
Arsenic	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 U
Barium	1000	19.1 B	18.1 B	28.9 B	27.9 B	ND	ND	ND	ND	ND	ND	ND	ND	65	ND	ND	ND	45.7
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12 U
Cadmium	5	6.6	4.6 B	3.0 B	2.8 B	4.7	3.5	4.2	2.4	ND	5.8	9.6	8.5	5.0	3.8	2.7	ND	1.6 J
Calcium	NS	16,900	16,800	28,600	29,400	29,000	27,000	16,000	16,000	26,000	25,000	23,000	23,000	17,000	16,000	23,000	24,000	34,000
Chromium	50	59.6	32.6	118	103	140	95.0	170	61.0	97.0	ND	67.0	ND	52.0	ND	57.0	56.0	48.4
Cobalt	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.81 J
Copper	200	45.5	11.7 B	14.2 B	6.5 B	ND	ND	ND	ND	ND	ND	ND	ND	58.0	ND	ND	ND	2.0 U
Iron	300	462	ND	414	45.4 B	650	ND	1,800	ND	700	ND	350	ND	1,000	ND	430	370	275
Lead	25	14.1	ND	ND	ND	8.5	ND	18.0	ND	7.2	ND	3.9	ND	12.0	ND	ND	ND	0.42 U
Magnesium	35000	2,710	2,760	5,100	5,180	ND	ND	5,480										
Manganese	300	11.8 B	ND	ND	ND	14.2												
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.091 U
Nickel	100	ND	4.3 B	3.8 B	3.4 B	ND	ND	4.6										
Potassium	NS	1,950	1,770	2,560 E	2,480	ND	ND	3,130										
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.43 U
Sliver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 U
Sodium	20000	12,400	13,200	30,800	31,000	38,000	35,000	24,000	26,000	26,000	25,000	32,000	33,000	25,000	23,000	35,000	36,000	32,700
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19 U
Vanadium	NS	1.4 B	ND	1.1 B	ND	ND	ND	1.0 U										
Zinc	2000	54.9	40.4 B	19.6 B	19.3 B	ND	ND	61.0	ND	ND	ND	ND	ND	ND	63.0	ND	ND	24.8
1,4-Dioxane by Meth	1	ug/l	·			T			T		I	1		1	I	1		
1,4-Dioxane	0.35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.072 U

(1) 6NYCRR Part 703.5 GA Groundwater Quality Standards (GQS) and Guidance Values (GV) 6/1998

NS - No Standard

ND - Not Detected

B- Estimated Value

Groundwater Contaminant of Concern

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

BOLD values exceed NYSDEC Standards.

BOLD shaded values are Site-related metals that exceed NYSDEC Standards.

Table 2 (Continued) Groundwater Chemical Analytical Results - MW-4/MWW-4A Liberty Industrial Finishing Site

May 2011 Through August 2023 Sampling Events

Sample Location								MV	N-4							MW-4A	MW-44A (duplicate)
Well Depth (feet)	NYSDEC Class GA Ambient Water							53	3.4							55	55
Sampling Date:	Quality Standards (1)	5/26,	/2011	8/23,	/2012	11/4	/2013	3/18,	/2015	9/13	/2017	11/14	/2018	12/9	/2019	8/28/	2023
Sample Type:		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfilt	ered
Target Analyte Lis	t Metals by USEPA M	ethod 6010 in u	ıg/L														
Aluminum	NS	2,560	ND	1,980	1,130	310	ND	2,200	ND	360	ND	1,400	ND	940	330	35.0 J	32.3 J
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.48 U	0.48 U
Arsenic	25	4.8 B	ND	6.4 B	ND	ND	ND	1.2 U	1.2 U								
Barium	1000	27.1 B	13.2 B	22.8 B	21.6 B	ND	ND	40.7	39.7								
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12 U	0.12 U
Cadmium	5	54.2	19.8	28.2	27.3	26.0	21.0	20.0	11.0	95.0	80.0	98.0	83.0	47.0	46.0	90.6	89.7
Calcium	NS	14,200	12,300	18,700	19,600	33,000	30,000	8,400	8,300	24,000	23,000	33,000	29,000	25,000	25,000	37,100	37,400
Chromium	50	176	142	74.9	58.7	ND	ND	53.0	ND	110	90.0	100	ND	110	85.0	99.5	100
Cobalt	NS	3.3 B	2.6 B	0.73 B	ND	ND	ND	1.1 J	1.1 J								
Copper	200	ND	43.5	69.7	58.9	ND	ND	60.0	ND	ND	ND	110	56.0	61.0	ND	4.7	4.8
Iron	300	2,660	109 B	2,000	1,110	320	ND	2,200	ND	430	ND	1,400	340	1,100	380	263	264
Lead	25	43.2	ND	15.5	9.8 B	ND	ND	22.0	ND	4.3	ND	15.0	3.1	11.0	4.5	0.42 U	0.42 U
Magnesium	35000	1,710	1,270	2,770	2,870	ND	ND	4,360	4,350								
Manganese	300	47.1 B	12.3 B	18.4 B	14.4 B	ND	ND	19.7	19.9								
Mercury	0.7	0.036 B	ND	ND	ND	0.091 U	0.091 U										
Nickel	100	ND	12.8 B	17.5 B	15.8 B	ND	ND	38.1	38.2								
Potassium	NS	6,600	6,790	2,340 E	2,460	ND	ND	ND	ND	ND	5,000	6,300	5,100	6,600	6,700	6,150	6,230
Selenium	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.52 J	0.57 J
Sliver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 U	1.3 U
Sodium	20000	26,100	29,100	13,400	14,400	21,000	21,000	ND	ND	8,900 J	12,000 J	9,600	8,300	12,000	13,000	29,400	29,800
Thallium	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19 U	0.19 U
Vanadium	NS	7.0 B	1.2 B	4.9 B	3.2 B	ND	ND	1.0 U	1.0 U								
Zinc	2000	97	109	257	220	160	130	220	97.0	180	140	430	260	240	180	15.6 J	13.9 J
	ethod 8270E SIM ID i	n ug/l	<u> </u>				1		<u> </u>				1				
1,4-Dioxane	0.35	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.072 U	0.072 U

Notes

(1) 6NYCRR Part 703.5 GA Groundwater Quality Standards (GQS) and Guidance Values (GV) 6/1998

NS - No Standard ND - Not Detected

B- Estimated Value

Groundwater Contaminant of Concern

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

BOLD values exceed NYSDEC Standards.

BOLD shaded values are Site-related metals that exceed NYSDEC Standards.

Table 2 (Continued)

Groundwater Chemical Analytical Results - MW-7/MW-7A

Liberty Industrial Finishing Site

May 2011 Through August 2023 Sampling Events

Sample Location			M	W-7		MW-7A
Well Depth (feet)	NYSDEC Class GA Ambient		5	55		55
Sampling Date:	Water Quality Standards (1)	11/13	3/2018	12/9	/2019	8/28/2023
Sample Type:		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered
Target Analyte List N	Metals by USEPA Method	l 6010 in ug/L				
Aluminum	NS	390	ND	660	250	123
Antimony	3	ND	ND	ND	ND	0.48 U
Arsenic	25	ND	ND	ND	ND	1.2 U
Barium	1000	ND	ND	63	59	69.5
Beryllium	3	ND	ND	ND	ND	0.28 J
Cadmium	5	2.2	ND	2.9	ND	0.77 J
Calcium	NS	13,000	11,000	31,000	31,000	16,700
Chromium	50	ND	ND	ND	ND	1.7 U
Cobalt	NS	ND	ND	ND	ND	0.64 J
Copper	200	ND	ND	ND	ND	2.2 J
Iron	300	ND	ND	960	420	28.5 J
Lead	25	ND	ND	4.4	ND	0.42 U
Magnesium	35000	ND	ND	ND	ND	3,130
Manganese	300	ND	ND	ND	ND	67.4
Mercury	0.7	ND	ND	ND	ND	0.091 U
Nickel	100	ND	ND	ND	ND	2.3 J
Potassium	NS	ND	ND	ND	ND	2,960
Selenium	10	ND	ND	ND	ND	0.43 U
Sliver	50	ND	ND	ND	ND	1.3 U
Sodium	20000	18,000	16,000	88,000	87,000	24,400
Thallium	0.5	ND	ND	ND	ND	0.19 U
Vanadium	NS	ND	ND	ND	ND	1.0 U
Zinc	2000	ND	ND	ND	ND	15.7 J
1,4-Dioxane by Meth	hod 8270E SIM ID in ug/l					
1,4-Dioxane	0.35	-	-	-	-	0.072 U

Notes:

(1) 6NYCRR Part 703.5 GA Groundwater Quality Standards (GQS) and Guidance Values (GV) 6/1998

NS - No Standard

ND - Not Detected

B- Estimated Value

 $\textbf{BOLD} \ \text{values exceed NYSDEC Standards}.$

 $\textbf{BOLD} \ \text{shaded values are Site-related metals that exceed NYSDEC Standards}.$

Groundwater Contaminant of Concern

Table 2 (Continued)

Groundwater Chemical Analytical Results - MW-17/MW-17A

Liberty Industrial Finishing Site

May 2011 Through August 2023 Sampling Events

Sample Location			MV	V-17		MW-17A
Well Depth (feet)	NYSDEC Class GA Ambient		ġ	99		100
Sampling Date:	Water Quality Standards (1)	11/13	3/2018	12/10	0/2019	8/28/2023
Sample Type:		Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered
Target Analyte List I	Metals by USEPA Method	d 6010 in ug/L				
Aluminum	NS	5,700	ND	2,700	290	1,420
Antimony	3	ND	ND	ND	ND	0.48 U
Arsenic	25	2.9	ND	ND	ND	1.2 U
Barium	1000	75	53	210	200	263
Beryllium	3	ND	ND	1.3	ND	5.3
Cadmium	5	25	3.6	13	11	1.5 J
Calcium	NS	31,000	32,000	48,000	49,000	19,800
Chromium	50	ND	ND	55	ND	2.6 J
Cobalt	NS	2.8	ND	3	ND	2.3 J
Copper	200	ND	ND	ND	ND	8.3
Iron	300	7,700	1,800	3,500	ND	437
Lead	25	49	3.2	19	ND	0.63 J
Magnesium	35000	ND	ND	5,800	5,700	2,980
Manganese	300	930	940	1,100	1,100	622
Mercury	0.7	ND	ND	ND	ND	0.091 U
Nickel	100	ND	ND	ND	ND	9.9
Potassium	NS	6,500	6,400	7,300	7,400	5,280
Selenium	10	ND	ND	ND	ND	0.43 U
Sliver	50	ND	ND	ND	ND	1.3 U
Sodium	20000	23,000	24,000	27,000	27,000	26,400
Thallium	0.5	ND	ND	ND	ND	0.19 U
Vanadium	NS	ND	ND	ND	ND	1.0 U
Zinc	2000	600	260	480	350	61.4
1,4-Dioxane by Met	hod 8270E SIM ID in ug/l					
1,4-Dioxane	0.35	-	-	-	-	0.072 U

Notes:

(1) 6NYCRR Part 703.5 GA Groundwater Quality Standards (GQS) and Guidance Values (GV) 6/1998

NS - No Standard

ND - Not Detected

B- Estimated Value

 $\textbf{BOLD} \ \text{values exceed NYSDEC Standards}.$

 $\textbf{BOLD} \ \text{shaded values are Site-related metals that exceed NYSDEC Standards}.$

Groundwater Contaminant of Concern

TABLE 3

GROUNDWATER CHEMICAL ANALYTICAL RESULTS - PFAS LIBERTY INDUSTRIAL FINISHING SITE ONSITE WELLS AUGUST 28, 2023

Client ID	MW-2 460-2871		MW-3.		MW-4 460-2871			/-4A 37159-3	MW-44A (duplica 460-287159-4	nte)	MW-7.4		MW-7A 460-28715		MW-1 460-287		EB0828 (equip		NYSDEC Class GA Ambient Water Quality Guidance
Lab Sample 10	Result Q	MDL	Result Q	MDL	Result Q	MDL		Q MDL	Result Q MDL		Result Q	MDL	Secondary 1 Q	MDL	Result Q	MDL	Result Q		Values
Per and Polyfluoroalkyl Substances (PFA					Result	IVIDL	Secondary 1	Q IVIDE	Result Q IVIDE	· <u> </u>	Result	IVIDL	Secondary 1 Q	IVIDL	Result Q	IVIDE	Result	IVIDL	
11CI-PF3OUdS	1.76 U	1.76	1.73 U	1.73	1.69 U	1.69			1.68 U 1.68		1.69 U F1	1.69			1.70 U	1.70	1.71 U	1.71	_
3:3 FTCA	1.32 U	1.32	1.30 U	1.30	1.27 U	1.27	_		1.26 U 1.26		1.27 U	1.27	_		1.28 U	1.28	1.28 U	1.28	-
4,8-Dioxa-3H-perfluorononanoic acid																			
(ADONA)	1.32 U	1.32	1.30 U	1.30	1.27 U	1.27	-		1.26 U 1.26		1.27 U	1.27	-		1.28 U	1.28	1.28 U	1.28	-
4:2 FTS	1.49 U	1.49	1.47 U	1.47	1.44 U	1.44	-		1.43 U 1.43		1.44 U	1.44	-		1.45 U	1.45	1.45 U	1.45	-
5:3 FTCA	8.78 U	8.78	8.65 U	8.65	8.47 U	8.47	-		8.39 U 8.39		8.46 U	8.46	-		8.52 U	8.52	8.56 U	8.56	-
6:2 FTS	4.56 J	2.19	2.16 U	2.16	3.32 J	2.12	-		2.43 J 2.10		2.12 U	2.12	-		2.13 U	2.13	2.14 U	2.14	-
7:3 FTCA	8.78 U	8.78	8.65 U	8.65	8.47 U	8.47	-		8.39 U 8.39		8.46 U	8.46	-		8.52 U	8.52	8.56 U	8.56	-
8:2 FTS	2.28 U	2.28	2.25 U	2.25	2.20 U	2.20	-		2.18 U 2.18		2.20 U	2.20	-		2.22 U	2.22	2.22 U	2.22	-
9CI-PF3ONS	0.88 U	0.88	0.87 U	0.87	0.85 U	0.85	-		0.84 U 0.84		0.85 U F1	0.85	-		0.85 U	0.85	0.86 U	0.86	-
HFPO-DA (GenX)	1.76 U	1.76	1.73 U	1.73	1.69 U	1.69	-		1.68 U 1.68		1.69 U	1.69	-		1.70 U	1.70	1.71 U	1.71	-
NEtFOSA	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-
NEtFOSAA	0.61 U	0.61	0.61 U	0.61	0.59 U	0.59	-		0.59 U 0.59		0.59 U	0.59	-		0.60 U	0.60	0.60 U	0.60	-
NEtFOSE	4.39 U	4.39	4.33 U	4.33	4.24 U	4.24	20.7	J H 20.7	4.20 U 4.20		4.23 U	4.23	49.3 U H	49.3	4.26 U	4.26	4.28 U	4.28	-
NFDHA	0.88 U	0.88	0.87 U	0.87	0.85 U	0.85	-		0.84 U 0.84		0.85 U	0.85	-		0.85 U	0.85	0.86 U	0.86	-
NMeFOSA	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-
NMeFOSAA	1.05 U	1.05	1.04 U	1.04	1.02 U	1.02	-		1.01 U 1.01		1.02 U	1.02	11.8 U H	11.8	1.02 U	1.02	1.03 U	1.03	-
NMeFOSE	4.39 U	4.39	4.33 U	4.33	4.24 U	4.24	-		4.20 U 4.20		4.23 U	4.23	49.3 U H	49.3	4.26 U	4.26	4.28 U	4.28	-
Perfluorobutanesulfonic acid (PFBS)	3.28	0.26	4.66	0.26	3.58	0.25	-		3.94 0.25		24.5	0.25	-		4.84	0.26	0.26 U	0.26	-
Perfluorobutanoic acid (PFBA)	6.20 J	1.76	8.37	1.73	15.2	1.69	-		15.5 1.68		19.6	1.69	-		6.05 J	1.70	1.71 U	1.71	-
Perfluorodecanesulfonic acid (PFDS)	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U F1	0.42	4.93 U H	4.93	0.43 U	0.43	0.43 U	0.43	-
Perfluorodecanoic acid (PFDA)	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-
Perfluorododecanesulfonic acid (PFDoS)	0.79 U	0.79	0.78 U	0.78	0.76 U	0.76	-		0.76 U 0.76		0.76 U F1	0.76	8.88 U H	8.88	0.77 U	0.77	0.77 U	0.77	-
Perfluorododecanoic acid (PFDoA)	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-
Perfluoroheptanesulfonic acid (PFHpS)	0.40 J	0.35	0.35 J	0.35	1.05 J	0.34	-		0.96 J 0.34		0.34 U F1	0.34	3.94 U H	3.94	0.34 U	0.34	0.34 U	0.34	-
Perfluoroheptanoic acid (PFHpA)	3.65	0.46	3.05	0.45	5.52	0.44	-		5.36 0.44		5.53	0.44	-		8.98	0.44	0.44 U	0.44	-
Perfluorohexanesulfonic acid (PFHxS)	1.47 J	0.50	1.33 J	0.49	3.77	0.48	-		3.35 0.48		31.1	0.48	-		1.32 J	0.49	0.49 U	0.49	-
Perfluorohexanoic acid (PFHxA)	6.62	0.44	4.77	0.43	14.7	0.42	-		13.9 0.42		10.8	0.42	-		18.8	0.43	0.43 U	0.43	-
Perfluorononanesulfonic acid (PFNS)	0.35 U	0.35	0.35 U	0.35	0.34 U	0.34	-		0.34 U 0.34		0.34 U F1	0.34	3.94 U H	3.94	0.34 U	0.34	0.34 U	0.34	-
Perfluorononanoic acid (PFNA)	0.82 J	0.44	0.83 J	0.43	1.15 J	0.42	-		1.12 J 0.42		0.42 U	0.42	-		0.50 J	0.43	0.43 U	0.43	-
Perfluorooctanesulfonamide (PFOSA)	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-
Perfluorooctanesulfonic acid (PFOS)	30.4	0.44	207	0.43	389	0.42	-		392 0.42		7.27	0.42	9.07 J H	4.93	4.54 I	0.43	0.43 U	0.43	2.7
Perfluorooctanoic acid (PFOA)	10.6	0.56	6.48	0.55	9.78	0.54	-		10.5 0.54		10.7	0.54	-		17.7	0.55	0.55 U	0.55	6.7
Perfluoropentanesulfonic acid (PFPeS)	0.44 U	0.44	0.43 U	0.43	0.66 J	0.42	-		0.74 J 0.42		0.75 J	0.42	-		0.43 U	0.43	0.43 U	0.43	-
Perfluoropentanoic acid (PFPeA)	5.65	0.88	4.63	0.87	14.9	0.85	-		14.5 0.84		13.7	0.85	-		12.7	0.85	0.86 U	0.86	-
Perfluorotetradecanoic acid (PFTeDA)	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	4.93 U H	4.93	0.43 U	0.43	0.43 U	0.43	-
Perfluorotridecanoic acid (PFTriA)	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U F2	0.42	4.93 U H	4.93	0.43 U	0.43	0.43 U	0.43	-
Perfluoroundecanoic acid (PFUnA)	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-
PFEESA	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-
PFMBA	0.88 U	0.88	0.87 U	0.87	0.85 U	0.85	-		0.84 U 0.84		0.85 U	0.85	-		0.85 U	0.85	0.86 U	0.86	-
PFMPA	0.44 U	0.44	0.43 U	0.43	0.42 U	0.42	-		0.42 U 0.42		0.42 U	0.42	-		0.43 U	0.43	0.43 U	0.43	-

Notes:

All samples collected August 28, 2023

Bolded concentrations denote detections.

Bolded yellow-highlighted concentrations exceed NYSDEC Class GA Ambient Water Quality Guidance Values.

- F1: MS and/or MSD recovery exceeds control limits.
- F2 : MS/MSD RPD exceeds control limits

- H : Sample was prepared or analyzed outside of the specified holding time.
- I : Value is EMPC (estimated maximum possible concentration).
- $\label{eq:J:Result} \textbf{J}: \textbf{Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.}$
- U : Indicates the analyte was analyzed for but not detected.
- -: Not established or not analyzed.

ATTACHMENT A WELL SAMPLING FORMS

Project: 550 Liberty Plaza	
ocation: 550 Suffolk Ave Brentwood NY	
Well No.: MW-2A	
DTW: 47.41	
Fotal Depth: 55	
Pump Type and Rate: Geo Sub Submersible (~1.5 gpm/~195 Hz)
Votes: Pump on 8:25	•

TIME (HRS:MINS)	рН	SPECIFIC CONDUCTIVITY (µS)	TEMPERATURE (°F)	TURBIDITY (NTU)
8:27	6.08	456	64.8	29.23
8:30	6.07	467	64.2	24.29
8:33	6.03	326	64.6	19.06
8:35	6.07	358	63.1	13.12
8:37	6.05	361	63.4	10.58
				×
			ş . w	
				,
			3. 2. g	

clients/Hydro Dept Forms/WellSamplingFormLowFlow

Project: _	550) Liberty	Plaz	ટવ			
Location:	550	Suffolk	Aue	Brentwood	NY		
Well No.:	MW-	-3A					
DTW:	47.	45'					
Total Dep	th:	55			_	,	,
Pump Typ	e and Rate	e: Geos	ڪ طي	Submersible	(~1.5	apm - 195	Hz)
		on 9:1			·	0. ,	/

TIME (HRS:MINS)	рН	SPECIFIC CONDUCTIVITY (µS)	TEMPERATURE (°F)	TURBIDITY (NTU)
9:12	6.22	434	62.8	19.92
9:15	6.18	413	63.3	15.52
9:18	6.13	411	63.1	11.79
9:20	6.11	410	62.8	8.93

clients/Hydro Dept Forms/WellSamplingFormLowFlow

FPM

Project: _	550	Liberty f	laza				
Location:	550	Suffolk	Ave,	Brentwood	V bo		
Well No.:	MW-	HA					
DTW:	47.1	2'					
Total Den	vth:	55'				,	١
Pump Tyr	oe and Rat	e: Geosal	6 50	bmersible	(~1.5	9pm/~19:	5 Hz
Notes:	Dup (MW-44/	(4	Pump on	10:43		

TIME (HRS:MINS)	рН	SPECIFIC CONDUCTIVITY (µS)	TEMPERATURE (°F)	TURBIDITY (NTU)
10:45	6.36	422	71.9	120
10:47	6.26	402	63.4	102
10:50	6.24	375	63.1	29.02
10:52	6.21	376	61.9	18.71
10:55	6.22	374	61.7	15.42
			===	

clients/Hydro Dept Forms/WellSamplingFormLowFlow

Project: 550 Liberty Plaza
Location: 550 Suffork Ave Brentwood NY
Well No.: MW-7A
DTW: 47.81°
Total Depth: 55'
Pump Type and Rate: Geosub Submersible (~1.5 gpm/~197 Hz)
Notes: Pump on 11:35 (XMS/MSD X)

TIME (HRS:MINS)	рН	SPECIFIC CONDUCTIVITY (µS)	TEMPERATURE (°F)	TURBIDITY (NTU)
11:37	5.51	234	63.1	12.13
11:39	5.42	241	61.9	4.28
11:43	5.40	250	61.7	3.41
11:45	5.39	258	60.6	2.12

clients/Hydro Dept Forms/WellSamplingFormLowFlow

Project: 550 Liberty Plaza
Location: 550 Suffolk Ave, Brentwood NY
Well No.:
DTW: 47.96'
Total Depth:
Pump Type and Rate: GeoSub Submersible (~1.5 gpm/~195 Hz)
Notes: Pump on at 12:30

TIME (HRS:MINS)	рН	SPECIFIC CONDUCTIVITY (µS)	TEMPERATURE (°F)	TURBIDITY (NTU)
12:33	6.16	288	65.3	27.59
12:35	6.08	302	63.1	23.29
12:37	5.88	308	61.0	16.20
12:40	5.60	305	62.1	15.15
12:43	5.61	307	62.3	11.14
			ł.	

clients/Hydro Dept Forms/WellSamplingFormLowFlow

FPM

ATTACHMENT B

DATA USABILITY SUMMARY REPORTS

LIBERTY INDUSTRIAL FINISHING SITE, NYSDEC #152108 DATA USABILITY SUMMARY REPORT August 28, 2023 Groundwater Sampling Lab Report #460-287163-1

This data usability summary report (DUSR) was prepared in accordance with Appendix 2B of New York State Department of Environmental Conservation (NYSDEC) DER-10 using the entire original laboratory report, including the sample data summary report and the supporting data package. The sampling event included 5 primary environmental groundwater samples and associated quality assurance/quality control (QA/QC) samples collected on August 28, 2023.

Sample Collection

The samples were collected in labeled laboratory-provided sample containers; no issues with sample containers or labeling were reported by the laboratory. All sample collection was conducted under Chain of Custody (COC) procedures.

Field QA/QC samples, including a field blank, a duplicate sample, and a matrix spike/matrix spike duplicate (MS/MSD) sample, were collected to evaluate field sampling methods and laboratory procedures.

Sample Analyses

The samples were transmitted to and analyzed by Eurofins Environmental Testing (Eurofins) at their Edison, NJ laboratory, which is New York State Department of Health-certified for the analyses performed. The samples were prepared and analyzed for Target Analyte List (TAL) metals using Methods 3005A and 6020B, for mercury using Method 7470A, and for 1,4-dioxane using Method 8270E-Selected Ion Mode (SIM). The analytes are appropriate for the intended use of the data and the analytical methods are appropriate for the analyte list. The sample holding times were met and no problems with sample receipt or handling were reported by the laboratory.

QA/QC Results

One field blank sample was collected during sampling event. Field blank samples are prepared by pouring laboratory-provided clean water over or through the sampling equipment and the results are used to evaluate the potential for field contamination to affect the results from the primary environmental samples. The field blank sample was tested for the same analyte groups that the primary samples were tested for. 1,4-dioxane was not detected in the field blank sample. No detections of any metals were noted in the field blank sample except as follows:

• The metals copper, lead, and zinc were detected in the field blank sample. These detections were below applicable regulatory criteria and, in most cases, below the levels of these metals detected in the primary environmental samples. The lab re-analyzed the sample with similar results. These detections likely resulted from contamination that may have been present in the water used for field blank preparation and do not present a concern for any of the Site-related analytes.

Based on these results, field contamination does not appear to present a significant concern for the primary environmental sample results.

A duplicate sample (MW-44A) was collected in the field and prepared and analyzed by the laboratory to evaluate the precision of the laboratory analyses. The results from the parent sample (MW-4A) and the duplicate sample were very similar, indicating that the laboratory data are anticipated to be reasonably precise.

An MS/MSD sample (separate aliquots of a primary environmental sample) was collected in the field and prepared by the lab to evaluate the effect of the matrix on the reliability of the analytical results. Spiking occurs in the laboratory prior to sample preparation and analysis. One MS/MSD sample was included in this sample delivery group and was prepared from the MW-7A primary environmental sample. Based on information provided by the analytical laboratory, no issues were noted with the MS/MSD results and matrix-related effects have not significantly affected the analytical results.

Method blank (MB) batch samples were analyzed by the laboratory to evaluate the potential for cross-contamination associated with the sample preparation and analysis. The MB results did not show concentrations of any analytes above their method detection limits and/or the reporting limits. Based on the MB results, cross-contamination associated with sample preparation and analysis does not appear to present a significant concern.

Laboratory control samples (LCSs) and LCS duplicates (LCSDs) were used by the laboratory to verify the accuracy of the analyses. The LCS and LCSD results were all within established guidelines. Based on these results, the analytical results do not appear to be affected by laboratory-related accuracy issues.

Questions and Responses as per DER-10

- 1. Is the data package complete as defined under the current requirements for the NYSDEC ASP Category B deliverables?
 - The data package is complete under the current requirements for the NYSDEC ASP Category B deliverables.
- 2. Have all holding times been met?
 - All samples were received and analyzed within the EPA-recommended holding times for the analyses performed.
- 3. Do all the QC data, including blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data, fall within the protocol-required limits and specifications?
 - No Although the majority of QC data were found to fall within the protocol-required limits and specifications, minor exceptions were noted above; however, these exceptions do not appear to affect the data set at levels of concern.
- 4. Have all the data been generated using established and agreed-upon analytical protocols?
 - Yes the data for TAL metals were generated using Methods 3005A and 6020B, mercury was analyzed using Method 7470A, and 1,4-dioxane was tested using Method 8270E-SIM.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets

and quality control verification forms?

Yes – a representative number of raw data results were checked against the data summary sheets and quality control verification forms and no issues were noted.

- 6. Have the correct data qualifiers been used?
 - Yes results below the reporting limit and above the method detection limit have been J-qualified and non-detects are U-qualified. No other qualifiers were indicated or applied.
- 7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?

Yes – exceedances have been noted in the DUSR and the corresponding QC summary sheets are attached.

Conclusions

The groundwater samples were collected in accordance with the requirements for this project. No field or laboratory conditions occurred that would result in non-valid analytical data other than as noted above. The data appear adequate for their intended purpose.

Attachments

S:\Liberty Industrial\GW Monitoring\2023 Monitoring\DUSR GW Spls 8-2023-Metals.Docx

ANALYTICAL REPORT

PREPARED FOR

Attn: Stephanie Davis FPM Group Limited 640 Johnson Avenue Suite 101 Bohemia NY 11716

Generated 9/8/2023 10:40 AM

JOB DESCRIPTION

550 Liberty Plaza

JOB NUMBER

460-287163-1

Eurofins Edison 777 New Durham Road Edison NJ 08817

my EOI

CASE NARRATIVE

Client: FPM Group Limited

Project: 550 Liberty Plaza

Report Number: 460-287163-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 8/29/2023 7:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.9° C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

SEMIVOLATILE ORGANIC COMPOUNDS - SELECTED ION MODE (SIM) - ISOTOPE DILUTION - 1,4 DIOXANE

Samples MW-2A (460-287163-1), MW-3A (460-287163-2), MW-4A (460-287163-3), MW-44A (460-287163-4), MW-7A (460-287163-5), MW-17A (460-287163-6) and EB0828 (460-287163-7) were analyzed for semivolatile organic compounds - Selected Ion Mode (SIM) - Isotope Dilution - 1,4 Dioxane in accordance with EPA SW-846 Method 8270E SIM 1,4Dioxane. The samples were prepared and analyzed on 09/03/2023.

No difficulties were encountered during the 1,4 Dioxane analysis.

All quality control parameters were within the acceptance limits.

METALS - TOTAL (ICP/MS)

Samples MW-2A (460-287163-1), MW-3A (460-287163-2), MW-4A (460-287163-3), MW-44A (460-287163-4), MW-7A (460-287163-5), MW-17A (460-287163-6) and EB0828 (460-287163-7) were analyzed for Metals - Total (ICP/MS) in accordance with EPA SW-846 Method 6020B - Total. The samples were prepared on 09/01/2023 and analyzed on 09/03/2023.

The EB contains copper, lead and zinc greater than the reporting limit (RL). This was confirmed by analysis of the undigested sample bottle, therefore the results are reported: EB0828 (460-287163-7)

No other difficulties were encountered during the metals analysis.

All other quality control parameters were within the acceptance limits.

MERCURY

Samples MW-2A (460-287163-1), MW-3A (460-287163-2), MW-4A (460-287163-3), MW-44A (460-287163-4), MW-7A (460-287163-5), MW-17A (460-287163-6) and EB0828 (460-287163-7) were analyzed for mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 09/06/2023.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

Sample Summary

Client: FPM Group Limited Project/Site: 550 Liberty Plaza

Job ID: 460-287163-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-287163-1	MW-2A	Water	08/28/23 08:45	08/29/23 19:00
460-287163-2	MW-3A	Water	08/28/23 09:25	08/29/23 19:00
460-287163-3	MW-4A	Water	08/28/23 10:55	08/29/23 19:00
460-287163-4	MW-44A	Water	08/28/23 10:57	08/29/23 19:00
460-287163-5	MW-7A	Water	08/28/23 11:50	08/29/23 19:00
460-287163-6	MW-17A	Water	08/28/23 12:45	08/29/23 19:00
460-287163-7	EB0828	Water	08/28/23 13:15	08/29/23 19:00

Definitions/Glossary

Client: FPM Group Limited Project/Site: 550 Liberty Plaza Job ID: 460-287163-1

Qualifiers

GC/MS Semi VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Metals

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

LIBERTY INDUSTRIAL FINISHING SITE, NYSDEC #152108 DATA USABILITY SUMMARY REPORT August 28, 2023 Groundwater Sampling Lab Report #460-287159-1

This data usability summary report (DUSR) was prepared in accordance with Appendix 2B of New York State Department of Environmental Conservation (NYSDEC) DER-10 using the entire original laboratory report, including the sample data summary report and the supporting data package. The sampling event included 5 primary environmental groundwater samples and associated quality assurance/quality control (QA/QC) samples collected on August 28, 2023.

Sample Collection

The samples were collected in labeled laboratory-provided sample containers; no issues with sample containers or labeling were reported by the laboratory. All sample collection was conducted under Chain of Custody (COC) procedures.

Field QA/QC samples, including a field blank, a duplicate sample, and a matrix spike/matrix spike duplicate (MS/MSD) sample, were collected to evaluate field sampling methods and laboratory procedures.

Sample Analyses

The samples were transmitted to and analyzed by Eurofins Environmental Testing (Eurofins) at their Edison, NJ laboratory, which is New York State Department of Health-certified for the analyses performed. The samples were prepared and analyzed for the NYSDEC's target list of per- and polyfluoroalkyl substances (PFAS) using the draft Method 1633 – PFAS by LC/MS/MS. The analytes are appropriate for the intended use of the data and the analytical method is appropriate for the analyte list. The sample holding times were met and no problems with sample receipt or handling were reported by the laboratory.

The MW-4A and MW-7A samples were diluted due to the nature of the sample matrix. Elevated reporting limits are provided.

The MW-7A sample was re-prepared outside of preparation holding time due to low isotope dilution analyte (IDA) recovery during initial extraction. Re-analysis of the MW-4 sample was performed outside of the analytical holding time due to low IDA recovery on the initial analysis. The associated results have been flagged.

QA/QC Results

One field (equipment) blank sample was collected during sampling event. Field blank samples are prepared by pouring laboratory-provided clean water over or through the sampling equipment and the results are used to evaluate the potential for field contamination to affect the results from the primary environmental samples. The field blank sample was tested for the same PFAS analytes that the primary samples were tested for. No PFAS compounds were detected in the field blank sample. Based on these results, field contamination does not appear to present a concern for the primary environmental sample results.

A duplicate sample (MW-44A) was collected in the field and prepared and analyzed by the laboratory to evaluate the precision of the laboratory analyses. The PFAS results from the parent

sample (MW-4A) and the duplicate sample were very similar, indicating that the laboratory data are anticipated to be reasonably precise.

An MS/MSD sample (separate aliquots of a primary environmental sample) was collected in the field and prepared by the lab to evaluate the effect of the matrix on the reliability of the analytical results. Spiking occurs in the laboratory prior to sample preparation and analysis. One MS/MSD sample was included in this sample delivery group and was prepared from the MW-7A primary environmental sample. Based on information provided by the analytical laboratory, no issues were noted with the MS/MSD results except as follows:

Several PFAS analytes failed the recovery criteria low for the MS in batch 280-626764 and PFHpS failed the recovery criteria high. Three PFAS compounds failed the recovery criteria low for the MSD in batch 280-626764 and several analytes exceeded the relative percent difference (RPD) limit. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) and LCS duplicate (LCSD) were within acceptance limits.

Based on these results, matrix-related effects do not appear to have significantly affected the analytical results.

Method blank (MB) batch samples were analyzed by the laboratory to evaluate the potential for cross-contamination associated with the sample preparation and analysis. The MB results did not show concentrations of any PFAS analytes above their method detection limits and/or the reporting limits. Based on the MB results, cross-contamination associated with sample preparation and analysis does not appear to present a concern.

Laboratory control samples (LCSs) and LCS duplicates (LCSDs) were used by the laboratory to verify the accuracy of the analyses. The LCS and LCSD results were all within established guidelines. Based on these results, the analytical results do not appear to be affected by laboratory-related accuracy issues.

IDA recovery was above the method-recommended limit for the MW-2A sample. The associated target analytes were non-detect and, therefore, the data were reported. IDA recovery was below the method-recommended limit for the MW-4A sample. Data quality is not considered to be affected if the signal-to-noise ratio is greater than 10:1, which was achieved for all IDA in the sample. The sample was re-extracted at dilution, which brought the IDA recoveries within limits. Analysis of this extract confirmed the initial results and the initial data are reported.

Analyst judgement was used to identify certain PFAS compounds where the transition mass ratio for the analyte was outside of established ratio limits. Qualitative identification has some level of uncertainty and the associated results are I-qualified.

Questions and Responses as per DER-10

1. Is the data package complete as defined under the current requirements for the NYSDEC ASP Category B deliverables?

The data package is complete under the current requirements for the NYSDEC ASP Category B deliverables.

2. Have all holding times been met?

All samples were received and analyzed within the EPA-recommended holding times for the analyses performed, with the exceptions of a very limited number of re-preparations and re-

analyses.

- 3. Do all the QC data, including blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data, fall within the protocol-required limits and specifications?
 - No Although the majority of QC data were found to fall within the protocol-required limits and specifications, minor exceptions were noted above; however, these exceptions do not appear to affect the data set at levels of concern.
- 4. Have all the data been generated using established and agreed-upon analytical protocols?
 - Yes the data for PFAS were generated using the draft Method 1633 PFAS by LC/MS/MS.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?
 - Yes a representative number of raw data results were checked against the data summary sheets and quality control verification forms and no issues were noted.
- 6. Have the correct data qualifiers been used?
 - Yes results below the reporting limit and above the method detection limit have been J-qualified, non-detects are U-qualified, results out of holding times are H-qualified, and results from qualitative identifications are I-qualified. No other qualifiers were indicated or applied.
- 7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?
 - Yes exceedances have been noted in the DUSR and the corresponding QC summary sheets are attached.

Conclusions

The groundwater samples were collected in accordance with the requirements for this project. No field or laboratory conditions occurred that would result in non-valid analytical data other than as noted above. The data appear adequate for their intended purpose.

Attachments

S:\Liberty Industrial\GW Monitoring\2023 Monitoring\DUSR GW Spls 8-2023-PFAS.Docx

ANALYTICAL REPORT

PREPARED FOR

Attn: Stephanie Davis FPM Group Limited 640 Johnson Avenue Suite 101 Bohemia NY 11716 Generated 9/29/2023 5:16 PM

JOB DESCRIPTION

550 Liberty Industrial Plaza

JOB NUMBER

460-287159-1

Eurofins Edison 777 New Durham Road Edison NJ 08817

EOL.

Eurofins Edison

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Compliance Statement

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Authorization

Generated 9/29/2023 5:16 PM

Authorized for release by

Patricia Grieco, Senior Project Manager Patricia.Grieco@et.eurofinsus.com

Designee for

Carin A Ferris, Senior Project Manager carin.ferris@et.eurofinsus.com

CASE NARRATIVE

Client: FPM Group Limited

Project: 550 Liberty Industrial Plaza

Report Number: 460-287159-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/29/2023; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 1.4 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

PFAS

Samples MW-2A (460-287159-1), MW-3A (460-287159-2), MW-4A (460-287159-3), MW-44A (460-287159-4), MW-7A (460-287159-5), MW-17A (460-287159-6) and EB0828 (460-287159-7) were analyzed for PFAS in accordance with EPA 1633. The samples were prepared on 09/19/2023, 09/26/2023 and 09/27/2023 and analyzed on 09/20/2023, 09/27/2023 and 09/28/2023.

Several analytes failed the recovery criteria low for the MS of sample MW-7AMS (460-287159-5) in batch 280-626764. Perfluoroheptanesulfonic acid (PFHpS) failed the recovery criteria high.

11CI-PF3OUdS, Perfluorodecanesulfonic acid (PFDS) and Perfluorododecanesulfonic acid (PFDoS) failed the recovery criteria low for the MSD of sample MW-7AMSD (460-287159-5) in batch 280-626764. Several analytes exceeded the RPD limit.

11CI-PF3OUdS, Perfluorodecanesulfonic acid (PFDS) and Perfluorododecanesulfonic acid (PFDoS) failed the recovery criteria low for the MSD of sample MW-7AMSD (460-287159-5) in batch 280-626764. Several analytes exceeded the RPD limit.

The following samples were decanted about 10 mL in order to add spike standards to the sample bottle without the sample overflowing: MW-4A (460-287159-3), MW-4AA (460-287159-4), MW-7A (460-287159-5), MW-7A (460-287159-5[MSD]), MW-7A (460-287159-6) and EB0828 (460-287159-7). In preparation batch 280-626616 for method 1633 SPE/1633 B24.

In preparation batch 280-627347, the following sample were diluted due to the nature of the sample matrix: MW-4A (460-287159-3) (5x). Elevated reporting limits (RLs) are provided. Because the sample was extracted at a dilution, the original sample container could not be rinsed. Method 1633_SPE/1633_B24.

The following samples were re-prepared outside of preparation holding time due to low IDA recovery during initial extraction: MW-7A (460-287159-5), MW-7A (460-287159-5[MS]) and MW-7A (460-287159-5[MSD]). In preparation batch 280-627539 for method 1633 SPE/1633 B24.

MW-7A (460-287159-5), MW-7A (460-287159-5[MS]) and MW-7A (460-287159-5[MSD])

In preparation batch 280-627539, the following samples were diluted due to the nature of the sample matrix: MW-7A (460-287159-5), MW-7A (460-287159-5[MSD]) and MW-7A (460-287159-5[MSD]) (10x/10x/10x). Elevated reporting limits (RLs) are provided. Because the samples were extracted at dilutions, the original sample containers could not be rinsed. Method 1633 SPE/1633 B24.

Refer to the QC report for details.

No other difficulties were encountered during the PFAS analysis.

All other quality control parameters were within the acceptance limits.

PFCS BY LC/MS/MS

Samples MW-2A (460-287159-1), MW-3A (460-287159-2), MW-4A (460-287159-3), MW-44A (460-287159-4), MW-7A (460-287159-5) and MW-17A (460-287159-6) were analyzed for PFCs by LC/MS/MS in accordance with 1633. The samples were analyzed on 09/01/2023 and 09/05/2023.

The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 280-626616 and analytical batch 280-626764 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for the following sample: MW-2A (460-287159-1). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries. The associated target analytes were non-detections and therefore data has been reported.

The "I" qualifier means the transition mass ratio for the indicated analytes were outside of the established ratio limits. The qualitative dentification of the analytes have some degree of uncertainty. However, analyst judgment was used to positively identify the analyte. The affected samples are MW-3A (460-287159-2) and MW-17A (460-287159-6) in analytical batch (280-626764).

The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: (MB 280-627347/1-A). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Reanalysis of the following sample was performed outside of the analytical holding time due to low IDA recovery in initial analysis: MW-4A (460-287159-3).

The "I" qualifier means the transition mass ratio for the indicated analytes were outside of the established ratio limits. The qualitative identification of the analytes have some degree of uncertainty. However, analyst judgment was used to positively identify the analyte. The affected samples are MW-7A (460-287159-5) and (LLCS 280-627539/2-A) in analytical batch (280-627697).

The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: MW-4A (460-287159-3). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample. The sample was re-extracted at dilution, which brought IDA recoveries within limits. Analysis of this extract confirmed results of the initial analysis, and initial data are reported.

No difficulties were encountered during the PFCs by LC/MS/MS analysis.

All quality control parameters were within the acceptance limits.

QC Sample Results

Client: FPM Group Limited

Project/Site: 550 Liberty Industrial Plaza

Method: Draft 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: LLCS 280-626616/2-A Client Sample ID: Lab Control Sample

Matrix: Water Analysis Batch: 626764 Prep Type: Total/NA
Prep Batch: 626616

	Spike	LLCS	LLCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
NEtFOSAA	3.20	3.152		ng/L		98	51 - 154	
NMeFOSE	32.0	34.15		ng/L		107	56 - 151	
NEtFOSE	32.0	34.95		ng/L		109	60 - 147	
HFPO-DA (GenX)	12.8	14.55		ng/L		114	58 - 154	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	12.1	13.94		ng/L		115	61 - 148	
PFMBA	6.40	6.591		ng/L		103	49 - 154	
NFDHA	6.40	8.104		ng/L		127	47 - 160	
PFMPA	6.40	6.567		ng/L		103	48 - 150	
9CI-PF3ONS	11.9	12.14		ng/L		102	44 - 167	
11CI-PF3OUdS	12.1	13.00		ng/L		108	36 - 158	
PFEESA	5.71	6.482		ng/L		114	56 - 144	
3:3 FTCA	16.0	15.50		ng/L		97	32 - 161	
5:3 FTCA	80.0	88.87		ng/L		111	39 - 156	
7:3 FTCA	80.0	92.67		ng/L		116	36 - 149	

LLCS LLCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	81		10 - 130
13C5 PFPeA	86		35 - 150
13C5 PFHxA	79		55 - 150
13C4 PFHpA	79		55 - 150
13C8 PFOA	74		60 - 140
13C9 PFNA	80		55 - 140
13C6 PFDA	85		50 - 140
13C7 PFUnA	77		30 - 140
13C2 PFDoA	77		10 - 150
13C2 PFTeDA	75		10 - 130
13C3 PFBS	89		55 - 150
13C3 PFHxS	81		55 - 150
13C8 PFOS	84		45 - 140
13C8 FOSA	75		30 - 130
d3-NMeFOSAA	81		45 - 200
d5-NEtFOSAA	83		10 - 200
M2-4:2 FTS	93		60 - 200
M2-6:2 FTS	81		60 - 200
M2-8:2 FTS	85		50 - 200
13C3 HFPO-DA	80		25 - 160
d7-N-MeFOSE-M	83		10 - 150
d9-N-EtFOSE-M	83		10 - 150
d5-NEtPFOSA	60		10 - 130
d3-NMePFOSA	58		15 - 130

Lab Sample ID: 460-287159-5 MS

Matrix: Water

Client Sample ID: MW-7A

Prep Type: Total/NA

Analysis Batch: 626764 Prep Batch: 626616

•	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorobutanoic acid (PFBA)	19.6		110	139.5		ng/L		109	58 - 148	
Perfluoropentanoic acid (PFPeA)	13.7		55.0	68.95		ng/L		100	54 - 152	

Job ID: 460-287159-1

QC Sample Results

Client: FPM Group Limited

Project/Site: 550 Liberty Industrial Plaza

Method: Draft 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: 460-287159-5 MS

Matrix: Water

Client Sample ID: MW-7A Prep Type: Total/NA

Job ID: 460-287159-1

Analysis Batch: 626764	Sample	Sample	Spike	MS	MS				Prep Batch: 626616 %Rec
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	10.8		27.5	40.12		ng/L		107	55 - 152
Perfluoroheptanoic acid (PFHpA)	5.53		27.5	36.97		ng/L		114	54 - 154
Perfluorooctanoic acid (PFOA)	10.7		27.5	41.99		ng/L		114	52 - 161
Perfluorononanoic acid (PFNA)	0.42	U	27.5	29.84		ng/L		108	59 - 149
Perfluorodecanoic acid (PFDA)	0.42	U	27.5	26.97		ng/L		98	52 - 147
Perfluoroundecanoic acid (PFUnA)	0.42	U	27.5	28.69		ng/L		104	48 - 159
Perfluorododecanoic acid (PFDoA)	0.42	U	27.5	29.32		ng/L		107	64 - 142
Perfluorotridecanoic acid (PFTriA)	0.42	U F2	27.5	13.67		ng/L		50	49 - 148
Perfluorotetradecanoic acid (PFTeDA)	0.42	U	27.5	28.87		ng/L		105	47 - 161
Perfluorobutanesulfonic acid (PFBS)	24.5		24.4	50.07		ng/L		105	62 - 144
Perfluoropentanesulfonic acid (PFPeS)	0.75	J	25.8	31.48		ng/L		119	59 - 151
Perfluorohexanesulfonic acid (PFHxS)	31.1		25.1	52.37		ng/L		85	57 - 146
Perfluoroheptanesulfonic acid (PFHpS)		U F1	26.2	44.70	F1	ng/L		171	55 - 152
Perfluorooctanesulfonic acid (PFOS)	7.27	11 54 50	25.6	37.37	54	ng/L		118	58 - 149
Perfluorononanesulfonic acid (PFNS)		U F1 F2	26.5	13.40 3.878		ng/L		51 15	52 ₋ 148 51 ₋ 147
Perfluorodecanesulfonic acid (PFDS) Perfluorododecanesulfonic acid		U F1 F2 U F1 F2	26.5 26.7	1.725		ng/L ng/L		6	36 - 145
(PFDoS) 4:2 FTS	1.44		103	122.1	FI	ng/L		119	67 - 146
6:2 FTS	2.12		103	115.3		ng/L		110	61 - 151
8:2 FTS	2.12		104	127.4				121	63 - 152
100000000000000000000000000000000000000	0.42		27.5	29.88		ng/L ng/L		109	61 - 148
Perfluorooctanesulfonamide (PFOSA) NMeFOSA	0.42		27.5	34.56		ng/L		126	63 - 145
NEtFOSA	0.42		27.5	29.75		ng/L		108	65 - 139
NMeFOSAA	1.02		27.5	32.93		ng/L		120	58 - 144
NEtFOSAA	0.59		27.5	33.66		ng/L		122	59 - 146
NMeFOSE	4.23		275	320.3		ng/L		116	71 - 136
NEtFOSE	4.23		275	314.9		ng/L		114	69 - 137
HFPO-DA (GenX)	1.69		110	123.8		ng/L		112	63 - 144
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	1.27		104	120.0		ng/L		115	68 - 146
PFMBA	0.85	U	55.0	55.73		ng/L		101	55 - 148
NFDHA	0.85	U	55.0	61.93		ng/L		112	48 - 161
PFMPA	0.42	U	55.0	55.67		ng/L		101	51 - 145
9CI-PF3ONS	0.85	U F1 F2	103	28.81	F1	ng/L		28	56 - 156
11CI-PF3OUdS	1.69	U F1 F2	104	2.767	JF1	ng/L		3	46 - 156
PFEESA	0.42	U	49.1	48.61		ng/L		99	56 - 151
3:3 FTCA	1.27		138	139.8		ng/L		102	62 - 129
5:3 FTCA	8.46	U	688	733.4		ng/L		107	63 - 134
7:3 FTCA	8.46	U	688	659.8		ng/L		96	50 - 138

Client: FPM Group Limited

Project/Site: 550 Liberty Industrial Plaza

Method: Draft 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

	MS	MS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	82		10 - 130
13C5 PFPeA	79		35 - 150
13C5 PFHxA	77		55 - 150
13C4 PFHpA	71		55 - 150
13C8 PFOA	75		60 - 140
13C9 PFNA	74		55 - 140
13C6 PFDA	64		50 - 140
13C7 PFUnA	37		30 - 140
13C2 PFDoA	16		10 - 150
13C2 PFTeDA	/4	*5-	10 - 130
13C3 PFBS	75	1	55 - 150
13C3 PFHxS	/ 71	\	55 - 150
13C8 PFOS	/ 44	*5-	45 - 140
13C8 FOSA	58		30 - 130
d3-NMeFOSAA	41	*5-	45 - 200
d5-NEtFOSAA	26		10 - 200
M2-4:2 FTS	82	/	60 - 200
M2-6:2 FTS	75		60 - 200
M2-8:2 FTS	55	/	50 - 200
13C3 HFPO-DA	71		25 - 160
d7-N-MeFOSE-M	1	*5-	10 - 150
d9-N-EtFOSE-M	0.3	*5-	10 - 150
d5-NEtPFOSA	19		10 - 130
d3-NMePFOSA	34		15-130

Lab Sample ID: 460-287159-5 MSD

Matrix: Water

Analysis Batch: 626764

Client Sample ID: MW-7A Prep Type: Total/NA

Prep Batch: 626616

Job ID: 460-287159-1

Allaly 313 Datoll. 020104									1 1ch	Jacon. 02	20010
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	19.6		110	135.6		ng/L		106	58 - 148	3	30
Perfluoropentanoic acid (PFPeA)	13.7		54.9	68.21		ng/L		99	54 - 152	1	30
Perfluorohexanoic acid (PFHxA)	10.8		27.4	40.53		ng/L		108	55 - 152	1	30
Perfluoroheptanoic acid (PFHpA)	5.53		27.4	35.36		ng/L		109	54 - 154	4	30
Perfluorooctanoic acid (PFOA)	10.7		27.4	40.84		ng/L		110	52 - 161	3	30
Perfluorononanoic acid (PFNA)	0.42	U	27.4	30.47		ng/L		111	59 - 149	2	30
Perfluorodecanoic acid (PFDA)	0.42	U	27.4	27.28		ng/L		99	52 - 147	1	30
Perfluoroundecanoic acid	0.42	U	27.4	28.83		ng/L		105	48 - 159	1	30
(PFUnA)											
Perfluorododecanoic acid	0.42	U	27.4	31.27		ng/L		114	64 - 142	6	30
(PFDoA)	0.40		a= .								> 2
Perfluorotridecanoic acid (PFTriA)	0.42	U F2	27.4	23.67	F2	ng/L		86	49 - 148	54	30
Perfluorotetradecanoic acid	0.42	П	27.4	31.97		ng/L		117	47 - 161	10	30
(PFTeDA)	0.42	J	27.4	01.07		rig/L		117	47 - 101	10	50
Perfluorobutanesulfonic acid	24.5		24.4	50.22		ng/L		106	62 - 144	0	30
(PFBS)											
Perfluoropentanesulfonic acid	0.75	J	25.7	31.40		ng/L		119	59 - 151	0	30
(PFPeS)						22		27.01	esser remove		
Perfluorohexanesulfonic acid	31.1		25.0	53.80		ng/L		91	57 - 146	3	30
(PFHxS) Perfluoroheptanesulfonic acid	0.34	U F1	26.1	35.91		na/l		137	55 - 152	22	30
(PFHpS)	0.34	OFI	20.1	33.91		ng/L		137	33 - 132	(92)	130
(, , , , , , ,)										5	

QC Sample Results

Client: FPM Group Limited

d3-NMeFOSAA

d5-NEtFOSAA

M2-4:2 FTS

Project/Site: 550 Liberty Industrial Plaza

Method: Draft 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: 460-28719 Matrix: Water Analysis Batch: 626764	59-5 MSD							Client Sample ID: MW-7A Prep Type: Total/NA Prep Batch: 626616				
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi	
Perfluorooctanesulfonic acid	7.27		25.5	34.19	:	ng/L		105	58 - 149	9	30	
(PFOS)								-	22 712		١	
Perfluorononanesulfonic acid	0.34	U F1 F2	26.4	19.87	F2	ng/L		75	52 - 148	39	30	
(PFNS) Perfluorodecanesulfonic acid	0.42	U F1 F2	26.4	11 56	F1 F2	ng/L		44	51 - 147	100	30	
(PFDS)	0.42	01112	20.4	11.00	1112	rig/L			01-147	100	, 0.	
Perfluorododecanesulfonic acid	0.76	U F1 F2	26.6	3.240	F1 F2	ng/L		12	36 - 145	61	30	
(PFDoS)						-						
4:2 FTS	1.44	U	102	102.1		ng/L		100	67 - 146	18	30	
6:2 FTS	2.12		104	111.8		ng/L		107	61 - 151	3	30	
8:2 FTS	2.20	U	105	118.1		ng/L		112	63 - 152	8	30	
Perfluorooctanesulfonamide	0.42	U	27.4	31.69		ng/L		116	61 - 148	6	30	
(PFOSA)	0.40		07.4	04.40				405	00 445	•	01	
NMeFOSA	0.42		27.4	34.40		ng/L		125	63 - 145	0	30	
NEtFOSA	0.42		27.4	32.44		ng/L		118	65 - 139	9	30	
NMeFOSAA	1.02		27.4	32.83		ng/L		120	58 - 144	0	30	
NEtFOSAA NM-5005	0.59		27.4	29.30		ng/L		107	59 - 146	14	30	
NMeFOSE	4.23		274	301.3		ng/L		110	71 - 136	6	30	
NETFOSE	4.23		274	322.9		ng/L		118	69 - 137	2	30	
HFPO-DA (GenX)	1.69		110	120.6		ng/L		110	63 - 144	3	30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	1.27	U	104	116.1		ng/L		112	68 - 146	3	30	
PFMBA	0.85	U	54.9	55.83		ng/L		102	55 - 148	0	30	
NFDHA	0.85		54.9	63.30		ng/L		115	48 - 161	2	30	
PFMPA	0.42		54.9	53.97		ng/L		98	51 - 145	3	30	
9CI-PF3ONS		U F1 F2	102	62.22	F2	ng/L		61	56 - 156	73	\ 30	
11CI-PF3OUdS		U F1 F2	103		F1 F2	ng/L		18	46 - 156	149	30	
PFEESA	0.42		48.9	51.58		ng/L		105	56 - 151	6	30	
3:3 FTCA	1.27		137	136.3		ng/L		99	62 - 129	2	30	
5:3 FTCA	8.46	U	686	741.8		ng/L		108	63 - 134	1	30	
7:3 FTCA	8.46	U	686	688.2		ng/L		100	50 ₋ 138	4	30	
	MSD	MSD				Ü						
Isotope Dilution	%Recovery	Qualifier	Limits									
13C4 PFBA	87		10 - 130									
13C5 PFPeA	83		35 - 150									
13C5 PFHxA	77		55 - 150									
13C4 PFHpA	81		55 ₋ 150									
13C8 PFOA	76		60 - 140									
13C9 PFNA	80		55 - 140									
13C6 PFDA	71		50 - 140									
13C7 PFUnA	53		30 - 140									
13C2 PFDoA	37		10 - 150									
13C2 PFTeDA	14		10 - 130									
13C3 PFBS	82		55 - 150									
13C3 PFHxS	75		55 - 150									
13C8 PFOS	66		45 - 140									
13C8 FOSA	66		30 - 130									

Eurofins Edison 9/29/2023 5:16 PM

Job ID: 460-287159-1

45 - 200

10 - 200

60 - 200

59

49

99

QC Sample Results

Client: FPM Group Limited

Project/Site: 550 Liberty Industrial Plaza

Method: Draft 1633 - Per- and Polyfluoroalkyl Substances by LC/MS/MS (Continued)

Lab Sample ID: 460-287159-5 MSD

Matrix: Water

Analysis Batch: 626764

Client Sample ID: MW-7A Prep Type: Total/NA Prep Batch: 626616

Job ID: 460-287159-1

	MSD MSD	
Isotope Dilution	%Recovery Quali	fier Limits
M2-6:2 FTS	82	60 - 200
M2-8:2 FTS	66	50 - 200
13C3 HFPO-DA	76	25 - 160
d7-N-MeFOSE-M	(14	10 - 150
d9-N-EtFOSE-M	5 *5-)	10 - 150
d5-NEtPFOSA	40	10 - 130
d3-NMePFOSA	50	15 - 130

Lab Sample ID: MB 280-627347/1-A

Matrix: Water

Analysis Batch: 627536

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 627347

	MB	3 MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.00	U	8.00	2.00	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluoropentanoic acid (PFPeA)	1.00	U	4.00	1.00	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorohexanoic acid (PFHxA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluoroheptanoic acid (PFHpA)	0.52	U	2.00	0.52	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorooctanoic acid (PFOA)	0.64	U	2.00	0.64	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorononanoic acid (PFNA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorodecanoic acid (PFDA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluoroundecanoic acid (PFUnA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorododecanoic acid (PFDoA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorotridecanoic acid (PFTriA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorotetradecanoic acid (PFTeDA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorobutanesulfonic acid (PFBS)	0.30	U	2.00	0.30	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluoropentanesulfonic acid (PFPeS)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorohexanesulfonic acid (PFHxS)	0.57	U	2.00	0.57	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluoroheptanesulfonic acid (PFHpS)	0.40	U	2.00	0.40	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorooctanesulfonic acid (PFOS)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorononanesulfonic acid (PFNS)	0.40	U	2.00	0.40	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorodecanesulfonic acid (PFDS)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorododecanesulfonic acid (PFDoS)	0.90	U	2.00	0.90	ng/L		09/26/23 09:28	09/27/23 12:19	1
4:2 FTS	1.70	U	8.00	1.70	ng/L		09/26/23 09:28	09/27/23 12:19	1
6:2 FTS	2.50	U	8.00	2.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
8:2 FTS	2.60	U	8.00	2.60	ng/L		09/26/23 09:28	09/27/23 12:19	1
Perfluorooctanesulfonamide (PFOSA)	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
NMeFOSA	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
NEtFOSA	0.50	U	2.00	0.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
NMeFOSAA	1.20	U	4.00	1.20	ng/L		09/26/23 09:28	09/27/23 12:19	1
NEtFOSAA	0.70	U	2.00	0.70	ng/L		09/26/23 09:28	09/27/23 12:19	1
NMeFOSE	5.00	U	20.0	5.00	ng/L		09/26/23 09:28	09/27/23 12:19	1
NEtFOSE	5.00	U	20.0	5.00	ng/L		09/26/23 09:28	09/27/23 12:19	1
HFPO-DA (GenX)	2.00	U	8.00	2.00	ng/L		09/26/23 09:28	09/27/23 12:19	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	1.50	U	8.00	1.50	ng/L		09/26/23 09:28	09/27/23 12:19	1
PFMBA	1.00	U	4.00	1.00	ng/L		09/26/23 09:28	09/27/23 12:19	1
NFDHA	1.00	U	4.00	1.00	ng/L		09/26/23 09:28	09/27/23 12:19	1

Page 34 of 1968